TEXAS BOARD OF WATER ENGINEERS

Durwood Manford, Chairman R. M. Dixon, Member O. F. Dent, Member

BULLETIN 6013

GEOLOGY AND GROUND-WATER RESOURCES OF GRAYSON COUNTY, TEXAS

By

E. T. Baker, Jr., Geologist United States Geological Survey

Prepared in cooperation with the United States Geological Survey and the City of Sherman

September 1960

.TX DOC W 700.7 B936 No. 6013

TABLE OF CONTENTS

Abstract	l
Introduction	3
Location and Extent of Area	3
Purpose and Scope of the Investigation	3
Methods of Investigation	3
Economic Development	5
Previous Investigations	7
Acknowledgments	7
Physiography and Drainage	7
Climate	9
Geology	12
Geologic History	12
General Stratigraphy and Structure	12
Rocks Units and Their Water-Bearing Properties	16
Pennsylvanian Rocks, Undifferentiated	16
Cretaceous System	17
Comanche Series	17
Trinity Group, Undifferentiated	17
Fredericksburg Group	21
Walnut Clay	21
Goodland Limestone	27
Kiamichi Formation	27
Washita Group	27
Duck Creek Formation	28
Fort Worth Limestone	28
Denton Clay	28
Weno Clay	29

Pa	ge

Pawpaw Formation	29
Main Street Limestone	31
Grayson Marl	32
Gulf Series	32
Woodbine Formation	32
Eagle Ford Shale	33
Austin Chalk	35
Quaternary System	36
Pleistocene and Recent series, undifferentiated	36
Alluvium	36
Ground Water	37
Occurence and Movement	37
Recharge	38
Discharge	40
Natural	40
Artificial	42
Fluctuations of Water Levels	43
Trinity Group	43
Woodbine Formation	45
Water-Bearing Formations	46
Trinity Group	46
Hydraulic characteristics	46
Future development	49
Woodbine Formation	51
Hydraulic characteristics	51
Future development	54
Other Formations	58

Page

Use of Ground Water	58
Domestic and Stock	58
Public Supply	58
Industry	59
Irrigation	59
Quality of Water	59
Trinity Group	64
Woodbine Formation	64
Other Formations	65
Summary and Conclusions	65
References Cited	67

TABLES

1.	Stratigraphic units and their water-bearing properties, Grayson County, Texas	15
2.	Yields and specific capacities of selected wells in the Trinity group, Grayson County, Texas	47
3.	Coefficients of transmissibility, permeability, and storage determined from pumping tests on selected wells in the Trinity group, Grayson County, Texas	48
4.	Yields and specific capacities of selected wells in the Woodbine formation, Grayson County, Texas	53
5.	Coefficients of transmissibility, permeability, and storage determined from pumping tests on selected wells in the Woodbine formation, Grayson County, Texas	53
6.	Comparison of quality of ground water in Grayson County with standards recommended by U. S. Public Health Service and with others	63
7.	Records of wells and springs in Grayson County, Texas	69
8.	Water levels in wells in Grayson County, Texas	92
9.	Drillers' logs of wells in Grayson County	99
10.	Analyses of water from wells and springs in Grayson County	143

ILLUSTRATIONS

Figures

		Page
1.	Map of Texas showing location of Grayson County	4
2.	Location of wells in Sherman, Grayson County, Texas	6
3.	Map of north-central Texas and south-central Oklahoma showing physiographic provinces	8
4.	Monthly precipitation and temperature at Sherman, 1912-58, and evaporation at Denison Dam, 1940-58	10
5.	Annual precipitation at Sherman, Texas	11
6.	Geologic section A-A', Grayson County, Texas	13
7.	Geologic map showing outcrop of Woodbine formation and Trinity group in Grayson County and surrounding area, and location of observation wells in Cooke and Montague Counties, Texas	
8.	Altitude of the top of the Trinity group, Grayson County, Texas	20
9.	Geologic section B-B', Grayson County, Texas	23
10.	Geologic section C-C', Grayson County, Texas	25
11.	Altitude of the top of the Woodbine formation, Grayson County, Texas	34
12,	Fluctuation of water levels in wells in the outcrop of the Woodbine formation and Trinity group, Grayson, Cooke, and Montague Counties, Texas	39
13.	Fluctuation of water levels in well B-2 and in Lake Texoma, and precipitation at Denison Dam, Grayson County, Texas	41
14.	Fluctuation of water levels in wells in the Woodbine formation and Trinity group at Sherman, Grayson County, Texas	44
15.	Theoretical drawdown due to pumping 100 gpm from an infinite aquifer (Trinity group)	50
16.	Thickness of fresh-water-bearing sand in the Trinity group, Grayson County, Texas	52
17.	Theoretical drawdown due to pumping 100 gpm from an infinite aquifer (Woodbine formation)	55

18.	Thickness of fresh-water-bearing sand in the Woodbine		
	formation, Grayson County, Texas	57	
19.	Composition of ground water, Grayson County, Texas	62	

Plates

1.	Geologic map of Grays	on County,	Texas,	showing location	
	of wells and springs			1	53

Page

OF GRAYSON COUNTY, TEXAS

ABSTRACT

Grayson County in north-central Texas is near the north edge of the Gulf Coastal Plain. The county has an area of 927 square miles and had an estimated population of 79,500 in 1957. The major town is Sherman, which has an estimated population of 31,000. The northern two-thirds of the county is drained by tributaries of the Red River; the southern third is drained by tributaries of the Trinity River.

Sedimentary rocks exposed at the surface in Grayson County are of Cretaceous and Quaternary age. Sand, clay, marl, and limestone of Cretaceous age, having a miximum thickness of about 3,600 feet, underlie the county, the beds dipping regionally to the southeast. Quaternary alluvium mantles part of the surface along the Red River and occurs in scattered patches elsewhere in the county.

The Trinity group and Woodbine formation of Cretaceous age are the principal water-bearing formations. Other stratigraphic units that yield water to wells are the Quaternary alluvium and the Pawpaw formation, Eagle Ford shale, and Austin chalk of Cretaceous age.

Ground water in Grayson County generally moves eastward and southward from areas of recharge to areas of discharge. Average rates of water movement in the Trinity group and Woodbine formation are estimated to be about 1.5 and 15 feet per year, respectively. The chief source of recharge to these aquifers is precipitation on the outcrop, although Lake Texoma contributes some recharge to the Trinity where it crops out in the lake. Ground-water discharges naturally by evapotranspiration, by vertical leakage, through springs, artificially through wells and by underflow out of the county to the southeast.

The withdrawal of ground water in Grayson County in 1957 was about 5 million gallons per day. Of this amount about 61 percent came from the Woodbine formation, about 36 percent from the Trinity group, and about 3 percent from the other water-bearing formations. Approximately 65 percent of the ground water pumped in Grayson County is withdrawn in the Sherman area.

Increased withdrawal of water since World War II has resulted in a rapid decline of the water levels in parts of Grayson County. The maximum decline in the Trinity group at Sherman from 1945 to 1958 was 113 feet, or about 8 feet per year. During the same period water levels in the Woodbine formation at Sherman declined as much as 156 feet, an average of 12 feet per year. Total declines since the early part of the 20th century were at least 180 feet in the Trinity group and about 240 feet in the Woodbine formation. Water levels in the area of outcrop of the principal aquifers, fluctuating chiefly in response to rainfall or changes in the natural rate of recharge, showed no appreciable decline from 1957 to 1959. Coefficients of transmissibility, determined from pumping tests in Grayson County, averaged 2,800 gpd (gallons per day) per foot for the Trinity group and 3,200 gpd per foot for the Woodbine formation.

Results of chemical analyses of water samples indicate that the ground water in Grayson County is suitable for most purposes. The Trinity group generally yields soft water that is high in sodium-bicarbonate content and of questionable quality for irrigation. The water from the Woodbine formation ranges more widely in chemical composition than the water from the Trinity. It generally is soft but high in iron content; it is usually suitable for irrigation in the outcrop area but unsuitable in the downdip area. Water from the other water-bearing formations, though generally hard, is suitable for most purposes judging from the few analyses available.

The ground-water resources of Grayson County have been only partly developed. The volume of fresh water in transient storage in the Trinity group and Woodbine formation is estimated to be about 60 and 25 million acre-feet, respectively. Most of this water is not practicably recoverable because of the depth at which it occurs, but relatively high artesian heads and large available drawdowns in much of the county are favorable to future development within economic limits of pumping lift. In the Sherman area, however, concentrated pumping has caused large declines in the water levels, resulting in some dewatering of the Woodbine. Because of the large margin of safety before dewatering of the Trinity group begins, the Trinity is the most favorable source of additional ground water for Sherman. However, the higher lifting costs should be considered.

Large to moderate amounts of additional ground water can be obtained from the Trinity group and Woodbine formation in most presently undeveloped areas in the county. Water suitable for irrigation is available in moderate to large amounts from the Woodbine formation in places on its outcrop. A limiting factor to any major ground-water development, however, is the extent and thickness of saturated fresh-water sands available. The thickness of saturated fresh-water sand in the Trinity decreases northward; the thickness of the sands in the Woodbine is more erratic and has little definite pattern.

Additional supplies of water may be available from the alluvium near the Red River, but more information is needed before definite conclusions can be reached.

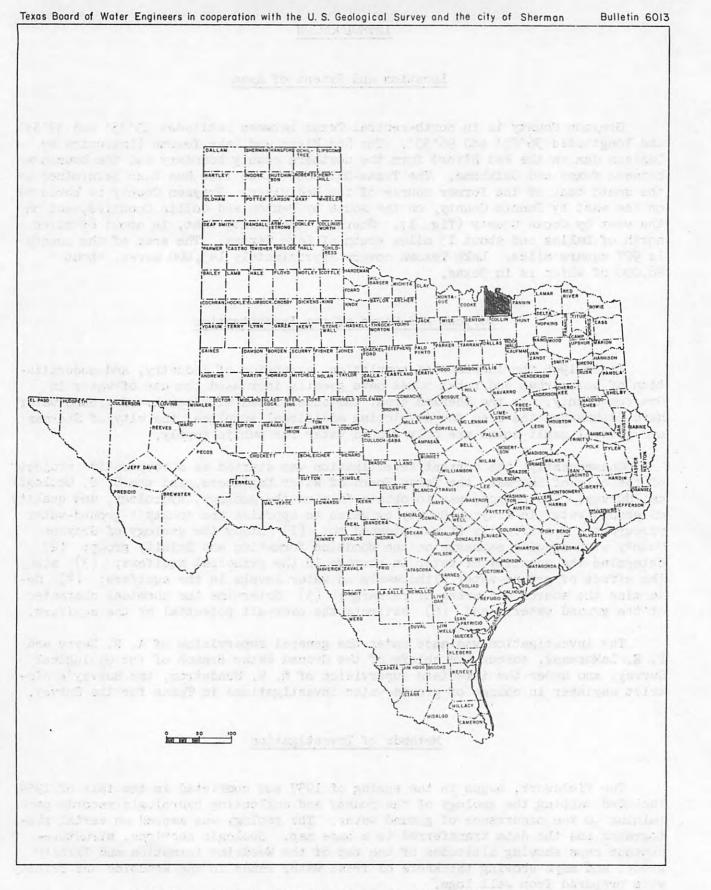
INTRODUCTION

Location and Extent of Area

Grayson County is in north-central Texas between latitudes 33°25' and 33°55' and longitudes 96°25' and 96°55'. The Red River and Lake Texoma (impounded by Denison dam on the Red River) form the northern county boundary and the boundary between Texas and Oklahoma. The Texas-Oklahoma State line has been determined as the south bank of the former course of the Red River. Grayson County is bordered on the east by Fannin County, on the south by Denton and Collin Counties, and on the west by Cooke County (fig. 1). Sherman, the county seat, is about 65 miles north of Dallas and about 15 miles south of Lake Texoma. The area of the county is 927 square miles. Lake Texoma covers approximately 143,000 acres, about 26,000 of which is in Texas.

Purpose and Scope of the Investigation

Since 1945 the increase of population, expansion of industry, and modernization of both urban and rural homes have greatly increased the use of water in Grayson County. In the Sherman area, the accelerated withdrawals of ground water have emphasized the need for developing additional supplies; the city of Sherman and several small towns use only ground water for public supply.


Consequently, the current investigation was started as a cooperative project of the city of Sherman, the Texas Board of Water Engineers, and the U. S. Geological Survey. Its purpose was to obtain data on the geology, hydrology, and quality of ground water in Grayson County by which to appraise the county's ground-water resources. Specifically it was planned to: (1) study the geology of Grayson County with special emphasis on the Woodbine formation and Trinity group; (2) determine the quantity of water in storage in the principal aquifers; (3) study the effect of ground-water withdrawals on water levels in the aquifers; (4) determine the source and areas of recharge; (5) determine the chemical character of the ground water; and (6) estimate the over-all potential of the aquifers.

The investigation was made under the general supervision of A. N. Sayre and P. E. LaMoreaux, successive chiefs of the Ground Water Branch of the Geological Survey, and under the immediate supervision of R. W. Sundstrom, the Survey's district engineer in charge of ground-water investigations in Texas for the Survey.

Methods of Investigation

The fieldwork, begun in the spring of 1957 and completed in the fall of 1959, included mapping the geology of the county and collecting hydrologic records pertaining to the occurrence of ground water. The geology was mapped on aerial photographs and the data transferred to a base map. Geologic sections, structurecontour maps showing altitudes of the top of the Woodbine formation and Trinity group, and maps showing thickness of fresh water sands in the Woodbine and Trinity were prepared from well logs.

The hydrologic records include an inventory of 333 wells (table 7), drillers' logs of 54 wells (table 9), electric logs of many wells, and chemical analyses of

FIGURE I. - Map of Texas showing location of Grayson County

water from 219 wells and 2 springs (table 10). The locations of the wells are shown on plate 1 and figure 2. For purposes of numbering the wells the county has been divided into 10-minute quadrangles, which are lettered alphabetically from the northwest corner of the county in a west-to-east, north-to-south progression. The wells are then numbered consecutively within each quadrangle. A line above the well number on the maps (pl. 1 and fig. 2) indicates that a chemical analysis of water from the well is given in table 10. Analyses of water samples from Lake Texoma and Lake Randell also are included in table 10. The chemical analyses, unless otherwise indicated, were made in the laboratory of the Geological Survey in Austin, Texas.

Periodic water-level measurements were made in 18 wells and hydrographs of selected wells were prepared to show the fluctuations of water level. A continuous water-level record of well B-2 was obtained with a recording gage, showing the fluctuations of water level caused by the rise and fall of Lake Texoma.

Pumping tests were made on 16 wells in Grayson County to determine the hydrologic characteristics of the principal aquifers. Pumpage was estimated according to the several uses of the water: public supply for cities, towns, and communities for which a record of water consumption was available; industrial for plants having their own wells; domestic; and stock. No estimate was made of pumpage for irrigation, as only about 150 acres was irrigated in Grayson County in 1959.

Economic Development

The cities of Sherman and Denison are the industrial centers of Grayson County. Industrial plants in Sherman manufacture textiles, garments, milk products, cottonseed oil, cotton-oil refined products, iron and foundry products, steel and wire products, cotton-gin machinery, building materials, boats, pipes, and oil-well supplies. There are also meat-packing plants, railroad shops, and oil refineries. Denison has diversified industry, including the manufacture of textiles, garments, furniture, mattresses, air-conditioning equipment, dairy products, oleo-margarine, salad dressing, peanut butter, and livestock feed.

Farming, livestock raising, and dairying are successful in Grayson County because of good soils and favorable climate. The total farm income in 1954 was about \$8,500,000, 59 percent of which was received from crops, 30 percent from dairy products, and 11 percent from livestock. Wheat, cotton, corn, oats, grain sorghums, and hay are the principal crops in the southern part of the county; peanuts and truck crops are grown extensively on the sandy soils in the western and northern parts.

The production of oil and gas from fields near Sherman and in the western part of the county is an important source of income. The total oil production in the county from the discovery date through 1958 was about 58,000,000 barrels. The production in 1958 was 6,790,201 barrels, according to records of the Texas Railroad Commission.

The county population, estimated to be 79,500 in 1957, is concentrated in urban areas, about 73 percent being in Sherman and Denison. The population of Sherman increased from 20,150 in 1950 to about 31,000 in 1957, and the population of Denison from 17,500 to 27,800. Ground water supplies the municipal and nearly all the industrial, domestic, and stock needs of the Sherman area, but Denison obtains its municipal supply from Lake Randell and Lake Texoma. The following towns use ground water for their public supplies: Whitesboro,

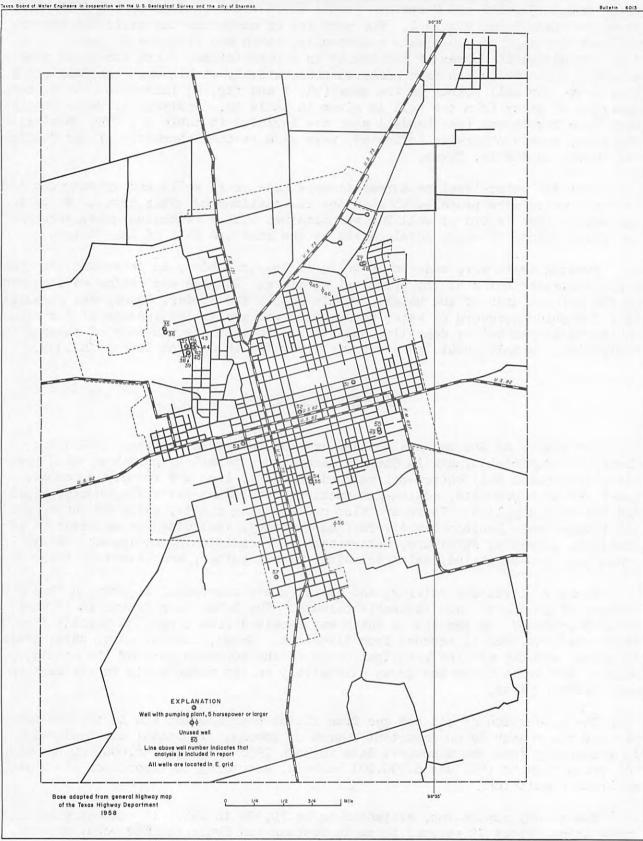


FIGURE 2.-Location of wells in Sherman, Grayson County, Texas

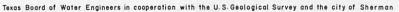
population 1,850; Van Alstyne, 1,649; Whitewright, 1,372; Bells, 614; Howe, 572; Collinsville, 561; Tioga, 529; Gunter, 463; Pottsboro, 383; and Tom Bean, 286.

Perrin Air Force Base, between Sherman and Denison, obtains its water supply from ground water obtained from wells at the base, and from surface water purchased from the city of Denison.

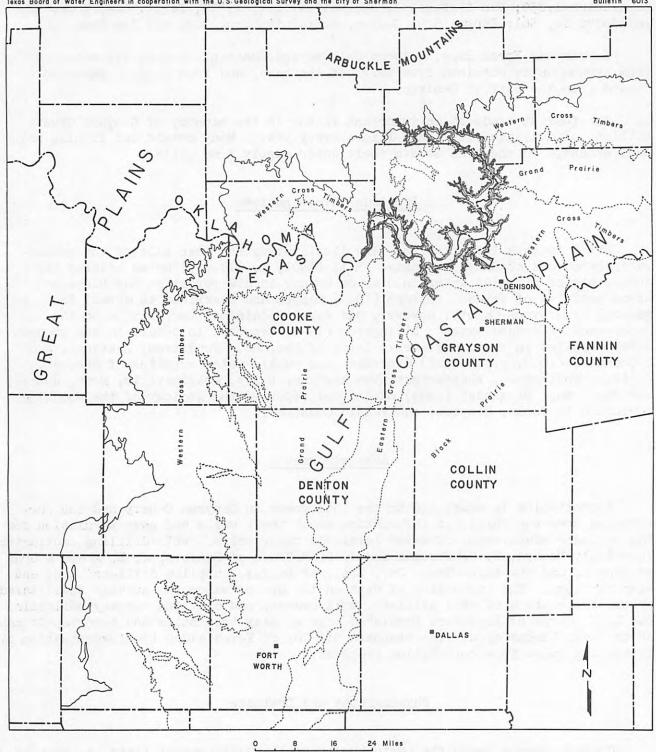
The tourist trade is an important factor in the economy of Grayson County. Millions of tourists visit Lake Texoma every year. Many motels and fishing and trailer camps in the area obtain their water supply from wells.

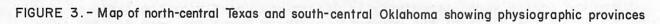
Previous Investigations

Prior to this investigation very little study had been made of the groundwater resources of Grayson County. Hill (1901, p. 614-627) noted briefly the occurrence of artesian water in Grayson County in his report on the Black and Grand prairies of Texas. Bullard (1931) mapped and described in detail the geology of Grayson County; however, his report contained very little on the occurrence of ground water. Livingston (1945) reported in detail on the groundwater supplies in the immediate vicinity of Sherman. Sundstrom, Hastings, and Broadhurst (1948, p. 109-116) described the public water supplies of Sherman, Denison, Whitesboro, Whitewright, Van Alstyne, Bells, Collinsville, Howe, Gunter, and Tom Bean. Bergquist (1949) mapped and reported the geology of the Woodbine formation in Cooke, Grayson, and Fannin Counties.


Acknowledgments

Appreciation is expressed to the landowners in Grayson County and the surrounding area who furnished information about their wells and gave permission for the periodic measurement of water levels in their wells. Well-drilling contractors, especially Messrs. E. C. Freeman and J. L. McClure of Denison, J. L. Myers & Sons of Denton, and the Layne-Texas Co., Ltd., of Dallas, supplied drillers' logs and electric logs. The collection of data on the use of water was greatly facilitated by the cooperation of well drillers, well owners, and city and company officials. The U. S. Corps of Engineers furnished logs of many test holes and topographic maps of the Lake Texoma area. The Standard Oil Co. of Texas aided the investigation by discussing subsurface correlation problems.


Physiography and Drainage


Grayson County, near the north border of the Gulf Coastal Plain, is part of a dissected region whose topography is determined chiefly by the types of rock outcrops. On the basis of the outcrops, northern Texas has been divided into physiographic belts which generally coincide with geologic units. The various belts in Grayson County are shown on figure 3.

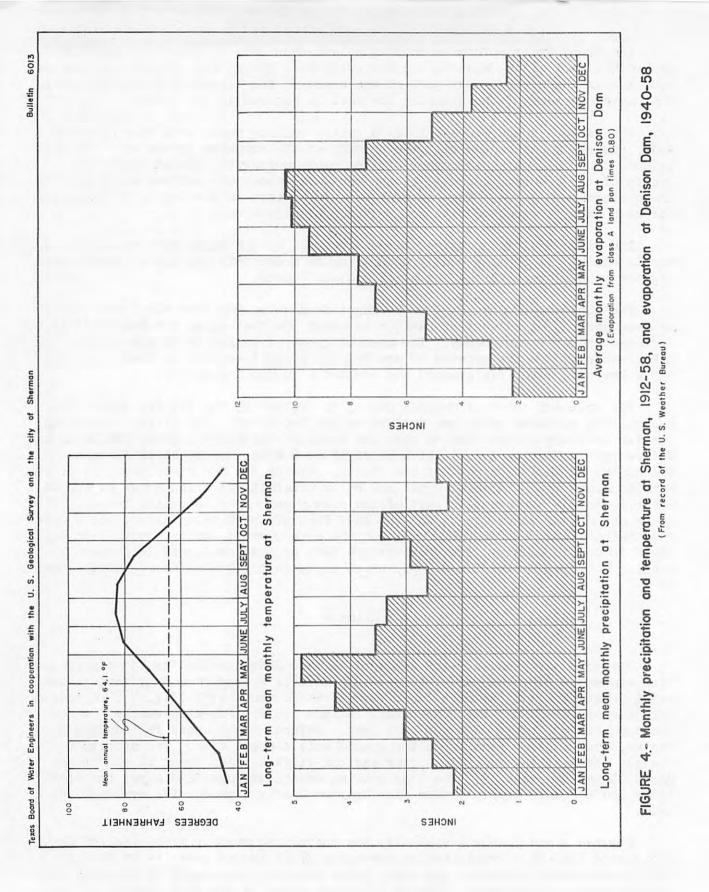
In the northwestern corner of the county the narrow belt known as the Western Cross Timbers occupies the outcrop area of the Trinity group. The belt parallels the shore of Lake Texoma and is characterized by rugged topography marked by deep, steep-walled ravines. The sandy soil supports a growth of post oak and blackjack oak.

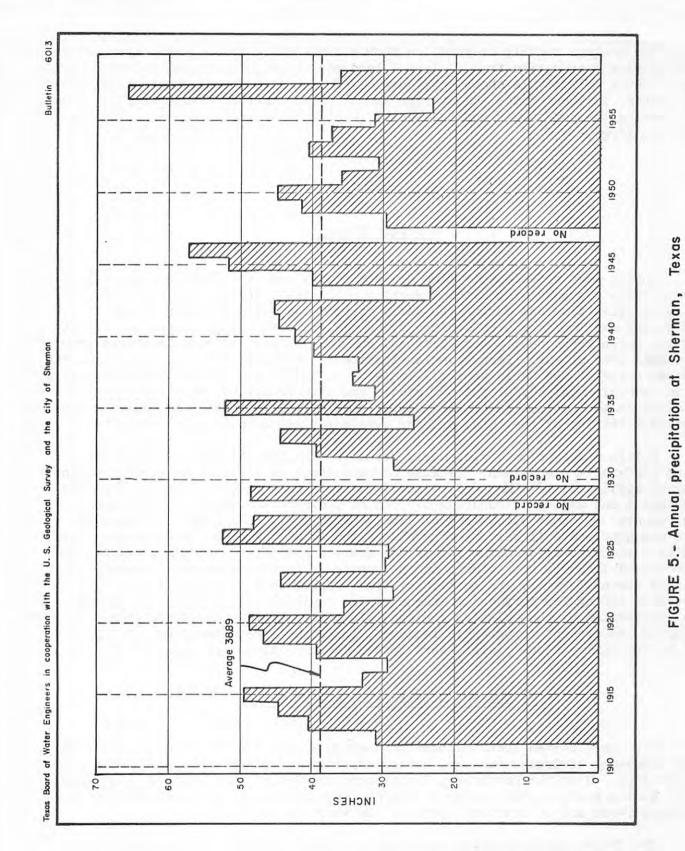
Bulletin 6013

The Grand Prairie forms a rolling upland underlain by resistant limestone and softer marl of the Washita and Fredericksburg groups and extends in a narrow belt across the northernmost part of the county. The limestone forms the nearly flat upper surface of the prairie; the marl is exposed in the slopes.

The Eastern Cross Timbers forms a gently rolling sandy belt about 2 miles wide, generally coinciding with the outcrop of the Woodbine formation. The belt extends from the southwest corner of the county northward through the entire length of the county; thence it swings eastward across the extreme north-central and northeastern parts. The western part of the belt is devoted to farming; the northern part is forested with post oak and blackjack oak.

The Black Prairie occupies the outcrop area of the Eagle Ford shale and the Austin chalk. It forms a gently undulating to moderately rolling surface covering the southeastern three-fourths of Grayson County.


The altitude of Grayson County ranges from about 900 feet above sea level in an area about 5 miles west of Denison to about 500 feet along the Red River at the northeast edge of the county. The area of greatest relief is in the vicinity of Lake Texoma, where the erosion of the Trinity group (overlain by limestones and marls having greater resistance) has created a rugged topography.


The southern third of Grayson County is drained by the Trinity River; the central and northern parts are drained by the Red River. The divide separating the two drainage systems passes near the towns of Whitesboro, Howe, Tom Bean, and Whitewright. Choctaw Creek, which heads about 6 miles southwest of Sherman, drains the northeastern part of the county, joining the Red River near the Grayson-Fannin County line. Mineral Creek and other intermittent tributaries of the Red River drain the northwestern part of the county and empty into Lake Texoma. Pilot Grove and Sister Grove Creeks and the East Fork of the Trinity River, which drain the southeastern part of the county and the area west of Gunter, empty into Lake Lavon in Collin County. The southwestern part of Grayson County is drained by Range, Buck, and Little Elm Creeks, which empty into Lake Dallas in Denton County.

Climate

Grayson County has a moist subhumid climate characterized by hot summers and mild winters. The mean annual temperature is 64.1°F, the mean July temperature being about 84°F and the mean January temperature about 43°F (fig. 4). Occasionally during the summer the temperature reaches 100°F. Freezing weather is not uncommon but generally does not last long. Several light snows fall during the winter, but the snow remains on the ground only a short time. The average dates for the last killing frost in spring and the first killing frost in winter are March 21 and November 17. The long growing season averages 238 days; the rich soils and adequate precipitation make Grayson County a productive agricultural area.

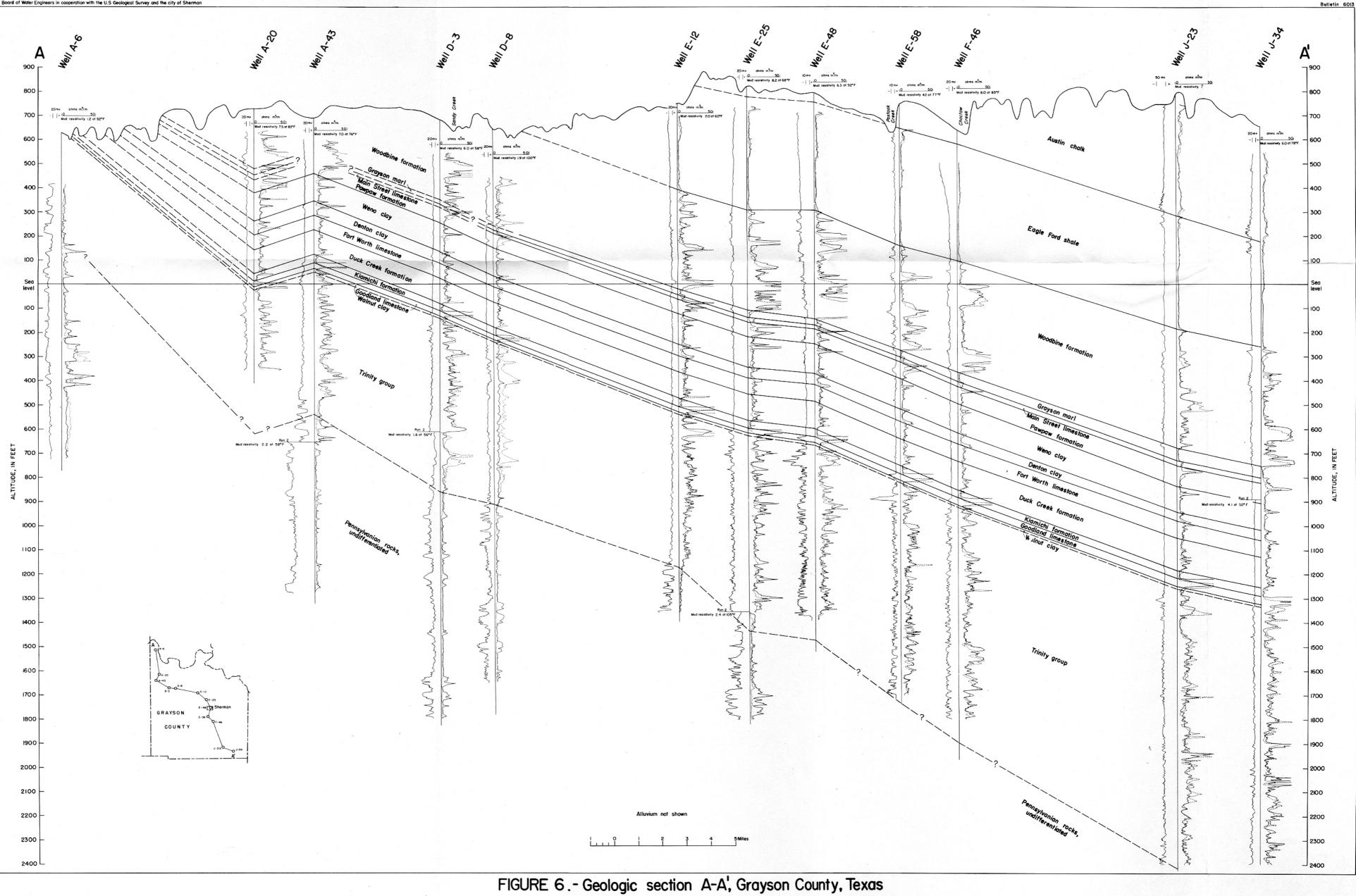
Figures 4 and 5 show graphically the annual and monthly precipitation for the period 1912-58. Precipitation averaging 38.89 inches annually is fairly well distributed throughout the year, being greatest from April to June and least from November to February. Doughts sometimes occur in the late summer, but generally they are not prolonged. Extended droughts, although infrequent, may result in loss of crops on many farms, as only a small part of the farm acreage is irrigated.

(From records of the U.S. Weather Bureau)

The average monthly evaporation from a free-water surface, as determined by multiplying evaporation from a class A land pan at the Denison Dam weather station by a factor of 0.80, is shown in figure 4. The average annual evaporation, about 74 inches, is about twice the average annual precipitation. Evaporation is greatest during the hot summer months when soil-moisture demand to sustain plant life also is large.

GEOLOGY

Geologic History


During most of Paleozoic time Grayson County was part of a large sedimentary basin which was receiving a thick section of marine deposits. Near the end of Mississippian time and during the early part of the Pennsylvanian period, structural deformation formed subsidiary troughs and arches within the basin. Parts of the basin subsequently were deepened and faulted and the basin received several thousand feet of early Pennsylvanian sediments. By middle Pennsylvanian time the deeper parts of the basin were filling with sediments and the seas were expanding. A maximum of about 10,000 feet of middle and late Pennsylvanian sediments were deposited in the basin. An orogeny during middle Pennsylvanian time caused a general westward tilting of the land, and the seas moved westward.

Uplift and erosion during early Mesozoic time reduced the area to a nearly flat surface, or peneplain. Because of subsidence in the Gulf Coast geosyncline during middle and late Mesozoic time, Cretaceous seas invaded the area from the southeast and deposited hundreds of feet of sediment in Grayson County, now represented by about 3,600 feet of sand, shale, marl, chalk, and limestone of the Comanche and Gulf series. The seas withdrew at the close of Cretaceous time. Later structural deformation formed the Preston anticline, Sherman syncline, and associated flexures now evident on the surface. Erosion began and probably continued during Tertiary and Quaternary time. Subsidence in the Gulf Coast geosyncline during Tertiary and Quaternary time caused tilting toward the southeast, as represented by the existing regional dip of the Cretaceous strata (fig. 6). Many of the present topographic features, including stream terraces now high above the valley flood plains, were formed during Pleistocene time.

General Stratigraphy and Structure

The consolidated rocks exposed in Grayson County consist of sand, clay, marl, and limestone of Cretaceous age, having an estimated maximum thickness of about 3,600 feet. Near the Red River, Pleistocene and Recent sand, gravel, clay, and silt mantle parts of the surface. Pleistocene and Recent alluvium occurs also along streams and in scattered patches elsewhere in the county.

The Cretaceous system is represented in Grayson County by rocks of the Comanche series, which crop out only in the northern part of the county, and rocks of the Gulf series, which crop out in most of the remainder of the county. The Comanche series includes the Trinity group and rocks of the Fredericksburg and Washita groups. The Gulf series in Grayson County includes the Woodbine formation, Eagle Ford shale, and Austin chalk. The Trinity group and the Woodbine formation are the principal aquifers in the county. The stratigraphy and water-bearing properties of the formations are summarized in table 1.

System		ries and group	Formation	Thi (f	ckne eet		Character of rocks	Water-bearing properties
Quaternary	Recent and Alluvium Fleistocene series		Alluvium	0	-	60	Sand, gravel, clay, and silt.	Yields small to moderate quantities of water to domestic and industrial wells.
			Austin chalk	0	-	550	White to buff chalk, marl, and limestone.	Yields small quantities of hard water to shallow domestic wells.
	Gulf	series	Eagle Ford shale	0	-	480	Bluish-black gypsiferous shale; thin beds of shale and limestone.	Yields small quantities of water to domestic wells.
			Woodbine formation	0	-	500	Crossbedded ferruginous sand, laminated shaly clay, lignite, and gypsiferous clay.	Principal aquifer in Grayson County. Furnishe large supplies for municipal, industrial, irrigation, and domestic use. Water is typically high in iron.
			Crayson marl	0	-	50	Yellowish-brown fossiliferous clay and thin limestone.	Not known to yield water to wells in Grayson County.
			Main Street limestone	0	-	25	Hard white- to brownish-white crystalline limestone alternating with layers of marl.	do
a u o		group	Pawpaw formation	0	-	80	Reddish-brown calcareous clay and yellowish- brown ferruginous sand.	Yields small to moderate quantities of water to wells in outcrop area.
ಲ ಲ ಬೆ	1 e a	-	Weno clay	0	-	135	Dark-gray to tan shaly clay and thin beds of sand and limestone, fossiliferous.	Not known to yield water to wells in Grayson County.
сн. С Н	s e r	Washita	Denton clay	0	-	60	Brownish-yellow clay, some hard sandstone beds, shell agglomerate in upper part.	do
U	٥		Fort Worth limestone	0	-	70	Alternating limestone and marl, fossil- iferous.	do
	впсћ		Duck Creek formation	0	-	130	Alternating limestone and marl, limestone predominating in lower part and marl in upper part, fossiliferous.	do
	н о С	sburg	Kiamichi formation	0	-	35	Greenish clay and thin limestone beds, fossils abundant in upper part.	do
		ericks group	Goodland limestone	0	-	40	White fossiliferous limestone.	do .
		Fredericksburg group	Walnut clay	0	-	22	Black gypsiferous fissile shale; ledges of shell breccia.	do
-		Trinity group	Undifferentiated rocks	500	-	1,200	Fine to medium sand and beds of red, purple, and gray clay.	Yields large supplies of water for municipal, industrial, and domestic uses. Water is saline in northern part of county.
Pennsylvanian	Ur	ndiffer	entiated		1	5,000	Gray to red sandy shale, sandstone, and limestone.	Do not contain fresh water in Grayson County.

Table 1.--Stratigraphic units and their water-bearing properties, Grayson County, Texas

4) (4

~

The Cretaceous formations, deposited on the uneven erosional surface of the Pennsylvanian rocks, have a regional southeastward dip of about 33 feet per mile. Two prominent folds in Grayson County--the Preston anticline and the Sherman syncline--interrupt the general monoclinal dip of the strata. These structural features have a profound effect on the pattern of outcrop of the strata, which have been deflected to the south-east from their typical northerly and easterly strike (pl. 1). The position and magnitude of the structures are illustrated on figure 8 which shows by contours the altitude of the top of the Trinity group.

The Preston anticline, representing an upwarp of about 1,000 feet, begins in western Marchall County, Oklahoma, and plunges southeastward across Grayson County, becoming indistinct in southern Fannin County. From southern Marshall County the axis of the anticline enters Grayson County, crossing the Preston peninsula and passing just north of Denison and Ambrose (pl. 1). The position of the axis is represented in the Preston area by an outcrop of the Trinity group, between outcrops of the rocks of the Fredericksburg and Washita groups. The dip of the rocks on the south limb of the anticline ranges from a few feet to more than 300 feet per mile, being steepest in an area 1 to 2 miles northeast of Pottsboro. Most of the north limb of the anticline lies in Oklahoma and was not studied during this investigation; however, according to Bullard (1931, p. 62) the dip of the north limb is less steep than that of the south limb.

The Sherman syncline lies immediately to the south of and roughly parallel to the Preston anticline. The axis of the syncline trends southeastward, passing through Gordonville and Sherman (pl. 1). The syncline is a broad, shallow assymetrical fold having a steep limb on the north and a gently dipping limb on the south. Numerous subordinate flexures such as noses and terraces are present along the north limb of the syncline. A prominent anticlinal nose just east of Sherman is represented on the surface by an inlier of the Eagle Ford shale along a tributary to Choctaw Creek.

According to Harrington (1957, p. 74), the surface expression of the Sherman syncline and Preston anticline is a consequence of subsidence in the Tyler basin of east Texas and seems to reflect a wrinkling of incompetent Pennsylvanian and Cretaceous strata over the flexed Arbuckle limestone, which, when bending to join the corner of the Tyler basin, compressed the less competent beds above.

No major faults were seen at the surface in Grayson County. The narrow outcrop of the Eagle Ford shale between Sherman and Denison suggests a fault, in view of the fact that no steep dips of strata were noted at the surface in that area. This is the area of the so-called Cook Springs fault postulated by Hill (1901, p. 384).

There are several small-scale faults in widely scattered parts of the county. In a railroad cut 6 miles northeast of Whitesboro, a fault having a 6-foot throw was observed in the Woodbine formation and Eagle Ford shale. Other faults having small displacements were noted on the outcrop of the Austin chalk.

Rock Units and Their Water-Bearing Properties

PENNSYLVANIAN ROCKS, UNDIFFERENTIATED

Rocks of Pennsylvanian age do not crop out in Grayson County, but are found in most places directly below the Trinity group, although oil tests in a few places in the eastern part of the county penetrated overthrust rocks of possible Mississippian age directly under the Cretaceous cover. Pennsylvanian rocks are found at depths ranging from about 3,500 feet in the southeastern part of the county to 600 feet in the north-western part. The Pennsylvanian rocks consist of a maximum thickness of about 15,000 feet of gray to red sandy shale, limestone, and sandstone. The rocks have a regional westward dip, in contrast to the overlying Cretaceous beds which dip regionally to the southeast. The Pennsylvanian rocks in Grayson County do not contain fresh water.

