
Adopted

2011 Region K Water Plan

for the Lower Colorado Regional Water Planning Group

Volume I

(Chapters 1-4)

prepared by

Lower Colorado Regional Water Planning Group with funding assistance from the Texas Water Development Board

prepared for

Texas Water Development Board

with assistance from

AECOM USA Group, Inc.

TBPE Reg. No. F-3082

July 2010

Adopted 2011 Region K Water Plan for the Lower Colorado Regional Water Planning Group

Jaime J. Burke, P.E. Project Manager

July 2010

prepared by
Lower Colorado Regional Water Planning Group
with funding assistance from the Texas Water Development Board

with assistance from AECOM USA Group Inc. TBPE Reg. No. F-3082

FOREWORD

The development of a reconnaissance level water plan such as the one that follows this forward serves several purposes. First and foremost, it applies the best available information to determine the water demands that will have to be met, and the available supplies to meet those demands. The difference between available supplies and demand for each water user group, or WUG, is either a surplus or a need. Needs are estimated for each decade so planners and city officials know when additional water is needed. Once the needs are determined, a listing of potential alternative strategies to meet those needs is assembled. These strategies are reviewed to determine how long it takes to implement them, what they will cost, to the extent that they are currently known or predicted, what will be the environmental impacts, etc. With that information, the planning groups make decisions about relative merits of different alternative strategies and combinations of strategies to try and come up with a plan that has strategies that can be built in time to meet the need, and which appear to have the most reasonable cost and the fewest environmental impacts. Again, much of the information that is used comes from existing studies, which are often in progress with only preliminary results available.

It is also important to distinguish what this regional plan is not. The level of detail in this plan is not sufficient for supporting any permitting decision before the Texas Commission on Environmental Quality. None of the alternatives proposed for inclusion in the plan have complete studies, fully known environmental impacts, and other features. Few alternatives, if any, have determined actual pipeline routings, placements for major plant facilities, locations of discharges, etc. In fact, few of the projects have the required local sponsors, financing, or any of a myriad of other requirements. All of that remains to be done during the permitting processes, during preliminary and final design, and during the financing and construction phases. These processes require a far greater level of detail and analysis and require the expenditure of far greater sums to achieve the level of accuracy needed to support a permitting action plan review or financing action. The purpose of this portion of the process is to try not to overlook something that might become a viable strategy. Further, the plan develops reconnaissance level costs with similar levels of accuracy so that projects that are obviously too costly or which have serious negative effects on the environment can be screened out and the serious permitting and design monies spent on projects with a greater likelihood of implementation.

For you, the reader, please be assured that the Lower Colorado Regional Water Planning Group, or LCRWPG, has many remaining concerns about the management strategies that are listed in this plan. The LCRWPG will continue to collect and review the results of additional studies, refine the analyses done with that information, seek to eliminate those strategies which cannot be implemented without significant detriment to the environment, and evaluate new strategies. Your participation and comments on this process are an integral part of ensuring that needs are met and environments are protected.

TABLE OF CONTENTS – VOLUME I

EXECUTIVE SUMMARY

ES. EXECUTIVE SUMMARY	
ES.1 OVERVIEW	
ES.2 INTRODUCTION AND BACKGROUND	2
ES.3 POPULATION AND WATER DEMANDS	
ES.4 WATER SUPPLIES	5
ES.5 IDENTIFIED SHORTAGES	7
ES.6 MANAGEMENT STRATEGIES AND IMPACTS	9
ES.6.1 Utilization of Return Flows	
ES.6.2 Wholesale Water Provider (WWP) Management Strategies	10
ES.6.2.1 LCRA Management Strategies	
ES.6.2.2 COA Management Strategies	11
ES.6.3 Regional Water Management Strategies	11
ES.6.4 Municipal Water Management Strategies	14
ES.6.5 Irrigation Water Management Strategies	15
ES.6.6 Livestock, Manufacturing, and Mining Water Management Strategies	16
ES.6.7 Steam Electric Water Management Strategies	16
ES.6.8 Alternative Water Management Strategies	
ES.7 MANAGEMENT STRATEGY IMPACTS	
ES.8 WATER CONSERVATION AND DROUGHT MANAGEMENT	20
ES.9 POLICY RECOMMENDATIONS	
ES.9.1 Management of Surface Water Resources	
ES.9.2 Environmental Flows	
ES.9.3 Environmental-Sustainable Growth	
ES.9.4 Groundwater	
ES.9.5 Protection of Agricultural and Rural Water Resources	
ES.9.6 Agricultural Water Conservation	
ES.9.7 Municipal/ Industrial Conservation	
ES.9.8 Reuse	
ES.9.9 Brush Control	
ES.9.10 Recommended Improvements to Regional Planning Process	
ES.9.11 Other Policy Recommendations	
ES.10ECOLOGICALLY UNIQUE STREAM SEGMENTS AND RESERVOIR SIT	ES 23
ES.11ECONOMIC IMPACT OF UNMET NEEDS AND INFRASTRUCTURE FUN	
ES.12PUBLIC PARTICIPATION	
ES.13REMAINING ISSUES AND CONCERNS	
ES.14FOR MORE INFORMATION	25

LIST OF FIGURES

Figure ES.1: Lower Colorado Regional Water Planning Area (Region K)	3
Figure ES.2: LCRWPA Water Demands (ac-ft/yr) – Year 2010 and Year 2060	
Figure ES.3: LCRWPA Water Availability – 2006 vs 2011	
Figure ES.4: Number of LCRWPA Water User Groups With Needs	8
Figure ES.5: LCRWPA Identified Water Needs by Category of Use	9
LIST OF TABLES	
Table ES.1 The Lower Colorado Regional Water Planning Group Voting Board Members	2
Table ES.2 Groundwater and Surface Water Supplies Available to the LCRWPA	
Table ES.3 Estimated Return Flows (ac-ft/yr)	
Table ES.4 WWP Water Management Strategies	
Table ES.5 Expansion of Current Groundwater Supplies	
Table ES.6 Development of New Groundwater Supplies	
Table ES.7 Transfer Water Strategy	
Table ES.8 Allocate Water Strategy	
Table ES.9 Temporary Drought Period Use of Aquifers	
Table ES.10 Drought Management	13
Table ES.11 Municipal Water Conservation by County	14
Table ES.12 Municipal Water Management Strategies	14
Table ES.13 Rice Irrigation Water Management Strategies	
Table ES.14 Livestock, Manufacturing, and Mining Water Management Strategies	16
Table ES.15 COA Steam Electric Supplies and Water Management Strategies	16
Table ES.16 Rice Irrigation Alternative Water Management Strategies (ac-ft/yr)	
Table ES.17 LCRA Wholesale Water Supply Alternative Water Management Strategies (ac-ft/yr) Table ES.18 Desalination of Brackish Groundwater from the Ellenburger-San Saba Aquifer (Alterna	
Strategy)	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 	10
CHAPTER ONE	
CHAPTER 1.0: INTRODUCTION AND DESCRIPTION OF THE LOWER COLORADO REGIO	
WATER PLANNING AREA	
1.1 INTRODUCTION TO THE PLANNING PROCESS	
1.2 DESCRIPTION OF THE LOWER COLORADO REGIONAL WATER PLANNING AREA	
1.2.1 Physical Characteristics of the Lower Colorado Regional Water Planning Area	
1.2.1.1 Geology of the Lower Colorado River Basin	
1.2.1.2 Climate	
1.2.1.3 Vegetational Areas	
1.2.1.4 Water Resources	
1.2.1.5 Land Resources	
1.2.1.6 Wildlife Resources	-
1.2.2 Socioeconomic Characteristics of the Lower Colorado Regional Water Planning Area	
1.2.2.1 Historic and Current Population Trends	
1.2.2.3 Historical Water Uses	
1.2.2.3 Historical water 0.505	91

1.2.2.4 Wholesale Water Providers	36
1.2.3 Water Quality in the Colorado River Basin	38
1.2.4 Agricultural and Natural Resources Issues Within the Lower Colorado Region	40
1.2.4.1 Threats Within the Lower Colorado Region Due to Water Quality Issues	40
1.2.4.2 Threats Due to Water Quantity Issues	
1.2.5 Existing Water Planning in the Lower Colorado Regional Water Planning Area	50
1.2.5.1 Water Management Plans (WMP)	
1.2.5.2 Groundwater Management Areas (GMA)	
1.2.5.3 Water Conservation Plans (WCP) and Drought Contingency Plans (DCP)	
1.2.5.4 Water Audits	60
LIST OF FIGURES	
Figure 1.1. TWDD Designated Designal Water Planning Areas	2
Figure 1.1: TWDB Designated Regional Water Planning Areas	
Figure 1.3: The Colorado River Basin	
Figure 1.4: Physiographic Provinces and Major Drainage Basins of the Western Gulf Slope	
Figure 1.5: Soils of Texas	
Figure 1.5: Lower Colorado Regional Planning Area (Region K) Average Annual Net Evaporation	
Figure 1.7: Lower Colorado Regional Planning Area (Region K) Average Annual Precipitation	
Figure 1.8: Vegetational Areas of Texas	
Figure 1.9: Lower Colorado Regional Water Planning Area (Region K) Vegetation Distribution	
Figure 1.10: Lower Colorado Regional Water Planning Area (Region K) Surface Water Hydrology	
Figure 1.11: Lower Colorado Regional Water Planning Area (Region K) Major Aquifers	
Figure 1.12: Lower Colorado Regional Water Planning Area (Region K) Minor Aquifers	
Figure 1.13: Lower Colorado Regional Planning Area (Region K) Land Use Distribution	
Figure 1.14: Historic Lower Colorado Regional Water Planning Area Population	
Figure 1.15: Lower Colorado Region County Population Distribution	27
Figure 1.16: Lower Colorado Regional Water Planning Area Historical Water Demand	31
Figure 1.17: Lower Colorado Region User Group Water Demand Distribution	
Figure 1.18: Lower Colorado Regional Water Planning Area County Water Demand Distribution	
Figure 1.19: Lower Colorado River Instream Study Reaches (Source: LCRA)	
Figure 1.20: Lower Colorado River Authority Water Supply Service Area	
Figure 1.21: City of Austin Water Supply Service Area	
Figure 1.22: Colorado River Basin Stream Segments	
Figure 1.23: LCRA 1999 WMP Trigger Levels for Interruptible Supplies	
Figure 1.24: Groundwater Conservation Districts	
Figure 1.25: Groundwater Management Areas	
Figure 1.26: Water Loss Comparison	60
LIST OF TABLES	
Table 1.1a The Lower Colorado Regional Water Planning Group Voting Board Members	Δ
Table 1.1b The Lower Colorado Regional Water Planning Group Nonvoting Members	
Table 1.1c The Lower Colorado Regional Water Planning Group Alternate Members	
Table 1.2 State Parks Located Within the Lower Colorado Region	
Table 1.3 Wildlife Refuges/Management Areas Located Within the Lower Colorado Region	
Table 1.4 Lower Colorado Region Primary Economic Activities by County	
Table 1.5 Lower Colorado Region County Population and Economic Estimates	
Table 1.6 Schedule of Recommended Flows for the Colorado River Downstream of Austin	
Table 1.7 Critical and Target Flows Schedule For Matagorda Bay System From the Colorado River	

Table 1.8 Classified Stream Segment Uses and Water Quality Criteria in the Colorado River Basin	20
Table 1.0 Street Segment Water Orality Impairments in the Lewer Coloneda Parian	
Table 1.9 Stream Segment Water Quality Impairments in the Lower Colorado Region	
Table 1.10 Stream Segment Water Quality Concerns in the Lower Colorado Region	
Table 1.11 Groundwater Conservation Districts in Lower Colorado Region and Their Water Manage Plan Status	
Table 1.12 GMA Desired Future Conditions and Managed Available Groundwater Report Status	
Table 1.13 Entities in the Lower Colorado Region SB 1-Required to Submit Water Conservation Pla	
(Irrigation Rights of 10,000 ac-ft or more and Non-Irrigation Rights of 1,000 ac-ft or	
more)	57
Table 1.14a Water Wholesalers in Lower Colorado Region SB 1-Required to Submit Drought	
Contingency Plans (Entities With Contract Water Sales to Others)	58
Table 1.14b Lower Colorado Region SB 1-Required Water Conservation Plans and Drought	
Contingency Plans (Retail Water Suppliers With > 3,300 Connections)	59
APPENDICES	
APPENDIX 1A: Threatened and Endangered Species in the Lower Colorado Regional Water Planni	ing
Area	
APPENDIX 1B: Lower Colorado Region Industry Economic Value Estimates	
CHAPTER TWO	
CHAPTER 2.0: POPULATION PROJECTIONS AND WATER DEMAND PROJECTIONS	1
2.1 TWDB GUIDELINES FOR REVISIONS TO POPULATION AND WATER DEMAND	
PROJECTIONS	
2.2 POPULATION PROJECTIONS	
2.2.1 Methodology	
2.2.2 Regional Population Projections	4
2.3 WATER DEMAND PROJECTIONS	
2.3.1 Municipal Water Demand Projections	
2.3.1.1 Methodology	/
2.3.1.2 Regional Municipal Water Demand Projections	8
2.3.2 Manufacturing Water Demand Projections	
2.3.2.1 Methodology	
2.3.2.2 Regional Manufacturing Water Demand Projections	
2.3.3 Irrigation Water Demand Projections	
2.3.3.1 Methodology	
· · · · · · · · · · · · · · · · · · ·	
2.3.4 Steam-Electric Water Demand Projections	
2.3.4.1 Methodology	
2.3.4.2 Regional Steam-Electric Water Demand Projections	
2.3.5.1 Methodology	
2.3.5.1 Methodology	
2.3.6 Livestock Water Demand Projections	
2.3.6.1 Methodology	
2.3.6.2 Regional Livestock Water Demand Projections	

2.4 ENVIRONMENTAL WATER DEMANDS	
2.4.1 The Story/History of Matagorda Bay '''	20
2.4.2 Current Instream Flow Requirements for the Colorado River	
2.4.3 Current Bay and Estuary Requirements	
2.4.4 Current Ongoing Environmental Flow Projects and Studies	
2.5 WHOLESALE WATER PROVIDERS	
2.5.1 City of Austin	
2.5.2 Lower Colorado River Authority	34
LIST OF FIGURES	
Figure 2.1: Lower Colorado Region Population Projections	1
Figure 2.2: Lower Colorado Region Total Water Demand Projections	
Figure 2.3: Total Water Demand by Type of Use	
Figure 2.4: Lower Colorado Region Municipal Water Demand Projections	
Figure 2.5: Lower Colorado Region Manufacturing Water Demand Projections	
Figure 2.6: Lower Colorado Region Irrigation Water Demand Projections	
Figure 2.7: Lower Colorado Region Steam Electric Water Demand Projections	
Figure 2.8: Lower Colorado Region Mining Water Demand Projections	
Figure 2.9: Lower Colorado Region Livestock Water Demand Projections	
Figure 2.10: Matagorda Bay in 1705.	
Figure 2.11: Austin's Colony and Matagorda Bay	
Figure 2.12: Development of Colorado River Delta	
Figure 2.13: Mouth of the Colorado River, Matagorda Texas	
Figure 2.14: Colorado River Diversion Channel and Navigation Channel	
Table 2.1 Population and Water Demand Projections for the Lower Colorado Region	1
Table 2.2 Population Projection by County	
Table 2.3 Population Projection by River Basin	
Table 2.4 Municipal Water Demand Projections by County (ac-ft/yr)	
Table 2.5 Municipal Water Demand Projections by River Basin (ac-ft/yr)	
Table 2.6 Manufacturing Water Demand Projections by County (ac-ft/yr)	
Table 2.7 Manufacturing Water Demand Projections by River Basin (ac-ft/yr)	
Table 2.8 Irrigation Water Demand Projections by County (ac-ft/yr)	
Table 2.9 Irrigation Water Demand Projections by River Basin (ac-ft/yr)	
Table 2.10 Steam-Electric Water Demand Projections by County (ac-ft/yr)	15
Table 2.11 Steam-Electric Water Demand Projections by River Basin (ac-ft/yr)	16
Table 2.12 Mining Water Demand Projections by County	17
Table 2.13 Mining Water Demand Projections by River Basin (ac-ft/yr)	18
Table 2.14 Livestock Water Demand Projections by County (ac-ft/yr)	
Table 2.15 Livestock Water Demand Projections by River Basin (ac-ft/yr)	
Table 2.16 Instream Flow Requirements for the Colorado River	
Table 2.17 Colorado River Critical and Target Freshwater Inflow Needs for the Matagorda Bay Sy	
Table 2.18 Projected Municipal and Manufacturing Water Demands for City of Austin service are	
ft/yr)	
Table 2.19 Projected Steam-Electric Water Demands for City of Austin service area (ac-ft/yr)	
Table 2.20 LCRA Water Commitment Summary (ac-ft/yr)	
· · · · · · · · · · · · · · · ·	

APPENDICES

APPENDIX 2A:	LCRWPG Population & Water Demand Projections
APPENDIX 2B:	LCRWPG Population & Water Demand Comparison (2006 Plan versus 2011 Plan)
APPENDIX 2C:	LCRWPG Gallons per Capita Day (gpcd)
APPENDIX 2D:	Resolution by the Lower Colorado Regional Water Planning Group Regarding
	Population Projections for the 2011 Regional Water Planning Cycle

CHAPTER THREE

CHAPTER 3.0: IDENTIFICATION OF CURRENTLY AVAILABLE WATER SUPPLIES	1
3.1 TWDB GUIDELINES FOR REVISIONS TO WATER SUPPLIES	1
3.2 AVAILABLE WATER SOURCES TO THE LCRWPA	1
3.2.1 Surface Water Availability	2
3.2.1.1 Colorado River Basin	
3.2.1.1.1 Water Availability Modeling for the 2006 Region K Water Plan	
3.2.1.1.2 Water Availability Modeling for the 2011 Region K Water Plan	
3.2.1.1.2.1 Highland Lakes System	
3.2.1.1.2.2 Other Reservoirs	
3.2.1.1.2.3 Run-of-River Water	13
3.2.1.1.2.4 Local Surface Water Sources	15
3.2.1.2 Brazos River Basin	16
3.2.1.3 Brazos-Colorado Coastal Basin	16
3.2.1.4 Colorado-Lavaca Coastal Basin	17
3.2.1.5 Lavaca River Basin	
3.2.1.6 Guadalupe River Basin	
3.2.2 Groundwater Availability	
3.2.2.1 Major Aquifers	
3.2.2.1.1 Gulf Coast Aquifer	
3.2.2.1.2 Carrizo-Wilcox Aquifer	
3.2.2.1.3 Edwards Aquifer (Balcones Fault Zone)	25
3.2.2.1.4 Trinity Aquifer	29
3.2.2.1.5 Edwards-Trinity (Plateau) Aquifer	32
3.2.2.2 Minor Aquifers	33
3.2.2.2.1 Hickory Aquifer	34
3.2.2.2.2 Queen City Aquifer	36
3.2.2.2.3 Sparta Aquifer	38
3.2.2.2.4 Ellenburger-San Saba Aquifer	40
3.2.2.2.5 Marble Falls Aquifer	43
3.2.2.2.6 Yegua-Jackson Aquifer	
3.2.2.2.7 Other Aquifer	
3.2.3 Regional Water Availability Summary	
3.3 WHOLESALE WATER PROVIDERS	

3.3.1 LCRA Water Availability	50
3.3.2 City of Austin Water Availability	53
3.4 WATER SUPPLIES AVAILABLE TO WATER USER GROUPS	55
3.4.1 Surface Water Supplies Available to Water User Groups	
3.4.2 Groundwater Supplies Available to Water User Groups	
3.4.3 WUG Water Supply Summary	58
LIST OF FIGURES	
	_
Figure 3.1: River Basins Within the LCRWPA (Region K)	3
Figure 3.2: Gulf Coast Aquifer Within the Lower Colorado Regional Water Planning Area	
Figure 3.3: Carrizo-Wilcox Aquifer Within the Colorado Regional Water Planning Area	
Figure 3.4: Edwards Aquifer (BFZ) Within the Lower Colorado Regional Water Planning Area	
Figure 3.5: Trinity Aquifer Within the Lower Colorado Regional Water Planning Area	
Figure 3.6: Edwards Trinity Aquifer Within the Lower Colorado Regional Water Planning Area	
Figure 3.7: Hickory Aquifer Within the Lower Colorado Regional Water Planning Area	
Figure 3.8: Queen City Adulter Within the Lower Colorado Regional Water Planning Area	
Figure 3.9: Sparta Aquirer Within the Lower Colorado Regional Water Planning Area Figure 3.10: Ellenburger-San Saba Aquifer Within the Lower Colorado Regional Water Planning Area	
Figure 3.11: Marble Falls Aquifer Within the Lower Colorado Regional Water Planning Area	43
Figure 3.12: Yegua-Jackson Aquifer Within the Lower Colorado Regional Water Planning Area	
Figure 3.13: Total Water Available to Region K During a Drought of Record	48
Figure 3.14: Total Water Supply to WUGs by County	59
Table 3.1 Components of the Highland Lakes System Firm Yield	8
Table 3.2 Reservoir Yields in the Colorado Basin (ac-ft/yr)	11
Table 3.3 Major Run-of-the-River Rights in the Colorado Basin (ac-ft/yr)	
Table 3.4 Other Surface Water Sources in the Colorado Basin (ac-ft/yr)	
Table 3.5 Surface Water Sources in the Brazos River Basin (ac-ft/yr)	
Table 3.6 Surface Water Sources in the Brazos-Colorado Coastal Basin (ac-ft/yr)	
Table 3.7 Surface Water Sources in the Colorado-Lavaca Coastal Basin (ac-ft/yr)	
Table 3.8 Surface Water Sources in the Lavaca River Basin (ac-ft/yr)	17
Table 3.9 Surface Water Sources in the Guadalupe River Basin (ac-ft/yr)	
Table 3.10 Water Availability in the Gulf Coast Aquifer (ac-ft/yr)	
Table 3.11 Water Availability in the Carrizo-Wilcox Aquifer (ac-ft/yr)	
Table 3.12 Summary of Groundwater Availability Values for the Edwards Aquifer (BFZ) (ac-ft/yr)	
Table 3.13 Water Availability (by River Basin) in the Edwards Aquifer (BFZ) (ac-ft/yr)	
Table 3.14 Water Availability (by River Basin) for the Trinity Aquifer (ac-ft/yr)	
Table 3.15 Water Availability from the Edwards-Trinity Aquifer (ac-ft/yr)	
Table 3.16 Water Availability from the Hickory Aquifer (ac-ft/yr)	
Table 3.17 Water Availability From the Queen City Aquifer (ac-ft/yr)	
Table 3.19 Water Availability from the Ellenburger-San Saba Aquifer (ac-ft/yr)	
Table 3.20 Water Availability from the Marble Falls Aquifer (ac-ft/yr)	
Table 3.21 Water Availability from the Yegua-Jackson Aquifer (ac-ft/yr)	
Table 3.22 Water Availability from Other Aquifer (ac-ft/yr)	

Table 3.23	Total Water Available to the Lower Colorado Regional Planning Area During a Drought of	f
	Record (ac-ft/yr)	. 49
Table 3.24	Total Water Available to the Lower Colorado River Authority (ac-ft/yr)	. 50
Table 3.25	LCRA Water Commitment Summary (ac-ft/yr)	. 50
Table 3.26	City of Austin Water Availability (ac-ft/yr)	. 53
Table 3.27	City of Austin Water Commitment Summary (ac-ft/yr)	. 55
Table 3.28	Summary of Surface Water Supply to WUGs by County (ac-ft/yr)	.56
Table 3.29	Summary of Groundwater Supply to WUGs by County (ac-ft/yr)	. 58
Table 3.30	Total Water Supply to WUGs by County (ac-ft/yr)	. 59

APPENDICES

APPENDIX 3A: Water Rights Held in the Lower Colorado Regional Water Planning Area

APPENDIX 3B: Description of Region K WAM Run 3 Cutoff Model

APPENDIX 3C: Currently Available Water Supply Tables

APPENDIX 3D: Water Availability Comparison (2011 Plan versus 2006 Plan)

CHAPTER FOUR

CHAPTER	4.0: IDENTIFICATION,	EVALUATION,	AND	SELECTION	OF	WATER
MANA	GEMENT STRATEGIES BA	SED ON NEED				1
	ENTIFICATION OF WATER					
4.2 CO	UNTY SUMMARIES OF WA	TER NEEDS				4
4.2.1	Bastrop County					
4.2.2	Blanco County					5
4.2.3	Burnet County					5
4.2.4	Colorado County					6
4.2.5	Fayette County					6
4.2.6	Gillespie County					7
4.2.7	Hays County					7
4.2.8	Llano County					7
4.2.9	Matagorda County					8
4.2.10	Mills County					8
4.2.11	San Saba County					9
4.2.12	Travis County					9
4.2.13	Wharton County					10
4.2.14	Williamson County					11
4.2.15	County-Wide Surpluses					11
4.3 BA	SIN SUMMARY OF WATER					
4.3.1	Brazos River Basin					12
4.3.2	Brazos-Colorado Coastal Riv	er Basin				13
4.3.3	Colorado River Basin					13
4.3.4	Colorado-Lavaca Coastal Riv	er Basin				14
4.3.5	Lavaca River Basin					15
4.3.6	Guadalupe River Basin					15
4.4 WH	OLESALE WATER PROVID	ER NEEDS				16
4.4.1	Lower Colorado River Autho	rity		•••••		16
4.4.2	City of Austin	•				

4.5 EVAL	UATION AND SELECTION OF WATER MANAGEMENT STRATEGIES	18
4.5.1 Ut	ilization of Return Flows	18
4.5.1.1	COA Return Flows Strategy	19
	Downstream Return Flows	
4.6 WHOL	ESALE WATER PROVIDER MANAGEMENT STRATEGIES	22
4.6.1 LC	CRA Water Management Strategies	22
4.6.1.1	General LCRA Strategy - LCRA System Operation Approach	23
4.6.1.2	Amendments to Water Management Plan	24
4.6.1.3	Amendments to ROR Rights	27
4.6.1.4	LCRA Contract Amendments	29
4.6.1.5	LCRA New Water Sale Contracts.	
4.6.1.6	Advanced Conservation to Meet Demand for Irrigation	
4.6.1.7	Groundwater Development to Meet Irrigation Shortages During Drought	
4.6.1.8	Application for Unappropriated Flows and Off-Channel Storage	
4.6.1.9		33
	Enhanced Municipal and Industrial Conservation	
	Aquifer Storage and Recovery (ASR)	
	Reuse by Highland Lakes Communities	
	Description of the Impact of the Management Strategies on Navigation	
	OA Water Management Strategies	
4.6.2.1	Water Conservation	
4.6.2.2	······································	
	NAL WATER MANAGEMENT STRATEGIES	
	xpansion of Current Groundwater Supplies	
4.7.1.1	.	
4.7.1.2		
4.7.1.3	Gulf Coast Aquifer	
4.7.1.4	Hickory Aquifer	
4.7.1.5	Queen City Aquifer	
4.7.1.6	Sparta Aquifer	
4.7.1.7	Trinity Aquifer	
4.7.1.8	Yegua-Jackson Aquifer	
4.7.1.9	Other Aquifer	
	evelopment of New Groundwater Supplies	
4.7.2.1	Carrizo-Wilcox Aquifer	
	Edwards-BFZ Aquifer (Brackish Groundwater Desalination)	
4.7.2.3	Ellenburger-San Saba Aquifer	
4.7.2.4	Hickory Aquifer	
4.7.2.5	Queen City Aquifer	
4.7.2.6	Trinity Aquifer	
4.7.2.7	Other Aquifer	
	ansfer/Allocate Water From WUGs with Surplus	
	emporary Drought Period Use of Aquifers	
	ought Management	
	CIPAL WATER MANAGEMENT STRATEGIES	
	ater Conservation	
4.8.1.1	Additional Conservation	
	echarge Edwards-BFZ With Onion Creek Recharge Structure for Hays County	
	otain Surface Water From the COA for Hays County	
	onstruct Goldthwaite Channel Dam in Mills County	
4.8.5 H	B 1437 (Region G) for Williamson County	86

4.9 IRRIGATION WATER MANAGEMENT STRATEGIES	
4.9.1 On-Farm Water Conservation	90
4.9.1.1 Laser Land Leveling	93
4.9.1.2 Use of Multiple Field Inlets	94
4.9.1.3 Reduced Levee Intervals	94
4.9.1.4 Combining Land Leveling With Multiple Field Inlets	
4.9.2 Irrigation Operations Conveyance Improvements	95
4.9.3 Conjunctive Use of Groundwater Resources	96
4.9.4 Development of New Rice Varieties	101
4.9.5 HB 1437	
4.10 LIVESTOCK WATER MANAGEMENT STRATEGIES	
4.11 MANUFACTURING WATER MANAGEMENT STRATEGIES	
4.12 MINING WATER MANAGEMENT STRATEGIES	
4.13 STEAM ELECTRIC POWER WATER MANAGEMENT STRATEGIES	105
4.13.1 LCRA Steam Electric Water Management Strategies	106
4.13.2 COA Steam Electric Water Management Strategies	106
4.13.3 STP Nuclear Operating Company Water Management Strategies	107
4.13.3.1 Water Right Permit Amendment	108
4.13.3.2 Expand Supply from STPNOC Reservoir	
4.13.3.3 Blend Brackish Surface Water in STPNOC Reservoir	
4.13.3.4 Rainwater Harvesting	
4.13.4 Other Steam Electric Water Management Strategies	110
4.14 COUNTY SUMMARIES OF WATER MANAGEMENT STRATEGIES	
4.15 ALTERNATIVE WATER MANAGEMENT STRATEGIES	
4.15.1 Alternative Strategies for Rice Irrigation	
4.15.2 Alternative Strategies for LCRA Wholesale Water Supply	115
4.15.2.1 Groundwater Importation	
4.15.2.2 Brackish Groundwater Desalination from the Gulf Coast Aquifer (Desalination)	
4.15.3 Alternative Strategy for Mills County-Other (Desalination)	117
4.16 OTHER POTENTIAL FUTURE WATER MANAGEMENT STRATEGIES EVALUATED	
4.16.1 Lower Colorado River Inflatable Channel Dams	
4.16.2 Advanced Conservation	
4.16.3 Brush Management	
4.16.4 Weather Modification	
4.16.5 Additional Water Reuse	
4.16.6 Rainwater Harvesting	
4.16.7 Additional Studies	
4.17 ENVIRONMENTAL IMPACTS OF WATER MANAGEMENT STRATEGIES	
4.17.1 Environmental Impacts of Strategies from the 2006 Region K Plan	
4.17.1.1 Criteria Used	
4.17.1.2 Strategies Evaluated	
4.17.2 2011 Region K Plan New Strategies or Changed Condition Strategies	
4.17.2.1 Criteria Used	
4.17.2.2 Strategies Evaluated	130
LIST OF FIGURES	
Figure 4.1: Number of WUGs With Identified Water Needs in the LCRWPA	2
Figure 4.2: Identified Amount of Water Needs in the LCRWPA	2
Figure 4.3: Obtain Surface Water From the COA	

LIST OF TABLES

Table 4.1 Bastrop County Water Supply Needs (ac-ft/yr)	5
Table 4.2 Blanco County Water Supply Needs (ac-ft/yr)	5
Table 4.3 Burnet County Water Supply Needs (ac-ft/yr)	6
Table 4.4 Colorado County Water Supply Needs (ac-ft/yr)	6
Table 4.5 Fayette County Water Supply Needs (ac-ft/yr)	7
Table 4.6 Hays County Water Supply Needs (ac-ft/yr)	7
Table 4.7 Llano County Water Supply Needs (ac-ft/yr)	8
Table 4.8 Matagorda County Water Supply Needs (ac-ft/yr)	8
Table 4.9 Mills County Water Supply Needs (ac-ft/yr)	9
Table 4.10 San Saba County Water Supply Needs (ac-ft/yr)	9
Table 4.11 Travis County Water Supply Needs (ac-ft/yr)	10
Table 4.12 Wharton County Water Supply Needs (ac-ft/yr)	10
Table 4.13 County and Regional Water Supply Condition Summary (surplus/deficit, ac-ft/yr)	11
Table 4.14 County and Regional Water Supply Condition Summary Excluding Surpluses (deficit, ac ft/yr)	
Table 4.15 Brazos River Basin Water Supply Needs (ac-ft/yr)	12
Table 4.16 Brazos-Colorado Coastal River Basin Water Supply Needs (ac-ft/yr)	
Table 4.17 Colorado River Basin Water Supply Needs (ac-ft/yr)	
Table 4.18 Colorado-Lavaca Coastal River Basin Water Supply Needs (ac-ft/yr)	
Table 4.19 Lavaca River Basin Water Supply Needs (ac-ft/yr)	
Table 4.20 Guadalupe River Basin Water Supply Needs (ac-ft/yr)	
Table 4.21 LCRA Municipal, Manufacturing, and Steam Electric Water Supply/Commitment Compa	
(ac-ft/yr)	
Table 4.22 LCRA Irrigation Water Supply/Commitment Comparison (ac-ft/yr)	
Table 4.23 COA Municipal and Manufacturing Water Supply/Commitment Comparison (ac-ft/yr)	
Table 4.24 COA Steam Electric Water Supply/Commitment Comparison (ac-ft/yr)	
Table 4.25 Example of Austin Municipal Return Flow Partitioning	
Table 4.26 Estimated Continued Benefits of Projected City of Austin Return Flows in the 2011 Regi	
Plan	
Table 4.27 Estimated Benefits of Projected Pflugerville and Aqua WSC Return Flows	
Table 4.28 Summary of LCRA Water Management Strategies (ac-ft/yr)	
Table 4.29 Available Interruptible LCRA Water Supply for Irrigation	
Table 4.30 Amendment to Irrigation Water Rights for Municipal and Industrial Needs	
Table 4.31 LCRA Contract Amendments	
Table 4.32 New LCRA Contracts	
Table 4.33 Additional Water Savings from Enhanced Conservation (ac-ft/yr)	
Table 4.34 Reuse Strategy as a Supply for LCRA (ac-ft/yr)	
Table 4.35 Example Cost for Reuse Strategy (Transport 1 MGD of Effluent 10 Miles)	
Table 4.36 COA Water Management Strategies (ac-ft/yr)	
Table 4.37 Anticipated Reclaimed Water Capacity (Direct Reuse)	
Table 4.38 COA Reclaimed Water (Direct Reuse for Municipal, Manufacturing, and Steam-Electric)	
Opinion of Probable Unit Costs	
Table 4.39 Projected COA Effluent Minus Reuse by Decade*	46
Table 4.40 Carrizo-Wilcox Aquifer Expansions	
Table 4.41 Carrizo-Wilcox Aquifer Expansion Costs	
Table 4.42 Ellenburger-San Saba Aquifer Expansions	
Table 4.43 Ellenburger-San Saba Aquifer Expansion Costs	
Table 4.44 Gulf Coast Aquifer Expansions	
Table 4.45 Gulf Coast Aquifer Expansion Costs	

Table 4.46 Hickory Aquifer Expansions	53
Table 4.47 Hickory Aquifer Expansion Costs	54
Table 4.48 Queen City Aquifer Expansions	54
Table 4.49 Queen City Aquifer Expansion Costs	55
Table 4.50 Sparta Aquifer Expansions	
Table 4.51 Sparta Aquifer Expansion Costs	
Table 4.52 Trinity Aquifer Expansions	
Table 4.53 Trinity Aquifer Expansion Cost	58
Table 4.54 Yegua-Jackson Aquifer Expansions	59
Table 4.55 Yegua-Jackson Aquifer Expansion Costs	
Table 4.56 Other Aquifer Expansions	
Table 4.57 Other Aquifer Expansion Costs	
Table 4.58 Carrizo-Wilcox Aquifer Development	
Table 4.59 Carrizo-Wilcox Aquifer Development Costs	
Table 4.60 Edwards-BFZ Aquifer Development (Brackish Groundwater Desalination)	
Table 4.61 Edwards-BFZ Aquifer Development Costs	
Table 4.62 Ellenburger-San Saba Aquifer Development	
Table 4.63 Ellenburger-San Saba Aquifer Development Costs	
Table 4.64 Hickory Aquifer Development	
Table 4.65 Hickory Aquifer Development Costs	
Table 4.66 Queen City Aquifer Development	
Table 4.67 Queen City Aquifer Development Costs	
Table 4.68 Trinity Aquifer Development	
Table 4.69 Trinity Aquifer Development Costs	
Table 4.70 Other Aquifer Development	
Table 4.71 Other Aquifer Development Costs	
Table 4.72 Transfer Water Strategy	
Table 4.73 Allocate Water Strategy	
Table 4.74 Temporary Drought Period Use of Aquifers	
Table 4.75 Temporary Drought Period Use of Aquifers Additional Pumping Costs	
Table 4.76 Drought Management	
Table 4.77 Municipal Water Needs (ac-ft/yr)	
Table 4.78 Municipal Water Conservation Savings (ac-ft/yr)	
Table 4.79 Municipal Water Conservation Savings Unit Costs	
Table 4.80 Anticipated Reduction From Additional Municipal Conservation (ac-ft/yr)	
Table 4.81 COA Waterline Opinion of Probable Cost	
Table 4.82 New Goldthwaite Channel Dam Opinion of Probable Cost	
Table 4.83 HB 1437 Strategy	87
Table 4.84 Irrigation Water Needs (ac-ft/yr)	
Table 4.85 Rice Irrigation Water Needs (ac-ft/yr)	
Table 4.86 Rice Irrigation Water Management Strategies	
Table 4.87 On-Farm Conservation Estimates	
Table 4.88 Estimated Unit Cost of Agricultural Conservation Improvements	
Table 4.89 On-Farm Conservation Issues	
Table 4.90 Anticipated On-Farm Conservation for Rice Crops and Summer Instream Flows 1	
Table 4.91 Irrigation District Conveyance Improvement Estimates	
Table 4.92 Irrigation District Conveyance Improvement Issues	96
Table 4.93 Development of the Gulf Coast Aquifer Estimated Yield	
Table 4.94 Number of Wells Required for Conjunctive Use	
Table 4.95 Impact of Conjunctive Use on Aquifer Levels (ft)	98
Table 4.96 Conjunctive Use of Groundwater Issues	

Table 4.97 Development of New Rice Varieties	101
Table 4.98 Development of New Rice Varieties Issues	102
Table 4.99 HB 1437 Strategy for Irrigation WUGs	103
Table 4.100 Livestock Water Needs (ac-ft/yr)	104
Table 4.101 Manufacturing Water Needs (ac-ft/yr)	
Table 4.102 Mining Water Needs (ac-ft/yr)	105
Table 4.103 Steam Electric Power Water Needs (ac-ft/yr)	105
Table 4.104 COA Steam Electric Power Water Demand (ac-ft/yr)	
Table 4.105 COA Steam-Electric Supplies and Water Management Strategies (ac-ft/yr)	107
Table 4.106 Steam-Electric Shortages in Matagorda County (ac-ft/yr)	
Table 4.107 Gulf Coast Aquifer Development Costs	111
Table 4.108 Water Management Strategy County Summary (ac-ft/yr)	111
Table 4.109 Comparison of County Shortages Versus Total County Strategies (ac-ft/yr)	
Table 4.110 Rice Irrigation Needs (ac-ft/yr)	
Table 4.111 Rice Irrigation Alternative Water Management Strategies (ac-ft/yr)	
Table 4.112 LCRA Wholesale Water Supply Alternative Water Management Strategies (ac	
Table 4.113 Alternative Desalination of Brackish Ellenburger-San Saba Strategy (Desalina	
ft/yr)	
Table 4.114 Desalination of Brackish Ellenburger-San Saba Groundwater Costs	
Table 4.115 Anticipated Reduction From Municipal Conservation (ac-ft/yr)	
Table 4.116 Municipal Water Conservation Savings Unit Costs	
Table 4.117 Inflow Categories and Range of Inflow Criteria	
Table 4.118 Recommended MBHE Inflow Regime Criteria and Proposed Distribution	
Table 4.119 Instream Flow Guidelines for the Lower Colorado River Specific to the LSWF	
Table 4.120 Instream Flow Guidelines for the Lower Colorado River (ac-ft/yr))	129
APPENDICES	
ADDENDLY AA. Weten Mennen of Charles Teller	
APPENDIX 4A: Water Management Strategy Tables	L - 1-1
APPENDIX 4B: Water Management Strategy Cost Breakdown, Cost Assumptions & Meth	
APPENDIX 4C: Technical Memorandums for Goldthwaite, Llano, and Enhanced Recharg Strategies	
APPENDIX 4D: Sustainability and Advanced Water Conservation Analyses, Drought Man	nagement
Table	
APPENDIX 4E: Dry Year Option	
APPENDIX 4F: Environmental Impacts of Strategies from the 2006 Region K Plan	
APPENDIX 4G: Environmental Impacts of New Strategies or Changed Condition Strategi	es in the 2011
11 121 1211 13. Entrionmental impacts of frew strategies of changed condition strategi	2011

Region K Plan

TABLE OF CONTENTS – VOLUME II

CHAPTER FIVE

CHAPTER 5	5.0: IMPACTS OF WATER MANAGEMENT STRATEGIES ON KEY PARAMETERS	S OF
WATEI	R QUALITY AND IMPACTS OF MOVING WATER FROM RURAL A	AND
AGRIC	ULTURAL AREAS	1
5.1 SCC	OPE OF WORK	1
5.2 IMF	PACTS OF WATER MANAGEMENT STRATEGIES ON KEY PARAMETERS OF	
WA	ATER QUALITY	1
5.2.1	Surface Water	1
5.2.2	Groundwater	2
5.2.3	Management Strategies	3
5.3 IMF	PACTS OF MOVING WATER FROM RURAL AND AGRICULTURAL AREAS	7
5.4 PO7	FENTIAL CHANGES TO AQUIFER QUALITY	8
	Brackish Groundwater in Region K.	
5.4.2	Other Aquifer Water Quality Information	12
	Potential Water Quality Impacts Resulting from Increased Drawdown of Aquifers	

APPENDICES

APPENDIX 5A: TCEQ 303(D) List of Impaired Waters

Partial List of Those Waterways in LCRWPA and Tabular Summaries for Water

Body Use Support by River Basin

CHAPTER SIX

CHAPTER	6.0: WATER CONSERVATION AND DROUGHT MANAGEMENT PLANS	1
6.1 WA	ATER CONSERVATION PLAN	1
6.1.1	Municipal Uses by Public Water Suppliers	2
6.1.2	Industrial or Mining	5
6.1.3	Agriculture	6
6.1.4	Wholesale Water Providers	
6.1.5	Other Water Uses	10
6.2 DR	OUGHT CONTINGENCY PLAN	10
6.2.1	Municipal Uses by Public Water Suppliers	11
6.2.2	Irrigation Uses	12
6.2.3	Wholesale Water Providers	14
6.2.4	Drought Response Triggers	15
6.3 WE	IOLESALE WATER PROVIDER WATER CONSERVATION PLANS	18
6.3.1	LCRA Water Conservation Programs	18
6.3.2	City of Austin Water Conservation Program	19
	P NUCLEAR OPERATING COMPANY WATER CONSERVATION PLAN	

LIST OF	FIGURES
-	Existing Municipal Water Conservation Measures
APPEND	ICES
	X 6A: Sample Water Conservation and Drought Contingency Survey X 6B: Model Water Conservation Plan and Drought Contingency Plan
CHAPT	ER SEVEN
PROT 7.1 W. PI 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 AC	7.0: REGIONAL PLAN CONSISTENCY WITH STATE'S LONG-TERM RESOURCE ECTION GOALS. ATER RESOURCES WITHIN THE LOWER COLORADO REGIONAL WATER ANNING AREA (LCRWPA). Brazos River Basin Colorado River Basin. Lavaca River Basin. Guadalupe River Basin. Gradalupe River Basin. Gradalupe River Basin. ATURAL RESOURCES WITHIN THE LCRWPA Threatened and Endangered Species. Parks and Public Lands. Impacts of Water Management Strategies on Matagorda Bay System.
LIST OF	TABLES
Table 7.1	Γarget and Critical Freshwater Inflow Needs for the Matagorda Bay System From the Colorado River
APPEND	ICES

APPENDIX 7A: ENVIRONMENTAL IMPACTS OF THE COMPREHENSIVE WATER MANAGEMENT STRATEGIES

CHAPTER EIGHT

CHAPTER 8.0: ADDITIONAL RECOMMENDATIONS (INCLUDING UNIQUE ECOLOG	ICAL
STREAM SEGMENTS AND RESERVOIR SITES, LEGISLATIVE ISSUES, AND REGIO	
POLICY ISSUES)	
8.1 SUMMARY OF TWDB RULES	
8.1.1 Policy Recommendation Rules	
8.1.2 Unique Ecological Stream Segment Recommendation Rules	
8.1.3 Unique Reservoir Site Selection Rules	
8.2 SUMMARY OF POLICY RECOMMENDATIONS	
8.2.1 Management of Surface Water Resources: Inter-Basin Transfers, Model Linking,	
Conjunctive Use, and Electric Generation Planning	4
8.2.1.1 Background Information	
8.2.1.2 Policy Statements	
8.2.1.2.1 Inter-Basin Transfers	
8.2.1.2.2 Linking Groundwater and Surface Water Models (Also See Groundwater)	
8.2.1.2.3 Conjunctive Use of Groundwater and Surface Water (Also See Groundwater)	
8.2.1.2.4 Use of Water for Electrical Generation	
8.2.1.3 Actions Needed	
8.2.2 Environmental Flows – Instream Flows and Freshwater Inflows to Bays and Estuaries.	
8.2.2.1 Background Information	
8.2.2.2 Policy Statement	
8.2.2.3 Actions Needed	
8.2.2.4 Timing and/or Conflicts	
$\boldsymbol{\mathcal{C}}$	
8.2.3 Environmental – Sustainable Growth, Including Impacts of Growth	
ϵ	
8.2.3.2 Policy Statement	
8.2.3.3 Actions Needed	
8.2.3.4 Timing and/or Conflicts	
8.2.4 Groundwater	
8.2.4.1 Background Information	
8.2.4.2 Policy Statements	
8.2.4.2.1 The Rule of Capture	
8.2.4.2.2 Groundwater Ownership in Place Not a Vested Property Right	
8.2.4.2.3 Groundwater Management by GCDs	
8.2.4.2.4 DFCs and MAGs	
8.2.4.2.5 Sustainability	
8.2.4.2.6 Water Marketing (e.g. Water Rights Leases, Sales, Transfers)	
8.2.4.2.7 Improving Groundwater Availability Data	
8.2.4.3 Actions Needed	
8.2.4.4 Timing and/or Conflicts	
8.2.5 Protection of Agricultural and Rural Water Supplies	
8.2.5.1 Background Information	
8.2.5.2 Policy Statement	
8.2.5.3 Actions Needed	
8.2.5.4 Timing and/or Conflicts	
8.2.6 Agricultural Water Conservation	
8.2.6.1 Background Information	
8.2.6.2 Policy Statement	
8.2.6.3 Actions Needed	
8.2.6.4 Timing and/or Conflicts	14

8.2.7 Municipal/ Industrial Conservation	. 15
8.2.7.1 Consistent GPCD Methodology	. 15
8.2.7.1.1 Background Information	. 15
8.2.7.1.2 Policy Statement	. 15
8.2.7.1.3 Actions Needed	
8.2.7.2 Consistent Water Savings Metrics	. 15
8.2.7.2.1 Background Information	
8.2.7.2.2 Policy Statement	
8.2.7.2.3 Actions Needed	
8.2.7.3 Additional Financial Assistance to Reduce Water Loss	
8.2.7.3.1 Background Information	
8.2.7.3.2 Policy Statement	
8.2.7.3.3 Actions Needed	
8.2.7.4 Conservation Coordinators	
8.2.7.4.1 Background Information	
8.2.7.4.2 Policy Statement	
8.2.7.4.3 Actions Needed	
8.2.7.5 Conservation Messaging Coordination	
8.2.7.5.1 Background Information	
8.2.7.5.2 Policy Statement	
8.2.7.5.3 Actions Needed	
8.2.7.6 Property Owners' Associations' Outdoor Water Use Policies	
8.2.7.6.1 Background Information	
8.2.7.6.2 Policy Statement	
8.2.7.6.3 Actions Needed	
8.2.7.7 Dedicated Conservation Funding	
8.2.7.7.1 Background Information	
8.2.7.7.2 Policy Statement	
8.2.7.7.3 Actions Needed	
8.2.8 Reuse (including basin-specific assessment of reuse potential and impacts)	
8.2.8.1 Background Information	
8.2.8.2 Policy Statement	
8.2.8.3 Actions Needed	
8.2.8.4 Timing and/or Conflicts	
8.2.9 Brush Control	
8.2.10 Recommended Improvements to the Regional Planning Process (SB 1 - 75th Legislature).	
8.2.11 Other Policy Recommendations	
8.2.11.1 Radionuclides in the Hickory and Marble Falls Aquifers	
8.3 SUMMARY OF UNIQUE STREAM SEGMENT RECOMMENDATIONS	
8.4 SUMMARY OF POTENTIAL SITES UNIQUELY SUITED FOR RESERVOIRS	
8.5 UNRESOLVED ISSUES	. 23

٨	D	DI	וים	M	N	T (וי	ES
A	М	М	וגיו	NI	,,,	u		1,13

APPENDIX 8A:	Adopted Resolutions
	Resolutions Adopted by the LCRWPG for the 2011 Plan
	Resolutions Adopted by the LCRWPG for the 2001 Plan (for historical reference)
	Resolutions Adopted by Other Entities for the 2001 Plan (for historical reference)
APPENDIX 8B:	Information Provided by the TPWD, LCRA, BCEN, and Region G for the Identification
	of Ecologically Unique Stream Segments in the Lower Colorado Regional Water
	Planning Area
APPENDIX 8C:	Source Documents for the 2006 Region K Plan Unique Stream Segment
	Recommendations
APPENDIX 8D:	TPWD Supplemental Information Resources for the 2006 Region K Plan Unique
	Stream Segment Recommendations
APPENDIX 8E:	Unique Stream Segment Recommendations from the 2006 Region K Plan
APPENDIX 8F:	Descriptions of Potential Reservoir Sites from the 2006 Region K Plan

CHAPTER NINE

CHAPTER 9.0: WATER INFRASTRUCTURE FINANCING RECOMMENDATIONS	1
9.1 INTRODUCTION	1
9.2 CAPITAL COSTS FOR THE 2011 REGION K WATER PLAN	1
9.3 ANALYSIS OF POSSIBLE FINANCING OPTIONS	4
9.3.1 Municipal Water User Groups	
9.3.2 Non-Municipal Water User Groups	
9.3.3 Wholesale Water Providers	
9.4 INTRODUCTION TO SOCIOECONOMIC IMPACTS OF UNMET WATER NEEDS	6
9.5 SOCIOECONOMIC IMPACTS AND ANNUAL COSTS OF IMPLEMENTING THE	
REGIONAL WATER PLAN	7
9.6 REGION K POLICY STATEMENTS FROM CHAPTER 8 THAT DISCUSS FUNDING	8
LIST OF FIGURES Figure 9.1: Costs by Starting Decade and Category	3
LIST OF TABLES	
Table 9.1: Recommended Strategies Requiring Capital Expenditure	7

APPENDICES

APPENDIX 9A: Tabulated Survey Results APPENDIX 9B: Survey Correspondence

APPENDIX 9C: Socioeconomic Impacts of Projected Water Shortages in the Lower Colorado Water Planning Area (Region K), TWDB, May 2010

CHAPTER TEN	
CHAPTER 10.0: PUBLIC INVOLVEMENT ACTIVITIES	1
10.1 OVERVIEW	1
10.2 PLANNING GROUP MEETINGS THROUGHOUT THE REGION	2
10.3 PRESENTATION TO CIVIC AND SPECIAL-INTEREST GROUPS	5
10.4 REGION K ACTIVITIES	5
10.4.1 Population and Water Demand Committee	5
10.4.2 SH 130/45 and Northern Hays Committee	5
10.4.3 Advertising and Media	6
10.4.4 Surveys	6
10.4.5 Public Meetings and Hearing	6
10.5 RELATED OUTREACH ACTIVITIES WITHIN THE REGION K AREA BEYOND THE	
LCRWPG	7
10.5.1 LCRA Water Management Plan	
10.5.2 The LCRA-SAWS Water Project Scientific Studies	
10.5.3 Environmental Flows Advisory Group	
10.5.4 Irrigation District Advisory Panel	8
A AGE OF EADA FG	
LIST OF TABLES	
Table 10.1 LCRWPG Publicized "Local" Meetings Throughout the Region	3
Table 10.2 LCRWPG Public Outreach Record: Presentations by Group Members to Community	
Groups	5
Table 10.3 Region K Public Meetings and Hearing	7
APPENDICES	
APPENDIX 10A: LCRWPG Sample Press Release	
APPENDIX 10B: The Regional Water Planning Population and Water Demand Projections Survey	
APPENDIX 10C: LCRWPG Initially Prepared Regional Water Plan Public Hearing Presentation	
APPENDIX 10D: LCRWPG Draft Plan Comments and LCRWPG Responses	
AT LINDIA TOD. LCR WI O DIGIT I IGH COMMENTS AND LCR WI O RESPONSES	

APPENDIX 10E: Summaries of First Biennium Study Reports

TABLE OF CONTENTS – EXECUTIVE SUMMARY

E	S. EXECU	JTIVE SUMMARY	1
		ERVIEW	
		RODUCTION AND BACKGROUND	
	ES.3 POI	PULATION AND WATER DEMANDS	4
	ES.4 WA	TER SUPPLIES	5
	ES.5 IDE	NTIFIED SHORTAGES	7
	ES.6 MA	NAGEMENT STRATEGIES AND IMPACTS	9
		Utilization of Return Flows	
	ES.6.2	Wholesale Water Provider (WWP) Management Strategies	10
		.2.1 LCRA Management Strategies	
	ES.6	.2.2 COA Management Strategies	11
	ES.6.3	Regional Water Management Strategies	11
	ES.6.4	Municipal Water Management Strategies	14
	ES.6.5	Irrigation Water Management Strategies	15
	ES.6.6	Livestock, Manufacturing, and Mining Water Management Strategies	16
	ES.6.7	Steam Electric Water Management Strategies	16
	ES.6.8	Alternative Water Management Strategies	17
		NAGEMENT STRATEGY IMPACTS	
	ES.8 WA	TER CONSERVATION AND DROUGHT MANAGEMENT	20
		LICY RECOMMENDATIONS	
	ES.9.1	Management of Surface Water Resources	20
	ES.9.2	Environmental Flows	21
	ES.9.3	Environmental-Sustainable Growth	21
	ES.9.4	Groundwater	21
	ES.9.5	Protection of Agricultural and Rural Water Resources	22
	ES.9.6	Agricultural Water Conservation	22
	ES.9.7	Municipal/ Industrial Conservation	22
	ES.9.8	Reuse	23
		Brush Control	
		Recommended Improvements to Regional Planning Process	
	ES.9.11	Other Policy Recommendations	23
	ES.10EC	OLOGICALLY UNIQUE STREAM SEGMENTS AND RESERVOIR SITES	23
	ES.11EC	ONOMIC IMPACT OF UNMET NEEDS AND INFRASTRUCTURE FUNDING	23
		BLIC PARTICIPATION	
		MAINING ISSUES AND CONCERNS	
	ES.14FOI	R MORE INFORMATION	25

LIST OF FIGURES

Figure ES.1: Lower Colorado Regional Water Planning Area (Region K)	5
Figure ES.4: Number of LCRWPA Water User Groups With Needs	
Figure ES.5: LCRWPA Identified Water Needs by Category of Use	
LIST OF TABLES	
Table ES.1 The Lower Colorado Regional Water Planning Group Voting Board Members	2
Table ES.2 Groundwater and Surface Water Supplies Available to the LCRWPA	6
Table ES.3 Estimated Return Flows (ac-ft/yr)	. 10
Table ES.4 WWP Water Management Strategies	. 10
Table ES.5 Expansion of Current Groundwater Supplies	. 12
Table ES.6 Development of New Groundwater Supplies	12
Table ES.7 Transfer Water Strategy	
Table ES.8 Allocate Water Strategy	. 13
Table ES.9 Temporary Drought Period Use of Aquifers	13
Table ES.10 Drought Management	13
Table ES.11 Municipal Water Conservation by County	14
Table ES.12 Municipal Water Management Strategies	
Table ES.13 Rice Irrigation Water Management Strategies	15
Table ES.14 Livestock, Manufacturing, and Mining Water Management Strategies	16
Table ES.15 COA Steam Electric Supplies and Water Management Strategies	
Table ES.16 Rice Irrigation Alternative Water Management Strategies (ac-ft/yr)	17
Table ES.17 LCRA Wholesale Water Supply Alternative Water Management Strategies (ac-ft/yr)	. 18
Table ES.18 Desalination of Brackish Groundwater from the Ellenburger-San Saba Aquifer (Alternati	
Strategy)	

ES. EXECUTIVE SUMMARY

ES.1 OVERVIEW

Following the guidelines provided by the Texas Water Development Board (TWDB), the Lower Colorado Regional Water Planning Group (LCRWPG) prepared this *Adopted Regional Water Plan* for the Lower Colorado Regional Water Planning Area (LCRWPA) (Region K) covering the 2010 to 2060 time period (2011 Plan). This plan has been submitted to the Texas Water Development Board (TWDB) for review and integration into a statewide water plan.

The Plan includes a description of the region, population and water demand projections, water supply analyses, water management strategies for ensuring supplies during drought-of-record (DOR) conditions, water conservation and drought management plans, consistency with the state's long-term resource protection goals, policy recommendations related to improving water management and preserving the environment, and public involvement activities.

It should be noted that local plans that are consistent with the regional water supply plan are also eligible to apply for TWDB financial assistance even though they have not been specifically recommended in this plan. The plan is comprised of the following ten chapters:

- Chapter 1: Introduction and Description of the Lower Colorado Regional Water Planning Area
- Chapter 2: Population Projections and Water Demand Projections
- Chapter 3: Identification of Currently Available Water Supplies
- Chapter 4: Identification, Evaluation, and Selection of Water Management Strategies Based on Need
- Chapter 5: Impacts of Water Management Strategies on Key parameters of Water Quality and Impacts of Moving Water From Rural and Agricultural Areas
- Chapter 6: Water Conservation and Drought Management Plans
- Chapter 7: Regional Plan Consistency with State's Long-Term Resource Protection Goals
- Chapter 8: Additional Recommendations (Including Unique Ecological Stream Segments and Reservoir Sites, Legislative Issues, and Regional Policy Issues)
- Chapter 9: Water Infrastructure Financing Recommendations
- Chapter 10: Public Involvement Activities

The LCRWPG, representing the 11 TWDB-required interest groups and two additional regional interest groups (*Table ES.1*), was responsible for the development of the Lower Colorado Regional Water Plan.

Table ES.1 The Lower Colorado Regional Water Planning Group Voting Board Members

Interest	Name	Entity	County
Public	Laura Marbury	League of Women Voters	Travis
	Bill Neve	Burnet County Commissioners Court	Burnet
Counties	Billy Roeder	Gillespie County. Commissioners Court	Gillespie
	James Sultemeier	Blanco County Commissioners Court	Blanco
Municipalities	Finley de Graffenreid	City of Llano	Llano
wrumcipanties	Teresa Lutes	City of Austin	Williamson
Industries	Barbara Johnson	Austin Area Research Organization, Inc.	Travis
Agricultural	Bill Miller	Rancher	Llano
Agricultural	Haskell Simon	Rice Industry Rep. and Farmer	Matagorda
Enringmental	Jim Barho	Protect Lakes Inks, Buchanan	Burnet
Environmental	Jennifer Walker	Sierra Club, Lone Star Chapter	Travis
Small Businesses	Ronald Gertson		Wharton
Sman Dusmesses	Rob Ruggiero		Travis
Electric. Generating Utilities	Sandra Dannhardt	STP Nuclear Operating Company	Matagorda
River Authorities	James Kowis	LCRA	Travis
	Paul Tybor	Hill Country UWCD	Gillespie
Water Districts	Ron Fieseler	Blanco-Pedernales GCD	Hays
	David Van Dresar	Fayette County GCD	Fayette
Water Utilities	John Burke	Aqua WSC	Bastrop
Othor(s)	Roy Varley		Mills
Other(s)	Bob Pickens		Colorado
Recreation	Doug Powell	Emerald Point Marina	Travis

ES.2 INTRODUCTION AND BACKGROUND

The Lower Colorado Region—designated by the TWDB as Region K—consists of all or parts of 14 counties roughly consistent with the Lower Colorado River Basin (see *Figure ES.1*).

NAVARRO HILL COMANCHE BOSQUE LEGEND Region K Boundary HAMILTON BROWN COLEMAN MCLENNAN LIMESTONE Colorado River Cities CORYELL **County Line** FALLS ICHO LAMPASAS MCCULLOCH ROBERTSON BELL SAN SABA MADISON BURNET ARD WALKER LLANO MILAM WILLIAMSON MASON BRAZOS SAN JACHNT GRIMES BURLESON KIMBLE MONTGOMERY BLANCO GILLESPIE WASHINGTON TRAVIS KERR AUSTIN KENDALL HARRIS CALDWELL FAYETTE COMAL BANDERA GUADALUPE COLORADO FORT BEND GONZALES BEXAR MEDINA LAVACA ALDE WHARTON BRAZORIA WILSON DE WITT JACKSON KARNES ATASCOSA VALA FRIO VICTORIA MATAGOR GOLIAD CALHOUN Gulf of Mexico MCMULLEN LA SALLE REFUGIO LIVE OAK BEE MMIT ARANSAS February 2010 **A**ECOM 37 Miles Source: TWDB

Figure ES.1: Lower Colorado Regional Water Planning Area (Region K)

This area relies primarily on the Colorado River; the Gulf Coast, Carrizo-Wilcox, Edwards, Trinity, and Edwards-Trinity (Plateau) aquifers; and several minor aquifers for its water supply. Small portions of the Brazos, Guadalupe, and Lavaca River Basins also lie within the region. In total, about 28 percent of dependable yield water supplies during DOR conditions come from groundwater, while the remaining 72 percent are provided by surface water throughout the planning period.

The region stretches from arid and rocky Hill Country counties that receive an average of 24 inches of rainfall annually to the humid Coastal Plain, which receives an average of 44 inches of rain per year. Average annual stormwater runoff ranges from about 350 acre-feet per square mile (ac-ft/sq mi) near the mouth of the Colorado River to less than 50 ac-ft/sq mi in the western portion of the region. During the 1950s drought, used as the DOR for calculation purposes in Region K's Plan, both of these average annual runoff values declined by about 75 percent.

The system of Highland Lakes administered by the Lower Colorado River Authority (LCRA) is a major hydrologic feature of the region that provides flood control, power generation, water supply, and recreational benefits.

ES.3 POPULATION AND WATER DEMANDS

About 78 percent of the region's population of approximately 1.4 million is currently concentrated in the rapidly growing Austin metropolitan area, which includes Travis and parts of Williamson and Hays Counties. By 2060, the population of the region as a whole is projected to more than double (2.8 million). Each of the 14 counties in the region are projected to grow significantly over the planning period, with Travis County continuing to account for nearly 68 percent of the total population for the region. The vast majority of the population growth is expected in the geographic "middle" counties (i.e., Blanco, Burnet, Hays, Travis, Williamson, Bastrop, and Fayette Counties).

The region's population now consumes about 1.1 million ac-ft of water each year, with 55 percent used for agricultural and livestock purposes, 25 percent put to municipal use, 6 percent devoted to mining and manufacturing, and the remaining percentage to electric power generation (see *Figure ES.2*). As *Figure ES.2* shows, this pattern of use is expected to change over the planning period, such that the volume of irrigation use will decrease slightly, and the proportion of total use it represents will decline significantly. The total regional water demand is projected to increase to approximately 1.4 million ac-ft/yr by the year 2060. Chapter 2 includes details concerning the population and water demands projections and how they were developed. One issue of concern for the LCRWPG is that the original population projections that the LCRWPG developed for the plan were not accepted by the TWDB staff. The LCRWPG was requested by the TWDB staff to revise the projections so that the overall totals would be lower. The LCRWPG reluctantly agreed with the request in order to proceed with the planning process, but did adopt a Resolution regarding the issue on June 10, 2009.

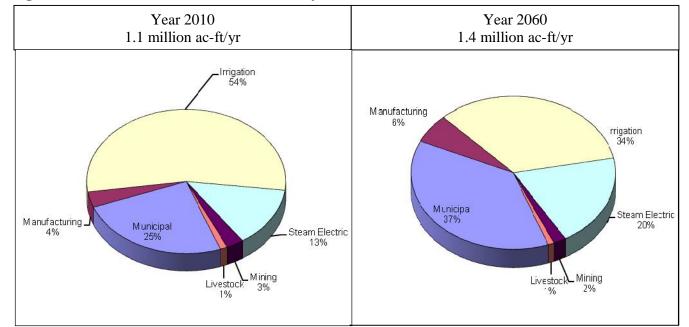


Figure ES.2: LCRWPA Water Demands (ac-ft/yr) – Year 2010 and Year 2060

ES.4 WATER SUPPLIES

Water supplies in the LCRWPA are available from 11 aquifer systems and alluvial groundwater and 6 river and coastal basins. The Colorado River Basin makes up the single largest source of surface water for the region with large volumes of water available from both run-of-river (ROR) diversion rights and water stored in reservoirs. Water available in the LCRWPA was found to total nearly 1.3 million ac-ft/yr, of which over 72 percent is from surface water sources, over the planning period.

Surface water supplies for DOR conditions for the Colorado River Basin were determined using a modified version of the Texas Commission on Environmental Quality (TCEQ) WAM (Water Availability Model) Run 3 that was developed in this round of planning by the Region K Planning Group and is referred to as the Region K Cutoff Model. This conservative model predicts water availability under DOR conditions and assumes maximum surface water diversions with no return flows to streams, and also includes in the 2011 plan a planning assumption whereby upstream water to meet downstream priority rights would not be released until some portion of the upstream needs were satisfied. This "No Call" assumption does not have legal standing and does not impact the seniority of owner's rights. This is a planning level assumption only that was agreed to by the LCRWPG solely to avoid a potential conflict with Region F. Information from WAM Run 3 runs were used when available for determining firm supplies in other basins of the LCRWPA. Local supplies (stock ponds, etc.) were assumed to be consistent with numbers previously evaluated in the 2001 Plan.

Groundwater supplies were developed from the best information available from Groundwater Management Areas (GMAs), Groundwater Availability Models (GAMs), local information from Groundwater Conservation Districts (GCDs), or information from the previous LCRWPA Plan (2006). The GMA program is still in its formative stages: most of the GMAs in the LCRWP have not yet adopted their Desired Future Conditions (DFC), thereby determining the Managed Available Groundwater (MAG)

values for their aquifers. The result is that some aquifers in some counties have MAGs, some have availabilities established by a GCD, and the rest have the availability established in the 2006 Region K Plan. The sources of groundwater availability data in this plan, in descending order of priority, are:

- 1. Managed Available Groundwater (MAG) values
- 2. Preferred availability reported to the LCRWPA by a Groundwater Conservation District (GCD). Even where a GCD has a water management plan, they may have been in the process of establishing a new availability, and were given the opportunity to have that availability included in this plan;
- 3. GCD availabilities adopted in a groundwater management plan, and;
- 4. In absence of any of the above, the availabilities established in the 2006 Region K Plan.

In the LCRWPA there are five major aquifers and six minor aquifers that provide usable groundwater supplies. Both surface water and groundwater availability for the LCRWPA are shown in *Table ES.2*.

Table ES.2 Groundwater and Surface Water Supplies Available to the LCRWPA

TOTAL LCRWPA Water Availability	1,331,715	1,302,064	1,289,453
bources outside the Region	3,130	3,321	3,042
Sources Outside the Region ³	3,136	3,327	3,642
Surface Water Subtotal	958,454	928,575	915,915
Local Supply	70,099	73,631	78,491
Reservoir	402,768	384,597	367,064
Run of River	485,587	470,347	470,360
Surface Water ²			
Groundwater Subtotal	370,125	370,162	369,896
Other Aquifer ¹	15,562	15,601	15,622
Yegua-Jackson Aquifer	20,000	20,000	20,000
Marble Falls Aquifer	14,658	14,658	14,658
Ellenburger-San Saba Aquifer	26,451	26,451	26,451
Sparta Aquifer	9,889	9,889	9,889
Queen City Aquifer	3,991	3,991	3,991
Hickory Aquifer	24,153	24,153	24,153
Edwards-Trinity (Plateau) Aquifer	1,500	1,500	1,500
Trinity Aquifer	17,600	17,598	17,311
Edwards Aquifer (Balcones Fault Zone)	9,496	9,496	9,496
Carrizo-Wilcox Aquifer	28,400	28,400	28,400
Gulf Coast Aquifer	198,425	198,425	198,42

¹ Other Aquifer refers to alluvial aquifer water supplies.

² Includes local supplies determined from 2001 Plan.

³ Includes Lake Brownwood, Brazos River Authority System, Edwards-BFZ Aquifer, and Canyon Lake Reservoir

In comparison to water availability in each decade described in the 2006 Plan, total water availability for every decade in this Plan (2011) is higher. *Figure ES.3* shows a comparison of the water availability used in developing the 2006 Plan to the water availability for the 2011 Plan (supplies from other regions were not included in this comparison).

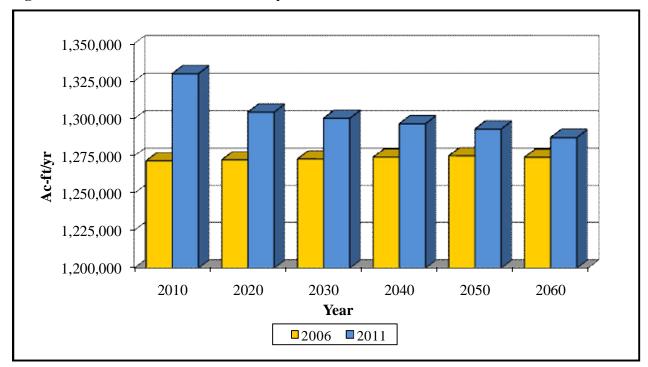


Figure ES.3: LCRWPA Water Availability – 2006 vs 2011

The total amount of water supply for the water user groups (WUGs) in Region K is less than the total available water to the region presented in *Table ES.2*. This condition exists because WUGs generally balance current needs with cost of water and provide additional supplies as they are needed throughout the planning period. As an example, a WUG on groundwater with a current need of 1 million gallons per day (mgd) will not drill wells to provide 10 mgd to meet its future needs. The water may still be available in the aquifer, but the WUG only has the capability to serve its current needs plus some adequate factor of safety. In general, water supplies for the WUGs are responsive to current needs, location relative to the source, and infrastructure limitations. There is water available in Region K that is not currently being used by WUGs because they do not have the needs right now, or they do not have the means to utilize the source at this time.

ES.5 IDENTIFIED SHORTAGES

The water supplies (Chapter 3) and projected demands (Chapter 2) for each WUG were compared to determine where shortages, or "needs," are expected to occur. The comparison identified 73 WUGs that would have projected water deficits by the year 2030 under DOR conditions. An additional 19 WUGs are shown with projected water deficits arising between 2030 and 2060.

The estimated water need under DOR conditions for all of Region K is approximately 297,000 ac-ft/yr in 2030 and 370,000 ac-ft/yr in 2060. This identified shortage is based on conservative water availability

estimates, which assume (1) only water that is available during a repeat of the historical drought of record (DOR), (2) that all water rights are being fully and simultaneously utilized, and (3) excludes both water available from the Lower Colorado River Authority (LCRA) on an interruptible basis and water projected to be available as a result of municipal return flows to the Colorado River. Based upon these assumptions, water needs have been identified in all of the six water use categories, as shown in *Figure ES.4*, which illustrates the distribution of the number of WUGs with identified water needs in the years 2030 and 2060. *Figure ES.5* shows the magnitude of the identified needs by water use category for the years 2030 and 2060.

Note in *Figures ES.6* and *ES.7* that the category with the largest number of user groups with potentially unmet needs is in the category of municipal users. Irrigation shortages, which are expected to be the largest shortage in 2030, are reduced in 2060.

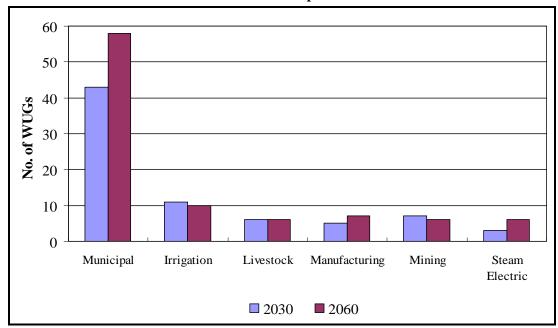


Figure ES.4: Number of LCRWPA Water User Groups With Needs

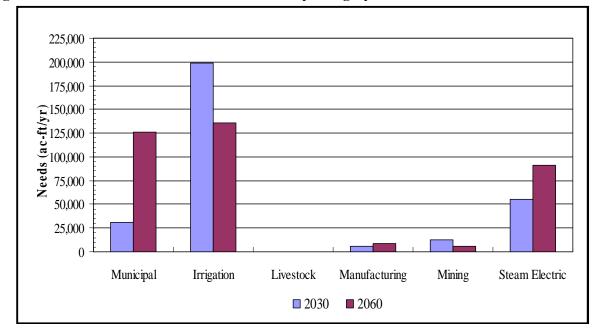


Figure ES.5: LCRWPA Identified Water Needs by Category of Use

ES.6 MANAGEMENT STRATEGIES AND IMPACTS

Several management strategies were assembled to provide for the unmet water needs identified above. Many of the shortages were met with the extension of existing contracts, new contracts, or allocation of existing supplies. Other strategies are more extensive and will require the implementation of conservation measures, drought management, or the construction of additional infrastructure.

ES.6.1 Utilization of Return Flows

Approximately 60 percent of all municipal diversions by the City of Austin (COA) and others are currently returned to the Colorado River as effluent discharges. Unless otherwise authorized by permit, once discharged to the river, this water is subject to diversion under existing water rights' permits. Further, state law currently allows a water right holder to directly reuse all of its effluent unless its permit restricts such use. The City of Austin does reuse a portion of its return flows, with the remainder being available for downstream use. The Region K Cutoff Model for the Colorado River that was used for this round of planning excludes all sources of return flows in the model when determining water availability.

This exclusion of return flows in the model leads to identification of water shortages for entities that currently use and rely upon the return flows. For purposes of this plan, the strategies considered projected return flows discharged by the COA, the City of Pflugerville, and Aqua Water Supply Corporation. Strategies related to COA's reuse of treated effluent are described in Chapter 4. This plan assumed projected levels of effluent to be discharged by the City of Pflugerville and Aqua Water Supply Corporation of 60 percent of the total projected demand for raw water in 2060, or about 12,500 ac-ft/yr. Effluent not being reused by Austin and these other projected levels of effluent were made available to

water rights according to the prior appropriation doctrine. *Table ES.3* shows the estimated amount of return flows that would be released to the river after any direct reuse occurs.

Table ES.3 Estimated Return Flows (ac-ft/yr)

Return Flows	2010	2020	2030	2040	2050	2060
Projected COA Effluent minus reuse	98,638	99,792	105,750	116,775	124,632	132,660
Projected Pflugerville and Aqua WSC Effluent			1,250	5,000	9,375	12,500

ES.6.2 Wholesale Water Provider (WWP) Management Strategies

LCRA and COA provide water to a large portion of the LCRWPA. Management strategies implemented at the WWP level are capable of alleviating the majority of the shortages within the LCRWPA. *Table ES.4* shows the strategies associated with each of these WWPs and the amounts of water made available to meet the needs of WUGs with shortages.

Table ES.4 WWP Water Management Strategies

WWP	Street core	Supply From WMS (acre-feet per year)						
WWP	Strategy	2010	2020	2030	2040	2050	2060	
	Irrigation Water Right Amendments 1	43,000	47,000	55,000	65,000	65,000	106,600	
	Available Interruptible Water for Irrigation	255,493	196,568	137,643	78,718	19,793	0	
	New Contracts	300	35,864	37,082	59,722	60,477	70,210	
	Contract Amendments	2,862	4,340	5,176	7,488	9,965	11,953	
r cp + 2	LCRA-SAWS Water Project		201,950	201,950	201,950	201,950	201,950	
LCRA ²	Unappropriated Flows and Off-Channel Storage						47,000	
	Enhanced Municipal and Industrial Conservation			2,000	10,000	20,000	20,000	
	Aquifer Storage and Recovery				10,000	10,000	10,000	
	Reuse by Highland Lakes Communities		500	2,000	5,000	5,000	5,000	
	Commitment Reductions ³	0	(15,000)	(17,000)	0	0	0	
	Conservation	11,030	18,795	24,036	25,385	30,401	36,370	
City of Austin	Direct Reuse (Municipal & Manufacturing)	5,143	13,620	22,077	30,268	36,218	40,468	
City of Austin	Direct Reuse (Steam Electric) Travis	2,315	3,315	7,315	8,315	12,315	13,315	
	Purchase Water from LCRA (Steam Electric)	0	0	0	20,975	20,975	26,895	

¹ These amendments are proposed to meet increased municipal and industrial demand within the lower Colorado River Basin and are also a necessary component of the LSWP.

ES.6.2.1 LCRA Management Strategies

LCRA proposes the use of portions of its Garwood, Pierce Ranch, Lakeside, and Gulf Coast Irrigation Operations' irrigation rights as well as the Highland Lakes as a system for meeting municipal and industrial needs throughout the basin. These amendments to the existing water rights would be made possible through conservation and other programs to reduce overall irrigation demands in the lower basin as part of the Lower Colorado River Authority-San Antonio Water System (LCRA-SAWS) Water

² LCRA's irrigation strategies are discussed in Section ES.6.5.

³ Reduction in LCRA commitments due to improved efficiency in Ferguson and COA reuse. The use of this strategy is based on calculated surpluses shown in the 2011 Region K Plan only and does not assume that any legal changes to existing commitments would occur as a result of this strategy.

Project¹ (LSWP). These ROR rights could be reallocated by incorporating them into a system operation yield through the use of off-channel reservoirs to capture unused firm yield water as well as some peak flows. An amount of the additional yield created by the LSWP, totaling up to 150,000 ac-ft/yr, is intended for use by Region L in meeting their needs on a temporary basis until up to 2090. In addition, the LCRA is seeking a permit for the remaining unappropriated flows in the Colorado River Basin to help meet future water needs in this basin and in San Antonio.

A portion of this water would be available to expand existing contracts within the basin and provide water to new customers. The Plan also recommends new contracts and the amendment of existing contracts to better allocate supplies to needs in the LCRWPA. Additional water supply options include enhanced municipal/industrial conservation, aquifer storage and recovery (ASR), and reuse by communities around the Highland Lakes.

ES.6.2.2 COA Management Strategies

The COA plans to meet its future needs with a combination of conservation, municipal effluent reuse, and purchasing additional water from LCRA for steam-electric demands. The COA conservation program has been successful at making significant impact upon peak and average water demands, and this strategy aims to further reduce demands placed on the city's supplies by continuing these efforts. Reclaimed water will be used, to provide for municipal, manufacturing, and steam electric demands, and this resource will be used in a continuously greater capacity through the decades of the planning period. These supplies will allow COA to meet its own demands and the needs of its wholesale customers.

ES.6.3 Regional Water Management Strategies

For municipal WUGs with shortages, water conservation was considered before these regional strategies. Amounts of water produced from conservation strategies are shown in *Table ES.10*.

The strategies selected to provide for unmet needs on a regional basis include expansion of current groundwater supplies, development of new groundwater supplies, the transfer or allocation of water from WUGs that have an anticipated surplus through 2060, and drought management. The expansion of current groundwater supplies involves the pumpage of additional water from groundwater sources by WUGs already served by groundwater. WUGs that are recommended to develop new groundwater supplies will need to construct new well fields to obtain the additional supplies. The transfer and allocation of water is intended to utilize water that is in excess of a WUG's anticipated demands through the 2060 decade. Temporary drought period use of aquifers was recommended for a few WUGs in the LCRWPA, to be carried out only when maximum demands corresponded with minimum anticipated supplies. Drought management was recommended for a few WUGs that are either already incorporating drought management through existing regulations, or for WUGs that have limited options for additional supply. In the future, the planning group may decide to recommend drought management on a more region-wide basis, as conservation is.

Table ES.5 lists aquifers recommended for expansion of current groundwater supplies and the amount of additional water supplies obtained from each. This strategy will provide supplies to WUGs in Bastrop, Burnet, Colorado, Fayette, Hays, Llano, Matagorda, Mills, Travis, and Wharton Counties.

_

¹ This project is the subject of litigation. For a description of the status of the project *see* p. 4-35.

Table ES.5 Expansion of Current Groundwater Supplies

Agyifan	Water Management Strategies (ac-ft/yr)									
Aquifer	2010	2020	2030	2040	2050	2060				
Carrizo-Wilcox	4,350	5,815	8,476	9,779	12,950	12,920				
Ellenburger-San Saba	681	756	788	1,229	1,633	2,076				
Gulf Coast	4,486	4,261	3,659	2,573	1,185	1,409				
Hickory	62	62	62	62	62	62				
Queen City	98	40	40	31	24	17				
Sparta	188	208	129	129	129	129				
Trinity	428	431	988	937	1,147	1,124				
Yegua-Jackson	0	0	0	0	0	9				
Other Aquifer	0	416	777	1,366	2,017	2,814				
TOTAL	10,293	11,989	14,919	16,106	19,147	20,560				

The strategy to develop new groundwater supplies will require the construction of new well fields to deliver groundwater to WUGs in Bastrop, Colorado, Fayette, Hays, and Llano Counties. The development of new groundwater supplies from the Edwards-BFZ would involve a new well field over the Saline Zone of the Edwards-BFZ Aquifer in eastern Travis County that would pump saline groundwater. Desalination of the water would occur on-site prior to connecting to an existing distribution system that would distribute the water to customers in southern Travis and northern Hays County. The new supplies from this strategy are shown in *Table ES.6*.

Table ES.6 Development of New Groundwater Supplies

_										
A anifon	Water Management Strategies (ac-ft/yr)									
Aquifer	2010	2020	2030	2040	2050	2060				
Carrizo-Wilcox	0	1,687	1,687	1,687	2,662	2,933				
Edwards-BFZ*	0	250	2,750	2,850	5,500	7,100				
Ellenburger-San Saba	478	478	478	478	519	542				
Hickory	512	488	406	331	261	196				
Queen City	0	0	0	0	0	580				
Trinity	0	0	75	200	301	400				
Other Aquifer	4,291	4,291	4,370	4,582	4,839	5,180				
TOTAL	5,281	7,194	9,766	10,128	14,082	16,931				

^{*} This strategy uses brackish groundwater from the Saline Zone of the Edwards-BFZ Aquifer

The transfer strategy was utilized for WUGs with shortages that are located in multiple counties or basins. This strategy moves the surplus from the county/basin with the surplus to the one with the shortage. The WUG receiving the transferred supplies is shown in *Table ES.7*.

Table ES.7 Transfer Water Strategy

WUG Name	Country	River	Wa	ter Man	agement	Strategi	ies (ac-ft	/yr)
WUG Name	County	Basin	2010	2020	2030	2040	2050	2060
Goforth WSC	Travis	Colorado	11	21	30	37	43	48
TOTAL				21	30	37	43	48

The allocate water strategy typically moves water from a County-Other WUG to various WUGs with shortages in the same county. The supplies that are being reallocated were estimated in the 2001 Plan. The water demands have changed and the number of WUGs included in County-Other has changed since the last plan; therefore, this strategy involves adjusting the 2001 supply allocation estimates to better represent the current plan conditions. The WUGs receiving the allocated supplies from this strategy are shown in *Table ES.8*.

Table ES.8 Allocate Water Strategy

WUG Name	Commuter	River	Water Management Strategies (ac-ft/yr)						
W UG Name	County	Basin	2010	2020	2030	2040	2050	2060	
Cimarron Park Water Company	Hays	Colorado	17	110	0	0	0	0	
Irrigation	Mills	Colorado	50	0	0	0	0	0	
TOTAL				110	0	0	0	0	

Temporary drought period use of aquifers was found to be the most cost-effective strategy for two WUGs in the LCRWPG. During some severe drought periods, these WUGs would use groundwater in excess of the sustainable yield of the aquifer temporarily to meet their needs. This strategy would only be required to meet drought shortages and would not pose a long-term impact on the aquifer. *Table ES.9* lists the WUGs that this strategy has been recommended for and the supplies expected to be pumped in excess of the groundwater sustainable yield.

Table ES.9 Temporary Drought Period Use of Aquifers

WUG Name	County	River	Aguifer	Water Management Strategies (ac-ft/yr)						
	County	Basin	Aquirei	2010	2020	2030	2040	2050	2060	
Irrigation	Bastrop	Brazos	Queen City	21	10	0	0	0	0	
Manufacturing	Matagorda	Colorado	Gulf Coast	0	0	0	0	0	47	
TOTAL					10	0	0	0	47	

Drought management was found to be a cost-effective strategy for some WUGs that have limited options for new supplies or that already reduce their water use significantly during times of critical drought. This strategy involves using public outreach and potentially enforcement to encourage communities to reduce their water use during times of drought by restricting outdoor watering. *Table ES.10* lists the WUGs that this strategy has been recommended for and the water savings expected.

Table ES.10 Drought Management

WUG Name	Country	River	Water Management Strategies (ac-ft/yr)						
W UG Name	County	Basin	2010	2020	2030	2040	2050	2060	
Aqua WSC	Bastrop	Colorado						898	
Elgin	Bastrop	Colorado						265	
Smithville	Bastrop	Colorado						288	
Cimarron Park Water									
Company	Hays	Colorado	109	109	109	109	109	109	
Mountain City	Hays	Colorado	39	39	39	39	39	39	
Manufacturing	Hays	Colorado	257	257	257	257	257	257	
Goldthwaite	Mills	Colorado	56	56	56	56	56	56	
TOTAL			461	461	461	461	461	1,912	

ES.6.4 Municipal Water Management Strategies

Various municipal water management strategies were selected in addition to the regional management strategies recommended above. Water conservation was a general strategy and was applied to a number of WUGs throughout the LCRWPA, while other strategies were intended for individual WUGs or groups of WUGs.

Conservation was recommended as the first strategy for all municipal WUGs within the LCRWPA that were expected to have a shortage and had a per capita demand in excess of 140 gallons per capita per day (gpcd). The LCRWPG recommends a 1 percent reduction in per capita use annually for all municipal WUGs with shortages and per capita usage above 140 gpcd. *Table ES.11* shows the total reduction in water demand in each WUG by decade and county.

Table ES.11 Municipal Water Conservation by County

Country		Water Saving	gs from Munic	ipal Conserva	tion (ac-ft/yr)	
County	2010	2020	2030	2040	2050	2060
Bastrop	262	475	795	1,224	1,438	1,728
Burnet	298	758	1,351	2,043	2,685	3,408
Fayette	43	104	157	159	167	184
Hays	107	294	483	558	666	755
Llano	1,108	1,645	2,127	2,492	2,858	3,225
Mills	47	100	147	187	223	259
San Saba	13	22	19	15	14	15
Travis 1	12,579	21,830	28,583	31,383	37,790	45,172
Wharton	41	29	18	8	4	4
TOTAL	14,498	25,257	33,680	38,069	45,845	54,750

¹ The amount of savings from Conservation for the City of Austin was provided by City of Austin and is included in this table as well as in *Table ES.4*

Other strategies to reduce needs for specific WUGs can be categorized into two types of strategies:

- Water transmission strategies
- Reservoir strategies

Table ES.12 lists each strategy and WUG with its associated supply of water it would receive from the strategy.

Table ES.12 Municipal Water Management Strategies

Stuatogy	WUGs	Supply From WMS (ac-ft/yr)						
Strategy	WUGS	2010	2020	2030	2040	2050	2060	
Water Transmission								
Purchase SW From COA	Hays County-Other	1,100	1,100	1,100	1,100	1,100	1,100	
HB 1437	Round Rock	126	246	349	426	536	645	
Reservoir Strategies								
Goldthwaite Channel Dam	Goldthwaite	0	0	0	0	0	0	
TOTAL		1,226	1,346	1,449	1,526	1,636	1,745	

ES.6.5 Irrigation Water Management Strategies

Rice irrigators in Colorado, Wharton, and Matagorda Counties have the greatest anticipated needs and would be expected to experience a shortage in every decade if the DOR were repeated. For this reason, irrigation management strategies were selected with the interests of these growers in mind. *Table ES.13* shows each recommended water management strategy (WMS) for rice irrigation and the anticipated yield of each strategy.

Table ES.13 Rice Irrigation Water Management Strategies

Continued Use of Austin Return Flows 18,665 19,687 22,900 27,781 30,382 Continued Use of Downstream Return Flows 1 Downstream Return Flows 1 Downstream Return Flows 2 Downstream Return Flows 3 Downstream Return Flows 3 Downstream Return Flows 3 Downstream Return Flows 4 Downstream Return Flows 1 Downstream Return Flows 2 Downstream Return Flows 2 Downstream Return Flows 1 Downstream Return Flows 1 Downstream Return Flows 2 Downstream Return F	2060 33,838 2,125 0 34,150
Return Flows 18,665 19,687 22,900 27,781 30,382 Continued Use of Downstream Return Flows 1 0 0 213 850 1,594 Water Management Plan-Interruptible Water Supply 255,493 196,568 137,643 78,718 19,793 On-Farm Conservation Irrigation District 34,150 34,150 34,150 34,150	2,125
Continued Use of Downstream Return Flows 1 0 0 213 850 1,594 Water Management Plan-Interruptible Water Supply 255,493 196,568 137,643 78,718 19,793 On-Farm Conservation Irrigation District 34,150 34,150 34,150 34,150	2,125
Downstream Return Flows 0 0 213 850 1,594	0
Water Management Plan- Interruptible Water Supply 255,493 196,568 137,643 78,718 19,793 On-Farm Conservation Irrigation District 34,150 34,150 34,150 34,150	0
Interruptible Water Supply 255,493 196,568 137,643 78,718 19,793 On-Farm Conservation 34,150 34,150 34,150 34,150 Irrigation District 34,150 34,150 34,150	
On-Farm Conservation 34,150 34,150 34,150 34,150 Irrigation District 34,150 34,150 34,150	
Irrigation District	34,150
Irrigation District	34,150
Conveyance Improvements 65,000 65,000 65,000 65,000	
	65,000
Conjunctive Use of	
	62,000
Development of New Rice	
Varieties 40,800 40,800 40,800 40,800	40,800
LSWP Subtotal	201,950
Figure POP W/4, Off	
Firm up ROR With Off- Channel Reservoir	47,000
HB 1437 4,000 4,000 4,000 4,000 14,800	25,000
	71,381)
Amendment to Irrigation	
Rights for Municipal and	
Industrial Needs (25,365) (42,769) (50,769) (57,769) (67,769) (9	90,487)
TOTAL 252,793 379,436 315,937 255,530 200,750 1	148,045

The downstream return flows are from Pflugerville and Aqua WSC.

For Irrigation WUGs with shortages outside of Colorado, Matagorda, and Wharton Counties, the following regional WMSs were selected:

- Expansion of current groundwater supplies
- Transfer/Allocate water from WUGs with surplus

• Temporary drought period use of aquifer

ES.6.6 Livestock, Manufacturing, and Mining Water Management Strategies

The expansion of current groundwater supplies and the development of new groundwater supplies were selected to meet the minor shortages expected for mining and livestock uses. For manufacturing shortages, strategies such as the expansion of current groundwater supplies, transfer/allocate water from WUGs with surplus, and temporary drought period use were recommended. *Table ES.14* shows the supplies for each category that were used to meet these shortages. These strategies were also discussed in the regional strategy section.

Table ES.14 Livestock, Manufacturing, and Mining Water Management Strategies

Catagomy	Supply to Meet Shortages (ac-ft/yr)									
Category	2010	2020	2030	2040	2050	2060				
Livestock	188	188	188	188	188	188				
Manufacturing	310	344	454	612	741	934				
Mining	13,550	13,146	12,366	6,972	5,574	5,794				
TOTAL	14,048	13,678	13,008	7,772	6,503	6,916				

ES.6.7 Steam Electric Water Management Strategies

Several strategies were selected to meet shortages in steam electric power demands including the regional strategy of expanding current groundwater supplies. Additional strategies were recommended that would be carried out by LCRA, COA, STP Nuclear Operating Company (STPNOC), and other existing or future steam-electric power facilities.

LCRA has selected the use of water taken from the current Garwood water right to provide for steam electric demands at the Fayette Power Project. Both the Fayette facility and the Garwood Irrigation Operation are operated by LCRA. The reallocation of this supply is described above in Section ES.6.2 and explained in detail in Chapter 4.

COA expects to meet the needs of steam electric facilities in Fayette and Travis Counties through the City's ROR rights, LCRA firm water supplies, and effluent reuse. These strategies are shown below in *Table ES.15* with the anticipated supplies from each.

Table ES.15 COA Steam Electric Supplies and Water Management Strategies

COA Strategies	Supply to Meet Shortages (ac-ft/yr)								
COA Strategies	2010	2020	2030	2040	2050	2060			
Supplies									
COA Run-of-River	8,420	8,420	8,420	8,420	8,420	8,420			
LCRA Contracts	18,674	18,674	18,674	18,674	18,674	18,674			
Strategies									
Purchase from LCRA				20,975	20,975	26,885			
Direct Reuse	2,315	3,315	7,315	8,315	12,315	13,315			
Reduction in LCRA Commitment ¹		(3,000)	(5,000)						
TOTAL	29,409	27,409	29,409	56,384	60,384	67,294			

The use of this strategy is based on calculated surpluses shown in the 2011 Region K Plan only and does not assume that any legal changes to existing commitments would occur as a result of this strategy.

STPNOC will continue to meet its demands with a variety of supplies from ROR rights, existing offchannel reservoirs, and groundwater. Several strategies have also been included to meet deficits that cannot be met with these current supplies. These strategies include, but are not limited to:

- A water right permit amendment
- Blending brackish surface water in their existing reservoir
- Rainwater harvesting

ES.6.8 Alternative Water Management Strategies

The viability of the future LSWP² water management strategy and its use to meet various needs in Region K is currently unclear. As such, the LCRWPG desired to identify alternative strategies that would meet the various needs if the LSWP strategy was no longer an option. In addition, the LCRA is looking at several options to help meet future needs in the decades to come, and would like to include some of the potential strategies as alternative strategies while the evaluation process continues. Mills County is also looking at a potential alternative to meet the needs in their county.

Rice irrigation in the Lower Basin is one water user that has a significant portion of its needs met by the LSWP strategy through agricultural conservation and groundwater development. The recommended group of alternative strategies to meet these specific needs is shown below in *Table ES.16*.

Table ES.16 Rice Irrigation Alternative Water Management Strategies (ac-ft/yr)

Water Management Strategy	2010	2020	2030	2040	2050	2060
Expansion of Gulf Coast						
Aquifer	0	10,000	10,000	10,000	10,000	10,000
Off-Channel Storage in						
Reservoirs	0		30,000	40,000	40,000	40,000
On-Farm Conservation	0	20,000	20,000	35,000	35,000	35,000
Irrigation District Delivery						
System Improvements	0	20,000	25,000	40,000	48,000	48,000
Conjunctive Use of						
Groundwater Resources	0	0	0	0	15,000	15,000
Enhanced Recharge of						
Groundwater	0	0	0	0	17,200	17,200
Total	0	50,000	85,000	125,000	165,200	165,200

Alternative new water supply options for LCRA were also developed using their Water Supply Resource Plan. This water would provide additional firm yield to LCRA as a wholesale water provider and could be used to meet various needs throughout Region K, including irrigation needs. *Table ES.17* shows these alternative strategies and the amounts of water they could provide.

² This project is the subject of litigation. For a description of the status of the project *see* p. 4-35.

Table ES.17 LCRA Wholesale Water Supply Alternative Water Management Strategies (ac-ft/yr)

Water Management Strategy	2010	2020	2030	2040	2050	2060
Groundwater Importation	0	0	0	35,000	35,000	35,000
Brackish Desalination of the Gulf Coast Aquifer	0	0	0	22,400	22,400	22,400
Total	0	0	0	57,400	57,400	57,400

Mills County, in coordination with Fox Crossing Water District, has shown interest in a strategy involving the desalination of brackish groundwater from the Ellenburger-San Saba Aquifer. Due to the implementation cost of the strategy, it is not necessarily the most viable strategy at this time, but placing it in the Plan as an alternative strategy allows the county to keep their options open and allow for future growth. Chapter 4 provides more detail on this strategy. *Table ES.18* lists the amount of water available from the strategy.

Table ES.18 Desalination of Brackish Groundwater from the Ellenburger-San Saba Aquifer (Alternative Strategy)

WUG Name	County	River	Water Management Strategies (ac-ft/yr)							
WUG Name	County	Basin	2010	2020	2030	2040	2050	2060		
County-Other	Mills	Colorado	0	0	384	384	384	384		

ES.7 MANAGEMENT STRATEGY IMPACTS

The impacts associated with water management strategies were considered throughout the selection process, and strategies that imposed minimal impacts on the environment existing resources were weighted more favorably than less desirable strategies. The LCRWPG considered impacts to a number of resources, including:

- Water quality
- Existing water rights
- Instream flows
- Bay and estuary freshwater inflows
- Sustainable aquifer yield
- Agricultural water resources
- Threatened and endangered species
- Wildlife habitat
- Public lands

While reuse is projected to increase, municipal return flows are also projected to increase over the planning period. When available, downstream water rights can continue to divert, in seniority order, these return flows. Because the exact amount of reuse and downstream diversion cannot be determined, the amount of return flow available for environmental purposes is uncertain.

The construction of a channel dam on the Colorado River at Goldthwaite would have minor impacts on instream flows but would not affect downstream water rights, as the right for this reservoir would be junior to all existing permits.

The transfer of water anticipated under HB 1437 would constitute an inter-basin transfer to the Brazos River Basin. With this distinction comes the potential for environmental impacts from the introduction of invasive species and issues resulting from mixing water supplies from multiple sources. The greatest potential impacts on the Colorado River Basin would result from the reduced streamflow resulting from the transfer. LCRA will continue to meet the environmental flow requirements as specified in its Water Management Plan (WMP).

The 2002 State Water Plan included a proposal to temporarily transfer up to 150,000 ac-ft/yr of water from the Lower Colorado River Basin to the Region L water planning area. The objective of this proposal was and is to satisfy long-term water shortages in both Region K and Region L. In 2001, the Region K planning group also considered and passed a nine-point policy to be considered by the regional planning group in evaluating the proposed inter-basin transfer of this water to Region L (refer to Chapter 8 Section 8.2.1).

In 2004, LCRA entered into an agreement with SAWS³ to effectuate this proposal. Prior to finalizing the agreement with SAWS, specific legislation was enacted that imposes several restrictions and requirements on the LSWP (Texas Water Code § 222.030). Specifically, the LCRA Board must find that the contract:

- 1. Protects and benefit the Lower Colorado River watershed and the authority's water service area, including municipal, industrial, agricultural, recreational, and environmental interests
- 2. Is consistent with regional water plans filed with the Texas Water Development Board on or before January 5, 2001
- 3. Ensures that the beneficial inflows remaining after any water diversions will be adequate to maintain the ecological health and productivity of the Matagorda Bay system
- 4. Provides for instream flows no less protective than those included in the authority's WMP for the Lower Colorado River Basin, as approved by the commission
- 5. Ensures that, before any water is delivered under the contract, the municipality has prepared a drought contingency plan and has developed and implemented a water conservation plan that will result in the highest practicable levels of water conservation and efficiency achievable within the jurisdiction of the municipality
- 6. Provides for a broad public and scientific review process designed to ensure that all information that can be practicably developed is considered in establishing beneficial inflow and instream flow provisions
- 7. Benefits stored water levels in the authority's existing reservoirs

These and additional requirements contained in the legislation and final agreement between LCRA and SAWS mirror many of those contained in the nine-point policy of the 2001 Plan.

_

³ This project is the subject of litigation. For a description of the status of the project *see* p. 4-35.

Regional strategies such as conservation, expanded use of groundwater, and development of new groundwater resources are thought to have minimal effects on the environment and natural resources. Preserving a sustainable level of groundwater resources and specifically spring flows is important in maintaining endangered species habitat. Information concerning the impacts of specific strategies can be found in Chapter 4. Chapter 5 discusses the impacts of strategies on water quality and rural areas. Finally, Chapter 7 includes information about the overall impacts of the Plan on water, agricultural, and natural resources of the State.

ES.8 WATER CONSERVATION AND DROUGHT MANAGEMENT

Water conservation is recommended for all water user groups, although it is calculated and applied in the tables only for WUGs with shortages. Drought management plans are required for all WUGs to address brief periods of water shortage, but are not recommended as long-term management strategies. Drought management plans typically force conservation over a limited period of time. To achieve a sustained reduction in demand, water conservation strategies must be implemented, so that water users do not perceive the required changes as being temporary. Chapter 6 provides information on what types of conservation measures are currently being implemented.

ES.9 POLICY RECOMMENDATIONS

The regional water planning process provides for RWPGs to make any recommendations they see as desirable regarding regulatory, administrative, or legislative changes to foster wise water planning and water use. Planning Group members deliberated at length about such changes and adopted a series of resolutions reflecting the recommendations outlined below.

ES.9.1 Management of Surface Water Resources

The LCRWPG recognizes the growing need for use of surface water resources from regions with more plentiful supplies to meet the demands of regions with insufficient water supplies through inter-basin transfer (IBT). However, as this need grows, there is also a growing need for implementing policies that are aimed at protecting the state's surface water supplies. The LCRWPG proposed four major points of policy on protection of surface water resources in order to meet this challenge.

The LCRWPG previously devised and adopted a nine point policy for transporting water outside the Colorado River Basin in the 2001 planning round. These points have been revised and are, again, adopted for this Plan. These guidelines directly impact the proposed water transfers to the South Central Texas RWPG but would also apply to other potential customers for surface water supplies from the LCRWPA.

The LCRWPG also recommended the development of models that will be capable of estimating the interaction between groundwater and surface water. Studying the linkage between these two resources will provide a better understanding of how the complete system behaves when impacted by significant events such as droughts or flooding and would be especially important in areas with close groundwater and surface water interaction. Estimates of the impacts of pumpage on aquifers were in some cases determined by maintaining a percentage of spring flow contributing to a surface resource, so the LCRWPG is already moving in this area.

The conjunctive use of groundwater and surface water was also recommended by the LCRWPG. The combined use of these two resources would be conducted in a way which would minimize the use of groundwater when surface water was available and manage aquifers for sustainable yield.

New electrical generation facilities should provide reasonable assurance that surface and groundwater are available, can be developed, or can be obtained during the facility planning and permitting process.

ES.9.2 Environmental Flows

Maintaining streamflows to lower reaches and, ultimately, bay and estuary systems is recognized as a major goal for the regional water planning process. Many authorized water diversions were issued prior to the addition of restrictions to protect environmental flows. The LCRWPG recommends legislative changes to protect instream flows by issuing permits with thorough mitigation plans that would assure the maintenance of appropriate environmental flows, and that existing water rights be converted to environmental uses through a voluntary sale or lease of underutilized water rights. In places where unpermitted water is available, the State should set aside water in order to assure critical flows and include provisions in all new permits that would further protect these flows.

ES.9.3 Environmental-Sustainable Growth

The LCRWPG recognizes the complexities and the seemingly insurmountable political obstacles that prevent the adoption of growth management plans. Therefore, it is the LCRWPG's recommendation that the issue of sustainable growth be addressed primarily through educational efforts. The LCRWPG strongly supports the proposed state-wide Water IQ public education campaign and encourages that this campaign be saturated with information regarding the finite nature of water resources and the inescapable trade-offs that inevitably must occur when water use in a given geographic area or economic sector increases. Care must be taken in such a program to highlight the need for a balance to be sought among competing water uses that would ensure the maintenance of:

- Healthy riparian, riverine, estuarine, and hardwood bottomland ecosystems
- Historic cultural resources
- Regional economic opportunities
- Agricultural development
- Preservation of rural communities

ES.9.4 Groundwater

Groundwater is an important resource throughout the state of Texas for many communities with no reasonable means of alternative water sources. The role of protecting these supplies has been given to GCDs which are able to manage groundwater with an insight into local needs and concerns. The LCRWPG supports the power of the GCDs to modify the Rule of Capture in order to preserve groundwater quality and quantity but recognizes the authority of the Rule of Capture in locations where no GCD exists. The LCRWPG also supports the creation of a GCD within the LCRWPA if the need arises for such an entity at the local level.

Region K supports GMA-wide cooperation in management of groundwater resources, while also recommending certain improvements to the process provided by HB 1763 of the 79th Legislature. Region K recommends that GCDs be required to manage the resource as necessary for meeting the DFCs

set forth in their management plans and ratified through the GMA MAG process rather than using the MAG as a cap on groundwater permitting. Region K supports the use of GMA-wide average DFCs in conjunction with GMA-established pumping patterns as a means of expediting the establishment of MAG numbers. However Region K also understands that an aquifer can vary within a GMA and may require different DFCs to effectively manage the aquifer.

As noted above, the LCRWPA supports the management of groundwater resources at the sustainable level wherever possible. Sustainability is defined as balancing groundwater withdrawals with natural recharge and replenishment to maintain long-term stability in regional or local groundwater supplies. GCDs should incorporate the best available information to assure that this is done.

LCRWPG recommends establishing coordination between water marketing proposals with local GCDs and RWPGs and requiring state agencies to comply with all local GCD rules and state-certified groundwater management plans and all state and regional water plans. LCRWPG also recommends requiring all groundwater export or water marketing projects to coordinate with local GCDs and RWPGs.

LCRWPG supports the funding needs of the TWDB in order to continue maintaining state-wide groundwater databases.

ES.9.5 Protection of Agricultural and Rural Water Resources

The view of the LCRWPG is that agricultural industries and rural areas are vital to the State. Accordingly, water transfers to serve unmet needs in more urbanized areas should be based on more factors than simply market-driven conditions. Water resources in these areas should be protected through strengthening of GCDs, encouraging the interaction of agricultural and rural users to those in the water market and planning arenas, and protecting IBT source basins.

ES.9.6 Agricultural Water Conservation

The LCRWPG supports further efforts to promote agricultural conservation practices. The large magnitude of agricultural demands indicates a strong potential for making a major reduction in overall demand through conservation. In particular, the LCRWPG supports increased funding of programs such as the Natural Resources Conservation Service (NRCS) Environmental Quality Incentives Program (EQIP) and future cooperation between municipalities and farmers as in the LSWP.

ES.9.7 Municipal/ Industrial Conservation

The LCRWPG supports efforts to promote municipal and industrial conservation practices. The LCRWPG supports the development of a consistent methodology for calculating gallons per capita per day (GPCD), by the Texas Water Conservation Advisory Council (TWCAC). Consistent water savings metrics, additional financial assistance to reduce water loss, conservation coordinators, conservation messaging coordination, property owners' associations' outdoor water use policies, dedicated conservation funding are conservation practices that the LCRWPG supports. More information on these water conservation practices can be found in Chapter 8.

ES.9.8 Reuse

The LCRWPG supports reuse as a water management strategy but acknowledges that the practice has many complex issues that may have long-term impacts. The LCRWPG looks to continue monitoring of legislative activity involving reuse and supports further review of planned reuse projects.

ES.9.9 Brush Control

The LCRWPG has chosen to adopt a policy to recommend and promote voluntary brush control in the LCRWPA and recommend that state and federal funds be made available to support this effort.

ES.9.10 Recommended Improvements to Regional Planning Process

Six recommendations were made by the LCRWPG to improve and strengthen continued regional water planning efforts. These include the following points:

- The State should work to coordinate water quantity planning along with water quality planning in the form of the Texas Clean Rivers Program.
- The State should continue funding for data collection that is essential for decisions made in the water planning process.
- The State should continue to provide assistance to the RWPGs in the form of public information materials and administrative support.
- The State should continue the commitment to diversity set forth by the State by improved representation by women and minorities.
- The State should structure the planning process to include and plan for environmental needs.
- The State should provide adequate and timely funding for the regional water planning process to aid in developing effective and environmentally responsible strategies to meet future water needs.

ES.9.11 Other Policy Recommendations

The LCRWPG also made the following recommendation:

• The State should provide sufficient funding to aid rural communities in treating radionuclides in the Hickory and Marble Falls aquifers and disposing of radioactive wastes generated by the process.

ES.10 ECOLOGICALLY UNIQUE STREAM SEGMENTS AND RESERVOIR SITES

No sites are recommended for designation for this planning cycle.

ES.11 ECONOMIC IMPACT OF UNMET NEEDS AND INFRASTRUCTURE FUNDING

This section was not complete at the time of submittal, but will be included in the Final 2011 Regional Water Plan for the LCRWPA.

ES.12 PUBLIC PARTICIPATION

Regional Planning Group members reached out to interest groups, civic leaders, small water utilities, and the public-at-large. The LCRWPG will have held more than 20 open regular meetings in locations throughout the LCRWPA by March 2010. Two public meetings in Burnet and Bay City and one public hearing in Austin will be held to receive public comments on the Initially Prepared Plan.

Members of the LCRWPG made presentations to civic and special-interest groups throughout the area at various times through the planning process. The LCRWPG also maintained a web page and provided fact sheets about the process and proposed solutions. In this way, the LCRWPG succeeded in providing important information to thousands of regional stakeholders.

The LCRWPG also formed several committees to develop portions of and to help guide and oversee the development of the regional water plan. These committees include the following:

- Population and Water Demand Committee
- SH 130/45 and Northern Hays Committee

All of these efforts made information and updates on the regional water planning process available to thousands of people throughout the entire region. Additional information concerning public involvement can be found in Chapter 10.

ES.13 REMAINING ISSUES AND CONCERNS

Some of the strategies in this plan are predicated upon identified water needs or possible water supply scenarios which are affected by the outcomes of pending or future permitting processes at the Texas Commission on Environmental Quality (TCEQ). The planning group recognizes that the plan is typically updated on an every five-year cycle, providing regular opportunities to update future plans to reflect the resolution of such processes. This plan includes various alternative strategies, which may be needed depending on the outcome of pending or future litigation or permitting processes (see *Section 4.15 Alternative Water Management Strategies* for a discussion of alternative strategies included in the plan).

The LCRWPG has met with the TWDB staff and Region L to resolve the potential interregional conflict regarding the over-allocation of the Carrizo-Wilcox Aquifer in Bastrop County. During this planning round, the LCRWPG worked diligently to avoid over-allocation of this water source within Region K. In fact, there is not sufficient availability of the Carrizo-Wilcox Aquifer supplies to meet all of the projected demands for those WUGS which currently rely on this aquifer for their municipal supplies; consequently, additional water management strategies in addition to expansion and development of groundwater supplies have been recommended during the latter decades of the plan to meet those needs. Bastrop County is an area of Region K that is growing very rapidly with growth rates exceeding previous projections. As a result, the 2011 Region K Water Plan includes significantly revised population and water demand numbers for this round of planning which reflect that projected high growth rate. Many of the municipal WUGs in Bastrop County currently rely on the Carrizo-Wilcox Aquifer as their sole or primary water source. In addition, these WUGs already have existing groundwater permits that currently meet or exceed the annual amount of water identified as needed for their future system demands within the fifty-year planning period of the 2011 Region K Water Plan. Unfortunately, the amount of Carrizo-Wilcox Aguifer water currently permitted to WUGs in Bastrop County by the Lost Pines GCD is 43,486 ac-ft/yr, which is already greater than the 28,000 ac-ft/yr that is currently estimated to be the

maximum availability of this source. Because these WUGs in Bastrop County already have existing permits that meet or exceed the quantities of water shown as water management strategies in the 2011 Region K Water Plan, and because Region K itself has not over-allocated the Carrizo-Wilcox Aquifer in Bastrop County, it does not appear reasonable to propose plans for these WUGs to develop new water management strategies in order to accommodate export of the groundwater supplies to another County and planning region of the state.

ES.14 FOR MORE INFORMATION

For information regarding opportunities to obtain additional information about the Region K planning process and how you can participate, please refer to the Region K website or the LCRA web page at: www.lcra.org/www.lcra.org/water/lcrwpg.html

Full text of the 16 RWPG Adopted Plans will be available on the TWDB web page at: www.twdb.state.tx.us/.

Copies of this Executive Summary and other information materials may also be obtained by calling John Burke, Chairman, Lower Colorado Regional Water Planning Group, 512-303-3943.

Please refer to the body of the Plan for detailed information regarding methodology, projections, and issue discussions.

