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Abstract

In this thesis, we deal with advanced signal processing for wireless communications at very

high data rates and consider two application areas in the radio frequency range and the

infrared range.

In the first part of this thesis, the concept of sharing the radio spectrum and the infrastruc-

ture between multiple operators is illustrated, which is within the vision of the European’s

seventh framework research project SAPHYRE. We introduce the SAPHYRE concept, which

defines two topologies including the spectrum sharing as well as both spectrum and infras-

tructure (relay) sharing scenarios.

In the first topology, the spectrum is shared between multiple operators. The downlink

of this spectrum sharing scenario is considered, where the base stations (BSs) of different

operators transmit over the same channel, each dedicated to its own user terminal (UTs).

Two closed-form transmit beamformers are first developed for this model. Based on that,

an iterative transmit beamforming technique, named as flexible coordinated beamforming

(FlexCoBF) for spectrum sharing is designed to exploit the inter-operator interference in a

more effective manner so as to further enhance the system sum rate performance.

Concerning the second topology, both the spectrum and infrastructure sharing are taken

into account. To be more specific, the relay assisted communications are investigated for

this topology, where the relay as well as the spectrum are shared between multiple operators.

We employ a multiple-input multiple output (MIMO) amplify and forward (AF) relay to as-

sist the transmission between multiple pairs of BSs and UTs, where two cases are studied.

In the first case, the direct link between the BSs and the UTs is too weak and can be ne-

glected. We propose several algorithms for the relay precoder design to further improve the

system performance. First a set of algorithms named efficient relay sharing rate maximization

(EReSh-RM) are designed to improve the system sum rate under the relay transmit power

constraint. After that, the relay precoder design is systematically studied for power efficient

transmission. When the BSs and UTs are equipped with single antennas, a global optimum

solution is firstly derived, which uses a convex optimization tool to exploit the structure of

the relay precoder. Taking this as a benchmark, several suboptimal beamforming algorithms

are proposed to find a compromise between the achievable power efficiency and the computa-

tional complexity, including a closed-form algorithm named Efficient Resource Sharing Power

Minimization (EReSh-PM) and block diagonalization (BD) based solutions. Further, a novel

robust relay precoder design is proposed by considering imperfect channel state information

at the relay. At last, we extend our work to a general study where each pair of BSs and UTs

are equipped with multiple antennas and a novel relay matrix design is derived for multiple
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stream transmission between multiple pairs of BSs and UTs. Furthermore, another relay ap-

plication case study is discussed, when the direct link is not negligible. We consider the linear

precoding design for the AF relaying strategy, assuming multiple antennas employed at all

BSs, UTs, and the AF relay. The single stream and multiple stream transmission are studied.

Moreover, the SAPHYRE sharing gain is exploited, showing the advantage of spectrum and

relay sharing in comparison with the exclusive access of the resources.

In the second part of this thesis, the physical layer design for a high speed infrared (IR)

system in indoor environment is developed, which is within the scope the European Union’s

seventh framework research project OMEGA. The recent developments in an indoor infrared

(IR) systems prove that IR has emerged as a strong candidate for high speed indoor com-

munications, which is expected to play an important role in the future wireless networks.

The infrared transmission operating at one Gigabit per second (Gbps) in the indoor environ-

ment is quite challenging, with a requirement to provide coverage as well as high data rate.

The physical layer design for a high speed IR system is considered, which is focused on the

line-of-sight (LOS) data transmission using IR wavelengths.

The system model of the high speed IR transmission is first introduced, where individual

components suitable for Gbps IR systems are analyzed and specified. In particular, the

modulation scheme that is appropriate for the Gbps IR transmission is briefly discussed.

Thereafter, the baseline wander effect is considered, which is induced by the alternating

current (AC) coupling inherent in the receiver’s preamplifier. In order to overcome this, a novel

line coding named concatenated flipped bit insertion (CFBI) code is elaborately addressed.

Following that, the implementation of an analog Bessel low-pass filter is specified for noise

rejection. A high-pass filter for the Gbps IR system is carefully selected, which is applied

to block the direct current (DC) photocurrent generated by the received ambient light as

well as to reduce the harmonics caused by the fluorescent lighting. Then the photodiode

detectors for high speed IR transmission are discussed, including positive-intrinsic-negative

(PIN) photodiodes and the Avalanche photodiodes. It is important to notice various noise

sources generated in the IR system, including the shot noise and the thermal noise with

constant power spectrum density (PSD), as well as the so called f2 noise whose PSD increases

with the square of the frequency. All these types of noise are analyzed in this thesis. Based

on this analysis and the specification of the individual components, the link budget for a LOS

Gbps IR transmission with a narrow angle field of view (FOV) is given. Finally, the transmit

and receive angle diversity are discussed in order to further extend the system FOV.
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Zusammenfassung

Die vorliegende Arbeit behandelt Signalverarbeitungsverfahren für drahtlose Kommunikation-

ssysteme mit sehr hohen Datenraten. Dabei werden zum einen Funksysteme und zum anderen

Infrarot-basierte optische Übertragungssysteme als Anwendungsgebiete betrachtet.

Im ersten Teil der Arbeit wird das Konzept des “resource sharing” beleuchtet, was die wil-

lentliche und koordinierte gemeinsame Nutzung von Ressourcen zwischen mehreren Betreibern

beschreibt. Dieses Ziel wurde im Rahmen des europäischen Forschungsprojektes SAPHYRE

eingehend untersucht. Die Arbeit beschreibt die Vision des SAPHYRE-Projektes und geht

auf zwei konkrete Topologien näher ein: die gemeinsame Nutzung der Spektren (“spectrum

sharing”) sowie die gemeinsame Nutzung der Spektren und der Infrastruktur wie etwa der

Relay-Stationen (“spectrum and infrastructure sharing”).

In der ersten Topologie teilen sich mehrere Betreiber Teile des Spektrums. Hierfür wird

die Abwärtsstrecke betrachtet, in welcher die Basisstationen (BS) der verschiedenen Betreiber

jeweils zu einem eigenen User-Terminal (UT) senden und sich dafür denselben Kanal teilen.

Zuerst werden für dieses Modell geschlossene Lösungen für die Antennengewichte der Sender

entwickelt. Basierend auf diesem Ansatz wird dann ein iteratives Verfahren namens “Flexible

Coordinated Beamforming (FlexCoBF)” für den Spectrum-Sharing-Fall entwickelt, welches es

erlaubt, die Interferenz zwischen den Betreibern effektiv auszunutzen, um so die Summenrate

des Systems zu steigern.

Im Anschluss wird die zweite Topologie betrachtet, in der sowohl das Spektrum als auch

Teile der Infrastruktur gemeinsam genutzt werden. Insbesondere wird dabei ein Relay-

basiertes Kommunikationssystem untersucht, für welches mehrere Betreiber sowohl das Spek-

trum als auch die Relay-Station gemeinsam nutzen. Das Relay wird im “Amplify and For-

ward” (AF)-Betrieb verwendet und ist mit mehreren Sende- und Empfangsantennen aus-

gestattet. Zunächst wird der Fall betrachtet, dass die direkte Verbindung zwischen BS

und UT zu schwach ist und daher vernachlässigt werden kann. Für diesen Fall werden

Sendestrategien für die Relay-Station untersucht. Dabei wird zuerst eine Gruppe von Ver-

fahren namens “efficient relay sharing rate maximization (EReSh-RM)” entwickelt, welche

die Summenrate des Systems, unter Berücksichtigung einer Sendeleistungsbeschränkung des

Relays, steigern. Im Anschluss wird der systematische Entwurf der Sendestrategien für en-

ergieeffiziente Übertragungen beleuchtet. Für den Spezialfall, in dem alle Basisstationen und

alle User-Terminals nur eine Antenne besitzen, wird zunächst die global optimale Lösung

unter Verwendung von konvexer Optimierung hergeleitet. Diese Lösung dient als Benchmark

zur Bewertung einfacher suboptimaler Lösungen, die im Anschluss vorgeschlagen werden.

Diese stellen einen Kompromiss zwischen der erreichbaren Energieeffizienz und dem nöti-

gen Rechenaufwand dar, beispielsweise die geschlossene Lösung namens “Efficient Resource

Sharing Power Minimization (EReSh-PM)” sowie Ansätze die auf dem “Block Diagonaliza-

tion (BD)”-Verfahren basieren. Darüber hinaus wird eine neuartige robuste Sendestrategie
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für das Relay vorgeschlagen, die die Unsicherheiten über den genauen Kanalzustand am Re-

lay berücksichtigt. Schließlich werden die Konzepte auf den allgemeinen Fall erweitert, in

dem jede Basisstation und jedes User-Terminal mehrere Antennen besitzen können. Für

dieses Szenario wird ebenfalls eine Sendestrategie am Relay hergeleitet, die die Übertragung

mehrerer Datenströme zwischen jedem Paar von BS und UT erlaubt. Für den Fall, dass

die direkte Verbindung zwischen BS und UT nicht vernachlässigbar schwach ist, werden im

Anschluss ebenfalls Übertragungsverfahren beleuchtet, wobei BS, UT und das Relay mehrere

Antennen besitzen können. Hierbei wird unterschieden zwischen der Übertragung von jew-

eils einem Datenstrom und mehreren Datenströmen von jeder BS zu dem zugehörigen UT.

Um den Vorteil des Resource-Sharings zu quantifizieren wird der “SAPHYRE sharing gain”

verwendet welcher die erreichbare Summenrate mit und ohne Sharing ins Verhältnis setzt.

Im zweiten Teil der Arbeit wird das Design der physikalischen Übertragungsschicht für

schnelle Infrarot (IR)-basierte Indoor-Übertragungssysteme untersucht. Dies geschah im Rah-

men des europäischen Forschungsprojektes OMEGA. Die jüngsten Entwicklungen in Indoor-

IR-Übertragungssystemen haben gezeigt, dass IR hochratige Datenübertragung unterstützt

und im Indoor-Bereich entscheidende Vorteile besitzt. Deshalb wird erwartet, dass IR Tech-

nologien für zukünftige drahtlose Netzwerke eine wichtige Rolle spielen werden. Das Ziel des

OMEGA-Projektes war die IR-Übertragung bei einem Gigabit pro Sekunde (Gbps), welches

im Hinblick auf Ausleuchtung und Datenrate eine große Herausforderung darstellt. In der

Arbeit wird der Entwurf der physikalischen Übertragungsschicht für den Fall der Infrarot-

Übertragung mit direkter Sichtverbindung (“Line of Sight”) untersucht.

Zunächst wird das Systemmodell für schnelle IR-Übertragung eingeführt und die für Gbps

in Frage kommenden Komponenten spezifiziert und analysiert. Insbesondere werden für

Gbps-IR geeignete Modulationsverfahren diskutiert. Danach wird der “Baseline Wander”-

Effekt betrachtet, der durch die Einkopplung des Wechselstroms im Empfangs-Vorverstärker

entsteht. Um diesem Effekt zu entgegnen wird ein neues Leitungs-Kodierverfahren namens

“Concatenated Flipped Bit Insertion (CFBI)” ausführlich beschrieben. Im Anschluss wird

die Implementierung eines analogen Bessel-Tiefpassfilters zur Rauschunterdrückung betra-

chtet. Ein Hochpassfilter für das Gbps-IR-System zur Unterdrückung des Gleichanteils des

Photodioden-Stroms, welcher durch das empfangene Umgebungslicht entsteht, wird sorgfältig

ausgewählt. Dieser Filter kann gleichzeitig die harmonischen Komponenten abschwächen, die

durch Leuchtstoffröhren entstehen. Die Photodioden für schnelle IR-Systeme werden in der

Folge diskutiert, wobei sowohl auf PIN-Dioden als auch auf “Avalanche”-Photodioden einge-

gangen wird. Dabei ist es entscheidend, die unterschiedlichen Rauschquellen in IR-Systemen

zu betrachten, insbesondere das Schrot-Rauschen und das thermische Rauchen mit konstanter

spektraler Leistungsdichte, sowie das sogenannte f2-Rauschen, dessen spektrale Leistungs-

dichte mit dem Quadrat der Frequenz ansteigt. Diese Rauschquellen werden in der Arbeit

eingehend analysiert. Darauf basierend, sowie unter Berücksichtigung der Spezifikationen der

einzelnen Komponenten, wird das Link-Budget für Gbps-IR-Übertragung mit Sichtverbindung

und einem entsprechend schmalen Sichtfeld (Field of View) hergeleitet. Abschließend wird

noch die Nutzung von Raumdiversität am Sender und am Empfänger untersucht mit dem

Ziel, das Sichtfeld des Systems zu vergrößern.
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1. Introduction

The urgent demands for high data rate transmission lead to continued technology evolution in

wireless communications. In the past decade, the third generation (3G) mobile communica-

tion systems have already been developed to fulfill the high speed requirements. However, the

recent booming growth in wireless applications, such as Voice over Internet Protocol (VoIP),

video conferences, network gaming, etc., demands much higher data rates compared to the

evolving 3G systems. A new standard has been introduced by the International Telecom-

munication Union (ITU), which is entitled International Mobile Telecommunications (IMT)-

Advanced or the fourth generation (4G) mobile systems [Rec03]. According to the performance

and technical requirements defined in [Rec08], future IMT-Advanced systems can support very

high peak data rates for mobile users, up to 1 Gb/s in static and pedestrian environments, and

up to 100 Mb/s in high-speed mobile environments. As shown in Fig. 1.1 [Haa08], the data

rates of wireless system will experience an exponential growth with a time offset of less than

five years with respect to the wireline systems, which is in line with the vision of the Wireless

World Research Forum (WWRF) that up to seven trillion wireless devices will serve up to

seven billion people by the year 2017. That means we are currently faced with the situation of

running out of the available spectrum. Therefore an increased spectrum efficiency is required

and it has become indispensable for future wireless systems to incorporate advanced signal

processing techniques on the physical layer.

To fulfill the high data rate requirements in the IMT-Advanced system, it becomes more and

more important for the operators to possess the limited and precious radio spectrum. Based

on the analysis of spectrum demands of IMT-Advanced, the World Radio Communication

Conference (WRC) 2007 identified new spectrum to fulfil the growing spectrum requirements.

However, the identified bands per operator required for high data rate services will not re-

sult in a sufficient number of operators to support competition. Moreover, it costs a huge

amount to purchase 360 MHz Long Term Evolution (LTE) bandwidth for 4 operators in the

German segment. To alleviate the pressure of spectrum management as well as to find a more

cost effective approach, the concept of spectrum sharing is often considered as a medium-

to-long-term solution and some general pioneering ideas [US 07], [US 05] have been patented

revealing its potential to further enhance the spectrum efficiency. Another finding in a re-

cent report is that the site construction costs impose a strict constraint on developing the

IMT-Advanced system and different levels of sharing (site, antenna, backbone, radio network

controller (RNC), etc.) are possible to further reduce the infrastructure costs. Based on the

aforementioned analysis, the concept of sharing the radio spectrum and the infrastructure be-

tween multiple operators has been introduced in the European FP7 (framework programme
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Figure 1.1.: Expected data rates in fixed and wireless communication systems [Haa08]

seven) research project ShAring PHYsical REsources (SAPHYRE) (www.SAPHYRE.eu) to

make more effective use of the limited physical resources. This paves the way for a paradigm

change from the traditional exclusive resource allocation to voluntary physical resource shar-

ing. More advanced signal processing techniques, including multiple-input multiple-output

(MIMO), multi-hop relaying cooperative transmission and so on, are developed to deal with

the created interference caused by sharing as well as to further enhance the system spectral

efficiency and power efficiency.

Furthermore, the next generation wireless communications system or the 4G mobile system

will not be based on a single access technique but it will encompass a number of different

technologies [BDHM01, OKW+05]. As a complementary access technique to RF to provide

high speed connectivity, especially for short range communications within the home network

area, infrared (IR) transmission will play an important role. Compared to the more and

more intense competition over the limited spectrum in RF, the THz of bandwidth offers IR

a big advantage as shown in Fig. 1.2, which qualifies it a competitive candidate for indoor

short-range transmission. Moreover, the infrared emitters and detectors capable of high speed

operation are available at low costs [KB97], which is another persuasive support for the IR

technique. Currently, the deployment of fibre to the home area networks offers the potential to

deliver the data at a speed of more than 100 Mbit/s. However, the rapidly increasing demand

for high data rate transmission prompts the future vision of home area networks operating at

the speed which is a factor of ten faster. All of this mentioned above precipitates the further

development on high speed IR technology deployed in Gigabit home area networks, which
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Figure 1.2.: Infrared spectrum bandwidth

is within the scope of the European Union’s seventh framework R&D programme project,

entitled hOME Gigabit Access (OMEGA) (www.ict-omega.eu). The OMEGA project aims

at bridging the gap between mobile broadband terminals and the wired backbone at home.

As a part of it, we focus on the physical layer design and the integration of an IR system

operating at one Gigabit per second (Gbps).

In this thesis, we consider advanced signal processing for wireless communications at very

high data rates. The overall structure of this thesis consists of two parts, which demonstrate

two application areas in the radio frequency range and the IR areas and can be read indepen-

dently. The following sections provide a brief motivation for these two parts, outlining the

possible applications, the state-of-the-art, the open problems of the existing solutions, and

summarizing the major contributions.

1.1. Part I: Sharing Physical Resources (SAPHYRE)

In the first part of this thesis, the concept of sharing the radio spectrum and the infrastructure

between multiple operators is illustrated, which is within the vision of the European’s seventh

framework research project SAPHYRE (www.SAPHYRE.eu).

In current wireless communications, the spectrum and the infrastructure are usually allo-

cated exclusively by each operator so that the interference is avoided, which is called orthogo-

nal resource sharing. However, to alleviate the pressure of spectrum management as well as to

further reduce the infrastructure costs, more and more people reach consensus on the concept

of non-orthogonal resource sharing. This trend requires more flexible use of the physical re-

sources, which is supported by novel developments in radio technology. Taking the spectrum

sharing for instance, there are several steps to realize the flexible spectrum usage, as explained

in [JBF+12], [JBF+11]. The first step is intra-operator spectrum sharing, which includes the

dynamic allocation within the spectrum blocks of a single operator. A further step moves to

that the spectrum bands of more than one operators are allocated to users belonging to them

but one spectrum band is still exclusively assigned to one operator so that no additional inter-

ference is created. The most flexible way of spectrum sharing is non-orthogonal inter-operator

spectrum sharing, which is proposed in SAPHYRE. This type of sharing creates interference

on the physical layer. However, by clever transceiver optimization, user selection, etc., gains

in terms of spectral efficiency are reported in [JBF+10].
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Figure 1.3.: SAPHYRE vision (www.SAPHYRE.eu)

The differentiation of the resource sharing concept in SAPHYRE to other common and im-

portant types of sharing, including cooperative multi-point (CoMP), fractional frequency reuse

(FFR), and cognitive radio (CR) will be clarified in the following, and a brief state-of-the-art

overview is provided. The main idea behind CoMP is to exploit the inter-cell interference in

order to increase the spectral efficiency [MF04] [IDM+11] [SKM+10] [GHH+10]. In contrast to

inter-operator orthogonal and non-orthogonal sharing, the cooperation is performed between

sectors or different sites of the same operator. In addition to the exchange of channel state

information (CSI), it also requires the exchange of user data via high-data backbone connec-

tions for joint precoding and transmit optimization. Comparing the SAPHYRE approach to

FFR, the difference lies in that FFR is applied within one operator and the decision on the

frequency band assignment is usually based on the average received power, i.e., a signal-to-

interference-plus-noise (SINR) threshold [GML08]. It is also important to note the difference

between the SAPHYRE approach and cognitive radio (CR) [MM99, Hay05]. Cognitive radios

operate in the way that a secondary system is allowed to access the licensed spectrum owned

by a primary (legacy) operator as long as it does not disturb the primary system operation.

In order to guarantee the absence of disturbance, the secondary users must operate on the

basis of sensing so-called spectrum holes, which basically are chunks of spectrum left vacant

by the primary system and over which interference is sensed as weak. In contrast, SAPHYRE

puts an emphasis on the efficient and simultaneous use of the same physical resources by two

(or more) equal-priority wireless systems placed on an equal footing.

As shown in Fig. 1.3, there is generally a set of common physical resources, which are

categorized into two classes, namely spectrum and infrastructure. Based on these limited re-

sources, the future wireless network development is mainly faced with two challenges. Firstly,

the identified bands for IMT-Advanced operating at high data rate do not result in a suffi-
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cient number of operators to support competition. Secondly, to make more efficient use of

the resources, SAPHYRE has developed a framework where the spectrum and infrastructure

are simultaneously shared between equal-priority players consisting of a set operators and

users. SAPHYRE has demonstrated how equal-priority resource sharing in wireless networks

improves the spectral efficiency, enhances coverage, increases user satisfaction, leads to an

increased revenue for operators, and decreases capital and operating expenditures [JBF+10].

Within the framework of SAPHYRE, the resource of each operator is voluntarily shared so

as to achieve a common efficient operating mode. Furthermore, the environmental and regu-

latory constraints have to be taken into account, e.g., to balance the fairness, social welfare,

etc.

Chapter 2 gives more a detailed motivation for the SAPHYRE concept. Two topologies

are discussed throughout this thesis, which are defined within the scope of SAPHYRE. In

Chapter 2, we first give an overview for the spectrum sharing only scenario. Following that,

the model for spectrum and infrastructure (relay) sharing is introduced. To be more specific,

we consider the relay assisted communication between multiple operators and various relaying

operation modes are compared and discussed. Finally, to clearly illustrate the advantage

of the sharing schemes compared to the traditional exclusive use of the physical resources,

the SAPHYRE sharing gain is defined in terms of both spectral efficiency as well as power

efficiency, which are used as a main performance metric from Chapter 3 to Chapter 5.

An introduction to the data model is given in Chapter 3, where only the spectrum is shared

between multiple operators. The downlink of the spectrum sharing scenario is considered,

where the base stations (BSs) of different operators transmit over the same channel, each

dedicated to its own user terminal (UT). This scenario is modeled as the interference channel

with several concurrent point-to-point transmissions interfering each other, which is one of

the fundamental building blocks from the spectrum sharing point of view. The interference

channel has been intensely studied over last few decades starting from [Car78]. We view

this scenario as a special case of voluntary spectrum sharing in SAPHYRE. Two closed-form

transmit beamformers are first developed for this model. Based on that, an iterative transmit

beamforming technique, named as flexible coordinated beamforming (FlexCoBF) for spectrum

sharing is designed to exploit the inter-operator interference in a more effective manner so as

to further enhance the system sum rate performance [KGH+11, LKK+11].

Both the spectrum and infrastructure sharing are taken into account in Chapter 4 and

Chapter 5. To be more specific, the relay assisted communications are investigated for this

topology, where the relay as well as the spectrum are shared between multiple operators. In

recent years, the use of relays has drawn enormous attention due to its promising capability

in achieving reliable communications and coverage extension in wireless networks. In these

scenarios, where the link quality cannot be guaranteed due to large path loss, shadowing

effect, multipath fading, etc., relays can be employed between the source and the destination

to assist the communication [LWT01], [LW00], [SEA03a], [SEA03b]. Various relaying schemes

have been presented in the literature, including the amplify-and-forward (AF) [MMVA07],
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[TH07], [RW04], decode-and-forward (DF) [LW00] and compress-and-forward (CF) [KGG05]

schemes. Among several cooperative schemes, the AF is more attractive since it does not

do decoding but simply amplifies the received signal from the source and forward it to the

destination. Throughout this thesis, we focus on the AF relaying scheme.

Moreover, considering the fact that the MIMO technique [Tel99] enhances the system ca-

pacity by combating fading and interference, it makes sense to exploit the advantages of the

combination MIMO and relay. Several works on capacity bounds of MIMO relay channels

have been firstly addressed in [WZ03], [WZHM05], [HMZ05], and [LVRWH05]. The optimal

design of AF MIMO relay in point-to-point communication is investigated in [MMVA07] and

[TH07]. In addition to that, the MIMO relay is also deployed on the multi-user downlink

to improve the system performance [CTHC08] [ZCL09]. More recently, the MIMO AF relay

is applied for multi-point to multi-point communication, which is the scenario discussed in

Chapter 4. In this chapter, we employ an MIMO AF relay to assist the transmission between

multiple pairs of BSs and UTs, where the direct link between the source and destination is

neglected. We propose several algorithms for the relay precoder design to further improve the

system performance. First a set of algorithms named efficient relay sharing rate maximization

(EReSh-RM) are designed to improve the system sum rate under the relay transmit power

constraint. After that, the relay precoder design is systematically studied for power efficient

transmission. In the previous work [CVL07] and [CV09], the relay precoder is designed with

respect to the worst case of the relay transmit power, considering perfect and imperfect chan-

nel state information at the relay separately. Our work is focused on minimizing the average

relay transmit power under the SINR constraint to be satisfied for each transceiver pair. For

the case where the BSs and UTs are equipped with single antennas, a global optimum solution

is firstly derived, which uses a convex optimization tool to exploit the structure of the relay

precoder. Taking this as a benchmark, several suboptimal beamforming algorithms are pro-

posed to find a compromise between the achievable power efficiency and the computational

complexity, including a closed-form algorithm named Efficient Resource Sharing Power Min-

imization (EReSh-PM) and block diagonalization (BD) [SSH04] based solutions. Further, a

novel robust relay precoder design is proposed by considering imperfect CSI at the relay. At

last, we extend our study to the case where each pair of BSs and UTs are equipped with

multiple antennas and a novel relay matrix design is derived for multiple stream transmission

between multiple pairs of BSs and UTs.

Furthermore, when the direct link is not negligible, we discuss another relay application

scheme in Chapter 5, where the relay is used to assist the pairwise concurrent point to point

transmission. This scenario is called interference relay channel as firstly defined in [SE07],

which is another fundamental building block including both spectrum and infrastructure shar-

ing. Some pioneering works [SSE09], [SES09], [TY09] have studied the impact of a full duplex

DF relay with a single antenna in such a scheme, considering in-band and out-of-band trans-

mission or reception modes, the relay transmit power, etc. In contrast to this, we consider

the linear precoding design for the AF relaying strategy in Chapter 5, assuming multiple

antennas employed at all BSs, UTs, and the AF relay. Two cases are studied, categorized
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Figure 1.4.: Home area network in OMEGA definition (www.ict-omega.eu)

into single stream and multiple stream transmission. In both cases, the SAPHYRE sharing

gain is exploited, showing the advantage of spectrum and relay sharing in comparison with

the exclusive access of the resources.

1.2. Part II: hOME Gigabit Access (OMEGA)

In the second part of this thesis, the physical layer design for a high speed infrared (IR)

system in indoor environment is developed, which is within the scope the European Union’s

FP7 project OMEGA (www.ict-omega.eu).

As stated in the white paper [OKW+05], future systems will not only connect users and their

personal equipment but also access to independent equipment will be provided. Ultimately one

would expect that everybody and everything will be seamlessly connected. This vision places

the short range communications in a position of preponderance, which is envisaged in OMEGA

shown in Figure 1.4. To provide high speed connectivity within the home area network, a

large number of different complementary access techniques are considered. In addition to the

wired power line communications, the wireless links will use radio frequency, infrared as well

as the visible light transmission to fulfill the vision of broadband home networking without

adding new wires. In this part, we focus on the infrared communication in the home area.

In the past few decades, infrared communication has been widely applied in point to point

transmission. For example, infrared remote controls and devices that communicate according

to the Infrared Data Association (IrDA) are in widespread use. Recently there have been a

number of high-speed point to point link demonstrations and products. One example is the
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link by JVC which provides a 1.5Gbit/s for uncompressed High Definition TV. Beyond that,

OMEGA aims at a substantial improvement in the state of the art as it demonstrates an

infrared network rather than simple point to point connections. Further, this project provides

novel optical-wireless solutions for home applications using IR at up to one gigabit per second

(Gbps).

The recent developments in indoor IR systems [GJHL08] prove that IR has emerged as

a strong candidate for high speed indoor communications [LG07, JBVS08, KJ03], which is

expected to play a role in the future wireless networks. In the contrary to the limited available

spectrum in RF as stated in Part I, the infrared channel has THz of unregulated bandwidth,

and is free from electromagnetic interference. The multipath fading suffered by RF transmis-

sion is also avoidable in IR by selecting a proper modulation and detection scheme. Further-

more, IR communications are highly secured, which is attributed to the natural confinement

of the optical signals that is to their disability to penetrate walls. Therefore, it becomes easier

to construct cell-based secure networks via wavelength reuse in different rooms.

The Gbps infrared transmission in indoor wireless systems is quite challenging, with a

requirement to provide coverage as well as high data rate. The field of view (FOV) required

in a typical home environment is around 90 degrees at both transmitter and receiver. This

wide FOV for robust indoor coverage makes the system considerably more challenging. Thus

multiple links will be required to cover the target FOV, and the control and management of

these is thought to be where most of the innovation in OMEGA lies, as the state of the art is

relatively undeveloped.

In particular, the basic IR system topology is categorized into diffuse and line of sight (LOS)

systems [KB97]. The diffuse system creates a large number of paths from the transmitter to

the receiver, which makes the system robust and prevents it from getting blocked. However,

it suffers from multipath dispersion, which causes pulse spread and significant inter-symbol

interference, in addition to higher path losses compared to direct LOS links. To fulfill the

Gbps data transmission requirement, OMEGA adopts a LOS system topology. Direct LOS

links improve the power efficiency and reduce the multipath dispersion, but require an in-

herent alignment between the transmitter and the receiver in order to establish a reliable

communication. The path loss combined with the narrow transmitter and receiver FOV de-

termine the link budget and the available data rate of the system. In general, the narrower

the FOV, the higher is the data rate that is achievable. However, such narrow links do not

provide coverage, and thus cellular systems using a number of LOS links are employed in

order to increase the coverage and achieve high data rates. Generally speaking, there are two

approaches to implement multiple element transmitters and receivers. One is to use imaging

transmitters and receivers, where light beams are transmitted at different angles within the

desired coverage area while the receiver uses a detector array so that radiations from different

angles reach particular elements within the range of the detector [PFOE01, WN97, OFJ+03].
An alternative is to build an angle diversity system where individual transmitters and re-

ceivers are arranged to point at different angles to provide the desired coverage [CK00]. In
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OMEGA, the latter choice is made since there are not sufficient resources within the project

to fabricate the necessary custom devices for the imaging solution.

In this part, the physical layer design for a high speed IR system is considered, which is

focused on LOS data transmission using IR wavelengths. The physical layer analysis on inte-

gration and feasibility investigation of Gbps IR system is presented. The system consists of a

base station located at the ceiling and terminals that move around at the ground. Both trans-

mitters and receivers are build with seven elements in the demonstrator [MOF+10, OMF+10],

where each element covers a relatively narrow FOV and together a data link with a wide FOV

is created.

The contributions of this part are summarized as follows. In Chapter 7, the system model

of the high speed IR transmission is introduced, where individual components suitable for

Gbps IR system are analyzed and specified. In particular, the modulation scheme that is

appropriate for the Gbps IR transmission is first briefly discussed. The baseline wander effect

is considered, which is induced by the alternating current (AC) coupling inherent in the

receiver’s preamplifier. In order to overcome this, a novel line coding named as concatenated

flipped bit insertion (CFBI) code is elaborately addressed [LWH09]. Compared to the classic

IBM code [WF83], the CFBI code offers a comparable susceptibility to the transient baseline

wander effect while it is much easier to implement due to a very simple logic. Following

that, the implementation of an analog Bessel low-pass filter is specified for noise rejection.

A high-pass filter for the Gbps IR system is carefully selected, which is applied to block the

direct current (DC) photocurrent generated by the received ambient light as well as to reduce

the harmonics caused by the fluorescent lighting. Then the photodiode detectors for high

speed IR transmission are discussed, including PIN photodiodes and the Avalanche types.

It is important to notice various noise sources generated in the IR system, including shot

noise and thermal noise with constant power spectrum density (PSD), as well as the so called

f2 noise whose PSD increases with the square of the frequency. All the types of the noise

are analyzed in this thesis. Based on this analysis and the specification of the individual

components, the link budget for a LOS Gbps IR transmission with narrow angle FOV is given

in Chapter 8. At last, the transmit and receive angle diversity are discussed in Chapter 9, in

order to further extend the system FOV.
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Part I.

Sharing Physical Resources

(SAPHYRE)
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2. SAPHYRE Concept

In current wireless communication systems, the radio spectrum and the infrastructure are

typically used such that the interference is avoided by exclusive allocation of frequency bands

and employment of base stations. Various types of techniques applying orthogonality in

frequency, time and coding have been used for resource allocation. For example, time division

multiple access (TDMA) combined with frequency division multiple access (FDMA) used in

GSM systems or code division multiple access (CDMA) in 3G systems is applied to mitigate

the intra-cell interference among users that belong to a single operator within a cell. For

different cells, the inter-cell interference is controlled by applying different frequency reuse

factors with fractional and adaptive frequency reuse.