CRETACEOUS SYSTEM

Comanche Series

The Comanche series, the lowermost diversion of the Cretaceous system, includes the Trinity, Fredericksburg, and Washita groups. The oldest, the Trinity group, was deposited by an encroaching sea or an erosional land surface. The overlying Fredericksburg and Washita groups are distinguished by their cyclical type of deposition, indicated by an alternating sequence of limestone, clay, and marl, which is characteristic of sediments laid down during transgressions and regressions of the sea. In Grayson County the Comanche series ranges from about 500 to more than 800 feet in thickness.

TRINITY GROUP, UNDIFFERENTIATED

The Trinity group is not differentiated in Grayson County. Throughout Trinity time, Grayson County was near the shore of a sea which had encroached upon the land from the southeast. In Grayson County and vicinity the deposits laid down in the Trinity sea consisted chiefly of sand and minor amounts of clay and gravel. To the south the Trinity sea deposited limestone as well. In Tarrant County, for example, the Trinity group includes, in ascending order: the Travis Peak formation (chiefly sand), Glen Rose limestone, and Paluxy sand. A facies change (representing a difference in the type of deposition) in Denton and Jack Counties south and west of Grayson County caused the Glen Rose limestone to grade into sand, so that in the area north of the facies change the Trinity group consists chiefly of sand, the Glen Rose limestone being absent.

The Trinity group crops out in massive beds in a narrow belt in the northwestern part of Grayson County, extending along the south shore of Lake Texoma for several miles in the region known as the Western Cross Timbers. Uplift and erosion associated with the Preston anticline have exposed the Trinity in this region; elsewhere in the county it is buried beneath younger rocks. The principal outcrop areas of the Trinity are to the west in Cooke and Montague Counties and to the north in Oklahoma (fig. 7). The Trinity is eroded readily and, where capped by the Walnut Clay and resistant Goodland limestone, forms steep bluffs and deep ravines. The outcrop of the Trinity in Grayson County in most places is covered by a loose mantle of alluvium deposited by Red River floods.

In its typical development in Grayson County the Trinity group begins with a basal conglomerate overlain by a fine white to gray poorly consolidated sand in massive beds. Beds of red, purple, or gray clay are scattered throughout the formation, generally in the form of lenses which are not continuous or extensive over large areas. These lenses are not effective barriers to the movement of ground water except locally. Because of the lenticular structure, individual clay beds generally cannot be correlated from place to place. The massive beds near the base and top of the Trinity probably correspond to the Travis Peak

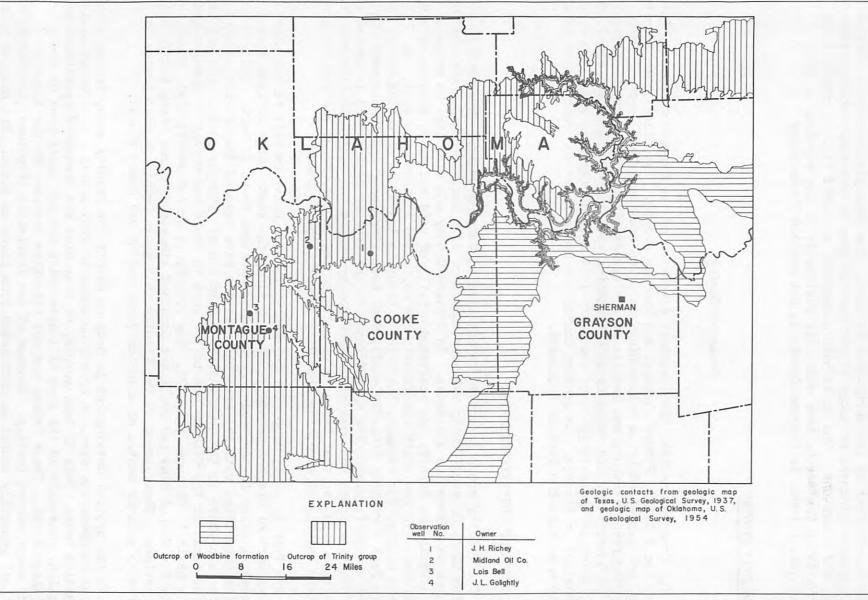


FIGURE 7.- Geologic map showing outcrop of Woodbine formation and Trinity group in Grayson County and surrounding area, and location of observation wells in Cook and Montague Counties, Texas

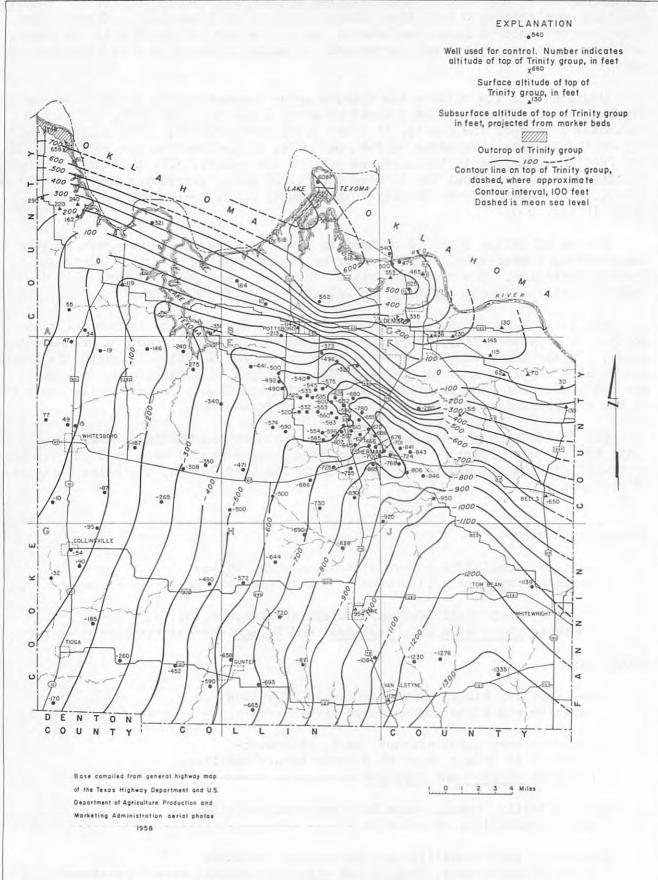
formation and Paluxy sand of north-central Texas. The middle part of the Trinity contains more thin sand beds than either the upper or lower part. Electric logs show some evidence of limestone beds in the middle part of the Trinity in southern Grayson County; these may correspond, in part, to the Glen Rose limestone of central Texas.

Southeast of its outcrop the Trinity group becomes deeply buried. At Sherman the Trinity is encountered at a depth of about 1,500 to 1,600 feet, and in the southeast corner of the county, at about 2,000 feet (fig. 6). The southeastward dip of the Trinity, averaging 48 feet per mile, is greatest on the south limb of the Preston anticline in the northern part of the county. The thickness of the Trinity ranges from about 500 to more than 1,200 feet, increasing in the direction of dip. The extent of the Trinity in the county and the altitude of the top are shown in figure 8.

A zone of saline water is present in the Trinity group in northern Grayson County along a narrow belt having a northwest-southeast trend parallel to the Preston anticline. South of the axis of this zone, the salinity gradually decreases until at Sherman most of the Trinity yields fresh water.

The Trinity group is second in importance to the Woodbine formation as an aquifer in Grayson County, supplying about one-third of the county's ground-water needs. In the northern part of the county, where the Woodbine formation is absent, the Trinity supplies most of the water for municipal, domestic, and stock use. Few wells penetrate the Trinity in southern Grayson County, owing to its depth and to the accessibility of the shallower Woodbine formation.

The following composite section, which includes the Goodland limestone, Walnut clay, and the upper part of the Trinity group, was measured at a road cut 7.8 miles northwest of Denison, and in a bluff overlooking Lake Texoma, 6.5 miles northwest of Denison.


Goodland limestone

Feet

.9

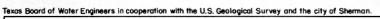
Limestone, fossiliferous, very hard, massive, white; contains <u>Gryphaea</u> sp.; weathers to thin plates	8.6
Limestone, very fossiliferous, chalky, massive, white; . contains <u>Turritella</u> sp., <u>Gryphaea</u> , and <u>Pecten</u>	4.0
Walnut clay	
Clay, fissile, black; contains streaks of yellow sericite and plates of selenite	1.0
Limestone, very fossiliferous, hard, yellowish- brown; 1 to 2-inch layer of fibrous impure calcite; contains <u>Exogyra</u> and <u>Gryphaea</u>	2.2
Shale, fissile, black; contains streaks of sericite and incrustations of selenite	4.3
Sandstone, very fossiliferous, calcareous, nodular,	

hard, brownish-gray; Exogyra and Gryphaea abundant ---

FIGURE 8.-Altitude of the top of the Trinity group, Grayson County, Texas

Trinity group

Shale, sandy, ferruginous, light-gray; contains carbonized wood fragments	3.0
Sand, coarse to very coarse, light-gray. Grains composed of quartz. Top 3 inches is indurated fine-grained sandstone	3.3
Sand, medium to coarse, light-gray, crossbedded, locally ferruginous; contains pebbles and granules	6,0
Sand, fine, light-gray, slightly indurated; ferruginous near top	3.4
Sand, loose, light-gray. Grades upward into light- brown ferruginous indurated 3-inch sandstone bed containing small pebbles	5.0
Sand, medium, yellowish-brown, corssbedded; contains nodules of pyrite. Grades upward into 3-inch bed of light-gray hard sandstone	1.3
Sand, clayey, light-gray. Grades upward into 2-inch bed of white hard pebbly sandstone	1.7
Total Trinity group measured	23.7
Total section measured	44.7


FREDERICKSBURG GROUP

The Fredericksburg group overlies the Trinity group in Grayson County and includes, in ascending order, the Walnut clay, Goodland limestone, and Kiamichi formation. The thickness of the group, chiefly clay and limestone, ranges from 0 to about 100 feet, increasing southward and southeastward. The dip of the rocks averages about 40 feet per mile to the southeast.

The formations of the Fredericksburg group are not differentiated on the geologic map; however, their stratigraphic and structural relationships are shown in the geologic cross sections (fig. 6, 9, and 10).

Walnut Clay

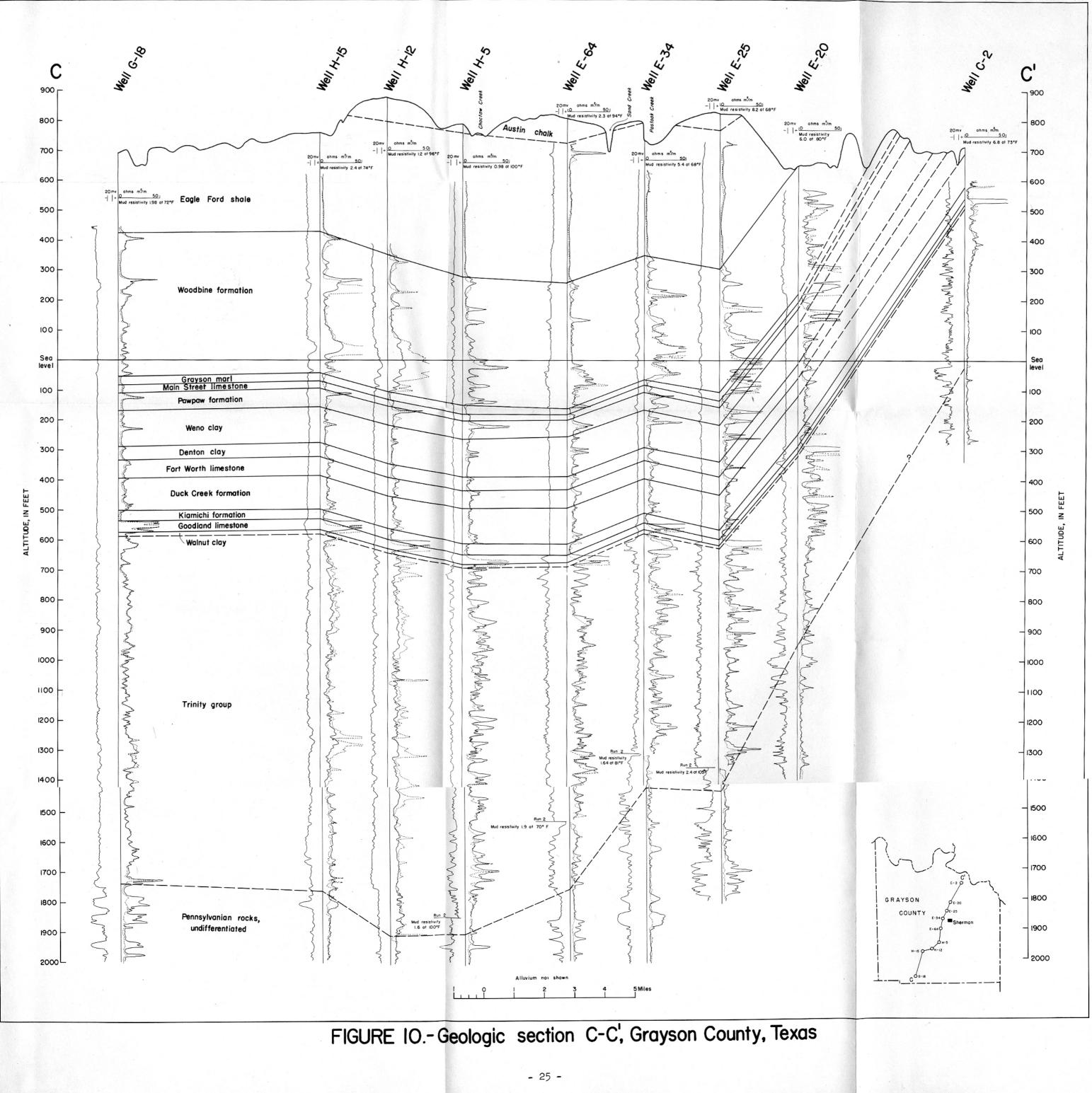

The Walnut clay unconformably overlies the Trinity group and crops out along Lake Texoma in the northwestern part of Grayson County. It consists of black gypsiferous fissile shale and layers of shell breccia containing an abundance of Exogyra texana Roemer and <u>Gryphaea marcoui</u> Hill and Vaughan. The thickness of the Walnut clay ranges from 8 feet where the section is complete near the outcrop to about 22 feet in southwestern Grayson County. Bybee and Bullard (1927, p. 15-16) assign a figure of 25 feet to the thickness of the Walnut clay in southern Cooke County. The Walnut is not known to yield water to wells in Grayson County.

FIGURE S.-Geologic section B-B', Grayson County, Texas

- 23 -

Goodland Limestone

The Goodland limestone, named for the town of Goodland in Choctaw County, Oklahoma, conformably overlies the Walnut clay. The Goodland crops out in a sinuous, steep, northward-facing escarpment extending along Lake Texoma from the Cooke County line almost to Denison. Bullard (1931, p. 22) noted a small inlier of the Goodland limestone on Shawnee Creek east of Lake Randell, about 32 miles northwest of Denison. The Goodland ranges in thickness from 12 feet where the section is complete near the outcrop to about 40 feet in the southern part of the county. The increase in thickness to the south and downdip is due to the presence of intervening clay and marl beds in the lower half of the formation. Winton (1925, p. 18) reports that the Goodland thickens from 42 feet in northwestern Denton County to 75 feet in the southwestern part. In southeastern Tarrant County the Goodland reaches a maximum thickness of 130 feet (Leggat, 1957, p. 24). At an outcrop northwest of Denison near Lake Texoma, the upper 8 feet of the formation is extremely hard crystalline limestone, which weathers into thin platy fragments; the lower 4 feet is chalky limestone. The upper part is sparsely fossiliferous; the lower part contains Pecten, Turritella sp., and Gryphaea sp. (See measured section, p. 30.) Throughout Grayson County the Goodland is easily identifiable on electric logs and is a valuable marker for structural mapping. The Goodland limestone is not known to yield water to wells in Grayson County.

Kiamichi Formation

The Kiamichi, named for a river in Choctaw County, Oklahoma, conformably overlies the Goodland limestone in Grayson County. It crops out in benches or terraces between the resistant Goodland limestone and the overlying Duck Creek formation. The Kiamichi, averaging 30 to 35 feet in thickness, consists predominantly of greenish clay. Near the upper part, ledges of hard limestone 4 to 6 inches thick contain an abundance of the typical oyster <u>Gryphaea navia</u> Hall. These fossiliferous ledges, which are persistent across the county, constitute one of the most prominent stratigraphic horizons in the Comanche series. The Kiamichi is not known to yield water to wells in Grayson County.

WASHITA GROUP

The Washita group, which overlies the Fredericksburg group with apparent conformity, was named for Fort Washita in Bryan County, Oklahoma. Included in this group, in ascending order, are the Duck Creek formation, Fort Worth limestone, Denton clay, Weno clay, Pawpaw formation, Main Street limestone, and Grayson marl. The Washita group ranges in thickness from 435 to about 550 feet, thickening downdip but thinning along strike to the south. The group, chiefly alternating beds of limestone and marl but containing some sand near the top, forms a large part of the Grand Prairie, an area of gently rolling hills, which extends across the northern part of the county. The formations of the Washita group are not differentiated on the geologic map and are mapped together with the formations of the Fredericksburg group (pl. 1). The stratigraphic and structural relationships are shown on the geologic cross sections (figs. 6, 9, and 10). The Washita group is not an important source of water in Grayson County. The Pawpaw formation, however, supplies small to moderate quantities of water to shallow domestic wells near its outcrop in the northern part of the county.

Duck Creek Formation

The Duck Creek formation, named for a creek about 3 miles north of Denison, overlies the Kiamichi with apparent conformity in Grayson County. However, near Fort Worth the presence of rounded pebbles and transported debris at the contact suggests a lack of conformity (Adkins, 1932, p. 349). The outcrop extends across much of the northern part of Grayson County, crossing the Red River northeast of Denison. The formation ranges in thickness from about 90 to 130 feet; the thickness is rather uniform in the downdip direction but decreases along the strike toward the south. The Duck Creek consists chiefly of interbedded nodular limestone and marl; the limestone weathers to form prominent ledges. In the lower 40 to 50 feet, the limestone and marl alternate in thin beds; however, the limestone is predominant, the limestone beds being thicker. The marl beds greatly predominate in the upper 60 to 70 feet, where the limestone beds are thinner and are separated by increasingly greater thicknesses of marl. The contact with the overlying Fort Worth limestone is gradational from marl to limestone.

The lower part of the Duck Creek formation is very fossiliferous. The large ammonite <u>Desmoceras brazoense</u> (Shumard), abundant in a narrow zone from 30 to 40 feet above the base of the formation, is valuable for structural mapping because of its limited range. Other fossils in the Duck Creek formation include the ammonites <u>Hamites</u> sp. and <u>Pervinquieria trinodosa</u> (Böse), several species of the echinoid Hemiaster, and the pelecypod Inoceramus comancheanus Cragin.

The Duck Creek formation is not known to yield water to wells in Grayson County.

Fort Worth Limestone

The Fort Worth limestone, named for excellent exposures in the city of Fort Worth, overlies the Duck Creek formation conformably and crops out in northern Grayson County on the south flank of the Preston anticline. The area of outcrop is characterized by cuestas which result in a rough topography. The Fort Worth is about 60 feet thick near the outcrop, thickening downdip to about 70 feet in the southeastern part of the county. The formation thins along the strike toward the south and is about 50 feet thick in the southwestern part of the county.

The Fort Worth consists of limestone and marl in alternating beds which may be separated into three distinct lithologic units. The lower unit consists of about 15 to 20 feet of limestone and minor beds of marl; the middle unit, about 20 feet thick, is predominantly marl; the upper unit is chiefly limestone and is about 15 to 20 feet thick. The Fort Worth limestone is easily confused with the underlying Duck Creek formation but may be distinguished from it on the basis of fossils. Characteristic fossils in the Fort Worth include the abundant echinoid Hemiaster elegans Shumard and the ammonite Pervinquieria leonensis (Conrad).

The Fort Worth limestone is not known to yield water to wells in Grayson County.

Denton Clay

The Denton clay, which conformably overlies the Fort Worth limestone, crops out in a narrow band across most of northern Grayson County, the most prominent exposures being northwest of Pottsboro along Lake Texoma. Near the area of outcrop, the formation is about 60 feet thick, but it thins downdip to about 40 feet in the southeastern part of the county. Winton (1925, p. 25) reports a thickness of 25 to 35 feet of the clay in Denton County. The Denton consists of brownishyellow clay and thick beds of hard light-colored sandstone. A bed of sandy shell agglomerate, containing an abundance of <u>Gryphaea washitaensis</u> Hill and <u>Ostrea</u> carinata Lamarck, marks the top of the formation.

The Denton clay is not known to yield water to wells in Grayson County.

Weno Clay

The Weno clay, named for the small village of Weno (now abandoned) on the Red River northeast of Denison, is apparently conformable with the underlying Denton clay and the overlying Pawpaw formation. The outcrop of the Weno extends in a narrow belt across the northern part of the county. The formation ranges in thickness from about 110 to about 135 feet. Bullard (1926, p. 38) reports a thickness of 135 feet in northern Marshall County, Oklahoma. The formation consists of dark-gray to tan shaly clay, thin beds of sand, clay-ironstone concretions, and in the upper part some hard sandstone and limestone beds. The fossils Ostrea quadriplicata Shumard and Turritella sp. are characteristic of the Weno.

The Weno clay is not known to yield water to wells in Grayson County.

Pawpaw Formation

The Pawpaw formation, named for the outcrop on Pawpaw Creek north of Denison, conformably overlies the Weno clay. The outcrop lies in a narrow belt in the northern part of the county. Locally the Pawpaw forms a topography very similar to that of the Eastern Cross Timbers belt, and the formation may be mistaken for the Woodbine formation. The Pawpaw is about 60 feet thick near the outcrop, thickening downdip to about 80 feet in the southeastern part of the county. The formation thins slightly along strike to the south; near the Denton County line the thickness is about 50 feet. The Pawpaw consists of reddish-brown calcareous clay in the lower part and poorly cemented yellowish-brown ferruginous sand at the top. The sand at the top of the formation generally is in a massive bed 20 to 30 feet thick. Nodules and pebbles of ironstone are characteristically abundant on the outcrop. Pelecypods, many of them in a good state of preservation, are abundant in the clay.

The sand in the Pawpaw formation yields small to moderate quantities of water to shallow wells in the area of outcrop in Grayson County. South of the outcrop, wells generally do not penetrate the Pawpaw but produce exclusively from the Woodbine formation. However, a few large-capacity wells in the Woodbine, notably at Sherman, include the sand of the Pawpaw in the screened section.

The following section, which includes all the Pawpaw formation, Main Street limestone, and Grayson marl and the basal part of the Woodbine formation was measured at the railroad cut of the Pottsboro cutoff of the Missouri, Kansas, and Texas Railroad, about $5\frac{1}{2}$ miles west of Denison.

Pawpaw formation

	Sandstone, brittle, platy, ferruginous, fine-grained	1.0
	Shale, slightly sand, light-gray; surface covered with irregularly shaped limestone nodules; ironstone concretions containing impressions of pelecypods are abundant in upper part	11.0
	Sand, platy, very fine, light-brown	.7
	Shale, light-gray; contains clay-ironstone concretions, small limestone nodules, and thin beds of sand; weathers red	21.0
	Sand, ferruginous, massive, brownish-yellow; contains thin lenses of ironstone having impressions of small pelecypods; upper 5 feet clayey and highly fos- siliferous	22.0
		22.0
	Subtotal	55.7
Main	Street limestone	
	Limestone, hard, grayish-white	1.2
	Marl, gray; contains Exogyra arietina Roemer	.5
	Limestone, gray; contains Exogyra arietina Roemer	1.5
	Marl, dark-gray, fossiliferous	.3
	Limestone, gray, fossiliferous	.5
	Marl, gray; contains Exogyra arietina Roemer	.3
	Limestone, hard, grayish-white; contains Pecten sp	.5
	Marl, yellowish-gray; contains Kingena wacoensis (Roemer)	.3
	Limestone, hard, white; contains <u>Kingena wacoensis</u> (Roemer)	1.5
	Marl, fossiliferous, gray	.8
	Limestone, light-gray; contains Exogyra arietina Roemer and Kingena wacoensis (Roemer)	.9
	Marl, light-gray; contains nodules of limestone	3.0
	Subtotal	11.3

Feet

Grayson marl

Marl, light-gray; contains thin beds and nodules	
of limestone, <u>Exogyra arietina</u> Roemer, and Gryphaea mucronata Gabb	11.0
Covered by soil	11.0
Subtotal	22.0
Woodbine formation	
Covered by sandy soil; surface shows fragments of ferruginous pebbles	6.0
Sandstone, indurated, fine-grained, white	9.0
Clay, plastic, dark-red and light-gray; contains thin sand beds	14.0
Sandstone, ferruginous, slightly indurated, light- brown	12.0
Sandstone, indurated, dark-red, crossbedded; contains beds of conglomeratic ironstone and fragments of petrified wood	14.0
Subtotal	55.0
Total section measured	144.0

Main Street Limestone

The Main Street limestone, named for exposures on the main street of Denison, conformably overlies the Pawpaw formation. The hard limestone crops out in conspicuous ledges along the Red River in northern Grayson County and is easily mapped. Likewise, the Main Street is easily identified on electric logs and serves as a useful stratigraphic marker. The thickness of the Main Street ranges from 11 to 15 feet in the outcrop area. Unlike most of the other formations in the area, the Main Street thickens along the strike toward the south, reaching a thickness of about 25 feet in the southwestern part of the county. The Main Street consists of beds 1 to 2 feet thick of hard white to brownish-white crystalline limestone alternating with marl layers 1 to 6 inches thick. Generally, the limestone is massive at the base, becoming thinner near the top where the marl beds are prominent. Oxidation of pyrite in the limestone causes an iron-stained appearance. Exogyra arietina Roemer and Kingena waccensis Roemer occur in the upper part of the limestone and Turrilites brazoensis Roemer near the base.

The Main Street is not known to yield water to wells in Grayson County.

Grayson Marl

The Grayson marl, uppermost member of the Washita group and Comanche series, crops out in a narrow belt extending across the northern part of the county. Bergquist (1949) described about 17 feet of "unnamed shale and sandy clay (post-Grayson)" directly above the Grayson shale and below the Woodbine formation. These rocks are included with the Washita and Fredericksburg groups on the geologic map (pl. 1) and with the Grayson marl on the cross sections (figs. 6, 9, and 10). Ferruginous debris and slope wash from the overlying Woodbine generally cover the Grayson's outcrop and good exposures are rare. The thickness of the formation averages about 15 to 20 feet near the outcrop, thickening to about 25 feet along strike to the south. Downdip in the southeastern part of the county, the Grayson marl thickens to nearly 50 feet. It consists of yellowish-brown fossiliferous calcareous clay and bluish-gray marl containing many nodules of limestone and thin layers of grayish limestone. The more prominent limestone beds near the base represent the gradation from the underlying Main Street limestone. The lower part of the Grayson contains an abundance of Exogyra arietina Roemer. Other characteristic fossils include Gryphaea mucronata Gabb and Turrilites brazoensis Roemer.

The Grayson marl is not known to yield water to wells in Grayson County.

Gulf Series

Rocks of the Gulf series overlie rocks of the Comanche series unconformably and are represented in Grayson County by the Woodbine formation, Eagle Ford shale, and Austin chalk. These sedimentary rocks have an average dip of 35 feet per mile to the southeast and reach a maximum thickness of about 1,500 feet. Cropping out in more than three-fourths of Grayson County, the rocks of the Gulf series form the surface of the Eastern Cross Timbers and Black Prairie belts.

WOODBINE FORMATION

The Woodbine formation, named for the village of Woodbine in eastern Cooke County, is the basal formation of the Gulf series in north Texas. The relation of the Woodbine to the underlying rocks of the Comanche series has not been determined in Grayson County. However, the Woodbine apparently rests unconformably on the underlying Grayson marl, although the contact is obscured in many places by overwash. Bergquist (1949) reported that in the vicinity of Cedar Mills about 9.5 miles northwest of Pottsboro the Woodbine formation, containing reworked shells of Gryphaea mucronata Gabb at the base, is channeled through the Grayson marl and rests on Main Street limestone. Electric logs of wells in the Gordonville-Sandusky area, about 8 miles north of Whitesboro, show abnormal relationships at the contact zone. (See wells A-20, A-43, D-3, and D-8 in fig. 6) The contact of the rocks of the Comanche and Gulf series in that area is obscure; the Woodbine appears to overlie rocks that are not lighologically typical of the upper Washita group. It is not known whether erosion removed much of the upper rocks of the Washita in this area prior to deposition of the Woodbine or whether a local facies change altered the typical composition of the rocks.

The Woodbine outcrop, forming the Eastern Cross Timbers belt in Grayson County, averages 6 miles in width along the Cooke County line, but narrows to 3 miles across the northern part of the county. The outcrop begins to narrow a few miles east of Pottsboro because of steeply dipping beds. The Woodbine weathers to a loose soil which supports a growth of post oak and blackjack on the hilly northern outcrop. The surface is gently rolling near the Cooke County line where the proportion of clay is greater, and prairies predominate in that area. The Woodbine formation thickens downdip, increasing from 410 feet near the outcrop to 500 feet in the southeast corner of the county. The Woodbine consists of medium to coarse crossbedded ferruginous sand, much of which is unconsolidated, and laminated shaly clay interbedded with layers of lignite and gypsiferous clay. Beds of hard siliceous sandstone are scattered throughout the Woodbine; locally, the outcrop is covered with residual boulders of siliceous sandstone. Massive reddish sand beds are found in some places; however, the individual beds are highly lenticular and grade into clay within short lateral distances. In most places in Grayson County the thickest sand beds are found at or near the base and in the upper third of the Woodbine. The presence of alunite nodules marks the contact of the Woodbine with the overlying Eagle Ford shale (Stephenson, 1946, p. 1765).

Figure 11 shows by contours the altitude of the top of the Woodbine in Grayson County. If the altitude of the land surface is known, the depth to the top of the sand can be computed for any locality in the county. For example, the map shows the altitude of the top of the formation at Sherman to be about 200 feet. The altitude of the land surface is about 750 feet, consequently the depth to the formation is about 550 feet.

The Woodbine is the principal source of ground water for public supply, industrial, irrigation, and domestic use in Grayson County. It supplies water to all the industrial wells in the Sherman area. Water from the Woodbine is typically high in iron content but otherwise is satisfactory for nearly all purposes. Locally it may be highly mineralized where the water-producing sands contain lignite.

EAGLE FORD SHALE

The Eagle Ford shale, named for the village of Eagle Ford 6 miles west of Dallas, conformably overlies the Woodbine formation. The outcrop pattern approximates that of the Woodbine, having two distinctly different directions of strike. The 8-mile-wide north-south outcrop turns abruptly to the east near Pottsboro and continues in a narrow belt, half a mile to 3 miles in width, leaving the county near the town of Bells. The outcrop of the Eagle Ford shale, forming a part of the Black Prairie belt, is a treeless prairie in most places in Grayson County; locally, near Bells, sandy layers in the upper part of the shale become prominent enough to produce a wooded sandhill topography. The Eagle Ford ranges in total thickness from 440 to about 480 feet in uneroded sections in Grayson County.

The formation consists chiefly of bluish-black gypsiferous shale and some thin lenses and bands of hard limestone. Calcareous concretions are found in the upper and lower parts. Near the top of the Eagle Ford, sand layers--in places hard fossiliferous sandstone--total about 15 to 20 feet in thickness, becoming thicker eastward. The hard fossiliferous sandstone layers contain an abundance of Ostrea lugubris Conrad.

The following section, which includes the upper part of the Eagle Ford shale and the basal Austin chalk, was measured along the county road and Choctaw Creek, $5\frac{1}{2}$ miles southwest of Sherman.

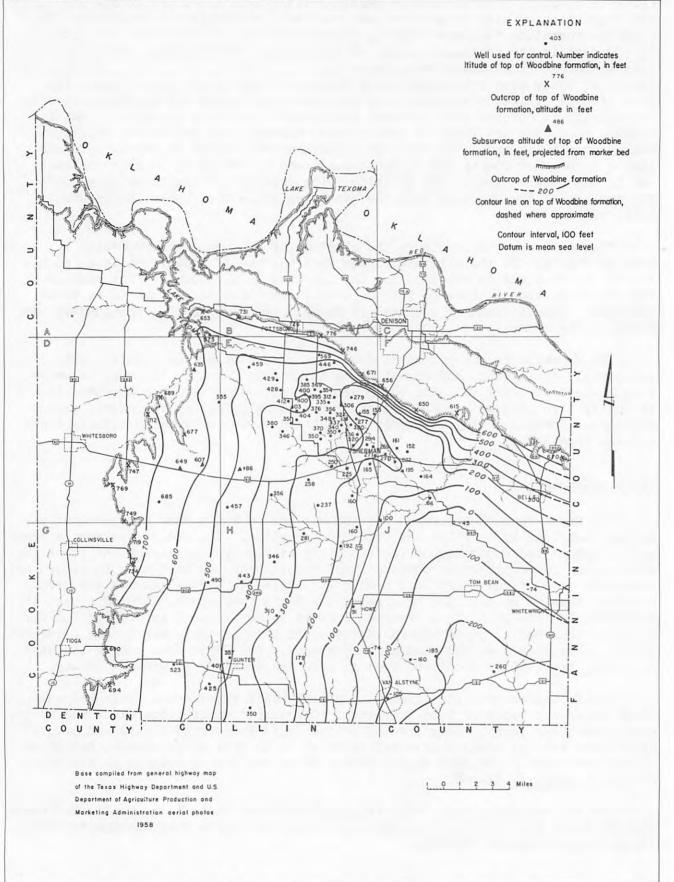


FIGURE II.- Altitude of the top of the Woodbine formation, Grayson County, Texas

Chalk, hard, white, platy	6.0
Marl, soft, light-brown, sandy near bottom, indurated and layered near top, grading into overlying chalk; contains limestone pebbles	22.0
Conglomerate, slightly cemented; pebbles of crystalline limestone, sandstone, phosphate, and reworked <u>Ostrea</u> <u>lugubris</u> Conrad average 2 to 3 inches in size	1.5
Eagle Ford shale	
Sandstone, hard; cemented with calcium carbonate; Ostrea lugubris Conrad abundant	1.5
Sand, clayey, light-gray to yellow-brown; few hard thin sandstone layers; sparse pelecypod fauna	7.0
Shale, fissile, dark-gray; veins of yellow sericite	15.5
Sandstone, very fossiliferous, hard, light-gray, lenticular; small pebbles of dark-colored jasper; changes in places to a sandy shale with large septarian concretions. <u>Ostrea</u> sp. Upper 6 inches contains gastropod fauna	1.0
Shale, sandy, fissile, dark-gray; contains local lenses of hard sandstone	3.0
Total Eagle Ford shale measured	28.0
Total section measured	57.5

The Eagle Ford shale supplies small quantities of water to shallow wells in Grayson County.

AUSTIN CHALK

The Austin chalk, unconformably overlying the Eagle Ford shale, is the youngest formation of Cretaceous age in Grayson County. Underlying about one-third of the county, the Austin chalk forms a west-facing white escarpment overlooking the broad plain formed by the Eagle Ford shale. The outcrop of the Austin chalk, mainly in the central and southeastern parts of the county, weathers to a black residual soil forming a part of the Black Prairie belt. The maximum thickness of the formation in Grayson County is about 550 feet.

The Austin consists of chalk and limestone interbedded with layers of marl. The deeply buried rocks are bluish; those near the surface in the zone of weathering are chalky white. <u>Inoceramus</u> sp. and segregations of pyrite, which alter into marcasite, are commonly associated with the limestone beds. The base of the Austin chalk is marked by the presence of a conglomerate containing an abundance of Ostrea lugubris Conrad and fish teeth. The basal conglomerate, in part, is the so-called "fish-bed" conglomerate of Taff and Leverett (1893, p. 303).

The Austin chalk supplies small quantities of hard water to shallow dug wells in Grayson County. Many of the wells are dry during extended periods of drought.

QUATERNARY SYSTEM

Pleistocene and Recent series, undifferentiated

ALLUVIUM

Alluvial deposits forming flood plains and terraces are Pleistocene and Recent in age, but are undifferentiated on the geologic map (pl. 1). Generally, the older alluvial deposits, which are represented by terraces high above the present stream valleys, are dissected and show effects of erosion. In some areas the high-level terraces coalesce near junctions of streams and cap interstream divides. Associated with the high-level terraces are the younger, lower lying deposits, which form benches or broad terraces adjacent to the streams. The lowermost surface is the flood plain which includes the present stream bed.

The alluvium along each stream consists of sediments derived from rocks that crop out within the drainage basin of the stream. Streams draining shaly areas deposit alluvium that consists chiefly of tight, impermeable material; conversely, streams that drain sandy areas deposit alluvium that consists chiefly of permeable material. In some places in Grayson County the alluvium consists almost entirely of relatively impermeable clay or silt. In other places, especially along the Red River where meanders are common, it includes layers of sand, or possibly buried channels of gravel, that may yield water freely. The thickness of the alluvial deposits in Grayson County ranges from 0 to about 60 feet.

The most extensively developed terrace and flood-plain deposits in Grayson County are associated with the Red River. Many of the low-level deposits west of Denison Dam are now covered by Lake Texoma. In the northeastern part of the county, alluvium forms about 17 square miles of flood-plain and terrace deposits along the Red River. The highest deposits, about 200 feet above the river, are poorly exposed and deeply eroded; the younger terrace deposits, nearer the river, are more distinct. A measured section of the deposits of the lower terrace, which is about 40 feet above the river, disclosed about 30 feet of sand, silt, and clay, with gravel at the base. North of Denison in an area of about 4 square miles, the alluvium is reported to be as much as 60 feet thick.

Less extensive deposits of alluvium are found in other parts of the county, notably along the upper reaches of Choctaw Creek and along Isle du Bois, Range, and Buck Creeks (pl. 1). The alluvium in these areas is probably thin and unimportant hydrologically.

The alluvial deposits in Grayson County yield small to moderate quantities of water, chiefly to domestic wells. Only those deposits north of Denison and in the northeastern part of the county are known to be water bearing. The water in the alluvium is hard but otherwise suitable for most uses.

GROUND WATER

Occurrence and Movement

Open spaces in rocks, called "voids" or "interstices", contain the water that is found in the zone of saturation below the land surface. This water may be recovered through wells and springs. The capacity of a rock to hold water is determined by its porosity, but its capacity to yield water is determined by its permeability. Some deposits, such as silt or clay, may have a high porosity but because of the minute size of the interstices transmit water very slowly. Other deposits, such as well-sorted gravel, contain large interconnected openings which transmit water rapidly. Part of the water in any deposit does not drain into wells by gravity because it is held against the force of gravity by molecular attraction. Below a certain level the permeable rocks are saturated with water under hydrostatic pressure. The upper surface of this zone of saturation is called the water table. Wells dug or drilled into the zone of saturation become filled with ground water to the level of the water table.

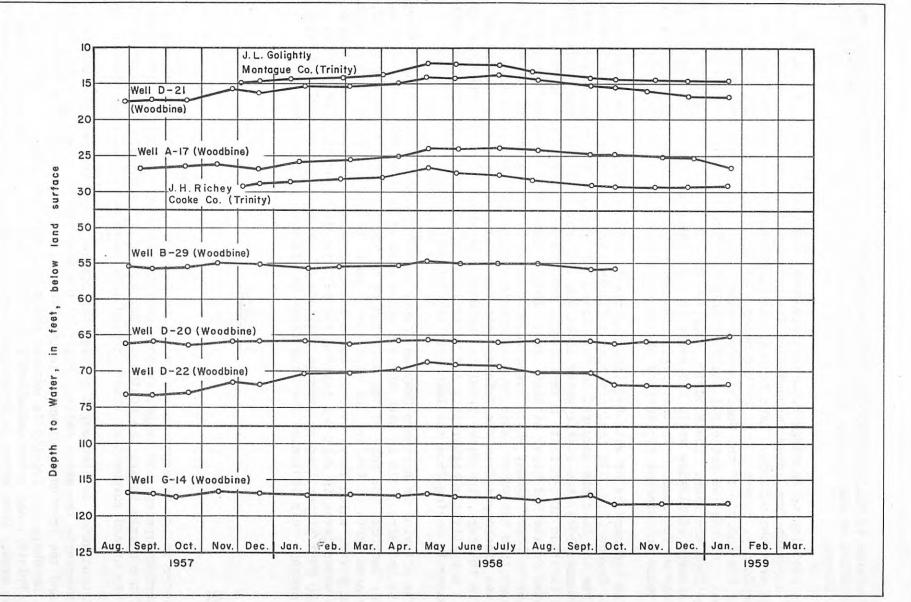
Artesian conditions exist where permeable strata lie between less permeable strata, and ground water is confined under pressure. Water enters the aquifer in recharge areas, percolates slowly down to the water table, and then laterally down the dip of the water-bearing formation beneath the overlying confining bed. The water exerts pressure against the confining bed, so that when a well is drilled through the confining bed the pressure is released and water rises above the level at which it is found. If the elevation of the land surface is much below the general level of the area of outcrop, the pressure may be sufficient to cause the water to flow naturally from the well. Artesian conditions prevail in the Trinity group and Woodbine formation where they are overlain by impermeable beds downdip from the outcrop.

The rate of movement of water through an aquifer depends upon the porosity, permeability, and hydraulic gradient. Ground water moves from areas of recharge to areas of discharge under the influence of gravity; however, the movement is generally very slow, especially in sand bodies such as the Trinity group and Woodbine formation. The time necessary for water to move from the areas of recharge of the Trinity and Woodbine to, for instance, the city of Sherman, would be measured in centuries. Present average rates of movement of water in the Trinity group and Woodbine formation are estimated to be about 1 to 2 and 10 to 20 feet per year, respectively.