TABLE OF CONTENTS – CHAPTER ONE

CHAPTER 1.0	: INTRODUCTION AND DESCRIPTION OF THE LOWER COLORADO REGIO	NAL
	WATER PLANNING AREA	1
1.1 INTROI	DUCTION TO THE PLANNING PROCESS	1
1.2 DESCR	IPTION OF THE LOWER COLORADO REGIONAL WATER PLANNING AREA	5
1.2.1 Phys	sical Characteristics of the Lower Colorado Regional Water Planning Area	6
1.2.1.1	Geology of the Lower Colorado River Basin	6
1.2.1.2	Climate	9
1.2.1.3	Vegetational Areas	12
1.2.1.4	Water Resources	18
1.2.1.5	Land Resources	23
1.2.1.6	Wildlife Resources	23
1.2.2 Soci	ioeconomic Characteristics of the Lower Colorado Regional Water Planning Area	26
	Historic and Current Population Trends	
	Primary Economic Activities	
	Historical Water Uses	
	Wholesale Water Providers	
	er Quality in the Colorado River Basin	
	icultural and Natural Resources Issues Within the Lower Colorado Region	
	Threats Within the Lower Colorado Region Due to Water Quality Issues	
	Threats Due to Water Quantity Issues	
	sting Water Planning in the Lower Colorado Regional Water Planning Area	
	Water Management Plans (WMP)	
	Groundwater Management Areas (GMA)	
	Water Conservation Plans (WCP) and Drought Contingency Plans (DCP)	
1.2.5.4	Water Audits	60
	ICUDEC	
LIST OF F	IGURES	
Figure 1.1: TW	VDB Designated Regional Water Planning Areas	2
	e Lower Colorado Regional Water Planning Area (Region K)	
	e Colorado River Basin.	
	ysiographic Provinces and Major Drainage Basins of the Western Gulf Slope	
•	ils of Texas	
_	wer Colorado Regional Planning Area (Region K) Average Annual Net Evaporation	
	wer Colorado Regional Planning Area (Region K) Average Annual Precipitation	
	getational Areas of Texas	
	wer Colorado Regional Water Planning Area (Region K) Vegetation Distribution	
•	ower Colorado Regional Water Planning Area (Region K) Surface Water Hydrology.	
•	ower Colorado Regional Water Planning Area (Region K) Major Aquifers	
Figure 1.12: Lo	ower Colorado Regional Water Planning Area (Region K) Minor Aquifers	22
	ower Colorado Regional Planning Area (Region K) Land Use Distribution	
	istoric Lower Colorado Regional Water Planning Area Population	
	ower Colorado Region County Population Distribution	
	ower Colorado Regional Water Planning Area Historical Water Demand	
Figure 1.17: Lo	ower Colorado Region User Group Water Demand Distribution	31
	ower Colorado Regional Water Planning Area County Water Demand Distribution	

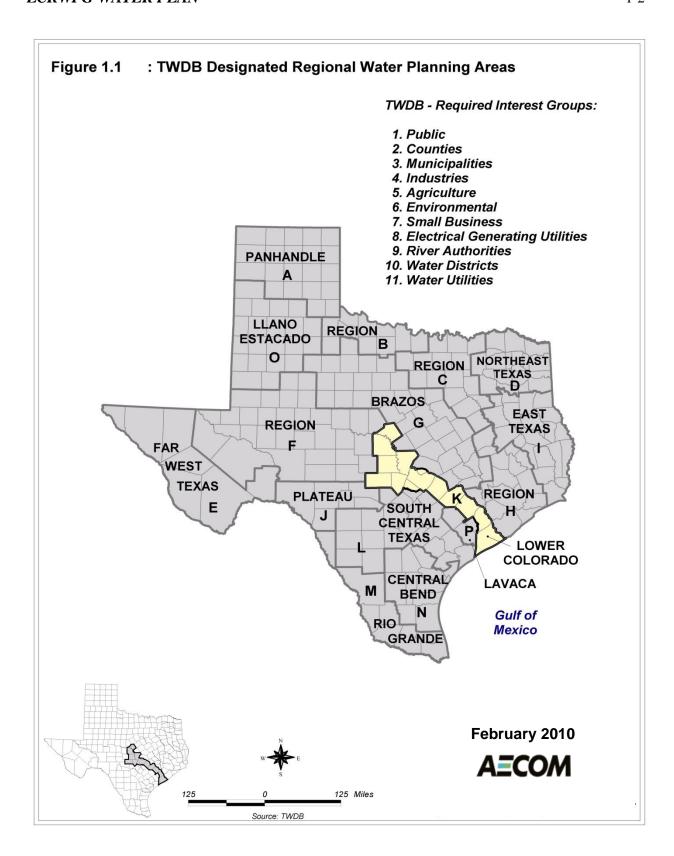
Figure 1.19: Lower Colorado River Instream Study Reaches (Source: LCRA)	33
Figure 1.20: Lower Colorado River Authority Water Supply Service Area	
Figure 1.21: City of Austin Water Supply Service Area	
Figure 1.22: Colorado River Basin Stream Segments	
Figure 1.23: LCRA 1999 WMP Trigger Levels for Interruptible Supplies	
Figure 1.24: Groundwater Conservation Districts.	
Figure 1.25: Groundwater Management Areas	56
Figure 1.26: Water Loss Comparison	60
LIST OF TABLES	
Table 1.1a The Lower Colorado Regional Water Planning Group Voting Board Members	4
Table 1.1b The Lower Colorado Regional Water Planning Group Nonvoting Members	5
Table 1.1c The Lower Colorado Regional Water Planning Group Alternate Members	5
Table 1.2 State Parks Located Within the Lower Colorado Region	24
Table 1.3 Wildlife Refuges/Management Areas Located Within the Lower Colorado Region	
Table 1.4 Lower Colorado Region Primary Economic Activities by County	
Table 1.5 Lower Colorado Region County Population and Economic Estimates	
Table 1.6 Schedule of Recommended Flows for the Colorado River Downstream of Austin	34
Table 1.7 Critical and Target Flows Schedule For Matagorda Bay System From the Colorado River	35
Table 1.8 Classified Stream Segment Uses and Water Quality Criteria in the Colorado River Basin	
2002	
Table 1.9 Stream Segment Water Quality Impairments in the Lower Colorado Region	
Table 1.10 Stream Segment Water Quality Concerns in the Lower Colorado Region	44
Table 1.11 Groundwater Conservation Districts in Lower Colorado Region and Their Water	
Management Plan Status	
Table 1.12 GMA Desired Future Conditions and Managed Available Groundwater Report Status	
Table 1.13 Entities in the Lower Colorado Region SB 1-Required to Submit Water Conservation Plan (Irrigation Rights of 10,000 ac-ft or more and Non-Irrigation Rights of 1,000 ac-ft or	lS
more)	57
Table 1.14a Water Wholesalers in Lower Colorado Region SB 1-Required to Submit Drought	
Contingency Plans (Entities With Contract Water Sales to Others)	58
Table 1.14b Lower Colorado Region SB 1-Required Water Conservation Plans and Drought	20
Contingency Plans (Retail Water Suppliers With > 3,300 Connections)	59

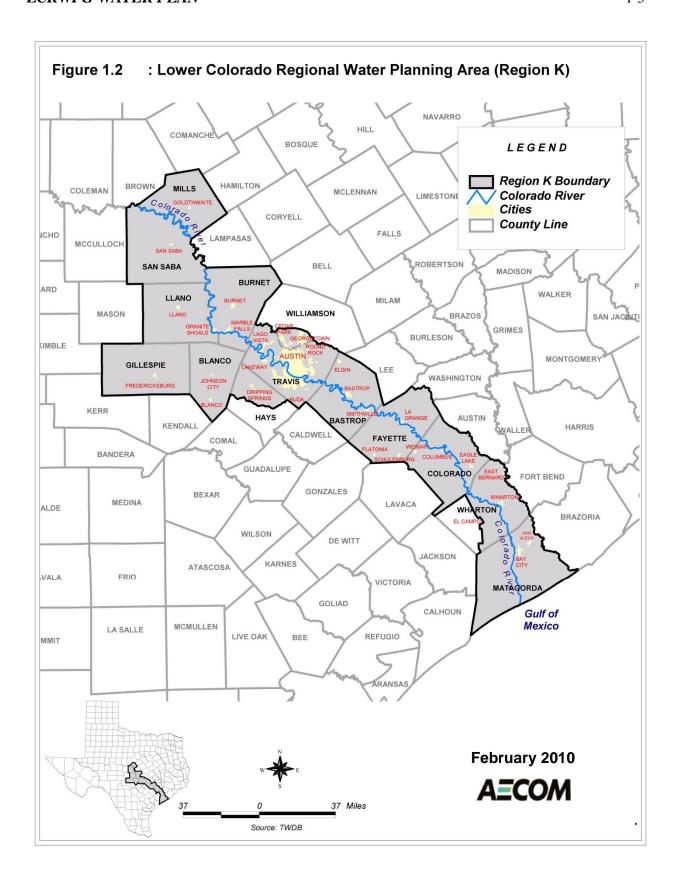
APPENDICES

- APPENDIX 1A: Threatened and Endangered Species in the Lower Colorado Regional Water Planning Area
- APPENDIX 1B: Lower Colorado Region Industry Economic Value Estimates

CHAPTER 1.0: INTRODUCTION AND DESCRIPTION OF THE LOWER COLORADO REGIONAL WATER PLANNING AREA

1.1 INTRODUCTION TO THE PLANNING PROCESS


Sections 16.051 and 16.055 of the Texas Water Code direct the Executive Administrator of the Texas Water Development Board (TWDB) to prepare and maintain a comprehensive State Water Plan. The overall goal of the State Water Plan is to address water supply needs at the local level with the consideration of balancing affordable water supply availability and conserving the State's natural resources and serves as a flexible guide for the development and management of all water resources in Texas.


In February 1998, the TWDB adopted rules establishing 16 regional water planning areas. Each planning area is responsible for preparing a consensus-based Regional Water Plan that will provide for the water needs of its region for the next 50 years. The TWDB incorporates the resulting Regional Water Plans into the State Water Plan, which is updated in 5-year cycles. The first round of Regional Water Plans were completed in January 2001 and incorporated into the 2002 State Water Plan. The second round of regional water planning started in spring 2002. These Regional Water Plans were adopted in January 2006 and incorporated into the 2007 State Water Plan. The third round of regional planning began in summer 2007. It is anticipated that the third round of Regional Water Plans will be finalized and adopted by September 1, 2010. Subsequently, by January 5, 2012, the TWDB will prepare a new State Water Plan.

The Lower Colorado Regional Water Planning Area, initially designated by the TWDB as "Region K," encompasses all or part of 14 counties mostly within the Lower Colorado River Basin from the Hill Country to the Gulf of Mexico (*Figure 1.2*). The Lower Colorado Regional Water Planning Group (LCRWPG), representing the 11 TWDB-required interest groups and two additional regional interest groups, is responsible for the development of the Lower Colorado Regional Water Plan (*Table 1.1*). The TWDB's guidelines require the LCRWPG's Regional Water Plan to complete the following tasks:

- Description of the region (Chapter 1)
- Population and water demand projections (Chapter 2)
- Estimates of currently available water supplies (Chapter 3)
- Identification, evaluation, and selection of water management strategies (Chapter 4)
- Impacts of selected water management strategies on key parameters of water quality and impacts of moving water from rural and agricultural areas (Chapter 5)
- Water conservation and drought management strategy development (Chapter 6)
- Regional plan consistency with State's long term protection goals (Chapter 7)
- Unique stream segments/reservoir sites and Legislative recommendations (Chapter 8)
- Report to Legislature on water infrastructure funding (Chapter 9)
- Public participation and education/input (Chapter 10)

LCRWPG WATER PLAN

LCRWPG WATER PLAN

Table 1.1a The Lower Colorado Regional Water Planning Group Voting Board Members

Interest	Name	Entity	County (Location of Interest)
Public	Laura Marbury	League of Women Voters	Travis
Counties	Bill Neve	Burnet County Commissioners Court	Burnet
	Billy Roeder	Gillespie County Commissioners Court	Gillespie
	James Sultemeier	Blanco County Commissioners Court	Blanco
Municipalities	Finley deGraffenreid	City of Llano	Llano
	Teresa Lutes	City of Austin	Williamson
Industries	Barbara Johnson	Austin Area Research Organization, Inc.	Travis
Agricultural	Bill Miller	Rancher	Llano
	Haskell Simon	Rice Industry Rep. and Farmer	Matagorda
Environmental	Jim Barho	Protect Lakes Inks, Buchanan	Burnet
Environmental	Jennifer Walker	Sierra Club, Lone Star Chapter	Travis
Small Businesses	Ronald Gertson		Wharton
Sman Dusmesses	Rob Ruggiero		Travis
Electric Generating Utilities	Sandra Dannhardt	STP Nuclear Operating Company	Matagorda
River Authorities	James Kowis	LCRA	Travis
	Ron Fieseler	Blanco-Pedernales GCD	Hays
Water Districts	Paul Tybor	Hill Country UWCD	Gillespie
	David Van Dresar		Fayette
Water Utilities	John Burke	Aqua WSC	Bastrop
Other(s)	Roy Varley		Mills
	Bob Pickens		Colorado
Recreation	Doug Powell	Emerald Point Marina	Travis

Table 1.1b The Lower Colorado Regional Water Planning Group Nonvoting Members

David Bradsby	Texas Parks & Wildlife Department
Richard Eyster	Texas Department of Agriculture
David Meesey	Texas Water Development Board

Table 1.1c The Lower Colorado Regional Water Planning Group Alternate Members

Cynthia Braendle	Terry Bray	Neil Hudgins
Terry Fischer	Karen Haschke	Billy Mann
Mark Jordan	Harold Sohner	Steve Balas
Calvin Ransleben	Bill Stewart	Rick Gangluff
Ronny Hibler	Floyd Cooley	Chris Lippe
Tyson Broad	John Dupnik	Richard Bowers

Texas is an extremely diverse state both in climate and economics. This diversity requires the use of a variety of water management strategies, the combination of which will be unique for each of the 16 regions. The types of strategies that may be considered include:

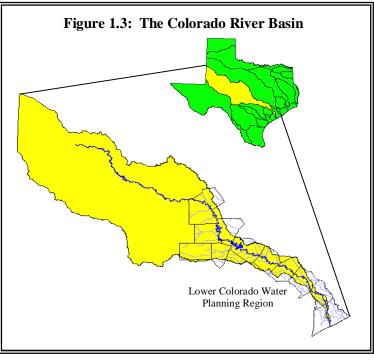
- expected/advanced water conservation
- water reuse
- expanded use of existing supplies
- reallocation of reservoir storage
- water marketing and inter-basin transfers
- subordination of water rights
- yield enhancement measures
- chloride control measures
- new supply development

Water availability, economics, environmental concerns, and public acceptance were considered during the process of developing water management strategies within each region. The final Regional Water Plan must comply with all existing state and federal regulations regarding existing water rights, instream flows, bay/estuary freshwater inflows, water quality, threatened/endangered species, critical habitats, and sites of historical importance.

The overall goal of the State Water Plan is to address water supply needs at the local level with the consideration of balancing affordable water supply availability and conserving the State's natural resources.

1.2 DESCRIPTION OF THE LOWER COLORADO REGIONAL WATER PLANNING AREA

The Lower Colorado Regional Water Planning Area (Region K) encompasses all or part of the following counties:


- Bastrop
- Blanco
- Burnet
- Colorado
- Fayette
- Gillespie
- Hays (partial)

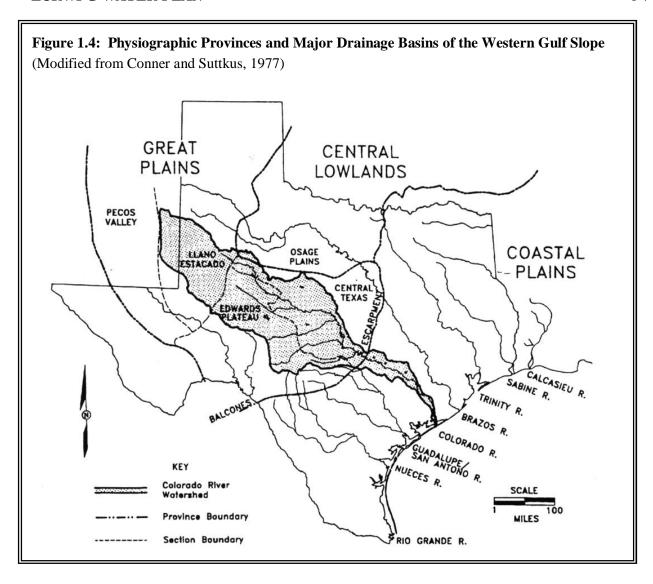
- Llano
- Matagorda
- Mills
- San Saba
- Travis
- Wharton (partial)
- Williamson (partial)

Most of the Lower Colorado Region (Region K) lies within the Colorado River Basin and crosses the Great Plains and the Coastal Plains physiographic provinces. The following sections provide a general description of the area's physical and socioeconomic characteristics, as well as water quality and natural resource issues of importance to the region.

1.2.1 Physical Characteristics of the Lower Colorado Regional Water Planning Area¹

The Colorado River Basin extends well beyond the boundaries of Region K northwest into eastern New Mexico (Figure 1.3). From these headwaters, the river travels 900 miles to the Gulf of Mexico. The Colorado River Basin is bordered by the Brazos River Basin to the north and east, and by the Guadalupe River and Lavaca River Basins to the south and west. The total drainage area of the Colorado River is 42,318 sq mi, 11,403 sq mi of which is considered non-contributory to the river's water supply. There are six major tributaries with drainage areas greater than 1,000 sq mi that contribute to the Colorado River: Beall's Creek and the Concho River, above the Region K boundary; and the San Saba, Llano, and Pedernales Rivers as well as Pecan Bayou. All of these major tributaries and approximately 90 percent of the entire contributing drainage for the river occur upstream of Mansfield Dam near Austin. This dam is the primary regulator

of water flow from its location south to the Gulf of Mexico. Downstream of Austin, there are only two tributaries with drainage areas greater than 300 sq mi, Onion Creek in Travis County and Cummins Creek in Colorado County.

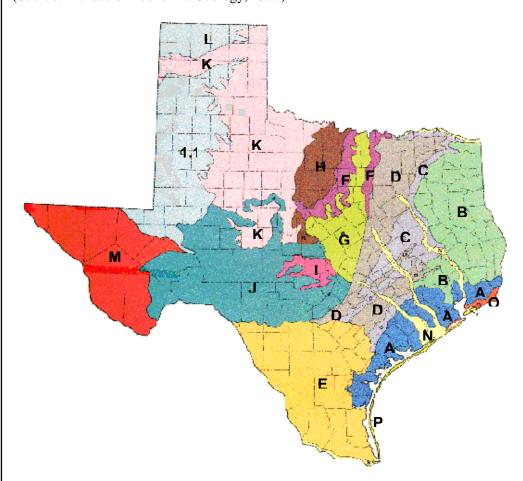

1.2.1.1 Geology of the Lower Colorado River Basin^{2, 3}

The northernmost boundary of Region K lies in the Central Texas section of the Great Plains physiographic province (Figure 1.4). It is here that the Colorado River intersects the broad, low structural zone exposing early Paleozoic and Precambrian igneous and metamorphic formations, called the Llano Uplift. In the northwestern portion of the region, the major southern tributaries and the Colorado River drain the Edwards Plateau section of the Great Plains province, which is characterized by Cretaceous-

² LCRA, Op. Cit., June 1992.

¹ Lower Colorado River Authority (LCRA), June 1992. Instream Flows for the Lower Colorado River, Final Report.

³ Texas Water Development Board (TWDB), May 1977. Continuing Water Resource Planning and Development for Texas, Volume II.



aged limestone formations overlain by Tertiary-aged sediments. The Colorado River meanders through these limestone deposits in relatively steep narrow canyons in this area; however, there are also flattopped remnants of the once more extensive Edwards Plateau. At the eastern edge of the Edwards Plateau, the Edwards aquifer outcrops at several locations along the Balcones Fault Zone (shown as the Balcones Escarpment on Figure 1.4), creating aquifer recharge zones and associated natural discharge points or springs, such as Barton Springs in Travis County. Typical soils (*Figure 1.5*) of the Llano Uplift are reddish-brown to brown, neutral to slightly acidic, calcareous, sandy loams. Soils mapped on the Edwards Plateau section typically consist of dark, deep to shallow, stony, calcareous clays.

The Western Gulf Coast section of the Coastal Plains province contains the remaining 300 miles of the Colorado River south of the Balcones Fault Zone in Travis County to the Gulf of Mexico. The Western Gulf Coast section is characterized as an elevated sea bottom with low topographic relief ranging from low hills in the west to coastal flats. Surface geologic units mapped along the next portion of the Colorado River include a relatively narrow band of Upper Cretaceous formations just southeast of the Balcones Fault Zone, followed by a belt of Tertiary deposits that outcrop from Bastrop County southeast

Figure 1.5: Soils of Texas

(Source: Bureau of Economic Geology, 1977)

- A Dark-colored, neutral to slightly acid clay loams & clays; some lighter colored sandy loams; acid soils mostly east of Trinity River.
- **B** Light-colored, acid sandy loams, clay loams, & sands; some red soils & clays.
- C Light-brown to dark-gray, acid sandy loams, clay loams, & clays.
- D Dark-colored calcareous clays; some grayish-brown, acid sandy loams & clay loams along eastern edge of the major prairie & interspersed in minor prairies.
- E Dark calcareous to neutral clays & clay loams; reddish-brown, neutral to slightly acid sandy loams; grayish-brown, neutral sandy loams & clay loams; some saline soils near coast.
- F Light-colored, acid loamy sands & sandy loams.
- G Dark-colored, deep to shallow clay loams, clays, & stony calcareous clays over limestone.
- **H** Reddish-brown to grayish-brown, neutral to slightly acid sandy loams & clay loams; some stony soils.

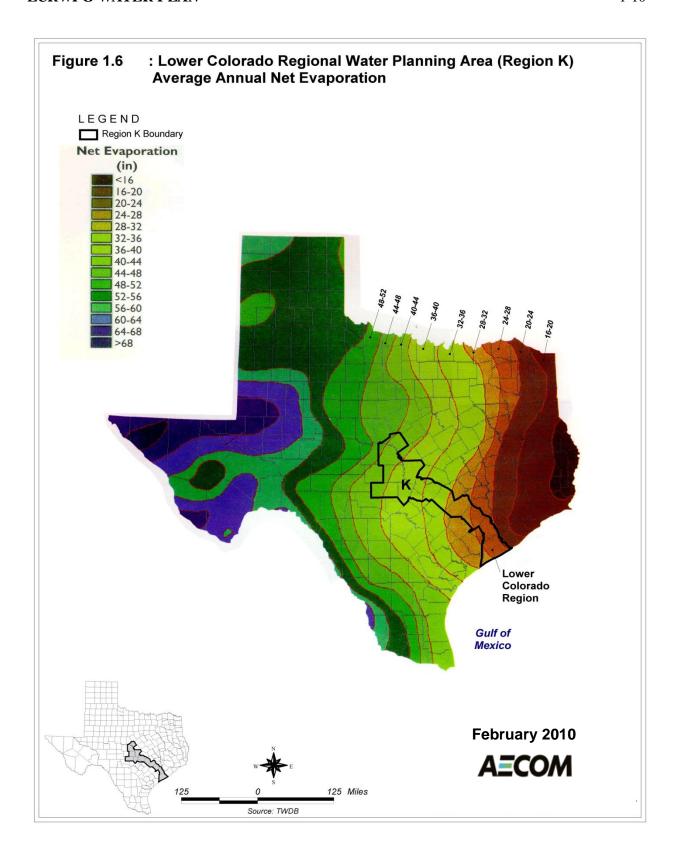
- I Reddish-brown to brown, neutral to slightly acid, gravelly & stony sandy loams.
- J Dark, calcareous stony clays & clay loams.
- K Dark-brown to reddish-brown, neutral to slightly calcareous sandy loams, clay loams, & clays.
- L Dark-brown to reddish-brown neutral sands, sandy loams, & clay loams; some very shallow calcareous clay loams.
- M Light reddish-brown to brown sands; clay loams & clays (mostly calcareous, some saline) & rough stony lands.
- **N** Light-brown to reddish-brown, acid sandy loams; acid & calcareous clay loams & clays.
- O Light- & dark-colored, acid sands, sandy loams, &
- P Tan, loose sand & shell material.

to Colorado County. The remaining geologic units, from Colorado County to the Gulf of Mexico, are mapped as Quaternary-aged deposits. Sediments in the Western Gulf Coast section are composed primarily of marine deposits such as limestones, marls, and shales; however, the river valley also contains significant fluvial (river) terrace deposits of granitic assemblage, quartz and quartzite, chert, limestone, sandstone, siltstone, hornblende schist, silicified wood, and rip-up clasts. Colorado Basin soils in the Western Gulf Coast section are typically dark, neutral to slightly acidic, clay loams, and clays. Near the coast, soils become light, acidic sands, and darker, loamy to clayey soils.

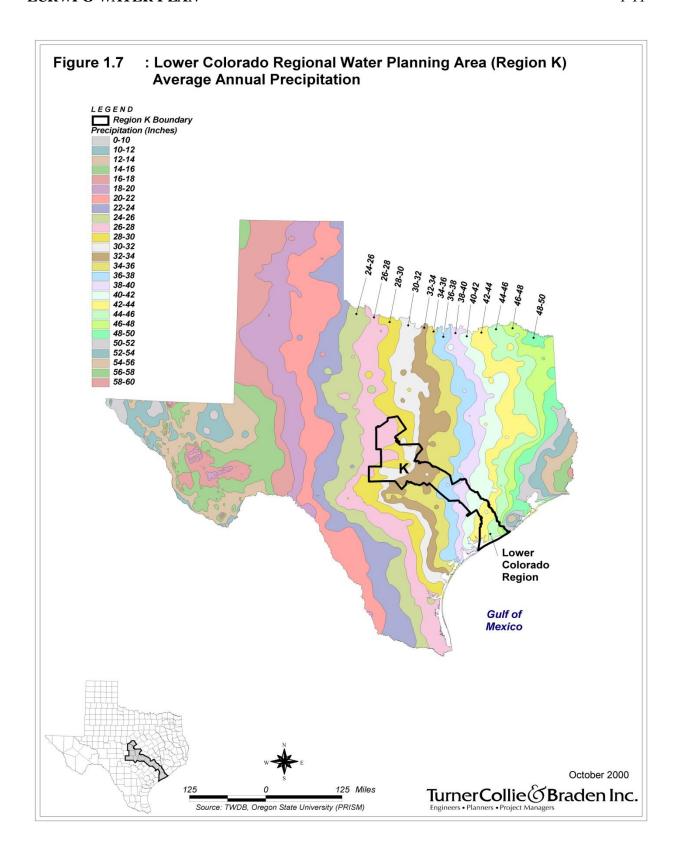
1.2.1.2 Climate^{4, 5, 6}

The climate across the State of Texas varies considerably; however, there are no natural boundaries, and changes occur gradually from east to west. In general, average temperatures, rainfall, and the length of the growing season decrease from the east to the north and west. The upper atmospheric winds, or jetstreams, affect the large-scale weather patterns in the state. The polar jetstream affects the movement of cold arctic air masses from December through February. The moist warm air masses are brought to Texas from the Pacific Ocean by the subtropical jetstream, whose influence is most prevalent during the spring and fall.

Region K lies entirely within the warm-temperate/subtropical zone. The constant flow of warm tropical maritime air from the Gulf of Mexico produces a humid subtropical climate with hot summers across the lower third of the region. This maritime air combines with cooler and drier continental air further inland, which results in a subtropical climate with dry winters and humid summers in the remainder of the region. Winters in Region K typically are mild with frequent, short duration surges of colder continental air masses and strong northerly winds. Average annual net evaporation in Region K varies from 20 to 24 inches at the coast to approximately 44 inches in the uppermost portion of the region (*Figure 1.6*).


The amount of rainfall varies across the Lower Colorado Planning Region from an average of 48 inches at the coast to 24 inches in the northwestern portion of the region (*Figure 1.7*). The rainfall distribution pattern in this region has two peaks: spring is typically the wettest season with a peak in May, and a second peak usually occurs in September and October, coinciding with the tropical cyclone season in the late summer/early fall. The spring rains are typified by convective thunderstorms that produce high intensity, short duration precipitation events with rapid runoff. These thunderstorms are generally caused by successive frontal systems that move through the state. These weak cold air masses are overrun by warm Gulf moisture, and the line of instability that develops where the two air masses come in contact produces thunderstorms. The fall seasonal rains are primarily governed by tropical storms and hurricanes that originate in the Caribbean Sea or the Gulf of Mexico and make landfall on the coast from Louisiana to Mexico. As the storm moves inland, the coverage area for a single tropical cyclone event can be quite large and the storm severe, with wind and flood damage common. Fall cold fronts can also bring widespread, heavy rain events.

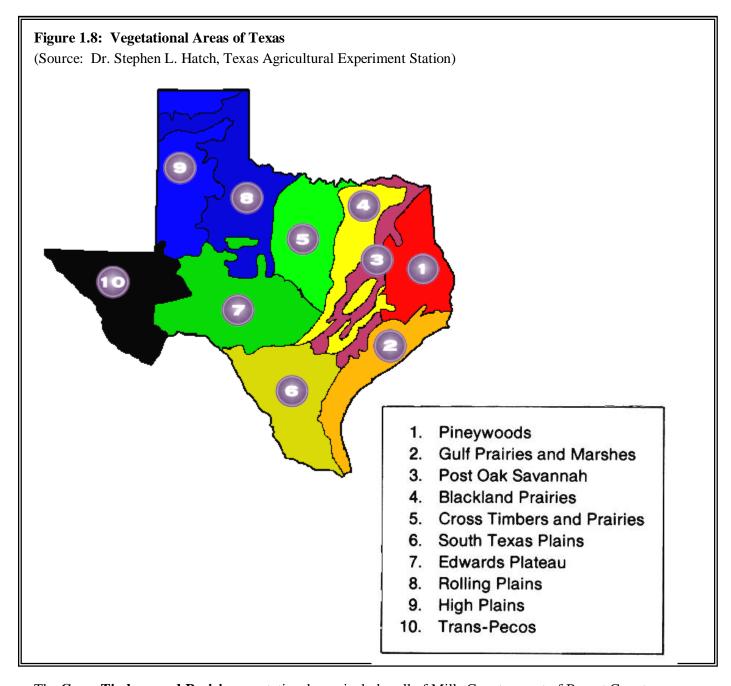
_


⁴ TWDB, Op. Cit., May 1977.

⁵ Hatch, S. L., et al. July 1990. *Checklist of the Vascular Plants of Texas*. Texas Agricultural Experiment Station, College Station, Texas.

⁶ Jones, B. D., 1990. *Texas Floods and Droughts. In National Water Summary 1988–1989.* U.S. Geological Survey, pp. 513–520.

LCRWPG WATER PLAN


The hydrologic characteristics of the Colorado River are closely linked to the precipitation patterns that occur in the river basin, especially the cycles of floods and droughts, which are common in Texas. Major flood and drought events are those with statistical recurrence intervals greater than 25 years and 10 years, respectively. Streamflow gaging data collection began in the early 1900s, and the data show that there has been a major drought in almost every decade of this century. Droughts in Texas are primarily the result of the presence of a strong subtropical high-pressure cell, called a Bermuda High, which becomes stationary over the state and prevents low-pressure fronts from passing through the state. Major droughts can cause stock ponds and small reservoirs to go dry and large reservoirs, such as Lake Travis, can drop their storage levels to less than one-third their capacity. The average annual runoff during the period from 1941 to 1970 ranged from 350 ac-ft/sq mi near the mouth of the Colorado River to less than 50 ac-ft/sq mi in the westernmost portion of the basin's contributing zone, which translates to an overall basin average of 81 ac-ft/sq mi. During this 30-year time period there were three major statewide droughts: 1947 to 1948, 1950 to 1957, and 1960 to 1967. These periods of drought saw average annual runoff values decrease 72 to 80 percent, to 16 to 23 ac-ft/sq mi, which resulted in record low flows in the Colorado River. The most severe of these droughts occurred from 1950 to 1957, in which 94 percent of the counties in the state were declared disaster areas. The drought of record for Region K is the period 1947 to 1957, and these drought-of-record conditions were used in this regional water planning effort.

The end of a drought cycle is often marked by one or more flooding events, allowing aquifers and manmade water storage facilities to recharge. The floodplains of the upper Colorado River and its tributaries are typically steep, narrow channels with rocky soils and sparse vegetative cover. During intense rain events this allows for rapid runoff, resulting in sharp-crested floods with high peak discharges and velocities. Downstream, the floodplains become wider with denser vegetation, which decreases these streamflow velocities; however, the massive volumes of water moving down the river basin can still cause a great deal of flood damage. Areas expected to be most prone to flood damage in the Lower Colorado Planning Region are along Lake Travis and Lake Austin, and the Cities of Austin, La Grange, Columbus, Wharton, and Matagorda. Historically, the coastal portion of the river basin is affected by hurricanes two of every five years. The Hill Country in Central Texas has experienced more severe flood events than any other region of the country. In fact, the continental United States record for the most intense 18-hour rainfall occurred in Williamson County in the Brazos River Basin in 1921, with 36 inches of rain. From 1843 to 1938, there were 22 major floods along the Colorado River. The most intense localized flash flood in the Lower Colorado Planning Region in recent history occurred 24 May 1981 in Austin. This storm produced a flood with a recurrence level greater than 100 years, caused \$40 million in damages, and was responsible for 13 deaths. Another intense event occurred on 27 June, 2007 in Marble Falls. This storm produced a flood with a recurrence level of greater than 500 years.

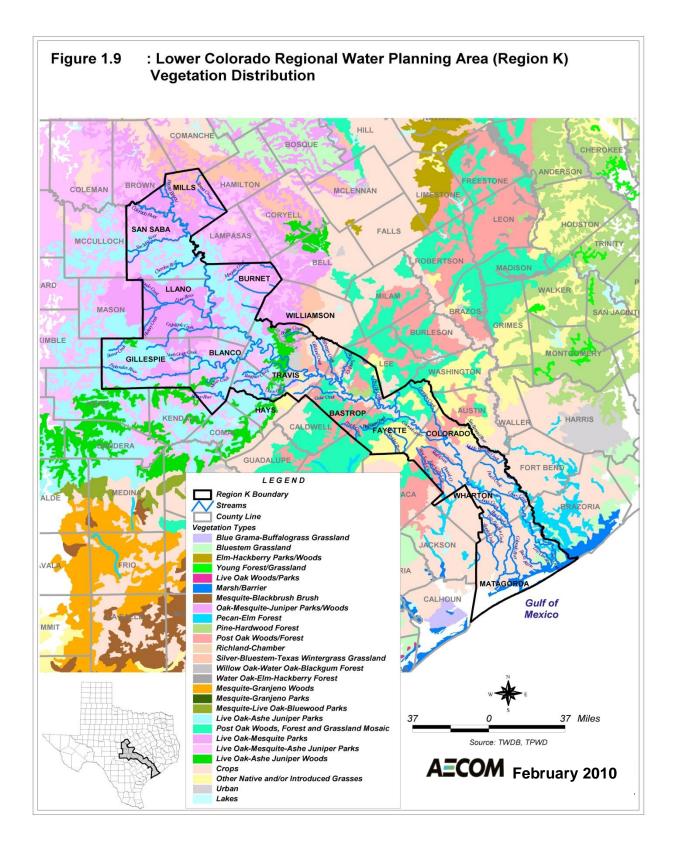
1.2.1.3 Vegetational Areas⁷

Natural regions, or vegetation areas, are based on the interaction of geology, soils, physiography, and climate. There are ten vegetational areas that cross the State of Texas and five of these intersect Region K (*Figure 1.8*). These are the Cross Timbers and Prairies, the Edwards Plateau, the Blackland Prairies, the Post Oak Savannah, and the Gulf Prairies and Marshes. Each of these vegetation areas is described below. *Figure 1.9* shows the dominant plant species that occur in Region K.

⁷ Hatch, et al., Op. Cit., July 1990.

The **Cross Timbers and Prairies** vegetational area includes all of Mills County, most of Burnet County, the north portions of San Saba and Travis Counties, and the section of Williamson County within the Lower Colorado Planning Region. This region falls within the southern extension of the Central Lowlands and the western edge of the Coastal Plains physiographic provinces. There are sharp contrasts in topography, soils, and vegetation in this region due to the wide variety of geologic formations in the area. Elevations range from 500 feet to 1,500 feet above mean sea level. Cross Timber soils are typically of the orders Mollisol and Alfisol. In the East and West Cross Timbers subregions, soils range from light,

slightly acid loamy sands and sandy loams with yellowish-brown to red clayey subsoils in the upland areas to dark, neutral to calcareous clayey bottomland soils, and loamy alluvial soils along minor streambeds. The North Central Prairies subregion is interspersed with sandstone and shaley ridges and hills. Uplands are brown sandy loam to silt loam, slightly acid soils that overlay red to gray, neutral to alkaline clayey subsoils. The bottomlands have brown to dark gray, loamy, and clayey, neutral to calcareous, and alluvial soils.


The Cross Timbers and Prairies support tallgrasses such as big bluestem (Andropogon gerardii), little (Schizachyrium scoparium), **Indiangrass** (Sorghastrum bluestem nutans). switchgrass (Panicum virgatum), and Canada wildrye (Elymus canadensis), with minor populations of midgrasses and shortgrasses such as sideoats grama (Bouteloua curtipendula), blue grama (B. gracilis), hairy grama (B. hirsuta), Texas wintergrass (Stipa leucotricha), and buffalograss (Buchloe dactyloides). Overgrazing has allowed the midgrasses and shortgrasses to increase their range and has allowed the invasion of scrub oak (Quercus turbinella), honey mesquite (Prosopis glandulosa), and Ashe juniper (Juniperus ashei) in upland areas, as well as hairy tridens (Erioneuron pilosum), Texas grama (Bouteloua rigidiseta), red lovegrass (Eragrostis secundiflora), wild barleys (Hordeum), threeawns (Aristida), fringed-leaf paspalum (Paspalum setaceum), and tumble windmillgrass (Chloris verticillata). Bottomland trees include pecan (Carya illinoensis), oak (Quercus), and elm (Ulmus), with invasion of mesquite. Typical shrubs and vines include skunkbush (Rhus aromatica), saw greenbriar (Smilax bona-nox), bumelia (Bumelia lanuginosa), and poison ivy (Rhus toxicodendron).

Today, approximately 75 percent of the Cross Timbers and Prairies natural region is rangeland and pastureland. White-tailed deer (*Odocoileus virginianus*), raccoon (*Procyon lotor*), squirrel (*Sciurus spp.*), bob white quail (*Colinus virginianus*), and mourning dove (*Zenaida macroura*) are plentiful.

The **Edwards Plateau** vegetational area consists of an area of West Central Texas commonly known as the "Hill Country" and includes the entire portion of Hays County within the Lower Colorado Planning Region; all of Llano, Gillespie, and Blanco Counties; most of San Saba County; southern Burnet County; and western Travis County. The geologic formation known as the Balcones Escarpment forms the eastern and southern boundary of this region. Elevations range from 1,200 feet to over 3,000 feet above mean sea level, and the landscape is deeply dissected, hilly, rough, and well drained. Edwards Plateau soils are typically shallow Entisols, Mollisols, or Alfisols that have a variety of surface textures and are underlain by limestone.

Historically, the natural vegetation of the Edwards Plateau was grassland or open savannah-type plains with trees or brush along rocky slopes and streambeds. Tallgrasses such as cane bluestem (Bothriochloa barbinodis), big bluestem, little bluestem, Indiangrass, and switchgrass, are still common today along rocky outcrops and protected areas with good soil moisture. In areas with more shallow soils, tallgrasses have been replaced by midgrasses and shortgrasses such as sideoats grama, Texas grama, and buffalograss. Typical wildflowers are Engelmann daisy (Engelmannia pinnatifida), orange zexmania (Wedelia ragweed (Ambrosia psilostachya). hispida). western and sneezeweed (Helenium quadridentatum). Areas disturbed by over-grazing have been invaded by pricklypear (Opuntia), bitterweed (Hymenoxys odorata), broadleaf milkweed (Asclepias latifolia), smallhead sneezeweed (H. microcephalum), broomweeds (Amphiachyris and Gutierrezia), prairie coneflower (Ratibida columnifera), mealycup sage (Salvia farinacea), and tasajillo (Opuntia leptocaulis). Common woody species are live oak (Quercus virginiana), sand shin oak (Quercus havardii), post oak (Quercus stellata), mesquite, and juniper.

LCRWPG WATER PLAN 1-15

Land suitable for cultivation occurs only along narrow streams and divides within the Edwards Plateau region and in these areas tree orchards are common. The majority of the region is utilized as rangeland for the production of livestock and wildlife. This area was once one of the major wool and mohair producers in the country, providing up to 98 percent of the nation's mohair; however, the loss of federal mohair subsidies has caused a decline in this industry over the past decade. The Edwards Plateau also supports the largest deer population in North America, and exotic big game ranches are increasing across the region.

Within Region K, the **Blackland Prairies** vegetational area occurs in eastern Travis County, several small sections of Bastrop County, western and eastern portions of Fayette County, and a minor portion of Colorado County. The characteristic topography is gently rolling hills to nearly level with well-defined contours for rapid surface drainage. Elevation varies from 250 to 700 feet above mean sea level. Major soil orders include Vertisols and Alfisols, which are naturally very productive and fertile. Upland soils are dark, calcareous, and clayey. Bottomland soils are typically reddish-brown to dark gray, slightly acid to calcareous, loamy to clayey to alluvial.

The Blackland Prairie once supported a tallgrass prairie dominated by big bluestem, little bluestem, Indiangrass, tall dropseed (*Sporobolus asper*), and Silveus dropseed (*S. silveanus*). Minor species including sideoats grama, hairy grama, Mead's sedge (*Carex meadii*), Texas wintergrass, and buffalograss have increased due to grazing pressure. Erosion and agricultural activities have decreased the productivity of these soils. Common wildflowers include asters (*Aster*), prairie bluet (*Hedyotis nigricans*), prairie-clover (*Petalostemon*), and late coneflower (*Rudbeckia serotina*). Typical legumes are snoutbeans (*Rhynchosia*), and vetch (*Vicia*). Areas disturbed by grazing and agriculture have been invaded by mesquite, huisache (*Acacia smallii*), oak, and elm trees. Oak, elm, cottonwood (*Populus deltoides*), and native pecan can be found in moist drainage areas. Isolated areas of Blackland Prairies are intermingled within the Post Oak Savannah vegetation area.

In the latter 19th and early 20th centuries, approximately 98 percent of the Blackland Prairies vegetational area had been converted to cropland. Pastureland and livestock forage cropland began to increase in the 1950s, and today only 50 percent of the area is used for cropland. Cultivated pastures make up 25 percent of the land area, and the rest is used as rangeland. Significant game species include dove, bobwhite quail, and squirrel.

The **Post Oak Savannah** vegetational area within Region K occurs in most of Bastrop and Colorado Counties and central Fayette County. The region is characterized by gently rolling, moderately dissected wooded plains with elevations between 300 feet and 800 feet above mean sea level. There are several areas of Blackland Prairie intermingled in the southern portion of the Post Oak Savannah. Typically shallow upland soils are gray, slightly acid sandy loams that overlay gray, mottled, or red, firm clayey subsoils. Infiltration-resistant claypan layers occur at varying soil depths, which impedes the percolation of moisture. Bottomland soils are reddish-brown to dark gray, slightly acid to calcareous, loamy to clayey alluvial.

Typically, short oak trees, such as post oak and blackjack oak (*Q. marilandica*), are interspersed among the tallgrass species of little bluestem, silver bluestem (*Bothriochloa saccharoides*), Indiangrass, switchgrass, and midgrass and shortgrass species of Texas wintergrass (*Stipa leucotricha*), purpletop (*Tridens flavus*), narrowleaf woodoats (*Chasmanthium sessiliflorum*), and beaked panicum (*Panicum anceps*). Elms, junipers, hickories (*Carya*), and hackberries (*Celtis*) are also common trees here. Shrubs and vines such as yaupon (*Ilex vomitoria*), American beautyberry (*Callicarpa americana*),

coralberry (*Symphoricarpos orbiculatus*), greenbriar (*Smilax*), and grapes (*Vitis*) are typical. Historically, periodic wildfires have suppressed the overgrowth of brush and trees, and in their absence thickets tend to form. Wildflowers characteristic of the true prairie species include wild indigo (*Babtisia*), indigobush (*Amorpha fruticosa*), senna (*Cassia*), tickleclover (*Desmodium*), lespedezas (*Lespedeza*), prairie-clovers, western ragweed, crotons (*Croton*), and sneezeweeds.

The post oak savannah was extensively cultivated through the 1940s; however, today many acres have been returned to native habitat or tame pastureland, which have been seeded with nonnative species such as bermudagrass, bahiagrass, weeping lovegrass, and clover. The region supports game species such as deer, squirrel, and quail.

The **Gulf Prairies and Marshes** vegetational area encompasses all of Matagorda County, the entire portion of Wharton County within Region K, and the eastern tip of Colorado County. This is a 30- to 80-mile-wide strip of lowlands adjacent to the Texas coast from the Louisiana border to the Mexico border. The landscape consists of low, wet coastal marshes, and nearly flat, undissected plains with elevations from sea level to 250 feet. Marsh soils are typically dark, poorly drained, saline and sodic, sandy loams, and clays, and light neutral sands. Prairie soils are characterized by dark, neutral to slightly acid clay loams, and clays, with a narrow belt of light acid sands and darker loamy to clayey soils along the coast. Bottomland and delta soils are typically reddish-brown to dark gray, slightly acid to calcareous, loamy to clayey alluvial.

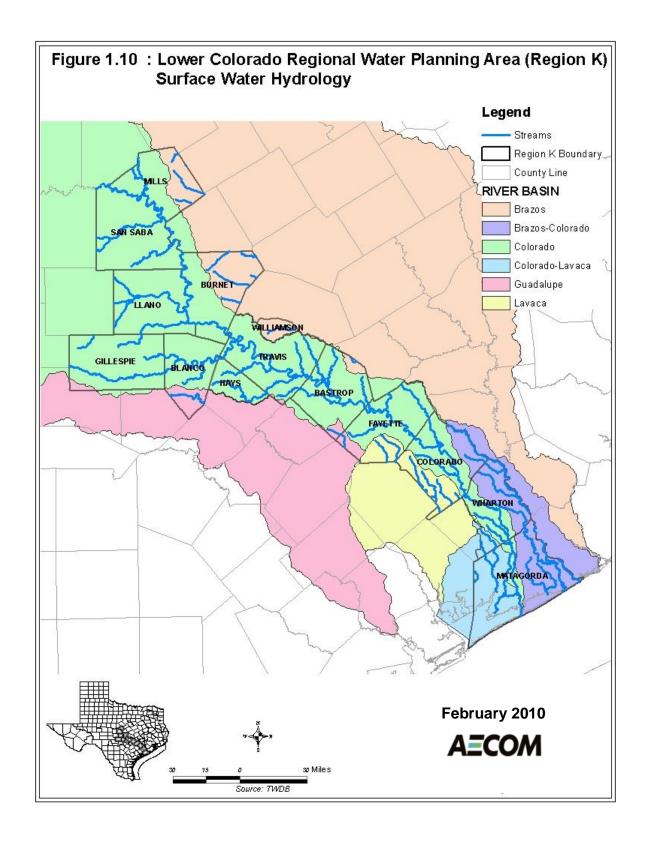
Original Gulf Prairie vegetation consisted of tallgrasses and post oak savannah. Today, however, trees and shrubs such as honey mesquite, oaks, acacia, and bushy sea-ox-eye (Borrichia frutescens) have formed thickets in many areas. Characteristic tallgrasses include gulf cordgrass (Spartina spartinae), big bluestem, little bluestem, Indiangrass, eastern gamagrass (Tripsacum dactyloides), gulf muhly (Muhlenbergia capillaris), tanglehead (Heteropogon contortus), as well as Panicum and Paspalum species. Typical wildflowers include asters, Indian paintbrush (Castilleja indivisa), poppy mallows (Callirhoe), phloxs (Phlox), bluebonnets (Lupinus), and evening primroses (Oenothera). Common invaders such as yankeeweed (Eupatorium compositifolium), broomsedge bluestem virginicus), smutgrass (Sporobolus indicus), western ragweed, tumblegrass (Andropogon (Schedonnardus paniculatus), threeawns (Aristida), pricklypear, and many annual wildflowers and grasses have increased their ranges. Saline Gulf Marsh areas support species of sedges (Carex and Cyperus), rushes (Juncus), bulrushes (Scirpus), cordgrasses (Spartina), seashore saltgrass (Distichlis spicata), common reed (Phragmites australis), marshmillet (Zizaniopsis miliacea), longtom (Paspalum lividum), seashore dropseed (Sporobolus virginicus), and knotroot bristlegrass (Setaria geniculata). Marshmillet and maidencane (Panicum hemitomon) are two important freshwater grass species found in the upper coast. Typical aquatic forbs include pepperweeds (Lepidium), smartweeds (Polygonum), docks (Rumex), bushy seedbox (Ludwigia alternifolia), green parrotfeather (Myriophyllum pinnatum), pennyworts (Hydrocotyle), water lilies (Nymphaea), narrowleaf cattail (Typha domingensis), spiderworts (Tradescantia), and duckweeds (Lemna). Common halophytic herbs and shrubs found on the salty sands of the coast include spikesedges (Eleocharis), fimbries (Fimbrystalis), glassworts (Salicornia), sea-rockets (Cakile), maritime saltwort (Batis maritima), morning glories (*Ipomoea*), and bushy sea-ox-eye.

The low coastal marshes of the Gulf Prairies and Marshes vegetational area provide excellent habitat for upland game and waterfowl. Higher elevations of the marshes are used for livestock and wildlife production. These coastal marshes and barrier islands contain most of the State's National Seashore parks. Urban, industrial, and recreational developments have been increasing in this region and

cultivation has never been of much importance due to the saline soils and recurrent flooding of the area. However, approximately one-third of the inland prairies region is cultivated. This is also the major area of irrigated crop production, consisting primarily of rice cultivation, for the entire Lower Colorado Region. Bermudagrass and several bluestem species are common in tamed pasturelands. The Gulf Prairies and Marshes region has seen more industrialization than anywhere in Texas since World War II.

1.2.1.4 Water Resources^{8, 9}

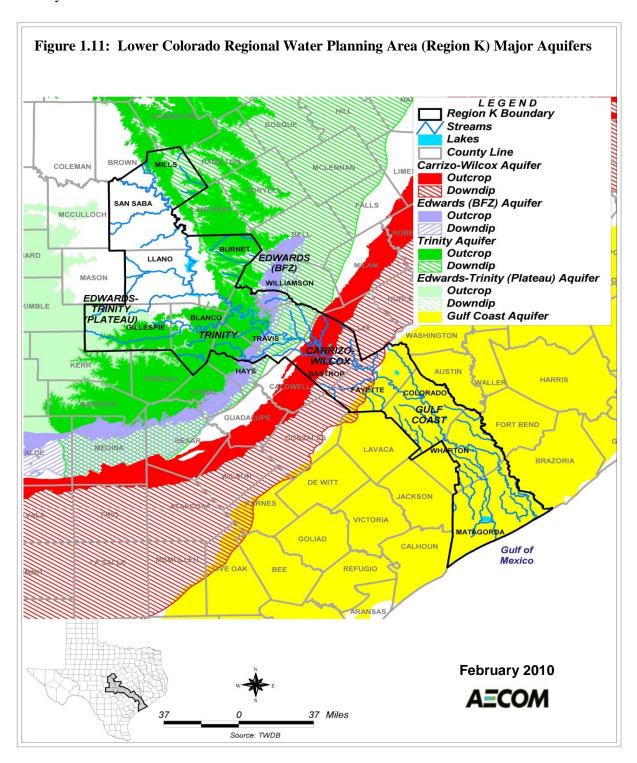
The primary surface water feature of Region K is the Colorado River. Figure 1.10 displays the surface water hydrology characteristics of the region. The major sources of dependable surface water supplies in the region are the Highland Lakes reservoir system and the run-of-the-river (ROR) water from the Colorado River. ROR water rights allow permit holders to divert water directly from a watercourse up to their permitted amounts if the water is present in the river and after downstream senior priority rights are satisfied. Tributary ROR water rights and off-channel storage are also utilized by several water user groups (WUGs). In addition, a small portion of the planning region's surface water supply comes from local supplies within adjacent river basins. There are 12 water supply reservoirs within the Region K boundaries: Goldthwaite, Blanco, Llano, and Cedar Creek reservoirs, Lady Bird Lake, Lake Walter E. Long, and the Highland Lakes System (Lakes Buchanan, Inks, Lyndon B. Johnson, Marble Falls, Travis, and Austin). The major Colorado River ROR water rights holders (based on firm yield) in Region K are the Lower Colorado River Authority (LCRA), City of Austin (COA), and STP Nuclear Operating Company. The City of Corpus Christi, located in Region N, and the Colorado River Municipal Water District, located in Region F immediately upstream of Region K, are also major water right holders on the Colorado River. Region K also has many springs, which are the transition from groundwater to surface water. Overall, there are approximately 43 major and significant springs in Region K, with 19 of those in San Saba County. Other counties include Bastrop County, Blanco County, Burnet County, Fayette County, Gillespie County, Hays County, Llano County, and Travis County. For more information on the springs within Region K, please refer to Texas Water Development Board Report 189: Major and Historical Springs of Texas, by Gunnar Brune, March 1975.

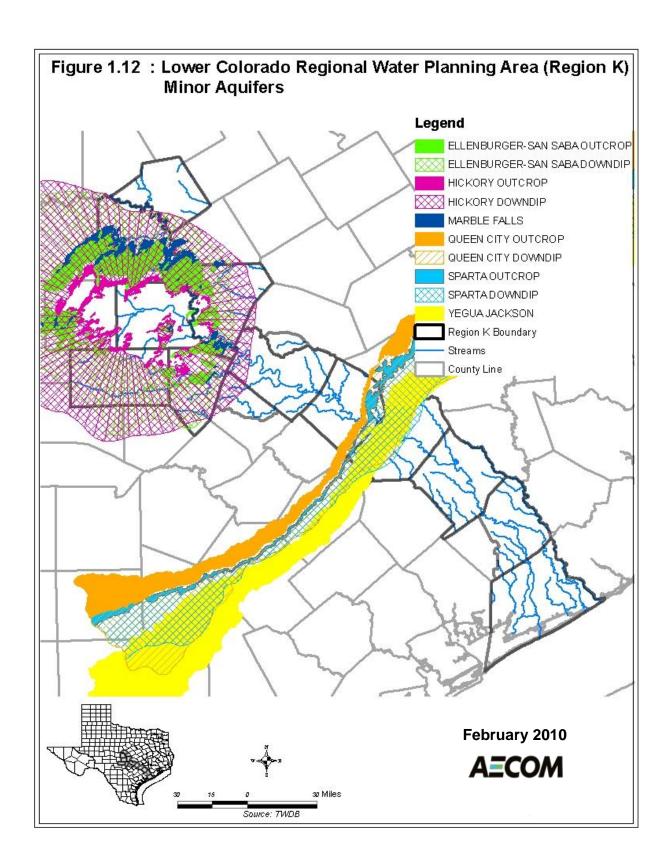

Large quantities of fresh to slightly saline groundwater underlie more than 81 percent of the land in Texas. There are nine "major" aquifers that can produce large quantities of water over a large area, and 21 "minor" aquifers that yield smaller amounts of water over smaller geographic areas. At present, 56 percent of the State's annual water consumption is derived from the State's major and minor aquifers, 75 percent of which is used for agriculture. Of these 30 aquifers, five major and six minor aquifers occur within Region K.

The five major aquifers are the Carrizo-Wilcox, Edwards aquifer (Balcones Fault Zone [BFZ]), Edwards-Trinity (Plateau), Gulf Coast, and Trinity (Figure 1.11). These aquifers tend to run in curved belts northeast to southwest across the state.

⁸ Dallas Morning News, 1999. *Texas Almanac 2000-2001, 60th Edition*, Texas A&M Press.

⁹ Texas Water Development Board (TWDB), November 1995. Aquifers of Texas, Report 345.


LCRWPG WATER PLAN 1-19


The northern most major aquifer in Region K is the Trinity, which has both unconfined water-table and pressurized artesian zones, and covers portions of Mills, Burnet, Gillespie, Blanco, Travis, Hays, and Bastrop Counties. Within the region, the Trinity aquifer contains two major early Cretaceous age formations: the Antlers formation, which consists of a maximum of 900 feet of sand and gravel, with clay beds in the middle section; and the Travis Peak formation, which contains calcareous sands and silts, conglomerates, and limestones. West of the Trinity aquifer in Gillespie County is a small eastern watertable portion of the Edwards-Trinity (Plateau) aquifer. Within the planning region, the Edwards-Trinity (Plateau) aquifer contains saturated sediments of lower Cretaceous age formations and overlying limestones and dolomites. Maximum saturated thickness of the aguifer is 800 feet; however, the eastern portion of the aquifer in Gillespie County is thinner. Overlying a portion of the Trinity artesian zone is the Edwards (BFZ) aguifer, which covers portions of Hays, Travis, and Williamson Counties within Region K. In this area, the aquifer contains both unconfined and artesian zones and feeds the well-known recreational Barton Springs, which contributes an estimated average of 50 cubic feet per second (cfs) of flow to the Colorado River. The Edwards BFZ is primarily composed of early Cretaceous age limestone deposits that have a thickness ranging between 200 feet and 600 feet. This aquifer has a high permeability and transmissivity, making it heavily dependent on consistent recharge and extremely sensitive to environmental stresses. Southeast of the Trinity is the Carrizo-Wilcox aguifer in portions of Bastrop and Fayette Counties. This aguifer contains both water-table and artesian zones and consists of two hydrologically connected formations, the Wilcox Group and the overlying Carrizo formation, which are predominantly composed of Tertiary age sand that is imbedded with gravel, silt, clay, and lignite. The thickness of the artesian zone ranges from 200 feet to 3,000 feet. The southernmost and largest major aquifer within Region K is the Gulf Coast aquifer, which stretches continuously from southeastern Fayette County through Matagorda County. This portion of the aquifer is described as a leaky artesian system, which is composed of Cenozoic age complex interbedded clays, silts, sands, and gravel. In some areas near the Gulf Coast, heavy pumping has caused the intrusion of saltwater into aquifer layers that previously had good water quality. The physical characteristics of this aquifer make it susceptible to dewatering, or a permanent compaction of the clay layer and loss of water storage capacity, as a result of overuse of the aquifer. This compaction can also cause subsidence of surface land overlying the aquifer, which can contribute to flood and structural damage in the area.

The minor aquifers occurring within Region K are the Ellenburger-San Saba, Hickory, Marble Falls, Queen City, Sparta, and Yegua-Jackson (Figure 1.12). All six of these aquifers contain unconfined zones and pressurized artesian zones. The Ellenburger-San Saba, Hickory, and Marble Falls aguifers occur in the northwestern portion of the planning region, have discontinuous circular coverage areas, and overlap one another. The Hickory aquifer is composed of the Hickory Sandstone Member of the Cambrian Riley formation, which contains some of the oldest sedimentary rocks found in Texas. This aquifer has a maximum thickness of 480 feet. The Ellenburger-San Saba aquifer has the same general shape as the Hickory and is composed of late Cambrian age limestone and dolomite. San Saba Springs is thought to be supplied primarily by the Ellenburger-San Saba and Marble Falls aquifers, which may be hydrologically connected in some areas. The Marble Falls aquifer occurs in several disconnected outcrops of Pennsylvanian age limestone that form fractures, solution cavities, and channels. The maximum thickness of this aquifer is 600 feet. Numerous large springs are fed by the Marble Falls aquifer, which provide a substantial portion of baseflow to the San Saba and Colorado Rivers in San Saba County. The Queen City, Sparta, and Yegua-Jackson aquifers overlap one another across southeastern Bastrop and northwestern Fayette Counties. The Queen City aquifer is composed of Tertiary age sand, loosely cemented sandstone, and interbedded clay. The maximum thickness of this aguifer is less than 500 feet. The Sparta aguifer overlies the downdip portion of the Queen City aguifer and consists of

Tertiary age sand and interbedded clay. The Yegua-Jackson aquifer consists of interbedded sands, silts, and clays.

LCRWPG WATER PLAN

Surface water and groundwater supply availabilities for Region K are discussed in *Chapter 3* of this report.

1.2.1.5 Land Resources¹⁰

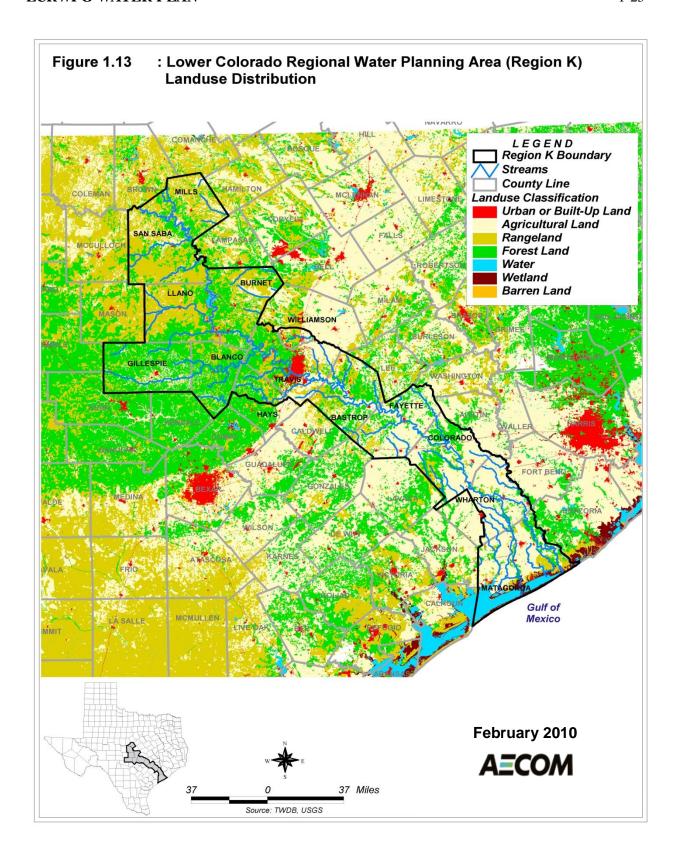
The majority of Region K falls within the Colorado River Basin and 92 percent of the region's population resides in this portion of the basin. Land use (*Figure 1.13*) in Region K consists primarily of agricultural land in Matagorda, Wharton, Colorado, Fayette, and eastern Travis Counties. Forestland runs through the middle of Colorado and Fayette Counties; western Travis and Burnet Counties; southeastern Llano County; and a significant portion of Gillespie and Hays Counties. Rangeland predominates in Mills, San Saba, northwestern Llano, and eastern Burnet Counties. Blanco County is primarily a mixture of forestland and rangeland. Bastrop County is a mixture of forestland, agricultural land, and rangeland. A significant concentration of urban land only occurs in the Austin metropolitan area.

The State of Texas has 123 state parks and 14 of these, with a total of 28,316 acres, occur within the counties of Region K (*Table 1.2*). The Texas State Park System offers a variety of recreational and educational opportunities, including camping, hiking, fishing, boating, water skiing, swimming, wildlife viewing, picnicking, and tours of nature exhibits and historical sites.

1.2.1.6 Wildlife Resources¹¹

There are 17 national wildlife refuges in Texas, comprising over 470,000 acres, and four of these occur within Region K (67,468 acres). Refuges function to preserve and protect critical wildlife habitat for unique, rare, threatened, and/or endangered species. Many refuges allow bird and wildlife viewing, hunting, and fishing during specific times of the year. In addition, the Texas Parks & Wildlife Department (TPWD) currently manages 51 Wildlife Management Areas (WMAs) in the state with a total of 756,464 acres. Two WMAs lie within Region K and encompass approximately 7,500 acres. These areas preserve and manage quality wildlife habitat and can allow compatible activities such as research, hunting, fishing, hiking, camping, bicycling, and horseback riding. *Table 1.3* lists the wildlife refuges and management areas within Region K.

Region k hosts a diversity of plant and animal wildlife species. In addition to the more commonly found species, each county within Region K provides habitat for several threatened or endangered animal and plant species. Endangered species are those at risk of extinction. Threatened species are those likely to become endangered in the future. These designations are made at the state and federal level by the TPWD and the U.S. Fish and Wildlife Service (USFWS). State and federal threatened and endangered species listings for each county in Region K are presented in *Appendix 1A*. Rare species that are not listed as threatened or endangered are also included.


¹⁰ Dallas Morning News (Texas Almanac 2004–2005).

¹¹ Dallas Morning News (Texas Almanac 2004–2005).

Table 1.2 State Parks Located Within the Lower Colorado Region

Name	County	Acreage	Description
Admiral Nimitz Museum and Historical Center	Gillespie	7	Established in 1969 and contains special exhibits from World War II.
Bastrop State Park	Bastrop	3,504	Established between 1933 and 1935 and contains the "Lost Pines" isolated region of loblolly pine and hardwoods.
Blanco State Park	Blanco	105	Established in 1933 along the Blanco River and has fishing for winter rainbow trout, perch, catfish, and bass.
Buescher State Park	Bastrop	1,017	Established between 1933 and 1936 and was part of Stephen F. Austin's colonial grant; an estimated 250 species of birds can be found in the park.
Colorado Bend State Park	San Saba	5,328	Established in 1984 and part is in Lampasas Co.; contains scenic Gorman Falls and is home to rare and endangered species including the bald eagle, golden-cheeked warbler, and black-capped vireo.
Enchanted Rock State Park	Gillespie and Llano	1,644	Established in 1978 along Big Sandy Creek and contains a large granite outcrop that is the second largest batholith in the U.S. Enchanted Rock is also a national natural landmark and a national historic site.
Inks Lake State Park	Burnet	1,202	Established in 1940 along Inks Lake.
Lake Bastrop S. Shore Park	Bastrop	773	Established in 1989.
Longhorn Cavern State Park	Burnet	646	Established between 1932 and 1937 and was dedicated as a natural landmark in 1971. The cave has been used as a shelter since prehistoric times.
LBJ State Historical Park	Gillespie	733	Established in 1965 along the banks of the Pedernales River; contains LBJ's home and a portion of the official Texas Longhorn herd, as well as bison, deer, and wild turkey; living-history demonstrations at the restored Sauer-Beckmann house.
Matagorda Island State Park	Matagorda	7,325	A natural accreting barrier island located offshore between Port O'Conner and Fulton and is home to a variety of migratory and resident wildlife, including 18 state or federally listed endangered species.
McKinney Falls State Park	Travis	744	Established in 1970.
Monument Hill State Historical Park/Kreische Brewery State Historical Park	Fayette	40/36	Established in 1907/1977. Memorial to the Salado Creek Battle in 1842 and the "black bean lottery" of the Mier Expedition; and one of the first breweries in the state.
Pedernales Falls State Park	Blanco	5,212	Established in 1970 and has typical Edwards Plateau terrain with live oaks, deer, turkey, and stone hills.

LCRWPG WATER PLAN

D. R. Wintermann

Name County Acreage Description National Wildlife Refuges Attwater Prairie Chicken Colorado 10.528 Established in 1972 to preserve habitat for the endangered Attwater Prairie Chicken, which includes native tallgrass prairie, potholes, sandy knolls, marshes, and some wooded areas. **Balcones Canyonlands** Travis 25,000 Established in 1992 northwest of Austin to protect the nesting habitat of two endangered bird species: golden-cheeked warbler and the black-capped vireo. The refuge will eventually encompass 46,000 acres of oak-juniper woodlands and other habitats. Coastal prairie and salt marsh along East Matagorda Bay for the Big Boggy Matagorda 4.526 benefit of wintering waterfowl. Established in 1968 near Freeport which attracts white-fronted and San Bernard Matagorda 27,414 Canada geese and several species of duck Wildlife Management Areas Mad Island Matagorda 7,281 This area allows hunting and wildlife viewing.

This area has restricted access.

Table 1.3 Wildlife Refuges/Management Areas Located Within the Lower Colorado Region

1.2.2 Socioeconomic Characteristics of the Lower Colorado Regional Water Planning Area

246

1.2.2.1 Historic and Current Population Trends¹²

Wharton

Region K has had a steady increase in population from 1950 to the present. As *Figure 1.14* shows, in 1950 there were approximately 316,573 people, which has increased to an estimated 1,132,228 people in 2000. This corresponds to an overall 257 percent increase in the number of people living in the region during that time period. The average compound annual growth rate for the 1950 to 2000 period was an estimated 2.4 percent. The period from 1990 to 2000 had the largest percent increase of almost 41 percent, or an addition of 331,199 people. The time period of smallest population growth occurred between 1950 and 1960, with an increase of 45,830 persons (14.5 percent). As discussed in Chapter 2, this growth trend is expected to continue for the entire State of Texas, as well as Region K. For the period 2000 to 2060, a compound annual growth rate of 1.5 percent is projected, resulting in a total regional population of 2,831,937 in 2060.

¹² Bureau of the Census, Decadal Censuses of 1950, 1960, 1970, 1980, 1990 and 2000; and Region K historic population data supplied by the Texas Water Development Board for 1980–2000. The Region K 2000 Population projections were developed utilizing year 2000 census data as a starting point with adjustments made by the LCRWPG as necessary. Populations for the Partial Region K counties of Hays, Williamson, and Wharton were estimated by determining the percent decreases observed in projections from the U.S. Census and the TWDB for 1980 and 1990; these percent decreases were then averaged and applied to the 1950, 1960, and 1970 U.S. Census partial-county populations.

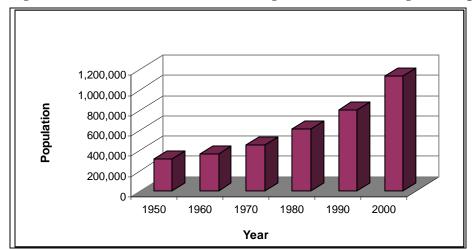


Figure 1.14: Historic Lower Colorado Regional Water Planning Area Population

Comparison of the region's county population distribution between 1950 and 2000 (*Figure 1.15*) shows that Travis County still contains the majority of the region's population. However, this proportion has increased from 50 percent in 1950 to 72 percent in 2000 due to the rapid growth of the Austin area. Travis County's population has more than quadrupled between 1950 and 2000, with the addition of over half a million people. Hays County has also seen a large population increase with almost eight times as many people living in the county in 2000 as in 1950. Other counties in the region have experienced much smaller growth rates, historically.

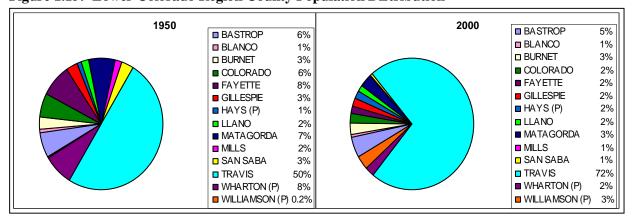


Figure 1.15: Lower Colorado Region County Population Distribution

Recent population growth, since the year 2000, of the Austin metropolitan area has expanded from Travis County into Bastrop County, Hays County, and Williamson County. With the recent construction of the SH 130 and SH 45 corridors in Travis County, travel between counties has become easier and thus is facilitating increased population growth within a larger radius of the City of Austin. Increased development surrounding the corridors should continue for the next several decades. Areas surrounding the Highland Lakes are also seeing larger increases in population growth, specifically Burnet County and Llano County.

As part of the Phase I studies for this round of planning (Task 3 – Evaluation of High Growth Areas), the LCRWPG evaluated the question of whether the County-Other population projections for 2010 through 2060 in the 2006 Region K Plan was sufficient for handling the growth due to SH 130 as well as the population of County-Other elsewhere in Travis County. Two methods of determining the population projections within the County-Other portion of the SH 130 Corridor were used. The first used population density, which was provided by the SH 130 report written by the Greater Austin Chamber of Commerce. The second method used mid-census data provided by the State as well as growth estimates for several WUGs within the Corridor area that were provided in a study done by the Capital Area Metropolitan Planning Organization (CAMPO), entitled *Revised Draft CAMPO 2035 Regional Growth Concept*. The results of both methods showed that it is likely the County-Other population projections in the 2006 Region K Plan were sufficient. Population projections for other WUGs in the Corridor were updated during Phase II of this round of planning. Please refer to the First Biennium Studies *Evaluation of High Growth Areas Study* (Task 3) for more detailed information of the analysis.

1.2.2.2 Primary Economic Activities^{13, 14}

Economic activities in Region K include agriculture, government/services, manufacturing, mining, and trades. *Table 1.4* lists the primary economic base of each county as well as the breakdown of mining and agricultural activities. *Appendix 1B* has a list of the Region K industry economic value estimates.

-

¹³ Dallas Morning News (Texas Almanac 2004–2005),.

¹⁴ Texas Comptroller of Public Accounts, Texas Economy, www.window.state.tx.us/ecodata/regional/.

Table 1.4 Lower Colorado Region Primary Economic Activities by County

County	Primary Economic Base	Mineral Deposits	Agriculture
	•	1	9
Bastrop	government/services, tourism, agribusiness, bio-technology research, computer equipment	clay, oil, gas, lignite	hay, beef cattle, horses, goats, pecans, pine, oak
Blanco	tourism, agribusiness, ranch supplies and equipment manufacturing, hunting/fishing	insignificant	cattle, sheep, goats, hay, vegetables, wheat, peaches, pecans, greenhouse nurseries
Burnet	stone processing, manufacturing, tourism, hunting	granite, limestone, graphite	cattle, goats, hay, hunting,
Colorado	agribusiness, oilfield services/ equipment, manufacturing, mineral processing	gas, oil	rice, cattle, nursery, corn, poultry, hay, sorghum,
Fayette	agribusiness, tourism, electrical power generation, mineral production, small manufacturing, government/services	oil, gas, sand, gravel, bentonite, clay	beef cattle, corn, sorghum, peanuts, hay, pecans
Gillespie	agribusiness, tourism, government/ services, food processing, hunting, small manufacturing, granite processing	sand, gravel, gypsum, limestone	beef cattle, turkeys, sheep, goats, peaches, hay, sorghum, oats, wheat, grapes
Hays (p)	tourism, retirement, some manufacturing	sand, gravel, cement	beef cattle, goats, exotic wildlife, greenhouse nurseries, hay, corn, sorghum, wheat, cotton
Llano	tourism, retirement, ranch commerce center, vineyards, granite mining	granite, vermiculite, llanite	beef cattle, sheep, goats
Matagorda	petroleum operations, petrochemicals, agribusiness, varied manufacturing, significant tourism, electrical power generation	gas, oil, salt	major rice-growing area, cotton, turfgrass, grains, corn, cattle, catfish
Mills	agribusiness, hunting	insignificant	beef cattle, sheep, goats, pecans
San Saba	retail pecan industry, tourism, hunting, government/ services	Limestone, rock, quarry	cattle, sheep, goats, pecans, wheat, hay
Travis	education, state government, tourism, research, industries, conventions	Lime, stone, sand, gravel, oil, gas	cattle, nursery crops, hogs, sorghum, corn, cotton, small grains, pecans
Wharton (p)	oil, agribusiness, hunting, varied manufacturing, government/services	oil, gas	leading rice producing county, cotton, milo, corn, sorghum, soybeans, turfgrass, eggs, beef cattle, rice, aquaculture
Williamson (p)	agribusiness, varied manufacturing, government/services, education	stone, sand, gravel	beef cattle, sorghum, cotton, corn, wheat

⁽p) - a portion of the county lies within the REGION K boundaries

Agriculture plays a major role in most of the counties in Region K. Livestock accounts for more than 60 percent of the planning region's agricultural cash receipts and important crops include rice, hay, wheat, and cotton. The counties located in the northwestern portion of the planning region depend heavily on livestock production. Rice is the major crop produced in the southernmost counties of Colorado, Wharton, and Matagorda.

The manufacturing sector consists primarily of the technology and semiconductor industries, in the midregion counties of Bastrop, Travis, and Williamson. The largest single manufacturing industry in the coastal counties is petroleum refining and petrochemicals. Electrical generation is a notable industry in Matagorda County. The South Texas Project Electric Generating Station provides generation capacity to serve more than 2 million homes as well as being the largest employer and source of revenue for the county. At the same time, there has been significant economic growth in food processing, lumber, wood products, and construction supplies for the coastal counties. Textile and apparel industries are found throughout Region K; however, the economic growth rate has been on the decline over the past decade. The construction sector economic trend was productive throughout the planning region due to increases in residential markets, prison facilities, and shopping malls.

In the decade between 1984 and 1994, almost every sector of the regional economy experienced growth, except construction and mining. During this time, average annual employment growth rates for Region K were 2.7 percent for the far northern portion of the region, 3.5 percent for the middle portion, and 1.3 percent for the lower portion of the region.

Population and economic estimates are presented in *Table 1.5* for the Lower Colorado Region by county. Italicized numbers were left unchanged from the January 2006 Region K Water Plan as new data was not available. Individuals in poverty numbers were calculated by multiplying the poverty rate by the resident population.

 Table 1.5 Lower Colorado Region County Population and Economic Estimates

County	July 2006 Resident CY 2006 Personal Income ¹		CY 2005- 2007	CY 2005-2007 Poverty ²		CY 2006 Average Labor Force Employment and Unemployment ³				
Name	Population ¹	Per Capita (\$)	Total (millions \$)	Median Household Income (\$) ²	Individuals in Poverty	Poverty Rate (%)	Labor Force	Persons Employed	Un-	Unemploy -ment Rate (%)
Bastrop	70,396	\$25,830	\$1,818	\$49,799	7,673	10.9	34,274	32,681	1,593	4.6
Blanco	9,035	\$34,287	\$310	\$39,369	922	11.2	4,676	4,495	181	3.9
Burnet	42,398	\$32,023	\$1,358	\$47,355	5,215	12.3	21,389	20,507	882	4.1
Colorado	20,573	\$30,062	\$618	\$38,167	3,168	15.4	10,723	10,261	462	4.3
Fayette	22,383	\$33,352	\$747	\$40,882	2,820	12.6	12,033	11,588	445	3.7
Gillespie	23,203	\$36,682	\$851	\$50,400	1,508	6.5	12,868	12,445	423	3.3
Hays	133,151	\$27,860	\$3,710	\$52,396	20,239	15.2	69,820	66,888	2932	4.2
Llano	18,022	\$30,039	\$541	\$34,830	1,733	10.3	8,168	7,785	383	4.7
Matagorda	37,122	\$24,962	\$927	\$39,123	9,503	25.6	16,039	14,904	1,135	7.1
Mills	5,006	\$26,358	\$132	\$30,579	900	18.4	2,412	2,314	98	4.1
San Saba	5,973	\$22,821	\$136	\$30,104	936	16.6	2,566	2,439	127	4.9
Travis	941,577	\$39,781	\$37,457	\$52,073	144,061	15.3	517,398	496,271	21,127	4.1
Wharton	40,997	\$28,152	\$1,154	\$39,966	6,068	14.8	20,639	19,648	991	4.8
Williamson	350,879	\$33,691	\$11,821	\$66,468	21,755	6.2	189,424	181,431	7,993	4.2
Region K 4	1,720,715	\$35,787	\$61,580	-	226,501	-	922,429	883,657	38,772	4.2
Texas	23,407,629	\$35,166	\$823,159	\$46,248	3,955,889	16.9	, ,	10, 815,873	561,695	4.9

¹U.S. Bureau of Economic Analysis (URL: http://www.bea.doc.gov/bea/regional/bearfacts/countybf.cfm)

²U.S. Bureau of the Census (URL: http://factfinder.census.gov) (Fact Sheet for community profiles.)

³Texas Workforce Commission (URL: http://www.tracer2.com/)

⁴ Includes all of Hays, Wharton, and Williamson Counties.

1.2.2.3 Historical Water Uses^{15, 16, 17}

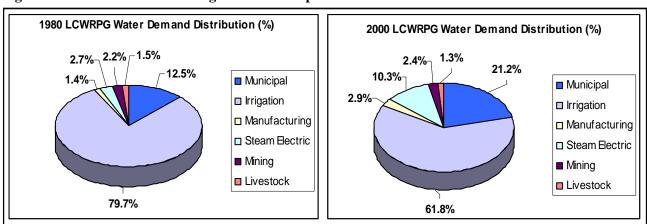

Total annual water use in the Lower Colorado Regional Planning Area has increased approximately 5 percent from 1980 to 2000 (Figure 1.16). A peak water use of 1.17 million ac-ft occurred in 1988. By 1992 the region's water use had decreased almost 20 percent to 0.94 million ac-ft. The period from 1980 to 2000 has seen a relatively moderate fluctuation of +/-17 percent as compared to the 20-year annual demand average water approximately one million ac-ft. compared to the region's consistently increasing population and industry, the effect of improvements in water use

Figure 1.16: Lower Colorado Regional Water Planning Area Historical Water Demand

efficiencies is evident. Relative water use distribution, by water use category, has remained relatively similar between 1980 and 2000 (*Figure 1.17*). Irrigation is the largest water use in Region K, which accounted for almost 80 percent of water use in 1980 and 62 percent in 2000. Municipal has consistently been the second largest water use since 1980, followed by steam-electric power, mining, manufacturing, and livestock water uses.

Figure 1.17: Lower Colorado Region User Group Water Demand Distribution

Irrigation water demand has decreased over this 20-year period, with a decrease of approximately 18 percent. Municipal experienced an 80 percent increase in water demand between 1980–2000, while livestock experienced a 6 percent decrease, mining experienced a 15 percent increase, and manufacturing experienced a 117 percent increase. Steam-electric power generation experienced the largest water demand increase of 305 percent.

¹⁵ The Region K 2000 population projections were developed utilizing year 2000 Census data as a starting point with adjustments made by the LCRWPG as necessary.

¹⁶ LCRA, March 1999, Water Management Plan.

¹⁷ Lower Colorado River Authority (LCRA), December 1997. *Freshwater Inflow Needs of the Matagorda Bay System.*

The water demand distribution between the 14 counties in Region K shows that during the period from 1980 to 2000, demand was consistently the greatest in Matagorda County, which accounted for approximately 33 percent of the region's total water demand in 1980 and 29 percent in 2000 (*Figure 1.18*). The major water use in Matagorda County is rice irrigation. Colorado and Wharton Counties are among the largest water users in the region, which is also attributed to the extensive rice irrigation in these counties. Travis County contains the region's only major demand center, and its water use ranked fourth overall in 1980 and in 2000. Overall, these four counties account for approximately 93 and 90 percent of the region's total water demand, respectively, for 1980 and 2000. Details of Region K's water demand are presented in Chapter 2.

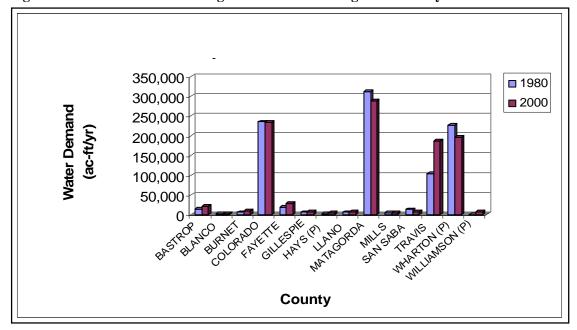


Figure 1.18: Lower Colorado Regional Water Planning Area County Water Demand Distribution

Flows for the maintenance of important environmental resources are also a significant water use within the free-flowing reaches of streams in Region K. Free-flowing reaches above the Highland Lakes System in San Saba and Mills Counties are dependent on rainfall, springflow and water releases from Stacy Dam at O.H. Ivie Reservoir, which is outside Region K and is under the control of the Colorado River Municipal Water District within Region F. A management plan has been implemented in this area, between O. H. Ivie Reservoir and Lake Buchanan, to protect the federally endangered Concho Water Snake. The minimum continuous instream flow releases from Stacy Dam are 11 cfs from April through September and 2.5 cfs from October through March. These flow regimes are designed to preserve and protect the aquatic foodbase of the Concho Water Snake. These instream flows were required by the USFWS as a mitigation component to obtain a Section 404 permit from the U.S. Army Corps of Engineers (USACE) in order to build Stacy Dam. The water management plan also specifies that once every 2 years Stacy Dam will release a 2-day 2,500 cfs instream flow to provide channel maintenance for the water snake habitat.

The free-flowing reaches below the Highland Lakes System downstream to the mouth of the Colorado River are under the control of the LCRA. A 1992 instream flow study was performed by the LCRA for five consecutive study reaches, which start downstream of Austin at river mile 290 (from the mouth of the

Colorado River) to river mile 34 near Bay City (*Figure 1.19*). The results of the 1992 study were subsequently incorporated into the TCEQ approved LCRA Water Management Plan (WMP). The LCRA Water Management Plan is updated approximately every five years on an as-needed basis to reflect changing conditions in the basin. The latest update to the LCRA WMP was approved by the LCRA Board and submitted for approval to the TCEQ in 2003. When work began on the 2011 Region K update, the latest update to the LCRA WMP was not approved by the TCEQ. The latest version of the LCRA WMP (2003 submittal) was approved by the TCEQ in January 2010. However, this was after all of the water supply determinations and the identification, evaluation and selection of water management strategies based on need had been made. Therefore, the information used for the 2011 Region K update is from the 1999 LCRA WMP.

Webberville Seament Bastrop Smithville Eagle Lake Bastrop Co. Fayette Co. Egypt Colorado Study Reach Locations Wharton Co. Matagorda

Figure 1.19: Lower Colorado River Instream Study Reaches (Source: LCRA)

Subsistence or critical instream flows are classified as a non-interruptible demand on water resources, and instream flows have been maintained by LCRA at or above the minimum critical flow in accordance with

the current WMP. *Table 1.6* gives the minimal critical flow requirements recommended by the LCRA for two gage stations along the Lower Colorado River.

Target instream flows are designed to provide an optimal range of habitat complexity to support a well-balanced, native aquatic community within a stream reach. *Table 1.6* provides a schedule of flows recommended by the LCRA for the Colorado River study stream reaches to meet the physical habitat requirements of the native fish communities and other critical aquatic habitats. Target flows were adjusted monthly to incorporate the normal seasonal variations in flows for which native fish species are adapted. LCRA has maintained these flow regimes whenever water resources are adequate, but target flows are classified as interruptible demands that have been reduced during drought conditions. For further details, please refer to LCRA's WMP.

Table 1.6 Schedule of Recommended Flows for the Colorado River Downstream of Austin

Mandh	Critical I	Flows (cfs)	Target Flows (cfs)			
Month	Austin Gage ^c	Bastrop Gage	Bastrop Gage	Eagle Lake	Egypt	
January	46	120	370	300	240	
February	46	120	430	340	280	
March	46	500 ^в	560	500 ^a	360	
April	46	500 ^в	600	500 ^a	390	
May	46	500 ^в	1,030	820	670	
June	46	120	830	660	540	
July	46	120	370	300	240	
August	46	120	240	200	160	
September	46	120	400	320	260	
October	46	120	470	380	310	
November	46	120	370	290	240	
December	46	120	340	270	220	

Source: LCRA, March 1999, Water Management Plan.

In addition, if the subsistence/critical flow of 46 cfs should occur for an extended period of time, then operational releases will be made by LCRA to temporarily alleviate the subsistence/critical flow conditions. Specifically, should the flow at the Austin gage be below a 65 cfs daily average for a period of 21 consecutive days, LCRA will make operational releases from storage sufficient to maintain daily average flow at the Austin gage of at least 200 cfs for two consecutive days. If this operational release conditions persists for three consecutive cycles (69 days), then a minimum average daily flow of at least 75 cfs will be maintained for the next 30 days.

Maintenance flows are classified as short periods of higher than normal flows that are needed to remove the buildup of silt and overgrowth of macrophytic vegetation. These flows should occur naturally during rainfall events, but may benefit from periodic dam releases to accomplish this task.

Freshwater inflow is also essential for healthy coastal estuarine ecosystems along the Texas Coast. Ninety-seven percent of the fishery species (shellfish and finfish) in the Gulf of Mexico spend all or a

^a Since target flow at Eagle Lake (based on overall community habitat availability) were insufficient to meet Blue Sucker (*Cycleptus elongatus*) spawning requirements during March and April, target flows were superseded by critical flow recommendations for this reach.

^b This flow should be maintained for a continuous period of not less than six weeks during these months. A flow of 120 cfs will be maintained on all days not within the six week period.

^c LCRA will maintain a mean daily flow of 100 cfs at the Austin gage at all times, to the extent of inflows each day to the Highland Lakes as measured by upstream gages, until the combined storage of Lakes Buchanan and Travis reaches 1.1 million acre-feet of water. A mean daily flow of 75 cfs, to the extent of inflows each day to the Highland Lakes as measured by upstream gages, will then be maintained until the combined storage of Lakes Buchanan and Travis reaches 1.0 million acre-feet of water, then a subsistence/critical flow of 46 cfs will be maintained at all times, regardless of inflows.

portion of their life cycle in estuaries. The life cycles of estuarine-dependent species vary seasonally and have different migratory patterns between the estuary and the Gulf. The Matagorda Bay system is the second largest estuary in the state, and this system receives freshwater inflow from the Colorado River, the Lavaca River, and surface runoff from the contributing drainage basin areas. On average, Matagorda Bay annually receives approximately 560 billion gallons (more than 1.7 million ac-ft) of freshwater from the Colorado River and basin. This corresponds to about 69 percent of the river's available water supply from surface runoff inflow. The LCRA performed a freshwater inflow study on the bay system in 1997 and determined the critical inflow that would keep salinity near the mouth of the river less than 25 parts per million (ppm) for protection of fishery sanctuary habitat during droughts. Target inflows were also determined that would result in producing 98 percent of the maximum total normalized biomass for key estuarine fishery species, while maintaining a certain salinity, population density, and nutrient inflow conditions. Modeling efforts determined that the optimal total critical flows and target flows for the Matagorda Bay system are 287,400 ac-ft/yr and 2,000,000 ac-ft/yr, respectively. Table 1.7 provides the monthly flows required exclusively from the Colorado River's contribution to the bay system. The Colorado River provides about 52 percent of the bay system's target freshwater inflows and about 60 percent of the critical inflows.

A revision of the Freshwater Inflow Needs Study (FINS) was completed in 2006. The results of this study showed increased target and critical needs for Matagorda Bay. The 2006 FINS critical and target flows were used in this round of planning when determining the quantitative environmental impacts of the water management strategies. *Table 1.7* also shows the increased required monthly flows from the Colorado River as shown in the 2006 Freshwater Inflow Needs Study. The critical needs from the 2006 Study are approximately 150 percent higher than the 1997 Study, while the target needs from the 2006 Study are approximately 40 percent higher.

Table 1.7 Critical and Target Flows Schedule For Matagorda Bay System From the Colorado River

Month		FINS ows (1,000 ac-ft) ¹	2006 FINS Freshwater Inflows (1,000 ac-ft) ¹			
	Critical	Target	Critical	Target		
January	14.26	44.1	36	205.6		
February	14.26	45.3	36	194.5		
March	14.26	129.1	36	63.2		
April	14.26	150.7	36	60.4		
May	14.26	162.2	36	255.4		
June	14.26	159.3	36	210.5		
July	14.26	107.0	36	108.4		
August	14.26	59.4	36	62.0		
September	14.26	38.8	36	61.9		
October	14.26	47.4	36	71.3		
November	14.26	44.4	36	66.5		
December	14.26	45.2	36	68.0		
Annual Totals	171	1,033	432	1,428		

¹ Schedule of flows is designed to optimize biodiversity/productivity under normal rainfall. Under drought conditions, target flows should be curtailed in accordance to the severity of the drought and flows should be maintained at or above critical levels based on water quality considerations.

1.2.2.4 Wholesale Water Providers

The TWDB guidelines allow each RWPG to identify and designate "wholesale water provider(s)" for each region. These guidelines define a wholesale water provider as an entity ". . . which delivers and sells a significant amount of raw or treated water for municipal and/or manufacturing use on a wholesale basis." The intent of these TWDB guidelines is to ensure that there is an adequate future supply of water for each entity that receives all or a significant portion of its current water supply from another entity.

As discussed in Chapter 2, the LCRWPG has officially designated the LCRA and the City of Austin (COA) as wholesale water providers. The LCRA provides water for municipal, agricultural (irrigation), manufacturing, steam-electric, mining and other uses within a 33-county service area. LCRA's current service area allows it to provide water to entities in each of the 14 counties within the Lower Colorado Regional Planning Area (*Figure 1.20*). The COA supplies water for municipal, manufacturing, and steam-electric uses. The City's water planning area encompasses portions of Travis, Williamson, and Hays Counties (*Figure 1.21*).

Concho

Sotheicher Menard

Liane

Sutton

Kimble

Real

Colored

Kerr Kendall

Colored

Real

Colored

Real

Colored

Kerr Kendall

Colored

Real

Colored

Mason

Liane

Colored

Real

Colored

Mason

Liane

Real

Colored

Mason

Liane

Real

Colored

Mason

Liane

Real

Colored

Mason

Liane

Real

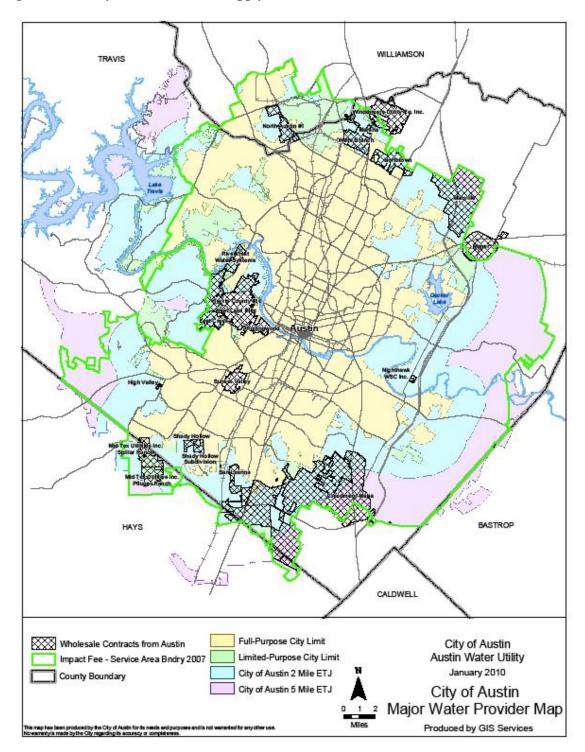
Mason

Real

Mason

Liane

Real


Mason

Maso

Figure 1.20: Lower Colorado River Authority Water Supply Service Area

Source: The Lower Colorado River Authority (March 2000)

Figure 1.21: City of Austin Water Supply Service Area

1.2.3 Water Quality in the Colorado River Basin 18, 19, 20

The chemical characteristics of and the State Water Quality Criteria assigned to the Colorado River vary along its length (900 river miles) from the upper basin that is mainly within the West Texas Regional Water Planning Area (Region F) to the mouth of the river at Matagorda Bay in the Lower Colorado Regional Planning Area (Region K) (*Table 1.8*). The water quality differences of the various stream segments of the Colorado River are due to variations in both natural and man-made influences affecting each segment's drainage area. In addition, water flowing from upstream segments of the Colorado River and its tributaries also contribute to each downstream segment's water quality characteristics.

The Colorado River is divided into 18 mainstream classified stream segments, which are defined by the TCEQ, which was formerly the Texas Natural Resource Conservation Commission (TNRCC), as:

Surface waters of an approved planning area exhibiting common biological, chemical, hydrological, natural, and physical characteristics and processes. Segments will normally exhibit common reactions to external stresses (e.g., discharge or pollutants). Segmented waters include most rivers and their major tributaries, major reservoirs and lakes, and marine waters, which have designated physical boundaries, specific uses, and specific numerical physicochemical criteria. Segments are classified in the water identification system utilized by the TNRCC Office of Water Resources Management (OWRM) and are the management unit to which water quality standards and regulations are applicable under the Clean Water Act.

Approximately 70 percent of the Colorado River mainstream segments are located within Region K. There are also 16 classified stream segments that are tributaries of the Colorado River, and almost 40 percent of these are within Region K.

The TNRCC initiated the Texas Clean Rivers Program (CRP) in 1991 to address the Texas Clean Rivers Act. The State Legislature passed this act in response to concerns within the state that water quality issues were being addressed in an uncoordinated fashion. The CRP established a watershed management approach to identify and evaluate water quality issues, as well as to set priorities for the improvement of water quality throughout the state. The CRP set up a partnership in each river basin that consisted of the TNRCC, other state agencies, river authorities, local governments, and private citizens. Each river basin is to provide the TNRCC with updated regional water quality data, and the TNRCC is required to summarize these basin-wide assessments into a statewide report every 2 years.

In 1996, the TNRCC published two reports that updated water quality information for each river basin and stream segment in the state: *The State of Texas Water Quality Inventory* and *Texas Water Quality: A Summary of River Basin Assessments*. The CRP's Colorado River Basin regional assessment technical report defines the "Upper Basin" of the Colorado River as the classified mainstream segments 1411–1413 and 1426 and classified tributary segments 1421–1425. These segments fall within the SB 1 Regions F and G. The "Middle Basin" contains mainstream segments 1403–1410, 1429, and 1433 and tributary segments 1414–1417, 1427, 1431, and 1432. These segments fall within SB 1 Region F and the Lower

¹⁸ TWDB, Op. Cit., May 1977.

¹⁹ TNRCC, December 1996. *Texas Water Quality: A Summary of River Basin Assessments*, Texas Clean Rivers Program Report SFR-46.

²⁰ TNRCC, October 1996. Regional Assessment of Water Quality: Colorado River Basin & Colorado/Lavaca Coastal Basin, Texas Clean Rivers Program Technical Report.

LCRWPG WATER PLAN 1-39

Table 1.8 Classified Stream Segment Uses and Water Quality Criteria in the Colorado River Basin 2002

COLORADO RIVER BASIN				USES 1		STATE STREAM STANDARDS CRITERIA ²						
Stream Segment #	Stream Segment Name	SB 1 Planning Region	Recreation	Aquatic Life	Water Supply	Chloride Annual Avg. (mg/L)	Sulfate Annual Avg (mg/L)	TDS Annual Avg (mg/L)	D.O. (mg/L)	pH Range	Fecal Coliform (30-day geometric mean, CFU/100ml)	Temp (*F)
1401	Colorado River - Tidal	K	CR	Н					4.0	6.5-9.0	35/200	95
1402	Colorado River below Smithville	K	CR	Н	PS	100	100	500	5.0	6.5-9.0	126/200	95
1403	Lake Austin	K	CR	Н	PS	100	75	400	5.0	6.5-9.0	126/200	90
1404	Lake Travis	K	CR	Е	PS	100	75	400	6.0	6.5-9.0	126/200	90
1405	Marble Falls Lake	K	CR	Н	PS	125	75	500	5.0	6.5-9.0	126/200	94
1406	Lake LBJ	K	CR	Н	PS	125	75	500	5.0	6.5-9.0	126/200	94
1407	Inks Lake	K	CR	Н	PS	150	100	600	5.0	6.5-9.0	126/200	90
1408	Lake Buchanan	K	CR	Н	PS	150	100	600	5.0	6.5-9.0	126/200	90
1409	Colorado River above Lake Buchanan	K	CR	Н	PS	200	200	900	5.0	6.5-9.0	126/200	91
1410	Colorado River below Ivie Reservoir	K	CR	Н	PS	500	455	1,475	5.0	6.5-9.0	126/200	91
1411	E. V. Spence Reservoir	F	CR	Н	PS	950	450	1,500	5.0	6.5-9.0	126/200	93
1412	Colorado River below Lake J. B. Thomas	F	CR	Н		11,000	2,500	20,000	5.0	6.5-9.0	126/200	93
1413	Lake J. B. Thomas	F	CR	Н	PS	80	110	500	5.0	6.5-9.0	126/200	90
1414	Pedernales River	K	CR	Н	PS	125	75	525	5.0	6.5-9.0	126/200	91
1415	Llano River	K	CR	Н	PS	50	50	350	5.0	6.5-9.0	126/200	91
1416	San Saba River	K/G	CR	Н	PS	50	50	425	5.0	6.5-9.0	126/200	90
1417	Lower Pecan Bayou	K	CR	Н		310	120	1,025	5.0	6.5-9.0	126/200	90
1418	Lake Brownwood	F	CR	Н	PS	150	100	500	5.0	6.5-9.0	126/200	90
1419	Lake Coleman	F	CR	Н	PS	150	100	500	5.0	6.5-9.0	126/200	93
1420	Pecan Bayou above Lake Brownwood	F	CR	Н	PS	500	500	1,500	5.0	6.5-9.0	126/200	90
1421	Concho River	F	CR	Н	PS	775	425	1,600	5.0	6.5-9.0	126/200	90
1422	Lake Nasworthy	F	CR	Н	PS	450	400	1,500	5.0	6.5-9.0	126/200	93
1423	Twin Buttes Reservoir	F	CR	Н	PS	200	100	700	5.0	6.5-9.0	126/200	90
1424	Middle Concho/S. Concho River	F	CR	Н	PS	150	150	700	5.0	6.5-9.0	126/200	90
1425	O. C. Fisher Lake	F	CR	Н	PS	150	150	700	5.0	6.5-9.0	126/200	90
1426	Colorado River blw E. V. Spence Reservoir	F	CR	Н	PS	610	980	2,000	5.0	6.5-9.0	126/200	91
1427	Onion Creek ⁴	K	CR	Н	PS/AP ⁵	50/100	50/100	400/500	5.0	6.5-9.0	126/200	90
1428	Colorado River below Town Lake ³	K	CR	Е	PS	100	100	500	6.0	6.5-9.0	126/200	95
1429	Town Lake ⁶	K	CR	Н	PS	75	75	400	5.0	6.5-9.0	126/200	90
1430	Barton Creek	K	CR	Н	AP^5	50	50	500	5.0	6.5-9.0	126/200	90
1431	Middle Pecan Bayou	F	CR			410	120	1,100	2.0	6.5-9.0	126/200	90
1432	Upper Pecan Bayou	F	CR	Н	PS	200	150	800	5.0	6.5-9.0	126/200	90
1433	O. H. Ivie Reservoir	F	CR	Н	PS	8	8	8	5.0	6.5-9.0	126/200	93
1434	Colorado River above La Grange	K	CR	Е	PS	100	100	500	6.0	6.5-9.0	126/200	95

Source: TCEQ (formerly TNRCC), 2002. (Developed from water quality data collected between March 1, 1996 and Feb 28, 2001) URL: http://www.tceq.state.tx.us/assets/public/legal/rules/rules/pdflib/307%60.pdf (pg 68, 69)

¹ Uses: CR = Contact Recreation; H = High Aquatic Life; E = Exceptional Aquatic Life; PS = Public Water Supply; AP = Aquifer Protection

² Criteria: Standards set by the TCEQ (formerly TNRCC) do not guarantee the water to be usable for municipal, domestic, irrigation, livestock, &/or industrial uses, such as segment #1412 & others; this causes the above screening process to be misleading for certain segments, especially for salinity.

³ The indicator bacteria for freshwater is *E. coli* and Enterococci for saltwater. Fecal coliform is an alternative indicator.

⁴ The aquifer protection reach of Onion Creek is assigned a criteria of 50 mg/L for Cl⁻¹, 50 mg/L for SO4⁻², and 400 mg/L for TDS.

⁵ The aquifer protection use applies to the contributing, recharge, and transition zones of the Edwards Aquifer.

⁶ Dissolved oxygen criterion of 6.0 mg/L only applies at stream flows greater than or equal to 150 cfs as measured at USGS gage number 8158000 located in Travis County upstream from U.S. Highway 183. Dissolved oxygen criteria of 5.0 mg/L will apply to stream flows less than 150 cfs and greater than or equal to the 7Q2 for the segment.

While Segment 1429 may exhibit quality characteristics which would make it suitable for contact recreation, the use is prohibited by local regulation for reasons unrelated to water quality.

⁸ Numerical criteria for chloride, sulfate, and total dissolved solids cannot be established at this time for this new reservoir.

Colorado Regional Water Planning Area (Region K). The Colorado River's "Lower Basin" lies wholly within Region K and includes the mainstream segments 1401, 1402, 1428, and 1434 as well as several unclassified tributary segments.

Upstream of Region K, high salinity concentrations are the primary concern in the CRP's "Upper Basin" stream segments. This is caused both by the natural characteristics of the geologic formations in the watershed as well as pollution from oil and gas activities. As *Table 1.8* shows, some of these stream segments have very high water quality criteria for salinity, or total dissolved solids (TDS), which is an aggregate measurement of various mineral concentrations including chlorides, carbonates, and sulfates. The designated uses of a stream segment, such as recreation, aquatic life, and water supply, are based on the Texas Surface Water Quality Standards, which are criteria with the force of law. Potential uses for water in segments with very high salinity criteria, such as segment 1412 below Lake J. B. Thomas, are limited by the high TDS concentrations that exist, despite the fact that the criteria are rarely exceeded. For example, the secondary drinking water standard for TDS is 1,000 milligrams per liter (mg/l).

The water quality of the "Middle Basin" and "Lower Basin" improves significantly due largely to the dilution of the upstream base flow by inflow of higher quality tributary waters. Major tributaries from the headwaters of O. H. Ivie Reservoir down through the Highland Lakes System, namely the Llano River and the San Saba River, have TDS concentrations that are generally less than 500 mg/l at their confluence with the Colorado River. Water quality of the "Lower Basin" is subject to poor quality at low flow conditions due to salt water intrusion (i.e., tidal influence).

1.2.4 Agricultural and Natural Resources Issues Within the Lower Colorado Region 21, 22, 23, 24, 25

The primary agricultural issue in Region K is the availability of sufficient quantities of irrigation water for rice farming under drought of record conditions. Natural resources, on the other hand, have impacts from both water quantity and water quality issues. Classified stream segments in the Colorado River Basin are shown in *Figure 1.22* and those with water quality concerns are listed. The stream segments that have water quality concerns within Region K are discussed below. Section 1.2.4.2 discusses threats due to water quantity issues.

1.2.4.1 Threats Within the Lower Colorado Region Due to Water Quality Issues

The primary water quality issue for all of the surface water stream segments and the major groundwater aquifers in Region K is the increasing potential for water contamination due to nonpoint source pollution. Nonpoint source pollution is precipitation runoff that, as it flows over the land, picks up various pollutants that adhere to plants, soils, and man-made objects and which eventually infiltrates into the groundwater table or flows into a surface water stream. As more and more land in the Colorado River watershed and aquifer recharge zones is developed, the runoff from precipitation events will pick up increasing amounts of pollution. Another nonpoint source of pollution is the accidental spill of toxic

²¹ TCEQ (formerly TNRCC), Op. Cit., December 1996.

²² TCEQ (formerly TNRCC), Op. Cit., October 1996.

²³ LCRA, March 1999, Water Management Plan.

²⁴ Texas Water Development Board (TWDB), February 2000. *A Numerical Groundwater Flow Model of the Upper and Middle Trinity aquifer, Hill Country Area*, Open-file report 00–02.

²⁵ TWDB, et al., April 1999. Assessment of Groundwater Availability in the Carrizo-Wilcox aquifer in Central Texas – Results of Numerical Simulations of Six Groundwater-Withdrawal Projections (2000–2050), Draft Final Contract Report.

chemicals near streams or over recharge zones that will send a concentrated pulse of contaminated water through stream segments and/or aquifers. Public water supply groundwater wells that currently use only chlorination for water treatment, and domestic groundwater wells that may not treat the water before consumption, may be especially vulnerable to nonpoint source pollution, depending on how directly influenced they are by surface or near surface contamination. Habitats of threatened and endangered species that live in and near springs and certain stream segments may be vulnerable as well. Nonpoint sources of pollution are difficult to control and there has been increased awareness and research of this issue as well as interest in the initiation of abatement programs.

The TCEQ categorizes the physical use of a stream into various defined uses such as "general use", "aquatic life use", "recreational contact use", and "public water supply use". Assessments of the basin conducted by TCEQ determine whether or not a stream segment will support its use. Segments which do not support its designated or assumed use are classified as impaired. Additionally, these assessments will identify segments which are of concern for not meeting the use, but are not at the time of the assessment considered impaired. There are 19 stream segments in Region K considered impaired as published in the 2008 303(d) List. Additionally, 50 stream segments are listed as "of concern" for exceeding the State Water Quality Criteria in Region K (*Table 1.8 Table 1.9 and Table 1.10*).

LCRWPG WATER PLAN 1-42

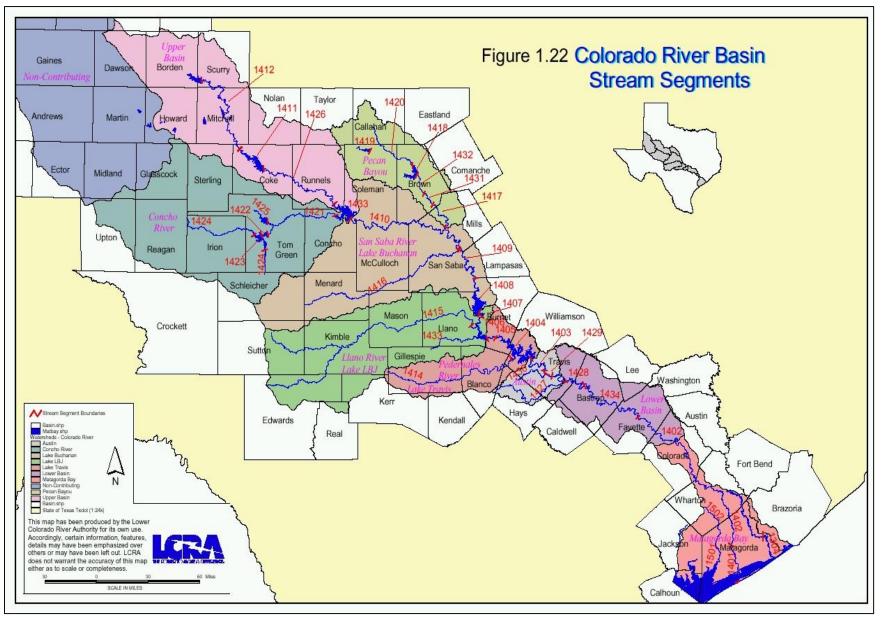


Table 1.9 Stream Segment Water Quality Impairments in the Lower Colorado Region

Segment ID #	Segment Name	Stream Use	Impairment
1401	Colorado River Tidal	Recreation Use	Bacteria
1402A	Cummins Creek (unclassified water body)	Aquatic Life Use	Impaired fish community and Impaired macrobenthos community
1402H	Skull Creek (unclassified water body)	Aquatic Life Use	Depressed dissolved oxygen
1403	Lake Austin	Aquatic Life Use	Depressed dissolved oxygen
1403K	Taylor Slough South (unclassified water body)	Recreation Use	Bacteria
1403R	Westlake-Davenport Tributary to Lake Austin (unclassified water body)	Recreation Use	Bacteria
1411	E. V. Spence Reservoir	General Use	Sulfate and total dissolved solids
1412	Colorado River Below Lake J. B. Thomas	Recreation Use	Bacteria
1413	Lake J. B. Thomas	General Use	Chloride
1416	San Saba River	Recreation Use	Bacteria
1416A	Brady Creek (unclassified water body)	Aquatic Life Use	Depressed dissolved oxygen
1421	Concho River	Aquatic Life and Recreation Use	Depressed dissolved oxygen and Bacteria
1425	O. C. Fisher Lake	General Use	Chloride
1426	Colorado River Below E. V. Spence Reservoir	General Use	Chloride and total dissolved solids
1428	Colorado River Below Town Lake	Recreation Use	Bacteria
1428B	Walnut Creek (unclassified water body)	Recreation Use	Bacteria
1428C	Gilleland Creek (unclassified water body)	Recreation Use	Bacteria
1429C	Waller Creek (unclassified water body)	Recreation Use	Bacteria
1431	Mid Pecan Bayou	Recreation Use	Bacteria

Table 1.10 Stream Segment Water Quality Concerns in the Lower Colorado Region

Segment ID #	Segment Name	Stream Use	Concern
1401	Colorado River Tidal	General Use	Nutrient
1402A	Cummins Creek (unclassified water body)	Aquatic Life Use	Impaired habitat
1402C	Buckners Creek (unclassified water body)	General and Aquatic Life Use	Nutrient and depressed dissolved oxygen
1402G	Fayette Reservoir (unclassified water body)	General Use	Nutrient
1402H	Skull Creek (unclassified water body)	Aquatic Life Use	Depressed dissolved oxygen
1403	Lake Austin	Aquatic Life Use	Depressed dissolved oxygen and manganese in sediment
1403A	Bull Creek (unclassified water body)	Aquatic Life Use	Impaired macrobenthos community
1403D	Barrow Preserve Tributary (unclassified water body)	General Use	Nitrate
1403E	Stillhouse Hollow (unclassified water body)	General Use	Nitrate
1403J	Spicewood Tributary to Shoal Creek (unclassified water body)	Recreation Use	Bacteria
1403K	Taylor Slough South (unclassified water body)	General Use	Nitrate
1404	Lake Travis	Aquatic Life Use	Depressed dissolved oxygen
1406	Lake Lyndon B. Johnson	Aquatic Life Use	Depressed dissolved oxygen
1407	Inks Lake	Aquatic Life Use	Depressed dissolved oxygen and manganese in sediment
1407A	Clear Creek	General Use	pH, sulfate and Total dissolved solids
1408	Lake Buchanan	General Use	Chlorophyll-a
1410	Colorado River Below O. H. Ivie Reservoir	General Use	Chlorophyll-a
1411	E. V. Spence Reservoir	General Use	Chlorophyll-a and harmful algal bloom/golden alga
1412	Colorado River Below Lake J. B. Thomas	General and Aquatic Life Use	Chlorophyll-a and depressed dissolved oxygen
1412A	Lake Colorado City (unclassified water body)	General Use	Chlorophyll-a and harmful algal bloom/golden alga
1412B	Beals Creek (unclassified water body)	General and Recreation Use	Bacteria and Nutrient

Segment ID #	Segment Name	Stream Use	Concern
1416A	Brady Creek (unclassified water body)	General and Aquatic Life Use	Nutrient and depressed dissolved oxygen
1417	Lower Pecan Bayou	Recreation Use	Bacteria and Nutrient
1418	Lake Brownwood	Aquatic Life Use	Manganese in sediment
1420	Pecan Bayou Above Lake Brownwood	General Use	Chlorophyll-a
1421	Concho River	General and Aquatic Life Use	Nutrient, depressed dissolved oxygen and impaired macrobenthos community
1421A	Dry Hollow Creek (unclassified water body)	General Use	Nitrate
1423	Twin Buttes Reservoir	General Use	Nitrate and orthophosphorus
1423B	Dove Creek (unclassified water body)	Aquatic Life Use	Depressed dissolved oxygen
1425	O. C. Fisher Lake	General Use	Nutrient
1425A	North Concho River (unclassified water body)	Recreation and Aquatic Life Use	Bacteria and depressed dissolved oxygen
1426	Colorado River Below E. V. Spence Reservoir	General and Aquatic Life Use	Nutrient and depressed dissolved oxygen
1426A	Oak Creek Reservoir (unclassified water body)	Public Water Supply Use	Sulfate in finished drinking water
1426C	Bluff Creek (unclassified water body)	General Use	Nitrate
1426D	Coyote Creek (unclassified water body)	General Use	Nitrate
1427A	Slaughter Creek (unclassified water body)	Aquatic Life Use	Depressed dissolved oxygen and impaired macrobenthos community
1427G	Granada Hills Tributary to Slaughter Creek (unclassified water body)	General Use	Nitrate
1428	Colorado River Below Town Lake	Recreation and Aquatic Life Use	Bacteria, impaired fish community and impaired Macrobenthos community
1428B	Walnut Creek (unclassified water body)	Recreation and Aquatic Life Use	Bacteria and impaired macrobenthos community
1428C	Gilleland Creek (unclassified water body)	Recreation and General Use	Bacteria and nutrient
1429	Town Lake	General Use	Nitrate
1429B	Eanes Creek (unclassified water body)	Recreation Use	Bacteria

Segment ID #	Segment Name	Stream Use	Concern
1429C	Waller Creek (unclassified water body)	Recreation and Aquatic Life Use	Bacteria, lead and synthetic organic in sediment, and impaired macrobenthos community
1429D	East Bouldin Creek (unclassified water body)	Aquatic Life Use	ILead and synthetic organic in sediment
1430	Barton Creek	Aquatic Life Use	Toxic sediment (LOE) and depressed dissolved oxygen
1430A	Barton Springs (unclassified water body)	Aquatic Life Use	Toxic sediment (LOE)
1430B	Tributaries to Barton Creek (unclassified water bodies)	General Use	Nitrate
1431	Mid Pecan Bayou	General Use	Nutrient
1434	Colorado River above La Grange	General Use	Orthophosphorus
1434B	Cedar Creek (unclassified water body)	Aquatic Life Use	Depressed dissolved oxygen

A major surface water quality indicator for protection of aquatic life is dissolved oxygen (DO) and the associated biochemical oxygen demand (BOD). DO is a measure of the amount of oxygen that is available in the water for metabolism by microbes, fish, and other aquatic organisms. BOD is a measure of the amount of organic material, containing carbon and/or nitrogen, in a body of water that is available as a food source to microbial and other aquatic organisms, which require the consumption of dissolved oxygen from the water to metabolize the organic material. The basin-wide concentrations of DO that have existed in the past were indicative of relatively unpolluted waters; however, these have been changing and have become a concern in some segments of the Colorado River and its tributaries, as populations and urban development continue to increase. The primary manmade sources of BOD in bodies of water are the discharge of municipal and industrial waste, as well as nonpoint source pollution from urban and agricultural runoff. Thus, the presence of excess amounts of BOD allows increased rates of microbial and algal metabolism, which in turn depletes the dissolved oxygen concentrations in the water. Without sufficient levels of DO in the water, other aquatic organisms such as fish cannot survive. Data from 2008 indicates that there are fifteen classified stream segments with a concern for DO, based on the State Water Quality Criteria in the Lower Colorado Regional Water Planning Area (Tables 1.8, 1.9, and 1.10). This is a 200% increase over the number of stream segments with a concern for DO shown in 2002 data.