Very recently, techniques for separating transmissions from different operators (inter-operator

interference) without orthogonal resource allocation have been developed. The first flexible re-

source sharing approaches [BL06, HPI08] indicate that the overall system spectrum efficiency

can be improved between several operators by sharing their resources, which can be divided

into two classes, namely spectrum and infrastructure. Sharing of spectrum or infrastructure

ends up in creating interference on the physical layer. To mitigate the resulting inter-operator

interference as well as to further enhance the system performance (sum rate, required power,

rate region, etc.), advanced signal processing techniques (for multiple antennas and multiple

hops) have received more and more interest. Furthermore, SAPHYRE (www.SAPHYRE.eu)

has demonstrated how equal-priority resource sharing in wireless networks improves the spec-

tral efficiency, enhances the coverage, increases the user satisfaction, leads to an increased

revenue for operators, and decreases the capital and operating expenditures [JBF+10]. In this

work, we focus on the advanced signal processing techniques, such as MIMO precoding algo-

rithms with inter-cell interference coordination algorithms based on resource sharing. They

are developed both for the spectrum and the infrastructure (here relay) sharing scenario,

which are defined in the framework of SAPHYRE.

In this chapter, we first provide an overview of the spectrum sharing scenario. Following

that, the relay assisted communications between multiple operators is introduced and various

relaying operation modes are compared and discussed. Finally, to clearly illustrate the ad-

vantage of sharing schemes, the SAPHYRE sharing gain is defined in terms of both spectral

efficiency as well as power efficiency compared to the traditional exclusive use of the physical

resources.
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Spectrum Sharing Scenario

SAPHYRE envisions that future cellular networks will achieve higher spectral efficiency if

the operators decide to share parts of the spectrum that has been exclusively licensed to

them. As discussed at the beginning of this chapter, inter-operator spectrum can be used

in an orthogonal manner by applying a time division multiple TDMA scheme. However, the

utmost gain is expected when the operators share the spectrum non-orthogonally, i.e., they

use the same frequency bands simultaneously. In this case, the major impairment received

by each operator is the interference caused by co-channel transmissions. The simplest setup

for the downlink of the non-orthogonal spectrum sharing scenario is that two neighboring

base stations (BSs) belonging to different operators transmit towards their user terminals

(UTs), respectively, and the UTs receive the desired transmission as well as the inter-operator

interference. SAPHYRE advocates that reliable communication can be achieved in both links

by applying advanced signal processing techniques to mitigate the interference caused by

sharing. A detailed description of this scenario will be addressed in Chapter 3, where we will

introduce several transmit beamforming techniques to further enhance the system spectral

efficiency.

Relay Assisted Spectrum and Infrastructure Sharing Scenario

Various relaying concepts have been widely studied in wireless networks since [CA79] due to

their potential gains in terms of spectral efficiency compared to a point-to-point transmission.

Recently, relays have been studied as wireless backhaul to provide efficient coverage extension

and a capacity increase. They can be employed with little or no incremental backhaul expense

and applied in various scenarios where a fixed line backhaul is difficult to deploy. For example,

relays expand the coverage to mountainous regions or sparsely populated areas and enhance

the throughput for cell edge users [ITN10].

The relay technology has experienced many years’ development. The traditional relay is

an analog amplify-and-forward (AF) relay. The radio signals received on the downlink from

the BSs or that on the uplink from the UTs are simply amplified without further processing.

Thereby, it is also called repeater or booster. The advantage of this kind of relay is that it

is quite simple and no processing delay is caused. However, the interference as well as noise

at the relay are amplified simultaneously together with the desired signal. In contrast to the

analog AF, the present AF relay usually down converts the radio frequency signal into the

baseband and incorporates additional baseband processing such as sampling, spatial filtering,

etc. After processing in the digital domain, the signal will be amplified and up converted

for forward transmission. To distinguish these two types of AF relays, we call the latter

the digital AF. Unlike analog AF, the digital storage facilitates processing in digital domain

and operation in half duplex mode. Furthermore, the digital AF does not require decoding

and re-encoding of the data as required for the decode-and-forward (DF) relay, where more
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Relay technology Analog AF Digital AF DF
latency no low high
possible real-valued multiplication with a decoding

processing scalar amplification complex matrix (beamforming) re-encoding
noise forwarding yes yes no

baseband processing no simple complex

Table 2.1.: Comparison of analog AF, digital AF and DF

complicated baseband processing causes a much higher latency. Furthermore, the capacity of

DF might be lower than AF when the channel between the source and the relay is statistically

worse than the other channels in relay assisted cooperative communication [NBK04], [YL05].

Thereby, it can be concluded that the digital AF is a good trade-off between performance and

complexity. The comparison of these three types of relays is shown in Table 2.1.

By incorporating the digital AF into the wireless network, the relay is employed to assist

the BS in addition to a direct transmission between the BSs and UTs, which might be quite

weak to be negligible. We can to extend this model to multiple transceiver pairs that belong to

multiple operators, which exploits the benefit of the relay sharing for further system through-

put improvement and expenditure saving. The spectrum and relay sharing model for two

operators is shown in Figure 2.1, which has been investigated under the scope of SAPHYRE.

In this case, the relay is shared and accessed by both the BSs at the same time instead of an

exclusive use of the relay for each operator. A more detailed discussion about this scenario

can be found in Chapter 4 and Chapter 5, without and with consideration of the direct link

between the BSs and UTs, respectively.

Fractional sharing gain

In order to evaluate the benefits of advanced signal processing algorithms to exploit the

additional degrees of freedom brought by sharing the spectrum and relays in multi-operator

environments, it is important to:

• define a performance metric,

• show the gain (loss) with respect to the chosen performance metric as compared to a

non-sharing scenario,

• point out conditions when a significant gain can be achieved for the chosen scenario

(topology), and

• illustrate the order of magnitude of this gain.

We define this sharing gain as the SAPHYRE gain. In this part, two types of SAPHYRE

gains are defined in terms of the system rate and the relay transmit power. These gains

are obtained for the sharing scenario compared to the exclusive use of the spectrum and the
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Figure 2.1.: relay enhanced communications

infrastructure (i.e., the relay) by a single operator (time division case, in this case, the users

are multiplexed via TDMA).

The fractional SAPHYRE gain in terms of system sum rate is defined as

ΞF,rate =

K∑
k=1

Uk

1
K

K∑
k=1

USU
k

, (2.1)

where k ∈ {1,2,⋯,K} is the user index. The sum rate of the kth user in the sharing scenario

and the time division case are denoted by Uk and USU
k , respectively [LRH11b] [LZR+11]

[LRH11a] [LSH11].

In addition to that, we could also interpret the SAPHYRE sharing gain in terms of the

relay transmit power, i.e., the required relay transmit power consumed in the sharing scenario

is compared to that consumed by the exclusive use of the spectrum and infrastructure for a

single operator (TDMA access).
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The fractional SAPHYRE gain in terms of relay transmit power is defined as

ΞF,power =
K

K∑
k=1

P SU
k

K∑
k=1

Pk

, (2.2)

where the relay transmit power of the k-th user in the sharing scenario and the time division

case are denoted by Pk and P SU
k [LRH11a].

Part I of this dissertation is organized as follows. The non-orthogonal spectrum sharing

scheme is first introduced and several efficient algorithms designed for sum rate maximization

of the system are addressed in Chapter 3. Following that, the schemes including both spectrum

and infrastructure sharing are addressed in Chapter 4 and Chapter 5. In particular, the relay

assisted resource sharing scenario is considered in Chapter 4 by neglecting the direct link

between the BSs and UTs. In particular, the system model for the AF relay sharing scenario

is introduced in Section 4.1. Then the relay precoders designed to enhance the system sum

rate are addressed in Section 4.2. To make more efficient use of the relay transmit power,

several algorithms are proposed in Section 4.3 - Section 4.5 concerning different transmission

schemes. Section 4.3 starts with the single stream transmission scheme, where each BS and UT

are equipped with a single antenna. After that, Section 4.4 describes a robust relay precoder

design assuming that an erroneous channel state information (CSI) is available. Section 4.5

extends the work to multiple stream transmission for the more general case, where both BSs

and UTs have multiple antennas. A novel algorithm is proposed to minimize the relay transmit

power subject to the signal to noise plus interference ratio (SINR) constraint for each data

stream. In contrast to Chapter 4, Chapter 5 considers the case where the direct link between

the BSs and UTs is not negligible. The precoder design for system sum rate maximization

is discussed for thie scenario, which consists of two case studies, including the single stream

transmission as addressed in Section 5.1 as well as the multiple stream case in Section 5.2.

As an important metric in SAPHYRE, the sharing gain compared to the exclusive use of the

spectrum and the relay is discussed throughout this part, i.e., from Chapter 3 to Chapter 5,

in terms of sum rate as well as in terms of relay transmit power.
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3. Spectrum Sharing

In recent years, the increasing demand for high data rate transmission makes the radio fre-

quency (RF) spectrum more and more scarce. It is thus getting much more expensive to

acquire a spectrum licence and the cost of operation is even higher for the operators. To

make more effective use of the spectrum, spectrum sharing would be a reasonable solution.

There are various types of spectrum sharing [JBF+12], [JBF+11]. Intra-operator spectrum

sharing is realized by dynamic allocation within the spectrum bands of a single operator. A

further step moves to inter-operator orthogonal sharing, i.e., the spectrum bands of more than

one operator are allocated to users belonging to them but one spectrum band is still exclusively

assigned to one operator so that no additional interference is created. The highest gain is

expected when the operators share the spectrum non-orthogonally, i.e., they concurrently use

the same frequency bands in the same geographical location, which is proposed in SAPHYRE.

This type of sharing creates interference on the physical layer. However, by applying advanced

beamforming techniques, gains in terms of spectral efficiency are reported in [JBF+10].

In this chapter, we introduce the non-orthogonal spectrum sharing scenario, where the

complete spectrum is shared between different operators. It consists of two base stations

(BSs) belonging to different operators and their respective user terminals (UTs). Each base

station transmits over the same frequency band to its target user while interference is caused

by the other operator, which is modeled as the interference channel. It can be seen as one

of the fundamental building blocks of wireless networks from the spectrum sharing point of

view. It has been intensely studied over last few decades starting from [Car78]. We view

this scenario as a special case of voluntary spectrum sharing, which has been investigated in

SAPHYRE [KGH+11].

There is a huge amount of literature about the transmit beamforming design for the inter-

ference channel from the theoretical point of view [SCP11, PSP10, DY10], which use convex

optimization methods. However, the computational complexity is too high for practical im-

plementation since this optimization has to be done on each subcarrier of the orthogonal

frequency division multiplexing (OFDM) system. For a practical implementation, the com-

plexity has to be reduced. In this chapter, we introduce three efficient transmit beamforming

techniques with a reduced computational complexity. The original block diagonalization (BD)

scheme [SSH04] has been designed to suppress the inter-user interference as well as to max-

imize the system throughput on the downlink of a multi-user MIMO system. The key idea

is to zero force the inter-user interferences, which appear as the off-block-diagonal elements

of the effective channel of the multi-user MIMO system. Later on the work [SH08] devel-
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oped a regularized block diagonalization (RBD) algorithm to further improve the system rate

performance. Both precoding algorithms BD and RBD have been widely accepted especially

due to their extremely low implementation simplicity. Based on that, we modify the original

BD and RBD to adapt them to the interference channel (IC), namely BD and RBD for the

IC. To verify the effectiveness of these techniques in real RF signal transmission, they were

implemented on a flexible hardware-in-the-loop (HIL) testbed [LKK+11]. Both BD and RBD

can be applied when multiple antennas are used at BSs and UTs. As a special case, when the

BSs employ multiple antennas while the UTs only have single antennas, i.e., multiple-input

single-output (MISO) channels, BD and RBD for the IC are simplified to the zero-forcing (ZF)

and the minimum mean square error (MMSE) methods, respectively, as shown in [LLL+12]
and have a low computational complexity.

Although efficient, the biggest shortage of BD and RBD is that they are limited by the

transmit and receive antenna configuration, i.e., the number of transmit antennas at BSs

must be greater than or equal to the number of receive antennas at UTs. Furthermore, a

recent efficient technique named coordinated ZF beamforming (CoZF) [CHHT12] has the

dimensionality constraint in the other way. In order to break the antenna configuration

constraint and enhance the system spectrum efficiency, the work in [SRH10] developed an

iterative beamforming algorithm using BD and RBD at the BSs combined with maximum ratio

combing (MRC) at the UTs, which is called flexible coordinated beamforming (FlexCoBF).

In contrast to BD, RBD and CoZF, FlexCoBF can be applied for any transmit and receive

antenna configuration. We also modify this algorithm for the interference channel, called IC

FlexCoBF. In the simulation, the sum rate performance of IC FlexCoBF will be illustrated,

taking the work in [CHHT12] as a reference.

The structure of this chapter is arranged as follows. The system model of the non-orthogonal

spectrum sharing scenario is introduced in Section 3.1. Following that, two closed-form trans-

mit beamforming techniques BD and RBD for the IC are developed in Section 3.2. The

FlexCoBF algorithm for the IC is addressed in Section 3.3.

3.1. System Model

Fig. 3.1 shows the spectrum sharing scenario considered in this chapter, which is modeled

as a two-user interference channel (IC). Two base stations (BSs) belonging to two different

operators transmit signals in the same spectrum and each BS has one dedicated user terminal

(UT). We assume that the BSs and UTs are equipped with MT,i and MU,i transmit and

receive antennas respectively, where i = 1,2 denotes the index of each operator. A general

case is considered, where several data streams per UT are transmitted.

The easiest way for implementation is to apply linear precoding and decoding at BSs and
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UTs, respectively [LLL+12]. The received signal yi ∈ Cri , i ∈ {1,2} at the UTs are written as

⎡⎢⎢⎢⎢⎣
y1

y2

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
WH

1 H1F1 WH
1 G1F2

WH
2 G2F1 WH

2 H2F2

⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
He

⎡⎢⎢⎢⎢⎣
s1

s2

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
WH

1 e1

WH
2 e2

⎤⎥⎥⎥⎥⎦ , (3.1)

where ri is the the number of data streams to be transmitted and ri ≤min{MT,i,MU,i}. The

matrices Fi ∈ CMT,i×ri and Wi ∈ CMU,i×ri denote the precoding and decoding matrices at the

BSs and the UTs, respectively. The matrices Hi ∈ CMU,i×MT,i denote the channel between

the BSi and the dedicated UTi while Gi ∈ CMU,i×MT,j is the interference channel from the

BSj to the undesired UTi, i, j ∈ {1,2}, i ≠ j, as illustrated in Fig. 3.1. The matrix He ∈
C
2ri×2ri represents the effective channel. The data vector si has zero mean and E{sisHi } = Iri .

The noise received at the UTs ei ∈ CMU,i contain independent, identically distributed (i.i.d.)

complex additive white Gaussian samples with zero mean and variance σ2n. Based on this

model, two closed-form transmit beamforming algorithms are first introduced in Section 3.2,

followed by a more flexible iterative algorithm addressed in Section 3.3.

BS1

BS2

UT1

UT2

Figure 3.1.: Spectrum sharing scenario, BSi has MT,i antennas and UTi has MU,i antennas

3.2. Block-Diagonalization (BD) and Regularized

Block-Diagonalization (RBD) for the Interference Channel

The original block diagonalization (BD) [SSH04] and regularized block diagonalization (RBD)

[SH08] algorithms have been designed to suppress the inter-user interference as well as to max-

imize the system throughput on the downlink of multi-user MIMO systems. The key idea is to

zero force the inter-user interference and to minimize the power of the inter-user interference

plus noise, respectively. Both solutions are closed-form and have a low computational com-

plexity from the implementation point of view. Based on these concepts, we modify the BD
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and RBD algorithm to be adapted for the inter-operator non-orthogonal spectrum sharing

scenario.

We first address the BD algorithm for the IC. The goal is to remove the off-block-diagonal

elements in the effective channel He, as defined in equation (3.1), which represent the inter-

operator interference. To do that, the null space of the interference channel Gj, is first

extracted. The singular value decomposition (SVD) Gj is computed as

Gj = Uj ⋅Σj ⋅V H
j = Uj ⋅Σj ⋅ [ V

(1)
j V

(0)
j
]H ∈ CMU,j×MT,i , (3.2)

j ∈ {1,2}. The row space and the null space of Gj are obtained as the space spanned by the

columns of V (1)j ∈ CMT,i×lj and V
(0)
j ∈ CMT,i×(MT,i−lj), respectively, where li denotes the rank

of Gj. After zero-forcing the inter-operator interference, the system is decoupled into parallel

single-user MIMO systems and the precoding matrix is designed to maximize the system rate

for each operator. The SVD of the effective channel for operator i is written as

HiV
(0)
j = Ui ⋅Σi ⋅V H

i = Ui ⋅ ⎡⎢⎢⎢⎢⎣
Σi 0

0 0

⎤⎥⎥⎥⎥⎦ [ V
(1)
i V

(0)
i
]H (3.3)

for i, j ∈ {1,2}, i ≠ j, where the columns of V
(1)
i ∈ C(MT,i−lj)×li span the row space of Hi

projected into the null space of Gj with li denoting the rank of HiV
(0)
j . In order to maximize

the sum rate of the operator i, the precoding matrix at BSi is obtained as

Fi = V (0)j V
(1)
i Λ

1
2 , (3.4)

where Λ ∈ Cli×li is a diagonal power loading matrix using water-filling based on the singular

values Σi ∈ Cli×li as for the single user MIMO system [PNG03]. The decoding matrix at UTi

is

Wi = U (1)i , (3.5)

where columns of U
(1)
i span the column space of HiV

(0)
j . In the case of single stream

transmission, the precoding vector is simplified to fi = V (0)j v
(1)
i , where v

(1)
i is the first column

of V (1)i . The decoding vector at the UTs is obtained as wi = u(1)i with u
(1)
i denoting the left

dominant singular vector of HiV
(0)
j .

Instead of zero-forcing the inter-operator interference, RBD for the IC is designed to maxi-

mize the system sum rate under the constraint that the Frobenius norm of the inter-operator

interference plus noise is minimized. The precoding matrix at BSi is designed as Fi = βFi,aFi,b,

where Fi,a is used to suppress the inter-operator interference while Fi,b facilitates the rate

optimization for operator i. Additionally, we have a scalar β to fulfill the transmit power

constraint at the BSs. Assuming that ∥Fi,b∥F = 1 and full-power transmission, we have

β2 ∥Fi,aFi,b∥2F = β2 ∥Fi,a∥2F = PT. Therefore, we choose β = √PT/ ∥Fi,a∥F . The matrix Fi,a is
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designed to minimize the Frobenius norm of the inter-operator interference plus noise, i.e.,

Fi,a =min
Fi,a

E{∥GjFi,a∥2
F
+ ∥nj∥2

2

β2
}, (3.6)

where i, j ∈ {1,2}, i ≠ j. After similar derivations as in [SH08] and in combination with (3.2),

we get

Fi,a =Mi,aDi,a, (3.7)

where

Mi,a = Vj ∈ CMT,i×MT,i (3.8)

and

Di,a = (ΣT
j Σj + MU,j ⋅ σ2n

PT,i

)−
1
2

∈ CMT,i×MT,i (3.9)

is a diagonal power loading matrix. Using similar steps as in BD for the IC, the effective

channel after interference suppression is written as

HiFi,a = Ui ⋅Σi ⋅V H
i = Ui ⋅Σi ⋅ [ V

(1)
i V

(0)
i
]H . (3.10)

The matrix Fi,b is obtained as Fi,b = V (1)i Λ
1
2 to enhance the sum rate for operator i, where the

columns of V (1)i ∈ CMT,i×li span the row space of HiFi,a with li denoting the rank of HiFi,a.

The matrix Λ is the diagonal power loading matrix using water-filling. The decoding matrix is

obtained as Wi = U (1)i , where the columns of U (1)i span the row space of HiFi,a. Considering

the special case of single stream transmission, the precoding vector is obtained as fi,b = v(1)i to

enhance the signal to interference plus noise (SINR), where v
(1)
i is the right dominant singular

vector of HiFi,a. The decoding vector is wi = u(1)i , which is the left dominant singular vector

of HiFi,a.

Both BD and RBD for the IC are closed-form solutions and no iterations are required,

which keeps the implementation complexity extremely low. Furthermore, RBD for the IC

improves the system sum rate performance at low SNRs compared to BD due to that it

balances the inter-operator interference with the noise enhancement. At high SNRs, the sum

rate performance obtained by BD for the IC and RBD for the IC converge. The drawback

of BD for the IC is that the system has an antenna configuration constraint to assure the

existence of the null space, i.e., MT,i > MU,j for i, j ∈ {1,2}, i ≠ j. The RBD algorithm for

the IC could be applied to any antenna configuration, but the sum rate performance degrades

dramatically as the SNR increases when MT,i ≤ MU,j due to the fact that RBD for the IC

turns out to extract the null space at high SNRs as BD for the IC does [LLL+12].
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3.3. Flexible Coordinated Beamforming for the Interference

Channel

On the basis of BD and RBD for the IC, we introduce a low-complexity suboptimal transceiver

design named flexible coordinated beamforming for the interference channel (IC FlexCoBF)

[KGH+11]. This algorithm is designed for any antenna configuration in order to relax the

dimensionality constraint in BD and RBD for the IC. Furthermore, it maximizes the sum rate

by suppressing the interference iteratively and strengthening the desired signal.

The original FlexCoBF algorithm [SRH10] has been designed to iteratively suppress the

inter-user interference on the downlink of multi-user MIMO systems, utilizing either BD

[SSH04] or RBD [SH08] at the BSs, combined with maximum ratio combing (MRC) at the re-

ceiver. Inspired by this idea, we derive an algorithm suitable for the non-orthogonal spectrum

sharing scenario.

To start, the decoding matrices W1, W2 are randomly initialized. In the following, we

sketch the design of Fi at the BSi, i = 1,2, which uses either BD for the IC or RBD for the IC.

If BD for the IC is applied, we first calculate the SVD of the equivalent interference channel

which operator i causes to operator j with j ≠ i as

G̃j =WH
j Gj = Ũj ⋅ Σ̃j ⋅ [ Ṽ

(1)
j Ṽ

(0)
j
]H . (3.11)

The row space and the null subspace of G̃j is spanned by the columns of Ṽ (1)j ∈ CMT,i×l̃j and

Ṽ
(0)
j ∈ CMT,i×(MT,i−l̃j), respectively, where l̃j is rank of G̃j. In order to maximize the sum

rate of operator i under the zero-interference constraint to operator j, we calculate the SVD

of the equivalent desired channel of operator i

WH
i HiṼ

(0)
j = U ′i ⋅

⎡⎢⎢⎢⎢⎣
Σ′i 0

0 0

⎤⎥⎥⎥⎥⎦ ⋅ [ V
′(1)
i V

′(0)
i

]H , (3.12)

where Σ′i ∈ Cl′i×l′i , V ′(1)i ∈ C(MT,i−l̃j)×l′i and l′i denotes the rank of WH
i HiṼ

(0)
j . The precoder

Fi is thus obtained as

Fi = Ṽ (0)j Ṽ
′(1)
i Λ̃

1
2

i ∈ CMT,i×l′i , (3.13)

where Λ̃i ∈ Cl′i×l′i is a diagonal power loading matrix using water-filling on the basis of the

singular values Σ̃i.

When RBD for the IC is used, the precoder is designed in two steps. Let Fi = αFi,aFi,b,

where Fi,a is used to suppress the interference that the operator i causes to operator j and

Fi,b facilitates the sum rate optimization of the operator i. The scalar α is used to ful-

fill the transmit power constraint. Assuming that ∥Fi,b∥ = 1 and that the transmit signal

si are temporally uncorrelated with zero mean and unit variance E{sisHi } = Iri , we have
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α2 ∥Fi,aFi,bsi∥22 = α2 ∥Fi,a∥2F ≤ PT,i. Therefore, we choose

α = PT,i/tr{Fi,aF
H
i,a} (3.14)

with PT,i denoting the transmit power of BSi. After computing the SVD of the effective

interference channel

G̃j =WH
j Gj = Ũj ⋅ Σ̃j ⋅ Ṽ H

j , (3.15)

we get

Fi,a =Mi,aDi,a (3.16)

similarly as in (3.7), where

Mi,a = Ṽj ∈ CMT,i×MT,i (3.17)

and

Di,a = (Σ̃T
j Σ̃j + MU,jσ

2
n

PT,i

IMT,i
)−1/2 ∈ CMT,i×MT,i (3.18)

is a diagonal power loading matrix. By computing the SVD of the equivalent desired channel

WH
i HiFi,a = U ′i ⋅

⎡⎢⎢⎢⎢⎣
Σ′i 0

0 0

⎤⎥⎥⎥⎥⎦ ⋅ [ V
′(1)
i V

′(0)
i

]H , (3.19)

the matrix Fi,b is obtained as

Fi,b = V ′(1)i Λ
′ 1
2

i , (3.20)

where V
′(1)
i ∈ CMT,i×l′i with l′i denoting the rank of WH

i HiFi,a and Λ′i ∈ Cl′i×l′i is the diagonal

power loading matrix using water filling based on Σ′i. The precoding matrix is finally obtained

as

Fi = αFi,aFi,b, (3.21)

where α,Fi,a and Fi,b are specified in (3.14), (3.16) and (3.20).

After the precoding matrix is obtained from either BD for the IC using (3.13) or RBD

for the IC using (3.21), the decoding matrix at UTi is updated as Wi = HiFi for the next

iteration. The procedure continues until the stopping criterion is fulfilled, i.e., the interference

power is below a predefined threshold.

Simulations

Without loss of generality, we consider the single-stream transmission in the non-orthogonal
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Figure 3.2.: Sum rate vs SNR for the non-orthogonal spectrum sharing scenario

spectrum sharing scenario. A recent technique named ZF coordinated beamforming (CoZF)

[CHHT12] is used as a benchmark. The basic principle is that assuming MRC at UTs, the

precoder is chosen as a generalized eigenvector of GH
i Hi and HH

j Gj for i ≠ j so as to zero-

forcing the inter-operator interference. Although simple, this method has the dimensionality

constraint that MT,i ≤ MU,j due to the full-rank requirement of these equivalent channel

matrices.

The sum rate performance in the non-orthogonal spectrum sharing scenario is given in

Fig. 3.2, by applying precoding at BSs using IC FlexCoBF as well as CoZF. We assume that

perfect link adaptation and perfect synchronization can be achieved. Each element of the

channels Hi and Gi is a zero mean circularly symmetric complex Gaussian random variable

with unit variance CN(0,1). The transmit power of the BSs is PT and the SNR is defined as

PT/σ2n. Both the BSs and UTs are equipped with 2 antennas. Single stream transmission is

assumed here as [CHHT12] did. As a reference, we also include an ideal point-to-point (P2P)

transmission as the upper bound, where eigen-beamforming is performed at the BSs and no

inter-operator interference is taken into account. Another reference scheme named Eigen is

also plotted, where eigen-beamforming is performed at both BSs while treating the inter-

operator interference as noise. It is observed that IC FlexCoBF combined with either RBD

or BD for the IC performs much better than CoZF within all SNR ranges. At low SNRs,

IC FlexCoBF with RBD for the IC gives a better performance than that of IC FlexCoBF

with BD for the IC due to a better balance of the interference suppression and the noise

enhancement. In this regime, Eigen is also an alternative which improves the system sum

rate compared to the benchmark CoZF.
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Figure 3.3.: Sharing gain for the non-orthogonal spectrum sharing scenario

We refer to the ratio of throughput (TP) of the non-orthogonal spectrum sharing over that

of orthogonal spectrum sharing, written as TPnon-orthogonal / TPorthogonal, as the sharing gain

due to the use of the shared spectrum instead of accessing the spectrum by each operator in a

time division multiple access (TDMA) manner. This sharing gain is shown in Fig. 3.3, where

IC FlexCoBF and eigen beamforming are applied at the BS for the non-orthogonal sharing and

orthogonal sharing case, respectively. It can be seen that non-orthogonal spectrum sharing

scenario utilizing either IC FlexCoBF with RBD for the IC or IC FlexCoBF with BD for

the IC provides a significant sharing gain over the orthogonal sharing scheme which uses the

spectrum exclusively. For IC FlexCoBF with BD for the IC, the non-orthogonal sharing gain

becomes larger as the SNR increases. When IC FlexCoBF with RBD for the IC is applied,

there is even an improvement at low SNRs due to the regularization of RBD for the IC. This

shows that non-orthogonal spectrum sharing is more advantageous compared to the exclusive

use of the spectrum.

To summarize, the precoding design for the non-orthogonal spectrum sharing scenario is

introduced in this chapter, where two BSs belonging to different operators transmit simulta-

neously over the same spectrum. Two closed-form transmit beamforming schemes, i.e., BD

for the IC and RBD for the IC are first developed for this scenario. On as basis of that,

a more flexible beamforming algorithm named IC FlexCoBF is designed to further enhance

the system spectrum efficiency, which can be applied for any transmit and receive antenna

configuration. Simulation results reveal that the proposed IC FlexCoBF improves the spec-

tral efficiency dramatically compared to the state of the art work and a large sharing gain

is observed by non-orthogonal spectrum sharing instead of exclusive use of the spectrum.

The precoding algorithms introduced in this chapter can be easily extended to more than
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two operators. In the case of BD for the IC, the precoder of each BS is designed to extract

the common null space of the interference channels, which are induced by each BS to the

undesired users. Similarly as for the two-user case, RBD for the IC turns out to minimize the

power of the noise plus the interference caused by a specified BS to all the undesired users.

Based on that, IC FlexCoBF can be also applied in the multiple operator scheme.
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4. Multiple Operator One-Way Relaying

without Direct Link

In addition to non-orthogonal spectrum sharing introduced in Chapter 3, SAPHYRE also in-

vestigates a scheme that includes both spectrum and infrastructure sharing in order to make

more effective use of the physical resources, i.e., to alleviate the pressure of spectrum manage-

ment as well as to further reduce the infrastructure cost. Infrastructure can be shared in var-

ious ways, including base station, antenna, relay, radio network controller, etc. In particular,

we discuss relay sharing between multiple operators throughout Part I of this dissertation.

To be more specific, the relay assisted communications are investigated in Chapter 4 and

Chapter 5, where the relay as well as the spectrum are shared between multiple operators.

In recent years, the use of relays has drawn enormous attention due to its promising capabil-

ity in achieving reliable communications and coverage extension in wireless networks. In these

scenarios, where the link quality cannot be guaranteed due to large path loss, shadowing ef-

fect, multipath fading, etc., relays can be employed between the source and the destination to

assist the communication [LWT01], [LW00], [SEA03a], [SEA03b]. Various relaying schemes

have been presented in the literature, including the amplify-and-forward (AF) [MMVA07],

[TH07], [RW04], and decode-and-forward (DF) [LW00]. The comparison between analog AF,

digital AF, and DF can be found in Table 2.1. Among several cooperative schemes, the digital

AF is more attractive since it does not do decoding but simply amplifies the received signal

from the source and forwards it to the destination. Moreover, the digital AF does not require

decoding and re-encoding of the data as required for the DF relay, where more complicated

baseband processing causes a much higher latency. Throughout this thesis, we focus on the

design of the digital AF relaying.

Moreover, considering the fact that the MIMO technique [Tel99] enhances the system ca-

pacity by combating fading and interference, it makes sense to exploit the advantages of the

combination of MIMO and relays. Several works on capacity bounds of MIMO relay channels

have been firstly addressed in [WZ03], [WZHM05], [HMZ05], and [LVRWH05]. The optimal

design of the AF MIMO relay in a point-to-point communication is investigated in [MMVA07]

and [TH07]. In addition to that, the MIMO relay is also deployed on the multi-user downlink

to improve the system performance [CTHC08], [ZCL09]. More recently, the MIMO AF relay

is applied for multi-point to multi-point communication, which is the scenario discussed in

this chapter.

In this scenario, a MIMO AF relay is employed to assist the transmission between multiple
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pairs of BSs and UTs, where the direct link between the source and the destination is neglected.

There are many relay operation modes, including one-way relaying, two-way relaying, etc.

Two-way relaying transmission is not always advantageous over one-way relaying. As pointed

out in [SY12], two-way relaying is not always more energy efficient than one-way relaying if

the number of bits to be transmitted in the two directions are unequal, or the circuit power

consumptions at each node are different. Moreover, one-way relaying attracts more interest

from the implementation point of view because of the difficult synchronization between the

BSs and the UTs to transmit simultaneously [FLZS12]. In this thesis, we focus on one-way

relaying transmission. We propose several algorithms for the relay precoder design to further

improve the system performance. First a set of algorithms named efficient relay sharing

rate maximization (EReSh-RM) is designed to improve the system sum rate under the relay

transmit power constraint. After that, the relay precoder design is systematically studied for

power efficient transmission. In the previous work [CVL07], the relay precoder is designed

with respect to relay transmit power, considering perfect channel state information at the

relay. Later on the work in [CV09] designs a relay precoder in order to minimize the relay

transmit power in the worst case subject to the worst case SINR, assuming imperfect channel

state information at the relay. The worst case of the relay transmit power and SINR refer

to the maximum relay power and the minimum SINR for the largest possible channel errors,

respectively. Our work is focused on minimizing the average relay transmit power under the

SINR constraint to be satisfied for each transceiver pair. For the case where the BSs and UTs

are equipped with single antennas, a global optimum solution is firstly derived, which uses

a convex optimization tool to exploit the structure of the relay precoder. Taking this as a

benchmark, several suboptimal beamforming algorithms are proposed to find a compromise

between the achievable power efficiency and the computational complexity, including a closed-

form algorithm named Efficient Resource Sharing Power Minimization (EReSh-PM) and block

diagonalization (BD) [SSH04] based solutions. Further, a novel robust relay precoder design

is proposed by considering imperfect CSI at the relay. At last, we extend our study to the

case where each pair of BSs and UTs are equipped with multiple antennas and a novel relay

matrix design is derived for multiple stream transmission between multiple pairs of BSs and

UTs.