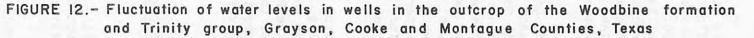
The presence of large quantities of salt water in the Trinity group along the crest and southern flank of the Preston anticline in the northern part of Grayson County is probably related to the natural movement of water. Much of the salt water in the aquifer is probably sea water which moved into the aquifer during the deposition of younger Cretaceous rock strata under marine conditions. Prior to the development of ground water from the Trinity group, the natural movement of water in the aquifer was from the areas of outcrop or recharge to the areas of natural discharge. Although some of the water in the artesian parts of the aquifer was discharged by vertical movement upward through less permeable rock strata, much of the water moved to other natural outlets. At the exposure of the Trinity along parts of the Preston anticline in the Red River valley altitudes of 530 feet or less are common compared to altitudes of 700 to 1,100 feet in the recharge areas of Cooke and Montague Counties and adjacent parts of Oklahoma. As a result, this was an area of natural discharge through seepage and possible spring flow into the Red River. The water-level altitude of 535 feet in well B-2 on Preston peninsula in 1943, 8 feet higher than the altitude of the Red River before the impounding of Lake Texoma, is evidence of movement of water toward the river. Water movement toward the river from the southeast near the turn of the century also is indicated by a 650-foot water-level altitude in a well in the Trinity a mile south of Denison, as reported by Hill (1901, p. 620). This natural discharge area around the Preston anticline served a large part of the aquifer. Salt water moving from the surrounding area converged on the discharge area resulting in an accumulation of salt water, part of which was not effectively removed by discharge.

After the development of wells in the Trinity group, accompanied by a general decline in water levels and the impounding of water in Lake Texoma, the gradient or direction of movement of water was reversed. Water is now moving away from the Preston anticline which has become an area of recharge. Much of the present water movement in the Trinity in Grayson County is probably toward Sherman, where heavy withdrawals have brought about a large decline in the water levels.

Sufficient data are not available to show in detail the direction of movement of water in the Woodbine formation in Grayson County. In general, however, the water is moving downdip in a southeastward direction from the outcrop in the western and northern parts of the county. Locally in areas of heavy pumping, for example at Sherman, water moves from the surrounding areas toward these discharge areas.


Water in the alluvial deposits north of Denison and in the northeastern part of the county probably moves toward points of discharge in the Red River.

Recharge


Recharge to ground-water reservoirs results from the infiltration of water from precipitation on the outcrop of the formations, by seepage from lakes or other bodies of surface water, or by vertical and lateral movement of water from one underground reservoir to another. The latter process is not a primary source of recharge but only an incident to underground water movement.

Ground water in Grayson County is derived chiefly from precipitation on the outcrop of the formations. The Woodbine crops out in Grayson County and to the west in Cooke County. The Trinity group crops out in places in Grayson County along Lake Texoma; the major outcrop, however, is to the west in Cooke and Montague Counties and north of the Red River in parts of Oklahoma (fig. 7).

The soil mantle and outcropping rocks of the Trinity group and Woodbine formation provide an excellent facility for recharge of ground water. During some periods of rainfall a part of the water runs off directly into streams, part is evaporated, part is transpired by vegetation, and the remainder percolates downward to the water table. Recharge is most effective during periods of long, heavy rainfall when the requirements of evaporation and transpiration are quickly satisfied, allowing the excess water to escape these consumptive processes and to run off or penetrate to the water table. Recharge from precipitation may occur in any month of abundant rainfall, but it is least likely in the latter part of the growing season in July, August, and September, because of the usual soilmoisture deficiency during those months. A substantial rise of water levels in wells in the recharge area of the Trinity group and Woodbine formation in Grayson, Cooke, and Montague Counties indicates that there was considerable recharge during May 1959 (fig. 12).

Texas Board of Water Engineers in cooperation with the U.S. Geological Survey and the city of Sherman

- 39 -

14

Bulletin 6013

Recharge to the alluvial deposits near the Red River is derived chiefly from precipitation on their sandy surface and to a lesser extent from runoff from adjacent slopes.

In addition to recharge from precipitation, water may enter the formations by infiltration from lakes impounded on the outcrop of the aquifers or by streams flowing over the outcrop. Lake Texoma, the largest surface-water reservoir in Grayson County, covers a part of the outcrop of the Trinity group and a smaller part of the outcrop of the Woodbine formation. The lake is both influent and effluent. Of the two principal aquifers only the Trinity group receives water by seepage from the lake. The Woodbine supplies ground water to Lake Texoma through the discharge of flowing wells and seeps in and around the Big Mineral Arm of the lake west of Pottsboro. In this region the surface of the lake is lower than the water table and piezometric surface of the Woodbine.

The hydrographs of well B-2 (tapping the Trinity group) and the water level in Lake Texoma (fig. 13) indicate that infiltration, or recharge, to the Trinity sand from the lake has occurred in this area. At the time the well was drilled in September 1943, the static water level was 173 feet below the land surface and had an altitude of 535 feet, 8 feet higher than the altitude of the surface of the water in the Red River at that time. Thus, before the regulated impounding of water in Lake Texoma, which began in October 1943, the surface of the Red River was lower than the water table or piezometric surface of the Trinity group and water was discharged from the Trinity into the river. After the impounding of water in the lake, the water level in the well rose about 80 feet. The lake surface is now slightly higher than the water level of the Trinity group, indicating that water is moving from the lake into the Trinity.

The alluvium in northern Grayson County apparently is not receiving recharge from the Red River. In an area about 8 miles east of Denison the river is flowing over bedrock, the base of the alluvium being about 10 feet above the stream. In the area north of Denison the alluvium is much thicker and is in contact with the Red River, which flows over it for a short distance. However, the altitude of the water level in well C-1 tapping the alluvium is reported to be 515 feet, about 10 feet higher than an average altitude of the water surface of the Red River nearby; this indicates that the river is effluent in this area.

Discharge

NATURAL

Water in the underground reservoirs in Grayson County is discharged naturally through springs and seeps, evaporation, transpiration by plants, underflow out of the county toward the southeast and, in the artesian part of the reservoirs, by upward movement of water through less permeable, confining strata.

Ground water is discharged through springs and seeps wherever the land surface intersects the water table. Prior to the development of wells in the Trinity group and the impounding of water in Lake Texoma, the area around the Preston anticline where the Trinity is exposed was a natural discharge point for water in the Trinity, and water undoubtedly was discharged through seeps and springs in that area. Some water is discharged through seeps and springs in the area of outcrop of the Woodbine between Sherman and Denison along tributaries to Choctaw Creek. This discharge can be considered rejected recharge that is, water that enters the outcrop but cannot move down the dip under present hydraulic gradients

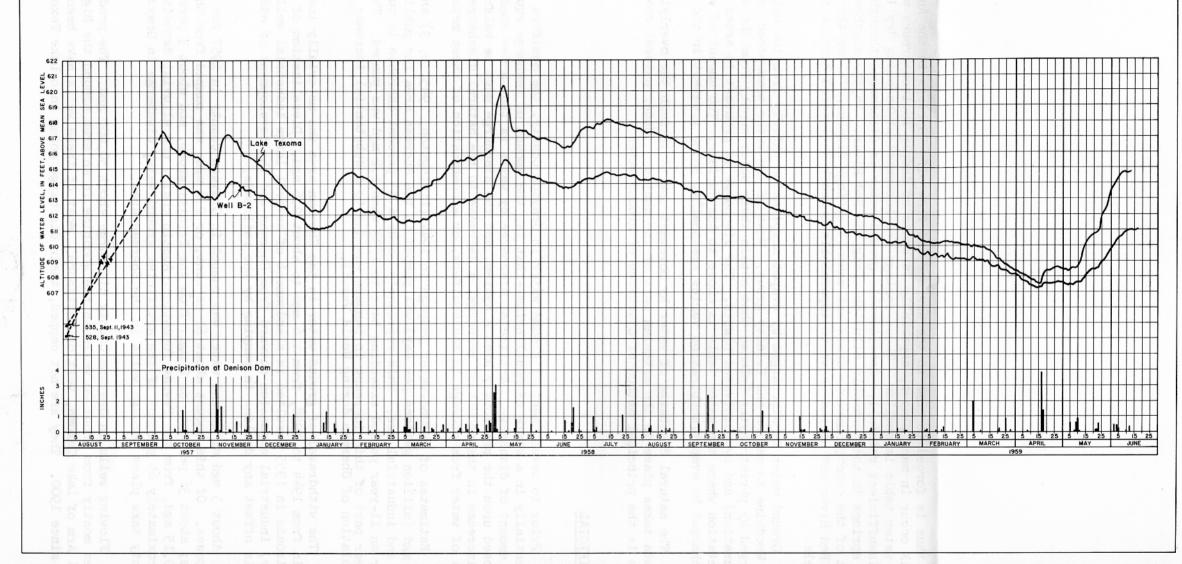


FIGURE 13.- Fluctuation of water levels in well B-2 and in Lake Texoma and precipitation at Denision Dam, Grayson County, Texas

and thus is forced to come to the surface and flow off. Springs in the Austin chalk occur in many places, especially in banks of deeply incised creeks where the water table is shallow. These springs are intermittent becoming dry in periods of insufficient rainfall. Considerable ground water is discharged through seeps and springs in the permeable alluvium along the Red River. In the northeastern part of the county numerous seeps and contact springs discharge along the bank of the Red River and at places where impermeable bedrock is exposed between terrace levels.

Ground water is discharged by evapotranspiration chiefly from the outcrop of the Woodbine formation and Trinity group. Most of the water transpired is discharged by phreatophytes (plants that obtain their water supply from the zone of saturation) and by cultivated plants. The discharge is greatest in areas of dense vegetation where the water table is close to the surface. The amount of water discharged by evapotranspiration varies seasonally, being greatest in the summer.

The natural discharge of water by movement upward through the overlying rock strata takes place in the artesian part of the aquifer. Under natural conditions this is the principal method of discharge of ground water.

ARTIFICIAL

Prior to development of ground water in Grayson County, the aquifers were essentially in a state of equilibrium--that is, the amount of recharge equaled the amount of discharge. Artificial discharge by wells is thus a new condition imposed upon the previously stable system, and the discharge must be balanced by an increase in the amount of recharge, a decrease in the natural discharge, a loss of water from storage in the aquifers, or a combination of these methods.

Estimates of ground-water pumpage in 1944 (Livingston, 1945, p. 3) show that 1.6 mgd (million gallons per day) was pumped in the Sherman area for public supply and industrial use. This represents about a 33 percent increase in pumpage over an ll-year period extending back to 1933 when 1.2 mgd was pumped. The larger part of this increase in pumpage was due to a substantial increase in the population of Sherman during World War II.

The withdrawal of ground water in the Sherman area was materially increased again from 1944 to 1958, from 1.6 mgd to about 2.6 mgd. Dieselization of the railroads in 1955 resulted in abandonment of several large industrial wells; however, industrial expansion outward from Sherman and the development of additional wells offset any decline in pumping by the railroads.

About 5 mgd of ground water was pumped in Grayson County in 1957 for all purposes. Of this amount about 61 percent, or 2.8 mgd, was pumped from the Woodbine; about 36 percent, or 2 mgd, from the Trinity group, and about 3 percent, or 0.15 mgd, from the Pawpaw formation, Austin chalk, and alluvial deposits. Approximately 65 percent of the artificial ground-water discharge in Grayson County take place through wells in the Sherman area.

Flowing wells in Grayson County discharge about 50,000 gpd. The production comes mostly from about 20 wells in the Woodbine in an area around the Big Mineral Arm of Lake Texoma, west of Pottsboro. Most of these wells have been flowing since 1900. They are not capped, their discharge going into Lake Texoma.

Water levels in aquifers fluctuate almost continually from artificial and natural causes. In general, the major factors that control the changes of water levels are the rates of recharge to and discharge from the aquifer. Changes of water level are caused also by variations in atmospheric pressure, tidal fluctuations, earthquakes, and other disturbances. The fluctuations are usually gradual, but it is not uncommon in some wells for the water level to rise or fall several inches or feet in a few minutes.

Fluctuations due to natural processes generally occur in cycles -- daily, annual, or other periods. Cyclic fluctuations during a day are caused chiefly by tidal and barometric effects and by changes in the rate of evapotranspiration. Annual fluctuations are generally the result of changes in the rate of precipitation and evapotranspiration throughout the year and consequently the amount of water available for recharge.

Fluctuations of considerable magnitude, especially in artesian aquifers, result chiefly from artificial processes. Withdrawals of ground water cause cones of depression to form in the water table or the piezometric surface, the cones being centered at centers of pumpage. The amount of influence of the cone of depression decreases with distance from the point of discharge. Water levels in the artesian reservoirs in Grayson County usually begin a period of decline in June, reaching a low in August when pumping is generally greatest. Recovery of the water levels takes place chiefly during the period from about September to May.

TRINITY GROUP

Little information is available regarding the artesian pressure in the Trinity group in Grayson County prior to development of wells in the county. A comparison of early reported levels in the Woodbine formation at Sherman and in the Trinity group at Denison indicates that the water level in the Trinity at Sherman in the early part of the 20th century was probably about 100 feet below the land surface. The water levels declined steadily after wells were drilled in Grayson County and in areas to the west, where many flowing wells in Cooke and Denton Counties have ceased to flow and are now equipped with pumps. A rapid decline of artesian pressure took place in the Sherman area during and after World War II because of increased withdrawals of water for public supply and industrial use.

During the period 1909 to 1958, water levels in wells in the Trinity at the Fairview municipal pumping station in Sherman declined at least 180 feet; however, 63 percent of this decline, or 113 feet, took place after 1945. At other places in the city the wells in the Trinity are more widely spaced and the declines have been less. For example, in well E-55 the water level declined 65 feet during the period 1947 to 1958 and in well E-36 the water level declined 78 feet from 1944 to 1958. Hydrographs of short-term water levels in the Sherman area (fig. 14) show that artesian pressures in the Trinity group are at their lowest in August, generally the month of greatest water pumping.

Water levels in the Trinity group have declined considerably also in the western part of Grayson County in the vicinity of Collinsville and Whitesboro, where water is pumped for public supply from the Trinity. During the period 1935 to 1957 the water level in well E-26 at Whitesboro declined 72 feet, an average

1

44 -

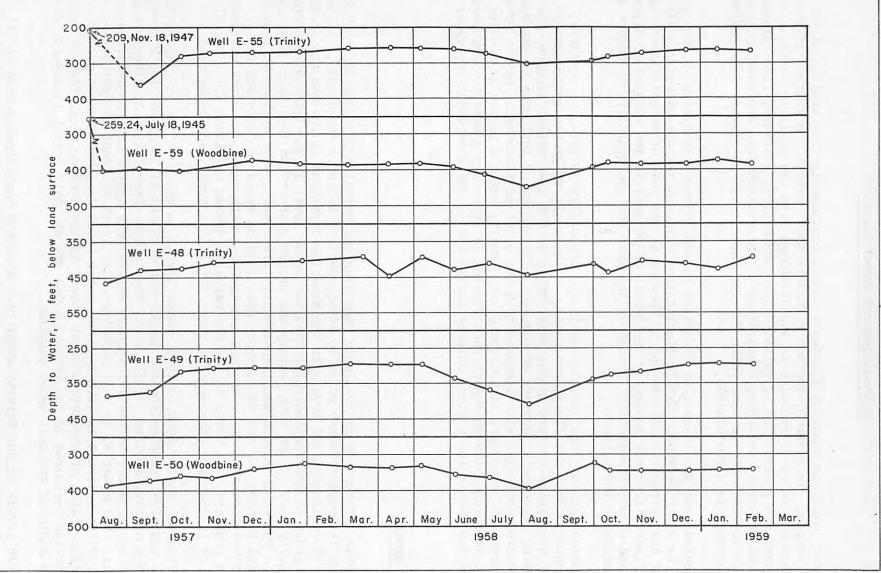


FIGURE 14.- Fluctuation of water levels in wells in the Woodbine formation and Trinity group at Sherman, Grayson County, Texas

Bulletin 6013 of almost 3.5 feet per year. This area is midway between Sherman and Gainesville, both centers of heavy pumping, and the water levels here may be affected slightly by pumping in those cities.

Hydrographs of wells in the outcrop of the Trinity group in Cooke and Montague Counties (fig. 12) show fluctuations of water levels in response to recharge from rainfall on the outcrop of the aquifer. During 1958 the water levels in the J. L. Golightly well in Montague County and the J. H. Richey well in Cooke County fluctuated about 3 feet, the former showing no net decline for the year, the latter showing a net decline of 0.5 foot.

Figure 13 shows the fluctuations of the water level in well B-2, tapping the Trinity group in the vicinity of the outcrop in Lake Texoma, compared with fluctuations of water levels in the lake. Prior to October 1943, when water was first impounded in Lake Texoma, the water level in the well fluctuated independently of the water level in the Red River. After the formation of Lake Texoma, the water level rose nearly 80 feet in the well during the 14-year period from 1943 to 1957, indicating recharge from the lake into the sand. The water level, controlled almost entirely by the lake, fluctuates several feet below the level of the lake. Figure 13 shows also that changes in the lake level are reflected almost instantaneously at the well, indicating a pressure change followed by a slow transfer of water. Low permeability of the Trinity does not permit rapid movement of water in the aquifer; consequently, infiltration from the lake is a slow process.

WOODBINE FORMATION

Water levels in the Woodbine in the Sherman area have shown large declines since the drilling of the first municipal wells early in the 20th century. During the 49 year period 1909-58, the water levels in wells at the Fairview pumping station in Sherman declined about 240 feet; however, 65 percent of this decline, or 156 feet, occurred during the 13-year period 1945-58. In well E-26 in the north-central part of Sherman, the water level declined 166 feet from 1933 to 1958, an average of about 6.5 feet per year. Water levels have declined rapidly since 1945 owing to the increased withdrawals of ground water during the postwar period. Water levels in some of the municipal wells during pumping are at or below the top of the Woodbine indicating at least local overdraft. The short-term hydrographs of wells E-50 and E-59 (fig. 14) show the decline in water levels and fluctuations due to seasonal pumping at Sherman.

Although the decline of artesian pressure has been widespread in Grayson County, the magnitude of decline diminishes with distance from the centers of heavy pumping. Since the drilling of the first well in the heavily pumped Perrin Air Force Base well field, 6 miles northwest of Sherman, the water level declined 72 feet in well E-9 during the period 1941 to 1957, an average of 4.5 feet per year. In well E-14, also in the Perrin Air Force Base well field, the water level declined 35 feet from 1953 to 1957, an average of 9 feet per year. Three miles north of Perrin Air Force Base at Pottsboro, the water level in well B-27 declined an average of 6.5 feet per year from 1952 to 1958.

Water levels in and near the outcrop of the Woodbine formation in Grayson County probably have not been seriously affected by the large withdrawals of water downdip. Hill (1901, p. 624) reports a number of flowing wells at altitudes of 650 feet or less in an area 6 miles west of Pottsboro. The majority of these wells are still flowing with little apparent loss of head. Furthermore, recharge is probably still being rejected in the outcrop area along Choctaw Creek between Sherman and Denison. The hydrographs of wells on the outcrop of the Woodbine (fig. 12) show, for the most part, fluctuations in response to recharge from rainfall -- the highest water levels usually coinciding with the months of greatest rainfall. The effect of evapotranspiration, greatest in late summer, causes a decline of water levels during that period.

Water-Bearing Formations

The principal water-bearing formations in Grayson County are the Trinity group and Woodbine formation, which supply more than 95 percent of the ground water used in the county. Other water-bearing formations of lesser regional importance which yield small to moderate amounts of water include the alluvial deposits, Pawpaw formation, Austin chalk, and Eagle Ford shale.

TRINITY GROUP

Hydraulic characteristics

The yield of a well is usually measured in gallons per minute or cubic feet per second. Yield depends upon the ability of the aquifer to transmit water, the thickness of the water-bearing material, the efficiency of the well, and the allowable drawdown.

Very few wells in Grayson County penetrate and are screened through the entire thickness of the water-bearing sands; therefore, the yields of the wells in general are less than the maximum that could be developed if the wells penetrated to the bottom of the aquifer and were screened through the entire saturated thickness.

The yields from the Trinity group range from less than 1 gpm to 700 gpm, the largest yields being from the Sherman city wells. Most of the Sherman wells penetrate the full thickness of the fresh-water-bearing part of the aquifer and are screened opposite all the water-bearing sands. Most of the wells having low yields are in the western and northwestern parts of the county and are windmill wells constructed to furnish only enough water for stock and domestic use on farms. The potential yield of wells in the Trinity group increases across the county from northwest to southeast because of an increase in thickness of the formation in that direction.

The specific capacity of a well is expressed as a ratio of the discharge to the drawdown, generally expressed in gallons per minute per foot of drawdown, and it is assumed to be a direct proportion. For instance, if the discharge of a well is doubled, the drawdown will be doubled. The specific capacity of 11 wells in the Trinity group in Grayson County ranged from 0.57 to 4.2 gpm per foot, averaging about 2.25 gpm per foot (table 2).

Well No.	Diameter of screen (in)	Yield (gpm)	Drawdown (ft)	Time since pumping stopped (hrs)	Specific capacity (gpm/ft)
A-21	7	25	43.9	1	0.57
B-2	10-3/4	112	65.0		1.7
D-25	5-1/2	330	104	l	3.2
E-12	8-5/8, 6-5/8	100	156	24	.6
E-36	6-5/8	543	260	24	2.1
E-48	8-5/8	400	173	2-3/4	2.3
E-49	8-5/8	600	203	3	2.9
E-55	7	354	160	1/2	2.2
E-58	10-3/4	560	366	24	1.5
E-61	10-3/4	602	170	24	3.7
G-1	5-1/2	110	26	3	4.2

Table 2.--Yields and specific capacities of selected wells in the Trinity group in Grayson County, Texas

Pumping tests were made on 5 wells in the Trinity group to determine the coefficients of transmissibility and storage, which govern the ability of the aquifer to transmit and yield water. The coefficient of transmissibility is defined as the rate of flow of water, in gallons per day, through a vertical strip of the aquifer that is 1 foot wide and extends the vertical thickness of the aquifer under a hydraulic gradient of 1 foot per foot and at the prevailing temperature of the water. Thus, the volume of water that will flow each day through each foot of the water-bearing material is the product of the coefficient of transmissibility and the existing hydraulic gradient. Therefore, the smaller the coefficient of transmissibility, the greater the hydraulic gradient required for the water to move through the aquifer at a given rate. Many of the wells tested penetrate only thin sections of the formation, and the coefficients obtained are not representative of the full thickness. Therefore, the field coefficient of permeability is used for expressing the ability of the aquifer to transmit water per unit of thickness. The coefficient is determined by dividing the field coefficient of transmissibility by the thickness, in feet.

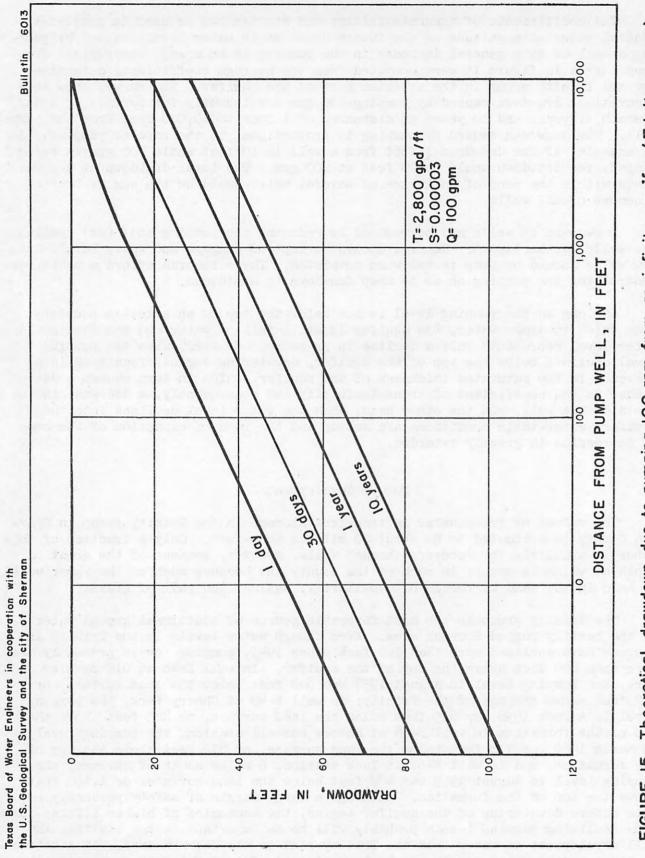
The coefficient of storage is defined as the volume of water the aquifer releases from or takes into storage per unit surface area per unit change in the component of head normal to that surface. Under artesian conditions, the coefficient of storage is a measure of the ability of the formation to yield water from storage by the compression of the formation and the expansion of the water as the head is lowered. The coefficient of storage for an artesian aquifer, like the Trinity group and most of the Woodbine formation in Grayson County, is small; consequently, after pumping starts, a cone of depression is developed over a wide area in a short time. Under water-table conditions the coefficient of storage reflects gravity drainage of the aquifer and is very much larger. The coefficients of transmissibility determined from the pumping tests ranged from a low of 300 gpd per foot at well A-21 to a high of 4,700 gpd per foot at well E-61 (table 3). The increase in the coefficient of transmissibility southward and southeastward can be attributed to an increase in thickness of the formation in those directions. Average values of the coefficients of transmissibility and storage of the Trinity group are approximately 2,800 gpd per foot and 0.0003, respectively.

Date	Well No.	Coefficient of transmissi- bility (gpd/ft)	Coefficient of permeability (gpd/ft ²)	Coefficient of storage	Remarks
8-13-58	A-21	400	13	-	Well is screened for 30 feet only. Not used in com- puting average.
	A-21	300	10		Not representative and not used in computing average.
1-30-59	E-61	4,700	11		
7-18,19-45	E- 38	2,200		0.00008	
do	E-36	3,200	10	0.00002	
7-19,20-45	E- 38	3,700	-	0.00002	
7-20,21-45	E- 38	2,800	-	0.00002	
do	E-36	2,500	8	-	
3-19,20-59	E - 58	2,000	14		
3-20,21-59	E- 58	1,600	3		
Average *		2,800		0.00003	

Table 3.--Coefficients of transmissibility, permeability, and storage determined from pumping tests on selected wells in the Trinity group, Grayson County, Texas

*Excluding Well A-21

The coefficients of transmissibility and storage can be used to predict the general order of magnitude of the future drawdown in water levels caused by pumping a well or by a general increase in the pumping in an area. Theoretical drawdown curves in figure 15 were computed from the average coefficients determined for the Trinity group in the artesian part of the aquifer. The curves show the theoretical drawdown caused by pumping 100 gpm continuously for periods of 1 day, 1 month, 1 year, and 10 years at distances of 1 foot to 10,000 feet from the pumped well. The drawdown caused by pumping is proportional to the rate of pumping. As an example, if the drawdown 1 foot from a well is 10 feet while 100 gpm is being pumped, the drawdown would be 20 feet at 200 gpm. The total drawdown at any one place within the cone of influence of several wells would be the sum of the influences of all wells.


Drawdowns in wells may be reduced by reducing the pumping and/ (or) spacing the wells farther apart. Records should be kept of pumpage and water levels and new wells should be pump tested when completed. These records afford a basis for controlling the pumping so as to keep drawdown to a minimum.

As long as the pumping level is not below the top of an artesian aquifer from which it draws water, the aquifer is still full of water and the decline in water level represents only a decline in pressure. However, when the pumping level declines below the top of the aquifer, dewatering begins, resulting in a decrease in the saturated thickness of the aquifer, which in turn causes a decrease in the coefficient of transmissibility and consequently, a decrease in the yield of the well. On the other hand, when the water level declines into the aquifer, water-table conditions are set up and the rate of expansion of the cone of depression is greatly retarded.

Future development

The volume of fresh water in transient storage in the Trinity group in Grayson County is estimated to be about 60 million acre-feet. Only a fraction of this water is available for recovery through wells, however, because of the great depth at which it occurs in much of the county and because much of the water would be held in the sand by forces of capillarity, against the pull of gravity.

The Trinity group is the most favorable source of additional ground water in the heavily pumped Sherman area. Even though water levels in the Trinity in Sherman have declined more than 100 feet since 1945, pumping levels presently are more than 800 feet above the top of the aquifer. In well E-48 at Old Settler's Park, the pumping level in August 1957 was 648 feet below the land surface, or 812 feet above the top of the Trinity; in well E-49 at Cherry Park, the pumping level in August 1958 was 615 feet below the land surface, or 885 feet above the top of the formation in well E-58 at Roscoe Russell station, the pumping level in March 1959 was 718 feet below the land surface, or 872 feet above the top of the formation; and in well E-61 at Tuck station, 6 miles south of Sherman, the pumping level in August 1959 was 480 feet below the land surface, or 1,100 feet above the top of the formation. Although a large margin of safety presently exists before dewatering of the aquifer begins, the economics of higher lifting costs from declining pumping levels probably will be an important factor limiting the full development of water from the Trinity sand in the Sherman area. If additional declines in the water levels are to be minimized, future wells of large capacity drilled to the Trinity group will have to be spaced as far apart as economically possible.

The threat of salt-water encroachment in the Trinity group should also be considered. Large quantities of salt water in the Trinity group on the Preston anticline in northern Grayson County are moving southward toward the heavily pumped Sherman area. However, this movement poses little threat in the foreseeable future because of its slow rate. Increased withdrawal of water at Sherman could cause a coning-up of the basal salt water, possibly resulting in some salt-water contamination in wells and an increase in the salinity of the fresh water being pumped. This situation should not discourage future development of the Trinity, however, because the amount of fresh water in the Trinity in the Sherman area is large in proportion to the amount of salt water.

Large quantities of additional ground water can be developed from the Trinity group in other parts of Grayson County. High artesian pressures and large available drawdowns prevail throughout most of the county because of the altitudes of the outcrop area and the deep position of the aquifer. However, the factor limiting any large ground-water development in the Trinity group is the amount of saturated fresh-water sand available in the area. Figure 16 shows saturated-sand thicknesses in various parts of Grayson County. The amount of sand increases southward from the outcrop in the northern part of the county, reaching a maximum in the southern part. The increase is due not only to the thinning of the Trinity group section toward the outcrop but also to the inclusion of progressively greater amounts of salt-water-bearing sand northward to the Preston anticline. The thickness of saturated sand exceeds 600 feet about 3 miles east of Tioga. The thickness is in excess of 500 feet in a large area from Tioga to Gunter; other smaller areas of similar thickness are about 2 miles northeast of Collinsville, 3 miles north of Howe, and 2 miles south of Sherman. Large developments of ground water from the sections of thick sands are possible, whereas the thin sections of fresh-water sand and low transmissibilities in the northern part of the county preclude the development of large-capacity wells in that area.

WOODBINE FORMATION

Hydraulic characteristics

The yields of wells in the Woodbine formation range over wide limits, from less than 1 gpm in windmill wells on the outcrop to about 600 gpm at Sherman. The extreme range is caused largely by the type of well construction. Many of the wells are constructed so as to produce only sufficient quantities of water for domestic or stock use. In most places much larger yields could be obtained from properly constructed wells.

The specific capacities of wells in the Woodbine ranged from 0.36 to 6.0 gpm per foot. Here again the range is largely the result of differences in well location and construction. The wells having the highest specific capacities are those in the thicker sand sections downdip from the outcrop. The average of the specific capacities in 12 wells tested is about 2.9 gpd per foot (table 4).

Pumping tests made on 9 wells in the Woodbine indicate that the average coefficient of transmissibility is about 3,200 gpd per foot; the average coefficient of storage in 5 of the wells was 0.00001 (table 5). Theoretical drawdown curves in figure 17 were computed from an average of the coefficients determined for the Woodbine in the artesian part of the aquifer. The curves show the theoretical drawdown caused by pumping 100 gpm continuously for periods of 1 day, 1 month, 1 year, and 10 years and at distances of 1 foot to 10,000 feet from the pumped well.

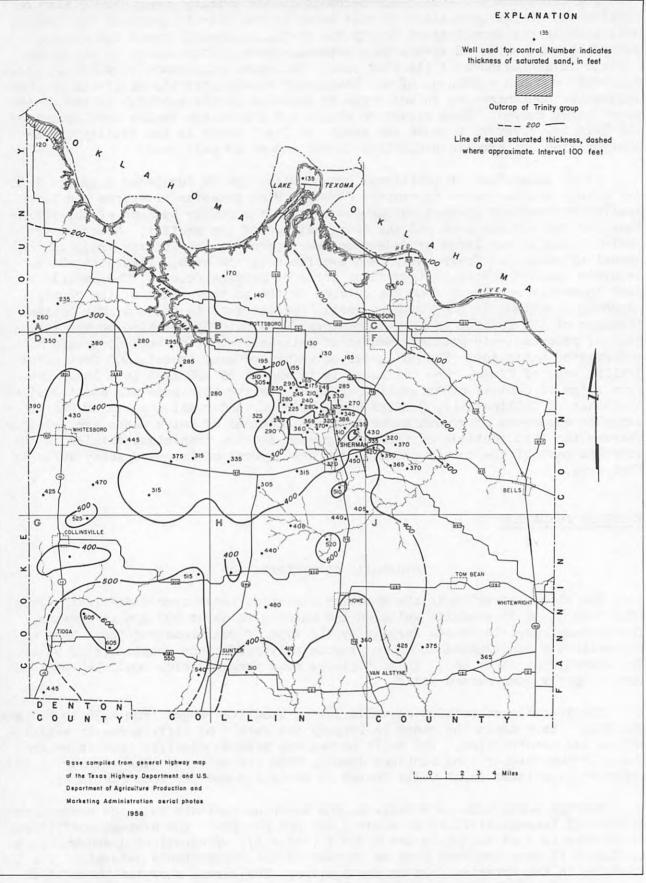


FIGURE 16.- Thickness of fresh-water-bearing sand in the Trinity group, Grayson County, Texas

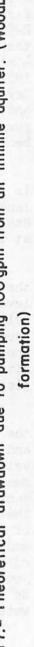
Well No.	Diameter of screen (in)	Yield in (gpm)	Drawdown (ft)	Time since pumping stopped (hrs)	Specific capacity (gpm/ft)		
B-27	4-1/2	73	32.5	1	2.2		
E-9	6	60	167	9-1/2	.36		
E-10	7	120	-	.75			
E-14	8-5/8	77	166	.46			
E-35	8-5/8	350	110	48	3.2		
E-47	8-5/8	500	83 2-3/4		6.0		
E- 50	8-5/8	350	134	3	2.6		
E-62	10-3/4	602	132	36	4.5		
E-67	8-5/8	145	26	6	5.6		
H-21	4-1/2	100	54	1-1/2	2.0		
H - 28	4-1/2	52	10	10	5.2		
J-11	6	69	35	1-1/2	2.0		

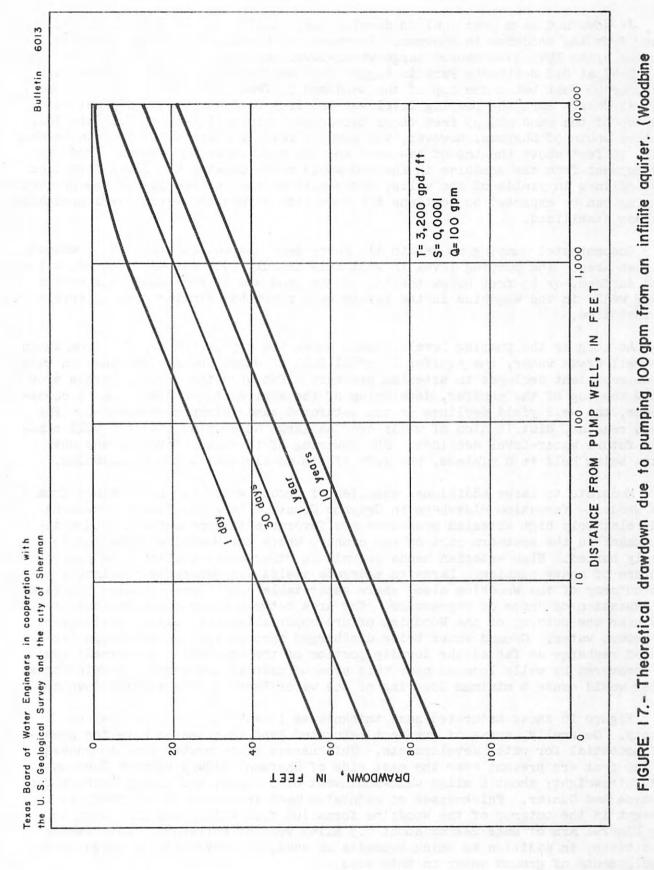
Table 4.--Yields and specific capacities of selected wells in the Woodbine formation in Grayson County, Texas

Table 5.--Coefficients of transmissibility, permeability, and storage determined from pumping tests on selected wells in the Woodbine formation, Grayson County, Texas

Date	Well No.	Coefficient of transmissi- bility (gpd/ft)	Coefficient of permeability (gpd/ft ²)	Coefficient of storage	Remarks
8-20-58	A-10	16,700		-	Short test under water-table condi- tions; results may be considerably in error. Not used in average.
7-15-58	A-25	7,900	190	-	Short test under water-table condi- tions; results may be considerably in error. Not used in average.

(Continued on next page)


Table 5.--Coefficients of transmissibility, permeability, and storage determined from pumping tests on selected wells in the Woodbine formation, Grayson County, Texas--Continued

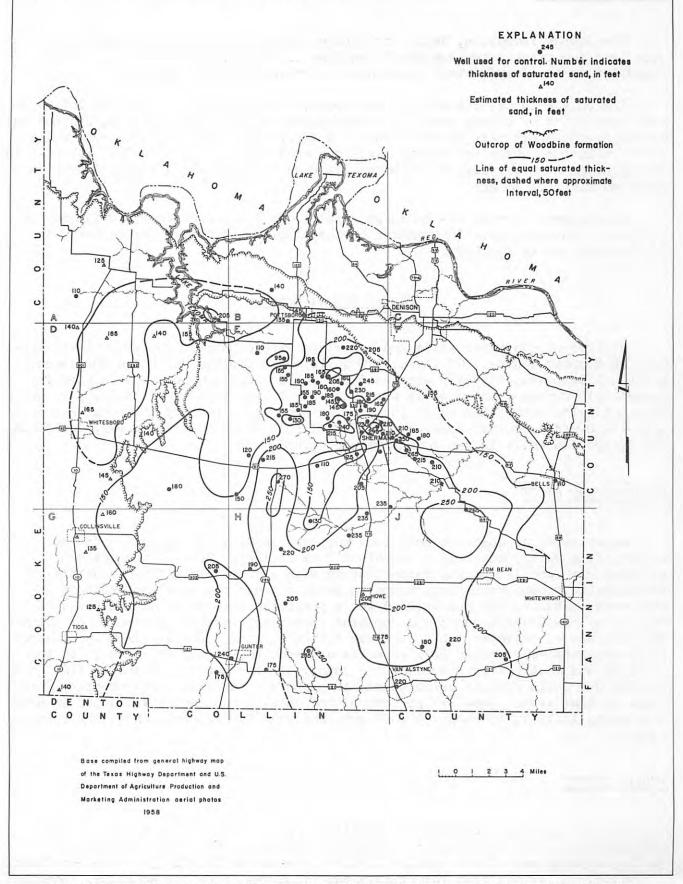

Date	Well No.	Coefficient of transmissi- bility (gpd/ft)	Coefficient of permeability (gpd/ft ²)	Coefficient of storage	Remarks
3-24-58	B-27	2,700	17		
do	B-27	2,200	14	-	
7-13,15-45	E-37	2,100	37	0.00006	
do	E- 39	2,200	44	.00009	
do	E-42	2,400	21	.0002	
do	E-43	2,300	37 .	.0002	
do	E-44	2,300	38	.0002	
7-15,16-45	E-37	2,400	42	.00004	
do	E- 39	2,400	48	.00009	
do	E-42	2,500	22	.0002	
do	E-43	2,600	41	0.0001	
do	E-44	2,500	41	.00002	
3-24-58	н-28	12,500	110	-	
3-26-58	J-11	1,400	20	a -antoine a	
1-30-59	E-62	6,000	26		
Average *		3,200		0.0001	

*Excluding wells A-10 and A-25

Future development

The volume of water in transient storage in the Woodbine formation in Grayson County is estimated to be about 25 million acre-feet. Only a fraction of this water is recoverable through wells because of the great depth at which much of it occurs and because much of the water would be retained in the "sand" by capillarity.

It does not seem practical to develop large additional amounts of ground water from the Woodbine in Sherman. Increased withdrawals of ground water in Sherman since 1945 have caused large water-level declines. The pumping level in well E-47 at Old Settler's Park in August 1958 was 525 feet below the land surface, or 40 feet below the top of the sand and 55 feet above the screen. In well E-50 at Cherry Park the pumping level was 528 feet in August 1958, 25 feet below the top of the sand and 95 feet above the screen. In well E-62 at Tuck station, 4 miles south of Sherman, however, the pumping level was about 500 feet in October 1959, 70 feet above the top of the sand and 300 feet above the screen. Further development from the Woodbine in Sherman would cause dewatering of the formation and declines in yields of the wells, especially as the decline due to the present pumping can be expected to continue for some time before the water level gradually becomes stabilized.


Concentrated pumping at Perrin Air Force Base has caused excessive drawdowns in that area. The pumping level in well E-14 in July 1957 was 425 feet below the land surface, or 43 feet below the top of the sand and 45 feet above the screen. Other wells in the Woodbine in the Perrin well field had similar pumping levels at that time.

As long as the pumping levels remain above the top of the aquifer from which the well draws water, the aquifer is still full of water and any declines in water level represent declines in artesian pressure. But when the pumping levels drop below the top of the aquifer, dewatering of the aquifer takes place. As a consequence, the well yield declines as the saturated sand thickness decreases. For these reasons, distribution of wells over as large an area as possible will minimize future water-level declines. The lowering of the water level at any one place being held to a minimum, the life of the development would be extended.