Another set of surface water quality indicators that can deplete DO levels in surface water bodies are termed "nutrients" and includes nitrogen (Kjeldahl nitrogen, nitrite+nitrate, and ammonia nitrogen), phosphorus (phosphates, orthophosphates, and total phosphorus), sulfur, potassium, calcium, magnesium, iron, and sodium. Nutrients are monitored by the TCEQ as a part of the Texas Clean Rivers Program; however, there are no state or federal standards for screening nutrients. Currently, naturally occurring background levels reported by the U.S. Geological Survey (USGS) or historical data collected by the TCEQ are used to determine the level of concern for nutrients. Nutrients have the same primary manmade sources as the BOD sources described above. Based on 2008 data, there are eight classified stream

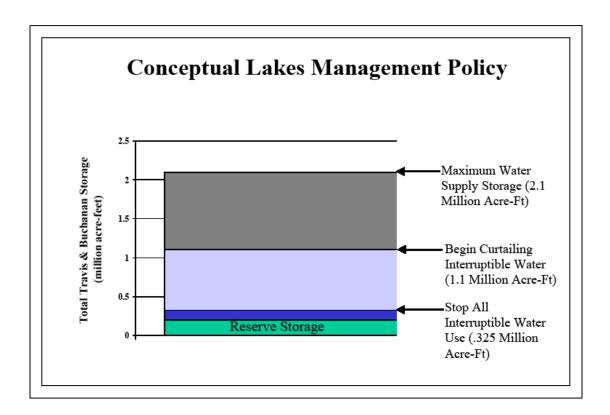
segments with a concern in the Lower Colorado Regional Water Planning Area (*Tables 1.8, 1.9,* and *1.10*).

Fecal indicator organisms E. coli and Enterococcus are harmless bacteria that are present in human and/or animal waste. However, the presence of these organisms is an indicator for the presence of disease-causing bacteria, protozoa and viruses that are also found in human/animal wastes. Municipal waste is treated to remove most of the bacterial, protozoan and viral contaminants so that safe levels will exist in the surface water body upon discharge from the point source. Therefore, when fecal indicators are detected, the most likely source of contamination should be nonpoint source pollution, which can include agricultural runoff as well as runoff from failed septic systems. A wastewater treatment plant point source could also be the source of contamination if the system is not functioning properly. Data reported for 2008 indicate that there are a number of classified stream segments with impairments for E. coli and the tidal portion is impaired for the presence of Enterococcus, based on the State Water Quality Criteria in Region K (*Tables 1.8, 1.9,* and *1.10*).

The presence of toxic dissolved metals, such as aluminum, barium, arsenic, chromium, cadmium, copper, lead, nickel, mercury, selenium, silver, and zinc, in surface water are a concern in two classified stream segments in the Lower Colorado Regional Water Planning Area (*Tables 1.8, 1.9*, and *1.10*).

1.2.4.2 Threats Due to Water Quantity Issues

Threats are present in Region K from both too much water and from too little water. Too much water can be an issue during high river flows and during flooding episodes. The Highland Lakes provide the primary surface water storage and flood control capabilities for Region K. The issue of providing maintenance of these reservoirs to retain the maximum water storage capacity will become increasingly important as natural sedimentation processes decrease the volume of water each reservoir can hold. Currently, there are no programs in place to address this issue.


With regard to flood control, Lake Travis is the only reservoir in the Highland Lakes System specifically designated for this purpose. Currently, the LCRA must regulate the release of flood flows from Mansfield Dam so as to minimize and balance the impacts of floodwaters upstream and downstream of the dam without compromising the safety of the dam. Because development continues to encroach upon and alter the floodplain of the Lower Colorado River, the LCRA, in cooperation with the USACE, is currently studying alternative flood control measures, such as modifying current flood control operations and the possible addition of new off-channel flood control structures.

As mentioned previously, the primary threat to agriculture in Region K is water shortages for irrigation that are anticipated to occur in Matagorda, Wharton, and Colorado Counties during a repeat of the drought of record. The water supply available for irrigation is from three sources: ROR supplies, stored water from the Highland Lakes System, and groundwater. Whenever the Colorado River's natural flows are insufficient to meet irrigation demands, the LCRA releases water from upstream storage reservoirs to supplement the available downstream ROR supplies. The water supplied from the Highland Lakes storage is considered an interruptible supply and is subject to curtailment in accordance with policies and procedures specified in LCRA's Water Management Plan. Consequently, under drought of record conditions, there are substantial shortages of water for irrigation in Matagorda, Wharton, and Colorado Counties. Potential strategies for meeting these irrigation needs are presented in Chapter 4.

Water quantity is also a concern during drought conditions in terms of instream flows and freshwater inflows to Matagorda Bay. As discussed in Section 1.2.2.3, the free-flowing reaches below the Highland Lakes System downstream to the mouth of the Colorado River have been studied by the LCRA, and critical instream flows have been determined as the non interruptible demand on water resources. Instream flows have been maintained by LCRA at or above the minimum critical flow in accordance with the current WMP. Target instream flows, also determined by the LCRA study, provide flows to support an optimal range of habitat complexity for a well-balanced, native aquatic community within a stream reach. LCRA has maintained these flow regimes whenever water resources are adequate, but target flows are classified as interruptible demands that have been reduced during drought conditions. For further details, please refer to LCRA's WMP at http://www.lcra.org/library/media/public/docs/1999_WMP.pdf.

The following figure is from page 77 of the LCRA's 1999 Water Management Plan and summarizes the trigger levels for the allocation of interruptible supplies.

Figure 1.23: LCRA 1999 WMP Trigger Levels for Interruptible Supplies

The Highland Lakes provide the primary surface water storage and flood control capabilities for Region K. The issue of providing maintenance of these reservoirs to retain the maximum water storage capacity will become increasingly important as natural sedimentation processes decrease the volume of water each reservoir can hold. Currently, there are no programs in place to address this issue.

With regard to flood control, Lake Travis is the only reservoir in the Highland Lakes System specifically designed for this purpose. Releases by LCRA from the flood pool of Lake Travis are governed by rules of the U.S. Corps of Engineers (USACE). Under the rules, flood releases are determined by: specified ranges of observed or forecasted reservoir levels; the pool condition (i.e. rising or falling); the month of the year; and stage and flow criteria at three designated downstream locations. The amount of release increases with higher ranges of reservoir level and as long as downstream stage and flow limitations are not exceeded. The rules also provide that the U.S. Bureau of Reclamation will schedule flood releases as required for the safety of the dam when the reservoir level is forecast to exceed 722 feet above mean sea level. Because development continues to encroach upon and alter the floodplain of the Lower Colorado River, the LCRA, in cooperation with the USACE, the Federal Emergency Management Agency (FEMA) and over 60 local cities and counties in the Texas Colorado River Floodplain Coalition are currently studying flood damage reduction alternatives, such as modifying current flood control operations, updating floodplain maps, and the addition of new levees and off-channel flood control structures.

One of the major groundwater quantity concerns involves the Barton Springs segments of the Edwards aquifer (BFZ), which is a karst formation that responds quickly to changes in the environment due to its highly permeable and transmissive characteristics. South of the artesian zone of the Edwards aquifer there exists an interface, or "bad water line," that separates the good quality groundwater from a layer of water that is not usable for human consumption, without further treatment, due to the high TDS content. This line, which is also referred to as the saline-water line or freshwater/saline-water interface, marks the interface where the groundwater reaches a TDS concentration of 1,000 mg/l. Research is currently being conducted to determine the effects that pumping large quantities of aquifer water will have on its location.

The second major issue in the Barton Springs segments of the Edwards aquifer (BFZ) is the minimum required environmental flows discharged from the artesian zone through Barton Springs. Increased groundwater pumping from the aquifer during drought conditions decreases all spring discharges, which can potentially impact the state- and federally-listed threatened and endangered species that depend on the springs for habitat, such as the Barton Springs salamander, and can potentially affect water supply availability downstream.

The primary water quantity issue in the Gulf Coast aquifer is subsidence, which is the dewatering of the interlayers of clay within the aquifer as a result of continued or long-term over-pumping. The resultant compaction of the clay causes a loss of water storage capacity in the aquifer, which in turn causes the land surface to sink, or subside. Once the ability of the clay to store water is gone, it can never be restored. The implementation of water conservation practices and conversion to other sources are currently the only remedies for this situation. Saltwater intrusion from the Gulf of Mexico into the Gulf Coast aquifer is also a potential concern due to groundwater pumping rates that are greater than the recharge rates of the aquifer.

The Trinity aquifer's primary water quantity concern is the anticipated water-level declines during drought conditions due to increased demand that will be placed on the aquifer's resources. A computer model was developed to simulate the flow of groundwater within the Trinity aquifer. The results for the portion of the aquifer that lies within Region K suggest that water levels in the Dripping Springs area of Hays County could decline more than 100 feet by the year 2040. Other portions of Hays County as well as Blanco and Travis Counties, may experience moderate water-level declines between 50 to 100 feet by the year 2010. Most of the streams gain water as they pass over the Trinity aquifer and in consequence may be affected by the declining water levels in the underlying aquifer. In addition, drought conditions may further decrease the base flow of the streams.

The Carrizo-Wilcox aquifer's primary water quantity concern is the water-level declines anticipated through the year 2060 due to increased pumping. Groundwater withdrawals increased an estimated 270 percent between 1988 and 1996, from 10,100 to 37,200 ac-ft/yr, from the mostly porous and permeable sandstone aguifer. The area in and around the Carrizo-Wilcox aguifer is expected to see continued population growth and increases in water demand. The TWDB co-sponsored a study of the Central Texas portion of the Carrizo-Wilcox aquifer using a computer model to assess the availability of groundwater in the area. Six water demand scenarios were simulated in the model, which ranged from considering only the current 1999 demand to analyzing all projected future water demands through the year 2050. On the basis of the calibrated model, all withdrawal scenario water demands appear to be met by groundwater from the Carrizo-Wilcox aquifer through the year 2050. The simulations indicate that the aguifer units remain fully saturated over most of the study area. The simulated water-level declines in the Carrizo-Wilcox aquifer mainly reflect a pressure reduction within the aquifer's artesian zone. Some dewatering takes place in the center of certain pumping areas. In addition, simulations indicate that drawdown within the confined portion of the aquifer will significantly increase the movement of groundwater out of the shallow, unconfined portions to the deeper artesian portions of the aquifer. Both a pressure reduction within the artesian zone and the migration of groundwater from the unconfined portions of the aquifer may impact historical access to groundwater in the region. The relationships that currently exist between surface and groundwater may also change. Simulations indicate that the Colorado River, which currently gains water from the Carrizo-Wilcox aquifer, may begin to lose water to the aguifer by the year 2050.

The LCRWPG passed a resolution regarding the "mining of groundwater" on February 9, 2000, which strongly opposes the over-utilization of groundwater, including the mining of groundwater, within its region at rates that could lead to eventual harm to the groundwater resources, except during limited periods of extreme drought. They define groundwater mining as "the withdrawal of groundwater from an aquifer at an annualized rate, which exceeds the average annualized recharge rate to an aquifer where the recharge rate can be scientifically derived with reasonable accuracy." This resolution addresses the concerns listed above for the Barton Springs segments of the Edwards (BFZ), Gulf Coast, Trinity, and Carrizo-Wilcox aquifers that are located within Region K. Based on the projected future groundwater demand in Region K, the LCRWPG's position on groundwater mining restricts the water supply strategies that can be considered for the Lower Colorado Regional Water Plan, which are discussed in more detail in Chapter 4.

1.2.5 Existing Water Planning in the Lower Colorado Regional Water Planning Area

As charged by Senate Bill 1, enacted in 1997, the LCRWPG prepared, adopted, and submitted the 2000 Region "K" Water Supply Plan to the TWDB, which described how local entities may address future water supply needs for the next 50 years. Subsequently, a State Water Plan, Water for Texas-2002, was delivered by the TWDB to the Texas Legislature in January 2002, and incorporated the approved Regional Water Plan and contained legislative recommendations for future water policies. Five years later, the 2006 Region K Water Plan was submitted to the TWDB by the Lower Colorado Regional Water Planning Group. This 2006 version assisted in the creation of the most recent 2007 State Water Plan by the TWDB.

SB 1 legislation also amended Chapter 36 of the Texas Water Code to require certain water supply entities to develop water management plans (WMPs), water conservation plans (WCPs), and/or drought contingency plans (DCPs). WCPs and DCPs must be submitted to TNRCC (now TCEQ) for review and certification. TCEQ received the plans, reviewed them for minimum criteria according to TCEQ's

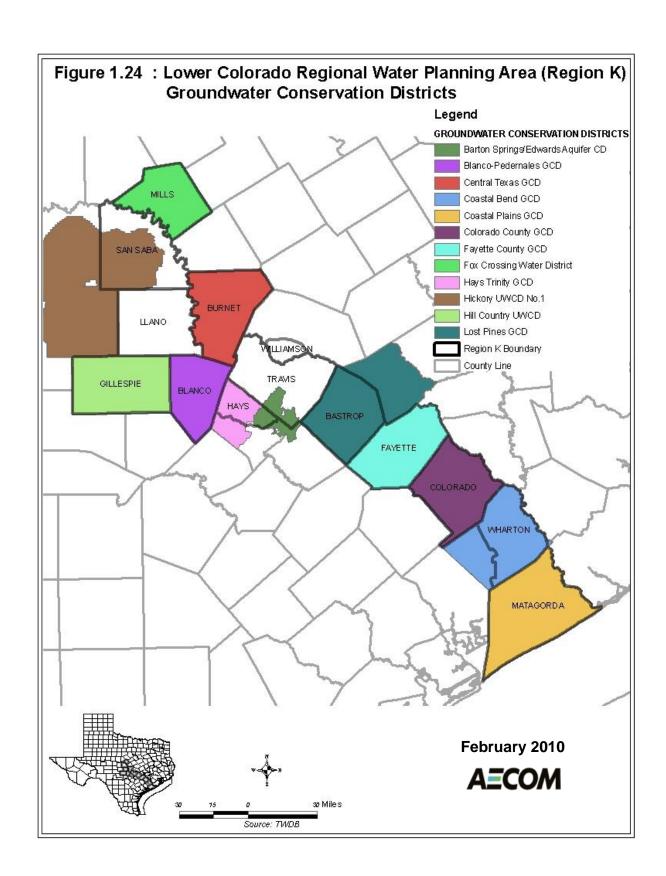
Chapter 288 Rules that reflect SB 1 requirements. Finally, TCEQ sent the water supply entity a letter of certification that its plan contains the necessary minimum criteria components. It should be noted that TCEQ has not subjectively critiqued the quality of the water management, water conservation, or drought contingency plans; it only determined whether or not minimum criteria have been met. Each water supply entity is required to update their respective plan every five years, starting with the most recent submission date of May 1, 2009, so that the plan will improve as the water supply entity gains experience in managing its water resources. TWDB also receives copies of each certified WCP and DCP for review with respect to TWDB's water planning efforts. However, there are no rules requiring action by TWDB.

1.2.5.1 Water Management Plans (WMP)

One category of the SB 1 required plan is the WMP, which must be developed by each Groundwater Conservation District (GCD) and surface water conservation district in the state. The intent of a WMP is to conserve, preserve, prevent waste, protect, and recharge water supplies within the water conservation district. These WMPs are required to be submitted to TWDB for review and administrative certification. Plans for existing districts were required to be submitted by 1 September 1998. Plans for districts established and confirmed after that date are generally required to be submitted within two years of the date that the district is confirmed by election. Surface water conservation districts, primarily river authorities, are also required to submit WMPs as a provision of the final adjudication of the river authority's water rights and receive administrative certification from TCEQ. In Region K, there were initially four designated GCDs and one surface water conservation district (LCRA), and all have received certification from TWDB or TCEQ for their WMPs. Additional districts have been established and confirmed since that time and *Table 1.11* shows each district along with the status of their WMPs. WMPs are also submitted to RWPGs for inclusion in the Regional Water Plan and to allow the regional planning groups to focus on strategies for current and future shortages that do not conflict with the management plans. *Figure 1.24* shows the groundwater conservation districts located in Region K.

Table 1.11 Groundwater Conservation Districts in Lower Colorado Region and Their Water **Management Plan Status**

		1	
Groundwater Conservation District ¹	Lower Colorado Region County	Aquifers Managed ²	Water Management Plan Status ³
Barton Springs/Edwards Aquifer Conservation District (BSEACD)	Hays, Travis	Edwards (BFZ) & Trinity Aquifers, & Alluvial Deposits	Approved 9/15/2008
Blanco-Pedernales GCD	Blanco	Trinity, Edwards-Trinity, Ellenburger, Hickory and Marble Falls Aquifers	Approved 1/7/2009
Central Texas GCD	Trinit		Approved 7/3/2007
Coastal Bend GCD	Wharton	Gulf Coast Aquifer	Approved 9/28/2004
Coastal Plains GCD	Matagorda	Gulf Coast Aquifer	Approved 9/10/2004
Colorado County GCD	Colorado	Gulf Coast Aquifer	Due 11/6/2010
Fayette County GCD	Fayette	Gulf Coast, Carrizo-Wilcox, Queen City, Sparta Aquifer, Yegua- Jackson and Colorado River Alluvium	Approved 12/17/2003
Fox Crossing UWCD	Mills	Trinity Aquifer	Approved 3/30/2004
Hays-Trinity GCD	Hays	Trinity Aquifer	Approved 10/7/2005
Hickory UWCD #1	San Saba	Hickory Aquifer, Ellenberger-San Saba, & Marble Falls Aquifers	Approved 12/4/2003
Hill Country UWCD	Gillespie	Edwards-Trinity, Ellenberger-San Saba, & Hickory Aquifers	Approved 10/30/2003
Lost Pines GCD	Bastrop	Carrizo-Wilcox Aquifer	Approved 2/15/2005


Source: TWDB

1 UWCD = Underground Water Conservation District; GCD = Groundwater Conservation District.

2 Water systems managed: Only portions of the indicated aquifer systems are located within a GCD's jurisdiction.

3 TWDB approval/due date of latest management plan.

LCRWPG WATER PLAN

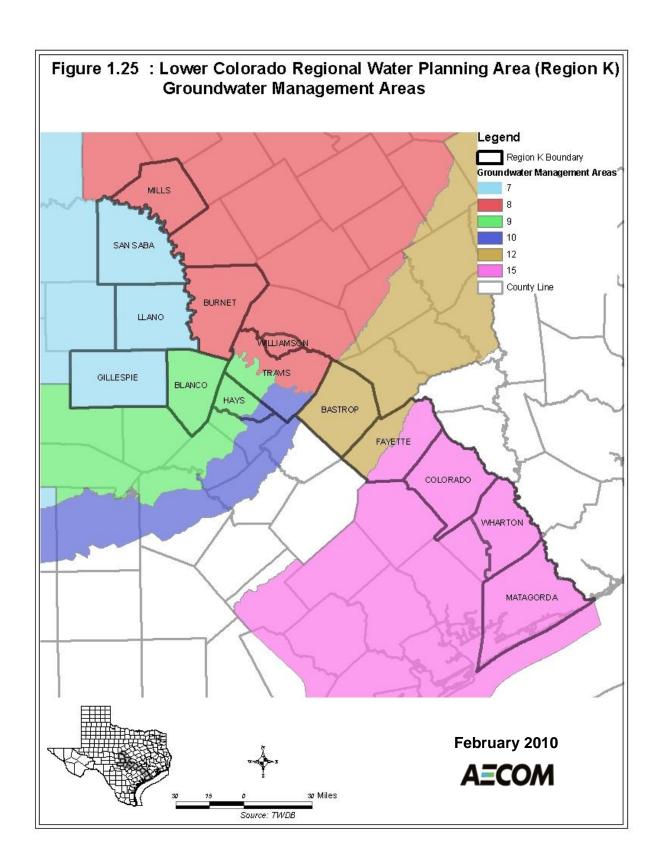
1.2.5.2 Groundwater Management Areas (GMA)

In response to legislation passed in 2001, in December 2002 the TWDB designated 16 GMAs covering the entire state. In 2005, the legislature required all GCDs located within a GMA to conduct joint planning. The new requirements indicated that.

"Not later than September 1, 2010, and every five years thereafter, the districts shall consider groundwater availability models and other data or information for the management area and shall establish desired future conditions for the relevant aquifers within the management area."

Groundwater districts are required to meet at least annually to decide on "desired future conditions" for the aquifers within their GMA. A desired future condition is a quantifiable future groundwater condition. These conditions, called metrics, can be a particular groundwater level, level of water quality, volume of spring flow, etc. Based on the adopted desired future condition, the TWDB is responsible for providing each groundwater conservation district and regional water planning group, located wholly or partly in the management area, with a managed available groundwater volume (MAG) that will be used for planning and groundwater management purposes. Groundwater availability models and other data or information help in establishing managed available groundwater for the relevant aquifers within the management area.

In Region K, there are six groundwater management areas (GMAs). They include GMA-7, GMA-8, GMA-9, GMA-10, GMA-12, and GMA-15. Figure 1.25 shows the delineation of these groundwater management areas while Table 1.12 shows the status of each GMA's Desired Future Conditions and Managed Available Groundwater reports.


Table 1.12 GMA Desired Future Conditions and Managed Available Groundwater Report Status

	Aquifers in Region K	Desired Future Conditions (DFC) Status	Managed Available Groundwater (MAG) Status ¹
	Edwards Trinity (Plateau)	Not Adopted	None
GMA 7	Ellenburger - San Saba	Not Adopted	None
GMA /	Hickory	Not Adopted	None
	Trinity	Not Adopted	None
	Edwards (BFZ)	Adopted 12/17/07	Final 9/30/08
GMA 8	Ellenburger - San Saba	Adopted 5/19/08	Final 12/10/09
GMA 8	Hickory	Adopted 5/19/08	Final 12/10/09
	Marble Falls	Adopted 5/19/08	Final 4/30/09
	Edwards (BFZ)	Not Adopted	None
	Edwards Trinity (Plateau) – Trinity Group	Not Adopted	None
GMA 9	Ellenburger - San Saba	Adopted 8/29/08	None
	Hickory	Adopted 8/29/08	None
	Marble Falls	Adopted 8/29/08	None
	Trinity	Not Adopted	None
GMA 10	Edwards (BFZ)	Not Adopted	None
GMA 10	Trinity	Not Adopted	None
	Carrizo Wilcox	Not Adopted	None
	Queen City	Not Adopted	None
GMA 12	Sparta	Not Adopted	None
	Trinity	Not Adopted	None
	Yegua - Jackson	Not Adopted	None
	Carrizo Wilcox	Not Adopted	None
GMA 15	Queen City	Not Adopted	None
GMA 13	Sparta	Not Adopted	None
	Yegua - Jackson	Not Adopted	None

Source: TCEQ (formerly TNRCC) List of SB1-required WCPs, dated 3/27/2000. Confirmation of completion from TCEQ personnel's verification of the TCEQ database 11/05/2004.

¹ MAG reports not available until DFC has been adopted.

LCRWPG WATER PLAN

1.2.5.3 Water Conservation Plans (WCP) and Drought Contingency Plans (DCP)

SB 1 also required each entity that possesses major surface water and/or groundwater rights to develop a WCP. These plans include irrigation water rights of at least 10,000 ac-ft/yr, non-irrigation (municipal, industrial, mining, recreational) water rights of at least 1,000 ac-ft/yr, which are listed in Table 1.13, and retail public water suppliers which serve 3,300 connections or more, which are listed in *Table 1.14b*. The intent of the WCP is to develop and implement programs that will reduce water use within each of the major WUGs listed below, primarily through utilizing advances in technology, reducing distribution system water losses, and educating customers and encouraging voluntary participation in water use efficiency efforts. Approximately 90 percent of Region K's water use occurs in the agricultural irrigation and municipal sectors, and the majority of the WCPs have targeted these two water use groups. There are currently 15 entities in the Lower Colorado Regional Water Planning Area required to develop WCPs, and these WCPs have been submitted and have received certification from TCEQ. The remainder of entities holding water rights in Region K are not required to develop or submit a WCP unless they petition TCEQ for an amendment to their water right or apply for a capital improvement loan with TWDB. In addition, Chapter 288 of the TCEQ Rules requires wholesale water supply purchasers to submit water conservation plans to their wholesale supplier.

Table 1.13 Entities in the Lower Colorado Region SB 1-Required to Submit Water Conservation Plans (Irrigation Rights of 10,000 ac-ft or more and Non-Irrigation Rights of 1,000 ac-ft or more)

Entity	County	Water Uses 1	Water Conservation Plan
Kempner WSC	Burnet	MUN, IND	Updated 4/23/2009
City of Llano	Llano	MUN, IRR	Complete 4/04/2002
Lake LBJ Municipal Utility District	Llano	MUN	Complete 2/05/2002
Don A. Culwell/Leslie L. Appelt	Matagorda	IND, REC	na
Equistar Chemicals	Matagorda	IND	na
Farmers Canal Company	Matagorda	IRR	Updated 4/17/2009
STP Nuclear Operating Company	Matagorda	IND	Updated 5/01/2009
Texas Brine Co. LLC	Matagorda	IND	Complete 9/20/2001
City of Goldthwaite	Mills	MUN, IND, IRR	Complete 8/07/2002
Lower Colorado River Authority (LCRA)	Region K	MUN, IND, MIN, IRR, HYD	Updated 2009
Capitol Aggregates, Ltd.	Travis	MIN, IRR	Complete 3/27/2000
City of Austin	Travis	MUN, IND, IRR, REC,	Complete 6/18/2002,
		HYD	Update in Progress
City of Pflugerville	Travis	MUN, IND	Updated 4/27/2009
City of Cedar Park	Travis/Williamson	MUN, IND	Updated 5/04/2009
H & L New Gulf, Inc.	Wharton	MUN, MIN, IND	Complete 1/05/2000
Lacy Withers Armour Trust et al.	Wharton	MUN, IND, IRR, REC	Complete 9/07/2000
Leonard Wittig	Wharton	MUN, MIN, IND, IRR	Complete 6/03/1999

Source: TCEO (formerly TNRCC) List of SB1-required WCPs, updated 7-27-2009. Confirmation of completion from TCEO personnel's verification of the TCEQ database 11/05/2004.

Water uses: IRR = irrigation; MUN = municipal; IND = industrial; MIN = mining; REC = recreation; HYD = hydroelectric.

The third category of water resource planning effort required by SB 1 is the DCP. The intent of the DCP is to specify how a water supply entity will contract and supply dependable stored water supplies to its customers during a repeat of the drought of record, which is the period 1947-1957 for Region K. Triggering conditions for water shortages during a drought must be defined, and the actions that will be taken by the water supplier to mitigate the adverse effects of these water shortages must be specified. The DCP's major goals are extending the supplies of dependable water, preserving essential water uses,

protecting public health and safety, and establishing equitable distributions of water among the water supplier's customers.

All wholesale water suppliers (*Table 1.14a*) and those retail water suppliers with at least 3,300 water supply connections (*Table 1.14b*) were to submit DCPs to TNRCC by 1 September 1999. Retail entities with fewer than 3,300 connections were required to submit DCPs to the RWPGs by 1 September 2000. However, the RWPGs do not review or certify drought contingency plans. All wholesale water suppliers (*Table 1.14a*) and those retail water suppliers with at least 3,300 water supply connections (*Table 1.14b*) are required to submit DCPs to the TCEQ (formerly TNRCC) again in May 2009.

Table 1.14a Water Wholesalers in Lower Colorado Region SB 1-Required to Submit Drought Contingency Plans (Entities With Contract Water Sales to Others)

Otners)		
Water Wholesaler ¹	County	Drought Contingency Plan (Date Received)
CITY OF AUSTIN WATER &		
WASTEWATER*	TRAVIS	4/28/2009
CITY OF CEDAR PARK*	WILLIAMSON	5/4/2009
CITY OF EL CAMPO*	WHARTON	
CITY OF FLORENCE	WILLIAMSON	
CITY OF GEORGETOWN	WILLIAMSON	5/1/2009
CITY OF HORSESHOE BAY	LLANO	
CITY OF MARBLE FALLS	BURNET	4/30/2009
CITY OF PFLUGERVILLE	TRAVIS	
CITY OF ROUND ROCK*	WILLIAMSON	
CITY OF SAN MARCOS*	HAYS	
CITY OF TAYLOR*	WILLIAMSON	
DRIPPING SPRINGS WSC	HAYS	
ELLIOTT RANCH WATER SYSTEM	HAYS	
FAYETTE COUNTY WCID MONUMENT HILL	FAYETTE	
KINGSLAND WSC	LLANO	
MUNICIPAL GROUNDWATER SOLUTIONS	TRAVIS	
RIVER PLACE MUD	TRAVIS	
RIVERCREST WATER SYSTEM	TRAVIS	
TRAVIS COUNTY MUD 4	TRAVIS	4/16/2009
TRAVIS COUNTY WCID 17*	TRAVIS	
WEIR WATER WORKS	WILLIAMSON	

Sources: TCEQ (formerly TNRCC) List of SB1-Required Drought Contingency Plans, updated 7-27-2009; and the Public Drinking Water Public Water Supply System database, updated 7-27-2009.

¹ MUD = Municipal Utility District; WCID = Water Control & Improvement District; WS = Water System or Water Supply.

^{*}Wholesaler also supplies retail water service with more than 3,300 connections.

Table 1.14b Lower Colorado Region SB 1-Required Water Conservation Plans and Drought Contingency Plans (Retail Water Suppliers With > 3,300 Connections)

Connections)					
Retail Public Water Supplier (> 3,300 connections) ¹	County	Drought Contingency Plan (Date Received)			
AQUA WSC	BASTROP	4/24/2009			
BRUSHY CREEK MUD	WILLIAMSON				
CHISHOLM TRAIL SUD	WILLIAMSON	4/24/2009			
CITY OF AUSTIN WATER & WASTEWATER*	TRAVIS	4/28/2009			
CITY OF BAY CITY	MATAGORDA				
CITY OF CEDAR PARK*	WILLIAMSON	5/4/2009			
CITY OF EL CAMPO*	WHARTON				
CITY OF FREDERICKSBURG	GILLESPIE	4/16/2009			
CITY OF GEORGETOWN	WILLIAMSON	5/1/2009			
CITY OF HORSESHOE BAY	LLANO				
CITY OF KYLE	HAYS	5/1/2009			
CITY OF LAGO VISTA	TRAVIS				
CITY OF LEANDER	WILLIAMSON	4/14/2009			
CITY OF PFLUGERVILLE	TRAVIS				
CITY OF ROUND ROCK*	WILLIAMSON	6/10/2009			
CITY OF SAN MARCOS*	HAYS				
CITY OF TAYLOR*	WILLIAMSON				
CITY OF WHARTON	WHARTON				
GOFORTH SUD	HAYS	6/4/2009			
JONAH WATER SUD	WILLIAMSON				
KINGSLAND WSC	LLANO				
LAKEWAY MUD	TRAVIS	5/18/2009			
MANVILLE WSC*	TRAVIS	4/30/2009			
TRAVIS COUNTY WCID 17*	TRAVIS				
WINDERMERE COMMUNITY	TRAVIS				

Sources: TCEQ (formerly TNRCC) List of SB1-Required Drought Contingency Plans, updated 7-27-2009; and the Public Drinking Water Public Water Supply System database, updated 7-27-2009.

All of the remaining municipal WUGs serve less than 3,300 connections. These WUGs are required to have drought contingency plans, but they are not required to be submitted to the TCEQ for review and comment. The definition of a WUG for municipal purposes has been expanded to include entities that provide retail water service in excess of 280 ac-ft/yr, or approximately 250,000 gallons per day (gpd). Systems which serve 3,300 connections, assuming 3.2 persons per connection and 130 gallons per person per day, would be serving approximately 1.4 million gallons per day (mgd). As a result, the WUGs covered in the category of less than 3,300 connections will have water usage ranging from 250,000 gpd to 1.3 mgd, or 280 to 1,540 ac-ft/yr. Entities with less than 280 ac-ft/yr of usage are included in the County-Other Municipal WUG. In the interest of brevity, the remaining WUGs are not listed individually.

¹ MUD = Municipal Utility District; WCID = Water Control & Improvement District; WS = Water System or Water Supply. *Retailer also supplies wholesale water service.

1.2.5.4 Water Audits

A fourth water supply planning effort is for water systems to perform a water audit. The 78th Texas Legislature passed House Bill 3338, which required retail public utilities that provide potable water to "perform and file with the [Texas Water Development Board] a water audit computing the utility's most recent annual system water loss" every five years. Under this authority, the TWDB instituted new water audit reporting requirements that require retail public utilities to carefully audit their system water use at least once every five years; to estimate system water use in standard, well defined categories; and to report their first set of water loss data to the TWDB by 31 March 2006. The results of this statewide data gathering was compiled into the "Analysis of Water Loss as Reported by Public Water Suppliers in Texas", TWDB, 24 January 2007. A comparison between Region K and the state averages of the various water loss categories is presented below in *Figure 1.26*.

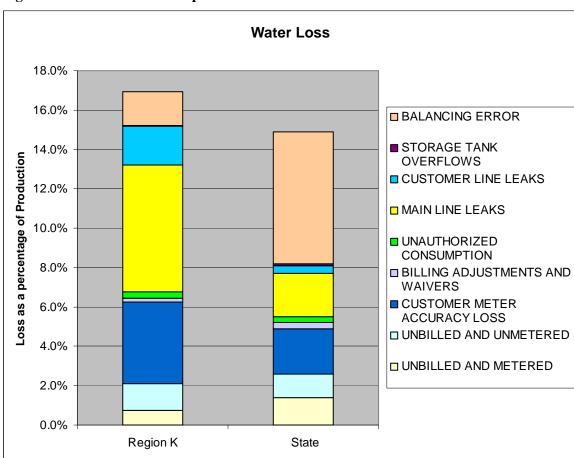


Figure 1.26: Water Loss Comparison

The water loss audit comparison shows that Region K has a higher than average percentage of main line losses. Region K has a large number of rural areas and the water audit shows that some of these rural areas may have lower per capita water use, but can still incorporate water conservation strategies to reduce demands by repairing their water line leaks.

APPENDIX 1A

THREATENED AND ENDANGERED SPECIES IN THE LOWER
COLORADO REGIONAL WATER PLANNING AREA
(Texas Parks & Wildlife Department Special Species Lists and Annotated
County Lists of Rare Species)

APPENDIX 1B

LOWER COLORADO REGION INDUSTRY ECONOMIC VALUE
ESTIMATES
(LCRA Community and Economic Development, IMPLAN 2004 - base year
2001)

LCRWPG WATER PLAN

APPENDIX 1A

THREATENED AND ENDANGERED SPECIES IN THE LOWER
COLORADO REGIONAL WATER PLANNING AREA
(Texas Parks and Wildlife Department Special Species Lists and Annotated
County Lists of Rare Species)

KEY: COUNTY THREATENED OR ENDANGERED SPECIES

LE,LT	Federally Listed Endangered/Threatened
PE.PT	Federally Proposed Endangered/Threatened

SAE, SAT Federally Endangered/Threatened by Similarity of Appearance
C1 Federal Candidate for Listing, formerly Category 1 Candidate

DL,PDL Federally Delisted/Proposed for Delisting

NL Not Federally Listed

E.T State Listed Endangered/Threatened

NT Not tracked or no longer tracked by the State "blank" Rare, but with no regulatory listing status

Species appearing on these lists do not all share the same probability of occurrence. Some species are migrants or wintering residents only, or may be historic or considered extirpated.

Source: Texas Parks and Wildlife Department Special Species Lists and Annotated County Lists of Rare Species (current as of January 2009)

TABLE 1A-1: THREATENED OR ENDANGERED SPECIES OF BASTROP COUNTY

Common Name	Scientific Name	Description	Federal Status	State Status
AMPHIBIANS				
Houston Toad	Bufo houstonensis	endemic; species sandy substrate, water in pools, ephemeral pools, stock tanks; breeds in spring especially after rains; burrows in soil when inactive; breeds February-June; associated with soils of the Sparta, Carrizo, Goliad, Queen City, Recklaw, Weches, and Willis geologic formations	LE	Е
BIRDS				
American Peregrine Falcon	Falco peregrinus anatum	year-round resident and local breeder in west Texas, nests in tall cliff eyries; also, migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	E
Arctic Peregrine Falcon	Falco peregrinus tundrius	migrant throughout state from subspecies' far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	T
Bald Eagle	Haliaeetus leucocephalus	found primarily near seacoasts, rivers, and large lakes; nests in tall trees or on cliffs near water; communally roosts, especially in winter; hunts live prey, scavenges, and pirates food from other birds	DL	T
Henslow's Sparrow	Ammodramus henslowii	wintering individuals (not flocks) found in weedy fields or cut-over areas where lots of bunch grasses occur along with vines and brambles; a key component is bare ground for running/walking; likely to occur, but few records within this county		
Interior Least Tern	Sterna antillarum athalassos	subspecies is listed only when inland (more than 50 miles from a coastline); nests along sand and gravel bars within braided streams, rivers; also know to nest on man-made structures (inland beaches, wastewater treatment plants, gravel mines, etc); eats small fish and crustaceans, when breeding forages within a few hundred feet of colony	LE	E
Mountain Plover	Charadrius montanus	breeding: nests on high plains or shortgrass prairie, on ground in shallow depression; nonbreeding: shortgrass plains and bare, dirt (plowed) fields; primarily insectivorous		
Peregrine Falcon	Falco peregrinus	both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies' listing statuses differ, thus the species level shows this dual listing status; because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat.	DL	ET
Western Burrowing Owl	Athene cunicularia hypugaea	open grasslands, especially prairie, plains, and savanna, sometimes in open areas such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows		
Whooping Crane	Grus americana	potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties	LE	Е
Wood Stork	Mycteria americana	forages in prairie ponds, flooded pastures or fields, ditches, and other shallow standing water, including salt-water; usually roosts communally in tall snags, sometimes in association with other wading birds (i.e. active heronries); breeds in Mexico and birds move into Gulf States in search of mud flats and other wetlands, even those associated with forested areas; formerly nested in Texas, but no breeding records since 1960		T
CRUSTACEANS				
A crayfish	Procambarus texanus	ponds		
FISHES				
Blue Sucker	Cycleptus elongatus	larger portions of major rivers in Texas; usually in channels and flowing pools with a moderate current; bottom type usually of exposed bedrock, perhaps in combination with hard clay, sand, and gravel; adults winter in deep pools and move upstream in spring to spawn on riffles		T

Common Name	Scientific Name	Description	Federal Status	State Status
Guadalupe bass	Micropterus treculii	endemic to perennial streams of the Edward's Plateau region; introduced in Nueces River system		
MAMMALS				
Cave Myotis Bat	Myotis velifer	colonial and cave-dwelling; also roosts in man-made structures or in abandoned Cliff Swallow (<i>Hirundo pyrrhonota</i>) nests; usually roosts in clusters that may number in the thousands; hibernates in caves during winter; opportunistic insectivore		
Elliot's Short-tailed Shrew	Blarina hylophaga hylophaga	sandy areas in live oak mottes, grassy areas with a Loblolly pine (Pinus taeda) overstory, and grassy areas near Post oak (Quercus stellata) stands; burrows extensively under leaf litter, logs, and into soil, but ground cover is not required; needs soft damp soils for ease of burrowing		
Plains Spotted Skunk	Spilogale putorius interrupta	catholic; open fields, prairies, croplands, fence rows, farmyards, forest edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie		
Red Wolf	Canis rufus	extirpated; formerly known throughout eastern half of Texas in brushy and forested areas, as well as coastal prairies	LE	Е
MOLLUSKS				
Creeper (squawfoot)	Strophitus undulatus	small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins		
False spike mussel	Quincuncina mitchelli	substrates of cobble and mud, with water lilies present; Rio Grande, Brazos, Colorado, and Guadalupe (historic) river basins		
Pistolgrip	Tritogonia verrucosa	stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through San Antonio River basins		
Rock pocketbook	Arcidens confragosus	mud, sand, and gravel substrates of medium to large rivers in standing or slow flowing water, may tolerate moderate currents and some reservoirs, east Texas, Red through Guadalupe River basins		
Smooth pimpleback	Quadrula houstonensis	small to moderate streams and rivers as well as moderate size reservoirs; mixed mud, sand, and fine gravel, tolerates very slow to moderate flow rates, appears not to tolerate dramatic water level fluctuations, scoured bedrock substrates, or shifting sand bottoms, lower Trinity (questionable), Brazos, and Colorado River basins		
Texas fawnsfoot	Truncilla macrodon	little known; possibly rivers and larger streams, and intolerant of impoundment; flowing rice irrigation canals, possibly sand, gravel, and perhaps sandy-mud bottoms in moderate flows; Brazos and Colorado River basins		
Texas pimpleback	Quadrula petrina	mud, gravel and sand substrates, generally in areas with slow flow rates; Colorado and Guadalupe river basins		
REPTILES				
Texas Garter Snake	Thamnophis sirtalis annectens	wet or moist microhabitats are conducive to the species occurrence, but is not necessarily restricted to them; hibernates underground or in or under surface cover; breeds March-August		
Texas horned lizard	Phrynosoma cornutum	open, arid and semi-arid regions with sparse vegetation, including grass, cactus, scattered brush or scrubby trees; soil may vary in texture from sandy to rocky; burrows into soil, enters rodent burrows, or hides under rock when inactive; breeds March-September		T
Timber/Canebrake Rattlesnake	Crotalus horridus	swamps, floodplains, upland pine and deciduous woodlands, riparian zones, abandoned farmland; limestone bluffs, sandy soil or black clay; prefers dense ground cover, i.e. grapevines or palmetto		Т
PLANTS		· · · · · · · · · · · · · · · · · · ·		
Navasota ladies'-tresses	Spiranthes parksii	endemic; margins of and openings within post oak woodlands in sandy loams along intermittent tributaries of rivers; flowering late October-early November	LE	Е
Sandhill woolywhite	Hymenopappus carrizoanus	endemic; open areas in deep sands derived from Carrizo and similar Eocene formations, including disturbed areas; flowering late spring-fall		
Shinner's sunflower	Helianthus occidentalis ssp plantagineus	mostly in prairies on the Coastal Plain, with several slightly disjunct populations in the Pineywoods and South Texas Brush Country		

TABLE 1A-2: THREATENED OR ENDANGERED SPECIES OF BLANCO COUNTY

Common Name	Scientific Name	Description	Federal Status	State Status
AMPHIBIANS				
Blanco River Springs Salamander ***BIRDS***	Eurycea pterophila	subaquatic; springs and caves in the Blanco River drainage		
American Peregrine Falcon	Falco peregrinus anatum	year-round resident and local breeder in west Texas, nests in tall cliff eyries; also, migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; lowaltitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	Е
Arctic Peregrine Falcon	Falco peregrinus tundrius	migrant throughout state from subspecies' far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	Т
Bald Eagle	Haliaeetus leucocephalus	found primarily near rivers and large lakes; nests in tall trees or on cliffs near water; communally roosts, especially in winter; hunts live prey, scavenges, and pirates food from other birds	DL	Т
Black-capped Vireo	Vireo atricapillus	oak-juniper woodlands with distinctive patchy, two-layered aspect; shrub and tree layer with open, grassy spaces; requires foliage reaching to ground level for nesting cover; return to same territory, or one nearby, year after year; deciduous & broad-leaved shrubs & trees provide insects for feeding; species composition less important than presence of adequate broad-leaved shrubs, foliage to ground level, and required structure; nesting season March-late summer	LE	Е
Golden-cheeked Warbler	Dendroica chrysoparia	juniper-oak woodlands; dependent on Ashe juniper (also known as cedar) for long fine bark strips, only available from mature trees, used in nest construction; nests are placed in various trees other than Ashe juniper; only a few mature junipers or nearby cedar brakes can provide the necessary nest material; forage for insects in broad-leaved trees and shrubs; nesting late March-early summer	LE	Е
Mountain Plover	Charadrius montanus	breeding: nests on high plains or shortgrass prairie, on ground in shallow depression; nonbreeding: shortgrass plains and bare, dirt (plowed) fields; primarily insectivorous		
Peregrine Falcon	Falco peregrinus	both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies' listing statuses differ, thus the species level shows this dual listing status; because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat.	DL	ET
Western Burrowing Owl	Athene cunicularia hypugaea	open grasslands, especially prairie, plains, and savanna, sometimes in open areas such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows		
Whooping Crane	Grus americana	potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties	LE	Е
Zone-tailed Hawk	Buteo albonotatus	arid open country, including open deciduous or pine-oak woodland, mesa or mountain county, often near watercourses, and wooded canyons and tree-lined rivers along middle-slopes of desert mountains; nests in various habitats and sites, ranging from small trees in lower desert, giant cottonwoods in riparian areas, to mature conifers in high mountain regions		Т
FISHES				
Guadalupe Bass	Micropterus treculi	endemic to perennial streams of the Edward's Plateau region; introduced in Nueces River system		
Headwater catfish	Ictalurus lupus	originally throughout streams of the Edwards Plateau and the Rio Grande basin, currently limited to Rio Grande drainage, including Pecos River basin; springs, and sandy and rocky riffles, runs, and pools of clear creeks and small rivers		
INSECTS		, , , , , , , , , , , , , , , , , , , ,		
A mayfly	Allenhyphes michaeli	TX Hill Country; mayflies distinguished by aquatic larval stage; adult stage generally found in shoreline vegetation		
Disjunct crawling	Haliplus	unknown, maybe shallow water		

Scientific Name	Description	Federal Status	State Status
nitens			
Ursus americanus	bottomland hardwoods and large tracts of inaccessible forested areas; due to field characteristics similar to Louisiana Black Bear (LT, T), treat all east Texas black bears as federal and state listed Threatened	T/SA; NL	T
Myotis velifer	colonial and cave-dwelling; also roosts in rock crevices, old buildings, carports, under bridges, and even in abandoned Cliff Swallow (Hirundo pyrrhonota) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore		
Canis lupus	extirpated; formerly known throughout the western two-thirds of the state in forests, brushlands, or grasslands	LE	Е
Geomys texensis texensis	found in deep, brown loamy sands or gravelly sandy loams and is isolated from other species of pocket gophers by intervening shallow stony to gravelly clayey soils		
Spilogale putorius	catholic; open fields, prairies, croplands, fence rows, farmyards, forest edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie		
Canis rufus	extirpated; formerly known throughout eastern half of Texas in brushy and forested areas, as well as coastal prairies	LE	Е
	<u> </u>		
Strophitus undulatus	small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins		
Quincuncina mitchelli	substrates of cobble and mud, with water lilies present; Rio Grande, Brazos, Colorado, and Guadalupe (historic) river basins		
Quadrula aurea	sand and gravel in some locations and mud at others; intolerant of impoundment in most instances; Guadalupe, San Antonio, and Nueces River basins		
Tritogonia verrucosa	stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through San Antonio River basins		
Arcidens confragosus	mud, sand, and gravel substrates of medium to large rivers in standing or slow flowing water, may tolerate moderate currents and some reservoirs, east Texas, Red through Guadalupe River basins		
Quadrula houstonensis	small to moderate streams and rivers as well as moderate size reservoirs; mixed mud, sand, and fine gravel, tolerates very slow to moderate flow rates, appears not to tolerate dramatic water level fluctuations, scoured bedrock substrates, or shifting sand bottoms, lower Trinity (questionable), Brazos, and Colorado River basins		
Lampsilis bracteata	streams and rivers on sand, mud, and gravel substrates; intolerant of impoundment; broken bedrock and course gravel or sand in moderately flowing water; Colorado and Guadalupe River basins		
Truncilla macrodon	little known; possibly rivers and larger streams, and intolerant of impoundment; flowing rice irrigation canals, possibly sand, gravel, and perhaps sandy-mud bottoms in moderate flows; Brazos and Colorado River basins		
Quadrula petrina	mud, gravel and sand substrates, generally in areas with slow flow rates; Colorado and Guadalupe river basins		
•			
Holbrookia lacerata	central & southern Texas and adjacent Mexico; moderately open prairie- brushland; fairly flat areas free of vegetation or other obstructions, including disturbed areas; eats small invertebrates; eggs laid underground		
Thamnophis sirtalis	wet or moist microhabitats are conducive to the species occurrence, but is not necessarily restricted to them; hibernates underground or in or under surface		
Phrynosoma cornutum	open, arid and semi-arid regions with sparse vegetation, including grass, cactus, scattered brush or scrubby trees; soil may vary in texture from sandy to rocky; burrows into soil, enters rodent burrows, or hides under rock when inactive; breeds March-September		Т
	Name nitens Ursus americanus Myotis velifer Canis lupus Geomys texensis texensis Spilogale putorius interrupta Canis rufus Strophitus undulatus Quincuncina mitchelli Quadrula aurea Tritogonia verrucosa Arcidens confragosus Quadrula houstonensis Lampsilis bracteata Truncilla macrodon Quadrula petrina Holbrookia lacerata Thamnophis sirtalis annectens Phrynosoma	nitens Ursus	Name bottomland hardwoods and large tracts of inaccessible forested areas; due to field characteristics similar to Louisiana Black Bear (LT, T), treat all east Texas black bears as federal and state listed Threatened Myotis velifer colonial and cave-dwelling; also roosts in rock crevices, old buildings, carports, under bridges, and even in abandoned Cliff Swallow (Hirundo pyrrhonota) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore Canis lupus extirpated; formerly known throughout the western two-thirds of the state in forests, brushlands, or grasslands Geomys extirpated; formerly known throughout the western two-thirds of the state in other species of pocket gophers by intervening shallow stony to gravelly clayey soils Spilogale extirpated; formerly known throughout eastern half of Texas in brushy and chrosted areas, as well as coastal prairies and woodlands; prefers wooded, brushy areas and tallgrass prairie interrupta Strophilus small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins Quadrula surea substrates of cobble and mud, with water lilies present; Rio Grande, Brazos, Colorado, and Guadalupe (historic) river basins Trilogonia stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through San Antonio, River basins Trilogonia substrates of cobble and mud, with water lilies present; Rio Grande, Brazos, Colorado, and Guadalupe (historic) river basins Trilogonia stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through San Antonio River basins Trilogonia stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through Guadalupe River basins Trilogonia stable substrate, rock, hard mud, silt, and soft bott

Common Name	Scientific Name	Description	Federal Status	State Status
Canyon mock-orange	Philadelphus ernestii	endemic; solution-pitted outcrops of Cretaceous limestone in mesic canyons, usually in shade of mostly deciduous slope forest; flowering April-May		
Granite spiderwort	Tradescantia pedicellata	endemic; rocky soils in the Edwards Plateau; flowering March-June (July?)		
Hill country wild- mercury	Argythamnia aphoroides	Texas endemic; mostly in bluestem-grama grasslands associated with plateau live oak woodlands on shallow to moderately deep clays and clay loams over limestone on rolling uplands, also in partial shade of oak-juniper woodlands in gravelly soils on rocky limestone slopes; flowering April-May with fruit persisting until midsummer		

TABLE 1A-3: THREATENED OR ENDANGERED SPECIES OF BURNET COUNTY

Common Name	Scientific Name	Description	Federal Status	State Status
ARACHNIDS				
Reddell harvestman	Texella reddelli	small, blind, cave-adapted harvestman endemic to a few caves in Travis and Williamson counties	LE	
BIRDS				
American Peregrine Falcon	Falco peregrinus anatum	year-round resident and local breeder in west Texas, nests in tall cliff eyries; also, migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	E
Arctic Peregrine Falcon	Falco peregrinus tundrius	migrant throughout state from subspecies' far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	T
Bald Eagle	Haltaeetus leucocephalus	found primarily near rivers, and large lakes; nests in tall trees or on cliffs near water; communally roosts, especially in winter, hunts live prey, scavenges, and pirates food from other birds	DL	T
Black-capped Vireo	Vireo atricapillus	oak-juniper woodlands with distinctive patchy, two-layered aspect; shrub and tree layer with open, grassy spaces; requires foliage reaching to ground level for nesting cover; return to same territory, or one nearby, year after year; deciduous & broad-leaved shrubs & trees provide insects for feeding; species composition less important than presence of adequate broad-leaved shrubs, foliage to ground level, and required structure; nesting season March-late summer	LE	E
Interior Least Tern	Sterna antillarum athalassos	this subspecies is listed only when inland (more than 50 miles from a coastline); nests along sand and gravel bars within braided streams, rivers; also know to nest on man-made structures (inland beaches, wastewater treatment plants, gravel mines, etc); eats small fish & crustaceans, when breeding forages within a few hundred feet of colony	LE	Е
Golden-cheeked Warbler	Dendroica chrysoparia	juniper-oak woodlands; dependent on Ashe juniper (also known as cedar) for long fine bark strips, only available from mature trees, used in nest construction; nests are placed in various trees other than Ashe juniper; only a few mature junipers or nearby cedar brakes can provide the necessary nest material; forage for insects in broadleaved trees and shrubs; nesting late March-early summer	LE	Е
Mountain Plover	Charadrius montanus	breeding: nests on high plains or shortgrass prairie, on ground in shallow depression; nonbreeding: shortgrass plains and bare, dirt (plowed) fields; primarily insectivorous		
Peregrine Falcon	Falco peregrinus	both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies' listing statuses differ, thus the species level shows this dual listing status; because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat.	DL	ET
Western Burrowing Owl	Athene cunicularia hypugaea	open grasslands, especially prairie, plains, and savanna, sometimes in open areas such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows		
Whooping Crane	Grus americana	potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties	LE	Е
CRUSTACEANS				
An amphipod	Stygobromus russelli	subterranean waters, usually in caves and limestone aquifers; resident of numerous caves in ca. 10 counties of the Edwards Plateau		

Common Name	Scientific Name	Description	Federal Status	State Status
FISHES				
Guadalupe Bass	Micropterus treculi	endemic to perennial streams of the Edward's Plateau region; introduced in Nueces River system		
Headwater catfish	Ictalurus lupus	originally throughout streams of the Edwards Plateau and the Rio Grande basin, currently limited to Rio Grande drainage, including Pecos River basin; springs, and sandy and rocky riffles, runs, and pools of clear creeks and small rivers		
INSECTS				
Disjunct crawling water beetle	Haliplus nitens	unknown, maybe shallow water		
Leonora's dancer damselfly	Argia leonorae	south central and western Texas; small streams and seepages		
MAMMALS	1.0			
Cave Myotis Bat	Myotis velifer	colonial and cave-dwelling; also roosts in rock crevices, old buildings, carports, under bridges, and even in abandoned Cliff Swallow (<i>Hirundo pyrrhonota</i>) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore		
Gray Wolf	Canis lupus	extirpated; formerly known throughout the western two-thirds of the state in forests, brushlands, or grasslands	LE	Е
Llano pocket gopher	Geomys texensis texensis	found in deep, brown loamy sands or gravelly sandy loams and is isolated from other species of pocket gophers by intervening shallow stony to gravelly clayey soils		
Plains Spotted Skunk	Spilogale putorius interrupta	catholic in habitat; open fields, prairies, croplands, fence rows, farmyards, forest edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie		
Red Wolf	Canis rufus	extirpated; formerly known throughout eastern half of Texas in brushy and forested areas, as well as coastal prairies	LE	Е
MOLLUSKS				
Creeper (squawfoot)	Strophitus undulatus	small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins		
False spike mussel	Quincuncina mitchelli	substrates of cobble and mud, with water lilies present; Rio Grande, Brazos, Colorado, and Guadalupe (historic) river basins		
Pistolgrip	Tritogonia verrucosa	stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through San Antonio River basins		
Rock pocketbook	Arcidens confragosus	mud, sand, and gravel substrates of medium to large rivers in standing or slow flowing water, may tolerate moderate currents and some reservoirs, east Texas, Red through Guadalupe River basins		
Smooth pimpleback	Quadrula houstonensis	small to moderate streams and rivers as well as moderate size reservoirs; mixed mud, sand, and fine gravel, tolerates very slow to moderate flow rates, appears not to tolerate dramatic water level fluctuations, scoured bedrock substrates, or shifting sand bottoms, lower Trinity (questionable), Brazos, and Colorado River basins		
Texas fatmucket	Lampsilis bracteata	streams and rivers on sand, mud, and gravel substrates; intolerant of impoundment; broken bedrock and course gravel or sand in moderately flowing water; Colorado and Guadalupe River basins		
Texas fawnsfoot	Truncilla macrodon	little known; possibly rivers and larger streams, and intolerant of impoundment; flowing rice irrigation canals, possibly sand, gravel, and perhaps sandy-mud bottoms in moderate flows; Brazos and Colorado River basins		
Texas pimpleback	Quadrula petrina	mud, gravel and sand substrates, generally in areas with slow flow rates; Colorado and Guadalupe river basins		
REPTILES		<u>.</u>		
Concho water snake	Nerodia paucimaculata	Texas endemic; Concho and Colorado river systems; shallow fast- flowing water with a rocky or gravelly substrate preferred; adults can be found in deep water with mud bottoms; breeding Mar-Oct	LT- PDL	

Common Name	Scientific Name	Description	Federal Status	State Status
Spot-tailed earless lizard	Holbrookia lacerata	central and southern Texas and adjacent Mexico; moderately open prairie-brushland; fairly flat areas free of vegetation or other obstructions, including disturbed areas; eats small invertebrates; eggs laid underground		
Texas Garter Snake	Thamnophis sirtalis annectens	wet or moist microhabitats are conducive to the species occurrence, but is not necessarily restricted to them; hibernates underground or in or under surface cover; breeds March-August		
Texas Horned Lizard	Phrynosoma cornutum	open, arid and semi-arid regions with sparse vegetation, including grass, cactus, scattered brush or scrubby trees; soil may vary in texture from sandy to rocky; burrows into soil, enters rodent burrows, or hides under rock when inactive; breeds March-September		T
***VASCULAR PLANTS	***			
Basin bellflower	Campanula reverchonii	Texas endemic; among scattered vegetation on loose gravel, gravelly sand, and rock outcrops on open slopes with exposures of igneous and metamorphic rocks; may also occur on sandbars and other alluvial deposits along major rivers; flowering May-July		
Enquist's sandmint	Brazoria enquistii	primarily on sand banks in and along beds of streams that drain granitic /gneissic landscapes; flowering/fruiting late April-early June		
Rock Quillwort	Isoetes lithophila	very shallow seasonally wet sand or gravel in vernal pools on granite or gneiss outcrops; sporulating in late spring and opportunistically at other seasons		
Granite spiderwort	Tradescantia pedicellata	endemic; rocky soils in the Edwards Plateau; flowering March-June (July?)		
Edwards Plateau Cornsalad	Valerianella texana	very shallow, well-drained but seasonally moist gravelly soils derived from igneous or metamorphic rocks, often along the downslope margin of rock outcrop, in full sun or in partial shade of oak-juniper woodlands; flowering March–April		

TABLE 1A-4: THREATENED OR ENDANGERED SPECIES OF COLORADO COUNTY

Scientific Name	Description	Federal Status	State Status
Bufo houstonensis	endemic; species sandy substrate, water in pools, ephemeral pools, stock tanks; breeds in spring especially after rains; burrows in soil when inactive; breeds February-June; associated with soils of the Sparta, Carrizo, Goliad, Queen City, Recklaw, Weches, and Willis geologic formations	LE	E
Falco peregrinus anatum	year-round resident and local breeder in west Texas, nests in tall cliff eyries; also, migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	Е
Falco peregrinus tundrius	migrant throughout state from subspecies' far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	T
Tympanuchus cupido attwateri	this county within historic range; endemic; open prairies of mostly thick grass one to three feet tall; from near sea level to 200 feet along coastal plain on upper two-thirds of Texas coast; males form communal display flocks during late winter-early spring; booming grounds important; breeding February-July	LE	E
Haliaeetus leucocephalus	found primarily near rivers, and large lakes; nests in tall trees or on cliffs near water; communally roosts, especially in winter; hunts live prey, scavenges, and pirates food from other birds	DL	T
Ammodramus henslowii	wintering individuals (not flocks) found in weedy fields or cut-over areas where lots of bunch grasses occur along with vines and brambles; a key component is bare ground for running/walking; likely to occur, but few records within this county		
Sterna antillarum athalassos	subspecies is listed only when inland (more than 50 miles from a coastline); nests along sand and gravel bars within braided streams, rivers; also know to nest on man-made structures (inland beaches, wastewater treatment plants, gravel mines, etc); eats small fish and crustaceans, when breeding forages within a few hundred feet of colony	LE	Е
Charadrius montanus	breeding: nests on high plains or shortgrass prairie, on ground in shallow depression; nonbreeding: shortgrass plains and bare, dirt (plowed) fields; primarily insectivorous		
Falco peregrinus	both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies' listing statuses differ, thus the species level shows this dual listing status; because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat.	DL	ET
Athene cunicularia hypugaea	areas such as vacant lots near human habitation or airports; nests and roosts in		
Plegadis chihi	prefers freshwater marshes, sloughs, and irrigated rice fields, but will attend brackish and saltwater habitats; nests in marshes, in low trees, on the ground in		Т
Buteo albicaudatus	near coast on prairies, cordgrass flats, and scrub-live oak; further inland on prairies, mesquite and oak savannas, and mixed savanna-chaparral; breeding		Т
Grus americana	potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties	LE	Е
Mycteria americana	forages in prairie ponds, flooded pastures or fields, ditches, and other shallow standing water, including salt-water; usually roosts communally in tall snags, sometimes in association with other wading birds (i.e. active heronries); breeds in Mexico and birds move into Gulf States in search of mud flats and other wetlands, even those associated with forested areas; formerly nested in Texas, but no breeding records since 1960		Т
	Rame Bufo houstonensis Falco peregrinus anatum Falco peregrinus tundrius Tympanuchus cupido attwateri Haliaeetus leucocephalus Ammodramus henslowii Sterna antillarum athalassos Charadrius montanus Falco peregrinus Falco peregrinus Grus americana Mycteria	## Endowstonensis ## Endowstone	Busion B

Common Name	Scientific Name	Description	Federal Status	State Status
Blue sucker	Cycleptus elongatus	larger portions of major rivers in Texas; usually in channels and flowing pools with a moderate current; bottom type usually of exposed bedrock, perhaps in combination with hard clay, sand, and gravel; adults winter in deep pools and move upstream in spring to spawn on riffles		Т
Guadalupe bass	Micropterus treculii	endemic to perennial streams of the Edward's Plateau region; introduced in Nueces River system		
INSECTS				
Texas asaphomyian tabanid fly	Asaphomyia texensis	globally historic; adults of tabanid spp. found near slow-moving water; eggs laid in masses on leaves or other objects near or over water; larvae are aquatic and predaceous; females of tabanid spp. bite, while males chiefly feed on pollen and nectar; using sight, carbon dioxide, and odor for selection, tabanid spp. lie in wait in shady areas under bushes and trees for a host to happen by		
MAMMALS				
Louisiana Black Bear	Ursus americanus luteolus	possible as transient; bottomland hardwoods and large tracts of inaccessible forested areas	LT	Т
Plains Spotted Skunk	Spilogale putorius interrupta	catholic; open fields, prairies, croplands, fence rows, farmyards, forest edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie		
Red wolf	Canis rufus	extirpated; formerly known throughout eastern half of Texas in brushy and forested areas, as well as coastal prairies	LE	Е
MOLLUSKS				
Creeper (squawfoot)	Strophitus undulatus	small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins		
False spike mussel	Quincuncina mitchelli	substrates of cobble and mud, with water lilies present; Rio Grande, Brazos, Colorado, and Guadalupe (historic) river basins		
Pistolgrip	Tritogonia verrucosa	stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through San Antonio River basins		
Rock pocketbook	Arcidens confragosus	mud, sand, and gravel substrates of medium to large rivers in standing or slow flowing water, may tolerate moderate currents and some reservoirs, east Texas, Red through Guadalupe River basins		
Smooth pimpleback	Quadrula houstonensis	small to moderate streams and rivers as well as moderate size reservoirs; mixed mud, sand, and fine gravel, tolerates very slow to moderate flow rates, appears not to tolerate dramatic water level fluctuations, scoured bedrock substrates, or shifting sand bottoms, lower Trinity (questionable), Brazos, and Colorado River basins		
Texas fawnsfoot	Truncilla macrodon	little known; possibly rivers and larger streams, and intolerant of impoundment; flowing rice irrigation canals, possibly sand, gravel, and perhaps sandy-mud bottoms in moderate flows; Brazos and Colorado River basins		
Texas pimpleback	Quadrula petrina	mud, gravel and sand substrates, generally in areas with slow flow rates; Colorado and Guadalupe river basins		
REPTILES				
Texas Horned Lizard	Phrynosoma cornutum	open, arid and semi-arid regions with sparse vegetation, including grass, cactus, scattered brush or scrubby trees; soil may vary in texture from sandy to rocky; burrows into soil, enters rodent burrows, or hides under rock when inactive; breeds March-September		T
Timber/Canebrake Rattlesnake	Crotalus horridus	swamps, floodplains, upland pine and deciduous woodlands, riparian zones, abandoned farmland; limestone bluffs, sandy soil or black clay; prefers dense		T
		ground cover, i.e. grapevines or palmetto		
***VASCULAR PLAN Coastal gay-feather	Liatris	endemic; black clay soils of prairie remnants; flowering in fall		
Shinner's sunflower	bracteata Helianthus occidentalis ssp plantagineus	mostly in prairies on the Coastal Plain, with several slightly disjunct populations in the Pineywoods and South Texas Brush Country		

TABLE 1A-5: THREATENED OR ENDANGERED SPECIES OF FAYETTE COUNTY

American Peregrine Falcon Peregrinus Gradian Falcon Peregrinus Gradian Falcon Peregrinus Gradian Falco Peregrinus Falco Peregrine Falco Peregrinus Interior Least Tem Therior Least Tem Mountain Plover Charadrius	Common Name	Scientific Name	Description	Federal Status	State Status
Falcon peregrinus anatum ingrant across state from more northern breeding areas in US and Canada, winters along cross and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands. Iow-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands. Arctic Peregrines Palcon Peregrinus tundrius singuitarius throughout state from subspecies far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands, low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands. Bald Engle Haliaeenus feuro-phalus elizabet elizab	***BIRDS***				
Falcon peregrinus tundrius along coast and farther south; occupies wide range of habitats during migration, including urban, connectrations along coast and barrier islands; low-altitude migrant, stopowers at leading landscape edges such as lake shores, coastlines, and harrier islands. Bald Eagle Haliacetus eleucoephalius (found primarily near seacoasts, fivers, and large lakes; nests in tall trees or on cliff came water; communally troosts, especially in winter; hunts live prey, scavenges, and printers food from other birds Henslow's Sparrow Ammodramus bensionii bors of brunch grasses occur along with vines and brambles; a key component is bare ground for running/walking Interior Least Tern antillarum bare ground for running/walking mortanus bereding forages within a few hundred feet of colony when inland (more than 50 miles from a coastline); mests along sand and gravel bars within braided streams, rivers, also know to nest on man-mides structures (inland beaches, wastewater treatment plants, gravel mines, etc.); east small fish & crustaceans, when breeding forages within a few hundred feet of colony breeding; nests on high plains or shortgrass prairie, on ground in shallow depression; nonbreedings shortgrass plains and bare, dirt (plowed); fields; perimarily insectivorous Peregrine Falcon Falco both subspecies migrate across the state from more northern breeding areas in US also a resident breeder in west Texas; the two subspecies; blisting statuses differ, thus the species level shows this dual listing status; blecause the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat. Western Burrowing Ahme Owl Stork Myeteria for some rice and state in the care of panaliace to coast; with terms in coastal prairies of rage	American Peregrine Falcon	peregrinus	migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	Е
Leucocephalus Scavenges, and printers food from other birds	Arctic Peregrine Falcon	peregrinus	along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines,	DL	T
Ammodramus Ammodramus henslowii bit of blunch grasses occur long with vines and brambles; a key component is bare ground for running/walking this subspecies is listed only when inland (more than 50 miles from a coastline); LE E maillarum anhalassos anhalasso	Bald Eagle		cliffs near water; communally roosts, especially in winter; hunts live prey,	DL	Т
antillarum athalassos on man-made structures (inland beaches, wastewater treatment plants, gravel mines, etc); etas small fish & crustaceans, when breeding forages within a few hundred feet of colony Mountain Plover Charadrius montanus of the crustaceans, when breeding forages within a few hundred feet of colony Peregrine Falcon Falco both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies is faustuses differ, thus the species level shows this dual listing status; because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat. Western Burrowing Owl cunicularia hypugaea open grasslands, especially prairie, plains, and savanna, sometimes in open areas such as vacant lost near human habitation or airports; nests and roosts in abandoned burrows Whooping Crane Grus americana marshes of Aransas, Calhoun, and Refugio counties Wood Stork Mycteria forages in prairie ponds, flooded pastures or fields, ditches, and other shallow americana shandoned burrows when the complex in association with other wading birds (i.e. active heronries); breeds in Mexico and birds move into Gulf States in search of mud flats and other wetlands, even those associated with forested areas; formerly nested in Texas, but no breeding records since 1960 ***MAMALS*** Cave Myotis Bat Myotis velifer colonial and cave-dwelling; also roosts in rock crevices, old buildings, carports, under bridges, and even in abandoned Cliff Swallow (Hirundo pyrrhonotat) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone cawes of Edwards Plateau and gypsum cave of Pahandle during winter; opportunistic insectivore Plains Spotted Spilogale catholic in habitat; open fields, prairies, croplands, fence rows, farmyards, forest deges, and woodlands; prefers wooded, brushy areas and tallg	Henslow's Sparrow		wintering individuals (not flocks) found in weedy fields or cut-over areas where lots of bunch grasses occur along with vines and brambles; a key component is		
Peregrine Falcon Falco both subspecies migrate across the state from more northern breeding areas in US DL ET and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies (F. p. anatum) is also and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also and canada to winter along coast and farther south; subspecies (F. p. anatum) is also and canada to winter along coast and farther south; subspecies (F. p. anatum) is also and canada to winter along coast and farther south; subspecies (F. p. anatum) is also and canada to winter along coast and farther south; subspecies (F. p. anatum) is also and canada to winter along coast and farther south; subspecies (F. p. anatum) is also and canada to winter along coast and farther south; subspecies (F. p. anatum) is also and canada to winter along coast and anatum, and refugio canse in open anatum anatum anatum anatum and anatum anatum and anatum anatum and anatum and anatum and anatum anatum anatum anatum anatum anatum an	Interior Least Tern	antillarum	nests along sand and gravel bars within braided streams, rivers; also know to nest on man-made structures (inland beaches, wastewater treatment plants, gravel mines, etc); eats small fish & crustaceans, when breeding forages within a few	LE	Е
Peregrine Falcon Falco peregrinus Falco peregrinus Subspecies migrate across the state from more northern breeding areas in US DL ET and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat. Western Burrowing Owl Athene cunicularia hypugaea popularia hypugaea hypugaea	Mountain Plover		depression; nonbreeding: shortgrass plains and bare, dirt (plowed) fields;		
Such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows Whooping Crane Whooping Crane Whooping Crane Whooping Crane Wood Stork Mycteria americana Total paralize ponds, flooded pastures or fields, ditches, and other shallow standing water, including salt-water; usually roosts communally in tall snags, sometimes in association with other wading birds (i.e. active heronries); breeds in Mexico and birds move into Gulf States in search of mud flats and other wetlands, even those associated with forested areas; formerly nested in Texas, but no breeding records since 1960 ***MAMMALS*** Cave Myotis Bat Myotis velifer colonial and cave-dwelling; also roosts in rock crevices, old buildings, carports, under bridges, and even in abandoned Cliff Swallow (Hirundo pyrrhonota) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore Plains Spotted Spilogale catholic in habitat; open fields, prairies, croplands, fence rows, farmyards, forest edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie ###MOLLUSKS*** Creeper (squawfoot) Strophitus undulatus Strophitus small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins substrates of cobble and mud, with water lilies present; Rio Grande, Brazos,	Peregrine Falcon		both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies' listing statuses differ, thus the species level shows this dual listing status; because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species	DL	ET
Myoteria forages in prairie ponds, flooded pastures or fields, ditches, and other shallow T standling water, including salt-water; usually roots communally in tall snags, sometimes in association with other wading birds (i.e. active heronries); breeds in Mexico and birds move into Gulf States in search of mud flats and other wetlands, even those associated with forested areas; formerly nested in Texas, but no breeding records since 1960	Western Burrowing Owl	cunicularia	such as vacant lots near human habitation or airports; nests and roosts in		
Wood Stork Mycteria americana forages in prairie ponds, flooded pastures or fields, ditches, and other shallow standing water, including salt-water; usually roosts communally in tall snags, sometimes in association with other wading birds (i.e. active heronries); breeds in Mexico and birds move into Gulf States in search of mud flats and other wetlands, even those associated with forested areas; formerly nested in Texas, but no breeding records since 1960 ****MAMMALS*** Cave Myotis Bat Myotis velifer colonial and cave-dwelling; also roosts in rock crevices, old buildings, carports, under bridges, and even in abandoned Cliff Swallow (Hirundo pyrrhonota) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore Plains Spotted Spilogale putorius interrupta Red Wolf Canis rufus extirpated; formerly known throughout eastern half of Texas in brushy and LE forested areas, as well as coastal prairies ****MOLLUSKS*** Creeper (squawfoot) Strophitus undulatus Small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins False spike mussel Quincuncina forages in prairie ponds, flooded pastures of pided, pided areas; formerly known throughout eastern; Rio Grande, Brazos,	Whooping Crane	Grus americana		LE	Е
Cave Myotis Bat Myotis velifer colonial and cave-dwelling; also roosts in rock crevices, old buildings, carports, under bridges, and even in abandoned Cliff Swallow (Hirundo pyrrhonota) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore Plains Spotted Spilogale Skunk putorius interrupta Red Wolf Canis rufus extirpated; formerly known throughout eastern half of Texas in brushy and LE E forested areas, as well as coastal prairies ***MOLLUSKS*** Creeper (squawfoot) Strophitus undulatus Strophitus undulatus Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins False spike mussel Quincuncina Colonial and cave-dwelling; also roosts in rock crevices, old buildings, carports, under bridges, and even in abandoned Cliff Swallow (Hirundo pyrrhonota) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore catholic in habitat; open fields, prairies, croplands, fence rows, farmyards, forest edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie E ****MOLLUSKS*** Creeper (squawfoot) Strophitus undulatus Substrates of cobble and mud, with water lilies present; Rio Grande, Brazos,	Wood Stork	•	forages in prairie ponds, flooded pastures or fields, ditches, and other shallow standing water, including salt-water; usually roosts communally in tall snags, sometimes in association with other wading birds (i.e. active heronries); breeds in Mexico and birds move into Gulf States in search of mud flats and other wetlands, even those associated with forested areas; formerly nested in Texas, but no		Т
under bridges, and even in abandoned Cliff Swallow (Hirundo pyrrhonota) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore Plains Spotted Spilogale catholic in habitat; open fields, prairies, croplands, fence rows, farmyards, forest edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie Red Wolf Canis rufus extirpated; formerly known throughout eastern half of Texas in brushy and LE E forested areas, as well as coastal prairies ***MOLLUSKS*** Creeper (squawfoot) Strophitus small to large streams, prefers gravel or gravel and mud in flowing water; undulatus Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins False spike mussel Quincuncina substrates of cobble and mud, with water lilies present; Rio Grande, Brazos,	***MAMMALS***				
Skunk putorius edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie Red Wolf Canis rufus extirpated; formerly known throughout eastern half of Texas in brushy and LE E forested areas, as well as coastal prairies ***MOLLUSKS*** Creeper (squawfoot) Strophitus small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins False spike mussel Quincuncina substrates of cobble and mud, with water lilies present; Rio Grande, Brazos,	Cave Myotis Bat		under bridges, and even in abandoned Cliff Swallow (<i>Hirundo pyrrhonota</i>) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore		
forested areas, as well as coastal prairies ***MOLLUSKS*** Creeper (squawfoot) Strophitus small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins False spike mussel Quincuncina substrates of cobble and mud, with water lilies present; Rio Grande, Brazos,	Plains Spotted Skunk	putorius			
MOLLUSKS Creeper (squawfoot) Strophitus small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins False spike mussel Quincuncina substrates of cobble and mud, with water lilies present; Rio Grande, Brazos,	Red Wolf			LE	Е
undulatus Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins False spike mussel Quincuncina substrates of cobble and mud, with water lilies present; Rio Grande, Brazos,	***MOLLUSKS***				
False spike mussel Quincuncina substrates of cobble and mud, with water lilies present; Rio Grande, Brazos,	Creeper (squawfoot)	•	Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River		
	False spike mussel		substrates of cobble and mud, with water lilies present; Rio Grande, Brazos,		

Pistolgrip	Tritogonia	stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east		
ristoigrip	verrucosa	and central Texas, Red through San Antonio River basins		
Rock pocketbook	Arcidens	mud, sand, and gravel substrates of medium to large rivers in standing or slow		
NOCK POCKETOOOK	confragosus	flowing water, may tolerate moderate currents and some reservoirs, east Texas,		
	confragosus	Red through Guadalupe River basins		
Smooth pimpleback	Ouadrula	small to moderate streams and rivers as well as moderate size reservoirs; mixed		
Sillootti piilipietack	houstonensis	mud, sand, and fine gravel, tolerates very slow to moderate flow rates, appears not		
	nousionensis	to tolerate dramatic water level fluctuations, scoured bedrock substrates, or		
		shifting sand bottoms, lower Trinity (questionable), Brazos, and Colorado River		
		basins		
Texas fawnsfoot	Truncilla	little known; possibly rivers and larger streams, and intolerant of impoundment;		
	macrodon	flowing rice irrigation canals, possibly sand, gravel, and perhaps sandy-mud		
		bottoms in moderate flows; Brazos and Colorado River basins		
Texas pimpleback	Quadrula	mud, gravel and sand substrates, generally in areas with slow flow rates; Colorado		
	petrina	and Guadalupe river basins		
REPTILES				
Texas Horned	Phrynosoma	open, arid and semi-arid regions with sparse vegetation, including grass, cactus,		T
Lizard	cornutum	scattered brush or scrubby trees; soil may vary in texture from sandy to rocky;		
		burrows into soil, enters rodent burrows, or hides under rock when inactive;		
		breeds March-September		
Timber/Canebrake	Crotalus	swamps, floodplains, upland pine and deciduous woodlands, riparian zones,		T
Rattlesnake	horridus	abandoned farmland; limestone bluffs, sandy soil or black clay; prefers dense		
		ground cover, i.e. grapevines or palmetto		
VASCULAR PLA	NTS			
Texas Meadow-rue	Thalictrum	endemic; mesic woodlands or forests, including wet ditches on partially shaded		
	texanim	roadsides; flowering March-May		
Navasota Ladies'	Spiranthes	endemic; margins of and openings within post oak woodlands in sandy loams	LE	Е
Tresses	parksii	along intermittent tributaries of rivers; flowering late October-early November		
Shinner's sunflower	Helianthus	mostly in prairies on the Coastal Plain, with several slightly disjunct populations		
	occidentalis ssp	in the Pineywoods and South Texas Brush Country		
	plantagineus	·		

TABLE 1A-6: THREATENED OR ENDANGERED SPECIES OF GILLESPIE COUNTY

Common Name	Scientific Name	Description	Federal Status	State Status
AMPHIBIANS				
Valdina Farms sinkhole salamander ***BIRDS***	Eurycea troglodytes complex	isolated, intermittent pools of a subterranean streams and sinkhole in Nueces, Frio, Guadalupe, and Pedernales watersheds within Edwards Aquifer area		
American Peregrine Falcon	Falco peregrinus anatum	year-round resident and local breeder in west Texas, nests in tall cliff eyries; also, migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	Е
Arctic Peregrine Falcon	Falco peregrinus tundrius	migrant throughout state from subspecies' far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	Т
Baird's Sparrow	Ammodramus bairdii	shortgrass prairie with scattered low bushes and matted vegetation; mostly migratory in western half of State, though winters in Mexico and just across Rio Grande into Texas from Brewster through Hudspetth counties		
Bald Eagle	Haliaeetus leucocephalus	found primarily near rivers and large lakes; nests in tall trees or on cliffs near water; communally roosts, especially in winter; hunts live prey, scavenges, and pirates food from other birds	DL	T
Black-capped Vireo	Vireo atricapillus	oak-juniper woodlands with distinctive patchy, two-layered aspect; shrub and tree layer with open, grassy spaces; requires foliage reaching to ground level for nesting cover; return to same territory, or one nearby, year after year; deciduous & broad-leaved shrubs & trees provide insects for feeding; species composition less important than presence of adequate broad-leaved shrubs, foliage to ground level, and required structure; nesting season March-late summer	LE	Е
Golden-cheeked Warbler	Dendroica chrysoparia	juniper-oak woodlands; dependent on Ashe juniper (also known as cedar) for long fine bark strips, only available from mature trees, used in nest construction; nests are placed in various trees other than Ashe juniper; only a few mature junipers or nearby cedar brakes can provide the necessary nest material; forage for insects in broad-leaved trees and shrubs; nesting late March-early summer	LE	Е
Mountain Plover	Charadrius montanus	breeding: nests on high plains or shortgrass prairie, on ground in shallow depression; nonbreeding: shortgrass plains and bare, dirt (plowed) fields; primarily insectivorous		
Peregrine Falcon	Falco peregrinus	both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies' listing statuses differ, thus the species level shows this dual listing status; because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat.	DL	ET
Western Burrowing Owl	Athene cunicularia hypugaea	open grasslands, especially prairie, plains, and savanna, sometimes in open areas such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows		
Whooping Crane	Grus americana	potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties	LE	Е
Zone-tailed Hawk	Buteo albonotatus	arid open country, including open deciduous or pine-oak woodland, mesa or mountain county, often near watercourses, and wooded canyons and tree-lined rivers along middle-slopes of desert mountains; nests in various habitats and sites, ranging from small trees in lower desert, giant cottonwoods in riparian areas, to mature conifers in high mountain regions		T
FISHES		,		
Guadalupe Bass	Micropterus treculi	endemic to perennial streams of the Edward's Plateau region; introduced in Nueces River system		
Headwater catfish	Ictalurus lupus	originally throughout streams of the Edwards Plateau and the Rio Grande basin, currently limited to Rio Grande drainage, including Pecos River basin;		

Common Name	Scientific Name	Description	Federal Status	State Status
		springs, and sandy and rocky riffles, runs, and pools of clear creeks and small rivers		
MAMMALS				
Black Bear	Ursus americanus	bottomland hardwoods and large tracts of inaccessible forested areas; due to field characteristics similar to Louisiana Black Bear (LT, T), treat all east Texas black bears as federal and state listed Threatened	T/SA; NL	T
Cave Myotis Bat	Myotis velifer	colonial and cave-dwelling; also roosts in rock crevices, old buildings, carports, under bridges, and even in abandoned Cliff Swallow (<i>Hirundo pyrrhonota</i>) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore		
Gray Wolf	Canis lupus	extirpated; formerly known throughout the western two-thirds of the state in forests, brushlands, or grasslands	LE	Е
Llano Pocket Gopher	Geomys texensis texensis	found in deep, brown loamy sands or gravelly sandy loams and is isolated from other species of pocket gophers by intervening shallow stony to gravelly clayey soils		
Plains spotted skunk	Spilogale putorius interrupta	catholic; open fields, prairies, croplands, fence rows, farmyards, forest edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie		
Red wolf	Canis rufus	extirpated; formerly known throughout eastern half of Texas in brushy and forested areas, as well as coastal prairies	LE	Е
MOLLUSKS				
Creeper (squawfoot)	Strophitus undulatus	small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins		
False spike mussel	Quincuncina mitchelli	substrates of cobble and mud, with water lilies present; Rio Grande, Brazos, Colorado, and Guadalupe (historic) river basins		
Golden orb	Quadrula aurea	sand and gravel in some locations and mud at others; intolerant of impoundment in most instances; Guadalupe, San Antonio, and Nueces River basins		
Pistolgrip	Tritogonia verrucosa	stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through San Antonio River basins		
Texas fatmucket	Lampsilis bracteata	streams and rivers on sand, mud, and gravel substrates; intolerant of impoundment; broken bedrock and course gravel or sand in moderately flowing water; Colorado and Guadalupe River basins		
Texas fawnsfoot	Truncilla macrodon	little known; possibly rivers and larger streams, and intolerant of impoundment; flowing rice irrigation canals, possibly sand, gravel, and perhaps sandy-mud bottoms in moderate flows; Brazos and Colorado River basins		
Texas pimpleback	Quadrula petrina	mud, gravel and sand substrates, generally in areas with slow flow rates; Colorado and Guadalupe river basins		
REPTILES				
Spot-tailed Earless Lizard	Holbrookia lacerata	central and southern Texas and adjacent Mexico; moderately open prairie- brushland; fairly flat areas free of vegetation or other obstructions, including disturbed areas; eats small invertebrates; eggs laid underground		
Texas Horned Lizard	Phrynosoma cornutum	open, arid and semi-arid regions with sparse vegetation, including grass, cactus, scattered brush or scrubby trees; soil may vary in texture from sandy to rocky; burrows into soil, enters rodent burrows, or hides under rock when inactive; breeds March-September		T
VASCULAR PLAN	TS	*		
Basin bellflower	Campanula reverchonii	Texas endemic; among scattered vegetation on loose gravel, gravelly sand, and rock outcrops on open slopes with exposures of igneous and metamorphic rocks; may also occur on sandbars and other alluvial deposits along major rivers; flowering May-July		
Big Red Sage	Salvia penstemonoides	endemic; moist to seasonally wet clay or silt soils in creekbeds and seepage slopes of limestone canyons; flowering June-October		
Canyon rattlesnake- root	Prenanthes carrii	rich humus soil in upper limestone woodland canyon drainages		

Common Name	Scientific Name	Description	Federal Status	State Status
Edwards Plateau Cornsalad	Valerianella texana	very shallow, well-drained but seasonally moist gravelly soils derived from igneous or metamorphic rocks, often along the downslope margin of rock outcrop, in full sun or in partial shade of oak-juniper woodlands; flowering March–April		
Hill country wild- mercury	Argythamnia aphoroides	Texas endemic; mostly in bluestem-grama grasslands associated with plateau live oak woodlands on shallow to moderately deep clays and clay loams over limestone on rolling uplands, also in partial shade of oak-juniper woodlands in gravelly soils on rocky limestone slopes; flowering April-May with fruit persisting until midsummer		
Warnock's coral root	Hexalectris warnockii	leaf litter and humus in oak-juniper woodlands in mountain canyons in the Trans Pecos but at lower elevations to the east, often on narrow terraces along creekbeds		
Rock quillwort	Isoetes lithophila	very shallow seasonally wet sand or gravel in vernal pools on granite or gneiss outcrops; sporulating in late spring and opportunistically at other seasons		
Small-headed pipewort	Eriocaulon körnickianum	in East Texas, post-oak woodlands and xeric sandhill openings on permanently wet acid sands of upland seeps and hillside seepage bogs, usually in patches of bare sand rather than among dense vegetation or on muck; in Gillespie County, on permanently wet or moist hillside seep on decomposing granite gravel and sand among granite outcrops; flowering/fruiting late Maylate June		

TABLE 1A-7: THREATENED OR ENDANGERED SPECIES OF HAYS COUNTY

Common Name	Scientific Name	Description	Federal Status	State Status
AMPHIBIANS				
Blanco Blind Salamander	Eurycea robusta	troglobitic; water-filled subterranean caverns; may inhabit deep levels of the Balcones aquifer to the north and east of the Blanco River		T
Blanco River Springs Salamander	Eurycea pterophila	subaquatic; springs and caves in the Blanco River drainage		
San Marcos Salamander	Eurycea nana	headwaters of the San Marcos River downstream to ca. ½ mile past IH-35; water over gravelly substrate characterized by dense mats of algae (<i>Lyng bya</i>) and aquatic moss (<i>Leptodictym riparium</i>), and water temperatures of	LT	T
Texas Blind Salamander	Eurycea rathbuni	21-22 °C; diet includes amphipods, midge larve, and aquatic snails troglobitic; water-filled subterranean caverns along a six mile stretch of the San Marcos Spring Fault, in the vicinity of San Marcos; eats small invertebrates, including snails, copepods, amphipods, and shrimp	LE	E
ARACHNIDS				
Bandit Cave spider	Cicurina bandida	very small, subterrestrial, subterranean obligate		
BIRDS				
American Peregrine Falcon	Falco peregrinus anatum	year-round resident and local breeder in west Texas, nests in tall cliff eyries; also, migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	Е
Arctic Peregrine Falcon	Falco peregrinus tundrius	migrant throughout state from subspecies' far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	Т
Bald Eagle	Haliaeetus leucocephalus	found primarily near rivers and large lakes; nests in tall trees or on cliffs near water; communally roosts, especially in winter; hunts live prey, scavenges, and pirates food from other birds	DL	Т
Black-capped Vireo	Vireo atricapillus	oak-juniper woodlands with distinctive patchy, two-layered aspect; shrub and tree layer with open, grassy spaces; requires foliage reaching to ground level for nesting cover; return to same territory, or one nearby, year after year; deciduous & broad-leaved shrubs & trees provide insects for feeding; species composition less important than presence of adequate broad-leaved shrubs, foliage to ground level, and required structure; nesting season March-late summer	LE	Е
Golden-cheeked Warbler	Dendroica chrysoparia	juniper-oak woodlands; dependent on Ashe juniper (also known as cedar) for long fine bark strips, only available from mature trees, used in nest construction; nests are placed in various trees other than Ashe juniper; only a few mature junipers or nearby cedar brakes can provide the necessary nest material; forage for insects in broad-leaved trees and shrubs; nesting late March-early summer	LE	Е
Mountain Plover	Charadrius montanus	breeding: nests on high plains or shortgrass prairie, on ground in shallow depression; nonbreeding: shortgrass plains and bare, dirt (plowed) fields; primarily insectivorous		
Peregrine Falcon	Falco peregrinus	both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies' listing statuses differ, thus the species level shows this dual listing status; because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat.	DL	ET
Western Burrowing Owl	Athene cunicularia hypugaea	open grasslands, especially prairie, plains, and savanna, sometimes in open areas such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows		
Whooping Crane	Grus americana	potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties	LE	Е

Common Name	Scientific Name	Description	Federal Status	State Status
Zone-tailed Hawk	Buteo albonotatus	arid open country, including open deciduous or pine-oak woodland, mesa or mountain county, often near watercourses, and wooded canyons and tree-lined rivers along middle-slopes of desert mountains; nests in various habitats and sites, ranging from small trees in lower desert, giant cottonwoods in riparian areas, to mature conifers in high mountain regions		T
CRUSTACEANS				
A cave obligate crustaean	Monodella texana	subaquatic, subterranean obligate; underground freshwater aquifers		
Balcones Cave amphipod	Stygobromus balconis	subaquatic, subterranean obligate amphipod		
Texas Cave Shrimp	Palaemonetes antrorum	subterranean sluggish streams and pools		
Ezell's Cave Amphipod	Stygobromus flagellatus	known only from artesian wells		
Texas troglobitic water slater	Lirceolus smithii	subaquatic, subterranean obligate, aquifer		
FISHES				
Fountain Darter	Etheostoma fonticola	known only from the San Marcos and Comal rivers; springs and spring-fed streams in dense beds of aquatic plants growing close to bottom, which is normally mucky; feeding mostly diurnal; spawns year-round with August and late winter to early spring peaks	LE	Е
Guadalupe Bass	Micropterus treculi	endemic to perennial streams of the Edward's Plateau region; introduced in Nueces River system		
Guadalupe Darter	Percina sciera apristis	Guadalupe River basin; most common over gravel or gravel and sand raceways of large streams and rivers		
San Marcos Gambusia	Gambusia georgei	(extirpated) – endemic; formerly known from upper San Marcos River; restricted to shallow, quiet, mud-bottomed shoreline areas without dense vegetation in thermally constant main channel	LE	Е
INSECTS		•		
A mayfly	Procloeon distinctum	mayflies distinguished by aquatic larval stage; adult stage generally found in shoreline vegetation		
Comal Springs Dryopid Beetle	Stygoparnus comalensis	dryopids usually cling to objects in a stream; dryopids are sometimes found crawling on stream bottoms or along shores; adults may leave the stream and fly about, especially at night; most dryopid larvae are vermiform and line in soil or decaying wood	LE	
Comal Springs Riffle Beetle	Heterelmis comalensis	Comal and San Marcos Springs	LE	
Edwards Aquifer Diving Beetle	Haideoporus texanus	habitat poorly known; known from an artesian well in Hays County		
Flint's Net-spinning Caddisfly	Cheumatopsyche flinti	very poorly known species with habitat description limited to "a spring"		
Leonora's dancer damselfly	Argia leonorae	south central and western Texas; small streams and seepages		
Rawson's metalmark	Calephelis rawsoni	moist areas in shaded limestone outcrops in central Texas, desert scrub or oak woodland in foothills, or along rivers elsehwere; larval hosts are Eupatorium havanense, E. greggi.		
San Marcos Saddle-case Caddisfly	Protoptila arca	known from an artesian well in Hays County; locally very abundant; swift, well-oxygenated warm water about 1-2 m deep; larvae and pupal cases abundant on rocks		
Texas austrotinodes caddisfly	Austrotinodes texensis	appears endemic to the karst springs and spring runs of the Edwards Plateau region; flow in type locality swift but may drop significantly during periods of little drought; substrate coarse and ranges from cobble and gravel to limestone bedrock; many limestone outcroppings also found along the streams		
MAMMALS				
Cave Myotis Bat	Myotis velifer	colonial and cave-dwelling; also roosts in rock crevices, old buildings, carports, under bridges, and even in abandoned Cliff Swallow (<i>Hirundo pyrrhonota</i>) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore		

Common Name	Scientific Name	Description	Federal Status	State Status
Plains Spotted Skunk	Spilogale putorius interrupta	catholic; open fields, prairies, croplands, fence rows, farmyards, forest edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie		
Red wolf	Canis rufus	extirpated; formerly known throughout eastern half of Texas in brushy and forested areas, as well as coastal prairies	LE	E
MOLLUSKS				
Creeper (squawfoot)	Strophitus undulatus	small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins		
False spike mussel	Quincuncina mitchelli	substrates of cobble and mud, with water lilies present; Rio Grande, Brazos, Colorado, and Guadalupe (historic) river basins		
Golden orb	Quadrula aurea	sand and gravel in some locations and mud at others; intolerant of impoundment in most instances; Guadalupe, San Antonio, and Nueces River basins		
Pistolgrip	Tritogonia verrucosa	stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through San Antonio River basins		
Rock pocketbook	Arcidens confragosus	mud, sand, and gravel substrates of medium to large rivers in standing or slow flowing water, may tolerate moderate currents and some reservoirs, east Texas, Red through Guadalupe River basins		
Texas fatmucket	Lampsilis bracteata	streams and rivers on sand, mud, and gravel substrates; intolerant of impoundment; broken bedrock and course gravel or sand in moderately flowing water; Colorado and Guadalupe River basins		
Texas pimpleback	Quadrula petrina	mud, gravel and sand substrates, generally in areas with slow flow rates; Colorado and Guadalupe river basins		
REPTILES				
Cagle's Map Turtle	Graptemys caglei	endemic; Guadalupe River System; short stretches of shallow water with swift to moderate flow and gravel or cobble bottom, connected by deeper pools with a slower flow rate and a silt or mud bottom; gravel bar riffles and transition areas between riffles and pools especially important in providing insect prey items; nest on gently sloping sand banks within ca. 30 feet of water's edge		Т
Spot-tailed Earless Lizard	Holbrookia lacerata	central and southern Texas and adjacent Mexico; moderately open prairie- brushland; fairly flat areas free of vegetation or other obstructions, including disturbed areas; eats small invertebrates; eggs laid underground		
Texas Garter Snake	Thamnophis sirtalis annectens	wet or moist microhabitats are conducive to the species occurrence, but is not necessarily restricted to them; hibernates underground or in or under surface cover; breeds March-August		
Texas Horned Lizard	Phrynosoma cornutum	open, arid and semi-arid regions with sparse vegetation, including grass, cactus, scattered brush or scrubby trees; soil may vary in texture from sandy to rocky; burrows into soil, enters rodent burrows, or hides under rock when inactive; breeds March-September		T
***VASCULAR PLANT				
Canyon mock-orange	Philadelphus ernestii	endemic; solution-pitted outcrops of Cretaceous limestone in mesic canyons, usually in shade of mostly deciduous slope forest; flowering April-May		
Hill country wild- mercury	Argythamnia aphoroides	Texas endemic; mostly in bluestem-grama grasslands associated with plateau live oak woodlands on shallow to moderately deep clays and clay loams over limestone on rolling uplands, also in partial shade of oak-juniper woodlands in gravelly soils on rocky limestone slopes; flowering April-May with fruit persisting until midsummer		
Texas wild-rice	Zizania texana	perennial, emergent, aquatic grass known only from the upper 2.5 km of the San Marcos River in Hays County	LE	Е
Warnock's coral root	Hexalectris warnockii	leaf litter and humus in oak-juniper woodlands in mountain canyons in the Trans Pecos but at lower elevations to the east, often on narrow terraces along creekbeds		

TABLE 1A-8: THREATENED OR ENDANGERED SPECIES OF LLANO COUNTY

Common Name	Scientific Name	Description	Federal Status	State Status
BIRDS				
American Peregrine Falcon	Falco peregrinus anatum	year-round resident and local breeder in west Texas, nests in tall cliff eyries; also, migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	E
Arctic Peregrine Falcon	Falco peregrinus tundrius	migrant throughout state from subspecies' far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	Т
Bald Eagle	Haliaeetus leucocephalus	found primarily near seacoasts, rivers, and large lakes; nests in tall trees or on cliffs near water; communally roosts, especially in winter; hunts live prey, scavenges, and pirates food from other birds	DL	Т
Golden-cheeked Warbler	Dendroica chrysoparia	juniper-oak woodlands; dependent on Ashe juniper (also known as cedar) for long fine bark strips, only available from mature trees, used in nest construction; nests are placed in various trees other than Ashe juniper; only a few mature junipers or nearby cedar brakes can provide the necessary nest material; forage for insects in broad-leaved trees and shrubs; nesting late March-early summer	LE	Е
Black-capped Vireo	Vireo atricapillus	oak-juniper woodlands with distinctive patchy, two-layered aspect; shrub and tree layer with open, grassy spaces; requires foliage reaching to ground level for nesting cover; return to same territory, or one nearby, year after year; deciduous & broad-leaved shrubs & trees provide insects for feeding; species composition less important than presence of adequate broad-leaved shrubs, foliage to ground level, and required structure; nesting season March-late summer	LE	Е
Mountain Plover	Charadrius montanus	breeding: nests on high plains or shortgrass prairie, on ground in shallow depression; nonbreeding: shortgrass plains and bare, dirt (plowed) fields; primarily insectivorous		
Peregrine Falcon	Falco peregrinus	both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies' listing statuses differ, thus the species level shows this dual listing status; because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat.	DL	ET
Western Burrowing Owl	Athene cunicularia hypugaea	open grasslands, especially prairie, plains, and savanna, sometimes in open areas such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows		
Zone-tailed Hawk	Buteo albonotatus	arid open country, including open deciduous or pine-oak woodland, mesa or mountain county, often near watercourses, and wooded canyons and tree-lined rivers along middle-slopes of desert mountains; nests in various habitats and sites, ranging from small trees in lower desert, giant cottonwoods in riparian areas, to mature conifers in high mountain regions		T
Interior Least Tern	Sterna antillarum athalassos	this subspecies is listed only when inland (more than 50 miles from a coastline); nests along sand and gravel bars within braided streams, rivers; also know to nest on man-made structures (inland beaches, wastewater treatment plants, gravel mines, etc.); eats small fish & crustaceans, when breeding forages within a few hundred feet of colony	LE	Е
Whooping Crane	Grus americana	potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties	LE	Е
FISHES				
Guadalupe Bass	Micropterus treculi	endemic to perennial streams of the Edward's Plateau region; introduced in Nueces River system		

Common Name	Scientific Name	Description	Federal Status	State Status
Headwater catfish	Ictalurus lupus	originally throughout streams of the Edwards Plateau and the Rio Grande basin, currently limited to Rio Grande drainage, including Pecos River basin; springs, and sandy and rocky riffles, runs, and pools of clear creeks and small rivers		
MAMMALS				
Black Bear	Ursus americanus	bottomland hardwoods and large tracts of inaccessible forested areas; due to field characteristics similar to Louisiana Black Bear (LT, T), treat all east Texas black bears as federal and state listed Threatened	T/SA; NL	T
Cave Myotis Bat	Myotis velifer	colonial and cave-dwelling; also roosts in rock crevices, old buildings, carports, under bridges, and even in abandoned Cliff Swallow (<i>Hirundo pyrrhonota</i>) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore		
Gray Wolf	Canis lupus	extirpated; formerly known throughout the western two-thirds of the state in forests, brushlands, or grasslands	LE	Е
Llano Pocket	Geomys texensis	found in deep, brown loamy sands or gravelly sandy loams and is		
Gopher	texensis	isolated from other species of pocket gophers by intervening shallow stony to gravelly clayey soils		
Plains Spotted	Spilogale putorius	catholic; open fields, prairies, croplands, fence rows, farmyards, forest		
Skunk Red Wolf	interrupta Canis Rufus	edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie extirpated; formerly known throughout eastern half of Texas in brushy	LE	Е
		and forested areas, as well as coastal prairies		
MOLLUSKS				
Creeper (squawfoot)	Strophitus undulatus	small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins		
False spike mussel	Quincuncina mitchelli	substrates of cobble and mud, with water lilies present; Rio Grande, Brazos, Colorado, and Guadalupe (historic) river basins		
Pistolgrip	Tritogonia verrucosa	stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through San Antonio River basins		
Rock pocketbook	Arcidens confragosus	mud, sand, and gravel substrates of medium to large rivers in standing or slow flowing water, may tolerate moderate currents and some reservoirs, east Texas, Red through Guadalupe River basins		
Smooth pimpleback	Quadrula houstonensis	small to moderate streams and rivers as well as moderate size reservoirs; mixed mud, sand, and fine gravel, tolerates very slow to moderate flow rates, appears not to tolerate dramatic water level fluctuations, scoured bedrock substrates, or shifting sand bottoms, lower Trinity (questionable), Brazos, and Colorado River basins		
Texas fatmucket	Lampsilis bracteata	streams and rivers on sand, mud, and gravel substrates; intolerant of impoundment; broken bedrock and course gravel or sand in moderately flowing water; Colorado and Guadalupe River basins		
Texas fawnsfoot	Truncilla macrodon	little known; possibly rivers and larger streams, and intolerant of impoundment; flowing rice irrigation canals, possibly sand, gravel, and perhaps sandy-mud bottoms in moderate flows; Brazos and Colorado River basins		
Texas pimpleback	Quadrula petrina	mud, gravel and sand substrates, generally in areas with slow flow rates; Colorado and Guadalupe river basins		
REPTILES				
Spot-tailed Earless Lizard	Holbrookia lacerata	central & southern Texas & adjacent Mexico; moderately open prairie- brushland; fairly flat areas free of vegetation or other obstructions, including disturbed areas; eats small invertebrates; eggs laid underground		
Texas Garter Snake	Thamnophis sirtalis annectens	wet or moist microhabitats are conducive to the species occurrence, but is not necessarily restricted to them; hibernates underground or in or under surface cover; breeds March-August		
Texas Horned Lizard	Phrynosoma cornutum	open, arid and semi-arid regions with sparse vegetation, including grass, cactus, scattered brush or scrubby trees; soil may vary in texture from sandy to rocky; burrows into soil, enters rodent burrows, or hides under		T

Common Name	Scientific Name	Description	Federal Status	State Status
Basin bellflower	Campanula reverchonii	Texas endemic; among scattered vegetation on loose gravel, gravelly sand, and rock outcrops on open slopes with exposures of igneous and metamorphic rocks; may also occur on sandbars and other alluvial deposits along major rivers; flowering May-July		
Edward Plateau Cornsalad	Valerianellla texana	very shallow, well-drained but seasonally moist gravelly soils derived from igneous or metamorphic rocks, often along the downslope margin of rock outcrops, in full sun or in partial shade of oak-juniper woodlands; flowering and fruiting March-April		
Elmendorf's Onion	Allium elmendorfii	endemic; deep sands derived from Queen City and similar Eocene formations; flowering April-May		
Enquist's sandmint	Brazoria enquistii	primarily on sand banks in and along beds of streams that drain granitic /gneissic landscapes; flowering/fruiting late April-early June		
Granite spiderwort	Tradescantia pedicellata	endemic; rocky soils in the Edwards Plateau; flowering March-June (July?)		
Rock quillwort	Isoetes lithophila	very shallow seasonally wet sand or gravel in vernal pools on granite or gneiss outcrops; sporulating in late spring and opportunistically at other seasons		

TABLE 1A-9: THREATENED OR ENDANGERED SPECIES OF MATAGORDA COUNTY

Common Name	Scientific Name	Description	Federal Status	State Status
BIRDS				
American Peregrine Falcon	Falco peregrinus anatum	year-round resident and local breeder in west Texas, nests in tall cliff eyries; also, migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	Е
Arctic Peregrine Falcon	Falco peregrinus tundrius	migrant throughout state from subspecies' far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	Т
Bald Eagle	Haliaeetus leucocephalus	found primarily near seacoasts, rivers, and large lakes; nests in tall trees or on cliffs near water; communally roosts, especially in winter; hunts live prey, scavenges, and pirates food from other birds	DL	Т
Black Rail	Laterallus jamaicensis	salt, brackish, and freshwater marshes, pond borders, wet meadows, and grassy swamps; nests in or along edge of marsh, sometimes on damp ground, but usually on mat of previous year's dead grasses; nest usually hidden in marsh grass or at base of Salicornia		
Brown Pelican	Pelecanus occidentalis	largely coastal and near shore areas, where it roosts on islands and spoil banks	LE- PDL	Е
Eskimo Curlew	Numenius borealis	historic; nonbreeding: grasslands, pastures, plowed fields, and less frequently, marshes and mudflats	LE	E
Henslow's Sparrow	Ammodramus henslowii	wintering individuals (not flocks) found in weedy fields or cut-over areas where lots of bunch grasses occur along with vines and brambles; a key component is bare ground for running/walking; likely to occur, but few records within this county		
Peregrine Falcon	Falco peregrinus	both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies' listing statuses differ, thus the species level shows this dual listing status; because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat.	DL	ET
Piping Plover	Charadrius melodus	wintering migrant along the Texas Gulf Coast; beaches and bayside mud or salt flats	LT	T
Reddish Egret	Egretta rufescens	resident of the Texas Gulf Coast; brackish marshes and shallow salt ponds and tidal flats; nests on ground or in trees or bushes, on dry coastal islands in brushy thickets of yucca and prickly pear		T
Snowy Plover	Charadrius alexandrinus	formerly an uncommon breeder in the Panhandle; potential migrant; winter along coast		
Sooty Tern	Sterna fuscata	predominately "on the wing"; does not dive, but snatches small fish and squid with bill as it flies or hovers over water; breeding April-July		T
Southeastern Snowy Plover	Charadrius alexandrinus tenuirostris	wintering migrant along the Texas Gulf Coast beaches and bayside mud or salt flats		
Western Burrowing Owl	Athene cunicularia hypugaea	open grasslands, especially prairie, plains, and savanna, sometimes in open areas such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows		
Western Snowy Plover	Charadrius alexandrinus nivosus	uncommon breeder in the Panhandle; potential migrant; winter along coast		
White-faced Ibis	Plegadis chihi	prefers freshwater marshes, sloughs, and irrigated rice fields, but will attend brackish and saltwater habitats; nests in marshes, in low trees, on the ground in bulrushes or reeds, or on floating mats		T
White-tailed Hawk	Buteo albicaudatus	near coast on prairies, cordgrass flats, and scrub-live oak; further inland on prairies, mesquite and oak savannas, and mixed savanna-chaparral; breeding March-May		T