The structure of this chapter is arranged as follows. The system model for the AF relay

sharing scenario is introduced in Section 4.1. Then the EReSh-RM algorithms are addressed in

Section 4.2. To make more efficient use of the relay power, several algorithms are proposed for

the single stream transmission scheme in Section 4.3, where each BS and UT are equipped with

a single antenna. After that, Section 4.4 describes a robust relay precoder design assuming

that only an erroneous channel estimation is available. Section 4.5 extends the work to

multiple stream transmission for the more general case and a novel algorithm is proposed to

minimize the relay transmit power subject to the SINR constraints for each data stream.
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Figure 4.1.: System Model for relay sharing between multiple operators

4.1. System Model

A multi-user amplify and forward (AF) relay sharing system is considered as shown in Fig. 4.1,

where K BSs transmit data to their respective target UTs with the assistance of a shared AF

relay which operates in half-duplex mode. Each BS and UT is equipped with MT,k and MU,k

antennas, where k = 1, . . . ,K. The total number of antennas at the BSs and the UTs are

denoted as MT = ∑K
k=1MT,k and MU = ∑K

k=1MU,k, respectively. The relay has MR antennas.

In this chapter, the direct links between BSs and UTs are not used since we assume that they

are weak due to large path loss or shadowing. Later in Chapter 5, the direct link is assumed

to be not negligible.

The transmission process consists of two phases. During the multiple access channel (MAC)

phase, the received signal vector at the relay from multiple BSs is

yR =Hs̄ +nR,

where H = [ H1, ⋯, HK ] ∈ CMR×MT . The matrices Hk ∈ CMR×MT,k denote the channels

between each BS and the relay. The transmit signal at each BS is s̄k = Fksk ∈ CMT,k , where

Fk are the precoding matrices at the BSs. In compact form, the transmit signal is written

as s̄ = [ s̄T1 , ⋯, s̄TK ]T ∈ CMT . The transmit power at each BS is constrained by PT, i.e.,

E{tr(s̄k s̄Hk )} ≤ PT. In the broadcast channel (BC) phase, the relay amplifies the received

signal yR and forwards it to the UTs. The transmitted signal of the shared relay is

xR = FRyR = FRHs̄ +FRnR =
K∑
k=1

FRHks̄k +FRnR,

where FR ∈ CMR×MR denotes the relay amplification matrix. The signals received at the UTs
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are given by

yk =GkFRHks̄k + ⎛⎝
K∑

j=1,j≠k
GkFRHj s̄j

⎞⎠ +GkFRnR +nk ∈ CMU,k , k = 1,2,⋯,K

where G = [ GT
1 , ⋯, GT

K
]T ∈ CMU×MR and Gk ∈ CMU,k×MR denotes the channel between

the relay and each UT. The first term denotes the desired signal while the second term stands

for the interference that needs to be mitigated. All the remaining terms are the effective noise.

The noise at the relay nR and that at the UTs nk for k = 1,2, . . . ,K contain independent,

identically distributed complex additive white Gaussian noise samples with variance σ2n, i.e.,

E{nRn
H
R} = σ2nIMR

and E{∣nk ∣2} = σ2n. In Section 4.3 and Section 4.5 it is assumed that the

relay has perfect knowledge of all the channel state information (CSI), i.e., it knows all Hk

and Gk perfectly, while in Section 4.4 an erroneous CSI is available at the relay.

4.2. System Sum Rate Maximization

In this section, a set of algorithms is developed for system sum rate maximization under

the relay transmit power constraint. We name it as efficient relay sharing rate maximization

(EReSh-RM). The main contribution of this section has been published in reference [LRH11a].

The relay amplification matrix is designed as FR = γF̃R, where

F̃R = FBCΦFMAC ∈ CMR×MR (4.1)

and γ is a real scaling factor to fulfill the relay transmit power constraint. The matrices FMAC

and FBC are applied for interference suppression during the MAC and the BC phase, respec-

tively. The block diagonal matrix Φ = blockdiag{Φ1,Φ2,⋯,ΦK} is used to strengthen the

desired signal of each operator, where blockdiag{⋅} means that the matrices Φk are arranged

in a block diagonal manner.

The first method belonging to the EReSh-RM family is called regularized block diagonal-

ization / single channel algebraic norm maximization (RBD/SC-ANOMAX). To design FMAC

and FBC, the regularized block diagonalization (RBD) [SH08] algorithm is adopted due to the

fact that RBD offers a good sum rate performance by balancing the interference suppression

and noise power enhancement. Take the design of FMAC as an example. The matrix FMAC

is used to minimize the induced interference and noise power during the MAC phase. An

additional constraint is imposed on FMAC,k so that a non-trivial solution is obtained. The

problem is formulated as follows,

FMAC = argmin
FMAC

∥ K∑
k=1

FMAC,kH̃ks̃k∥2
2
+ ∥ K∑

k=1
FMAC,knR∥2

2
,

s.t. E∥FMAC,k∥
2
= 1 (4.2)

The first term denotes the block off-diagonal elements that form the interference, where
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H̃k = [ H1, ⋯, Hk−1, Hk+1, ⋯, HK ] and s̃k = [ sT1 , ⋯, sTk−1, sTk+1, ⋯, sTK ]T.

Furthermore, the cost function of (4.2) can be further written as

FMAC = argmin
FMAC,k

K∑
k=1

tr(FMAC,k ( PT

MT,k

H̃kH̃
H
k + σ2RIMR

)FH
MAC,k) . (4.3)

By computing the singular value decomposition (SVD) of H̃k = ŨH̃k
Σ̃H̃k

Ṽ H

H̃k
and inserting

it into (4.3), the matrix FMAC is obtained as

FMAC = argmin
FMAC,k

K∑
k=1

tr(FMAC,kŨH̃k
( PT

MT,k

Σ̃
H̃k

Σ̃T

H̃k
+ σ2RIMR

) ŨH

H̃k
FH
MAC,k) . (4.4)

A solution to (4.4) is derived in a similar procedure as in the appendix of [SH08], which gives

a non-scaled solution as F̃MAC,k as follows,

F̃MAC,k = ( PT

MT,k

Σ̃H̃k
Σ̃T

H̃k
+ σ2nIMR

)−1/2UH

H̃k
∈ CMR×MR . (4.5)

The matrix obtained in (4.5) is further normalized as FMAC,k = F̃MAC,k/∥F̃MAC,k∥ so that the

constraint in (4.2) is satisfied. Finally, the matrix FMAC is formed as

FMAC = [ FH
MAC,1, ⋯, FH

MAC,K
]H . (4.6)

Similarly, the matrix FBC is designed to minimize the power of the generated interference

plus noise during the BC phase, i.e.,

FBC = argmin
FBC

∥ K∑
k=1

G̃kFBC,ks̃k∥2
2
+ ∥n∥

2

2

β2
,

s.t. E∥FBC,k∥
2
= 1 (4.7)

where G̃k = [ GH
1 , ⋯, GH

k−1, GH
k+1, ⋯, GH

K
]H and n = [ nT

1 , ⋯, nT
K
]T is the noise

vector. The parameter β is a real scaling factor that is used to fulfill the relay transmit power

constraint, which is a function of FBC. A similar derivation procedure is applied as in the

MAC phase and a non-scaled solution F̃BC,k is obtained as follows,

F̃BC,k = VG̃k
( PT

MT,k

(Σ̃T

G̃k
Σ̃G̃k

+ MUσ
2
n

PR

IMR
))−1/2 ∈ CMR×MR (4.8)

The matrix VG̃k
and Σ̃G̃k

comes from the SVD of G̃k, which is given by G̃k = ŨG̃k
Σ̃G̃k

Ṽ H

G̃k
.

The matrix obtained in (4.8) is further normalized as FBC,k = F̃BC,k/∥F̃BC,k∥ so that the

constraint in (4.7) is satisfied.
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The matrix FBC is obtained as

FBC = [ FBC,1, ⋯, FBC,K ] (4.9)

After applying FMAC and FBC, the system is decoupled into multiple parallel one-way relaying

sub-systems and the received signal vector at each UT is given by

yk =GkFBC,kΦkFMAC,kHksk +GkFBC,kΦkFMAC,knR + ñk. (4.10)

The term ñk represents the additive white Gaussian noise plus the residual interference at each

UT. In order to further strengthen the desired signal for each operator, an algorithm inspired

by the algebraic norm maximization (ANOMAX) scheme [RH09] is utilized for single-stream

transmission for the design of Φk. The original ANOMAX algorithm has been designed for

the two-way relaying scheme. We modify it here to use it for the one-way relaying channel

and call it single-channel ANOMAX (SC-ANOMAX). Instead of maximizing the Frobenius

norm of the forward and backward channel as in ANOMAX, SC-ANOMAX maximizes the

Frobenius norm of the equivalent forward channel GkFBC,kΦkFMAC,kHk, i.e.,

Φk = argmax
Φk,∥Φk∥F =1

∥GkFBC,kΦkFMAC,kHk∥2F
= argmax

Φk,∥Φk∥F =1
∥ (FMAC,kHk)T ⊗ (GkFBC,k)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

K

⋅vec{Φk}´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
φk

∥2
2

= argmax
φk,∥φk∥2=1

φH
k K

HKφk

φH
k
φk

. (4.11)

The maximum value of (4.11) is obtained by λmax(KHK), where λmax(KHK) denotes the

largest eigenvalue of KHK. By computing the SVD of K = UΣV H, φk is obtained as

φk = v1, where v1 denotes the first column of V . Then Φk ∈ CMR×MR is formed by the

rearrangement of elements of v1. Finally, Φ is obtained as Φ = blockdiag{ Φ1 ⋯ ΦK }.
The matrix F̃R is designed by combing (4.1) - (4.11). Due to the relay transmit power

constraint, the relay amplification matrix is finally obtained as FR = γF̃R, where γ is a scalar

to fulfill the power constraint with

γ =
¿ÁÁÀ PR

tr{F̃R( PT

MT
HHH + σ2nIMR

)F̃H
R } . (4.12)

RBD/SC-ANOMAX gives a better sum rate performance compared to the state of the art

work [JKHL09] for single stream transmission, which will be shown in the simulation results.

Moreover, this closed-form algorithm does not require any iterations as [JKHL09].

Moreover, concerning multiple stream transmission, a rank restored (RR) modification of

RBD/SC-ANOMAX named RBD/RR SC-ANOMAX restores the rank while preserving the

same subspace, which achieves more spatial multiplexing gain and improves the sum rate



4.2 SYSTEM SUM RATE MAXIMIZATION 35

performance further. The original RR ANOMAX [RH10] has been designed for two-way

relaying and the method RBD/RR SC-ANOMAX is an extension for relay sharing between

multiple operators.

The basic principle behind it is to adjust the singular values of the relay amplification

matrix for each operator in an exhaustive manner so that the spatial multiplexing gain is

fully exploited. To be more specific, the SVD of the relay amplification matrix for each

operator FR,k obtained from SC-ANOMAX is first calculated as FR,k = FBC,kΦkFMAC,k =
Uk ⋅Σk ⋅V H

k . Then we preserve the singular vectors Uk and Vk and the singular value profiles

need to be adjusted via the vector σk = [ σk,1, σk,2, . . . , σk,MR
]. On a basis of σk, the relay

amplification matrix for RBD/RR SC-ANOMAX is defined as FR,k(σk) = Uk ⋅diag{σk} ⋅V H
k ,

where diag{σk} is a diagonal matrix containing elements of σk on its main diagonal. The

optimization problem is formulated as

max
σk

1

2
∣IMU,k

+ PT

MT,k

R−1k Heff ,kH
H
eff ,k∣,

s.t. ∥σk∥ = 1, σ1 ≥ σ2 ≥ . . . ≥ 0 (4.13)

where Heff ,k =GkFR,kHk denotes the effective channel of the k-th operator with the amplifi-

cation matrix FR,k and Rk = σ2nGkFR,kF
H
R,kG

H
k +σ2nIMU,k

is the noise covariance matrix. The

optimization problem using an exhaustive search can be simplified by considering the prop-

erties of the parameters. Firstly, the norm constraint on σk can be used to reduce the search

space to MR − 1 dimensions by optimizing over σ̄k = [ σk,2/σk,1, . . . , σk,MR
/σk,1 ], where each

element of σ̄k is in [0,1]. Secondly, the search space for σ̄k can be further reduced by taking

into account that the singular values are ordered, i.e., the i-th element of σ̄k is optimized in

the interval between 0 and the current value of the (i − 1)-th element of σ̄k.

Simulation results

A two operator system with a shared AF relay is considered. Each element of all channel

matrices is a zero mean circularly symmetric complex Gaussian random variable with unit

variance CN (0,1). Each figure is based on simulations over 1000 channel realizations.

Fig. 4.2 gives the system sum rate for the antenna configurations of MT,k =MU,k = 1 and

MR = 4. The SNR is defined as PT/σ2n. Compared to the recent MMSE BD method [JKHL09],

the proposed EReSh-RM using RBD/SC-ANOMAX offers a further rate improvement while

no iterations are required through a closed-form solution. In [JKHL09], it uses Lagrangian

multipliers with a bisection search to find the optimum operating point, where iterations are

unavoidable. We also include the results obtained from the orthogonal use of the spectrum

and relay between multiple operators as a benchmark. In this case, the relay is designed

using SC-ANOMAX and it is accessed by different operators in a time-division-multiple-

access (TDMA) manner. The method labeled as TDMA MR = 4 corresponds to the case of

orthogonal use of the spetrum with a shared relay. The TDMA method with half of the relay

antennas MR = 2 means that both the spectrum and the relay are non-shared. Fig. 4.2 clearly

shows that a significant sharing gain can be obtained compared to the orthogonal use of the
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Figure 4.2.: System sum rate versus SNR with MT,k =MU,k = 1∀k, MR = 4
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Figure 4.3.: System sum rate versus SNR with MT,k =MU,k = 1∀k, MR = 4
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Figure 4.4.: System sum rate versus SNR with MT,k =MU,k = 2∀k, MR = 6

physical resources, i.e., spectrum as well as the infrastructure (relay).

As defined in equation (2.1), the fractional SAPHYRE gain in terms of system sum rate is

ΞF =

K∑
k=1

Uk

1
K

K∑
k=1

USU
k

,

where k ∈ {1,2,⋯,K} is the index of the users. The utility function of the kth user in the

sharing scenario and the time division case are denoted by Uk and USU
k , respectively. To

be more specific, Fig. 4.3 depicts the SAPHYRE spectrum sharing gain in the blue curve,

which is defined as the system sum rate obtained by the SAPHYRE scenario divided by that

obtained by the TDMA use of the spectrum by different operators (MR = 4 for each operator).

In addition to that, an infrastructure (relay) sharing gain is obtained compared to the case

where the relay is equipped with half of the number of antennas MR = 2. The sharing gain

with respect to both the spectrum and the relay sharing case is depicted by the red curve.

However, when multiple stream transmission is considered, EReSh-RM using RBD/SC-

ANOMAX performs worse than MMSE BD at high SNRs as shown in Fig. 4.4, where MT,k =
MU,k = 2 and MR = 6. This is because RBD/SC-ANOMAX is a low-rank solution, which does

not explore the full spatial multiplexing gain and thereby degrades the sum rate performance

dramatically at high SNRs. By replacing EReSh-RM using RBD/SC-ANOMAX with EReSh-

RM using RBD/RR SC-ANOMAX, the spatial multiplexing gain is fully exploited and thereby

a higher sum rate performance is achieved in the high SNR regime. The sharing gain for this

configuration is depicted in Fig. 4.5. A huge spectrum sharing gain is observed by using
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Figure 4.5.: System sum rate versus SNR with MT,k =MU,k = 2∀k, MR = 6

EReSh-RM either with RBD/SC-ANOMAX or RBD/RR SC-ANOMAX compared to the

TDMA case with MR = 6 and an additional infrastructure (relay) sharing gain compared to

the TDMA case with half of the number of antennas MR = 3.

4.3. Relay Power Minimization for Single Stream Transmission

In this section, a power efficient transmission is considered for the multiple operator AF relay

sharing system, which is described in Section 4.1. We study the special case that the BSs and

the UTs are equipped with single antennas, where only single stream transmission is possible.

Further, it is assumed that the transmit signals of all BSs are zero mean and statistically

independent with transmit covariance matrix equal to E{s̄s̄H} = E{ssH} = PTIMT
. Our

objective is to design the relay precoder so as to minimize the relay transmit power PR =
E{tr(xRx

H
R)} while meeting the signal to interference plus noise ratio (SINR) requirements

at each user terminal.

Recently, a method named zero-forcing beamforming (ZFBF) [LP10] has been designed for

relay transmit power minimization subject to an SINR constraint per user, which achieves

the local optimum due to the use of the convex optimization tool. It first applies zero-forcing

to cancel the interferences between the multiple operators completely. By doing this, the

SINR constraint is degraded to an SNR requirement per user, which is easy for the relay

precoder design. However, some degrees of freedom are lost, which makes ZFBF a suboptimal

solution. Another drawback is that the implementation of ZFBF is not efficient enough due

to the use of the convex optimization tool. Therefore, we propose several methods for further
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improvements in terms of two aspects. Either a global optimum solution is obtained for

performance enhancement or the computational complexity is reduced without degrading the

power efficiency compared to ZFBF.

This section is structured as follows. A global optimum solution is firstly derived in Sub-

section 4.3.1, which uses a convex optimization tool to exploit the structure of the relay pre-

coder. Taking this as a benchmark, several suboptimal beamforming algorithms are proposed

in Subsection 4.3.2 and Subsection 4.3.3 to find a compromise between the achievable power

efficiency and the computational complexity, which are based on zero-forcing and block diag-

onalization [SSH04] techniques for interference mitigation. The power efficiency performance

and the complexity of all the schemes will be compared in the simulation results including the

state-of-the-art work in [LP10]. Following that, the SAPHYRE sharing gain is investigated in

terms of the required relay transmit power and the conclusions are drawn in Subsection 4.3.4.

4.3.1. Optimum Solution of Relay Power Minimization for Single Stream

We first consider an optimum solution of the relay precoder design in the multiple operator

AF relay sharing system, where the total relay transmit power is to be minimized while

guaranteeing a prescribed SINR constraint at each UT.

As described in Section 4.1, the relay transmit power is expressed as

PR = E{tr(xRx
H
R)}

= tr(FRHRs̄H
HFH

R ) + σ2ntr(FRF
H
R ), (4.14)

where H ∈ CMR×K . The transmit covariance matrix is Rs̄ = E{s̄s̄H} = E{ssH} = PTIMT
. By

inserting this into (4.14) and making use of the property of vec-operator [HJ85], i.e.,

vec(AXB) = (BT ⊗A)vec(X), (4.15)

the relay transmit power PR can be further written as

PR = PTtr(FRHHHFH
R ) + σ2ntr(FRF

H
R )

= PTtr{(HT ⊗ IMR´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P

)vec(FR)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fR

vec(FR)H(HT ⊗ IMR
)H}

= PTf
H
RPHPfR, (4.16)

which is a function of the vectorized relay amplification matrix fR = vec(FR).
At the receiver side, the received signal at UTk is obtained as

yk = gT
k FRhksk + ∑

j≠k
gT
k FRhjsj + gT

k FRnR + nk, (4.17)

where the first term on the right hand side (RHS) denotes the desired signal while the second
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term represents the inter-operator interference received at user UTk. The effective noise is

given by the remaining RHS terms. Based on (4.17), we express the SINR constraint at UTk

in terms of fR in the following.

Firstly, the power of the desired signal is calculated as

E{ ∣gT
k FRhksk∣2 } = PTtr{gT

k FRhkh
H
k F

H
R g∗k} (4.18)

with E{∣sk∣2} = PT. Then by use of (4.15), (4.18) is further written as

PTtr{gT
k FRhkh

H
k F

H
R g∗k} = PTtr{(hT

k ⊗ gT
k´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

aT

)vec(FR)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fR

vec(FR)H(hT
k ⊗ gT

k )H}
= PTf

H
Ra∗aTfR (4.19)

The power of the inter-operator interference is obtained as

E{RRRRRRRRRRR∑j≠kg
T
k FRhjsj

RRRRRRRRRRR
2 } = PTtr{gT

k FRH̃kH̃
H
k F

H
R g∗k}, (4.20)

where the interference matrix for UTk is defined as H̃k = [ h1, ⋯, hk−1, hk+1, ⋯, hK ] ∈
C
MR×(K−1). Similarly as (4.19), equation (4.20) is transformed to

PTtr{gT
k FRH̃kH̃

H
k F

H
R g∗k} = PTtr{(H̃T

k ⊗ gT
k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

)vec(FR)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fR

vec(FR)(H̃T
k ⊗ gT

k )H}
= PTf

H
RAHAfR. (4.21)

Assuming that the noise at the relay nR and the noise at the single antenna UT nk are

independent, the power of the effective noise is calculated as

E{ ∣gT
k FRnR + nk∣2 } = σ2ntr{gT

k FRF
H
R g∗k} + σ2n, (4.22)

where the noise at the relay and the UTs contain the zero-mean circularly symmetric complex

Gaussian (ZMCSCG) noise samples with E{nRn
H
R} = σ2nIMR

and E{∣nk ∣2} = σ2n. Equation

(4.22) is further written as

σ2ntr{gT
k FRF

H
R g∗k} + σ2n = σ2ntr{(IMR

⊗ gT
k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B

)vec(FR)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fR

vec(FR)(IMR
⊗ gT

k )H} + σ2n
= σ2nf

H
RBHBfR + σ2n. (4.23)
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Combining (4.19), (4.21) and (4.23), the SINR constraint for UTk is expressed by

PTf
H
Ra∗aTfR

PTf
H
R
AHAfR + σ2nfH

R
BHBfR + σ2n ≥ γk, (4.24)

which can be written as

fH
R(PTa

∗aT − γkPTA
HA − γkσ2nBHB)fR ≥ γkσ2n. (4.25)

By defining W = fRfH
R ∈ CM2

R, the problem of minimizing the relay transmit power defined

in (4.16) under SINR constraint in (4.25) is formulated as

min
W

tr{PTP
HPW }

s.t. tr{(PTa
∗aT − γkPTA

HA − γkσ2nBHB)W} ≥ γkσ2n, k = 1,2, . . . ,K
rank(W ) = 1, (4.26)

where

P = HT ⊗ IMR
,

a = (hT
k ⊗ gT

k )T,
A = H̃T

k ⊗ gT
k ,

B = IMR
⊗ gT

k .

The original problem in (4.26) is a non-convex quadratically constrained quadratic program

(QCQP). By relaxing the non-convex constraint rank(W ) = 1 in (4.26), the original problem

turns out to be convex in W and can be solved effectively by semi-definite relaxation (SDR)

[HP10, LMS+10] using the convex optimization toolbox cvx [BV04, GBY09]. However, the

rank of W is usually more than one since we discarded the rank-1 constraint. Therefore, we

need to extract a rank-1 solution fR from W by a tight rank-1 decomposition method. In

[AHZ11], a rank-1 decomposition theorem has been proved and it is shown that the SDRs of

complex-valued QCQPs with not more than 4 constraints are tight. In our case, if the number

of operators is less or equal than 4, an optimum fR can be reconstructed from W based on

the theorem and the algorithm of rank-1 decomposition [AHZ11].

4.3.2. Efficient Resource Sharing Power Minimization (EReSh-PM)

In [LP10], a zero-forcing beamforming (ZFBF) algorithm is designed for relay transmit power

minimization subject to the SINR constraint per user, which achieves a local optimum. This

ZFBF first applies zero-forcing to cancel the inter-operator interferences completely, simpli-

fying the SINR constraint for each user in (4.24) to SNR requirement per user. Then the

problem turns out to minimize the total relay transmit power with multiple SNR constraints.
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However, this method needs to be implemented by using a convex optimization tool and

iterative procedures are unavoidable. In order to overcome this, we seek a closed-form solu-

tion named efficient relay sharing power minimization (EReSh-PM) algorithm. Meanwhile,

we will show that the proposed EReSh-PM scheme approaches the same performance as the

ZFBF method and no iterations are required. The main contribution of this section has been

published in reference [LRH11a].

In order to simplify the design of FR, the following structure of FR is used,

FR = FBCΦFH
MAC. (4.27)

The matrices FMAC and FBC suppress the interferences generated in the multiple access

(MAC) phase from the BSs to the relay and the broadcasting (BC) phase from the relay to

UTs, respectively. The diagonal matrix

Φ = diag{ √Φ1, ⋯, √ΦK } ∈ CK×K (4.28)

is used to allocate the power to each UT.

As the first step, the interference is mitigated during the MAC phase and the BC phase

using the ZF method. To design FMAC, the pseudo inverse of the channel H is first calculated

as

H+ = (HHH)−1HH = [ h̄1, ⋯, h̄K ]T ∈ CK×MR

with h̄k ∈ CMR . Then FMAC is formed as

FMAC = [ fMAC,1, ⋯, fMAC,K ] ∈ CMR×K , (4.29)

where fMAC,k is a unit norm vector and fMAC,k = h̄k/ ∥h̄k∥2 ∈ CMR .

Similarly in the BC phase, the pseudo inverse of G is

G+ =GH(GGH)−1 = [ ḡ1, ⋯, ḡK ] ∈ CMR×K

with ḡk ∈ CMR . Then the matrix FBC is obtained as

FBC = [ fBC,1, ⋯, fBC,K ] ∈ CMR×K , (4.30)

where fBC,k = ḡk/ ∥ḡk∥2 ∈ CMR .

Inserting (4.29) and (4.30) into (4.27), FR is written as

FR = FBCΦFH
MAC

= fBC,1

√
Φ1f

H
MAC,1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

FR,1

+ . . . + fBC,K

√
ΦKfH

MAC,K´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
FR,K

(4.31)
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with

FR,k = fBC,K

√
ΦKfH

MAC,K . (4.32)

After applying FMAC and FBC, the inter-operator interferences generated during the MAC

phase and the BC phase are completely removed. Thus the received signal at the UTk is

obtained as

yk = gT
k fBC,k

√
Φkf

H
MAC,khksk + gT

k fBC,k

√
Φkf

H
MAC,knR + nk,

where the first term on the RHS is the desired signal for UTk while all the others represent

the effective noise. By defining ĝk = gT
k fBC,k and ĥk = fH

MAC,khk, the SINR constraint at each

UT is written as

SINRk = PT∣ĝk ∣2 ∣̂hk ∣2Φk

σ2n∣ĝk ∣2Φk + σ2n ≥ γk, (4.33)

where γk is a predefined constant.

Since the system is decoupled into K independent parallel transceiver pairs, the total re-

lay transmit power PR =
K∑
k=1

PR,k, where PR,k denotes the relay transmit power for the k-th

operator. Instead of minimizing the total relay transmit power PR = ∥FRHs +FRnR∥22 pro-

posed in [LP10], we design Φk to minimize the relay transmit power for each operator, i.e.,

PR,k = E{∥FR,khksk +FR,knR∥22 }. Combining (4.32) and the definition of ĥk = fH
MAC,khk,

PR,k can be further written as

PR,k = E{∥FR,khksk +FR,knR∥22 }
= E{∥fBC,k

√
Φkf

H
MAC,khksk + fBC,k

√
Φkf

H
MAC,knR∥2

2
}

= tr{fBC,k(PT ∣̂hk ∣2Φk + σ2nΦk)fH
BC,k}

= (PT ∣̂hk ∣2 + σ2n)Φk. (4.34)

The last step comes from the fact that fH
BC,kfBC,k = ḡH

k ḡk/ ∥ḡk∥22 = 1 since fBC,k is a unit

norm vector.

Our objective turns out to find the diagonal elements
√
Φk in equation (4.28) for each user

to minimize the individual relay transmit power PR,k in (4.34) under the individual constraint

SINRk ≥ γk as described in (4.33). Therefore, the problem is formulated as

min
Φk≥0

(PT ∣̂hk ∣2 + σ2n)Φk,

s.t.
PT∣ĝk ∣2 ∣̂hk ∣2Φk

σ2n∣ĝk ∣2Φk + σ2n ≥ γk. (4.35)



44 4. MULTIPLE OPERATOR ONE-WAY RELAYING WITHOUT DIRECT LINK

It is obvious that (PT ∣̂hk ∣2 + 1)Φk increases monotonically with Φk and thereby Φk is ob-

tained in a closed-form,

Φk = γkσ
2
n∣ĝk ∣2 (PT ∣̂hk ∣2 − γkσ2n) . (4.36)

In order to guarantee that Φk is non-negative, the feasibility check has to be passed, i.e.,

PT ∣̂hk ∣2 − γkσ2n > 0. (4.37)

Using equations (4.27) - (4.30) and (4.36) - (4.37), the relay amplification matrix is fi-

nally constructed as FR = FBCΦFH
MAC. The relay transmit power is calculated as PR =

E{∥FRHs +FRnR∥22 } = tr{FR(PTHHH + σ2nIMR
)FH

R }.

4.3.3. BD based solution

In this section, an alternative solution is presented for relay power minimization with SINR

constraints, which is based on the block diagonalization (BD) algorithm [SSH04]. The algo-

rithm is named as block diagonalization single channel algebraic norm maximization (BD/SC-

ANOMAX), which is a closed-form solution to minimize the relay transmit power under the

SINR constraints. The original BD is used to supress the interferences between users in the

multi-user MIMO downlink. Here we use BD to eliminate the inter-operator interference. Un-

like the zero-forcing method used in EReSh-PM as introduced in Section 4.3.2 and the ZFBF

algorithm [LP10], we apply the classical BD method to mitigate the interference generated in

the MAC phase and BC phase.

The relay amplification matrix is still designed as

FR = FBCΦFMAC ∈ CMR×MR , (4.38)

where FMAC and FBC are the precoding matrices in the MAC phase and BC phase for inter-

ference cancelation while Φ is a block diagonal matrix used for relay transmit power minimiza-

tion. In the MAC phase, we define H̃k = [ h1, ⋯, hk−1, hk+1, ⋯, hK ] ∈ CMR×(K−1) to

represent the channel between all the BSs and the relay excluding the k-th BS, where hi ∈ CMR

with i = 1,⋯,K, i ≠ k denote the channel vector from BSi to the relay. To completely cancel

the inter-operator interference generated in the MAC phase for user k, we assign the precod-

ing matrix FMAC,k at BSk to lie in the null space of the interference channel H̃k from all the

other users. In order to extract this null space, the singular value decomposition (SVD) of

H̃k is first computed,

H̃k = ŨH̃k
⋅ Σ̃

H̃k
⋅ Ṽ H

H̃k
= [ Ũ

(1)
H̃k

, Ũ
(0)
H̃k
] ⋅ Σ̃

H̃k
⋅ Ṽ H

H̃k
.

The matrices Ũ (1)
H̃k

and Ũ
(0)
H̃k

are acquired from the left K−1 columns and the right MR−K+1
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columns of Ũ
H̃k

, which span the signal space and the null space of H̃k, respectively. To

mitigate the inter-operator interference received from others, the precoding matrix for user k

in the MAC phase is obtained as

FMAC,k = Ũ (0)
H̃k

Ũ
(0)H
H̃k

(4.39)

To completely cancel the inter-operator interferences between all interfering pairs, the relay

precoding matrix in the MAC phase is designed as

FMAC =
⎡⎢⎢⎢⎢⎢⎢⎣

FMAC,1⋮
FMAC,K

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ũ
(0)
H̃1

Ũ
(0)H
H̃1⋮

Ũ
(0)
H̃K

Ũ
(0)H
H̃K

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ CKMR×MR .

Similarly in the BC phase, we define G̃k = [ g1, ⋯, gk−1, gk+1, ⋯, gK ]T ∈ C(K−1)×MR

with gi ∈ CMR denoting the channel vector from the relay to the UTi. Thereby, the precoding

matrix for user k at the BC phase is designed as

FBC,k = Ṽ (0)
G̃k

Ṽ
(0)H
G̃k

(4.40)

and thus the precoding matrix FBC at the BC phase is obtained as

FBC = [ FBC,1, ⋯, FBC,K ] = [ Ṽ
(0)
G̃1

Ṽ
(0)H
G̃1

, ⋯, Ṽ
(0)
G̃K

Ṽ
(0)H
G̃K

] ∈ CMR×KMR ,

where the columns of Ṽ (0)
G̃k

span the null space of G̃k, which is obtained from computing the

SVD of G̃k, i.e.,

G̃k = ŨG̃k
⋅ Σ̃

G̃k
⋅ Ṽ H

G̃k
= Ũ

G̃k
⋅ Σ̃

G̃k
⋅ [ Ṽ

(1)
G̃k

, Ṽ
(0)
G̃k
]H .