Moderate to large additional supplies of ground water can be obtained from the Woodbine formation elsewhere in Grayson County. Large available drawdowns and relatively high artesian pressures are favorable to considerable future development in the southern part of the county, where the Woodbine formation is deeply buried. High artesian heads prevail in other areas distant from present centers of heavy pumping. Large to moderate yields are generally obtainable on the outcrop of the Woodbine also, where water-table conditions minimize the rate of expansion of cones of depression. The area between Sherman and Denison, in and near the outcrop of the Woodbine offers opportunity for maximum utilization of ground water. Ground water being discharged through springs and seeps (rejected recharge so far as the downdip portion of the aquifer is concerned) could be recovered by wells located near this area of natural discharge. Pumping this water would cause a minimum lowering of the water level in the aquifer downdip.

Figure 18 shows saturated sand thicknesses in various parts of Grayson County. Generally, areas of greatest saturated sand thicknesses have the greatest potential for water developments. Thicknesses of saturated sand in excess of 250 feet are present near the east side of Sherman; midway between Sherman and Whitewright; about 6 miles west-southwest of Sherman; and midway between Van Alstyne and Gunter. Thicknesses of saturated sand in excess of 150 feet are present in the outcrop of the Woodbine formation from Whitesboro northward to Big Mineral Arm of Lake Texoma about 6.5 miles west of Pottsboro. Water-table conditions, in addition to thick deposits of sand, are favorable to large future developments of ground water in this area.

Bulletin 6013

OTHER FORMATIONS

The Pawpaw formation, Eagle Ford shale, Austin chalk, and alluvium constitute less important water-bearing formations in Grayson County. Of these, only the alluvium is of sufficient importance to warrant further mention.

The only alluvial deposits in the county that are known to contain considerable quantities of ground water are those along the Red River north of Denison and in the northeastern part of the county. A few records are available from wells in the alluvium, which are mostly small and used for domestic supply. Well C-l in the alluvium north of Denison, however, is used for industrial supply and has a reported yield of 35 gpm.

Development of moderate to large supplies of water from the alluvium may be possible. However, more information on the alluvium is needed before definite conclusions can be reached.

Use of Ground Water

Records of 305 water wells and 4 springs were obtained during the investigation in Grayson County. Of these, 200 wells and 2 springs were used for domestic and stock purposes, 43 wells were used for public supply, 9 wells were used for industrial purposes, and 6 wells were used for irrigation. The remaining 47 wells were not being used. The wells inventoried are only a part of the total number of wells in Grayson County; however, records of most of the public-supply, industrial, and irrigation wells in the county were obtained.

DOMESTIC AND STOCK

Water used for domestic and stock purposes in Grayson County is obtained chiefly from wells, but some is obtained from springs. Most of the wells are equipped with small-capacity pumps powered with electricity. The accessibility of available ground water determines in large measure the type and depth of the well used. Shallow dug and drilled wells predominate in and near the areas of outcrop of the Trinity group and Woodbine formation, Pawpaw formation, and alluvial deposits where the water table is close to the surface. Downdip from the outcrop areas progressively deeper drilled wells are required to tap the water. In the southern and southeastern parts of the county, in the outcrop of the Austin chalk, shallow dug wells prevail owing to the deep position of other water-bearing formations in that area. About 15 percent of the total ground water withdrawn in Grayson County in 1957, or about 750,000 gpd, was used for domestic and stock requirements.

PUBLIC SUPPLY

Public supplies accounted for about 3.3 mgd, or two-thirds of the ground water withdrawn for all purposes in Grayson County in 1957. The pumpage for public supplies was almost equally divided between the Trinity group and Woodbine formation, 53 percent from the Trinity and 47 percent from the Woodbine. Sherman, the largest user of ground water in the county, accounts for about 70 percent of the total ground water used for public supply. Water in Sherman is pumped from 14 wells, 8 in the Trinity and 6 in the Woodbine, having a total potential of about 8.6 mgd. Whitesboro, Collinsville, and the community of Gordonville about 10 miles north of Whitesboro are the only towns depending entirely on ground water from the Trinity group. Other towns in the county pump only from the Woodbine formation. Numerous resorts near Lake Texoma, having wells in either the Trinity or the Woodbine, use comparatively small amounts of water. Perrin Air Force Base supplements ground water from wells in the Woodbine with surface water obtained from the Denison municipal supply.

INDUSTRY

Withdrawal of ground water for industrial use in Grayson County in 1957 was about 900,000 gpd, or 20 percent of the water pumped for all purposes. About 92 percent of the industrial pumpage, or 828,000 gpd, came from the Woodbine formation, and about 8 percent, or 72,000 gpd from the Trinity group. A relatively small amount of water for industrial use, probably less than 1 percent, is pumped from the alluvium north of Denison. Most of the industrial use of ground water prior to 1950 was by industries in Sherman. Since 1950 withdrawals of ground water by industry in the county have more than doubled. Most of the increase was for new industry in rural areas, the largest individual consumer being the Line Material Co., 6 miles west of Sherman, which pumps about 570,000 gpd. Dieselization of the railroads caused an abandonment of railroad wells in Sherman in about 1955 and resulted in a slight decrease in pumping at that time.

IRRIGATION

Irrigation is relatively new in Grayson County. The first large irrigation well of record, D-24, was drilled in 1955 near Whitesboro in the western part of the county. From then until 1958 five more irrigation wells were drilled, A-10 and B-15 in 1956, A-19 and A-24 in 1957, and A-25 in 1958. All the irrigation wells, except well B-15 which produces from the Trinity group, produce from the Woodbine formation in its outcrop in the western part of the county. The principal irrigated crops include peanuts and grain sorghums, a total of about 110 acres being irrigated in 1958. The water is applied with sprinklers. The wells, 8 to 10 inches in diameter, are equipped with turbine pumps powered with electricity. The wells have yields ranging from about 30 to 260 gpm. The amount of water withdrawn for irrigation varies with soil-moisture requirements, the wells being used primarily to supplement rainfall; when rainfall is above normal or well distributed the irrigation requirement decreases. Well A-10, which may be considered a representative irrigation well, pumped about 14 acre-feet of water during 1957, a year of above-normal rainfall. The total pumpage for irrigation in 1957 averaged about 70,000 gpd.

QUALITY OF WATER

The suitability of water for various uses is determined largely by the kind and amount of dissolved mineral matter that the water contains. The mineral matter is dissolved principally from the soil and rocks through which the water passes; consequently, the differences in the chemical character of the ground water reflect in a general way the differences in the geologic formations with which the water has had contact. The concentrations of the chemical constituents commonly are expressed in parts per million. A part per million (ppm) is 1 unit weight of constituent in 1 million unit weights of sample.

Samples of water were obtained from 219 wells, 2 springs, and 2 lakes in Grayson County. The wells and springs sampled are shown by bars over the location numbers on plate 1 and figure 2, and the results of the analyses of the samples are given in table 10. Figure 19 shows graphically the composition of representative samples from the principal aquifers in Grayson County. Table 6 shows a comparison of the quality of the ground water in the county with standards proposed for various uses. Most of the samples were collected during the present investigation; however, a few were collected at various times previously. Except as indicated in the table, the analyses were made in the laboratory of the Geological Survey at Austin, Texas.

The United States Public Health Service (1946, p. 382-383) has established standards for drinking water used on common carriers engaged in interstate commerce. These standards are widely used in evaluating water for drinking. The recommended maximum concentrations for certain of the chemical constituents according to the standards are listed below.

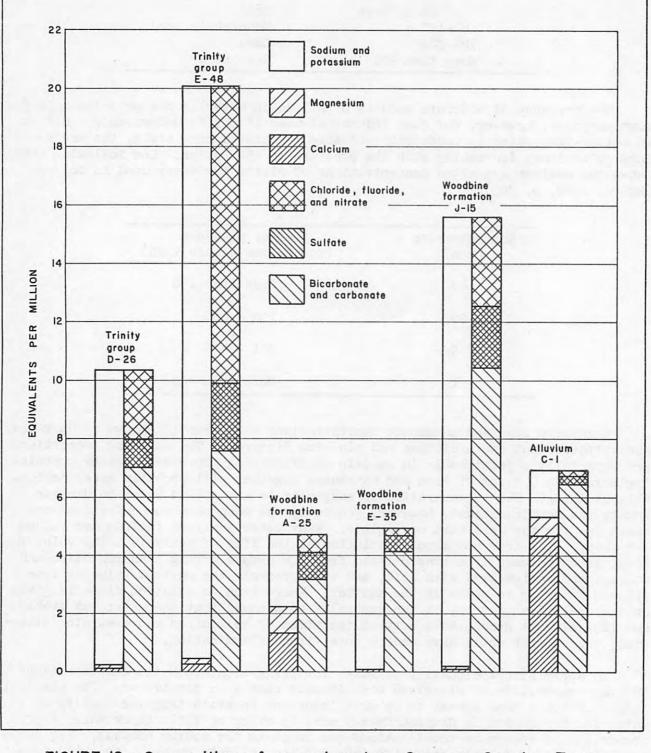
Iron (Fe) and Manganese (Mn) together should not exceed 0.3 ppm.
Magnesium (Mg) should not exceed 125 ppm.
Chloride (Cl) should not exceed 250 ppm.
Sulfate (SO₄) should not exceed 250 ppm.
Fluoride (F) must not exceed 1.5 ppm.

Dissolved solids should not exceed 500 ppm in water of good chemical quality; however, if such water is not available, a dissolved-solids content of 1,000 ppm may be permitted.

These tolerances were set primarily as a protection against digestive disturbances and because they represent limits beyond which taste may become objectionable. Water having a chloride content exceeding 250 ppm may have a salty taste. Water having a magnesium and sulfate content exceeding the standards may have a laxative effect. Water having a fluoride content exceeding 1.5 ppm may cause teeth of children to become mottled (Dean, Dixon, and Cohen, 1935, p. 424-442); however, fluoride concentrations of about 1.0 ppm appear to reduce the incidence of tooth decay (Dean, Arnold, and Elvove, 1942, p. 1155-1179). Water that contains more than 45 ppm of nitrate has been related to the incidence of infant cyanosis (methemoglobinemia, or "blue baby" disease) (Maxcy, 1950, p. 271), and may be dangerous for infant feeding. High nitrate content may be an indication of pollution from organic matter, and water containing excessive nitrate should be tested for bacterial content if it is to be used for domestic purposes.

Calcium and magnesium are the principal constituents in water that give it the property called hardness. Hard water causes excessive soap consumption and incrustations in boilers, water pipes, and hot-water heaters. The hardness equivalent to the carbonate and bicarbonate content is called carbonate hardness; the remainder is called noncarbonate hardness. The figures given for the hardness of a water may be evaluated by comparing them with the commonly accepted standards of hardness for public and industrial supplies given in the following table.

Classification		
Soft		
Moderately hard		
Hard		
Very hard		


The presence of moderate amounts of silica in water is not objectionable for most purposes; however, for some industrial uses it may be undesirable. Silica in boiler-feed water is undesirable because it forms a hard scale, the scaleforming tendency increasing with the pressure in the boiler. The following table shows the maximum suggested concentrations of silica for water used in boilers (Moore, 1940, p. 263).

Concentration (ppm)	Boiler pressure (pounds per square inch)
40	Less than 150
20	150 - 250
5	251 - 400
1	More than 400

Excessive iron and manganese concentrations cause reddish-brown or dark-gray precipitates that stain clothes and plumbing fixtures. The staining properties are especially objectionable in certain manufacturing processes. Water containing more than 0.3 ppm of iron and manganese together will probably cause noticeable staining. The concentration of manganese in the ground water in Grayson County was not determined; however, generally the manganese concentrations are small and for the most part negligible. Many water analyses include two values for iron, total iron and iron in solution at the time of analysis. The value for total iron includes iron precipitated from the sample during transportation and storage and redissolved with acid, and it represents the maximum value of iron present in water in place in the aquifer. Where iron in solution alone is given on the analytical report, it can generally be assumed that the water was stable and iron did not precipitate between the times of collection and analysis; otherwise, the chemist would have made a total-iron determination.

In appraising the quality of water for irrigation, both the concentration and the composition of dissolved constituents should be considered. The chemical characteristics that appear to be most important in evaluating the quality of water for irrigation in Grayson County are, in order of their importance (1) proportion of sodium to total cations (an index to the sodium hazard), (2) total concentration of soluble salts (an index to the salinity hazard), and (3) concentration of boron. A system of classification commonly used for judging the quality of a water for irrigation was proposed in 1954 by the U. S. Salinity Laboratory Staff (1954, p. 69-82). The classification is based primarily on the salainity hazard as measured by the electrical conductivity of the water and the sodium hazard as measured by the sodium-adsorption-ratio (SAR).

The relative importance of the dissolved constituents is dependent upon the degree to which they accumulate in the soil. Kelley (1951, p. 95-99) cited areas

Fluoride Nitrate b/ Magnesium Sulfate Chloride Boron c Dissolved Hardness Sodium Specific Silica a, Iron, (NO3) (B) (SO1) (C1) (F) Si02 total (Mg) solids adsorption conduct-(Fe) ratio d/ ance d/ and Manganese (Mn) Maximum 1.0 500e/ 60f/ 2,250 0.3 1.5 recommended terminations Number exceed-ing 2,250 terminations Number exceed-ing 250 Number of de-terminations Number exceed-Number of de-terminations Number exceed-ing 45 Number exceed-ing 250 exceedexceed. exceed exceed Number exceed terminations Number exceed ing 14 exceed exceed Number of determinations Number exceed Number of de-terminations exceed terminations Number exceed Number of de-terminations Number of de-terminations deof dede-Number of de-Number of determinations terminations Number of Number of Geologic Number e ing 125 ing 1.0 ing 500 Number (ing 0.3 Number Number Number formation ÷ ing 1, ing ing ing Ing 223 106 All wells 14 14 Trinity group 31 10 Woodbine formation Pawpaw formation Eagle Ford shale Austin chalk Alluvium

Table 6 .-- Comparison of quality of ground water in Grayson County with standards recommended by U. S. Public Health Service and with others

Chemical constituents (in parts per million)

Moore (1940, p. 263).

alpicialein Maxcy (1950, p. 271).

Wilcox (1955, p. 11).

Wilcox (1955, p. 16). 1,000 ppm permitted.

Upper limit of soft water.

having an average annual precipitation of about 18 inches in which salts did not accumulate in the irrigated soil. Wilcox (1955, p. 15) stated that the system of classification of irrigation waters proposed by the Salinity Laboratory Staff "... is not directly applicable to supplemental waters used in areas of relatively high rainfall." Thus in Grayson County, where the average annual precipitation is about 39 inches, the system of classification is probably not directly applicable. Wilcox (1955, p. 16) indicated that water generally may be used safely for supplemental irrigation if its conductivity is less than 2,250 micromhos per centimeter at 25°C and its SAR is less than 14. Each individual situation should be appraised when consideration is being given to irrigating with water in which the specific conductance and SAR values exceed these limits, where soil or drainage conditions are unfavorable, or when the crop to be grown is especially sensitive to the hazards of sodium and salinity.

An excessive concentration of boron will make a water unsuitable for irrigation. Wilcox (1955, p. 11) has indicated that boron concentration up to 1.0 ppm is permissible for irrigating boron-sensitive crops; concentration up to 3.0 ppm is permissible for boron-tolerant crops.

Trinity Group

The Trinity group in Grayson County generally yields water that is suitable for most purposes except in the northern part of the county, in the vicinity of the Preston anticline, where the lower part contains saline water. Most of the fresh water is high in sodium bicarbonate content and is very soft. The hardness of 35 samples ranged from 1 to 426 ppm; however, it exceeded 60 ppm in only 6 samples. The dissolved-solids content in 14 samples ranged from 516 to 1,180 ppm. In all the 14 samples it exceeded 500 ppm; however, only in 2, did it exceed 1,000 ppm. The iron content in 14 samples ranged from 0.02 to 2.1 ppm. In 4 of the samples the content exceeded 0.3 ppm.

The water from the Trinity group is of questionable quality for irrigation. In only 1 sample of 24 did the specific conductance exceed 2,250 micromhos; however, of 11 values of the sodium-adsorption-ratio (SAR) all exceeded the safe limit of 14, Of 11 determinations of boron 2 exceeded the permissible limit of 1.0 ppm for boron-sensitive crops.

Woodbine Formation

The water from the Woodbine formation ranges more widely in chemical composition than does the water in the Trinity group. However, in general, the water of the Woodbine is suitable for most purposes. The iron content in water from the Woodbine poses the most serious problem so far as public supply is concerned. Of 30 determinations of iron content, 14 exceeded 0.3 ppm. The dissolved-solids content of 31 samples from the Woodbine ranged from 114 to 2,620 ppm; in 10 of the samples it exceeded 500 ppm and in 3 it exceeded 1,000 ppm. The hardness of the water ranged from 0 to 1,070 ppm in 13⁴ samples; however, most of the water is soft, the hardness exceeding 60 ppm in only 51 of the samples. In general, the water from the Woodbine is hardest in and near the area of outcrop, the hardness decreasing with depth.

The water from the Woodbine in the outcrop area generally is suitable for irrigation. However, at depth the sodium content increases and the water becomes

questionable for irrigation. Of 131 determinations of specific conductance only 13 exceeded 2,250 micromhos; however, of 31 values of SAR, 19 exceeded the limit of 14. In only 2 of 21 samples did the boron content exceed 1 ppm.

Other Formations

The quality of water from the other formations in Grayson County ranges widely. Water from the Pawpaw formation appears to be of excellent chemical quality except that most of it is hard. Hardness of 7 of 8 samples exceeded 60 ppm. The water from the Austin chalk is probably suitable for most purposes except that it is hard. Of 30 determinations of hardness all 30 exceeded 60 ppm. Only 4 samples of water were obtained from the Eagle Ford shale and 2 from the alluvium. The small number of samples cannot be considered representative and generalizations concerning the quality of water in the two formations should not be made.

SUMMARY AND CONCLUSIONS

The principal ground-water reservoirs in Grayson County are the Trinity group and Woodbine formation, supplying more than 95 percent of the ground water used in the county. Other water-bearing formations supplying small to moderate amounts of water include the alluvial deposits, Pawpaw formation, Austin chalk, and Eagle Ford shale.

Recharge to the Trinity group and Woodbine formation is derived chiefly from precipitation on the outcrop, although a small amount is contributed to the outcrop in Lake Texoma.

The ground-water resources of Grayson County are only partly developed. The amount of fresh water in transient storage in the Woodbine formation and Trinity group is estimated to be about 25 million and 60 million acre-feet, respectively. Most of the water is not recoverable because of the depth at which it occurs. However, relatively high artesian heads and large available drawdowns, prevailing over much of the county in both the Trinity group and Woodbine formation, are favorable to future development. A factor limiting any large well development, however, is the volume of saturated fresh-water sand available in the area. The amount of fresh-water sand in the Trinity decreases northward, chiefly as a result of an increase in the amount of salt water in the northern part of the county. Consequently, in much of northern Grayson County, large developments of fresh ground water from the Trinity are not feasible. Large to moderate amounts of fresh water may be obtained from the Woodbine in most of Grayson County, especially in the outcrop area and in areas where the amounts of saturated sand are greatest. Withdrawal of moderate to large amounts of water from the alluvial deposits north of Denison and in the northeastern part of the county may be possible, but more information is needed before definite conclusions can be reached.

Large withdrawals of ground water from the Trinity group and Woodbine formation have resulted in large declines of water levels in the heavily pumped Sherman area. Concentrated pumping in Sherman has resulted in some dewatering of the Woodbine in that area. Distribution of pumping over a larger area, will be necessary if further declines in water level in the Woodbine in the Sherman area are to be minimized. The Trinity group is the most favorable source of additional ground water in the Sherman area. Pumping levels in the Trinity, still several hundred feet above the top of the aquifer, have a large margin of safety before dewatering of the sand begins. However, the economics of higher pumping lifts caused by declining pumping levels will tend to limit the full development of the aquifer. In order to minimize additional declines in water levels in either the Trinity or the Woodbine, the pumping would have to be distributed evenly among the wells, and future wells spaced as far apart as possible.

The ground water in Grayson County is suitable for most purposes. The Trinity group generally yields soft water that is high in bicarbonate content but is questionable for irrigation because of high sodium content. Water from the Woodbine formation is generally soft but may be high in iron content. The water of the Woodbine is generally suitable for irrigation in the outcrop area but unsuitable downdip because of high sodium content. The other water-bearing formations yield water that is apparently acceptable for most purposes.

- Adkins, W. S., 1932, The Mesozoic systems in Texas, in The geology of Texas, v. 1, Stratigraphy: Texas Univ. Bull. 3232, p. 239-518.
- Bergquist, H. R., 1949, Geology of the Woodbine formation of Cooke, Grayson, and Fannin Counties, Texas: U.S. Geol. Survey Oil and Gas Inv. Map 98 (2 sheets).
- Bullard, F. M., 1926, Geology of Marshall County, Oklahoma: Oklahoma Geol. Survey Bull. 39, 101 p.

, 1931 Geology of Grayson County, Texas: Texas Univ. Bull. 3125, 72 p.

- Bybee, H. P., and Bullard, F. M., 1927, The geology of Cooke County, Texas: Texas Univ. Bull. 2710, 170 p.
- Dean, H. T., Arnold, F. A., and Elvove, Elias, 1942, Domestic water and dental caries: Public Health Repts., v. 57, p. 1155-1179.
- Dean, H. T., Dixon, R. M., and Cohen, Chester, 1935, Mottled enamel in Texas: Public Health Repts., v. 50, p. 424-442.
- Harrington, J. W., 1957, The tectonic importance of the Grayson County, Texas, area, in Geology and geophysics of Coke and Grayson Counties, Texas: Dallas Geol. Soc., p. 73-74.
- Hill, R. T., 1901, Geography and geology of the Black and Grand prairies, Texas, with detailed descriptions of the Cretaceous formations and special reference to artesian waters: U.S. Geol. Survey 21st Ann. Rept., pt. 7, 666 p., 71 pls.

Kelley, W. P., 1951, Alkali soils: New York, Reinhold Pub. Corp., 176 p.

- Leggat, E. R., 1957, Geology and ground-water resources of Tarrant County, Texas: Texas Board Water Engineers Bull. 5709, 181 p.
- Livingston, P. P., 1945, Ground-water resources at Sherman, Texas: Texas Board Water Engineers dupl. rept., 19 p.
- Maxcy, K. F., 1950, Report on the relation of nitrate concentrations in well waters to the occurrence of methemoglobinemia: Natl. Research Council, Bull. San. Eng., p. 265-271, app. D.
- Moore, E. W., 1940, Progress report of the committee on quality tolerances of water for industrial uses: New England Water Works Assoc. Jour., v. 54, p. 263.
- Stephenson, L. W., 1946, Alunite at Woodbine-Eagle Ford contact in northeastern Texas: Am. Assoc. Petroleum Geologists Bull., v. 30, No. 10, p. 1764-1770.
- Sundstrom, R. W., Hastings, W. W., and Broadhurst, W. L., 1948, Public water supplies in eastern Texas: U.S. Geol. Survey Water-Supply Paper 1047, 285 p.

Taff, J. A., and Leverett, S., 1893, Report on the Cretaceous area north of the Colorado River: Texas Geol. Survey 4th Ann. Rept., pt. 1, p. 239-354.

REFERENCES CITED--Continued

- U.S. Public Health Service, 1946, Drinking water standards: Public Health Repts., v. 61, No. 11, p. 371-384.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture, Agriculture Handbook 60, 160 p.
- Wilcox, L. V., 1955, Classification and use of irrigation waters: U. S. Dept. Agriculture Circ. 969, 19 p.
- Winton, W. M., 1925, The geology of Denton County, Texas: Texas Univ. Bull. 2544, 86 p.

to structure values. 5.3, Seel. Survey 2118 Ann. Rept., pt. 7, 566 p., 12 pla.

Table 7 .-- Records of wells and springs in Grayson County, Texas

All wells are drilled unless otherwise noted in Remarks.

Water level : Reported water levels given in feet; measured water levels given in feet and tender. Method of lift and type of power : A, airlift; B, bucket; C, cylinder; Cf, centrifugal; G, gasoline, butane, or Diesel engine; H, hand; J, jet; N, none;

Use of water

T, turbine; W, windmill. Number indicates horsepower. : Ind, industrial; Irr, irrigation; N, none; P, public supply; S, stock.

							Water	level	1			
Well	Owner	Driller	er Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	r unit	Below land surface datum (ft.)	Date o measurem		Method of lift	Use of water	Remarks
*A-1	R. L. Cathey	L. O. McMillan	1948	200	5	Trinity group	153.1	July 25, 1	1958	C,G	D	
A-2	W. P. Luce	Whittington	1937	460	13	do	75	1	1937	C,W	S	Originally drilled as oil test. Perfo- rated at 360 and 460 ft. Plugged at 460 ft. In Cooke County.
*A-3	do		1924	328	4	do	196.7	Sept.10, 1	1957	·C,W	D,S	In Cooke County.
A-4	do	·	1924	24	48	Pawpaw(?) forma- tion	22.3	do		C,W	S	Dug. Reported never to have gone dry.
*A-5	Omar B. Milligan			325	6	Trinity group				C,E	D	
A-6	L. G. Handy well 4	The Texas Co.	1956	2,407								Oil test.
*A-7	Rock Creek Camp	Leech Bros.	1948	502	5	Trinity group	18	3	1957	C,E	D,P	Supplies tourist court and bath house.
*A-8	Mrs. Anna Potts	J. L. McClure	1955	51	6	Pawpaw formation	18.5	June 5, J	1958	J,E 1/3	D,S	Reported discharge 350 gph when drille
*A-9	Mrs, L. E. McCormick			18	48	Woodbine forma- tion	11	June 1	1958	J,E l	D,S	Dug.
*A-10	F. W. Holder	Hal Douglas	1956	180	8	do	74.9	Oct. 17, 1	1957	т, Е, 72	Irr	Pump set at 140 ft. Reported drawdown 22 ft. after 48 hrs. pumping 132 gpm November 1956. Irrigated 20 acres in 1957.
*A-11	do	J. L. McClure	1950	802	7, 4	Trinity group	75	Sept. 3	1957	C,E, 3/4	D	Perforated from 722 ft. to bottom. Gas and lignite reported at 600 ft.
*A-12	Cedar Bayou Resort	do	1946	130?	6	Woodbine forma- tion	100	Dec.	1957	J,E, 1	D,P	Supplies water for tourist court.
*A-13	John Pitts	do	1934	432	5	Trinity group	60	July 1	1958	C,E	D	
*A-14	Cedar Mills Resort		1953	575	4	do	48.3	July 22, 1	1958	т,Е	D,P	Supplies water for tourist court.
*A-15	Walnut Creek Resort		1947	308	6	Woodbine forma- tion	18.3	Dec. 18, 1	1957	J,E 112	D,P	Supplies water for 30 families during summer.

* See footnotes at end of table.

Table 7 .-- Records of wells and springs in Grayson County -- Continued

							Water	level			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	eter of	Water-bearing unit	Below land surface datum (ft.)	Date of measurement	Method of lift	Use of water	Remarks
*A-16	C. Bates			345		Woodbine forma- tion				D	Reported discharge 10 gpm in August 1953.
*A-17	Hugh Bean		1910	50	5	do	26.8 26.6	Sept. 9, 1957 Jan. 22, 1959	в,н	D	Water reported very hard. $1/$
*A-18	Mark Smith		1937	27	48	do	18.9	July 25, 1958	в,н	D,S	Dug. Temp. 68°F.
*A-19	O. B. Rich	Hal Douglas	1957	180	8	do	20.3	Sept. 9, 1957	T,E, 10	Irr	Pump set at 65 ft. Perforated from 20 ft. to bottom. Drawdown 30 ft. after many hrs. pumping 260 gpm, Sept. 9,1957. Irrigated 20 acres in 1957.
A-20	Mark Williams well 1	Humble Oil & Refining Co.	1953	14,345						-	Oil test.
*A-21	Gordonville Water Association	J. L. Myers & Sons	1958	1,021	7	Trinity group	144.3	Apr. 25, 1958	Т,Е, 2	P	Pump set at 300 ft. Perforated from 991 ft. to bottom. Measured drawdown 47 ft. after 100 min. pumping 25 gpm Apr. 25, 1958. Temp. 72°F. 2/
*A-22	E. W. McAden		1955	355		Woodbine forma- tion				D	
*A-23	J. B. Thorn			204	6	do	90.2	Sept.11, 1957	J,E, 112	D,Irr	Reported yield 20 gpm in 1957. Irrigate:
*A-24	W. C. Garner	Hal Douglas	1957	338	10, 8	đo	35	June 1958	т,Е, 5	D,Irr	Casing: 10-in. to 300 ft., 8-in to bottom. Reported discharge 100 gpm in 1958. Reported irrigates 6 acres. Temp. 67°F.
*A-25	J. C. Brady	do	1958	345	10	do	-		T,E	Irr	Pump set at 135 ft. Perforated from 189 to 229, 291 to 303, and 303 to 345 ft. Measured discharge 110 gpm in July 1958. Temp. 67°F. 2/
*A-26	Big Mineral Camp		1951	285	5	do	15	Dec. 1957	J,E, 1/2	D,P	Supplies water for trailer camp. Flóws when Lake Texoma is high.
A-27	U. S. Army		1920?	71	5	do	4.2	Nov. 8, 1958	C,H	N	
A-28	Flowing Wells Camp		1860	480	12, 8	đo	+		Flows	N	Well now covered by Lake Texoma.
*A-29	do .	J. L. McClure	1946	354	5	do	35	1956	J,E,	P	Supplies water for tourist court. 1/

4

* See footnotes at end of table.

- 70 -

				1			Water	les	rel			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	measu	te of arement	Method of lift	Use of water	Remarks
A- 30	U. S. Army			125	4	Woodbine forma- tion	+			Flows	N	Water reported to have good taste. Lake Texoma covers well most of the time.
A-31	do			125	4	do	+			Flows	N	do
*A-32	Stanley Franko	Townsend	1946	175		do	12	Mar.	1958	J,E	Р	Perforated from 145 ft. to bottom. Supplies small tourist court.
*A-33	Earl Baker	J. L. McClure	1945	257	5	đo	18	Mar.	1958	C,E	Р	Perforated from 237 ft. to bottom. Supplies small tourist court.
*A- 34	E. Gaitis	Townsend & Barrett	1937	265	7, 4	do	50	Aug.	1957	·C,W	D	Perforated from 230 ft. to bottom.
A-35	do	Townsend & Freeman	1917	180	4	do	52.1	Aug. 29	, 1957	C,H	N	2/
A-36	Hagerman National Wildlife Refuge	Layne-Texas Co. Ltd.		654		do	-			N	N	Abandoned. 2/
A-37	do			65	6	do	+			Flows	N	Well now covered by Lake Texoma.
A- 38	đo .		1920	65	6	đo	+			Flows	N	Water reported very soft and to have good taste. Estimated flow 1 to 2 gpm. Lake Texoma covers well at times. Temp. 65°F.
*A- 39	Dale Dickey		1908	200	3	do	70	July	1958	C,W	D	Temp. 69°F.
*A-40	Louise Kurr	E. C. Freeman	1957	235	5	do				J,E	D	
*A-41	Texas Natural Gasoline Corp.	-	1955	940	6	Trinity group	125	June	1958	т,Е, 20	Ind	Reported yield 50 gpm. Perforated from 880 ft. to bottom. Temp. 77°F.
*A-42	H. O. Reast		1898	56	42	Woodbine forma- tion	36.0	Apr. 15	5, 1958	в,н	D,S	Dug.
A-43	Suddath Bros. well 1	L. O. McMillan	1952	8,780								Oil test.
*A-44	J. F. Bullard	J. K. Hunter	1948	160	6, 4	Woodbine forma- tion				C,W	D	Casing: 6-in. to 50 ft., 4-in. to bottom
B-1	U. S. Army		1956	130	4	Trinity group	20	Sept.	1957	J,E	D	

.

.

* See footnotes at end of table.

10

Table 7 .-- Records of wells and springs in Grayson County -- Continued

							Water	level			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date of measurement	Method of lift	Use of water	Remarks
B-2	U. S. Army	Layne-Texas Co. Ltd.	1943	290	24, 10	Trinity group	95.5	Sept.17, 1957	N	N	Casing: 24-in. to 65 ft., 10-in. to 290 ft.; screened from 132 to 143, 146 to 165, 191 to 226, 241 to 264, and 279 to 290 ft. Originally drilled to 805 ft., plugged back to 290 ft. be- cause of salt water. <u>2/ 3/</u>
*B-3	E. W. Terrell		1914	49	24		42.9	Oct. 3, 1957	В,Н	D,S	Dug.
B-4	Jack Burrough	J. L. McClure	1951	204	4	Trinity group	60	Oct. 1957	C,E	D	
*B-5	R. J. Byrd	do	1933	190	4	do	80.1	Oct. 11, 1957	C,E	D	
*в-б	E. W. Miller		1956	228	4	đo	81.5	do	J,E, 1	D,P	Supplies water for tourist court.
*B-7	U. S. Army			35	12	do	20.2	Sept.17, 1957	в,н	D	Dug.
*в-8	W. L. Shires			500	5	đo	159.5	do	C,W	D,S	Originally drilled to 500 ft., plugged back to 250 ft. because of salt water. Temp. 67°F.
B-9	do			43	48		25.5	do	N	N	Dug.
B-10		J. L. McClure	1957	123	4	Trinity group	54.4	do	N	D	
*B-11	R. X. Allen	do	1945	235	5	do	90	May 1958	J,E	D	Supplies water for small tourist court
*B-12	Jack Dophied		1918	240	4	do	80	do	C,W	D,S	
*B-13	L. A. Whitfield	J. L. McClure	1955	300		do ,	126.2	Oct. 21, 1957	C,E, 1	D,S	Pump set at 170 ft. Perforated from 240 to 280 ft.
B-14	Texas Nursery Co. well 1	The Texas Co.	1952	5,011							Oil test.
B-15	Texas Nursery Co.	M. Y. Myers		626		Trinity group	100	May 1957	т,е, 5	Irr	
B-16	Tanglewood Hills Country Club, Inc.		1956	500	8	do			T,E, 15	P	Drilled to 800 ft., plugged back to 500 ft. Pump set at 410 ft.
*B-17	B. V. Atnip	J. L. McClure	1954	65	8	Pawpaw formation	30	Oct. 1957	J,E,	D	
*B-18	A. H. Sharp	do	1952	349	5	Trinity group	134	Oct. 1957	C,E,	D,S	Perforated from 309 ft. to bottom.

* See footnotes at end of table.

. .

1.1			1				Water	leve	1			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date		Method of lift	Use of water	Remarks
*B-19	J. F. Allen	J. L. McClure	1900	317	4	Trinity group	134	Oct.	1957	C,E, 1	D	
B-20	W. G. Wright	Denison Oil & Gas Co.		348	8	do	199.2	July 10,	1958	C,W	S	Originally drilled as oil test.
*B-21	Aubrey E. Thomas	J. L. McClure	1952	295	4	do	110	July	1958	J,E, 2	D,S	
*B-22	W. L. Cole		1958	300	4	do	80	Jan.	1958	C,E, 12	D	Gravel-packed.
*B-23	J. D. Atkins	J. L. McClure	1941	240	6	Pawpaw formation	40		1956	J,E, 3/4	D	
*B-24	T. F. Staggers			145	3	do			-	C,E, 14	D	Water reported hard.
B-25	R. C. Dalton well 1	Sherman Oil & Gas Co.	1929	892								011 test. <u>2</u> /
*B-26	J. F. Wall	G. W. Wall	1910	320	4	Trinity group				C,E, 1	D,S	Тетр. 69°F.
*B-27	City of Pottsboro	Layne-Texas Co. Ltd.	1952	443	6, 4, 2	Woodbine forma- tion	135	Mar.	1958	포,E, 7출	Р	Casing: 6-in. to 240 ft., 4-in. from 221 to 343 ft., 2-in. from 343 to bottom, screened from 241 to 282 ft., and from 330 to 341 ft. Pump set at 270 ft. Measured drawdown 33.5 ft. afte 100 min. pumping 73 gpm. Temp. 68°F.2/
*B-28	T. C. Gattis		Old	50	48	do	40	July	1958	J,E	D,S	
*B-29	Willow Springs School	E. C. Freeman	1957	192	6	do	55.4 55.9	Aug. 30, Oct. 15,	1957 1958	J,E, 1	Р	1/2/
*C-1	The Austin Co.	J. L. McClure	1958	58	16	Alluvium	25	- 2	1958	т,Е, 5	Ind	Pump set at 40 ft. Perforated from 38 to 58 ft. Reported discharge 35 gpm Mar. 27, 1958. Temp. 67°F.
C-2	Perry well 1	Aljon Oil Co.	1955	991								Oil test.
*C-3	Speed-Cast Sporting Goods Co.	Smith	1951	250	6	Trinity group	16.4	July 10,	1958	C,E	D	
C-4	Table Products Co.			558		do			-	N	N	2/

* See footnotes at end of table.

Table 7 .-- Records of wells and springs in Grayson County -- Continued

							Water	level			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date of measurement	Method of lift	Use of water	Remarks
*C-5	Mrs. M. J. Brady		1880	35	144	Pawpaw formation	15	July 1958	J,E	D	Dug.
*c-6	R. B. Derebery		1950	98		đo			J,E	D	
*C-7	C. Y. Gough	J. L. McClure	1955	135	5	do	58.6	July 17, 1958	в,н	D	Temp. 73°F.
*c-8	Luther Cherry	E. C. Freeman	1955	110	5	do	, 90	Nov. 1957	C,W	D,S	2/
*c-9	J. H. Nichols			23		Alluvium	21	do	С,Н	D	Bored. Temp. 70°F.
C-10	'	-		Spring		do				S	Estimated flow 2 gpm in June 1959. Temp. 65°F.
D-1	Jim Scott	J. L. McClure	1948	140	5	-			т,Е, 2	S	Reported water turns red upon standing.
*D-2	A. H. McNairn	C. Moore	1954	365	4	Woodbine forma- tion	75	Apr. 1954	C,E, 1 3/4	S	
D-3	Mulder well 1	Howell & Howell	1950	7,887							Oil test.
*D-4	A. F. Siebman	Smith	1948	160	4	Woodbine forma- tion			C,E	D,S	
D-5	Hagerman National Wildlife Refuge			105	• 3	do	1.1	July 22, 1958	c,w	s	
*D-6	E. Gaitis	P. Townsend	1947	91		do	48.8	Aug. 30, 1957	C,W	D	
*D-7	Dave Bennett		1911	183	3	do	33.9	July 22, 1958	C,E `	D.	
D-8	Q. Little well 1	Snuggs & Neal, Inc.	1951	3,623							Oil test.
*D-9	Hagerman National Wildlife Refuge	-	1918	140		Woodbine forma- tion	+		N	N	Reported flow ½ gpm Apr. 18, 1958. Temp. 66°F.
D-10	do		1918	140	4	do			N	N	Well capped. Would flow if not capped.
D-11	do		1918	140	. 3	do	+		N	N	Flows into Lake Texoma. Temp. 66°F.
D-12	do		1918	149	3	do	+		N	N	do
*D-13	đo	E. L. Gill	1920	165	5	do	+		N, Flows	N	Flows into Lake Texoma. Flow measured 12 gpm Apr. 18, 1958. Temp. 67°F.
*D-14	do		1918	165	6	do	+		N, Flows	N	do

1

* See footnotes at end of table.

- 74 -

							Water	level			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date of measurement	Method of lift	Use of water	Remarks
*D-15	D. R. Bennett	P. Duncan	1916	270	4	Woodbine forma- tion			с,Е, 3/4	D	
*D-16	J. L. Metcalf			250	4	do			C,E	D,S	Pump set at 200 ft.
*D-17	Hobert Shadden	P. Duncan	1916	280	4	do			C,E	D	
*D-18	J. T. Crow	Jess Darr	1904	180	6	do	65.4	Apr. 15, 1958	C,W	D,S	
D-19	Hagerman National Wildlife Refuge		Old	109	4	do	+	Nov. 10, 1958	N, Flows	S	Reported flow 3 gpm Nov. 10, 1958. Temp. 65°F.
*D-20	C. L. Sellers	Hal Douglas	1956	95	7, 5	do		Aug. 27, 1957 Jan. 20, 1959	J,E, 3/4	D,S	Casing slotted from 69 ft. to bottom.
D-21	do		Old	31	48	đo	· 17.3 16.7	Aug. 27, 1957 Jan. 20, 1959	N	D	Dug. <u>1</u> /
D-22	do	Fleet Drilling Co.	1944	285	7	do	72.2 71.8	Aug. 27, 1957 Jan. 20, 1959	C,W	N	Originally drilled as supply well for oil test. 1/
*D-23	G. Hodges		1948	69	6	do	38.6	July 25, 1958	J,E	D	Water reported hard.
D-24	T. S. Tidwell	Howell, Hollaway, & Howell	1953	705	10	đo	95	1955	т,Е, 15	Irr	Pump set at 230 ft. Perforated from 250 to 260 ft. Reported yield 125 gpm May 1958. Irrigates 35 acres.
D25	City of Whitesboro well 3	Layne-Texas Co. Ltd.	1946	1,520	10, 5	Trinity group	248.5	May 9, 1957	т,е, 50	Ρ	Casing: 10-in. to 1,404 ft., 5-in. to 1,520 ft., screened from 1,388 to 1,519 ft. Drawdown 107 ft. after 100 min. pumping 330 gpm. May 9, 1957. Gravel-packed. 2/
*D-26	City of Whitesboro well 2	do	1935	1,518	10, 5	do	242.5	do	т,Е, 40	Ρ	Casing: 10-in. to 1,399 ft., 5-in. to 1,512 ft. screened from 1,384 to 1,426 ft., and from 1,445 to 1,508 ft. Gravel packed. Temp. 80°F. <u>2</u> /
*D-27	Mrs. Iva Huff	Andrew Miller	1939	49	48	Woodbine forma- tion	10.1	Dec. 5, 1957	C,W	D	Dug. Water reported hard.
*D-28	Annie Knight	Bass	1940	145	6	do	80	June 1958	J,E	D	
D-29	E. F. Allen well 1	Ada Oil Co.	1954	6,452							Oil test.
*D-30	J. G. Barrett		1908	230	6	Woodbine forma- tion	82.5	July 16, 1958	C,W	D,S	Temp. 75°F.