Common Name	Scientific Name	Description	Federal Status	State Status
Whooping Crane	Grus americana	potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties	LE	Е
Wood Stork	Mycteria americana	forages in prairie ponds, flooded pastures or fields, ditches, and other shallow standing water, including salt-water; usually roosts communally in tall snags, sometimes in association with other wading birds (i.e. active heronries); birds move into Gulf States in search of mud flats and wetlands, even those associated with forested areas; formerly nested in Texas, but no breeding records since 1960		Т
CRUSTACEANS	G 1 11			
A crayfish	Cambarellus texanus	shallow water; benthic, burrowing in or using soil; apparently tolerant of warmer waters; prefers standing water of ditches in which there is emergent vegetation; wll burrow in dry periods; detritivore		
FISHES				
American Eel	Anguilla rostrata	coastal waterways below reservoirs to gulf; spawns January to February in ocean, larva move to coastal waters, metamorphose, then females move into freshwater; most aquatic habitats with access to ocean, muddy bottoms, still waters, large streams, lakes; can travel overland in wet areas; males in brackish estuaries; diet varies widely, geographically, and seasonally		
INSECTS				
Gulf Coast clubtail	Gomphus modestus	medium river, moderate gradient, and streams with silty sand or rocky bottoms; adults forage in trees, males perch near riffles to wait for females, larvae overwinter; flight season late Apr - late Jun		
MAMMALS				
Louisiana Black Bear	Ursus americanus luteolus	possible as transient; bottomland hardwoods and large tracts of inaccessible forested areas	LT	T
Plains Spotted Skunk	Spilogale putorius interrupta	catholic; in habitat; open fields, prairies, croplands, fence rows, farmyards, forest edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie		
Ocelot	Felis pardalis	dense chaparral thickets; mesquite-thorn scrub and live oak mottes; avoids open areas; breeds and raises young June-November	LE	Е
Red Wolf	Canis rufus	extirpated; formerly known throughout eastern half of Texas in brushy and forested areas, as well as coastal prairies	LE	Е
West Indian Manatee	Trichechus manatus	Gulf and bay system; opportunistic, aquatic herbivore	LE	Е
MOLLUSKS				
Creeper (squawfoot)	Strophitus undulatus	small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins		
Pistolgrip	Tritogonia verrucosa	stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through San Antonio River basins		
Rock pocketbook	Arcidens confragosus	mud, sand, and gravel substrates of medium to large rivers in standing or slow flowing water, may tolerate moderate currents and some reservoirs, east Texas, Red through Guadalupe River basins		
Smooth pimpleback	Quadrula houstonensis	small to moderate streams and rivers as well as moderate size reservoirs; mixed mud, sand, and fine gravel, tolerates very slow to moderate flow rates, appears not to tolerate dramatic water level fluctuations, scoured bedrock substrates, or shifting sand bottoms, lower Trinity (questionable), Brazos, and Colorado River basins		
Texas fawnsfoot	Truncilla macrodon	little known; possibly rivers and larger streams, and intolerant of impoundment; flowing rice irrigation canals, possibly sand, gravel, and perhaps sandy-mud bottoms in moderate flows; Brazos and Colorado River basins		
REPTILES				
Atlantic Hawksbill Sea Turtle	Eretmochelys imbricata	Gulf and bay system, warm shallow waters especially in rocky marine environments, such as coral reefs and jetties, juveniles found in floating mats of sea plants; feed on sponges, jellyfish, sea urchins, molluscs, and crustaceans, nests April through November	LE	Е
Green sea turtle	Chelonia mydas	Gulf and bay system; shallow water seagrass beds, open water between feeding and nesting areas, barrier island beaches; adults are herbivorous feeding on sea grass and seaweed; juveniles are omnivorous feeding initially	LT	T

Common Name	Scientific Name	Description	Federal Status	State Status
		on marine invertebrates, then increasingly on sea grasses and seaweeds; nesting behavior extends from March to October, with peak activity in May and June		
Gulf Saltmarsh Snake	Nerodia clarkii	saline flats, coastal bays, & brackish river mouths		
Kemp's Ridley Sea Turtle	Lepidochelys kempii	Gulf and bay system, adults stay within the shallow waters of the Gulf of Mexico; feed primarily on crabs, but also snails, clams, other crustaceans and plants, juveniles feed on sargassum and its associated fauna; nests April through August	LE	Е
Leatherback Sea Turtle	Dermochelys coriacea	Gulf and bay systems, and wide-ranging open water sea turtle; omnivorous, shows a preference for jellyfish; nests from November to February, but not known to nest in Gulf of Mexico, just forages	LE	Е
Loggerhead Sea Turtle	Caretta caretta	Gulf and bay system primarily for juveniles, adults are most pelagic of the sea turtles; omnivorous, shows a preference for mollusks, crustaceans, and coral; nests from April through November	LT	T
Smooth Green Snake	Liochlorophis vernalis	Gulf Coastal Plain; mesic coastal shortgrass prairie vegetation; prefers dense vegetation		T
Texas Diamond-back Terrapin	Malaclemys terrapin littoralis	coastal marshes, tidal flats, coves, estuaries, and lagoons behind barrier beaches; brackish and salt water; burrows into mud when inactive; may venture into lowlands at high tide		
Texas Horned Lizard	Phrynosoma cornutum	open, arid and semi-arid regions with sparse vegetation, including grass, cactus, scattered brush or scrubby trees; soil may vary in texture from sandy to rocky; burrows into soil, enters rodent burrows, or hides under rock when inactive; breeds March-September		T
Texas scarlet snake	Cemophora coccinea lineri	mixed hardwood scrub on sandy soils; feeds on reptile eggs; semi-fossorial; active April-September		T
Texas Tortoise	Gopherus berlandieri	open brush with a grass understory is preferred; open grass and bare ground are avoided; when inactive occupies shallow depressions at base of bush or cactus, sometimes in underground burrows or under objects; longevity greater than 50 years; active March-November; breeds April-November		T
Timber/Canebrake Rattlesnake	Crotalus horridus	swamps, floodplains, upland pine and deciduous woodlands, riparian zones, abandoned farmland; limestone bluffs, sandy soil or black clay; prefers dense ground cover, i.e. grapevines or palmetto		T
***VASCULAR PLANTS	** *			
Coastal Gay-Feather	Liatris bracteata	endemic; black clay soils of prairie remnants; flowering in fall		
Shinner's sunflower	Helianthus occidentalis ssp plantagineus	mostly in prairies on the Coastal Plain, with several slightly disjunct populations in the Pineywoods and South Texas Brush Country		
Threeflower broomweed	Thurovia triflora	endemic; black clay soils of remnant grasslands, also tidal flats; flowering July-November		

TABLE 1A-10: THREATENED OR ENDANGERED SPECIES OF MILLS COUNTY

Common Name	Scientific Name	Description	Federal Status	State Status
BIRDS				
American Peregrine Falcon	Falco peregrinus anatum	year-round resident and local breeder in west Texas, nests in tall cliff eyries; also, migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	Е
Arctic Peregrine Falcon	Falco peregrinus tundrius	migrant throughout state from subspecies' far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	Т
Bald Eagle	Haliaeetus leucocephalus	found primarily near seacoasts, rivers, and large lakes; nests in tall trees or on cliffs near water; communally roosts, especially in winter; hunts live prey, scavenges, and pirates food from other birds	DL	Т
Black-capped Vireo	Vireo atricapillus	oak-juniper woodlands with distinctive patchy, two-layered aspect; shrub and tree layer with open, grassy spaces; requires foliage reaching to ground level for nesting cover; return to same territory, or one nearby, year after year; deciduous & broad-leaved shrubs & trees provide insects for feeding; species composition less important than presence of adequate broad-leaved shrubs, foliage to ground level, and required structure; nesting season March-late summer	LE	Е
Golden-cheeked Warbler	Dendroica chrysoparia	juniper-oak woodlands; dependent on Ashe juniper (also known as cedar) for long fine bark strips, only available from mature trees, used in nest construction; nests are placed in various trees other than Ashe juniper; only a few mature junipers or nearby cedar brakes can provide the necessary nest material; forage for insects in broad-leaved trees and shrubs; nesting late March-early summer	LE	E
Interior Least Tern	Sterna antillarumathalassos	this subspecies is listed only when inland (more than 50 miles from a coastline); nests along sand and gravel bars within braided streams, rivers; also know to nest on man-made structures (inland beaches, wastewater treatment plants, gravel mines, etc); eats small fish & crustaceans, when breeding forages within a few hundred feet of colony	LE	Е
Mountain Plover	Charadrius montanus	breeding: nests on high plains or shortgrass prairie, on ground in shallow depression; nonbreeding: shortgrass plains and bare, dirt (plowed) fields; primarily insectivorous		
Peregrine Falcon	Falco peregrinus	both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies' listing statuses differ, thus the species level shows this dual listing status; because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat.	DL	ET
Western Burrowing Owl	Athene cunicularia hypugaea	open grasslands, especially prairie, plains, and savanna, sometimes in open areas such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows		
Whooping Crane	Grus americana	potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties	LE	Е
FISHES		<u> </u>		
Guadalupe Bass	Micropterus treculi	endemic to perennial streams of the Edward's Plateau region; introduced in Nueces River system		
MAMMALS				
Cave Myotis Bat	Myotis velifer	colonial and cave-dwelling; also roosts in rock crevices, old buildings, carports, under bridges, and even in abandoned Cliff Swallow (<i>Hirundo pyrrhonota</i>) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore		
Gray Wolf	Canis lupus	extirpated; formerly known throughout the western two-thirds of the state in forests, brushlands, or grasslands	LE	Е
Llano pocket gopher	Geomys texensis	found in deep, brown loamy sands or gravelly sandy loams and is isolated		

	texensis	from other species of pocket gophers by intervening shallow stony to gravelly clayey soils		
Red Wolf	Canis rufus	extirpated; formerly known throughout eastern half of Texas in brushy and forested areas, as well as coastal prairies	LE	Е
MOLLUSKS				
Creeper (squawfoot)	Strophitus undulatus	small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins		
False spike mussel	Quincuncina mitchelli	substrates of cobble and mud, with water lilies present; Rio Grande, Brazos, Colorado, and Guadalupe (historic) river basins		
Pistolgrip	Tritogonia verrucosa	stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through San Antonio River basins		
Rock pocketbook	Arcidens confragosus	mud, sand, and gravel substrates of medium to large rivers in standing or slow flowing water, may tolerate moderate currents and some reservoirs, east Texas, Red through Guadalupe River basins		
Smooth pimpleback	Quadrula houstonensis	small to moderate streams and rivers as well as moderate size reservoirs; mixed mud, sand, and fine gravel, tolerates very slow to moderate flow rates, appears not to tolerate dramatic water level fluctuations, scoured bedrock substrates, or shifting sand bottoms, lower Trinity (questionable), Brazos, and Colorado River basins		
Texas fatmucket	Lampsilis bracteata	streams and rivers on sand, mud, and gravel substrates; intolerant of impoundment; broken bedrock and course gravel or sand in moderately flowing water; Colorado and Guadalupe River basins		
Texas fawnsfoot	Truncilla macrodon	little known; possibly rivers and larger streams, and intolerant of impoundment; flowing rice irrigation canals, possibly sand, gravel, and perhaps sandy-mud bottoms in moderate flows; Brazos and Colorado River basins		
Texas pimpleback	Quadrula petrina	mud, gravel and sand substrates, generally in areas with slow flow rates; Colorado and Guadalupe river basins		
REPTILES		-		
Concho Water Snake	Nerodia Paucimaculata	Texas endemic; Concho and Colorado river systems; shallow fast-flowing water with a rocky or gravelly substrate preferred; adults can be found in deep water with mud bottoms; breeding March-October	LT- PDL	
Texas Horned Lizard	Phrynosoma cornutum	open, arid and semi-arid regions with sparse vegetation, including grass, cactus, scattered brush or scrubby trees; soil may vary in texture from sandy to rocky; burrows into soil, enters rodent burrows, or hides under rock when inactive; breeds March-September		T
VASCULAR PLA	NTS	·		
Hill Country Wild- Mercury	Argythamnia Aphoroides	Texas endemic; mostly in bluestem-grama grasslands associated with plateau live oak woodlands on shallow to moderately deep clays and clay loams over limestone on rolling uplands, also in partial shade of oak-juniper woodlands in gravelly soils on rocky limestone slopes; flowering April-May with fruit persisting until midsummer		

TABLE 1A-11: THREATENED OR ENDANGERED SPECIES OF SAN SABA COUNTY

Common Name	Scientific Name	Description	Federal Status	State Status
BIRDS				
American Peregrine Falcon	Falco peregrinus anatum	year-round resident and local breeder in west Texas, nests in tall cliff eyries; also, migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	Е
Arctic Peregrine Falcon	Falco peregrinus tundrius	migrant throughout state from subspecies' far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	Т
Baird's Sparrow	Ammodramus bairdii	shortgrass prairie with scattered low bushes and matted vegetation; mostly migratory in western half of State, though winters in Mexico and just across Rio Grande into Texas from Brewster through Hudspetth counties		
Bald Eagle	Haliaeetus leucocephalus	found primarily near seacoasts, rivers, and large lakes; nests in tall trees or on cliffs near water; communally roosts, especially in winter; hunts live prey, scavenges, and pirates food from other birds	DL	Т
Black-capped Vireo	Vireo atricapillus	oak-juniper woodlands with distinctive patchy, two-layered aspect; shrub and tree layer with open, grassy spaces; requires foliage reaching to ground level for nesting cover; return to same territory, or one nearby, year after year; deciduous & broad-leaved shrubs & trees provide insects for feeding; species composition less important than presence of adequate broad-leaved shrubs, foliage to ground level, and required structure; nesting season March-late summer	LE	Е
Golden-cheeked Warbler	Dendroica chrysoparia	juniper-oak woodlands; dependent on Ashe juniper (also known as cedar) for long fine bark strips, only available from mature trees, used in nest construction; nests are placed in various trees other than Ashe juniper; only a few mature junipers or nearby cedar brakes can provide the necessary nest material; forage for insects in broad-leaved trees and shrubs; nesting late March-early summer	LE	Е
Interior Least Tern	Sterna Antillarum Athalassos	this subspecies is listed only when inland (more than 50 miles from a coastline); nests along sand and gravel bars within braided streams, rivers; also know to nest on man-made structures (inland beaches, wastewater treatment plants, gravel mines, etc); eats small fish & crustaceans, when breeding forages within a few hundred feet of colony	LE	Е
Mountain Plover	Charadrius montanus	breeding: nests on high plains or shortgrass prairie, on ground in shallow depression; nonbreeding: shortgrass plains and bare, dirt (plowed) fields; primarily insectivorous		
Peregrine Falcon	Falco peregrinus	both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies' listing statuses differ, thus the species level shows this dual listing status; because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat.	DL	ET
Western Burrowing Owl	Athene cunicularia hypugaea	open grasslands, especially prairie, plains, and savanna, sometimes in open areas such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows		
Whooping Crane	Grus americana	potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties	LE	Е
Zone-tailed Hawk	Buteo albonotatus	arid open country, including open deciduous or pine-oak woodland, mesa or mountain county, often near watercourses, and wooded canyons and tree-lined rivers along middle-slopes of desert mountains; nests in various habitats and sites, ranging from small trees in lower desert, giant cottonwoods in riparian areas, to mature conifers in high mountain regions		T
CRUSTACEANS		1220 in repaired actor, to manage compete in high mountain regions		
Reddell's cave amphipod	Stygobromus reddelli	subterranean obligate; small cave streams		
FISHES	16			
Guadalupe Bass	Micropterus	endemic to perennial streams of the Edward's Plateau region; introduced in		

Common Name	Scientific Name	Description	Federal Status	State Status
	treculi	Nueces River system		
Headwater catfish	Ictalurus lupus	originally throughout streams of the Edwards Plateau and the Rio Grande basin, currently limited to Rio Grande drainage, including Pecos River basin; springs, and sandy and rocky riffles, runs, and pools of clear creeks and small rivers		
Sharpnose shiner	Notropis oxyrhynchus	endemic to Brazos River drainage; also, apparently introduced into adjacent Colorado River drainage; large turbid river, with bottom a combination of sand, gravel, and clay-mud	С	
MAMMALS				
Cave Myotis Bat	Myotis velifer	colonial and cave-dwelling; also roosts in rock crevices, old buildings, carports, under bridges, and even in abandoned Cliff Swallow (<i>Hirundo pyrrhonota</i>) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore		
Llano Pocket Gopher	Geomys texensis texensis	found in deep, brown loamy sands or gravelly sandy loams and is isolated from other species of pocket gophers by intervening shallow stony to gravelly clayey soils		
Gray Wolf	Canis lupus	extirpated; formerly known throughout the western two-thirds of the state in forests, brushlands, or grasslands	LE	Е
Red Wolf	Canis rufus	extirpated; formerly known throughout eastern half of Texas in brushy and forested areas, as well as coastal prairies	LE	Е
MOLLUSKS				
Creeper (squawfoot)	Strophitus undulatus	small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins		
False spike mussel	Quincuncina mitchelli	substrates of cobble and mud, with water lilies present; Rio Grande, Brazos, Colorado, and Guadalupe (historic) river basins		
Pistolgrip	Tritogonia verrucosa	stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through San Antonio River basins		
Rock pocketbook	Arcidens confragosus	mud, sand, and gravel substrates of medium to large rivers in standing or slow flowing water, may tolerate moderate currents and some reservoirs, east Texas, Red through Guadalupe River basins		
Smooth pimpleback	Quadrula houstonensis	small to moderate streams and rivers as well as moderate size reservoirs; mixed mud, sand, and fine gravel, tolerates very slow to moderate flow rates, appears not to tolerate dramatic water level fluctuations, scoured bedrock substrates, or shifting sand bottoms, lower Trinity (questionable), Brazos, and Colorado River basins		
Texas fatmucket	Lampsilis bracteata	streams and rivers on sand, mud, and gravel substrates; intolerant of impoundment; broken bedrock and course gravel or sand in moderately flowing water; Colorado and Guadalupe River basins		
Texas fawnsfoot	Truncilla macrodon	little known; possibly rivers and larger streams, and intolerant of impoundment; flowing rice irrigation canals, possibly sand, gravel, and perhaps sandy-mud bottoms in moderate flows; Brazos and Colorado River basins		
Texas pimpleback	Quadrula petrina	mud, gravel and sand substrates, generally in areas with slow flow rates; Colorado and Guadalupe river basins		
REPTILES				
Concho water snake	Nerodia paucimaculata	Texas endemic; Concho and Colorado river systems; shallow fast-flowing water with a rocky or gravelly substrate preferred; adults can be found in deep water with mud bottoms; breeding March-October	LT- PDL	
Spot-tailed earless lizard	Holbrookia lacerata	central and southern Texas and adjacent Mexico; moderately open prairie- brushland; fairly flat areas free of vegetation or other obstructions, including disturbed areas; eats small invertebrates; eggs laid underground		
Texas horned lizard	Phrynosoma cornutum	open, arid and semi-arid regions with sparse vegetation, including grass, cactus, scattered brush or scrubby trees; soil may vary in texture from sandy to rocky; burrows into soil, enters rodent burrows, or hides under rock when inactive; breeds March-September		T

Common Name	Scientific Name	Description	Federal Status	State Status
Basin bellflower	Campanula reverchonii	Texas endemic; among scattered vegetation on loose gravel, gravelly sand, and rock outcrops on open slopes with exposures of igneous and metamorphic rocks; may also occur on sandbars and other alluvial deposits along major rivers; flowering May-July		

TABLE 1A-12: THREATENED OR ENDANGERED SPECIES OF TRAVIS COUNTY

Common Name	Scientific Name	Description	Federal Status	State Status
AMPHIBIANS				
Austin Blind Salamander	Eurycea waterlooensis	mostly restricted to subterranean cavities of the Edwards Aquifer; dependent upon water flow/quality from the Barton Springs segment of the Edwards Aquifer; only known from the outlets of Barton Springs [Sunken Gardens (Old Mill) Spring, Eliza Spring, and Parthenia (Main) Spring which forms Barton Springs Pool]; feeds on amphipods, ostracods, copepods, plant material, and (in captivity) a wide variety of small aquatic invertebrates	С	
Barton Springs Salamander	Eurycea sosorum dependent upon water flow from the Barton Springs segment of the Edwards Aquifer; only known from the outlets of Barton Springs; spring dweller, but ranges into subterranean water-filled caverns; found under rocks, in gravel, or among aquatic vascular plants & algae, as available; feeds primarily on amphipods		LE	Е
Jollyville Plateau Salamander	Eurycea tonkawae	known from springs and waters of some caves of Travis and Williamson counties north of the Colorado River	С	
Pedernales River Springs Salamander ***ARACHNIDS***	Eurycea sp. 6	endemic; known only from springs		
Bandit Cave Spider	Cicurina bandida	very small, subterrestrial, subterranean obligate		
Bone Cave Harvestman	Texella reyesi	small, blind, cave-adapted harvestman endemic to a few caves in Travis and Williamson counties; weakly differentiated from <i>Texella reddelli</i>	LE	
Reddell harvestman	Texella reddelli	small, blind, cave-adapted harvestman endemic to a few caves in Travis and Williamson counties	LE	
Tooth Cave Pseudoscorpion	Tartarocreagris texana	small, cave-adapted pseudoscorpion known from small limestone caves of the Edwards Plateau	LE	
Tooth Cave Spider	Neoleptoneta myopica	very small, cave-adapted, sedentary spider	LE	
Warton's cave meshweaver	Cicurina wartoni	very small, cave-adapted spider	С	
BIRDS				
American Peregrine Falcon	Falco peregrinus anatum	year-round resident and local breeder in west Texas, nests in tall cliff eyries; also, migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	E
Arctic Peregrine Falcon	Falco peregrinus tundrius	migrant throughout state from subspecies' far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	T
Bald Eagle	Haliaeetus leucocephalus	found primarily near seacoasts, rivers, and large lakes; nests in tall trees or on cliffs near water; communally roosts, especially in winter; hunts live prey, scavenges, and pirates food from other birds	DL	Т
Black-capped Vireo	Vireo atricapillus	oak-juniper woodlands with distinctive patchy, two-layered aspect; shrub and tree layer with open, grassy spaces; requires foliage reaching to ground level for nesting cover; return to same territory, or one nearby, year after year; deciduous & broad-leaved shrubs & trees provide insects for feeding; species composition less important than presence of adequate broad-leaved shrubs, foliage to ground level, and required structure; nesting season March-late summer	LE	E
Golden-cheeked Warbler	Dendroica chrysoparia	juniper-oak woodlands; dependent on Ashe juniper (also known as cedar) for long fine bark strips, only available from mature trees, used in nest construction; nests are placed in various trees other than Ashe juniper; only a few mature junipers or nearby cedar brakes can provide the necessary nest material; forage for insects in broadleaved trees and shrubs; nesting late March-early summer	LE	Е

Common Name	Scientific Name	Description	Federal Status	State Status
Interior Least Tern	Sterna antillarum athalassos	subspecies is listed only when inland (more than 50 miles from a coastline); nests along sand and gravel bars within braided streams, rivers; also know to nest on man-made structures (inland beaches, wastewater treatment plants, gravel mines, etc); eats small fish and crustaceans, when breeding forages within a few hundred feet of colony	LE	Е
Mountain Plover	ountain Plover Charadrius montanus breeding: nests on high plains or shortgrass prairie, on ground in shallow depression; nonbreeding: shortgrass plains and bare, dirt (plowed) fields; primarily insectivorous			
Peregrine Falcon			DL	ET
Western Burrowing Owl	Athene cunicularia hypugaea	open grasslands, especially prairie, plains, and savanna, sometimes in open areas such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows		
Whooping Crane	Grus americana	potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties	LE	Е
CRUSTACEANS				
An Amphipod	Stygobromus russelli	subterranean waters, usually in caves & limestone aquifers; resident of numerous caves in ca. 10 counties of the Edwards Plateau		
Balcones Cave amphipod	Stygobromus balconis	subaquatic, subterranean obligate amphipod		
Bifurcated Cave Amphipod ***FISHES***	Stygobromus bifurcatus	found in cave pools		
Guadalupe Bass	Micropterus treculi	endemic to perennial streams of the Edward's Plateau region; introduced in Nueces River system		
Smalleye shiner	Notropis buccula	endemic to upper Brazos River system and its tributaries; apparently introduced into adjacent Colorado River drainage; medium to large prairie streams with sandy substrate and turbid to clear warm water; presumably eats small aquatic invertebrates	С	
INSECTS		presumably eats small aquatic invertebrates		
Kretschmarr Cave Mold Beetle	Texamaurops reddelli	small, cave-adapted beetle found under rocks buried in silt; small, Edwards Limestone caves in of the Jollyville Plateau, a division of the Edwards Plateau	LE	
Leonora's dancer damselfly	Argia leonorae	south central and western Texas; small streams and seepages		
Rawson's metalmark	Calephelis rawsoni	moist areas in shaded limestone outcrops in central Texas, desert scrub or oak woodland in foothills, or along rivers elsehwere; larval hosts are Eupatorium havanense, E. greggi.		
Tooth Cave Blind Rove Beetle	Cylindropsis sp. 1	one specimen collected from Tooth Cave; only known North American collection of this genus		
Tooth Cave Ground Beetle	Rhadine persephone	resident, small, cave-adapted beetle found in small Edwards Limestone caves in Travis and Williamson counties	LE	
MAMMALS				
Cave Myotis Bat	Myotis velifer	colonial and cave-dwelling; also roosts in rock crevices, old buildings, carports, under bridges, and even in abandoned Cliff Swallow (<i>Hirundo pyrrhonota</i>) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore		
Plains Spotted Skunk	Spilogale putorius interrupta	catholic; open fields, prairies, croplands, fence rows, farmyards, forest edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie		
Red Wolf	Canis rufus	extirpated; formerly known throughout eastern half of Texas in		

Common Name	Scientific Name	Description	Federal Status	State Status
		brushy and forested areas, as well as coastal prairies		
MOLLUSKS				
Creeper (squawfoot)	Strophitus undulatus	small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins		
False spike mussel	Quincuncina mitchelli	substrates of cobble and mud, with water lilies present; Rio Grande, Brazos, Colorado, and Guadalupe (historic) river basins		
Pistolgrip	Tritogonia verrucosa	stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through San Antonio River basins		
Rock pocketbook	Arcidens confragosus	mud, sand, and gravel substrates of medium to large rivers in standing or slow flowing water, may tolerate moderate currents and some reservoirs, east Texas, Red through Guadalupe River basins		
Smooth pimpleback	Quadrula houstonensis	small to moderate streams and rivers as well as moderate size reservoirs; mixed mud, sand, and fine gravel, tolerates very slow to moderate flow rates, appears not to tolerate dramatic water level fluctuations, scoured bedrock substrates, or shifting sand bottoms, lower Trinity (questionable), Brazos, and Colorado River basins		
Texas fatmucket	Lampsilis bracteata	streams and rivers on sand, mud, and gravel substrates; intolerant of impoundment; broken bedrock and course gravel or sand in moderately flowing water; Colorado and Guadalupe River basins		
Texas fawnsfoot	Truncilla macrodon	little known; possibly rivers and larger streams, and intolerant of impoundment; flowing rice irrigation canals, possibly sand, gravel, and perhaps sandy-mud bottoms in moderate flows; Brazos and Colorado River basins		
Texas pimpleback	Quadrula petrina	mud, gravel and sand substrates, generally in areas with slow flow rates; Colorado and Guadalupe river basins		
REPTILES		·		
Spot-tailed Earless Lizard	Holbrookia lacerata	central and southern Texas and adjacent Mexico; moderately open prairie-brushland; fairly flat areas free of vegetation or other obstructions, including disturbed areas; eats small invertebrates; eggs laid underground		
Texas Garter Snake	Thamnophis sirtalis annectens	wet or moist microhabitats are conducive to the species occurrence, but is not necessarily restricted to them; hibernates underground or in or under surface cover; breeds March-August		
Texas Horned Lizard	Phrynosoma cornutum	open, arid and semi-arid regions with sparse vegetation, including grass, cactus, scattered brush or scrubby trees; soil may vary in texture from sandy to rocky; burrows into soil, enters rodent burrows, or hides under rock when inactive; breeds March-September		T
VASCULAR PLANT	'S	Бергение		
Basin bellflower	Campanula reverchonii	Texas endemic; among scattered vegetation on loose gravel, gravelly sand, and rock outcrops on open slopes with exposures of igneous and metamorphic rocks; may also occur on sandbars and other alluvial deposits along major rivers; flowering May-July		
Bracted twistflower	Streptanthus bracteatus	endemic; shallow clay soils over limestone, mostly on rocky slopes, in openings in juniper-oak woodlands; flowering April-May		
Canyon mock-orange	Philadelphus ernestii	endemic; solution-pitted outcrops of Cretaceous limestone in mesic canyons, usually in shade of mostly deciduous slope forest; flowering April-May		
Correll's false dragon- head	Physostegia correllii	wet soils including riverbanks, streamsides, creekbeds, roadside ditches and irrigation channels; flowering June-July		
Texabama croton	Croton alabamensis var. texensis	Texas endemic; in duff-covered loamy clay soils on rocky slopes in forested, mesic limestone canyons; locally abundant on deeper soils on small terraces in canyon bottoms, often forming large colonies and dominating the shrub layer; scattered individuals are occasionally on sunny margins of such forests; also found in contrasting habitat of deep, friable soils of limestone uplands,		
		mostly in the shade of evergreen woodland mottes; flowering late February-March; fruit maturing and dehiscing by early June		

Common Name	Scientific Name	Description		State Status
Warnock's coral-root	Hexalectris warnockii	leaf litter and humus in oak-juniper woodlands in mountain canyons in the Trans Pecos but at lower elevations to the east, often on narrow terraces along creekbeds		

TABLE 1A-13: THREATENED OR ENDANGERED SPECIES OF WHARTON COUNTY

Common Name	Scientific Name	Description	Federal Status	State Status	
BIRDS					
American Peregrine Falco Falcon peregrinus anatum		year-round resident and local breeder in west Texas, nests in tall cliff eyries; also, migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.			
Arctic Peregrine Falcon	Falco migrant throughout state from subspecies' far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.		DL	Т	
Attwater's Greater Prairie-chicken	Tympanuchus cupido attwateri	this county within historic range; endemic; open prairies of mostly thick grass one to three feet tall; from near sea level to 200 feet along coastal plain on upper two-thirds of Texas coast; males form communal display flocks during late winter-early spring; booming grounds important; breeding February-July		E	
Bald Eagle	Haliaeetus leucocephalus	found primarily near seacoasts, rivers, and large lakes; nests in tall trees or on cliffs near water; communally roosts, especially in winter; hunts live prey, scavenges, and pirates food from other birds	DL	T	
Henslow's Sparrow	Ammodramus henslowii	wintering individuals (not flocks) found in weedy fields or cut-over areas where lots of bunch grasses occur along with vines and brambles; a key component is bare ground for running/walking			
Interior Least Tern	Sterna antillarum athalassos	subspecies is listed only when inland (more than 50 miles from a coastline); nests along sand and gravel bars within braided streams, rivers; also know to nest on man-made structures (inland beaches, wastewater treatment plants, gravel mines, etc); eats small fish and crustaceans, when breeding forages within a few hundred feet of colony	LE	Е	
Peregrine Falcon	Falco peregrinus	within a few hundred feet of colony both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies' listing statuses differ, thus the species level shows this dual listing status; because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat.		ET	
Western Burrowing Owl	Athene cunicularia hypugaea	open grasslands, especially prairie, plains, and savanna, sometimes in open areas such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows			
White-faced Ibis	Plegadis chihi	prefers freshwater marshes, sloughs, and irrigated rice fields, but will attend brackish and saltwater habitats; nests in marshes, in low trees, on the ground in bulrushes or reeds, or on floating mats		Т	
White-tailed Hawk	Buteo albicaudatus	near coast on prairies, cordgrass flats, and scrub-live oak; further inland on prairies, mesquite and oak savannas, and mixed savanna-chaparral; breeding March-May		T	
Whooping Crane	Grus americana	potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties	LE	Е	
Wood Stork	Mycteria americana	forages in prairie ponds, flooded pastures or fields, ditches, and other shallow standing water, including salt-water; usually roosts communally in tall snags, sometimes in association with other wading birds (i.e. active heronries); breeds in Mexico and birds move into Gulf States in search of mud flats and other wetlands, even those associated with forested areas; formerly nested in Texas, but no breeding records since 1960		T	
CRUSTACEANS					
A crayfish	Cambarellus texanus	shallow water; benthic, burrowing in or using soil; apparently tolerant of warmer waters; prefers standing water of ditches in which there is emergent vegetation; wll burrow in dry periods; detritivore			
FISHES					
American Eel	Anguilla rostrata	coastal waterways below reservoirs to gulf; spawns January to February in ocean, larva move to coastal waters, metamorphose, then females move into freshwater; most aquatic habitats with access to ocean, muddy bottoms, still			

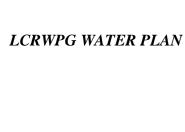

Common Name	e Scientific Description				
		waters, large streams, lakes; can travel overland in wet areas; males in brackish estuaries; diet varies widely, geographically, and seasonally			
MAMMALS					
Louisiana Black Bear	Ursus americanus luteolus	possible as transient; bottomland hardwoods and large tracts of inaccessible forested areas	LT	Т	
Plains Spotted Skunk	Spilogale putorius interrupta	catholic; open fields, prairies, croplands, fence rows, farmyards, forest edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie			
Red wolf	Canis rufus	extirpated; formerly known throughout eastern half of Texas in brushy and forested areas, as well as coastal prairies	LE	Е	
MOLLUSKS					
Creeper (squawfoot)	Strophitus undulatus	small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins			
False spike mussel	Quincuncina mitchelli	substrates of cobble and mud, with water lilies present; Rio Grande, Brazos, Colorado, and Guadalupe (historic) river basins			
Pistolgrip	Tritogonia verrucosa	stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through San Antonio River basins			
Rock pocketbook	Arcidens confragosus	mud, sand, and gravel substrates of medium to large rivers in standing or slow flowing water, may tolerate moderate currents and some reservoirs, east Texas, Red through Guadalupe River basins			
Smooth pimpleback	Quadrula houstonensis	small to moderate streams and rivers as well as moderate size reservoirs; mixed mud, sand, and fine gravel, tolerates very slow to moderate flow rates, appears not to tolerate dramatic water level fluctuations, scoured bedrock substrates, or shifting sand bottoms, lower Trinity (questionable), Brazos, and Colorado River basins			
Texas fawnsfoot	Truncilla macrodon	little known; possibly rivers and larger streams, and intolerant of impoundment; flowing rice irrigation canals, possibly sand, gravel, and perhaps sandy-mud bottoms in moderate flows; Brazos and Colorado River basins			
Texas pimpleback	Quadrula petrina	mud, gravel and sand substrates, generally in areas with slow flow rates; Colorado and Guadalupe river basins			
REPTILES					
to rocky; burrows into soil, enters rodent burrows, or hides under rock who		open, arid and semi-arid regions with sparse vegetation, including grass, cactus, scattered brush or scrubby trees; soil may vary in texture from sandy to rocky; burrows into soil, enters rodent burrows, or hides under rock when inactive; breeds March-September		T	
Timber/Canebrake Rattlesnake	Crotalus horridus	swamps, floodplains, upland pine and deciduous woodlands, riparian zones, abandoned farmland; limestone bluffs, sandy soil or black clay; prefers dense ground cover, i.e. grapevines or palmetto		T	

TABLE 1A-14: THREATENED OR ENDANGERED SPECIES OF WILLIAMSON COUNTY

Common Name	Scientific Name	Description	Federal Status	State Status
AMPHIBIANS				
Georgetown Salamander	Eurycea naufragia	endemic; known from springs and waters in/around town of Georgetown in Williamson County	С	
Jollyville Plateau Salamander	Eurycea tonkawae	known from springs and waters of some caves north of the Colorado River	С	
ARACHNIDS				
Bandit Cave spider	Cicurina bandida	very small, subterrestrial, subterranean obligate		
Bone Cave Harvestman	Texella reyesi	small, blind, cave-adapted harvestman endemic to a few caves in Travis and Williamson counties; weakly differentiated from Texella reddelli	LE	
BIRDS				
American Peregrine Falco peregrinus anatum year-round resident and local breeder in west Texas, nests in tall cliff eyries; also, migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines,		DL	Е	
Arctic Peregrine Falcon	Falco peregrinus tundrius	and barrier islands. migrant throughout state from subspecies' far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.	DL	T
Bald Eagle	Haliaeetus leucocephalus	found primarily near seacoasts, rivers, and large lakes; nests in tall trees or on cliffs near water; communally roosts, especially in winter; hunts live prey, scavenges, and pirates food from other birds	DL	Т
Black-capped Vireo	Vireo atricapillus	oak-juniper woodlands with distinctive patchy, two-layered aspect; shrub and tree layer with open, grassy spaces; requires foliage reaching to ground level for nesting cover; return to same territory, or one nearby, year after year; deciduous & broad-leaved shrubs & trees provide insects for feeding; species composition less important than presence of adequate broad-leaved shrubs, foliage to ground level,	LE	Е
Golden-cheeked Warbler	Dendroica chrysoparia	and required structure; nesting season March-late summer juniper-oak woodlands; dependent on Ashe juniper (also known as cedar) for long fine bark strips, only available from mature trees, used in nest construction; nests are placed in various trees other than Ashe juniper; only a few mature junipers or nearby cedar brakes can provide the necessary nest material; forage for insects in broad-leaved trees and shrubs; nesting late March-early summer	LE	Е
Mountain Plover	Charadrius montanus	breeding: nests on high plains or shortgrass prairie, on ground in shallow depression; nonbreeding: shortgrass plains and bare, dirt (plowed) fields; primarily insectivorous		
Peregrine Falcon	Falco peregrinus	both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies' listing statuses differ, thus the species level shows this dual listing status; because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat.	DL	ET
Western Burrowing Owl	Athene cunicularia hypugaea	open grasslands, especially prairie, plains, and savanna, sometimes in open areas such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows		
Whooping Crane	Grus americana	potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties	LE	Е
CRUSTACEANS				
An amphipod	Stygobromus russelli	subterranean waters, usually in caves and limestone aquifers; resident of numerous caves in ca. 10 counties of the Edwards Plateau		
Bifurcated cave	Stygobromus	found in cave pools		

Common Name	Scientific Name	Description	Federal Status	State Status
amphipod	bifurcatus			
Ezell's cave amphipod	Stygobromus flagellatus	known only from artesian wells		
FISHES				
Guadalupe Bass	Micropterus treculi	endemic to perennial streams of the Edward's Plateau region; introduced in Nueces River system		
Sharpnose Shiner	Notropis oxyrhynchus	endemic to Brazos River drainage; also, apparently introduced into adjacent Colorado River drainage; large turbid river, with bottom a combination of sand, gravel, and clay-mud	С	
Smalleye Shiner	Notropis buccula	endemic to upper Brazos River system and its tributaries; apparently introduced into adjacent Colorado River drainage; medium to large prairie streams with sandy substrate and turbid to clear warm water; presumably eats small aquatic invertebrates	С	
INSECTS				
A mayfly	Procloeon distinctum	mayflies distinguished by aquatic larval stage; adult stage generally found in shoreline vegetation		
A mayfly	Pseudocentroptiloides morihari	mayflies distinguished by aquatic larval stage; adult stage generally found in shoreline vegetation		
Leonora's dancer damselfly	Argia leonorae	south central and western Texas; small streams and seepages		
Tooth Cave Ground Beetle	Rhadine persephone	resident, small, cave-adapted beetle found in small Edwards Limestone caves in Travis and Williamson counties	LE	
Coffin Cave Mold Beetle	Batrisodes texanus	resident, small, cave-adapted beetle found in small Edwards limestone caves in Travis and Williamson counties	LE	
MAMMALS				
Cave Myotis Bat	Myotis velifer	colonial and cave-dwelling; also roosts in rock crevices, old buildings, carports, under bridges, and even in abandoned Cliff Swallow (<i>Hirundo pyrrhonota</i>) nests; roosts in clusters of up to thousands of individuals; hibernates in limestone caves of Edwards Plateau and gypsum cave of Panhandle during winter; opportunistic insectivore		
Plains Spotted Skunk	Spilogale putorius interrupta	catholic; open fields, prairies, croplands, fence rows, farmyards, forest edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie		
Red wolf	Canis rufus	extirpated; formerly known throughout eastern half of Texas in brushy and forested areas, as well as coastal prairies	LE	Е
MOLLUSKS				
Creeper (squawfoot)	Strophitus undulatus	small to large streams, prefers gravel or gravel and mud in flowing water; Colorado, Guadalupe, San Antonio, Neches (historic), and Trinity (historic) River basins		
False spike mussel	Quincuncina mitchelli	substrates of cobble and mud, with water lilies present; Rio Grande, Brazos, Colorado, and Guadalupe (historic) river basins		
Pistolgrip	Tritogonia verrucosa	stable substrate, rock, hard mud, silt, and soft bottoms, often buried deeply; east and central Texas, Red through San Antonio River basins		
Rock pocketbook	Arcidens confragosus	mud, sand, and gravel substrates of medium to large rivers in standing or slow flowing water, may tolerate moderate currents and some reservoirs, east Texas, Red through Guadalupe River basins		
Smooth pimpleback	Quadrula houstonensis	small to moderate streams and rivers as well as moderate size reservoirs; mixed mud, sand, and fine gravel, tolerates very slow to moderate flow rates, appears not to tolerate dramatic water level fluctuations, scoured bedrock substrates, or shifting sand bottoms, lower Trinity (questionable), Brazos, and Colorado River basins		
Texas fawnsfoot	Truncilla macrodon	little known; possibly rivers and larger streams, and intolerant of impoundment; flowing rice irrigation canals, possibly sand, gravel, and perhaps sandy-mud bottoms in moderate flows; Brazos and Colorado River basins		
Texas pimpleback	Quadrula petrina	mud, gravel and sand substrates, generally in areas with slow flow rates; Colorado and Guadalupe river basins		

Common Name	Scientific Name	Description	Federal Status	State Status
REPTILES				
Spot-tailed Earless Lizard	Holbrookia lacerata	central and southern Texas and adjacent Mexico; moderately open prairie-brushland; fairly flat areas free of vegetation or other obstructions, including disturbed areas; eats small invertebrates; eggs laid underground		
Texas Garter Snake	Thamnophis sirtalis annectens	wet or moist microhabitats are conducive to the species occurrence, but is not necessarily restricted to them; hibernates underground or in or under surface cover; breeds March-August		
Texas Horned Lizard	Phrynosoma cornutum	open, arid and semi-arid regions with sparse vegetation, including grass, cactus, scattered brush or scrubby trees; soil may vary in texture from sandy to rocky; burrows into soil, enters rodent burrows, or hides under rock when inactive; breeds March-September		T
Timber/Canebrake Rattlesnake	Crotalus horridus	swamps, floodplains, upland pine and deciduous woodlands, riparian zones, abandoned farmland; limestone bluffs, sandy soil or black clay; prefers dense ground cover, i.e. grapevines or palmetto		T
VASCULAR PLANT	TS			
Elmendorf's onion	Allium elmendorfii	Texas endemic; grassland openings in oak woodlands on deep, loose, well-drained sands; in Coastal Bend, on Pleistocene barrier island ridges and Holocene Sand Sheet that support live oak woodlands; to the north it occurs in post oak-black hickory-live oak woodlands over Queen City and similar Eocene formations; one anomalous specimen found on Llano Uplift in wet pockets of granitic loam; flowering March-April, May		

APPENDIX 1B

LOWER COLORADO REGION INDUSTRY ECONOMIC VALUE ESTIMATES (LCRA Community and Economic Development, IMPLAN 2004 - base year 2001)

Appendix 1B: Lower Colorado Region Industry Economic Value Estimates*

T (D) 131					Millions of	dollars		
IMPLAN modeling code	Industry	Employment	Industry Output	Employee Compensation	Proprietor Income	Other Property Income	Indirect Business Tax	Total Value Added
1	Oilseed farming	809	24.605	1.256	1.691	12.787	0.943	16.678
2	Grain farming	5,651	134.524	5.115	32.465	59.578	5.098	102.256
_	Vegetable and melon	0,001	10.102.	0.110	52.100	0,10,70	2.070	102.200
3	farming	113	4.501	0.322	0.044	0.911	0.024	1.301
4	Tree nut farming	170	7.397	0.829	0.205	1.231	0.121	2.386
5	Fruit farming	317	12.732	1.684	0.039	2.095	0.209	4.027
6	Greenhouse and nursery production	1,378	94.944	31.658	1.208	34.689	0.947	68.502
8	Cotton farming	137	15.928	0.957	0.474	2.126	0.108	3.665
10	All other crop farming	1,297	39.581	1.166	0.931	10.221	0.678	12.996
11	Cattle ranching and farming	9,744	128.936	6.483	40.432	-70.772	4.213	-19.645
12	Poultry and egg production	493	61.811	2.589	0.158	3.351	0.06	6.159
13	Animal production, except cattle and poultry	697	17.54	0.726	1.724	-0.429	0.223	2.243
14	Logging	28	4.096	0.531	0.468	1.017	0.089	2.105
15	Forest nurseries, forest products, and timber	18	6.18	0.267	0.274	1.863	0.444	2.848
16	Fishing	336	16.445	2.509	2.921	3.82	0.446	9.695
17	Hunting and trapping	739	54.368	2.618	3.118	14.869	5.753	26.358
18	Agriculture and forestry support activities	1,924	53.85	26.491	8.478	-4.271	1.12	31.817
19	Oil and gas extraction	2,740	790.508	72.436	65.876	93.938	52.513	284.763
24	Stone mining and quarrying	346	40.11	10.483	2.747	6.317	1.045	20.593
25	Sand, gravel, clay, and refractory mining	308	25.576	8.306	2.299	4.42	0.737	15.763
26	Other nonmetallic mineral mining	66	8.496	1.439	0.543	1.133	0.187	3.302
27	Drilling oil and gas wells	222	26.49	3.96	0.107	1.599	0.755	6.421
21	Support activities for oil	222	20.47	3.70	0.107	1.577	0.755	0.721
28	and gas operation	2,111	470.785	78.958	2.193	15.879	21.384	118.414
20	Power generation and	2.050	1.001.20	105.605	151 650	210 21 4	101.077	COC 427
30	** *	3,058	1,081.38	105.685	151.652	319.214	121.877	698.427
31	Natural gas distribution Water, sewage and other	324	137.003	9.34	8.979	9.504	13.47	41.293
32	systems	276	15.02	2.508	3.297	3.905	0.559	10.27
33	New residential 1-unit structures, nonfarm	10,654	1,326.65	325.528	103.458	28.047	10.7	467.734
34	New multifamily housing structures, nonfarm	1,956	170.485	59.605	19.527	-8.142	0.739	71.729

					Millions of	dollars		
IMPLAN	T. 1	E1	T 1 .	Б 1		Other	Indirect	Total
modeling code	Industry	Employment	Industry	Employee	Proprietor Income	Property	Business	Value
code			Output	Compensation	income	Income	Tax	Added
	New residential additions							
35	and alterations, nonfarm	3,717	430.314	110.862	35.094	-6.69	3.626	142.893
	New farm housing units							
26	and additions and	266	22.062	0.00	2.562	0.044	0.070	10.070
36	alterations	266	33.063	8.08	2.562	-0.044	0.279	10.878
37	Manufacturing and industrial buildings	1,566	116.53	48.247	14.868	-10.522	1.028	53.621
37	Commercial and	1,500	110.55	40.247	14.000	-10.322	1.026	33.021
38	institutional buildings	15,276	1,254.28	464.009	146.659	-82.988	12.181	539.861
	Highway, street, bridge,	20,2.0		1011002		0_1110		
39	and tunnel construction	2,707	250.382	83.788	26.202	-8.524	2.498	103.964
	Water, sewer, and							
40	pipeline construction	1,011	99.377	31.069	9.769	-5.958	1.009	35.89
41	Other new construction	16,746	1,040.17	524.402	162.316	-93.68	6.869	599.907
	Maintenance and repair							
	of farm and nonfarm							
42	residential buildings	1,750	200.758	52.762	16.719	-6.055	1.433	64.859
	Maintenance and repair							
43	of nonresidential buildings	4,214	358.882	127.425	40.618	-18.747	3.926	153.222
43	Maintenance and repair	4,214	330.002	127.423	40.016	-10.747	3.920	133.222
	of highways, streets, and							
44	bridges	584	63.48	17.874	5.579	-3.657	0.694	20.49
	Other maintenance and							
45	repair construction	4,953	355.547	156.943	48.481	-18.865	3.181	189.739
	Other animal food							
47	manufacturing	28	13.329	0.851	0.049	0.296	0.071	1.266
49	Rice milling	3	1.221	0.094	0.005	0.065	0.007	0.171
51	Wet corn milling	6	4.518	0.212	0.015	0.34	0.021	0.588
53	Other oilseed processing	7	3.307	0.125	0.004	0.022	0.012	0.163
	Confectionery							
	manufacturing from							
58	purchased chocolate	34	7.675	1.374	0.065	2.142	0.059	3.64
	Nonchocolate							
59	confectionery manufacturing	57	7 506	0.766	0.038	1.159	0.03	1.993
39	Frozen food	31	7.596	0.700	0.038	1.139	0.03	1.993
60	manufacturing	583	120.067	17.227	0.91	20.946	0.845	39.928
- 55	Fruit and vegetable	203	120.007	17.227	0.71	25.710	0.015	27.720
61	canning and drying	51	15.168	1.924	0.089	2.56	0.112	4.684
62	Fluid milk manufacturing	157	68.377	8.193	0.377	1.706	0.598	10.873
64	Cheese manufacturing	16	9.168	0.504	0.027	0.164	0.055	0.75
0-1	Dry, condensed, and	10	7.100	0.504	0.027	J.10-T	0.033	0.73
65	evaporated dairy product	6	2.45	0.114	0.008	0.337	0.01	0.469
	Ice cream and frozen							
66	dessert manufacturing	6	1.682	0.188	0.01	0.208	0.011	0.418
	Animal, except poultry,							
67	slaughtering	179	68.025	4.629	0.245	0.543	0.431	5.848
	Meat processed from	467	111 214	11.77.	0.621	2.216	0.505	17.010
68	carcasses Rendering and meat	467	111.614	11.776	0.621	2.216	0.605	15.218
69	byproduct processing	82	18.579	2.868	0.145	3.457	0.128	6.599
09	byproduct processing	62	10.379	2.000	0.143	3.437	0.128	0.339

			Millions of dollars						
IMPLAN						Other	Indirect	Total	
modeling	Industry	Employment	Industry	Employee	Proprietor	Property	Business	Value	
code			Output	Compensation	Income	Income	Tax	Added	
	Seafood product					nicome	1 ax	Added	
	preparation and								
71	packaging	29	5.368	0.767	0.049	-0.034	0.02	0.802	
/1	Bread and bakery	29	3.308	0.707	0.049	-0.034	0.02	0.802	
72	product, except frozen,	240	11 126	10.741	0.515	10.029	0.221	21 616	
73	manufacturing	340	44.426	10.741	0.515	10.038	0.321	21.616	
7.5	Mixes and dough made	1	0.214	0.010	0.001	0.020	0.001	0.040	
75	from purchased flour	1	0.214	0.019	0.001	0.029	0.001	0.049	
77	Tortilla manufacturing	80	8.386	2.652	0.096	1.383	0.071	4.201	
	Roasted nuts and peanut								
78	butter manufacturing	18	5.398	0.202	0.009	0.364	0.016	0.591	
	Other snack food								
79	manufacturing	53	21.413	3.292	0.176	6.447	0.185	10.1	
	Coffee and tea								
80	manufacturing	2	0.598	0.027	0.001	0.012	0.002	0.043	
	Mayonnaise, dressing,								
82	and sauce manufacturing	9	3.595	0.309	0.017	0.717	0.012	1.055	
	Spice and extract								
83	manufacturing	42	15.658	2.954	0.153	5.057	0.128	8.292	
	All other food								
84	manufacturing	53	11.15	1.362	0.068	0.688	0.057	2.175	
	Soft drink and ice								
85	manufacturing	229	73.319	12.249	0.162	8.856	0.605	21.871	
86	Breweries	20	15.198	1.875	0.034	4.099	2.478	8.487	
87	Wineries	40	9.314	0.751	0.002	0.345	0.495	1.593	
0,	Tobacco stemming and	10	7.511	0.751	0.002	0.5 15	0.175	1.070	
89	redrying	0	0.092	0.002	0	0	0	0.002	
0)	Fiber, yarn, and thread	0	0.072	0.002	Ü	0	Ü	0.002	
92	mills	1	0.073	0.012	0	0.001	0	0.014	
93	Broadwoven fabric mills	3			0		0.002		
			0.372	0.076		0.008		0.087	
100	Curtain and linen mills	58	7.627	1.497	-0.012	1.054	0.026	2.566	
	Textile bag and canvas	_							
101	mills	23	1.525	0.434	-0.003	0.028	0.004	0.462	
	Other miscellaneous	_		_					
103	textile product mills	82	11.83	2.53	-0.014	0.502	0.055	3.073	
	Cut and sew apparel								
107	manufacturing	176	21.556	4.427	0.038	2.565	0.08	7.11	
100	Accessories and other	<u> </u>	6.02:			0	0.00	2 202	
108	apparel manufacturing	83	9.931	1.676	0.014	0.664	0.03	2.383	
,	Leather and hide tanning	_	0.10			001-	0.000	<u> </u>	
109	and finishing	2	0.486	0.033	0.002	0.013	0.001	0.05	
110	Footwear manufacturing	19	2.469	0.641	0.038	0.046	0.015	0.74	
	Other leather product								
111	manufacturing	18	1.305	0.304	0.017	0.244	0.006	0.57	
112	Sawmills	6	0.979	0.17	0.011	0.047	0.013	0.24	
	Engineered wood						1.5		
	member and truss								
116	manufacturing	181	20.645	5.245	0.317	1.903	0.294	7.758	
	Wood windows and door	<u> </u>		2					
117	manufacturing	6	0.729	0.111	0.011	0.039	0.007	0.169	
119	Other millwork,	96	6.817	2.912	0.178	0.023	0.094	3.207	
119	ouici iiiiiwoik,	90	0.81/	2.912	0.178	0.023	0.094	3.207	

		Millions of dollars						
IMPLAN	To do a	E1-	T. 1	F1		Other	Indirect	Total
modeling code	Industry	Employment	Industry Output	Employee	Proprietor Income	Property	Business	Value
code			Output	Compensation	mcome	Income	Tax	Added
	including flooring							
	Wood container and							
120	pallet manufacturing	228	16.567	6.785	0.422	0.945	0.254	8.406
	Manufactured home,							
	mobile home,							
121	manufacturing	816	109.502	31.112	2.197	11.753	1.7	46.762
100	Prefabricated wood	0	0.00	0.141	0.007	0.012	0.000	0.160
122	building manufacturing Miscellaneous wood	8	0.89	0.141	0.007	0.013	0.008	0.169
123	product manufacturing	33	3.752	0.795	0.051	0.241	0.052	1.138
123	Paper and paperboard	33	3.132	0.193	0.031	0.241	0.032	1.136
125	mills	12	5.703	1.092	0.022	1.053	0.055	2.222
123		12	3.703	1.072	5.022	1.055	0.055	2,222
126	Paperboard container manufacturing	23	4.936	0.99	0.015	0.193	0.048	1.246
120	Surface-coated	23	4.730	0.33	0.013	0.193	0.040	1.240
	paperboard							
128	manufacturing	3	0.79	0.062	0.001	0.003	0.005	0.07
	Die-cut paper office					<u>-</u>		
131	supplies manufacturing	9	1.874	0.392	0.008	0.117	0.02	0.537
132	Envelope manufacturing	5	0.691	0.138	0.002	0.004	0.005	0.149
	All other converted paper							
135	product manufacturing	4	0.761	0.109	0.002	0.094	0.006	0.212
	Manifold business forms							
136	printing	66	12.014	2.978	0.082	2.789	0.124	5.974
137	Books printing	171	28.869	8.878	0.274	3.438	0.318	12.909
139	Commercial printing	2,585	305.308	94.364	2.081	24.709	2.66	123.814
	Tradebinding and related							
140	work	116	9.506	4.301	0.094	1.054	0.098	5.547
141	Prepress services	187	14.536	7.636	0.153	1.393	0.129	9.311
142	Petroleum refineries	31	79.69	1.564	3.477	1.091	0.76	6.892
	Asphalt paving mixture							
143	and block manufacturing	198	99.272	12.82	25.902	-11.995	1.552	28.278
	Asphalt shingle and							
	coating materials	4.0	F 151	A 44=	1 105	0.100	0.055	0.100
144	manufacturing	13	5.151	0.447	1.495	0.182	0.065	2.189
147	Petrochemical manufacturing	311	180.057	42.806	5 676	21.661	4.538	74.68
14/	Industrial gas	311	100.03/	42.600	5.676	21.001	4.336	/4.08
148	manufacturing	33	10.571	4.183	0.696	3.546	0.193	8.618
1-10	Other basic inorganic	55	10.5/1	1.103	0.070	3.340	0.173	0.010
150	chemical manufacturing	8	4.181	0.859	0.175	1.043	0.054	2.132
	Other basic organic							
151	chemical manufacturing	344	423.615	24.138	3.676	29.536	7.946	65.295
	Plastics material and							
152	resin manufacturing	2	1.257	0.115	0.023	0.132	0.02	0.29
150	Synthetic rubber	_	0.055	0.111	0.00	0.150	0.017	0.24
153	manufacturing	2	0.857	0.141	0.03	0.153	0.016	0.34
150	Fertilizer, mixing only, manufacturing	12	2 420	0.150	0.04	0.212	0.02	0.442
158	Pharmaceutical and	12	3.429	0.159	0.04	0.213	0.03	0.442
160	medicine manufacturing	1,303	551.013	85.375	21.594	121.265	10.582	238.816
100	manaractaring	1,505	551.015	05.575	21.J/T	121.203	10.502	250.010

					Millions of	dollars		
IMPLAN						Other	Indirect	Total
modeling	Industry	Employment	Industry	Employee	Proprietor	Property	Business	Value
code			Output	Compensation	Income	Income	Tax	Added
	Paint and coating							
161	manufacturing	3	1.165	0.118	0.023	0.136	0.017	0.294
	Soap and other detergent							
163	manufacturing	31	10.854	0.857	0.196	1.899	0.144	3.095
	Polish and other							
	sanitation good							
164	manufacturing	38	10.342	1.773	0.438	3.133	0.203	5.547
	Surface active agent							
165	manufacturing	6	3.137	0.091	0.026	0.046	0.028	0.191
1.00	Toilet preparation	45	22.51	1.050	0.50	0.002	0.105	10.673
166	manufacturing	47	22.51	1.953	0.52	8.003	0.195	10.672
160	Custom compounding of	20	10.062	1.054	0.461	1 224	0.070	2 (20
169	purchased resins	29	10.063	1.854	0.461	1.234	0.079	3.628
170	Photographic film and chemical manufacturing	6	2.023	0.347	0.092	0.51	0.015	0.964
170	Other miscellaneous	0	2.023	0.347	0.092	0.51	0.013	0.904
	chemical product							
171	manufacturing	209	75.583	13.841	2.421	9.87	1.509	27.642
171	Plastics packaging	20)	73.363	13.041	2.721	7.07	1.507	27.042
172	materials, film and sheet	503	128.538	18.102	0.695	15.202	0.882	34.88
	Plastics pipe, fittings, and				0.02.0		0.000	
173	profile shapes	126	17.316	4.503	0.127	1.558	0.095	6.283
	Plastics bottle							
175	manufacturing	103	18.882	2.389	0.059	2.079	0.077	4.605
	Plastics plumbing							
	fixtures and all other							
177	plastics	659	115.571	21.895	0.748	13.587	0.658	36.887
150	Foam product	100	00 704	10.500	0.500	44.60.6	0.54	24.252
178	manufacturing	438	99.501	18.528	0.598	14.606	0.64	34.372
179	Tire manufacturing	4	0.624	0.148	0.011	0.021	0.013	0.192
	Rubber and plastics hose							
	and belting							
180	manufacturing	30	4.486	1.474	0.052	0.704	0.029	2.259
101	Other rubber product	1.1	1.010	0.400	0.014	0.101	0.011	0.624
181	manufacturing	11	1.818	0.408	0.014	0.191	0.011	0.624
	Vitreous china and earthenware articles							
183	manufacturing	64	4.414	1.783	0.074	0.49	0.053	2.4
103	Brick and structural clay	04	7,717	1.703	0.074	0.43	0.033	2.4
185	tile manufacturing	261	32.867	9.363	0.376	5.113	0.38	15.232
100	Clay refractory and other	201	22.007	7.233	5.575	3,113	0.23	-2.22
188	structural clay products	134	15.552	6.663	0.163	1.678	0.19	8.693
	Glass and glass products,							
190	except glass containers	219	45.274	13.875	0.444	10.481	0.594	25.395
191	Cement manufacturing	171	78.462	10.815	0.318	26.129	0.947	38.209
	Ready-mix concrete	1,1	. 3 32	10.015	5.515		2.7	20.207
192	manufacturing	1,110	191.453	45.99	1.744	23.055	2.079	72.867
	Concrete block and brick	,						
193	manufacturing	89	14.458	2.996	0.115	1.683	0.173	4.967
	Concrete pipe							
194	manufacturing	91	16.86	3.405	0.118	2.296	0.194	6.012
	Other concrete product							
195	manufacturing	197	21.551	5.664	0.219	2.512	0.224	8.618

			Millions of dollars					
IMPLAN	т 1 .	Б 1 .	T 1	Б. 1		Other	Indirect	Total
modeling	Industry	Employment	Industry	Employee	Proprietor	Property	Business	Value
code			Output	Compensation	Income	Income	Tax	Added
196	Lime manufacturing	86	22.834	4.508	0.123	3.389	0.282	8.302
150	Gypsum product	00	22.00		0.120	5.507	0.202	0.002
197	manufacturing	3	0.482	0.054	0.003	0.053	0.003	0.113
	Cut stone and stone							
199	product manufacturing	365	29.62	12.293	0.513	2.267	0.342	15.416
	Ground or treated							
	minerals and earths							
200	manufacturing	35	8.093	0.787	0.024	2.862	0.084	3.757
	Mineral wool							
201	manufacturing	3	0.313	0.044	0.001	0.044	0.002	0.092
	Miscellaneous							
202	nonmetallic mineral		7.024	1.620	0.050	1.510	0.074	2.27.6
202	products	62	7.024	1.629	0.059	1.513	0.074	3.276
203	Iron and steel mills	9	3.234	0.372	0.008	0.066	0.019	0.464
	Primary aluminum							
209	production	10	2.738	0.437	0.013	0.042	0.017	0.509
212	Aluminum extruded		• • • • •		0.1.10	0.404	0.2	
212	product manufacturing	151	24.91	6.567	0.143	0.421	0.2	7.33
217	Copper wire, except	122	12.741	10.706	0.222	0.202	0.049	10.605
217	mechanical, drawing	123	13.741	10.706	0.233	-0.292	0.048	10.695
218	Secondary processing of copper	4	1.008	0.115	0.002	0.004	0.005	0.127
	1.1							
221	Ferrous metal foundries	234	33.019	10.687	0.235	1.434	0.281	12.637
223	Nonferrous foundries,	45	5.224	1 47	0.022	0.109	0.039	1 72
223	except aluminum All other forging and	43	3.224	1.47	0.023	0.198	0.039	1.73
227	stamping	97	17.115	4.249	0.069	1.951	0.114	6.383
221	Cutlery and flatware,	71	17.113	7.27)	0.007	1.731	0.114	0.303
	except precious,							
228	manufacturing	7	1.438	0.387	0.028	0.49	0.009	0.914
	Hand and edge tool							
229	manufacturing	43	5.85	1.798	0.034	0.953	0.042	2.827
	Kitchen utensil, pot, and							
231	pan manufacturing	0	0.012	0.002	0	0.001	0	0.004
	Prefabricated metal							
	buildings and	100	4= -00		0.00.5	0.7.0	0.444	
232	components	123	17.633	4.481	0.096	0.562	0.114	5.253
222	Fabricated structural	100	20.577	C 477	0.122	4.720	0.107	11 504
233	metal manufacturing Plate work	169	28.576	6.476	0.132	4.739	0.187	11.534
234	manufacturing	212	10.436	8.043	0.138	1.406	0.068	9.656
234	Metal window and door	212	10.430	0.043	0.136	1.400	0.008	9.030
235	manufacturing	28	4.138	1.179	0.02	0.726	0.03	1.955
233	Sheet metal work	20	1.130	1.177	0.02	3.720	0.03	1.755
236	manufacturing	367	61.071	15.236	0.293	9.626	0.406	25.562
	Ornamental and							
	architectural metal work							
237	manufacturing	133	17.212	5.707	0.135	2.452	0.121	8.416
	Power boiler and heat							
238	exchanger manufacturing	19	4.131	1.318	0.031	0.834	0.031	2.215
	Metal tank, heavy gauge,	_						
239	manufacturing	28	5.097	1.379	0.02	0.744	0.035	2.179

IMPLAN					Millions of	dollars		
						Other	Indirect	Total
modeling	Industry	Employment	Industry	Employee	Proprietor	Property	Business	Value
code			Output	Compensation	Income	Income	Tax	Added
М	Ietal can, box, and other						1 4	11000
	ontainer manufacturing	14	3.058	0.398	0.009	0.123	0.013	0.543
	Iardware manufacturing	15	2.869	0.378	0.006	0.391	0.014	0.789
	pring and wire product	13	2.809	0.378	0.006	0.391	0.014	0.789
	nanufacturing	67	6.052	2 402	0.029	1.040	0.049	2 527
			6.953	2.402	0.038	1.049	0.048	3.537
	Tachine shops	784	89.324	31.737	0.566	4.948	0.737	37.988
	urned product and							
	crew, nut, and bolt		1 000	0 = 1 1	0.005	0.004	0.012	0.04.5
	nanufacturing	12	1.809	0.514	0.006	0.284	0.012	0.816
	Ietal coating and							
	onprecious engraving	76	11.221	2.468	0.031	2.043	0.068	4.611
	lectroplating,							
	nodizing, and coloring		2011			0.400	0.024	2 1
	netal	69	3.864	2.207	0.032	0.409	0.024	2.671
	Ietal valve							
	nanufacturing	346	56.546	13.996	0.221	12.85	0.358	27.424
	abricated pipe and pipe							
	tting manufacturing	19	2.742	0.848	0.01	0.504	0.019	1.381
	ndustrial pattern	_						
253 m	nanufacturing	3	0.168	0.084	0.001	0.014	0.001	0.099
l M	liscellaneous fabricated							
	netal product							
	nanufacturing	18	2.821	0.769	0.012	0.388	0.02	1.189
	mmunition	10	2.021	0.709	0.012	0.500	0.02	1.105
	nanufacturing	85	11.872	6.234	0.152	0.337	0.22	6.943
	arm machinery and	0.5	11.072	0.23 1	0.132	0.337	0.22	0.713
	quipment manufacturing	53	9.272	1.133	0.066	0.97	0.024	2.193
	awn and garden		,,_,	11100	0.000	0.57	0.02	2.170
	quipment manufacturing	7	2.154	0.188	0.014	0.225	0.015	0.442
	Construction machinery			0.1200	0.00	0,122	0.000	
	nanufacturing	34	8.557	1.092	0.072	0.437	0.052	1.653
	Ining machinery and			-107	0.07	37.07	0.000	3,000
	quipment manufacturing	20	1.829	0.301	0.011	0.138	0.008	0.459
	oil and gas field	-						
	nachinery and							
	quipment	448	54.381	22.753	0.735	3.099	0.425	27.012
Pl	lastics and rubber	_		_				
	ndustry machinery	3,418	827.295	270.103	11.42	191.746	7.896	481.166
	rinting machinery and	ŕ						
	quipment manufacturing	1	0.2	0.052	0.004	0.006	0.001	0.062
	ood product machinery							
	nanufacturing	2	0.179	0.071	0.004	0.019	0.001	0.096
	emiconductor							
	nachinery manufacturing	99	46.933	6.869	0.694	5.352	0.329	13.244
	Il other industrial							
	nachinery manufacturing	11	2.765	0.399	0.023	0.165	0.008	0.596
	Office machinery							
	nanufacturing	18	2.234	0.291	0.02	0.101	0.008	0.42
	ptical instrument and							
	ens manufacturing	59	3.62	2.504	0.22	0.401	0.026	3.151
	hotographic and							
	hotocopying equipment	19	2.77	1.038	0.14	0.34	0.02	1.539

					Millions of	dollars		
IMPLAN						Other	Indirect	Total
modeling	Industry	Employment	Industry	Employee	Proprietor	Property	Business	Value
code			Output	Compensation	Income	Income	Tax	Added
	manufacturing							
	Other commercial and							
	service industry machine							
273	manufacturing	63	10.851	2.984	0.136	0.048	0.054	3.222
	Air purification							
275	equipment manufacturing	99	9.746	3.786	0.178	1.42	0.082	5.466
250	AC, refrigeration, and	,	0.010	0.145	0.000	0.005	0.006	0.100
278	forced air heating	4	0.818	0.147	0.008	0.037	0.006	0.198
270	Industrial mold	77	621	2.846	0.129	0.242	0.046	2 262
279	manufacturing Metal cutting machine	77	6.34	2.840	0.128	0.242	0.046	3.262
280	tool manufacturing	51	4.342	1.741	0.088	0.384	0.033	2.246
200	Special tool, die, jig, and	31	7.572	1.741	0.000	0.504	0.033	2.240
282	fixture manufacturing	36	2.05	1.106	0.047	0.038	0.015	1.206
	Cutting tool and machine							
	tool accessory							
283	manufacturing	16	1.582	0.337	0.016	0.085	0.009	0.446
	Turbine and turbine							
	generator set units	_						
285	manufacturing	3	1.662	0.201	0.017	0.39	0.014	0.621
206	Other engine equipment	4	1 120	0.074	0.004	0.069	0.002	0.147
286	manufacturing Speed changers and	4	1.138	0.074	0.004	0.068	0.002	0.147
	mechanical power							
	transmission							
287	manufacturing	94	13.681	3.628	0.205	1.813	0.076	5.723
	Pump and pumping	-						
288	equipment manufacturing	62	16.768	4.48	0.268	2.323	0.169	7.24
	Air and gas compressor							
289	manufacturing	75	14.504	2.771	0.144	2.224	0.108	5.248
	Overhead cranes, hoists,	_						
293	and monorail system	9	1.77	0.176	0.009	0.101	0.007	0.293
	Industrial truck, trailer, and stacker							
294	and stacker manufacturing	24	3.864	0.471	0.024	-0.052	0.018	0.461
274	Industrial process furnace	24	3.004	0.4/1	0.024	-0.032	0.010	0.401
298	and oven manufacturing	12	0.978	0.207	0.009	0.097	0.005	0.319
2,0	Scales, balances, and		2.270	3.237	2.007	2.07.	2.302	2.017
301	miscellaneous general	97	19.678	6.055	0.305	2.722	0.196	9.279
	Electronic computer							
302	manufacturing	11,731	4,388.82	1,452.72	53.387	86.82	42.306	1,635.23
	Computer storage device							
303	manufacturing	17	6.104	1.246	0.211	0.7	0.044	2.201
20.4	Computer terminal	2.45	20.42	22.422	0.407	0.10	0.004	00.004
304	manufacturing Other computer	247	30.43	22.433	0.487	-0.18	0.084	22.824
	Other computer peripheral equipment							
305	manufacturing	2,010	509.185	112.902	2.537	-1.245	3.627	117.821
303	Telephone apparatus	2,010	507.105	112.702	2.331	-1.243	3.027	117.021
306	manufacturing	1,930	1,104.72	190.368	5.005	267.807	9.361	472.541
	Broadcast and wireless	-, 0	, ,	., 2.2.30				1
	communications							
307	equipment manufacturing	359	152.598	24.603	0.402	18.201	1.137	44.343

					Millions of	dollars		
IMPLAN						Other	Indirect	Total
modeling	Industry	Employment	Industry	Employee	Proprietor	Property	Business	Value
code			Output	Compensation	Income	Income	Tax	Added
	Other communications					211001110	2 4/1	
308	equipment manufacturing	471	79.273	31.808	0.515	8.799	0.633	41.755
	Audio and video							
309	equipment manufacturing	48	7.708	1.301	0.022	-0.013	0.035	1.345
	Semiconductors and							
	related device							
311	manufacturing	17,626	3,533.68	1,473.23	54.458	1,468.66	27.325	3,023.67
	All other electronic							
242	component	- 110		220 044		15.001		207 - 207
312	manufacturing	5,448	901.335	228.844	5.205	45.081	6.507	285.637
212	Electromedical apparatus	510	114 404	24.017	0.724	6.927	0.670	22.05
313	manufacturing Search, detection, and	513	114.494	24.817	0.734	6.827	0.672	33.05
314	navigation instrument	169	35.272	10.392	0.227	3.001	0.227	13.848
314	Industrial process	109	33.414	10.392	0.227	5.001	0.221	13.040
316	variable instruments	852	107.81	61.824	1.517	10.048	0.845	74.233
310	Totalizing fluid meters	032	107.01	01.024	1.517	10.0-10	0.043	, 1.233
317	and counting devices	12	2.277	0.19	0.005	0.091	0.007	0.292
	Electricity and signal							
318	testing instruments	548	84.198	31.606	1.328	16.365	0.576	49.876
	Watch, clock, and other							
	measuring and							
321	controlling	186	32.429	8.688	0.144	2.148	0.213	11.193
322	Software reproducing	261	27.534	22.866	0.654	0.518	0.015	24.053
	Audio and video media							
323	reproduction	26	3.476	0.803	0.01	0.973	0.015	1.801
	Magnetic and optical							
22.4	recording media	_	1 (20	0.162	0.004	0.010	0.000	0.102
324	manufacturing	5	1.639	0.163	0.004	0.018	0.008	0.193
325	Electric lamp bulb and part manufacturing	40	9.194	4.156	0.274	1.846	0.08	6.355
343	Lighting fixture	40	2.124	4.130	0.274	1.040	0.03	0.333
326	manufacturing	447	74.766	16.676	1.908	7.884	0.604	27.072
320	Household refrigerator	,	, 11, 00	10.070	1.700	7.001	0.001	27.072
	and home freezer							
330	manufacturing	4	0.801	0.115	0.009	0.004	0.005	0.132
	Electric power and							
	specialty transformer							
333	manufacturing	10	1.218	0.331	0.047	0.113	0.009	0.5
22.4	Motor and generator		11 100	2 255	0.250	1 00 1	0.001	4.051
334	manufacturing	77	11.492	3.277	0.359	1.224	0.091	4.951
	Switchgear and switchboard apparatus							
335	manufacturing	32	5.793	1.244	0.129	1.05	0.042	2.464
333	Relay and industrial	32	3.173	1.277	0.12)	1.03	0.042	2.707
336	control manufacturing	100	22.701	7.19	0.707	0.651	0.231	8.78
	Storage battery			,				
337	manufacturing	1	0.222	0.059	0.009	0.019	0.002	0.089
	Other communication							
	and energy wire							
340	manufacturing	1	0.944	0.055	0.005	0.151	0.01	0.222
	Wiring device		,			A = 4.1		
341	manufacturing	298	46.212	12.22	1.347	8.725	0.35	22.643

					Millions of	dollars		
IMPLAN						Other	Indirect	Total
modeling	Industry	Employment	Industry	Employee	Proprietor	Property	Business	Value
code			Output	Compensation	Income	Income	Tax	Added
	Miscellaneous electrical						2411	11000
343	equipment manufacturing	110	30.113	4.796	0.457	0.27	0.203	5.725
	Motor vehicle body							
346	manufacturing	12	1.331	0.217	0.006	0.008	0.004	0.234
	Travel trailer and camper							
349	manufacturing	23	4.289	1.042	0.047	0.352	0.027	1.469
	Motor vehicle parts							
350	manufacturing	61	14.783	3.179	0.012	0.644	0.084	3.918
351	Aircraft manufacturing	84	23.909	6.424	0.011	-0.234	0.153	6.353
	Aircraft engine and							
	engine parts							
352	manufacturing	191	45.535	9.616	0.001	6.305	0.192	16.115
	Other aircraft parts and							
353	equipment	343	78.957	18.111	0.009	5.078	0.395	23.593
255	Ship building and	_	0.10	0.01	_	0.000	0.001	0.044
357	repairing	1	0.12	0.04	0	0.003	0.001	0.044
358	Boat building	15	2.059	0.62	0	0.32	0.011	0.952
	All other transportation	_						
361	equipment manufacturing	2	0.997	0.056	0	0.101	0.003	0.16
	Wood kitchen cabinet							
262	and countertop	005	75.01	20.700	0.264	7.649	0.012	20.612
362	manufacturing Upholstered household	995	75.01	30.788	0.264	7.648	0.913	39.613
363	furniture manufacturing	161	13.515	3.624	0.027	0.022	0.055	3.728
303	Nonupholstered wood	101	13.313	3.024	0.027	0.022	0.055	3.726
	household furniture							
364	manufacturing	58	5.08	1.355	0.012	0.481	0.024	1.871
	Metal household							
365	furniture manufacturing	59	12.351	1.832	0.018	2.285	0.067	4.203
	Institutional furniture							
366	manufacturing	119	18.638	5.207	0.04	3.755	0.105	9.107
267	Other household and	2	0.105	0.006	0	0.005	0	0.021
367	institutional furniture	2	0.105	0.026	0	0.005	0	0.031
369	Custom architectural woodwork and millwork	14	2.175	0.422	0.004	0.266	0.009	0.7
309	Showcases, partitions,	14	2.173	0.422	0.004	0.200	0.009	0.7
371	shelving, and lockers	164	13.224	4.476	0.033	1.798	0.068	6.375
371	Mattress manufacturing	86	11.82	2.756	0.033	1.46	0.056	4.285
312	Blind and shade	00	11.62	2.730	0.013	1.40	0.030	4.203
373	manufacturing	223	21.537	5.729	0.063	2.871	0.104	8.767
313	Laboratory apparatus and	223	21.331	3.12)	0.003	2.071	0.104	0.707
374	furniture manufacturing	14	1.637	0.222	0.02	0.018	0.006	0.266
	Surgical and medical			-		,,,,,,		
	instrument							
375	manufacturing	155	30.706	8.032	0.958	6.637	0.231	15.857
	Surgical appliance and							
376	supplies manufacturing	1,449	358.673	87.722	7.032	90.089	3.081	187.925
	Ophthalmic goods							_
378	manufacturing	51	4.591	1.448	0.17	0.95	0.033	2.6
379	Dental laboratories	86	4.669	2.352	0.235	0.234	0.033	2.853
380	Jewelry and silverware	1,969	283.614	52.606	8.427	15.101	2.143	78.277

			Millions of dollars						
IMPLAN modeling code	Industry	Employment	Industry Output	Employee Compensation	Proprietor Income	Other Property Income	Indirect Business Tax	Total Value Added	
	manufacturing								
	Sporting and athletic								
381	goods manufacturing	88	14.306	2.859	0.381	0.809	0.277	4.326	
	Doll, toy, and game								
382	manufacturing	77	6.261	2.162	0.27	0.977	0.069	3.478	
202	Office supplies, except	0	0.640	0.101	0.017	0.154	0.007	0.260	
383	paper, manufacturing	9	0.649	0.191	0.017	0.154	0.007	0.369	
384	Sign manufacturing	319	34.573	8.216	0.756	1.024	0.289	10.284	
	Gasket, packing, and								
385	sealing device manufacturing	248	25.926	5.943	0.429	2.701	0.122	0.105	
363	Musical instrument	240	23.920	3.943	0.429	2.701	0.122	9.195	
386	manufacturing	50	4.174	1.17	0.12	0.29	0.041	1.621	
	Buttons, pins, and all			3,3,		**->	0.00.2		
	other miscellaneous								
389	manufacturing	166	16.379	3.444	0.384	1.751	0.135	5.714	
390	Wholesale trade	29,741	5,433.95	1,955.68	138.583	518.513	1,057.03	3,669.81	
391	Air transportation	698	138.136	47.058	0.735	1.929	7.781	57.503	
393	Water transportation	10	5.791	0.494	0.064	0.344	0.148	1.05	
394	Truck transportation	3,744	444.358	121.265	10.012	73.653	4.219	209.149	
374	Transit and ground	3,744	111.550	121.203	10.012	73.033	7.21)	207.147	
395	passenger transportation	4,189	157.974	54.323	30.098	3.099	7.918	95.438	
396	Pipeline transportation	99	62.303	14.164	11.179	-2.005	3.356	26.694	
	Scenic and sightseeing								
	transportation and								
397	support	795	80.46	31.982	4.81	4.714	2.359	43.865	
398	Postal service	2,553	190.265	156.712	0	-5.093	0	151.618	
399	Couriers and messengers	3,125	213.471	70.884	6.781	38.251	0.754	116.67	
400	Warehousing and storage	313	21.752	11.745	1.097	3.031	0.727	16.6	
	Motor vehicle and parts								
401	dealers	10,217	929.565	415.922	73.885	30.602	92.222	612.631	
	Furniture and home		.				20 ===	. مد مد د	
402	furnishings stores	4,011	267.68	113.695	6.096	19.357	30.736	169.884	
	Electronics and appliance								
403	stores	3,086	184.826	116.497	25.204	-10.136	13.106	144.671	
	Building material and								
404	garden supply stores	6,584	427.778	191.267	8.838	38.126	53.712	291.945	
405	Food and beverage stores	15,355	796.195	311.84	39.682	37.126	80.841	469.489	
10.5	Health and personal care	2.20.	15111	01.01.5	4.001	11.515	10.401	114 400	
406	stores	3,204	154.446	81.215	4.231	11.515	17.471	114.433	
407	Gasoline stations	4,739	283.068	97.844	25.114	3.669	33.18	159.808	
408	Clothing and clothing accessories stores	7,141	300.752	123.653	10.057	23.805	37.848	195.362	
	Sporting goods, hobby,	,		_		<u>-</u>			
409	book and music stores	3,730	167.86	57.555	7.845	8.38	16.019	89.8	
410	General merchandise stores	8,905	394.801	192.765	1.778	33.241	44.041	271.824	
	Miscellaneous store								
411	retailers	7,728	356.231	107.128	20.731	4.634	23.997	156.49	

					Millions of	dollars		
IMPLAN	T., 1	F 1	T 1 4	Б. 1		Other	Indirect	Total
modeling code	Industry	Employment	Industry Output	Employee Compensation	Proprietor Income	Property	Business	Value
code			Output	Compensation	lifcome	Income	Tax	Added
412	Nonstore retailers	8,780	290.181	61.149	33.301	5.384	33.348	133.181
413	Newspaper publishers	1,869	203.308	72.267	16.397	38.775	1.9	129.338
414	Periodical publishers	535	91.294	26.338	5.314	20.664	0.822	53.138
415	Book publishers	847	232.097	45.867	9.697	51.321	2.202	109.087
	Database, directory, and							
416	other publishers	170	37.866	6.236	1.311	14.645	0.367	22.559
417	Software publishers	5,987	1,501.98	513.248	155.685	374.342	16.892	1,060.17
410	Motion picture and video	1.000	117 455	21 104	6.006	7.006	2.071	40.407
418	industries Sound recording	1,009	117.455	31.194	6.986	7.336	2.971	48.487
419	industries	608	156.399	27.202	5.387	63.747	1.35	97.685
	Radio and television							7.11000
420	broadcasting	1,815	282.383	80.426	18.224	-5.088	1.753	95.315
401	Cable networks and	1 100	500.026	27.750	7.500	100 145	144	160.002
421	program distribution	1,102	589.926	37.759	7.588	109.145	14.4	168.893
422	Telecommunications	7,816	1,932.19	455.795	100.419	430.051	202.727	1,188.99
423	Information services	1,299	188.783	82.329	22.033	23.518	3.28	131.16
424	Data processing services	2,660	361.414	157.444	34.919	55.497	4.015	251.874
	Nondepository credit intermediation and							
425	related activities	4,854	654.309	252.379	15.309	212.989	37.056	517.734
123	Securities, commodity	4,034	054.507	232.317	13.307	212.707	37.030	317.734
426	contracts, investments	12,528	973.68	304.792	268.272	-34.635	22.445	560.873
427	Insurance carriers	7,350	1,287.35	355.201	33.674	21.868	65.991	476.734
	Insurance agencies,							
428	brokerages, and related	7,143	661.255	294.597	26.237	248.441	3.984	573.26
429	Funds, trusts, and other financial vehicles	995	257.79	16.272	2.881	-0.326	3.116	21.943
423	Monetary authorities and	773	231.19	10.272	2.001	-0.320	3.110	21.943
	depository credit							
430	intermediary	6,790	1,276.05	250.988	15.098	583.997	19.894	869.977
431	Real estate	31,266	4,659.99	333.472	212.543	2,099.52	603.103	3,248.64
400	Automotive equipment	4.000	121010	27 -12	2 004	7 0.004		0 < 200
432	rental and leasing	1,233	134.048	27.612	3.901	58.094	6.791	96.398
433	Video tape and disc rental	833	38.963	10.353	1.474	11.578	3.003	26.409
433	Machinery and	033	30.703	10.333	1.7/7	11.570	3.003	20.407
	equipment rental and							
434	leasing	710	162.119	21.627	3.042	77.148	5.342	107.158
	General and consumer							
435	goods rental except video rentals	1,682	102.858	51.229	7.362	29.676	2.531	90.798
733	Lessors of nonfinancial	1,002	102.030	31.229	1.302	27.070	1,5,5	70.170
436	intangible assets	145	594.271	7.174	0.348	484.563	53.691	545.776
437	Legal services	10,132	1,127.62	513.647	118.64	216.812	6.499	855.599
	Accounting and							· · · · · · · · · · · · · · · · · · ·
438	bookkeeping services	4,127	253.443	145.679	33.634	32.049	1.602	212.964
439	Architectural and engineering services	15,050	1,303.78	625.592	150.007	188.355	8.461	972.416
	Specialized design							
440	specialized design	818	90.225	27.336	6.284	22.606	1.577	57.803

			Millions of dollars					
IMPLAN		-				Other	Indirect	Total
modeling	Industry	Employment	Industry	Employee	Proprietor	Property	Business	Value
code			Output	Compensation	Income	Income	Tax	Added
	services					mcome	Tax	Auueu
	Custom computer							
441	programming services	24,243	2,004.29	1,536.74	367.4	-122.965	11.335	1,792.51
771	Computer systems design	24,243	2,004.27	1,550.74	307.4	122.703	11.555	1,772.31
442	services	4,463	530.019	286.339	71.588	-54.372	12.491	316.046
	Other computer related	.,	000.019	200.007	71.000	0	12,1	010.0.0
	services, including							
	computer facilities							
443	management	1,312	143.979	75.172	18.111	29.834	1.41	124.526
	Management consulting							
444	services	5,081	477.538	246.894	59.209	92.302	2.88	401.285
	Environmental and other							
445	technical consulting	1,678	186.571	63.89	14.509	59.663	0.892	138.954
	Scientific research and			_				
446	development services	5,830	370.536	275.003	65.917	-37.966	2.438	305.392
	Advertising and related	=	451 510	102 200	4=-	01.200		222 12=
447	services	4,415	451.718	192.398	44.657	81.388	5.043	323.487
448	Photographic services	536	28.524	7.218	1.611	8.563	1.214	18.606
449	Veterinary services	1,653	84.42	30.264	6.924	0.071	2.654	39.914
	All other miscellaneous							
	professional and							
450	technical	1,840	215.637	41.341	9.471	126.126	2.48	179.418
	Management of							
	companies and							
451	enterprises	2,279	179.248	89.625	21.706	7.039	3.294	121.664
150	Office administrative	2.105	50 5 50	150 140	20.070	00.070	4 615	252 515
452	services	3,187	506.53	150.142	20.079	98.878	4.615	273.715
152	Facilities support	1 407	104 450	52.012	7 751	20.706	0.205	00.057
453	services	1,407	124.458	53.012	7.754	29.796	0.395	90.957
454	Employment services	17,631	470.084	347.444	47.089	10.479	2.199	407.211
455	Business support services	9,939	626.651	274.046	37.258	164.932	13.383	489.619
	Travel arrangement and							
456	reservation services	1,546	106.168	36.903	4.813	9.147	1.622	52.485
,	Investigation and security	2.22	105.507	0.1.5=	44.040	10.7	2.22	116 106
457	services	3,936	137.784	84.57	11.043	18.566	2.23	116.409
150	Services to buildings and	0.701	207 576	172 776	22.712	27 622	1 206	220 517
458	dwellings	9,721	327.576	173.776	22.712	27.633	4.396	228.517
459	Other support services	1,108	150.003	38.178	4.809	51.333	1.831	96.151
4.00	Waste management and	055	150.070	47.110	0.07	00.074	7 222	07.101
460	remediation services	955	152.073	47.113	9.87	22.976	7.222	87.181
461	Elementary and	1 450	10 00	20.710	1 202	0.005	0	20.027
401	secondary schools Colleges, universities,	1,459	48.82	29.719	1.203	-0.985	0	29.937
462	and junior colleges	2,166	68.814	35.161	1.666	-2.279	0	34.547
+04	Other educational	2,100	00.014	33.101	1.000	-4.413	U	J4.J4/
463	services	5,924	273.872	115.473	4.25	61.686	3.108	184.517
103	Home health care	5,72-	_13.012	113.473	1.23	01.000	5.100	101.017
464	services	7,013	227.113	91.963	16.098	-1.066	0.683	107.678
	Offices of physicians,	.,	,,,,,	, , 30	2.2,0			
	dentists, and other							
465	healthcare	16,782	1,557.62	822.568	145.47	201.126	8.804	1,177.97

					Millions of	dollars		
IMPLAN				I		Other	Indirect	Total
modeling	Industry	Employment	Industry	Employee	Proprietor	Property	Business	Value
code			Output	Compensation	Income	Income	Tax	Added
	Other ambulatory health							
466	care services	3,024	465.983	116.536	20.346	30.38	3.294	170.555
467	Hospitals	11,682	1,384.94	522.654	89.919	4.35	5.469	622.392
	Nursing and residential							
468	care facilities	9,288	369.082	214.692	13.155	7.157	2.823	237.826
469	Child day care services	5,660	186.158	60.214	5.917	27.988	1.719	95.838
	Social assistance, except							
470	child day care service	7,164	177.284	112.74	11.164	-7.487	0.895	117.312
471	Performing arts	5 275	77.045	22.02	10.000	5 1 1	2.700	42 21 4
471	companies	5,275	77.945	33.83	10.888	-5.11	2.708	42.314
472	Spectator sports	752	5.52	4.07	1.563	-1.609	0.595	4.618
4772	Independent artists,	1.055	02.625	17.062	6 202	4.541	0.700	20.212
473	writers, and performers Promoters of performing	1,055	83.635	17.862	6.202	4.541	0.708	29.313
474	arts and sports and agents	950	30.064	9.462	3.087	4.262	1.233	18.044
	Museums, historical	750	30.004	7.402	3.007	4.202	1.233	10.044
475	sites, zoos, and parks	479	27.685	6.501	0.048	-0.144	0.234	6.64
	Fitness and recreational							
476	sports centers	3,053	39.956	30.129	10.445	-6.423	1.737	35.889
477	Bowling centers	370	6.344	3.288	1.137	0.399	0.399	5.223
	Other amusement,							
	gambling, and recreation							
478	industry	5,266	221.303	59.387	21.386	42.887	11.729	135.389
450	Hotels and motels,		204.022	101 102	***		2	212 100
479	including casino hotels	5,239	301.033	101.482	29.829	55.19	26.687	213.188
480	Other accommodations	1,233	168.849	18.224	4.488	26.387	5.276	54.375
401	Food services and	56 104	2 200 21	761 905	262.250	0.227	140.626	1 156 65
481	drinking places	56,194	2,298.21	761.895	263.359	-9.237	140.636	1,156.65
482	Car washes	1,048	41.336	11.415	3.718	12.887	1.278	29.298
	Automotive repair and maintenance, except car							
483	wash	11,164	1,671.39	268.165	90.187	391.921	72.086	822.359
103	Electronic equipment	11,101	1,071.57	200.103	70.107	371.721	72.000	022.337
484	repair and maintenance	1,622	196.685	58.831	20.241	28.9	3.729	111.701
	Commercial machinery							
485	repair and maintenance	1,778	168.122	48.224	16.215	36.34	3.042	103.821
10.5	Household goods repair		04.455	44.05.	2052			20.024
486	and maintenance	720	81.457	11.256	3.952	23.252	1.474	39.934
487	Personal care services	3,077	147.3	50.911	10.829	31.067	2.893	95.7
488	Death care services	704	42.985	13.999	2.888	7.295	1.652	25.834
	Dry-cleaning and laundry							
489	services	3,067	139.467	53.953	10.891	23.433	4.63	92.906
490	Other personal services	1,686	176.584	29.953	6.147	60.875	4.039	101.014
491	Religious organizations	382	44.81	28.399	0	0	0	28.399
	Grant making and giving							
400	and social advocacy	5.071	104.000	20.042	_		0.112	20.155
492	organizations Civic, social,	5,071	124.338	39.043	0	0	0.113	39.156
	professional and similar							
493	organizations	11,790	361.835	163.887	0	0	0.714	164.601
		, , , , , ,			·			

IMDI ANI	Industry		Millions of dollars					
IMPLAN modeling code		Employment	Industry Output	Employee Compensation	Proprietor Income	Other Property Income	Indirect Business Tax	Total Value Added
494	Private households	8,486	85.716	66.688	0	19.028	0	85.716
495	Federal electric utilities	0	0	0	0	0	0	0
496	Other Federal Government enterprises	103	8.664	7.986	0	-0.283	0	7.703
497	State and local government passenger transit	752	67.425	33.026	0	-27.335	0	5.692
498	State and local government electric utilities	2,484	1,110.86	161.637	0	463.838	45.144	670.618
499	Other State and local government enterprises	2,129	295.214	94.138	0	60.698	0.598	155.434
503	State & Local Education	34,407	1,625.30	1,419.64	0	205.66	0	1,625.30
504	State & Local Non- Education	85,200	3,921.24	3,342.56	0	578.684	0	3,921.24
505	Federal Military	3,212	80.291	68.455	0	11.836	0	80.291
506	Federal Non-Military	11,225	721.553	615.155	0	106.398	0	721.553
508	Inventory valuation adjustment	0	11.749	0	0	11.934	0	11.934
509	Owner-occupied dwellings	0	2,892.04	0	0	1,802.80	443.957	2,246.76
	Totals	875,818	86,477.33	30,454.95	4,633.24	14,304.03	3,994.27	53,386.49

*Source: LCRA Community and Economic Development, IMPLAN 2004 - base year 2001, data is for the 14 Region K counties (includes all of Hays, Williamson, and Wharton Counties).

TABLE OF CONTENTS – CHAPTER TWO

CHAPTER 2.0: POPULATION PROJECTIONS AND WATER DEMAND PROJECTIONS	1
2.1 TWDB GUIDELINES FOR REVISIONS TO POPULATION AND WATER DEMAND	
PROJECTIONS	1
2.2 POPULATION PROJECTIONS	2
2.2.1 Methodology	2
2.2.2 Regional Population Projections	4
2.3 WATER DEMAND PROJECTIONS	6
2.3.1 Municipal Water Demand Projections	7
2.3.1.1 Methodology	7
2.3.1.2 Regional Municipal Water Demand Projections	8
2.3.2 Manufacturing Water Demand Projections	10
2.3.2.1 Methodology	
2.3.2.2 Regional Manufacturing Water Demand Projections	10
2.3.3 Irrigation Water Demand Projections	12
2.3.3.1 Methodology	12
2.3.3.2 Regional Irrigation Water Demand Projections	12
2.3.4 Steam-Electric Water Demand Projections	14
2.3.4.1 Methodology	14
2.3.4.2 Regional Steam-Electric Water Demand Projections	14
2.3.5 Mining Water Demand Projections	
2.3.5.1 Methodology	16
2.3.5.2 Regional Mining Water Demand Projections	16
2.3.6 Livestock Water Demand Projections	18
2.3.6.1 Methodology	18
2.3.6.2 Regional Livestock Water Demand Projections	
2.4 ENVIRONMENTAL WATER DEMANDS	
2.4.1 The Story/History of Matagorda Bay '''	
2.4.2 Current Instream Flow Requirements for the Colorado River	27
2.4.3 Current Bay and Estuary Requirements	29
2.4.4 Current Ongoing Environmental Flow Projects and Studies	
2.5 WHOLESALE WATER PROVIDERS	32
2.5.1 City of Austin	
2.5.2 Lower Colorado River Authority	34
LIST OF FIGURES	
Figure 2.1: Lower Colorado Region Population Projections	4
Figure 2.2: Lower Colorado Region Total Water Demand Projections	6
Figure 2.3: Total Water Demand by Type of Use	
Figure 2.4: Lower Colorado Region Municipal Water Demand Projections	
Figure 2.5: Lower Colorado Region Manufacturing Water Demand Projections	
Figure 2.6: Lower Colorado Region Irrigation Water Demand Projections	
Figure 2.7: Lower Colorado Region Steam Electric Water Demand Projections	
Figure 2.8: Lower Colorado Region Mining Water Demand Projections	
Figure 2.9: Lower Colorado Region Livestock Water Demand Projections	

Figure 2.10: Matagorda Bay in 1705	22
Figure 2.11: Austin's Colony and Matagorda Bay	
Figure 2.12: Development of Colorado River Delta	
Figure 2.13: Mouth of the Colorado River, Matagorda Texas	
Figure 2.14: Colorado River Diversion Channel and Navigation Channel	
<i>G</i>	
LIST OF TABLES	
Table 2.1 Population and Water Demand Projections for the Lower Colorado Region	
Table 2.2 Population Projection by County	
Table 2.3 Population Projection by River Basin	
Table 2.4 Municipal Water Demand Projections by County (ac-ft/yr)	
Table 2.5 Municipal Water Demand Projections by River Basin (ac-ft/yr)	
Table 2.6 Manufacturing Water Demand Projections by County (ac-ft/yr)	
Table 2.7 Manufacturing Water Demand Projections by River Basin (ac-ft/yr)	
Table 2.8 Irrigation Water Demand Projections by County (ac-ft/yr)	13
Table 2.9 Irrigation Water Demand Projections by River Basin (ac-ft/yr)	
Table 2.10 Steam-Electric Water Demand Projections by County (ac-ft/yr)	15
Table 2.11 Steam-Electric Water Demand Projections by River Basin (ac-ft/yr)	16
Table 2.12 Mining Water Demand Projections by County	17
Table 2.13 Mining Water Demand Projections by River Basin (ac-ft/yr)	18
Table 2.14 Livestock Water Demand Projections by County (ac-ft/yr)	
Table 2.15 Livestock Water Demand Projections by River Basin (ac-ft/yr)	20
Table 2.16 Instream Flow Requirements for the Colorado River	
Table 2.17 Colorado River Critical and Target Freshwater Inflow Needs for the Matagorda Bay S	
	30
Table 2.18 Projected Municipal and Manufacturing Water Demands for City of Austin service are	ea (ac-
ft/yr)	
Table 2.19 Projected Steam-Electric Water Demands for City of Austin service area (ac-ft/yr)	
Table 2.20 LCRA Water Commitment Summary (ac-ft/yr)	35
APPENDICES	
APPENDIX 2A: LCRWPG Population & Water Demand Projections	
APPENDIX 2B: LCRWPG Population & Water Demand Comparison (2006 Plan versus 2011 Pl	an)
APPENDIX 2C: LCRWPG Gallons per Capita Day (gpcd)	
APPENDIX 2D: Resolution by the Lower Colorado Regional Water Planning Group Regarding	
Population Projections for the 2011 Regional Water Planning Cycle	

CHAPTER 2.0: POPULATION PROJECTIONS AND WATER DEMAND PROJECTIONS

A key task in the preparation of the regional water plan for the Lower Colorado Regional Water Planning Area (Region K) is to estimate current and future water demands within the region. In subsequent chapters of this plan, these projections are compared with estimates of currently available water supplies to identify the location, extent, and timing of future water shortages.

Table 2.1 below is a summary of regional population and water demand projections for Region K.

2010 2020 2030 2040 2050 2060 **Regional Projections** 2000 **POPULATION** 1,132,228 1,412,834 1,714,282 2,008,142 2,295,627 2,580,533 2,831,937 Municipal Water Demand (ac-ft/yr) 213,303 268,643 321,972 373,430 423,051 472,778 516,348 Manufacturing Water Demand (ac-ft/yr) 28,887 38,162 44,916 56,233 69,264 77,374 85,698 620,930 589,705 567,272 545,634 524,809 504,695 Irrigation Water Demand (ac-ft/yr) 468,763 Steam-Electric Water Demand (ac-ft/yr) 103,875 201,353 210,713 263,715 270,732 146,167 258,126 Mining Water Demand (ac-ft/yr) 23,945 30,620 31,252 31,613 26,964 27,304 27,598 Livestock Water Demand (ac-ft/yr) 13,395 13,395 13,395 13,395 13,395 13,395 13,395 TOTAL WATER DEMAND 1,004,335 1,086,692 1,180,160 1,231,018 1,315,609 1,359,261 1,382,534

Table 2.1 Population and Water Demand Projections for the Lower Colorado Region

As indicated, the population in Region K is projected to more than double over the next 60 years. This projected increase in population is the principal "driver" underlying the projected increase in total water demand from approximately 1,004,000 acre-feet (ac-ft) in the year 2000 to 1,383,000 ac-ft in the year 2060.

The following sections of this chapter describe the methodology used to develop regional population and water demand projections. This chapter also presents projections of population and water demand for cities, wholesale water providers of municipal and manufacturing water, and for categories of water use including municipal, manufacturing, irrigation, steam-electric power generation, mining, and livestock watering. Projected demands are also provided for each of the four river basins and two coastal basins that are partially located within Region K.

2.1 TWDB GUIDELINES FOR REVISIONS TO POPULATION AND WATER DEMAND PROJECTIONS

A memo from the Texas Water Development Board (TWDB), dated December 2, 2008, provided guidance on and discussed the process of determining whether or not changed conditions in a regional planning area warranted revisions to the population and water demand projections as part of the 2007-2012 Regional Water Planning Cycle. The memo also described the steps a regional planning area must take if it determined revisions were warranted. TWDB agreed that growth in Region K exceeded the projected growth in the 2006 Region K Water Plan, thus warranting revisions to the population and water demand projections. Desired revisions to the population and water demand projections must be determined by Region K and submitted as a request for approval to TWDB. Once submitted to TWDB, the projections are to be reviewed by the Texas Commission on Environmental Quality (TCEQ), Texas

Parks and Wildlife Department (TPWD), and the Texas Department of Agriculture (TDA) prior to being approved.

The Region K Population and Water Demand Committee was initially organized at the January 14, 2009, Region K meeting. The committee's purpose and primary objective was to review all population and water demand projections in the 2006 Region K Water Plan and recommend any appropriate changes. The committee reviewed the various water use categories and recommended that only the municipal and steam-electric use projections be revised. The committee recommended that the projections for the other categories (irrigation, livestock, manufacturing, and mining) remain the same as identified in the 2006 Region K Water Plan.

TWDB rules require that an analysis of current and future water demands be performed for each WUG within Region K. To be considered a WUG within the municipal category, one of the following must apply.

- Each city with a population of 500 or more
- Individual utilities providing more than 280 acre feet per year (ac-ft/yr) of water for municipal use (for counties having four or less of these utilities)
- Collective Reporting Units (CRUs) consisting of grouped utilities having a common association

All smaller communities and rural areas, aggregated at the county level, are considered a WUG and are referred to as "County-Other" for each county. Additionally, for each county, the categories of manufacturing, irrigation, steam-electric power generation, mining, and livestock water use are each considered a WUG. Furthermore, TWDB rules require the determination of demands associated with each of the wholesale water providers designated by the Regional Water Planning Group (RWPG). There are currently two wholesale water providers in Region K: Lower Colorado River Authority (LCRA) and the City of Austin (COA).

2.2 POPULATION PROJECTIONS

The population and water demand projections presented in this chapter were developed by revising the 2006 Region K Water Plan projections to reflect more current information, in accordance with TWDB guidelines. This section describes the methodology applied by the planning group to develop the TWDB-approved population projections for Region K.

2.2.1 Methodology

Municipal water demand projections are calculated as the product of three variables: current and projected population, per capita water use rates, and assumptions regarding the effects of certain water conservation measures.

The following describes the procedures followed in the development of the population projections presented in this chapter:

Region K appointed a Population and Water Demand Committee to review the population projections in the 2006 Regional Plan, evaluate the latest available data, studies and information on population for the Region K area and to recommend any appropriate changes. The committee reviewed information from the

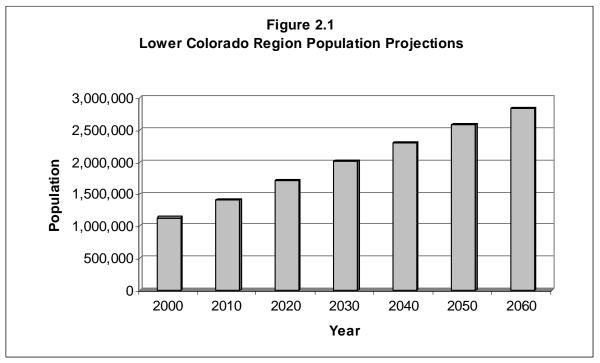
LCRA's Water Supply Resource Plan (WSRP) planning effort and the data from 2006 Region K Plan, Texas State Data Center (TSDC), U. S. Census Bureau, the State Demographer, Capitol Area Planning Council of Governments (CAPCOG), Houston-Galveston Area Council (H-GAC), and other specific data that counties had on county population changes . Each county in Region K was evaluated separately and the committee used, on a near-term projection basis (2010-2040), the population projections that best correlated with data from the U. S. Census Bureau and/or substantiated county data. The committee extended the projections from 2040 to 2060 using the TSDC's half migration rate for 1990-2000.

The revised county population totals were distributed by Region K among the individual water user groups (WUGs) in the region. The TSDC provided population data from January 2007 for the cities in Region K. This data was extrapolated to determine the 2010 population projection. If the extrapolated population was less than the 2010 projection in the 2006 Region K Water Plan, in most cases the 2006 Region K Water Plan projection was not changed. After the cities were adjusted, the remaining increased county population was distributed proportionally to the non-city WUGs.

Region K has two new WUGs for this round of planning which are The Village of San Leanna in Travis County and East Bernard in Wharton County. Anderson Mill MUD in Travis County and Williamson County has been annexed by the City of Austin, and is no longer considered a separate WUG.

Upon review, the TWDB staff informed Region K that its initially submitted planning group projections were too high. Subsequently, Region K revised their originally requested population projections based on the TWDB's recommended regional totals as well as certain county totals. For Blanco County, Matagorda County, San Saba County, and Wharton County, TWDB staff stated that their analysis indicated the counties were currently over-projected according to data from the Texas State Data Center and that population increases could therefore not be justified for these counties. In general, Region K reluctantly agreed to reduce those counties back to their original 2006 Plan projections.

Because the recommended regional totals from TWDB staff were based on increases to cities only and not to non-city WUGs, the general methodology for revising the remaining counties (that Region K had originally requested increases for) was to decrease the decadal rates of growth for the cities within each county to allow a portion of the population to be distributed to some of the non-city WUGs. Two WUGs, Travis County WCID #17 (Travis County) and Cottonwood Shores (Burnet County), provided comments containing projection data which Region K used as guidance for their revised population projections.


The Region K planning group was disappointed with the TWDB staff recommended population projections and adopted a Resolution regarding the issue on June 10, 2009. The Resolution was included with Region K's revised population and water demand submittal to the TWDB on June 26, 2009. A copy of the Resolution is located in *Appendix 2D*. In order to prepare for future population projection increases, the Region K planning group will consider adding alternative strategies in the 2011 Region K Water Plan that will cover the demand differences between the planning group's originally requested (higher) projections and the reduced projections the TWDB staff recommended revisions created. The TWDB Board adopted Region K's revised population and water demand projections for municipal and steam electric in August and November 2009.

These population projections are summarized in the following section.

2.2.2 Regional Population Projections

Projections of population growth for Region K indicate more than a doubling of the region's population from approximately 1.1 million in 2000 to 2.8 million in the year 2060 (*Figure 2.1*). *Table 2.2* presents these projections by county for each decade from 2000 through 2060. Each of the 14 counties in the region are projected to grow over the planning period, with Travis County continuing to account for nearly 75 percent of the total population for the region, as shown in *Table 2.2*.

Figure 2.1: Lower Colorado Region Population Projections

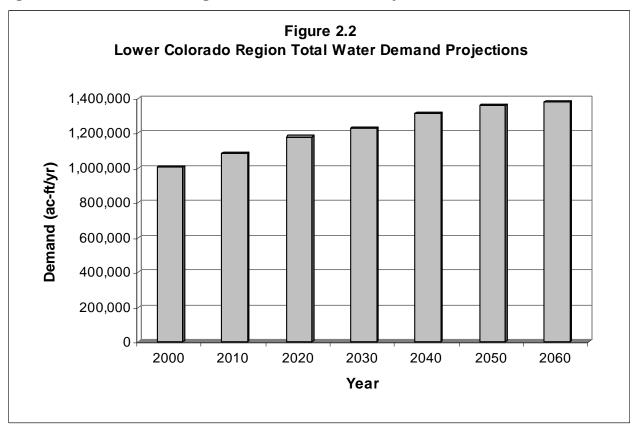
2000 2010 2020 2030 2040 2050 2060 County 57,733 84,449 120,740 151,364 199,548 239,588 288,683 Bastrop Blanco 9,946 11,756 13,487 15,002 18,544 8,418 16,641 Burnet 34,147 47,160 61,191 78,133 94,716 105,095 115,056 Colorado 20,390 21,239 22,591 23,311 23,424 23,900 24,324 Favette 21,804 24,826 28,808 32,363 35,259 38,933 44,120 Gillespie 20,814 25,258 29,117 30,861 30,861 30,861 30,861 Hays (p) 25,090 46,143 69,377 88,887 108,495 132,051 150,574 Llano 17,044 21,284 23,007 23,471 23,932 24,393 24,855 Matagorda 37,957 40,506 43,295 44,991 45,925 45,925 45,925 Mills 5,930 5,151 5,466 5,815 6,107 6,329 6,497 7,059 7,409 San Saba 6,387 6,746 7,332 6,186 7,365 Travis 1,918,135 812,280 1,003,253 1,201,256 | 1,402,153 1,583,068 1,770,347 Wharton (p) 26,721 28,260 29,872 30,912 31,508 31,523 31,188 Williamson (p) 107,582 38,493 48,657 60,711 75,043 90,627 125,766 TOTAL 1,132,228 | 1,412,834 | 1,714,282 2,008,142 2,295,627 2,580,533 2,831,937

Table 2.2 Population Projection by County

As discussed in Chapter 1, Region K covers a portion of four major river basins and two coastal basins. Of these, the Colorado River Basin is projected to contain approximately 91 percent of the region's population in the year 2060. *Table 2.3* presents the population projections by river basin for Region K.

River Basin	2000	2010	2020	2030	2040	2050	2060
Brazos	46,602	59,230	73,975	91,579	110,338	129,520	149,742
Brazos-Colorado	45,827	49,560	52,736	54,698	55,763	55,828	55,649
Colorado	1,011,523	1,273,597	1,554,282	1,826,196	2,091,913	2,355,744	2,584,855
Colorado-Lavaca	12,525	13,035	13,908	14,443	14,739	14,741	14,716
Guadalupe	5,610	7,065	8,470	9,801	11,050	12,318	13,817
Lavaca	10,141	10,346	10,911	11,425	11,824	12,382	13,158
TOTAL	1,132,228	1,412,833	1,714,282	2,008,142	2,295,627	2,580,533	2,831,937

The complete population projections for Region K by water user group are provided in *Appendix 2A*. *Appendix 2B* provides a comparison of the 2006 Region K Water Plan population projections versus the 2011 projections (the projections presented in this report). *Appendix 2C* provides the gallons per capita per day (gpcd) for each WUG.


⁽p) Denotes that only the portion of the county in Region K is considered.

^{*} Population projections by city, county, and portion of a river basin within a county for each of the 14 counties in the Lower Colorado Region are provided in *Appendix 2A*.

2.3 WATER DEMAND PROJECTIONS

Total water demand for Region K is projected to increase by approximately 378,000 ac-ft from the year 2000 to the year 2060. This increase (approximately 38 percent) is less than the percent increase in population due to a projected decrease in irrigation water demand countering the increase in municipal, manufacturing, and steam-electric water demands. The following figures (*Figures 2.2* and *2.3*) show the relative portion of projected water demand by type of use for the year 2000 through the year 2060.

Figure 2.2: Lower Colorado Region Total Water Demand Projections

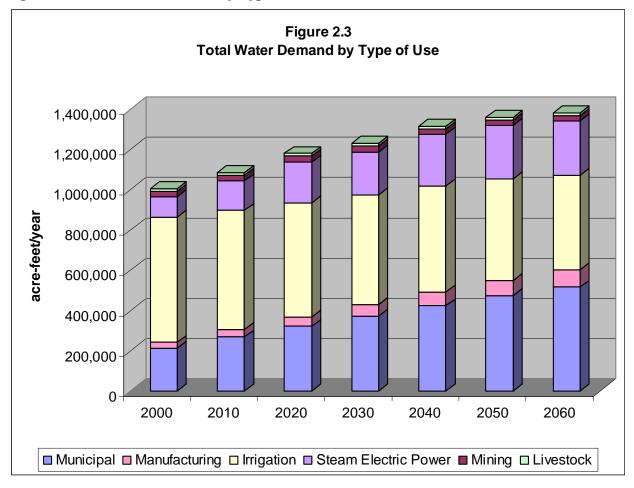


Figure 2.3: Total Water Demand by Type of Use

2.3.1 Municipal Water Demand Projections

2.3.1.1 Methodology

As with the population projections, the planning group generated the proposed municipal water demand projections by starting with the 2006 Region K Water Plan projections and making updates on the basis of better, more current information. The following procedure describes the methodology used for generating these projections:

1. *Identify TWDB Projected Per Capita Use Rate:* After population, the second key variable in the TWDB's municipal water demand projections is per capita use, expressed as gallons of water used per person per day (gpcd). The GPCD numbers used to calculate the municipal demands were not changed from the ones used in the 2006 Region K Water Plan. Therefore, for the majority of the WUGs, the changes in municipal demand are directly correlated to the changes in population. There is one exception to this general statement which impacts three County-Other WUG totals in this submittal.