After applying BD in both the MAC phase and the BC phase, the received signal vector

excluding the noise is obtained as follows,

GFRHs =
⎡⎢⎢⎢⎢⎢⎢⎣

gT
1⋮

gT
K

⎤⎥⎥⎥⎥⎥⎥⎦
[ FBC,1, ⋯, FBC,K ]

⎡⎢⎢⎢⎢⎢⎢⎣
Φ1 ⋱

ΦK

⎤⎥⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Φ

⎡⎢⎢⎢⎢⎢⎢⎣
FMAC,1⋮
FMAC,1

⎤⎥⎥⎥⎥⎥⎥⎦
[ h1, ⋯, hK ]

⎡⎢⎢⎢⎢⎢⎢⎣
s1⋮
sK

⎤⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎢⎣
gT
1 FBC,1 ⋱

gT
KFBC,K

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
Φ1 ⋱

ΦK

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
FMAC,1h1 ⋱

FMAC,KhK

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
s1⋮
sK

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣
gT
1 FBC,1Φ1FMAC,1h1 ⋱

gT
KFBC,KΦKFMAC,KhK

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
s1⋮
sK

⎤⎥⎥⎥⎥⎥⎥⎦
.
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All the off-diagonal elements become zero since all the interferences are removed. The matrix

Φ is block diagonal, written as Φ = blockdiag{ Φ1, . . . , ΦK } ∈ CKMR×KMR. It can be seen

that the system is now decoupled into K independent transceiver pairs and more degrees of

freedom are achieved for the design of Φ ∈ CKMR×KMR after applying BD instead of Φ ∈ CK×K

by utilizing ZF.

The received signal for user k is written as

yk = gT
k FBC,kΦkFMAC,khksk + gT

k FBC,kΦkFMAC,knR + nk. (4.41)

where the first term is the desired signal whereas the remaining terms represent the effective

noise vectors.

Since the system is decoupled into K independent transceiver pairs after applying BD for

interference mitigation, (4.38) can be further written as

FR = FBCΦFMAC

=
K∑
k=1

FBC,kΦkFMAC,k

=
K∑
k=1

Fk ∈ CMR×MR (4.42)

and FMAC,k and FBC,k are obtained from (4.39) and (4.40). Then the algorithm SC-ANOMAX

is to design the diagonal matrix Φk, which is similar to that introduced in Section 4.2.

Φk = argmax
Φk,∥Φk∥F =1

∥gT
k FBC,kΦkFMAC,khk∥2F

= argmax
Φk,∥Φk∥F =1

∥ (FMAC,khk)T ⊗ (gT
k FBC,k)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

K

⋅vec{Φk}´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
φk

∥2
2

= argmax
φk,∥φk∥2=1

φH
k K

HKφk

φH
k
φk

= λmax(KHK). (4.43)

By computing the SVD of K = UΣV H, φk is obtained as φk = v1, where v1 denotes the first

column of V . Then Φk ∈ CMR×MR is formed by the rearrangement of elements of v1.

In order to fulfill the SINR constraint for each user, we define F̃R,k = βkFR,k, where β is a

scalar. Then the SINR constraint is written as

SINRk = PT∣gT
k F̃R,khk ∣2

σ2n ∥gT
k
F̃R,k∥22 + σ2n

= PTβ
2∣gT

k FBC,kΦkFMAC,khk∣2
σ2nβ

2 ∥gT
k
FBC,kΦkFMAC,k∥22 + σ2n ≥ γk.
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Figure 4.6.: PR versus PT with target SINR = 0 dB

Thereby, the scaling factor βk for each transceiver pair is obtained as

βk =
¿ÁÁÁÀ γkσ2n

PT∣gT
k
FBC,kΦkFMAC,khk∣2 − γkσ2n ∥gT

k
FBC,kΦkFMAC,k∥22 . (4.44)

It is obvious that the feasible set for the BD/SC-ANOMAX solution is that β ≥ 0.

Combing (4.42)-(4.44) and (4.39)-(4.40), the relay amplification matrix is finally designed

as

FR =
K∑
k=1

F̃R,k =
K∑
k=1

βkFBC,kΦkFMAC,k (4.45)

with the feasibility check β ≥ 0.

Simulation results

A two operator system with a shared AF relay is considered. Each element of all channel

matrices is a zero mean circularly symmetric complex Gaussian random variable with unit

norm CN (0,1). Each figure is based on simulation over 1000 channel realizations. Fig. 4.6

gives the consumed relay transmit power versus PT usingMR = 4. The SINR constraint at each

UT is set to be 0 dB and unit noise variance is assumed. The proposed closed-form solutions

EReSh-PM as well as BD/SC-ANOMAX algorithms provide the same relay transmit power

which achieves the local optimum as ZFBF. Moreover, instead of using the convex optimization

tool in [LP10], the EReSh-PM and the BD/SC-ANOMAX method gives the solution directly

and no iteration is required. Compared to the optimum solution which is depicted by the
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Figure 4.7.: Elapsed time versus PT with target SINR = 0 dB

blue curve, all the suboptimal solutions have 1 dB degradation, of which EReSh-PM and

BD/SC-ANOMAX methods are proposed due to its extremely low computational complexity.

To verify that, the average elapsed time of CPU over one channel realization for all the

methods is plotted in Fig. 4.7 based on 1000 channel realizations. The SINR constraint at

each UT is still set to 0 dB and MR = 4. It is observed that the optimum solution is more

time consuming than other methods due to the use of the convex optimization tool as well

as the rank-1 decomposition. Furthermore, although ZFBF can be efficiently performed with

the convex optimization tool, it is apparent to see that the closed-form solutions EReSh-PM

and BD/SC-ANOMAX consume even much less time, of which EReSh-PM performs slightly

better than BD/SC-ANOMAX.

The impact of the number of relay antennas on the relay transmit power is shown in Fig. 4.8.

Here PT is 10 dBW and the target SINR at each UT is set to 0 dB. All the suboptimal solutions

give almost the same performance, which is slightly worse than the optimum method.

The feasibility check is investigated for all the schemes. For the optimum solution, the

convex feasible region is checked in (4.26). Concerning the benchmark work ZFBF [LP10], the

condition PT ∣̂hk ∣2−γk > 0 and PT−γk ∥fMAC,k∥2 ≥ 0 must be fulfilled for the implementation of

this method. Furthermore, EReSh-PM and BD/SC-ANOMAX are restricted by (4.37) (4.44),

respectively. The probability that the feasibility test fails is depicted in Fig. 4.9. The transmit

power at each BS PT and the target SINR are the same as in Fig. 4.8. It is observed that

all the suboptimal methods ZFBF, EReSh-PM, and BD/SC-ANOMAX have lower infeasible

probability than the optimum solution when MR = 3. When the number of relay antennas
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Figure 4.8.: PR versus MR with target SINR = 0 dB, PT= 10 dBW
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Figure 4.9.: Failure probability of the feasibility check versus MR with target SINR = 0 dB,
PT = 10 dBW
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increases, there exist no difference. Therefore, EReSh-PM and BD/SC-ANOMAX provide a

good compromise between the performance and complexity since iterations are avoidable.

In addition to the SAPHYRE gain with respect to the system rate, we can also interpret

the SAPHYRE sharing gain in terms of the consumed transmit power. That is, the transmit

power consumed in the sharing scenario is compared to the that by the exclusive use of the

spectrum and infrastructure for a single operator (TDMA access). The fractional SAPHYRE

gain in terms of power is defined in equation (2.2). The numerator denotes the average

required transmit power for achieving certain QoS metrics (e.g., minimum required SINR for

each user, minimum required total data rate of the network, minimum required SNR per user,

etc.) in the non-sharing case and the factor K is due to the use of resources in subsequent

K time slots. The denominator denotes the required transmit power for achieving the same

performance metrics in the sharing case.

For the SAPHYRE scenario, we use the EReSh-PM [LRH11a] described in Section 4.3.2

compromising between the performance and the computational complexity. The TDMA sce-

nario is used as a benchmark. At each time slot, the relay amplification matrix is designed

for each operator to minimize the relay transmit power subject to the SINR constraint at a

single user. The optimum solution for the TDMA access is derived as follows.

In the case that the relay is accessed by each operator, the received signal at the UT is

yk = gT
k FRhksk + gT

k FRnR + nk.
The relay transmit power is calculated as

E{∥FRhksk +FRnR∥2 }
= tr {PTFRhkh

H
k F

H
R } + tr{σ2nFRF

H
R }

= PT ∥FRhk∥22 + σ2n ∥FR∥2F
= PT

XXXXXXXXXXXXXXXX
(hT

k ⊗ IMR´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

)vec(FR)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
w

XXXXXXXXXXXXXXXX

2

2

+ σ2n
XXXXXXXXXXXXXXX
vec(FR)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

w

XXXXXXXXXXXXXXX
2

2

=wH (PTB
HB + σ2nIMR

)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D

w

= tr {DWk} . (4.46)

The SINR constraint for each UT is

SINRk = PT∣gT
k FRhk ∣2

σ2n ∥gT
k
FR∥22 + σ2n . (4.47)
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(4.47) could be further simplified using the following equations,

gT
k FRhk = vec(gT

k FRhk) = (hT
k ⊗ gT

k )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cT

vec(FR)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
w

, (4.48)

∥gT
k FR∥22 = ∥gT

k FRIMR
∥2
2
=
XXXXXXXXXXXXXXXX
(IMR

⊗ gT
k )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

vec(FR)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
w

XXXXXXXXXXXXXXXX

2

2

. (4.49)

By inserting (4.48) and (4.49) into (4.47), we have

SINRk =
PTtr {wHc∗cTw}

σ2ntr{wHAHAw} + σ2n ≥ γk,
which is finally transformed to

tr{(PTc
∗cT − γσ2nAHA)Wk} ≥ γkσ2n.

Thereby, the problem is formulated as

min
Wk

tr{DWk} ,
s.t. tr{(PTc

∗cT − γσ2nAHA)Wk} ≥ γkσ2n,
rank(Wk) = 1. (4.50)

Without considering the constraint rank(Wk) = 1, Wk could be obtained through convex

optimization tools. To retrieve wk from Wk, the rank-1 decomposition is performed using

the theorem [AHZ11], which is similar as introduced in Section 4.3.1.

The required relay transmit power using EReSh-PM for the SAPHYRE scenario and the

TDMA solution for the non-sharing case is plotted in Fig. 4.10. The SINR constraint is set

to 0 dB at each UT. As seen from the figure, the gap between the blue curve obtained by

EReSh-PM and the red one for TDMA scenario with MR = 8 denote the spectrum sharing

gain. There is around 2 dB loss by making exclusive use of the spectrum with 2 operators.

Moreover, the gap between the EReSh-PM method and TDMA access with MR = 4 give the

spectrum and the infrastructure sharing gain of 6 dB in the case that half number of the relay

antennas are accessed by each operator subsequently.

4.3.4. Conclusion

In this section, an optimum algorithm and several suboptimal solutions are proposed to achieve

a power efficient transmission for the multiple operator AF relay sharing system. We study

the special case that the BSs and the UTs are equipped with single antennas, where only

single stream transmission is possible. A global optimum solution is firstly derived in Sub-

section 4.3.1, which uses a convex optimization tool to exploit the structure of the relay
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Figure 4.10.: SAPHYRE gain in terms of power for multiple operator one-way relaying

precoder. Taking this as a benchmark, two suboptimal algorithms named EReSh-PM and

BD/SC-ANOMAX are proposed in Subsection 4.3.2 and Subsection 4.3.3 to find a compro-

mise between the achievable power efficiency and the computational complexity, which are

based on zero-forcing and block diagonalization techniques for interference mitigation. Both

of them are closed-form solutions and no iteration is required. Compared to the optimum so-

lution, both the suboptimal algorithms achieve almost the same good performance and have

only 1 dB degradation. Hence, EReSh-PM and BD/SC-ANOMAX methods are strongly pro-

posed due to their extremely low computational complexity. Following that, the SAPHYRE

sharing gain is investigated in terms of the required relay transmit power. There is 2 dB gain

by sharing the spectrum and a 6 dB gain is observed by both the spectrum and relay sharing

compared to the exclusive use of these physical resources.

4.4. Robust Relay Precoder Design with Imperfect Channel

State Information (CSI)

In the previous sections, the power efficient algorithms are investigated based on the assump-

tion that the channel state information (CSI) at the BSs and the relay is perfect. This is

an ideal assumption due to the fact that the relay has to obtain the CSI of the BSs to the

relay as well as that of the UTs to relay link via feedback channels. More practically, we

have the channel estimation error due to the quantization error, feedback delay, etc.. In this

section, we consider a robust design of the relay precoder in the multiple operator AF relay

sharing system, where the CSI at the relay is assumed to be imperfect. The same scenario is
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studied as in Section 4.3, where each BS and UT is equipped with a single antenna while the

relay employs multiple antennas. The main contribution of this section has been published in

reference [LH13].

In the state-of-the-art work [CV09], the authors design a relay precoder to minimize the

relay transmit power in the worst case subject to the worst case signal-to-interference-plus-

noise ratio (SINR). The worst case of the relay transmit power and SINR refer to the maximum

relay power and the minimum SINR for the largest possible channel errors, respectively. In

contrast to that reference, our work is focused on a novel robust relay precoder design in order

to minimize the average relay transmit power under the SINR constraints for each operator.

Monte-Carlo simulation results show that the proposed robust method outperforms the non-

robust solution significantly in terms of the outage probability of the SINR. Furthermore,

we demonstrate the sharing gain achieved by this robust method via spectrum and relay

sharing between multiple operators compared to the case where the spectrum and the relay

are accessed exclusively by each operator.

As stated in [UC11], the CSI errors can be modeled in two ways. One is named stochastic

error (SE) model, where the probability distribution of the CSI error is Gaussian. This model

is applicable when the channel estimation error dominates compared to the quantization

errors. The other is the norm-bounded error (NBE) model, where the CSI error is specified

by an uncertainty set. This model is used when the CSI error is mainly due to the quantization

errors. We apply the SE error model in this work. The channel uncertainties is modeled as

follows [UC11],

hk = ĥk + ek,
gT
k = ĝT

k + fT
k , k = 1,2, . . . ,K. (4.51)

The vectors hk and gT
k represent the true CSI between the BSk and the relay and that between

the relay and the UTk. The imperfect CSI available at the relay are denoted by ĥk and ĝT
k .

The corresponding CSI error are ek and fT
k , respectively. Equivalently, we write the equation

(4.51) in a compact form,

H = Ĥ +E,
G = Ĝ +F , (4.52)

where H = [ h1, ⋯, hK ] and G = [ g1, ⋯, gK ]T. The channel estimation error ma-

trices E and F are assumed Gaussian distributed with zero mean and E{vec(E)vec(EH)} =
σ2EIKMR

, E{vec(F )vec(FH)} = σ2F IKMR
. Hence, it is obtained that

E{EEH} = Kσ2EIMR
,

E{FFH} = MRσ
2
FIK . (4.53)

Furthermore, we assume that E and F are uncorrelated with Ĥ and Ĝ, respectively.
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As described in Section 4.1, the relay transmit power is expressed as

PR = E{tr(xRx
H
R)}

= PTE{tr(FRHHHFH
R )} + σ2ntr(FRF

H
R ). (4.54)

By inserting (4.52) and (4.53) into (4.54), PR is further written as

PR = PTE{tr(FR(Ĥ +E)(Ĥ +E)HFH
R )} + σ2ntr(FRF

H
R )

= PTtr(FRĤĤHFH
R ) + PTE{tr(FREEHFH

R )} + σ2ntr(FRF
H
R )

= PTtr(FRĤĤHFH
R ) + (PTKσ

2
E + σ2n)tr(FRF

H
R )

= PTtr( (ĤT ⊗ IMR
)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P

vec(FR)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fR

vec(FR)H(ĤT ⊗ IMR
)H)

+(PTKσ
2
E + σ2n)tr(vec(FR)vec(FR)H)

= PTtr(fH
RPHPfR) + (PTKσ

2
E + σ2n)tr(fH

RfR)
= fH

R (PTP
HP + (PTKσ

2
E + σ2n)I2

MR
)fR. (4.55)

With respect to the SINR constraint at the UTs, we first derive the received signal at UTk as

yk = gT
k FRhksk + ∑

j≠k
gT
k FRhjsj + gT

k FRnR + nk, (4.56)

where the first term is the desired signal and the second term represents the inter-operator

interference caused to user k. The effective noise is given by the remaining terms on the right

hand side. In the following, we express the SINR of UTk as a function of fR.

The power of the desired signal in (4.56) is calculated as

E{ ∣gT
k FRhksk∣2 } = PTE{tr((ĝT

k + fT
k )FR(ĥk + ek)(ĥH

k + eHk )FH
R (ĝ∗k + f∗k ))}. (4.57)

Due to the assumption that ĝT
k and f̂k are uncorrelated with f̂T

k and êk, we could further

write (4.57) as follows

PTE{tr((ĝT
k + fT

k )FR(ĥk + ek)(ĥH
k + eHk )FH

R (ĝ∗k + f∗k ))}
= PTtr(ĝT

k FRĥkĥ
H
k F

H
R ĝ∗k + σ2EĝT

k FRF
H
R ĝ∗k + σ2FFRĥkĥ

H
k F

H
R + σ2Eσ2FFRF

H
R )

= PTtr((ĥT
k ⊗ ĝT

k´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
aT

)vec(FR)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fR

vec(FR)(ĥT
k ⊗ ĝT

k )H + σ2E(IMR
⊗ ĝT

k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

)vec(FR)vec(FR)H(IMR
⊗ ĝT

k )H

+σ2F (ĥT
k ⊗ IMR´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C

)vec(FR)vec(FR)H(ĥT
k ⊗ IMR

)H + σ2Eσ2Fvec(FR)vec(FR)H)
= PTf

H
R (a∗aT + σ2EBHB + σ2FCHC + σ2Eσ2F IM2

R
)fR. (4.58)
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Based on (4.56), the power of the inter-operator interference is obtained as

E{RRRRRRRRRRR∑j≠kg
T
k FRhjsj

RRRRRRRRRRR
2 } = PTE{tr(gT

k FRH̃kH̃
H
k F

H
R g∗k)}, (4.59)

where H̃k is defined as H̃k = [ h1, ⋯, hk−1, hk+1, ⋯, hK ] and H̃k = ̂̃Hk + Ẽk. The

matrix Ẽk is the channel estimation error matrix excluding user k. Similarly as in (4.57) and

(4.58), (4.59) is further calculated as

PTE{tr(gT
k FRH̃kH̃

H
k F

H
R g∗k)}

= PTtr(ĝT
k FR
̂̃
Hk
̂̃
HH

k F
H
R ĝ∗k + σ2E ĝT

k FRF
H
R ĝ∗k + σ2FFR

̂̃
Hk
̂̃
HH

k F
H
R + σ2Eσ2FFRF

H
R )

= PTtr((̂̃HT
k ⊗ ĝT

k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

)vec(FR)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fR

vec(FR)(̂̃HT
k ⊗ ĝT

k )H + σ2E(IMR
⊗ ĝT

k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

)vec(FR)vec(FR)H(IMR
⊗ ĝT

k )H

+σ2F (̂̃HT
k ⊗ IMR´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D

)vec(FR)vec(FR)H(̂̃HT
k ⊗ IMR

)H + σ2Eσ2Fvec(FR)vec(FR)H)
= PTf

H
R (AHA + σ2EBHB + σ2FDHD + σ2Eσ2FIM2

R
)fR. (4.60)

Concerning the power of the effective noise,

E{ ∣gT
k FRnR + nk∣2 }

= σ2nE{tr(gT
k FRF

H
R g∗k)} + σ2n

= σ2nE{tr((ĝT
k + fT

k )FRF
H
R (ĝ∗k + f∗k ))} + σ2n

= σ2ntr(ĝT
k FRF

H
R ĝ∗k + σ2FFRF

H
R ) + σ2n

= σ2ntr((IMR
⊗ ĝT

k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

)vec(FR)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fR

vec(FR)(IMR
⊗ ĝT

k )H + σ2Fvec(FR)vec(FR)H) + σ2n
= σ2nf

H
R (BHB + σ2FIM2

R
)fR + σ2n. (4.61)

Combing (4.58), (4.60) and (4.61), the SINR constraint for the k-th user is expressed as

PTf
H
R (a∗aT + σ2EBHB + σ2FCHC + σ2Eσ2FIM2

R
)fR

PTf
H
R
(AHA + σ2

E
BHB + σ2

F
DHD + σ2

E
σ2
F
IM2

R
)fR+σ2nfH

R
(BHB + σ2

F
IM2

R
)fR+σ2n≥γk. (4.62)

The equation (4.62) can be written as

fH
R (PTa

∗aT + (PTσ
2
E − γkPTσ

2
E − γkσ2n)BHB + PTσ

2
FC

HC

+(PTσ
2
Eσ

2
F − γkPTσ

2
Eσ

2
F − γkσ2nσ2F )IM2

R
− γkPTA

HA − γkPTσ
2
FD

HD)fR ≥ γkσ2n. (4.63)

By defining W = fRf
H
R , the problem of minimizing the relay transmit power under SINR
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Figure 4.11.: PR versus SINR threshold γ at SNR = 20 dB

constraint is formulated as

min
W

tr((PTP
HP + (PTKσ

2
E + σ2n)IM2

R
)W )

s.t. tr((PTa
∗aT + (PTσ

2
E − γkPTσ

2
E − γkσ2n)BHB + PTσ

2
FC

HC

+(PTσ
2
Eσ

2
F − γkPTσ

2
Eσ

2
F − γkσ2nσ2F )IM2

R
− γkPTA

HA − γkPTσ
2
FD

HD)W) ≥ γkσ2n,
k = 1,2, . . . ,K
rank(W ) = 1. (4.64)

Without considering the constraint rank(W ) = 1, W can be solved effectively by semi-

definite relaxation (SDR) [HP10, LMS+10] using the convex optimization toolbox cvx [BV04,

GBY09]. Following that, a rank-1 solution is extracted from W by a tight rank-1 decompo-

sition method [AHZ11]. In our case, if the number of operators is less or equal than 4, an

optimum w can be reconstructed from W .

Simulation results

A two operator AF relay sharing system is considered. Each element of all channel matrices

is a zero mean circularly symmetric complex Gaussian random variable with unit varianceCN (0,1). The simulation results are obtained over 1000 channel realizations.

Fig. 4.11 gives the consumed relay transmit power versus the SINR threshold γ for the

robust and non-robust methods. The relay employs MR = 4 antennas. The simulation runs

for SNR = 20 dB and unit noise variance is assumed. The CSI error variance is set to



4.5 RELAY POWER MINIMIZATION FOR MULTIPLE STREAM TRANSMISSION 57

0 1 2 3 4 5

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR threshold [dB]

O
ut

ag
e 

pr
ob

ab
lit

y 
of

 S
IN

R

 

 

Robust iCSI
non−Robust iCSI

Figure 4.12.: Outage probability of SINR versus SINR threshold γ at SNR = 20 dB

σE = σF = 0.1. It is observed that the relay transmit power for both cases increases with

an increasing SINR threshold. This is because more power has to be payed in order to meet

higher QoS requirement. Both robust and non-robust methods consume almost the same

relay power. However, the robust solution outperforms the non-robust method significantly

in terms of the outage probability of SINR, as can be seen from Fig. 4.12. By using the robust

method, the SINR requirements are much more often satisfied compared to the non-robust

method.

The required relay transmit power using the robust method for the SAPHYRE scenario and

that for the TDMA access in the non-sharing case is plotted in Fig. 4.13. The gap between

the blue curve obtained by robust method and the red one for TDMA scenario with MR = 8
denote the spectrum sharing gain. There is a gain of around 5 dB by the shared use of the

spectrum between the two operators at high SNRs. An additional 2 dB gain is obtained by

an additional sharing of the relay compared to the exclusive access of the relay with half of

the number of relay antennas MR = 4 for each operator.

4.5. Relay Power Minimization for Multiple Stream

Transmission

More practically, each BS and UT are equipped with multiple antennas, denoted by MT,k and

MU,k. In this section, we extend the relay matrix design for multiple stream transmission in

the multiple operator AF relaying system. Perfect channel state information is assumed at

the relay.
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Figure 4.13.: SAPHYRE gain in terms of power for the robust design

Due to different modulation and coding schemes, we may have different SINR constraints

for different data streams. Therefore, we investigate the relay amplification matrix design to

minimize the relay transmit power under the SINR constraint per stream of each user.

The relay amplification matrix is designed as FR = FBCFSFMAC ∈ CMR×MR , where FMAC

and FBC are used for zero-forcing the interference generated in the MAC and BC phases while

FS is designed for relay transmit power minimization.

To design FMAC, the pseudo inverse of the channel H ∈ CMR×MT with MR >MT between

the BSs and the relay is obtained as

H+ = (HHH)−1HH = [ H̄H
1 , ⋯, H̄H

K
]H ∈ CMT×MR ,

where H̄k ∈ CMT,k×MR . After that, the QR decomposition is performed on H̄H
k to retrieve its

orthonormal basis QH̄H
k

multiplied by a upper triangular matrix RH̄H
k
∈ CMT,k×MT,k , which is

expressed as

H̄H
k =QH̄H

k
RH̄H

k
∈ CMR×MT,k . (4.65)

The matrix FMAC is obtained as

FMAC = [ F T
MAC,1, ⋯, F T

MAC,K
]T ∈ CMT×MR (4.66)

with FMAC,k = QH
H̄H

k

∈ CMT,k×MR . In the BC phase, the pseudo inverse of the channel G ∈
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C
MU×MR with MR >MU between the relay and the UTs is obtained as

G+ =GH(GGH)−1 = [ Ḡ1, ⋯, ḠK ] ∈ CMR×MU ,

where Ḡk ∈ CMR×MU,k . Similarly as in the MAC phase, the QR decomposition is performed

on Ḡk as

Ḡk =QḠk
RḠk

(4.67)

and the matrix FBC is obtained as

FBC = [ FBC,1, ⋯, FBC,K ] ∈ CMR×MU (4.68)

with FBC,k =QḠk
∈ CMR×MU,k .

After applying FMAC and FBC, all the inter-operator interferences are removed and the

received signals at UTs are given as

yk =GkFBC,k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ĝk

FS,k FMAC,kHk´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ĥk

s̄k +GkFBC,kFS,kFMAC,knR +nk, k = 1,2, . . . ,K (4.69)

where s̄k = Fksk represents the precoded signal with Fk denoting the precoding matrix at the

BSs.

Next we want to design FS = diag{FS,1,⋯FS,K}. We first compute the singular value decom-

position (SVD) of Ĥk and Ĝk as Ĥk = UĤk
ΣĤk

V H

Ĥk
∈ CMT,k×MT,k and Ĝk = UĜk

ΣĜk
V H

Ĝk
∈

C
MU,k×MU,k . Then the matrix FS,k is designed as

FS,k = VĜk
ΦkU

H

Ĥk
∈ CMU,k×MT,k (4.70)

so that the effective channel can be written in a generalized SVD form

Heff = ĜkFS,kĤk = UĜk
ΣĜk

ΦkΣĤk
V H

Ĥk
= UeffΣeffV

H
eff ∈ CMU,k×MT,k (4.71)

With respect to the effective diagonal matrix, ΣĤk
= diag{αk,1,⋯, αk,MT,k

} and ΣĜk
=

diag{αk,1,⋯, αk,MU,k
}. The diagonal matrix Φk ∈ C

MU,k×MT,k with {Φk,1,⋯,Φk,rk} on its

main diagonal has to be determined.

By inserting equation (4.70) into equation (4.69), the received signal is rewritten as

yk = UĜk
ΣĜk

ΦkΣĤk
V H

Ĥk
Fksk +UĜk

ΣĜk
ΦkU

H

Ĥk
QH

H̄H
k

nR +nk ∈ CMU,k . (4.72)
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After that a transmit filter Fk and a receive filter Wk are applied at the BSs and UTs,

Wk = [ Irk , 0rk×(MU,k−rk) ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

⋅UH

Ĝk
=AUH

Ĝk
,

Fk = V H

Ĥk
⋅ [ Irk , 0rk×(MT,k−rk) ]T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B

= V H

Ĥk
B, (4.73)

where rk =min(MT,k,MU,k) denotes the number of transmitted data streams for user k. Then

the received signal is obtained as

ỹk =Wkyk =AΣĜk
ΦkΣĤk

Bsk +AΣĜk
ΦkU

H

Ĥk
QH

H̄H
k

nR +AΣĜk
nk ∈ Crk (4.74)

such that the rk data streams are extracted. By defining a diagonal matrix

Φ̃k =AΦkB = diag{Φk,1,⋯,Φk,rk} ∈ Crk×rk (4.75)

the matrix Φk is written as

Φk =A+Φ̃kB
+,

where A+ = [ Irk ,0rk×(MU,k−rk) ]T and B+ = [ Irk ,0rk×(MT,k−rk) ] denote the pseudo inverse

of A and B, respectively. Then the received signal is reformulated as

ỹk = AΣĜk
A+´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Σ̃
Ĝk

Φ̃kB
+ΣĤk

B´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Σ̃

Ĥk

sk +AΣĜk
A+´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Σ̃
Ĝk

Φ̃kB
+UH

Ĥk
QH

H̄H
k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C̃k

nR +AΣĜk
nk´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ñk

∈ Crk .

= Σ̃Ĝk
Φ̃kΣ̃Ĥk

sk + Σ̃Ĝk
Φ̃kC̃knR + ñk (4.76)

The first term on the right hand side is the effective signal while the other two terms denote

the effective noise vector of user k. Due to the fact that the SINR constraint is imposed on

each data stream per user, we need to analyze the received signal (4.76) for each stream such

as to derive its SINR constraint. Let us first take a look at the signal component, which is

denoted by

xk = Σ̃Ĝk
Φ̃kΣ̃Ĥk´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Λk∈Crk×rk

sk = Λksk.

The signal component of the m-th stream of user k is expressed by

xk,m = λmsk,m,m = 1,2, . . . , rk,
whereλm = αk,mβk,mΦk,m, Σ̃Ĥk

= diag{αk,1,⋯, αk,rk},
Σ̃Ĝk

= diag{βk,1,⋯, βk,rk}, Φ̃k = diag{Φk,1,⋯,Φk,rk}. (4.77)
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Thereby, the signal power of rk,m is

E∣rk,m∣2 = E∣λmsk,m∣2 = PT

rk
α2
k,mβ

2
k,m∣Φk,m∣2, (4.78)

where ∣sk,m∣2 = PT/rk due to the equal power allocation assumption at the BSs.

With respect to the effective noise vector in (4.76),

zk = Σ̃
Ĝk

Φ̃k´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
Σ∈Crk×rk

B+UH

Ĥk
QH

H̄H
k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C̃k∈Crk×MR

nR + ñk = ΣC̃k²
Q

nR + ñk =QnR + ñk,

where Σ = diag{Σ1,Σ2, . . . ,Σrk} with Σm = βk,mΦk,m. Then the (i, j)-th entry of Q is written

as

Qi,j = qTi,jσk, i = 1,2, . . . , rk, j = 1,2, . . . ,MR

qi,j = [ 01×(i−1), ⋯, [C̃k]i,j , ⋯,01×(rk−i) ]T ∈ Crk ,

σk = [ Σ1, Σ2, ⋯, Σrk ]T ∈ Crk .

Therefore, the effective noise term zk for user k is

zk =QnR + ñk =
⎡⎢⎢⎢⎢⎢⎢⎣

qT1,1σk ⋯ qT1,MR
σk⋮ ⋱ ⋮

qTrk ,1σk ⋯ qTrk,MR
σk

⎤⎥⎥⎥⎥⎥⎥⎦
nR + ñk.

We assume that the noise at the relay nR and that at UTs nk for k = 1,2, . . . ,K contain inde-

pendent, identically distributed complex additive white Gaussian noise samples with variance

σ2n, i.e., E{nRn
H
R} = σ2nIMR

and E{nkn
H
k } = σ2nIMU,k

. Then the noise variance at the UTs

after applying the receive filter is E{ñkñ
H
k } = E{AU

Ĝk
nkn

H
k U

H

Ĝk
AH} = σ2nIrk .

The power of the effective noise for the m-th stream of user k is derived as

E∣zk,m∣2 = σ2n∣ (qTm,1,+⋯ + qTm,MR
)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

qT
m

σk ∣2 + σ2n = σ2nσH
k q
∗
mqTmσk + σ2n,

where

σk = [ Σ1, Σ2, ⋯, Σrk ]T =ΣĜk
[ Φk,1, ⋯, Φk,rk

]T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
wk

. (4.79)

By incorporating (4.79) into (4.79), we get

E{∣zk,m∣2} = σ2nwH
k Σ

Ĝk
q∗mqTmΣ

Ĝk´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Rk,m

wk + σ2n. (4.80)
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By using (4.79) and (4.80), the SINR for each stream per user is obtained as

SINRk,m = ∣rk,m∣2∣zk,m∣2 =
PT

rk
α2
k,mβ

2
k,m∣Φk,m∣2

σ2nw
H
k
Rk,mwk + σ2n =

PT

rk
α2
k,mβ

2
k,mwH

k Sk,mwk

σ2nw
H
k
Rk,mwk + σ2n , (4.81)

where

Sk,m =
⎡⎢⎢⎢⎢⎢⎢⎣
0, ⋯, 0⋮ 1 ⋮
0, ⋯, 0

⎤⎥⎥⎥⎥⎥⎥⎦
∈ Crk×rk .