* See footnotes at end of table.

.

Table 7 .-- Records of wells and springs in Grayson County -- Continued

							Water		level			and the second se
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	mea	Date of asurement	Method of lift	Use of water	Remarks
*D-31	S. R. Hazelwood	J. L. Myers & Sons	1942	210	66	Woodbine forma- tion	35	June	1958	C,W	D	
*D-32	Mrs. S. D. Ferguson			21.0	4	do	150	do		C,E	D	Pump set at 175 ft.
*D-33	Southmayd High School	J. L. Myers & Sons		410	4	do	200	do		C,E	Р	Supplies water for two houses and a school.
*D-34	Fred Tesar	E. J. Ray	1948	380	5	do	170	Dec.	1957	C,E	D,S	
*D-35	Ed Hurley	'	1935	200	4	do ,			-	C,W	D	
*D-36	W. B. Holland	J. L. McClure	1926	190	6	do	68	May	1958	· J,E	D	
*D-37	L. C. Brookshire	Bass	1930	200	6	do	68.3	May	29, 1958	·c,W	D	
*D-38	R. M. McConnell		1930	160	6	do	140		1957	J,E,	D,S	
*D-39	S. Varley	Hal Douglas	1950	57	6	do	25.2	May	29, 1958	С,Н	N	Perforated from 37 ft. to bottom.
*D-40	Ray Prestage		1944	140	7	do	65		1956	C,E	D	
D-41	S. Varley	Thompson	1925	63	5	do	30	May	1958	C,E	D	4
*D-42	J. E. Anderson		1949	11	48	do	4.9	Oct.	8, 1957	в,н	D	Dug. Water reported hard. Temp. 73°F.
*D-43	M. D. Widtfeldt	Ray Westbrook	1956	178	4	do	79.0	do		J,E, l	D	Perforated from 153 ft. to bottom. Reported to irrigate garden.
*E-l	Hagerman National Wildlife Refuge	-	1918	165	5	do	+	Apr.	18, 1958	Flows, N	N	Flows into Lake Texoma. Measured flow $l_2^{\frac{1}{2}}$ gpm Apr. 18, 1958. Temp. 66°F.
*E-2	do	J. L. Myers & Sons	1946	300	6	do	34.5	Apr.	15, 1958	T,E, 14	D	Reported discharge 8.2 gpm April 1958.2,
*E-3	do	1	1918	182	3	do	+	Apr.	18, 1958	Flows, N		Measured flow 1 gpm Apr. 18, 1958. Temp. 68°F.
*E-4	do			56	3	do	38.2	May	30, 1958	C,W	N	Temp. 68°F.
E-5	do	E. L. Gill	1912	233	5	do	+	Apr.	17, 1958	Flows, N	N	
*Е-б	do	do	1920	228	5	do	+	do		Flows,	N	Measured flow 1 ¹ / ₂ gpm Apr. 17, 1958. Temp. 67°F.

* See footnotes at end of table.

					2		Water	level	-		
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date of measurement	Method of lift	Use of water	Remarks
*E-7	Hagerman National Wildlife Refuge		1912	235	6	Woodbine forma- tion	+	Apr. 17, 1958	N	S	Measured flow 2 ¹ / ₂ gpm Apr. 17, 1958. Temp. 68°F.
*E-8	J. W. Wilson	Perle Townsend	1938	375	3	do	71.2	July 11, 1958	C,W	D	
*E-9	Perrin Air Force Base well l	O. T. Myers	1941	620	8, 6	do	211.1	July 30, 1957	т,Е, 20	Р	Pump set at 450 ft. Casing: 8-in. to 510 ft., 6-in. to bottom. Slotted from 510 to 620 ft. opposite water-bearing sands. Drawdown 167 ft. after 9½ hrs. pumping 60 gpm July 30, 1957. Temp. 76°F. <u>2</u> /
*E-10	Perrin Air Force Base well 2	do	1941	688	10, 8, 7	do	157	Nov. 1941	т,Е, 40	N	Casing: 10-in. to 30 ft., 8-in. to 504 ft., and 7-in. to bottom. Pump set at 450 ft. Screened from 504 to 524 ft. and 634 to 688 ft. Reported discharge 70 gpr November 1957. Temp. 77°F. 2/
E-11	Perrin Air Force Base well 3	đo	1941	700	10, 8, 7	đo		-		N	Casing: 10-in. to 40 ft., 8-in. to 585 ft., and 7-in. to 685 ft. Perforated from 585 to 685 ft. opposite water- bearing sands. Abandoned. <u>2</u> /
*E-12	Perrin Air Force Base well 4	Layne-Texas Co. Ltd.	1942	1,570	10, 8, 6	Trinity group	242	May 1945	т,е, 30	N	Casing: 10-in. to 1,280 ft., 8-in. to 1,589 ft., and 6-in. to 1,888 ft. Originally drilled to 2,131 ft., plugged back to 1,570 ft. because of salt water 2/
*E-13	Perrin Air Force Base well 5	đo	1943	801	8, 7, 5	Woodbine forma- tion	-	-	т,Е, 25	Р	Casing: 8-in. to 660 ft., 7-in. to 697 ft., and 5-in. to bottom. Perforated from 660 to 801 ft. opposite water- bearing sands. Reported discharge 60 gpm November 1957. <u>2</u> /
*E-14	Perrin Air Force Base well 7-A	do -	1953	642	14, 8	do	238	May 1953	T,E	P	Casing: 14-in. to 463 ft., 8-in. to bottom. Pump set at 450 ft. Screened from 470 to 490, 514 to 524, and 612 to 632 ft. Drawdown 166 ft. after 1 hr. pumping 77 gpm July 3D, 1957. Gravel- packed. <u>2</u> /
E-15	K. M. Mack	Witherspoon	1958	125	6	do	50	Oct. 1958	J,E	D	
*E-16	B. W. Rubarts		Old	213	5	do	135	Nov. 1958	C,W	D	

* See footnotes at end of table.

Table 7 .-- Records of wells and springs in Grayson County -- Continued

							Water	level		-		
Vell	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date o: measureme		Method of lift	Use of water	Remarks
E-17	Mrs. S. A. Booth	Witherspoon		215	4	Woodbine forma- tion				J,E	D	Water becomes red when drawn from well.
*E-18	Vincent McKeon	J. L. McClure	1946	230	4	do	15	May 1	.958	J,E, 1	D,S	Temp. 67°F.
*E-19	D. H. Hamilton			630	4	đo	123.1	May 13, 1	.958	C,E, ¹ / ₂	D	
E-20	D. Blankenship well 1	O. P. Leonard & Star Oil Co.	1953	6,538								Oil test.
*E-21	O. G. Blankenship	Perle Townsend	1930	100	3	Woodbine forma- tion	+			Flows		Estimated flow 5 gpm May 1958. Temp.66°I
*E-22	E. F. Knight	E. C. Freeman	1946	327	16, 4	Pawpaw formation	16	July 1	.958	J,E, 3/4	D	Casing: 16-in. to 16 ft., 4-in. to bottom.
*E-23	Jewel Franklin	Don Speaker	1953	150	5	Eagle Ford shale		-		C,E	D	
*E-24	H. P. Craft	McBride	1947	730	7	Woodbine forma- tion	250	July 1	.958	C,E, 2	D	
E-25	Tom H. Smith Tract No. 1	Standard Oil Co. of Texas	1955	11,308		-						Oil test.
*E-26	W. E. Stephens	E. C. Freeman	1930	520	4	Woodbine forma- tion	100	May 1	958	C,W	D	
*E-27	W. J. Thompson	Reeves	1918	380	5	do	50	do		C,W	D,S	Pump set at 84 ft. Temp. 71°F.
E-28	C. L. Gibbons	J. L. McClure	1928	400	4	do				C,W	D,S	
*E-29	G. G. Fallon	E. C. Freeman	1948	598	5	do	210	Dec. 1	597	C,E, 1	D,S	Pump set at 431 ft.
*E-30	do		1955	1,600	10	Trinity group	252.5	May 16, 1	958	T,E	N	Temp. 68°F.
*E-31	Harry Hudgens		1943	800	5	Woodbine forma- tion				C,E	D,S	Pump set at 600 ft. Temp. 72°F.
E-32	L. H. Jeans	J. L. Myers & Sons	1958	765	4, 3	đo	318	June 1	958	C,E	D,S	Casing: 4-in. to 692 ft., 3-in. to 735 ft. Perforated from 692 to 710 ft., and 745 ft. to bottom. <u>2</u> /
*E-33	E. C. Morris	Perle Townsend	1939	560	5	do	300	May 1	958	C,E	D	Pump set at 460 ft.

* See footnotes at end of table.

78 -

1

							Water	level			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date of measurement	Method of lift	Use of water	Remarks
E-34	O'Hanlon well 1	Robert P. Karll	1955	9,034							Oil test.
*E-35	City of Sherman	Layne-Texas Co. Ltd.	1949	789	14, 8	Woodbine forma- tion	389.4 419.0	Aug. 15, 1957 Sept.12, 1957 Oct. 17, 1957 Nov. 12, 1957	T,E, 100	P	Casing: 14-in. to 713 ft., 8-in. from 604 to 785 ft. Screened from 718 to 773 ft. Gravel-packed. Reported discharge 325 gpm August 1958. Drawdown 100 ft. after 48 hrs. pumping 350 gpm April 1949 Temp. 76°F. 2/
*E-36	do	đo	1944	2,169	14, 13, 8, 6	Trinity group	349.9	Jan. 27, 1958	T,E, 100	Ρ	Casing: 14-in. to 630 ft., 13-in. from 630 to 1,376 ft., 8-in. from 1,180 to 1,712 ft., 6-in. from 1,712 to 2,086 ft. Screened from 1,382 to 1,427, 1,559 to 1,580, 1,599 to 1,621, 1,644 to 1,712, 1,757 to 1,779, and 1,934 to 2,084 ft. Drawdown 260 ft. after 36 hr. pumping 543 gpm Oct. 27, 1944. Reported dis- charge 350 gpm June 1957. Gravel-packed. Temp. 90°F. 1/2/
E-37	do	Green-Deep Well Co.	1913	778	8	Woodbine forma- tion	418.7	Dec. 18, 1958	N	N	Casing: 8-in. to 721 ft., open hole from 721 ft. to bottom. 2/
*E-38	đo	B. J. Harper	1921	2,140	12	Trinity group		Sept.20, 1957 Feb. 13, 1959	T,E	Ρ	Pump set at 600 ft. Originally drilled to 2,366 ft., plugged back to 2,140 ft. because of salt water. $1/2/$
E-39	City of Sherman	W. E. Tomerlin	1916	776	8	Woodbine forma- tion	376.5 388.4	Dec. 17, 1957 Feb. 13, 1959	N	N	Casing: 8-in. to 725 ft., open hole from 725 ft. to bottom. Abandoned.1/ 2/
*E-40	đo	do	1917	786	8	do			T,E	Ρ	Casing: 8-in. to 724 ft., open hole from 724 ft. to botton. Measured discharge 239 gpm Nov. 13, 1958. Temp. 79°F. 2/
*E-41	do	Texas Tong & Tool Co., Inc.	1921	2,146	12, 8	Trinity group			T,E	Р	Open hole opposite water-bearing sands. $\underline{2}/$
E-42	do		1911	778	8	Woodbine forma- tion	443	July 1945	A	N	Perforated from 541 to 580 ft. Abandoned $\underline{2}/$
E-43	do	W. E. Tomerlin	1917	786	8	do	444	July 1945	A	N	Casing: 8-in. to 72^{14} ft., open hole to bottom. Abandoned. $\underline{2}/$
E-44	do	đo	1917	785	8	do	444	July 1945	A	N	Casing: 8-in. to 726 ft., open hole to bottom. Abandoned. 2/

.

* See footnotes at end of table.

.

							Water		evel				
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	-	ate sure		Method of lift	Use of water	Remarks
E-45	St.Louis, San Francisco & Texas Ry. Co.	Layne-Texas Co. Ltd.	1943	805	10, 6	Woodbine forma- tion	273	Jan.		1944	N	N	Casing: 10-in. to 735 ft., 6-in. from 645 to bottom. Screened from 747 to 792 ft. Gravel-packed. Well plugged at sur- face in 1954. 2/
E-46	do	do	191.6	814	8	đo	418.2	Nov.	6,	1958	N	N	Casing: 8-in. to 766 ft., open hole from 766 ft. to bottom. 2/
*E-47	City of Sherman	do	1956	955	26, 20, 12, 8	đo		Aug. Feb.			T,E, 100	Ρ	Casing: 26-in. to 35 ft., 20-in. from 0 to 574, 12-in. from 0 to 580, 8-in. from 841 ft. to bottom. Screened from 580 to 610, 628 to 668, 676 to 696, 755 to 765 780 to 820, 830 to 835, and 850 to 940 ft. Gravel-packed. Pump set at 620 ft. Reported discharge 500 gpm August 1958. Temp. 79°F. <u>1</u> / <u>2</u> /
*E-48	do	do	1956	2,176	22, 16, 8	Trinity group	648.5 391.5				T,E, 150	Р	Casing: 22-in. from 0 to 52 ft., 16-in. from 0 to 1,470 ft., 8-in. from 1,270 t 2,140 ft. Screened from 1,480 to 1,550, 1,592 to 1,607, 1,630 to 1,660, 1,665 t 1,730, 1,735 to 1,795, 1,815 to 1,830, 1,852 to 1,887, 1,902 to 1,927, 1,962 t 1,977, 2,010 to 2,020, 2,042 to 2,092, and 2,100 to 2,130 ft. Pump set at 720 ft. Reported discharge 400 gpm August 1958. Drilled to 2,176 ft. plugged back to 2,140 ft. Gravel-packed. Temp. 90°F. 1/ 2/
*E-49	do	do	1953	2,295	14, 8	do	385.3 298.5	Aug. Feb.	13, 13,	1957 1959	T,E, 150	Ρ	Casing: 14-in. 0 to 1,495, 8-in. 1,255 to 2,295, Screened from 1,501 to 1,591, 1,661 to 1,746, 1,953 to 1,958, 2,001 t 2,031, 2,051 to 2,136, and 2,155 to 2,265 ft. Pump set at 700 ft. Reported discharge 600 gpm August 1958. Gravel- packed. Temp. 91°F. <u>1</u> / <u>2</u> /
*E-50	do	đo	1953	736	14, 10, 8	Woodbine forma- tion	386.3 342.3	Aug. Feb.	13, 13,	1957 1959	T,E, 100	P	Casing: 14-in. 0 to 605, 10-in. 446 to 600, 8-in. from 600 to 736 ft. Screened from 626 ft. to 726 ft. Pump set at 630 ft. Reported discharge 350 gpm August 1958. Gravel-packed Temp. 79°F. <u>1</u> / <u>2</u> /

* See footnotes at end of table.

							Water	level			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date of measurement	Method of lift	Use of water	Remarks
E-51	Anderson & Clayton Co.	J. L. Myers & Sons	1939	680	8, 6	Woodbine forma- tion	250	1939	T,E, 50	Ind	Casing: 8-in. to 615 ft., 6-in. from 575 to 680 ft. Perforated from 615 ft. to 680 ft. Originally drilled to 1,000 ft., plugged back to 680 ft. Pump set a 559 ft. Reported discharge 120 gpm Nov. 1958. Temp. 76°F. <u>2</u> /
E-52	Southern Ice Co.		1910	700	8	do	400	1955	T,E, 20	Ind	Pump set at 450 ft. Reported discharge 30 gpm in November 1958.
E-53	Sherman Steam Laundry	Layne-Texas Co.Ltd.	1914	791	8, 6	do	351	Sept. 1955	т,Е, 18	Ind	Casing: 8-in. to 620 ft., 6-in. from 638 to 791 ft., open hole from 791 to bottom. Pump set at 540 ft. Reported discharge 100 gpm November 1958. <u>2</u> /
E-54	City of Sherman	đo		915	10, 8, 4	đo			т,Е, 75	Р	Casing: 10-in. to 520 ft., 8-in. from 0 to 654 ft., 4-in. from 578 ft. to botton Screened from 652 to 706, and 748 to 768 ft. Pump set at 550 ft. Reported discharge 200 gpm Sept. 1947. Gravel- packed.
E-55	do	do	1947	2,256	10, 7	Trinity group	268.3	Feb. 13, 1959	T,E, 100	Р	Casing: 10-in. to 1,603 ft., 7-in. from 1,573 ft. to bottom. Screened from 1,688 to 1,729, 1,748 to 1,848, 1,898 t 1,918, 1,947 to 1,999, 2,048 to 2,068, 2,088 to 2,128, and 2,144 to 2,255 ft. Pump set at 520 ft. Drawdown 160 ft. after 30 min. pumping 354 gpm Nov. 18, 1947. <u>1</u> / <u>2</u> /
E-56	Southern Pacific Ry.	do	1949	730	6	Woodbine forma- tion			N	N	Well plugged and abandoned in 1955, 2/
E-57	Sherman Manufac- turing Co.	W. E. Tomerlin	1916	776	8	do	260	July 1958	т,Е, 15	Ind	Perforated from 735 ft. to bottom. Pump set at 368 ft. Reported discharge 100 gpm Nov. 1958. 2/
		-									

.

.

* See footnotes at end of table.

¥.

1.16

							Water	le	vel			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)		te of urement	Method of lift	Use of water	Remarks
*E-58	City of Sherman	Layne-Texas Co. Ltd.	1958	2,380	22, 16, 10	Trinity group	312	Mar.	1959	T,E, 200	P	Casing: 22-in. to 31 ft., 16-in. from 0 to 1,580 ft., 10-in. from 1,380 to 2,380 ft. Screened from 1,585 to 1,615, 1,625 to 1,645, 1,660 to 1,700, 1,710 to 1,720, 1,740 to 1,845, 1,870 to 1,880, 1,905 to 1,945, 1,960 to 1,975, 2,005 to 2,025, 2,040 to 2,060, 2,080 to 2,140, 2,150 to 2,250, 2,265 to 2,285, and 2,300 to 2,370 ft. Pump set at 810 ft. Originally drilled to 2,452 ft., plugged back to 2,380 ft. Gravel- walled. Drawdown 406 ft. after 36 hrs. pumping 602 gpm Mar. 20, 1959. Origi- nally drilled to 2,452 ft., but plugged back to 2,380 ft. because of salt water Temp. 90°F. <u>2</u> /
*E-59	P. J. Johnson, Sr.	E. C. Freeman	1948	725	4	Woodbine forma- tion	190	Nov.	1957	C,E	D	Perforated from 714 ft. to bottom.
*E-60	Leon Bloomer	do	1948	720	4	do	300	Nov.	1957	C,E, 1	D	Pump set at 347 ft.
*E-61	City of Sherman	Layne-Texas Co. Ltd.	1958	2,460	22, 16, 10	Trinity group	249	Jan.	1959	T,E, 200	Ρ	Casing: 22-in. 0 to 30 ft., 16-in. from 0 to 1,580 ft., 10-in. from 1,380 to 2,460 ft. Screened from 1,590 to 1,610 1,635 to 1,650, 1,700 to 1,710, 1,730 to 1,765, 1,795 to 1,825, 1,850 to 1,870, 1,895 to 1,925, 1,950 to 1,970, 2,005 to 2,020, 2,115 to 2,155, 2,175 to 2,190, and 2,230 to 2,420 ft. Fump set at 600 ft. Reported discharge 722 gpm Aug. 17, 1959. Drawdown 170 ft. after 35 hrs. pumping 602 gpm Jan. 28, 1959. Gravel-packed. 2/
*E-62	đo	đo	1958	1,023	26, 20, 12, 10	Woodbine forma- tion	301	Jan.	1959	т,е, 150	Ρ	1959. Gravel-packed. 2/ Casing: 26-in. from 0 to 31 ft., 20 0 to 820, 12-in. 0 to 832, 10-in. 8 to 1,023. Screened from 832 to 912, 942 to 1,012 ft. Pump set at 600 ft Reported discharge 650 gpm October Reported drawdown 132 ft. after 37 ¹ / ₂ pumping 602 gpm Jan. 29, 1959. Grav packed. 2/

* See footnotes at end of table.

82 .

							Water	level	-		
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date of measurement	Method of lift	Use of water	Remarks
*E-63	Chas. F. Burns	J. L. Myers & Sons	1953	773	4	Woodbine forma- tion	. 300	May 1958	C,E, 2	D,S	2/
E-64	Tyree Vawter well 1	J. J. Lynn		9,629		Woodbine forma- tion and Trinity group					Oil test. Temp. 67°F.
*E-65	R. C. Counts		1936	1,100	8	Woodbine forma- tion	300	Dec. 1957	C,E, 3	D,S	Supplies water for 3 houses. Temp. 73°F
*E-66	Franklin Wible	J. L. McClure	1957	140	4	Eagle Ford shale	30	Dec. 1957	C,W	D,S	Perforated from 30 ft. to bottom. Temp. 67°F.
E-67	Line Material Co.	Layne-Texas Co. Ltd.	1951	772	16, 8	Woodbine forma- tion -	279.4	June 14, 1951	T,E	Ind	Casing: 16-in. to 610 ft., 8-in. from 623 ft. to bottom. Screened from 623 to 639, 646 to 658, and 670 to 750 ft. Gravel-packed. $\underline{1}/$
E-68	do	do	1953	773	16, 8	do	315.0	July 11, 1953	Т,Е, 75	Ind	Casing: 16-in. to 650 ft., 8-in. from 548 to bottom. Screened from 655 to 728 ft. Pump set at 520 ft. Gravel-packed.]
*E-69	J. W. Bell		1927	370	4	do	220	Dec. 1957	C,W	D	
F-1	Denison Cotton Mill			50	72	do	25	Mar. 1958	т, Е, 7 1	Ind	Dug. Reported pumped 30 gpm Mar. 27, 1958.
*F-2	Alice Sockwell			70	8	do	47.8	Mar. 21, 1958	B,H	D,S	
*F-3	C. L. Trice		Old	28	60	do	8.3	Dec. 10, 1957	C,E,1	D,S	Dug.
*F-4	E. C. Sweeney			29	6	đo	2.7	July 16, 1958	J,E, ¹ / ₄	D	Water unfit for human consumption.
*F-5	W. S. Knox	J. L. McClure	1951	100	4	đo	40	Dec. 1957	С,Е, 2	D,S	Perforated from 84 ft. to bottom.
* F- 6	C. W. Stripling	Perle Townsend	1956	95	4	do	56.0 60.8	Sept.12, 1957 Nov. 21, 1958		D	Reported pumped 12 gpm Sept. 1957. 1/
*F-7	Mrs. H. E. Pierce			100	6	Pawpaw formation			C,E	D	Temp. 73°F.
*F-8	Paul Wrenn		Old	42	48	Woodbine forma- tion	35.6	July 17, 1958	J,E	D,S	Dug.
*F-9	C. R. Crabtree			35	48	Pawpaw formation	17.4	do	J,E	D	Dug. Reported hard water.

. .

* See footnotes at end of table.

1

. . .

Table 7 .-- Records of wells and springs in Grayson County -- Continued

							Water	leve	1			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date measur		Method of lift	Use of water	Remarks
*F-10	C. D. Mitchell	J. L. McClure	1953	470	4	Trinity group	10	Nov.	1957	C,E, 3/4	D,Irr	Irrigates small garden.
F-11	Mrs. W. C. King		-	Spring		Alluvium	+			Flows	N	
*F-12	Federal Communica- tions Commission	Otis Engineering Co.		45	7	Pawpaw formation	4.7	May 14,	1958	J,E	D	
*F-13	O. W. Price	J. L. McClure	1953	195	5,	đo	25.7	Nov. 15,	1957	J,E	D	Casing: 5-in. to 30 ft., 4-in from 30 ft to bottom. Perforated from 165 to 185 ft
F-14	H. A. Dunn		1955	23		Alluvium	10	Nov.	1957	C,E	D	
*F-15	John T. Black			34	48	Woodbine forma- tion	20	July	1958	J,E, 1	D	Dug.
*F-16	D. D. Whiting		1955	75	4	do	10	July	1958	J,E, l	D,S	Perforated from 55 ft. to bottom.
F-17	Joe Washburn	E. C. Freeman	1954	200	5	do	90	May	1954	C,E, 3/4	D	Reported pumped 7 gpm in May 1957.
*F-18	Claude Arthur			25	36	đo	15.9	July 18,	1958	J,E	D	Dug. Reported hard water.
*F-19	J. P. Armstrong	J. L. McClure	1939	170	6	do	112	Sept.	1957	C,E, 3/4	D,S	
*F-20	G. S. Penn	đo	1951	460	4, 3	do	170	June	1958	T,E	D	Casing: 4-in. to 215 ft., 3-in. liner from 215 ft. to bottom.
*F-21	R. C. Francis	do	1957	893	4	Trinity group	75	July	1958	C,E, 3	D	Perforated from 853 ft. to bottom.
*F-22	D. H. James	đo	1941	152	. 4	Woodbine forma- tion	80	Sept.	1957	с,е, 3/8	S	Water reported to turn red on standing.
*F-23	Jack Adkins	do	1948	455	8	do	70	Мау	1956	J,E, 2	D	Pump set at 180 ft. Reported discharge 60 gpm May 1958.
*F-24	A. C. Poole	Perle Townsend	1948	359	4	đo	40	July	1958	C,E	D,S	
*F-25	Elmer Mitchell		1923	45	60	Austin chalk	9.6	June 6,	1958	в,н	S	Dug.
*F-26	R. O. Griffin		1880	45	72	do	20.4	do		C,E	D	do
*F-27	Jimmy Fant	J. L. McClure		497		Woodbine forma- tion				J,E	D,S	

* See footnotes at end of table.

.

. .

							Water	level	-	-	
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date of measurement	Method of lift	Use of water	Remarks
*F-28	W. C. Durham	J. L. McClure	1938	70	6	Eagle Ford shale			J,E, 12	D	Reported hard water.
*F-29	Ray Kraft	E. C. Freeman	1946	365	4	Woodbine forma- tion	70	May 1958	С,Е, 12	D,S	
*F-30	Tom Connor	do	1956	157	4	do	79.8	May 14, 1958	J,E, 1	D	-
*F-31	D. Z. Reynolds	J. L. McClure	1947	50	6	do	30	July 1958	J,E	D,S	
*F-32	J. H. Whiting	E. C. Freeman	1945	153	5	do	50	May 1958	J,E	D,S	Perforated from 138 ft. to bottom. Reported discharge 4 gpm May 1958.
*F-33	Claude Smith		1948	150	4	do	40	July 1958	J,E	D	
*F-34	N. D. Gilliam	E. C. Freeman	1957	140	4	do			C,E,	D	In Fannin County.
*F-35	City of Bells	Layne-Texas Co. Itd.	1936	709	7, 4	đo	252.0	May 2, 1957	т,Е, 30	Р	Casing: 7-in. to 672 ft., 4-in. from 665 ft. to bottom. Pump set at 400 ft. Measured discharge 47 gpm Mar. 25,1958. Reported drawdown 80 ft. after 17 hrs. pumping 75 gpm. <u>2</u> /
* F- 36	do	đo	1959	902	14	đo	172	Sept. 1959		N	Screened from 463 to 483 ft. About 100 ft. of screen opposite water-bearing sands Oct. 1959. Drawdown 76 ft. after $8\frac{1}{2}$ hrs. pumping 40 gpm Sept. 2, 1959. Temp. 79°F. $2/$
F-37	Dugan Estate	O. W. Witherspoon	1947	538	6	do	90	1947	J,E, 2	D,S	Pump set at 230 ft. Perforated from 526 ft. to bottom. Reported discharge 7 gpm June 1957.
*F-38	W. H. Brown	Perle Townsend	1955	460	4	do	90	1955	T,E, 1	D,S	Perforated from 450 ft. to bottom.
F-39	J. B. Washburn		Old	51	36	Austin chalk	5.3	Apr. 11, 1958	N	N	Dug.
*F-40	C. B. Ball	J. L. Myers & Sons	1956	878	6, 4	Woodbine forma- tion	277.4	June 10, 1958	С,Е, 12	D,S	Casing: 6-in. to 20 ft., 4-in. from 20 ft. to bottom. Perforated from 843 ft. to bottom. 2/
*F-41	O. B. Pierce	-		45	48	Austin chalk	.7	May 16, 1958	С,Е,	D,S	Dug.

* See footnotes at end of table.

Table 7 .-- Records of wells and springs in Grayson County -- Continued

							Water	1	evel			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	-	ate of surement	Method of lift	Use of water	Remarks
*F-42	J. H. Washburn	J. L. Myers & Sons	1957	745	6, 4	Woodbine forma- tion	189.0	May	16, 1958	C,E, 2	D	Casing: 6-in. to 10 ft., 4-in. from 10 to 745 ft. Pump set at 400 ft. Perfo- rated from 700 ft. to bottom. 2/
F-43	Claude Odom			36	48	Austin chalk	23.7	do		В,Н	N	Dug.
*F-44	do	J. L. Myers & Sons	1940	700	6	Woodbine forma- tion	160	May	1957	C,E	D	Perforated from 680 ft. to bottom.
*F-45	W. A. Presley		1880	15	36	Austin chalk				Cf,E, 3/4	D,S	Dug. Reported never fails.
F-46	O. W. Kinnard	R. M. Laurence		2,481								Oil test.
*G-1	City of Collinsville	J. L. Myers & Sons	1949	1,522	12, 8, 6	Trinity group	188.8	May	7, 1957	T,E	P	Measured drawdown 26 ft. after 3 hrs. pumping 110 gpm May 7, 1957. Temp. 77°
G-2	O. E. Dawkins well 2	Nortex Oil & Gas Corp.	1955	4,359								Oil test.
*G-3	A. Hughes	E. C. Freeman	1947	108	5	Woodbine forma- tion	45	Oct.	1957	J,E,	D	
*G-4	Fred J. Price		1937	250	4	do	200	Dec.	1957	C,W	D	
*G-5	Mrs. A. I. Whitt	J. L. McClure	1954	400	4	do	200	Dec.	1957	C,W	S	Reported mineralized water.
*G-6	W. D. Hunter		1900	216	5	do	165	Oct.	1957	C,E	D,S	
*G-7	L. G. Vannoy		1920	35	36	Austin chalk	29	Oct.	1957	J,E	D	Dug. Reported hard water.
*G-8	E. C. McMurrey	-		125	6	Woodbine forma- tion	60	June	1958	C,E, 1/6	D	Reported hard water.
G-9	Graham well 1	F. H. E. Oil Co.		3,881								Oil test.
*G-10	J. L. Varley		1904	32	48	Woodbine forma- tion	15.7	Oct.	8, 1957	C,E	D	Dug.
*G-11	J. J. Tamplin	J. A. Ray	1956	212	6	do				J,E 1 ¹ /2	D,S	
*G-12	City of Tioga	J. L. Myers & Sons	1936	215	8	do	65	Feb.	1936	T,E	Р	Temp. 68°F. <u>2</u> /
G-13	Milton Pearce well 1	Howell, Holloway & Howell	1953	4,327		- 1						Oil test.

4

* See footnotes at end of table.

.

.

· · ·

							Water	level.			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date of measurement	Method of lift	Use of water	Remarks
*G-14	Fred Reynolds	J. A. Ray	1920	160	5	Woodbine forma- tion	116.8 118.3	Aug. 28, 1957 Jan. 20, 1959	c,w	D,S	Temp. 69°F. <u>1</u> /
*G-15	T. E. Hestand	Little	1918	145	6	do	99.2	May 29, 1958	C,E	D,S	
*G-16	Louie Meinen			104	4	do	88.6	do	J,E, 1	D	
*G-17	S. E. Bartlett	Bass		224		do	111.5	Dec. 18, 1957	C,W	D,S	
G-18	Murphy Bounds well 1	Leland Fikes	1956	5,247							Oil test.
*G-19	Albert Scharff	Bass	1928	387	6, 5	Woodbine forma- tion	72.2	Oct. 4, 1957	°,W	S	Reported mineralized water from 200 to 250 ft.
*G-20	Cliff Davis			146	4	do	71.7	Oct. 10, 1957	C,W	D,S	
*G-21	L. Heitzman	J. A. Ray	1948	230	8, 3	đo	35.0	Oct. 8, 1957	с,Е, 3/4	D,S	Casing: 8-in. to 35 ft., 3-in. from 35 ft. to bottom.
G-22	Schindler well 1	R. B. Farrif	1947	2,720							Oil test.
H-1	Sperry School Site	J. L. McClure		380	6	Woodbine forma- tion			C,W	N	
H-2	0. M. Scoggins	J. A. Ray	1937	412	6	do	250	Aug. 1956	с,Е, 3/4	D,S	
н-3	W. H. Higgins			480		do	265	Oct. 1957	c,w	D	
H-4	G. A. Umphries	J. L. Myers & Sons	1956	661	5	đo	120	Aug. 1956	T,E, 1 ¹ / ₂	D,S	Pump set at 320 ft. Perforated from 611 ft. to bottom.
H-5	C. E. Shenke well 1	Sohio Petroleum Co.	1955	8,362	2						Oil test.
*н-б	J. L. Bradley	Lee Wilson	1918	700		Woodbine forma- tion	300	May 1958	C,E	D	Pump set at 400 ft. Perforated 200 ft.
*H-7	Jake McDonald			25	48	Austin chalk	10.3	May 21, 1958	Cf,E	D	Dug.
*н-8	R. O. Barham		1918	40	36	do			C,E	D	Reported to never fail.
*H-9	C. E. Teague	Smith	1955	750	5	Woodbine forma- tion			с,е, 3	D,S	
*H-10	C. V. Bowden			20	36	Austin chalk	.5	May 21, 1958	C,E	D	Dug.

* See footnotes at end of table.

Table 7 .-- Records of wells and springs in Grayson County -- Continued

							Water	level			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date of measurement	Method of lift	Use of water	Remarks
H-11	G. B. Lankford	J. L. Myers & Sons	1955	702	4	Woodbine forma- tion	290	1955	T,E, 2	D,S	Pump set at 400 ft. Perforated from 66 ft. to bottom. Temp. 68°F.
H-12	Privette well 1	The Superior Oil Co.	1952	8,158							Oil test.
*H-13	W. H. Higgins	J. L. Myers & Sons	1955	604	4	Woodbine forma- tion	338	Oct. 1957	т,Е,	D	Perforated from 564 ft. to bottom. $\underline{2}/$
H-14	do		1954	102	5	Eagle Ford shale	26.6	Oct. 9, 1957	N	N	Perforated from 82 ft. to bottom.
H-15	T. P. Roach well 1	Sher-Tex Drilling Co.	1956	5,905		-					Oil test.
*H-16	A. Dieterich		1937	780	8	Woodbine forma- tion	240	Oct. 1957	C,E, 2	D,S	
H-17	W. J. Harris			385		do	304.2	June 12, 1957	C,W	D	
H-18	E. B. Strawn	J. L. McClure	1945	835	4	do	190	1945	с,Е, 3/4	D,S	Pump set at 235 ft. Perforated from 658 ft. to bottom.
H-19	J. P. Norman	do	1953	690	4	do .	336.0	June 12, 1957	C,E, 2	D,S	Pump set at 420 ft. Perforated from 641 ft. to bottom.
*H-20	C. E. Davis	-	1911	18	24	Austin chalk	1.5	May 21, 1958	C,W	D	Dug.
*H-21	City of Howe	J. L. Myers & Sons	1954	1,069	6, 4	Woodbine forma- tion	371	Apr. 1954	т,Е, 25	P	Casing: 6-in. to 902 ft., 4-in. from 798 ft. to bottom.
H-22	do	Deering & Sons	1911	1,050	4	do .	416.3	May 1, 1957	A,E, 30	N	
H-23	N. R. Lankford	J. L. Myers & Sons	1956	1,220	4	do	200	July 1956	с,Е, 21/2	D,S	Perforated from 1,188 ft. to bottom.
*H-24	J. H. Blythe		Old	34	36	Austin chalk	1.6	May 20, 1958	J,E	D,S	Dug.
*H-25	Leroy Wheeler			32	48	do			Cf,E	D	Dug.
*H-26	L. L. Morrison			25	72	do	11.5	May 21, 1958	Cf,E, 2	D	do
H-27	G. A. Umphries	J. L. Myers & Sons	1953	503		Woodbine forma- tion	135.7	June 13, 1957	T,E, 1 ¹ / ₂	D,S	

* See footnotes at end of table.

							Water	level			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date of measurement	Method of lift	Use of water	Remarks
*н-28	City of Gunter	J. L. Myers & Sons	1956	730	7, 4	Woodbine forma- tion	206	Mar. 1956	T,E, 10	P	Casing: 7-in. to 655 ft. Pump set at 320 ft. Screened from 655 to 730 ft. Drawdown 10 ft. after 10 hrs. pumping 52 gpm. <u>2</u> / <u>3</u> /
*H-29	R. J. Block	Gill	1947	545	4	đo	224.8	June 6, 1958	C,W	D	
*H-30	Mrs. J. W. Ladd		Old	30	60	Austin chalk	18.2	May 20, 1958	в,н	D	Dug.
*H-31	State of Texas			22	60	do			C,E,	D	Supplies water for 3 houses and a store Temp. 64°F .
J-1	Elwood Thompson	J. L. Myers & Sons	1956	858	6	Woodbine forma- tion	250	1956	C,E, 2	D,S	
J-2	Southwestern Bell Telephone Co.	-	1938	400					с,Е, 5	D, Ind	Pump set at 300 ft. Reported water highly mineralized.
J-3	R. B. Graves	J. L. Myers & Sons	1955	908	6, 4	Woodbine forma- tion	280	Dec. 1955	C,E, 2	D,S	Casing: 6-in. to 126 ft., 4-in. from 126 ft. to bottom. Pump set at 378 ft. Perforated from 874 ft. to bottom. 2/
*J-4	Oscar Wetzel		Old	26	24	Austin chalk	2.7	June 10, 1958	J,E	D	Dug. Reported to go dry during drought.
*J5	F. N. Rogers			Spring		doʻ	+	Apr. 11, 1958	Cf,E, Flows	D,S	Temp. 65°F.
J-6	L. T. Milligan	O. W. Witherspoon	1949	516	6	Eagle Ford shale	115.3	June 7, 1957	C,E, 3/4	D,S	Perforated from 504 ft. to bottom.
*J-7	Roscoe Gillett			34	48	Austin chalk	15.4	June 10, 1958	в,н	N	Dug.
J-8	N. R. Stillwell	0. W. Witherspoon	1940	241	6		165	1940	c,W	D,S	Pump set at 200 ft. Reported soft water. Temp. 68°F.
J-9	Homer Sears	do .	1940	340	6		149.8	June 6, 1957	C,E, 1	D,S	Pump set at 275 ft. Reported soft water. Temp. 67°F.
J-10	City of Whitewright	Johnson	1900	1,160	6	Woodbine forma- tion			T,E, 25	P	
*J-11	do	J. L. Myers & Sons	1938	1,189	10, 8, 6	do	367.5	Mar. 26, 1958	т,Е, 25	Р	Casing: 10-in. to 40 ft., 8-in. to 1,109 ft., 6-in. to bottom. Perforated to 130 ft. Drawdown 35½ ft. after 100 min. pumping 698 gpm March 1958. Temp. 84°F. 2/

.

* See footnotes at end of table.

Table 7 .-- Records of wells and springs in Grayson County -- Continued

						-	Water	level			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date of measurement	Method of lift	Use of water	Remarks
J-12	J. C. Bryant	O. W. Witherspoon	1946	360	6	Eagle Ford shale	150	June 1957	C,E, 3/4	D,S	Pump set at 190 ft. Reported soft water
J-13	C. L. Hollard	do	1949	508	5	do	160	1949	C,E	S	Pump set at 260 ft.
J-14	do	-	Old	34	48	Austin chalk	5.0	June 6, 1957	в,н	D	Dug. Reported hard water. Dry during drought.
*J-15	City of Tom Bean	J. L. Myers & Sons	1936	1,180	6	Woodbine forma- tion			т,Е, 15	Р	Pump set at 500 ft. Reported discharge 60 gpm May 1957. Temp. 82°F.
*J-16	Paul H. Franklin	đo	1955	1,067	6, 4	do	300	Nov. 1955	C,E, 2	D,S	Casing: 6-in. to 10 ft., 4-in. to botto Perforated from 1,035 ft. to bottom. Pump set at 399 ft. Reported soft water 2/
*J-17	Alvie Casada			28	60	Austin chalk	10.8	May 20, 1958	J,E	D	Dug.
*J-18	R. S. Nicholson		1900	30	36	do	4.6	do	в,н	D	do
*J-19	Morris M. Franklin		1896	24	36	do	2.1	June 11, 1958	J,E	D,S	Dug. Reported to never fail.
*J-20	J. M. Purdom			25	36	do	16.5	do	в,Н	D	do
*J-21	I. L. Smith			30	24	do	6.5	May 20, 1958	В,Н	D	Dug.
*J-22	W. H. Byers			22	48	đo	.8	do	J,E	D,S	do
J-23.	Mollie Williams well 1	W. J. Rutledge, Jr.		5,296							Oil test.
*J-24	J. B. Edwards, Jr.		Old	40	36	Austin chalk	2.6	May 20, 1958	Cf,E	D,S	Dug.
*J-25	Burl Shields		1938	20	48	do	7.2	June 10, 1958	Cf,E	D	Dug. Reported to never fail.
*J-26	M. B. Jones			32	72	do	9.0	June 10, 1958	в,Н	S	Dug. Reported to go dry during drought.
*J-27	L. H. Darwin			39	36	do	19.7	do	C,E	D	Dug.
*J-28	Jack Biggerstaff			42	48	do	9.4	do	в,н	N	do
*J-29	E. H. Hickland			Spring		do			N	N	Temp. 65°F.
*J-30	Tom Stephens		Old	25	36	do			Cf,E, 1/3	D	Dug.