LCRA performed a detailed study during the last regional water planning cycle that estimated domestic use around the Highland Lakes that is not accounted for within any WUG. This previously unaccounted domestic use is generated by direct pumpage from the Highland Lakes to individual properties by individual property owners primarily for landscape irrigation. The regional planning group discussed the inclusion of this additional Highland Lake domestic use in their water demand request and approved the inclusion at the May 5, 2009 Region K meeting. The information provided by LCRA showed an annual demand per lake, with a total current demand of approximately 5,000 acft. A total increase of 1,000 ac-ft per decade was anticipated for this additional domestic use. The total usage per lake was allocated by county for those lakes that have shorelines in more than one county. The allocations were made based on the approximate percentage of shoreline in each county.

Three counties (Burnet County, Llano County, and Travis County) are affected by this unaccounted for domestic use. Because these demands cannot be attributed to a specific municipality or utility, it was determined that County-Other would be the appropriate WUG category to use for these demands; therefore, the respective amounts have been added to the County-Other WUG demands in Burnet County, Llano County, and Travis County, with a note included which describes the amounts attributed to the unaccounted domestic lake use.

2. **Municipal Water Demand:** The municipal water demand projections are the product of the proposed population projections and the proposed per capita usage projections described above. These projections were approved by the TWDB for use in the 2011 Region K Water Plan and are presented for each municipal WUG by county, river basin, and decade in *Appendix 2A*.

2.3.1.2 Regional Municipal Water Demand Projections

Municipal water demand for Region K is projected to increase by approximately 303,000 ac-ft/yr from 2000 through 2060. While this is a significant increase in municipal water use over that time period, this increase (approximately 142 percent) is less than the increase in population over the same period (approximately 150 percent). This is due to projected reductions in per capita water use associated with the adoption of various water conservation measures. *Figure 2.4* presents the total municipal water demand projections, and *Table 2.4* presents the projected municipal water demand by county for each of the 14 counties in Region K.

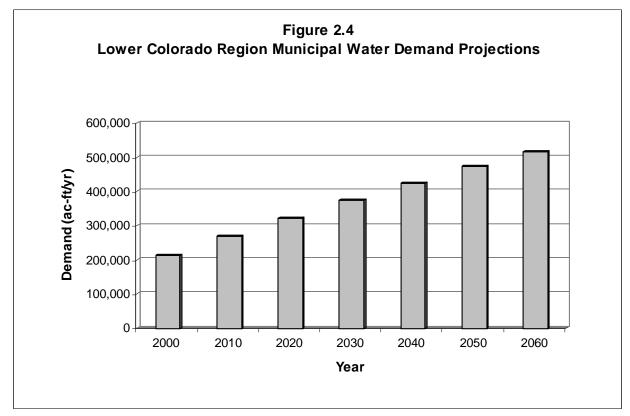


Figure 2.4: Lower Colorado Region Municipal Water Demand Projections

Table 2.4 Municipal Water Demand Projections by County (ac-ft/yr)

County	2000	2010	2020	2030	2040	2050	2060
Bastrop	9,315	13,275	18,620	22,964	30,040	35,860	43,208
Blanco	1,205	1,467	1,712	1,947	2,143	2,360	2,626
Burnet	5,752	8,990	11,437	14,166	16,867	18,626	20,550
Colorado	3,100	3,155	3,292	3,328	3,259	3,320	3,409
Fayette	3,522	3,890	4,417	4,879	5,244	5,751	6,495
Gillespie	3,921	4,749	5,398	5,646	5,576	5,541	5,541
Hays (p)	3,955	7,202	10,656	13,446	16,266	19,742	22,498
Llano	4,042	5,722	6,235	6,446	6,647	6,875	7,139
Matagorda	5,423	5,590	5,830	5,906	5,883	5,831	5,831
Mills	992	1010	1070	1093	1053	1086	1104
San Saba	1,296	1,299	1,316	1,328	1,339	1,331	1,336
Travis	160,151	199,677	237,014	274,610	308,229	342,865	369,723
Wharton (p)	3,680	3,776	3,880	3,910	3,880	3,847	3,806
Williamson (p)	6,949	8,841	11,095	13,761	16,625	19,743	23,082
TOTAL	213,303	268,643	321,972	373,430	423,051	472,778	516,348

⁽p) Denotes that only the portion of the county in Region K is considered.

^{*} Municipal water demand projections by city, county, and portion of a river basin within a county for each of the 14 counties in Region K are provided in *Appendix 2A*.

As with population, the large majority of current and projected municipal water demand occurs in the Colorado River Basin (approximately 92 percent in the year 2060). *Table 2.5* presents these municipal water demand projections by river basin.

Table 2.5 Municipal Water Demand Projections by River Basin (ac-ft/yr)

River Basin	2000	2010	2020	2030	2040	2050	2060
Brazos	8,080	10,276	12,880	15,939	19,196	22,609	26,270
Brazos-Colorado	6,684	6,971	7,236	7,323	7,278	7,225	7,205
Colorado	194,550	247,147	297,283	345,329	391,541	437,658	477,232
Colorado-Lavaca	1,550	1,563	1,621	1,634	1,625	1,609	1,607
Guadalupe	829	1055	1,243	1,426	1,589	1,763	1,978
Lavaca	1,610	1,631	1,709	1,779	1,822	1,914	2,056
TOTAL	213,303	268,643	321,972	373,430	423,051	472,778	516,348

2.3.2 Manufacturing Water Demand Projections

2.3.2.1 Methodology

For regional water planning purposes, manufacturing water use is considered to be the cumulative water demand by county and river basin for all industries within specified industrial classifications (SIC) determined by the TWDB. Manufacturing water use projections that were developed by the TWDB were used as the default projections except where new information warranted a revision. Current TWDB rules protect manufacturing users from disclosure of their usage information on an individual basis, so there was little information available to verify this projection.

2.3.2.2 Regional Manufacturing Water Demand Projections

Annual manufacturing water demand for Region K is projected to increase from 28,887 ac-ft in the year 2000 to 85,698 ac-ft/yr in the year 2060. These demands are predominately from existing and future industries in Travis and Matagorda Counties. The expected usage of water for manufacturing purposes in Matagorda County that has already been contracted is responsible for the large increase in manufacturing demand from the year 2000 to the year 2010. *Figure 2.5* presents the projected regional manufacturing demand, and *Table 2.6* present the projected manufacturing water demand for each of the counties in Region K.

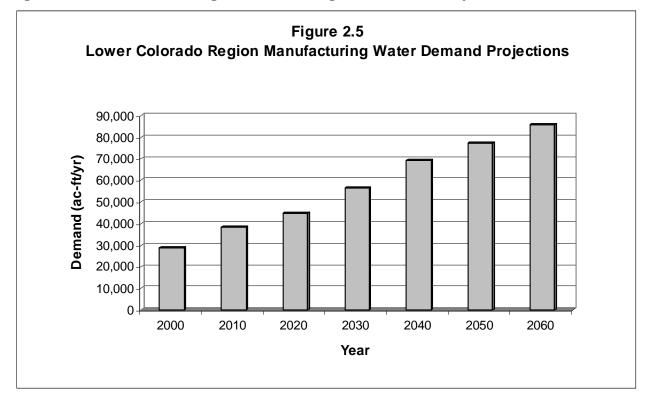


Figure 2.5: Lower Colorado Region Manufacturing Water Demand Projections

Table 2.6 Manufacturing Water Demand Projections by County (ac-ft/yr)

County	2000	2010	2020	2030	2040	2050	2060
Bastrop	70	92	111	130	150	169	183
Blanco	2	2	2	2	2	2	2
Burnet	743	963	1,109	1,248	1,384	1,502	1,636
Colorado	144	176	192	205	217	227	245
Fayette	162	205	230	254	277	297	322
Gillespie	440	506	539	566	591	612	655
Hays (p)	509	691	809	928	1,048	1,156	1,255
Llano	2	3	3	3	3	3	3
Matagorda	10,355	12,180	13,253	13,991	14,686	15,259	16,267
Mills	1	1	1	1	1	1	1
San Saba	24	28	30	31	32	33	35
Travis	16,179	23,002	28,294	38,508	50,483	57,703	64,652
Wharton (p)	256	313	343	366	390	410	442
Williamson (p)	0	0	0	0	0	0	0
TOTAL	28,887	38,162	44,916	56,233	69,264	77,374	85,698

⁽p) Denotes that only the portion of the county in Region K was considered.

^{*} Manufacturing water demand projections by city, county, and portion of a river basin within a county for each of the 14 counties in Region K are provided in *Appendix 2A*.

Manufacturing water demand in Region K is predominately in the Colorado and Brazos-Colorado River Basins. *Table 2.7* presents these demands by river basin for Region K.

	O		•	·		` '	,
River Basin	2000	2010	2020	2030	2040	2050	2060
Brazos	0	0	0	0	0	0	0
Brazos-Colorado	5,466	6,431	6,998	7,389	7,758	8,061	8,595
Colorado	23,152	31,395	37,543	48,435	61,063	68,841	76,591
Colorado-Lavaca	100	122	134	143	152	160	173
Guadalupe	7	9	11	12	14	15	17
Lavaca	162	205	230	254	277	297	322
TOTAL	28,887	38,162	44,916	56,233	69,264	77,374	85,698

Table 2.7 Manufacturing Water Demand Projections by River Basin (ac-ft/yr)

2.3.3 Irrigation Water Demand Projections

2.3.3.1 Methodology

The irrigation water use projections that were developed by TWDB were used as the default projections except in cases where more effective and current information was submitted. The TWDB projections were determined with assistance from the Texas Agricultural Extension Service, and they assume expected case water conservation practices with no reduction in Federal farm program subsidies. In recognition of the variation of irrigation usage with commodity prices, the TWDB guidance allowed the use of a single year (1995-2000), a composite of all of the years, and either the largest acreage or the largest water demand based on their data for use in determining the irrigation demands. The largest year acreage planted was used for Colorado and Wharton Counties, and the largest water demand year was used for Matagorda County.

2.3.3.2 Regional Irrigation Water Demand Projections

Irrigation water demand for Region K is projected to decrease from 620,930 ac-ft/yr in 2000 to 468,763 ac-ft/yr in the year 2060. Irrigation water demand in Region K is concentrated in Colorado, Matagorda, and Wharton Counties and is largely used to meet irrigation needs for rice farming. Over the next 50 years, a decrease in irrigation water demand is projected due to improvements in irrigation efficiency and reductions in irrigated acres due to forecasted unfavorable farming economics. *Figure 2.6* presents the projected regional irrigation demands, and *Table 2.8* present the projected irrigation water demands by county for Region K.

Figure 2.6 **Lower Colorado Region Irrigation Water Demand Projections** 700,000 600,000 Demand (ac-ft/yr) 500,000 400,000 300,000 200,000 100,000 0 2000 2010 2020 2030 2040 2050 2060 Year

Figure 2.6: Lower Colorado Region Irrigation Water Demand Projections

Table 2.8 Irrigation Water Demand Projections by County (ac-ft/yr)

County	2000	2010	2020	2030	2040	2050	2060
Bastrop	1,846	1,610	1,407	1,226	1,072	934	814
Blanco	73	69	66	62	58	56	55
Burnet	103	101	100	98	96	95	93
Colorado	210,242	200,822	192,465	184,380	176,555	168,946	161,663
Fayette	789	739	692	648	606	568	533
Gillespie	2,065	2,039	2,013	1,987	1,960	1,936	1,912
Hays (p)	12	11	11	11	11	11	11
Llano	995	979	963	946	930	915	900
Matagorda	205,990	193,048	186,072	179,353	172,916	166,722	160,750
Mills	3,001	2,936	2,872	2,810	2,749	2,689	2,631
San Saba	3,349	3,240	3,136	3,035	2,937	2,841	2,749
Travis	1,224	1,126	1,034	951	875	805	741
Wharton (p)	191,241	182,985	176,441	170,127	164,044	158,177	135,911
Williamson (p)	0	0	0	0	0	0	0
TOTAL	620,930	589,705	567,272	545,634	524,809	504,695	468,763

⁽p) Denotes that only the portion of the county in Region K was considered.

^{*} Irrigation water demand projections by city, county, and portion of a river basin within a county for each of the 14 counties in Region K are provided in *Appendix 2A*.

Because irrigation water demand is concentrated in Region K's lower three counties, projected demand is greatest in the Brazos-Colorado and Colorado-Lavaca Coastal Basins. The Colorado and Lavaca River Basins also constitute a significant portion of irrigation water demand. *Table 2.9* presents these projected irrigation water demands for Region K.

U			•	•	,	• /	
River Basin	2000	2010	2020	2030	2040	2050	2060
Brazos	432	412	394	377	361	348	334
Brazos-Colorado	259,052	245,871	236,718	227,888	219,390	211,181	194,231
Colorado	107,473	102,527	98,613	94,848	91,239	87,767	79,746
Colorado-Lavaca	129,739	122,234	117,830	113,585	109,511	105,591	98,950
Guadalupe	151	139	128	119	110	101	94
Lavaca	124,083	118,522	113,589	108,817	107,198	99,707	95,408

567,272

545,634

524,809

Table 2.9 Irrigation Water Demand Projections by River Basin (ac-ft/yr)

589,705

2.3.4 Steam-Electric Water Demand Projections

620,930

2.3.4.1 Methodology

TOTAL

For the steam-electric water demands, the TWDB provided information and alternative projections from a recent study by the University of Texas Bureau of Economic Geology¹. TWDB allowed Region K to choose whether to use these projections or select other projections for submittal to TWDB. The Region K Population and Water Demand Committee evaluated and considered the recent report-generated demands, but determined that some of the numbers were below actual current and projected usage of existing facilities in the planning area. The committee decided to use the Region K Planning Group members' knowledge of usage in this category to determine updates to the steam-electric water demands. Projected demands for Navasota Energy in Wharton County (2,300 ac-ft/yr) and the current proposed White Stallion facility in Matagorda County (30,000 ac-ft/yr) were subsequently added as new demands in this category. In May 2009, Region K approved the updated steam-electric water demands for submittal to the TWDB.

504,695

468,763

2.3.4.2 Regional Steam-Electric Water Demand Projections

Steam-electric water demand is projected to increase from 103,875 ac-ft/yr in the year 2000 to 270,732 ac-ft/yr in the year 2060. Of the 14 counties in Region K, only Bastrop, Fayette, Llano, Matagorda, Travis, and Wharton Counties have or are projected to have any steam-electric water demand. *Figure 2.7* presents the projected regional steam-electric demands and *Table 2.10* present the projected steam-electric water demand by county for each county in Region K.

_

¹ Water Demand Projections for Power Generation in Texas

Figure 2.7 **Lower Colorado Region Steam Electric Water Demand Projections** 300,000 250,000 Demand (ac-ft/yr) 200,000 150,000 100,000 50,000 0 2000 2010 2020 2030 2040 2050 2060 Year

Figure 2.7: Lower Colorado Region Steam Electric Water Demand Projections

Table 2.10 Steam-Electric Water Demand Projections by County (ac-ft/yr)

County	2000	2010	2020	2030	2040	2050	2060
Bastrop	7,846	12,000	14,000	16,000	18,000	19,500	19,500
Blanco	0	0	0	0	0	0	0
Burnet	0	0	0	0	0	0	0
Colorado	0	0	0	0	0	0	0
Fayette	21,306	29,622	29,702	33,002	63,843	63,843	69,753
Gillespie	0	0	0	0	0	0	0
Hays (p)	0	0	0	0	0	0	0
Llano	1,271	1,500	1500	1500	15,000	15,000	15,000
Matagorda	65,948	83,000	135,000	135,000	135,000	135,000	135,000
Mills	0	0	0	0	0	0	0
San Saba	0	0	0	0	0	0	0
Travis	7,494	17,500	18,500	22,500	23,500	27,500	28,500
Wharton (p)	10	2,545	2,651	2,711	2,783	2,872	2,979
Williamson (p)	0	0	0	0	0	0	0
TOTAL	103,875	146,167	201,353	210,713	258,126	263,715	270,732

⁽p) Denotes that only the portion of the county in Region K was considered.

^{*} Steam-electric water demand projections by city, county, and portion of a river basin within a county for each of the 14 counties in Region K are provided in *Appendix 2A*.

The majority of Region K's steam-electric power generation facilities are located along the Colorado River, and all but one of the projected steam-electric water demand are located within the Colorado River Basin. *Table 2.11* shows the projected steam-electric water demand by basin.

Table 2.11 Steam-Electric Water Demand Projections by River Basin (ac-ft/yr)

River Basin	2000	2010	2020	2030	2040	2050	2060
Brazos	0	0	0	0	0	0	0
Brazos-Colorado	10	245	351	411	483	572	679
Colorado	103,865	145,922	201,002	210,302	257,643	263,143	270,053
Colorado-Lavaca	0	0	0	0	0	0	0
Guadalupe	0	0	0	0	0	0	0
Lavaca	0	0	0	0	0	0	0
TOTAL	103,875	146,167	201,353	210,713	258,126	263,715	270,732

2.3.5 Mining Water Demand Projections

2.3.5.1 Methodology

TWDB mining water usage projections were developed based on projected future production levels by mineral category and expected water use rates. These production projections were derived from state and national historic rates and were constrained by accessible mineral reserves in each region. TWDB's mining water demand projections were used except where more effective and current information was available.

2.3.5.2 Regional Mining Water Demand Projections

Mining water demand for Region K is projected to experience a 5,000 ac-ft increase in Bastrop County for the Alcoa Three Oaks Mine in 2010, which is expected to close before 2040. Without the Three Oaks Mine, the overall mining water demand increases slightly from 2000 through 2060. *Figure 2.8* presents the total projected regional mining water demand, and *Table 2.12* presents the projected mining water demand by county for each county in Region K.

Mining water demand in Region K is predominately in the Colorado River Basin. *Table 2.13* presents these demands by river basin for Region K.

Figure 2.8 **Lower Colorado Region Mining Water Demand Projections** 35,000 30,000 Demand (ac-ft/yr) 25,000 20,000 15,000 10,000 5,000 0-2000 2010 2020 2030 2040 2050 2060 Year

Figure 2.8: Lower Colorado Region Mining Water Demand Projections

Table 2.12 Mining Water Demand Projections by County

County	2000	2010	2020	2030	2040	2050	2060
Bastrop	28	5,033	5,035	5,036	37	38	39
Blanco	6	5	5	5	5	5	5
Burnet	1,725	1,956	2,049	2,098	2,145	2,190	2,235
Colorado	19,674	20,804	21,197	21,416	21,623	21,821	21,996
Fayette	43	42	42	42	42	42	42
Gillespie	9	8	8	8	8	8	8
Hays (p)	18	12	6	2	0	0	0
Llano	152	149	148	148	148	148	148
Matagorda	196	177	172	169	167	165	163
Mills	0	0	0	0	0	0	0
San Saba	163	163	163	163	163	163	163
Travis	1,285	1,531	1,649	1,727	1,804	1,880	1,935
Wharton (p)	633	731	773	798	822	844	864
Williamson (p)	13	9	5	1	0	0	0
TOTAL	23,945	30,620	31,252	31,613	26,964	27,304	27,598

⁽p) Denotes that only the portion of the county in the Region K was considered.

^{*} Mining water demand projections by city, county, and portion of a river basin within a county for each of the 14 counties in Region K are provided in *Appendix 2A*.

River Basin 2000 2010 2020 2030 2040 2050 2060 107 Brazos 105 109 107 106 109 110 Brazos-Colorado 746 848 893 919 944 966 987 27,742 28,303 28,623 23,933 24,234 24,493 Colorado 21,251 Colorado-Lavaca 195 178 173 170 167 168 165 Guadalupe 13 14 15 15 15 15 15 Lavaca 1,635 1,729 1,761 1,780 1,797 1,813 1,828 27,304 TOTAL 23,945 30,620 31,252 31,613 26,964 27,598

Table 2.13 Mining Water Demand Projections by River Basin (ac-ft/yr)

2.3.6 Livestock Water Demand Projections

2.3.6.1 Methodology

For all 14 counties in Region K, the livestock water use projections developed by TWDB were used as the default projections. These projections were developed using Texas Agricultural Statistics Service projections of number of livestock by type and county and Texas Agricultural Extension Service estimates of water use rates by type of livestock.

2.3.6.2 Regional Livestock Water Demand Projections

Livestock water demand for Region K represents approximately 1.0 percent of the total regional water demand. Livestock water demand is projected to remain constant over the 50-year planning period. This constant projected demand of 13,395 ac-ft is approximately 20 percent less than the value reported by TWDB for 1996. *Figure 2.9* presents the total projected regional livestock water demands, and *Table 2.14* presents the projected livestock water demand by county for each of the 14 counties in Region K

Figure 2.9 **Lower Colorado Region Livestock Water Demand Projections** 14,000 12,000 Demand (ac-ft/yr) 10,000 8,000 6,000 4,000 2,000 0 2000 2010 2020 2030 2040 2050 2060 Year

Figure 2.9: Lower Colorado Region Livestock Water Demand Projections

Table 2.14 Livestock Water Demand Projections by County (ac-ft/yr)

County	2000	2010	2020	2030	2040	2050	2060
Bastrop	1,522	1,522	1,522	1,522	1,522	1,522	1,522
Blanco	443	443	443	443	443	443	443
Burnet	835	835	835	835	835	835	835
Colorado	1,473	1,473	1,473	1,473	1,473	1,473	1,473
Fayette	2,397	2,397	2,397	2,397	2,397	2,397	2,397
Gillespie	1,062	1,062	1,062	1,062	1,062	1,062	1,062
Hays (p)	220	220	220	220	220	220	220
Llano	751	751	751	751	751	751	751
Matagorda	1,151	1,151	1,151	1,151	1,151	1,151	1,151
Mills	918	918	918	918	918	918	918
San Saba	1,191	1,191	1,191	1,191	1,191	1,191	1,191
Travis	704	704	704	704	704	704	704
Wharton (p)	728	728	728	728	728	728	728
Williamson (p)	0	0	0	0	0	0	0
TOTAL	13,395	13,395	13,395	13,395	13,395	13,395	13,395

⁽p) Denotes that only the portion of the county in Region K was considered.

^{*} Livestock water demand projections by city, county, and portion of a river basin within a county for each of the 14 counties in Region K are provided in *Appendix 2A*.

Livestock water demand in Region K is located predominately in the Colorado River Basin. *Table 2.15* presents these demands by river basin for Region K.

River Basin	2000	2010	2020	2030	2040	2050	2060
Brazos	1,059	1,059	1,059	1,059	1,059	1,059	1,059
Brazos-Colorado	953	953	953	953	953	953	953
Colorado	9,455	9,455	9,455	9,455	9,455	9,455	9,455
Colorado-Lavaca	646	646	646	646	646	646	646
Guadalupe	356	356	356	356	356	356	356
Lavaca	926	926	926	926	926	926	926
TOTAL	13,395	13,395	13,395	13,395	13,395	13,395	13,395

Table 2.15 Livestock Water Demand Projections by River Basin (ac-ft/yr)

2.4 ENVIRONMENTAL WATER DEMANDS

A use category that is recognized by the LCRWPG is environmental water demands. These demands are considered necessary to preserve the aquatic ecosystem within the region. In particular, planning for and meeting environmental water demands have been determined necessary to protect the habitat associated with the Lower Colorado River and Matagorda Bay.

2.4.1 The Story/History of Matagorda Bay ^{2,3,4,5,6}

Matagorda Bay has an interesting and varied history. The earliest map that contained the Texas Gulf Coast was by Alonzo Alvarez de Pineda in 1513. The next explorer was probably Cabeza de Vaca in 1528 followed by Don Luis de Moscoso de Alverado in 1542. The ill fated LaSalle expedition in 1685 resulted in an active renewal of interest by the Spanish government. In a subsequent expedition by Alonzo de Leon in 1689, the first recorded description of the "Raft" in the Colorado River was described, refer to *Figure 2.10* for a map of Matagorda Bay in 1705.

The raft was a vast accumulation of drift logs, snags, whole trees, and brush in sections miles in length and 40 to 50 feet thick growing at a rate of about 500 feet per year. In the years after the establishment of Matagorda by Stephen F. Austin's initial colony (Austin 300) the raft continued to grow, refer to Figure 2.11 for a map of Austin's Colony and Matagorda Bay. The U.S. Army Corps of Engineers (USACE) was enrolled to clear the raft to enable river navigation from Matagorda, the number two port in Texas, inland to central Texas. In 1853 the decision was made to bypass the raft by digging a canal parallel to the river. This allowed riverboat traffic for about six years, but by 1860 the growing raft again prevented navigation. The intervention of the civil war prevented any additional work on the raft. While the periodic floods had always been a problem, the restoration of the raft, which grew to an estimated 40 miles in length and extended into Wharton County, greatly exacerbated flooding damage.

In 1923 Governor Pat Neff approved legislation that resulted in the retaining of General George W. Goethus, who built the Panama Canal. His plan was to clear a path along the East Bank, removing key

⁴ Historic Matagorda County, Pages 135, 139

² Bay City and Matagorda County – A History, Pages 4, 8, 16, 165, 166

³ Corralling the Colorado, Page 7

⁵ Originally authored by Haskell Simon, Vice Chairman Region K, modified for this report

⁶ Additional information from Flood to Faucet and interviews with Earl Eidelbach, LCRA from The Daily Tribune

logs and allowing the force of the river to clear the raft. Not much was accomplished until a major flood came in 1929. In one massive flushing action the huge mass was washed into Matagorda Bay.

The delta formed by this enormous conglomeration of sediment and debris that had been washed into Matagorda Bay and continued to grow outward into the Bay until it connected the mainland to Matagorda Peninsula, forming a five mile long land bridge, land locking the Seaport of Matagorda and dividing Matagorda Bay into East Matagorda Bay and West Matagorda Bay.

In 1935 the Drainage District cut a channel through the peninsula connecting the Colorado River to the Gulf of Mexico. This caused most of the natural flow of the river to go directly into the Gulf of Mexico, refer to *Figure 2.12* for a map of the development of the Colorado River Delta.

In 1990 the USACE agreed to the next major alteration affecting Matagorda Bay. In order to construct a jetty system at the mouth of the Colorado River in the Gulf of Mexico, a diversion channel was added to the overall design as recommended by the resource agencies. This would divert essentially 100 percent of the river flow into the east end of West Matagorda Bay. This project was completed in 1991. The USACE also closed Parker's Cut (Tiger Island Cut), the channel connecting the Colorado River to West Matagorda Bay, refer to *Figures 2.13* and *2.14*.

Recently, efforts were made to reopen Parker's Cut to accommodate recreational fishing by shortening travel time to the fishing areas. The resource agencies oppose the reopening believing it would be detrimental to fisheries production. Finally a compromise was reached that would open a channel into the Bay just North of the diversion dam. This would allow access to the Bay without going through the locks, but with minimal diversion of freshwater.

In less than 75 years major alterations have been made that dramatically and dynamically changed the characteristics of the Bay. The river flow into Matagorda Bay was reduced significantly, and then it was back to almost 100 percent discharge into West Matagorda Bay by the early 1990s. There are other sources that contribute to the freshwater inflows of Matagorda Bay in addition to the contributions by the Colorado River, but these flows have not been measured and are occasionally overlooked.

It is difficult to determine the effect of these changes on the Bay's performance. Most entities seem to agree that short-term analysis or comparisons will not yield significant "cause and effects." Certainly with the major changes in the geography and hydrology of the Bay, it is questionable how useful older data may be. One thing is certain; Matagorda Bay, unlike other Texas Bays, has seen major changes in the last 75 years.

Figure 2.10: Matagorda Bay in 1705

Nicolas de Fer 1705 – Collection of F. Carrington Weems Houston, Texas as shown in *Maps of Texas* and the Southwest 1513-1900 by James C. Martin and Robert Sidney Martin, Page 49.

Figure 2.11: Austin's Colony and Matagorda Bay

Stephen F. Austin, 1830 – The San Jacinto Museum of History as shown in *Maps of Texas and the Southwest 1513-1900* by James C. Martin and Robert Sidney Martin, Page 52.

1921 1941 1956 1976

Figure 2.12: Development of Colorado River Delta

Delta Development – Mouth of Colorado River Project Assessment Report Coastal Technology Corporation (Adapted from USGS, Tobin & Kargl)

Mouth of the Colorado River, Matagorda Texas

Project / Dea

Colorado River
Locks

Diversion Dam

Culver's Cut

Colorado River
Diversion

Navigation
Channel

Mad Island Cut

West Matagorda Bay

Mouth of Colorado
Jetties

Figure 2.13: Mouth of the Colorado River, Matagorda Texas

USACE Galveston District webpage:

http://www.swg.usace.army.mil/items/ColoradoRiver/MOC.asp

High velocity currents at intersection of GIWW and Navigation Channel

Colorado River Locks

Diversion Dam

Colorado River Diversion
Dam Channel

Navigation Channel

(Old Colorado River Channel)

Figure 2.14: Colorado River Diversion Channel and Navigation Channel

USACE Galveston District webpage:

http://www.swg.usace.army.mil/items/ColoradoRiver/MOC.asp

2.4.2 Current Instream Flow Requirements for the Colorado River⁷

The LCRWPG does not have the resources to perform the studies to determine appropriate instream flow requirements for the Colorado River. Therefore, data that has been previously developed by the LCRA is presented here.

LCRA operates under a Water Management Plan (WMP) that defines its water management programs and policies. The WMP is developed by LCRA, reviewed and approved by TCEQ, and has evolved over the years in response to changing conditions and new information.

LCRA completed an analysis of instream flow needs for the Colorado River in June 1992. Based on those studies, LCRA generated instream flow recommendations for critical and target flows.

Critical flow requirements are those necessary to maintain species population during severe drought conditions. From the LCRA analysis, it is recommended that a flow of at least 46 cfs be maintained at the Austin gage at all times. If this flow should occur for an extended period of time, then operational releases will be made by LCRA to temporarily alleviate these low flow conditions. Specifically, if flow at the Austin gage is less than 65 cfs daily average for 21 consecutive days, the LCRA will make operational releases from storage sufficient to maintain daily average flow at the Austin gage of at least 200 cfs for two consecutive days. If this operational release condition persists for three consecutive cycles (69 days), then a minimum average daily flow of at least 75 cfs will be maintained for the next 30 days. A mean daily flow of 100 cfs is also maintained at the Austin gage to the extent of inflows to Lakes Buchanan and Travis, except during times of drought, when a minimum mean daily flow of 75 cfs is maintained to the extent inflows are available. In addition to the flow requirements at the Austin gage, a mean daily discharge of 120 cfs will be maintained at the Bastrop gage. This minimum flow will be maintained in order to provide adequate water quality conditions in the Colorado River. During a six-week period within the months of March, April, and May, a minimum flow of 500 cfs will be maintained at the Bastrop gage.

Target flows, provided on a mean daily basis, are those necessary to provide an optimal range of habitat complexity for the support of a well-balanced native aquatic community. These flow regimes (described in *Table 2.16*) are considered optimal ranges and should be maintained whenever water resources are adequate. However, these flows should be classified as interruptible demand subject to curtailment during drought conditions. Since native fish species are adapted to normal seasonal variations in flow regimes, target flows were adjusted monthly to emulate the annual cycle.

In addition to critical and target flow requirements, periodic high flow conditions (or scouring flood flows) are needed to prevent siltation and dense macrophytic growth from occurring in the Colorado River.

New instream flow studies have recently been concluded on the Colorado River below Austin as a part of the LCRA-SAWS Water Project (LSWP)⁸. The approach for these studies is consistent with the Texas Instream Flow Program (TIFP) objectives to conserve biodiversity and maintain biological integrity, the project team followed the recommendations of the National Research Council (2005) which has subsequently been endorsed by the TIFP (TIFP Draft 2006). The integration process involves four

⁸ For further description of the LSWP and its current status, please see Chapter 4

_

⁷Taken from information provided by the LCRA.

components of the hydrologic regime: subsistence flows, base flows, high flow pulses, and overbank flows. Although these studies have been completed they have not been incorporated into or applied in any pending permitting action of the TCEQ. So, for this round of planning Region K will continue to use the instream flows from LCRA's 1999 WMP as its default criteria.

Total commitments of the Combined Firm Yield from the Highland Lakes for instream flow maintenance will be an average of 12,800 ac-ft/yr, with a maximum of 36,720 ac-ft in any one year; 58,700 ac-ft in any two consecutive years; 76,800 ac-ft in any three or four consecutive years; 106,100 ac-ft in any 5 consecutive years, and 128,600 ac-ft in any 6 to 10 consecutive years.

Table 2.16 Instream Flow Requirements for the Colorado River

	Critical F	lows (cfs)	T	arget Flows (cfs	
Month	Austin Gage	Bastrop Gage	Bastrop Gage	Eagle Lake	Egypt
January	46	120	370	300	240
February	46	120	430	340	280
March	46	500 ^в	560	500 ^a	360
April	46	500 b	600	500 ^a	390
May	46	500 ^в	1,030	820	670
June	46	120	830	660	540
July	46	120	370	300	240
August	46	120	240	200	160
September	46	120	400	320	260
October	46	120	470	380	310
November	46	120	370	290	240
December	46	120	340	270	220

Source: LCRA, March 1999, Water Management Plan.

In addition, if the subsistence/critical flow of 46 cfs should occur for an extended period of time, then operational releases will be made by LCRA to temporarily alleviate the subsistence/critical flow conditions. Specifically, should the flow at the Austin gage be below a 65 cfs daily average for a period of 21 consecutive days, LCRA will make operational releases from storage sufficient to maintain daily average flow at the Austin gage of at least 200 cfs for two consecutive days. If this operational release conditions persists for three consecutive cycles (69 days), then a minimum average daily flow of at least 75 cfs will be maintained for the next 30 days.

^a Since target flow at Eagle Lake (based on overall community habitat availability) were insufficient to meet Blue Sucker (Cycleptus elongatus) spawning requirements during March and April, target flows were superseded by critical flow recommendations for this reach.

^b This flow should be maintained for a continuous period of not less than six weeks during these months. A flow of 120 cfs will be maintained on all days not within the six week period.

^c LCRA will maintain a mean daily flow of 100 cfs at the Austin gage at all times, to the extent of inflows each day to the Highland Lakes as measured by upstream gages, until the combined storage of Lakes Buchanan and Travis reaches 1.1 million acre-feet of water. A mean daily flow of 75 cfs, to the extent of inflows each day to the Highland Lakes as measured by upstream gages, will then be maintained until the combined storage of Lakes Buchanan and Travis reaches 1.0 million acre-feet of water, then a subsistence/critical flow of 46 cfs will be maintained at all times, regardless of inflows.

2.4.3 Current Bay and Estuary Requirements

The LCRWPG does not have the resources to perform the studies to determine appropriate freshwater inflow needs requirements for the Colorado-Lavaca estuary. Therefore, we present data that has been developed by LCRA and the state resource agencies, TPWD, TWDB, and TCEQ.

The Colorado-Lavaca estuary is the second largest estuary on the Texas Gulf Coast. This estuary, also known as the Matagorda Bay system, covers 352 sq mi. While Matagorda Bay is the largest body of water, other major bays in the estuary system are Lavaca, East Matagorda, Keller, Carancahua, and Tres Palacios Bay.

In 1985 the Texas Legislature directed TPWD and TWDB to continue studies of the estuaries to determine freshwater inflow requirements to be considered in the allocation of the State's water resources. These studies were to have been completed by December 31, 1989. However, due to a lack of funding, changes in priorities, and other factors, they have been delayed. To expedite the completion of this study, LCRA entered into a cooperative agreement with TPWD, TWDB, and TNRCC (now TCEQ) in 1993. The LCRA agreed to modify existing methods used by TPWD and TWDB and to apply those methods to compute alternative freshwater needs for the estuary. This study is currently being updated again and should be completed mid-2005 (see Section 2.4.4 for more information).

The freshwater inflow needs were estimated by a methodology developed in conjunction with the TPWD and TWDB, and is similar to methodologies used for other Texas estuaries. The first major element in this process is the development of statistical relationships for the interactions between freshwater inflows and important indicators of estuarine ecosystem conditions. The parameters that were considered in this analysis are: salinity, species productivity, and nutrient inflows. The next major step in this process involves using the statistical functions to compute optimal monthly and seasonal freshwater inflow needs. This is accomplished using TWDB's Texas Estuarine Mathematical Programming (TxEMP) Model. The TxEMP model estimates the freshwater inflow needs of an estuary by representing mathematically the varied and complex interactions between freshwater inflows and salinity, species productivity, and nutrient inflows. The third major element in the process of developing inflow needs is the simulation of the salinity conditions throughout the estuary using the TxBLEND model developed by TWDB and modified by the LCRA. The application of the TWDB methodology and the resulting estimates of freshwater inflow needs are documented in "Freshwater Inflow Needs of the Matagorda Bay System" (LCRA 1997).

The freshwater inflow needs for the estuarine ecosystem associated with the Matagorda Bay system were estimated for two levels: target and critical. Target inflow needs were determined as the monthly and seasonal inflows that produced 98 percent of the maximum normalized population biomass for nine key estuarine finfish and shellfish species while maintaining specified salinity, population density, and nutrient inflow conditions. The critical inflow needs were determined by finding the minimum total annual inflow needed to keep salinity at or below 25 parts per thousand near the mouths of the Colorado and Lavaca Rivers. These inflow needs are termed critical since they provide a fishery sanctuary habitat during droughts.

Results of the 1997 needs analysis indicate that target inflows need to be approximately 2.0 million ac-ft/yr. Of this, it is estimated that the Colorado River will need to contribute 1,033,100 ac-ft annually. For critical inflow needs, approximately 171,000 ac-ft of the total required 287,400 ac-ft/yr must come from the Colorado River. A revised freshwater inflow needs study was completed in 2006 and

the results of that study indicate higher levels of flow for both critical and target needs. Both the 1997 and the more recent 2006 target and critical monthly freshwater inflow needs from the Colorado River are indicated in *Table 2.17*.

LCRA's total commitments of the Combined Firm Yield from lakes Buchanan and Travis for bays and estuaries (estuarine inflows), reflected for this planning effort include an average of 3,090 ac-ft/yr, with a maximum of 11,200 ac-ft in any one year; 19,700 ac-ft in any two consecutive years; 24,200 ac-ft in any three or four consecutive years; 28,200 ac-ft in any 5 consecutive years, and 30,900 ac-ft in any 6 to 10 consecutive years (LCRA's bay and estuary commitments are in accordance with LCRA's 1999 water management plan).

Table 2.17 Colorado River Critical and Target Freshwater Inflow Needs for the Matagorda Bay System

Month		FINS ows (1,000 ac-ft) ¹	2006 FINS Freshwater Inflows (1,000 ac-f		
	Critical	Target	Critical	Target	
January	14.26	44.1	36.0	205.6	
February	14.26	45.3	36	194.5	
March	14.26	129.1	36	63.2	
April	14.26	150.7	36	60.4	
May	14.26	162.2	36	255.4	
June	14.26	159.3	36	210.5	
July	14.26	107.0	36	108.4	
August	14.26	59.4	36	62.0	
September	14.26	38.8	36	61.9	
October	14.26	47.4	36	71.3	
November	14.26	44.4	36	66.5	
December	14.26	45.2	36	68.0	
Annual Totals	171	1,033	432	1,428	

Schedule of flows is designed to optimize biodiversity/productivity under normal rainfall. Under drought conditions, target flows should be curtailed in accordance to the severity of the drought and flows should be maintained at or above critical levels based on water quality considerations.

2.4.4 Current Ongoing Environmental Flow Projects and Studies

There are several ongoing studies, workgroups, and legislative committees, whose findings may affect the way environmental flow needs are met, what those flow requirements will be, and other factors. The LCRWPG offers this section as a tool to water planners and suppliers to forecast future water planning and to meet environmental water needs. The following items are all in progress. They will conclude close to or after the end of this planning cycle.

- LCRA Water Management Plan
- The LCRA-SAWS Water Project Scientific Studies
- Environmental Flows Advisory Group
- Pending Large Water Rights Permits
- Colorado-Brazos Contribution

LCRA Water Management Plan

LCRA currently operates the lower Colorado River under provisions of the 1999 WMP. This plan is approved by TCEQ as a condition of the LCRA's water rights for Lakes Buchanan and Travis, the two major water supply reservoirs in the Highland Lakes. Recommended amendments to the plan were developed through a stakeholder process that began in early 2001. The updated WMP will provide additional water for maintaining freshwater inflows to Matagorda Bay.

General information and a copy of the recommended updates can be found on the LCRA's website at http://www.lcra.org/water/wmp.html.

The LCRA-SAWS Water Project (LSWP) Scientific Studies

LCRA and the San Antonio Water System (SAWS) have undertaken the study of the LSWP's (see Chapter 4 for a further description and status of this project) water supply potential, construction and operational costs, and environmental effects. During this study period, the proposal was re-examined, refined with current information, examined with public input, and expanded from the levels of previous preliminary studies. This study period started in 2004 and was scheduled for completion in 2010. Annual project viability assessments were conducted each November. The assessments as well as monthly update reports can be found at the project website at: http://www.lcra.org/lswp. At the end of the study period, if LCRA and SAWS determine the project is technically feasible, environmentally sound, and cost effective, the implementation period will follow. For answers to specific questions, contact lcrasawswaterproject@lcra.org.

Environmental Flows Advisory Group

The 80th Texas Legislature established the Environmental Flows Advisory Group which is composed of nine members. This group is comprised of three Senate members, three House members and three public members. The public members are representatives of TCEQ, TWDB, and TPWD. This Advisory Group is tasked with balancing the demand placed on the State's water resources by the growing population and the requirements of the riverine, bay, and estuary systems. To assist them, the Advisory Group has formed the Texas Environmental Flows Science Advisory Committee along with Basin and Bay Area Stakeholders Committees. The Advisory Group has recently been for the Colorado and Lavaca Rivers and Matagorda and Lavaca Bays Basin and Bay Area Stakeholder Committee. Additional committee information, updates and activities found website can http://www.tceq.state.tx.us/permitting/water supply/water rights/eflows/group.html

In September 2009, the Texas Environmental Flows Advisory Group appointed members of the Colorado and Lavaca Rivers and Matagorda and Lavaca Bays Stakeholder Committee. The committee will make recommendations to the TCEQ on the quantity of water needed to maintain the health of the named rivers and bays.

Pending Large Water Rights Permits

The TCEQ is the State's Water Rights permitting agency. TCEQ's Internet database lists 149 pending water rights applications (as of 7/06/2009) across the state. There are five large-scale pending water rights applications in the lower Colorado Basin area. Each is briefly described below:

Pending Large Water Right Permits (as of 7/06/2009):

1) LCRA Flood Flows Application (#5731):

Application was filed March 31, 1999, was declared administratively complete on February 20, 2001 and public notice was issued August 22, 2001. The application is in the technical review process. LCRA seeks authorization to divert, store and use flood waters up to 853,514 AF/year.

2) LCRA Garwood Application (#14-5434E):

The application was filed August 29, 2002, was declared administratively complete on February 5, 2003 and public notice was issued on May 22, 2003. The application is in the technical review process. LCRA seeks to add diversion locations throughout the basin, including the Highland Lakes, to LCRA's water right, which was formerly owned by the Garwood Irrigation Company. LCRA's Garwood water right is a 133,000 AF/yr water right with a priority date of 1900 and is currently permitted to be diverted in Colorado County, in the agricultural region of the basin.

3) LCRA Water Management Plan (#5838):

The amendment application was filed May 16, 2003, was declared administratively complete and public notice was issued on September 14, 2004. TCEQ staff proposed a draft order on October 15, 2009. Subsequent negotiations have produced a proposed agreed order that is pending approval by TCEQ as of January 6, 2010. The LCRA water management plan defines LCRA's water management programs and policies and charts the manner in which LCRA manages lakes Buchanan and Travis.

4) LCRA Return Flows Application (#14-5478D and 14-5482D):

The application was filed November 12, 2002, was declared administratively complete on March 10, 2003, and public notice was issued on April 30, 2004. The application is in the technical review process. LCRA seeks appropriation of the City of Austin's historical, current, and future return flows.

5) City of Austin Bed and Banks Application (#5779):

The application was filed April 5, 2002, and was declared administratively complete on July 22, 2002, and public notice was issued on August 13, 2003. The application is in the technical review process. The City seeks authorization to transport and reuse up to 103,350 AF/yr of return flows via the bed and banks of the Colorado river to transport water to downstream City of Austin locations for beneficial uses including Austin Energy power plant needs and municipal and industrial needs. The City proposes to use the bed and banks of the River to convey water (like a pipeline). A portion of the return flows (16,350 AF/year) will be dedicated to the State Water Trust with the Texas Parks and Wildlife Department as trustee.

As part of a settlement agreement between Austin and LCRA, the parties intend to seek joint ownership and rights to indirectly reuse return flows, subject to significant environmental flow conditions. No application has yet been filed with TCEQ, but it is expected to replace these pending competing applications.

2.5 WHOLESALE WATER PROVIDERS

LCRWPG has two entities designated as "wholesale water providers," the LCRA and the City of Austin (City). The City is also a water customer of the LCRA, and together they supply a large portion of Region K's water needs. This distinction was made to satisfy TWDB guidelines that require each RWPG to identify and designate "wholesale water providers," which is defined by TWDB as an entity "which

delivers and sells a significant amount of raw or treated water for municipal and/or manufacturing use on a wholesale and/or retail basis."

The intent of TWDB requirements is to ensure that there is an adequate future supply of water for each entity that receives all or a significant portion of its current water supply from another entity. This requires an analysis of projected water demands and currently available water supplies for the primary supplier, each of its wholesale customers, and all of the suppliers in the aggregate as a "system." For example, a city that serves both retail customers within its corporate limits as well as other nearby public water systems would need to have a supply source(s) that is adequate for the combined total of future retail water sales and future wholesale water sales. If there is a "system" deficit currently or in the future, then recommendations are to be included in the regional water plan with regard to strategies for meeting the "system" deficit.

2.5.1 City of Austin

The City of Austin provides water for municipal, manufacturing, and steam-electric water uses. The City's existing service area covers portions of Travis, Williamson, and Hays Counties. *Table 2.18* presents the municipal and manufacturing water demands for the City. These water demands consist of the City's service area water demands and its wholesale water commitments to various communities and retail water systems primarily located within its ETJ. The wholesale commitments represent contract amounts. For a complete list of the City's wholesale water commitments refer to Chapter 3.

Table 2.18 Projected Municipal and Manufacturing Water Demands for City of Austin service area (ac-ft/yr)

County/WUG	2000	2010	2020	2030	2040	2050	2060					
Hays County												
Wholesale Commitments ¹	992	0	0	0	0	0	0					
Travis County	Travis County											
Austin	126,388	150,180	179,861	212,133	241,074	271,296	293,095					
Wholesale Commitments ²	25,889	12,070	5,489	3,200	3,138	3,113	3,113					
County-Other ³	7,403	4,477	4,649	4,243	4,104	4,268	4,656					
Manufacturing	15,102	22,309	27,601	38,149	49,790	57,010	63,959					
Williamson County												
Austin	2,315	5,457	7,398	9,691	12,161	14,834	17,693					
Wholesale Commitments ⁴	8,564	983	968	952	928	920	920					
County-Other ⁵	2,123	2,401	2,729	3,118	3,536	3,989	4,469					
Total	188,776	197,877	228,695	271,486	314,731	355,430	387,905					

The wholesale commitments in Hays County include the following WUGs: a portion of Hill Country WSC.

Travis County-Other water demands decrease due to annexations by the City, which correspondingly increase the City's water demand. The City is responsible for supplying a significant portion of the

² The wholesale commitments in Travis County include the following WUGs: Creedmoor-Maha WSC, Hill Country WSC, Lost Creek MUD, Manor, Manville WSC, a portion of North Austin MUD #1, Pflugerville, Rollingwood, Round Rock, Shady Hollow MUD, Wells Branch MUD, West Lake Hills, and Windermere Utility.

³ County-Other in Travis County consists of several small communities, which are too small to be considered WUGs.

⁴ The wholesale commitments in Williamson County include the following WUGs: A portion of North Austin MUD #1, and Round Rock (Region G).

⁵ County-Other in Williamson County consists of several small communities, which are too small to be considered WUGs.

County-Other water in Travis County. This County-Other demand consists of demand for both individual service connections that are outside the city limits and demands for other public water systems served by the City.

Table 2.19 presents the City of Austin's proposed steam-electric water demands in Fayette and Travis Counties. The City's portion of the South Texas Project (STP) demand is included in the STP total steam-electric demand in Matagorda County.

Table 2.19 Projected Steam-Electric Water Demands for City of Austin service area (ac-ft/yr)

County/WUG	2000	2010	2020	2030	2040	2050	2060
Fayette County							
Steam Electric ¹	7,102	14,222	14,302	17,602	25,739	25,739	31,649
Travis County							
Steam Electric	7,494	17,500	18,500	22,500	23,500	27,500	28,500
Total	14,596	31,722	32,802	40,102	49,239	53,239	60,149

¹ City of Austin portion - based on estimated current supply levels and approved projections.

2.5.2 Lower Colorado River Authority

LCRA supplies water for municipal, agricultural (irrigation), manufacturing, steam-electric, mining, and other water uses. The LCRA currently supplies water to entities in Bastrop, Burnet, Colorado, Fayette, Hays, Lampasas (Region G), Llano, Matagorda, San Saba, Travis, Wharton, and Williamson (the portion of Williamson in Region G) Counties. *Table 2.20* presents the projected water demands for each of the WUGs supplied by LCRA. LCRA is not the sole provider for several of these WUGs, so these water demands will not all be met by water provided by LCRA.

As with the City of Austin, the municipal County-Other water demands actually consist of water that is supplied to several smaller retail water customers.

Table 2.20 LCRA Water Commitment Summary (ac-ft/yr)

County/WUG	2000	2010	2020	2030	2040	2050	2060
Bastrop County							
Aqua WSC	5,000	0	0	0	0	0	0
County-Other	1,634	1,634	1,634	1,634	1,634	1,634	1,634
Steam Electric	16,720	16,720	16,720	16,720	16,720	16,720	16,720
Burnet County							
Burnet	4,100	4,100	4,100	4,100	4,100	4,100	4,100
Cottonwood Shores	138	138	138	138	138	138	138
Granite Shoals	830	830	830	830	830	830	830
Lake LBJ MUD	1,789	1,789	1,789	1,789	1,789	1,789	1,789
Marble Falls	3,000	3,000	3,000	3,000	3,000	3,000	3,000
Meadowlakes	75	75	75	75	75	75	75
County-Other	3,265	3,265	3,265	3,265	3,265	3,265	3,265
Manufacturing	500	500	500	500	500	500	500
Colorado County							
Irrigation ¹	157,682	150,617	144,349	138,285	132,416	126,710	121,247
Fayette County							
County-Other	102	102	102	102	102	102	102
Steam Electric (LCRA)	38,101	38,101	38,101	38,101	38,101	38,101	38,101
Steam Electric (COA)	3,500	3,500	3,500	3,500	3,500	3,500	3,500
Gillespie County							
County-Other	56	56	56	56	56	56	56
Hays County							
Dripping Springs	506	506	506	506	506	506	506
Dripping Springs WSC	560	560	560	560	560	560	560
County-Other	1,425	1,425	1,425	1,425	1,425	1,425	1,425
Lampasas County (Region G)							
County-Other	882	882	882	882	882	882	882
Llano County							
Kingsland WSC	500	500	500	500	500	500	500
Llano	87	87	87	87	87	87	87
Sunrise Beach Village ²	278	278	278	278	278	278	278
County-Other	2,222	2,222	2,222	2,222	2,222	2,222	2,222
Steam Electric ³	15,700	15,700	15,700	15,700	15,700	15,700	15,700

¹ The Colorado Irrigation commitment represents 75 percent of the Colorado County Irrigation demand.
² The value for Sunrise Beach Village was estimated based upon TCEQ maximum production capacity for system.
³ The Llano Steam Electric value is based on the authorized annual amount in the water right used by the Ferguson Power Plant, which LCRA has in the 1999 WMP.

Table 2.20 LCRA Water Commitment Summary (ac-ft/yr) (Continued)

County/WUG	2000	2010	2020	2030	2040	2050	2060
Matagorda County							
Manufacturing County	14,222	14,222	14,222	14,222	14,222	14,222	14,222
Irrigation ⁴	179,211	167,952	161,883	156,037	150,437	145,048	139,853
Steam Electric ⁵	38,060	27,507	32,480	32,480	32,480	32,480	32,360
San Saba County							
County-Other	20	20	20	20	20	20	20
Travis County							
Austin - Municipal ⁶	143,947	112,410	120,534	120,534	120,534	120,534	120,521
Austin - Steam Electric 7	30,860	15,174	15,174	15,174	15,174	15,174	15,174
Barton Creek West WSC	348	348	348	348	348	348	348
Bee Cave Village	241	241	241	241	241	241	241
Briar Cliff Village	300	300	300	300	300	300	300
Cedar Park ⁸	594	670	772	866	925	988	1052
Cedar Park ⁸ (Region G)	18,141	18,065	17,963	17,869	17,810	17,747	17,683
The Hills	1,600	1,600	1,600	1,600	1,600	1,600	1,600
Jonestown WSC	460	460	460	460	460	460	460
Lago Vista	6,500	6,500	6,500	6,500	6,500	6,500	6,500
Lakeway MUD	3,069	3,069	3,069	3,069	3,069	3,069	3,069
Loop 360 WSC	1,250	1,250	1,250	1,250	1,250	1,250	1,250
Pflugerville	12,000	12,000	12,000	12,000	12,000	12,000	12,000
River Place on Lake Austin	900	900	900	900	900	900	900
Travis County WCID #17	9,354	9,354	9,354	9,354	9,354	9,354	9,354
Travis County WCID #18	1,400	1,400	1,400	1,400	1,400	1,400	1,400
Travis County WCID #20	1,135	1,135	1,135	1,135	1,135	1,135	1,135
West Travis County Regional WS 9	10,131	10,131	10,131	10,131	10,131	10,131	10,131
Williamson-Travis County MUD #1	482	482	482	482	482	482	482
County-Other 10	19,548	19,548	19,548	19,548	19,548	19,548	19,548
Manufacturing	526	526	526	526	526	526	526
Williamson County (Region G)							
Leander	6,400	24,000	24,000	24,000	24,000	24,000	24,000
County-Other	25,000	25,000	25,000	25,000	25,000	25,000	25,000
Wharton County							
Irrigation 11	105,183	100,642	97,043	93,570	90,224	86,997	74,751
TOTAL	878,309	810,268	807,429	792,046	777,231	762,909	739,872

⁴ The Matagorda Irrigation commitment represents 87 percent of the Matagorda County Irrigation demand.

⁵ The Matagorda Steam Electric value is based on the Region K Cutoff Model results for the average annual amount of LCRA backup supplies needed to supplement the STPNOC/LCRA water right..

⁶ The Austin-Municipal value is based on the Region K Cutoff Model results for the amount of LCRA backup supplies needed to supplement Austin's municipal water rights.

⁷ The Austin-Steam Electric value is based on the Region K Cutoff Model results for the amount of LCRA backup supplies needed to supplement Austin's steam-electric water rights.

⁸ Cedar Park is located in both Region K and Region G, and it serves Williamson-Travis Counties MUD #1 (WUG).

⁹ West Travis County Regional WS is composed of multiple water user groups including the Village of Bee Cave, Barton Creek West WSC, and Hill Country WSC.

¹⁰ Travis County-Other contains Travis County MUD District #4 who serves Travis County WCID #19 (WUG).

¹¹ The Wharton Irrigation commitment represents 55 percent of the total Wharton County Irrigation demand.

APPENDIX 2A

LCRWPG POPULATION AND WATER DEMAND PROJECTIONS
(By County/River Basin and City/County)

APPENDIX 2B

LCRWPG POPULATION AND WATER DEMAND COMPARISONS (2006 Plan versus 2011 Plan)

APPENDIX 2C LCRWPG GALLONS PER CAPITA DAY (GPCD)

LCRWPG WATER PLAN

APPENDIX 2D

RESOLUTION BY THE LOWER COLORADO REGIONAL WATER PLANNING GROUP REGARDING POPULATION PROJECTIONS FOR THE 2011 REGIONAL WATER PLANNING CYCLE

			POPULATION					
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
AQUA WSC	BASTROP	COLORADO	37,503	54,835	66,989	88,380	105,849	127,246
BASTROP	BASTROP	COLORADO	8,890	12,475	15,920	21,003	25,155	30,240
BASTROP COUNTY WCID #2	BASTROP	COLORADO	2,269	3,202	4,300	5,546	7,124	9,099
COUNTY-OTHER	BASTROP	BRAZOS	708	990	1,263	1,665	1,993	2,397
COUNTY-OTHER	BASTROP	COLORADO	17,272	24,178	30,854	40,708	48,755	58,609
COUNTY-OTHER	BASTROP	GUADALUPE	461	645	823	1,086	1,300	1,564
CREEDMOOR-MAHA WSC	BASTROP	COLORADO	181	263	336	443	530	637
ELGIN	BASTROP	COLORADO	9,997	14,028	17,902	23,619	28,287	34,005
LEE COUNTY WSC	BASTROP	BRAZOS	336	488	623	822	984	1,183
LEE COUNTY WSC	BASTROP	COLORADO	524	761	971	1,281	1,535	1,845
MANVILLE WSC	BASTROP	COLORADO	501	717	971	1,259	1,624	2,080
POLONIA WSC	BASTROP	COLORADO	201	292	373	492	589	708
SMITHVILLE	BASTROP	COLORADO	5,606	7,866	10,039	13,244	15,863	19,070
BASTROP COUNTY TOTAL POPULATION	Ň		84,449	120,740	151,364	199,548	239,588	288,683
BLANCO	BLANCO	GUADALUPE	2,430	2,872	3,295	3,665	3,990	4,372
CANYON LAKE WSC	BLANCO	GUADALUPE	1,254	1,766	2,256	2,685	3,149	3,687
COUNTY-OTHER	BLANCO	COLORADO	3,020	3,385	3,735	4,040	4,452	4,926
COUNTY-OTHER	BLANCO	GUADALUPE	1,626	1,823	2,010	2,175	2,397	2,652
JOHNSON CITY	BLANCO	COLORADO	1,616	1,910	2,191	2,437	2,653	2,907
BLANCO COUNTY TOTAL POPULATION	•		9,946	11,756	13,487	15,002	16,641	18,544
BERTRAM	BURNET	BRAZOS	1,430	1,859	2,327	2,781	3,048	3,342
BURNET	BURNET	COLORADO	6,358	8,263	10,341	12,360	13,549	14,856
CHISHOLM TRAIL SUD	BURNET	BRAZOS	178	249	321	390	465	553
COTTONWOOD SHORES	BURNET	COLORADO	1,229	2,585	4,105	5,830	7,812	10,114
COUNTY-OTHER	BURNET	BRAZOS	5,540	6,975	8,936	10,809	11,768	12,435
COUNTY-OTHER	BURNET	COLORADO	17,493	22,027	28,212	34,134	37,163	39,270
GRANITE SHOALS	BURNET	COLORADO	2,738	3,559	4,454	5,324	5,836	6,399
KEMPNER WSC	BURNET	BRAZOS	884	1,140	1,402	1,652	1,925	2,242
KINGSLAND WSC	BURNET	COLORADO	366	426	487	545	608	682
LAKE LBJ MUD	BURNET	COLORADO	817	946	1,078	1,204	1,341	1,500
MARBLE FALLS	BURNET	COLORADO	7,796	10,132	12,679	15,155	16,613	18,216
MEADOWLAKES	BURNET	COLORADO	2,331	3,030	3,791	4,532	4,967	5,447
BURNET COUNTY TOTAL POPULATION	-		47,160	61,191	78,133	94,716	105,095	115,056
COLUMBUS	COLORADO	COLORADO	4,053	4,398	4,578	4,580	4,763	4,986
COUNTY-OTHER	COLORADO	BRAZOS-COLORADO	1,067	1,115	1,141	1,150	1,154	1,141

			POPULATION					
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
COUNTY-OTHER	COLORADO	COLORADO	6,801	7,101	7,268	7,336	7,349	7,272
COUNTY-OTHER	COLORADO	LAVACA	3,338	3,486	3,568	3,601	3,607	3,569
EAGLE LAKE	COLORADO	BRAZOS-COLORADO	1,147	1,244	1,295	1,296	1,348	1,411
EAGLE LAKE	COLORADO	COLORADO	2,645	2,872	2,989	2,989	3,108	3,254
WEIMAR	COLORADO	COLORADO	1,526	1,657	1,725	1,724	1,793	1,877
WEIMAR	COLORADO	LAVACA	662	718	747	748	778	814
COLORADO COUNTY TOTAL POPULAT	ION		21,239	22,591	23,311	23,424	23,900	24,324
AQUA WSC	FAYETTE	COLORADO	602	787	939	1,057	1,193	1,372
COUNTY-OTHER	FAYETTE	BRAZOS	2	1	1	2	1	1
COUNTY-OTHER	FAYETTE	COLORADO	3,455	2,362	1,615	1,104	755	516
COUNTY-OTHER	FAYETTE	GUADALUPE	230	140	85	51	31	19
COUNTY-OTHER	FAYETTE	LAVACA	1,377	855	531	330	205	127
FAYETTE WSC	FAYETTE	COLORADO	6,570	9,424	11,773	13,600	15,691	18,459
FAYETTE WSC	FAYETTE	LAVACA	577	828	1,034	1,195	1,379	1,622
FLATONIA	FAYETTE	GUADALUPE	345	383	414	438	466	503
FLATONIA	FAYETTE	LAVACA	1,198	1,329	1,437	1,521	1,617	1,744
LA GRANGE	FAYETTE	COLORADO	5,546	6,629	7,520	8,213	9,007	10,057
LEE COUNTY WSC	FAYETTE	COLORADO	1,730	2,375	2,906	3,319	3,792	4,418
SCHULENBURG	FAYETTE	LAVACA	3,194	3,695	4,108	4,429	4,796	5,282
FAYETTE COUNTY TOTAL POPULATION			24,826	28,808	32,363	35,259	38,933	44,120
COUNTY-OTHER	GILLESPIE	COLORADO	13,314	15,205	15,943	15,943	15,943	15,943
COUNTY-OTHER	GILLESPIE	GUADALUPE	462	527	553	553	553	553
FREDERICKSBURG	GILLESPIE	COLORADO	11,482	13,385	14,365	14,365	14,365	14,365
GILLESPIE COUNTY TOTAL POPULATION	ON		25,258	29,117	30,861	30,861	30,861	30,861
BUDA	HAYS	COLORADO	9,338	13,971	17,341	20,728	24,797	27,997
CIMARRON PARK WATER COMPANY	HAYS	COLORADO	2,417	3,013	3,631	4,252	4,998	5,584
COUNTY-OTHER	HAYS	COLORADO	22,722	33,658	43,641	53,675	65,729	75,207
DRIPPING SPRINGS	HAYS	COLORADO	5,325	9,308	11,651	14,005	16,834	19,058
DRIPPING SPRINGS WSC	HAYS	COLORADO	2,487	3,639	4,832	6,031	7,471	8,604
HILL COUNTRY WSC	HAYS	COLORADO	3,117	5,051	7,054	9,067	11,485	13,387
MOUNTAIN CITY	HAYS	COLORADO	737	737	737	737	737	737
HAYS COUNTY TOTAL POPULATION		46,143	69,377	88,887	108,495	132,051	150,574	
COUNTY-OTHER	LLANO	COLORADO	5,902	6,380	6,508	6,636	6,764	6,891
KINGSLAND WSC	LLANO	COLORADO	4,592	4,964	5,064	5,163	5,263	5,363
LAKE LBJ MUD	LLANO	COLORADO	5,994	6,479	6,610	6,740	6,869	7,000
LLANO	LLANO	COLORADO	3,967	4,288	4,375	4,461	4,547	4,633

			POPULATION					
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
SUNRISE BEACH VILLAGE	LLANO	COLORADO	829	896	914	932	950	968
LLANO COUNTY TOTAL POPULATION			21,284	23,007	23,471	23,932	24,393	24,855
BAY CITY	MATAGORDA	BRAZOS-COLORADO	19,921	21,292	22,126	22,586	22,586	22,586
COUNTY-OTHER	MATAGORDA	BRAZOS-COLORADO	7,400	7,909	8,219	8,389	8,389	8,389
COUNTY-OTHER	MATAGORDA	COLORADO	1,484	1,587	1,649	1,683	1,683	1,683
COUNTY-OTHER	MATAGORDA	COLORADO-LAVACA	5,456	5,832	6,061	6,186	6,186	6,186
ORBIT SYSTEMS INC	MATAGORDA	COLORADO-LAVACA	26	27	28	29	29	29
PALACIOS	MATAGORDA	COLORADO-LAVACA	5,499	5,878	6,108	6,235	6,235	6,235
SOUTHWEST UTILITIES	MATAGORDA	BRAZOS-COLORADO	720	770	800	817	817	817
MATAGORDA COUNTY TOTAL POPULA	TION		40,506	43,295	44,991	45,925	45,925	45,925
BROOKSMITH SUD	MILLS	COLORADO	39	45	46	47	46	44
COUNTY-OTHER	MILLS	BRAZOS	1,470	1,533	1,634	1,562	1,725	1,793
COUNTY-OTHER	MILLS	COLORADO	2,158	2,249	2,395	2,289	2,526	2,628
GOLDTHWAITE	MILLS	BRAZOS	27	30	30	30	30	31
GOLDTHWAITE	MILLS	COLORADO	1,772	1,958	2,002	2,002	2,002	2,001
MILLS COUNTY TOTAL POPULATION			5,466	5,815	6,107	5,930	6,329	6,497
COUNTY-OTHER	SAN SABA	COLORADO	2,697	2,971	3,210	3,418	3,444	3,477
RICHLAND SUD	SAN SABA	COLORADO	1,050	1,130	1,200	1,261	1,268	1,278
SAN SABA	SAN SABA	COLORADO	2,640	2,645	2,649	2,653	2,653	2,654
SAN SABA COUNTY TOTAL POPULATIO	N		6,387	6,746	7,059	7,332	7,365	7,409
ANDERSON MILL MUD	TRAVIS	COLORADO	0	0	0	0	0	0
AQUA WSC	TRAVIS	COLORADO	9,470	11,131	12,666	13,625	14,639	15,683
AUSTIN	TRAVIS	COLORADO	770,529	928,151	1,101,052	1,258,580	1,424,691	1,548,275
BARTON CREEK WEST WSC	TRAVIS	COLORADO	1,456	1,456	1,456	1,456	1,456	1,456
BEE CAVE VILLAGE	TRAVIS	COLORADO	2,264	2,727	3,181	3,592	3,891	4,191
BRIARCLIFF VILLAGE	TRAVIS	COLORADO	1,289	1,553	1,811	2,045	2,215	2,386
CEDAR PARK	TRAVIS	COLORADO	922	1,432	1,903	2,197	2,508	2,828
COUNTY-OTHER	TRAVIS	COLORADO	26,994	25,494	18,394	13,807	12,120	12,629
COUNTY-OTHER	TRAVIS	GUADALUPE	6	6	6	6	7	7
CREEDMOOR-MAHA WSC	TRAVIS	COLORADO	5,812	7,117	8,322	9,075	9,871	10,691
CREEDMOOR-MAHA WSC	TRAVIS	GUADALUPE	150	184	215	234	255	276
ELGIN	TRAVIS	COLORADO	87	105	123	139	150	162
GOFORTH WSC	TRAVIS	COLORADO	288	383	471	526	584	644
HILL COUNTRY WSC	TRAVIS	COLORADO	1,689	2,623	3,486	4,025	4,595	5,182
JONESTOWN	TRAVIS	COLORADO	3,309	3,985	4,648	5,249	5,686	6,123

			POPULATION					
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
JONESTOWN WSC	TRAVIS	COLORADO	926	1,123	1,305	1,419	1,539	1,663
LAGO VISTA	TRAVIS	COLORADO	6,907	8,320	9,703	10,959	11,871	12,784
LAKEWAY	TRAVIS	COLORADO	14,522	17,493	20,400	23,040	24,957	26,877
LAKEWAY MUD	TRAVIS	COLORADO	0	0	0	0	0	0
LOOP 360 WSC	TRAVIS	COLORADO	2,803	2,803	2,803	2,803	2,803	2,803
LOST CREEK MUD	TRAVIS	COLORADO	4,372	4,372	4,372	4,372	4,372	4,372
MANOR	TRAVIS	COLORADO	6,275	7,558	8,815	9,955	10,784	11,613
MANVILLE WSC	TRAVIS	COLORADO	12,987	17,931	22,498	25,350	28,367	31,474
MUSTANG RIDGE	TRAVIS	COLORADO	384	466	542	589	639	690
MUSTANG RIDGE	TRAVIS	GUADALUPE	102	124	144	157	170	184
NORTH AUSTIN MUD #1	TRAVIS	COLORADO	780	780	780	780	780	780
NORTH TRAVIS COUNTY MUD #5	TRAVIS	COLORADO	3,615	5,614	7,460	8,613	9,833	11,089
PFLUGERVILLE	TRAVIS	COLORADO	39,480	47,557	55,460	62,638	67,850	73,069
RIVER PLACE ON LAKE AUSTIN	TRAVIS	COLORADO	4,449	5,250	5,250	5,250	5,250	5,250
ROLLINGWOOD	TRAVIS	COLORADO	1,414	1,428	1,441	1,449	1,458	1,467
ROUND ROCK	TRAVIS	COLORADO	1,806	2,782	3,684	4,247	4,843	5,456
SAN LEANNA	TRAVIS	COLORADO	546	659	766	868	938	1,009
SHADY HOLLOW MUD	TRAVIS	COLORADO	4,732	4,732	4,732	4,732	4,732	4,732
THE HILLS	TRAVIS	COLORADO	2,301	3,000	3,000	3,000	3,000	3,000
TRAVIS COUNTY WCID #17	TRAVIS	COLORADO	26,130	32,500	36,000	40,000	42,000	44,500
TRAVIS COUNTY WCID #18	TRAVIS	COLORADO	6,291	8,133	9,834	10,896	12,020	13,177
TRAVIS COUNTY WCID #19	TRAVIS	COLORADO	716	716	716	716	716	716
TRAVIS COUNTY WCID #20	TRAVIS	COLORADO	1,140	1,140	1,140	1,140	1,140	1,140
WELLS BRANCH MUD	TRAVIS	COLORADO	8,211	8,211	8,211	8,211	8,211	8,211
WEST LAKE HILLS	TRAVIS	COLORADO	3,520	4,061	4,561	4,873	5,203	5,543
	TRAVIS	COLORADO	4,881	7,051	9,055	10,307	11,631	12,994
WILLIAMSON-TRAVIS COUNTY MUD #1	TRAVIS	COLORADO	1,699	2,395	3,037	3,438	3,862	4,299
WINDERMERE UTILITY COMPANY	TRAVIS	COLORADO	17,999	18,710	18,710	18,710	18,710	18,710
TRAVIS COUNTY TOTAL POPULATION			1,003,253	1,201,256	1,402,153	1,583,068	1,770,347	1,918,135
	WHARTON	BRAZOS-COLORADO	10,173	10,752	11,128	11,343	11,348	11,226
	WHARTON	COLORADO	3,836	4,055	4,197	4,277	4,279	4,234
COUNTY-OTHER	WHARTON	COLORADO-LAVACA	2,054	2,171	2,246	2,289	2,291	2,266
EAST BERNARD	WHARTON	BRAZOS-COLORADO	2,428	2,567	2,656	2,707	2,708	2,680
WHARTON	WHARTON	BRAZOS-COLORADO	6,704	7,087	7,333	7,475	7,478	7,399
WHARTON	WHARTON	COLORADO	3,065	3,240	3,352	3,417	3,419	3,383
WHARTON COUNTY TOTAL POPULATIO	N		28,260	29,872	30,912	31,508	31,523	31,188

Region K Population Projections by Water User Group

					POPUL	ATION		
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
ANDERSON MILL MUD	WILLIAMSON	BRAZOS	0	0	0	0	0	0
AUSTIN	WILLIAMSON	BRAZOS	29,317	39,606	51,839	65,141	79,613	95,134
COUNTY-OTHER	WILLIAMSON	BRAZOS	12,317	14,082	16,181	18,463	20,946	23,609
NORTH AUSTIN MUD #1	WILLIAMSON	BRAZOS	7,023	7,023	7,023	7,023	7,023	7,023
WILLIAMSON COUNTY TOTAL POPULAT	TION		48,657	60,711	75,043	90,627	107,582	125,766
REGION K TOTAL POPULATION		_	1,412,834	1,714,282	2,008,142	2,295,627	2,580,533	2,831,937

				1	Nater Deman	d (ac-ft/yr)		
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
AQUA WSC	BASTROP	COLORADO	5,629	8,046	9,604	12,573	14,939	17,959
BASTROP	BASTROP	COLORADO	1,992	2,739	3,459	4,517	5,382	6,469
BASTROP COUNTY WCID #2	BASTROP	COLORADO	341	473	626	801	1,029	1,315
COUNTY-OTHER	BASTROP	BRAZOS	97	135	171	226	270	325
COUNTY-OTHER	BASTROP	COLORADO	2,361	3,304	4,181	5,517	6,608	7,944
COUNTY-OTHER	BASTROP	GUADALUPE	63	88	112	147	176	212
CREEDMOOR-MAHA WSC	BASTROP	COLORADO	19	26	33	43	51	62
ELGIN	BASTROP	COLORADO	1,658	2,278	2,847	3,703	4,404	5,295
LEE COUNTY WSC	BASTROP	BRAZOS	49	70	87	115	135	163
LEE COUNTY WSC	BASTROP	COLORADO	77	108	136	178	211	254
MANVILLE WSC	BASTROP	COLORADO	67	94	125	161	207	266
POLONIA WSC	BASTROP	COLORADO	18	26	32	41	50	60
SMITHVILLE	BASTROP	COLORADO	904	1,233	1,551	2,018	2,398	2,884
Total Municipal Water Totals			13,275	18,620	22,964	30,040	35,860	43,208
IRRIGATION	BASTROP	BRAZOS	89	78	68	59	52	45
IRRIGATION	BASTROP	COLORADO	1,521	1,329	1,158	1,013	882	769
IRRIGATION	BASTROP	GUADALUPE	0	0	0	0	0	0
Total Irrigation Water Totals	.	-	1,610	1,407	1,226	1.072	934	814
LIVESTOCK	BASTROP	BRAZOS	259	259	259	259	259	259
LIVESTOCK	BASTROP	COLORADO	1,202	1,202	1,202	1,202	1,202	1,202
LIVESTOCK	BASTROP	GUADALUPE	61	61	61	61	61	61
Total Livestock Water Totals			1,522	1,522	1,522	1,522	1,522	1,522
MANUFACTURING	BASTROP	BRAZOS	0	0	0	0	0	0
MANUFACTURING	BASTROP	COLORADO	84	101	119	137	155	167
MANUFACTURING	BASTROP	GUADALUPE	8	10	11	13	14	16
Total Manufacturing Water Tota			92	111	130	150	169	183
MINING	BASTROP	BRAZOS	10	9	10	11	11	11
MINING	BASTROP	COLORADO	5,016	5,018	5,018	18	19	20
MINING	BASTROP	GUADALUPE	7	8	8	8	8	8
Total Mining Water Totals	1-11-11-11-1		5,033	5,035	5,036	37	38	39
STEAM ELECTRIC POWER	BASTROP	BRAZOS	0	0	0	0	0	0
STEAM ELECTRIC POWER	BASTROP	COLORADO	12,000	14,000	16,000	18,000	19,500	19,500
STEAM ELECTRIC POWER	BASTROP	GUADALUPE	0	0	0	0	0	0
Total Steam Electric Power Wat		00/12/1201	12,000	14,000	16,000	18,000	19,500	19,500
BASTROP COUNTY TOTALS			33,532	40,695	46,878	50,821	58.023	65,266
BLANCO	BLANCO	GUADALUPE	440	508	576	628	679	745
CANYON LAKE WSC	BLANCO	GUADALUPE	188	263	334	397	466	545
COUNTY-OTHER	BLANCO	COLORADO	297	323	347	367	399	441
COUNTY-OTHER	BLANCO	GUADALUPE	160	173	187	197	215	238
JOHNSON CITY	BLANCO	COLORADO	382	445	503	554	601	657
Total Municipal Water Totals	125 11100	1002010100	1.467	1.712	1,947	2.143	2,360	2.626
IRRIGATION	BLANCO	COLORADO	54	52	48	45	44	43
IRRIGATION	BLANCO	GUADALUPE	15	14	14	13	12	12
Total Irrigation Water Totals	25,000	CONDINEO! E	69	66	62	58	56	55
LIVESTOCK	BLANCO	COLORADO	341	341	341	341	341	341

		Г		1	Nater Deman	d (ac-ft/yr)		
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
LIVESTOCK	BLANCO	GUADALUPE	102	102	102	102	102	102
Total Livestock Water Totals			443	443	443	443	443	443
MANUFACTURING	BLANCO	COLORADO	1	1	1	1	1	1
MANUFACTURING	BLANCO	GUADALUPE	1	1	1	1	1	1
Total Manufacturing Water Tota	ls		2	2	2	2	2	2
MINING	BLANCO	COLORADO	5	5	5	5	5	5
MINING	BLANCO	GUADALUPE	0	0	0	0	0	0
Total Mining Water Totals			5	5	5	5	5	5
STEAM ELECTRIC POWER	BLANCO	COLORADO	0	0	0	0	0	0
STEAM ELECTRIC POWER	BLANCO	GUADALUPE	0	0	0	0	0	0
Total Steam Electric Power Wat	er Totals		0	0	0	0	0	0
BLANCO COUNTY TOTAL WAT	ER TOTALS		1,986	2,228	2,459	2,651	2,866	3,131
BERTRAM	BURNET	BRAZOS	282	360	445	527	574	630
BURNET	BURNET	COLORADO	1,111	1,416	1,738	2,063	2,246	2,463
CHISHOLM TRAIL SUD	BURNET	BRAZOS	28	40	53	66	79	94
COTTONWOOD SHORES	BURNET	COLORADO	164	336	524	739	978	1,268
COUNTY-OTHER	BURNET	BRAZOS	496	610	761	908	976	1,031
COUNTY-OTHER 1	BURNET	COLORADO	2,529	3,087	3,764	4,430	4,842	5,217
GRANITE SHOALS	BURNET	COLORADO	424	535	658	775	844	925
KEMPNER WSC	BURNET	BRAZOS	298	381	466	548	636	741
KINGSLAND WSC	BURNET	COLORADO	55	63	70	77	85	95
LAKE LBJ MUD	BURNET	COLORADO	227	261	293	324	359	402
MARBLE FALLS	BURNET	COLORADO	2,497	3,211	3,976	4,719	5,154	5,653
MEADOWLAKES	BURNET	COLORADO	879	1,137	1,418	1,691	1,853	2,031
Total Municipal Water Totals			8,990	11,437	14,166	16,867	18,626	20,550
IRRIGATION	BURNET	BRAZOS	0	0	0	0	0	0
IRRIGATION	BURNET	COLORADO	101	100	98	96	95	93
Total Irrigation Water Totals			101	100	98	96	95	93
LIVESTOCK	BURNET	BRAZOS	409	409	409	409	409	409
LIVESTOCK	BURNET	COLORADO	426	426	426	426	426	426
Total Livestock Water Totals			835	835	835	835	835	835
MANUFACTURING	BURNET	BRAZOS	0	0	0	0	0	0
MANUFACTURING	BURNET	COLORADO	963	1,109	1,248	1,384	1,502	1,636
Total Manufacturing Water Tota	ls		963	1,109	1,248	1,384	1,502	1,636
MINING	BURNET	BRAZOS	61	64	66	67	69	70
MINING	BURNET	COLORADO	1,895	1,985	2,032	2,078	2,121	2,165
Total Mining Water Totals			1,956	2,049	2,098	2,145	2,190	2,235
STEAM ELECTRIC POWER	BURNET	BRAZOS	0	0	0	0	0	0
STEAM ELECTRIC POWER	BURNET	COLORADO	0	0	0	0	0	0
Total Steam Electric Power Wat			0	0	0	0	0	0
BURNET COUNTY TOTAL WAT	ER TOTALS		12,845	15,530	18,445	21,327	23,248	25,349
COLUMBUS	COLORADO	COLORADO	1,026	1,099	1,128	1,113	1,153	1,206
COUNTY-OTHER	COLORADO	BRAZOS-COLORADO	114	115	114	111	110	109
COUNTY-OTHER	COLORADO	COLORADO	724	732	725	707	700	692
COUNTY-OTHER	COLORADO	LAVACA	355	359	356	347	343	340

				1	Nater Demar	nd (ac-ft/yr)		
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
EAGLE LAKE	COLORADO	BRAZOS-COLORADO	173	183	186	181	187	196
EAGLE LAKE	COLORADO	COLORADO	400	421	428	418	432	452
WEIMAR	COLORADO	COLORADO	253	268	272	267	275	289
WEIMAR	COLORADO	LAVACA	110	115	119	115	120	125
Total Municipal Water Totals	<u>.</u>	•	3,155	3,292	3,328	3,259	3,320	3,409
IRRIGATION	COLORADO	BRAZOS-COLORADO	55,427	53,120	50,889	48,729	46,629	44,619
IRRIGATION	COLORADO	COLORADO	26,910	25,791	24,707	23,659	22,639	21,663
IRRIGATION	COLORADO	LAVACA	118,485	113,554	108,784	104,167	99,678	95,381
Total Irrigation Water Totals		·	200,822	192,465	184,380	176,555	168,946	161,663
LIVESTOCK	COLORADO	BRAZOS-COLORADO	103	103	103	103	103	103
LIVESTOCK	COLORADO	COLORADO	899	899	899	899	899	899
LIVESTOCK	COLORADO	LAVACA	471	471	471	471	471	471
Total Livestock Water Totals		·	1,473	1,473	1,473	1,473	1,473	1,473
MANUFACTURING	COLORADO	BRAZOS-COLORADO	0	0	0	0	0	0
MANUFACTURING	COLORADO	COLORADO	176	192	205	217	227	245
MANUFACTURING	COLORADO	LAVACA	0	0	0	0	0	0
Total Manufacturing Water Tota	ıls	·	176	192	205	217	227	245
MINING	COLORADO	BRAZOS-COLORADO	119	122	123	124	125	126
MINING	COLORADO	COLORADO	18,958	19,316	19,515	19,704	19,885	20,044
MINING	COLORADO	LAVACA	1,727	1,759	1,778	1,795	1,811	1,826
Total Mining Water Totals	•		20,804	21,197	21,416	21,623	21,821	21,996
STEAM ELECTRIC POWER	COLORADO	BRAZOS-COLORADO	0	0	0	0	0	0
STEAM ELECTRIC POWER	COLORADO	COLORADO	0	0	0	0	0	0
STEAM ELECTRIC POWER	COLORADO	LAVACA	0	0	0	0	0	0
Total Steam Electric Power Wat	er Totals		0	0	0	0	0	0
COLORADO COUNTY TOTAL V	VATER TOTALS		226,430	218,619	210,802	203,127	195,787	188,786
AQUA WSC	FAYETTE	COLORADO	90	115	135	150	168	194
COUNTY-OTHER	FAYETTE	BRAZOS	0	0	0	0	0	0
COUNTY-OTHER	FAYETTE	COLORADO	464	307	206	137	93	64
COUNTY-OTHER	FAYETTE	GUADALUPE	31	18	11	6	4	2
COUNTY-OTHER	FAYETTE	LAVACA	185	111	68	41	25	16
FAYETTE WSC	FAYETTE	COLORADO	846	1,193	1,464	1,676	1,933	2,274
FAYETTE WSC	FAYETTE	LAVACA	74	105	129	147	170	200
FLATONIA	FAYETTE	GUADALUPE	76	82	88	92	97	105
FLATONIA	FAYETTE	LAVACA	263	286	306	319	337	363
LA GRANGE	FAYETTE	COLORADO	963	1,129	1,264	1,362	1,483	1,656
LEE COUNTY WSC	FAYETTE	COLORADO	254	338	407	461	522	609
SCHULENBURG	FAYETTE	LAVACA	644	733	801	853	919	1,012
Total Municipal Water Totals	•		3,890	4,417	4,879	5,244	5,751	6,495
IRRIGATION	FAYETTE	BRAZOS	0	0	0	0	0	0
IRRIGATION	FAYETTE	COLORADO	702	657	615	575	539	506
IRRIGATION	FAYETTE	GUADALUPE	0	0	0	0	0	0
IRRIGATION	FAYETTE	LAVACA	37	35	33	31	29	27
Total Irrigation Water Totals		-	739	692	648	606	568	533
LIVESTOCK	FAYETTE	BRAZOS	24	24	24	24	24	24

				1	Water Demar	nd (ac-ft/yr)		
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
LIVESTOCK	FAYETTE	COLORADO	1,774	1,774	1,774	1,774	1,774	1,774
LIVESTOCK	FAYETTE	GUADALUPE	144	144	144	144	144	144
LIVESTOCK	FAYETTE	LAVACA	455	455	455	455	455	455
Total Livestock Water Totals		·	2,397	2,397	2,397	2,397	2,397	2,397
MANUFACTURING	FAYETTE	BRAZOS	0	0	0	0	0	0
MANUFACTURING	FAYETTE	COLORADO	0	0	0	0	0	0
MANUFACTURING	FAYETTE	GUADALUPE	0	0	0	0	0	0
MANUFACTURING	FAYETTE	LAVACA	205	230	254	277	297	322
Total Manufacturing Water Total	als		205	230	254	277	297	322
MINING	FAYETTE	BRAZOS	29	29	29	29	29	29
MINING	FAYETTE	COLORADO	4	4	4	4	4	4
MINING	FAYETTE	GUADALUPE	7	7	7	7	7	7
MINING	FAYETTE	LAVACA	2	2	2	2	2	2
Total Mining Water Totals			42	42	42	42	42	42
STEAM ELECTRIC POWER	FAYETTE	BRAZOS	0	0	0	0	0	0
STEAM ELECTRIC POWER	FAYETTE	COLORADO	29,622	29,702	33,002	63,843	63,843	69,753
STEAM ELECTRIC POWER	FAYETTE	GUADALUPE	0	0	0	0	0	0
STEAM ELECTRIC POWER	FAYETTE	LAVACA	0	0	0	0	0	0
Total Steam Electric Power Wa	ter Totals		29,622	29,702	33,002	63,843	63,843	69,753
FAYETTE COUNTY TOTAL WA	TER TOTALS		36,895	37,480	41,222	72,409	72,898	79,542
COUNTY-OTHER	GILLESPIE	COLORADO	1,581	1,754	1,786	1,750	1,732	1,732
COUNTY-OTHER	GILLESPIE	GUADALUPE	55	61	62	61	60	60
FREDERICKSBURG	GILLESPIE	COLORADO	3,113	3,583	3,798	3,765	3,749	3,749
Total Municipal Water Totals		·	4,749	5,398	5,646	5,576	5,541	5,541
IRRIGATION	GILLESPIE	COLORADO	2,039	2,013	1,987	1,960	1,936	1,912
IRRIGATION	GILLESPIE	GUADALUPE	0	0	0	0	0	0
Total Irrigation Water Totals		·	2,039	2,013	1,987	1,960	1,936	1,912
LIVESTOCK	GILLESPIE	COLORADO	1,041	1,041	1,041	1,041	1,041	1,041
LIVESTOCK	GILLESPIE	GUADALUPE	21	21	21	21	21	21
Total Livestock Water Totals		·	1,062	1,062	1,062	1,062	1,062	1,062
MANUFACTURING	GILLESPIE	COLORADO	506	539	566	591	612	655
MANUFACTURING	GILLESPIE	GUADALUPE	0	0	0	0	0	0
Total Manufacturing Water Total	als	·	506	539	566	591	612	655
MINING	GILLESPIE	COLORADO	8	8	8	8	8	8
MINING	GILLESPIE	GUADALUPE	0	0	0	0	0	0
Total Mining Water Totals	•	•	8	8	8	8	8	8
STEAM ELECTRIC POWER	GILLESPIE	COLORADO	0	0	0	0	0	0
STEAM ELECTRIC POWER	GILLESPIE	GUADALUPE	0	0	0	0	0	0
Total Steam Electric Power Wa	ter Totals		0	0	0	0	0	0
GILLESPIE COUNTY TOTAL W	ATER TOTALS		8,364	9,020	9,269	9,197	9,159	9,178
BUDA	HAYS	COLORADO	1,454	2,128	2,603	3,088	3,666	4,140
CIMARRON PARK WATER	HAYS	COLORADO	403	489	582	676	789	882
COUNTY-OTHER	HAYS	COLORADO	3,359	4,864	6,208	7,576	9,277	10,615
DRIPPING SPRINGS	HAYS	COLORADO	1,080	1,856	2,297	2,745	3,300	3,736
DRIPPING SPRINGS WSC	HAYS	COLORADO	348	501	660	817	1,013	1,166

		[Water Demar	nd (ac-ft/yr)		
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
HILL COUNTRY WSC	HAYS	COLORADO	440	702	980	1,249	1,582	1,844
MOUNTAIN CITY	HAYS	COLORADO	118	116	116	115	115	115
Total Municipal Water Totals			7,202	10,656	13,446	16,266	19,742	22,498
IRRIGATION	HAYS	COLORADO	11	11	11	11	11	11
Total Irrigation Water Totals			11	11	11	11	11	11
LIVESTOCK	HAYS	COLORADO	220	220	220	220	220	220
Total Livestock Water Totals			220	220	220	220	220	220
MANUFACTURING	HAYS	COLORADO	691	809	928	1,048	1,156	1,255
Total Manufacturing Water Totals			691	809	928	1,048	1,156	1,255
MINING	HAYS	COLORADO	12	6	2	0	0	0
Total Mining Water Totals			12	6	2	0	0	0
STEAM ELECTRIC POWER	HAYS	COLORADO	0	0	0	0	0	0
Total Steam Electric Power Water			0	0	0	0	0	0
HAYS COUNTY TOTAL WATER TO			8,136	11,702	14,607	17,545	21,129	23,984
COUNTY-OTHER ²	LLANO	COLORADO	1,991	2,243	2,428	2,608	2,784	2,970
KINGSLAND WSC	LLANO	COLORADO	689	734	731	729	737	751
LAKE LBJ MUD	LLANO	COLORADO	1,665	1,785	1,800	1,813	1,839	1,874
LLANO	LLANO	COLORADO	1,177	1,258	1,270	1,279	1,294	1,319
SUNRISE BEACH VILLAGE	LLANO	COLORADO	200	215	217	218	221	225
Total Municipal Water Totals			5,722	6,235	6,446	6,647	6,875	7,139
IRRIGATION	LLANO	COLORADO	979	963	946	930	915	900
Total Irrigation Water Totals			979	963	946	930	915	900
LIVESTOCK	LLANO	COLORADO	751	751	751	751	751	751
Total Livestock Water Totals			751	751	751	751	751	751
MANUFACTURING	LLANO	COLORADO	3	3	3	3	3	3
Total Manufacturing Water Totals			3	3	3	3	3	3
MINING	LLANO	COLORADO	149	148	148	148	148	148
Total Mining Water Totals			149	148	148	148	148	148
STEAM ELECTRIC POWER	LLANO	COLORADO	1,500	1,500	1,500	15,000	15,000	15,000
Total Steam Electric Power Water			1,500	1,500	1,500	15,000	15,000	15,000
LLANO COUNTY TOTAL WATER T			9,104	9,600	9,794	23,479	23,692	23,941
BAY CITY	MATAGORDA	BRAZOS-COLORADO	3,236	3,387	3,445	3,441	3,416	3,416
COUNTY-OTHER	MATAGORDA	BRAZOS-COLORADO	787	815	819	808	798	798
COUNTY-OTHER	MATAGORDA	COLORADO	158	164	164	162	160	160
COUNTY-OTHER	MATAGORDA	COLORADO-LAVACA	581	601	604	596	589	589
ORBIT SYSTEMS INC	MATAGORDA	COLORADO-LAVACA	2	2	2	2	2	2
PALACIOS	MATAGORDA	COLORADO-LAVACA	745	777	787	789	782	782
SOUTHWEST UTILITIES	MATAGORDA	BRAZOS-COLORADO	81	84	85	85	84	84
Total Municipal Water Totals	T		5,590	5,830	5,906	5,883	5,831	5,831
IRRIGATION	MATAGORDA	BRAZOS-COLORADO	90,733	87,454	84,296	81,271	78,359	75,553
IRRIGATION	MATAGORDA	COLORADO	11,583	11,164	10,761	10,375	10,003	9,645
IRRIGATION	MATAGORDA	COLORADO-LAVACA	90,732	87,454	84,296	81,270	78,360	75,552
Total Irrigation Water Totals	T		193,048	186,072	179,353	172,916	166,722	160,750
LIVESTOCK	MATAGORDA	BRAZOS-COLORADO	529	529	529	529	529	529
LIVESTOCK	MATAGORDA	COLORADO	136	136	136	136	136	136

					Water Demar	nd (ac-ft/yr)		
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
LIVESTOCK	MATAGORDA	COLORADO-LAVACA	486	486	486	486	486	486
Total Livestock Water Totals			1,151	1,151	1,151	1,151	1,151	1,151
MANUFACTURING	MATAGORDA	BRAZOS-COLORADO	6,369	6,930	7,316	7,680	7,979	8,507
MANUFACTURING	MATAGORDA	COLORADO	5,811	6,323	6,675	7,006	7,280	7,760
MANUFACTURING	MATAGORDA	COLORADO-LAVACA	0	0	0	0	0	0
Total Manufacturing Water Total			12,180	13,253	13,991	14,686	15,259	16,267
MINING	MATAGORDA	BRAZOS-COLORADO	5	5	5	5	5	5
MINING	MATAGORDA	COLORADO	0	0	0	0	0	0
MINING	MATAGORDA	COLORADO-LAVACA	172	167	164	162	160	158
Total Mining Water Totals			177	172	169	167	165	163
STEAM ELECTRIC POWER	MATAGORDA	BRAZOS-COLORADO	0	0	0	0	0	0
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	83,000	135,000	135,000	135,000	135,000	135,000
STEAM ELECTRIC POWER	MATAGORDA	COLORADO-LAVACA	0	0	0	0	0	0
Total Steam Electric Power Wate	r Totals		83,000	135,000	135,000	135,000	135,000	135,000
MATAGORDA COUNTY TOTAL V	WATER TOTALS		295,146	341,478	335,570	329,803	324,128	319,162
BROOKSMITH SUD	MILLS	COLORADO	7	8	8	8	8	7
COUNTY-OTHER	MILLS	BRAZOS	176	179	185	171	187	195
COUNTY-OTHER	MILLS	COLORADO	258	262	271	251	274	286
GOLDTHWAITE	MILLS	BRAZOS	9	10	10	10	9	9
GOLDTHWAITE	MILLS	COLORADO	560	611	619	613	608	607
Total Municipal Water Totals	•		1,010	1,070	1,093	1,053	1,086	1,104
IRRIGATION	MILLS	BRAZOS	323	316	309	302	296	289
IRRIGATION	MILLS	COLORADO	2,613	2,556	2,501	2,447	2,393	2,342
Total Irrigation Water Totals	•		2,936	2,872	2,810	2,749	2,689	2,631
LIVESTOCK	MILLS	BRAZOS	367	367	367	367	367	367
LIVESTOCK	MILLS	COLORADO	551	551	551	551	551	551
Total Livestock Water Totals			918	918	918	918	918	918
MANUFACTURING	MILLS	BRAZOS	0	0	0	0	0	0
MANUFACTURING	MILLS	COLORADO	1	1	1	1	1	1
Total Manufacturing Water Total			1	1	1	1	1	1
MINING	MILLS	BRAZOS	0	0	0	0	0	0
MINING	MILLS	COLORADO	0	0	0	0	0	0
Total Mining Water Totals	<u> </u>		0	0	0	0	0	0
STEAM ELECTRIC POWER	MILLS	BRAZOS	0	0	0	0	0	0
STEAM ELECTRIC POWER	MILLS	COLORADO	0	0	0	0	0	0
Total Steam Electric Power Water	r Totals		0	0	0	0	0	0
MILLS COUNTY TOTAL WATER	TOTALS		4,865	4,861	4,822	4,721	4,694	4,654
COUNTY-OTHER	SAN SABA	COLORADO	227	240	252	264	262	265
RICHLAND SUD	SAN SABA	COLORADO	188	199	207	213	213	215
SAN SABA	SAN SABA	COLORADO	884	877	869	862	856	856
Total Municipal Water Totals	•		1,299	1,316	1,328	1,339	1,331	1,336
IRRIGATION	SAN SABA	COLORADO	3,240	3,136	3,035	2,937	2,841	2,749
Total Irrigation Water Totals			3,240	3,136	3,035	2,937	2,841	2,749
LIVESTOCK	SAN SABA	COLORADO	1,191	1,191	1,191	1,191	1,191	1,191
Total Livestock Water Totals			1,191	1,191	1,191	1,191	1,191	1,191

				1	Water Demai	nd (ac-ft/yr)		
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
MANUFACTURING	SAN SABA	COLORADO	28	30	31	32	33	35
Total Manufacturing Water Totals			28	30	31	32	33	35
MINING	SAN SABA	COLORADO	163	163	163	163	163	163
Total Mining Water Totals			163	163	163	163	163	163
STEAM ELECTRIC POWER	SAN SABA	COLORADO	0	0	0	0	0	0
Total Steam Electric Power Water	Γotals		0	0	0	0	0	0
SAN SABA COUNTY TOTAL WATE	R TOTALS		5,921	5,836	5,748	5,662	5,559	5,474
ANDERSON MILL MUD	TRAVIS	COLORADO	0	0	0	0	0	0
AQUA WSC	TRAVIS	COLORADO	1,421	1,634	1,815	1,938	2,066	2,214
AUSTIN	TRAVIS	COLORADO	150,180	179,861	212,133	241,074	271,296	293,095
BARTON CREEK WEST WSC	TRAVIS	COLORADO	401	398	395	393	391	391
BEE CAVE VILLAGE	TRAVIS	COLORADO	1,177	1,413	1,647	1,856	2,009	2,164
BRIARCLIFF VILLAGE	TRAVIS	COLORADO	254	299	345	387	417	449
CEDAR PARK	TRAVIS	COLORADO	188	290	384	443	506	570
COUNTY-OTHER ³	TRAVIS	COLORADO	8,343	8,662	7,907	7,648	7,952	8,675
COUNTY-OTHER	TRAVIS	GUADALUPE	1	1	1	1	1	1
CREEDMOOR-MAHA WSC	TRAVIS	COLORADO	612	717	820	884	951	1,030
CREEDMOOR-MAHA WSC	TRAVIS	GUADALUPE	16	19	21	23	25	27
ELGIN	TRAVIS	COLORADO	14	17	19	22	24	25
GOFORTH WSC	TRAVIS	COLORADO	30	39	47	52	58	63
HILL COUNTRY WSC	TRAVIS	COLORADO	238	364	484	555	633	714
JONESTOWN	TRAVIS	COLORADO	467	548	625	700	751	809
JONESTOWN WSC	TRAVIS	COLORADO	122	145	164	176	190	205
LAGO VISTA	TRAVIS	COLORADO	2,260	2,702	3,142	3,536	3,830	4,124
LAKEWAY	TRAVIS	COLORADO	4,750	5,682	6,582	7,407	8,023	8,641
LAKEWAY MUD	TRAVIS	COLORADO	0	0	0	0	0	0
LOOP 360 WSC	TRAVIS	COLORADO	1,228	1,225	1,221	1,218	1,218	1,218
LOST CREEK MUD	TRAVIS	COLORADO	935	921	906	891	882	882
MANOR	TRAVIS	COLORADO	1,356	1,601	1,834	2,051	2,213	2,378
MANVILLE WSC	TRAVIS	COLORADO	1,731	2,350	2,898	3,237	3,622	4,019
MUSTANG RIDGE	TRAVIS	COLORADO	93	111	128	139	150	162
MUSTANG RIDGE	TRAVIS	GUADALUPE	25	30	34	37	40	43
NORTH AUSTIN MUD #1	TRAVIS	COLORADO	109	107	106	103	102	102
NORTH TRAVIS COUNTY MUD #5	TRAVIS	COLORADO	514	792	1,045	1,196	1,366	1,540
PFLUGERVILLE	TRAVIS	COLORADO	6,899	8,204	9,505	10,664	11,552	12,441
RIVER PLACE ON LAKE AUSTIN	TRAVIS	COLORADO	1,470	1,723	1,723	1,717	1,717	1,717
ROLLINGWOOD	TRAVIS	COLORADO	377	376	374	372	371	373
ROUND ROCK	TRAVIS	COLORADO	399	605	792	909	1,036	1,167
SAN LEANNA	TRAVIS	COLORADO	100	120	140	158	171	184
SHADY HOLLOW MUD	TRAVIS	COLORADO	747	731	716	700	694	694
THE HILLS	TRAVIS	COLORADO	567	733	733	729	729	729
TRAVIS COUNTY WCID #17	TRAVIS	COLORADO	4,712	5,752	6,331	6,990	7,339	7,777
TRAVIS COUNTY WCID #18	TRAVIS	COLORADO	853	1,075	1,278	1,404	1,535	1,683
TRAVIS COUNTY WCID #19	TRAVIS	COLORADO	376	374	372	371	371	371
TRAVIS COUNTY WCID #20	TRAVIS	COLORADO	462	460	457	456	455	455

				1	Water Demar	nd (ac-ft/yr)		
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
WELLS BRANCH MUD	TRAVIS	COLORADO	1,508	1,490	1,472	1,444	1,435	1,435
WEST LAKE HILLS	TRAVIS	COLORADO	1,605	1,833	2,049	2,178	2,320	2,471
WEST TRAVIS COUNTY	TRAVIS	COLORADO	782	1,114	1,420	1,605	1,811	2,023
WILLIAMSON-TRAVIS COUNTY	TRAVIS	COLORADO	198	274	344	385	433	482
WINDERMERE UTILITY COMPANY	TRAVIS	COLORADO	2,157	2,222	2,201	2,180	2,180	2,180
Total Municipal Water Totals			199,677	237,014	274,610	308,229	342,865	369,723
IRRIGATION	TRAVIS	COLORADO	1,002	920	846	778	716	659
IRRIGATION	TRAVIS	GUADALUPE	124	114	105	97	89	82
Total Irrigation Water Totals	•		1,126	1,034	951	875	805	741
LIVESTOCK	TRAVIS	COLORADO	676	676	676	676	676	676
LIVESTOCK	TRAVIS	GUADALUPE	28	28	28	28	28	28
Total Livestock Water Totals			704	704	704	704	704	704
MANUFACTURING	TRAVIS	COLORADO	23,002	28,294	38,508	50,483	57,703	64,652
MANUFACTURING	TRAVIS	GUADALUPE	0	0	0	0	0	0
Total Manufacturing Water Totals			23,002	28,294	38,508	50,483	57,703	64,652
MINING	TRAVIS	COLORADO	1,531	1,649	1,727	1,804	1,880	1,935
MINING	TRAVIS	GUADALUPE	0	0	0	0	0	0
Total Mining Water Totals			1,531	1,649	1,727	1,804	1,880	1,935
STEAM ELECTRIC POWER	TRAVIS	COLORADO	17,500	18,500	22,500	23,500	27,500	28,500
STEAM ELECTRIC POWER	TRAVIS	GUADALUPE	0	0	0	0	0	0
Total Steam Electric Power Water	Totals		17,500	18,500	22,500	23,500	27,500	28,500
TRAVIS COUNTY TOTAL WATER	TOTALS		243,540	287,195	339,000	385,595	431,457	466,255
COUNTY-OTHER	WHARTON	BRAZOS-COLORADO	1,162	1,192	1,197	1,181	1,170	1,157
COUNTY-OTHER	WHARTON	COLORADO	439	450	451	446	441	436
COUNTY-OTHER	WHARTON	COLORADO-LAVACA	235	241	241	238	236	234
EAST BERNARD	WHARTON	BRAZOS-COLORADO	277	285	286	282	279	276
WHARTON	WHARTON	BRAZOS-COLORADO	1,141	1,175	1,191	1,189	1,181	1,169
WHARTON	WHARTON	COLORADO	522	537	544	544	540	534
Total Municipal Water Totals		·	3,776	3,880	3,910	3,880	3,847	3,806
IRRIGATION	WHARTON	BRAZOS-COLORADO	99,711	96,144	92,703	89,390	86,193	74,059
IRRIGATION	WHARTON	COLORADO	51,772	49,921	48,135	46,413	44,753	38,454
IRRIGATION	WHARTON	COLORADO-LAVACA	31,502	30,376	29,289	28,241	27,231	23,398
Total Irrigation Water Totals			182,985	176,441	170,127	164,044	158,177	135,911
LIVESTOCK	WHARTON	BRAZOS-COLORADO	321	321	321	321	321	321
LIVESTOCK	WHARTON	COLORADO	247	247	247	247	247	247
LIVESTOCK	WHARTON	COLORADO-LAVACA	160	160	160	160	160	160
Total Livestock Water Totals			728	728	728	728	728	728
MANUFACTURING	WHARTON	BRAZOS-COLORADO	62	68	73	78	82	88
MANUFACTURING	WHARTON	COLORADO	129	141	150	160	168	181
MANUFACTURING	WHARTON	COLORADO-LAVACA	122	134	143	152	160	173
Total Manufacturing Water Totals			313	343	366	390	410	442
MINING	WHARTON	BRAZOS-COLORADO	724	766	791	815	836	856
MINING	WHARTON	COLORADO	1	1	1	1	1	1
MINING	WHARTON	COLORADO-LAVACA	6	6	6	6	7	7
Total Mining Water Totals			731	773	798	822	844	864

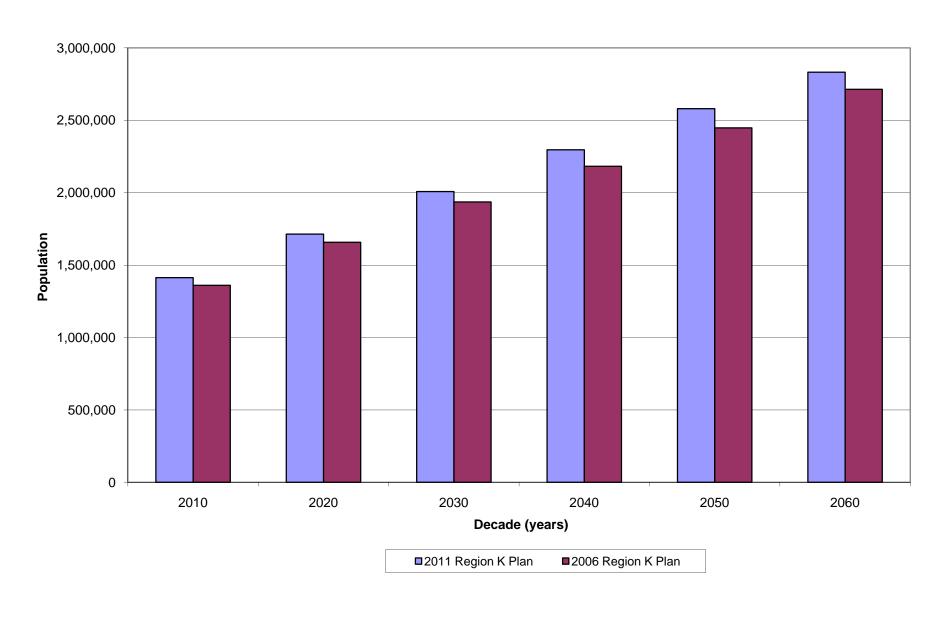
			Water Demand (ac-ft/yr)					
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
STEAM ELECTRIC POWER	WHARTON	BRAZOS-COLORADO	245	351	411	483	572	679
STEAM ELECTRIC POWER	WHARTON	COLORADO	2,300	2,300	2,300	2,300	2,300	2,300
STEAM ELECTRIC POWER	WHARTON	COLORADO-LAVACA	0	0	0	0	0	0
Total Steam Electric Power Water	Γotals		2,545	2,651	2,711	2,783	2,872	2,979
WHARTON COUNTY TOTAL WATE	R TOTALS		191,078	184,816	178,640	172,647	166,878	144,730
ANDERSON MILL MUD	WILLIAMSON	BRAZOS	0	0	0	0	0	0
AUSTIN	WILLIAMSON	BRAZOS	5,457	7,398	9,691	12,161	14,834	17,693
COUNTY-OTHER	WILLIAMSON	BRAZOS	2,401	2,729	3,118	3,536	3,989	4,469
NORTH AUSTIN MUD #1	WILLIAMSON	BRAZOS	983	968	952	928	920	920
Total Municipal Water Totals			8,841	11,095	13,761	16,625	19,743	23,082
IRRIGATION	WILLIAMSON	BRAZOS	0	0	0	0	0	0
Total Irrigation Water Totals			0	0	0	0	0	0
LIVESTOCK	WILLIAMSON	BRAZOS	0	0	0	0	0	0
Total Livestock Water Totals			0	0	0	0	0	0
MANUFACTURING	WILLIAMSON	BRAZOS	0	0	0	0	0	0
Total Manufacturing Water Totals			0	0	0	0	0	0
MINING	WILLIAMSON	BRAZOS	9	5	1	0	0	0
Total Mining Water Totals			9	5	1	0	0	0
STEAM ELECTRIC POWER	WILLIAMSON	BRAZOS	0	0	0	0	0	0
Total Steam Electric Power Water	Γotals		0	0	0	0	0	0
WILLIAMSON COUNTY TOTAL WA	WILLIAMSON COUNTY TOTAL WATER TOTALS			11,100	13,762	16,625	19,743	23,082
REGION K TOTALS	·		1,086,692	1,180,160	1,231,018	1,315,609	1,359,261	1,382,534

Demand includes domestic lake use that is not accounted for in water usage data in the following annual amounts: 962 ac-ft (2010), 1162 ac-ft (2020), 1362 ac-ft (2030), 1562 ac-ft (2040), 1762 ac-ft (2050), 1962 ac-ft (2060)

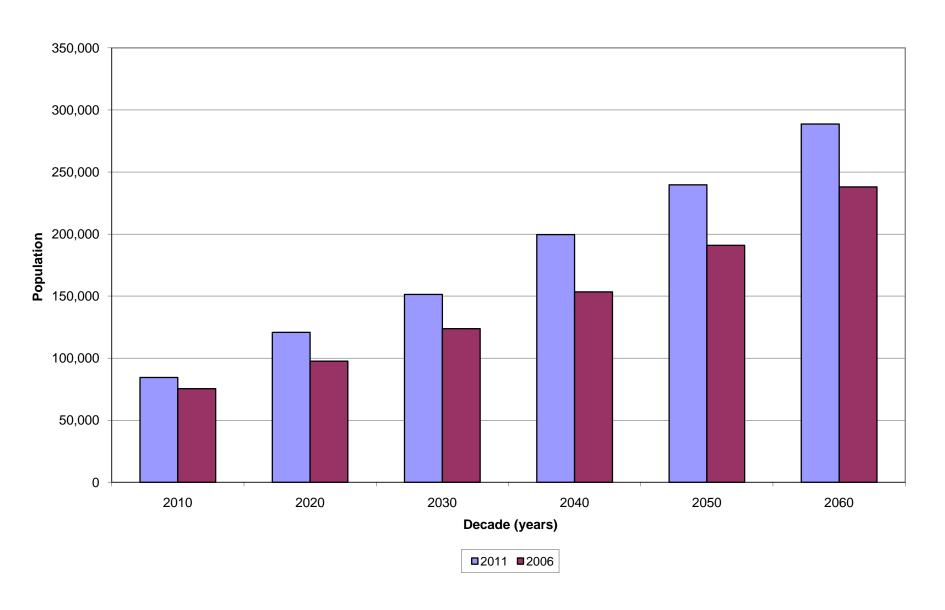
² Demand includes domestic lake use that is not accounted for in water usage data in the following annual amounts: 768 ac-ft (2010), 928 ac-ft (2020), 1087 ac-ft (2030), 1247 ac-ft (2040), 1406 ac-ft (2050), 1566 ac-ft (2060)

³ Demand includes domestic lake use that is not accounted for in water usage data in the following annual amounts: 3082 ac-ft (2010), 3722 ac-ft (2020), 4363 ac-ft (2030), 5003 ac-ft (2040), 5644 ac-ft (2050), 6284 ac-ft (2060)