The matrix Sk,m has only a single non-zero entry [Sk,m]m,m = 1 with all other elements equal

to zero. Similarly as in Section 4.3.2, the objective is to minimize the average relay transmit

power, which is equal to minimize the relay transmit power for each operator after the system

is decoupled into multiple independent pairs. Assuming equal power allocation for each data

stream per user E{sksHk } = PT

rk
Irk , the relay transmit power for each operator is written as

PR,k = E{∥FR,kHksk +FR,knR∥2 }
= PT

rk
tr(FR,kHkH

H
k F

H
R,k) + σ2ntr(FR,kF

H
R,k). (4.82)

The matrix

FR,k = FBC,kFS,kFMAC,k =QḠk
VĜk

ΦkU
H

Ĥk
FMAC,k (4.83)

is the relay amplification matrix for the k-th user and FR = ∑K
k=1FR,k. By incorporating (4.83)

and Ĥk = FMAC,kHk = UĤk
ΣĤk

VĤk
, the relay transmit power (4.82) is rewritten as follows,

PR,k = E{∥FR,kHksk +FR,knR∥2 }
= tr(QḠk

VĜk
(PT

rk
ΦkΣ

2

Ĥk
ΦH

k + σ2nΦkΦ
H
k )V H

Ĝk
QH

Ḡk
)

= tr(PT

rk
ΦkΣ

2

Ĥk
ΦH

k + σ2nΦkΦ
H
k ). (4.84)

Due to the fact that Φk has rk elements on its main diagonal and based on (4.77), (4.84) can

be further expressed as

PR,k = tr{PT

rk
ΦkΣ

2

Ĥk
ΦH

k + σ2nΦkΦ
H
k }

= tr{PT

rk
Φ̃kΣ̃

2

Ĥk
Φ̃H

k + σ2nΦ̃kΦ̃
H
k }

= [ Φk,1,⋯Φk,rk
]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

wT
k

diag{PT

rk
α2
k,1 + σ2n,⋯, PT

rk
α2
k,rk
+ σ2n}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Pk

[ Φ∗k,1,⋯Φ∗k,rk ]T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
w∗

k

= wT
k Pkw

∗
k (4.85)
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Figure 4.14.: PR versus SNR with target SINR = 0 dB, K = 2, rk = 2, MR = 8

Our problem turns out to find a solution w to the problem formulated as

min
wk

wT
k Pkw

∗
k

s.t.

PT

rk
α2
k,mβ

2
k,mwH

k Sk,mwk

σ2nw
H
k
Rk,mwk + σ2n ≥ γk,m,m = 1,2, . . . , rk. (4.86)

By defining Wk =wkw
H
k , we rewrite (4.86) as

min
Wk

tr(PkW
T
k )

s.t. tr((PT

rk
α2
k,mβ

2
k,mSk,m − γk,mσ2nRk,m)Wk) ≥ γk,mσ2n,m = 1,2, . . . , rk

rank(Wk) = 1. (4.87)

Without considering the constraint rank(Wk) = 1, Wk can be computed effectively by semi-

definite relaxation (SDR) using the convex optimization toolbox cvx [BV04, GBY09]. To

retrieve wk from Wk, the rank-1 decomposition is performed using the theorem [AHZ11]. In

our case, if the number of data streams per user is less or equal than 4, an optimum w can

be reconstructed from Wk.

After obtaining w from the rank-1 decomposition, we design Φk by putting the elements

of w on the main diagonal, written as Φk = diag(w). The matrix FS,k is obtained as FS,k =
VĜk

ΦkU
H

Ĥk
and FS = diag{FS,1,⋯,FS,K}. The relay amplification matrix is finally obtained

as FR = FBCFSFMAC, where FMAC and FBC are defined in (4.66) and (4.68).

Simulation results

A two operator system with a shared AF relay is considered for multiple stream transmission.
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Figure 4.15.: histogram of SINR at PT = 25 dB with target SINR = 0 dB, K = 2, MT,k = 3,
MU,k = 3, MR = 8, rk = 3

Fig. 4.14 depicts the average total relay transmit power PR = E{∥FRHs̄ +FRnR∥2 } and the

sum of the relay transmit power from each operator ∑k PR,k versus the transmit power PT

for a two operator AF relay sharing system. Each BS and UT are equipped with 3 antennas

and the relay has MR = 8 antennas. Unit noise variance is assumed at a single antenna of the

relay and the UTs. The results are based on 1000 channel realizations. It can be seen that

the total relay transmit power PR decreases as PT increases. Furthermore, the histogram of

the SINR for each data stream per user is plotted in Fig. 4.15 at SNR = 25 dB. Here 3 data

streams are transmitted for each user. It is seen that the SINRk,m, k = 1,2 m = 1,2,3, is

always above the target threshold γk,m = 0 dB, which verifies that the SINR requirements are

always satisfied.

To summarize, an effective algorithm is proposed in this section to achieve power efficiency

for multiple stream transmission in multiple operator AF relay sharing system. The BSs,

the UTs and the relay are equipped with multiple antennas. The inter-operator interference

is first removed by using zero-forcing method. Following that, the structure of the relay

precoder is exploited using the convex optimization tool. Simulation results show that the

SINR requirement per stream can be always satisfied. As a continuous work, it would be

interesting to investigate the relay amplification matrix design under imperfect channel state

information at the relay.
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5. Multiple Operator One-Way Relaying

with Direct Link

In Chapter 4, the direct links between the BSs and the UTs are neglected because we assume

that the signals are weak due to large path loss or shadowing. In this chapter, we deal with the

scenario where the direct link is not negligible, where the relay is used to assist the pairwise

concurrent point to point transmission. This scenario is called interference relay channel

(IRC) as firstly defined in [SE07], which is another fundamental building block including both

spectrum and infrastructure sharing. Some pioneering works have studied the impact of a full

duplex decode and forward (DF) relay with a single antenna in such a scheme. In [SES09],

the impact of relaying in a two-user Gaussian interference channel is studied. Various models

for relay reception and transmission are considered. The relay can receive and transmit in

the same band as the BSs (in-band relay reception and transmission), or both reception and

transmission take place over orthogonal links (out-of-band relay reception and transmission).

Further, [SSE09] presents a general achievable rate region and discusses a number of regimes

of interest where either signal relaying only or both signal relaying and interference forwarding

are optimal. In addition, [TY09] provides an outer bound for the Gaussian interference relay

channel with finite relay power.

In contrast to this, we consider the linear precoding design for the amplify and forward

(AF) relaying strategy in Chapter 5, assuming multiple antennas employed at all BSs, UTs,

and the AF relay. Two cases are studied. We first investigate single stream transmission to

achieve a good signal to noise ratio (SNR) at the UTs [LRH11b, LZR+11]. Following that a

more general multiple stream transmission is considered and an improved spatial multiplexing

gain is expected. [LSH11]. In both cases, the SAPHYRE sharing gain is exploited as defined

in equation (2.1), showing the advantage of spectrum and relay sharing in comparison with

the exclusive access of the resources.

The structure of this chapter is arranged as follows. The precoding design for single stream

transmission in the IRC system is discussed in Section 5.1. To do that, we first investigate the

efficient design of relay amplification matrices in Section 5.1.1. Following that, we design the

precoding at the BSs in Section 5.1.2. After that, Section 5.2 extends the work to multiple

stream transmission for the more general case, where a two-step algorithm is proposed. To

this end, Section 5.2.1 addresses the relay matrix design while precoding at BSs is discussed

in Section 5.2.2.
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BS1 UT1

R

BS2 UT2

Figure 5.1.: Block Diagram of the Interference Relay Channel where the relay R (infrastruc-
ture) and spectrum are shared between two operators

5.1. System Sum Rate Maximization for Single Stream

Transmission

In this section, single stream transmission for the interference relay channel (IRC) system

is studied. It is shown that the IRC can be simplified to the interference channel (IC) as

long as the relay precoder is fixed. First, we summarize several relaying algorithms which are

adapted to the IRC. After that precoders designed for the IC can be applied at the transceivers.

Inspired by the idea from [SRH10], we propose a linear suboptimal precoding method. The

recent work [CHHT12] is taken as a benchmark, where a linear coordinated beamformer was

designed under zero interference constraints. Simulations demonstrate that our proposed

algorithm IRC flexible coordinated beamforming (IRC FlexCoBF) achieves a better sum rate

performance. Furthermore, the robustness to the near-far problem is investigated for the

IRC FlexCoBF as well as previous methods. Finally, we exploit the SAPHYRE sharing

gain, showing the advantage of spectrum and relay sharing between multiple operators in

comparison with the exclusive access of the spectrum and the infrastructure (relay) by each

operator. This section is organized as follows. The system model of the IRC is first introduced.

We first investigate the efficient design of the relay amplification matrices. As soon as the

relay amplification matrix is determined, the IRC is converted into the IC and the precoder

design at the BS is explained. All the simulation results will be presented and finally we give

a summary on this section. The main contributions of this section have been published in

references [LRH11b, LZR+11].

The system model is shown in Fig. 5.1, where two base stations (BSs) belonging to two

operators transmit data to their target user terminals (UTs) with the assistance of a shared

relay. Throughout this chapter, a half-duplex and amplify-and-forward (AF) relay is utilized.

The BSs and UTs are equipped with MT,i and MU,i antennas, respectively, where i = 1,2

denotes the index of each transceiver pair. The relay has MR antennas. We assume that a
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single data stream per UT is transmitted.

The transmission process is divided into two phases. During the first phase, both BSs

transmit to their desired UTs and the relay. The received signal at each UT and the relay is

y
(1)
1 = H11f1s1 +H21f2s2 +n(1)1 ,

y
(1)
2 = H22f2s2 +H12f1s1 +n(1)2 ,

yR = H1Rf1s1 +H2Rf2s2 +nR,

where Hij ∈ CMU,j×MT,i , i, j ∈ {1,2,R} denotes the channel matrices between BSs, UTs, and

relay, which are assumed to undergo frequency flat quasi static block fading. The precoder

at each BS is fi ∈ CMT,i and the transmitted data signal is si. The transmit power at each

BS is constrained by PT,i, i.e., E{∥fisi∥2} ≤ PT,i. In the second phase, the BSs are silent and

the relay amplifies the received signal from phase 1 and forwards it to the UTs. The signal

vectors received at the UTs during phase 2 are given by

y
(2)
1 =HR1FRyR +n(2)1 ,

=HR1FRH1Rf1s1 +HR1FRH2Rf2s2

+HR1FRnR +n(2)1

y
(2)
2 =HR2FRyR +n(2)2 ,

=HR2FRH2Rf2s2 +HR2FRH1Rf1s1

+HR2FRnR +n(2)2

where FR ∈ CMR×MR is the relay amplification matrix. Applying the linear receive filters

w1 ∈ C2MU,1 and w2 ∈ C2MU,2 at each UT, we finally get the received signals expressed as

follows,

y1 =wH
1

⎡⎢⎢⎢⎢⎣
y
(1)
1

y
(2)
1

⎤⎥⎥⎥⎥⎦
=wH

1

⎡⎢⎢⎢⎢⎣
H11

HR1FRH1R

⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H1

f1s1 +wH
1

⎡⎢⎢⎢⎢⎣
H21

HR1FRH2R

⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
G1

f2s2 +wH
1

⎡⎢⎢⎢⎢⎣
n
(1)
1

HR1FRnR +n(2)1

⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e1

(5.1)

y2 =wH
2

⎡⎢⎢⎢⎢⎣
y
(1)
2

y
(2)
2

⎤⎥⎥⎥⎥⎦
=wH

2

⎡⎢⎢⎢⎢⎣
H22

HR2FRH2R

⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H2

f2s2 +wH
2

⎡⎢⎢⎢⎢⎣
H12

HR2FRH1R

⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
G2

f1s1 +wH
2

⎡⎢⎢⎢⎢⎣
n
(1)
2

HR2FRnR +n(2)2

⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e2

, (5.2)

where n
(i)
1 , n(i)2 and nR contain independent, identically distributed additive white Gaussian

noise samples with the variance σ2n. It can be seen that the system model can be simplified to
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a classical two-user IC based on the equivalent channels H1,H2,G1, and G2, which requires

the relay precoder FR to be designed first.

5.1.1. Relay Amplification Matrix Design

In the section, we propose a relay amplification matrix design so that the IRC is converted to

an IC. To start, we derive a relay amplification matrix which is inspired by the algebraic norm

maximization method (ANOMAX) [RH09]. Since H1 and H2 are the equivalent channels for

the desired signals, maximizing the norm β2 ∥H1∥2F + (1 − β)2 ∥H2∥2F enhances the desired

signal’s energy and therefore improves the SNR, where β is the weighting factor ranging

between 0 and 1. With FR,n denoting the normalized relay amplification matrix, the solution

of the one-way ANOMAX (OW-ANOMAX) is given by

argmax
FR,n,∥FR,n∥F=1

β2 ∥H1∥2F + (1 − β)2 ∥H2∥2F
= argmax
FR,n,∥FR,n∥F=1

β2 ∥HR1FR,nH1R∥2F + (1 − β)2 ∥HR2FR,nH2R∥2F
= argmax
FR,n,∥FR,n∥F=1

∥⎡⎢⎢⎢⎢⎣
β(HT

1R ⊗HR1)(1 − β)(HT
2R ⊗HR2)

⎤⎥⎥⎥⎥⎦vec{FR,n}∥2
2

= argmax
FR,n,∥FR,n∥F=1

∥ [β(H1R ⊗HT
R1), (1 − β)(H2R ⊗HT

R2)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Kβ

T
vec{FR,n}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fR

∥2
2

= argmax
fR,∥fR∥2=1

fH
RK∗βK

T
β fR

fH
R
fR

=λmax(K∗βKT
β )

Here, the Kronecker product between two matrices A and B is symbolized by A ⊗B and

we use the property of AXB = (BT ⊗ A)vec(X). The matrix Kβ is defined as Kβ =[ β(H1R ⊗HT
R1), (1 − β)(H2R ⊗HT

R2) ]. By performing a singular value decomposition

(SVD) Kβ = Uβ ⋅ Σβ ⋅ V H
β , the vectorized relay amplification matrix is designed as fR =

vec{FR,n} = u∗1 , where u1 is the first column of Uβ, i.e., the dominant left singular vector of

Kβ. The normalized relay amplification matrix is obtained as FR,n = unvec{fR} ∈ CMR×MR

and we compute FR as FR = γFR,n, where γ is a scalar to fulfill the transmit power constraint

at the relay. Inspired by the well-known two-way relaying strategies, we also modify some

alternatives to adapt to the one-way relaying scheme. These strategies are shown as follows.

• Dual Channel Matching (DCM) [VH11]

F̃R =HH
R1H

H
1R +HH

R2H
H
2R

• Discrete Fourier Transform (DFT) matrix

F̃R = DFT(IMR
)

• MMSE [UK08]
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F̃R = FR,TxFR,Rx

FR,Rx =HH
Rx(HRxH

H
Rx + σ2

n

PT1+PT2
IMR
)−1

FR,Tx = (HH
TxHTx + σ2

n

PT1+PT2
IMR
)−1HH

Tx

where HTx =
⎡⎢⎢⎢⎢⎣
HR1

HR2

⎤⎥⎥⎥⎥⎦ and HRx = [ H1R, H2R ].
• ZF [UK08]

F̃R =H+
RxH

+
Tx

The superscript + represent the pseudo inverse. The same HRx and HTx are used as

for MMSE.

We compute FR as FR = γFR,n, where FR,n is the normalized relay amplification matrix of

F̃R obtained by one of the aforementioned methods such that ∣∣FR,n∣∣ = 1. For all the designs

of the relay amplification matrix mentioned above, the scalar γ guarantees that the relay

transmit power constraint remains satisfied. Let PT,R be the available transmit power at the

relay. A simple method is upper-bounding the relay transmit power and then constraining

this upper bound to PT,R. Using the Cauchy-Schwarz inequality on the relay transmit signal

γFR,nyR, we obtain that

∥γFR,nyR∥22 = γ2 ∥yR∥22 ≤ γ2(MT,1MRPT,1 +MT,2MRPT,2 +MRσ
2
n) = PT,R.

Here, we have applied the fact that each entry of the channel matrices H1R and H2R is

Gaussian distributed with unit variance and that each entry of the noise vector nR is Gaussian

distributed with variance σ2n. The transmit signals are assumed to be uncorrelated with each

other and with the noise at the relay. The transmit power at each BS is constrained by PT,i,

i.e., E{∥fisi∥2} ≤ PT,i. Then we choose γ as

γ =
¿ÁÁÀ PT,R

MT,1MRPT1 +MT,2MRPT2 +MRσ2n

In general, the actual consumed power at the relay is less than PT,R. However, the advantage

is that it is very easy to compute γ as it does not depend on the UTs’ transmit covariance

matrices nor on the strategy of the relay. We therefore use it in the following analysis.

5.1.2. Precoder Design at the BSs

After the design of FR, all the equivalent channel matrices Hi and the interference matrices Gi

can be estimated from the downlink dedicated pilot transmission. Then the IRC corresponds

to a conventional IC model. We assume that Hi and Gi are available at the BSs. At this

point, no path loss is considered.

Since the system is now converted to the IC model, the efficient precoding introduced in

Section 3.3 can be applied in the IRC system, i.e., either BD or RBD is used at the BSs
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Figure 5.2.: Sum rate vs SNR for the interference relay channel, the DFT matrix is applied
at the relay, MT,i =MU,i =MR = 4

combined with MRC at the UTs and the precoding matrices IRC FlexCoBF is designed

iteratively until the power of the residual interference is below a predefined threshold. The

only difference compared to the method in Section 3.3 is that no power loading is necessary in

designing the precoding vector because a single stream transmission is considered here. The

algorithm is summarized in Table 5.1.

Simulation results

We assume that perfect link adaptation and perfect synchronization can be achieved. Each

element of the Hij is a zero mean circularly symmetric complex Gaussian random variable

with unit variance CN (0,1). The BSs, the UTs, and the relay are equipped with 4 antennas.

The transmit power of the BSs is PT1 = PT2 = PT and the SNR is defined as PT/σ2n.

At first, we want to compare different precoding strategies applied at the BSs by fixing

the relay precoder. Without loss of generality, we choose a simple DFT matrix at the relay.

The sum rate performance of the IRC system is given in Fig. 5.2, including our proposed

IRC FlexCoBF as well as the recent work coordinated zero-forcing (CoZF) [CHHT12]. As

a reference, we also include an upper bound called point-to-point (P2P) transmission, which

is an ideal case without taking into account the interference between the two concurrent

transmission. It uses also the DFT matrix at the relay and applies eigen-beamforming at
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Figure 5.3.: Sum rate of the interference relay channel for different relaying strategies, IRC
FlexCoBF RBD is applied at BSs, MT,i =MU,i =MR = 4

Figure 5.4.: Path loss model of the interference relay channel, d1 denotes the distance between
the BSs and their desired UTs and d2 is the distance between the two interfering
links



72 5. MULTIPLE OPERATOR ONE-WAY RELAYING WITH DIRECT LINK

Table 5.1.: Precoding design at the BSs for IRC FlexCoBF [LRH11b]
the receive beamformers w1, w2 are initialized as all-ones vectors
- BD

Step 1: compute the SVD of the equivalent interference channel of operator j caused by operator i

g̃T
j =wH

j Gj = 1 ⋅ σ̃T
j ⋅ [ ṽ

(1)
j , Ṽ

(0)
j
]H,

ṽ
(1)
j ∈ CMT : signal space of g̃T

j

Ṽ
(0)
j ∈ CMT×(MT−1): null space of g̃T

j

Step 2: compute the SVD on the equivalent channel for operator i to maximize its sum rate

wH
i HiṼ

(0)
j = 1 ⋅ σ̃T

i ⋅ Ṽ H
i

fi = Ṽ (0)j ṽi,
ṽi: dominant singular vector of Ṽi

Step 3: the receiver beamformer is updated as wi =Hifi and go back to Step 1
- RBD

Step 1: compute the SVD of the equivalent interference channel of operator j caused by operator i
g̃T
j =wH

j Gj = 1 ⋅ σ̃T
j ⋅ Ṽ H

j ,
Fi,a =Mi,aDi,a

Mi,a = Ṽj

Di,a = (σ̃jσ̃
T
j + MU,jσ

2
n

PT,i
IMT,i

)−1/2
Step 2: compute the SVD on the equivalent channel for operator i to maximize its sum rate

wH
i HiFi,a = 1 ⋅ σ̃T

2 ⋅ Ṽ H
i

fi,b = ṽi
ṽi: dominant singular vector of Ṽi

fi = αFi,afi,b
α: scalar to fulfill transmit power constraint, α = PT,i/tr{Fi,aF

H
i,a}

Step 3: the receiver beamformer is updated as wi =Hifi and go back to Step 1
The iterative procedure for BD or RBD continues until the power of the residual interference is
below a predefined threshold

the BSs to maximize the system sum rate. Another reference scheme named Eigen is also

used as a benchmark. Differently to P2P, the interference is treated as noise. It is observed

that IRC FlexCoBF with either RBD or BD performs much better than CoZF within all

SNR ranges. Especially at low SNRs, CoZF performs even worse than Eigen. IRC FlexCoBF

RBD improves the sum rate compared to BD because it allows some residual interferences to

balance with the noise enhancement.

By selecting the best precoder at the BSs using IRC FlexCoBF RBD, different relaying

strategies are compared, as shown in Fig. 5.3. We observe that all the proposed AF relay

precoders almost give the same sum rate, of which OW-ANOMAX with β = 0.5 performs

slightly better than others. With respect to the complexity consideration, we propose to use

the DFT as the relay amplification matrix and use it in the following simulations.

Furthermore, a path loss model is introduced to test the robustness to the interference of

the proposed method compared to the CoZF in [CHHT12]. As shown in Fig. 5.4, the distance

between the BSs and the UTs is d1 and the distance between these two interfering links is

d2. The relay is assumed to be in the center of the two interfering links, which means that
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Figure 5.5.: Sum rate for interference relay channel path loss model at SNR = 0 dB, the DFT
matrix is applied at the relay, MT,i =MU,i =MR = 4

d1R = dR1 =
√

d2
1
+d2

2

2
and d2R = dR2 =

√
d2
1
+d2

2

2
. The channel is constructed by scaling the channel

matrix by d−
α
2 , i.e., Hij,PL =Hij ⋅ d−α

2 , where α = 2 is the path loss exponent.

Fig. 5.5 and Fig. 5.6 depict the sum rate depending on the ratio of d2/d1 for the path loss

model of the IRC for SNR = 0dB and SNR = 20dB, respectively. The DFT matrix is used

at the relay. When d2/d1 is small, it means that strong interferences exist between the two

transceiver pairs. On the other hand, a larger d2/d1 results in weaker interferences. It can

be seen that all types of the precoders except Eigen are resistant to the interferences. Fur-

thermore, as d2/d1 increases, we have less interference, noise dominates, and IRC FlexCoBF

RBD performs better than IRC FlexCoBF BD. When the interference is quite small, IRC

FlexCoBF RBD converges to the P2P bound at SNR = 0dB.

In our IRC scenario, the spectrum and the relay are shared by both users. We want to

compare this case to the exclusive use of the spectrum and the relay, which is defined as the

relay channel (RC). We refer to the ratio of throughput (TP) obtained by the IRC TPIRC over

that obtained by the RC TPRC as the sharing gain due to the use of the shared relay instead

of accessing the spectrum and the relay in a TDMA mode. This sharing gain of the IRC

over the RC is shown in Fig. 5.7, where IRC FlexCoBF and eigen-beamforming are applied

at the BSs for the IRC and the RC, respectively. It can be seen that the IRC utilizing either
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Figure 5.6.: Sum rate for interference relay channel path loss model at SNR = 20 dB, the
DFT matrix is applied at the relay, MT,i =MU,i =MR = 4

IRC FlexCoBF RBD or IRC FlexCoBF BD provides a sharing gain over the RC which uses

the relay exclusively. For IRC FlexCoBF BD, the sharing gain becomes larger as the SNR

increases. When IRC FlexCoBF RBD is applied, there is even an improvement at low SNRs

due to the regularization of RBD. This shows that the spectrum and the relay sharing is more

advantageous compared to the exclusive use of the physical resources.

To summarize, a linear precoding design for the MIMO interference relay channel is studied,

where the spectrum and an AF relay with multiple antennas are shared between two operators.

Various relaying strategies are investigated for this scenario. We first consider the conversion

of the interference relay channel (IRC) to the interference channel (IC), where we propose to

use the DFT matrix as the relay amplification matrix. After that we recommend the precoding

method IRC FlexCoBF at the BSs, which achieves a better sum rate performance compared

to coordinated zero-forcing (CoZF) beamforming as well as eigen-beamforming [CHHT12].

IRC FlexCoBF is also more robust to the interference. Last but not least, the sum rate

performance of the IRC is compared to the relay channel and there exists a large sharing

gain, which strongly supports the use of a shared spectrum and the relay instead of operating

in the time division multiple access (TDMA) mode.
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Figure 5.7.: Sharing gain of the IRC over the RC, the DFT matrix is used at the relay, IRC
FlexCoBF and eigen-beamforming are used for IRC and RC, respectively

5.2. System Sum Rate Maximization for Multiple Stream

Transmission

In this section, we extend our work of Section 5.1 to investigate multiple data stream transmis-

sion per user for the IRC [LSH11]. It is shown that the IRC can be simplified to the IC as long

as the relaying strategy is predefined. Although many relaying strategies have been proposed

for the RC [TW09], they are not straightforward to extend explicitly to our scenario. To start,

we first derive a relay amplification matrix which is inspired by [RH09]. After that, precoders

that facilitate multiple stream transmission in case of the IC are applied. The stream control

approach of [DI03] is used for comparison. Although the system throughput using the stream

control method almost coincides with that employing the optimum stream control, [DI03] de-

signs the precoder only to strengthen the desired signal without suppressing the interferences

between the two transceiver pairs. Inspired by the idea from [SRH10, SRH13], we propose

the IRC-FlexCoBF to further improve the system sum rate. Furthermore, the robustness to

strong interference is investigated for the IRC-FlexCoBF compared to [DI03]. Finally, we

demonstrate that there is a sum rate gain by sharing the relay instead of accessing the relay

exclusively.

The system model is the same as before, as shown in Fig. ??, where two base stations (BSs)

transmit data to their target user terminals (UTs) separately with the assistance of a shared

relay. Again a half-duplex AF relay is utilized. The BSs and UTs are equipped with MT,i
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and MU,i antennas, respectively, where i = 1,2 denotes the transceiver pair index. The relay

has MR antennas. It is possible to transmit several data streams and the maximum of data

streams for UTi is equal to min(MT,i,MU,i).
The transmission process is divided into two phases. During the first phase, both BSs

transmit to their desired UTs and the relay. The received signal at each UT and the relay is

given by

y
(1)
1 =H11F1s1 +H21F2s2 +n(1)1

y
(1)
2 =H22F2s2 +H12F1s1 +n(1)2

yR =H1RF1s1 +H2RF2s2 +nR

where Hij ∈ CMU,j×MT,i , i, j ∈ {1,2,R} denotes the channel matrices between the BSs, the

UTs, and the relay, which are assumed to be frequency flat and quasi static block fading. The

precoder at each BS is Fi ∈ CMT,i×ri , i ∈ {1,2}, where ri denotes the number of data streams

for each user. The data vector is si ∈ Cri . In the second phase, the relay amplifies the received

signal from phase 1 and forwards it to the UTs while the BSs stay silent. The received signal

vectors during the second phase are given by

y
(2)
1 =HR1FRyR +n(2)1 ,

y
(2)
2 =HR2FRyR +n(2)2 ,

where FR ∈ CMR×MR is the relay amplification matrix. The total received signals at both

UTs are expressed in equations (5.3) and (5.4). The vectors n
(i)
1 , n

(i)
2 and nR contain

independent, identically distributed additive white Gaussian noise samples with the variance

σ2n. With (5.3) and (5.4), the system is simplified to a classical two-user IC as long as the

equivalent channels H1,H2,G1, and G2 are known, which requires the relay precoder FR to

be designed first.

y1 =
⎡⎢⎢⎢⎣
y
(1)
1

y
(2)
1

⎤⎥⎥⎥⎦
= [ H11

HR1FRH1R
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H1

F1s1 + [ H21

HR1FRH2R
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
G1

F2s2 + ⎡⎢⎢⎢⎣
n
(1)
1

HR1FRnR +n(2)1

⎤⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e1

(5.3)

y2 =
⎡⎢⎢⎢⎣
y
(1)
2

y
(2)
2

⎤⎥⎥⎥⎦
= [ H22

HR2FRH2R
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H2

F2s2 + [ H12

HR2FRH1R
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
G2

F1s1 + ⎡⎢⎢⎢⎣
n
(1)
2

HR2FRnR +n(2)2

⎤⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e2

(5.4)
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5.2.1. Relay Amplification Matrix Design

In this section, several relay amplification matrices are proposed and investigated to convert

the IRC to the IC. To start, a simple discrete Fourier Transform (DFT) matrix is utilized

as F̃R = DFT(IMR
), where no channel state information is required. We normalize F̃R as

FR,n = F̃R/ ∥F̃R∥F and compute the relay amplification matrix as FR = γFR,n. The scalar γ

is to fulfill the transmit power constraint.

Furthermore, the method named one-way rank-restored algebraic norm maximization (OW-

RR-ANOMAX) is investigated. The original ANOMAX [RH09] is a low rank solution and is

not good for multiple stream transmission. Therefore, the RR-ANOMAX [RH10] is designed

to get a full rank solution. Here we extend the work [RH10] which is originally applied

in two-way relaying to our IRC scenario. The OW-RR-ANOMAX is based on the OW-

ANOMAX method as introduced in Section 5.1.1, which maximizes the weighted Frobenius

norm of the equivalent channel β2 ∥H1∥2F + (1 − β)2 ∥H2∥2F . The scalar β is the weighting

factor ranging between 0 and 1. Then based on the normalized relay amplification matrix

FR,ANOMAX obtained from OW-ANOMAX, we adjust the singular values of FR,ANOMAX so

that the spatial multiplexing gain is fully exploited. To be more specific, the SVD of the

relay amplification matrix FR,ANOMAX obtained from OW-ANOMAX is first calculated as

FR,ANOMAX = U ⋅Σ ⋅ V H. Then we preserve the singular vectors U and V and the singular

value profiles need to be adjusted using a heuristic method similar to water filling. To do

that, the virtual eigenvalue profiles are formed as

λi = (λ1R,i + δ)(λ2R,i + δ)(λR1,i + δ)(λR2,i + δ),
where λ1R,i, λ1R,i, λ1R,i and λ1R,i are the singular values of the channels H1R, H2R, HR1

and HR2 with i = 1,2, . . . , r. The scalar δ = 2 1 is a positive constant to assure that there

exist r non-zero eigenvalues at high SNRs, where r is the number of transmitted data streams

and r = min(MR,MT,k,MU,k). Then water filling based power allocation is implemented as

γi = (µ − 1
SNR

1
λi
)
+
, where the water level is given by µ = 1

r
(1 + 1

SNR ∑r
i

1
λi
) with SNR = PT

σ2
n
,

(x)+ =max{0, x}. Then the rank restored solution is given by

F̃R,OW−RR−ANOMAX = U ⋅ diag{γ} ⋅V H ∈ CMR×MR

with γ = [ √γ1,√γ1,⋯,√γr ]. We also need a scalar γ to adjust the relay transmit power

level to get

FR,OW−RR−ANOMAX = γ F̃R,OWRRANOMAX∥F̃R,OWRRANOMAX∥F ,
such that the relay transmit power constraint is satisfied. Similarly as in Section 5.1.1, we

choose γ using a simple method by upper-bounding the relay transmit power and constraining

1
δ should be large enough to ensure that there exist r non-zero eigenvalues.
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this upper bound to PT,R. Using the Cauchy-Schwarz inequality on the relay transmit signal

γFR,nyR, we obtain that

∥γFR,nyR∥22 = γ2 ∥yR∥22 ≤ γ2(MT,1MRPT,1 +MT,2MRPT,2 +MRσ
2
n) = PT,R.

Here, we have applied the fact that each entry of the channel matrices H1R and H2R is

Gaussian distributed with unit variance and that each entry of the noise vector nR is Gaussian

distributed with variance σ2n. The transmit signals are assumed to be uncorrelated with each

other and with the noise at the relay. The transmit power at each BS is constrained by PT,i,

i.e., E{∥fisi∥2} ≤ PT,i. Then we choose γ as

γ =
¿ÁÁÀ PT,R

MT,1MRPT1 +MT,2MRPT2 +MRσ2n

In general, the actual consumed power at the relay is less than PT,R. However, the advantage

is that it is very easy to compute γ as it does not depend on the UTs’ transmit covariance

matrices nor on the strategy of the relay. We therefore use it in the following analysis.