* See footnotes at end of table.

							Water	level			
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter of well (in.)	Water-bearing unit	Below land surface datum (ft.)	Date of measurement	Method of lift	Use of water	Remarks
J-31	J. D. Clower	O. W. Witherspoon	1947?	150	10	Austin chalk			N	N	Abandoned.
J- 32	do	do	1947?	125	10	do	6.1	June 1, 1957	N	N	
J- 33	Calvin Linson		1935	28	48	đo	1.3	June 7, 1957	в,н	D	Dug. Supplies water for several houses. Reported hard water. Dry during drought.
J- 34	J. Umphries well 1	Pan American Production Co.	1952	7,012					-		Oil test.
*J-35	J. D. Hix			18	72	Austin chalk	7.2	May 20, 1958	C,E	D	Dug.
J-36	C. B. Bell		1942	17	36	do	5.2	June 11, 1957	J,E, 12	D,S	Dug. Dry during drought.
J- 37	J. B. McCollums		Old	40	36	do	26.4	do	J,E, 1/3	D,S	Dug. Reported to never fail.
J-38	City of Van Alstyne	J. L. Myers & Sons	1945	1,400		Woodbine forma- tion			T,E	P	
*J-39	do	do	1955	1,401	20, 13, 6	do	458	Aug. 1955	T,E	P	Casing: 20-in. to 23 ft., 13-in. to 1,165 ft., and 6-in. to bottom. 80 ft. of screen opposite water-bearing sand. Reported discharge 250 gpm May 1957.

1/ See table 8 for water level measurements of wells in Grayson County, Tex. 2/ See table 9 for drillers' logs of wells in Grayson County. 3/ Electric logs in files of Texas Board of Water Engineers. * See table 10 for analyses of water from wells and springs in Grayson County.

1 - 16

Date	Water level	Date	Water level	Date	Water level
		Well A-	17		
Owner: Hugh Bea	an				
Sept. 9, 1957	26.78	Apr. 15, 1958	25.10	Sept.25, 1958	24.74
Oct. 17	26.34	May 9	24.09	Oct. 15	24.84
Nov. 13	26,18	June 5	24,00	Nov. 24	25.13
Dec. 18	26.86	July 8	23.98	Dec. 22	25.16
Jan. 22, 1958	25.91	Aug. 12	24.14	Jan. 22, 1959	26,62
Mar. 4	25.68				
		Well B-	29		
Owner: Willow S	Springs Sch	nool			
Aug. 30, 1957	55.42	Jan. 29, 1958	55.80	July 8, 1958	55.14
Sept.19	55.70	Feb. 25	55.61	Aug. 12	55.21
Oct. 18	55.50	Apr. 15	55.35	Sept.25	55.82
Nov. 13	55.00	May 8	54.95	Oct. 15	55.88
Dec. 19	55.24	June 6	55.03		
		Well D-:	20		121
Owner: C. L. S	ellers				
Aug. 27, 1957	66,28	Mar. 4, 1958	66.15	Sept.25, 1958	65.83
Sept.19	65.94	Apr. 15	65.98	Oct. 15	66.03
Oct. 18	66,48	May 8	65.55	Nov. 12	65.88
Nov. 26	66.01	June 2	65.82	Dec. 17	65,98
Dec. 18	65.80	July 8	66.00	Jan. 20, 1959	65.09
Jan. 27, 1958	65.90	Aug. 12	65.87		

Table 8.--Water levels in wells in Grayson County, Texas (in feet below land-surface datum)

Table 8.--Water levels in wells in Grayson County--Continued

Date	Water level	Date	Water level	Date	Water level
		Well D-	21		
Owner: C. L. S	ellers				
Aug. 27, 1957	17.33	Mar. 4, 1958	15.33	Sept.25, 1958	15.15
Sept.19	17.17	Apr. 15	14.98	Oct. 15	15.50
Oct. 18	17.47	May 8	14.14	Nov. 12	15.90
Nov. 26	15.72	June 2	14.26	Dec. 17	16.54
Dec. 18	16.32	July 8	13.95	Jan. 20, 1959	16.65
Jan. 27, 1958	15.40	Aug. 12	14.41		
		Well D-	22		
Owner: C. L. S	ellers				
Aug. 27, 1957	72.20	Mar. 4, 1958	70.30	Sept.25, 1958	70.18
Sept.19	73.42	Apr. 15	69.74	Oct. 15	71.73
Oct. 18	73.03	May 8	68.75	Nov. 12	72.00
Nov. 26	71.50	June 2	69.13	Dec. 17	72.01
Dec. 18	71.96	July 8	69.42	Jan. 20, 1959	71.77
Jan. 27, 1958	70.40	Aug. 12	70.23		
		Well E-	38		
Owner: City of	Sherman				
Aug. 12, 1957	a458.00	May 7, 1958	a440.0	Oct. 14, 1958	a457.0
Nov. 4	a420.00	June 4	a452.0	Nov. 12	a457.0
Dec. 17	a503.0	July 2	355.0	Dec. 19	a442.0
Jan. 27, 1958	a482.0	Aug. 6	a533.0	Jan. 15, 1959	a496.0
Mar. 7	a430.0	Oct. 1	a452.0	Feb. 13	a513.0
Apr. 10	345.0				
anPumping				1	

Table 8 .-- Water levels in wells in Grayson County -- Continued

Date	Water level	Date	Water level	Date	Water level
		Well E-	39		
Owner: City of	Sherman				
Aug. 12, 1957	405.30	Apr. 10, 1958	383.50	Oct. 14, 1958	381,40
Sept.11	399.10	May 7	385.90	Nov. 12	384.20
Oct. 15	404,70	June 4	394.10	Dec. 18	384.40
Dec. 17	376.50	July 2	418,40	Jan. 15, 1959	375.40
Jan. 27, 1958	382.50	Aug. 6	451.90	Feb. 13	388.40
Mar. 7	388.50	Oct. l	396.10		
		Well E-	47		
Owner: City of	Sherman				
Aug. 13, 1957	421.06	Mar. 19, 1958	442.40	Oct. 1, 1958	446.22
Sept.13	431.08	Apr. 11	412.70	Oct. 14	454.70
Oct. 17	443.06	May 8	420.30	Nov. 12	451.43
Nov. 13	436.74	June 4	441.05	Dec, 18	450.99
Dec. 17	371.40	July 3	433.75	Jan. 15, 1959	451.56
Jan. 27, 1958	511.70	Aug. 6	440.60	Feb. 13	442.04
Jan. 28	417.30				
		Well E-	48		
Owner: City of	Sherman				
Aug. 12, 1957	648,50	Mar. 19, 1958	392.30	Oct. 1, 1958	410.68
Aug. 13	469,16	Apr. ll	446,6	Oct. 14	438.23
Sept.13	432.95	May 8	392.00	Nov. 12	403.62
Oct. 17	428.50	June 4	429.50	Dec. 18	411.12
Nov. 13	410,24	July 3	412.10	Jan. 15, 1959	426.85
Jan. 28, 1958	404.17	Aug. 6	442.20	Feb. 13	391.50

Table 8	Water	levels	in	wells	in	Grayson	CountyC	continued
---------	-------	--------	----	-------	----	---------	---------	-----------

Date	Water level	Date	Water level	Date	Water level
		Well E-	49		
Owner: City of	Sherman				
Aug. 13, 1957	385.30	Mar. 7, 1958	295.55	Oct. 1, 1958	341.50
Sept.19	371.64	Apr. 11	296.57	Oct. 14	326,40
Oct. 16	318.85	May 7	295.33	Nov. 10	318.35
Nov. 12	307.65	June 4	336.50	Dec. 18	297.25
Dec. 17	306.00	July 3	371.40	Jan. 15, 1959	295.15
Jan. 27, 1958	306.58	Aug. 6	410.38	Feb. 13	298,50
		Well E-	50		
Owner: City of	Sherman	HOLL D			
Aug. 13, 1957	386.25	Mar. 7, 1958	333.18	Oct. 1, 1958	326,30
Sept.19	371.10	Apr. 11	333.86	Oct. 14	343.00
Oct. 16	357.50	May 7	330.83	Nov. 10	346.00
Nov. 12	365.20	June 4	353.30	Dec. 18	343.90
Dec. 17	340.80	July 3	365.04	Jan. 15, 1959	343.37
Jan. 27, 1958	329,12	Aug. 6	394.20	Feb. 13	342.34
		Well E-	55		
Owner: City of	Sherman				
Sept.13, 1957	366,30	Apr. 11, 1958	260.15	Oct. 14, 1958	285.20
Oct. 16	284.65	May 7	260.18	Nov. 12	275.36
Nov, 12	274.49	June 4	261.55	Dec. 18	264.00
Dec. 17	272.70	July 2	276.74	Jan. 15, 1959	262.49
Jan. 27, 1958	271.25	Aug. 6	304.73	Feb. 13	268.29
Mar. 7	261.70	Oct. 1	294.21		

Table 8 .-- Water levels in wells in Grayson County -- Continued

Date	Water level	Date	Water level	Date	Water
)		Well F-	6		
Owner: C.W.S	tripling				
Sept.12, 1957	56.02	Feb. 25, 1958	41.73	Aug. 19, 1958	60.60
Oct. 23	52.44	Apr. 17	38.40	Sept.25	49.16
Nov. 26	50.24	May 8	4.75	Oct. 15	50.19
Dec. 20	50.10	June 6	40.15	Nov. 21	60.76
Jan, 29, 1958	42.32	July 8	46.40		
	<u>,2</u> 81	Well G-	14	M	11.12
Owner: Fred Re;	ynolds				
Aug. 28, 1957	116.76	Mar. 4, 1958	116.97	Aug. 12, 1958	117.70
Sept.19	116.91	Apr. 15	117.07	Sept.25	117.09
Oct. 8	117.39	May 8	116.90	Oct, 15	118,23
Nov. 13	116.56	June 2	117.21	Nov. 24	118.39
Dec. 18	116.77	July 8	117.34	Jan. 20, 1959	118,31
Jan. 29, 1958	117.02				

The well in Cooke County and the wells in Montague County listed below were selected as observation wells because of their location in the outcrop of the Trinity group. Figure 7 shows the location of the wells.

Date	Water level	Date	Water level	Date	Water level
		Cooke Cou	nty		
Owner: J. H. R unused	ichey. Town well; diame	n of Marysville, 9 eter, 4 inches; de	¹ / ₂ miles non pth, 58 fee	th of Muenster. Det.	rilled
Dec. 5, 1957	29.18	May 9, 1958	26.60	Oct. 16, 1958	29.14
Dec. 19	28,85	June 3	27.39	Nov. 19	29.43
Jan. 15, 1958	28.55	July 9	27.70	Dec. 16	29.22
Feb. 27	28,16	Aug. 7	28,45	Jan. 19, 1959	29.09
Apr. 2	27.99	Sept.26	29.05		
Dec. 19 Jan. 15, 1958	14.54 14.38	June 3 July 9	12.45 12.47	Nov. 19 Dec. 16	14.38 14.50
Dec. 3, 1957	14.83	May 9, 1958	12.10	Oct. 16, 1958	14.30
Jan. 15, 1958	14.38	July 9	12.47	Dec. 16	14.50
Feb. 27	14.19	Aug, 7	13.25	Jan. 19, 1959	14.38
Apr. 2	13.78	Sept.26	14.09		
		5.7 miles north of s; depth, 112 feet		Drilled domestic	well;
Dec. 3, 1957	76.37	May 9, 1958	74.92	Oct. 16, 1958	75.25
Dec. 19	75.38	June 3	75.34	Nov. 19	75.12
Jan. 15, 1958	75.96	July 9	75.32	Dec. 16	76.00
Feb. 27	75.08	Aug. 7	77.15	Jan. 19, 1959	75.10

ate	Water level	Date	Water level	Date	Water level
		Montague County-	Continued		, élLev
	s Bell. 3.0 mil meter, 6 inches;			rilled domest	cic well;
ov. 14, 19	57 58.99	Feb. 27, 1958	58.90	Dec. 16, 195	58.88
ec. 19	59.96	0ct. 16	58.62	Jan. 19, 195	58.70
an. 15, 19	58 59.30	Nov. 19	58.81	1.31.00	
	er avoit	82.75	e marti	28.85	e1.,0e
	avasi dall'ini a				
allow ba	avas dallini ort. 16. 12.5				
	apaci dall'ini 0:1, 16, 19:3 10v, 10				
30.41	avat aslika kuya Det, 16, 1923 Tov, 19 Det, 16		and a second s		
30.41			and a second s		
30.41			aluon alla di Aluon aluoni Aluon di Aluoni Aluon di Aluon di Aluon di		aradelb 1990 J. 1997 1921 D. 1997 1921 D. 1998 1921 D. 1938
32. AL 32. AL 32. AL 34. AL			d sile acets inpos, 165 Ja May 9, 195 Alas 9 Alas 9 Sept. 18		tradelb 1001 2 .50 01.50 1201 22 1201 22 1201 22 1201 2 1201 2 1201 2 1201 2 1201 2 1201 2 1201 2 1201 2 1201 2 1001 2 1002 2 1001 2 1002 2 1000 2 1000000 2 10000000000
32. AL 32. AL 32. AL 34. AL			d sile acets inpos, 165 Ja May 9, 195 Alas 9 Alas 9 Sept. 18		distants distants distants distants distants
32. AL 32. AL 33. AL 34. AL 34			Ange Si and Si a		distants bio, i, 1097 bio, i, 1998 bio, i, 1998 bio, i, 1988 distants distants
32.42 32.42 32.42 32.42 32.42 32.42			Alles and a Alles a Alles a Alles a alles and alles and alles a alles alles a alles a		diomete est, i, 1097 est, i, 1097 en, is, 1995 est, i dismete est, i, 1957 est, i es, i e es, i e es, i e e es, i e es, i e es, i es, i e e es,
32. AL B2. AL D2. AL D2. AL D3. AL D3			Alles and a Alles a Alles a Alles a alles and alles and alles a alles alles a alles a		tioners 1001 2 . 50 01 . 50 1201 2 . 10 1201 2 . 10 10 10 10 10 10 10 10 10 10 10 10 10 1

Table 9.--Drillers' logs of wells in Grayson County, Texas $\underline{l}/$

Thick (fee		Depth (feet)	Thickn (feet		Depth (feet)
		Well .	A-21		
Owner: Gordonville Water As	socia	tion.	Driller: J. L. Myers & Sons.		
Surface	6	6	Shale	28	690
Clay	24	30	Shale, sandy	6	696
Shale	46	76	Shale and sand	30	726
Sand	12	88	Shale	11	737
Shale	48	136	Shale, limy	28	765
Sand	6	142	Shale	32	797
Shale	57	199	Lime	21	818
Sand	6	205	Shale, limy	20	838
Shale	57	262	Sand	8	846
Sand	4	266	Shale	21	867
Shale	36	302	Sand	16	883
Shale, sandy	10	312	Shale	4	887
Sand	43	355	Sand	19	906
Shale	6	361	Shale	81	987
Shale, limy	214	575	Sand	21	1,008
Shale	18	593	Sandrock	2	1,010
Lime	35	628	Sand	8	1,018
Shale	20	648	Shale	3	1,021
Shale, sandy	14	662			

 $\underline{l}/$ Wording rearranged for uniformity.

Thickness (feet)	s Depth (feet)		ickness feet)	Depth (feet)
	Well	A-25		
Owner: J. C. Brady. Driller:	Hal Doug	las,		
Red bed 20	0 20	Sand	13	145
Shale 30	0 50	Shale and rock	35	180
Sand (6 56	Sand and shale	9	189
Shale 12	2 68	Sand	40	229
Sandrock 12	2 80	Rock, hard	l	230
Shale 3.	1 111	Shale	61	291
Sand 12	2 123	Sand	54	345
Shale	9 132			

Owner: E. Gaitis. Driller: Townsend & Freeman.

Clay	25	25	Clay, varicolored	40	160
Clay, varicolored	85	110	Sand, blue	20	180
Sand	10	120			

Well A-36

Owner: Hagerman National Wi	ldlife	Refug	e. Driller: Layne-Texas Co.	, Ltd.	
Soil	l	1	Shale, sandy	26	164
Clay	23	24	Rock	2	166
Clay and some sand	17	41	Shale and hard layers	37	203
Shale, black	31	72	Rock	l	204
Shale, sticky	65	137	Sand	12	216
Rock	l	138	Shale and hard layers	10	226

Thick (fee		Depth (feet)	Thick (fee		Depth (feet)					
Well A-36Continued										
Sand, hard	7	233	Shale and sand	9	487					
Shale, sandy	19	252	Rock	l	488					
Shale and hard layers	28	280	Shale	7	495					
Sand	6	286	Lime and shale	19	514					
Rock	l	287	Rock	l	515					
Gumbo	4	291	Lime and shale	4	519					
Shale, tough	6	297	Sand and shale	11	530					
Sand and hard layers	16	313	Gumbo	4	534					
Shale, sandy	79	392	Shale	47	581					
Sand, gray	30	422	Sand	9	590					
Sand, white	31	453	Shale and sand	13	603					
Shale, sandy, and hard	15	468	Shale, hard	6	609					
layers			Sand and shale	30	639					
Rock	2	470	Shale, sandy	15	654					
Shale, sandy	8	478								

Well B-2

owner. o. p. Army. Differ	·	110 101			
Sand and clay	25	25	Sand	18	115
Rock	2	27	Sand, coarse	29	144
Clay	5	32	Limerock and sand	10	154
Rock	l	33	Shale and lime	11	165
Clay, tough, and rock	35	68	Sand, hard, broken	14	179
Lime, hard	15	83	Shale and lime	6	185
Clay and sand	14	97	Lime, hard, and shale	17	202

Owner: U. S. Army. Driller: Layne-Texas Co., Ltd.

Thick (fee		Depth (feet)	Thick (fee		Depth (feet)					
Well B-2Continued										
Gumbo and shale	13	215	Shale and sand	12	495					
Shale	46	261	Shale, soft, green	5	500					
Shale, sandy	9	270	Shale, sandy, blue	60	560					
Rock	l	271	Rock	l	561					
Sand and shale	9	280	Shale, sandy	12	573					
Gumbo and shale	15	295	Sand, fine, white	12	585					
Rock	2	297	Shale, sandy	21	606					
Lime, hard	12	309	Sand, fine, white	10	616					
Shale, soft, green	7	316	Shale and hard lime	24	640					
Shale and fine sand			Sand, and shaly lime	45	685					
layers	16	332	Limerock	l	686					
Lime	15	347	Shale, sticky	20	706					
Rock	l	348	Gumbo, red	25	731					
Shale and lime layers	30	378	Sand, gravel, and shale	13	744					
Lime	4	382	Shale and some sand	23	767					
Shale and sand breaks	19	401	Rock	1	768					
Gumbo	4	405	Shale and lime	8	776					
Shale	39	444	Shale, sticky	8	784					
Shale and hard layers	19	463	Gumbo							
Sand, broken	20	483	Gump0	21	805					

Well B-25

Owner: R. C. Dalton Well 1.	Dril	ler:	Sherman Oil & Gas Co.				
Soil	3	3	Shale, blue	45	85		
Clay, yellow	37	40	Shale, sticky, blue	18	103		

Thickness Depth (feet) (feet)		Thickness (feet)		Depth (feet	
	Wel	1 B-25-	-Continued		
Shale, blue	5	108	Sand, white	17	447
Lime shell	2	110	Shale, brown	13	460
Shale, blue	15	125	Shale, sticky	5	465
Shale, sandy, blue	8	133	Shale, sandy	20	485
Shale, sandy	7	140	Shale, red	15	500
Shale, blue	38	178	Shale, blue	10	510
Limestone	22	200	Shale, sandy, gray	15	525
Shale, sandy, blue	8	208	Shale, sandy, red	8	533
Sand, white	4	212	Red bed	12	545
Lime, sandy	10	222	Shale, sticky	5	550
Sand, white	38	260	Shale, sandy, red	20	570
Sand, white, water	20	280	Sand, white, water	20	590
Sand, white	40	320	Shale, red	10	600
Sand, water	15	335	Sand, white	12	612
Sand, hard	12	347	Shale, red	13	625
Sand, white	3	350	Red bed	15	640
Shale, red	10	360	Shale, red	30	670
Shale, sandy	20	380	Shale, sandy, gray	18	688
Red bed	3	383	Quicksand	9	697
Shale, sticky	10	393	Red bed	38	735
Shale, sandy, red	17	410	Lime shell	3	738
Shale, blue	10	420	Sand, white, water	17	755
Sand, red	7	427	Shale, sticky, blue	10	765
Shale, brown	3	430	Red bed	20	785

Thickn (feet		Depth (feet)	Thickness (feet)		Depth (feet)
	Wel	1 B-25-	-Continued		
Shale, sandy	27	812	Shale, blue	27	867
Shale, sandy, blue	8	820	Sand, gray	5	872
Lime, sandy	6	826	Gas sand	3	875
Shale, blue	l	827	Shale, blue	7	882
Lime, sandy	13	840	Gas sand	10	892

Well B-27

Owner: City of Pottsboro.	Drille	er: La	yne-Texas Co., Ltd.		
Soil	3	3	Sand, fine, gray, and hard layers	10	259
Clay	7	10	Cond fine met	6	265
Clay, sandy	6	16	Sand, fine, gray	0	
Sandrock, yellow	7	23	Shale, sandy	10	275
bandrock, yerrow			Sand and shale layers	13	288
Shale, blue	22	45	Shale and sticky shale	47	335
Sand, fine, gray, and shale layers	29	74	Rock, hard	2	337
Shale, sandy, blue	69	143	Lime, sandy, and shale	23	360
Shale	31	174	Shale, sandy	22	382
Shale, sticky, and hard	75	alva	Lime, hard, and shale	36	418
layers	75	249	Shale, sandy	25	443

Well B-29

Owner: Willow Springs School. Driller: E. C. Freeman

Soil and clay	2	2	Clay, varicolored	60	160
Shale, blue	88	90	Sand, coarse, white	32	192
Sand, blue, water	10	100			

Thickr (fee			ness t)	Depth (feet)	
		Well	C-4		
Owner: Table Products Co. 1	Drill	er:		-	
Soil	6	6	Slate, gray	20	305
Sand, yellow	16	22	Lime	10	315
Lime shell	6	28	Slate	3	318
Shale, blue	7	35	Lime	5	323
Lime shell	3	38	Slate	7	330
Shale, sandy	10	48	Shale, sandy	5	335
Shale, blue	12	60	Slate, blue	20	355
Shale, sandy, gray	40	100	Lime	16	371
Slate, blue	37	137	Slate, brown	11	382
Lime	8	145	Limestone	21	403
Slate, gray	15	160	Shale	4	407
Slate, brown	10	170	Sand	21	428
Slate, gray	20	190	Sand, coarse	8	436
Lime	8	198	Shale, light-colored	l	437
Slate, gray	5	203	Marl, hard	3	44C
Lime	9	212	Marl, red	6	446
Slate, gray	8	220	Sand, broken	4	450
Lime	5	225	Sand, brown and white	10	460
Slate, gray	50	275	Sand, water	98	558
Sand	10	285			

Thick (fee		Depth (feet)	Thick (fee		Depth (feet)
		Well	c-8		
Owner: Luther Cherry. Dril	ler:	E. C.	Freeman		
Soil, sandy	10	10	Hardpan	20	100
Clay	70	80	Sand, hard, yellow	10	110
		Well	D-25		
Owner: City of Whitesboro W	Tell 3	. Dril	ler: Layne-Texas Co., Ltd.		
Surface soil	2	2	Sand, shale, and lime layers	120	1,103
Clay	13	15	Shale	38	1,141
Shale, sandy, and shale	130	145	Shale, hard	17	1,158
Shale, hard, lime, and sandy shale layers	100	245	Sand	30	1,188
Shale, hard	62	307	Shale, hard, and lime	19	1,207
Sand and shale	52	359	Shale, hard, lime, and		
Lime	9	368	sand breaks	31	1,238
Shale, hard, lime, and	0-	1.55	Shale, sandy, and shale	21	1,259
sand	87	455	Sand	24	1,283
Lime and shale	99	554	Sand and shale	15	1,298
Shale, sticky, and lime layers	31	585	Shale	32	1,330
Lime and shale	233	818	Sand and shale	15	1,345
	255	010	Shale, hard, varicolored	15	1,360
Shale, sandy, and hard rock layers	77	895	Sand and shale	18	1,378
Shale, sandy	29	924	Shale	13	1,391
Shale and lime	27	951	Sand	36	1,427
Shale, sandy	22	973	Shale, hard	8	1,435
Shale and lime	10	983	Sand and shale	64	1,499
			Shale, hard	21	1,520

Thick (fee		Depth (feet)	Thick (fee		Depth (feet
		Well	D-26		
Owner: City of Whitesboro W	ell 2	. Dril	ler: Layne-Texas Co., Ltd.		
Surface soil	5	5	Rock	2	551
Clay	5	10	Shale and hard lime	29	580
Clay, sandy	15	25	Rock	l	581
Shale, hard	26	51	Shale and hard lime	5	586
Shale and boulders	27	78	Rock	2	588
Shale, sandy, and boulders-	40	118	Shale and limerock	2	590
Shale, hard	45	163	Shale and hard lime	35	625
Rock	l	164	Rock	l	626
Gravel	21	185	Shale and hard lime	21	647
Rock	2	187	Rock	l	648
Shale, hard	11	198	Shale and lime	26	674
Shale, sand, and gravel	153	351	Lime, blue	8	682
Limerock	6	357	Shale and lime	30	712
Lime, sandy	46	403	Lime, hard	4	716
Limerock	2	405	Limerock	6	722
Shale, lime, and sand	37	442	Shale and hard lime	43	765
Limerock	2	444	Shale, sticky	6	771
Shale, lime, and sand	7	451	Limerock	37	808
Shale, sticky	12	463	Shale and lime	3	811
Rock	7	470	Shale, sticky	30	841
Shale and hard lime	68	538	Shale, sandy	35	876
Rock	l	539	Shale, hard	4	880
Shale and hard lime	10	549	Shale, sandy	25	905

Thickr (feet		Depth (feet)	Thickr (feet		Depth (feet)
	Wel	1 D-26-	-Continued		
Shale, hard	6	911	Lime	12	1,210
Shale, sandy, and boulders-	7	918	Limerock	7	1,217
Shale and shells	7	925	Sand	10	1,227
Shale, sandy	2	927	Lime, hard	12	1,239
Shale and lime	8	935	Packsand	10	1,249
Lime and limerock	8	943	Lime and sand	30	1,279
Shale and lime	27	970	Sand	10	1,289
Shale, sticky	11	981	Red bed and lime	10	1,299
Sand	10	991	Sand	5	1,304
Shale, hard	9	1,000	Red bed and lime	10	1,314
Shale and sand	18	1,018	Packsand, hard	13	1,327
Shale and lime	19	1,037	Lime and sand	8	1,335
Shale and lime sand	3	1,040	Rock	l	1,336
Sand and lignite	10	1,050	Sand	3	1,339
Lime, hard	8	1,058	Shale	4	1,343
Shale, lime, and sand	12	1,070	Sand	6	1,349
Shale and lime	13	1,083	Lime, shale, and sand	9	1,358
Lime, sandy	7	1,090	Lime, hard	2	1,360
Lime, hard	9	1,099	Lime, sandy	6	1,366
Shale, hard	27	1,126	Lime, hard	4	1,370
Sand	7	1,133	Lime, sandy	15	1,385
Shale, hard	5	1,138	Lime, sticky	4	1,389
Shale and slate	8	1,146	Sand	26	1,415
Red bed	52	1,198	Sand and shale	12	1,427

		Depth (feet)	Thickness (feet)	Depth (feet)
	Wel	1 D-26-	-Continued	
Limerock	8	1,435	Rock]	1,480
Limerock and shale	9	1,444		1,508
Lime, sandy	11	1,455	Red bed]	1,509
Sand	24	1,479	Lime and shale 9	1,518

Well E-2

Owner: Hagerman National Wildlife Refuge. Driller: J. L. Myers & Sons.

Soil	l	l	Sand, water	14	224
Clay	26	27	Shale, blue	34	258
Shale, blue	113	140	Sand, water	4	262
Rock, gray	2	142	Shale, sandy	3	265
Sand, blue	13	155	Shale, blue	7	272
Shale, blue	30	185	Limerock, blue	3	275
Sand, blue	7	192	Shale, blue	10	285
Shale, blue	12	204	Lime, blue	l	286
Sandrock	6	210	Shale	14	300

Well E-9

Owner: Perrin Air Force Base Well 1. Driller: O. T. Myers.

Soil, brown	2	2	Shale, gray	35	145
Clay, yellow	15	17	Shale, brown	35	180
Clay, sand, yellow	3	20	Shale, blue	65	245
Shale, yellow and blue	8	28	Shale, gray	120	365
Shale, blue	54	82	Shale, sandy, gray	32	397
Shale, brown	28	110	Sand, water	15	412

Thick (fee		Depth (feet)	Thickness (feet)		Depth (feet)
	Wel	1 E-9	Continued		
Shale, blue	34	446	Shale, green	10	545
First Woodbine sand	23	469	Shale, sandy, light-brown	20	565
Gumbo, blue	23	492	Shale, varicolored	7	572
Sand, fine, brown	5	497	Shale, hard, gray	6	578
Shale, gray	2	499	Lime, hard, brown	10	588
Shale, blue	5	504	Shale, gray and green	4	592
Shell, sandy, light-			Sand, white, water	25	617
colored Sand, fine, white, water	6 25	510 535	Shale, blue and brown	3	620

Owner: Perrin Air Force Base Well 2. Driller: O. T. Myers.

Soil, brown	2	2	Shale, blue	25	450
Clay, red-yellow	12	14	Shale, sandy, white	5	455
Shale, blue	76	90	Sand, gray, water	25	480
Shale, brown	27	117	Gumbo, blue	20	500
Shale, gray	35	152	Rock, sandy, blue	5	505
Shale, brown	38	190	Second Woodbine sand	20	525
Shale, blue	63	253	Shale, sandy, gray	5	530
Shale, gray	102	355	Gumbo, green	8	538
Shale, brown	20	375	Shale, brown	10	548
Shale, sandy, gray	27	402	Shale, varicolored	14	562
Shale, blue	12	414	Shale, hard, gray	28	590
Sand, white, soft	3	417	Gumbo, sticky, gray	3	593
Sand, green, and pyrite	8	425	Lime, hard, brown	9	602

Thickn (feet)	Depth (feet)	Thickness (feet)	Depth (feet)
	Wel	1 E-10-	-Continued	
Shale, gray	4	606	Shale, sandy, white 19	634
Shale, brown	9	615	Third Woodbine sand 54	688

Well E-11

Owner: Perrin Air Force Base Well 3. Driller: O. T. Myers.

the set of					
Soil, brown	2	2	Shale, blue	33	550
Clay, yellow	4	6	Shale, white	20	570
Rock, brown	3	9	Shale, green	7	577
Clay, yellow-red	18	27	Lime, gray	2	579
Shale, blue	123	150	Gumbo, varicolored	6	585
Shale, brown	60	210	Sand, white	25	610
Shale, gray	90	300	Shale, pink	9	619
Shale, brown	70	370	Lime, gray	2	621
Shell and rock	2	372	Sand, white	17	638
Shale, sandy, gray	63	435	Shale, red	10	648
Shale, blue	28	463	Sand, white	10	658
Sand, gray	27	490	Lime, gray	2	660
Shale, blue	13	503	Shale, red	3	663
Shale, sandy, gray	14	517	Sand, hard, white	37	700

Well E-12

Owner: Perrin Air Force Base Well 4. Driller: Layne-Texas Co., Ltd.

Surface clay	10	10	Shale and chalk	41	110
Shale, blue	59	69	Sand, shale, and shells	185	295

Thick (fee		Depth (feet)		55	Depth (feet)
	Wel	1 E-12-	-Continued		
Shale and shells	62	357	Shale and lime shells	6	1,296
Shale and lime shells	51	408	Sand	5	1,301
Sand and lime shells	30	438	Shale, sandy, and lime		2 0 2 0
Sand, broken, shale, and shells	130	568	Sand	17 8	1,318
Shale	17	585		76	1,402
Sand	25	610	Sand	14	1,416
Shale	41	651	Shale, sandy	9	1,425
Shale, blue and brown	24	675	Sand	2	1,427
Shale and lime streaks	7	682	Sand and shale, broken	13	1,440
Sand and lime streaks	23	705	Sand, hard, and shale	32	1,472
Shale	12	717	Sand	3	1,475
Sand and lime, broken	28	745	Shale, sand, and hard lime-	35	1,510
Shale and lime shells	63	808	Shale, sandy	8	1,518
Shale and lime streaks	22	830	Shale, sandy, and lime shells 8	32	1,600
Lime	5	835	Shale	2	1,602
Sand and lime streaks	67	902	Sand, shale, and lime		
Lime and shale, broken	44	946		55	1,667
Shale and lime	44	990	Lime	9	1,676
Lime and shale, broken	57	1,047	Shale, sandy	9	1,685
Shale and lime streaks	52	1,099	Lime, hard	3	1,738
Lime and shale, broken	131	1,230	Shale 2	7	1,765
Sand, shale, and shells	28	1,258	Sand]	.0	1,775
Lime	32	1,290	Lime and broken shale 2	3	1,798

Thick (fee		Depth (feet)	Thickness (feet)		Depth (feet)					
Well E-12Continued										
Sand, shale, and shells	9	1,807	Sand and shale, broken	5	1,981					
Shale and shells	27	1,834	Shale, sandy	8	1,989					
Lime, broken	8	1,842	Sand, soft	26	2,015					
Shale, sandy, and shells	30	1,872	Sand, medium soft	16	2,031					
Sand and shale	12	1,884	Sand, soft	13	2,044					
Sand	5	1,889	Sand, hard, and medium lime	23	2,067					
Lime, sandy, hard	12	1,901	Sand, hard	15	2,082					
Sand, shale, and shells	19	1,920	Shale, sandy		2,091					
Lime, sandy, hard, and shale	9	1,929	Sand, hard, and brown sticky shale	12	2,103					
Sand and lime, hard, broken	6	1,935	Sand, and brown shale	7	2,110					
Shale, sandy, and shells	25	1,960	Shale, red, and sand	8	2,118					
Sand, hard	9	1,969	Sand, hard, and red shale	13	2,131					
Sand, medium soft	7	1,976								

Well E-13

Owner: Perrin Air Force Base Well 5. Driller: Layne-Texas Co., Ltd.

Soil, brown	2	2	First Woodbine sand	25	505
Clay, yellow	25	27	Shale, blue	21	526
Shale, blue and brown	388	415	Sand, gray	12	538
Sand, dry, brown	5	420	Lime, gray	1	539
Shale, sandy, blue	32	452	Shale, sandy, dark-blue	9	548
Sand, white, water	16	468	Shale, gray	8	556
Shale, brown	12	480	Asphalt, fossiliferous, black	1	557

Thickr (feet		Depth (feet)	Thickn (feet		Depth (feet)						
Well E-13Continued											
Shale, green	6	563	Gumbo, red	6	676						
Shale, brown	12	575	Sand, white, water	10	686						
Shale, varicolored	11	586	Sand, gray	5	691						
Shale, sandy, hard, gray	24	610	Gumbo, red	2	693						
Shale, gray	2	612	Gumbo, dark-green	3	696						
Lime, brown	2	614	Lime, brown	3	699						
Shale, brown	4	618	Sand, white, water	35	734						
Lime, brown	4	622	Gumbo, varicolored	4	738						
Sand, white, water	13	635	Sand, white, water	11	749						
Lime, hard, brown	6	641	Gumbo, varicolored	12	761						
Gumbo, white	8	649	Lime, hard, brown	2	763						
Gumbo, red	4	653	Second Woodbine sand	25	788						
Gumbo, green	5	658	Lime, white	8	796						
Sand, white, water	12	670	Shale, blue	5	801						

Well E-14

Owner:	Perrin A	Air Force	Base We	ell 7-A.	Driller:	Layne-Texas	Co.,	Ltd.
--------	----------	-----------	---------	----------	----------	-------------	------	------

Soil	2	2	Shale, sandy	36	163
Clay	6	8	Shale, blue	215	378
Sand, black	4	12	Shale, sandy	22	400
Clay	28	40	Shale	24	424
Shale, blue	58	98	Shale, sandy	12	436
Shale, sandy	18	116	Shale	28	464
Shale, blue	11	127	Sand	24	488

		Depth (feet)	Thickness (feet)	Depth (feet)
	Wel	1 E-14-	-Continued	
Shale, sandy	23	511	Sand, broken 34	632
Sand	4	515	Shale 6	638
Shale, sandy	29	544	Not logged 4	642
Shale	54	598		_

Well E-32

Owner: L. H. Jeans. Driller: J. L. Myers & Sons.

Clay	18	18	Shale, sandy	20	594
Shale	433	451	Shale	87	681
Sand and shale, broken	63	514	Shale, sandy	8	689
Shale	4	518	Sand	16	705
Sand	7	525	Sand and shale	5	710
Shale, sandy	· 23	548	Shale	31	741
Sand	9	557	Sand	23	764
Shale	3	560	Shale	1	765
Sand	14	574			

Well E-35

Owner: City of Sherman. Dr	iller:	Layn	e-Texas Co., Ltd.		
Surface soil	3	3	Shale	19	473
Clay	8	11	Shale, sandy	17	490
Sand	10	21	Shale	51	541
Shale, blue	413	434	Sand and sandy shale	30	571
Shale, sandy, and sand	20	454	Shale	9	580

	Thickness (feet)		Thickness (feet)		Depth (feet)
	Wel	l E-35-	-Continued		
Sand and sandy shale	20	600	Shale and sandy shale	17	699
Shale	28	628	Shale, sandy, and shale	21	720
Shale and sandy shale	42	670	Sand	59	779
Shale, red and blue	12	682	Shale, blue, and streaks of , red shale	10	789

Well E-36

Owner: City of Sherman. Dr	iller:	Layr	ne-Texas Co., Ltd.		
Surface soil	3	3	Lime and shale	43	954
Clay	7	10	Shale, hard	425	1,379
Sand	10	20	Sand, shale breaks, and	50	1 1.00
Shale, blue	440	460	lime	50	1,429
Shale, sandy, and sand	18	478	Shale, hard	13	1,442
Shale	63	541	Sand and sandy shale	45	1,487
			Shale, white and blue	59	1,546
Sand and sandy shale	28	569	Shale, sandy, and shale	25	1,571
Shale	10	579	Shale, hard	17	1,588
Shale and sandy shale	68	647	Shale and breaks of hard	-1	-,,,
Sand	14	661	sand	31	1,619
Shale and some sand breaks-	34	695	Shale	28	1,647
Shale, sandy	40	735	Shale, sandy, and sand	28	1,675
Sand	41	776	Shale	10	1,685
Shale, blue and red	77	853	Sand and sandy shale	20	1,705
Shale, hard, sticky	6	859	Shale, red and blue	12	1,717
Shale, hard	52	911	Shale and hard lime	15	1,732

(Continued on next page)

- 116 -

Table 9Drillers	logs o	f wells	in Grayson	CountyContinued
-----------------	--------	---------	------------	-----------------

Thick: (fee		Depth (feet)	Thickness (feet)		Depth (feet)						
Well E-36Continued											
Shale	31	1,763	Sand	35	2,015						
Shale, sandy, and shale	32	1,795	Sand and shale	16	2,031						
Shale, tough	16	1,811	Sand	24	2,055						
Shale, hard, red and blue	39	1,850	Sand and shale breaks	61	2,116						
Shale, sandy	10	1,860	Shale, hard	13	2,129						
Shale, hard, red and blue	58	1,918	Sand	13	2,142						
Lime, hard	2	1,920	Sand and shale layers	13	2,155						
Shale, hard, red and blue	19	1,939	Sand	12	2,167						
Shale, sandy, and sand	23	1,962	Shale, hard	2	2,169						
Shale, sandy, hard	18	1,980									

Well E-37

Owner: City of Sherman. Dr.	iller:	Gree	en Deep Well Co.		
Soil, sandy	6	6	Sandrock	3	226
Clay, yellow	14	20	Mussel shells	19	245
Sand and gravel	14	34	Sandrock	2	247
Soapstone and shale	13	47	Shale, blue	63	310
Gumbo, hard, tough	16	63	Gumbo, black	13	323
Sandrock	l	64	Shale, light-colored	89	412
Shale, blue	19	83	Sandrock	3	415
Shale and streaks of gumbo	57	140	Shale, blue	46	461
Shale, blue	60	200	Gumbo, black	9	470
Gumbo, very tough	23	223	Soapstone, light-colored	15	485

	Thickness (feet)		Thickness (feet)		Depth (feet)
	We	11 E-37	Continued		
Sandrock	3	488	Soapstone, light-colored	8	626
Shale, light-colored	52	540	Soapstone and shale	14	640
Gumbo, black	14	554	Gumbo, very sticky, blue	25	665
Soapstone, light-colored	21	575	Shale	18	683
Sand, hard	9	584	Sandrock	2	685
Sandrock, very hard	4	588	Gumbo	17	702
First Woodbine sand, hard, fine	26	614	Soapstone and streaks of shale	19	721
Sandrock	4	618	Second Woodbine sand, white	57	778

Well E-38

Owner: City of Sherman. Driller: B. J. Harper.