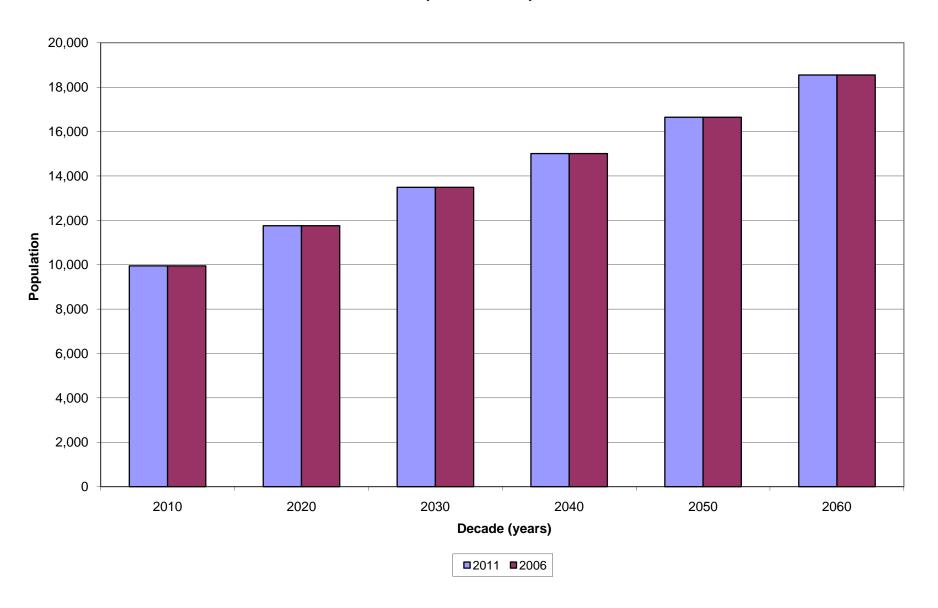
Population

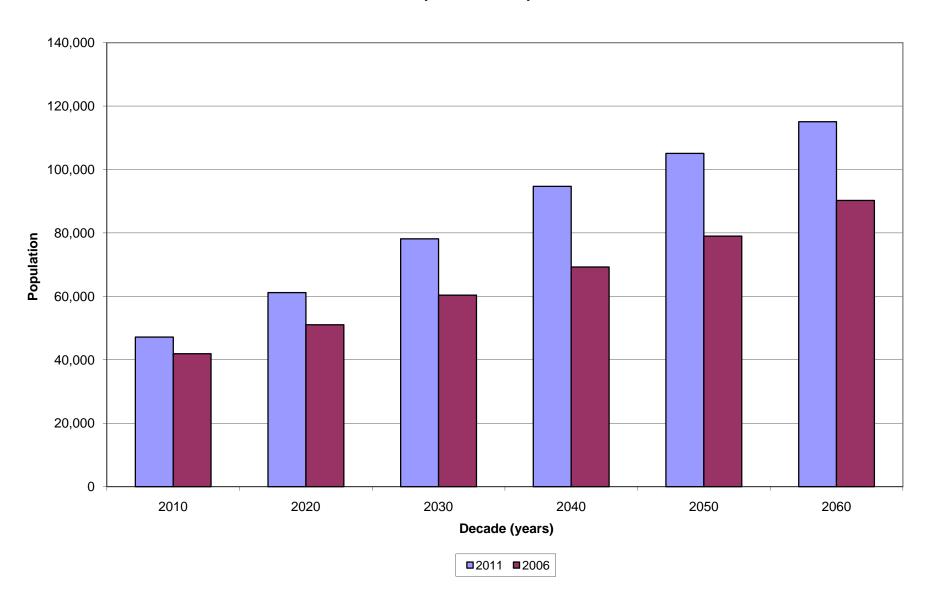

Population	2010	2020	2030	2040	2050	2060
RWP	4 010	4040		<i>2</i> 040	2030	2000
2011	1 112 021	1 71 1 201	Region K	202.507	2 700 704	2 021 025
2011	1,412,834	1,714,281	2,008,141	2,295,627	2,580,534	2,831,937
2006	1,359,677	1,657,025	1,936,324	2,181,851	2,447,058	2,713,905
Difference	53,157	57,256	71,817	113,776	133,476	118,032
% Change	3.9	3.5	3.7	5.2	5.5	4.3
			Bastrop			T
2011	84,449	120,739	151,364	199,548	239,589	288,683
2006	75,386	97,601	123,734	153,392	190,949	237,958
Difference	9,063	23,138	27,630	46,156	48,640	50,725
% Change	12.0	23.7	22.3	30.1	25.5	21.3
			Blanco			
2011	9,946	11,756	13,487	15,002	16,641	18,544
2006	9,946	11,756	13,487	15,002	16,641	18,544
Difference	0	0	0	0	0	0
% Change	0.0	0.0	0.0	0.0	0.0	0.0
			Burnet			
2011	47,160	61,191	78,133	94,716	105,095	115,056
2006	41,924	51,044	60,382	69,271	78,981	90,263
Difference	5,236	10,147	17,751	25,445	26,114	24,793
% Change	12.5	19.9	29.4	36.7	33.1	27.5
			Colorado			
2011	21,239	22,591	23,311	23,424	23,900	24,324
2006	21,101	22,032	22,550	22,760	22,801	22,561
Difference	138	559	761	664	1,099	1,763
% Change	0.7	2.5	3.4	2.9	4.8	7.8
			Fayette			
2011	24,826	28,808	32,363	35,259	38,933	44,120
2006	24,826	28,808	32,363	35,259	38,933	44,120
Difference	0	0	0	0	0	0
% Change	0.0	0.0	0.0	0.0	0.0	0.0
			Gillespie			
2011	25,258	29,117	30,861	30,861	30,861	30,861
2006	24,089	27,510	28,845	28,845	28,845	28,845
Difference	1,169	1,607	2,016	2,016	2,016	2,016
% Change	4.9	5.8	7.0	7.0	7.0	7.0
			Hays			
2011	46,143	69,377	88,887	108,495	132,051	150,574
2006	46,143	69,377	88,887	108,495	132,051	150,574
Difference	0	0	0	0	0	0
% Change	0.0	0.0	0.0	0.0	0.0	0.0

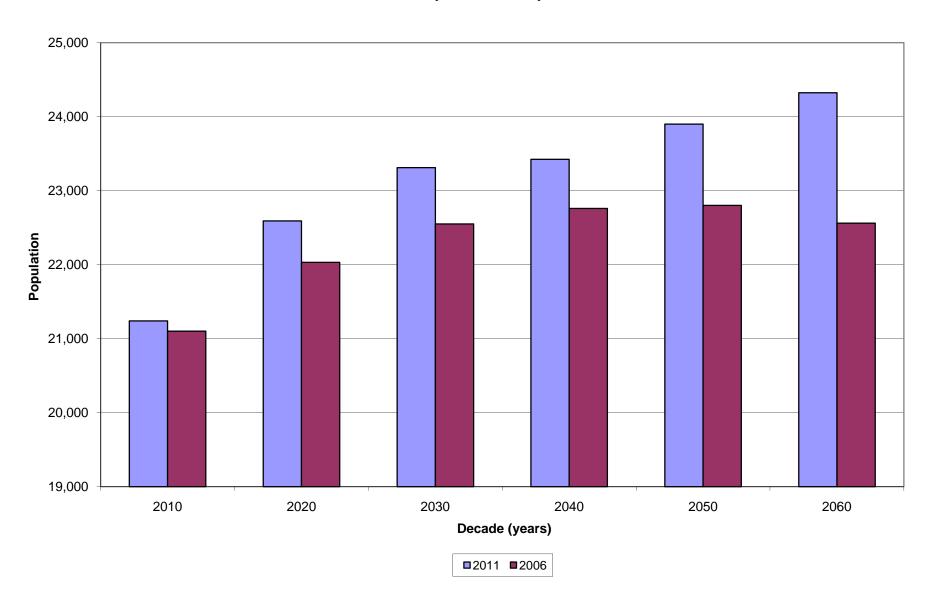
Comparison Between 2006 RWP and 2011 RWP

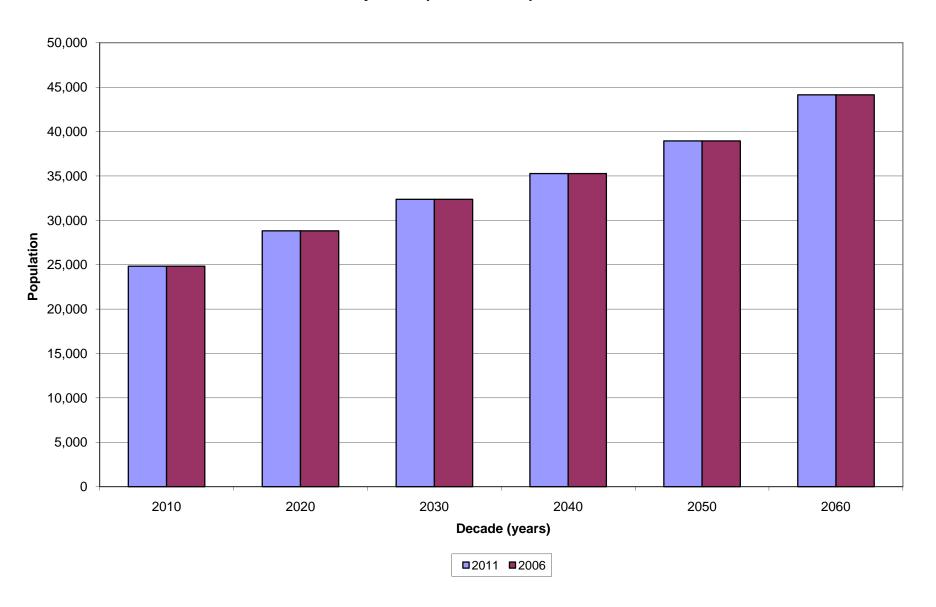

Population

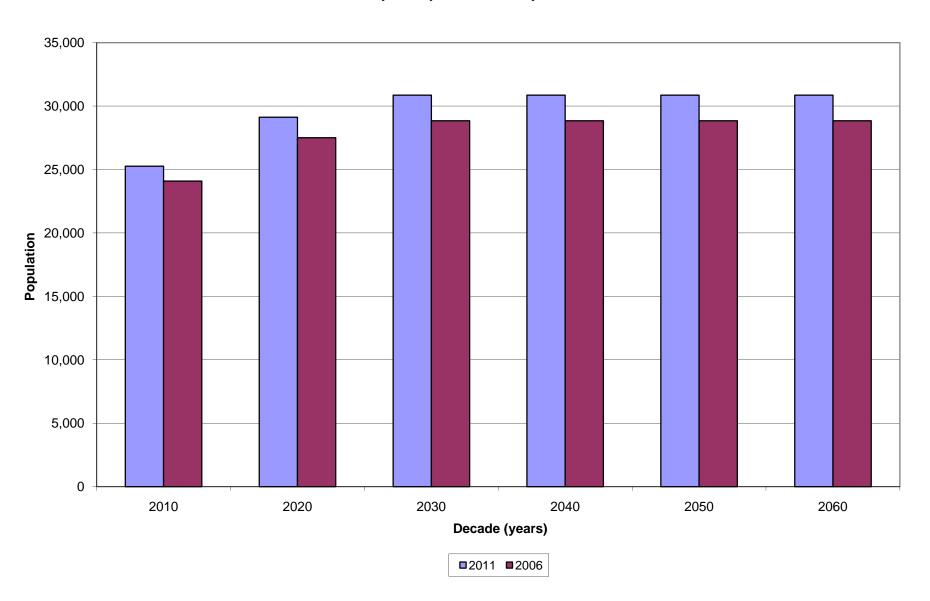
Populatio		2020	2020	20.40	2050	2070			
RWP	2010	2020	2030	2040	2050	2060			
			Llano			_			
2011	21,284	23,007	23,471	23,932	24,393	24,855			
2006	17,360	17,360	17,360	17,360	17,360	17,360			
Difference	3,924	5,647	6,111	6,572	7,033	7,495			
% Change	22.6	32.5	35.2	37.9	40.5	43.2			
			Matagorda	1					
2011	40,506	43,295	44,991	45,925	45,925	45,925			
2006	40,506	43,295	44,991	45,925	45,793	45,377			
Difference	0	0	0	0	132	548			
% Change	0.0	0.0	0.0	0.0	0.3	1.2			
			Mills						
2011	5,466	5,815	6,107	5,930	6,329	6,497			
2006	5,137	5,414	5,476	5,537	5,497	5,397			
Difference	329	401	631	393	832	1,100			
% Change	6.4	7.4	11.5	7.1	15.1	20.4			
_			San Saba			•			
2011	6,387	6,746	7,059	7,332	7,365	7,409			
2006	6,387	6,746	7,059	7,332	7,365	7,409			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
_			Travis						
2011	1,003,253	1,201,256	1,402,153	1,583,068	1,770,347	1,918,135			
2006	969,955	1,185,499	1,385,236	1,550,538	1,722,737	1,888,543			
Difference	33,298	15,757	16,917	32,530	47,610	29,592			
% Change	3.4	1.3	1.2	2.1	2.8	1.6			
			Wharton						
2011	28,260	29,872	30,911	31,508	31,523	31,188			
2006	28,260	29,872	30,911	31,508	31,523	31,188			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
Williamson									
2011	48,657	60,711	75,043	90,627	107,582	125,766			
2006	48,657	60,711	75,043	90,627	107,582	125,766			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			

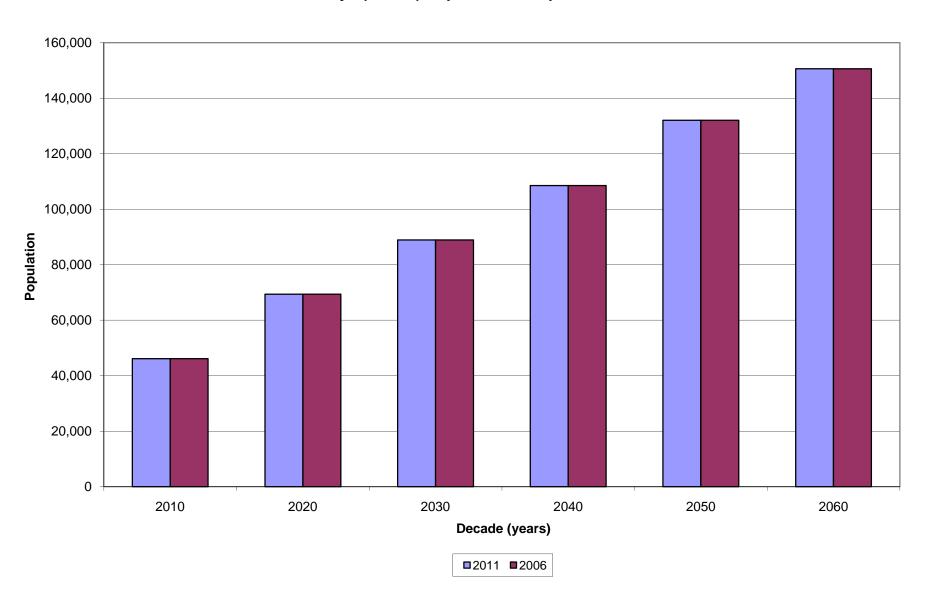

Region K Population Comparison

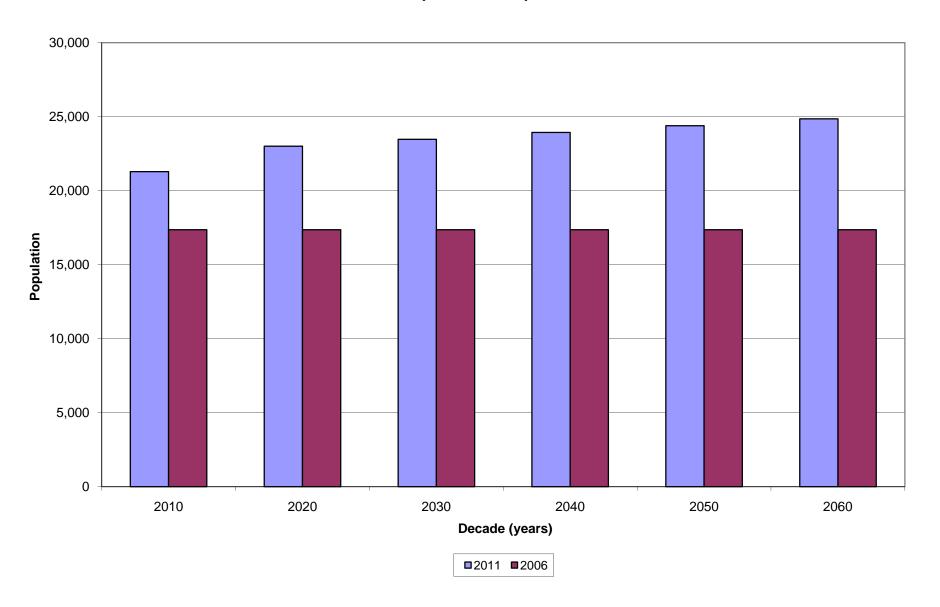

Bastrop Population Comparison

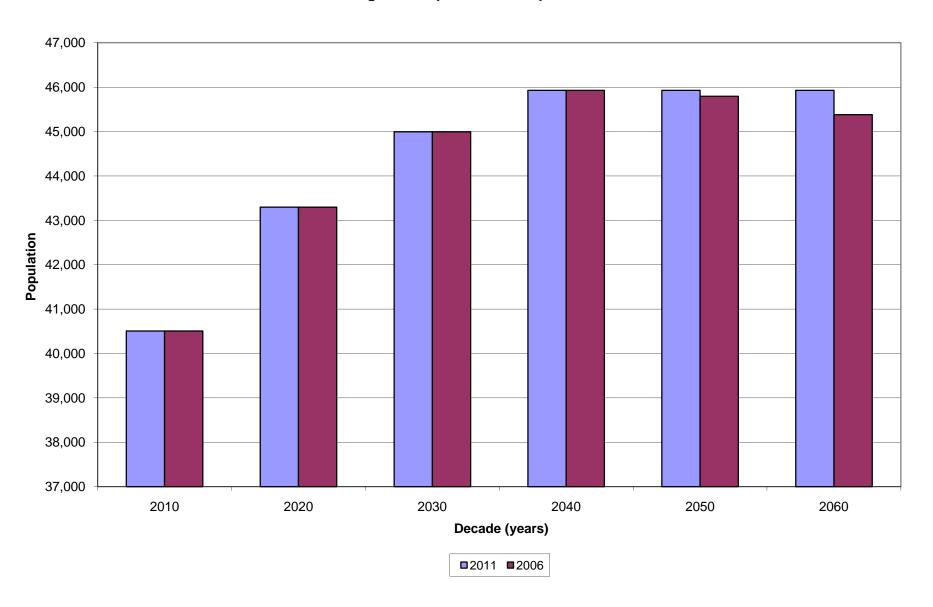

Blanco Population Comparison

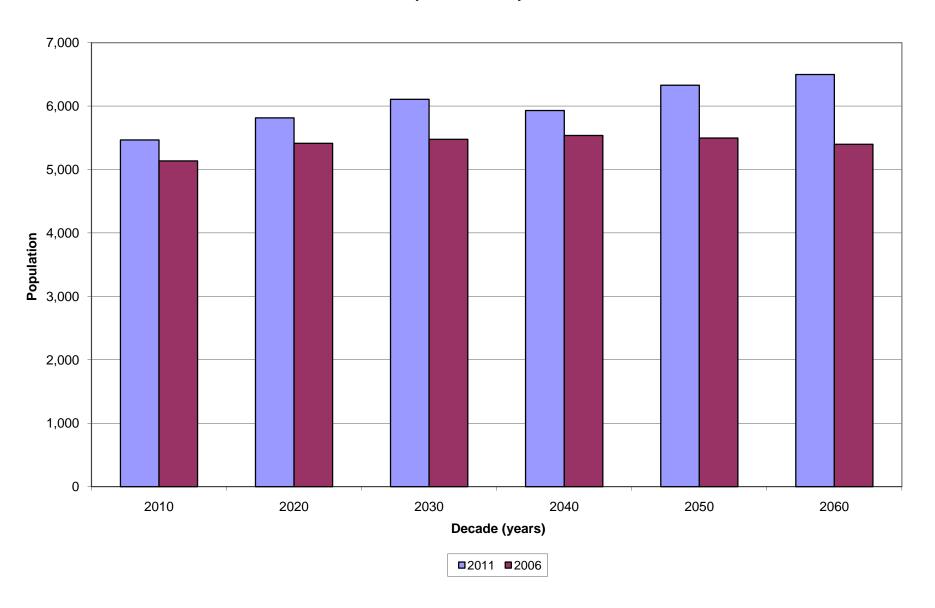

Burnet Population Comparison

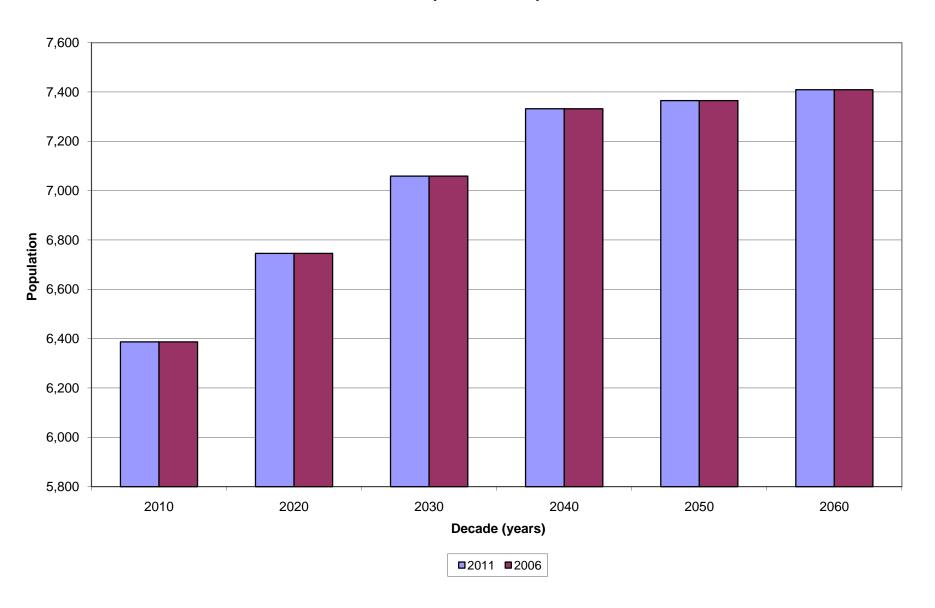

Colorado Population Comparison

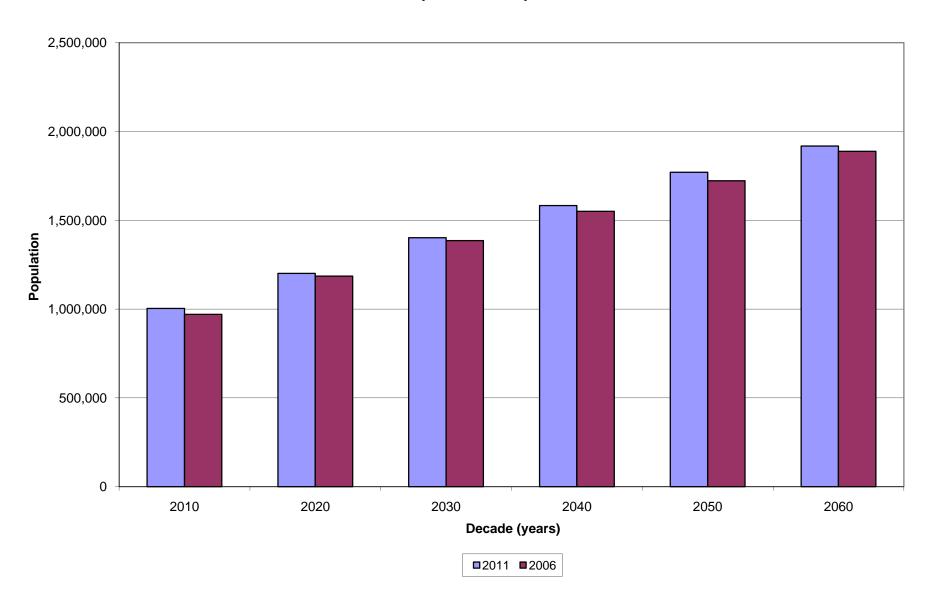

Fayette Population Comparison

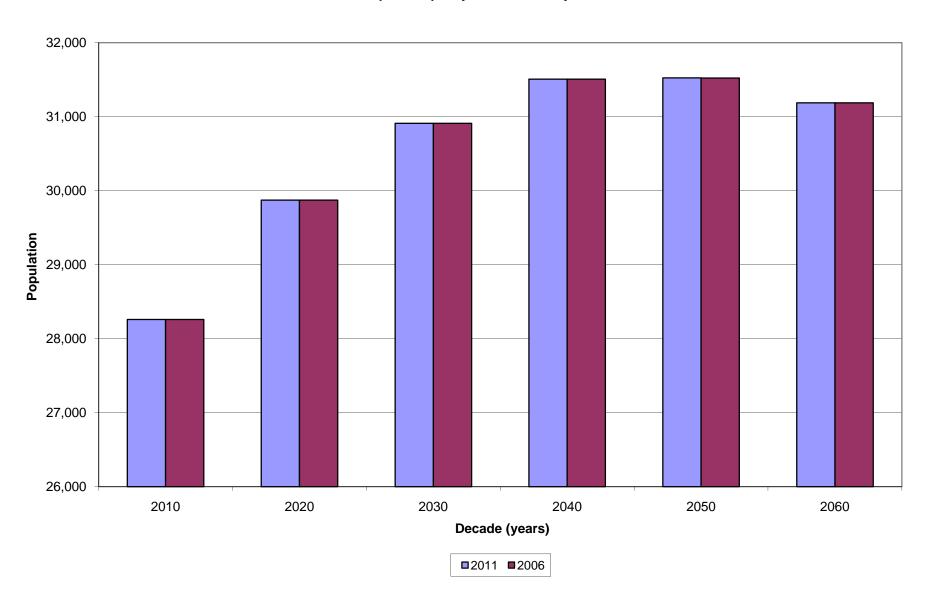

Gillespie Population Comparison

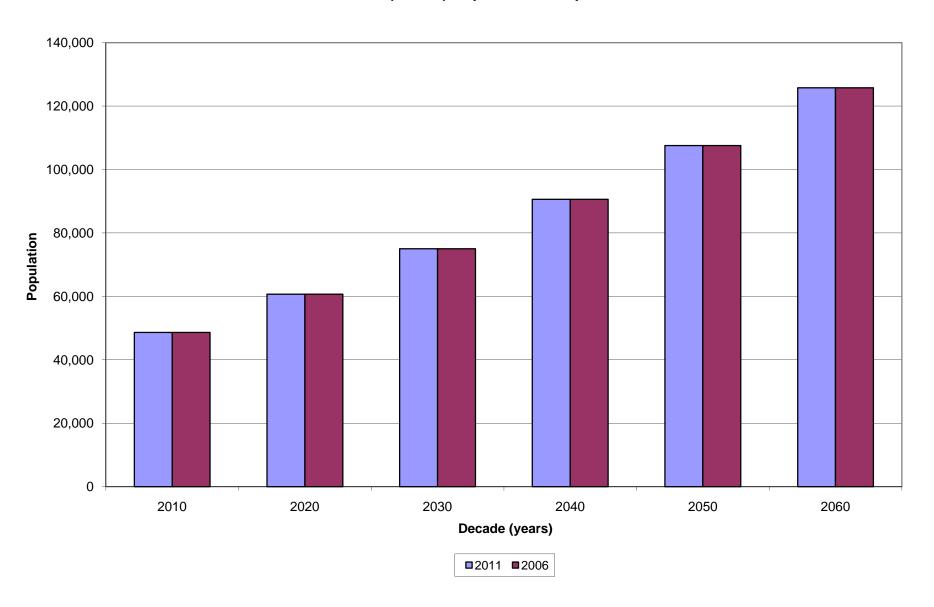

Hays (Partial) Population Comparison


Llano Population Comparison


Matagorda Population Comparison

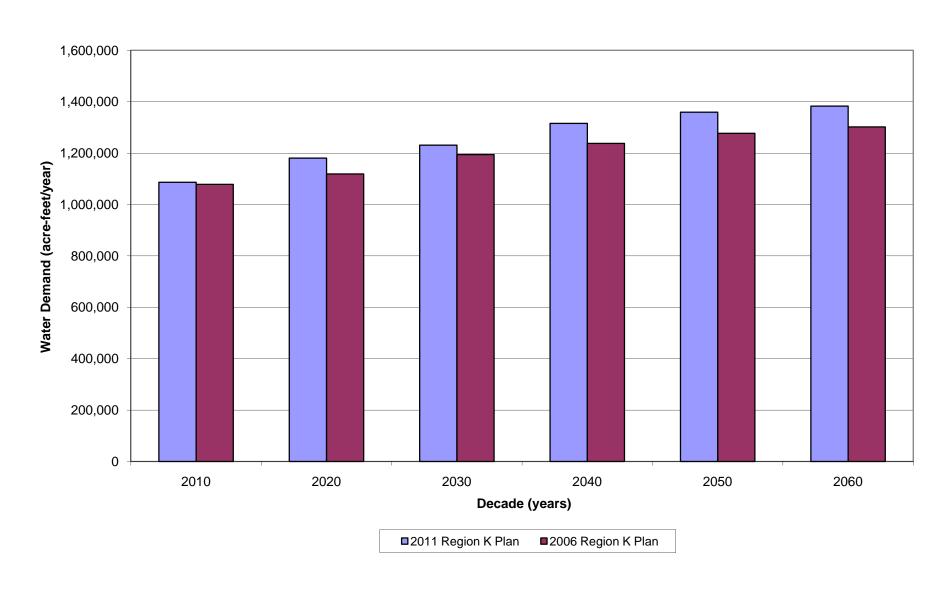

Mills Population Comparison


San Saba Population Comparison

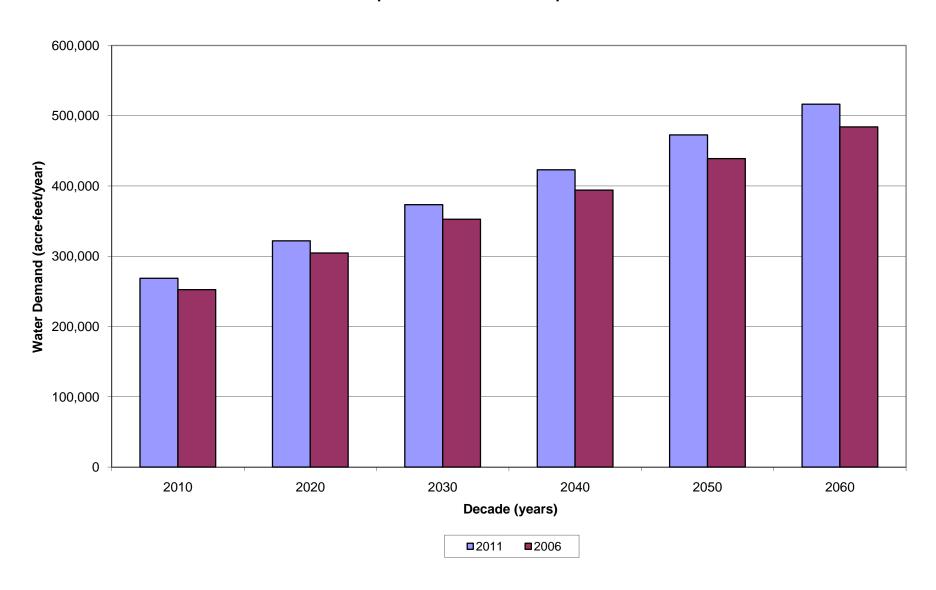

Travis Population Comparison

Wharton (Partial) Population Comparison

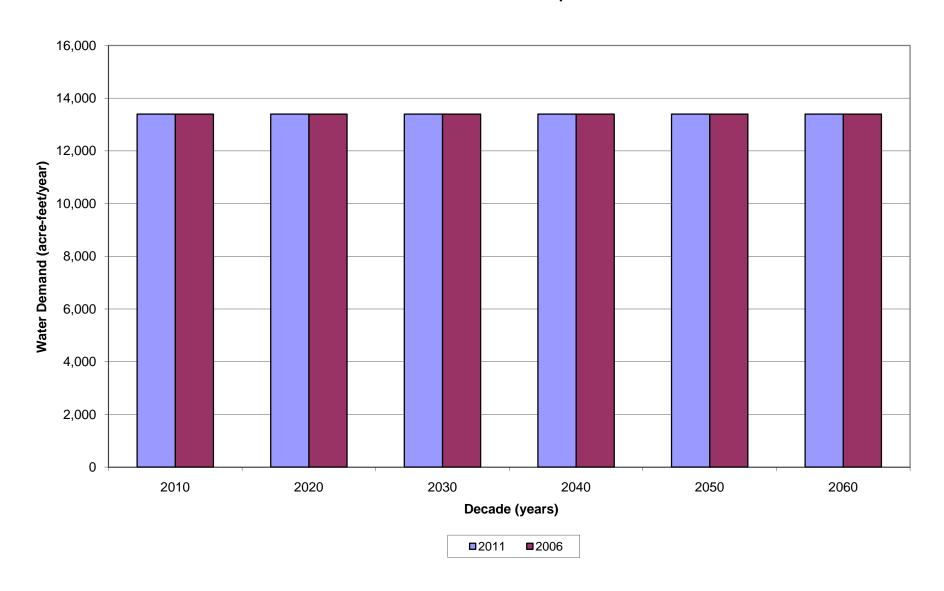
Williamson (Partial) Population Comparison

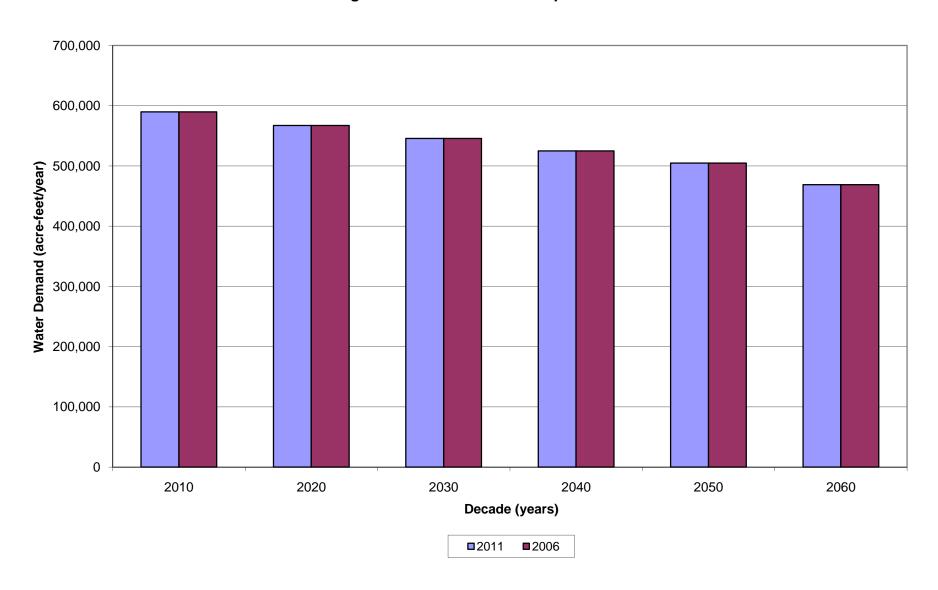

Water Demands* (in acre-feet per year) by WUG Category Region K

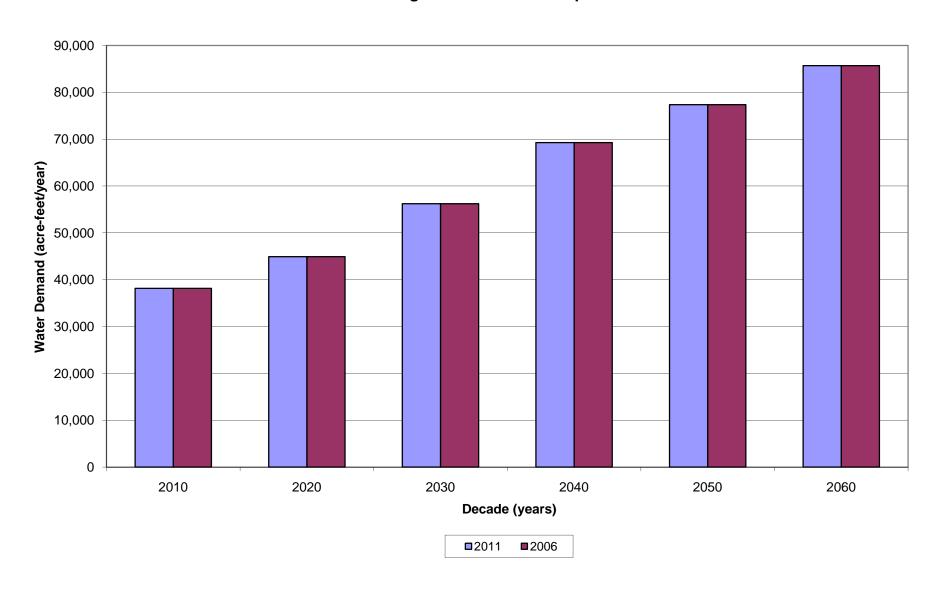
RWP	2010	2020	2030	2040	2050	2060			
Municipal									
2011	268,643	321,972	373,430	423,051	472,778	516,348			
2006	252,637	304,735	352,737	394,101	439,049	484,170			
Difference	16,006	17,237	20,693	28,950	33,729	32,178			
% Change	6.3	5.7	5.9	7.3	7.7	6.6			
	Livestock								
2011	13,395	13,395	13,395	13,395	13,395	13,395			
2006	13,395	13,395	13,395	13,395	13,395	13,395			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
Irrigation									
2011	589,705	567,272	545,634	524,809	504,695	468,763			
2006	589,705	567,272	545,634	524,809	504,695	468,763			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
		Ma	nufacturin	g					
2011	38,162	44,916	56,233	69,264	77,374	85,698			
2006	38,162	44,916	56,233	69,264	77,374	85,698			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
	Mining								
2011	30,620	31,252	31,613	26,964	27,304	27,598			
2006	30,620	31,252	31,613	26,964	27,304	27,598			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
Steam-Electric Power Generation									
2011	146,167	201,353	210,713	258,126	263,715	270,732			
2006	153,522	156,894	194,396	208,982	214,783	222,058			
Difference	-7,355	44,459	16,317	49,144	48,932	48,674			
% Change	-4.8	28.3	8.4	23.5	22.8	21.9			

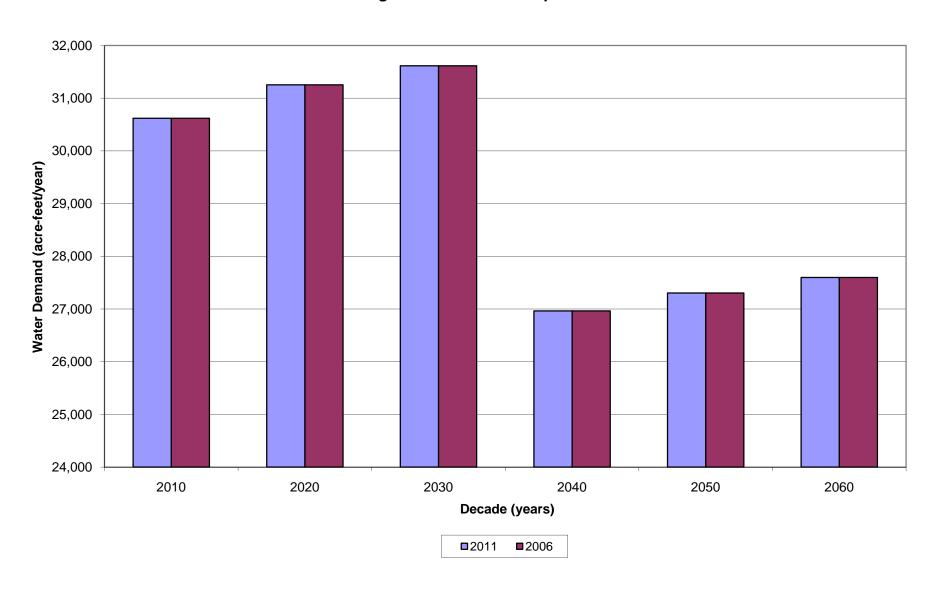

^{*}All values are presented in acre-feet per year

Total Water Demand						
2011	1,086,692	1,180,160	1,231,018	1,315,609	1,359,261	1,382,534
2006	1,078,041	1,118,464	1,194,008	1,237,515	1,276,600	1,301,682
Difference	8,651	61,696	37,010	78,094	82,661	80,852
% Change	0.8	5.5	3.1	6.3	6.5	6.2


Region K
Total Water Demand Comparison


Region K Municipal Water Demand Comparison

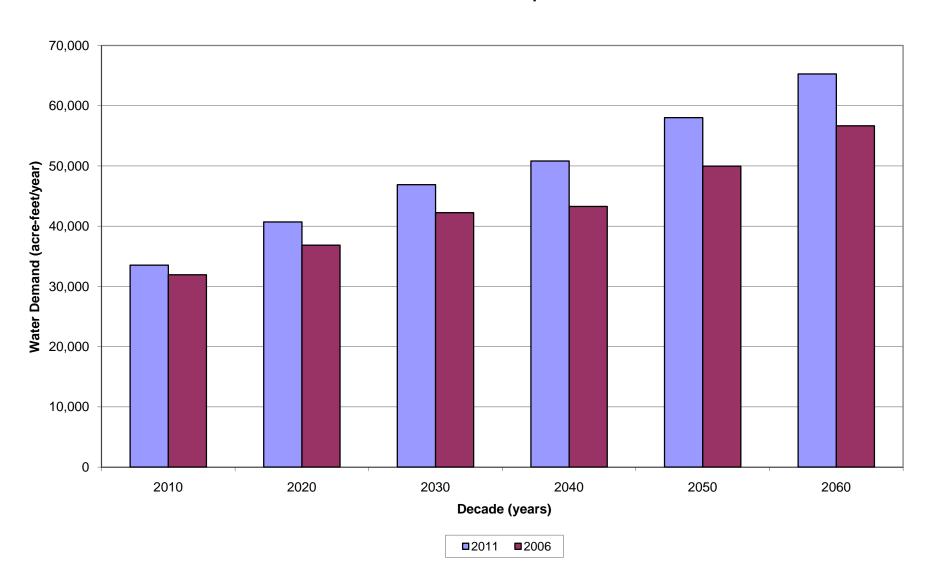

Region K Livestock Water Demand Comparison


Region K
Irrigation Water Demand Comparison

Region K
Manufacturing Water Demand Comparison

Region K
Mining Water Demand Comparison

Region K Steam-Electric Water Demand Comparison

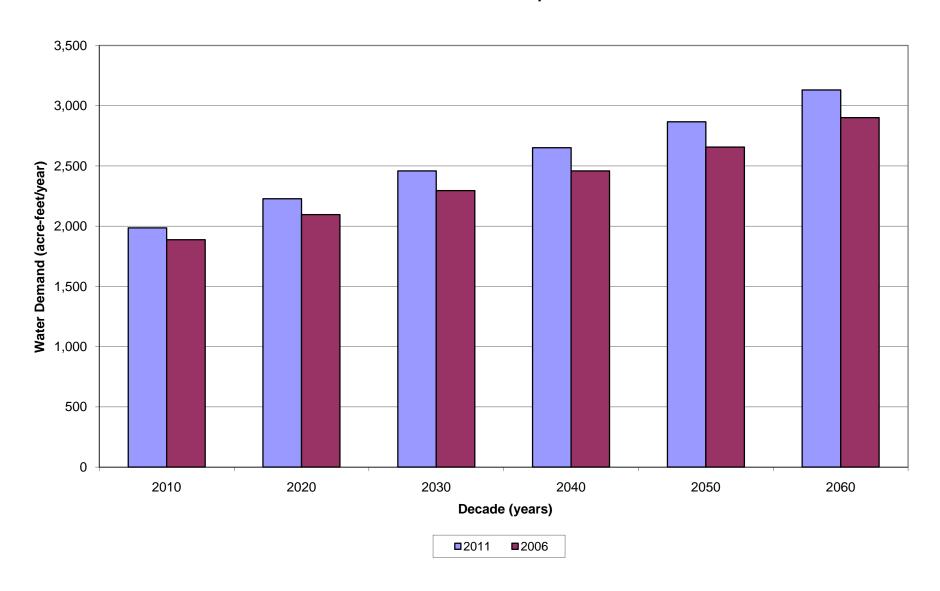

Water Demands* (in acre-feet per year) by WUG Category Bastrop County

RWP	2010	2020	2030	2040	2050	2060			
Municipal									
2011	13,275	18,620	22,964	30,040	35,860	43,208			
2006	11,679	14,762	18,327	22,505	27,818	34,610			
Difference	1,596	3,858	4,637	7,535	8,042	8,598			
% Change	13.7	26.1	25.3	33.5	28.9	24.8			
Livestock									
2011	1,522	1,522	1,522	1,522	1,522	1,522			
2006	1,522	1,522	1,522	1,522	1,522	1,522			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
	Irrigation								
2011	1,610	1,407	1,226	1,072	934	814			
2006	1,610	1,407	1,226	1,072	934	814			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
		M	lanufacturii	ng					
2011	92	111	130	150	169	183			
2006	92	111	130	150	169	183			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
Mining									
2011	5,033	5,035	5,036	37	38	39			
2006	5,033	5,035	5,036	37	38	39			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
Steam-Electric Power Generation									
2011	12,000	14,000	16,000	18,000	19,500	19,500			
2006	12,000	14,000	16,000	18,000	19,500	19,500			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			

^{*}All values are presented in acre-feet per year

Total Water Demand						
2011	33,532	40,695	46,878	50,821	58,023	65,266
2006	31,936	36,837	42,241	43,286	49,981	56,668
Difference	1,596	3,858	4,637	7,535	8,042	8,598
% Change	5.0	10.5	11.0	17.4	16.1	15.2

Bastrop County
Total Water Demand Comparison

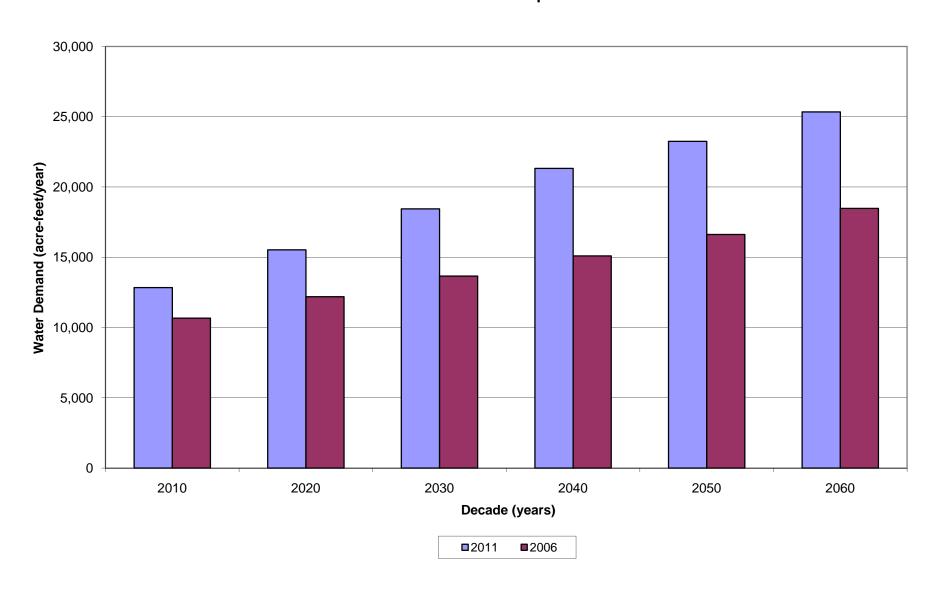

Water Demands* (in acre-feet per year) by WUG Category Blanco County

RWP	2010	2020	2030	2040	2050	2060				
			Municipal							
2011	1,467	1,712	1,947	2,143	2,360	2,626				
2006	1,369	1,580	1,783	1,951	2,151	2,396				
Difference	98	132	164	192	209	230				
% Change	7.2	8.4	9.2	9.8	9.7	9.6				
	Livestock									
2011	443	443	443	443	443	443				
2006	443	443	443	443	443	443				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
			Irrigation							
2011	69	66	62	58	56	55				
2006	69	66	62	58	56	55				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
		M	[anufacturii	0						
2011	2	2	2	2	2	2				
2006	2	2	2	2	2	2				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
			Mining							
2011	5	5	5	5	5	5				
2006	5	5	5	5	5	5				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
Steam-Electric Power Generation										
2011	0	0	0	0	0	0				
2006	0	0	0	0	0	0				
Difference	0	0	0	0	0	0				
% Change	NA	NA	NA	NA	NA	NA				

^{*}All values are presented in acre-feet per year

	Total Water Demand								
2011	1,986	2,228	2,459	2,651	2,866	3,131			
2006	1,888	2,096	2,295	2,459	2,657	2,901			
Difference	98	132	164	192	209	230			
% Change	5.2	6.3	7.1	7.8	7.9	7.9			

Blanco County Total Water Demand Comparison

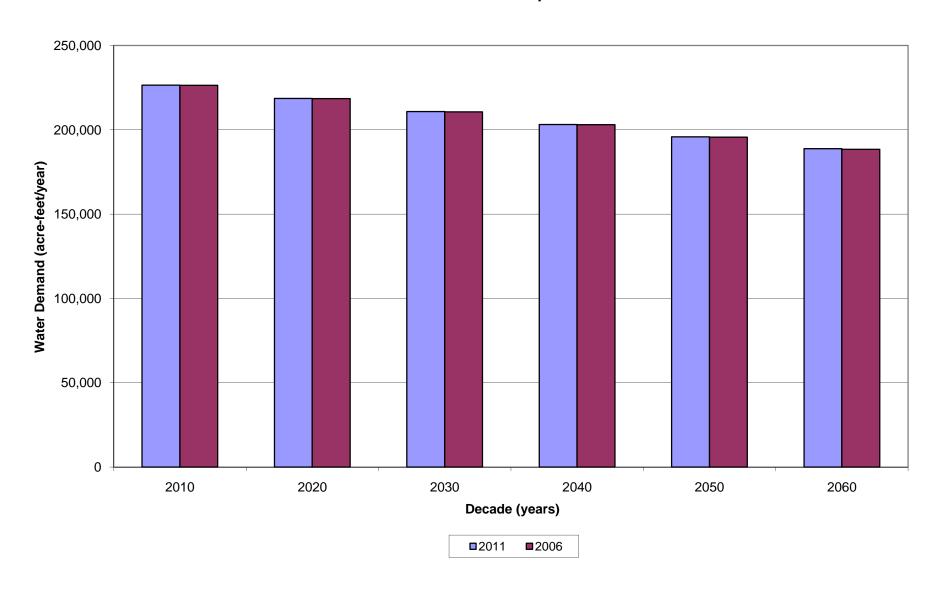

Water Demands* (in acre-feet per year) by WUG Category Burnet County

RWP	2010	2020	2030	2040	2050	2060				
	Municipal									
2011	8,990	11,437	14,166	16,867	18,626	20,550				
2006	6,810	8,097	9,380	10,633	12,003	13,684				
Difference	2,180	3,340	4,786	6,234	6,623	6,866				
% Change	32.0	41.2	51.0	58.6	55.2	50.2				
	Livestock									
2011	835	835	835	835	835	835				
2006	835	835	835	835	835	835				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
			Irrigation							
2011	101	100	98	96	95	93				
2006	101	100	98	96	95	93				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
		M	[anufacturi	ng						
2011	963	1,109	1,248	1,384	1,502	1,636				
2006	963	1,109	1,248	1,384	1,502	1,636				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
			Mining							
2011	1,956	2,049	2,098	2,145	2,190	2,235				
2006	1,956	2,049	2,098	2,145	2,190	2,235				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
Steam-Electric Power Generation										
2011	0	0	0	0	0	0				
2006	0	0	0	0	0	0				
Difference	0	0	0	0	0	0				
% Change	NA	NA	NA	NA	NA	NA				

^{*}All values are presented in acre-feet per year

	Total Water Demand							
2011	12,845	15,530	18,445	21,327	23,248	25,349		
2006	10,665	12,190	13,659	15,093	16,625	18,483		
Difference	2,180	3,340	4,786	6,234	6,623	6,866		
% Change	20.4	27.4	35.0	41.3	39.8	37.1		

Burnet County
Total Water Demand Comparison

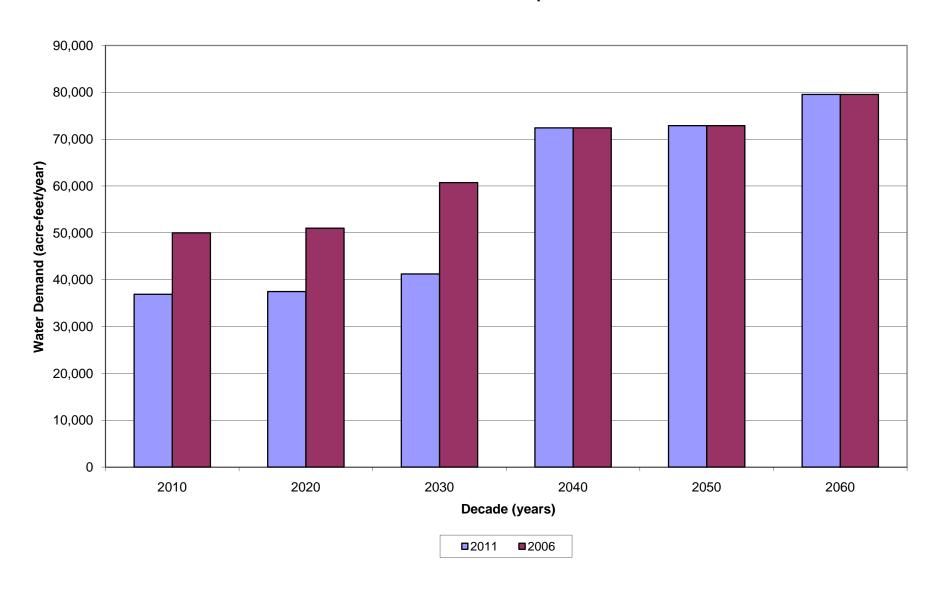

Water Demands* (in acre-feet per year) by WUG Category Colorado County

RWP	2010	2020	2030	2040	2050	2060				
	Municipal									
2011	3,155	3,292	3,328	3,259	3,320	3,409				
2006	3,132	3,189	3,189	3,141	3,122	3,089				
Difference	23	103	139	118	198	320				
% Change	0.7	3.2	4.4	3.8	6.3	10.4				
			Livestock							
2011	1,473	1,473	1,473	1,473	1,473	1,473				
2006	1,473	1,473	1,473	1,473	1,473	1,473				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
			Irrigation							
2011	200,822	192,465	184,380	176,555	168,946	161,663				
2006	200,822	192,465	184,380	176,555	168,946	161,663				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
		M	lanufacturii	ng						
2011	176	192	205	217	227	245				
2006	176	192	205	217	227	245				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
			Mining							
2011	20,804	21,197	21,416	21,623	21,821	21,996				
2006	20,804	21,197	21,416	21,623	21,821	21,996				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
Steam-Electric Power Generation										
2011	0	0	0	0	0	0				
2006	0	0	0	0	0	0				
Difference	0	0	0	0	0	0				
% Change	NA	NA	NA	NA	NA	NA				

^{*}All values are presented in acre-feet per year

	Total Water Demand							
2011	226,430	218,619	210,802	203,127	195,787	188,786		
2006	226,407	218,516	210,663	203,009	195,589	188,466		
Difference	23	103	139	118	198	320		
% Change	0.0	0.0	0.1	0.1	0.1	0.2		

Colorado County Total Water Demand Comparison

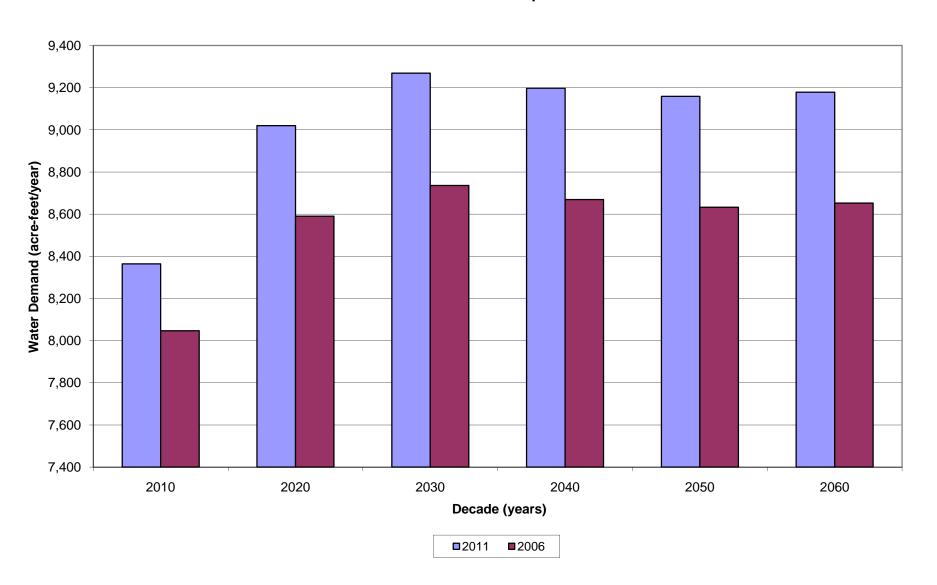

Water Demands* (in acre-feet per year) by WUG Category Fayette County

RWP	2010	2020	2030	2040	2050	2060				
	Municipal									
2011	3,890	4,417	4,879	5,244	5,751	6,495				
2006	3,890	4,417	4,879	5,244	5,751	6,495				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
			Livestock							
2011	2,397	2,397	2,397	2,397	2,397	2,397				
2006	2,397	2,397	2,397	2,397	2,397	2,397				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
			Irrigation							
2011	739	692	648	606	568	533				
2006	739	692	648	606	568	533				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
		M	anufacturii	ng						
2011	205	230	254	277	297	322				
2006	205	230	254	277	297	322				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
			Mining							
2011	42	42	42	42	42	42				
2006	42	42	42	42	42	42				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
Steam-Electric Power Generation										
2011	29,622	29,702	33,002	63,843	63,843	69,753				
2006	42,720	43,200	52,500	63,840	63,840	69,750				
Difference	-13,098	-13,498	-19,498	3	3	3				
% Change	-30.7	-31.2	-37.1	0.0	0.0	0.0				

^{*}All values are presented in acre-feet per year

	Total Water Demand							
2011	36,895	37,480	41,222	72,409	72,898	79,542		
2006	49,993	50,978	60,720	72,406	72,895	79,539		
Difference	-13,098	-13,498	-19,498	3	3	3		
% Change	-26.2	-26.5	-32.1	0.0	0.0	0.0		

Fayette County
Total Water Demand Comparison

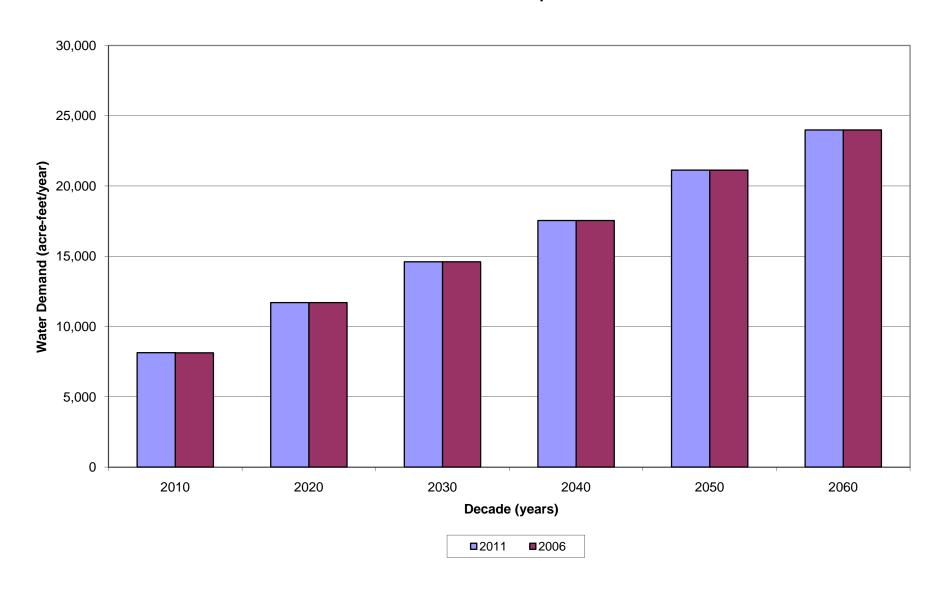

Water Demands* (in acre-feet per year) by WUG Category Gillespie County

Ginespie C									
RWP	2010	2020	2030	2040	2050	2060			
			Municipal						
2011	4,749	5,398	5,646	5,576	5,541	5,541			
2006	4,432	4,968	5,113	5,048	5,015	5,015			
Difference	317	430	533	528	526	526			
% Change	7.2	8.7	10.4	10.5	10.5	10.5			
Livestock									
2011	1,062	1,062	1,062	1,062	1,062	1,062			
2006	1,062	1,062	1,062	1,062	1,062	1,062			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
			Irrigation						
2011	2,039	2,013	1,987	1,960	1,936	1,912			
2006	2,039	2,013	1,987	1,960	1,936	1,912			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
		M	anufacturii	ng					
2011	506	539	566	591	612	655			
2006	506	539	566	591	612	655			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
			Mining						
2011	8	8	8	8	8	8			
2006	8	8	8	8	8	8			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
Steam-Electric Power Generation									
2011	0	0	0	0	0	0			
2006	0	0	0	0	0	0			
Difference	0	0	0	0	0	0			
% Change	NA	NA	NA	NA	NA	NA			

^{*}All values are presented in acre-feet per year

	Total Water Demand							
2011	8,364	9,020	9,269	9,197	9,159	9,178		
2006	8,047	8,590	8,736	8,669	8,633	8,652		
Difference	317	430	533	528	526	526		
% Change	3.9	5.0	6.1	6.1	6.1	6.1		

Gillespie County Total Water Demand Comparison

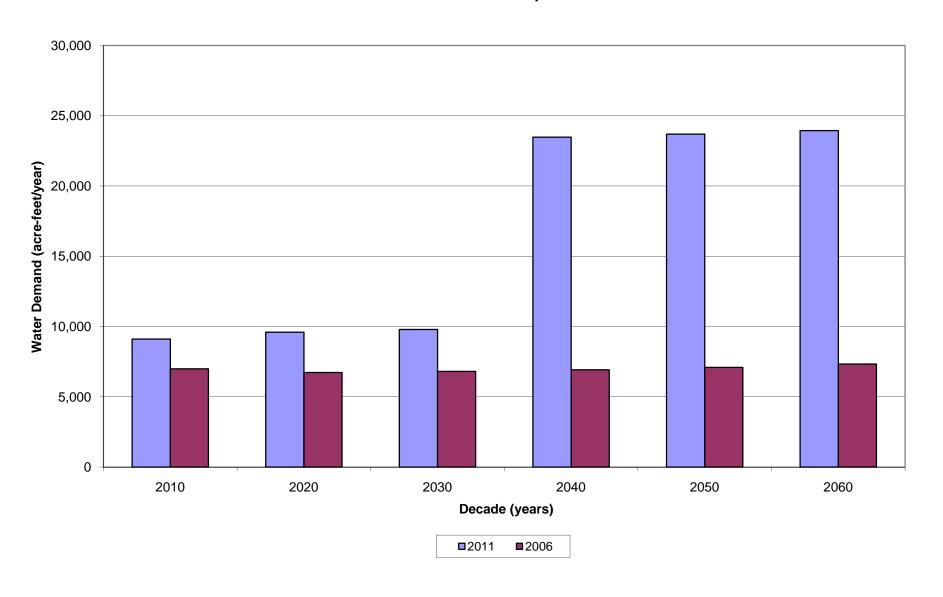

Water Demands* (in acre-feet per year) by WUG Category Hays County (partial)

RWP	2010	2020	2030	2040	2050	2060		
			Municipal					
2011	7,202	10,656	13,446	16,266	19,742	22,498		
2006	7,192	10,656	13,446	16,266	19,742	22,498		
Difference	10	0	0	0	0	0		
% Change	0.1	0.0	0.0	0.0	0.0	0.0		
			Livestock					
2011	220	220	220	220	220	220		
2006	220	220	220	220	220	220		
Difference	0	0	0	0	0	0		
% Change	0.0	0.0	0.0	0.0	0.0	0.0		
			Irrigation					
2011	11	11	11	11	11	11		
2006	11	11	11	11	11	11		
Difference	0	0	0	0	0	0		
% Change	0.0	0.0	0.0	0.0	0.0	0.0		
		M	lanufacturii	ng				
2011	691	809	928	1,048	1,156	1,255		
2006	691	809	928	1,048	1,156	1,255		
Difference	0	0	0	0	0	0		
% Change	0.0	0.0	0.0	0.0	0.0	0.0		
			Mining					
2011	12	6	2	0	0	0		
2006	12	6	2	0	0	0		
Difference	0	0	0	0	0	0		
% Change	0.0	0.0	0.0	NA	NA	NA		
Steam-Electric Power Generation								
2011	0	0	0	0	0	0		
2006	0	0	0	0	0	0		
Difference	0	0	0	0	0	0		
% Change	NA	NA	NA	NA	NA	NA		

^{*}All values are presented in acre-feet per year

Total Water Demand							
2011	8,136	11,702	14,607	17,545	21,129	23,984	
2006	8,126	11,702	14,607	17,545	21,129	23,984	
Difference	10	0	0	0	0	0	
% Change	0.1	0.0	0.0	0.0	0.0	0.0	

Hays County (Partial) Total Water Demand Comparison

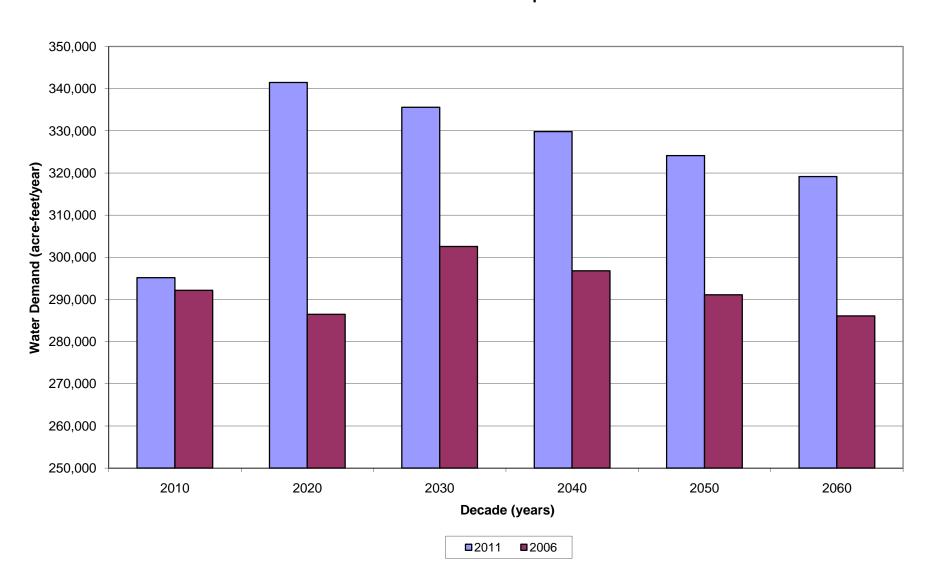

Water Demands* (in acre-feet per year) by WUG Category Llano County

RWP	2010	2020	2030	2040	2050	2060				
	Municipal									
2011	5,722	6,235	6,446	6,647	6,875	7,139				
2006	4,054	4,018	3,976	3,929	3,905	3,905				
Difference	1,668	2,217	2,470	2,718	2,970	3,234				
% Change	41.1	55.2	62.1	69.2	76.1	82.8				
Livestock										
2011	751	751	751	751	751	751				
2006	751	751	751	751	751	751				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
			Irrigation							
2011	979	963	946	930	915	900				
2006	979	963	946	930	915	900				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
			[anufacturi	0						
2011	3	3	3	3	3	3				
2006	3	3	3	3	3	3				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
			Mining							
2011	149	148	148	148	148	148				
2006	149	148	148	148	148	148				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
Steam-Electric Power Generation										
2011	1,500	1,500	1,500	15,000	15,000	15,000				
2006	1,057	843	985	1,159	1,371	1,629				
Difference	443	657	515	13,841	13,629	13,371				
% Change	41.9	77.9	52.3	1194.2	994.1	820.8				

^{*}All values are presented in acre-feet per year

	Total Water Demand							
2011	9,104	9,600	9,794	23,479	23,692	23,941		
2006	6,993	6,726	6,809	6,920	7,093	7,336		
Difference	2,111	2,874	2,985	16,559	16,599	16,605		
% Change	30.2	42.7	43.8	239.3	234.0	226.3		

Llano County Total Water Demand Comparison

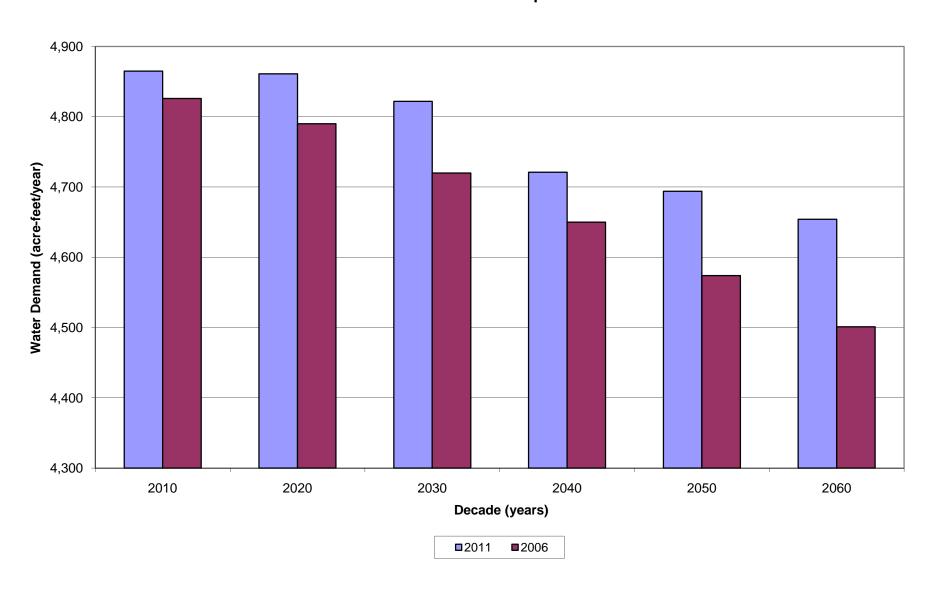

Water Demands* (in acre-feet per year) by WUG Category Matagorda County

RWP	2010	2020	2030	2040	2050	2060			
	Municipal								
2011	5,590	5,830	5,906	5,883	5,831	5,831			
2006	5,590	5,830	5,906	5,883	5,815	5,762			
Difference	0	0	0	0	16	69			
% Change	0.0	0.0	0.0	0.0	0.3	1.2			
70 011111190	0.0	0.0	Livestock	0.0	0.0				
2011	1,151	1,151	1,151	1,151	1,151	1,151			
2006	1,151	1,151	1,151	1,151	1,151	1,151			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
Irrigation									
2011	193,048	186,072	179,353	172,916	166,722	160,750			
2006	193,048	186,072	179,353	172,916	166,722	160,750			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
		M	lanufacturii	ng					
2011	12,180	13,253	13,991	14,686	15,259	16,267			
2006	12,180	13,253	13,991	14,686	15,259	16,267			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
			Mining						
2011	177	172	169	167	165	163			
2006	177	172	169	167	165	163			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
	Steam-Electric Power Generation								
2011	83,000	135,000	135,000	135,000	135,000	135,000			
2006	80,000	80,000	102,000	102,000	102,000	102,000			
Difference	3,000	55,000	33,000	33,000	33,000	33,000			
% Change	3.8	68.8	32.4	32.4	32.4	32.4			

^{*}All values are presented in acre-feet per year

	Total Water Demand							
2011	295,146	341,478	335,570	329,803	324,128	319,162		
2006	292,146	286,478	302,570	296,803	291,112	286,093		
Difference	3,000	55,000	33,000	33,000	33,016	33,069		
% Change	1.0	19.2	10.9	11.1	11.3	11.6		

Matagorda County Total Water Demand Comparison

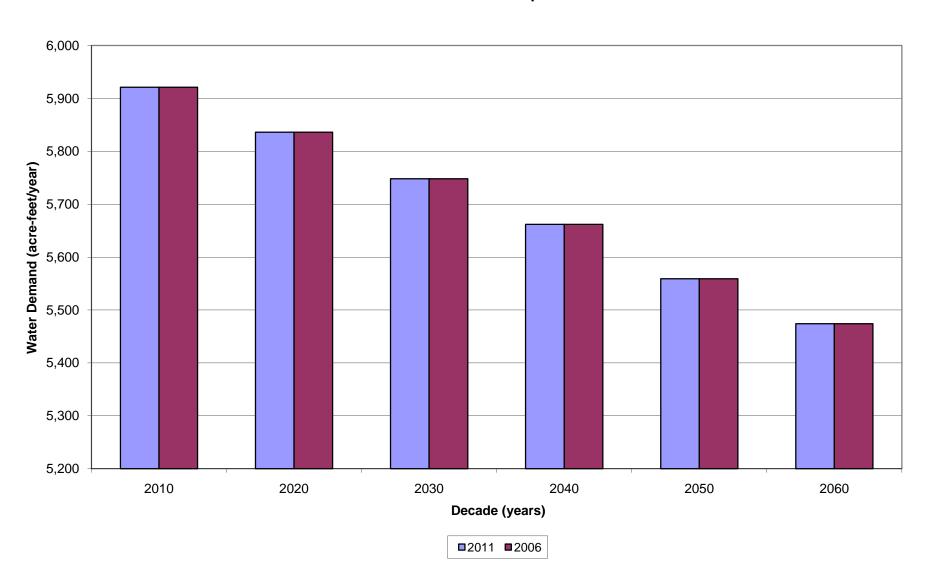

Water Demands* (in acre-feet per year) by WUG Category Mills County

RWP	2010	2020	2030	2040	2050	2060				
	Municipal									
2011	1,010	1,070	1,093	1,053	1,086	1,104				
2006	971	999	991	982	966	951				
Difference	39	71	102	71	120	153				
% Change	4.0	7.1	10.3	7.2	12.4	16.1				
Livestock										
2011	918	918	918	918	918	918				
2006	918	918	918	918	918	918				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
Irrigation										
2011	2,936	2,872	2,810	2,749	2,689	2,631				
2006	2,936	2,872	2,810	2,749	2,689	2,631				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
		M	[anufacturi	ng						
2011	1	1	1	1	1	1				
2006	1	1	1	1	1	1				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				
			Mining							
2011	0	0	0	0	0	0				
2006	0	0	0	0	0	0				
Difference	0	0	0	0	0	0				
% Change	NA	NA	NA	NA	NA	NA				
Steam-Electric Power Generation										
2011	0	0	0	0	0	0				
2006	0	0	0	0	0	0				
Difference	0	0	0	0	0	0				
% Change	NA	NA	NA	NA	NA	NA				

^{*}All values are presented in acre-feet per year

	Total Water Demand							
2011	4,865	4,861	4,822	4,721	4,694	4,654		
2006	4,826	4,790	4,720	4,650	4,574	4,501		
Difference	39	71	102	71	120	153		
% Change	0.8	1.5	2.2	1.5	2.6	3.4		

Mills County
Total Water Demand Comparison

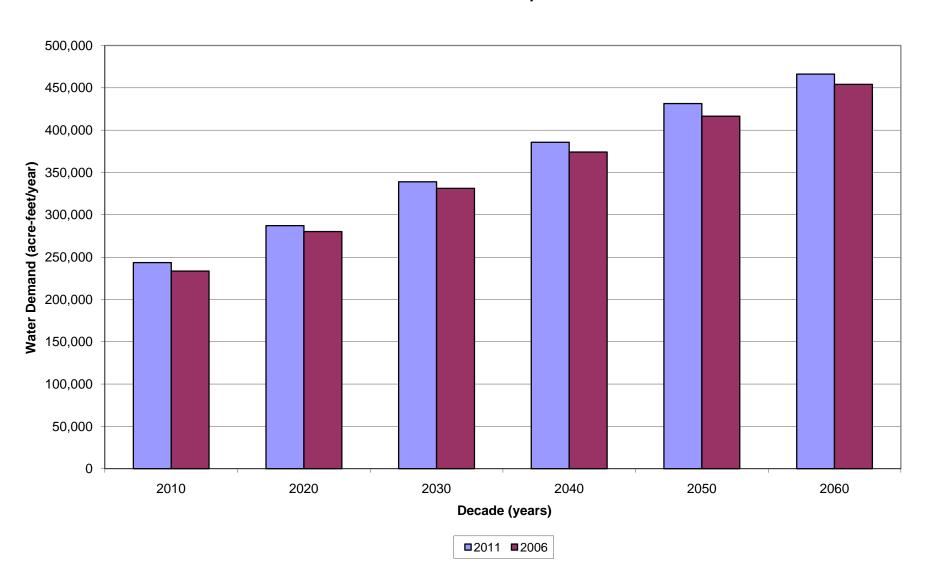

Water Demands* (in acre-feet per year) by WUG Category San Saba County

RWP	2010	2020	2030	2040	2050	2060			
			Municipal			<u> </u>			
2011	1,299	1,316	1,328	1,339	1,331	1,336			
2006	1,299	1,316	1,328	1,339	1,331	1,336			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
Livestock									
2011	1,191	1,191	1,191	1,191	1,191	1,191			
2006	1,191	1,191	1,191	1,191	1,191	1,191			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
			Irrigation						
2011	3,240	3,136	3,035	2,937	2,841	2,749			
2006	3,240	3,136	3,035	2,937	2,841	2,749			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
			lanufacturii						
2011	28	30	31	32	33	35			
2006	28	30	31	32	33	35			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
			Mining						
2011	163	163	163	163	163	163			
2006	163	163	163	163	163	163			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
	Steam-Electric Power Generation								
2011	0	0	0	0	0	0			
2006	0	0	0	0	0	0			
Difference	0	0	0	0	0	0			
% Change	NA	NA	NA	NA	NA	NA			

^{*}All values are presented in acre-feet per year

	Total Water Demand							
2011	5,921	5,836	5,748	5,662	5,559	5,474		
2006	5,921	5,836	5,748	5,662	5,559	5,474		
Difference	0	0	0	0	0	0		
% Change	0.0	0.0	0.0	0.0	0.0	0.0		

San Saba County Total Water Demand Comparison

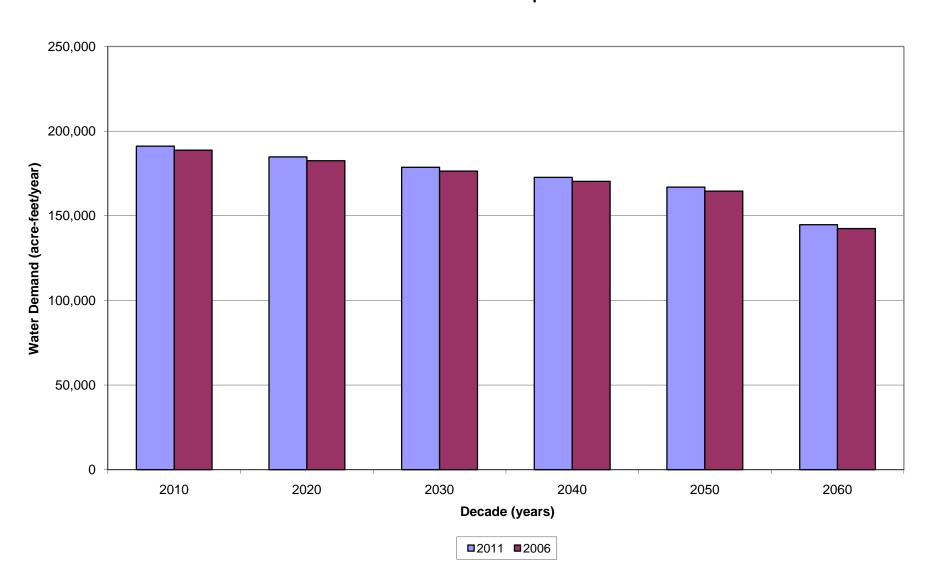

Water Demands* (in acre-feet per year) by WUG Category Travis County

Travis Cou									
RWP	2010	2020	2030	2040	2050	2060			
			Municipal						
2011	199,677	237,014	274,610	308,229	342,865	369,723			
2006	189,602	229,928	266,748	296,675	327,840	357,541			
Difference	10,075	7,086	7,862	11,554	15,025	12,182			
% Change	5.3	3.1	2.9	3.9	4.6	3.4			
Livestock									
2011	704	704	704	704	704	704			
2006	704	704	704	704	704	704			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
Irrigation									
2011	1,126	1,034	951	875	805	741			
2006	1,126	1,034	951	875	805	741			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
		M	anufacturii	ng					
2011	23,002	28,294	38,508	50,483	57,703	64,652			
2006	23,002	28,294	38,508	50,483	57,703	64,652			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
			Mining						
2011	1,531	1,649	1,727	1,804	1,880	1,935			
2006	1,531	1,649	1,727	1,804	1,880	1,935			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
Steam-Electric Power Generation									
2011	17,500	18,500	22,500	23,500	27,500	28,500			
2006	17,500	18,500	22,500	23,500	27,500	28,500			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			

^{*}All values are presented in acre-feet per year

	Total Water Demand							
2011	243,540	287,195	339,000	385,595	431,457	466,255		
2006	233,465	280,109	331,138	374,041	416,432	454,073		
Difference	10,075	7,086	7,862	11,554	15,025	12,182		
% Change	4.3	2.5	2.4	3.1	3.6	2.7		

Travis County
Total Water Demand Comparison

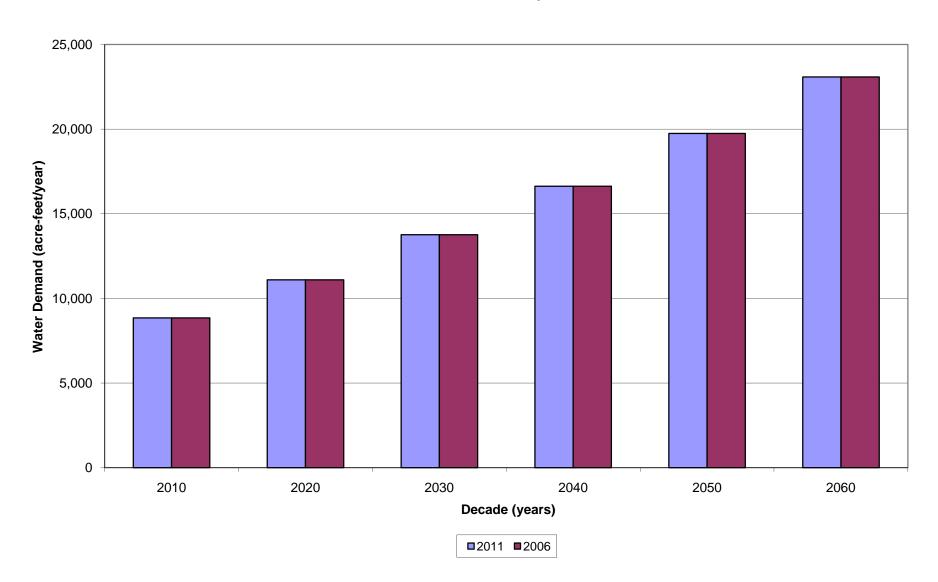

Water Demands* (in acre-feet per year) by WUG Category Wharton County (partial)

RWP	2010	2020	2030	2040	2050	2060			
			Municipal						
2011	3,776	3,880	3,910	3,880	3,847	3,806			
2006	3,776	3,880	3,910	3,880	3,847	3,806			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
Livestock									
2011	728	728	728	728	728	728			
2006	728	728	728	728	728	728			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
			Irrigation						
2011	182,985	176,441	170,127	164,044	158,177	135,911			
2006	182,985	176,441	170,127	164,044	158,177	135,911			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
		M	anufacturi	ng					
2011	313	343	366	390	410	442			
2006	313	343	366	390	410	442			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
			Mining						
2011	731	773	798	822	844	864			
2006	731	773	798	822	844	864			
Difference	0	0	0	0	0	0			
% Change	0.0	0.0	0.0	0.0	0.0	0.0			
Steam-Electric Power Generation									
2011	2,545	2,651	2,711	2,783	2,872	2,979			
2006	245	351	411	483	572	679			
Difference	2,300	2,300	2,300	2,300	2,300	2,300			
% Change	938.8	655.3	559.6	476.2	402.1	338.7			

^{*}All values are presented in acre-feet per year

	Total Water Demand							
2011	191,078	184,816	178,640	172,647	166,878	144,730		
2006	188,778	182,516	176,340	170,347	164,578	142,430		
Difference	2,300	2,300	2,300	2,300	2,300	2,300		
% Change	1.2	1.3	1.3	1.4	1.4	1.6		

Wharton County (Partial) Total Water Demand Comparison


Water Demands* (in acre-feet per year) by WUG Category Williamson County (partial)

RWP	2010	2020	2030	2040	2050	2060					
Municipal											
2011	8,841	11,095	13,761	16,625	19,743	23,082					
2006	8,841	11,095	13,761	16,625	19,743	23,082					
Difference	0	0	0	0	0	0					
% Change	0.0	0.0	0.0	0.0	0.0	0.0					
			Livestock								
2011	0	0	0	0	0	0					
2006	0	0	0	0	0	0					
Difference	0	0	0	0	0	0					
% Change	NA	NA	NA	NA	NA	NA					
			Irrigation								
2011	0	0	0	0	0	0					
2006	0	0	0	0	0	0					
Difference	0	0	0	0	0	0					
% Change	NA	NA	NA	NA	NA	NA					
		M	lanufacturii	ng							
2011	0	0	0	0	0	0					
2006	0	0	0	0	0	0					
Difference	0	0	0	0	0	0					
% Change	NA	NA	NA	NA	NA	NA					
			Mining								
2011	9	5	1	0	0	0					
2006	9	5	1	0	0	0					
Difference	0	0	0	0	0	0					
% Change	0.0	0.0	0.0	NA	NA	NA					
		Steam-Elec	tric Power	Generation	l						
2011	0	0	0	0	0	0					
2006	0	0	0	0	0	0					
Difference	0	0	0	0	0	0					
% Change	NA	NA	NA	NA	NA	NA					

^{*}All values are presented in acre-feet per year

Total Water Demand										
2011	8,850	11,100	13,762	16,625	19,743	23,082				
2006	8,850	11,100	13,762	16,625	19,743	23,082				
Difference	0	0	0	0	0	0				
% Change	0.0	0.0	0.0	0.0	0.0	0.0				

Williamson County (Partial) Total Water Demand Comparison

			Estimated Gallons per Capita Day*					
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
AQUA WSC	BASTROP	COLORADO	134	131	128	127	126	126
BASTROP	BASTROP	COLORADO	200	196	194	192	191	191
BASTROP COUNTY WCID #2	BASTROP	COLORADO	134	132	130	129	129	129
COUNTY-OTHER	BASTROP	BRAZOS	122	122	121	121	121	121
COUNTY-OTHER	BASTROP	COLORADO	122	122	121	121	121	121
COUNTY-OTHER	BASTROP	GUADALUPE	123	121	121	121	121	121
CREEDMOOR-MAHA WSC	BASTROP	COLORADO	94	89	89	87	86	87
ELGIN	BASTROP	COLORADO	148	145	142	140	139	139
LEE COUNTY WSC	BASTROP	BRAZOS	130	127	125	124	123	123
LEE COUNTY WSC	BASTROP	COLORADO	131	127	125	124	123	123
MANVILLE WSC	BASTROP	COLORADO	119	117	115	114	114	114
POLONIA WSC	BASTROP	COLORADO	80	78	77	75	75	75
SMITHVILLE	BASTROP	COLORADO	144	140	138	136	135	135
	•	•						
BLANCO	BLANCO	GUADALUPE	162	158	156	153	152	152
CANYON LAKE WSC	BLANCO	GUADALUPE	134	133	132	132	132	132
COUNTY-OTHER	BLANCO	COLORADO	88	85	83	81	80	80
COUNTY-OTHER	BLANCO	GUADALUPE	88	85	83	81	80	80
JOHNSON CITY	BLANCO	COLORADO	211	208	205	203	202	202
BERTRAM	BURNET	BRAZOS	176	173	171	169	168	168
BURNET	BURNET	COLORADO	156	153	150	149	148	148
CHISHOLM TRAIL SUD	BURNET	BRAZOS	140	143	147	151	152	152
COTTONWOOD SHORES	BURNET	COLORADO	119	116	114	113	112	112
COUNTY-OTHER	BURNET	BRAZOS	80	78	76	75	74	74
COUNTY-OTHER	BURNET	COLORADO	80	78	76	75	74	74
GRANITE SHOALS	BURNET	COLORADO	138	134	132	130	129	129
KEMPNER WSC	BURNET	BRAZOS	301	298	297	296	295	295
KINGSLAND WSC	BURNET	COLORADO	134	132	128	126	125	124
LAKE LBJ MUD	BURNET	COLORADO	248	246	243	240	239	239
MARBLE FALLS	BURNET	COLORADO	286	283	280	278	277	277
MEADOWLAKES	BURNET	COLORADO	337	335	334	333	333	333
	•	•						
COLUMBUS	COLORADO	COLORADO	226	223	220	217	216	216
COUNTY-OTHER	COLORADO	BRAZOS-COLORADO	95	92	89	86	85	85
COUNTY-OTHER	COLORADO	COLORADO	95	92	89	86	85	85
COUNTY-OTHER	COLORADO	LAVACA	95	92	89	86	85	85
EAGLE LAKE	COLORADO	BRAZOS-COLORADO	135	131	128	125	124	124
EAGLE LAKE	COLORADO	COLORADO	135	131	128	125	124	124
WEIMAR	COLORADO	COLORADO	148	144	141	138	137	137
WEIMAR	COLORADO	LAVACA	148	144	142	137	137	137
		•	1		<u> </u>			
AQUA WSC	FAYETTE	COLORADO	133	130	128	127	126	126

Appendix 2C 1 of 4

_			Estimated Gallons per Capita Day*					
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
COUNTY-OTHER	FAYETTE	BRAZOS	0	0	0	0	0	0
COUNTY-OTHER	FAYETTE	COLORADO	120	116	114	111	110	111
COUNTY-OTHER	FAYETTE	GUADALUPE	120	115	116	105	115	94
COUNTY-OTHER	FAYETTE	LAVACA	120	116	114	111	109	112
FAYETTE WSC	FAYETTE	COLORADO	115	113	111	110	110	110
FAYETTE WSC	FAYETTE	LAVACA	114	113	111	110	110	110
FLATONIA	FAYETTE	GUADALUPE	197	191	190	188	186	186
FLATONIA	FAYETTE	LAVACA	196	192	190	187	186	186
LA GRANGE	FAYETTE	COLORADO	155	152	150	148	147	147
LEE COUNTY WSC	FAYETTE	COLORADO	131	127	125	124	123	123
SCHULENBURG	FAYETTE	LAVACA	180	177	174	172	171	171
	•	•						
COUNTY-OTHER	GILLESPIE	COLORADO	106	103	100	98	97	97
COUNTY-OTHER	GILLESPIE	GUADALUPE	106	103	100	98	97	97
FREDERICKSBURG	GILLESPIE	COLORADO	242	239	236	234	233	233
	•							
BUDA	HAYS	COLORADO	139	136	134	133	132	132
CIMARRON PARK WATER COMPANY	HAYS	COLORADO	149	145	143	142	141	141
COUNTY-OTHER	HAYS	COLORADO	132	129	127	126	126	126
DRIPPING SPRINGS	HAYS	COLORADO	181	178	176	175	175	175
DRIPPING SPRINGS WSC	HAYS	COLORADO	125	123	122	121	121	121
HILL COUNTRY WSC	HAYS	COLORADO	126	124	124	123	123	123
MOUNTAIN CITY	HAYS	COLORADO	143	141	141	139	139	139
	•	•						
COUNTY-OTHER	LLANO	COLORADO	185	184	184	183	182	182
KINGSLAND WSC	LLANO	COLORADO	134	132	129	126	125	125
LAKE LBJ MUD	LLANO	COLORADO	248	246	243	240	239	239
LLANO	LLANO	COLORADO	265	262	259	256	254	254
SUNRISE BEACH VILLAGE	LLANO	COLORADO	215	214	212	209	208	208
	•							
BAY CITY	MATAGORDA	BRAZOS-COLORADO	145	142	139	136	135	135
COUNTY-OTHER	MATAGORDA	BRAZOS-COLORADO	95	92	89	86	85	85
COUNTY-OTHER	MATAGORDA	COLORADO	95	92	89	86	85	85
COUNTY-OTHER	MATAGORDA	COLORADO-LAVACA	95	92	89	86	85	85
ORBIT SYSTEMS INC	MATAGORDA	COLORADO-LAVACA	69	66	64	62	62	62
PALACIOS	MATAGORDA	COLORADO-LAVACA	121	118	115	113	112	112
SOUTHWEST UTILITIES	MATAGORDA	BRAZOS-COLORADO	100	97	95	93	92	92
		•						
BROOKSMITH SUD	MILLS	COLORADO	160	159	155	152	155	142
COUNTY-OTHER	MILLS	BRAZOS	107	104	101	98	97	97
COUNTY-OTHER	MILLS	COLORADO	107	104	101	98	97	97
GOLDTHWAITE	MILLS	BRAZOS	298	287	287	287	255	255
GOLDTHWAITE	MILLS	COLORADO	282	279	276	273	271	271

Appendix 2C 2 of 4

	County	River Basin	Estimated Gallons per Capita Day*						
WUG Name			2010	2020	2030	2040	2050	2060	
COUNTY-OTHER	SAN SABA	COLORADO	75	72	70	69	68	68	
RICHLAND SUD	SAN SABA	COLORADO	160	157	154	151	150	150	
SAN SABA	SAN SABA	COLORADO	299	296	293	290	288	288	
ANDERSON MILL MUD	TRAVIS	COLORADO	0	0	0	0	0	0	
AQUA WSC	TRAVIS	COLORADO	134	131	128	127	126	126	
AUSTIN	TRAVIS	COLORADO	174	173	172	171	170	169	
BARTON CREEK WEST WSC	TRAVIS	COLORADO	246	244	242	241	240	240	
BEE CAVE VILLAGE	TRAVIS	COLORADO	464	463	462	461	461	461	
BRIARCLIFF VILLAGE	TRAVIS	COLORADO	176	172	170	169	168	168	
CEDAR PARK	TRAVIS	COLORADO	182	181	180	180	180	180	
COUNTY-OTHER	TRAVIS	COLORADO	174	173	172	171	170	169	
COUNTY-OTHER	TRAVIS	GUADALUPE	128	128	128	128	128	128	
CREEDMOOR-MAHA WSC	TRAVIS	COLORADO	94	90	88	87	86	86	
CREEDMOOR-MAHA WSC	TRAVIS	GUADALUPE	95	92	87	88	88	87	
ELGIN	TRAVIS	COLORADO	143	144	139	140	140	139	
GOFORTH WSC	TRAVIS	COLORADO	93	91	89	88	89	87	
HILL COUNTRY WSC	TRAVIS	COLORADO	126	124	124	123	123	123	
JONESTOWN	TRAVIS	COLORADO	126	123	120	119	118	118	
JONESTOWN WSC	TRAVIS	COLORADO	118	115	112	111	110	110	
LAGO VISTA	TRAVIS	COLORADO	292	290	289	288	288	288	
LAKEWAY	TRAVIS	COLORADO	292	290	288	287	287	287	
LAKEWAY MUD	TRAVIS	COLORADO	0	0	0	0	0	0	
LOOP 360 WSC	TRAVIS	COLORADO	391	390	389	388	388	388	
LOST CREEK MUD	TRAVIS	COLORADO	191	188	185	182	180	180	
MANOR	TRAVIS	COLORADO	193	189	186	184	183	183	
MANVILLE WSC	TRAVIS	COLORADO	119	117	115	114	114	114	
MUSTANG RIDGE	TRAVIS	COLORADO	216	213	211	211	210	210	
MUSTANG RIDGE	TRAVIS	GUADALUPE	219	216	211	210	210	209	
NORTH AUSTIN MUD #1	TRAVIS	COLORADO	125	122	121	118	117	117	
NORTH TRAVIS COUNTY MUD #5	TRAVIS	COLORADO	127	126	125	124	124	124	
PFLUGERVILLE	TRAVIS	COLORADO	156	154	153	152	152	152	
RIVER PLACE ON LAKE AUSTIN	TRAVIS	COLORADO	295	293	293	292	292	292	
ROLLINGWOOD	TRAVIS	COLORADO	238	235	232	229	227	227	
ROUND ROCK	TRAVIS	COLORADO	197	194	192	191	191	191	
SAN LEANNA	TRAVIS	COLORADO	163	163	163	163	163	163	
SHADY HOLLOW MUD	TRAVIS	COLORADO	141	138	135	132	131	131	
THE HILLS	TRAVIS	COLORADO	220	218	218	217	217	217	
TRAVIS COUNTY WCID #17	TRAVIS	COLORADO	161	158	157	156	156	156	
TRAVIS COUNTY WCID #18	TRAVIS	COLORADO	121	118	116	115	114	114	
TRAVIS COUNTY WCID #19	TRAVIS	COLORADO	469	466	464	463	463	463	
TRAVIS COUNTY WCID #20	TRAVIS	COLORADO	362	360	358	357	356	356	

Appendix 2C 3 of 4

			Estimated Gallons per Capita Day*						
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060	
WELLS BRANCH MUD	TRAVIS	COLORADO	164	162	160	157	156	156	
WEST LAKE HILLS	TRAVIS	COLORADO	407	403	401	399	398	398	
WEST TRAVIS COUNTY REGIONAL WS	TRAVIS	COLORADO	143	141	140	139	139	139	
WILLIAMSON-TRAVIS COUNTY MUD #1	TRAVIS	COLORADO	104	102	101	100	100	100	
WINDERMERE UTILITY COMPANY	TRAVIS	COLORADO	107	106	105	104	104	104	
COUNTY-OTHER	WHARTON	IBRAZOS-COLORADO	102	99	96	93	92	92	
COUNTY-OTHER	WHARTON	COLORADO	102	99	96	93	92	92	
COUNTY-OTHER	WHARTON	COLORADO-LAVACA	102	99	96	93	92	92	
EAST BERNARD	WHARTON	BRAZOS-COLORADO	102	99	96	93	92	92	
WHARTON	WHARTON	BRAZOS-COLORADO	152	148	145	142	141	141	
WHARTON	WHARTON	COLORADO	152	148	145	142	141	141	
ANDERSON MILL MUD	WILLIAMSON	BRAZOS	0	0	0	0	0	0	
AUSTIN	WILLIAMSON	BRAZOS	174	173	172	171	170	169	
COUNTY-OTHER	WILLIAMSON	BRAZOS	174	173	172	171	170	169	
NORTH AUSTIN MUD #1	WILLIAMSON	BRAZOS	125	123	121	118	117	117	

Note: (daily per capita water-use rate, gallons per capita day, GPCD) = Municipal Water Demand (ac-ft/yr) / Population * (1 year / 365 days) * (325,851 gallons / 1 ac-ft)

Appendix 2C 4 of 4

Resolution by the Lower Colorado Regional Water Planning Group Regarding Population Projections for the 2011 Regional Water Planning Cycle Adopted June 10, 2009

WHEREAS, the Lower Colorado Regional Water Planning Group (Region K) is charged with developing and adopting, with broad public input, a regional water plan every five years; and

WHEREAS, Region K received guidance from the Texas Water Development Board (TWDB) in a letter dated December 2, 2008 that indicated with the exception of steam-electric water demands, the TWDB (also referred to as the Board) is not generating new 2011 plan projections for approval by the Board; and

WHEREAS, TWDB indicated that planning groups may request that the Board consider revisions to 2006 Regional Water Plan and 2007 State Water Plan population and water demand projections if conditions in a given planning area have changed sufficiently to warrant revisions. The TWDB further indicated:

- The January 2007 population estimates from the Texas State Data Center will be used as
 the primary standard to determine if changed conditions warrant any revisions to
 population projections, both at the local and regional level; and
- The Texas State Data Center estimates indicate that current population growth is exceeding projected growth rates for Region K as a whole. Increased regional totals, commensurate with growth which has occurred, are likely justified for this region, subject to TWDB approval; and

WHEREAS, Region K formed a Population and Water Demands Committee to develop population and water demand projections for the 2011 Regional Water Plan process; and

WHEREAS, the Population and Water Demands Committee in conjunction with its consultant, AECOM, reviewed available data and information from various sources, including the Texas State Data Center, Capitol Area Council of Governments, Harris-Galveston Area Council, U. S. Census Bureau, LCRA's population and water demand projections, and input from various regional water planning group members; and

WHEREAS, the Population and Water Demands Committee developed a set of recommended population and water demands projections for each county in Region K and then dispersed those projections to the Water User Group (WUG) level for the regional planning group members to review and provide comments; and

WHEREAS, at a regularly scheduled meeting on March 11, 2009 in Bastrop, Region K unanimously adopted these projections as its initially prepared projections for WUGs, TWDB and the public to review and comment on (also referred to as the March 2009 projection - see Attachment 1 to this resolution); and

WHEREAS. Region K conducted two public input meetings on March 19, 2009 and April 1, 2009 to receive comments from the public and WUGs; and

WHEREAS, on March 26, 2009, the TWDB sent an e-mail to Region K's consultant indicating generally that:

- Blanco, Matagorda, San Saba, and Wharton Counties are currently considered "over-projected" and the TWDB recommended that these counties be kept at their 2006 Region K Plan projection totals;
- For the remaining counties in the planning area where Region K suggested revisions, the TWDB recommended revising the city population projections only. Any non-city WUGs, including County-Other, were recommended to be kept at the 2006 Region K Plan projection levels; and

The TWDB only offered comments on the population projections and offered no comments on any of the increased water demand projections in other categories; and

WHEREAS, the Population and Water Demands Committee, in its research of 2006 Region K Plan data and its planning group members' experience indicated that the area of higher growth rates in most counties in Region K, with the exception of Travis County, was in the non-city WUG category, not the city WUG category; and

WHEREAS, members of the Region K Population and Water Demands Committee and the Region K consultant, AECOM, met with TWDB staff to discuss their response to Region K's prepared projections. In that discussion, TWDB demographers indicated that the overall projections of State population and State growth rate was a prime motivator for the TWDB staff limiting the population projections for Region K to about one-half of the overall proposed increase in the Region K's initially prepared population projections (March 2009); and

WHEREAS, after considerable debate, discussion and some dissention, among the group at its regular meeting on April 8, 2009 in Burnet, Region K gave guidance to its Population and Water Demand Committee to use the TWDB recommended population projections as a guide for developing new population and water demand projections for the 2011 planning process. During this discussion, planning group members expressed their concern that to continue forward and challenge the TWDB's staff recommendation on population projections for Region K may not be successful, but most importantly would put at risk the ability to develop a regional plan within the deadlines established by the TWDB; and

WHEREAS, the Population and Water Demand Committee and Region K's consultant, AECOM, redistributed the TWDB recommended population projections and developed an amended set of water demand projections and provided such to the full Region K planning group at its regular meeting on May 5, 2009 in Bastrop. Region K adopted these revised population and water demand projections at the meeting (allowing for the additional 14 day requisite public comment period to follow). A county-level comparison summary of differences between the March 2009 projections and the May 2009 projections is attached (Attachment 2); and

WHEREAS, Region K appointed a committee of planning group members to draft a resolution for its consideration at its June 10, 2009 meeting as a method to express and document its concerns regarding the use of the TWDB recommended population projections for the 2011 plan. The planning group has expressed concerns that the adopted revised TWDB recommended

population projections do not reflect the actual growth that it is seeing in its planning region over the recent past and expects to experience in the near future;

THEREFORE BE IT RESOLVED that:

- (1) Region K desires to express its appreciation to the TWDB for recognizing that this region is seeing increased demands for water and has experienced significant population growth at a rate greater than expected in the approved 2006 Region K Plan. However, the planning group does not believe that the TWDB recommended population projections for the 2011 planning process for Region K captures all of the population growth that is begin experienced in the planning area and what is expected to be seen in the near future.
- (2) Region K's data review has shown that there are areas within the region that are currently experiencing growth beyond what is projected in the TWDB's recommended population projections for the 2011 planning process for Region K.
- (3) Given the tight plan development timeline requirements, Region K decided to move forward with adopting the TWDB's recommended population projections for the 2011 planning process in order to assure that Region K could develop and approve a regional plan that would meet the required TWDB planning process deadlines.
- (4) Region K urges the TWDB to consider starting the 2016 planning cycle population and water demand projection development as early as possible in order to provide additional time to consider new information at that time, including 2010 census data.

OHN BURKE, P.E., CHAIRMAN

Lower Colorado Regional Water Planning Group

ATTEST:

Secretary

AECOM

400 West 15th Street, Suite 500, Austin, Texas 78701 T 512.472.4519 F 512.472.7519 www.aecom.com

Memorandum

Date March 6, 2009

To Lower Colorado Regional Water Planning Group Members

From Region K Population and Water Demand Committee

Subject Initially Prepared Region K Population and Water Demand Projections for the 2011

Region K Water Plan

Background

A memo received from the Texas Water Development Board (TWDB), dated December 2, 2008, provides guidance on and discusses the process of determining whether or not changed conditions in a regional planning area warrant revisions to the population and water demand projections as part of the 2007-2012 Regional Water Planning Cycle. The memo also describes the steps a regional planning area must take if it determines revisions are warranted. As part of the scoping process that occurred for the current phase of planning, TWDB agreed that growth in Region K has exceeded the projected growth in the 2006 Region K Water Plan, thus warranting revisions to the population and water demand projections. This round of planning is different from previous rounds in that TWDB will not provide recommended population nor water demand projection updates to Region K. Any desired revisions to the population and water demand projections must be determined by Region K and submitted as a request for approval to TWDB.

The Region K Population and Water Demand Committee was initially organized at the January 14' 2009, Region K meeting. The first committee meeting was held on February 4, 2009. Additional meetings were held on February 11, February 25, and March 4. The committee's purpose and primary objective was to review all population and water demand projections in the 2006 Region K Plan and recommend any appropriate changes. The committee looked at the various water use categories and recommended that only the municipal and steam-electric use projections be revised. The committee is recommending that the projections for the other categories (irrigation, livestock, manufacturing, and mining) remain the same as identified in the 2006 Region K Plan.

Steam-Electric Demands

For the steam-electric water demands, the TWDB provided information and alternative projections from a recent report by the University of Texas Bureau of Economic Geology. TWDB was clear that the Region could choose whether to use these projections or select other projections for submittal to TWDB. The committee evaluated and considered the report-generated demands, but determined that some of the numbers were below actual current and projected usage of existing facilities in the planning area. The committee agreed to use the Region K Planning Group members' knowledge of usage in this category to determine updates to the steam-electric water demands. Projected demands for Navasota Energy in Wharton County and White Stallion in Matagorda County were subsequently added as new demands in this category.

County Municipal Demands

LCRA provided the committee with a description of the purpose and methodology behind its recent Water Supply Resource Plan (WSRP) population/demand projections. LCRA met with members of each county within their service area in the region to ask for their assistance in determining available data and trends related to current population growth patterns. LCRA shared with the counties the 2006 Region K Water Plan population projections as a starting place. Some of the counties provided data to LCRA to assist in the projection development, while some counties indicated that they were comfortable with the 2006 Plan projections. Where it was deemed appropriate, the LCRA subsequently developed new county level projections using the process described further below.

LCRA used data from Region K, Texas State Data Center (TSDC), U. S. Census Bureau, the State Demographer, Capitol Area Planning Council of Governments (CAPCOG), Houston-Galveston AreaCouncil (H-GAC), and the counties to estimate county population changes through the year 2040. Each county was evaluated separately and LCRA used on a near term projection basis (2010-2040) the population projections that best correlated with data from the U. S. Census Bureau and/or substantiated county data. LCRA met with the State Demographer to share their results and solicit input on approaches to long range population projections. LCRA extended the projections from 2040 to 2100 using the TSDC's half (1990-2000) migration rate.

The committee compared the LCRA's WSRP county population projections to other methods of projections, including the 2006 Region K Plan numbers and various TSDC migration rates and population projections, to determine which projection would best reflect each county's anticipated growth. The determinations were made on a county by county basis, and where appropriate, the committee's decision for a county was made with input from a committee member having detailed knowledge of that county's growth patterns. For all 14 counties in the Region, the committee decided to use the county population projections from the LCRA WSRP for the revised county population totals. A number of LCRA's WSRP population projections for counties in the planning were consistent with projections in the 2006 Region K Plan.

Individual WUG Demands

The revised county population totals were distributed by the committee among the individual water user groups (WUGs) as explained below. The TSDC provided January 1, 2007, population estimates for cities within Region K and these estimates were used to project forward to 2010. The committee considered several approaches and options for how best to distribute any increased county growth to the individual WUGs level and how to project such growth through 2060. Using all this information, the committee then went through, on a county by county basis, and distributed any increased growth, taking into consideration knowledge of when and where growth is occurring in that county. In counties with more significant growth, the committee counseled with persons having detailed knowledge of that particular county's growth patterns to help in making such distributions.

Region K has two new WUGs for this round of planning. The Village of San Leanna in Travis County currently has a population greater than 500, so it is now a WUG rather than being part of County-Other. East Bernard in Wharton County recently incorporated, so it too is a new WUG under TWDB criteria rather than being part of County-Other. Finally, Anderson Mill MUD in Travis County and Williamson County has now been annexed by the City of Austin, and is no longer considered a separate WUG.

The committee also discussed whether or not to revise 2006 Region K Water Plan municipal per capita usage rates (i.e.Gallon Per Capita per Day (GPCD) numbers). The committee decided that since the background water use data from the TWDB which is necessary to calculate new GPCD numbers would not be available in time for this planning cycle, the numbers from the 2006 Region K Water Plan should be used to determine municipal water demands. Water Demand data for the Village of San Leanna was provided by TWDB, but data for East Bernard was not available. To

Page 3

determine East Bernard's water demands, the same GPCD shown for County-Other in the 2006 Region K Water Plan was used.