5.2.2. Precoder Design at the BSs

Once FR is obtained, the IRC is converted to IC and we use precoders supporting multiple

data stream transmission in the IC.

In [DI03], a stream control method is proposed using the classical water filling solution,

where the MIMO IC is treated as two parallel single-user MIMO links. The scheme in [DI03]

works as follows. The SVD of Hi is denoted as Hi = Ũi ⋅ Σ̃i ⋅ Ṽ H
i , i = 1,2. Assuming that the

system is initially free of interference, the precoder at each BS is initialized as Fi = ṼiΛ̃
1
2

i to

maximize the sum rate for each link, where Λ̃i is the diagonal power allocation matrix using

water filling. At the receiver, a prewhitening matrix is applied Di = (I2MU,i
+ 1

σ2
n
Ki,j)− 1

2 , where

Ki,j = GiFjF
H
j GH

i denotes the interference covariance. When one link tries to add an extra

data stream, it compares its capacity increment with the capacity loss of the other transceiver

pair due to the additional interference. Based on this, a distributed stream control algorithm is

designed such that an extra data stream is allowed only if the total system throughput obtains

a positive gain. Although this method achieves almost the same sum rate as the optimum

stream control, the precoder is designed only to strengthen the desired signal without taking

the interference into account.

Instead of the stream control method, we propose the IRC FlexCoBF RBD method, which

utilizes the regularized block diagonalization (RBD) algorithm [SH08] as the precoders Fi ∈
C
MT,i×ri at the BSs combined with maximum ratio combing (MRC) as receive filters Wi =

HiFi ∈ CMU,i×ri at the UTs, as described in Chapter 3. The precoders Fi and receive filters

Wi, i ∈ {1,2} are jointly designed to iteratively suppress the interferences as well as to improve

the system sum rate. Furthermore, inspired by the stream control method [DI03], a greedy

search can be combined with the IRC FlexCoBF algorithm, named as IRC FlexCoBF greedy
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Figure 5.8.: Sum rate for different relay strategies, MT,i =MU,i =MR = 4

search, to find the optimum number of data streams to be transmitted so as to maximize the

system sum rate. In the IRC FlexCoBF algorithm, we use water filling for power allocation

to determine the number of data steams, as described in Section 3.3. Differently to that, for

the IRC FlexCoBF greedy search method, we apply the IRC FlexCoBF RBD algorithm with

equal power allocation at both BSs. Then we start with a single stream transmission for both

links and add additional data streams step by step to see if the system sum rate improves. In

this way, we determine the optimum number of data streams to be transmitted throughout

all possible combinations.

For the simulations, we assume that perfect link adaptation and perfect synchronization

can be achieved. Each BS, relay, and user know the channel state information perfectly. Each

element of Hij is a zero mean circularly symmetric complex Gaussian random variable with

unit variance CN (0,1). The transmit power of the BSs is PT,1 = PT,2 = PT and the SNR is

defined as PT/σ2n.

First of all, by utilizing a DFT matrix or the OW-RR-ANOMAX strategy at the relay,

the sum rate are compared for MT,i = 4,MU,i = 4,MR = 4 for i = 1,2. Both schemes are

combined either with IRC-FlexCoBF or the stream control method of [DI03]. As shown in

Fig. 5.8, OW-RR-ANOMAX performs only slightly better than the DFT matrix. It indicates

that the relaying strategies do not play a key role in the system sum rate rather than the

precoding matrix used at the BSs. Therefore, compromising between the performance and

the complexity, we choose the simple DFT matrix in the following analysis due to its lower

computational complexity.

Fixing the DFT matrix at the relay, Fig. 5.9 gives the sum rate of the IRC for MT,i =
4,MU,i = 4,MR = 4 for i = 1,2. It is observed that IRC FlexCoBF results in a much better
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Figure 5.9.: Sum rate vs SNR for MT,i =MU,i =MR = 4, DFT matrix is applied at the relay

Figure 5.10.: Path loss model for IRC

performance than the stream control method [DI03] at high SNRs. It is because IRC Flex-

CoBF is designed not only to enhance the desired signal of the respective links but also to

effectively mitigate the interference to each other. Comparing to IRC FlexCoBF, the com-

bination of IRC FlexCoBF and a greedy search even further improves the sum rate at high

SNRs because the optimum number of data streams is selected so as to maximize the spatial

multiplexing gain. However, the computational complexity is very high when performing the

greedy search. Compromising between the performance and the complexity, IRC-FlexCoBF

is used in the following analysis.

A path loss model is further introduced to test the robustness to the interferences of the

IRC FlexCoBF compared to the stream control method. As shown in Fig. 5.10, suppose that
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Figure 5.11.: Sum rate for the path loss model at SNR = 20 dB for MT,i =MU,i =MR = 4

the distance between the BSs and the UTs is d1 and that the distance between these two

interfering links is d2. The relay is located in the centre of the two transceiver pairs. The

channel is constructed by scaling the channel matrix with unit variance channel coefficients

by d−
α
2 , where α is the path loss exponential factor and is set to α = 2 in the simulations.

Based on this model, Fig. 5.11 gives the sum rate depending on the ratio of d2/d1 at

SNR = 20dB. The sum rate decreases until d2/d1≈1 and increases when d2/d1≫1. On one

side, increasing d2/d1 will decrease the interferences between the two transceiver pairs. On

the other side, the signal transmitted via the relay becomes weak. This implies that the

relay assisted transmission dominates when d2/d1≪1 while the direct transmission plays the

key role when d2/d1 is large. There is not much difference in sum rate for both the IRC

FlexCoBF and the stream control method at high d2/d1 or weak interferences. On the other

hand, when d2/d1 is small, we have high interferences, IRC FlexCoBF uses more data streams

to transmit than the stream control method. Therefore, it exhibits a great improvement of

the sum rate over the stream control method, which shows its higher robustness to strong

interferences. Fig. 5.12 further explains the reason explicitly. It shows the histogram of the

number of streams for one user at different d2/d1 values over 1000 channel realizations. Due

to the effective interference mitigation, especially at low d2/d1, the IRC FlexCoBF can exploit

more degrees of freedom to dramatically increase the system throughput.

Finally, the sum rate performance of the IRC is compared to the traditional RC where

the transmission takes place between only one transceiver pair assisted by a relay without

interfered from the other. The RC is taken as a reference, where the iterative water filling

solution with optimum stream control is applied at the BS while the relay utilizes the DFT
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Figure 5.12.: Histogram of the number of streams at different d2/d1 values for MT,i =MU,i =
MR = 4

matrix as the relay amplification matrix. We refer to this ratio of throughput (TP) TPIRC /

TPRC as the sharing gain due to the use of the shared relay instead of accessing the relay in a

TDMA mode, shown in Fig. 5.13. It can be seen that the proposed IRC FlexCoBF with RBD

provides a larger sharing gain than the stream control method. We conclude that the relay

sharing is more advantageous than the exclusive use of infrastructure resources, of which IRC

FlexCoBF with RBD provides a larger sharing gain than the stream control method.

In this section, we have studied coordinated beamforming for multiple data stream trans-

mission in the MIMO interference relay channel (IRC). Two AF relaying strategies are inves-

tigated first for the conversion from the IRC to the interference channel, of which the DFT

matrix is recommended as the relay amplification matrix due to its simplicity. After that
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Figure 5.13.: sharing gain due to the use of the shared relay instead of accessing the relay in
a TDMA mode

we propose the precoding algorithm IRC FlexCoBF with RBD at the BSs, which achieves a

better sum rate performance compared to the approach in [DI03]. Furthermore, simulation

results show that the IRC FlexCoBF RBD is more robust to strong interference than the

approach in [DI03]. In addition to this, the sum rate performance of the IRC is compared to

the relay channel and there exists a large sharing gain, which strongly supports the use of a

relay shared by two base stations instead of accessing the relay in the time division multiple

access (TDMA) mode.
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Part II.

Home Gigabit Access (OMEGA)
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6. OMEGA Concept

The rapidly increasing demand for convenient resource sharing on the Internet prompts the

future vision of home area networks operating at several Gigabits per second (Gbps). As

a part of the EU seventh framework R&D programme (FP7), the hOME Gigabit Access

(OMEGA) project (www.ict-omega.eu) aims at bridging the gap between mobile broadband

terminals and the wired backbone at home. To provide Gbps connectivity within the home

area network, a large number of different complementary access techniques are considered. In

addition to the wired power line communications, the wireless links will use radio frequency

(RF), infrared (IR) as well as the visible light transmission to fulfill the vision of broadband

home networking without adding new wires as shown in Fig. 1.4. Part II of this dissertation

is focused on wireless infrared communications and it presents the physical layer analysis on

integration and feasibility investigation of Gbps IR system.

As an alternative to RF for short range indoor communications, IR exhibits several advan-

tages. Since there is a rapid growth in wireless communications, the RF resources become

more and more rare. To overcome the spectral limitations, there is a trend in RF to move

to higher frequencies such as 60 GHz, where the propagation is similar to that of IR radia-

tion. Compared to RF, the unregulated bandwidth offers IR overwhelming dominance, which

qualifies it as an competitive candidate for indoor transmission. Moreover, IR transceivers

employing intensity modulation and direct detection avoid multipath fading that occurs in

RF. This is because the detector usually has a large area compared to the short wavelength

such that efficient spatial diversity reception is exploited [WK03]. Since IR radiation does

not pass through walls, the signal is confined within a room to ensure a secure transmission

which is immune to eavesdropping. The reuse of the same bandwidth is possible throughout

a building. Last but not least, low cost IR transceivers are available on the market that are

capable of high speed transmission.

In the previous work, infrared transmission operating at 100 Mbps [AK95] has been inves-

tigated in the indoor environment. However, when switching the data rate from 100 Mb/s

to 1 Gbps, the design of an indoor infrared wireless system operating at Gbps is quite chal-

lenging. This is because the system operating at Gbps is mainly constrained by the receiver

frontend noise [LGB+08], which increases by a factor of 1000. In addition to that, it is also

required that the system provides a typical 90 degrees of coverage both at the transmitter

and receiver. This wide coverage for robust indoor coverage makes the system considerably

more challenging. If we increase the transmitter and receiver coverage by a factor of two while

keeping the photodiode area unchanged, we need to increase the transmit power by a factor

of 16, which imposes a very strict limit on the eye safety of the laser driver. Thus multiple

links with a narrow coverage will be required to cover the target coverage, and the control
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and management of these is to be where most of the innovation in OMEGA lies, as the state

of the art is relatively undeveloped.

In particular, the basic IR system topology is categorized into diffuse and line of sight (LOS)

systems [KB97]. The diffuse system creates a large number of paths from the transmitter to

the receiver, which makes the system robust and prevents it from getting blocked. However, it

suffers from multipath dispersion, which causes pulse spread and significant inter-symbol in-

terference, in addition to higher path losses compared to direct LOS links. To fulfill the Gbps

data transmission requirement, OMEGA adopts a LOS system topology. Direct LOS links

improve the power efficiency and reduce the multipath dispersion, but require an inherent

alignment between the transmitter and the receiver in order to establish a reliable communi-

cation. The path loss combined with the narrow transmitter and receiver field of view (FOV)

determine the link budget and the available data rate of the system. In general, the narrower

the FOV, the higher is the data rate that is achievable. However, such narrow links do not

provide coverage, and thus cellular systems using a number of LOS links are employed in

order to increase the coverage and achieve high data rates. Generally speaking, there are two

approaches to implement multiple element transmitters and receivers. One is to use imaging

transmitters and receivers, where light beams are transmitted at different angles within the

desired coverage area while the receiver uses a detector array so that radiations from different

angles reach particular elements within the range of the detector [PFOE01, WN97, OFJ+03].
An alternative is to build an angle diversity system where individual transmitters and re-

ceivers are arranged to point at different angles to provide the desired coverage [CK00]. In

OMEGA, the latter choice is made since there are not sufficient resources within the project

to fabricate the necessary custom devices for the imaging solution.

In Part II of this thesis, the physical layer design for a high speed line-of-sight (LOS) IR

system is considered, which consists of a base station located at the ceiling and terminals that

move around at the ground, as illustrated in Fig. 7.1. Both transmitters and receivers have

multiple elements, where each element covers a relatively narrow FOV. By switching on/off

different transmit/receive elements, different fractions of the solid angle will be covered. This

part is organized as follows. In Chapter 7, the system model of the high speed IR transmission

is introduced, where individual components suitable for Gbps IR system are analyzed and

specified. To be more specific, the modulation scheme that fits for Gbps IR transmission

is briefly discussed in Section 7.1. To overcome the baseline wander effect of the highpass

filter, a new line coding scheme is proposed in Section 7.2. Following that, the low-pass filter

applied and high-pass filter are further discussed in Section 7.3 and Section 7.4, which are

applied to reject the noise and block the DC photocurrent generated by the received ambient

light as well as to reduce the harmonics caused by the fluorescent lighting, respectively. The

photodiode detectors are specified in Section 7.5, including PIN photodiodes and Avalanche

types. Various noise sources generated in the IR system are discussed in Section 7.6. Based

on all the above mentioned analysis and specification of the individual components, the link

budget for a LOS Gbps IR transmission with a narrow angle FOV is given in Chapter 8. At

last, the transmit and receive angle diversity are discussed in Chapter 9, in order to further

extend the system FOV.
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7. System Model

The block diagram of the Gbps infrared (IR) system for line-of-sight (LOS) based single link

is shown in Fig. 7.2. Information bits are first fed into the line encoder. Then the output

is non-return-to-zero (NRZ) on-off-keying (OOK) modulated and drives the laser diode. The

intensity modulated optical signal passes through an LOS channel which is assumed to be

ideal and characterized by the impulse response hc(t) = cδ(t), where c denotes a path loss

constant. The incoming optical signal is converted into an electrical signal by a positive-

intrinsic-negative (PIN) photodiode that forms a p-type /intrinsic/n-type structure, or an

Avalanche photodiode (APD) using direct detection [KB97]. This electrical signal is comprised

of the transmitted signal and the ambient light induced shot noise that is essentially white

Gaussian and independent of the desired signal. An ideal preamplifier at the receiver frontend

is assumed to have the transfer function ∣Hpreamp(f)∣ = 1. Additional noise is induced by this

preamplifier, which consists of thermal noise with constant power spectral density (PSD)

and so-called f2 noise with a PSD increasing with the square of the frequency [Muo84]. A

Figure 7.1.: Gbps LOS infrared system concept
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Figure 7.2.: Block diagram of the Gbps wireless IR system

fifth-order Bessel filter with a cut-off frequency f3dB is then applied for noise rejection. The

high-pass filter (HPF) before demodulation, which is modeled as a first-order RC filter, is

supposed to mitigating all the fluorescent light induced periodic interferences completely. At

last, a hard decision is made after the filtering and the information is retrieved at the output

of the line decoder.

In the following sections, we will describe each component in the Gbps wireless IR system

respectively.

7.1. Modulation

As [WGL09, GLWH09] shows, non-return-to-zero (NRZ) on-off-keying (OOK) offers several

advantages compared to other popular modulation schemes used in indoor infrared trans-

mission. The signal at each laser driver input exhibits only two amplitude levels, the laser

drivers are much easier to build and much more power efficient than linear drivers required

for subcarrier or pulse amplitude modulation (PAM). Moreover, it is not required to derive

the decision threshold from the received signal as for pulse position modulation (PPM) or

return-to-zero (RZ) OOK. In the Gbps IR system, NRZ OOK modulation is performed on

the coded bits which are DC-balanced after the line encoder (see Section 7.2), the optimum

decision threshold with respect to the high-pass filtered signal is equal to zero. To conclude,

NRZ OOK gives a good compromise between power and bandwidth efficiency and facilitates

the extremely simple implementation, which makes it preferred for Gbps system.

7.2. Line Coding

A major motivation for line coding in direct detection optical systems is the baseline wander

effect [AK95, Gha08] induced by the AC-coupling inherent in the receiver’s preamplifier. AC-
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coupling blocks the DC photocurrent generated by the received ambient light and removes

DC-couplings between different amplifier stages. Furthermore, a high-pass characteristic is

also required to reduce harmonics caused by fluorescent lighting [SOSE98]. In modern compact

tubes with electronic ballasts, the electrical spectrum of the harmonics may extend up to 1

MHz [NAK96], [Bou96]. Although a large cut-on frequency is desirable to effectively attenuate

this interference1, it may be undesirable from a signal distortion point of view. More precisely,

if the short time average of the signal (i.e., the “baseline”) is not constant, the high-pass filter

(HPF) will introduce a significant amount of inter-symbol-interference (ISI) [SSOE97].

The effect of the transient baseline wander can also be mitigated by active baseline restora-

tion. However, line coding is particularly attractive if the receiver implementation complexity

should remain low [AK95]. By means of additional redundancy, a line code is able to control

the statistics of the data symbols to be transmitted and is thereby capable of reducing the

baseline wander effect. Meanwhile, line coding ensures a reliable synchronization of the re-

ceiver clock due to sufficient binary state transitions, which are either from “1” to “0” or from

“0” to “1”. There are many types of line coding commonly used in telecommunications, such

as the unipolar non-return-to-zero code, the Manchester code, the alternate mark inversion

(AMI) code [Com11], etc. With respect to byte oriented transmission, we consider the 8B10B

line code in this section, where the 8 information bits are mapped into 10 coded bits.

This section focuses on the DC-balanced low redundancy binary line codes to be combined

with NRZ-OOK modulation. Such codes can be potentially applied to Gbps wireless IR

transmission. The remainder of this section is organized as follows. In Section 7.2.1, important

characteristics of line codes are presented. Two 8B10B block codes are proposed and analyzed

in Section 7.2.2. One is the well-known IBM code [WF83] while the other is a new alternative

8B10B code, which can achieve a comparable performance while its implementation is less

complex. Simulation results are given in Section 7.2.3, where the baseline wander effect is

investigated for both proposals. Finally, conclusions are drawn on this section. The main

contribution of this section has been published in reference [LWH09].

7.2.1. Desirable Line Code Properties

As will be shown in Section 7.6, the so-called f2 noise plays an important role on the Gbps

IR transmission system [LGB+08], whose variance depends on the third power of the data

rate [LGB+08], which means that it increases by a factor 1000 when switching the data rate

from 100 Mb/s to 1 Gbps. As for line code considerations, it implies that the power (second

moment) of the photocurrent’s f2 noise component decreases with the third power of the code

rate

rc = m
n
,

1For packet oriented transmission, a large cut-on frequency is also very important to keep the duration of
the baseline wander subsequent to idle periods short. The longer the baseline wander extends, the more
extra training bits are required at the beginning of a packet.
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where m is the number of information bits at the input of the line encoder and n the number

of bits at its output. This shows directly that a low redundancy is a primary design issue

for the line code. Moreover, the limited speed of the individual components for Gbps IR

transmission will be another reason demanding for the low-redundancy design.

At a given rc, the following properties can be considered to evaluate a line code.

• Maximum run-length rmax: defined as the maximum number of consecutive ones or

zeros in the data stream that needs to be limited to provide a regular clock information.

The receiver’s phase locked loop (PLL) bandwidth can be increased by decreasing the

maximum run-length, which ensures a fast acquisition time with respect to the receiver

clock.

• Short time average variation σN : It is assumed that the receiver’s high-pass character-

istic can be modeled as a first-order RC filter with the impulse response

g(t) = δ(t) − 1

τ
exp (− t

τ
) for t ≥ 0, (7.1)

where 1/(2πτ) is the cut-on frequency. The expression shows that the high-pass filter

(HPF) basically removes the short time average from the signal. Since there is an

exponentially decreasing weighting factor within the integration interval, the effect of

the baseline wander on the eye-opening can only be estimated through a numerical

simulation (cf. Section 7.2.3).

However, the baseline wander effect can still be estimated roughly, if a constant weight-

ing factor is assumed within the integration interval. With cn ∈ {0,1} being the coded

bits at the line encoder output, we define

µN [n] = 1

N

n+N−1∑
k=n

ck, n ∈ N

as the short time average over N bits. With

µN,max =max
∀n

µN [n] and µN,min =min
∀n

µN [n]
denoting the maximum and minimum short time average over N bits respectively, the

relative vertical eye-opening at the receiver can be estimated as

(1 − µN,max) − (0 − µN,min) = 1 − (µN,max − µN,min)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
σN

.

The parameter σN is the maximum variation of the short time average and it is a direct

measure of the loss with respect to the vertical eye-opening. For example, σ10 = 1/5 and

σ20 = 1/10 are obtained for 4-PPM, which can be considered as OOK with additional line

coding, showing that the baseline wander effect decreases with an increasing integration

interval.
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• DC-balance: DC balance is preferable, i.e., E{µN [n]} = N/2. It ensures that the

optimum decision threshold corresponds to zero with respect to the high-pass filtered

signal, which is advantageous from the implementation point of view.

• Error propagation: High-redundancy codes may exploit their code redundancy for error

detection and correction. However, such properties are hardly achievable by line codes

that fit Gbps IR links due to the low-redundancy constraint discussed at the beginning

of Section 7.2.1. We should minimize the error probability after line coding.

• Implementation complexity: The implementation aspect is also an important figure of

merit to judge a line code.

7.2.2. 8B10B Codes

Byte orientation is considered as a further favorable property of line codes since 8 input bits

correspond to the natural data units at the interface to the multiple access (MAC) layer.

To obtain a small variation of the short time average, a first design approach could rely

upon the usage of codewords with a constant Hamming weight, just as in multiple PPM

[PB95]. With respect to m = 8 input bits, it is not possible to construct such a code for

n = 9 or for n = 10 output bits, since there are not enough codewords to be utilized: (9
5
) or(9

4
) gives only 126, while (10

5
) gives 252. However, two solutions can be used to increase the

alphabet size. One is to use a codeword length of n = 11 which is not considered here since

it will further increase the required bandwidth. Another method can be applied to n = 10, if

not only codewords with a Hamming weight of 5 but also with that of 4 or 6 are used. The

alphabet can be extended by (10
4
) = 210 additional codewords, which is more than enough.

This approach is not adaptable for n = 9, since (9
4
)+ (9

5
) or (9

4
)+ (9

3
) is still less than 28 = 256.

Let us define the codeword disparity (CDP) as the count of ones minus the count of zeros.

The 8B10B coding with varying Hamming weights (number of ones in a codeword) can still

guarantee DC balance, if the output with a CDP of +2 (Hamming weight of 6) and its

complementary with a CDP of -2 are assigned to the same input. The rule of running disparity

has to be fulfilled during the transmission such that these codewords appear alternately to

ensure the DC balance.

Furthermore, an 8B10B code can be a concatenation of a 5B6B code and a 3B4B code,

where sufficient codewords with CDP = 0,±2 can be used with respect to the input information

through a similar analysis as mentioned above. Moreover, their coding tables are easier to

design with 32 and 8 entries respectively, compared to a single 8B10B code holding a total of

256 entries. In the following, two 8B10B line codes are going to be investigated.

A. IBM

The first line code considered here is the well-known IBM 8B10B code [WF83]. The IBM

code has already been used in many systems including the Gigabit Ethernet.
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Table 7.1.: Rule of Running Disparity for IBM Code
Previous RD Current CDP Next RD

-1 0 -1
+1 0 +1
-1 +2 +1
+1 -2 -1

A main feature of this code is that it is a concatenation of a 5B6B code and a 3B4B code

as described above. Encoding and decoding are performed independently for each 6B or 4B

subblock. Moreover, all 6B and 4B subblocks individually, and the complete 10-bit codeword

hold a disparity of either 0 or ±2, which ensures quite a small transient baseline wander.

During the transmission, the rule of running disparity (RD) has to be fulfilled for each

encoded 6B or 4B subblock. As already described previously, an input may be assigned to

two complementary output codewords. As shown in Table 7.1, the current codeword is chosen

depending on the CDP and the previous RD. Since the RD is initialized to -1 or +1 at the

beginning, the RD is always bounded to ±1 during the transmission. It should be noted that

there are additional constraints with respect to the concatenation of the 3B4B code with the

5B6B code. To ensure a maximum run-length of 4, some specific 6B codewords are followed

by alternative 4B codewords [WF83].

Considering those special cases and constrains, it would be a straightforward way to im-

plement the IBM code through two look-up tables instead of sophisticated logic circuits as

many researchers complained [KSK08], [Krz89], [JKJC01]. If an invalid codeword is received,

the decoder will try to find a valid codeword that has a minimum Hamming distance with

it and performs demapping. However, this mapping ROM table has the potential of limiting

the operating speed.

With respect to the code design, codewords are actually elaborately selected for the sake

of good DC-balance and reasonable transitions as observed from the code table, though it

was not mentioned in [WF83]. Take the 5B6B code, for instance, concerning the 25 = 32

input information, it first chooses all (6
3
) = 20 codewords with a disparity of zero (Hamming

weight of 3). These 20 codewords are assigned to 19 input information, with the exception

that (000111) and (111000) are assigned to the same inputs for the sake of rmax. Then the

residual 13 inputs are assigned to 2 ⋅13 codewords with minimum possible nonzero disparity of±2 (Hamming weight of 4 or 2), which are selected from (6
4
)+ (6

2
) = 2 ⋅15 possible codewords,

discarding (111100), (001111) and their complements also due to the maximum run-length

consideration.

B. CFBI

Inspired by the elaborate code design of this IBM code as well as the simplicity and efficiency

of the bit insertion code [Krz89], a new code named concatenated flipped bit insertion (CFBI)

is designed to couple both advantages. It also consists of a 5B6B and a 3B4B code, each of
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which can be viewed as an improved version of the bit insertion and manipulation (BIM) code

[JKJC01].

At the first step, the CFBI 5B6B code is to be designed. With respect to a total of 25 = 32
entries, it first chooses all (6

3
) = 20 codewords with disparity of zero for maintaining a good DC-

balance. The 12 residual entries are assigned by 2 ⋅ 12 complementary pairs with disparity of±2. Unlike the BIM 5B6B code, the codewords (001111), (111100) and their complementary

counterparts contain long consecutive ones and zeros, and they are not well suited to retrieve

the clock information at the receiver. Therefore, they are not included in our CFBI code.

When the codewords are selected, the mapping table is generated by means of simply adding

a bit to the original information followed by some partial flipping afterwards.

Depending on the disparity of the input information, the CFBI 5B6B precoding table is

basically divided into 3 classes as shown in Table 7.2.

(1) If DP = ±1or + 3, the codeword is produced either by inserting a 0-bit for DP > 0 or 1

for DP < 0 in the position between b3 and b2, so that the codeword disparity is maintained

Figure 7.3.: Flowchart of CFBI 5B6B encoder
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Table 7.2.: Precoding Table of CFBI 5B6B
Classification b4b3b2b1b0 DP c CDP

0 0 0 1 1 -1 0 0 1 0 1 1 0
0 0 1 0 1 -1 0 0 1 1 0 1 0
0 0 1 1 0 -1 0 0 1 1 1 0 0
0 1 0 0 1 -1 0 1 1 0 0 1 0
0 1 0 1 0 -1 0 1 1 0 1 0 0
0 1 1 0 0 -1 0 1 1 1 0 0 0
1 0 0 0 1 -1 1 0 1 0 0 1 0
1 0 0 1 0 -1 1 0 1 0 1 0 0
1 0 1 0 0 -1 1 0 1 1 0 0 0

Class 1 1 1 0 0 0 -1 1 1 1 0 0 0 0
DP=±1,+3 0 0 1 1 1 +1 0 0 0 1 1 1 0

0 1 0 1 1 +1 0 1 0 0 1 1 0
c = b4b3Ib2b1b0 0 1 1 0 1 +1 0 1 0 1 0 1 0
I=1 for DP=-1 0 1 1 1 0 +1 0 1 0 1 1 0 0

I=0 for DP=+1,+3 1 0 0 1 1 +1 1 0 0 0 1 1 0
1 0 1 0 1 +1 1 0 0 1 0 1 0
1 0 1 1 0 +1 1 0 0 1 1 0 0
1 1 0 0 1 +1 1 1 0 0 0 1 0
1 1 0 1 0 +1 1 1 0 0 1 0 0
1 1 1 0 0 +1 1 1 0 1 0 0 0
0 1 1 1 1 +3 0 1 0 1 1 1 +2
1 0 1 1 1 +3 1 0 0 1 1 1 +2
1 1 0 1 1 +3 1 1 0 0 1 1 +2
1 1 1 0 1 +3 1 1 0 1 0 1 +2
1 1 1 1 0 +3 1 1 0 1 1 0 +2

Class 2 DP=-5 I=1 0 0 0 0 0 -5 0 1 1 1 1 0 +2
0 0 0 0 1 -3 1 0 1 0 1 1 +2

b4 = b1 0 0 1 0 0 -3 1 0 1 1 1 0 +2
Class 3 c = b̄4b3Ib2b̄1b0 0 1 0 0 0 -3 1 1 1 0 1 0 +2

DP=-3,5 1 1 1 1 1 5 0 1 1 1 0 1 +2
I=1 b4 ≠ b1 0 0 0 1 0 -3 0 1 1 0 1 1 +2

c = b4b̄3Ib2b1b̄0 1 0 0 0 0 -3 1 1 1 0 0 1 +2

as 0 for DP = ±1 while generating codewords with the possible minimum positive disparity of

+2 for DP = +3. The output codeword is c = b4b3Ib2b1b0, with I denoting the insertion bit.

(2) If DP = −5, insertion bit I = 1 and b3, b2 b1 are inverted aiming to get a codeword also

constrained to the disparity of +2.

(3) If DP = −3or 5, a 1-bit is inserted first. Following that the codeword is obtained either

by inverting b4 and b1 when b4 = b1, which is denoted as c = b̄4b3Ib2b̄1b0, or by inverting b3 and

b0 for other cases c = b4b̄3Ib2b1b̄0. This also results in a cluster of codewords with disparity

of +2.

Compared to the BIM 5B6B code, since the codewords (001111) and (111100) are not

included in this new code, the maximum run-length is reduced from 7 to 6, which determines
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the worst case of clock recovery so that more timing information can be extracted. Moreover,

the complexity of this new CFBI 5B6B code is reduced, which could be clearly illustrated in

Fig. 7.3 and Fig. 7.4. First of all, this CFBI code does not use the coding apparatus CDP

in deciding a 1-bit or a 0-bit to insert. It simplifies the bit insertion manipulation by only

considering whether DP = +1or + 3. If such case is satisfied, a 0-bit is inserted while a 1-bit

is added under other conditions. Secondly, there are more judging constrains in mapping

the information to the pre-codewords for the BIM code. Last but not least, CFBI 5B6B

produces 4 possible codeword formats instead of 5 as in the case of the BIM code, which

indeed facilitates the bit flipping control in a hardware implementation.

It is clearly seen that the disparity of a valid codeword is either 0 or +2 through the

above precoding. After that those codewords are sent either unchanged or totally inverted

depending on the following simple rule of running disparity: RDS⋅CDP ≤ 0, which implies that

Figure 7.4.: BIM 5B6B encoder flowchart
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the precoding codewords c only require inversion if the polarity of the previous accumulated

RDS differs from that of the current codeword disparity. This disparity rule is much simpler to

implement than that of the IBM code mentioned before, where no complementary counterparts

are required for zero-disparity codewords.

The 6B5B decoding procedure is an inverse process of encoding, as shown in the Fig. 7.5.

The received 6-bit subblock is denoted as c5c4c3c2c1c0. First the codeword disparity is calcu-

lated.

(1) If CDP = 0, which corresponds to DP = ±1, the applied insertion bit c3 is removed and

the decoded information is b̂ = c5c4c2c1c0
(2) When CDP < 0, it means the codeword has already been inverted due to the rule of

running disparity and needs to be inverted again. In the case of positive polarity, no inversion

is required.

(3) After (2) finishes, the insertion bit c3 value is examined.

Figure 7.5.: Flowchart of CFBI 5B6B decoder
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Table 7.3.: Precoding Table of CFBI 3B4B
Classification b2b1b0 DP c CDP

0 0 1 -1 0 0 1 1 0
Class 1 0 1 0 -1 0 1 1 0 0

DP=±1,+3 1 0 0 -1 1 0 1 0 0
c = b2b1Ib0 0 1 1 +1 0 1 0 1 0

I = 1 for DP=−1 1 0 1 +1 1 0 0 1 0
I = 0 for DP=+1,+3 1 1 0 +1 1 1 0 0 0

1 1 1 +3 1 1 0 1 +2
Class 2 DP=−3,I=1 0 0 0 -3 1 0 1 1 +2

• c3 = 0 corresponds to the case that the original information data is mapped to a codeword

with CDP = +2 only by a 0-bit insertion. Thereby only this insertion bit c3 needs to be

removed to retrieve the original information.