Clay	28	28	Limerock and shale	75	1,094
Rock, hard	4	32	Limerock and blue marl	43	1,137
Sand, yellow, water	2	34	Lime, hard	41	1,178
Shale, blue	457	491	Limerock and shale	1.86	1,364
Sandrock	2	493	Limerock, hard	38	1,402
Sand, water	18	511	Sandrock	6	1,408
Shale, blue	218	729	Shale, sandy	10	1,418
Sand, water	23	752	Sand, fine	39	1,457
Shale	67	819	Sand and marl	59	1,516
Shale, blue	93	912	Limerock, hard	l	1,517
Limerock and shale	50	962	Sand, fine, and streaks of marl	29	1,546
Shale, blue	57	1,019	most T	£9	1,)40

Thick (fee		Depth (feet)		Thickness (feet)	
	Wel	1 E-38-	-Continued		
Marl, white	4	1,550	Sand, hard, water	8	1,922
Sand, fine, and red rock	18	1,568	Marl, varicolored	7	1,929
Sand and marl, water	19	1,587	Marl, sandy, varicolored	37	1,966
Sand, hard	8	1,595	Sandrock and sand	14	1,980
Marl, red, blue, and white-	34	1,629	Sand	20	2,000
Marl, red, blue, and white, and streaks of sand	24	1,653	Rock, hard	2	2,002
			Sandrock, water	17	2,019
Marl, red, blue, and white-	25	1,678	Sand, fine, soft, water	8	2,027
Sand and limerock	28	1,706	Sand, fine, hard, water	27	2,054
Sand and red and blue marl-	21	1,727	Sand, water	14	2,068
Sandrock, hard	8	1,735	Rock, sand, and layers of		
Sand, fine	28	1,763	blue and red marl	26	2,094
Sandrock	9	1,772	Sand, hard, and rock	4	2,098
Sand, fine, and marl layers	23	1,795	Sandrock, sand, and marl	13	2,111
Sandrock	4	1,799	Marl, red, and streaks of sand	22	2,133
Marl	10	1,809	Sand, water	10	2,143
Sand	9	1,818	Sandrock, hard	3	2,146
Sand and streaks of marl	22	1,840	Gumbo, red	4	2,150
Rock, red	13	1,853	Marl, red	2	2,152
Sand, hard	7	1,860	Sandrock and red marl	13	2,165
Sand and streaks of red	05	1 005	Marl, red	2	2,167
rock	25	1,885	Sandrock, broken	8	2,175
Marl, sandy, red	3	1,888	Shale, sandy, red and		
Sand, fine, hard	26	1,914	blue	14	2,189

Thick (feet		Depth (feet)	Thickness (feet)		Depth (feet)
	Wel	1 E-38-	-Continued		
Marl, red	7	2,196	Shale, sandy	4	2,305
Sandrock, soft	4	2,200	Sandrock, hard	3	2,308
Rock, hard	2	2,202	Marl, red	2	2,310
Limerock, hard	2	2,204	Rock and red shale	8	2,318
Shale, hard, red	2	2,206	Sandrock and red shale	8	2,326
Shale, red, blue, and white	9	2,215	Shale, red	3	2,329
Lime, hard	1	2,216	Shale, hard, varicolored	3	2,332
			Sandrock	4	2,336
Sandrock, hard	3	2,219	Sandrock and shale	8	2,344
Shale, red	1	2,220	Sandrock, red shale, and	11	0 255
Shale, red and blue	28	2,248	hard rock		2,355
Shale, red	18	2,266	Sandrock, hard	l	2,356
Sandrock	4	2,270	Shale, hard	2	2,358
Shale, red	26	2,296	Sandrock, hard, sharp	3	2,361
Sandrock	l	2,297	Sandrock, hard	5	2,366
Shale, red	4	2,301			

Well E-39

Owner: City of Sherman. Driller: W. E. Tomerlin.

Soil, sandy	3	3	Marl, white	14	555
Clay, yellow	9	12	First Woodbine sand, water-	32	587
Clay, white, and sand	3	15	Sandrock, hard	2	589
Sand, yellow	19	34	Gumbo	19	608
Marl, blue, and streaks of shale	507	541	Shale, blue, and boulders	43	651

Thickness (feet)	Depth (feet)	Thickness (feet)	Depth (feet)
Wel	.1 E-39-	-Continued	
Rock and gumbo 34	685	Sandrock 2	726
Gumbo, yellow and red 39	724	Second Woodbine sand, water 50	776

Owner: City of Sherman. Driller: W. E. Tomerlin.

3	3	Sandrock, hard	7	594
9	12	Gumbo	14	608
3	15	Shale, blue	43	651
19	34	Gumbo and boulders	30	681
		Sand	15	696
	541	Gumbo, yellow and red	27	723
14	555	Sandrock	2	725
32	587		61	786
	9 3 19 507 14	9 12 3 15 19 34 507 541 14 555	9 12 Gumbo 3 15 Shale, blue 19 34 Gumbo and boulders 507 541 Sand 14 555 Gumbo, yellow and red	9 12 Gumbo 14 3 15 Shale, blue 43 19 34 Gumbo and boulders 30 507 541 Sand 15 14 555 Gumbo, yellow and red 27 32 587 Sandrock 2

Owner: City of Sherman. Driller: The Texas Tong & Tool Co., Inc.

Surface clay	15	15	Shale	58	152
Sand, water	25	40	Shale, sandy	10	162
Shale, sandy	22	62	Gumbo, blue	20	182
Rock	l	63	Rock and sand	20	202
Sand, water	10	73	Shale	10	212
Sandrock	l	74	Marl	28	240
Shale	16	90	Marl and sand	12	252
Sandrock	4	94	Marl, blue	48	300

Thick (fee		Depth (feet)	Thick (fee		Depth (feet)
	Wel	1 E-41-	-Continued		
Marl	30	330	Sandrock	10	756
Sandrock, hard	4	334	Sandrock and boulders	4	760
Marl	8	342	Sandrock	20	780
Gumbo and shale	40	382	Sand, water	60	840
Marl, tough	20	402	Sandrock	20	860
Marl	40	442	Sandrock and boulders	15	875
Limerock, hard	2	444	Sand, water	25	900
Marl and sandrock	18	462	Sandrock	10	910
Limerock, hard	2	464	Sandrock, hard, and		
Marl, hard, and sandrock	32	496	boulders	20	930
Limerock, hard	13	509	Sandrock	8	938
Sandrock, hard	15	524	Chalk	10	948
Sandrock	4	528	Limerock, hard	6	954
Gumbo, blue	11	539	Chalk, hard	2	956
Gumbo, tough	40	579	Sandrock, hard	26	982
Sandrock	16	595	Sandrock	7	989
Gumbo blue	45	640	Shale, hard	11	1,000
Sandrock, hard	10	650	Sandrock	19	1,019
Gumbo			Sandrock, hard	15	1,034
Sandrock	10	660	Rock, hard, and boulders	2	1,036
	30	690	Limerock, hard	2	1,038
Sandrock and boulders	30	720	Rock	2	1,040
Sandrock, hard	10	730	Rock, hard	2	1,042
Sandrock and boulders	16	746			

Thick (fee		Depth (feet)	Thickness (feet)		Depth (feet)
	Wel	1 E-41-	-Continued		
Sandrock	4	1,046	Limerock and boulders	10	1,325
Gumbo	20	1,066	Limerock, hard	5	1,330
Sandrock	12	1,078	Marl, red and blue	22	1,352
Sandrock and boulders	42	1,120	Limerock, hard	14	1,366
Sandrock	30	1,150	Rock, hard	l	1,367
Rock, hard	2	1,152	Limerock, hard	32	1,399
Limerock, hard	4	1,156	Sandrock and marl	3	1,402
Limerock, hard, and			Sandrock, hard	3	1,405
boulders	4	1,160	Sandrock and marl	90	1,495
Limerock and boulders	12	1,172	Sand, fine, water	15	1,510
Limerock, hard	6	1,178	Gumbo, blue	10	1,520
Limerock and boulders	12	1,190	Sandrock and marl	25	1,545
Gumbo and boulders	12	1,202			
Limerock, hard	10	1,212	Sandrock, hard	10	1,555
Gumbo and boulders	8	1,220	Sandrock, soft	10	1,565
Limerock, hard	4	1,224	Sandrock and boulders	20	1,585
			Shale, limy	4	1,589
Limerock and boulders	14	1,238	Sandrock and marl	13	1,602
Limerock, hard	12	1,250	Sandrock, hard	8	1,610
Marl and boulders	25	1,275	Limerock, hard	2	1,612
Gumbo and boulders	10	1,285			
Limerock, hard	6	1,291	Shale, blue, and boulders	33	1,645
Limerock, hard, and			Shale, blue	15	1,660
boulders	2	1,293	Sandrock and marl	35	1,695
Rock, hard, and boulders	3	1,296	Sand, limy, water	20	1,715
Limerock, hard	19	1,315	Marl, red, blue, and white-	20	1,735

	Thickness I (feet) (Thickness (feet)		Depth (feet)					
Well E-41Continued										
Sandrock, hard	3	1,738	Sandrock, hard	2	1,999					
Marl, red	10	1,748	Sandrock, water	6	2,005					
Sandrock and boulders	17	1,765	Gumbo, tough, blue	10	2,015					
Lime boulders	5	1,770	Sand, water	2	2,017					
Marl, red, blue, and white-	15	1,785	Sandrock, hard, and sand, water	1.8	2,035					
Sand, limy, water	15	1,800	Gumbo, tough, blue	10	2,045					
Sandrock, hard, and boulders	72	1,872	Sand, water	5	2,050					
Sandrock, hard	20	1,892	Sandrock and boulders	5	2,055					
Marl, red	10	1,902	Sand, water, and boulders	50	2,105					
Sandrock	10	1,912	Sand, water	25	2,130					
Marl, red and blue	33	1,945	Sandrock, hard	2	2,132					
Sand, fine, soft	2	1,947	Sand, water	11	2,143					
Marl, red, and sand	25	1,972	Sandrock	3	2,146					
Sandrock	25	1,997								

Well E-42

Owner: City of Sherman. Dr	iller:				
Clay, yellow	25	25	Sand, water	27	516
Rock	l	26	Shale and hard shells	26	542
Shale, blue	422	448	First Woodbine sand	40	582
Sandrock, very hard	5	453	Shale and hard shells	118	700
Sand, dark	10	463	Second Woodbine sand	72	772
Shale, blue	23	486	Soapstone	6	778
Caprock	3	489			

Thickne (feet)		Depth (feet)	Thick (fee	1	Depth (feet)
		Well	E-43		
Owner: City of Sherman. Dril	ller	: W.E	. Tomerlin.		
Soil, sandy	3	3	Sandrock, hard	7	594
Clay, yellow	9	12	Gumbo	14	608
Clay, white	3	15	Shale, blue	43	651
Sand, yellow	19	34	Gumbo and boulders	30	681
Marl, blue, and shale	-07	c 1.7	Sand	15	696
	507	541	Gumbo, yellow and red	27	723
Marl, white	14	555	Sandrock	2	725
First Woodbine sand	32	587	Second Woodbine sand	61	786

Well E-44

Owner: City of Sherman. Dr	iller:	W. E	. Tomerlin.		
Soil, sandy	3	3	Sandrock, hard	7	594
Clay, yellow	9	12	Gumbo	14	608
Clay, white	3	15	Shale, blue	43	651
Sand, yellow	19	34	Gumbo and boulders	30	681
Marl, blue, and shale streaks	507	541	Sand	15	696
Marl, white	14	555	Gumbo, yellow and red	29 2	725 727
First Woodbine sand, water	32	587	Second Woodbine sand	58	785

Well E-45

Owner: St. Louis, San Francisco & Texas Ry. Co. Driller: Layne-Texas Co., Ltd.

Clay	14	14	Shale, soft, sticky	52	79
Shale and sand	13	27	Rock	1	80

Thick (fee		Depth (feet)	Thickn (feet		Depth (feet)							
Well E-45Continued												
Shale	28	108	Shale	83	450							
Rock	l	109	Sand and hard layers	10	460							
Shale	25	134	Shale, sandy	24	484							
Shale, soft, sticky	11	145	Rock, broken	5	489							
Shale	13	158	Sand	4	493							
Lime, broken	l	159	Shale	35	528							
Shale	55	214	Shale, sandy, and shale	22	550							
Shale and sandy shale	25	239	Sand, shale, and shells	23	573							
Shale	61	300	Sand, hard	4	577							
Shale, sandy	8	308	Sand and hard layers	43	620							
Shale, sticky	8	316	Shale	32	652							
Sand, hard	4	320	Sand, hard, and shale	26	678							
Shale	19	339	Shale and red bed	55	733							
Lime, broken	2	341	Sand	57	790							
Shale	22	363	Shale and shells	15	805							
Shale, sandy	4	367										

Well E-46

Owner: St. Louis, San Franc	isco,	& Texa	s Ry. Co. Driller: Layne-Te	exas Co	., Ltd.
Soil, black	5	5	Limerock, hard	2	87
Clay, yellow	15	20	Shale, tough, blue	28	115
Sand, gray	10	30	Sandrock, hard, thin	l	116
Sandrock, hard	1	31	Shale, blue	39	155
Shale, blue	54	85	Shale, blue, and lime shells	315	470

Thickr (feet		Depth (feet)	Thickness (feet)		Depth (feet)						
Well E-46Continued											
Rock, hard	5	475	Gumbo, blue	15	675						
Sand, hard	21	496	Marl, white	22	697						
Sand, medium hard	12	508	Sand, white, hard	20	717						
Gumbo, blue, and lime shells	37	545	Shale, red	10 18	727 745						
Marl, sandy, blue	42	587	Limerock, sandy	3	748						
Sandrock, hard	5	592	Shale, sandy, varicolored	16	764						
Sand, coarse, loose, white, water	47	639	Sand, soft, white	50	814						
Marl, sandy, hard, blue	21	660									

Well E-47

Owner: City of Sherman. Dr	riller:	Layn	e-Texas Co., Ltd.		
Shale and chalk	60	60	Shale	32	762
Shale	431	491	Sand	5	. 767
Shale and sand breaks	35	526	Shale and streaks of sand	20	787
Sand and shale breaks	56	582	Sand	38	825
Sand	19	601	Shale, sandy	10	835
Sand and shale breaks	35	636	Sand	8	843
Rock	5	641	Shale	10	853
Sand	17	658	Sand	85	938
Shale and sand breaks	72	730	Shale	17	955

Thick (fee		Depth (feet)	Thick (fee		Depth (feet)
		Well	E-48		
Owner: City of Sherman. Dr	iller	: Layn	e-Texas Co., Ltd.		
Shale and chalk	60	60	Shale, hard	24	1,652
Shale	459	519	Shale, sandy, and lime	72	1,724
Shale and sandy shale	39	558	Shale and lime	10	1,734
Sand, shaly	157	715	Sand, shaly	11	1,745
Shale	7	722	Shale, sandy, and lime	12	1,757
Shale and sandy clay	53	775	Sand	15	1,772
Clay, sticky	45	820	Shale, sandy	41	1,813
Sand and streaks of shale	130	950	Shale, red and blue	36	1,849
Shale and lime	495	1,445	Shale and sand	92	1,941
Sand and shale	22	1,467	Shale, sandy, lime, and sand	129	2,070
Shale	18	1,485	Sand and streaks of shale	97	2,167
Sand	63	1,548	Shale and lime	3	2,170
Shale and sand breaks	30	1,578			
Sand and shale breaks	50	1,628	Shale	6	2,176

J	27	1	E	-1	19
Y Y 1			- dead		r 7

riller:	Layr	e-Texas Co., Ltd.		
2	2	Shale, blue	22	711
84	86	Sand	6	717
43	129	Sand and shale breaks	61	778
500	629	Shale and sandy shale	12	790
10		Shale, blue	64	854
50	689	Shale, blue and red	20	874
	2 84 43 500 10	2 2 84 86 43 129 500 629 10 639	8486Sand43129Sand and shale breaks500629Shale and sandy shale10639Shale, blueShale, blue and redShale, blue and red	2 2 Shale, blue 22 84 86 Sand 6 43 129 Sand and shale breaks 61 500 629 Shale and sandy shale 12 10 639 Shale, blue and red 20

Thick (fee	ness et)	Depth (feet)			Depth (feet)						
Well E-49Continued											
Shale and thin sandy shale breaks	50	924	Shale, red	9	1,901						
Shale, sandy, blue	95	1,019	Shale, sandy, hard, blue, gray and red	63	1,964						
Shale, blue, and lime	78	1,097	Sand	46	2,010						
Shale, blue, lime, and few sandy shale layers	71	1,168	Sand and shale breaks	14	2,024						
Shale, hard, and sand	85	1,253	Shale, sandy, hard, blue, gray and red	44	2,068						
Shale, hard, blue and red, and lime	22	1,275	Shale, hard, gray, blue, and red, and sandy shale layers	85	2,153						
Shale, hard, blue and lime-	223	1,498	Sand and shale breaks	24	2,177						
Shale, blue and gray, some sand breaks	90	1,588	Sand, hard, blue and red shale breaks	19	2,196						
Sand	94 12	1,682 1,694	Shale, sandy, hard, blue and red	19	2,215						
Shale, sandy, hard, sand breaks and blue and			Sand	26	2,241						
black shale	57	1,751	Shale, hard, and sandy shale	16	2,257						
Sand, hard, and shale breaks	96	1,847	Sand	8	2,265						
Shale, sandy, hard, blue and red	45	1,892	Shale, hard, blue and red	30	2,295						

Well E-50

Owner:	Citv	of	Sherman.	Driller:	Layne-Texas	Co	Ltd.

Surface soil	3	3	Shale, blue	444	547
Rock and blue shale	31	34	Shale, sandy	3	550
Shale, blue, and rock layers	69	103	Sand	10	560

		Depth (feet)	Thickness (feet)		Depth (feet)
	Wel	l E-50-	-Continued		
Shale, sandy	20	580	Sand and shale breaks	13	628
Shale	20	600	5and	78	706
Shale, sandy	8	608	Shale, sandy	30	736
Rock	7	615			

Well E-51

Owner: Anderson Clayton & Co. Driller: J. L. Myers & Sons.

Surface soil	6	6	Sandrock, hard	8	755
Rock, white	24	30	Shale, red	15	770
Rock, soft, blue	32	62	Limerock, hard	5	775
Rock and shale, broken	28	90	Shale, sandy, gray and	21	706
Shale, gray	330	420	green		796
Shale, brown	15	435	Limerock	4	800
Shale, gray	135	570	Sand, dry	6	806
Shale, sandy	15	585	Limerock	4	810
Sand, coarse, water	10	595	Shale, sandy, gray	15	825
Limerock, hard	4	599	Limerock	3	828
Shale, dark gray	5	604	Rock, sandy, hard	10	838
Shale, sandy	8	612	Sand, medium hard, dry	27	865
Sand, fine	76	688	Sandrock, hard	10	875
Shale, blue	24	712	Sandrock, coarse, hard	4	879
Shale, sandy	18	730	Limerock	19	898
	4		Sandrock	2	900
Sand, putty, green		734	Sand, putty, brown	3	903
Shale, sandy	13	747			

Thickness (feet)		Depth (feet)	Thickness (feet)		Depth (feet)
	Wel	1 E-51-	-Continued		
Limerock	2	905	Limerock, hard	10	934
Sandrock	10	915	Sandrock, medium hard	9	943
Shale, black	6	921	Shale, gray	57	1,000
Shale, pink	3	924			

Well E-5	3
----------	---

Owner: Sherman Steam Laundry. Driller: Layne-Texas Co., Ltd.

			· · · · · · · · · · · · · · · · · · ·		
Soil and clay	23	23	Rock, hard	4	556
Rock	2	25	Rock, water	4	560
Gumbo	26	51	Shale, blue	30	590
Sandrock, hard	5	56	Rock, very hard	2	592
Shale and gumbo	20	76	Shale	26	618
Rock, hard	3	79	Rock	2	620
Shale and rock, stratified	436	515	First Woodbine sand	38	658
Rock	2	517	Shale, red and blue, and rock	131	789
Shale, blue	35	552	Rock, hard	2	791

Owner: City of Sherman. Driller: Layne-Texas Co., Ltd.								
Surface soil	3	3	Shale, sandy	41	152			
Clay and sandy soil	20	23	Shale and hard streaks	5	157			
Shale and hard streaks	19	42	Shale and sandy shale	31	188			
Shale and sandy shale	57	99	Shale, sticky	31	219			
Shale and hard streaks	12	111	Shale	148	367			

Thickn (feet		Depth (feet)			Depth (feet
	Wel	l E-55-	-Continued		
Shale, sticky	97	464	Shale, soft shale, and lime	11	950
Shale	111	575	Shale and lime streaks	31	981
Sand and sandy shale	26	601	Shale, tough	44	1,025
Shale, hard	l	602	Shale, hard, and lime	23	1,048
Shale	53	655		23	1,040
Sand and sandy shale	21	676	Lime, shale, and sandy shale	26	1,074
Rock	2	678	Shale and lime	8	1,082
Sand	15	693	Shale and lime, sandy	15	1,097
Shale and lime	2	695	Shale	4	1,101
Sand	13	708	Shale and sandy shale	16	1,117
Shale	l	709	Shale, hard, and limerock	3	1,120
Shale and shells	29	738	Shale	13	1,133
Shale	14	752	Shale, lime, and sandy	-1	
Sand and sandy shale	15	767	shale	14	1,147
Shale	61	828	Shale, hard	21	1,168
Shale and lime, hard	12	840	Sand and sandy shale	4	1,172
Shale, hard, blue and red	5	845	Shale, hard	82	1,254
Shale and shale streaks	15	860	Shale and sandy shale	16	1,270
Shale, hard, and lime			Shale and layers of lime	50	1,320
streaks	30	890	Lime, hard	5	1,325
Shale, hard	14	904	Shale and lime	20	1,345
	32	936	Shale, sandy	5	1,350
Sand, hard	3	939	Shale and lime	30	1,380

Thick (fee		Depth (feet)		Thickness (feet)	
	Wel	1 E-55-	Continued		
Shale	20	1,400	Shale and lime	50	1,757
Shale and lime	10	1,410	Shale, sandy, and lime	14	1,771
Limerock and shale	6	1,416	Shale and lime	13	1,784
Shale, hard, and lime	27	1,443	Shale, sandy, and lime	25	1,809
Shale	11	1,454	Shale and lime	4	1,813
Shale, soft	6	1,460	Shale, sandy, and lime	12	1,825
Shale, hard, tough	21	1,481	Sand, sandy shale, and lime	10	1,835
Lime and shale	6 19	1,487	Shale, lime, and sandy shale layers	12	1,847
Lime, sandy, hard, and shale	2	1,508	Sand and shale layers	21	1,868
Lime and shale	22	1,530	Shale	32	1,900
Shale, sandy, and lime	38	1,568	Sand, shale, and lime breaks	16	1,916
Shale and lime	16	1,584	Shale	16	1,932
Shale, hard, varicolored	18	1,602	Shale and lime	6	1,938
Shale and sandy shale	5	1,607	Sand and shale	14	1,952
Sand and sandy shale	13	1,620	Shale	6	1,958
Shale and layers of sandy shale	25	1,645	Sand, shale, and lime breaks	35	1,993
Shale and lime	5	1,650	Shale and lime	15	2,008
Sand and varicolored shale-	15	1,665	Sand, hard	20	2,028
Shale, tough	11	1,676	Shale, sandy, hard, and		
Shale and lime	20	1,696	lime	3	2,031
Shale, sandy, and lime	11	1,707	Shale, sandy, hard	11	2,042

	Thickness (feet)		Thickness (feet)		Depth (feet)				
Well E-55Continued									
Shale, sandy	15	2,057	Sand and sandy shale	7	2,128				
Shale	5	2,062	Shale	16	2,144				
Lime, hard, and shale	6	2,068	Sand and shale layers	8	2,152				
Shale	5	2,073	Shale	30	2,182				
Shale, hard, tough	3	2,076	Shale, red and blue, and	0					
Shale, hard, and lime	3	2,079	lime and sand layers	8	2,190				
Shale, hard, tough	18	2,097	Sand and shale and sand layers	10	2,200				
Sand, hard	7	2,104	Limerock and shale	14	2,214				
Shale, sandy, hard, and sand layers	3	2,107	Sand, lime, and shale layers	2	2,216				
Sand, fine, hard, white	8	2,115	Sand, shale and lime	7	2,223				
Lime, sandy, hard, and shale	3	2,118	Sand and shale layers	4	2,227				
Shale, hard, and lime and shale breaks	3	2,121	Shale	29	2,256				

Well E-56

Owner: Southern Pacific Ry. Co. Driller: Layne-Texas Co., Ltd. Rock, hard-----Clay-----14 14 2 251 Chalk-----38 Soapstone----52 341 592 Shale-----16 68 Packsand-----7 599 Chalk-----44 Rock, hard-----112 8 607 Packsand, hard-----26 138 Soapstone-----620 13 Gumbo, tough-----27 165 Rock, hard----7 627 Soapstone-----84 249 Soapstone-----657 30

Thickness (feet)		Depth (feet)	Thickness (feet)		Depth (feet)
	Wel	1 E-56-	-Continued		
Rock, hard	4	661	Sand, hard	51	722
Soapstone	10	671	Soapstone	8	730

Well E-57

Owner: Sherman Manufacturing Co. Driller: W. E. Tomerlin.

Sand, yellow	32	32	Gumbo, hard, blue	30	567
Rock, hard, white	39	71	Sandrock, hard	3	570
Shale, blue	140	211	Shale, hard, blue	63	633
Rock, blue	9	220	Sand, soft, white, water	25	658
Marl, blue	140	360	Shale, sandy	12	670
Marl, blue, and shells	143	503	Sandrock, hard	2	672
Gumbo, blue	14	517	Shale, hard	8	680
Rock, hard	3	520	Gumbo, hard, blue	49	729
Gumbo, blue	16	536	Sand, soft, white, water	47	776
Rock, hard	1	537			

Well E-58

Owner: City of Sherman. Driller: Layne-Texas Co., Ltd. 76 361 Rock, white-----15 15 Shale, hard-----464 Shale, black-----5 20 Shale, sticky------103 Shale, hard, gray-----31 51 Shale, black-----141 605 Shale, hard-----12 63 Shale, sandy-----15 620 Shale, sandy shale, and Shale, hard, and a few sandy lime streaks ----streaks of sand-----94 93 156 714 726 285 Shale, black-----129 Rock-----12

Thick (fee		Depth (feet)			Depth (feet)				
Well E-58Continued									
Shale and sandy shale	52	778	Shale	12	1,655				
Shale, sandy, and shale breaks	47	825	Sand	13	1,668				
Sand	36	861	Shale	5	1,673				
Shale, hard	7	868	Sand	26	1,699				
Shale, sandy, and sand breaks	66	934	Sand, layers of shale, and sandy shale	71	1,770				
Sand and streaks of shale	26	960	Sand, hard	13	1,783				
Shale	20	980	Shale, lime, and streaks of sand	20	1,803				
Sand, sandy shale, and shale streaks	45	1,025	Shale, hard, and lime	62	1,865				
Shale	56	1,081	Shale, hard, and lime streaks	75	1,940				
Shale and streaks of sand	41	1,122	Lime, hard, sandy	20	1,960				
Shale and layers of lime	63	1,185	Sand, hard	16	1,976				
Shale and sandy shale	47	1,232	Lime, hard	37	2,013				
Shale, sandy shale, and a few lime streaks	38	1,270	Sand, hard, shale, and lime streaks	30	2,043				
Shale, hard, and lime	30	1,300	Shale, lime, and layers of sand	39	2,082				
Lime, hard, and shale breaks	114	1,414	Shale, hard, and sand breaks	93	2,175				
Shale, hard, and layers of lime	76	1,490	Sand and shale breaks	16	2,191				
Shale, hard, and lime breaks	90	1,580	Lime, hard, and shale	15	2,206				
Sand	33	1,613	Shale and sand streaks	11	2,217				
Shale	7	1,620	Shale, sandy, blue, and red shale	9	2,226				
Sand	23	1,643	Sand	20	2,246				

Table 9Drillers'	logs	of	wells	in	Grayson	CountyContinued
------------------	------	----	-------	----	---------	-----------------

Thickness (feet)		Depth (feet)	Thickness (feet)		Depth (feet)
	Wel	1 E-58-	Continued		
Shale and a few sand streaks	15	2,261	Sand	16	2,355
Shale	4	2,265	Shale and sandstone layers-	17	2,372
Sand	20	2,285	Shale, hard	9	2,381
Sand and hard red shale	10	2,295	Shale and sandstone streaks	8	2,389
Shale, hard	6	2,301	Sand and shale breaks	33	2,422
Sand and lime	14	2,315	Sand, shale, and shale breaks	23	2,445
Shale, lime, and sand streaks	20	2,335	Shale, hard	7	2,452
Shale	4	2,339			

Well E-61

Owner: City of Sherman. Driller:		Layr	Layne-Texas Co., Ltd.				
Soil, black	4	4	Shale and sand breaks	25	1,006		
Clay	26	30	Sand and shale breaks	25	1,031		
Chalk	55	85	Shale	31	1,062		
Shale, sandy	621	706	Lime and shale	494	1,556		
Sand and rock	7	713	Shale and lime	9	1,565		
Shale	61	774	Shale	24	1,589		
Sand	12	786	Sand	23	1,612		
Shale	35	821	Shale and sandy shale	88	1,700		
Shale, sandy	18	839	Sand	10	1,710		
Sand and shale	73	912	Lime, sandy	15	1,725		
Shale	28	940	Sand and shale breaks	135	1,860		
Sand	41	981	Shale, sandy, and sand	45	1,905		

		Depth (feet)	Thickness (feet)		Depth (feet)
	Wel	1 E-61-	-Continued		
Lime and shale	7	1,912	Lime, shale and streaks of sand	38	2,169
Shale, sandy	17	1,929	Sand	5	2,174
Shale and lime	9	1,938	Shale, red and blue, and		
Shale, sandy	10	1,948	sand breaks	17	2,191
Shale, blue and red	14	1,962	Sand, hard	15	2,206
Lime	3	1,965	Shale, sandy, and sand	152	2,358
Shale and sand breaks	73	2,038	Shale	13	2,371
Sand	13	2,051	Sand and shale breaks	27	2,398
Shale, sandy, sand, and lime	66	2,117	Shale and streaks of hard sand	19	2,417
Shale, sandy	10	2,127	Sand, hard	12	2,429
Sand, hard	4	2,131	Sand and shale breaks	20	2,449
			Shale	11	2,460

Well E-62

Owner: City of Sherman. Driller: Layne-Texas Co., Ltd.

Surface soil	3	3	Shale, sticky	157	558
Clay	32	35	Shale, hard, and lime streaks	30	588
Clay and chalk layers	25	60	Directio	50	100
			Shale, hard	22	610
Clay, shale, and a few chalk streaks	12	72	Shale, hard, and sandy lime	20	630
Shale and chalk streaks	34	106			
Shale and a few lime			Shale, hard	52	682
streaks	103	209	Sand and a few shale streaks	29	711
Shale, sticky, and sandy lime streaks	192	401	Shale, sandy, and shale	30	741

Thick (fee		Depth (feet)	Thickness (feet)		Depth (feet)
	Wel.	1 E-62-	-Continued		
Shale, sandy, and lime	32	773	Shale, sandy and lime	24	935
Shale, sandy, and sand	47	820	Sand and shale layers	72	1,007
Shale	20	840	Sand and shale, broken	3	1,010
Sand	71	911	Shale	13	1,023

We]	7	E-	6	3
nca	- ala	1.	0	-

Owner: Charles F. Burns. Driller: J. L. Myers & Sons.

Soil	2	2	Rock, hard	3	723
Clay	7	9	Sand	9	732
Rock	82	91	Shale	6	738
Shale	619	710	Sand	9	747
Shell and rock	. 10	720	Shale	26	773

Well F-35

Owner: City of Bells. Dril	ler:	Layne-	Texas Co., Ltd.		
Clay	27	27	Boulders and hard shale	20	421
Sand	4	31	Shale and boulders	11	432
Shale, sticky, blue	19	50	Sand	5	437
Shale, hard	184	234	Shale	20	457
Shale, tough, hard	18	252	Sand, hard	5	462
Shale, hard	117	369	Shale	11	473
Rock	l	370	Rock	l	474
Shale, hard, and boulders	7	377	Shale and boulders	46	520
Shale, hard	24	401	Rock	2	522

Thickn (feet		Depth (feet)	Thickr (feet		Depth (feet)
	Wel	1 F-35-	-Continued		
Shale and sandy boulders	48	570	Shale and lime, sandy, hard	30	651
Shale, tough, sticky	20	590		50	
	- (100	Shale, hard	23	674
Shale, hard, brown	16	606	Sand, hard	31	705
Shale, hard	15	621	Sandy nara	51	107
			Shale, hard	4	709

Well	F-36

Owner: City of Bells. Dril	ler:	Layne-	Texas Co., Ltd.		
Soil	3	3	Rock	2	485
Clay and sand streaks	25	28	Shale	18	503
Shale, hard, and rock	1.0	70	Sand	6	509
streaks	42	70	Shale	185	694
Shale and sandy shale	60	130	Sand and shale stressly	16	710
Shale	269	399	Sand and shale streaks	TO	710
			Shale and sandy shale	82	792
Rock	2	401			0.0.7
Shale	59	460	Sand, fine (powdered)	9	801
Share	"		Shale and hard streaks	66	867
Sand, fine, gray	23	483			
			Lime and shale streaks	35	902

Well F-40

Owner: C. B. Ball. Driller	· J.	ь. муе	rs & Sons.		
Soil	6	6	Sand	13	776
Clay	10	16	Shale	62	838
Chalk	245	261	Sand	40	878
Shale	502	763			

Thick (fee		Depth (feet)	Thickn (fee		Depth (feet
		Well	F-42		
Owner: J. H. Washburn. Dri	ller:	J. L.	Myers & Sons.		
Soil	6	6	Sand	12	596
Clay	44	50	Shale	35	631
Chalk	26	76	Sand	51	682
Shale	482	558	Shale	16	698
Sand	10	568	Sand	46	* 744
Shale	16	584	Shale	l	745

Well G-12

Owner: City of Tioga. Driller: J. L. Myers & Sons.

Surface soil	25	25	Shale, blue and red	90	160
Shale, blue and red	35	60	Sand, water	40	200
Sand and shale, water	10	70	Shale, sandy, hard	15	215

Well H-13

Owner: W. H. Higgins. Driller: J. L. Myers & Sons.

Soil	2	2	Sand and rock	8	590
Chalk	16	18	Sand	14	604
Sand	564	582			

Well H-28

Owner: City of Gunter. Driller: J. L. Myers & Sons.

Soil	8	8	Sand	46	350
			Shale	102	452
Shale	278	304	Sand	12	464

Thick (fee		Depth (feet)		ickness feet)	Depth (feet
	Wel	1 H-28-	-Continued	*	
Rock	5	469	Shale	178	652
Sand	5	474	Sand	78	730
Owner: R. B. Graves. Drill	er:	Well J. L. M	J-3 yers & Sons.		
Surface	8	8	Shale	18	822
Chalk	267	275	Sand	4	826
Shale	515	790	Shale	40	866

Well J-11

Sand-----

42

908

804

Owner: City of Whitewright. Driller: J. L. Myers & Sons.

14

Sand-----

Shale and chalk	420	420	Shale	59	1,109
Sand	20	440	Sand	71	1,180
Shale	550	990	Shale	9	1,189
Sand, broken		1,050			

		Depth	Date of	Water-bearing	Silica	Iro (Fe		Cal-	Magne-	Sodium and	Bicar-	Sul-	Chlo-	Fluo-	N1-		Dis-	Hardnes	s as CaCO3	Per-	Sodium	Specific	
Well	Owner	of well (ft.)	collection	unit	(S10 ₂)	In solu- tion	Total	cium (Ca)	sium (Mg)	potassium (Na + K)	bical bonate (HCO ₃)	fate (S014)	ride	ride (F)	trate (NO ₃)	Boron (B)	solved solids	Total	Non- carbonate	cent so- dium	adsorp- tion ratio (SAR)	conduct- ance (micromhos at 25°C)	PH
A-1	R. L. Cathey	200	July 25, 1958	Trinity group	-	-	-	-	-	-	480	-	16	-	-	-	-	138	0	-	-	843	7.
A-3	W. P. Luce	328	Sept.10, 1957	do	-	-	-	-	-	-	563	-	24	-	-	4	-	1	0	-	-	1,040	8.
4-5	Omar B. Milligan	325	July 25, 1958	do	-	-	-	-	-	-	520	-	206	-	-	-	-	12	0	-	-	1,600	8.
A-7	Rock Creek Camp	502	June 5, 1958	do	-	-	-	-	-	-	724	-	39	-	-	-	-	8	0	-	-	1,390	8
A-8	Mrs. Anna Potts	51	do	Pawpaw formation	-	-	-	-	-	-	392	-	110	1		-	+	426	105	-	-	1,070	7.
A-9	Mrs. L. E. McCormick	18	do	Woodbine formation	-	-	-		-	-	113		14	-	-	-	-	86	o	;	-	263	7.
A-10	F. W. Holder	180	Sept.11, 1957	do	17	0.01	2.2	42	18	14 1.4	189	40	7.5	0.2	0.0	0.00	233	179	24	14	0.5	389	6
A-11	do	802	đo	Trinity group	-	- 4	-	-	-	-	667	-	33	-	-	-	-	5	0	-	-	1,280	8
A-12	Cedar Bayou Resort	130?	Dec. 18, 1957	Woodbine formation	-	-	-		-		210	-	22	-		-	-	149	0	-	-	455	7
4-13	John Pitts	432	July 22, 1958	Trinity group			-		-	-	540	-	174	-	-	-	-	16	0	-	-	1,540	8
4-14	Cedar Mills Resort	575	do	do	-	-	-	-	-	-	456	-	560		-	-	-	1414	0		-	2,530	7
A-15	Walnut Creek Resort	308	Dec. 18, 1957	Woodbine formation	•	-	-	-	-	-	256	-	12	-	-	-	•	35	0	15	-	458	8
A-16	C. Bates	345	Aug. 23, 1953	do	8.0	0.04	6.2	128	71	334	193	1,050	60	0.4	0.2	-	1,750	612	454	-	-	2,360	7
A-17	Hugh Bean	50	Sept. 9, 1957	do	-	-	-	-	-	-	241	-	87		-	-	-	626	428	-	-	1,500	7
A-18	Mark Smith	27	July 25, 1958	do	-	-	-	-	-	-	18	-	18	-	-	-		46	31	-	-	173	6
A-19	O. B. Rich	180	Sept. 9, 1957	đo	13	.01	7.2	23	8.7	25 1.8	115	27	18	.2	.0	0.04	174	93	0	36	1,1	298	6
A-21	Gordonville Water Association	1,021	Apr. 25, 1958	Trinity group	10	.02	.45	3.0	0.	290 1.8	522	93	74	1.2	.0	.64	733	8	0	98	46	1,170	8.
A-22	E. W. McAden	355	Apr. 14, 1956	Woodbine formation	13	.04	3.8	34	5.7	36	172	15	20	.2	.1	-	209	108	0	42	1.5	344	6
A-23	J. B. Thorn	204	Sept.11, 1957	do	-	-	-		-		144	-	23	-	-	-	-	124	6	-	-	384	6
A-24	W. C. Garner	338	June 5, 1958	do	13	.00	5.7	25	9.4	27 2.1	137	21	19	.2	.0	.08	184	101	0	36	1.2	323	6
A-25	J. C. Brady	345	Aug. 14, 1958	do	12	.00	2.5	26	11	55 2.9	193	43	22	.4	.2	.03	276	110	0	51	2.3	468	6
A-26	Big Mineral Camp	285	Dec. 18, 1957	do	-	-	-	-	-	-	207	-	23	-		-		65	0	-	-	462	8
A-29	Flowing Wells Camp	354	Mar. 20, 1958	do	-	-	-	-	-	-	134	-	14	-	-	-	-	80	0	-	-	314	.8
A-32	Stanley Franko	175	do	do	-	-	-	-	-	-	276	-	32	-	-	-	-	262	36	-	-	660	8

Table 10. -- Analyses of water from wells and springs in Grayson County, Texas

.....

41

4

See footnotes at end of table.

.