INITALLY PREPARED REGION K PROJECTED STEAM-ELECTRIC WATER DEMANDS FOR PUBLIC COMMENT

	ST	EAM-ELEC	TRIC WAT	ER DEMA	ND (AC-FT/	YR)
COUNTY	2010	2020	2030	2040	2050	2060
BASTROP COUNTY	12,000	14,000	16,000	18,000	19,500	19,500
2006 P	lan 12,000	14,000	16,000	18,000	19,500	19,500
Differer		0	0	0	0	1
% char						0.09
BLANCO COUNTY	0			<u> </u>	_	(
2006 P			<u> </u>	ļ		
Differer			_			0.05
% char BURNET COUNTY	ge 0.0%			0.0%	0.0%	0.09
2006 P			<u> </u>			
Differer						
% char				0.0%	0.0%	0.09
COLORADO COUNTY	1 0			0		
2006 P			0	ō		
Differer	nce 0	0	Ö	0	0	(
% char	ge 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
FAYETTE COUNTY	29,622		33,002	63,843	63.843	69,753
2006 P				63,840	63,840	69,750
Differer				3	3	
% chan		_		0.0%	0.0%	0.0%
GILLESPIE COUNTY	0		0	0	0	
2006 PI				0		(
Differen					0 000	0.000
% char HAYS COUNTY	* -		0.0%	0.0%	0.0%	0.0%
2006 PI	an 0	0		0	0	0
Differen				0	0	
% chan		0.0%		0.0%	0.0%	0.0%
LLANO COUNTY	1,500			15,000	15,000	15,000
2006 PI		843		1,159	1,371	1,629
Differen	ce 443	657	515	13,841	13,629	13,371
% chan	ge 41.9%	77.9%	52.3%	1194.2%	994.1%	820.8%
MATAGORDA COUNTY	83,000	135,000	135,000	135,000	135,000	135,000
2006 PI		80,000	102,000	102,000	102,000	102,000
Differen	ce 3,000	55,000	33,000	33,000	33,000	33,000
% chan	ge 3.8%	68.8%	32.4%	32.4%	32.4%	32.4%
MILLS COUNTY	0	0	0	0	0	0
2006 PI		0	0	0	0	
Differen		0	0	0	0	0
% chan				0.0%	0.0%	0.0%
SAN SABA COUNTY	0		0	0	0	0
2006 PI Differen		0	0	0	0	
% chan		0.0%	0.0%	0.0%	0.0%	0.0%
TRAVIS COUNTY	17,500		22,500	23,500	27,500	28,500
2006 PI		18,500	22,500	23,500	27,500	28,500
Differen	*****	0.000	0	0	0	20,000
% chan		0.0%	0.0%	0.0%	0.0%	0.0%
WHARTON COUNTY	2,745	5,351	5,411	5,483	5,572	5,679
2006 PI		351	411	483	572	679
Differen	ce 2,500	5,000	5,000	5,000	5,000	5,000
% chan	1020.4%	1424.5%	1216.5%	1035.2%	874.1%	736.4%
WILLIAMSON COUNTY	0	0	0	0	0	0
2006 Pi		0	0	0	0	0
Differen		0	. 0	0	0	
% chan		0.0%	0.0%	0.0%	0.0%	0.0%
REGION K TOTAL	146,367	204,053	213,413	260,826	266,415	273,432
2006 PLAN TOTAL	153,522	156,894	194,396	208,982	214,783	222,058

1 of 1 3/4/09

PROPOSED POPULATION PROJECTIONS

PROPOSED MUNICIPAL WATER DEMAND PROJECTIONS (AC-FT/YR)

BAS ACT COURT		-		-	*000	7007
AQUA WSC	37,503	54,835	79,571	114,680	125,895	138,307
2006 Plan	38.134	44,618	54,593	65,914	80.250	98 194
Difference	365	10.217	24 978	48.766	45 645	40 113
Schange %	3.8%	22.9%	45.8%	74.0%	96.9%	40.9%
BASTROP	8,890	12,998	18,862	27,185	29,843	32,786
2006 Plan	6 515	7,994	9.734	11,708	14.208	17,337
Difference	2375	5,005	9.128	15,477	15,635	15,449
% change	36.5%	62.6%	93.8%	132.2%	110.0%	89.1%
BASTROP COUNTY WCID #2	2,355	3,443	4,986	7,200	7,905	8.684
2005 Plan	2,269	3,202	4,300	5,546	7,124	90.6
Ofference	8	241	969	1.654	781	415
% change	3.8%	7.5%	18.2%	29,8%	11.0%	46%
COUNTY-OTHER	18,441	26,964	39,127	56,391	61,906	68 009
2006 Plen	17 770	26.787	37,395	49,433	64.677	83.760
Difference	179	177	1.732	6,958	-2.77	15.751
% change	3.8%	2,7%	4.6%	14.1%	43%	-18.8%
CREEDMOOR-MAHA WSC	188	275	389	574	631	693
2006 Plan	181	232	292	38.	448	557
Difference	Υ.	43	107	213	183	138
% change	3.8%	18.4%	36.5%	59.1%	40.7%	24 4%
	266'6	14,617	21,211	30,570	33,560	35.868
2006 Plan	6,411	7,348	8.450	9,701	11,285	13.267
Ofference	3,586	7,269	12,761	20,869	22.275	23,601
% change	55.8%	%6.88	151.0%	215.1%	197.4%	177.9%
LEE COUNTY WSC	882	1,305	1,894	2,729	2.996	3.291
2006 Plan	960	1,096	1,374	1,689	2,088	2 587
Difference	32	209	520	1.040	808	707
% change	3.8%	19,1%	37.8%	61.8%	43.5%	27.2%
MANVILLE WSC	520	760	1,103	1.590	1.746	1.917
2006 Plan	501	717	971	1,259	1 624	2 080
Difference	19	43	132	331	121	-16
% change	3.8%	6.0%	13.6%	26.3%	7.5%	-7 an
POLONIA WSC	505	305	443	638	700	169
2006 Plan	201	263	335	417	521	651
Ofference	क	42	108	22.1	179	11
	3,8%	16.0%	32.1%	53.0%	34.4%	18.2%
SMITHVILLE	5,606	8,197	11,895	17.143	18.818	20.675
2006 Plan	0449	5,344	6.290	7.364	8 724	10.406
Difference	990	2,853	5,605	B77.6	10 095	10.2
M. chumpel	23	53.4	89.1	132.4	115.	98.3
BASTROP COUNTY TOTAL	84,600	123,700	179,600	258,700	284,000	312,000
		The second second				

BASTROP COUNTY	OUNTY	2010	2020	2030	2040	2050	2060
AQUA WSC		5,629	8,046	408	16,314,	17,768	19,521
	2006 Plan	5.42	6,547	7.82	9,377	11,326	13,859
	Difference	206	1.498	3,581	6 937	6,442	5,66
	% change	3.8%	22.9%	45.9%	74.0%	%6.9%	40.9%
BASTROP		1,992	2,854	4,098	5,847	6,385	7.014
	2006 Plan	1,460	1,755	2,115	2.518	3.040	3 705
	Difference	532	1 099	1.983	3,329	3 345	3 305
	% change	36.5%	62.6%	93.8%	132.2%	110.0%	89 1%
BASTROP COUNTY WCID	7	354	209	727	1,040	1,142	1,255
	2006 Plan	341	473	626	901	1,029	1,315
	Difference	13	98	101	239	113	φ
	% change	3,8%	7,5%	16.2%	29.8%	11.0%	4.6%
COUNTY-OTHER		2,521	3,684	5,303	7.643	8.390	9.218
	2006 Plan	2 429	3,660	5 068	6,700	8 768	11 35
	Difference	25	24	235	943	-376	-2 135
	% change	3.8%	0.7%	4.6%	14.1%	4.3%	-18.8%
CREEDINOOR-MAHA WSC		20	27	\$	99	61	18
	2006 Plan	195	23	28	35	4	13
	Difference	-	4	11	21	18	13
	ebusho %	3.8%	18.4%	36.5%	59.1%	40.7%	24.4%
ELGIN		1,658	2,373	3,374	4,793	5,225	5,741
	2008 Plan	1,063	1 183	1344	1.521	1,757	2,086
	Difference	595	1.180	2.030	3,272	3,488	3.678
	% change	55.9%	98,9%	151.0%	215.1%	197 4%	177.9%
LEE COUNTY WSC		131	186	265	380	412	453
	2006 Plen	126	35	192	235	287	356
	Difference	Ş	8	73	145	125	16
	% change	3.7%	19.1%	37.8%	61.6%	43.5%	27.2%
MANVILLE WSC		70	100	142	203	222	245
	2006 Plan	67	8	125	161	207	Ř
	Difference	6	9	44	42	45	-2
	% change	3.8%	6.0%	13.6%	26.3%	7.5%	-7.8%
POLONIA WSC		19	27	38	54	69	99
	2006 Plan	18	23	29	35	4	55
	Difference	1	4	Ó	19	Ť.	10
	% change	3.8%	16.0%	32.1	53.0%	34.4%	18.2%
SMITHVILLE		904	1,286	1,838	2,612	2,845	3,127
	2006 Plan	732	838	87.	1,122	1,319	1,57
***************************************	Differe	172	447	Bess	1,490	1,526	550
	% change		53,4	89.1	132.8	115.7	98
BASTROP COUNTY	TY TOTAL	13,296	18,091	27,233	38,841	42,510	46,706
26	2006 PLAN TOTAL	11,679	14.762	18.327	22 505	27.818	34.610

PROPOSED MUNICIPAL WATER DEMAND PROJECTIONS (ACFT/YR)

BLANCO COUNTY	2010	2020	2030	2040	2050	2060
INCO	2,430	3,115	3,755	4,241	4,617	6,059
2006 Plan	1 672	1,870	2,058	2.224	2.403	2.61
Difference	758	1,245	1,696	2,017	2,214	2.44
% change	45.3%	96.6%	82.4%	90.7%	92.1	93.8
YON LAKE WSC	1,260	1,774	2,287	2,698	3,164	3,700
2006 Plan	1.254	1.766	2,256	2.685	3,14	3.68
Difference	9	Ø	11	13	an.	-
egnero %	0.5%	765.0	0.5%	0.5%	0.5%	0.5
JNTY-OTHER	5,694	7,139	8,480	9,440	10,049	10.77
2006 Plan	2995	6,575	7.444	8,205	9 027	6
Difference	22	564	1,036	1,235	1 02	ř
% change	0.5	8.6	13,9%	15.1%	11.3	7.9
INSON CITY	1,616	2,071	2,497	2,821	3,070	3.36
2006 Plan	1 35	1,545	1,728	NBSI	2,000	2.8
Difference	26	526	769	033	900	1,100
% char	18.4%	34.1%	44.5	49.4	48.9	48.6
BLANCO COUNTY TOTAL	11,000	14,100	17,000	19,200	20,900	22,900
2006 PLAN TOTAL	9 946	11 756	13.487	15.002	16 641	18 644

BLANCO COUNTY	Į,	2010	2020	2030	2040	2080	2060
BLANCO	 -	\$	581	657	727	786	862
	2006 Plan	303	331	380	384	409	445
	Ofference	137	220	797	348	377	417
	% change	45.3%	89.99	82,4%	90.7%	92.1%	93.8%
CANYON LAKE WSC		189	264	336	399	488	548
	2006 Pten	188	263	334	387	466	545
	Difference	-	Ţ	2	2	ক	
	% change	0.5%	0.5%	0.5%	0,5%	0.5%	0.5
COUNTY-OTHER		561	989	788	858	901	96
	2006 Plan	558	626	269	744	608	-GB
	Difference	3	25	8	112	92	7
	% change	9650	8.6%	13.9%	15.1%	11.3%	7.0%
лонизон сшл		382	483	574	2	969	191
	2005 Plan	320	360	397	429	467	54
	Offere	62	12	1771	212	228	75
	% change	19,4%	8.1	44.5%	49.4	48.9%	48.6
BLANCO COUNTY 1	TOTAL	1,672	1,978	2,354	2,622	2,850	3,136
2006 P	2006 PLAN TOTAL	1,369	1 580	783	1,951	2,151	2,3%

PROPOSED MUNICIPAL WATER DEMAND PROJECTIONS (AC-FT/YR)

BURNET COUNTY	TY	2010	2020	2030	2040	2030	3960
BERTRAM		1,430	1,957	2,555	3,145	3,448	3,780
	2006 Plan	1.307	1,524	1,746	1,958	2,189	2,458
	Ofference	123	433	608	1.187	1259	1 322
	% change	9.4%	28.4%	46.4%	60.6%	57.5%	53.8%
BURNET		6,358	269'8	11,358	13,980	15,324	16,802
	2006 Plan	5 625	6.668	7.736	8 753	9 964	11 154
	Difference	733	2.029	3,622	5.227	5.460	5.648
	% change	13.0%	30.4%	46.8%	59.7%	55.4%	50.6%
CHISOLM TRAIL SUD		189	269	338	416	456	500
	2006 Plan	178	249	321	390	465	553
	Ofference	F	10	17	26	0	-63
	% change	6.3%	3.9%	5.3%	6.6%	-2.0%	%9'B-
COTTON/MOOD SHORES		1,169	1,599	2,088	2,570	2.817	3.089
	2006 Plan	1 100	1.362	1 630	1,885	2 164	2.488
	Difference	-69	237	458	685	653	38
	% change	8.3%	17.4%	28.1%	36.3%	30.2%	24.1%
COUNTY-OTHER		23,092	31,587	41,253	50,773	55,655	81,026
	2006 Plan	21 733	26 913	32,218	37 265	42.781	49 189
	Оптагелсе	1 359	4,674	9.035	13,508	12 874	11.837
	% change	6.3%	17.4%	28.0%	36.2%	30.1%	24.1%
GRANITE SHOALS		2,738	3,746	4,892	6,021	009'9	7,237
	2006 Plan	2.489	3,015	3,554	4,067	4.627	5.278
	Difference	249	731	1,338	1.954	1,973	1,959
	% change	10.0%	24 2%	37 7%	48.0%	42.6%	37,1%
KEMPNER WSC		939	1,285	1,678	2,065	2,264	2,482
	2006 Plan	884	1,140	1,402	1,652	1,925	2,242
	Ощегенсе	\$3	145	276	413	339	240
	% change	6.3%	12,7%	19.7%	25,0%	17.6%	10.7%
KINGSLAND WSC		389	532	695	998	937	1,028
	2008 Ptan	360	426	487	28	809	682
	Difference	23	106	208	310	329	346
	% change	6.3%	24.9%	42.7%	%6.9S	54.2%	50.7%
LAKE LBJ MUD		898	1,187	1,551	1,909	2,092	2,294
	2006 Plan	817	946	1,078	1.204	1341	1,500
	Difference	51	241	473	705	751	79.4
	% change	6,3%	25.5%	43.9%	58,5%	26.0%	52.9%
MARBLE FALLS		7,796	10,664	13,927	17,141	18,789	20,602
	2006 Plan	5,604	6,361	7,136	7,874	3.680	9.616
0100	Ofference	2,192	4,303	6,791	9.267	10,109	10,986
	% change	39.1%	67.8%	95.	117.7%	116,5%	114.2%
MEADOWLAKES		2,331	3,188	4,164	5,125	5,618	6,160
	2006 P	1 821	2.440	3.07	3,678	4 337	5,103
	Difference	510	748	060	1.447	1 281	1,057
	% change	28.0	30.7	35.5%	39.3	29.5	20.7
BURNET COUNTY TOTAL	DIAL	47,300	64,700	84,500	104,000	114,000	125,000
	TATOT IN DI AND	A1 924	51 044	50 182	40 74	100	

	CNTY	2010	0707	2030	7	2002	
BERTRAM		282	379	489	989	849	712
	2006 Plan	258	295	334	371	412	463
	Difference	24	8	155	200	757	040
	4. change	767 0	70 B 40C	707 37	7000	703 23	710 63
TOMOTO			1007	1	200	2	V 0.50
DUNGE	-	1,11	1,491	1,808	2,333	2,340	2,785
	2006 Plan	983	1,143	1 300	1,461	1,635	1,849
	Difference	128	348	609	872	908	936
	% change	13.0%	30,4%	46.8%	59.7%	55.4%	50.8%
CHISOLIN TRAIL SUD		30	42	99	70	77	85
	2006 Plan	28	\$	53	99	78	ъ
	Difference		72	r.	4	2.	ů,
	% change	6.3%	3.9%	5.3%	6.6%	-2.0%	%9 6°
COTTONWOOD SHORES	ı	l	208	266	328	353	387
	2006 Plan	147	177	208	238	27.1	312
	Difference	6	31	58	97	82	7.5
	% change	6.3%	17.4%	28.1%	36.3%	30.2%	24.1%
COUNTY-OTHER		2,069	2,760	3.512	4,266	4,613	5.059
	2008 Plan	1 947	2,352	2.743	3,131	3 546	4 078
	Difference	122	\$08	769	1,135	1,087	8
	% change	6.3%	17.4%	28.0%	36 2%	30.1%	24.1%
GRANITE SHOALS		424	563	723	876	954	1,046
	2006 Plan	385	453	525	592	668	763
	Difference	39	110	198	284	285	283
	% change	10.0%	24.2%	37.7%	49.0%	42 6%	37,1%
KEMPNER WSC		317	429	558	989	748	820
	2006 Plan	288	381	466		838	741
	Difference	45	89	23	137	112	79
	% change	6.3%	12.7%	19.7%	25.0%	17.6%	10.7%
KINGSLAND WSC		85	25	8	121	13	14
	2006 Plan	55	63	70	77	85	96
	Difference	6	16	30	44	8	48
	% chenge	6.3%	24.9%	42.7%	96.9%	54.2%	50 7%
AKE LBJ MUD		241	328	422	514	280	815
	2006 Plan	227	261	293	324	359	402
	Difference	7	29	129	190	201	21
	% change	6.3%	25.5%	43.9%	58.5%	26 0%	52.9
MARBLE FALLS		2,497	3,380	4,368	5,338	5,829	6,383
	2006 Plan	1 785	2,016	2 238	2,452	2,893	2,864
***************************************	Difference	702	1 364	2,130	2,886	3 136	3.439
	% change	39.1%	67.6%	95.2%	117.7	116.5%	114.2
MEADOWLAKES		878	1,197	1,558	1,912	2,096	2,297
	2006 Ptan	583	916	1 150	1,37	1,618	363
	Difference	28	281	408	3	478	8
	% change	28.0	30.7	35.	39.3%	29.5%	20.7
BURNET COUNTY TOTAL	YTOTAL	8,064	10,654	13,958	17,037	18,851	20,344
2006	6 PLAN TOTAL	6.810	8.097	9.380	10.633	12 003	3.684

Page 4 of 12

INITIALLY PREPARED REGION K PROJECTED POPULATIONS AND MUNICIPAL WATER DEMANDS

PROPOSED MUNICIPAL WATER DEMAND PROJECTIONS (AC-FT/YR)

COLORADO COUNTY	COUNTY	2010	2020	2030	2040	2050	2060
COLUMBUS		4,053	4,399	4,578	4,580	4,873	5,208
	2006 Płan	4 053	4,231	4,331	4.371	4,379	4,333
	Difference	ō	168	247	2008	594	873
	% change	%0.0	¥0.4	5.7%	4.8%	13,6%	20.1%
COUNTY-OTHER		12,622	13,700	14,258	14,262	15,488	16,213
	2006 Plan	11 206	11 702	11.977	12,087	12,110	11 987
	Difference	1416	1.998	2.281	2,175	3 378	4,231
	% change	12.6%	17.1%	19.0%	18.0%	27.9%	35.3%
EAGLE LAKE		3,792	4,116	4,284	4,285	4,653	4.871
	2006 Plan	3 782	3,959	4,052	4,090	4.09	4 00
	Difference	О	157	232	195	979	81
	% change	9%0.0	4.0%	5.7%	4.8%	13.6%	20.1
WEMAR		2,188	2,375	2,472	2,472	2,685	2,810
	2006 Plan	2 050	2,140	2,190	2,212	2 215	2,1
	Ofference	138	235	282	260	470	61
	% change	6.7%	11.0%	12.9%	90,00	21.34	28.2
COLORADO COUNTY TOTAL	TOTAL	22,655	24,589	16,592	25,599	27,800	29,100
500	2006 PLAN TOTAL	21,101	22,032	22,550	22,760	22,801	22,561

FAYETTE COUNTY	>	2010	2020	2030	2040	2060	2080
AQUA WSC		602	787	939	1,057	1,193	1,372
	2006 Plan	602	787	939	1,067	1.193	1,372
	Difference	0	8	8	6	0	0
	% change	0.0%	2%O:O	0.0%	0.0%	%0.0	% 0.0
COUNTY-OTHER		5,064	3,358	2,232	1,487	992	663
	2006 Plan	5 064	3,358	2,232	1,487	385	883
	Difference	ð	0	0	ō	Ö	0
	% change	0.0%	0.0%	0.0%	0.0	0,0%	0.0%
FAYETTE WSC		7,147	10,252	12,807	14 795	17,070	20,081
	2008 Plain	7 147	10,252	12,807	14 7365	17,070	20.081
	Бите тепсе	٥	ਂ	o	a	S	0
	% change	%0.0	0.0%	0.0%	7420	960.0	0.0%
FLATONIA		1,543	1,712	58,	858	2,083	2,247
	2006 Plan	1 543	1,712	1,851	1,959	2.083	2,247
	Ofference	Ö	5	0	Ö	0	0
	% change	%0.0	9,0.0	9%0.0	0.0%	9.00	0.094
LA GRANGE		5,546	8,629	7,520	8,213	9.007	10.057
	2006 Plan	5.546	6.629	7,520	8,213	5007	10.05
	Difference	8	8	8	O	ō	0
	% change	0.0%	% 0.0	0.0%	9,00	%00	0.0%
LEE COUNTY WSC		1,730	2,375	2,906	3,319	3,792	4.418
	2006 Plan	1 730	2,375	2,906	3,319	3 792	4.41
	Difference	Ö	Ö	c	Ö	8	10
	% change	0.0%	0.0%	0.0%	0.0%	960.0	0.0%
SCHULENBERG		3,194	3,695	4,108	4,429	4,796	5.282
	2006 Plan	3 194	3,695	4 108	4.629	4 796	5.2
	Ofference	O	Ö	0	6	ত	83
	% change	0.0	0.0	. 0.0	W/0 0	0.0%	0.0
FAYETTE COUNTY TOTAL		24,826	28,808	32,363	35,259	38,633	44,120
2006 Pt A	2006 PLAN TOTAL	24 826	28 808	32.383	258	28 023	44 120

COLORADO COUNTY	SUNTY	2010	2020	2030	2040	2050	2060
COLUMBUS		1,026	1,099	1,128	1,113	1,204	1,259
	2006 Plan	1 026	1,057	1067	1,062	1,060	1.048
	Difference	ਣ	42	91	51	144	211
	% change	3600	4.0%	5.7%	4.8%	13.6%	20.19
COUNTY-OTHER		1,344	1,412	1,423	1,375	1,475	1,544
	2006 Plan	1 193	1,206	1 185	1,165	1,153	1 14 1
	Difference	151	206	228	210	322	403
	% change	12.6%	17.1%	19.0%	18.0%	27.9%	35.3%
EAGLE LAKE		573	804	614	299	646	676
	2006 Plan	573	581	581	572	999	263
	Difference	۵	23	8	27	7.7	113
	% change	%0.0	4.0%	5.7%	4.8%	13.6%	20.2%
WEIMAR		363	383	391	382	412	432
	2006 Plan	340	345	346	342	340	337
	Difference	23	38	45	40	72	98
	% change	6.7%	11.0%	12.9%	11.8%	21.2%	28.2%
COLORADO COUNTY TOTAL	OTAL.	3,306	3,498	3,655	3,469	3,737	3,912
2006	2006 PLAN TOTAL	3,132	3,189	3,189	3,141	3,122	3,089

PAYETTE COUNTY	DUNTY	2010	2020	2030	2040	2060	2060
AQUA WSC		06	115	136	150	168	195
	2006 Plan	8	115	135	150	168	194
	Difference	O	ප	8	ප	٥	O
	egueup %	%0.0	0.0%	0.0%	0.0%	%0:0	₩0.0
COUNTY-OTHER		989	436	285	184	122	82
	2006 Plan	089	436	285	184	122	82
	Difference	8	o	۵	0	6	0
	% сћанде	0.0%	0.0%	%0:0	9.03	0.0%	0.0%
FAYETTE WSC		920	1,298	1,693	1,823	2,103	2,474
	2006 Plan	920	1 298	1 593	1,823	2,103	2 474
	Ofference	8	0	5	8	0	0
	% change	0.0%	960.0	0.0%	%0.0	7500	%0.0
FLATONIA		339	368	394	411	434	468
	2006 Plan	339	368	394	411	434	488
	Driference	ō	Φ	ਠ	6	ਠ	0
	% change	% 0.0	0.0%	0.0%	960'0	%0°0	%0.0
LA GRANGE		963	1,129	1,264	1,362	1,483	1,656
	2006 Plan	696	1,129	1,264	1 362	1,483	1,656
	Difference	Ö	6	5	0	6	0
	% change	0.0%	0.0%	0.0%	0.0%	9.00	%0°0
LEE COUNTY WSC		254	338	407	481	522	609
	2006 Plan	254	338	407	19	522	809
	Ofference	Ö	8	\$	0	6	0
	% change	0.0%	9,00	0.0%	960'0	0.0%	0.0%
SCHULENBERG		844	733	801	853	918	1,012
	2006 Plan	644	733	801	853	919	1,012
	Difference	ਠ	0	O.	Ö	0	0
	% change	0.0%	0.0%	%0.0	0.0%	0.0%	0.0%
FAYETTE COUNTY TOTAL	TAL	3,890	4,417	4,879	5,244	6,761	6,495
20	2006 PLAN TOTAL	3,890	4,417	4,879	5,244	5,751	6,495

22,498

19,742

0.0% 16,266 16,266

INITIALLY PREPARED REGION K PROJECTED POPULATIONS AND MUNICIPAL WATER DEMANDS

PROPOSED MUNICIPAL WATER DEMAND PROJECTIONS (AC-FT/YR)

2060

2030

2010

GILLESPIE COUNTY COUNTY-OTHER

Difference % change 2006 Pt.

FREDERICKSBURG

2006 Plan

23 1.3% 3.781 3.223 5.58 17.3% 5,697 6,016

3,583 3,583 3,153 430 13.6%

4,686

M. change

2008 PLAN TOTAL

CHLESPIE COUNTY TOTAL

PROPOSED POPULATION PROJECTIONS

GILLESPIE COUNTY	2010	2020	2030	2040	2050	2060
COUNTY-OTHER	13,245	15,441	18,571	15,972	16.712	17,516
2006 Plan	13 776	15 732	16.496	16,496	16,496	16.5
Difference	-531	291	75	-52	216	1.023
ebueup %	%6°€-	-1.9%	0.5%	3.2%	1,3%	6.2
FREDERICKSBURG	11,482	13,385	14,365	13,846	14.488	15.184
2006 Plan	10 313	11.778	12 349	12 349	12 349	12 340
Difference	1 168	1,607	2,016	1.497	2 139	28
% change	11.3%	13.6	16.3%	12.1	17.3	23 0%
ONLI ESPIE COUNTY TOTAL	24,727	28,826	30,938	29,818	31,200	32,700
2006 PLAN TOTAL	24,089	27,510	28,845	28,845	28 845	28.845
						-

GILLESPIE COUNTY	29	2020	2030	2040	2050	2060
UNITY-OTHER	13,245	15,441	18,571	15,972	16,712	17,516
2006 Plan	13 776	15 732	16,496	16,496	16.496	16.0
Difference	-531	291	75	-52	216	1.02
% change	-3.9%	-1.9%	0.5%	-3.2%	1.3	6.2
REDERICKSBURG	11,482	13,385	14,365	13,846	14,488	15
2006 Plan	10 313	11,778	12,349	12.349	12.349	12 34
Difference	1 168	1,607	2,016	1.497	2.139	2.8
% change	11.3%	13.6	16.3%	12.14	17.3	23.0%
ALLESPIE COUNTY TOTAL 2	24,727	28,826	30,938	29,818	31,200	32,700
2006 PLAN TOTAL 2	24,089	27,510	28,845	28,845	28 845	28.845

4.140

2060

3,088

789

678

					$\overline{}$		1	+										-													
2030	2 603	2,603	3	D	0.0%	582	582		%0.0	6.208	6 208	5	0.0%	2,297	2.287	0	%00	999	999	8	20.0	980	980	8	%00	116	116	O	960.0	13,446	13,446
2020	2.128	7 12B		5	%0.0	489	489	0	360.0	4,864	4 864	8	0.0%	1,868	1.856	8	960:0	501	ક્ર	6	9%0'0	702	702	8	0.0%	116	116	6	0.0%	10,658	10,656
2010	1.454	1 252	S	707	16.1%	403	403	8	0.0%	3,359	3 551	192	-5.4%	1,080	1 080	Ö	0.0%	348	348	8	%0.0	4	440	0	0.0%	118	118	Ö	0.0%	7,202	7,192
HAYS COUNTY		2005 Plan	Coccasion C	Unterlehoe	% change	CIMARRON PARK WATER COMPANY	2006 Płan	Difference	% change	COUNTY-OTHER	2006 Plan	Difference	% change	DRIPPING SPRINGS	2006 Plan	Difference	% change	DRIPPING SPRINGS WSC	2005 Plan	Difference	% change	HILL COUNTRY WSC	2006 Plan	Difference	egnan, %	MOUNTAIN CITY	2006 Plan	Difference	% change	HAYS COUNTY TOTAL	2006 PLAN TOTAL
	BUDA		<u>.</u>			ਹ	L	Ш		Ö		L	L	e		لسا		سا													
2080	27,997 BUDA	27.997	Te.	3	%0.0	5,584 CII	5,584	0	%0.0	75,207	75,207	8	0.0%	19,058	19,058	0	0.0%	8,604	8,604	0	0.0%	13,387	13.38	0	0.0	737	73.7	0	0.0	150,674	150.574
9		24.797 27.997	C		0.0% 0.0%	. .	4,998 5,584	0 0	0.0%		65,729 75,207	0	0.0% 0.0%		16 834 19,058	o o	0.0%	8,604	7,471 8,604	0		11,485 13,387	11,485 13.38	0	0.0% 0.0	737 737	737 73	8	0.0		132,051 150,574
2050	27,997					5,584	4.998	0 0		75,207		0		19,058			0.0%	7,471 8,604			%0.0	11,485		0	0.0%	737	737 737 73	0 0	0.0%	132,051	
2040 2050	24,797 27,997	24.797			0.0%	4,998 5,584	4.998	0 0	0.0%	85,729 75,207	65.729	0 0	0.0%	14,005 16,834 19,058	16 834	ਠ	0.0%	6,031 7,471 8,604	7.471	0	%0.0	9,067 11,485	11.485	0	0.0% 0.0%	737		0 0	0.0%	108,495 132,051	132,051
2030 2040 2	20,728 24,797 27,997	20,728 24,797			0.0% 0.0%	4,252 4,998 5,584	4,252 4,998	0 0 0	0.0% 0.0%	53,675 65,729 75,207	53,675 65,729	0 0	9,0.0 9,0.0	11,651 14,005 16,834 19,058	14,005 16 834	8	0.0% 0.0% 0.0%	4,832 6,031 7,471 8,604	6,031 7,471	0	%0.0 %0.0 %0.0	7,054 9,067 11,485	9,067 11,485		0.0% 0.0%	737 737 737	737	0	0.0	108,495 132,051	88,887 108,495 132,051
2020 2030 2050	17,341 20,728 24,797 27,997	1 17,341 20,728 24,797	6		0.0% 0.0% 0.0%	3,631 4,252 4,998 5,584	3,631 4,252 4,998		0.0% 0.0% 0.0%	33,658 43,841 53,875 85,729 75,207	33,658 43,641 53,675 65,729	-1.296 0 0 0 0 0	0.0% 0.0% 0.0%	9,308 11,651 14,005 16,834 19,058	11,651 14,005 16,834	0	0.0% 0.0% 0.0%	3,639 4,832 6,031 7,471 8,604	4 832 6,031 7,471	0 0	9,00 9,00% 0.0%	5,051 7,054 9,067 11,485	7 054 9,067 11,485	0	0.0% 0.0% 0.0%	737 737 737	737 737	0 0 0	0.0	69,377 88,887 108,495 132,051	88,887 108,495 132,051

2006 Plan Difference % change

JUNTY-OTHER

APPING SPRINGS

CIMARRON PARK WATER COMPANY

BUDA

2006 Plan Difference % change

2006 Plan

RIPPING SPRINGS WSC

2006 Plan

Difference % change

% change

HILL COUNTRY WSC

2006 Plam Differ

MOUNTAIN CITY

HAYS COUNTY TOTAL. 2006 PLAN TOTAL

0.0%

1,582

0.0% 1,249 1,249

œ
73
-
\mathcal{Z}
ĕ
ŝ
ž
ᢓ
Ö
Щ
3
×
ο.
ER DEMAND PROJECTIONS (AC
₹
臺
Ä
7
Ē
Ħ
3
PAL WATER
₹
를
≌
z
±
D MUNIC
ш
S
ď.
O
쮼
_

ELAND COUNTY	2010	2020	2030	2040	2050	2060
COUNTY-OTHER	7,058	9,209	8,789	10,365	10,941	11,517
2006 Plan	4745	4.745	4,745	4.74	4 745	4.74
Difference	2.31	4,464	5.044	5, 2	6.196	6.7
% change	48.7%	84.1%	106.3%	118.4%	130.6%	142.7
CINGSLAND WSC	5,492	7,165	7,617	8,065	8,513	8,961
2008 Plan	3 692	3,692	3,692	3,692	3.692	3.5.42
Difference	1 800	3.473	3 925	4 373	4 821	5.3
% change	48.7%	94.1%	106.3%	118.4%	130.6%	142.7
AKE LBJ MUD	7,168	9,352	9,942	10,527	11,112	11,696
2005 Plan	4.819	4,819	4,819	4,819	4.819	4.81
Difference	2 349	4,533	5,123	5.708	6.293	6.877
% change	48.7%	94.1%	106.3%	118.4%	130.6%	142.7%
LANO	3,967	5,176	5,502	5,826	6,149	6.473
2006 Plan	3 387	3,387	3,387	3,387	3.387	3,387
Difference	580	1,789	2,11	2,439	2.762	3.086
% change	17.1%	52.8%	62,4	72.0%	81.6%	B1 1%
SUNRISE BEACH VILLAGE	828	1,082	1,150	1,217	1,285	1,353
2006 Plan	717	717	111	717	717	717
Difference	112	365	43	2009	568	8
% change	15.8%	50.0	60.4	6.89	79.2%	88.7
LANG COUNTY TOTAL	24,514	31,984	34,000	36,000	38,000	40,000
2006 PLAN TOTAL	17,360	17,360	360	17,360	17,360	360

MATAGORDA COUNTY	UNTY	2010	2020	2030	2040	2050	2060
BAYCITY		19,921	21,587	22,666	22,982	24,851	26,087
	2006 Plan	19,821	21,292	22,126	22,586	22 521	22,316
	Difference	8	285	540	3965	2,330	3.771
	% change	0.0%	1.4%	2.4%	1.8%	10.3%	16.9%
COUNTY-OTHER		15,690	17,004	17,854	18,102	19,577	20,551
	2006 Plany	14 340	15,328	15,929	16,258	16 212	16 065
	Difference	1,350	1,676	1,925	1,844	3.365	4.486
	abueup %	9.4%	北6.01	12.1%	11.3%	20.8%	27.8%
ORBIT SYSTEMS INC.		32	22	28	29	29	29
	2006 Ptan	2e	27	28	23	58	29
	Difference	6	ъ	8	8	6	0
	% change	%0.0	0.0%	\$0.0	0.0%	%0.0	%0.0
PALACIOS		5,499	5,969	8,257	6,344	6,860	7,201
	2006 Plan	5 499	5,878	6,108	6,235	6.217	6,160
	Ofference	Ð	8-1	149	100	£3	1,041
	% change	0.0%	1.4%	2.4%	1.7%	10.3%	16.9%
SOUTHWEST UTILITIES		788	854	968	606	983	1,032
	2006 Plan	720	277	900	817	814	807
	Difference	89	84	98	92	169	22
	Maringon 9%	9.4%	10.9%	12,194	11.2%	20.8%	27.95
ATABORDA COUNTY TO	TOTAL	41,924	48,43*	47,701	48,365	\$2,350	54,900
2006 P	2006 PLAN TOTAL	40.506	43,295	44.991	45.925	45 703	45 377

LLANO COUNTY	2010	2020	2030	2040	2050	2060
COUNTY-OTHER	462	1,898	2,018	2,126	2,230	2,347
2006 Plan	CÓTO .	87⊞	978	973	8	699
Difference	479	620	1,040	1,152	1,263	380
% change	48.7%	94.1%	106.3%	118.4%	130.6%	142.7
KINGSLAND WSC	824	1,060	- 8	1,138	1,182	255
2006 Plan	2554	546	533	524	517	513
Difference	270	514	287	617	675	738
% change	48.7%	F 1%	106.3%	118.4%	130.6%	142.7
AKELBJIKUD	1,992	2,577	2,707	2,831	2.974	3,131
2006 Plan	1 339	1.328	1 312	1,286	1 290	1 280
Difference	653	1,249	1 395	1,535	1,684	184
% change	48.7%	94.1%	106.3%	118.4%	130.6%	142 7
TANO	1,177	1,519	1,597	1,670	1,750	842
2006 Plan	1 005	984 4	983	871	88	1954
Difference	172	525	614	869	786	87
% change	17.1%	52.8%	62.	72.0%	81.6%	91.1
SUNRISE BEACH VILLAGE	200	259	273	285	298	315
2006 Plan	173	172	17.	168	167	16,
Difference	27	87	103	1117	132	148
% cha	15.6%	50.	60.4	89.8%	79.2%	88.7
LANG COUNTY TOTAL	5,655	7.313	7,684	8,050	8,446	068'8
2006 PLAN TOTAL	4 054	4,018	3,976	3.929	3.805	808

MATAGORDA COUNTY	CUNTY	2010	2020	2030	2040	2060	2060
BAYCITY		3,236	3,434	3,529	3,501	99/	945
	2006 Plan	3 236	3.387	3 445	3,441	3,406	3.37
	Difference	Ö	47	94	8	352	57
	% change	0.0%	1.4%	2.4%	1.8%	10.3 %	16.9%
COUNTY-OTHER		1,670	1,753	1,779	1.744	1,863	956
	2006 Plan	1 526	1 580	1 587	1,586	1.543	523
	Difference	144	173	192	178	320	42
	% change	9.4%	10.9%	12.1%	11.3%	20.8%	27.8
DRBIT SYSTEMS INC.		2	2	7	2	2	2
	2006 Plan	2	63	2	2	7	. 2
	Difference	٥	6	Ó	6	8	2
	ж спалде	%-0°0	%0.0	0.0%	0.0%	960'0	0.0
PALACIOS		745	788	808	803	861	904
	2006 Plan	745	777	787	789	780	777
	Ofference	o	11	19	14	1-6	131
	% change	0.0%	1.4%	2.4%	1.7%	10.3%	16.9%
SOUTHWEST UTILITIES		89	93	96	95	101	106
	2006 Plan	81	8	985	BS	48	83
	Difference	8	6	10	10	17	23
	% change	9.4%	10.9%	12.1%	11.2%	20.8%	27 9%
MATAGORDA COUNTY TOTAL	OTAL.	5,741	9,070	6,211	8,144	889'9	6,913
2006	2006 PLAN TOTAL	5.590	5.830	5.906	5.883	5 8 1 K	5 763

PROPOSED POPULATION PROJECTIONS

PROPOSED MUNICIPAL WATER DEMAND PROJECTIONS (ACFT/YR)

MILLS COUNTY	- -	2010	2020	2030	2040	2050	2080
BROOKSMITH SUD		8	53	2	51	28	59
	2006 Plan	39	45	\$	47	46	4
	Differer	0	ab	80	4	101	5
	% change	, 0.0	17.1%	17.1%	7.8%	22.1%	33,3%
COUNTY-OTHER		3 835	4,339	4,435	4,170	4.625	4.829
	2006 Plan	3,299	3,506	3.553	3,599	3,569	3 494
	Difference	929	833	882	571	1 056	1 335
	% change	19.3%	23.8%	24.8%	15.9%	29.6%	38.2%
GOLDTHWAITE		1,799	1,988	2,032	1,911	2,119	2,213
	2006 Plan	1 799	1,863	1,877	1,891	1,882	1.859
	Difference	ō	125	88	20	237	354
	% change	0.0%	6.7	8.3*	1.1%	12.6	19.0%
MILLS COUNTY TOTAL	College College	6,773	6,380	6,521	8,132	6,800	7,100
2006 P	2006 PLAN TOTAL	5,137	6.414	5.476	5.537	5 497	6 397

SAN SABA COUNTY	2010	2020	2030	2040	2050	2080
COUNTY-OTHER	2,965	3,324	3,533	3,587	3,933	4.190
2006 Plan	2 69	2,971	3 210	3,418	3,444	3,477
Difference	PRIN	353	323	169	489	7.13
% C-10-20	9.6	11.9%	10.1%	4.9%	14.2%	20.5
RICHLAND SUD	7	1,294	1,376	1,396	1,631	1.631
2006 Plan	1.05	1,130	1 200	1.261	1 268	1.27
Difference	20	164	176	135	263	353
% change	5-6	14.5%	14.6%	10.7%	20.8%	27.6
SAN SABA	2,816	3,157	3,356	3,407	3,736	3,97
2006	2 640	2,645	2,649	2,653	2.653	2,654
Difference	176	512	707	754	1.083	1,325
% char	6.7	19.4	26.7	28.4	40.8	48.0
SAN SARA COUNTY TOTAL	6,635	77.6	8,265	8,390	9,200	9,800
2006 PLAN TOTAL	4,387	8,746	7 059	7,332	7,365	7,408

MILLS COUNTY	2010	2020	2030	2040	2080	2060
SROOKSMITH SUD	1	GR.	6	ø	10	6
2006 Plan	۷	right.	90	10	80	F.
Difference	Ö	-	-		2	N
% change	%0°0	17.1%	17.1%	7.8%	22.1	33.0
COUNTY-OTHER	144	909	502	458	502	525
2006 Ptan	988	409	402	382	787	1
Difference	92	26	1001	9	216	145
% change	%E'61	23.8%	24.8%	15,9%	29.6%	38
GOLDTHWAITE	699	621	629	585	643	671
2006 Puni	98 98	582	581	57	571	364
Difference	Ö	39	2	40	72	107
% change	0.0%	6.7	8.3%	1.1%	12.6%	18.0
ALLS COUNTY TOTAL	1,047	1,137	1,140	1,061	1,164	1,206
2006 PLAN TOTAL	971	666	991	982	996	951

SAN SABA COUNTY	2010	2020	2030	2040	2050	2060
COUNTYOTHER	250	569	277	277	288	318
2006 Plan	722	240	252	264	262	286
Difference	23	83	25	13	37	3.
% change	%6'6 6	940	10,1%	4.9%	14.2%	20.5
RICHLAND SUD	207	228	237	236	257	274
2006 Plan	188	88	202	213	215	21
Difference	5 €	2	R	23	2	25
% change	6	14.5	14.6%	10.7%	20.8	27.6
SAN SABA	843	1,047	1 101	1,107	1,205	1,283
2006	AN HA	877	698	98	92	B50
Difference	9.6	170	232	24	349	42
% chang	6.7%	19.4%	26.7	28.40	40.8%	46.9
SAN SABA COUNTY TOTAL	1,399	1,643	1,616	1,620	1,762	1,877
2006 PLAN TOTAL	1,299	1,316	1,328	1,339	1,331	1,336

â
£13
Š
ONS
ECTA
3
D PR
Ž
RDE
Œ
L WA
CIPA
Ž
Pos
PRO
_

***************************************	200	20.20	2030	2040	2050	2000
ANDERSON MAL MUD"		0	0	0	0	
2006 Plan	Plan	o o	Ċ	0	8	
Difference			8	8	5	
% change	ange 0.0%	0.0	0.0%	%0.0	9,000	%0.0
AQUA WSC	9,470	11,407	13,532	15,854	17,173	18,494
2006 Plan	Plan 7 251		869.6	10,432	11 208	12.00
Difference		9 2.884	3,834	5.422	5,965	6.48
% change		33.8%	39.5%	52.0%	53.2%	54.0%
AUSTIN	770,529	9 928,151	1,101,052	1,310,002	1,436,191	1,556,708
2006 Plan	Plan 770 529	9 946.974	1,111,996	1,258,580	1,409 808	1,548,27
Difference		0 -18.823	-10,944	51,422	26,383	8,43
% change	ange 0.0%	% -2.0%	%0'1-	4,1%	1.9%	0.5%
BARTON CREEK WEST WSC		6 1,456	1,456	1,456	1,458	1,456
2006 Płan	Plan 1 456	ið 1,456	1.456	1,456	1456	1.456
Difference		0	ō	0	8	
% change	ange 0.0%	%0.0	7.00	X0.0	% 0.0	3,00
BEE CAVE VILLAGE	2,264	4 2,727	3,236	3,791	4,106	4.422
2006 Plan	Plan 948	1,339	1,700	1,926	2,165	2.41
Difference		6 1,388	1,536	1,865	1 841	2.01
% change	ange 138.8%	·	80.4%	%8.96 8.8%	89.7%	83.4%
BRIARCLIFF VILLAGE	1,289	1,817	2,305	2,609	2,931	3,263
2006 Plan	Plan 1 289		2,305	2.609	2 931	3,263
Difference		0	ō	Ö	c	
% change	0.0% one	% 0.0%	0.0%	0.0%	0.0%	%0.0
CEDAR PARK	,	1,432	1,903	2,197	2,508	2,828
2006 Pten	Piers 922	2 1,432	1,903	2,197	2.508	2,828
Difference		Ö	ਲ	8	0	
	950 o ebus	%0.0	2,00	3 60.0	% 0.0	0.0
COUNTY-OTHER	35,486	33,595	35,161	32,975	25,035	22,812
2006 Plan	E	5 27,853	23,127	17,213	12.127	12,636
Difference		1 5,742	12.034	15,762	12.908	9.876
% change	ange] 5.4%	76 20.6%	52.0%	91.6%	106.4%	78.9%
CREEDMOOR-MAHA WSC	6,284	4 8,318	10,668	12,100	12,412	12,734
2006 Plan	Plan 5 952	2 7,301	8,537	9,308	10 126	10.96
Difference		1,017	2.131	2,791	2 286	1767
% change	inge 5.4%	% 13.B%	25.0%	30.0%	22,6%	16.1%
ELGIN		87 105	125	146	158	171
2006 Plan		56 87	116	134	153	173
Difference		31 18	æ	12	ফ	17
17- 70	707 55	702.00	7 00.7	100		

ANDERSON MILL MUD-			I		•		
		0	0	0	5	3	
	2006 Plan	ō	a	ठ	ਠ	10	
	Difference	8	ਲ	0	0	0	
	% change	0.0%	960'0	×00	0.0%	0	0.09
AQUA WSC		1,421	1,674	1,940	2555	2,424	2,611
	2006 Plan	1,088	1,251	1 390	484	582	3.696
	Difference	333	423	550	177	246	916
	% change	30.6%	33.8%	38,5%	52.0%	53.	54.0%
AUSTIN		150,180	179,861	212,133	250,924	273,486	294,691
	2006 Plan	150 180	183,509	214 242	241.07	268.4-2	293,000
	Difference	δ	-3,648	-2,109	9.850	5.024	355
	% change	%0'0	-2.0	760	4.1%	1.9%	0.5
BARTON CREEK WEST WSC	wsc	401	398	388	393	391	391
	2006 Plan	401	398	396	39	391	36
	Difference	ਠ	Ю	0	0	5	
	% change	0.0%	960.0	0.0%	0.0	0.0%	0.0%
BEE CAVE VILLAGE		1,177	1,413	1,675	1,958	2,120	2,283
	2006 Plan	483	989	680	568	1118	1,245
	Difference	684	719	735	983	1 002	1,038
	% change	138.8%	103.7%	90.4%	88.8%	89 7%	83.4%
BRIARCLIFF VILLAGE		254	350	439	484	299	614
	2006 Pian	254	350	439	494	552	614
	Difference	0	0	8	0	ਣ	
	% съвпрв	0.0%	%D'0	0.0%	960.0	0.0%	0.0%
CEDAR PARK		188	290	384	443	909	570
	2006 Plan	188	290	384	443	206	570
	Difference	å	6	8	0	o	٥
	% change	%0.0	0.0%	%0.0	0.0%	0.0%	%0.0
COUNTY-OTHER		6,916	6,510	6,773	8,316	4,767	4,280
	2006 Plan	6.561	5,397	4,455	3,297	2 309	2,392
	Difference	355	1,113	2,318	3,010	2,458	1,888
	% change	5 4%	20.6%	52.0%	81.6%	108 4%	78.9%
CREEDINOOR-MAHA WSC		662	839	1,051	1,179	1,196	1,227
	2006 Plem	628	736	841	505	976	1057
	Difference	34	103	210	272	220	170
	% change	5.4%	13,9%	25.0%	30.0%	22.6%	16.1%
ELGEN		14	17	19	23	25	27
	2006 Plan	8	14	18	21	24	27
	Difference	ι'n.	8	1	2	٠	
	% change	82,9%	20.9%	7.69%	9.1%	3.5%	-1.4%

_
Æ
Ξ
4
õ
=
£
◙
Ö
Ĭ,
ੋ
ŭ
<u>а</u>
旻
3
Ψ,
~
꼾
4
₹
Ţ
₹
<u>ত</u>
Ž
₹
<u>~</u>
띯
ő
8
ĕ
•

			000				
	2006 Plan	288	300	471	526	584	44
	Ofference	16	49	103	135	110	85
	% change	5.6%	12.8%	21.9%	25.7%	18.8%	13.2%
HILL COUNTRY WSC		1,780	2,911	4,090	4,816	5,243	5,683
	2006 Plan	1,689	2,623	3,486	4,025	4,585	5,182
	Difference	16	288	604	797	648	501
	% change	5.4%	11.0%	17.3%	19.7%	14.1%	9.7%
JONESTOWN		3,309	3,985	4,728	5,539	8,000	6,462
	2006 Plan	1,985	2,391	2,766	3,000	3.248	3,503
	Difference	1324	1,594	1,982	2,539	2 752	2.959
	% change	66.7%	66.7%	70.9%	84.6%	84.7%	84.5%
JONESTOWN WSC		976	1,281	1,636	1,853	1,894	1,937
	2006 Plan	926	1,123	1,305	1,419	1,539	1.663
	Difference	යි	158	331	434	355	274
	% change	5.4%	14,1%	25.4%	30.6%	23.1%	16.5%
LAGO VISTA		6,132	8,307	10,316	11,571	12,898	14.265
	2006 Plan	6 132	8,307	10,315	11,571	12.898	14 265
	Difference	0	0	ō	O	ō	0
	% change	%0.0	0.0%	%0.0	0.0%	%00	% 0 0
LAKEWAY		14,522	17,493	20,752	24.313	26,336	28.361
	2006 Plan	10,789	14,518	17,965	20,117	22 384	24 738
	Difference	3,733	2.874	2,787	4,196	3 942	3,623
	% change	34.6%	20.5%	15,5%	20.9%	17.6%	14.6%
LOOP 360 WSC		2,803	2,803	2,803	2,803	2,803	2,803
	2006 Plan	2,803	2.803	2,803	2,803	2,803	2,803
	Difference	0	0	ō	0	ō	0
	% change	0.0%	0.0%	9,00	960:0	%0.0	0.0%
OST CREEK MUD		4,372	4,372	4,372	4,372	4,372	4,372
	2006 Plan	4 372	4,372	4,372	4,372	4.372	4.372
	Difference	8	ਠ	O	Ö	\$	G.
	% change	0.0%	0.0%	960.0	0.0%	0.0	80.0
MANOR		6,275	7,558	996'8	10,505	11,379	12,255
	2006 Plan	1 319	1,473	1,615	1,704	1,798	1,895
	Difference	4,956	6,085	7,351	8,801	9.581	10,360
	% change	375.7%	413.1%	455.2%	516.5%	532.9%	546.7%
MANVILLE WSC		13,689	20,148	27,140	31,430	33,346	35,323
	2006 Pfan	12,987	17,931	22,498	25,350	28,367	31,474
	Difference	702	2,215	4,642	6.080	4.978	3,849
	% change	5.4%	12.4%	20.6%	24.0%	17.6%	12.2%

GUTURIA WAL		32	4	57	65	69	7
	2006 Ptan	30	38	47	52	\$	ě
	Difference	7	th th	10	43	11	
	% change	5.6%	12.8%	21.9%	25.7%	18.8%	13.2%
HILL COUNTRY WISC		251	404	568	684		783
	2006 Plan	238	86. 4	484	555	633	717
	Ofference	13	4	84	109		89
	% change	5.4%	11.0%	17,3%	19.7%	14 1%	\$∠6
JONESTOWN		467	848	636	739	792	854
	2006 Plan	280	329	372	400	429	46
	Ofference	187	219	264	338	363	391
	% change	%4.69	66.7%	70.9%	846%	84 7%	84.5%
JONESTOWN WSC		129	165	206	230	234	239
	2006 Plan	122	145	164	176	190	205
	Difference	7	52	42	54	44	3
	% change	2.4%	14.1%	25.4%	ŝ	23.	16.5%
LAGO VISTA		2,006	2,698	3,340	3,733		4,602
	2006 Plan	2,006	2 698	3,340	3,733	4,161	4,600
	Difference	O	0	O	ð	č	
	% change	9%00	9,0.0	%0°0	0.0%	%00	% 0`0
LAKEWAY		4,750	5,682	6,695	7,816	8,466	9,118
	2006 Plan	3,529	4,716	5,796	6,467	7,199	7,95
	Difference	1 221	996	880		1,267	1,16
	% change	34.8%	20.5%	15.5%	20.9%	17.6%	14.6%
LOOP 380 WSC		1,228	1,225	1,221	1,218	1,218	1,218
	2006 Plan	1 228	1,225	1,221	1,218	1,218	1,218
	Difference	Ö	O	0	O	ਠ	
	% change	%0.0	%0.0	0.0%	0.0%	0.0%	0.0%
LOST CREEK MUD		935	921	906	891	882	882
	2006 Plan	935	921	906	891	882	882
	Difference	ප	0	O	G	8)
	% change	0.0%	0.0%	0.0%	0.0%	0.0%	%0 O
MANOR		1,366	1,801	1,865	2,164	2,335	2,509
	2006 Plani	285	312	336	351	369	386
	Ofference	1,071	1,289	1,529	1,813	1,966	2,121
	% change	375.7%	413.1%	455.2%	516 5%	532.9%	546 7%
MANVILLE WSC		1,825	2,640	3,498	4,013	4,258	4,510
	2006 Plan	1,731	2,350	2.898	3,237	3,622	4,019
	Difference	94	290	288	776	989	46.4
	% change	5.4%	12.4%	20.6%	24,0%	17.6%	12.2%

œ
≿
-
\mathcal{J}
ĕ
~
ž
\circ
\vdash
ш
2
×
٥
D PRO
4
Ì
2
WATER
ΑT
Ž
_
ď.
흤
≌
ś
Ĭ
Ω
Ж
ő
ڄ
2
<u>a.</u>

MUSTANG RIDGE	486	280	989	745	908	877.8
2006 Plan	486	590	989	746	608	87.4
Difference	8	O	Č	c	2	5
% change	%0.0	9.00	960.0	%0.0	7,00	200
NORTH AUSTIN MUD #1	780	780	780	780	780	780
2006 Plan	780	780	780	780	780	780
Difference	ō	0	0	O	C	O
% change	0.0%	%0.0	\$6.0	0.0%	%0.0	7600
NORTH TRAVIS COUNTY MUD #5	3,810	8,231	8,752	10,306	11,219	12.150
2006 Plan	3,615	5,614	7,460	8,613	9.833	11.089
Difference	195	617	1 292	1,693	1386	1 071
	5.4%	11,0%	17.3%	19.7%	14.1%	9.7%
PFLUGERVILLE	39,480	47,557	56,416	86,097	71 597	77,104
2006 Plan	24,709	35,916	46.268	52 733	59 572	66 61A
Difference	14 771	11,641	10,148	13,364	12 025	10 490
% change	%8 65 76	32.4%	21.9%	25.3%	20.2%	15.7%
RIVER PLACE ON LAKE AUSTIN	4,449	5,250	5,250	5,250	5,250	5.250
2006 Plan	4.449	5,250	5,250	5,250	5,250	5.250
Difference	0	Ö	5	ಕ	Ö	C
	%0.0	% 0`0	0.0%	3×0.0	%D.O	0.0%
ROLLINGWOOD	1,414	1,428	1,441	1,449	1.458	1.467
2006 Plan	1414	1,428	1,441	1,449	1.458	1.467
Difference	්	6	8	6	0	0
% change	0.0%	%0°0	960.0	80.0	%0.0	%0.0
ROUND ROCK	1,806	2,782	3,684	4,247	4,843	5.466
2006 Plan	1,306	2,782	3,684	4,247	4 843	5.456
Difference	Ö	ਲ	0	0	ठ	0
% change	0.0%	0.0%	0.0%	0.0%	0.0%	%0 D
SAN LEANNA**	S46	898	181	916	1-66	1.087
2006 Plan	0	0	Ö	Ö	0	O
Difference	546	859	781	915	991	1.067
% change	N/A	N/A	N/A	N/A	A'A	A/N
SHADY HOLLOW MUD	4,732	4,732	4,732	4.732	4.732	4.732
2006 Plan	4,732	4,732	4,732	4,732	4.732	4.732
Difference	8	8	0	6	6	0
% change	%0.0	%0.0	%00	0.0%	%0.0	0.0%
THE HILLS	2,301	3,000	3,000	3,000	3,000	3.000
2006 Plan	2,301	3,000	3,000	3800	3.080	3,000
Difference	Ö	Ö	O	0	8	0
% change	%0.0	0.0%	%0.0	0.09%	%0.0	0.0%

MUSTANG RIDGE		118	141	162	176	190	205
	2006 Plen	118	141	162			205
	Difference	Ö	0	٥	Ö	ठ	
	% change	0.0%	%00	0.0%	%0.0	1800	7,00
NORTH AUSTIN MUD #1		109	107	106		102	102
	2006 Plan	109	107	106	103	102	10
	Difference	0	Đ	0	8	5	
	% change	%0.0	%0.0	0.0%	0.0%	%00	0.0%
NORTH TRAVIS COUNTY MUD #5	MUD#8	542	878	1,228	ľ	1,559	1,689
	2006 Plan	514	792	1,045	*	1,366	1,540
	Difference	28	87	181	235	193	149
	% change	5.4%	11.0%	17.3%	19	14,1%	9.7%
PFLUGERVILLE		6,899	8,204	899'6	-	12,190	13,128
	2006 Plan	4,318	6 196	7,930	8,978	10 143	11.34
	Difference	2,581	2,008	1,738		2 047	1,786
	% change	58.8%	32.4%	219%	25 3%	20 2%	15.7%
RIVER PLACE ON LAKE	AUSTIN	1,470	1,723	1,723		1,717	1.71
	2006 Pten	1,470	1,723	1723	1,717	1,717	1.71
	Difference	О	6	8	Ö	5	
	% change	% 0 0	0.0%	0.0%	0.0%	% 00	20.0
ROLLINGWOOD		377	376	374	372	371	373
	2006 Plan	377	376	374	372	371	37.
	Difference	8	ਲ	0	O	O	
	% change	%0.0	9.0.0	%00	0.0%	0.0%	0.0%
ROUND ROCK		388	909	792	606	1,036	1,167
	2006 Ptan	399	909	792	896	1,036	1,16
	Difference	ප	О	\$	0	\$	
	% change	0.0%	%0.0	0.0%	0.0%	9%000	750'0
SAN LEANNAT	-	1001	120	143	167	181	196
	2006 Plan	8	6	o	୍ଦ	ō	
	Difference	100	120	142	167	181	195
	% change	WA	A/N	N/A	N/A	A/N	N/A
SHADY HOLLOW MUD		747	731	716	700	694	694
	2006 Ptan	747	731	716	7007	694	9 69
	Difference	8	0	0	Ö	0	Û
	% change	0.0%	0.0%	%0.0	%0.0	0.0%	0.0%
THE HILLS		287	733	733	729	729	729
	2006 Plan	567	733	733	729	729	726
	Difference	Ö	0	Ò	0	ō	
	% change	960 0	960'0	0.0%	800	%0.0	%0.0

PROPOSED POPULATION PROJECTIONS

PROPOSED MUNICIPAL WATER DEMAND PROJECTIONS (AC-FT/YR)

1,570 1 278

3,010 2,856 154 5,4% 889 853 853 46 5,4%

0.0% 456 456

457

8 69 69

0.0% 462 462

1 490

1, 508 1, 508

TRAVIS COUNTY WCID #17	16,694	24,984	33,898	39,369	41,959	44,629	TRAVIS COUNTY WCID #17
2006 Plan	15 838	22, 283	28,236	31.954	35,887		2000 SOC
Difference		2,701	5,662	7,415			Differences
% change	5.4%	12.1%	20.1%	23.2%	16.9%	11.8%	**************************************
TRAVIS COUNTY WICD #18		9,206	12,083	13,841	14,432	15,041	TRAVIS COUNTY WACD #18
2006 Plan	6 291	8,133	9.834	10,896	12,020		2006 Place
Difference		1,073	2,249	2,945			Difference
% change	5.4%	13,2%	22.9%	27.0%			occupation %
TRAVIS COUNTY WICD #19	716	716	716	716			TRAVIS COUNTY WACD #19
2006 Plan	1 716	716	716	718			2006 Plan
Ofference		Ь	Ð	Ö	0	O	Ofference
% change	0.0%	0.0%	9600	%0.0	0.0%	0.0%	Paragraphy 1/2
TRAVIS COUNTY WICD #20	1,140	1,140	1,140	1,140	1,140	1,140	TRAVIS COUNTY WICD #20
2005 Plan	1,140	1,140	1 140	1 140	1140	1,140	2006 Plan
Difference	1	Ö	ð	6	0	0	Difference
% change	0.0%	0.0%	0.0%	%0°0	0.0%	X 0.0	% chance
WELLS BRANCH MUD	_	8,211	8,211	8,211	8,211	8,211	WELLS BRANCH MUD
2006 Plan	8,211	8,211	8 211	8,211	8,211	8,211	2006 Plans
Difference		б	6	ō	٥	O	Difference
% change	0.0%	0.0%	%0.0	0.0%	9,0.0	0.096	endada **
WEST LAKE HILLS	3,520	4,061	4,561	4,873	5,203	5.543	WEST LAKE HILLS
2006 Plan	3,520	4,061	4,561	4,873	5,203	5.543	2005 Plan
Difference		8	О	O	Ö	0	Difference
% change	0.0%	0.0%	0.0%	火0.0	0.0%	2,00	% chance
WEST TRAVIS COUNTY REGIONAL							WEST TRAVIS COUNTY REGIONAL
WS		7,883	10,800	12,592	13,502	14,440	WS
2006 Plan	4	7.051	9,055	10,307	11,631	12,994	2006 Plen
Unterence		832	1,745	2,285	1871	1,446	Difference
% change	9.4 <i>3</i>	11.8%	19.3%	22.2%	16.1%	11.1%	% change
WILLIAMSON-TRAVIS COUNTY MUD	1,791	2,685	3.644	4.233	4.513	4 802	WILLIAMSON-TRAVIS COUNTY MUD
2006 Plan	1.699	2,395	3,037	3,438	3,962	ĺ	Mark Mark
Duference	35	290	709	795	651	503	Difference
% change	5.4%	12.1%	20.0%	23.1%	16.9%	-	S. Chapter
WINDEMERE UTILITY COMPANY	17,999	18,710	18,710	18,710	18,710	18,710	WINDEMERE UTILITY COMPANY
2005 Płan	17 999	18,710	18,710	18,710	18,710	18,710	2006 Ptan
Difference		ප	8	0	0	C	Difference
% change		0.0%	0.0%		0.0%	0.0%	ſ
TRAVIS COUNTY TOTAL	•	1,208,800 1,434,100			1,820,000 1,880,000	1,880,000	TRAVES COUNTY TOTAL
2006 PLAN TOTAL	- 1	969,955 1,186,499 1,385,236		1,550,538	1,722,737	1,888,543	PLAN TOTAL

No longer a WUG - annexed by City of

Austro ** New Wilks for 2011 Plan

The state of the s			_				
WS		824	1,245	1,694	1,961	2,102	2,248
	2006 Plan	782	1,114	1,420	1,605	1,811	2.023
	Difference	42	131	274	356	291	225
	% change	5.4%	11.8%	19.3%	22.2%	16.1%	11 1%
WILLAMSON-TRAVIS COUNTY MUD	NTY MUD						
Ŧ		209	307	413	474	909	538
	2006 Plan	198	142	344	385	433	482
	Difference	11	68	9	89	73	98
	% change	5.4%	75,1%	20.0%	23.1%	16.9%	11.7%
WINDEMERE UTILITY COMPANY	PANY	2,157	2,222	2,201	2,180	2,180	2,180
	2006 Ptan	2,157	2,222	2,201	2,180	2,180	2,180
	Difference	8	8	ত	8	8	
	% change	0.0%	960.0	0.0%	%0.0	%00	0.0%
TRAVES COUNTY TOTAL	1000	196,568	127 482	275,633	\$20,503	345,018	370,899
2006 PL	2006 PLAN TOTAL	189,602	229,928	266,748	296,675	327.840	357,541
The formation of the comment of the	10.14						

*No longer a WUG - annexad by City of Austin *** New WUG for 2011 Plan

PROPOSED POPULATION PROJECTIONS

PROPOSED MUNICIPAL WATER DEMAND PROJECTIONS (AC-FT/YR)

2000

2050

2040

2030

1,836

WHARTON COUNTY

2020 1,883 2,168 -285 -13,1%

2006 Plan
Difference
% change
2008 Plan
Difference
% change

PAST BERNARD

285 N/A

277 N/A 1,663 1 683

WHARTON

2006 Plan Difference

% change

WHARTON COUNTY TOTAL.
2006 PLAN TOTAL
106W WUG (or 201) Fight

-279

3,847

WILD DEPOS COLUMN	45.65		1		֓֞֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֓֡	
TIME COURT	01.02	TUZUZ	2030	2040	2020	2000
COUNTY-OTHER	16,063	16,978	17,570	17,909	17,918	17.726
2006 Plan	18,491	19,545	20,226	20,616	20,626	20.406
Dafference	-2,428	-2.567	-2,658	-2,707	-2,708	-2.680
% change	-13.1%	-13.1%	-13.1%	-13.1%	-13.1%	-13.1%
EAST BERNARD*	827.2	2,587	2,655	2.707	2,768	2.680
2006 Plan	ю	Ö	ð	Đ	5	O
Difference	2,428	2,566	2,656	2,707	2.708	2 690
% change	₩.	₹X	ΑŅ	A/V	A/N	A/N
WHARTON	692'6	10,327	10,686	10,892	10,897	10.782
2006 Plan	6926	10,327.	10,685	10,892	10,887	10,782
Difference	ō	Ö	0	8	Ö	O
% change	0.0%	0.0%	% 0:0	0.0%	9,00	0.0%
AMARTON COUNTY TOTAL	28,260	29,872	30,911	31,508	31,623	31,168
2006 PLAN TOTAL	28,260	29,872	30,911	31,508	31,523	31,188

New WILKS for 2011 Plan

					_	•	
	JNTY	2010	2020	2030	2040	9502	2080
ANDERSON MAL. MUD		0	0	0	Õ	0	°
	2006 Plan	8,831	8,831	8,831	8,831	8,831	8.831
	Ofference	-8,831	-8.831	-8 831	-8 831	-8,831	-6 831
	% change	-100 0%	100.0%	-100.0%	-100.0%	-100.0%	100.0%
AUSTIN		29,317	39,66	51,839	65,141	79.613	95,134
	2006 Plan	20,486	30,775	43,008	56,310	70,782	86 303
	Ofference	8 831	8,831	8,831	8 831	8.831	8 83
	% change	43.1%	28.7%	20.5%	15.7%	12.5%	40.2%
COUNTY-OTHER (COA)		12,317	14,082	16,181	18,463	20.948	23,609
	2006 Plan	12.317	14,082	16.181	18.463	20.946	23 609
	Offerences	8	ō	Ò	Ö	ਠ	C
	% change	960'0	0.0 %	0.0%	%0.0	0.0%	960.0
NORTH AUSTEN MUD #1		7,023	7,023	7,023	7,023	7.023	7.023
	2006 Plan	7 023	7,023	7,023	7,023	7,023	7,023
	Difference	0	0	Ö	ō	0	Б
	% change	0.0%	%0°0	0.0%	% 0.0	0.098	760'0
WILLIAMSON COUNTY TOTAL	TAL	48,657	60,711	76,043	729'06	107,582	126,788
2006 PI	2006 PLAN TOTAL	48,657	60,711	75,043	80,627	107,582	125.766

*No kinger a WUG - annexed by City of Austin

WILLIAMSON COUNTY	2010	2020	2030	2040	2060	2060
ANDERSON MILL MUD"	0	o	ō	٥	ō	o
2006 Plan	1,464	1.434	1,405	1,375	1,355	1,355
Difference	-1,464	-1,434	-1,405	-1375	-1,355	-1 355
% change	-100.0%	-100.09%	-100.0%	-100.0%	-100.0%	-100 0%
AUSTIN	5,457	7,398	9,691	12,161	14.834	17.693
2006 Plan	3 993	5,964	8,286	10,786	13,479	16,338
Difference	1,464	1432	1,405	1,375	1,355	1,355
% change	36.7%	24.0%	17.0%	12.7%	10,1%	83%
COUNTY-OTHER (COA)	2,401	2,729	3,118	3,536	3 989	4 469
2006 Plan	2,401	2,729	3,118	3,536	3,989	4 469
Difference	Ċ	Ö	0	8	5	
% change	0.0%	0.0%	960'0	%0.0	%00	0.0%
NORTH AUSTIN MUD #1	983	896	952	928	920	920
2006 Plan	883	895	852	928	920	920
Difference	0	8	ප	0	3	0
% change	%0°0	360.0	%0.0	0.0%	9,00	% 0'0
WILLIAMSON COUNTY TOTAL	8,841	11,095	13,781	16,625	19,743	23,082
2006 PLAN TOTAL	8,841	11,095	13,761	16,825	19.743	23.082

*No longer a WUG - annexed by City of Austin

ATTACHMENT 2

COMPARISON BETWEEN REGION K'S MARCH 2009 AND MAY 2009 POPULATION PROJECTIONS

	PROJECTIONS	2010	2020	2030	2040	2050	2060
REGION K TOTAL	2006 Plan Total	1,359,677	1,657,025	1,936,324	2,181,851	2,447,058	2,713,905
	March 2009 Projections	1,420,914	1,745,153	2,095,319	2,482,293	2,714,289	2,945,148
	% change with March 2009	4.50%	5.32%	8.21%	13.77%	10.92%	8.52%
	May 2009 Projections	1,399,256	1,709,437	2,007,980	2,295,236	2,580,534	2,831,937
	% change with May 2009	2.91%	3.16%	3.70%	5.20%	5.45%	4.35%
	May 2009 minus March 2009 Total	-21,658	-35,716	-87,339	-187,057	-133,755	-113,211
COUNTY	PROJECTIONS	2010	2020	02002	2040	2050	2060
BASTROP COUNTY	2006 Plan Total	75,386	197,601	1123,734	1153,392	1190 949	1237.958
TOTAL	March 2009 Projections	84,600	123,700	179,500	258,700	284,000	312,000
	% change with March 2009	12.22%	26.74%	45.07%	68.65%	48.73%	31.12%
	May 2009 Projections	84,449	120,739	151,364	199,548	239,589	288,683
		12.02%	23.71%	22.33%	30.09%	25.47%	21.32%
	May 2009 minus March 2009 Total	-151	-2,961	-28,136	-59,152	-44,411	-23,317
BLANCO COUNTY	2006 Plan Total	9,946	11,756	13,487	15,002	16.641	18.544
TOTAL	March 2009 Projections	11,000	14,100	17,000	19,200	20,900	22,900
	% change with March 2009	10.60%	19.94%	26.05%	27.98%	25.59%	23.49%
	May 2009 Projections	9,946	11,756	13,487	15,002	16,641	18,544
		0.00%	%00.0	%00.0	0.00%	0.00%	%00.0
	May 2009 minus March 2009 Total	-1,054	-2,344	-3,513	-4,198	-4,259	-4,356
BURNET COUNTY	2006 Plan Total	41,924	51,044	60,382	69,271	78,981	90,263
TOTAL	March 2009 Projections	47,300	64,700	84,600	104,000	114,000	125.000
	% change with March 2009	12.82%	26.75%	39.94%	50.13%	44.34%	38.48%
	May 2009 Projections	47,160	61,191	78,133	94,716	105,095	115,056
	% change with May 2009	12.49%	19.88%	29.40%	36.73%	33.06%	27.47%
	May 2009 minus March 2009 Total	-140	-3,509	-6,367	-9,284	-8,905	-9,944
COLORADO COUNTY	2006 Plan Total	21,101	22,032	22,550	22,760	22,801	22,561
TOTAL	March 2009 Projections	22,855	24,589	25,592	26,599	27,800	29,100
	% change with March 2009	7.36%	11.61%	13,49%	12.47%	21.92%	28.98%
	May 2009 Projections	21,239	22,591	23,311	23,424	23,900	24,324
	% change with May 2009	0.65%	2.54%	3.37%	2.92%	4.82%	7.81%
	May 2009 minus March 2009 Total	-1,416	-1,998	-2,281	-2,175	-3,900	4,776

06/10/09

ATTACHMENT 2

COMPARISON BETWEEN REGION K'S MARCH 2009 AND MAY 2009 POPULATION PROJECTIONS

		2000	The second second	2004	2404	0007	0907
FAYETTE COUNTY	2006 Plan Total	24,826	28,808	32,363	35,259	38,933	44,120
TOTAL	March 2009 Projections	24,826	28,808	32,363	35.259	38.933	44.120
	% change with March 2009	0.00%	0.00%	0.00%	0.00%	00.0	%00.0
	May 2009 Projections	24,826	28,808	32,363	35,259	38,933	44.120
	% change with May 2009	%00.0	%00.0	0.00%	%00.0	%00.0	%00.0
	May 2009 minus March 2009 Total	0	0	0	0	0	0
GILLESPIE COUNTY	2006 Plan Total	24,089	27,510	28,845	28.845	28.845	28.845
TOTAL	March 2009 Projections	24,727	28,826	30,936	29,818	31,200	32,700
	% change with March 2009	2.65%	4.78%	7.25%	3.37%	8 16%	13.36%
	May 2009 Projections	25,258	29,117	30,861	30,861	30,861	30,861
	% change with May 2009	4.85%	5.84%	6.99%	6.99%	6.99%	6.99%
	May 2009 minus March 2009 Total	531	291	-75	1,043	-339	-1,839
TATOT STATION SYAU	2006 Plan Total	46,143	69.377	88.887	108 495	132 051	150 574
VIS COUNTY TOTAL		46,143	69,377	88,887	108,495	132,051	160.574
	% change with March 2009	0.00%	0.00%	0.00%	%00.0	%00.0	%00.0
	May 2009 Projections	46,143	69,377	88,887	108,495	132,051	150,574
	% change with May 2009	%00.0	%00:0	%00.0	%00.0	0.00%	%00.0
	May 2009 minus March 2009 Total	0	0	0	0	0	0
LI AND COUNTY	2006 Plan Total	17 360	117 260	47 200	47 000	000	000
TOTAL		77276	2000	000,	000,7	000'/1	005.11
,	Walter 2009 Projections	\$19.47	31,984	34,000	36,000	38,000	40,000
	/o criarige with walch zous	41.21%	84.24%	95.85%	107.37%	118.89%	130.41%
	May 2009 Projections	21,284	23,007	23,471	23,932	24,393	24,855
	% change with may 2009	22.60%	32.53%	35.20%	37.86%	40.51%	43.17%
	May 2009 minus March 2009 Total	-3,230	-8,977	-10,529	-12,068	-13,607	-15,145
MATAGORDA COUNTY	2006 Plan Total	40,506	43,295	44,991	45,925	45,793	45,377
TOTAL	March 2009 Projections	41,924	45,431	47,701	48,365	52,300	64,900
	% change with March 2009	3.50%	4.93%	6.02%	5.31%	14.21%	20.99%
	May 2009 Projections	40,506	43,295	44,991	45,926	45,926	45,925
	% change with May 2009	%00.0	%00.0	%00.0	%00.0	0.29%	1.21%
	May 2009 minus March 2009 Total	-1,418	-2,136	-2,710	-2,440	-6,375	-8,975
ATOT STATION STATE	2006 Plan Total	5.137	5,414	15 476	5 537	15 497	5 307
LLS COURT TOTAL	March 2009 Projections	5.773	6 380	8 524	£ 120	800	7 400
	% change with March 2009	12.38%	17.84%	19.08%	10.75%	23.70%	21 55%
	May 2009 Projections	5,466	5,815	6,107	5.930	6,329	6.497
		6.40%	7.41%	11.52%	7.10%	15.14%	20.38%

ATTACHMENT 2

COMPARISON BETWEEN REGION K'S MARCH 2009 AND MAY 2009 POPULATION PROJECTIONS

		PARTY SERVICE SERVICE SERVICES	ON STREET, STR				
SAN SABA COUNTY	2006 Plan Total	6,387	6,746	7.059	7.332	7 365	7 409
TOTAL	March 2009 Projections	6,935	7,775	8,265	8,390	9,200	9,800
	% change with March 2009	8.58%	15.25%	17.08%	14.43%	24.92%	32 27%
	May 2009 Projections	6,387	6,746	7,059	7,332	7.365	7.409
	% change with May 2009	%00.0	0.00%	0.00%	0.00%	%00.0	%00.0
	May 2009 minus March 2009 Total	-548	-1,029	-1,206	-1,058	-1,835	-2,391
TRAVIS COUNTY	2006 Plan Total	969,955	1,185,499	1,385,236	1,550,538	1,722,737	1,888,543
TOTAL	March 2009 Projections	1,003,600	1,208,900	1,434,100	1,680,200	1,820,000	1,960,000
	% change with March 2009	3.47%	1.97%	3.53%	8.36%	5.65%	3.78%
	May 2009 Projections	1,003,253	1,201,256	1,402,153	1,583,068	1.770.347	1.918.135
	% change with May 2009	3.43%	1.33%	1.22%	2.10%	2.76%	1.57%
	May 2009 minus March 2009 Total	-347	-7,644	-31,947	-97,132	49,653	41,865
WHARTON COUNTY	2006 Plan Total	28,260	29,872	30,911	31,508	31,523	31,188
TOTAL	March 2009 Projections	28,260	29,872	30,911	31,508	31.623	31.188
	% change with March 2009	%00.0	%00.0	0.00%	%00.0	%00.0	%00.0
	May 2009 Projections	28,260	29,872	30,911	31,508	31,523	31.188
	% change with May 2009	0.00%	0.00%	0.00%	%00.0	%00.0	%000
	May 2009 minus March 2009 Total	0	0	0	0	0	0
AMSON COUNTY		48,657	60,711	75,043	90,627	107,582	125.766
TOTAL	March 2009 Projections	48,657	60,711	75,043	90,627	107,582	125.786
	% change with March 2009	%00.0	%00.0	0.00%	%00.0	%00.0	%00.0
	May 2009 Projections	48,657	60,711	75,043	90,627	107,582	125,766
		%00.0	%00.0	0.00%	%00.0	%00.0	0.00%
	May 2009 minus March 2009 Total	0	0	0	0	0	0

TABLE OF CONTENTS – CHAPTER THREE

CHAPTER 3.0: IDENTIFICATION OF CURRENTLY AVAILABLE WATER SUPPLIES	
3.1 TWDB GUIDELINES FOR REVISIONS TO WATER SUPPLIES	1
3.2 AVAILABLE WATER SOURCES TO THE LCRWPA	1
3.2.1 Surface Water Availability	2
3.2.1.1 Colorado River Basin	4
3.2.1.1.1 Water Availability Modeling for the 2006 Region K Water Plan	4
3.2.1.1.2 Water Availability Modeling for the 2011 Region K Water Plan	<i>€</i>
3.2.1.1.2.1 Highland Lakes System	
3.2.1.1.2.2 Other Reservoirs	10
3.2.1.1.2.3 Run-of-River Water	13
3.2.1.1.2.4 Local Surface Water Sources	15
3.2.1.2 Brazos River Basin	
3.2.1.3 Brazos-Colorado Coastal Basin	16
3.2.1.4 Colorado-Lavaca Coastal Basin	17
3.2.1.5 Lavaca River Basin	17
3.2.1.6 Guadalupe River Basin	18
3.2.2 Groundwater Availability	18
3.2.2.1 Major Aquifers	19
3.2.2.1.1 Gulf Coast Aquifer	20
3.2.2.1.2 Carrizo-Wilcox Aquifer	23
3.2.2.1.3 Edwards Aquifer (Balcones Fault Zone)	25
3.2.2.1.4 Trinity Aquifer	29
3.2.2.1.5 Edwards-Trinity (Plateau) Aquifer	
3.2.2.2 Minor Aquifers	33
3.2.2.2.1 Hickory Aquifer	34
3.2.2.2.2 Queen City Aquifer	36
3.2.2.2.3 Sparta Aquifer	38
3.2.2.2.4 Ellenburger-San Saba Aquifer	40
3.2.2.2.5 Marble Falls Aquifer	43
3.2.2.2.6 Yegua-Jackson Aquifer	44
3.2.2.2.7 Other Aquifer	46
3.2.3 Regional Water Availability Summary	
3.3 WHOLESALE WATER PROVIDERS	50
3.3.1 LCRA Water Availability	
3.3.2 City of Austin Water Availability	53
3.4 WATER SUPPLIES AVAILABLE TO WATER USER GROUPS	55
3.4.1 Surface Water Supplies Available to Water User Groups	56
3.4.2 Groundwater Supplies Available to Water User Groups	56
3.4.3 WUG Water Supply Summary	58
LIST OF FIGURES	
Figure 2.1: Diver Paging Within the I CDWDA (Pegies V)	·
Figure 3.1: River Basins Within the LCRWPA (Region K)	
Figure 3.2: Guil Coast Aquifer Within the Lower Colorado Regional Water Planning Area	
Figure 3.4: Edwards Aquifer (BFZ) Within the Lower Colorado Regional Water Planning Area	∠0

Figure 3.5: Trinity Aquifer Within the Lower Colorado Regional Water Planning Area	29
Figure 3.6: Edwards Trinity Aquifer Within the Lower Colorado Regional Water Planning Area	32
Figure 3.7: Hickory Aquifer Within the Lower Colorado Regional Water Planning Area	34
Figure 3.8: Queen City Aquifer Within the Lower Colorado Regional Water Planning Area	37
Figure 3.9: Sparta Aquifer Within the Lower Colorado Regional Water Planning Area	39
Figure 3.10: Ellenburger-San Saba Aquifer Within the Lower Colorado Regional Water Planning Are	ea 41
Figure 3.11: Marble Falls Aquifer Within the Lower Colorado Regional Water Planning Area	43
Figure 3.12: Yegua-Jackson Aquifer Within the Lower Colorado Regional Water Planning Area	
Figure 3.13: Total Water Available to Region K During a Drought of Record	48
Figure 3.14: Total Water Supply to WUGs by County	59
LIST OF TABLES	
LIST OF TABLES	
Table 3.1 Components of the Highland Lakes System Firm Yield	
Table 3.2 Reservoir Yields in the Colorado Basin (ac-ft/yr)	11
Table 3.3 Major Run-of-the-River Rights in the Colorado Basin (ac-ft/yr)	14
Table 3.4 Other Surface Water Sources in the Colorado Basin (ac-ft/yr)	
Table 3.5 Surface Water Sources in the Brazos River Basin (ac-ft/yr)	
Table 3.6 Surface Water Sources in the Brazos-Colorado Coastal Basin (ac-ft/yr)	
Table 3.7 Surface Water Sources in the Colorado-Lavaca Coastal Basin (ac-ft/yr)	
Table 3.8 Surface Water Sources in the Lavaca River Basin (ac-ft/yr)	
Table 3.9 Surface Water Sources in the Guadalupe River Basin (ac-ft/yr)	
Table 3.10 Water Availability in the Gulf Coast Aquifer (ac-ft/yr)	
Table 3.11 Water Availability in the Carrizo-Wilcox Aquifer (ac-ft/yr)	
Table 3.12 Summary of Groundwater Availability Values for the Edwards Aquifer (BFZ) (ac-ft/yr)	
Table 3.13 Water Availability (by River Basin) in the Edwards Aquifer (BFZ) (ac-ft/yr)	
Table 3.14 Water Availability (by River Basin) for the Trinity Aquifer (ac-ft/yr)	
Table 3.15 Water Availability from the Edwards-Trinity Aquifer (ac-ft/yr)	
Table 3.16 Water Availability from the Hickory Aquifer (ac-ft/yr)	
Table 3.17 Water Availability From the Queen City Aquifer (ac-ft/yr)	
Table 3.18 Water Availability from the Sparta Aquifer (ac-ft/yr)	
Table 3.19 Water Availability from the Ellenburger-San Saba Aquifer (ac-ft/yr)	
Table 3.20 Water Availability from the Marble Falls Aquifer (ac-ft/yr)	
Table 3.21 Water Availability from the Yegua-Jackson Aquifer (ac-ft/yr)	
Table 3.22 Water Availability from Other Aquifer (ac-ft/yr)	
Table 3.23 Total Water Available to the Lower Colorado Regional Planning Area During a Droug	
Record (ac-ft/yr)	
Table 3.24 Total Water Available to the Lower Colorado River Authority (ac-ft/yr)	
Table 3.25 LCRA Water Commitment Summary (ac-ft/yr)	
Table 3.26 City of Austin Water Availability (ac-ft/yr)	
Table 3.27 City of Austin Water Commitment Summary (ac-ft/yr)	
Table 3.28 Summary of Surface Water Supply to WUGs by County (ac-ft/yr)	
Table 3.29 Summary of Groundwater Supply to WUGs by County (ac-ft/yr)	
Table 3.30 Total Water Supply to WUGs by County (ac-ft/yr)	59

APPENDICES

APPENDIX 3A: Water Rights Held in the Lower Colorado Regional Water Planning Area

APPENDIX 3B: Description of Region K WAM Run 3 Cutoff Model

APPENDIX 3C: Currently Available Water Supply Tables

APPENDIX 3D: Water Availability Comparison (2011 Plan versus 2006 Plan)

CHAPTER 3.0: IDENTIFICATION OF CURRENTLY AVAILABLE WATER SUPPLIES

A key task in the preparation of the Lower Colorado Regional Water Plan (LCRWP) is to determine the current available water supplies within the region. This information, when compared to the population and water demand projections, is critical in projecting water supply shortfalls and surpluses for the region, including the amount of shortfall, when a shortfall is expected to occur, and the county in which the shortfall is expected.

As presented in Chapter 2, the expected water demand in the Lower Colorado Regional Water Planning Area (LCRWPA) is projected to increase by approximately 38 percent while the population is projected to more than double over the next 50 years. Therefore, the need to accurately identify available water supplies is a critical component of developing the regional plan.

The following sections of the chapter describe the methodologies utilized in developing estimates of currently available water supplies for the LCRWPA. This chapter also presents regional water supplies by county, wholesale water providers of municipal water, and the six Texas Water Development Board (TWDB) specified water-use categories.

3.1 TWDB GUIDELINES FOR REVISIONS TO WATER SUPPLIES

The Texas Water Development Board (TWDB) has promulgated rules for regional planning and has provided specific guidance to Regional Water Planning Groups (RWPGs) concerning the development of estimates of currently available water supplies. The guidance clearly indicates that the estimates of currently available water supplies shall reflect water that is reliably available to the area during a repeat of the "drought-of-record" (DOR) conditions. The specific methods used in determining the amount of currently available water vary depending upon whether it is a groundwater or surface water resource. A summary of TWDB guidelines and methods for estimating currently available water supply is presented below.

3.2 AVAILABLE WATER SOURCES TO THE LCRWPA

In accordance with the TWDB guidelines, five basic types of water supply exist within the LCRWPA. The types are as follows:

- Surface water supplies
- Groundwater supplies
- Supplies available through contractual arrangements
- Supplies available through the operation of a system of reservoirs or other supplies
- Reclaimed water

Since supplies available through the last three categories originated from either surface or groundwater sources, all available water supplies will be discussed in terms of being either of surface water origin or groundwater origin. The following sections present information concerning the available supply of water within the LCRWPA. That is to say, water that is physically present within the LCRWPA, whether it is present due to natural circumstances or it is present as a result of facilities constructed by one or more water users within the LCRWPA.

3.2.1 Surface Water Availability

Surface water sources include any water resource where water is obtained directly from a surface water body. This would include rivers, streams, creeks, lakes, ponds, and tanks. In the State of Texas, all waters contained in a watercourse (rivers, natural streams, and lakes, and the storm water, flood water, and rainwater of every river, natural stream, canyon, ravine, depression, and watershed) are waters of the State and thus belong to the State. The State grants individuals, municipalities, water suppliers, and industries the right to divert and use this water through water rights permits. Water rights are considered property rights and can be bought, sold, or transferred with state approval. These permits are issued based on the concept of prior appropriation, or "first-in-time, first-in-right." Water rights issued by the State generally fall into two major categories:

- Run-of-River (ROR) Rights Allow diversions of water directly from a water body as long as there is water in the stream and that water is not needed to meet a senior downstream water right. ROR rights are greatly impacted by drought conditions, particularly in the upper portions of a river basin.
- Stored Water Rights Allow the impoundment of water by a permittee in a reservoir. Water can be held for storage as long as the inflow is not needed to meet a senior downstream water right. Water stored in the reservoir can be withdrawn by the permittee at a later date to meet its or its customers water demands. The storage of water in a reservoir gives the permittee a buffer against drought conditions.

A list of active water rights within the LCRWPA is contained in *Appendix 3A*.

In addition to the water rights permits issued by the State, individual landowners may use state waters without a specific permit for certain types of use. The most common of these uses is domestic and livestock use. Landowners are also allowed to construct impoundments on their own property with up to 200 acre-feet (ac-ft) of storage for domestic and livestock or certain wildlife management purposes (see Section 11.142, Texas Water Code). These types of water sources are generally referred to in this plan as "Local Supply Sources." Many individuals with land along a river or stream that still have an old riparian right can also divert a reasonable amount of water for domestic and livestock uses without a permit.

Water availability in Region K will be determined for the purposes of regional planning as prescribed by the TWDB water planning guidelines. The TWDB guidance requires that the amount of surface water available from each source be determined with the following assumptions:

- Water availability will be estimated based on a "firm yield" analysis. For a reservoir system, this analysis would produce the average annual withdrawals available during a repeat of the drought of record considering the long-term storage capabilities, projected inflows, and evaporation. For water rights based solely on run-of-river, the drought of record corresponds to the driest period on record. Without available storage, water is no longer available if the river goes dry. In addition, a run-of-river right may not be able to divert even if there is water in the river or stream due to the constraints of the prior appropriation system or environmental flow limitations under such water right.
- Water availability will be based on the assumption that all senior water rights in the basin are being fully utilized. That is, water user groups cannot depend on "borrowing" water from unused water rights.

• Water supply is based on the infrastructure that is in place. For example, water would not be considered to be a supply from a reservoir if a user still needed to construct the water intake and pipeline to convey the water from the reservoir to the area of need.

It should be noted that state directives (summarized above) to regional water planners on how they are to determine water availability in meeting future water supply needs may impose unrealistic assumptions on how water is actually used or will be used over the planning period. This methodology requires local water planners to assume that every water right holder will simultaneously divert and totally consume the water up to their full authorizations. These directives have the potential to overestimate water shortages.

Although "worst case" conservative assumptions may be appropriate to avoid the theoretical "over permitting" of water, it may be unrealistic to use this methodology alone for planning purposes. Rather local and regional planners should be allowed, and are to some extent by the existing process, to bring their knowledge, experience, and common sense to the "planning effort" to determine realistic water availability assumptions, something Senate Bill 1 was intended to provide by establishing a "bottom-up" approach to replace the previous "top-down" state planning approach.

The LCRWPA traverses six different river basins, including the Brazos, Brazos-Colorado Coastal, Colorado, Colorado-Lavaca Coastal, Lavaca, and Guadalupe River Basins. *Figure 3.1* illustrates the location of each of these basins. The following sections discuss the available water sources in each river basin within the LCRWPA.

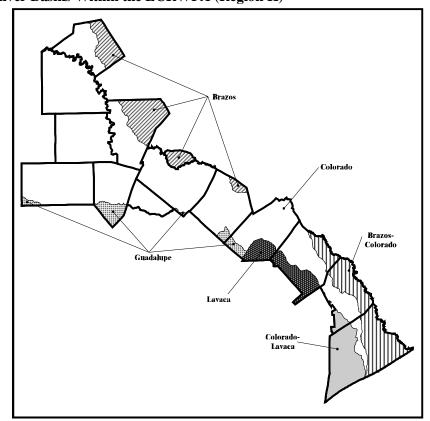


Figure 3.1: River Basins Within the LCRWPA (Region K)

3.2.1.1 Colorado River Basin

The majority of the LCRWPA is contained in the Colorado River Basin. The primary sources of water within this basin are the Highland Lakes and run-of-river water from the Colorado River. However, several water user groups obtain water from tributaries or off-channel ponds.

3.2.1.1.1 Water Availability Modeling for the 2006 Region K Water Plan

In the January 2006 Region K Water Plan, the availability of existing surface water supplies in the Colorado River Basin were originally calculated using the Run 3 Version of the Texas Commission on Environmental Quality's (TCEQ) Colorado River Basin Water Availability Model (WAM), dated November 2004. The results of that analysis were presented in *Tables 3.1* through *3.3* in the 2006 Region K Water Plan.

In addition to the standard TCEQ WAM Run 3, the LCRWPG also authorized the development of an alternative WAM run which was referred to as the "No Call" WAM. The No Call WAM was developed as a result of a request from the Region F Planning Group. The results of that analysis were presented in *Tables 3.1a* through *3.3b* in the 2006 LCRWPG Water Plan.

The water availability modeling using the November 2004 TCEQ Run 3 WAM showed a significant increase in the amount of firm yield and run of river water in the Lower Basin as compared to the amount shown as being available in the 2001 plan. There are a number of possible explanations for these differences. Region F, which includes the upstream portion of the Colorado Basin, also used the November 2004 Colorado Basin WAM for 2006 water plan development. Under the Run 3 scenario, many of the reservoirs in Region F showed little to no firm yield. These reservoirs are the only source of supply to numerous communities in Region F, and the water supply scarcities were such that there were few additional economically viable alternatives for supply. The issue of a "no call" approach to assessing water supply in Region K and why it was used in the last planning cycle is addressed in the 2006 LCRWPG Water Plan.

The issues noted above were presented to the LCRWPG. Both the Region F and Region K groups in the 2006 planning cycle recognized the need for coordination between the two regions. Due to the lack of time and funding, it was suggested that the impacts of temporarily implementing a "No Call" assumption could be examined as a potential "quick fix" in order to meet the mandatory deadlines of the 2006 planning cycle. Consequently, Planning Group members voted to proceed with a joint modeling effort on the part of Region F and Region K consultants. The modeling that was to be conducted would be a "WHAT IF" scenario which would generally assume that, during the 50-year planning period, certain large downstream senior water rights holders would not call for water they were legally entitled to by virtue of their priority and would instead allow that water to be impounded in upstream Region F reservoirs.

The joint modeling effort proposal was presented to the Region K group in the following manner:

1. Region K would be able to review the numbers produced from the joint modeling effort and determine whether to use those revised numbers for the shortages and surpluses analysis in place of the numbers calculated by the November 2004 WAM.

2. The effort would be a planning exercise only. No legal positions would be changed or waived as a result of this exercise. No downstream water right holders would be asked or required to formally cede or amend any of their water rights as a result of this planning exercise. In other words, the availability adjustments would have no legal effect and would be temporary in order to complete the 2006 regional water plans for Regions K and F.

While the Region K group adopted the adjusted numbers for use in determining Region K surpluses and shortages for the 2006 planning cycle, significant concerns remained:

- 1. Due to the time frame and technique employed, the numbers that were developed were approximations that may still have some amount of error in them. One clear example of this is that junior water rights in Region K that were not subject to the No Call assumption appeared to experience an increase in reliability, which should not have occurred. Further, the Planning group had remaining questions about the assumptions used by Region F's consultants for allocation of water among various users within Region F itself and the use of safe yield, which could have affected availability of water in Region K to some degree.
- 2. Overall, the No Call modeling approach resulted in an allocation of stored water among LCRA firm customers and environmental commitments that does not represent the LCRA's likely operations to meet existing legal commitments to provide firm water. Some of the inaccuracies that were experienced in the model were a result of the model using a monthly time step and other simplifying assumptions embedded in the underlying WAM. The WAM's treatment of environmental flow requirements in LCRA's Water Management Plan, for example, appeared to send additional flow during a month even if the commitment was satisfied mid-month. Further, the modeling approach assumed that the biggest impact should be borne by the most junior of these water rights; that being the LCRA's rights for Lakes Buchanan and Travis. This assumption resulted in apparent shortages in Highland Lakes' firm commitments largely as a result of the manner in which the WAM allocates firm supply from the Highland Lakes to LCRA's various customers and the environment. LCRA, in reality, does not operate its system of various water rights today in that manner. Because LCRA's irrigation customers are largely served through annual interruptible contracts instead of long-term, firm contracts, a No Call assumption that takes more water from the LCRA's irrigation run-of-river rights while preserving more of the Highland Lakes firm yield would probably have been more appropriate if time had allowed for further refinement of the No Call model approach.
- 3. There was concern among the group members regarding the impact of the No Call assumption on environmental flows. Two critical issues of concern are as follows. First, the timing of the request and the availability of the numbers was such that there was neither time nor budget for a thorough review of the impact on the environmental flows in the basin. Second, the No Call assumption appeared to suggest that LCRA would not have any interruptible water supply available to meet environmental flow needs. While the group recognized that a full water rights and contract demand without return flows is not projected to occur for some time and consequently, interruptible supply and return flows would, in fact, be available during this planning period to meet some level of environmental flow needs, members felt that a thorough review and analysis of the impact of the No Call assumption on instream flows and bay and estuary inflows was needed as soon as possible.
- 4. There had been a lengthy debate among the planning group members concerning the inclusion of the No Call adjustments in the water availability chapter in the 2006 LCRWPG Water Plan. Region K normally operates on a consensus basis, with all members agreeing to move forward with actions,

although some may have reservations. With this issue, there was a clear division among the group. Some members expressed frustration that the short timeframe of the joint-modeling effort made it very difficult to develop a thorough understanding of the results and impacts. Further, members struggled with whether the No Call adjustments should be handled as a management strategy instead of an adjustment to the availability in Region K.

- 5. During the process, the group identified several technical issues with the WAM (discussed below) that could affect the magnitude or ultimate need for a No Call assumption. Due to the lack of time and funding, it was not possible to fully explore these issues in time for them to be addressed in the 2006 plan. The Region K group recommended, however, that these issues be further examined during future rounds of planning. These issues generally include enhancements to the WAM routines, updates to the datasets, and a review of fundamental assumptions. Some specific examples of issues that were identified for further review include:
 - a. The WAM's approach to modeling environmental flow restrictions on water rights
 - b. The naturalized flows used in the WAM
 - c. The WAM's incorporation (or lack thereof) of channel gains and losses
 - d. The WAM's treatment (or lack thereof) of "futile call" issues
 - e. The WAM's incorporation of existing subordination or similar agreements and ability to model these types of agreements
 - f. The WAM's backup of Austin's steam electric water rights with LCRA stored water
 - g. The WAM's backup of STPNOC's steam electric water rights with LCRA stored water
 - h. The WAM's representation of a zero firm yield for several major reservoirs in the basin

It is recognized that a few of the above listed issues have been under investigation for betterment of the model. For example, during May 2005, TCEQ revised some of the naturalized flow estimates for the Lower Basin; however, it was not feasible to incorporate the revision in the datasets in the last round of planning.

The No Call WAM was not used for the 2011 Region K Water Plan. A modified version of the TCEQ Colorado River WAM, called the Region K Cutoff Model, was used. The Region K Cutoff Model is described in the next section.

3.2.1.1.2 Water Availability Modeling for the 2011 Region K Water Plan

In the first biennium of the 2011 planning cycle, one of the tasks for the planning group was to review the technical issues listed above as part of a re-evaluation of the TCEQ Colorado River WAM, and to determine whether a more appropriate alternative version of the WAM could be created to more accurately determine the surface water availabilities of the Lower Colorado River. An alternative model

was developed and chosen by the planning group and is being used in the current round of planning to determine availabilities and evaluate water management strategies. A description of the revised WAM model, termed the Region K WAM Run 3 Cutoff Model (Region K Cutoff Model), can be found in *Appendix 3B*, along with the request and approval letters for allowing the use of the Region K Cutoff Model by TWDB.

The model is a modified version of the TCEQ WAM Run 3, where the basin is essentially divided into two parts, an upper basin and a lower basin. The dividing point is the dams for Ivie Reservoir and Lake Brownwood. All of the water rights are managed according to Prior Appropriation Doctrine, except that the water rights in the upper basin are considered senior to the water rights in the lower basin. The City of Junction and Brady Creek Lake water rights are not included in the Region K Cutoff Model under this assumption, due to the fact that they do not have existing formal agreements in place. The LCRWPG acknowledges that Region K has existing supplies and recommended strategies that can make available the water needed by these two water right holders, regardless of how they are included in the Region K Cutoff Model. All of the water rights are represented with their full authorization amounts. This model better reflects the actual and historical operating conditions and existing contractual agreements between LCRA and certain upper basin water right holders and is a better representation than the TCEQ WAM and even the "No Call" WAM developed for the 2006 Region K Water Plan.

3.2.1.1.2.1 Highland Lakes System

The Highland Lakes System is composed of two major water storage reservoirs – Lakes Buchanan and Travis. These lakes are owned and operated by the LCRA. In addition, the system contains three intermediary lakes owned and operated by the LCRA – Inks Lake, Lake LBJ, and Lake Marble Falls. Lake Austin, the last in the Highland Lakes System, is owned by the City of Austin and is operated by the LCRA through an agreement.

The LCRA operates the Highland Lakes as a system to provide a reliable source of water to downstream customers. The LCRA developed a "Water Management Plan for the Lower Colorado River Basin" in response to requirements contained in a final order of adjudication of water rights to the LCRA for the Highland Lakes. The Water Management Plan (WMP) was originally adopted in 1989 and has been amended several times, most recently in March 1999, and proposed amendments to the WMP submitted in May 2003 were recently adopted in January 2010, however, these amendments were not used in the 2011 planning cycle due to its approval after the planning effort was well underway. As part of the original WMP, LCRA determined the combined firm yield of Lakes Buchanan and Travis based on a detailed analysis of the water availability for Lakes Buchanan and Travis during a repeat of the drought of record. The WMP also contains a management strategy for meeting the 10-year projected demands of its firm municipal and industrial customers, while continuing to provide water for environmental needs and agricultural purposes, largely on an interruptible basis. The LCRA's WMP determines the amount of interruptible water supply that can be made available while continuing to ensure the availability of water for firm demands in a repeat of a drought of records using a system of curtailment triggers that are linked to actual water in storage on January 1 of each year. The interruptible supply is generally comprised of uncommitted firm supply, committed firm supply that is not projected to be used in the ten year planning period covered by the plan, and flood flows. As firm commitments and demands for water under those commitments increase over time, interruptible supplies must be reduced more often even at higher storage levels to ensure the availability of water to firm customers in a DOR. The Region K Cutoff Model was developed using the LCRA 1999 WMP, and therefore that is the version of the WMP that was used for the development of water availability in this regional water plan.

The firm yield of the Highland Lakes System was determined by using the Region K Cutoff Model and adding up the various components of the Highland Lakes System. Some of the assumptions in the model for determining the firm yield of the system are described below:

- Water rights are protected based on prior appropriation doctrine;
- The hydrologic conditions in the 1940-1998 period are repeated;
- Downstream, senior water rights are being fully utilized during this period. The water rights in the Lower Colorado Region are included in *Appendix 3A*;
- The LCRA cannot impose its priority rights for Lakes Buchanan and Travis against any upstream, junior water right with a priority date senior to November 1, 1987, so long as interruptible supplies are not curtailed;
- Historical net evaporation rates for the period of 1940 through 1998;
- Downstream water demands are assumed to be met with inflows to the river below the Highland Lakes, to the extent possible; and
- The total system yield decreases over time due to sedimentation of the reservoirs.

Table 3.1 Components of the Highland Lakes System Firm Yield

Entity or Use		Region K	Cutoff Mod	lel Results (Ac-Ft/Yr)	
Entity of Use	2010	2020	2030	2040	2050	2060
Backup of City of Austin Water Rights ¹	79,114	87,237	87,237	87,237	87,237	87,224
Highland Lakes Contracts	85,789	85,789	85,789	85,789	85,789	85,789
LCRA Cooling Water ¹	64,551	64,551	64,551	64,551	64,551	64,551
STP Nuclear Operating Company 1, 2	27,507	32,480	32,480	32,480	32,480	32,360
Instream Flow Requirements ¹	24,935	19,595	19,595	19,595	19,595	19,595
Bay and Estuary Flow Requirements ¹	28,193	5,967	5,967	5,967	5,967	5,967
Additional Highland Lakes Contracts ¹	79,672	79,671	79,671	79,671	76,582	70,982
Total System Commitment	389,761	375,290	375,290	375,290	372,201	366,468
				_	_	
Uncommitted System Yield	12,411	14,711	8,711	2,811	0	0
Total System Yield	402,172	390,001	384,001	378,101	372,201	366,468

Notes: Colorado WAM provided by TCEQ, August 2007, Run 3. WRAP program by Dr. Ralph Wurbs, Texas A&M University, January 2009 Drought-of-Record (DOR) is May 1945 to April 1957 (12 years) for 2010; May 1947 to April 1957 (10 years) for all other decades

1 These values were averaged over the DOR

Table 3.1 above shows the components that make up the firm yield of the Highland Lakes System. The Region K Cutoff Model was used to determine the values in the table. The results were viewed using the January 2009 version of the WRAP modeling program. The firm yields were calculated for the 12-year

DOR period (May 1945 to April 1957) for the 2010 analysis, and the 10-year DOR period (May 1947 to April 1957) for the 2020 through 2060 analyses, which is identified as the most severe drought period since 1898. The firm yield commitments are releases from system storage; they do not consist of run-of-river water. The following describes the methods used to determine the values in *Table 3.1*.

Backup of City of Austin Water Rights

The three LCRA backup amounts for the City of Austin municipal water rights were summed. These water rights are 61405471005RMBU, 61405471005LMBU, and 61405489003MBU.

Highland Lakes Contracts

The amount listed in the 1999 LCRA Water Management Plan was used.

LCRA Cooling Water

The availability for water rights 61405480001, 61405473001, and 61405474001 was summed.

South Texas Nuclear Project

This is water right 61405437001BU. The available supply of backup water for STP from LCRA supplies is limited to 20,000 ac-ft/yr (as a 5-year rolling average) with two generating units in operation (as is the case through 2015) and to 40,000 ac-ft/yr (as a 5-year rolling average) with any additional generating units in operation (beginning in the year 2016).

Instream Flow Requirements

In 1992, LCRA, working with the state natural resource agencies, completed an instream flow needs study. The study was later approved by the Texas Water Commission, predecessor agency to the TCEQ, as incorporated into LCRA's Water Management Plan. The results of that study included two sets of instream flow needs: Critical and Target instream flow needs. The quantity of water committed by the LCRA Highland Lakes System under the Water Management Plan to instream flows consists of (1) the passage of inflows to meet the Target and Critical instream flow criteria that might otherwise be available to store in the Highland lakes; and, (2) the release of stored water to help meet the Critical instream flow criteria. In order to determine the quantity of inflow the LCRA Highland Lakes System bypassed for instream flows in the WAM, the quantity of inflow available to the LCRA's Highland Lakes System before and after an environmental need is engaged, is computed, and the inflow reduction to the LCRA Highland Lakes System due to each environmental need is attributed as water bypassed for each environmental need. To determine the quantity of additional stored water released for critical instream flows, the exact quantity of water released from the LCRA Highland Lakes System Storage to help meet each environmental need is extracted from the WAM output and attributed as stored water released for each environmental need. Once all of these components have been extracted and tabulated, the total quantity of water dedicated to instream flows is determined.

The 1999 LCRA Water Management Plan states:

"Total commitments of the Combined Firm Yield from the Highland Lakes for instream flow maintenance will be an average of 12,860 acre-feet per year, with a maximum of 36,720 acre-feet in any one year; 58,700 acre-feet in any two consecutive years; 76,800 acre-feet in any three or four consecutive years; 106,100 acre-feet in any five consecutive years and 128,600 acre-feet in any six to ten consecutive years."

Bay and Estuary Flow Requirements

This amount was the DOR average of BEC-IN (Bay and Estuary Critical In) minus BEC-OT (Bay and Estuary Critical Out) plus the DOR average of BET-IN (Bay and Estuary Target In) minus BET-OT (Bay and Estuary Target Out) from the model output.

Critical inflow is the amount of water needed to provide a fishery sanctuary habitat near the mouth of the Colorado River during times of drought. From this sanctuary, fish, shellfish and oysters could be expected to recover and repopulate the bay when more normal weather conditions return.

The 1999 LCRA Water Management Plan states:

"Total commitments of the Combined Firm Yield from the Highland Lakes for bays and estuaries (estuarine inflows) will be an average of 3,090 acre-feet per year, with a maximum of 11,200 acre-feet in any one year; 19,700 in any two consecutive years; 24,200 acre-feet in any three or four consecutive years; 28,200 acre-feet in any five consecutive years and 30,900 acre-feet in any 6 to 10 consecutive years.

The total firm stored water commitment for both purposes (instream flow and bays and estuaries) will be an average of 15,950 acre-feet per year. Estimated interruptible stored water supplied during the critical drought for both purposes will be an additional 40,060 acre-feet per year."

Additional Highland Lakes Contracts

This amount includes contracts LCRA is maintaining that were not included in the 1999 Water Management Plan that have separate water rights associated with them. The components are the Cities of Cedar Park, Leander, Lometa, Pflugerville, and the Brazos River Authority.

Uncommitted System Yield

This was determined by subtracting the Highland Lakes Contracts amount (85,789 ac-ft) from the LCRA remaining firm yield (61405482001C) in the Region K Cutoff Model. This amount includes any additional firm commitments LCRA has made since the 1999 WMP was approved that do not have separate water rights associated with them.

Highland Lakes

The total system yield will decrease over time due to sedimentation of the reservoirs. The Highland Lakes firm yield is equal to the Total System Yield (or the Total System Commitment plus the Uncommitted System Yield), and is shown in *Table 3.2*.

3.2.1.1.2.2 Reservoirs

The estimated firm yields for all reservoirs within the Colorado River Basin are presented in *Table 3.2*.

Region K Cutoff Model Results (Ac-Ft/Yr) **Entity or Use** 2020 2010 2030 2040 2050 2060 **Highland Lakes** 402,172 390,001 384,001 378,101 366,468 372,201 City of Goldthwaite 0 0 City of Llano 0 0 0 0 Walter E. Long (Decker Lake) 0 0 0 0 0 0 0 0 0 0 0 0 Lake Bastrop 0 0 Lake Fayette 0 0 0 0 0 0 0 City of Lometa 0 STP Reservoir 0 0 0 0 0 0 0 0 0 0 0 **Minor Reservoir Subtotal** 402,172 390,001 384,001 378,101 372,201 366,468 TOTAL

Table 3.2 Reservoir Yields in the Colorado Basin (ac-ft/yr)

Notes:

Colorado WAM provided by TCEQ, August 2007, Run 3. WRAP program by Dr. Ralph Wurbs, Texas A&M University, January 2009 Drought-of-Record (DOR) is May 1945 to April 1957 (12 years) for 2010; May 1947 to April 1957 (10 years) for all other decades

The Highland Lakes firm yield is discussed in detail in Section 3.2.1.1.1. Several smaller reservoirs in the LCRWPA are also located within the Colorado River Basin. Estimates for the firm yield of these reservoirs are based on the Region K Cutoff Model runs and a detailed discussion is provided below.

- The City of Goldthwaite owns and operates a two-reservoir system as part of its water supply facilities. The reservoirs include a small reservoir with a capacity of 40 ac-ft adjacent to the river and a larger reservoir with a capacity of 200 ac-ft, which is located off-channel. The city pumps water from the Colorado River into the smaller reservoir and then pumps it into the larger reservoir, from which water is drawn for treatment. The size of the reservoirs are relatively small in comparison to the city's water demand, which is projected to increase from approximately 569 ac-ft in the year 2010 scenario to 616 ac-ft in the year 2060. Based on the limited storage available, the firm yields of the reservoirs are dependent upon continued river flows throughout the year. It is estimated that the available storage would be depleted within four months once the river ceases flowing. Based on the Region K Cutoff Model, it was determined that the Goldthwaite reservoir system has a firm yield of 0 ac-ft/yr (water rights 61402553401, 61402553402, and 61402553001).
- The **City of Llano** owns and operates two reservoirs on the Llano River: City Lake and City Park Lake, both of which are small channel dams. The two reservoirs were estimated to have a combined capacity of 503 ac-ft in 1988. This is significantly less than the original design capacity of 700 ac-ft. The decreased capacity is due to sedimentation rates in the two reservoirs. The firm yield estimated by the TCEQ WAM was 0 ac-ft/yr (water rights 61401650001 and 61401650002).
- Lake Walter E. Long (Decker Lake) is owned and operated by the City of Austin. The lake is formed by a dam on Decker Creek, which is a tributary to the Colorado River in Travis County. The City of Austin uses Decker to supply cooling water for an electrical generating plant. The City of Austin supplements the water supply to Decker by pumping water from the Colorado River based on

run-of-river rights and a water supply contract with LCRA for stored water from the Highland Lakes. Therefore, because the water from Decker Lake has already been accounted for in run-of-river and LCRA backup amounts, the firm yield of the lake itself due to the TCEQ WAM is considered 0 ac-ft/yr.

- Lake Bastrop is owned and operated by the LCRA. The lake is formed by a dam on Spicey Creek, which is a tributary to Piney Creek and the Colorado River in Bastrop County. The LCRA uses water from Lake Bastrop for cooling purposes at its Sam Gideon Power Generating Station. The LCRA supplements the water supply at this lake by pumping water into the lake from the Colorado River. The water pumped into the lake is stored water from the Highland Lakes. Therefore, because the water from Lake Bastrop has already been accounted for in run-of-river and LCRA backup amounts, the firm yield of the lake itself due to the TCEQ WAM is considered 0 ac-ft/yr.
- Lake Fayette is owned and operated by the LCRA. The lake is formed by a dam on Cedar Creek, which is a tributary to the Colorado River in Fayette County. The LCRA uses water from Lake Fayette for cooling purposes at the Fayette Power Project. The LCRA supplements the water supply at this lake by pumping water into the reservoir from the Colorado River. A portion of the water pumped is run-of-river water rights held by the City of Austin, which is co-owner in the Fayette Power Project. The remainder of the water pumped into the reservoir is stored water from the Highland Lakes. Therefore, because the water from Lake Fayette has already been accounted for in run-of-river and LCRA backup amounts, the firm yield of the lake itself due to the TCEQ WAM is considered 0 ac-ft/yr.
- Lometa Reservoir is owned and operated by the LCRA. The reservoir is formed by a dam on Salt Creek, which is a tributary to the Colorado River in Lampasas County. The LCRA uses water from Lometa Reservoir for municipal purposes within the service area of the Lometa Water System. The reservoir has a normal maximum operating capacity of 554.6 ac-ft. A maximum of 882 ac-ft of water is available for diversion from the Colorado River, including 476 ac-ft for municipal demands and 406 ac-ft to offset evaporative losses. Because this amount is included as part of the Highland Lakes firm yield, the reported firm yield of the Lometa Reservoir is 0 ac-ft/yr.
- South Texas Project Reservoir: The Main Cooling Reservoir associated with the South Texas Project Electric Generating Station is a 7,000-acre (surface area) off-channel reservoir located in Matagorda County. At the maximum design operating level, the reservoir has a capacity of 202,600 ac-ft, or 9.6 percent of the total capacity of Lakes Travis and Buchanan as stated in the LCRA Water Management Plan. The firm yield from the TCEQ WAM is considered to be 0 ac-ft/yr since the reservoir firm yield is supplied by the STP run-of-river right (STP Nuclear Operating Co. et al.) and LCRA stored water from Lakes Buchanan and Travis, and the amount of water from the run-of-river right and LCRA's Highland Lakes has already been included in the water availability analysis for Region K (refer to *Tables 3.1* and *3.3*). If both the run-of-river right and the reservoir firm yield were included, then the water would be double counted since the water available to the reservoir is based on the diversions from the river.