• If c3 is found to be 1, the decoder firstly checks whether the obtained codeword c is equal

to (011110). If it is satisfied, c4c2c1 are inverted after removing c3 and the decoded data

is b̂ = c5c̄4c̄2c̄1c0. When it is not the above case, c5c1 are examined to check if they are

equal. The positive answer leads to the inversion of c5c1 and thereby the decoded data

is b̂ = c̄5c4c2c̄1c0. Regarding the other cases c4c0 are inverted to obtain decoded data

b̂ = c5c̄4c2c1c̄0.
The complexity of CFBI decoding is also lower than that of the BIM code not only due to

the reduced demapping constraints but also as a result of the simplified bit inversion control.

A similar encoding and decoding process can also be realized for an CFBI 3B4B code shown

in Table 7.3, so that it concatenates with the 5B6B code together to form a compound CFBI

8B10B line code for the sake of byte-orientation. It is emphasized that there is no alternate

codeword included in this 3B4B code for concatenation purposes as in the IBM code, which

also simplifies the implementation aspects.

Since only bit insertion and flipping as well as simple disparity control are required for

encoding and decoding of this CFBI code, it would be much easier and faster than the IBM

code in terms of hardware implementation.

7.2.3. Simulation Results

a) A first estimation is obtained by means of the short time average variation σN , where

N = 20 corresponds to a time constant τ = 20 ⋅ rc
Rb
= 20 ⋅ 1

Rline
. The parameter Rline denotes the

data rate including line coding. The short time average variation σ20 is equal to 0.3 and 0.4

for the IBM and the CFBI code, respectively.

The parameter σN is only a measure of the minimum eye-opening 1 − σN at the sampling

time. To obtain the statistics of the high-pass filter (HPF) output at the sampling time, a

simulation needs to be performed. Fig. 7.6 shows the histogram for a HPF with the impulse
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Figure 7.6.: Histogram of HPF output using IBM 8B10B

Table 7.4.: Comparison of IBM code and CFBI code
σ20 rmax DP control decoding

IBM 0.3 4 complex complex
CFBI 0.4 5 simple medium

response g(t) = δ(t)−rect((t−τ/2)/τ) to obtain σN , where the IBM code is utilized. Although

the rectangular transmit pulse shape is also incorporated into the simulation, the minimum

eye opening indeed corresponds to our estimation of about 1 − σ20 = 0.7.
b) Fig. 7.7 shows the simulated histograms, when a realistic first-order RC-HPF with the

impulse response in (7.1) and a fifth-order Bessel low-pass filter are incorporated into the

system, cf. Fig. 7.2. The Bessel filter is used for noise rejection, where a cut-off frequency

f3dB = 1
2
Rline is selected to give a good compromise between noise rejection and the vertical

eye-opening as discussed in Section 7.3. The time constant τ of the RC-HPF is chosen as the

same in a), i.e., τ = 20/Rline, which corresponds to fc = 0.008Rline.

Fig. 7.7(a) shows the result without line coding. Fig. 7.7(b) and Fig. 7.7(c) illustrate the

histograms for the IBM code and the CFBI code, respectively. Here, ±0.5 denote the desired

amplitudes in the absence of a baseline wander. From Fig. 7.7(a) it can be seen that the

eye-diagram is almost closed when no line coding is applied. Fig. 7.7(b) and Fig. 7.7(c) show

that the baseline wander effect is effectively suppressed if either the IBM code or the CFBI

code is utilized. Actually, compared to the estimation of the minimum eye-opening using σ20,

a smaller eye-opening penalty is achieved. This is due to a longer total integration interval of

the RC-HPF, which is about 3τ to 4τ .
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(a) Histogram of RC-HPF output without line coding
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(b) Histogram of RC-HPF output using IBM 8B10B
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(c) Histogram of RC-HPF output using CFBI 8B10B

Figure 7.7.: Baseline wander reduction using line coding

Secondly, the IBM code has at least 30 transitions per 100 bits in the worst case while the

CFBI code exhibits 20 transitions due to the maximum run-length constraint. Both of them

have on the average 5 transitions per 10 bits, which ensures sufficient timing information for

the receiver’s clock recovery.

The bit error rate (BER) is another important property to judge the line code performance.

The error propagation assuming a binary symmetric channel is investigated for both the IBM

and the CFBI code. Fig. 7.8 shows that for both codes the output BER is approximately 2.5

times larger than the input BER.

In summary, Table 7.4 gives the comparison of these two proposed line codes.

To conclude this section, we proposed two DC-balanced line codes which are suitable for

Gbps wireless infrared transmission. Both codes are byte-oriented and offer a comparable

susceptibility to the transient baseline wander. Our results reveal that both codes ensure

regular transitions from “1” to “0” or from “0” to “1”, which is important from the clock

recovery point of view. Both line codes are feasible in terms of hardware complexity. Due to

the complicated mapping table, the IBM code can only be implemented via look-up table. In

contrast to this, the novel CFBI code can either be implemented via look-up table or logic

circuits because of its simple logic mapping.
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7.3. Bessel filter

As shown in Fig. 7.2, a low-pass Bessel filter is required at the receiver of the Gbps infrared

system for noise rejection.

The Bessel low-pass filter is characterized by the maximum flat group delay across the entire

pass-band and near the cut-off frequency, which is usually applied for the noise rejection in an

IR system. A high order Bessel filter is required so as to better approximate the constant group

delay up to a desired frequency. However, it becomes also more difficult for this analog Bessel

filter implementation as the filter order increases. In OMEGA, we choose a 5th order Bessel

filter to perform noise rejection. Further, the choice of a proper 3 dB cut-off frequency (a

frequency at which the magnitude of the transfer function of a low-pass filter is half of its pass-

band value), denoted by f3dB, plays a key role on the system performance since a compromise

has to be balanced between the noise rejection and the induced inter-symbol-interference (ISI).

It is shown in [OME10] that a 5th order Bessel filter with f3dB = Rline/2 = 625 MHz provides

a very good tradeoff between the vertical eye-opening and the noise rejection, where Rline

denotes the data rate including the 8B10B line coding as introduced in Section 7.2. In this

case, the ISI causes only 10 % degradation of the vertical eye-opening.

In theory, the transfer function of an ideal 5th order Bessel filter is given as

HBessel(f) =HBessel(p)∣p=j2πf , (7.2)

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

BSC input bit error propability p
b

B
S

C
 o

up
ut

 b
it 

er
ro

r 
pr

ob
ab

ili
ty

 a
fte

r 
lin

e 
co

di
ng

 

 
IBM
CFBI

Figure 7.8.: BER comparison of IBM 8B10B and CFBI 8B10B
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Figure 7.9.: 5th order Bessel filter configuration for Rs ≥ Rl
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Figure 7.10.: 5th order Bessel filter configuration for Rs < Rl

Rs = Rl, R∗l = 1
C∗1 L∗1 C∗2 L∗2 C∗3

2.2582 1.1110 0.8040 0.5072 0.1743

Table 7.5.: normalized RLC-Values for Rs = Rl.

Rs < Rl, R∗l = 1
Rs/Rl L∗1 C∗1 L∗2 C∗2 L∗3
1/2 1.9039 1.0764 0.7836 0.4930 0.1690
1/4 1.7090 1.0493 0.7678 0.4820 0.1652
1/8 1.6102 1.0360 0.7598 0.4762 0.1634

Table 7.6.: normalized RLC-Values for Rs < Rl.

whereHBessel(p) = 945
p5+15p4+105p3+420p2+945p+945 [Bes]. An ideal Bessel filter is an infinite impulse

response (IIR) filter. In OMEGA, to approximate a 5th order Bessel filter with the 3 dB cut-

off frequency f3dB = 625 MHz, we use a passive RLC-network [Win02] consisting of resistances,

inductances, and capacitors, as illustrated in Fig. 7.9 and Fig. 7.10. The parameters Rs and

Rl denote the series resistance and the load resistance, respectively. If Rs ≥ Rl, the LC ladder

uses uses 3 capacitors and 2 inductors. If Rs < Rl, 3 inductors and 2 capacitors are utilized.

The RLC-values can be obtained from the filter catalogs. The normalized component values

L∗, C∗ which are indicated by an additional asterisk ∗, correspond to the normalization R∗l = 1
and 2πf3dB = 1 Hz. The normalized RLC-values are given in Table 7.5 and Table 7.6, which

discusses the cases Rs = Rl and Rs < Rl separately [Win02].

For a given 3 dB cut-off frequency f3dB and load resistance Rl, the denormalized values are
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Rs/Rl = 1, Rl = 50 Ω
f3dB(GHz) C1 L1 C2 L2 C3

0.5 14.3762 pF 17.6821 nH 5.1184 pF 8.0724 nH 1.1096 pF
0.625 11.5010 pF 14.1457 nH 4.0948 pF 6.4578 nH 0.8878 pF

Table 7.7.: denormalized RLC-Values for Rs = Rl assumed Rl = 50 Ω.

Rs/Rl = 1/8, Rl = 100 Ω
f3dB(GHz) L1 C1 L2 C2 L3

0.5 25.6272 nH 6.5954 pF 12.0926 nH 3.0316 pF 2.6006 nH
0.625 20.5017 nH 5.2764 pF 9.6740 nH 2.4252 pF 2.0804 nH

Table 7.8.: denormalized RLC-Values for Rs = 1/8 ⋅Rl assumed Rl = 50 Ω.

given by

Li = L∗i ⋅ Rl

2πf3dB
, Ci = C∗i ⋅ 1

2πf3dBRl

.

Assuming Rl = 50 Ω, Table 7.7 and Table 7.8 show the denormalized values for Rs = Rl and

Rs = 1/8 ⋅Rl.

With the LC values given in Table 7.7 and Table 7.8, the Bessel filter transfer function

HBessel(f) is acquired. Taking the case Rs < Rl for example, HBessel(f) is obtained as follows.

HBessel(f) = Uout

Uin

= Zl

Z5

⋅ Z4

Z3

⋅ Z2

Z1

,

where

Z1 = Z2 + jwL1,

Z2 = 1

jwC1 + 1
Z3

,

Z3 = Z4 + jwL2,

Z4 = 1

jwC2 + 1
Z5

,

Z5 = Rl + jwL3.

The parameter w stands for the angular frequency and w = 2πf . The magnitude of the Bessel

filter transfer function is plotted in Fig. 7.11. The ideal 5th order Bessel filter with cut-off

frequency f3dB = 0.5 ⋅Rline = 625 MHz is taken as a benchmark, which is drawn by using the

besself function in MATLAB. In our approximation, Rl is kept 50 Ω. It is noted that the

setting of Rs = Rl leads to a 6 dB loss in the pass band, which is not desirable. By adjusting

Rs = 1
8
⋅Rl, this loss is decreased to about 1 dB, which is a good approximation of an ideal

5th order Bessel filter.
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Figure 7.11.: 5th Order Bessel Filter transfer function

Using this transfer function, the noise power after the Bessel filter is calculated as

σ2n = ∫
∞

0
ΦNN(f)∣Hrx(f)∣2df, (7.3)

where ΦNN(f) represents the noise power density spectrum (PSD) and Hrx(f) is the combi-

nation of the transfer function of the ideal preamplifier with ∣Hpreamp(f)∣ = 1 and the Bessel

filter HBessel(f). As mentioned at the beginning of this chapter, in Gbps IR systems, the

noise is divided into two categories. One is the white noise with constant PSD, which consists

of the background light induced shot noise, signal induced shot noise, and the thermal noise

caused by the preamplifier at the receiver frontend, denoted by Nbg, Ns, and N0, respectively.

The other one is called f2 noise with a PSD increasing with the square of the frequency that

is generated by the preamplifier, denoted by N2f
2. Therefore, we write ΦNN(f) as

ΦNN(f) = Nbg +Ns +N0 +N2f
2. (7.4)

Taking (7.4) into (7.3), it is further obtained that

σ2n = ∫
∞

0
N0∣Hrx(f)∣2df + ∫ ∞

0
N2f

2∣Hrx(f)∣2df.
By substituting f into f

′ = f/Rline, the noise power is finally calculated as

σ2n = N0Rline∫
∞

0
∣Hrx(f ′)∣2df ′´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I2

+N2R
3
line∫

∞

0
f
′2∣Hrx(f ′)∣2df ′´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I3

,
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Figure 7.12.: First order high-pass filter

where I0 and I2 denote the Personick-integrals for the white noise and the f2 noise respec-

tively. Personick-integrals [Per77] are usually used in optical communications to indicate noise

bandwidths. These integrals are denoted by I2 and I3 and are defined such that the input

noise power can be written as σ2n = αI2Rline + βI3R3
line, where α and β are constant values

and Rline is the data rate including line coding. Considering a 5th order Bessel filter with

f3dB = Rline/2, there parameters are given as I2 = 0.52 and I3 = 0.843.

7.4. High-pass filter

At the receiver of the IR system, the photodiode is always connected with the preamplifier

via coupling capacitors to block the DC photocurrent generated by the received ambient light

as well as to remove the DC couplings between different stages of the preamplifier. This

transmission characteristic is usually modeled as a first order RC high-pass filter, as shown

in Fig. 7.12. Furthermore, this high-pass characteristic is also required to reduce harmonics

caused by fluorescent lighting [SOSE98] since the electrical spectrum of the harmonics may

extend up to 1 MHz in modern compact tubes with electronic ballasts [Bou96, NAK96].

The choice of the cut-on frequency fc of the high-pass filter plays an important role on the

Gbps wireless IR system. On one side, a large fc is desired since it reduces the length of the

training sequence required at the beginning of a transmission. However, if fc is too high, it

will induce significant inter-symbol-interference (ISI).

More explicitly, the channel impulse response of the high-pass filter is given as

hHP(t) = δ(t) − 1

τ
e−

t
τ ,

where τ = RC = 1/(2πfc) denotes the time constant required for the settling down of a high-

pass filter. The larger the fc, the shorter the high-pass impulse response and thus the length of

the training sequence. To show the ISI effect clearly, the combined impulse response of a first

order high-pass filter and a 5th order Bessel filter with f3dB = /2 introduced in Section 7.3

is depicted in Fig. 7.13. The amplitude of 1
τ
, which is proportional to fc, determines the

fluctuations of the “tail” of the impulse response and thus the amplitude of the ISI, shown as

the portion starting from 2 Tb to 20 Tb in Fig. 7.13. That means, the system may suffer from

a severe ISI due to a large fc. Therefore, it is critical to choose a proper fc of the high-pass
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Figure 7.13.: Impulse response of the high-pass filter combined with the 5th order Bessel filter,
f3dB = Rline/2 = 625 MHz, fc = 0.004 ⋅Rline = 5 MHz

filter compromising between the settling down time and the ISI. It is shown in [OME10] that

a first order high-pass filter with fc = 0.004 ⋅Rline provides a very good tradeoff between the

vertical eye-opening and the high-pass filter settling time, where the ISI causes only 10 % eye

opening penalty combined with the Bessel filter and an 8 byte training sequence is required

for the high-pass to settle down.

7.5. Photodiode for Gbps system

In an IR system, the wavelength at which the transmission takes place determines the choice

of the individual components, especially for the choice of a photodiode. Further, it also

affects the received noise power to a large extent, which is an important factor for achieving a

reasonable link budget. In particular, the wavelength directly effects the quantum efficiency

and the responsivity of a photodiode. Depending on the range of the wavelength, different

photodiode materials can be used, which determine the photodiode capacitance and thus the

power of the f2 noise, as will be addressed in Section 7.6. Meanwhile, the spectral density of

the received sun light that usually induces shot noise decreases as the wavelength increases.

Therefore, the wavelength for a Gbps system must be carefully chosen, which plays a key role

on the choice of the photodiode.

Two wavelength ranges are of particular interest for Gbps IR transmission. The range be-

tween 750 nm and 900 nm is especially suitable for the cheap and fast silicon (Si) photodiodes,

which provide a reasonable quantum efficiency as well as a fast transit time of less than 1 ns.

In addition to that, 1300 nm and 1500 nm are also alternatives since the permitted radiant

intensity of the laser source is several times higher than that between 750 nm and 900 nm
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Figure 7.14.: PIN photodiode

from the eye safety point of view. Also the Indium-Gallium-Arsenic (InGaAs) photodiodes

are available at these wavelengths with high quantum efficiency.

In addition to the wavelength dependent property, the requirement of achieving a satisfac-

tory link budget for the Gbps IR system also pushes a harsh constraint on the photodiode

choice. It is desired that the photodiodes used for Gbps transmission ensure a shot rise time

for fast response, exhibit a large detection area as well as a low capacitance for obtaining

a high SNR, which is more related with the inherent property of the photodiodes depend-

ing on the component material. There is a trade-off to compromise these desired properties.

Therefore, the parameters of the photodiodes need to be analyzed.

In this section, we will analyze and propose available photodiodes for Gbps IR systems. Two

basic categories of photodiodes will be considered, including the positive-intrinsic-negative

(PIN) photodiode and the Avalanche photodiode (APD), which are discussed subsequently.

7.5.1. PIN photodiode

Fig. 7.14 shows a typical PIN photodiode structure, which is simply a P-N junction diode.

The PIN photodiode basically consists of 3 regions, P-region, N-region as well as the intrinsic

region (I-region). Its most important parameters are listed in the following [WLG+10]:

• the quantum efficiency η

It describes the percentage of photons hitting the photodiode’s surface that produce

charge carriers. In the ideal case, which means no reflections on the surface, no carrier

recombination, no carrier absorption in the upper P-region, the quantum efficiency η is

given by

η = 1 − e−αdi
where α is the wavelength dependent intensity absorption coefficient and it decreases

with increasing wavelength. The parameter di denotes the thickness of the I-region.
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• the diode responsivity Rλ

It measures the electrical output per optical input of a photodiode.

Rλ = η qλ
hc
= η λ

1.24µm
A/W for λ ≤ λc

The parameter λc is the cutoff wavelength of the semiconductor and q, h, and c denote

the elementary charge, the Planck constant, and the speed of light, respectively.

• capacitance CD per area AD

When the I-region is fully depleted, the diode capacitance per unit diode area CD/AD

is given by

CD

AD

= 1

di
ǫ0ǫr ,

where AD is the active area of the photodiode and di is the thickness of the I-region.

The constant ǫ0 is the permittivity of free-space and ǫr is the relative permittivity of

the semiconductor. For example, ǫr = 11.9 for Si, 13.1 for InGaAs and 16 for Ge.

• the transit time

Assuming that photons are still absorbed just above the N-region, the maximum transit

time τmax is dominated by the slower holes and is given by

τmax = di
vh
,

where vh is the drift velocity of the holes that is proportional to the strength of the

electrical field. That means, vh ∼ Ubias

di
with Ubias denoting the applied biased voltage

and di the thickness of the I-region.

To summarize, the first two items are wavelength dependent while the latter two are deter-

mined by the thickness di of the I-region. Based on these parameters, several PIN photodiodes

will be analyzed in the following.

(1) Si PIN photodiode

In order to achieve the 1 Gbps data rate, the transit time of the photodiode must be fast

enough, which is usually constrained in the range of 0.4 ns ∼ 0.8 ns. In order to fulfill such

a requirement, the I-region thickness di of the Si PIN must be carefully chosen, which is

usually designed varying from about 10 µm to a few hundreds micrometers. For example,

we choose di = 25 µm and a reverse voltage of 50 V is assumed. Then the strength of the

electric field is obtained as 2 V/µm, which gives the velocity of the 50 µm/ns, leading to the

transit time 0.5 ns. Fig. 7.15 shows the maximum transit time and diode capacitance per

unit area versus the I-region thickness for a reasonable biased voltage range Ubias = 30 V . . .

50 V. Due to the maximum transit time constraint, di is limited between 20 µm and 30 µm,

which thereby restricts the capacitance per unit area CD/AD in the range 3.5 ∼ 5 pF/(mm2).
In the following, we choose di = 25 µm and 30 µm, corresponding to CD/AD = 4.2 and 3.51

pF/(mm2), to further investigate the responsivity and quantum efficiency requirement for
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Figure 7.15.: Maximum transit time and diode capacitance per area versus the intrinsic layer
thickness for Si PIN at reasonable biased voltages

Gbps IR transmission.

Another factor to be considered for diode choice is the responsivity Rλ, which is depending

on the wavelength and di. Table 7.9 contains theoretical values for Rλ and η varying with

wavelength with respect to some particular di and CD/AD. Because the quantum efficiency

η decreases with λ, the useful wavelength range of such fast diodes is restricted to about 900

nm, where the responsivity falls off rapidly. As seen from Table 7.9, the peak responsivity is

obtained between 750 nm and 780 nm.

To conclude, a Si PIN photodiode suitable for Gbps infrared transmission is desired to

possess a CD/AD of less than 5 pF/mm2 and a peak responsivity in the range of 750 ∼ 780
nm, which are commercially available on the market. For a more practical case, a Si PIN

with CD/AD = 5 pF/(mm2) operating at 750 nm is considered for the link budget analysis in

Chapter 8.

(2) InGaAs PIN photodiodes

As written in [WLG+10], InGaAs devices exhibit a maximum possible thick I-region of 5 µm.

Definitely it requires a much shorter transit time than Si PIN photodiode and fulfill the transit

speed requirement. However, it means at the same time a much larger CD/AD, which will cause

a much larger f2 noise induced by the preamplifier as shown in Section 7.6. Theoretically, this

InGaAs photodiodes with 5 µm thickness corresponds to a minimum possible capacitance of

23.2 pF/mm2. Typical InGaAs devices usually have a much larger capacitance per unit area

of 60 pF/mm2 [WLG+10].
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Table 7.9.: Theoretical parameters of Si photodiodes with transit times of less than 1 ns.
λ in nm 750 780 820 850 880 900

1/α µm 7.7 9.9 14.1 18.7 26.1 32.7

Si PIN-photodiode with di = 30 µm

CD/AD in pF/mm2 3.51
η 0.98 0.95 0.88 0.80 0.68 0.60
Rλ in A/W 0.59 0.60 0.58 0.55 0.48 0.43

Si PIN-photodiode with di = 25 µm

CD/AD in pF/mm2 4.2
η 0.96 0.92 0.83 0.74 0.62 0.53
Rλ in A/W 0.58 0.58 0.55 0.50 0.44 0.39

Concerning the responsivity, InGaAs may have R1.3µm ≈ 1 A/W at 1300 nm, which is almost

twice as large as R850nm for Si PIN. In addition to that, another advantage of using 1300 nm

over 750 nm is that there is a much lower sunlight induced noise power at this wavelength,

as shown in Section 7.6, which supports the InGaAs photodiodes as a candidate operating at

higher wavelengths for high-speed infrared transmission. The typical responsivity range of the

InGaAs photodiodes is from about 0.6 A/W to 0.9 A/W [Agr05]. For link budget estimation,

we take 0.8 A/W for 1300 nm and 0.95 for 1550 nm.

7.5.2. Avalanche photodiode (APD)

As shown in [WLG+10], a PIN-diode based detector operating at 1 Gbps will be limited by

f2 noise and not by the background light induced shot noise. For this reason, the receiver

sensitivity can be increased by utilization of APDs. An important characteristic of APDs is

the excess noise, which is characterized by the excess noise factor F (M) given by [Agr05]

F (M) =MxAPD,

where M is the average multiplication gain that ranges from 1 to 100. Typical values of xAPD

are given in Table 7.10.

7.6. Noise

The noise for the infrared system may come from the received background light, which will lead

to shot noise as well as low frequency interference induced by fluorescent light or incandescent

light. Another important source is the preamplifier frontend, which generates thermal noise

with constant power density spectrum (PSD) as well as the f2 noise whose PSD increases

with the square of the frequency. The received signal itself will also contribute to the shot

noise. In the following, we will specify each type of noise in the Gbps infrared system.
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Figure 7.16.: Illustration of the solid angle

7.6.1. Shot noise

(1) Background light induced shot noise

The PSD of the background light induced shot noise Nbg depends directly on the received

optical power Pbg of the background light, shown as follows

Nbg = 2qRλPbgM
2F (M),

where Rλ, M and F (M) denote the photodiode responsivity, multiplication gain, and the

excess noise factor, respectively. The constant q is the electronic charge. The optical power

Pbg(λ) is calculated as follows.

Pbg(λ) = ∫ Ωrx

0
Lbg(λ)Arx,effdΩ, (7.5)

where Lbg(λ) is the irradiance of the received backgound light and Arx,eff is the effective

detector area within the receiver solid angle Ωrx. Given a random solid angle Ω ∈ [0,4π] sr

and its corresponding colatitude Ψ ∈ [0,2π], as shown in Fig. 7.16, we have Ω = 2π(1 − cosΨ)
and thus dΩ = 2πsinΨdΨ . The notation sr stands for steradian, which is a measure of the

solid angle. Moreover, the effective detector area is Arx,eff = ArxcosΨ . Therefore, denoting the

colatitude of the receiver field-of-view (FOV) as Ψrx, (7.5) can be further manipulated as

Pbg(λ) = ∫ Ψrx

0
Lbg(λ)ArxcosΨ ⋅ 2π ⋅ sinΨdΨ

= 2πLbg(λ)Arx ∫
Ψrx

0
sinΨcosΨdΨ

= Lbg(λ)Arxsin
2(Ψrx)π. (7.6)
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A value of 2 µW/(mm2 ⋅ sr) is chosen according to [DK00] as the typical Lbg(λ) at λ =

850 nm, assuming the background light noise is dominated by the diffuse skylight and the

receiver incorporates an optical filter with 50 nm bandwidth. Based on the model in [RG98],

the wavelength dependent irradiance of the sunlight can be modeled as a thermal radiator

operating at the temperature 5500 K, which is calculated according to Planck’s law

Lbg(λ) = 8πhc

λ5(e hc
λkBT − 1) .

The constant is calculated as hc/(kBT ) = 2.619 ⋅ 10−6, where h, c, KB , and T denote the

Planck constant, the speed of light, the Bolzmann constant, and the absolute temperature,

respectively. Due to this wavelength dependence, an estimate of 2.44 µW/(mm2 ⋅ sr) is ob-

tained for Lbg(λ) at λ = 750 nm and the irradiance is about a factor 3.19 and 5.23 times less

at 1300 nm and 1550 nm, as shown in Table 7.10. As for the detector area Arx, we calculate

it as

Arx = AD
n2c

sin2(Ψrx) ,
where AD is the actual photodiode area and nc = 1.5 is assumed for the refraction index of

an ideal concentrator, which restricts the receive field of view assuming the use of a lossless

optical filter.

(2) Signal shot noise

The PSD of the signal shot noise Ns is a function of the peak received signal power P̂rx, i.e.,

Ns = 2qRλP̂rxM
2F (M),

For NRZ OOK modulation scheme, P̂rx = 2Prx with Prx denoting the average received signal

power. Then the receive SNR ̺ is obtained as

̺ = (RλPrxM)2
NsI2Rline + σ′2n , (7.7)

where σ
′2
n represents the noise power excluding the power of the signal shot noise. σ

′2
n =

NbgI2Rline +N0I2Rline +N2I3R
3
line with Nbg, N0 and N2 denoting the PSD of the background

light induced noise, preamplifier thermal noise, and the preamplifier f2 noise, separately.

It is clear from (7.7) that the SNR ̺ is a quadratic function of Prx, the solution is given as

Prx = −a
2
+
√
(a
2
)2 − b,

where a = −̺4qF (M)I2Rline/Rλ and b = −̺σ′2n /(RλM)2.
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7.6.2. Preamplifier frontend noise

In addition to the shot noise, there are two types of noise caused by the preamplifier frontend.

One is the thermal noise with constant power density spectrum (PSD), denoted as N0. The

other one is called the f2 noise whose PSD increases with the square of the frequency, denoted

by N2. The constants N0 and N2 are given as follows [Muo84]

N0 = 2qIb + 4kBT

RL

,

N2 = 2qIc(2πCtot)2
S2

+ 4kBT (Rbb +Rs)(2πCD)2.
• q electronic charge; kB Boltzmann constant; T absolute temperature

• Ic collector current of the bipolar junction transistor (BJT); Ib = Ic/β base current with

β denoting the current gain

• CD photodiode capacitance; Ctot ≈ CD the total capacitance at the first stage of the

preamplifier

• RL load resistor; Rbb+Rs sum of the photodiode series resistance and the BJT spreading

resistance

The total PSD of the noise is calculated as

ΦNN(f) = Nbg +Ns +N0 +N2f
2. (7.8)

The parameter values used for the link budget analysis are summarized in Table 7.10. Si

as well as InGaAs photodiodes are utilized operating at 800 nm, 1300 nm, and 1550 nm,

respectively. A Si PIN diode with CD/AD = 5 pF/(mm2) is considered while 60 pF/(mm2)
is taken into account for InGaAs photodiodes. An optical bandpass filter with the spectral

width of 50 nm is assumed.

7.6.3. Artificial light

In addition to the previously mentioned noise, there is also artificial light induced interference,

which is addressed in this subsection.

The fluorescent lights with conventional, electromagnetic ballasts contain the electrical spec-

trum up to 500 kHz [Bou96]. In modern compact tubes with electronic ballasts, the electrical

spectrum of the harmonics may extend up to 1 MHz [NAK96]. This may be an issue if trans-

mission at about 750 nm is considered, since the optical spectrum still contains significant

energy in contrast to transmission at 1300 or 1550 nm. However, [Bou96] investigated that

this interference can be reduced by about 60 dB, if the receiver uses a high-pass filter with a

cut-on frequency of 500 kHz. Thereby, the low-frequency interference induced by the artificial

light is skipped due to the application of the high-pass filter.
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Table 7.10.: Parameters used for link budget analysis

bit rate Rline (Mbit/s) 1250
bit error rate pb 10−9

receiver FOV (half cone angle) φ (○) 5

photodiode Si InGaAs
wavelength (nm) 800 1300

capacitance per area CD/AD(pF/mm2) 5 60
responsivity Rλ (A/W) 0.5 0.8

APD gain M optimized between 1 and 100
APD excess noise factor exponent xAPD 0.3 0.7

refraction index nc 1.7
background light radiance Lbg(λ) ( µW/(mm2 ⋅ sr ⋅ nm)) 0.0443 0.0443/2.9

optical filter bandwidth δλ (nm) 10

absolute temperature T (K) 330
collector current Ic (mA) optimized between 0.5 mA and 5 mA

current gain β 180
feedback resistance RL (Ω) 10 kΩ ⋅ 1pF/CD

series resistance Rbb +Rs (Ω) 10
Personick integrals I2 = 0.502, I3 = 0.0843

To summarize this section, assuming a BJT-based input stage, the noise variance σ2n after

the 5th order Bessel filter with f3dB = Rline/2 is given as [Muo84]

σ2n =
⎛⎜⎜⎜⎜⎝
2q(Pbg + 2Prx)RλM

2F (M)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
shot noiseσ2

bg
+σ2

s

+ 2qIb + 4kBT
RL´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

preamp white noiseσ2
w

⎞⎟⎟⎟⎟⎠
I2Rb
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white noise

+

(2qIc(2πCtot)2
S2 + 4kBT (Rbb +Rs)(2πCD)2) I3R3
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preamp f2 noiseσ2

f2

. (7.9)
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8. Link Budget

Based on the system model introduced in Chapter 7, the link budget for Gbps infrared (IR)

transmission is investigated in this chapter. In Section 8.1, the receiver sensitivity limits for

both PIN diodes and Avalanche photodiodes (APDs) are first discussed and different types

of noise dominate for PINs and APDs in Gbps IR transmission. Then the link budget is

calculated for both PINs and APDs operating on different wavelengths in Section 8.2.

8.1. Receiver sensitivity limit with PIN and APD for Gbps

transmission

For a non-return-to-zero on-off keying NRZ-OOK based scheme, the bit error ratio (BER) pb
can be expressed as a function of the signal-to-noise ratio (SNR) ̺ [Pro00] for the additive

Gaussian channel

pb = 1

2
erfc(√̺

2
) with ̺ = (deucl/2)2

σ2n
,

where deucl is the Euclidian distance of the signal constellation and σ2n denotes the total noise

variance. Assuming NRZ-OOK based on rectangular pulses with an average optical power

Prx at the receiver, the Euclidian distance is

deucl,ideal = 2PrxRλM.

The parameter Rλ is the photodiode responsivity in A/W and M is the multiplication gain

(APD gain) with M = 1 for the positive-intrinsic-negative layer (PIN) photodiodes and M

ranges from 1 to 100 for typical APDs, respectively. The total noise σ2n is given in (7.9).

For the Gbps line of sight (LOS) transmission, a Lambertian source with a radiant intensity

of I(θ) = (n+1)/(2π)⋅cosn(θ) is assumed, where n = ln(0.5)/ln(cosθHP) with θHP denoting the

half power angle. For the receiver located at distance d with receive angle φrx, the irradiance

is PtxI(θ)/d2. The received power is thereby obtained as follows

Prx = PtxI(θ)Arx

d2

= Ptx
n + 1
2π

cosn(θ)Arx

d2

= Ptx
n + 1
2π

cosn(θ) 1
d2

n2c
sin(φrx)2AD, (8.1)
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Figure 8.1.: Required receiver irradiance with the photodiode area

where nc denotes the refraction index of the concentrator. From (8.1) we see that the receiver

irradiance Prx/AD can be deemed as a preliminary measure of the required transmitter power.

In the following, we will estimate Prx/AD analytically for PIN and APD photodiodes.