Table 1	0Analyses	of	water	from	wells	and	springs	in	Gravson	CountyContinued
---------	-----------	----	-------	------	-------	-----	---------	----	---------	-----------------

		Depth	Date of	Water-bearing	Silica	Iro (Fe		Cal-	Marma	Sodium and	Planz			Flue				Hardnes	ss as 'CaCO3	Per-	Sodium adsorp-	Specific	
Well	Owner	of well (ft.)	collection	unit	(S10 ₂)	In solu- tion	Total	cium (Ca)	Magne- sium (Mg)	(Na + K)	Bicar- bonate (HCO ₃)	Sul- fate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	N1- trate (N03)	Boron (B)	Dis- solved solids	Total	Non- carbonate	cent so- dium	tion ratio (SAR)	conduct- ance (micromhos at 25°C)	pH 3
A-33	Earl Baker	257	Mar. 20, 1958	Woodbine formation	-	-	-	-	-	-	236	-	10	-	-	-	-	8	0	-	-	446	8.
A-34	E. Gaitis	265	Aug. 29, 1957	do	-	-	-	-	-	-	242	-	15	-	-	-	-	0	0	-	-	512	8.
A-39	Dale Dickey	200	July 22, 1958	do	-	-	-	-	-	-	394	-	24	-	-	-	-	8	0	-	-	961	8.
A-40	Louise Kurr	235	do	do	-	-	-	-	-	-	56	-	95	-	-	-	-	22	0	-	-	120	6.
A-41	Texas Natural	940	June 5, 1958	Trinity group	13	0.02	0.20	1.4	0.5	279 1.0	600	93	22	1.2	2.0	1.2	709	6	0	99	52	1,130	8.
A-42	Gasoline Corp. H. O. Reast	• 56	Apr. 15, 1958	Woodbine formation	-	-	-	-	-	-	218	-	84	-	-	-	-	296	118	-	-	935	8.
A-44	J. F. Bullard	160	July 25, 1958	do	-		-	-	-	-	96	-	112	-	-	-	-	60	0	-	-	1,740	7.
B-3	E. W. Terrell	49	Oct. 3, 1957	Washita group	-	-	-	-	-	-	235	-	ш	-	-	-	-	199	6	-	-	454	7.
B-5	R. J. Byrd	190	Oct. 11, 1957	Trinity group	-	-	-	-	-	-	507	-	48	-	-	-	-	9	0	-	-	994	8
3-6	E. W. Miller	228	Mar. 20, 1958	do	-	-	-	-	-	-	532	-	64	-	-	-	-	12	0	-	-	1,030	8
3-7	U. S. Army	35	Sept.17, 1957	do	-	-	-	-	-	-	95	-	12	-	-	-	-	90	12	-	-	257	7
B-8	W. L. Shires	500	Oct. 3, 1957	do .	-	-	-	-	-	-	442	-	119	-	-	-	-	274	0	-	-	1,230	8
B-11	R. X. Allen	235	May 13, 1958	đo	-	-	-	-	-	-	-	63	97	-	-	-	-	426	-	-	-		
3-12	Jack Dophied	240	May 13, 1958	do	-	-	-	-	-	-	-	44	35	-	-	-	-	208	-	-	-	706	
B-13	L. A. Whitfield	300	Oct. 21, 1957	do	-	-	-	-	-	-	540	-	304	-	-	-	-	27	0	-	-	1,880	8
B-17	B. V. Atnip	65	đo	Pawpaw formation	-	-	-	-	-	-	318	-	20	-	-	-		260	0	-	-	559	7
3-18	A. H. Sharp	349	đo	Trinity group	-	-	-	-	-	-	580	-	140	-	-	-	-	38	0	-	-	1,850	8
B-19	J. F. Allen	317	do	do	-	-	-	-	-	-	650	-	54	-	-	-	-	10	0	-	-	1,300	8
B-21	Aubrey E. Thomas	295	July 10, 1958	do	-	-	-	-	-	-	560	-	438	-	-	-	-	42	0		-	2,340	7.
B-22	W. L. Cole	300	May 13, 1958	do	-	-	-	-	-	-	712	-	245	-	-	-	-	26	0	-	-	2,060	8.
3-23	J. D. Atkins	240	July 11, 1958	Pawpaw formation	-	-	-	-	-	-	80	-	90	-	-	-	- 1	630	564	-	-	1,280	6
3-24	T. F. Staggers	145	July 10, 1958	do	-	-	-	-	-	-	404	-	12	-	-	-	-	312	0	-	-	656	7
8-26	J. F. Wall	320	do	Trinity group	-	-	-	-	-	-	638	-	127	-	-	-	-	15	0	-	-	1,510	8.
3-27	City of Pottsboro	443	Aug. 22, 1958	Woodbine formation	14	0.00	1.1	12	4.1	72 2.4	188	31	12	0.4	0.5	0.22	243	47	0	76	4.6	401	7
8-28	T. C. Gattis	50	July 11, 1958	do	-	-	-	-	-		39	-	14	-	-	-		57	25	-	-	176	6.

See footnotes at end of table.

See footnotes at end of table.

					· · ·	1-16 J T. M	D-15 D. R. B	D-14 do	D-13 do	D-9 Hagerma Wildl	D-7 Dave Bennett	D-6 E. Gaitis	D-4 A. F. S	D-2 A. H. M	C-9 J. H. W	C-8 Luther Cherry	C-7 C. Y. Gough	C-6 R. B. D	C-5 Mrs. M.	C-3 Speed-C	C-1 The Austin Co.	B-29 Willow Springs School	Well Our	
12	City of Whitesboro 1,98	100	L. Sellers	TOW	Shadden	Metcalf	Bennett			Hagerman National Wildlife Refuge	nnett	18	Siebman	McNairn	H. Michols	Cherry	ough	Derebery	Mrs. M. J. Brady	Speed-Cast Sport- ing Goods Co.	tin Co.	Springs 1	Orner	
		69	95	180	280	250	270	165	165	140	183	16	160	365	3	110	135	98	35	250	58	192	of Well (ft.)	Depth
	Aug. 21, 1958	July 25, 1958	Aug. 27, 1957	đo	Apr. 15, 1958	June 5, 1958	Apr. 15, 1958	May 7, 1958	May 22, 1958	May 7, 1958	Aug. 8, 1958	Aug. 30, 1957	Aug. 1, 1958	Apr. 15, 1958	Nov. 13, 1957	Nov. 15, 1957	July 17, 1958	Nov. 15, 1957	July 16, 1958	July 10, 1958	Mar. 27, 1958	Nov. 13, 1957	collection	Date of
	Trinity group	do	do	do	do	do	do	do	do	do	do	do	do	Woodbine formation	Alluvíum	đo	do	do	Pavpaw formation	Trinity group	Alluvium	Woodbine formation		Water-bearing
	13	1		•	1	•		i.	•		1		à	•	•		•	•	•		23	12	(5102)	Silica
	0.01		•	•		•	1	•	1		1	•	•	•	•	•	•	1	•	1	.10	0.00	In solu- tion	Iron (Fe)a/
,	0.08		÷	1	1		i		•				•	•	•		•		•		•	1.0	Total	1 () ()
	1.9										1									,	4	15	cíum (Ca)	Cal-
	1.0		i		i			i	,		à.	i.	i.		1		1	i.		i.	8.0	7.5	sium (Mg)	Magne-
-	232	-							-													20		
1	1.3	4	1	'		4	•	'	1	1	1	'	•	•	•	'	1	1	'	'	37	2.1	potassium (Na + K)	um and
36	426	268		648	1452	878	472	424	478	566	536	247	244	360	225	226	608	512	358	392	393	155	bonate (HCO ₃)	Bicar-
	94		116	,	1	1		1	i	,	•	i	î	1	1	1	•		1	i	16	3.8		Sul-
38	82	51	26	47	36	32	25	9.8	rs F2	18	14	45	42	18	33	14	43	24	8.2	14	3.5	9.5	ride (CL)	Chlo-
•	0.3	•		1	4	1		1	•			a.	a.	a.	a.	a.	i.	a.	•	i.	.4	0.2	ride (F)	Fluo-
•	1.8		•	×	ų.	ų.	ų.	•	ų.		•		×.	9	ł.	•	•	•	•		4.3	0.2	(NO ₃)	N1-
•	0.03	1	Ţ	1	•	•	•	1	•		9	,		•			1	•				0.13	Boron (B)	
,	₽/288		•				1		•			,									389	b/152	solved solids	D18-
468	8	318	29h	26	00	6	6	7	6	8	7	21	230	4	251	158	140	185	336	196	263	88	Total	Hardne
438	0	98	•	0	0	0	0	0	0	0	0	0	30	0	66	0	0	0	42	o	0	ø	Non- carbonate	Hardness as CaCO3
	98		4					1							,	1		i.			23	31		Per-
,	35		•	•	•	•	2	1	•	4		•	ï	•	i.	•	•	1			1.0	1,1	tion ratio (SAR)	Sodium adsorp-
1.000	466	700	562	1,420	1,230	1,350	1,100	700	807	1,110	982	617	1,260	661	648	463	1,760	1,000	673	707	628	267		Specific conduct-
6.7	8.3	7.5	1	8.6	8.5	8.6	8.5	8.8	8.6	8.5	8.2	8.4	7.4	8.6	7.7	7.0	7.7	7.6	7.4	7.4	7.7	6.9		DH H

Table 10, -- Analyses of water from wells and springs in Grayson County--Continued

- Sijt -

Table	10Analyse	s of	water	from	wells	and	springs in	Grayson	CountyContinued	ł
-------	-----------	------	-------	------	-------	-----	------------	---------	-----------------	---

						Irc				Call								Hardnes	ss as CaCO3	Per-	Sodium	Specific	
Well	Owner	Depth of well (ft.)	Date of collection	Water-bearing unit	Silica (SiO ₂)	(Fe In solu- tion	Total	Cal- cium (Ca)	Magne- sium (Mg)	Sodium and potassium (Na + K)	Bicar- bonate (HCO ₃)	Sul- fate (SOL)	Chlo- ride (Cl)	Fluo- ride (F)	N1- trate (NO ₃)	Boron (B)	Dis- solved solids	Total	Non- carbonate	cent so- sium	adsorp- tion ratio (SAR)	conduct- ance (micromhos at 25°C)	pH
D-28	Annie Knight	145	June 2, 1958	Woodbine formation	-	-	-	-	-	-	196	-	139	-	-	-	-	1,120	960	-	-	2,130	6.
D- 30	J. G. Barrett	230	July 16, 1958	do	-	-	-	-	-	-	900	-	195		-	-	-	27	0	-	-	2,180	8.
D-31	S. R. Hazelwood	210	June 5, 1958	do	-	-	-	-	-	-	980	-	60	-	-		-	6	0	-	-	1,590	8.
D-32	Mrs. S. D. Ferguson	210	do	đo		-	-	-	-	-	694	- ,	60	-	-	-	-	7	0	-	-	1,400	8.
D-33	Southmayd High School	410	do	đo	ш	0.1	0.9	0.9	0.4	292 1.0	686	50	20	1.2	1.0	1.4	716	4	0	99	68	1,150	8.6
D-34	Fred Tesar	380	Dec. 18, 1957	đo	-	-	-	-	-	-	400	-	29		-	-	-	2	0	-	-	1,040	8.5
D-35	Ed Hurley	200	May 29, 1958	do	-	-	-	-	-		264	-	ш	-	-	-	-	8	0	-	-	608	8.2
D-36	W. B. Holland	190	đo	đo	-	-	-	-		-	262	-	39	-	-	-	-	250	36	-	-	1,420	8.1
D-37	L. C. Brookshire	200	do	do	-	-	-	-	-	-	280	-	34	-	-	-	-	276	46	-	-	1,240	8.2
D-38	R. M. McConnell	160	do	do	-		-	-	-	-	198	-	31	-	-	-	- 1	370	208	-	-	982	7.9
D-39	S. Varley	57	do	đo	-	-	-	-	-	-	220	-	33	-	-	-	-	210	30	-	-	524	6.9
D-40	Ray Prestage	140	do	do	-	-	-	-	-		250	-	20	-	-	- '	-	446	241	-	-	950	7.0
D-42	J. E. Anderson	-11	Oct. 8, 1957	do	-	-	-	-	-	-	120	-	41	-	-	-	-	606	508	-	-	1,450	6.9
D-43	M. D. Widtfeldt	178	đo	do	-	-	-	-	-	-	356	-	286	-	-	-	-	950	658	-	-	2,240	7.2
E-1	Hagerman National Wildlife Refuge	165	May 7, 1958	do	-	-	-	-	-	-	450	-	ш	-	-	-	-	6	0	-	-	747	8.7
E-2	đo	300	Apr. 15, 1958	do	13	0.04	0.36	1.8	0.2	302 1.2	667	85	16	2.4	0.0	1.7	775	6	0	99	56	1,180	8.8
E-3	do	182	May 6, 1958	do	-	-	-	-	-	-	390	-	9 B	-	-	-	-	8	0	-	-	652	8.6
E-4	do	56	May 30, 1958	Eagle Ford shale	-	-	-	-	-	-	444	-	355	-	-	-		16	0	-	-	2,140	8.4
E-6	do	228	Apr. 17, 1958	Woodbine formation	-	-	-	-	-	-	206	-	98		-	-	- 1	10	0	-	-	485	8.2
E-7	do	235	May 7, 1958	do	-	-	-	-	-	-	240	-	28	-	-	-	-	10	0	-	-	858	8.1
E-8	J. W. Wilson	375	July 11, 1958	do	-	-	-	-	-	-	250	-	48	-	-	-	-	8	0	-	-	1,360	8.4
E-9	Perrin Air Force Base well 1	620	Nov. 18, 1957	đo	14	.02	-	1.7	.2	139	209	104	18	.6	.2	-	381	5	0	98	27	605	8.4
E-10	Perrin Air Force Base well 2	688	Nov. 19, 1957	do	13	.08	-	1.1	.3	122	200	69	21	.7	1.5	-	343	4	0	99	28	535	8.2

See footnotes at end of table.

		Depth	Date of	Water-bearing	Silica	Iro (Fe		Cal-	Magne-	Sodium and	Bicar-	Sul-	Chlo-	Flue	N1-	1	Dia	Hardnes	ss as CaCO3	Per-	Sodium	Specific	
Well	Owner	of well (ft.)	collection	unit	(510 ₂)	In solu- tion	Total	cium (Ca)	sium (Mg)	potassium (Na + K)	bonate (HCO3)		ride	Fluo- ride (F)	trate (NO ₃)	Boron (B)	Dis- solved solids	Total	Non- carbonate	cent so- dium	adsorp- tion ratio (SAR)	conduct- ance (micromhos at 25°C)	рH
E-12	Perrin Air Force Base well 4	1,570	Oct, 1953	Trinity group	15	.01	.18	.2	.1	307	652	86	27	1.8	2.2	-	761	1	0	-	-	1,200	8.
E-13	Perrin Air Force Base well 5	801	Nov. 18, 1957	Woodbine formation	12	0.26	-	0.0	0.1	89	197	15	11	0.5	0,2	-	230	0	o	100	55	359	7
E-14	Perrin Air Force Base well 7-A	642	Nov. 20, 1957	do	15	.10	-	.5	.0	159	326	48	18	.8	2.0	-	403	1	0	100	69	648	9.
E-16	B. W. Rubarts	213	Nov. 13, 1958	do	12	.02	2.3	27	3.1	8.2 .6	94	7.0	98	.1	.2	0.00	114	80	3	18	0.4	201	6
E-18	Vincent McKeon	230	May 13, 1958	đo	-	-	-		-	-	172	-	21	-	-	-		230	89		-	510	8
E-19	D. H. Hamilton	630	do	đo	-	-	-	-	-	-	266	- 1	38	-	-	-	-	37	o	-	-	577	8
E-21	0. G. Blankenship	100	do	do	-	-	· - :	-	-	-	422	-	9.8	-	-	-	-	32	0	-	-	700	8
E-22	E. F. Knight	327	July 11, 1958	Washita group	-	-	-	-	-	-	426	-	14	-	-	-	-	14	0	-	-	789	8
E-23	Jewel Franklin	150	July 15, 1958	Eagle Ford shale	-	-	-	-	-	-	648	-	77	-	-	-	-	24	0	-	-	1,970	8
E-24	H. P. Craft	730	do	Woodbine formation	-	-	-	-	-	-	152	-	26	-	-	-	-	18	0	-	-	503	7
E-26	W. E. Stephens	520	May 22, 1958	do	-	-		-	-	546 -	-	580	275	-	-	-	-	252	-	-	+	-	
E-27	W. J. Thompson	380	do	do	-	-	-	-	-	-	534	-	36	-	-	-	-	6	0	-	-	1,010	8
E-29	G. G. Fallon	598	May 16, 1958	đo	-	-	-	-	-	-	1,320	-	203	-	-	-	-	12	0	-	-	2,420	8
E-30	G. G. Fallon	1,600	đo	Trinity group	3.2	0.03	0.53	1.0	0.0	292 1.3	718	11	21	1.4	0.0	0.83	685	2	0	99	80	1,160	9
E-31	Harry Hudgens	800	May 22, 1958	Woodbine formation	-	-	-	-	-	-	386	-	20	-	-	-	-	6	0	-	-	821	8
E-33	E. C. Morris	560	đo	do	-	-	-	-	-		706	-	700	-	-	-	-	18	0	-	-	3,140	8
E-35	City of Sherman	789	Aug. 26, 1958	do	14	.03	.14	.5	.0	113 .5	251	24	8,5	.5	.8	.28	285	1	0	99	49	460	7
E-36	đo	2,169	do	Trinity group	15	.01	.05	2.6	1.2	358 2.1	462	102	225	1.0	.5	.46	937	12	0	98	46	1,610	8
E-38	do	2,140	Oct. 6, 1958	do	14	.02	.36	3.5	.9	361 2.6	461	113	220	.7	2.2	.51	946	12	0	98	45	1,600	8
E-40	do	786	Nov. 13, 1958	Woodbine formation	13	.05	.15	1.0	.1	196 1.0	327	72	66	.6	.5	.38	512	3	0	99	49	852	8
E-41	do	2,146	Jan. 19, 1959	Trinity group	16	.03	-	1.9	.8	315 1.8	548	95	96	.9	.0	.74	797	8	0	98	48	1,300	8
E-47	do	955	Aug. 26, 1958	Woodbine formation	14	.07	.30	.9	.1	94 .8	199	32	10	.5	.0	.23	253	3	0	98	26	414	7
E-48	đo	2,176	do	Trinity group	16	.02	.04	4.8	2.0	446 3.0	466	111	362	1.0	.0	.59	1,180	20	0	98	43	2,020	8
E-49	do	2,295	do	đo	16	.02	.05	2.1	.8	308 1.5	515	93	105	1.0	.0	.50	781	8	0	98	46	1,290	8

Table 10 .-- Analyses of water from wells and springs in Grayson County -- Continued

See footnotes at end of table.

Table 10 .-- Analyses of water from wells and springs in Grayson County -- Continued

		Denti	Data at	Water-bearing	Silica	Irc	n a/	0.1	140-00	Sodium and	Pteer	~	-	Fluo-	N1-		Dis-	Hardnes	ss as CaCO3	Per-	Sodium adsorp-	Specific conduct-	
Well	Owner	Depth of well (ft.)	Date of collection		(S10 ₂)	In solu- tion	Total	Cal- cium (Ca)	Magne- sium (Mg)	potassium (Na + K)	Bicar- bonate (HCO ₃)	Sul- fate (SO ₄)	Chlo- ride (Cl)	ride (F)	trate (NO ₃)	Boron (B)	solved solids	Total	Non- carbonate	so- dium	tion ratio (SAR)	ance (micromhos at 25°C)	рĦ
E-50	City of Sherman	736	Aug. 26, 1958	Woodbine formation	15	.02	.03	1.0	.3	152 .5	270	67	34	.5	.0	.32	404	4	0	99	35	668	8.8
E-58	do	2,380	Mar. 20, 1959	Trinity group	18	.1	-	1.6	.4	315	596	86	76	-	-	-	815	6	0		-	1,280	8.
E-59	P. J. Johnson, Sr.	725	Dec. 6, 1956	Woodbine formation	8.8	0.01	-	7.3	3.5	1,040	607	25	1260	2.4	0.5	-	2,620	32	0	99	79	4,680	8.
E-60	Leon Bloomer	720	May 22, 1958	do	-	-	-	-	-	-	718	-	123	-		-	-	10	0	-	-	1,980	8.
E-61	City of Sherman	2,460	Jan. 29, 1959	Trinity group	20	.07	-	1.8	.4	285	554	87	56	-	-	-	740	6	0	-	-	1,140	8.
E-62	đo	1,023	do	Woodbine formation	18	.07	-	1.0	.3	174	354	62	18	-	-	-	461	4	.0	-	-	686	8.
E-63	Charles F. Burns	773	May 21, 1958	do	-	-	-	-	-	-	852	-	46	-	-	-	-	12	0	-	-	1,690	8.
E-65	R. C. Counts	1,100	Dec. 9, 1957	đo	-	-	-	-	-	-	842	-	100	-	-	-	-	8	0	-	-	1,840	8.
E-66	Franklin Wible	140	do	Eagle Ford shale	-	-	-	-	-		262	-	78	-	-	-	-	84	0	-	-	1,120	7.
E-69	J. W. Bell	370	do	Woodbine formation	-	-	-	-	-	-	1,060	-	258	-	-	-	-	6	0	-	-	2,210	8.
F-2	Alice Sockwell	70	Mar. 21, 1958	đo	-	-	-	-	-	-	-	199	770	-	-	-	-	1,070	-	-	-	3,160	
F-3	C. L. Trice	28	đo	do	12	.02	1.8	72	18	32 3.6	258	34	53	.5	6.3	0.10	359	254	42	21	.9	638	7.
F-4	E. C. Sweeney	29	July 16, 1958	do	-	-	-	-	-	-	52	-	6.2	-	-	-	-	28	0	-	-	107	6.
F-5	W. S. Knox	100	Sept.12, 1957	do	-	-	-	-	-	-	42	-	23	-	-	-	-	36	2	-	-	184	6.
F-6	C. W. Stripling	95	do	do	-	-	-	-	-	-	480	-	29	-	-	-	-	88	0	-	-	1,040	7.
F-7	Mrs. H. E. Pierce	100	July 17, 1958	Pawpaw formation	-	-	-	-	-	-	382		18	-	-	-	-	92	0	-	-	682	7.
F-8	Paul Wrenn	42	do	Woodbine formation	-	-	-	-	-	-	226	-	88	-	-	-	-	171	0	-	-	720	7.
F-9	C. R. Crabtree	35	do	Pawpaw formation	-	-	-	-		-	270	-	68	-	-	-	-	322	100	-	-	799	7.
F-10	C. D. Mitchell	470	Nov. 13, 1957	Trinity group	-	-	-	-	-	-	642	-	725	-	-	-	-	48	0	-	-	3,590	8.
F-12	Federal Communi- cations Comm.	45	May 14, 1958	Pawpaw formation	-	-		-	-	-	178	-	7.2	-	-	-	-	148	2	-	-	365	8.
F-13	O. W. Price	195	Nov. 15, 1957	do	-	-	-	-	-	-	248	-	22	-	-	-	-	12	0	-	-	519	8.
F-15	John T. Black	34	July 17, 1958	Woodbine formation	-	-	-	-	-	-	88	-	30	-	-	-	-	160	88	-	-	578	6.
F-16	D. D. Whiting	75	do	do	-	-	-	-	-	-	242	-	41	-	-	-	-	204	6	-	-	667	7.
F-18	Claude Arthur	25	Aug. 1, 1958	do	-	-	-	55	14	-	2	198	ш	-	-	-	-	196	194	-	-	459	4.
F-19	J. P. Armstrong	170	Sept.17, 1957	do	-	-	-	-	-	-	131	-	16	-	-	-	-	88	0	-	-	661	7.
F-20	G. S. Penn	460	June 6, 1958	do		-	-	-	-	-	192	-	13	-		-	-	7	0	-	-	472	7.

16

w.

6

See footnotes at end of table.

		Denth	Data at	Water-bearing	Silica	Irc	n e)a/	Cal-	Marma	Sodium and	Bicar-	Sul-	Chlo-		Ni-		Dis-	Hardnes	ss as CaCO3	Per-	Sodium	Specific	
Well	Owner	Depth of well (ft.)	Date of collection	unit	(S10 ₂)	In solu- tion	Total	cium (Ca)	Magne- sium (Mg)	potassium (Na + K)	bonate (HCO ₃)	fate (SOL)	ride	Fluo- ride (F)	trate (NO ₃)	Boron (B)	solved solids	Total	Non- carbonate	so- dium	adsorp- tion ratio (SAR)	conduct- ance (micromhos at 25°C)	pH
F-21	R. C. Francis	893	July 17, 1958	Trinity group	9.4	0.01	2.1	2.0	1.1	466 2.1	887	201	46	4.0	3.5	2.5	1,170	10	0	98	66	1,830	8.
F-22	D. H. James	152	Sept.12, 1957	Woodbine formation	-	-	-	-	-		67	-	55	-	-	-	-	236	181	-	-	596	6.
F-23	Jack Adkins	455	Jan, 1949	đo	19	-	-	126	7.2	48	510	11	14	-	0.2	0.05	493	344	0	23	1.1	798	-
F-24	A. C. Poole	359	July 11, 1958	do	-	-	-	-	-	-	246	-	126	-	-	-	-	128	0	-	-	855	7.
F-25	Elmer Mitchell	45	June 6, 1958	Austin chalk	-	-	-	-	-	53	-	94	232	-	-	-	-	594	-	-	-	-	
F-26	R. O. Griffin	45	do	do	-	-	-	-	-	-	308	-	63	-	-	-	-	388	136	-	-	925	7.
F-27	Jimmy Fant	497	May 14, 1958	Woodbine formation	-	-	-	-	-	-	742	-	750	-	-	-	-	19	o	-	-	3,310	8.
F-28	W. C. Durham	70	June 6, 1958	Eagle Ford shale	-	-	-	-	-	32	-	11	11	-	-	-	-	347	-	-	-	-	-
F-29	Ray Kraft	365	May 14, 1958	Woodbine formation	-	-	-	-	-	-	506	-	56	-	-	-	-	6	0	-	-	927	8.
F-30	Tom Conner	157	do	do	-	-	-	-	-	-	492	-	35	-	-	-	-	6	0	-	-	907	8.
F-31	D. Z. Reynolds	50	July 17, 1958	do	-		-		-	-	478	-	13	-	-	-	-	310	0	-	-	799	7
F- 32	J. H. Whiting	153	May 14, 1958	do	-	-	-	-	-	-	597	-	17	-	-	-	-	730	-	-	-	-	
F-33	Claude Smith	150	July 17, 1958	do	-	-	-	-	-	-	280	-	51	-	-	-	-	58	0	-	-	3,510	7.
F-34	M. D. Gilliam	140	July 17, 1958	do	-	-	-	-	-	-	528	-	23	-	-	-	-	14	0	-	-	1,470	8.
F-35	City of Bells	709	Aug. 19, 1958	do	12	0.01	0.05	0.4	0.2	153 0.6	327	39	14	0.7	1.2	0.09	388	2	0	99	47	634	8.
F-36	do	902	Sept. 2, 1959	do	-	.2	1	3.6	1.0	571	768	446	112	-	-	-	1,560	13	0	99	69	2,300	8.
F-38	W. H. Brown	460	May 14, 1958	do	-	-	-	-	-	-	730	-	93	-	-	-	-	6	0	-	-	957	8.
F-40	C. B. Ball	878	June 10, 1958	do	-	-	-	-	-	-	452	-	24	-	-	-	-	14	0	-	-	782	8.
F-41	O. B. Pierce	45	May 16, 1958	Austin chalk	- 1	-	-	-	-	-	-	218	64	-	-	-	-	708	-	-	-	-	
F-42	J. H. Washburn	745	đo	Woodbine formation	-	-	-	-	-	-	330	-	7.0	-	-	-	-	4	0	-	-	555	8.
F-44	Claude Odom	700	do	do	-	-	-	-	-	-	390	-	58	-	-	-	-	3	0	-	-	783	8.
F-45	W. A. Presley	15	May 15, 1958	do	-	-			-	-	-	27	12	-	-	-	-	326	-	-	-	688	
G-1	City of Collinsville	1,522	Aug. 28, 1958	Trinity group	15	.01	.02	1.0	.4	208 .5	443	40	32	.3	1.0	.24	516	4	0	99	45	837	8.
G-3	A. Hughes	108	Oct. 9, 1957	Woodbine formation	-	-	-	-	-	-	203	-	9.0	-	-	-	-	142	0	-	-	371	7.
G-4	Fred J. Price	250	Dec. 18, 1957	do	-	-	-	-	-	-	514		16	-	-	-	-	2	0	-	-	991	8.
G-5	Mrs. A. I. White	400	do	do	-	-	-	-	-	808	514	1,220	68	-	-	-	-	30	0	98	64	3,390	8.

Table 10, -- Analyses of water from wells and springs in Grayson County -- Continued

4

....

See footnotes at end of table.

.

Table 10	0Analyses	of wat	er from	wells an	d springs	in	Gravson	County Continued
----------	-----------	--------	---------	----------	-----------	----	---------	------------------

						Ir								-				Hardnes	is as CaCO3	Per- cent	Sodium adsorp-	Specific conduct-	pH.
Well	Owner	Depth of well (ft.)	Date of collection	Water-bearing unit	Silica (SiO ₂)	In solu- tion	e)a/ Total	Cal- cium (Ca)	Magne- sium (Mg)	Sodium and potassium (Na + K)	Bicar- bonate (HCO ₃)	Sul- fate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	N1- trate (NO ₃)	Boron (B)	Dis- solved solids	Total	Non- carbonate	so- dium	tion ratio (SAR)	ance (micromhos at 25°C)	
G-6	W. D. Hunter	216	Oct. 10, 1957	Woodbine formation	-	-	-	-	-	-	426	782	60	-	-	-	-	92	0	-	-	2,310	7.9
G-7	L. G. Vannoy	35	Oct. 9, 1957	Austin chalk	-	-	-	-	-		326	-	266	-	-	-	-	686	419	-	-	2,050	7.3
G-8	E. C. McMurrey	125	June 2, 1958	Woodbine formation	-	-	-	-	-	-	234	-	24	-	-		-	362	170	-	-	958	7.9
G-10	J. L. Varley	32	Oct. 8, 1957	do	-	-	-	-	-	-	247	-	11	-	-	-	-	196	0	-	-	485	7.3
G-11	J. J. Tamplin	212	May 29, 1958	do	-	-	-	-	-	-	186	-	12	-	-	-	1	2	0	-	-	384	7.8
G-12	City of Tioga	215	Aug. 21, 1958	do	12	0.00	23	16	7.0	50 2.7	160	24	16	0.4	0.0	0.22	207	69	0	60	2.6	354	6.
G-14	Fred Reynolds	160	Aug. 28, 1957	đo	-	-	-	-	-	-	230	-	47	-	-	-	-	84	0	-	-	761	8.
G-15	T. E. Hestand	145	May 29, 1958	đo	-	-	-	-	-	-	520	-	169	-	-	-	-	18	0	-	-	2,070	8.
G-16	Louie Meinen	104	do	đo	-	-	-	-	-	-	496	-	48	-	-	-	-	44	0	-	-	2,080	8.
G-17	S. E. Bartlett	224	Dec. 18, 1957	do	-	-	-	-	-	715	584	950	80	-	-		-	26	0	98	61	3,000	8.
G-19	Albert Scharff	387	Oct. 4, 1957	do	-	-	-	-	-	-	136	-	292	-	-	-	-	39	0	-	-	4,480	8.
G-20	Cliff Davis	146	Oct. 10, 1957	do	-	-	-	-	-	-	476	-	36	-	-	-	-	6	0	-	-	1,180	8.
G-21	L. Heitzman	230	Oct. 8, 1957	do	-	-	-	-	-	1	163	-	28	-	-	-	-	81	0	-	-	493	7.
н-б	J. L. Bradley	700	May 21, 1958	do	-	-	-	-	-	-	356	-	20	-	-	-	-	3	0	-	-	761	8.
H-7	Jake McDonald	25	do	Austin chalk	-	-	-	-	-		192	-	36	-	-	-	-	480	322	-	-	1,030	8.
н-8	R. O. Barham	40	June 11, 1958	do	-	-	-	-	-	13 -	-	92	13	-	-	-	-	342	-	-	-	-	-
H-9	C. E. Teague	750	May 20, 1958	Woodbine formation	-	-	-	-	-	272 -	-	76	275	-	-	-	-	200	-	-	-	-	
H-10	C. V. Bowden	20	May 21, 1958	Austin chalk	-	-	-	-	-	-	294	-	6.0	-	-	-	-	278	37	-	-	539	7.
H-13	W. H. Higgins	604	Oct. 8, 1957	Woodbine formation	-	-	-	-	-	-	585	-	56	-	-	-		8	0	-	-	2,010	8.
H-16	A. Dieterich	780	Oct. 9, 1957	do	-	-		-	-	-	476	-	15	-	-	-	-	4	0	-	-	1,210	8.
H-20	C. E. Davis	18	May 21, 1958	Austin chalk	-	-	-	-	-	-	230	-	6.0	-	-	-	-	234	46	-	-	491	7.
H-21	City of Howe	1,069	Aug. 20, 1958	Woodbine formation	13	0.00	0.05	1.2	0.7	367 1.5	751	118	33	1.4	3.0	0,20	909	6	0	99	65	1,450	8.
H-24	J. H. Blythe	34	May 20, 1958	Austin chalk	-	-	-	-	-	-	236	-	4.2	-	-	-	-	242	48	-	-	482	7.
H-25	Leroy Wheeler	32	May 21, 1958	do	-	-	-	-	-	-	286	-	5.0		-	-	-	252	18	-	-	526	7.
н-26	L. L. Morrison	25	đo	do	-	-	-	-	-	-	252	-	9.2	-	-	-	-	270	64	-	-	557	7
H-28	City of Gunter	730	Aug. 21, 1958	Woodbine formation	13	0.01	1.4	3.4	1.8	103 2.2	204	42	19	0.4	0.0	0.00	285	16	0	92	ш	469	7.

14

See footnotes at end of table.

10

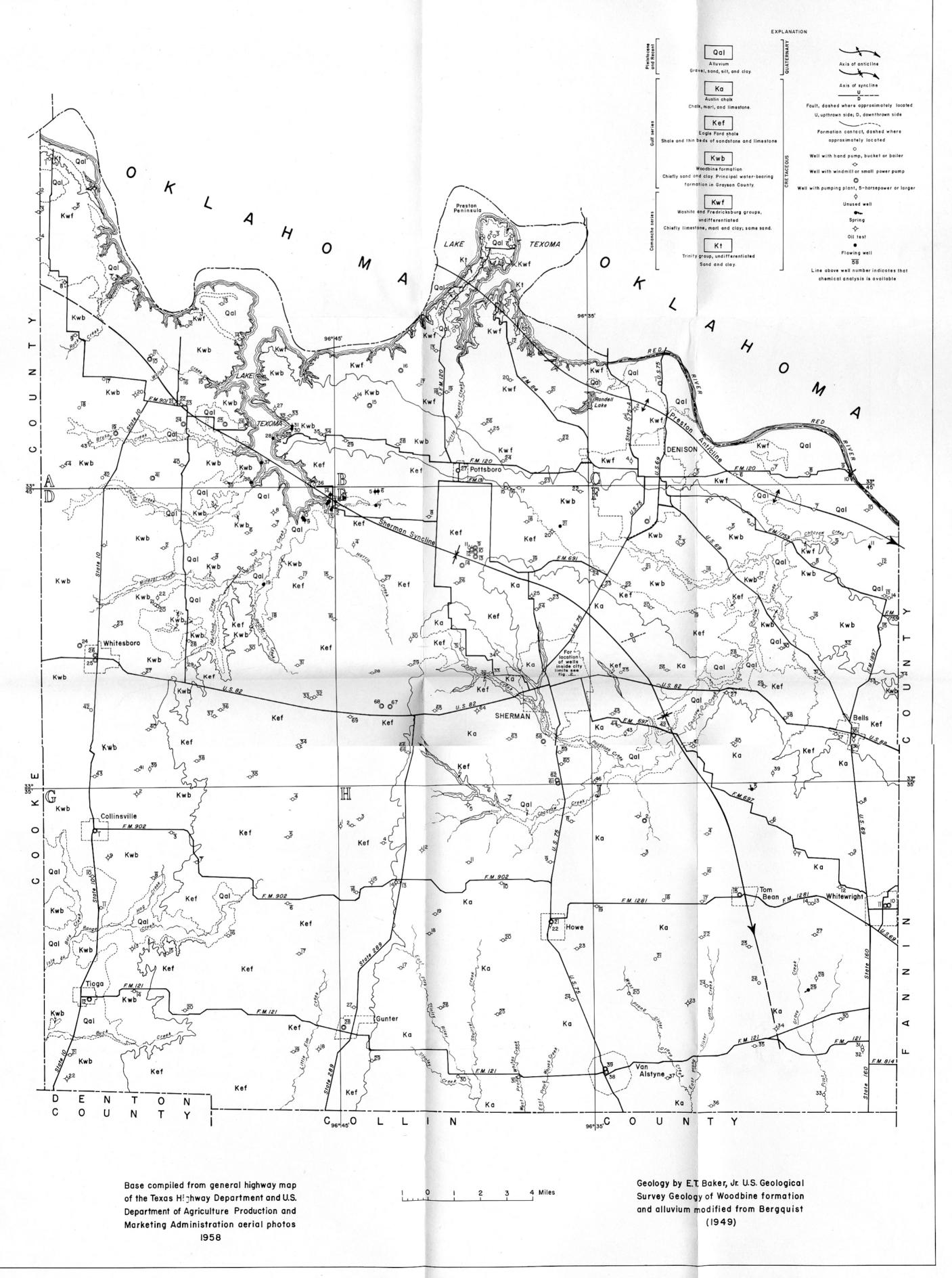
							on											Hardnes	as as CaCO3	Per-	Sodium	Specific	T
lell	Owner	Depth of well (ft.)	Date of collection	Water-bearing unit	Silica (S10 ₂)	In solu- tion	re) <u>a/</u> Total	Cal- cium (Ca)	Magne- sium (Mg)	Sodium and potassium (Na + K)	Bicar- bonate (HCO ₃)	Sul- fate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	N1- trate (NO ₃)	Boron (B)	Dis- solved solids	Total	Non- carbonate	cent so- dium	adsorp- tion ratio (SAR)	conduct- ance (micromhos at 25°C)	р) 3
1-29	R. J. Block	545	June 6, 1958	Woodbine formation	-	-	-	-	-	-	562	1,800	420		-	-	-	58	0	-	-	5,420	8
- 30	Mrs. J. W. Ladd	30	May 20, 1958	Austin chalk	-	-	-	-	-	-	168	-	53	-	-	-	-	256	118	-	-	642	
- 31	State of Texas	22	do	do	-	-	-	-	-	22 -	-	70	21	-	-	-	-	350	-	-	-	-	
-4	Oscar Wetzel	26	June 10, 1958	do	-	-	-	-	-	-	368	-	7.8	-	-	-	-	310	8	-	-	595	
-5	F. N. Rogers	Spring	Apr. 11, 1958	đo	-	-	-	-	-	-	-	36	12	-	-	-	-	370	-	-	-	-	
-7	Roscoe Gillett	34	June 10, 1958	do	-	-	-	-	-	-	270		124	-	-	-	-	78	0	-	-	1,380	
-11	City of Whitewright	1,189	Mar. 26, 1958	Woodbine formation	15	.01	-	1.3	.2	279	505	108	56	1.4	2.0	-	743	4	0	99	61	1,160	
-15	City of Tom Bean	1,180	Aug. 22, 1958	do	14	.02	.04	1,1	.5	359 1.2	632	99	104	1.6	1.0	.24	888	24	0	99	74	1,470	
-16	Paul H. Franklin	1,067	May 20, 1958	do	-	-	-	-	-	-	490	-	115	-	-	-	-	6	0	-	-	1,590	
17	Alvie Casada	28	do	Austin chalk	-	-	-	-	-	-	308	-	9.8	-	-	-	-	314	62	-	-	589	
-18	R. S. Nicholson	30	do	do	-	-	-	-	-	26 -	-	95	57	-	-	-	-	414	-	-	-	-	
-19	Morris M. Franklin	24	June 11, 1958	do	-	-	-	-	-	-	342	-	6.8	-	-	-	-	310	30	-	-	618	
-20	J. M. Purdom	25	do	đo	-	-	-	-	-	29	-	51	28	-	-	-	-	426	-	-	-	-	
-21	I. L. Smith	30	June 20, 1958	đo	-	-	-	-	-	-	146	-	48	-	-	-	-	224	104	-	-	658	
-22	W. H. Byers	22	do	do	-	-	-	-	-	-	228	-	4.2	-	-	-	-	224	37	-	-	455	
-24	J. B. Edwards, Jr	40	May 20, 1958	do	-	-	-	-	-	-	286	-	12	-	-	-	-	264	30	-	-	527	Î
-25	Burl Shields	20	June 10, 1958	do	-	-	-	-	-		314	-	3.5	-		-	-	276	18	-	-	527	
-26	M. B. Jones	32	do	do	-	-	-	-	-	-	282	-	46	-	-	-	-	486	255	-	-	1,160	
-27	L. H. Darwin	39	do	do	-	-	-	-	-		288		12		-		-	222	0	-	-	524	
-28	Jack Biggerstaff	42	do	do	-	-	-	-	-	-	266	-	187	-	-	-	-	1,090	872	-	-	2,460	l
-29	E. H. Hichland	Spring	do	đo	-	-	-	-		46	-	29	20	-		-	-	304	-	-	-	-	
- 30	Tom Stephens	25	May 15, 1958	do	-	-	-	-	-	-	-	18	9	-	-	-	-	310	-	-	-	-	
-35	J. D. Hix	18	May 22, 1958	do	-	-	-	-	-	-	284	-	10	-	-	-	-	290	58	-	-	580	
- 39	City of Van Alstyne	1,401	Aug. 20, 1958	Woodbine formation	13	0.01	0.06	0.2	0.0	203 1.0	403	74	19	0.8	0.0	0.11	511	0	0	100	25	860 '	

4

41

6

4


See footnotes at end of table.

1

1

1.00

Ħď	7.5	7.7		
Specific conduct- ance (micromhos				
Sodium adsorp- tion ratio	SAR)			
Per- S cent s so- t dium r		1		
	226	156		
Hardness as CaCO ₃ Total Non- carbonate	312	256		
Dis- solved solids		682		
Boron (B)		1		
N1- trate (N0 ₂)	1.5	~		
Fluo- ride (F)	m.	e.		
Chlo- ride (Cl)	282	205		
Sul- Chlo- fate ride (SOh) (Cl)				
Bicar- bonate (HCO ₂)	106	122	SARAN BURGES AND AND AND	
Sodium and potassium (Na + K)	186	621		
Magne- sium (Mg)		18	collect	
Cal- cium (Ca)		73	्रिय अब्द (स्व	
ron 7e)a/ Tctal	80.		le at ti	
In solu-			Lin semi	
S111ca (S102)	7.8	3.8	L from 1	
Water-bearing unit	1	1	Al), and 0.45 p	
Date of collection	Nov. 4, 1955		* Analyses by Curtis Inhometories.	
Depth of well	(#.)		I are "In s per milli s Inhorator	
Owner	Lake Texoma	Lake Randel	on values listed cludes 4, 9 parts alyses by Curtis	
TLaW	1			

GEOLOGIC MAP SHOWING LOCATION OF WELLS AND SPRINGS, GRAYSON COUNTY, TEXAS