For a given bit error probability pb, the corresponding SNR is proportional to the following

factor,

̺ ∼ R2
λ

P 2
rx

σ2n
.

The total noise variance σ2n ≈ σ2bg + σ2w + σ2f2 , where the signal shot noise variance σ2w can be

skipped since it is quite small. In the following, we analyze two cases separately. On one hand,

if the f2-noise dominates, whose variance is proportional to C2
D, then the SNR is proportional

to the following factor,

̺ ∼ R2
λ

P 2
rx

C2
D

= R2
λ (Prx

AD

)2 ⋅ (AD

CD

)2 .
Since CD/AD is a constant as soon as the photodiode is manufactured, the required receiver

irradiance Prx/AD is more or less unchanged when the photodiode area increases. On the other

hand, we consider the case that the white noise dominates, which consists of the background

light induced shot noise as well as the white noise caused by the preamplifier. The variance of

the background light induced shot noise is proportional to AD, σ2bg ∼ Pbg ∼ AD. Meanwhile, the

main part of the preamplifier white noise is also proportional to AD, 4kBT
RL
∼ CD = (CD/AD) ⋅

AD ∼ AD. Then the SNR is depending on the following factor,

̺ ∼ R2
λ

P 2
rx

AD

= R2
λ (Prx

AD

)2 ⋅AD.
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As the photodiode area increases by 4 times, the required Prx/AD is decreased by a factor of

two, which indicates a 3 dB gain.

Fig. 8.1 shows the required irradiance at the receiver Prx/AD in mW/mm2 as a function

of the photodiode area AD with respect to Si and InGaAs photodiodes separately, using the

parameters in Table 7.10. All the noise sources, including the ambient light induced shot

noise, signal shot noise as well as the preamplifier noise, are incorporated into our analysis.

Let us first focus on the performance of PIN diodes, which are plotted in solid lines. It shows

that an increase of AD brings almost no gain with respect to the required receiver irradiance.

It clearly illustrates that the PIN photodiodes are f2-noise limited as analyzed in the first case

above. Thereby, the gain due to the increased area of the photodiode is almost compensated

by the increased f2-noise, whose power increases rapidly with the increasing photodiode area

AD. Furthermore, as observed from Fig. 8.1, there is around 3 dB gain when increasing the

photodiode area from 1 mm2 to 4 mm2 for APDs, which verifies that the APDs are constrained

by the white noise. Moreover, when comparing the receiver irradiance of InGaAs PIN to Si

PIN, InGaAs diodes have 12 times larger capacitance per unit area CD/AD than Si PIN while

it exhibits a 0.8 (A/W) / 0.5 (A/W) = 1.6 times larger responsivity. Thereby, there is around

a factor of 12/1.6, i.e., 8.8 dB loss with respect to the required receiver irradiance, which is

observed in Fig. 8.1. For APDs, Si still outperforms its InGaAs counterpart due to the much

larger CD/AD.

To summarize, PIN photodiodes are mainly limited by f2-noise for Gbps transmission while

the receiver sensitivity of APDs are constrained by the white noise. Si outperforms its InGaAs

counterpart and is a good choice for Gbps infrared transmission.

8.2. Link budget for Gbps transmission

In this section, we will investigate the real link budget applying both PINs and APDs for

Gbps infrared system. Let us first take a look at Si PIN operating at 800 nm for 1 m LOS

link configuration, where a single transmitter and single receiver are perfectly aligned to each

other. Both transmitter and receiver are assumed to have 5○ half power angle. The 8B10B

line coding scheme is incorporated into the system and all the noise sources are taken into

account. A typical background light radiance of Lbg = 0.0443 µW/(mm2 ⋅ sr ⋅ nm) at 800 nm

is adopted as demonstrated in Section 7.6.1. Further simulation parameters can be found in

Table 7.10. Around 7 (mW/sr) is observed for Si PIN for establishing a 1 m Gbps LOS link

as shown in Fig. 8.2. There is hardly any difference when increasing the photodiode area since

the PIN photodiode is f2-noise limited.

Since the f2-noise caused by the preamplifier dominates in PIN-based receivers operating

at 1 Gbps, APDs may offer a performance improvement, which depends on the excess noise

factor F (M) of the APD, the received amount of background light Pbg and the amount of

the residual preamplifier noise. The blue solid curve gives the require radiant intensity for Si

APD. We assume that the optimum APD gain Mopt is selected in the range between 1 and
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Figure 8.2.: Required radiant intensity with the photodiode area to obtain a 1 m LOS link,
CD/AD = 60pF/(mm2) for InGaAs diodes

100. Compared to Si PIN, the required radiant intensity of Si APD is decreasing with an

increased photodiode area and it would offer around 10 dB gain for AD = 5 mm2.

The required radiant intensity of InGaAs photodiodes are plotted in red curves in Fig. 8.2,

where a capacitance per unit area of 60 pF/(mm2) is assumed. As seen from Fig. 8.2, InGaAs

PIN has around 9 dB loss due to a much larger CD/AD compared to Si PIN. Furthermore,

InGaAs APD does not outperform its Si counterpart although it has a higher responsivity Rλ

and a reduced background light induced irradiance Lbg at 1300 nm. In other words, there is

not any advantage of InGaAs APD over Si APD, although its price is much higher. Therefore,

Si APD would definitely be a good choice for Gbps infrared transmission.

The result in Fig 8.2 can be easily extended to the link budget estimation for larger distances

d by a further 20 ⋅ log10∣d∣ dB loss. In the simulation, we assume that the transmitter and

receiver are aligned both on-axis. If either the transmitter or receiver is operating in the

half-power-angle instead of on-axis, there is a 3 dB further loss compared to the on-axis case.

To conclude, two statements are obtained. On one side, Si APD exhibits around 6 dB

gain on the average compared to a Si PIN. On the other side, an InGaAS APD counterpart

operating at 1300 nm cannot outperform a Si APD receiver operating at about 750 nm, if the

same photodiode area AD is considered.

Fig. 8.3 gives the receiver sensitivity to obtain a 1 m LOS IR link. The simulation parame-

ters can be found in Table 7.10. It can be seen that the required receive power increases with

the photodiode area due to the rapidly increasing f2 noise in Gbps IR transmission. The PIN
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Figure 8.3.: Receiver sensitivity to obtain a 1 m LOS link,

photodiode does not outperform APDs and there exists around 8 dB loss when comparing

InGaAs PIN to Si PIN. Furthermore, APDs offers further improvements while the Si APD

gives the best performance. Therefore, the Si APD is strongly recommended for Gbps infrared

systems.
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9. Angle Diversity

As described in Chapter 8, a reasonable link budget is achievable for Gbps IR transmission,

where both the transmitter and the receiver have narrow half power angles. A half power angle

of 10○ 1 is used for our investigation. With seven laser diodes at the transmitter and seven

APDs at the receiver at hand, an approximate 30○ system FOV can be obtained. However, it is

impossible to fulfill a 90○ system FOV requirement by using these 7 × 7 system configuration.

Thereby, a 30○ half power angle for each transmitter and receiver element is proposed for

further increasing the angular coverage, which definitely demands much more transmit power

if the data rate Rb and the photodiode area AD remains the same. In this chapter, we first

illustrate the seven elements arrangement in Section 9.1 in order to achieve a 90○ FOV. Based

on this multi-element configuration, the transmit and receive gain is analyzed compared to

a single transmitter and receiver with a wide angle and the link establishment process is

analyzed in Section 9.2. Then depending on the different transmission phases for the link

establishment, the required transmit radiant intensity is presented and a preliminary analysis

on the challenges of achieving a large FOV in Gbps IR transmission is illustrated for a typical

room in Section 9.3. Finally, the demonstrator of OMEGA project is briefly introduced in

Section 9.4, which has been built by our project partner University of Oxford based on our

physical layer design.

9.1. Multi-element configuration

Angle diversity in IR transmission is attainable via either a multi-element or an imaging

transmitter and receiver. Due to the limited resources within OMEGA to fabricate the devices

for imaging transceivers, we choose to use a multi-element transmitter and receiver, where

each laser diode and APD has its own optics. It is assumed that each transmitter and receiver

element exhibits a generalized Lambertian beam profile with a half power angle of 30○. Seven

transmitter and receiver elements are used for demonstration. The elements are arranged as

shown in Fig. 9.1. A central element points straight up. All the other 6 neighboring elements,

each having an elevation of 30○ compared to the central element, are separated by 60○ in

azimuth. To be more specific, the configuration is shown in Fig. 9.2, including two elements

with 30○ elevation as well as a central element each represented by an arrow. According to the

law of cosine, it can be calculated that the angle between these two elements is less than 30○

(marked in green), which ensures that the radiant intensity is always larger than half of the

1All the angles mentioned throughout this chapter are full cone angles.
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Figure 9.1.: Visualization of the transmit and receive beam pattern with 7 elements

peak value even at the edge between any two elements. The radiant intensity distribution is

given in Fig. 9.3. The colorbar provides the normalized radiant intensity to the peak value of

a single transmitter element. It can be larger than one in the middle area due to the overlap

between the seven transmitter elements. It clearly verifies that the obtained radiance intensity

is never less than half of the peak, even between the element edges. In the following, the

advantage of using the 7 narrow angle elements configuration are addressed instead of a single

transmitter and receiver element with a wide angle, in terms of the transmit and receive power

gain, respectively.

Concerning the transmit power gain, a Lambertian source with a radiant intensity of I(θ) =
I0cos

n(θ) is assumed, where I0 = Ptx(n + 1)/(2π) denote the maximum radiant intensity at

θ = 0 and the order n = ln(0.5)/ln(cosθHP) with θHP denoting the half power angle. As shown

in Fig. 9.4, by taking θHP as a reference, the transmitter power gain becomes larger with a

decreasing θHP. When switching θHP from 45○ to 15○, n varies from around 2 to 20 and there

is a factor 7 (8.4 dB) reduction on the required transmit power in the main direction.

The receive power gain is discussed under the assumption that each photodiode with area

AD is equipped with an ideal optical concentrator. We first compare the required optical power

obtained by an APD with 30○ FOV to that with 90○ FOV. When switching the half FOV ψrx

from 45○ to 15○, the received signal power increases by a factor sin2(45○)/ sin2(15○) ≈ 7 due to

the increased detector area Arx = AD ⋅ n2
c

sin2(Ψrx) . With respect to the noise power (background

light induced shot noise dominates in APDs), the received amount of diffusely scattered

background light remains unchanged due to the fact that the detector area gain is compensated

by the reduced FOV, which is given by Pbg = LbgArx sin
2(Ψrx)π with Arx = AD ⋅ n2

c

sin2(Ψrx) . This

can be further illustrated in Fig. 9.5, where the required transmit radiant intensity is plotted

for 1m LOS link with AD = 1 mm2. There is around a factor of 7 reduction on the transmit
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Figure 9.2.: Illustration of the seven element configuration. The central element points
straight up and the six neighboring elements are uniformly placed around the
central element with 30○ elevation. It can be calculated that the angle between
these two elements is less than 30○ (marked in green) to ensure that the radiant
intensity is always larger than half of the peak value even at the edge between
any two elements.

radiant intensity when compare Ψrx = 45○ to Ψrx = 15○. Furthermore, in order to provide 90○

coverage for fair comparison, 7 receiver elements as configured in Fig. 9.1 with narrow angle

are compared to the case of that 7 APDs each having a wide angle of 90○ and pointing in the

same direction. Since the latter case has a factor of
√
7 gain compared to a single APD with

90○ FOV, the effective receive power gain associated with 7 receiver elements is effectively√
7.

9.2. Establishment of a link

Based on the configuration mentioned in Section 9.1, the transmitter and receiver block di-

agram are shown in Fig. 9.6. At the transmitter side, first the IBM 8B10B line encoding is

performed. At each byte clock, 8 data bits at the encoder input are encoded to 10 bits at the

output, which gives a rate of 1.25 Gb/s at the modulator inputs. This line encoding ensures

DC-balance and enough state changes from 0 to 1 and from 1 to 0. These state changes

are required to track the 1.25 GHz line clock at the receiver and to ensure a DC-balanced

transmit signal. At the receiver, APDs are used to increase the receiver sensitivity compared

to PIN photodiodes. All seven input signals are individually amplified by the transimpedance

amplifiers (TIA). After that a first order high-pass (HP) filter is used to ensure an appro-

priate cut-on frequency. A low-pass (LP) filter is then applied for noise rejection. At each

high-pass filter output, an analogue signal named received signal strength indicator (RSSI)

is derived. If one or more RSSI-signals exceed a fixed threshold, which corresponds to the

receiver sensitivity, the one with the maximum RSSI is fed into the clock and data recovering
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Figure 9.3.: Radiant intensity distribution with the proposed seven elements configuration.
The colorbar provides the normalized radiant intensity to the peak value of a
single transmitter element. It can be larger than one in the middle area due
to the overlap between the seven elements. It clearly verifies that the obtained
radiance intensity is never less than half of the peak, even between the element
edges.

circuit (CDR) to accomplish receiver selection. On the other hand, if none of the RSSI-signals

exceeds the threshold, a sequence of “101010 . . .” is fed to the CDR to ensure that the CDR

is always frequency synchronized and that no random bits are produced during idle periods.

Assume that there is only one transmitter and one receiver in the room and both of them

consist of 7 elements as shown in Figure 9.1. Figure 9.7 illustrates the link establishment

process during the beacon period by integration of the MAC layer and the PHY layer. The

MAC layer first adjusts the beacon period start time (BPST) for synchronization and sends a

beacon frame at the BPST. Meanwhile, it informs the PHY layer to start transmission within

the beacon period (BP). As soon as being informed by the MAC layer, the optical wireless

switch (OWS) switches on all the 7 control signals Laser On/Off on the base station and the

transmitter starts transmission towards 7 different directions trying to reach a receiver. In

order to avoid being disturbed by the transmitter’s own reflections of the transmitted signal,

it is advised for the transmitter to stop receiving during the transmission. At the receiver

side, only one element is active at one time and the received signal power is measured by the

received signal strength indicator (RSSI). The OWS controls the 7 receiver elements selection

and 7 RSSIs are obtained. At this point, these RSSIs will be compared to a predefined

threshold. If these obtained RSSIs exceed the threshold, the OWS will select the strongest

RSSI and use it for receiver selection during the data transmission period later on. If not,
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Figure 9.4.: Transmit power gain

none of these 7 received signals will be used for data recovery and a clean signal in the format

of “101010 . . .” will be fed into the input of the multiplexer to keep frequency synchronization.

In the case that there is more than one RSSI exceeds the threshold, the receiver element with

the strongest RSSI is selected for detection, which is called the best receiver element. Then

this best receiver element starts transmission to the transmitter. A similar element selection

procedure is performed at the transmitter and the best transmit element is chosen. After

that the receiver gets the device address (DevAddr) of the best transmitter element from the

MAC layer. Before the receiver sends the acknowledgement (ACK) to this best transmitter

element, it scans the beacon signal for at least 2 superframes. If no further beacon frames are

received, the receiver sends back the ACK to ensure that the link between the receiver and

the transmitter is established. After the receiver element DevAddr is identified by the MAC

layer, the OWS switches off all other 6 Laser On/Off at the transmitter except for the best

transmitter element and starts data transmission to the best receiver element.

Concerning different phases of the link establishment procedure, we now investigate the

power propagation in a typical indoor environment. A typical room dimension of (5 m × 4 m× 3 m) is assumed, where the transmitter is located at the ceiling center (2.5, 2, 3) m with the

transmit power of 1 mW. The receiver moves around the room at 1 m height. The reflection

coefficients are chosen for all walls and the ceiling 0.8 and for the floor 0.3 for the worst case

consideration. Based on the channel model proposed in [BKK+93], 5 reflections are taken into

account in the simulation.

The Rice factor is defined as r = PLOS/Prefl, where PLOS represents the received LOS power

and Prefl denotes the received power from all the reflected components. Fig. 9.8 shows the
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Figure 9.5.: Required transmit radiant intensity for a 1m LOS link

distribution of the Rice factor in dB within the room as the receiver moves around the room.

The black circle indicates the intended FOV illuminated by the transmitter located at the

ceiling center. During the beacon period, a wide beam transmitter with 90○ half power angle

is used, which consists of 7 transmitter elements each having a half power angle of 30○. As

shown in Fig. 9.8(a), the Rice factor is never less than 10 dB within 90○ FOV. Consider

r = 10 dB, the diffused component caused by reflections contains only 1/10 power of the

LOS component. Roughly speaking, this will induce at maximum a factor of 0.2 vertical

eye-opening reduction in the eye diagram concerning the worst case. Detection is possible

in presence of multipath distortion. For the data period transmission, Fig. 9.8(b) illustrates

that the Rice factor is always larger than 15 dB when each pair of the receiver element and

the corresponding well-pointed transmitter element are activated, which implies that almost

all of the received power is contained in the LOS component and the ISI caused by multiple

reflections is not a big issue with this system configuration. To summarize, the multipath

distortion will not cause an obstacle by using angle diversity for Gbps transmission.

9.3. Preliminary analysis on the required radiant intensity per

transmitter element

We consider the best case configuration, where the transmitter is located in the ceiling center

and the receiver is 3 m away straightly under the transmitter, as shown in Fig. 9.9. The trans-

mitter and the receiver are aligned to each other. Suppose that a Si APD with a photodiode

area of 0.6 mm2 is used operating at 800 nm. By incorporating all the system parameters
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(a) Transmitter block diagram

(b) Receiver block diagram

Figure 9.6.: Transmitter and receiver block diagram

in Table 7.10, the required radiant intensity for this best case arrangement would be 120

mW/srad, as shown in Fig. 9.10.

As the receiver moves around, more transmit radiant intensity is required due to the in-

creased transmission distance. At the cell border with 90○ system FOV, the receiver is located

3 m away horizontally compared to the central spot, shown as the dotted receiver block in

Fig. 9.9. In this case, the additional loss is at least 9 dB, where a 3 dB loss is caused by the

increased distance while the additional (2 × 3) dB loss is due to that both the transmitter

and the receiver operate at their half power intensity angles. This means that around 1200

mW/srad on axis radiant intensity is required to cover a 90○ system FOV without including

the link margin, if the vertical separation between the transmitter and the receiver is 3 m. For

a 30° angle, this corresponds to an average optical transmit power of about 360 mW, which

is a big challenge given the current levels of the available transmitter power.
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Figure 9.7.: Link establishment process

To overcome this problem, either the data rate has to be reduced or the photodiode area

needs to be increased. We first consider the effect of the data rate on the required transmit

power. Suppose a Si APD is used, then the shot noise dominates and its power increases

proportionally with Rline, i.e., σ2n ≈ N0I2Rline. Given the BER, a factor of 2 reduction on

Rline will bring a factor of
√
2 gain with respect to the required transmit power. On the other

hand, when we increase the photodiode area AD, both the received signal power Prx and the

noise variance σ2n increase with AD. Thereby, a factor of 2 increment on AD will cause a factor

of
√
2 on the required Prx and thus a factor of

√
2 gain on the required transmit power due

to the fact that the required transmit power is proportional to the required receive power and

that the required receive power is inversely proportional to the photodiode area.
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Figure 9.8.: Rice factor distribution in a typical room

9.4. Demonstrator

Within the OMEGA project, we at TU Ilmenau had been responsible for the physical layer

design 2 for the 1 Gbps IR system. Based on our analysis and through intense cooperation with

our partners, a 1 Gbps IR demonstrator was successfully built at the University of Oxford

[MOF+10, OMF+10]. In the interest of time and cost, a three channel demonstrator was

fabricated, achieving 1.25 Gb/s over a 3 m range and a coverage area of 1.3 m × 0.45 m with

no forward error coding. The angle diversity is used at both the transmitter and the receiver,

where the sub-sector half power angles are 5○. The 825 nm transmitter consists of 3 differently

aligned lasers, each equipped with a holographic diffuser. The receiver uses 3 differently

aligned 0.2 mm2 Si APDs, each equipped with a lens offering a gain of 130 (linear scale).

Without the background light, a sensitivity of -35 dBm was achieved. The demonstration

clearly shows the possibility of optical indoor transmission at 1 Gbps. However, it emphasizes

that a compact and lightweight angle diversity concept, which provides a large system FOV

as required for networks, is really challenging to built [OTM+11, OTM+12].

2Physical layer design includes modulation, line coding, filter design, link budget analysis, etc. The optical
elements are designed by our partner University of Oxford.
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Figure 9.9.: The best case configuration, where the transmitter is located in the ceiling center
and the receiver is 3 m away straightly under the transmitter.The transmitter
and the receiver are aligned to each other.
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Figure 9.10.: Required radiant intensity for the transmission distance of 3 m
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10. Conclusions and future work

In this thesis, we consider advanced signal processing for wireless communications at very

high data rates, which consists of two application areas of high speed signal processing in the

radio frequency (RF) and the infrared (IR) bands.

10.1. Part I: Sharing Physical Resources (SAPHYRE)

In the first part of this thesis, the concept of sharing the radio spectrum and the infrastructure

between multiple operators is illustrated, which is within the vision of the European’s seventh

framework research project SAPHYRE (www.SAPHYRE.eu).

To start, the SAPHYRE concept is addressed. Two topologies are discussed that are de-

fined within the scope of SAPHYRE. We first give an overview for the spectrum sharing

only scenario. Following that, the model including both spectrum and infrastructure (relay)

sharing is introduced. More specifically, we consider the relay assisted communication be-

tween multiple operators and various relaying operation modes are compared and discussed.

Finally, to clearly illustrate the advantage of the sharing schemes compared to the traditional

exclusive use of the physical resources, the SAPHYRE sharing gain is defined in terms of both

spectral efficiency as well as power efficiency, which are used as a main performance metric

in the following chapters, i.e., from Chapter 3 to Chapter 5.

Chapter 3 discusses precoding design for the non-orthogonal spectrum sharing between

multiple operators. The downlink of the spectrum sharing scenario is considered, where two

base stations (BSs) of different operators transmit over the same spectrum, each dedicated

to its own user terminal (UT). Multiple antennas are employed at the BSs and UTs. This

scenario is modeled as the interference channel with several concurrent point-to-point trans-

missions interfering with each other. We view this scenario as a special case of voluntary

spectrum sharing in SAPHYRE. Two closed-form transmit beamforming schemes, i.e., block

diagonalization (BD) for the interference channel (IC) and regularized block diagonalization

(RBD) for the IC are first developed for this scenario. On as basis of that, a more flexible

beamforming algorithm named flexible coordinated beamforming for the interferen channel

(IC FlexCoBF) [KGH+11, LKK+11] is designed to further enhance the system spectrum effi-

ciency, which can be applied for any transmit and receive antenna configuration. Simulation

results reveal that the proposed IC FlexCoBF improves the spectral efficiency dramatically

compared to the state of the art work and a large sharing gain is observed by non-orthogonal

spectrum sharing instead of an exclusive use of the spectrum.

Chapter 4 investigates relay assisted communications, where both the spectrum and an

amplify and forward (AF) relay are shared between multiple operators without taking into
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account the direct link between the BSs and the UTs. We propose several algorithms for the

relay precoder design to further improve the system performance.

• Firstly, a set of algorithms named efficient relay sharing rate maximization (EReSh-RM)

[LRH11a] is designed to improve the system sum rate under the relay transmit power

constraint for both the single stream transmission and multiple stream transmission.

• Secondly, the relay precoder design is systematically studied for power efficient trans-

mission, where an optimum algorithm and several suboptimal solutions are proposed.

A special case is studied that the BSs and the UTs are equipped with single antennas,

where only single stream transmission is possible. A global optimum solution is firstly

derived, which uses a convex optimization tool to exploit the structure of the relay pre-

coder. Taking this method as well as the work [LP10] as benchmarks, two suboptimal

algorithms named efficient relay sharing power minimization (EReSh-PM) [LRH11a] and

block diagonalization single channel algebraic norm maximization (BD/SC-ANOMAX)

are proposed to find a compromise between the achievable power efficiency and the

computational complexity, which are based on zero-forcing and block diagonalization

techniques for interference mitigation. Both of them are closed-form solutions and no

iteration is required. Compared to the optimum solution, both suboptimal algorithms

achieve almost the same good performance and have only a degradation of 1 dB for the

case that the number of relay MR = 4 and the SINR constraint at each UT is 0 dB.

Hence, EReSh-PM and BD/SC-ANOMAX methods are strongly recommended due to

their extremely low computational complexity. Following that, the SAPHYRE sharing

gain is investigated in terms of the required relay transmit power. In the case of two

operators with MR = 8, there is a 2 dB gain by sharing the spectrum and a 6 dB gain

is observed by both the spectrum and relay sharing compared to the exclusive use of

these physical resources.

• Third, a novel robust relay precoder design is proposed by considering imperfect channel

state information (CSI) at the relay. In the case of two operators with MR = 8 and the

CSI error variance σE = σF = 0.1, there is a gain of around 5 dB by the shared use of the

spectrum between the two operators at high SNRs. An additional 2 dB gain is obtained

by an additional sharing of the relay compared to the exclusive access of the relay with

half of the number of relay antennas.

• At last, we extend our study to the case where each pair of BSs and UTs are equipped

with multiple antennas and a novel relay matrix design is derived for multiple stream

transmission between multiple pairs of BSs and UTs. An effective algorithm is proposed

to achieve power efficiency for multiple stream transmission in a multiple operator AF

relay sharing system. The inter-operator interference is first removed by using a zero-

forcing method. Following that, the relay precoder is designed using the convex opti-

mization tool. Simulation results show that the SINR requirement per stream can be

always satisfied. As a continuous work, it would be interesting to investigate the relay

amplification matrix design under imperfect channel state information at the relay.

• Considering future work, it would be an open problem to investigate the joint precoding

design of the BSs and the AF relay either to maximize the system sum rate or minimize
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the required total power consumption. Furthermore, it would be interesting to see the

results by including a path loss model into this system and a systematic study about

the impact of relay transmit power and the relay location on the system performance

would be useful.

Furthermore, when the direct link is not negligible, we study another spectrum and relay

sharing scenario in Chapter 5, named interference relay channel (IRC). We consider the linear

precoding design for the AF relaying strategy assuming multiple antennas employed at all BSs,

UTs, and the AF relay. Two cases are studied, categorized into single stream and multiple

stream transmission.

• For the single stream transmission, we first consider the conversion of the interference

relay channel (IRC) to the interference channel (IC), where we propose to use the DFT

matrix as the relay amplification matrix. After that we recommend the precoding

method IRC FlexCoBF at the BSs, which achieves a better sum rate performance com-

pared to the state-of-the-art work coordinated zero-forcing beamforming (CoZF) as well

as eigen-beamforming [CHHT12]. Simulation results also show that IRC FlexCoBF is

more robust to the interference. Last but not least, the sum rate performance of the IRC

is compared to the relay channel and there exists a large sharing gain, which strongly

supports the use of a shared spectrum and the relay instead of operating in the time

division multiple access (TDMA) mode.

• For the multiple stream transmission, two AF relaying strategies are investigated first

for the conversion from the IRC to the interference channel, of which the DFT matrix

is recommended as the relay amplification matrix due to its simplicity. After that we

propose the precoding algorithm IRC FlexCoBF with RBD at the BSs, which achieves

a better sum rate performance compared to the approach in [DI03]. Furthermore, sim-

ulation results show that the IRC FlexCoBF RBD is more robust to strong interference

than the approach in [DI03]. In addition to this, the sum rate performance of the IRC

is compared to the relay channel and there exists a large sharing gain, which indicates

the advantage of the use of a relay shared by two base stations instead of accessing the

relay in the time division multiple access (TDMA) mode.

• As for the future work, it is interesting to study the precoding design to achieve the

power efficiency of this system.

10.2. Part II: hOME Gigabit Access (OMEGA)

In the second part of this thesis, the physical layer design for a high speed infrared (IR) system

in an indoor environment is developed, which is within the scope the European Union’s FP7

project OMEGA (www.ict-omega.eu). We focus on line of sight (LOS) data transmission

using IR wavelengths. The physical layer analysis of integration and feasibility investigation

of a Gbps IR system is presented. The system consists of a base station located at the ceiling

and terminals that move around at the ground. Both transmitters and receivers are build
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with seven elements in the demonstrator [MOF+10, OMF+10], where each element covers a

relatively narrow field of view (FOV) and together a data link with a wide FOV is created.

In Chapter 7, the system model of the high speed IR transmission is introduced, where

individual components suitable for Gbps IR system are analyzed and specified. In particular,

we choose a non-return-to-zero (NRZ) on-off-keying (OOK) modulation scheme appropriate

for the Gbps IR transmission due to its simplicity for the laser driver. Concerning the baseline

wander effect that is induced by the AC-coupling inherent in the receiver’s preamplifier, we

propose a novel line coding named as concatenated flipped bit insertion (CFBI) code [LWH09].

Compared to the classic IBM code [WF83], the CFBI code offers a comparable susceptibility

to the transient baseline wander effect while it is much easier to implement due to a very

simple logic. Following that, the implementation of a 5th order Bessel low-pass filter is

specified for noise rejection. Moreover, we discuss the selection of the first order RC high-

pass filter for the Gbps IR system, which is applied to block the DC photocurrent generated

by the received ambient light as well as to reduce the harmonics caused by the fluorescent

lighting. After that the photodiode detectors for high speed IR transmission are discussed,

including PIN photodiodes and the Avalanche photodiodes (APDs). Last but not least, it is

important to analyze various noise sources generated in the IR system, including shot noise

and thermal noise with constant power spectrum density (PSD), as well as the f2 noise whose

PSD increases with the square of the frequency.

Based on this analysis and the specification of the individual components, the receiver sen-

sitivity with PIN and APD photodiodes and the link budget for the Gbps IR transmission

with a narrow angle FOV are given in Chapter 8. Simulation results show that PIN photodi-

odes are mainly limited by the f2-noise for Gbps transmission while the receiver sensitivity

of APDs are constrained by the white noise. Further, PIN photodiode does not outperform

APDs and there exists approximately an 8 dB loss in the receiver sensitivity when compar-

ing InGaAs PIN photodiodes to Si PIN photodiodes in order to obtain a 1 m Gbps IR link.

Moreover, APDs offers further improvement while the Si APD gives the best performance.

Therefore, the Si APD is strongly recommended for Gbps infrared system.

At last, the transmit and receive angle diversity are discussed in Chapter 9 in order to

further extend the system FOV. We first discuss the configuration of the seven transmit or

receive elements to ensure that the radiant intensity is always larger than half of the peak value

even at the edge between any of two elements. Based on this configuration, the advantage

of using the seven narrow angle elements configuration is addressed compared to a single

transmit and receive element with a wide angle, in terms of the transmit and receive power

gain, respectively. Following that, the link establishment process is illustrated. Finally, a

preliminary analysis is given on the required radiant intensity per transmit element, which

addresses a big challenge on the required average optical transmit power. To overcome this

problem, either the data rate has to be reduced or the photodiode area needs to be increased.

As a continuous work, due the challenging system FOV requirement for Gbps infrared

system, it is reasonable to build a low-cost high speed indoor infrared system balancing

between the data rate and the FOV.
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Acronyms

AF amplify and forward

ANOMAX algebraic norm maximization

APD Avalanche photodiode

BC broadcast channel

BD block diagonalization

BER bit error rate

BJT bipolar junction transistor

BS Base station

CDP codeword disparity

CSI channel state information

DF decode and forward

DFT Discrete Fourier Transform

FFR fractional frequency reuse

FOV field of view

Gbps Gigabits per second

HPF high-pass filter

IC interference channel

InGaAs Indium-Gallium-Arsenic

IR infrared

IRC interference relay channel

ISI inter-symbol-interference

MAC multiple access channel

MIMO multiple-input multiple-output

MMSE minimum mean square error

MRC maximum ratio combing

NRZ non-return-to-zero

OMEGA hOME Gigabit Access
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OOK on-off-keying

PIN positive-intrinsic-negative photodiode

PSD power density spectrum

P2P point-to-point

QoS quality of service

RBD regularized block diagonalization

RF radio frequency

RSSI received signal strength indicator

SAPHYRE ShAring PHYsical REsources

Si silicon

SINR signal to interference plus noise ratio

SNR signal to noise ratio

SVD singular value decomposition

TDMA time division multiple access

UT user terminal

ZF zero forcing

ZMCSCG zero-mean cyclic symmetric complex Gaussian
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Notation

a Vector

A Matrix

AT Transpose of a matrix A

A∗ Complex conjugate of a matrix A

AH Hermitian transpose of a matrix A

A−1 Inverse of a matrix A

A+ Pseudo inverse of a matrix A

∣a∣ Absolute value of a scalar a

∥a∥2 Euclidean norm of a vector a

∥A∥F Frobenius norm of a matrix A

tr(A) Trace of a matrix

vec(A) Vectorization of a matrix A

rank(A) Rank of a matrix A

IM×N Identity matrix of size M ×N
0M×N M by N matrix with all entries equal to zero

1M×N M by N matrix with all entries equal to one

Ai,j The (i, j)-th entry of a matrix A

A⊗B Kronecker product of matrices A and B

R Set of real numbers

C Set of complex numbers

CN (0, σ2n) Complex normal distribution with zero mean and variance σ2n

E(⋅) Expectation of a random variable
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