Reservoir water is withdrawn from the Colorado River adjacent to the site. Pumping from the river is intermittent, and this diversion normally occurs during periods of high river flow. The reservoir design incorporates storage to account for periods during which river water is unavailable for the reservoir in order to support operation through a repeat of the drought of record.

3.2.1.1.2.3 Run-of-River Water

Historically, the State of Texas has granted many of the run-of-river rights through an adjudication process that considered historical uses. As a result, some run-of-river rights may have been granted for more water than is available in a river during drought conditions. The use of water during drought conditions is controlled by the priority system, with the oldest water rights having first call on whatever water is in the river. The TCEQ Colorado River Basin WAM was developed to simulate the amount of water available in the Colorado River under the basin water management scenarios. Major factors used to calculate available water include:

- Senior downstream water rights are assumed to be fully utilized
- Stored waters are released to the river based on the drought conditions
- Inflows to the Highland Lakes are passed through the lakes to the extent that the water is needed to satisfy senior water rights downstream.

The results of this analysis for major run-of-river rights holders are presented in *Table 3.3*. The water availability presented in the table for most of the major run-of-river rights is based on the amount of run-of-river water that would be available during the driest year of the DOR (1952 in the Region K Cutoff Model). The water availability for the City of Austin and STP Nuclear Operating Company water rights is based on the average annual water availability during the entire DOR period. This average availability was used since the City of Austin has contracted with LCRA to supply stored water to firm up its water rights during drought conditions. The STP Nuclear Operating Company has also contracted for backup from LCRA, in addition to having a reservoir that allows for potential storage of water over the DOR period instead of having to use all of the water that is received in a particular year.

Table 3.3 below shows the water availability during the DOR for the major run-of-river rights. The Region K Cutoff Model was used to determine the values in the table. The following describes the methods used to determine the values in *Table 3.3*.

Irrigators

The Garwood, Lakeside (#1 & 2), Gulf Coast, and Pierce Ranch operations each have several water supplies, both run-of-river and supplemental interruptible supplies from the Highland Lakes. The run-of-river rights are listed in *Table 3.3*. The run-of-river water rights were summed for each irrigation operation to determine which year in the model had the minimum total diversion. The water right amounts for that year are listed in the table.

City of Austin

The City of Austin has four municipal water rights shown in the table. These are 61405471005SMRR, 61405471005SBU, 61405471005LMRR, and 61405489003M. Because these water rights are backed up by LCRA each year, an average during the DOR was used.

The City of Austin has steam-electric water rights as shown in the table. These are 61405471001P, 61405471002P, and 61405489003P (61405489003PBU). The water availability for these rights was determined by using the minimum amount of water available in any year during the DOR.

Table 3.3 Major Run-of-the-River Rights in the Colorado Basin (ac-ft/yr)

W-A P'-1 (ID		Maximum		Region K C	utoff Model
Water Right ID Number	Water Rights Holder	Permitted Diversion	Priority Date	2010	2060
61405434201RR	LCRA - Garwood	133,000	Nov 1, 1900	130,141	130,141
61405434201BU			Nov 1, 1987	0	0
61405475001LRRS	LCRA - Lakeside #1	52,500	Jan 4, 1901	10,405	10,405
61405475001LRRL			Jun 29, 1913	1,573	1,573
61405475001LRRR			Mar 8, 1938	0	0
61405475001LSBU			Nov 1, 1987	0	0
61405475001LRRJ		78,750	Nov 1, 1987	553	520
61405475001LJBU			Nov 1, 1987	0	0
61405476003RRS	LCRA - Gulf Coast	228,570	Dec 1, 1900	14,476	14,476
61405476003RRL			Jun 29, 1913	28,987	28,909
61405476003RRR			Mar 8, 1938	0	0
61405476003SBU			Nov 1, 1987	0	0
61405476003RRJ		33,930	Nov 1, 1987	1,365	155
61405476003JBU			Nov 1, 1987	0	0
61405477001RR	LCRA - Pierce Ranch	55,000	Sep 1, 1907	12,468	12,525
61405477001RRL			Jun 29, 1913	1,648	1,648
61405477001RRR			Mar 8, 1938	0	0
61405477001BU			Nov 1, 1987	0	0
61405475001WRR	LCRA - Lakeside #2	55,000	Sep 2, 1907	8,791	8,791
61405475001WRRL			Jun 29, 1913	1,648	1,648
61405475001RRRR			Mar 8, 1938	0	0
61405475001WBU			Nov 1, 1987	0	0
61405471005SMRR	City of Austin - (mun.) 1	250,000	Jun 30, 1913	148,431	143,846
61405471005SBU	City of Austin - (mun.) 1		Jun 30, 1913	49,845	48,034
61405471005LMRR	City of Austin - (mun.) 1	21,403	Jun 27, 1914	9,949	8,413
61405471001P	City of Austin - (stm.)	24,000	Jun 27, 1914	6,171	6,171
61405471002P	City of Austin - (stm.)		Jun 27, 1914	1,267	1,267
61405489003M	City of Austin - (mun.) 1	20,300	Aug 20, 1945	4,365	4,173
61405489003P	City of Austin - (stm.)	16,156	Aug 20, 1945	0	0
61405489003PBU	City of Austin - (stm.)		Aug 20, 1945	982	982
61405437001RIV	STPNOC and LCRA 1, 2	102,000	Jun 10, 1974	51,857	46,072
61405434102	City of Corpus Christi ³	35,000	Nov 2, 1900	22,884	22,884
•	Totals	1,105,609	1	507,806	492,634

Notes:

Colorado WAM provided by TCEQ, August 2007, Run 3. WRAP program by Dr. Ralph Wurbs, Texas A&M University, January 2009 Drought-of-Record (DOR) is May 1945 to April 1957 (12 years) for 2010; May 1947 to April 1957 (10 years) for all other decades

STP Nuclear Operating Company

¹ These values were averaged over the DOR

Annual results vary from 0 ac-ft/yr to 102,000 ac-ft/yr during the DOR

³ The water availability for this run-of-river water right was determined by using the minimum amount of water available in any year during the DOR. After discussions with Region N, the water availability entered into the TWDB database was not the one determined using the Region K Cutoff Model. Region N has a local multi-basin system model with different drought-of-record periods. By working as a system, the sources can be optimized to provide a minimum amount of water each year. Therefore, using the minimum annual amount as the availability for each source in their system may not be accurate. The availability entered into the TWDB database was the full authorized diversion of 35,000 ac-ft/yr.

The run-of-river water right, 61405437001RIV, jointly owned by STPNOC and LCRA, was determined by taking the average over the DOR period. This was done because there is a contract for backup from LCRA, and there is a reservoir that allows for storage of water over the DOR period, rather than having to use the entire amount of water received in a particular year. One of the STPNOC diversion points is within the tidal reaches of the Gulf of Mexico. Required diversions at low flow rates during the DOR period will have a negative effect on the water quality diverted at this point.

Corpus Christi

The water availability for this run-of-river water right was determined by using the minimum amount of water available in any year during the DOR. After discussions with Region N, the water availability entered into the TWDB database was not the one determined using the Region K Cutoff Model. Region N has a local multi-basin system model with different drought-of-record periods. By working as a system, the sources can be optimized to provide a minimum amount of water each year. Therefore, using the minimum annual amount as the availability for each source in their system may not be accurate. The availability entered into the TWDB database was the full authorized diversion of 35,000 ac-ft/yr.

3.2.1.1.2.4 Local Surface Water Sources

The final category of available surface water is local supply sources. This category includes small diversions from the river or tributaries to the river, as well as stock ponds that have captured diffuse surface water located on individual's property. Information concerning these sources is limited. As a result, the information available from the TWDB developed during the first planning cycle was used as an initial estimate of the water availability. However, in several instances the availability numbers were increased to match the projected demands with the assumption that the supply and demand for local water will be self-limiting. The results of this process are presented in *Table 3.4* and are organized by county. These numbers were developed for the 2001 Region K Plan and since better information has not become available they have remained unchanged.

Table 3.4 Other Surface Water Sources in the Colorado Basin (ac-ft/yr)

Local Supply Source Name	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Livestock - basinwide	6,262	6,262	6,262	6,262	6,262	6,262
Other - basinwide	19,282	20,890	22,717	24,883	27,470	27,470
Irrig Bastrop Co.	786	786	786	786	786	786
Irrig Blanco Co.	67	67	67	67	67	67
Irrig Burnet Co.	276	276	276	276	276	276
Irrig Colorado Co.	3,000	3,000	3,000	3,000	3,000	3,000
Irrig Fayette Co.	534	534	534	534	534	534
Irrig Gillespie Co.	880	880	880	880	880	880
Irrig Hays Co.	41	41	41	41	41	41
Irrig Llano Co.	440	440	440	440	440	440
Irrig Matagorda Co.	900	900	900	900	900	900
Irrig Mills Co.	2,378	2,378	2,378	2,378	2,378	2,378
Irrig San Saba Co.	8,800	8,800	8,800	8,800	8,800	8,800
Irrig Travis Co.	880	880	880	880	880	880
Irrig Wharton Co.	7,650	7,650	7,650	7,650	7,650	7,650
Totals	52,176	53,784	55,611	57,777	60,364	60,364

Note: All of the sources listed in the table above are Local Supply Sources, which were determined in the 2001 Plan.

It was assumed that the 2060 supplies were equal to the 2050 supplies due to the lack of better information or tools to determine availability in 2060.

3.2.1.2 Brazos River Basin

A portion of the LCRWPA is located within the Brazos River Basin. This area is limited to portions of Bastrop, Burnet, Fayette, Mills, Travis, and Williamson Counties. The portion of Williamson County in Region K is completely contained within the City of Austin service area. The remainder of Williamson County is located in Region G.

Surface water sources for these areas are limited to local sources. There are no major reservoirs within the LCRWPA portion of the Brazos River Basin. *Table 3.5* contains a summary of the surface water available to the LCRWPA from the Brazos River Basin.

Table 3.5 Surface Water Sources in the Brazos River Basin (ac-ft/yr)

Source Name	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Livestock - basinwide	566	566	566	566	566	566
Totals	566	566	566	566	566	566

Note: All of the sources listed in the table above are Local Supply Sources, which were determined in the 2001 Plan.

It was assumed that the 2060 supplies were equal to the 2050 supplies due to the lack of better information or tools to determine availability in 2060.

3.2.1.3 Brazos-Colorado Coastal Basin

A portion of the LCRWPA is located within the Brazos-Colorado Coastal Basin. This area is limited to portions of Colorado, Matagorda, and Wharton Counties. Surface water sources for these areas are limited to local sources and a run-of-river water right from the San Bernard River. There are no major reservoirs within the LCRWPA portion of the Brazos-Colorado Coastal Basin. *Table 3.6* contains a summary of the surface water available to the LCRWPA from the Brazos-Colorado Coastal Basin.

Table 3.6 Surface Water Sources in the Brazos-Colorado Coastal Basin (ac-ft/yr)

Source Name	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
San Bemard ROR	665	597	597	597	597	597
Livestock - basinwide	394	394	394	394	394	394
Other - basin wide	1,696	1,746	1,793	1,844	1,900	1,900
Irrig Matagorda Co.	4,000	4,000	4,000	4,000	4,000	4,000
Irrig Wharton Co.	2,000	2,000	2,000	2,000	2,000	2,000
Totals	8,755	8,737	8,784	8,835	8,891	8,891

Note: All of the sources listed in the table above except for the San Bernard ROR are Local Supply Sources, which were determined in the 2001 Plan.

It was assumed that the 2060 local supplies were equal to the 2050 local supplies due to the lack of better information or tools to determine availability in 2060.

3.2.1.4 Colorado-Lavaca Coastal Basin

A portion of the LCRWPA is located within the Colorado-Lavaca Coastal Basin. This area is limited to portions of Matagorda and Wharton Counties. Surface water sources for these areas are limited to local sources. There are no major reservoirs within the LCRWPA portion of the Colorado-Lavaca Coastal Basin, and there are no WUGs with rights to water from reservoirs in the Colorado-Lavaca Coastal Basin. Return flows originating in the Colorado Basin from agriculture are sent to the Colorado-Lavaca Coastal Basin for use, but since the Region K Cutoff Model assumes full utilization of water rights and no return unless explicitly stated in the water right, these return flows were not taken into consideration for the Region K water availability analysis. *Table 3.7* contains a summary of the surface water available to the LCRWPA from the Colorado-Lavaca Coastal Basin.

Table 3.7 Surface Water Sources in the Colorado-Lavaca Coastal Basin (ac-ft/yr)

Source Name	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Livestock - basinwide	289	289	289	289	289	289
Irrig Matagorda Co.	4,000	4,000	4,000	4,000	4,000	4,000
Totals	4,289	4,289	4,289	4,289	4,289	4,289

Note: All of the sources listed in the table above are Local Supply Sources, which were determined in the 2001 Plan.

It was assumed that the 2060 supplies were equal to the 2050 supplies due to the lack of better information or tools to determine availability in 2060.

3.2.1.5 Lavaca River Basin

A portion of the LCRWPA is located within the Lavaca River Basin. This area is limited to portions of Colorado and Fayette Counties. Surface water sources for these areas are limited to local sources. There are no major reservoirs within the LCRWPA portion of the Lavaca River Basin, and there are no WUGs with rights to water from reservoirs in the Lavaca River Basin. *Table 3.8* contains a summary of the surface water available to the LCRWPA from the Lavaca River Basin.

Table 3.8 Surface Water Sources in the Lavaca River Basin (ac-ft/yr)

Source Name	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Livestock - basinwide	649	649	649	649	649	649
Irrig Colorado Co.	4,002	4,002	4,002	4,002	4,002	4,002
Irrig Fayette Co.	20	20	20	20	20	20
Totals	4,671	4,671	4,671	4,671	4,671	4,671

Note: All of the sources listed in the table above are Local Supply Sources, which were determined in the 2001 Plan.

It was assumed that the 2060 supplies were equal to the 2050 supplies due to the lack of better information or tools to determine availability in 2060.

3.2.1.6 Guadalupe River Basin

A portion of the LCRWPA is located within the Guadalupe River Basin. This area is limited to portions of Bastrop, Blanco, Fayette, Hays, and Travis Counties. Most of the surface water sources for these areas are limited to local sources. There are no major reservoirs within the LCRWPA portion of the Guadalupe River Basin. However, the City of Blanco owns and operates two, small, on-channel reservoirs on the Blanco River. The two reservoirs have a combined storage capacity of 168 ac-ft.

Anecdotal information provided by the City of Blanco indicates that the Blanco River has ceased flowing in the past, most notably during the summer of 1996. Information provided by the City of Blanco indicates that flow in the Blanco River ceased for a three-month period during that summer. The relatively small storage capacity of the two reservoirs will not sustain the projected demands from the City of Blanco for more than a four-month period when the river has ceased flowing.

Based on the Guadalupe River Basin WAM from TCEQ, dated February 2005, Run 3, the firm yield of the reservoir system is 596 ac-ft (water right C3877 1).

Table 3.9 contains a summary of the surface water available to the LCRWPA from the Guadalupe River Basin.

					(****	,	
Source Name	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060	Data Source
Livestock - basinwide 1	298	298	298	298	298	298	2001 Plan
Irrig Blanco Co. 1	9	9	9	9	9	9	2001 Plan
Blanco Reservoirs ²	596	596	596	596	596	596	TCEQ WAM
Totals	903	903	903	903	903	903	

Table 3.9 Surface Water Sources in the Guadalupe River Basin (ac-ft/yr)

It was assumed that the 2060 local supplies were equal to the 2050 local supplies due to the lack of better information or tools to determine availability in 2060.

3.2.2 Groundwater Availability

Available groundwater is the volume of groundwater that can be withdrawn from an individual aquifer in accordance with the principle by which the aquifer is being managed or an assumed management approach. That managing principle, typically stated as a sustainability goal, can be stated in various ways, and the mechanism through which availabilities are being stated throughout Texas is evolving.

Before the advent of Groundwater Management Areas (GMAs)(HB 1763, 79th Legislature), an aquifer, or portion of an aquifer, may or may not have had a governmental entity managing the way that aquifer was being managed. If an aquifer, or portion of an aquifer, was managed, it was by a Groundwater Conservation District whose jurisdiction can coincide with the boundary or boundaries of one or more counties or an aquifer. Most aquifers span multiple counties, and in that case the entire aquifer can be

Local Supply Sources determined in the 2001 Plan

² Firm Yield Data Source: Guadalupe River Basin WAM provided by TCEQ, February 2005, Run 3. WRAP modeling program provided by Dr. Ralph Wurbs, Texas A&M University, July 2004 version.

managed by one or more GCDs, with some portions not managed at all. There are also several Priority Groundwater Management Areas (PGMA) around the State, with portions of the Hill Country PGMA located within Region K. PGMAs are areas where critical groundwater problems exist. Region K has a GCD in every county located within the PGMA with the exception of Travis County. The Hill Country UWCD in Gillespie County was created prior to the designation of the PGMA. The Blanco-Pedernales GCD was created after the PGMA designation, as was the Hays-Trinity GCD. These GCDs give notice to the area residents that the declaration of the PGMA means that their water availability and quality will be at risk within the next 50 years. The Hays County Development Regulations have specific requirements listed for subdivisions served by individual water wells producing local groundwater within the PGMA. These requirements can be found in *Chapter 715*, *Sub-Chapter 3*, *Section 3.06* of the Hays County Development Regulations. GMAs are a different concept in that every county in the State is in one or more of sixteen GMAs, for the most part the major aquifers are not split across multiple GMAs, and the goal is to manage entire aquifer systems across political subdivisions in a consistent way. GCDs and GMAs are discussed in Chapter 1 of this plan and on the TWDB website at https://www.twdb.state.tx.us/GwRD/pages/gwrdindex.html.

The GMA program is still in its formative stages: most of the GMAs in the LCRWPA have not adopted their Desired Future Condition (DFC) for their aquifers and the TWDB has not yet established the Managed Available Groundwater (MAG) values for such aquifers. The GCDs within the PGMA have the same responsibility to adopt their DFC and establish a MAG for the aquifers in their district. The result is that some aquifers in some counties have MAGs, some have availabilities established by a GCD, and the rest have the availability established in the 2006 LCRWP. The sources of groundwater availability data in this plan, in descending order of priority, are:

- 1. Managed Available Groundwater (MAG) values established by TWDB;
- 2. Preferred availability reported to the LCRWPA by a Groundwater Conservation District (GCD). Even where a GCD has a TWDB certified management plan, they may have been in the process of establishing a new availability, and were given the opportunity to have that availability included in this plan;
- 3. GCD availabilities adopted in a groundwater management plan, and;
- 4. In absence of any of the above, the availabilities established in the 2006 LCRWP.

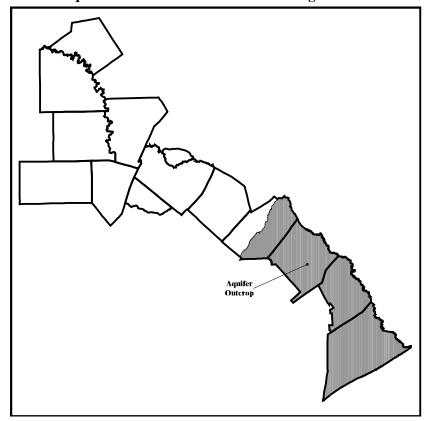
The groundwater resources located in the region have been traditionally divided into those aquifers that yield large quantities of water over a relatively large area (major aquifers) and those aquifers yielding smaller quantities of water over smaller areas (minor aquifers). In the LCRWPA there are five major aquifers and six minor aquifers that provide usable groundwater supplies. The following discussion of the groundwater resources of the LCRWPA is divided into these two categories.

3.2.2.1 Major Aquifers

The major aquifers in the LCRWPA are the Edwards-Trinity (Plateau), Trinity Group, Edwards, Carrizo-Wilcox, and the Gulf Coast. These five aquifers provide a significant component of the water supply used within the LCRWPA beyond that provided by the Colorado River.

Most of the cities in the planning region draw their water supply from one of the five major aquifers. Due to the differences in each aquifer and the amount of information available for each aquifer, different approaches were applied to determine the water available from each aquifer (where a GAM is not

available or no GCD exists). The technical approach applied to a specific aquifer is described in the section pertaining to each of the aquifers below.


3.2.2.1.1 Gulf Coast Aquifer

Location and Use

The Gulf Coast aquifer forms an irregularly shaped belt along the Gulf of Mexico from Florida to Mexico. In Texas, the aquifer provides water to all or parts of 54 counties and extends from the Rio Grande northeastward to the Louisiana-Texas border.

Groundwater use from the Gulf Coast aquifer within the LCRWPA occurs in Colorado, Fayette, Matagorda, and Wharton Counties. TWDB records indicate that total groundwater pumpage from the Gulf Coast aquifer in these counties was 195,761 ac-ft for the year 2000. Municipal uses accounted for 10 percent of the total, manufacturing accounted for 1 percent, power plants accounted for 1 percent, mining accounted for 1 percent, irrigation accounted for 86 percent, and livestock accounted for 1 percent. The location of the aquifer within the LCRWPA is illustrated in *Figure 3.2*.

Figure 3.2: Gulf Coast Aquifer Within the Lower Colorado Regional Water Planning Area

The Gulf Coast aquifer consists of complex interbedded clays, silts, sands, and gravels, which are hydrologically connected to form a large, leaky artesian aquifer system. The system has four major subdivisions in the LCRWPA. The Jasper aquifer is the lowermost or most landward component of the aquifer system. The Jasper aquifer is composed of the Oakville Sand and may also include upper portions of the Catahoula Sandstone. The Burkeville confining layer separates the top of the Jasper aquifer from the bottom of the Evangeline aquifer. The Evangeline aquifer is composed of the Fleming and Goliad Sands. The Chicot aquifer, or upper component of the Gulf Coast aquifer system, consists of the Lissie, Willis, and Beaumont Formations; and overlying alluvial deposits. Maximum total sand thickness ranges from about 700 feet in the south to 1,300 feet in the northern extent.

Water Quality

Water quality is generally good in the shallower portion of the aquifer. Groundwater containing less than 500 mg/l dissolved solids is usually encountered to a maximum depth of 3,200 feet in the aquifer from the San Antonio River Basin northeastward to Louisiana.

Recent Planning Efforts

Since the adoption of the 2006 Plan, there have been several studies and planning efforts that have been evaluated by the LCRWPG to determine if there is a basis for modifying the groundwater availability numbers for the Gulf Coast Aquifer within the LCRWPA.

- Completion of the Central Gulf Coast Aquifer Groundwater Availability Model (GAM) by the TWDB:
- A legislative mandate for GCDs to submit Desired Future Conditions (DFCs) by September 1, 2010, allowing TWDB to supply GMAs with Managed Available Groundwater (MAG) numbers;
- The LCRA-SAWS Water Project (LSWP) groundwater study is ongoing.

The Central Gulf Coast Aquifer GAM was not available in time to be used in the 2006 Plan, but was available for use in this Plan. Additionally, since the 2006 Plan was prepared, the State legislature established a requirement that the GCDs, through their respective GMAs, "shall consider groundwater availability models and other data or information for the management area and shall establish desired future conditions (DFCs) for the relevant aquifers within the management area." The initial deadline for DFC submittal is September 1, 2010. Colorado, Fayette, Matagorda, and Wharton counties are represented by single-county GCDs and are part of GMA 15. GMA 15 is in the process of developing their DFCs.

LCRA and SAWS are in the sixth year of a study period to determine if a joint project is feasible. One component of the study period plan is the use of groundwater from the Gulf Coast aquifer to supplement agricultural water needs during periods when surface water supplies are not sufficient to meet such needs.

The LCRWPG Scoping committee felt that the GMA 15 DFC development and the LSWP groundwater study might be completed in time for this information to be incorporated into this Plan as revised Gulf Coast Aquifer availabilities. The LCRWPG evaluated the status of GMA 15, LSWP, and any management plan updates by the four GCDs as part of the development of this Plan, and found the following (as of July 2009):

- GMA 15 has not submitted their DFC statements to TWDB. GMA 15 is evaluating aquifer conditions using the TWDB Central Gulf Coast Aquifer GAM.
- GMA 15 has indicated that, at this stage, their preferred level of aquifer use is very close to the 2006 Plan availabilities for the Gulf Coast Aquifer.
- A Lower Colorado River Groundwater Availability Model (GAM) was completed, however, the LSWP groundwater studies are ongoing.
- GMA 15 will continue to use the TWDB Central Gulf Coast Aquifer GAM for its DFC evaluation.
- Both Coastal Bend GCD and Coastal Plains GCD have management plan updates due to TWDB by September 2009. Neither District is planning to change their availability numbers.
- Fayette County GCD was comfortable with the Gulf Coast Aquifer availability in the 2006 Plan.
- The Colorado County GCD has a deadline of November 2010 to submit their first management plan. The GCD was contacted by the LCRWPG to discuss their existing Gulf Coast Aquifer availability and whether they had any desire to change it. The GCD indicated that the availability in the 2006 Plan closely matched their preferred level of pumpage that was being modeled in GMA 15, and that they were comfortable with the existing number.

The information collected above indicates that there is no basis to change the Gulf Coast Aquifer availability numbers in this Plan. It was the LCRWPG's recommendation that the availability numbers that come out of the GMA 15 process in 2010 be considered for incorporation into the 2016 Plan.

Availability

The availability values for the Gulf Coast aquifer in Fayette, Matagorda and Wharton Counties were taken from the groundwater management plans adopted by the Fayette County Groundwater Conservation District, Coastal Plains Groundwater Conservation District (Matagorda County), and Coastal Bend Groundwater Conservation District (Wharton County). Each of these groundwater management plans have been approved by TWDB. The Colorado County GCD was created since the 2006 Plan was adopted and has a deadline of November 2010 to submit a groundwater management plan. The groundwater availability values adopted for the Gulf Coast aquifer in Colorado County in the 2001 and 2006 Plans remain unchanged.

During planning cycle one, the LCRWPG established a policy for determining the availability of groundwater within the LCRWPA. The policy was that the long-term depletion of groundwater within the region is not consistent with the LCRWPG's sustainability goals. The groundwater availability from the Gulf Coast aquifer was based on an estimate of maximum usage in the year 2050 by WUGs that were currently using the aquifer as a source plus the average water use for future conjunctive water use at the Lakeside, Gulf Coast, and Pierce Ranch Irrigation Operations.

Based on the GCDs and the 2001 Plan criteria, the water availability for the Gulf Coast aquifer was defined as presented in *Table 3.10*.

Table 3.10 Water Availability in the Gulf Coast Aquifer (ac-ft/yr)

County	Basin	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Colorado	Brazos-Colorado	11,506	11,506	11,506	11,506	11,506	11,506
Colorado	Colorado	17,436	17,436	17,436	17,436	17,436	17,436
Colorado	Lavaca	18,915	18,915	18,915	18,915	18,915	18,915
	County Total	47,857	47,857	47,857	47,857	47,857	47,857
Fayette	Brazos	65	65	65	65	65	65
Fayette	Colorado	3,300	3,300	3,300	3,300	3,300	3,300
Fayette	Guadalupe	144	144	144	144	144	144
Fayette	Lavaca	5,188	5,188	5,188	5,188	5,188	5,188
	County Total	8,697	8,697	8,697	8,697	8,697	8,697
Matagorda	Brazos-Colorado	22,423	22,423	22,423	22,423	22,423	22,423
Matagorda	Colorado	3,218	3,218	3,218	3,218	3,218	3,218
Matagorda	Colorado-Lavaca	23,580	23,580	23,580	23,580	23,580	23,580
	County Total	49,221	49,221	49,221	49,221	49,221	49,221
Wharton	Brazos-Colorado	42,295	42,295	42,295	42,295	42,295	42,295
Wharton	Colorado	41,812	41,812	41,812	41,812	41,812	41,812
Wharton	Colorado-Lavaca	8,543	8,543	8,543	8,543	8,543	8,543
	County Total	92,650	92,650	92,650	92,650	92,650	92,650
Region K	Region Total	198,425	198,425	198,425	198,425	198,425	198,425

Note: An explanation of the numbers presented in this table is provided in Section 3.2.2.1.1 *Availability*. 3.2.2.1.2 Carrizo-Wilcox Aquifer

Location and Use

The Wilcox Group and the overlying Carrizo Formation of the Claiborne Group form a hydrologically connected system known as the Carrizo-Wilcox aquifer. This aquifer extends from the Rio Grande in South Texas northeastward into Arkansas and Louisiana, providing water to all or parts of 60 counties in Texas. The Carrizo Sand and Wilcox Group occur at the surface along an outcrop band that parallels the Gulf Coast and dip beneath the land surface toward the coast except in the East Texas structural basin adjacent to the Sabine Uplift where the formations form a trough.

Use of water from the Carrizo-Wilcox aquifer in the LCRWPA occurs in Bastrop County and a portion of Fayette County. TWDB records indicate that the total groundwater pumpage from the Carrizo-Wilcox in the study area for 2000 was 10,533 ac-ft. Municipal uses accounted for 87 percent of the total, manufacturing uses accounted for 0.4 percent, mining accounted for 0.2 percent, irrigation accounted for 9 percent, and livestock accounted for 4 percent. The location of the aquifer within the LCRWPA is illustrated in *Figure 3.3*.

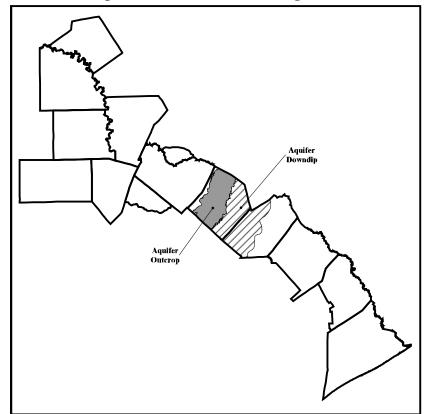


Figure 3.3: Carrizo-Wilcox Aquifer Within the Colorado Regional Water Planning Area

The Carrizo-Wilcox aquifer is predominantly composed of sand, locally interbedded with gravel, silt, clay, and lignite deposited during the Tertiary Period. North of the Colorado River, the Wilcox Group is generally divided into three distinct subdivisions. From the oldest and deepest to youngest these are the Hooper, Simsboro, and Calvert Bluff Formations. Of the three, the Simsboro Formation typically contains the most massive and coarsest sands and produces the largest quantities of water. South of the Colorado River, the Simsboro is absent as a distinct unit. The Wilcox portion of the aquifer varies significantly in thickness in the downdip artesian portion from 400 feet in portions of Fayette County (south of the Colorado River) to as much as 1,600 feet in Bastrop County. The Carrizo portion of the aquifer also varies in thickness in the downdip artesian portion from 200 feet to 400 feet across the LCRWPA.

Water Quality

Water from the Carrizo-Wilcox is fresh to slightly saline with quality problems limited to localized areas. In the outcrop the water is hard yet usually low in dissolved solids. Downdip, the water is softer, has a higher temperature, and contains increasing amounts of dissolved solids down-gradient. Hydrogen sulfide and methane may occur locally.

Availability

As previously discussed, the LCRWPG has established the sustainable use of groundwater resources as a policy for the region. The availability of the Carrizo-Wilcox aquifer in Bastrop County is taken from the Lost Pines Groundwater Conservation District Groundwater Management Plan. The availability in Fayette County is taken from the Fayette County Groundwater Conservation District Groundwater Management Plan. The available water, by river basin was established by proportioning the total availability value based on the area located in each river basin in a county using GIS. The availability estimates are presented in *Table 3.11*.

Table 3.11 Water Availability in the Carrizo-Wilcox Aquifer (ac-ft/yr)

County	Basin	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Bastrop	Brazos	1,744	1,744	1,744	1,744	1,744	1,744
Bastrop	Colorado	24,916	24,916	24,916	24,916	24,916	24,916
Bastrop	Guadalupe	1,340	1,340	1,340	1,340	1,340	1,340
	County Total	28,000	28,000	28,000	28,000	28,000	28,000
Fayette	Colorado	290	290	290	290	290	290
Fayette	Guadalupe	66	66	66	66	66	66
Fayette	Lavaca	44	44	44	44	44	44
	County Total	400	400	400	400	400	400
Region K	Region Total	28,400	28,400	28,400	28,400	28,400	28,400

Note: An explanation of the numbers presented in this table is provided in Section 3.2.2.1.2 Availability.

3.2.2.1.3 Edwards Aquifer (Balcones Fault Zone)

Location and Use

The Edwards aquifer (Balcones Fault Zone, or BFZ) covers approximately 4,350 square miles in parts of 11 counties. It forms a narrow belt extending along the base of the Balcones Escarpment from Kinney County through the San Antonio area northeastward to the Leon River in Bell County. A groundwater divide near Kyle in Hays County hydrologically separates the aquifer into the San Antonio and Barton Springs segments. The Colorado River divides the Barton Springs and Northern segments which are also considered hydrologically separate. The name Edwards aquifer (BFZ) distinguishes this aquifer from the Edwards-Trinity (Plateau) and Edwards-Trinity (High Plains) aquifers.

Groundwater use from the Edwards aquifer (BFZ) within the LCRWPA occurs in Hays, Travis, and Williamson Counties. TWDB records indicate that the total groundwater pumpage from the Edwards aquifer (BFZ) in these counties for 2000 was 32,464 ac-ft. Municipal uses accounted for 90 percent of the total, manufacturing accounted for 4 percent, mining accounted for 5 percent, and livestock accounted for 0.4 percent. Large springs feed several recreational areas and serve as habitat to several endangered species of plants and animals. Major river systems derive a significant amount of baseflow from Edwards aquifer (BFZ) spring flows that are utilized outside the Edwards region mainly for industrial and agricultural needs. The location of the aquifer within the LCRWPA is illustrated in *Figure 3.4*.

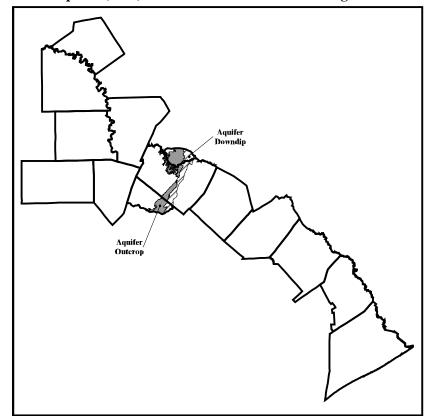


Figure 3.4: Edwards Aquifer (BFZ) Within the Lower Colorado Regional Water Planning Area

The Edwards aquifer (BFZ) is composed of limestone and dolomite deposited during the Cretaceous Period. The aquifer exists under water-table conditions in the outcrop and under artesian conditions where it dips into the subsurface and is confined below the overlying Del Rio Clay. The Edwards aquifer (BFZ) consists of the Georgetown Limestone and formations of the Edwards Group within the LCRWPA. Across the Edwards aquifer (BFZ) region, the aquifer thickness ranges from 200 to 600 feet.

Aquifer recharge occurs by the percolation of water on the aquifer outcrop (recharge zone). The recharge may occur by several methods: surface water percolating from streams and rivers draining the Edwards Plateau and which cross the outcrop; the percolation of rainfall runoff in ephemeral streams crossing the outcrop; and by direct infiltration of precipitation on the outcrop. This recharge reaches the aquifer through solution cavities, fracture crevices, faults, and sinkholes in the recharge zone. Unknown amounts of groundwater may enter the aquifer as lateral underflow from the Glen Rose Formation. Water in the aquifer generally moves from the recharge zone down-gradient and laterally toward natural discharge points such as Comal, San Marcos, Barton, and Salado springs.

A hydrologic divide occurs in the aquifer near Kyle in Hays County that separates the San Antonio segment of the aquifer from the Barton Springs and Northern segments of the aquifer. The Barton Springs segment is hydrologically bounded to the north by the Colorado River. The northern segment of the aquifer includes the area north of the Colorado River to Bell County. The area included in the

LCRWPA is the area north of the Kyle groundwater divide and includes a portion of the Northern segment.

Groundwater moving through the aquifer system has dissolved large amounts of rock to create highly permeable zones in certain aquifer subdivisions and solution channels. Highly fractured areas near faults may be preferentially enhanced by solutioning to form conduits capable of transmitting large amounts of water. The solution features may facilitate rapid flow and augment the relatively high storage capacity of the aquifer. Due to the honeycombed and cavernous character of the aquifer, well yields are moderate to large. Several wells yield in excess of 16,000 gal/min and one well drilled in Bexar County flowed 37,000 gal/min from a 30-inch-diameter casing. The aquifer is significantly less permeable farther downdip where the concentration of dissolved solids in the water may abruptly exceed 1,000 mg/l.

Water Quality

The chemical quality of water in the aquifer is typically fresh, although hard, with dissolved solids concentrations averaging less than 500 mg/l. The downdip's relatively sharp interface between fresh and slightly saline water represents the extent of water containing less than 1,000 mg/l and is popularly known as the Bad Water Line (BWL). Within a relatively short distance down-gradient of the BWL, the groundwater becomes increasingly mineralized. The position of the bad water line generally coincides with the alignment of IH 35 in the LCRWPA.

Availability

Due to its highly permeable nature in the fresh water zone, the Edwards aquifer (BFZ) responds quickly to changes and extremes in stress placed upon the system. This is indicated by the rapid fluctuations in water levels over relatively short periods of time. During times of adequate rainfall and recharge, the Edwards aquifer (BFZ) is able to supply sufficient amounts of water for all demands as well as sustain springflows at many locations throughout its extent. However, when recharge is low, water withdrawn from wells and water discharged at the springs comes mainly from aquifer storage. If these conditions persist, water in storage within the aquifer continues to be depleted with corresponding water-level declines and reduced spring flows.

Availability for the northern segment of the Edwards aquifer (BFZ) was established by the TWDB based on DFCs submitted by GMA 8. The DFCs for Travis and Williamson counties are as follows:

- Maintain at least 42 acre-feet per month of aggregated stream/spring flow during a repeat of the Drought of Record in Travis County.
- Maintain at least 60 acre-feet per month of aggregated stream/spring flow during a repeat of the Drought of Record in Williamson County.

The availability of the Barton Springs segment of the Edwards aquifer (BFZ) was determined by the Barton Springs Edwards Aquifer Conservation District (BSEACD) staff using the Barton Springs Edwards aquifer GAM. The BSEACD staff made revisions to the existing GAM (Scanlon et al, 2001) through an extensive cooperative process that included a technical advisory group with members from the Texas Water Development Board, the United States Geologic Survey, the City of Austin, the Bureau of Economic Geology, and the University of Texas at Austin. Through this cooperative process, the existing GAM was revised to better predict aquifer water levels and spring flow during the drought of record conditions. The approach to determining the availability value for the Barton Springs segment of the

Edwards aquifer (BFZ) was to maintain a mean monthly spring flow of approximately 1 cubic foot per second (cfs) at Barton Springs. This level may not provide adequate flows for protection of endangered species. Further studies are required to establish minimum required flows. The total availability of the Barton Springs segment of the Edwards aquifer (BFZ) within the jurisdiction of BSEACD was proportioned by the BSEACD staff to provide the appropriate values for the area of Hays and Travis Counties within the LCRWPA. The Travis County availability value for the Edwards aquifer (BFZ) is a sum of the BSEACD value for the Travis County portion of the Barton Springs segment and the Travis County portion of the northern segment derived from the Northern Edwards aquifer GAM. The availability values for Edwards aquifer (BFZ) obtained from different GAMs are presented in *Table 3.12*.

Table 3.12 Summary of Groundwater Availability Values for the Edwards Aquifer (BFZ) (ac-ft/yr)

			W	ater Availal	oility (ac-ft/	yr)	
Source County	Data Source	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Hays	BSEACD	2,576	2,576	2,576	2,576	2,576	2,576
Travis	GMA-8 MAG	5,237	5,237	5,237	5,237	5,237	5,237
Travis	BSEACD	1,673	1,673	1,673	1,673	1,673	1,673
	Travis County Total	6,910	6,910	6,910	6,910	6,910	6,910
Williamson	GMA-8 MAG	10	10	10	10	10	10
Region K	Region Total	9,496	9,496	9,496	9,496	9,496	9,496

The available water, by river basin was established by proportioning the total availability value based on the area located in each river basin in a county using GIS. This information is presented in *Table 3.13*.

Table 3.13 Water Availability (by River Basin) in the Edwards Aquifer (BFZ) (ac-ft/yr)

			W	ater Availal	bility (ac-ft/y	yr)	
Source County	Source Basin	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Hays	Colorado	2,576	2,576	2,576	2,576	2,576	2,576
Travis	Brazos	275	275	275	275	275	275
Travis	Colorado	6,608	6,608	6,608	6,608	6,608	6,608
Travis	Guadalupe	27	27	27	27	27	27
	Travis County Total	6,910	6,910	6,910	6,910	6,910	6,910
Williamson	Brazos	6	6	6	6	6	6
Williamson	Colorado	4	4	4	4	4	4
	Williamson County Total	10	10	10	10	10	10

Note: An explanation of the numbers presented in this table is provided in Section 3.2.2.1.3 Availability.

In the Colorado River Basin of Travis County, groundwater availability from Edwards aquifer (BFZ) (6,910 ac-ft/yr) is lower than water usage during the year 2000 (8,304 ac-ft/yr) as indicated in the TWDB Water Use Survey. The availability value was obtained from BSEACD and Northern Edwards (BFZ) aquifer GAM. The BSEACD availability number is consistent with the pumpage in its area of jurisdiction as the conservation district enforces permitting. However, it appears that the usage of groundwater in the northern part of Travis County is higher than the Edwards aquifer (BFZ) MAG number established by GMA-8, where the desired future condition was set to minimize adverse effect on stream flow during drought of record. It is anticipated that several current users of groundwater from

Edwards aquifer (BFZ) in the northern part of Travis County will switch to surface water usage in the future due to the expected growth of the City of Austin service/retail area.

3.2.2.1.4 Trinity Aquifer

Location and Use

The Trinity aquifer consists of Cretaceous age rocks of the Trinity Group. The formations of the Trinity Group crop out in a band from the Red River in northern Texas to the Hill Country of South-Central Texas and provide water in all or parts of 55 counties. Trinity Group deposits also occur as far west as the Panhandle and Trans-Pecos regions where they are included as part of the Edwards-Trinity (High Plains) and Edwards-Trinity (Plateau) aquifers. Within much of the LCRWPA, the Trinity aquifer is exposed at the land surface as the erosion dissected margin of the Edwards Plateau.

Groundwater use from the Trinity aquifer in the LCRWPA occurs in Blanco, Burnet, Gillespie, Hays, Mills, and Travis Counties. TWDB records indicate that the total groundwater pumpage from the Trinity in these counties for 2000 was 10,554 ac-ft. Municipal uses accounted for 70 percent of the total, mining accounted for 2 percent, irrigation accounted for 13 percent, and livestock accounted for 15 percent. The location of the aquifer within the LCRWPA is illustrated in *Figure 3.5*.

Aquifer Outerop

Aquifer Downdip

Figure 3.5: Trinity Aquifer Within the Lower Colorado Regional Water Planning Area

The Trinity aquifer is composed of sand, clay, and limestone deposited during the Cretaceous Period. The aquifer in the LCRWPA is subdivided into the Upper, Middle, and Lower Trinity aquifers. The Upper Trinity is composed of the Upper Glen Rose Formation. The Middle Trinity aguifer is composed of the Lower Glen Rose Formation and the Hensell Sand and Cow Creek Limestone of the Travis Peak Formation. The Hammett Shale of the Travis Peak Formation is a confining zone between the Middle and Lower Trinity aguifers. The Lower Trinity aguifer is composed of the Sligo Limestone and the Hosston Formation (sand and conglomerate). The Glen Rose Formation and the Cow Creek Limestone are karsted but not as heavily solutioned as the Edwards aquifer (BFZ). There are evaporite mineral beds (principally anhydrite) associated with the contact of the Upper and Lower Glen Rose Formation that contribute to water quality issues in the certain areas of the Trinity aquifer within the LCRWPA. The formations of the Trinity aquifer thin from down-dip areas toward the outcrop. In some areas of the LCRWPA this thinning is pronounced. At the Balcones Escarpment the Trinity may be significantly displaced by the throw of faults associated with the Balcones Fault Zone. Trinity aquifer well yields typically range from less than 20 to more than 300 gallons per minute. The yields of wells in the Upper and Middle Trinity aquifers may be closely associated with the degree of local karst or solutioning features. The yield of wells from the Lower Trinity aquifer may be generally greater than the average yields of Upper or Lower Trinity aquifer wells.

Water Quality

Water quality from the Trinity aquifer is acceptable for most municipal and industrial purposes; however, excess concentrations of certain constituents in many places exceed drinking water standards. Heavy pumpage and water level declines in this region have contributed to deteriorating water quality in the aquifer. Wells completed in the Middle Trinity (especially the Hensell Sand) may exhibit levels of sodium, sulfate, and chloride, which are believed to be the result of leakage from the overlying Glen Rose. This is less likely to be true for wells completed in the Lower Trinity. The Hammett Shale acts as an aquitard and effectively prevents leakage from the overlying formations. In some areas, poor quality water occurs in and near wells that have not been properly cased. These wells may have deteriorated casings, insufficient casing or cement, or the casing may have been perforated at multiple depths in an effort to maximize the well yield. These wells serve as a conduit for poor quality water originating in the evaporite beds near the contact of the of the Upper and Lower Glen Rose Formations. Water quality declines in the downdip direction of all of the Trinity water-bearing units.

Availability

The groundwater availability estimate values for the northern Trinity aquifer in Burnet, Mills, Travis, and Williamson Counties are based on DFCs submitted by GMA 8. The DFCs for the above mentioned counties are as follows:

Burnet County

- Average draw down of the Paluxy aquifer should not exceed approximately 1 foot after 50 years.
- Average draw down of the Glen Rose aquifer should not exceed approximately 1 foot after 50 years.
- Average draw down of the Hensell aquifer should not exceed approximately 11 feet after 50 years.
- Average draw down of the Hosston aguifer should not exceed approximately 29 feet after 50 years.

Mills County

- Average draw down of the Paluxy aquifer should not exceed approximately 0 feet after 50 years.
- Average draw down of the Glen Rose aquifer should not exceed approximately 0 feet after 50 years.
- Average draw down of the Hensell aquifer should not exceed approximately 3 feet after 50 years.
- Average draw down of the Hosston aguifer should not exceed approximately 12 feet after 50 years.

Travis County

- Average draw down of the Paluxy aquifer should not exceed approximately 124 feet after 50 years.
- Average draw down of the Glen Rose aquifer should not exceed approximately 61 feet after 50 years.
- Average draw down of the Hensell aquifer should not exceed approximately 98 feet after 50 years.
- Average draw down of the Hosston aquifer should not exceed approximately 116 feet after 50 years.

Williamson County

- Average draw down of the Paluxy aquifer should not exceed approximately 108 feet after 50 years.
- Average draw down of the Glen Rose aquifer should not exceed approximately 88 feet after 50 years.
- Average draw down of the Hensell aquifer should not exceed approximately 142 feet after 50 years.
- Average draw down of the Hosston aquifer should not exceed approximately 166 feet after 50 years.

The groundwater availability estimate value for Hays County is based on simulations performed using the Edwards-Trinity (Plateau) aquifer GAM. The approach to using the Edwards-Trinity GAM followed the general approach of maintaining 90 percent of the drought of record contribution of the aquifer to the surface water system. A different combination of water budget values was required to capture the surface water contribution due to the unique construction of the model. The availability value was based on a combination of the Stream Leakage and Drain values.

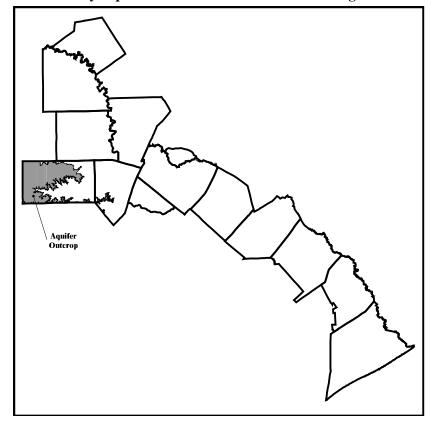
The available water, by river basin, was established by proportioning the total availability value based on the area located in each river basin in a county using GIS. This information is presented in *Table 3.14*.

Table 3.14 Water Availability (by River Basin) for the Trinity Aquifer (ac-ft/yr)

County	Basin	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Bastrop	Colorado	12	12	10	10	8	8
	County Total	12	12	10	10	8	8
Blanco	Colorado	1,149	1,149	1,149	1,149	942	942
Blanco	Guadalupe	451	451	451	451	373	373
	County Total	1,600	1,600	1,600	1,600	1,315	1,315
Burnet	Brazos	2,723	2,723	2,723	2,723	2,723	2,723
Burnet	Colorado	823	823	823	823	823	823
	County Total	3,546	3,546	3,546	3,546	3,546	3,546
Gillespie	Colorado	3,354	3,354	3,354	3,354	3,354	3,354
Gillespie	Guadalupe	46	46	46	46	46	46
	County Total	3,400	3,400	3,400	3,400	3,400	3,400
Hays	Colorado	2500	2500	2500	2500	2500	2500
	County Total	2,500	2,500	2,500	2,500	2,500	2,500
Mills	Brazos	379	379	379	379	379	379
Mills	Colorado	1,005	1,005	1,005	1,005	1,005	1,005
	County Total	1,384	1,384	1,384	1,384	1,384	1,384
Travis	Brazos	8	8	8	8	8	8

Travis	Colorado	3,882	3,882	3,882	3,882	3,882	3,882
Travis	Guadalupe	33	33	33	33	33	33
	County Total	3,923	3,923	3,923	3,923	3,923	3,923
Williamson	Brazos	157	157	157	157	157	157
Williamson	Colorado	61	61	61	61	61	61
	County Total	218	218	218	218	218	218
Region K	Region Total	16,583	16,583	16,583	16,583	16,583	16,583

Note: An explanation of the numbers presented in this table is provided in Section 3.2.2.1.4 Availability.


3.2.2.1.5 Edwards-Trinity (Plateau) Aquifer

Location and Use

The Edwards-Trinity (Plateau) aquifer underlies the Edwards Plateau east of the Pecos River and the Stockton Plateau west of the Pecos River, providing water to all or parts of 38 counties. The aquifer extends from the Hill Country of Central Texas to the Trans-Pecos region of West Texas.

Groundwater use from the Edwards-Trinity aquifer within the LCRWPA is limited to Gillespie County. TWDB records indicate that the total groundwater pumpage from the Edwards-Trinity (Plateau) in the study area for 2000 was 13 ac-ft, which was used exclusively for municipal purposes. The location of the aquifer within the LCRWPA is illustrated in *Figure 3.6*.

Figure 3.6: Edwards Trinity Aquifer Within the Lower Colorado Regional Water Planning Area

The aquifer consists of saturated sediments of lower Cretaceous age Trinity Group formations and overlying limestones and dolomites of the Comanche Peak, Edwards, and Georgetown Formations. Springs issuing from the aquifer form the headwaters for the Pedernales, Llano, and San Saba Rivers.

The aquifer generally exists under water table conditions, however, where the Trinity is fully saturated and a zone of low permeability occurs near the base of the overlying Edwards, artesian conditions may exist. Reported well yields commonly range from less than 50 gal/min, where saturated thickness is thin, to more than 1,000 gal/min, in areas outside of Region K where large capacity wells are completed in jointed and cavernous limestone.

Water Quality

Natural chemical quality of Edwards-Trinity (Plateau) water ranges from fresh to slightly saline. The water is typically hard and may vary widely in concentrations of dissolved solids, composed mostly of calcium and bicarbonate. The salinity of the groundwater tends to increase toward the west. Water quality of springs issuing from the aquifer in the southern and eastern border areas is typically excellent.

Availability

There is little pumpage from the aquifer over most of its extent, and water levels have generally remained constant or have fluctuated only with seasonal precipitation. In some instances, water levels have declined as a result of increased pumpage. None of the areas supplied by groundwater from the Edwards-Trinity (Plateau) aquifer have experienced declines greater than 20 feet since 1980. The availability of the Edwards-Trinity aquifer in Gillespie County is based on the Hill Country Underground Water Conservation District Water Management Plan. The availability of the Edwards-Trinity aquifer in Blanco County has decreased to 0 ac-ft/yr, according to the Blanco-Pedernales Groundwater Conservation District. This information is presented in *Table 3.15*.

Table 3.15 Water Availability from the Edwards-Trinity Aquifer (ac-ft/yr)

County	Basin	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Blanco	Colorado	0	0	0	0	0	0
Blanco	Guadalupe	0	0	0	0	0	0
	County Total	0	0	0	0	0	0
Gillespie	Colorado	1,410	1,410	1,410	1,410	1,410	1,410
Gillespie	Guadalupe	90	90	90	90	90	90
	County Total	1,500	1,500	1,500	1,500	1,500	1,500
Region K	Region Total	1,500	1,500	1,500	1,500	1,500	1,500

Note: An explanation of the numbers presented in this table is provided in Section 3.2.2.1.5 Availability.

3.2.2.2 Minor Aquifers

The minor aquifers in the LCRWPA are the Hickory, Queen City, Sparta, Ellenburger-San Saba, Marble Falls, and Yegua-Jackson aquifers. These aquifers provide water supply to many of the cities and towns in the hill country of Central Texas, or in the case of the Sparta and Queen City aquifers, to farms, ranches, and small towns in Bastrop and Fayette Counties.

There are also WUGs in Region K that rely on alluvial aquifers for supply. These supplies are referred to as "Other Aquifer" since the actual aquifers have not been identified or named and the extent of the aquifer supply has not been determined.


3.2.2.2.1 Hickory Aquifer

Location and Use

The Hickory aquifer underlies approximately 5,000 square miles in parts of 19 counties within the Llano Uplift region of Central Texas. Discontinuous outcrops of the Hickory sandstone overlie and flank the exposed Precambrian rocks that form the central core of the Uplift. The downdip artesian portion of the aquifer encircles the Uplift and extends to maximum depths approaching 4,500 feet.

Groundwater use from the Hickory aquifer within the LCRWPA occurs in Burnet, Gillespie, Llano, San Saba, and Blanco Counties. TWDB records indicate that the total groundwater pumpage from the Hickory aquifer in the study area for 2000 was 2,443 ac-ft. Municipal uses accounted for 13 percent of the total, mining accounted for 13 percent, irrigation accounted for 55 percent, and livestock accounted for 19 percent. The location of the aquifer within the LCRWPA is illustrated in *Figure 3.7*.

Figure 3.7: Hickory Aquifer Within the Lower Colorado Regional Water Planning Area

The Hickory aquifer, like the Marble Falls and Ellenburger-San Saba aquifers, was formed by the Llano Uplift, a distinct area of the state that includes portions of 19 counties. The Hickory Sandstone member of the Cambrian Riley Formation is composed of some of the oldest sedimentary rocks found in Texas. In most of the northern and western portions of the aquifer, the Hickory Sandstone Member can be differentiated into lower, middle, and upper units, which reach a maximum thickness of 480 feet in southwestern McCulloch County just northwest of the LCRWPA. In the southern and eastern extent of the aquifer, the Hickory Sandstone Member consists of only two units, which range in thickness from about 150 to 400 feet.

The Hickory aquifer has been compartmentalized by block faulting. The vertical displacement of faults ranges from a few feet to as much as 2,000 feet. Significant lateral displacement is also associated with these faults. Throughout its extent, the thickness of the aquifer is affected by the relief of the underlying Precambrian surface. Both of these elements have contributed to the significant variability that occurs in groundwater availability, movement, quality, and productivity.

Large wells used for irrigation and municipal supply may range from 200 to 500 gal/min. Some exceptional wells have been reported to have yields in excess of 1,000 gal/min. These would typically occur outside of the LCRWPA, northwest of the Llano Uplift.

Water Quality

In general, the quality of water from the Hickory aquifer could be described as moderate to low quality. The total dissolved solids concentrations vary from 300 to 500 mg/l. In some areas the groundwater may have dissolved solids concentrations as high as 3,000 mg/l. The water may contain alpha particle and total radium concentrations that may exceed the new safe drinking water levels soon to be issued by the EPA. Radon gas may also be entrained. Most of the radioactive groundwater is thought to be produced from the middle Hickory unit, while the upper Hickory unit produces water that exceeds safe drinking water concentrations for iron. High nitrate levels may be found in the shallower portions of the aquifer where there may be interaction with surface activities such as fertilizer applications and septic systems.

Availability

The amounts of water available from the Hickory aquifer in Blanco, Gillespie, and San Saba Counties are based on the Blanco-Pedernales Groundwater Conservation District, the Hill Country UWCD, and the Hickory Underground Water Conservation District (UWCD) No. 1 Water Management Plans, respectively. Groundwater availability in Burnet County is based on information in the Central Texas GCD Water Management Plan. Groundwater availability in Llano County is the same as in the 2000 Region K Water Supply Plan which were based on information obtained from the TWDB. These projections of availability are shown in *Table 3.16* below.

Table 3.16 Water Availability from the Hickory Aquifer (ac-ft/yr)

County	Basin	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Blanco	Colorado	747	747	747	747	747	747
Blanco	Guadalupe	165	165	165	165	165	165
	County Total	912	912	912	912	912	912
Burnet	Colorado	2,148	2,148	2,148	2,148	2,148	2,148
Burnet	Brazos	0	0	0	0	0	0
	County Total	2,148	2,148	2,148	2,148	2,148	2,148
Gillespie	Colorado	1,934	1,934	1,934	1,934	1,934	1,934
Gillespie	Guadalupe	66	66	66	66	66	66
	County Total	2,000	2,000	2,000	2,000	2,000	2,000
Llano	Colorado	12,517	12,517	12,517	12,517	12,517	12,517
Mills	Brazos	1	1	1	1	1	1
Mills	Colorado	35	35	35	35	35	35
	County Total	36	36	36	36	36	36
San Saba	Colorado	6,540	6,540	6,540	6,540	6,540	6,540
Region K	Region Total	24,153	24,153	24,153	24,153	24,153	24,153

Note: An explanation of the numbers presented in this table is provided in Section 3.2.2.2.1 Availability.

3.2.2.2.2 Queen City Aquifer

Location and Use

The Queen City aquifer extends in a band across most of the State from the Frio River in South Texas northeastward into Louisiana. The southwestern boundary is placed at the Frio River because of a facies change in the formation. This facies change results in reduced amounts of poorer quality water produced from this interval southwest of the Frio River. In 2000, Bastrop and Fayette Counties are listed as using Queen City water in the study area. The reported usage for 2000 was 126 ac-ft in the TWDB records. Municipal uses accounted for 29 percent of the total, irrigation accounted for 11 percent, and livestock accounted for 60 percent. The location of the aquifer within the LCRWPA is illustrated in *Figure 3.8*.

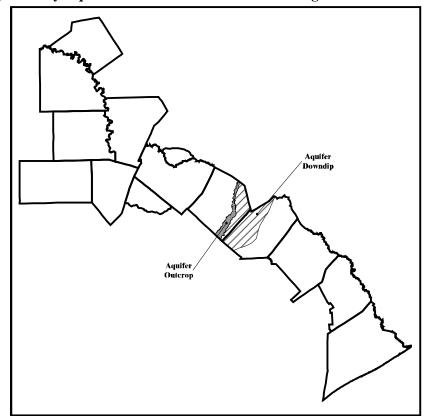


Figure 3.8: Queen City Aquifer Within the Lower Colorado Regional Water Planning Area

The Queen City aquifer is composed of sand, loosely cemented sandstone, and interbedded clay units of the Queen City Formation of the Tertiary Claiborne Group. These rocks slope downward or dip gently to the south and southeast toward the Gulf of Mexico. The total thickness of this aquifer is usually less than 500 feet in the LCRWPA. The Queen City aquifer generally parallels the Carrizo aquifer, and like the Carrizo, it has both a water table and artesian portion. Well yields are generally low with a few exceeding 400 gal/min.

Water Quality

Throughout most of the LCRWPA, the chemical quality of the Queen City aquifer water is excellent, but water quality may deteriorate fairly rapidly downdip. The water may be fairly acidic (low pH), have high iron concentrations, or contain hydrogen sulfide gas. All of these conditions are relatively easy to remedy with standard water treatment methods.

Availability

The water availability of the Queen City aquifer in Bastrop County is same as in the 2000 Region K Water Supply Plan which was based on aquifer-wide TWDB projections. The amount of water available from the Queen City aquifer in Fayette County is based on the Fayette County Groundwater Conservation

District Water Management Plan. The total supply available is distributed in proportion to the area occurring in each river basin. These projections are presented in *Table 3.17* below.

Table 3.17 Water Availability From the Queen City Aquifer (ac-ft/yr)

County	Basin	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Bastrop	Brazos	227	227	227	227	227	227
Bastrop	Colorado	2,126	2,126	2,126	2,126	2,126	2,126
Bastrop	Guadalupe	403	403	403	403	403	403
	County Total	2,756	2,756	2,756	2,756	2,756	2,756
Fayette	Colorado	1,034	1,034	1,034	1,034	1,034	1,034
Fayette	Lavaca	26	26	26	26	26	26
Fayette	Guadalupe	175	175	175	175	175	175
	County Total	1,235	1,235	1,235	1,235	1,235	1,235
Region K	Region Total	3,991	3,991	3,991	3,991	3,991	3,991

Note: An explanation of the numbers presented in this table is provided in Section 3.2.2.2.2 Availability.

3.2.2.2.3 Sparta Aquifer

Location and Use

The Sparta aquifer extends in a narrow band across the state from the Frio River in South Texas northeastward to the Louisiana border in Sabine County. The southwestern boundary is placed at the Frio River because of a facies change in the formation, which makes it difficult to delineate the boundaries of the Sparta and contiguous formations southwestward. The facies change results in reduced amounts of water and poorer quality water produced from the interval.

Groundwater use from the Sparta aquifer within the LCRWPA occurs in Bastrop and Fayette Counties. TWDB records indicate that the total groundwater pumpage from the Sparta aquifer in the study area for 2000 was 181 ac-ft. Municipal uses accounted for 41 percent of the total, irrigation accounted for 37 percent, and livestock accounted for 22 percent. The location of the aquifer within the LCRWPA is illustrated in *Figure 3.9*.

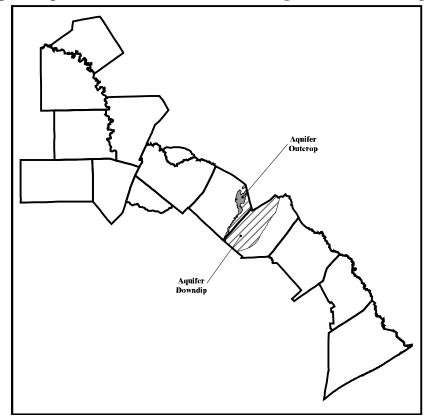


Figure 3.9: Sparta Aquifer Within the Lower Colorado Regional Water Planning Area

The Sparta Formation, like the Queen City, is part of the Claiborne Group. The aquifer consists of sand and interbedded clay with more massive sand beds in the basal section. Rocks composing the Sparta Formation also dip gently to the south and southeast toward the Gulf Coast, with a total thickness that can reach up to 300 feet. Yields of individual wells are generally low to moderate, but high capacity wells, producing 400 to 500 gal/min, are possible. The water occurs under water table conditions near the outcrop but becomes confined and is under artesian conditions downdip. Usable quality water may be recovered from as much as 2,000 feet below the surface.

Water Quality

Usable quality water is commonly found within the outcrop and for a few miles downdip. The water quality in most of this aquifer is excellent, but the quality does decrease in the downdip direction. In some areas the water can contain iron concentrations exceeding the safe drinking water standards.

Availability

The amount of water available from the Sparta aquifer in Fayette County is based on the Fayette County Groundwater Conservation District Water Management Plan. The water availability from the Sparta aquifer in Bastrop County is same as in the 2000 Region K Water Supply Plan which was based on

aquifer-wide TWDB projections. The total supply available was distributed in proportion to the area occurring in each basin. These projections are presented in *Table 3.18* below.

Table 3.18 Water Availability from the Sparta Aquifer (ac-ft/yr)

County	Basin	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Fayette	Colorado	3,667	3,667	3,667	3,667	3,667	3,667
Fayette	Lavaca	235	235	235	235	235	235
Fayette	Guadalupe	598	598	598	598	598	598
	County Total	4,500	4,500	4,500	4,500	4,500	4,500
Bastrop	Brazos	49	49	49	49	49	49
Bastrop	Colorado	5,000	5,000	5,000	5,000	5,000	5,000
Bastrop	Guadalupe	340	340	340	340	340	340
	County Total	5,389	5,389	5,389	5,389	5,389	5,389
Region K	Region Total	9,889	9,889	9,889	9,889	9,889	9,889

Note: An explanation of the numbers presented in this table is provided in Section 3.2.2.2.3, Availability.

3.2.2.2.4 Ellenburger-San Saba Aquifer

Location and Use

The Ellenburger-San Saba aquifer underlies about 4,000 square miles in parts of 15 counties in the Llano Uplift area of Central Texas. Discontinuous outcrops of the aquifer generally encircle older rocks in the core of the uplift. The remaining downdip portion contains fresh to slightly saline water to depths of approximately 3,000 feet below land surface.

Groundwater use from the Ellenburger-San Saba aquifer within the LCRWPA occurs in Blanco, Burnet, Gillespie, Llano, and San Saba Counties. TWDB records indicate that the total groundwater pumpage from the Ellenburger-San Saba in the study area for 2000 was 4,972 ac-ft. Municipal uses accounted for 74 percent of the total, irrigation accounted for 10 percent, and livestock accounted for 15 percent. The location of the aquifer within the LCRWPA is illustrated in *Figure 3.10*.

Aquifer Outcrop

Aquifer Downdip

Figure 3.10: Ellenburger-San Saba Aquifer Within the Lower Colorado Regional Water Planning Area

The Ellenburger-San Saba aquifer occurs in limestone and dolomite facies of the San Saba Member of the Wilbern Formation of the Late Cambrian Age; and in the Honeycut, Gorman, and Tanyard Formations of the Ellenburger Group. In the southeastern portion of the aquifer, these units have a combined maximum thickness of about 2,700 feet while in the northeastern portion of the aquifer and a maximum combined thickness is about 1,100 feet. In some areas where the overlying confining beds are thin or nonexistent the aquifer may be hydrologically connected to the Marble Falls aquifer.

Most of the water is under artesian conditions, even in the outcrop areas where impermeable carbonate rocks in the upper portion of the Ellenburger-San Saba function as confining layers. The aquifer is compartmentalized by block faulting with the fractures forming various sized cavities, which are the major water-bearing features.

The maximum capacity of wells used for municipal and irrigation purposes generally range from 200 to 600 gal/min. Most other wells produce less than 100 gal/min. The variable flow properties of the aquifer make it difficult to consistently obtain higher yield wells in some areas. Locations in the LCRWPA that have experienced this difficulty include the cities of Fredericksburg and Bertram.

Water Quality

Water produced from the aquifer may have dissolved concentrations that range from 200 mg/l to as high as 3,000 mg/l, but in most cases is usually less than 1,000 mg/l. The quality of water declines rapidly in the downdip direction.

Availability

The water available from the Ellenburger-San Saba aquifer in Blanco, Gillespie and San Saba Counties is based on the Blanco-Pedernales Groundwater Conservation District, the Hill Country UWCD and the Hickory Underground Water Conservation District (UWCD) No. 1 Water Management Plans respectively. Availability for the Ellenburger-San Saba aquifer in Burnet County was established by the TWDB and based on DFCs submitted by GMA 8. The DFC for Burnet Count is as follows:

• Maintain approximately 100 percent of the saturated thickness after 50 years by using approximately 80 percent of the estimated recharge.

The groundwater availability for Llano County is the same as in the 2000 Region K Water Supply Plan, which was based on the TWDB projections. GIS was used to apportion areas, which were then applied to separate the quantity available in the different river basins. The total supply available was distributed in proportion to the area occurring in each basin. These projections are shown in *Table 3.19* below.

Table 3.19 Water Availability from the Ellenburger-San Saba Aquifer (ac-ft/yr)

County	Basin	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Blanco	Colorado	2,849	2,849	2,849	2,849	2,849	2,849
Blanco	Guadalupe	1,025	1,025	1,025	1,025	1,025	1,025
	County Total	3,874	3,874	3,874	3,874	3,874	3,874
Burnet	Brazos	123	123	123	123	123	123
Burnet	Colorado	5,403	5,403	5,403	5,403	5,403	5,403
	County Total	5,526	5,526	5,526	5,526	5,526	5,526
Gillespie	Colorado	5,535	5,535	5,535	5,535	5,535	5,535
Gillespie	Guadalupe	65	65	65	65	65	65
	County Total	5,600	5,600	5,600	5,600	5,600	5,600
Llano	Colorado	758	758	758	758	758	758
Mills	Brazos	5	5	5	5	5	5
Mills	Colorado	494	494	494	494	494	494
	County Total	499	499	499	499	499	499
San Saba	Colorado	10,194	10,194	10,194	10,194	10,194	10,194
Region K	Region Total	26,451	26,451	26,451	26,451	26,451	26,451

Note: An explanation of the numbers presented in this table is provided in Section 3.2.2.2.4 Availability.

3.2.2.2.5 Marble Falls Aquifer

Location and Use

The Marble Falls aquifer occurs in several separated outcrops, primarily along the northern and eastern flanks of the Llano Uplift region of Central Texas. The downdip portion of the aquifer is of unknown extent.

Groundwater use from the Marble Falls aquifer within the LCRWPA occurs in Burnet and San Saba Counties. TWDB records indicate that the total groundwater pumpage from the Marble Falls in the study area for 2000 was 1,505 ac-ft. Municipal uses accounted for 76 percent of the total, manufacturing accounted for 2 percent, irrigation accounted for 6 percent, and livestock accounted for 16 percent. The location of the aquifer within the LCRWPA is illustrated in *Figure 3.11*.

Aquifer Outcrop

Figure 3.11: Marble Falls Aquifer Within the Lower Colorado Regional Water Planning Area

Hydrogeology

This aquifer occurs in the fractures, solution cavities, and channels of the limestone rocks of the Marble Falls Formation of the Pennsylvanian Bend Group. The maximum thickness of the formation is 600 feet. Numerous large springs discharge from the aquifer and provide a significant portion of the baseflow of the San Saba River in McCulloch and San Saba Counties; and to the Colorado River in San Saba and

Lampasas Counties. The aquifer contributes flow to the San Saba springs, which is the source of drinking water for the City of San Saba. In some areas where the confining layers are thin or nonexistent, the Marble Falls aquifer may be hydrologically connected to the San Saba-Ellenburger aquifer. Some wells have been known to produce as much as 2,000 gal/min; however, most wells produce at rates significantly less than this amount.

Water Quality

The water produced from this aquifer is suitable for most purposes, but some wells in Blanco County have produced water with high nitrate concentrations. The downdip portion of the aquifer is not extensive, but in these areas the water becomes highly mineralized. Because the limestone formation comprising this aquifer is relatively shallow, it is susceptible to pollution by surface uses and activities.

Availability

The water available from the Marble Falls aquifer in Blanco and San Saba Counties is based on the Blanco-Pedernales Groundwater Conservation District and the Hickory Underground Water Conservation District (UWCD) No. 1 Water Management Plans respectively. Groundwater availability for the Marble Falls aquifer in Burnet County was established by the TWDB and based on DFCs submitted by GMA 8. The DFC for Burnet Count is as follows:

• Maintain approximately 100 percent of the saturated thickness after 50 years by using approximately 80 percent of the estimated recharge.

These projections are shown in *Table 3.20* below.

Table 3.20 Water Availability from the Marble Falls Aquifer (ac-ft/yr)

County	Basin	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Blanco	Colorado	300	300	300	300	300	300
Burnet	Brazos	93	93	93	93	93	93
Burnet	Colorado	1,885	1,885	1,885	1,885	1,885	1,885
	County Total	1,978	1,978	1,978	1,978	1,978	1,978
San Saba	Colorado	12,380	12,380	12,380	12,380	12,380	12,380
Region K	Region Total	14,658	14,658	14,658	14,658	14,658	14,658

Note: An explanation of the numbers presented in this table is provided in Section 3.2.2.2.5 Availability.

3.2.2.2.6 Yegua-Jackson Aquifer

Location and Use

The Yequa-Jackson Aquifer extends in a narrow band from the Rio Grande Valley across the state to the Sabine River and Louisiana. It covers 10,904 square miles and exists within 34 counties.

The Yegua-Jackson Aquifer includes water bearing parts of the Yegua Formation and the Jackson Group. Within the LCRWPA, the Yegua Formation outcrops in Fayette County in a band approximately four to eight miles wide along the Bastrop-Fayette County line. The formation downdips at a rate of 150 feet per mile, and reaches its deepest depth of 2,800 feet below mean sea level along the Fayette-Lavaca County line. The yields of most wells in the Yegua-Jackson are generally small, ranging from less than 50

gallons per minute to over 300 gallons per minute. Groundwater use in Fayette County is primarily by rural landowners for domestic and livestock water supply.

The Jackson Group Formation outcrops in Fayette County within the LCRWPA in a band approximately three to eight miles wide along the northeasterly line from Flatonia to La Grange. The formation dips within Fayette County at a rate of approximately 150 feet per mile, and reaches its deepest depth of 2,200 feet below mean sea level near Fayetteville. Groundwater from the Jackson Group in Fayette County is used by the cities of Ledbetter, Flatonia, and Schulenburg as well as rural property owners.

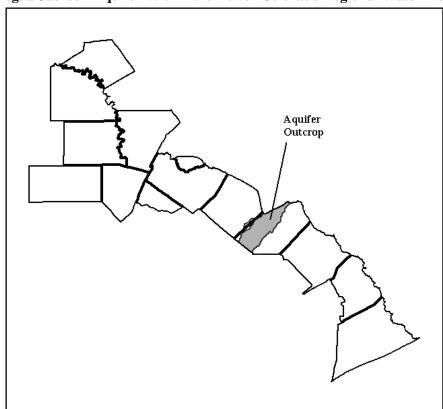


Figure 3.12: Yegua-Jackson Aquifer Within the Lower Colorado Regional Water Planning Area

Hydrogeology

The Yegua-Jackson Aquifer's geologic units consist of complexly interbedded sand, silt, and clay layers originally deposited as fluvial and deltaic sediments. Most groundwater is produced from the sand units of the aquifer with the more significant productivity occurring in areas of more extensive fluvial channel sands and thick deltaic sands. Usable quality groundwater is generally limited to sands in the outcrop or slightly downdip. Net freshwater sands are generally less than 200 feet deep at any location within the aquifer.

Water Quality

Where the thicker, more extensive sand layers occur in the outcrop and slightly downdip, significant amounts of fresh to slightly saline water is available. Water quality varies greatly within the aquifer, and shallow occurrences of poor-quality water are not uncommon. The chemical quality of the groundwater is variable due to the variability of the composition of the sediments that make up the aquifer and the variability of how easily water moves through the aquifer. In all areas the aquifer becomes highly mineralized downdip.

Availability

The water available from the Yegua-Jackson aquifer in Fayette County is based on information provided by the Fayette County Groundwater Conservation District. These projections are shown in *Table 3.20* below.

Table 3.21 Water Availability from the Yegua-Jackson Aquifer (ac-ft/yr)

County	Basin	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Fayette	Colorado	17,000	17,000	17,000	17,000	17,000	17,000
Fayette	Guadalupe	2,700	2,700	2,700	2,700	2,700	2,700
Fayette	Lavaca	300	300	300	300	300	300
	County Total	20,000	20,000	20,000	20,000	20,000	20,000
Region K	Region Total	20,000	20,000	20,000	20,000	20,000	20,000

Note: An explanation of the numbers presented in this table is provided in Section 3.2.2.2.6 Availability.

3.2.2.2.7 Other Aquifer

Other Aquifer refers to alluvial aquifer water supplies that have not been identified, named, or studied. These alluvial aquifers are being used by a few WUGs in Region K as supply sources. The most likely source of these Other Aquifer supplies in Region K is the Colorado River Alluvium and related terrace deposits. Other Aquifer supplies were only considered for counties where WUGs specifically list alluvial aquifer type supplies as a source or where municipal or industrial WUGs could potentially utilize these alluvial supplies. Other Aquifer supplies were not considered for counties which had already established availability based on total groundwater usage and where there was not significant usage of Other Aquifer water occurring currently. The TCEQ Water Utility Database was used to determine the well capacities and productions for these Other Aquifer supplies when information was available.

The availability of Other Aquifer supplies was estimated based on annual recharge estimates for the county. The annual recharge estimate is based on a GIS (Geographically Information Systems) calculation of the area in each county of the Colorado River alluvium and related terrace deposits and an assumptive rate of recharge of 1.5 percent of average annual precipitation.

For Llano County, the Other Aquifer supplies are based on TCEQ production data. For Travis County, the Other Aquifer availability estimate was almost the same as the supply estimate based upon WUG data, therefore, the Other Aquifer availability is based on the WUG data. *Table 3.22* contains a summary of the Other Aquifer sources available to the LCRWPA.

Table 3.22 Water Availability from Other Aquifer (ac-ft/yr)

County	Basin	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Bastrop	Colorado	5,340	5,340	5,340	5,340	5,340	5,340
	County Total	5,340	5,340	5,340	5,340	5,340	5,340
Burnet	Colorado	305	305	305	305	305	305
	County Total	305	305	305	305	305	305
Colorado	Colorado	4,269	4,269	4,269	4,269	4,269	4,269
	County Total	4,269	4,269	4,269	4,269	4,269	4,269
Fayette	Colorado	3,696	3,696	3,696	3,696	3,696	3,696
	County Total	3,696	3,696	3,696	3,696	3,696	3,696
Llano	Colorado	109	109	109	109	109	109
	County Total	109	109	109	109	109	109
Travis	Colorado	1,818	1,835	1,848	1,853	1,856	1,860
Travis	Guadalupe	25	30	34	37	40	43
	County Total	1,843	1,865	1,882	1,890	1,896	1,903
Region K	Region Total	15,562	15,584	15,601	15,609	15,615	15,622

Note: An explanation of the numbers presented in this table is provided in Section 3.2.2.2.6.

3.2.3 Regional Water Availability Summary

The TWDB guidelines for regional water planning process require that a summary of the water sources available to the region be presented. The table, *Region K Current Water Availability Sources*, is presented in the *Appendix 3C*. This information is presented graphically in *Figure 3.13* and is summarized in *Table 3.23*. As indicated, under current conditions, a total of approximately 1.3 million ac-ft of water is available annually to the LCRWPA under DOR conditions. Of this amount, approximately 72 percent is from surface water sources and 28 percent is from groundwater sources.

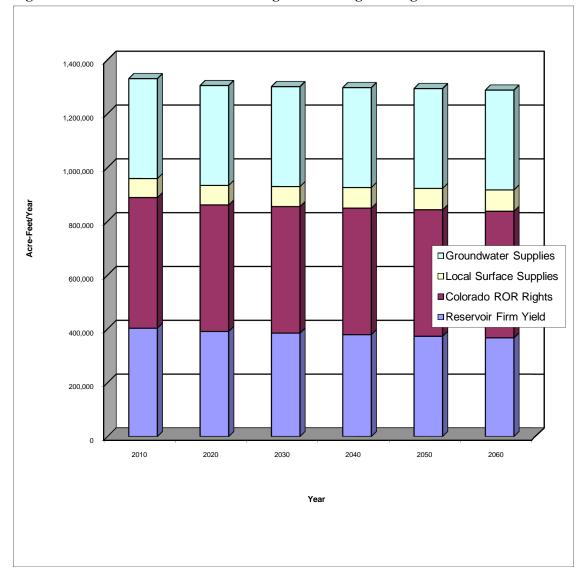


Figure 3.13: Total Water Available to Region K During a Drought of Record

Appendix 3D contains a comparison of the total water available to Region K in the 2006 Plan and in the current Plan.

Table 3.23 Total Water Available to the Lower Colorado Regional Planning Area During a

Drought of Record (ac-ft/vr)

Drought of Record (ac-myr)					
Water Source	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
City of Austin - ROR Municipal ¹	212,590	204,466	204,466	204,466	204,466	204,479
City of Austin - ROR Steam Electric ¹	8,420	8,420	8,420	8,420	8,420	8,420
LCRA - Garwood ROR	130,141	130,141	130,141	130,141	130,141	130,141
LCRA - Gulf Coast ROR	44,827	43,540	43,540	43,540	43,540	43,540
LCRA - Lakeside #1 ROR	12,531	12,498	12,498	12,498	12,498	12,498
LCRA - Lakeside #2 ROR	10,440	10,440	10,440	10,440	10,440	10,440
LCRA - Pierce Ranch ROR	14,116	14,173	14,173	14,173	14,173	14,173
STP Nuclear Operating Co. ROR	51,857	46,072	46,072	46,072	46,072	46,072
San Bernard ROR	665	597	597	597	597	597
Highland Lakes ²	402,172	390,001	384,001	378,101	372,201	366,468
Goldthwaite Reservoir	0	0	0	0	0	0
Llano Reservoir	0	0	0	0	0	0
Blanco Reservoir	596	596	596	596	596	596
Irrigation Local Supply	40,663	40,663	40,663	40,663	40,663	40,663
Livestock Local Supply ³	8,458	8,458	8,458	8,458	8,458	8,458
Other Local Supply	20,978	22,636	24,510	26,727	29,370	29,370
Carrizo-Wilcox Aquifer	28,400	28,400	28,400	28,400	28,400	28,400
Edwards Aquifer BFZ	9,496	9,496	9,496	9,496	9,496	9,496
Edwards-Trinity Aquifer (Plateau)	1,500	1,500	1,500	1,500	1,500	1,500
Ellenburger-San Saba Aquifer	26,451	26,451	26,451	26,451	26,451	26,451
Gulf Coast Aquifer	198,425	198,425	198,425	198,425	198,425	198,425
Hickory Aquifer	24,153	24,153	24,153	24,153	24,153	24,153
Marble Falls Aquifer	14,658	14,658	14,658	14,658	14,658	14,658
Queen City Aquifer	3,991	3,991	3,991	3,991	3,991	3,991
Sparta Aquifer	9,889	9,889	9,889	9,889	9,889	9,889
Trinity Aquifer	17,600	17,600	17,598	17,598	17,311	17,311
Yegua-Jackson Aquifer	20,000	20,000	20,000	20,000	20,000	20,000
Other Aquifer	15,562	15,584	15,601	15,609	15,615	15,622
Sources Outside the Region ⁴	3,136	3,231	3,327	3,422	3,523	3,642
Region K Totals	1,331,715	1,306,079	1,302,064	1,298,484	1,295,047	1,289,453

Notes: Downstream water availability does not include return flows.

The water availability numbers in this table reflect water that is physically present in the region. This does not necessarily mean that this water is available to WUGs for immediate use as defined in Table 3.30. Groundwater availabilities are discussed in Section 3.2.2.

¹ Refer to *Table 3.3* and *Table 3.26* for a breakdown of what is included in the COA ROR rights.

² Refer to *Table 3.1* for a detailed breakdown of the Highland Lakes.

³ Local Supply Sources are presented in *Tables 3.4, 3.5, 3.6, 3.7, 3.8*, and 3.9.

⁴ Includes Lake Brownwood, Brazos River Authority System, Edwards-BFZ Aquifer, and Canyon Lake Reservoir

3.3 WHOLESALE WATER PROVIDERS

The RWPGs are required to prepare estimates of the water available to the Wholesale Water Providers within each region. The LCRWPG has identified two Wholesale Water Providers, the LCRA, and the City of Austin. The water supplies available to these two entities are discussed in the following sections.

3.3.1 LCRA Water Availability

The LCRA has acquired the rights to significant quantities of water within the LCRWPA. The majority of water that is available to LCRA during a repeat of the drought of record is associated with the Highland Lakes System. However, the LCRA also has two additional smaller reservoirs that it operates in association with two power generating facilities (Fayette Power Project and Sim Gideon/Lost Pines Power Park). In addition, the LCRA has acquired many of the senior rights for irrigation water in the lower basin. *Table 3.24* contains a summary of the water that is available to the LCRA.

Table 3.24 Total Water Available to the Lower Colorado River Authority (ac-ft/yr)

Water Rights Holder	Water Availability During Drought of Record ¹								
Water ragins from	2010	2020	2030	2040	2050	2060			
LCRA - Garwood	130,141	130,141	130,141	130,141	130,141	130,141			
LCRA - Gulf Coast	44,827	43,540	43,540	43,540	43,540	43,540			
LCRA - Lakeside #1	12,531	12,498	12,498	12,498	12,498	12,498			
LCRA - Lakeside #2	10,440	10,440	10,440	10,440	10,440	10,440			
LCRA - Pierce Ranch	14,116	14,173	14,173	14,173	14,173	14,173			
LCRA - Highland Lakes	402,172	390,001	384,001	378,101	372,201	366,468			
Totals	614,227	600,793	594,793	588,893	582,993	577,260			

Data Source: Colorado WAM provided by TCEQ, August 2007, Run 3. WRAP program by Dr. Ralph Wurbs, Texas A&M University, January 2009

Note: Downstream water availability does not include return flows.

The LCRA makes the majority of this water available to other entities for final consumption through water sales contracts. The majority of these water sales contracts are for stored water from the Highland Lakes System. In addition, the LCRA operates three irrigation divisions (Lakeside, Garwood and Gulf Coast) in the lower basin. These divisions provide irrigation water, subject to interruption, for rice production in Colorado, Wharton, and Matagorda Counties. *Table 3.25* contains a summary of current LCRA water supply commitments, including rice irrigation, by Water User Groups.

Table 3.25 LCRA Water Commitment Summary (ac-ft/yr)

			• `				
County/WUG	Basin	2010	2020	2030	2040	2050	2060
Bastrop County							
County-Other	Colorado	1,634	1,634	1,634	1,634	1,634	1,634
Steam Electric	Colorado	16,720	16,720	16,720	16,720	16,720	16,720
Burnet County							
Burnet	Colorado	4,100	4,100	4,100	4,100	4,100	4,100
Cottonwood Shores	Colorado	138	138	138	138	138	138

¹ The firm yield determinations for the irrigation ROR rights are discussed in Section 3.2.1.1.3 and are presented in *Table 3.3*. The Highland Lakes firm yield determination is discussed in Section 3.2.1.1.1 and is presented in *Tables 3.1*.

Table 3.25 LCRA Water Commitment Summary (ac-ft/yr) (Continued)

County/WUG	Basin	2010	2020	2030	2040	2050	2060
Granite Shoals	Colorado	830	830	830	830	830	830
Lake LBJ MUD	Colorado	1,789	1,789	1,789	1,789	1,789	1,789
Marble Falls	Colorado	3,000	3,000	3,000	3,000	3,000	3,000
Meadowlakes	Colorado	75	75	75	75	75	75
County-Other	Colorado	3,265	3,265	3,265	3,265	3,265	3,265
Manufacturing	Colorado	500	500	500	500	500	500
Colorado County		Į.	1	1			
Irrigation ¹	Colorado	150,617	144,349	138,285	132,416	126,710	121,247
Fayette County							
County-Other	Colorado	102	102	102	102	102	102
Steam Electric (LCRA)	Colorado	38,101	38,101	38,101	38,101	38,101	38,101
Steam Electric (COA)	Colorado	3,500	3,500	3,500	3,500	3,500	3,500
Gillespie County							
County-Other	Colorado	56	56	56	56	56	56
Hays County							
Dripping Springs	Colorado	506	506	506	506	506	506
Dripping Springs WSC	Colorado	560	560	560	560	560	560
County-Other	Colorado	1,425	1,425	1,425	1,425	1,425	1,425
Lampasas County (Regio							
Lometa	Colorado	882	882	882	882	882	882
Llano County							
Kingsland WSC	Colorado	500	500	500	500	500	500
Llano	Colorado	87	87	87	87	87	87
Sunrise Beach Village ²	Colorado	278	278	278	278	278	278
County-Other	Colorado	2,222	2,222	2,222	2,222	2,222	2,222
Steam Electric ³	Colorado	15,700	15,700	15,700	15,700	15,700	15,700
Matagorda County				1			
Manufacturing	Brazos-	7.420	7.420	7.420	7, 120	7, 120	7, 100
	Colorado	7,438	7,438	7,438	7,438	7,438	7,438
Manufacturing	Colorado	6,784	6,784	6,784	6,784	6,784	6,784
Irrigation ⁴	Colorado	167,952	161,883	156,037	150,437	145,048	139,853
Steam Electric ⁵	Colorado	27,507	32,480	32,480	32,480	32,480	32,360
San Saba County							
County-Other	Colorado	20	20	20	20	20	20
TT 01 10 . T					~ 1 1 ~		

The Colorado County Irrigation commitment is estimated at 75 percent of the total Colorado County Irrigation demand and includes both supplies from LCRA ROR water rights and supplemental interruptible stored water from the Highland Lakes on an annual contract basis.

² The value for Sunrise Beach Village was estimated based upon TCEQ maximum production capacity for system.

³ The Llano Steam Electric value is based on the authorized annual amount in the water right used by the Ferguson Power Plant instead of the 15,000 ac-ft/yr, which LCRA has in the 1999 WMP.

⁴ The Matagorda Irrigation commitment is estimated at 87 percent of the Matagorda County Irrigation demand and includes both supplies from LCRA ROR water rights and supplemental interruptible stored water from the Highland Lakes on an annual contract basis.

⁵ The Matagorda Steam Electric value is based on the Region K Cutoff Model Model for the average annual amount of LCRA backup supplies needed to supplement the STPNOC/LCRA water right

Table 3.25 LCRA Water Commitment Summary (ac-ft/yr) (Continued)

County/WUG	Basin	2010	2020	2030	2040	2050	2060
Travis County							
Austin - Municipal ⁶	Colorado	112,410	120,534	120,534	120,534	120,534	120,521
Austin - Steam Electric ⁷	Colorado	15,174	15,174	15,174	15,174	15,174	15,174
Barton Creek West WSC	Colorado	348	348	348	348	348	348
Bee Cave Village	Colorado	241	241	241	241	241	241
Briar Cliff Village	Colorado	300	300	300	300	300	300
Cedar Park ⁸	Colorado	670	772	866	925	988	1,052
The Hills	Colorado	1,600	1,600	1,600	1,600	1,600	1,600
Jonestown WSC	Colorado	460	460	460	460	460	460
Lago Vista	Colorado	6,500	6,500	6,500	6,500	6,500	6,500
Lakeway MUD	Colorado	3,069	3,069	3,069	3,069	3,069	3,069
Loop 360 WSC	Colorado	1,250	1,250	1,250	1,250	1,250	1,250
Pflugerville	Colorado	12,000	12,000	12,000	12,000	12,000	12,000
River Place on Lake Austin	Colorado	900	900	900	900	900	900
Travis County WCID #17	Colorado	9,354	9,354	9,354	9,354	9,354	9,354
Travis County WCID #18	Colorado	1,400	1,400	1,400	1,400	1,400	1,400
Travis County WCID #20	Colorado	1,135	1,135	1,135	1,135	1,135	1,135
West Travis County Regional WS ⁹	Colorado	9,101	9,101	9,101	9,101	9,101	9,101
Williamson-Travis County MUD #1	Colorado	482	482	482	482	482	482
County-Other 10	Colorado	19,548	19,548	19,548	19,548	19,548	19,548
Manufacturing	Colorado	526	526	526	526	526	526
Williamson County (Region	on G)						
Cedar Park ⁸	Brazos	18,065	17,963	17,869	17,810	17,747	17,683
Leander	Brazos	24,000	24,000	24,000	24,000	24,000	24,000
County-Other	Brazos	25,000	25,000	25,000	25,000	15,000	25,000
Wharton County							
Irrigation 11	Colorado	100,642	97,043	93,570	90,224	86,997	74,751
TOTAL		819,981	817,142		786,944	772,622	739,585

⁶ The Austin-Municipal value is based on the Region K Cutoff Model for the amount of LCRA backup supplies needed to supplement Austin's municipal water rights.

In general, the municipal and manufacturing commitments listed in the table above are considered firm commitments for water, while the water provided by LCRA to irrigation users is on an interruptible supply basis. Based on the LCRA Water Management Plan, the LCRA will release water from storage on

⁷ The Austin-Steam Electric value is based on the Region K Cutoff for the amount of LCRA backup supplies needed to supplement Austin's steam-electric water rights.

⁸Cedar Park is located in both Region K and Region G, and it serves Williamson-Travis Counties MUD #1 (WUG).

⁹ West Travis County Regional WS is composed of multiple water user groups including the Village of Bee Cave, Barton Creek West WSC, and Hill Country WSC.

¹⁰ Travis County-Other contains Travis County MUD District #4 who serves Travis County WCID #19 (WUG).

¹¹ The Wharton Irrigation commitment is estimated at 55 percent of the total Wharton County Irrigation demand and includes both supplies from LCRA ROR water rights and supplemental interruptible stored water from the Highland Lakes on an annual contract basis.

an interruptible basis when the levels in the Highland Lakes are above a prescribed level at the beginning of the year. During drought conditions, this water may not be available for users or is available in limited quantities. Therefore, in accordance with the TWDB guidance, interruptible water supplied by LCRA is not being considered as a "currently available water supply." The actual availability of this water will be addressed in Chapter 4 discussing management strategies to meet identified water shortages.

3.3.2 City of Austin Water Availability

The City of Austin has run-of-river water rights to divert and use water from the Colorado River. Hydrologic conditions are such that Austin's full authorized diversion amount of water is not available to Austin under these water rights. As a result, the City of Austin has entered into a contract with LCRA to firm up these water rights with water stored in the Highland Lakes. Table 3.26 contains a summary of the water available to the City of Austin.

Table 3.26 City of Austin Water Availability (ac-ft/vr)

Water Source	Water	Water	Water Availability During Drought of Record (Ac-Ft/Yr)						
(Water Right ID Numbers)	Rights Holder	Supply Source	2010	2020	2030	2040	2050	2060	
61405471005SMRR	COA 1	ROR- Municipal	148,431	143,846	143,846	143,846	143,846	143,859	
61405471005SBU	COA 1	ROR- Municipal	49,845	48,034	48,034	48,034	48,034	48,034	
61405471005LMRR	COA ²	ROR- Municipal	9,949	8,413	8,413	8,413	8,413	8,413	
61405489003M COA ³ ROR-Municipal		4,365	4,173	4,173	4,173	4,173	4,173		
Municipal	ROR Subtota	1	212,590	204,466	204,466	204,466	204,466	204,479	
61405471005RMBU	COA backup (LCRA) ¹	Highland Lakes	51,724	58,120	58,120	58,120	58,120	58,107	
61405471005LMBU	COA backup (LCRA) ²	Highland Lakes	11,459	12,996	12,996	12,996	12,996	12,996	
61405489003MBU	COA backup (LCRA) ³	Highland Lakes	15,935	16,781	16,127	16,127	16,127	16,781	
Remaining Contract	LCRA Contract	Highland Lakes	33,291	32,637	33,291	33,291	33,291	32,637	
LCRA	A Subtotal		112,410	120,534	120,534	120,534	120,534	120,521	
Municipal & M	anufacturing	g Total	325,000	325,000	325,000	325,000	325,000	325,000	

These two City of Austin ROR Rights and the LCRA backup total 250,000 ac-ft/vr.

² The City of Austin ROR Right and the LCRA backup total 21,403 ac-ft/yr.
³ The City of Austin ROR Right and the LCRA backup total 20,300 ac-ft/yr.

Table 3.26 City of Austin Water Availability (ac-ft/yr) (Continued)

Water Source	Water	Water		Availability	During D	rought of I	Record (Ac	-Ft/Yr)
(Water Right ID Numbers)	Rights Holder		2010	2020	2030	2040	2050	2060
61405471001P (Lady Bird Lake)	COA	ROR-SE ⁴	6,171	6,171	6,171	6,171	6,171	6,171
61405471002P (FPP)	COA	ROR-SE	1,267	1,267	1,267	1,267	1,267	1,267
61405489003P (Decker)	COA	ROR-SE	0	0	0	0	0	0
61405489003PBU (Decker)	COA ⁵	ROR-SE	982	982	982	982	982	982
Steam Electr	ric ROR Subto	otal	8,420	8,420	8,420	8,420	8,420	8,420
Decker Contract	LCRA Contract ⁵	Highland Lakes	15,174	15,174	15,174	15,174	15,174	15,174
FPP & Sandhill Contract	LCRA Contract	Highland Lakes	3,500	3,500	3,500	3,500	3,500	3,500
LCRA Steam	Electric Subt	otal	18,674	18,674	18,674	18,674	18,674	18,674
				I.	I.			
Steam E	Steam Electric Total			27,094	27,094	27,094	27,094	27,094
TOTAL (Municipal & Manufacturing + Stream Electric)			352,094	352,094	352,094	352,094	352,094	352,094

The City of Austin provides treated water to customers within its service area. In addition, the City has contracts to provide treated water on a wholesale basis to utility districts and cities in surrounding areas. Table 3.27 contains a summary of the City of Austin water commitments.

⁴ ROR–SE stands for Run-of-River Steam Electric right.
⁵ The Decker ROR right and the LCRA contract total 16,156 ac-ft/yr

Table 3.27 City of Austin Water Commitment Summary (ac-ft/yr)

Water User Groups (WUGs)	County	Basin	2010	2020	2030	2040	2050	2060
Austin	Travis	Colorado	150,180	179,861	212,133	241,074	271,296	293,095
County-Other ¹ (COA Retail portion)	Travis	Colorado	4,477	4,649	4,243	4,104	4,268	4,656
Manufacturing ¹ (COA portion)	Travis	Colorado	22,309	27,601	38,149	49,790	57,010	63,959
Creedmoor-Maha WSC ¹	Travis	Colorado	596					
Creedmoor-Maha WSC ¹	Travis	Guadalupe	16					
Lost Creek MUD	Travis	Colorado	935	921	906	891	882	882
Manor ¹	Travis	Colorado	1,680					
Manville WSC ¹	Travis	Colorado	2,240	2,240				
North Austin MUD#1	Travis	Colorado	109	107	106	103	102	102
Rollingwood	Travis	Colorado	377					
San Leanna	Travis	Colorado	100					
Shady Hollow MUD	Travis	Colorado	747	731	716	700	694	694
Wells Branch MUD	Travis	Colorado	1,508	1,490	1,472	1,444	1,435	1,435
West Lake Hills	Travis	Colorado	1,605					
Windermere Utility ¹	Travis	Colorado	2,157					
Austin	Williamson	Brazos	5,457	7,398	9,691	12,161	14,834	17,693
County-Other (All COA Retail)	Williamson	Brazos	2,401	2,729	3,118	3,536	3,989	4,469
North Austin MUD#1	Williamson	Brazos	983	968	952	928	920	920
Total			197,877	228,695	271,486	314,731	355,430	387,905
Steam-Electric ²	Fayette ³	Colorado	14,222	14,302	17,602	25,739	25,739	31,649
Steam-Electric ²	Travis	Colorado	17,500	18,500	22,500	23,500	27,500	28,500
Total			31,722	32,802	40,102	49,239	53,239	60,149

These WUGs are also served by other entities.

3.4 WATER SUPPLIES AVAILABLE TO WATER USER GROUPS

Estimates of the total available supply of water within the LCRWPA during a repeat of the drought of record conditions are presented in Section 3.2. However, the availability of this water to each of the water user groups is dependent upon the WUG's location and the infrastructure capacity or permits/contracts that are in place to move the water where it is needed. The following sections discuss the currently available water supplies for each of the water user groups within the LCRWPA. The water supply amounts presented in this section are a total of permitted/contracted amount and/or infrastructure capacity for each WUG in LCRWPA. The amount presented in Section 3.2 (*Table 3.24*) is the total water available for LCRWPA established through modeling effort or regulatory limit.

² COA's portion of the STPNOC demand is included in the STPNOC total steam-electric demand in Matagorda County.

³ COA portion - based on estimated current supply levels and approved projections.

The amount of total water supply available to the WUGs in Region K is less than the total available water to the region presented in *Table 3.24*, since the water supply for the WUGs is limited by current supplies owned or controlled by each WUG, location relative to the source, and infrastructure limitations. There is water available in Region K that is not currently being used by WUGs because they do not have the needs right now, or they do not have the means to utilize the source at this time. The following sections present the amount of water supply that is currently available to the WUGs (current permits/contracts and infrastructure capacities).

3.4.1 Surface Water Supplies Available to Water User Groups

As previously stated, there are three primary categories of surface water to be considered. The three categories include water stored in reservoirs, run-of-river water rights, and local surface water supplies. The surface water supplies are available to the water user groups in a variety of methods. Many users of water throughout the basin have contracts with one of the two designated Wholesale Water Providers within the Region. Other users of surface water generally obtain water from small reservoirs or from other local sources such as stock ponds. Surface water information was also obtained from the TCEQ Water Utility Database (plant production capacities). If better information was not available the values determined in the 2001 LCRWPG Region K Water Plan were utilized.

Information concerning the available surface water supply for each county within the LCRWPA is presented in *Table 3.28*. Detailed information concerning water supply availability for individual WUGs is presented in *Appendix 3C* in the table *Region K Water Supply Table (by WUG and water source)*.

1010 0120 04	or sur	iuce viutei i	supply to m	e ds by cou	ity (ac 16/j1)	
County	2010 Supply	2020 Supply	2030 Supply	2040 Supply	2050 Supply	2060 Supply
Bastrop	20,017	20,015	20,014	20,014	20,016	20,016
Blanco	1,638	1,719	1,796	1,861	1,929	2,008
Burnet	16,006	16,231	16,461	16,678	16,958	17,057
Colorado	133,871	134,791	135,911	137,318	138,998	138,998
Fayette	45,866	45,866	45,866	45,866	45,866	45,866
Gillespie	1,622	1,622	1,622	1,622	1,622	1,622
Hays	5,964	6,786	7,064	7,333	7,666	7,928
Llano	21,055	21,020	20,987	20,956	20,925	20,889
Matagorda	147,759	145,660	145,660	145,660	145,660	145,540
Mills	2,702	2,702	2,700	2,700	2,700	2,699
San Saba	9,044	9,044	9,044	9,044	9,044	9,044
Travis	413,198	411,311	410,195	407,778	405,148	401,660
Wharton	65,507	65,489	65,536	65,587	65,643	65,643

Table 3.28 Summary of Surface Water Supply to WUGs by County (ac-ft/yr)

Note: The supplies presented in this table are supplies currently available to the WUGs (current contracts and infrastructure capacities). Surface water availability excludes City of Austin return flows.

13,761

896,617

16,625

899,042

19,743

901,918

3.4.2 Groundwater Supplies Available to Water User Groups

11,095

893,351

8,841

893,090

Groundwater supplies were allocated to the various WUGs within the LCRWPA using data from various sources. Information provided by the water user group was entered when available. Permit information was entered for various groundwater conservation districts, and supplies were estimated based upon the

Williamson

TCEQ Water Utility Database information (well production capacities). If better information was not available the values determined in the 2001 LCRWPG Region K Water Plan were utilized.

Methodology for the 2001 LCRWPG Region K Water Plan:

The primary source of information is data from the 1997 State Water Plan provided by the TWDB, which shows projected user demands and projected user allocations for the LCRWPA. Most of the groundwater users are found in the TWDB allocation tables; however, additional users are included based on information provided in the TWDB demand tables and the demand projections provided in Chapter 2 of the 2001 LCRWPG Region K Water Plan. The TWDB allocation tables provided data in the form of an allocation percent or allocation limit for each user. To estimate the projected supply of water available to each user from the applicable water sources, the percent allocation value was applied to the amount of available water. The following are exceptions to that methodology:

- When the allocation table provided an estimate representing the limit in ac-ft/year of water available to a user, that number was used for the allocation;
- When a user was not included in the allocation tables but was listed in the demand projections, the values from the projected demand tables were used to represent the supply available to that user;
- When a user was not included in the allocation tables or in the demand projections, but listed in the TWDB demand tables, the values from the demand tables were used to represent the supply available to that user;
- When the TWDB allocation for a user was given as 100 percent of the water available from the associated water source, the resulting value (1.00 x available water from Section 3.2.2 of the 2001 LCRWPG Region K Water Plan) was reduced by the sum of the supply values listed for other users also drawing from a particular groundwater supply. Example: User "C" is allocated 100 percent of the supply from a particular aquifer. User "A" is allocated an amount "N" from this aquifer and user "B" is allocated an amount "M" also from this aquifer. The total amount available from this aquifer is "Q." Therefore, the availability for the water user is C = Q N M.
- When available, results for municipalities were compared with information provided in the 1990 TWDB Facility Plan Summaries. Additionally, users were contacted individually to confirm their current maximum sustainable groundwater supply capacity and the supply estimates were adjusted where appropriate.

Information concerning the available groundwater supply for each county within the LCRWPA is presented in *Table 3.29*. Detailed information concerning water supply availability for individual WUGs is presented in *Appendix 3C* in the table *Region K Water Supply Table (by WUG and water source)*.

Table 3.29 Summary of Groundwater Supply to WUGs by County (ac-ft/yr)

				=		
County	2010 Supply	2020 Supply	2030 Supply	2040 Supply	2050 Supply	2060 Supply
Bastrop	26,485	26,168	25,814	24,865	24,974	24,830
Blanco	4,342	4,355	4,369	4,379	4,113	4,113
Burnet	7,590	7,569	7,491	7,468	7,394	7,394
Colorado	42,458	42,458	42,458	42,458	42,458	42,458
Fayette	8,706	8,538	8,432	8,354	8,362	8,388
Gillespie	12,500	12,500	12,500	12,500	12,500	12,500
Hays	2,860	2,860	2,860	2,860	2,852	2,852
Llano	12,090	12,090	12,090	12,090	12,090	12,090
Matagorda	38,842	38,839	38,838	38,838	38,839	38,839
Mills	2,003	2,003	1,818	1,818	1,584	1,584
San Saba	27,753	27,753	27,753	27,753	27,753	27,753
Travis	6,456	6,705	6,890	6,978	6,927	7,057
Wharton	78,867	78,867	78,867	78,867	78,867	78,867
Williamson	147	147	147	147	147	147
Regional Totals	271,099	270,852	270,327	269,375	268,860	268,872

Note: The supplies presented in this table are supplies currently available to the WUGs (current permits and infrastructure capacities).

3.4.3 WUG Water Supply Summary

Information concerning the available water supply to WUGs in each county within the LCRWPA is presented in *Table 3.30*. There is water available in Region K that is not currently being used by WUGs because they do not have the needs right now, or they do not have the means to utilize the source at this time. *Table 3.30* shows the amount of water supply that is currently available to the WUGs (current permits/contracts and infrastructure capacities). As the contracts and permits expire, it is assumed they will be renewed at their currently contracted amount. *Figure 3.13* presents a comparison of the total water supply available to WUGs during the years 2000 and 2060.

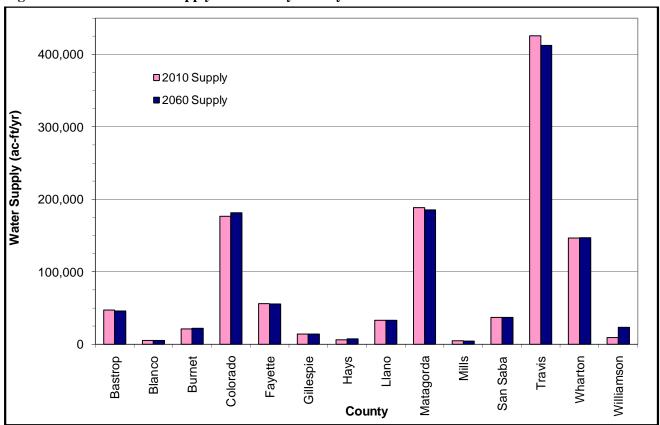

Detailed information concerning water supply available for every individual WUG in Region K is presented in *Appendix 3C* in the table *Region K Water Supply Table (by WUG and water source)*.

Table 3.30 Total Water Supply to WUGs by County (ac-ft/yr)

County	2010 Supply	2020 Supply	2030 Supply	2040 Supply	2050 Supply	2060 Supply
Bastrop	46,502	46,183	45,828	44,879	44,990	44,846
Blanco	5,980	6,074	6,165	6,240	6,042	6,121
Burnet	23,596	23,800	23,952	24,146	24,352	24,451
Colorado	176,329	177,249	178,369	179,776	181,456	181,456
Fayette	54,572	54,404	54,298	54,220	54,228	54,254
Gillespie	14,122	14,122	14,122	14,122	14,122	14,122
Hays	8,824	9,646	9,924	10,193	10,518	10,780
Llano	33,145	33,110	33,077	33,046	33,015	32,979
Matagorda	186,601	184,499	184,498	184,498	184,499	184,379
Mills	4,705	4,705	4,518	4,518	4,284	4,283
San Saba	36,797	36,797	36,797	36,797	36,797	36,797
Travis	419,654	418,016	417,085	414,756	412,075	408,717
Wharton	144,374	144,356	144,403	144,454	144,510	144,510
Williamson	8,988	11,242	13,908	16,772	19,890	23,229
Regional Totals	1,164,189	1,164,203	1,166,944	1,168,417	1,170,778	1,170,924

Note: The supplies presented in this table are supplies currently available to the WUGs (current permits/contracts and infrastructure capacities).

Figure 3.14: Total Water Supply to WUGs by County

Note: The supplies presented in this figure are supplies currently available to the WUGs (current permits/contracts and infrastructure capacities).

APPENDIX 3A

WATER RIGHTS HELD IN THE LOWER COLORADO REGIONAL WATER PLANNING AREA

APPENDIX 3B DESCRIPTION OF REGION K WAM RUN 3 CUTOFF MODEL

APPENDIX 3C

CURRENTLY AVAILABLE WATER SUPPLY TABLES (by Water Source and WUG)

APPENDIX 3D

WATER AVAILABILITY COMPARISON (2011 Plan versus 2006 Plan)

Water Right Number	Owner	County	Basin	Use	Max. Permitted Diversion (ac-ft/yr)	Priority Date
3448	JOHN W WHITE	Bastrop	Colorado	Recreation		11/15/1976
3491	BLUEBONNET LANDOWNERS ASSN INC	Bastrop	Colorado	Recreation	83	3/14/1977
3849	DAN L DUNCAN	Bastrop	Guadalupe	Recreation		8/30/1976
5084	SUN WEST INVESTMENTS INC	Bastrop	Colorado	Irrigation	4	8/14/1986
5398	JOHN COLEMAN HORTON III ET AL	Bastrop	Colorado	Irrigation	120	3/31/1954
5399	BELLE PENDLETON	Bastrop	Colorado	Irrigation	26	6/30/1955
5400	JERRY B DONALDSON	Bastrop	Colorado	Irrigation	8	4/30/1955
5402	LLOYD KETHA	Bastrop	Colorado	Irrigation	348	12/31/1905
5403	MERLE A PROKOP JR	Bastrop	Colorado	Irrigation	5	7/31/1966
5404	TEXAS PARKS & WILDLIFE DEPT	Bastrop	Colorado	Recreation		5/19/1969
5405	EDWARD L HUGHES	Bastrop	Colorado	Irrigation	8	12/31/1960
5406	J B LOVEJOY	Bastrop	Colorado	Irrigation	2	12/31/1962
5407	A J ROD	Bastrop	Colorado	Irrigation	80	12/9/1974
5408	TEXAS PARKS & WILDLIFE DEPT	Bastrop	Colorado	Recreation		8/25/1969
5411	MILTON C PETZOLD	Bastrop	Colorado	Irrigation	15	2/23/1970
5412	ASSN	Bastrop	Colorado	Recreation		4/8/1975
5413	CARL DROEMER	Bastrop	Colorado	Irrigation	61	9/16/1974
5414	LAKE THUNDERBIRDS OWNERS ASSN INC	Bastrop	Colorado	Recreation		10/15/1973
5415	INDIAN LAKE OWNERS ASSOCIATION	Bastrop	Colorado	Recreation		10/1/1973
5473	LOWER COLORADO RIVER AUTHORITY	Bastrop	Colorado	Industrial	10750	3/4/1963
1468	MARY O'BOYLE II ENGLISH	Blanco	Colorado	Irrigation	500	4/1/1963
1470	TEXAS PARKS & WILDLIFE DEPT	Blanco	Colorado	Irrigation		1/1/1967
1470	WERNER SCHUMANN	Blanco	Colorado	Irrigation	50	
1472	AL LOUIS LINDIG ET UX	Blanco	Colorado	Irrigation	7	
1473	JOHN W O'BOYLE JR	Blanco	Colorado	Irrigation	276	1/1/1964
1477	KELLER EQUIPMENT COMPANY	Blanco	Colorado	Irrigation	4	12/31/1964
1478	JAMES J MOONEY	Blanco	Colorado	Irrigation	9	
1479	CITY OF JOHNSON CITY	Blanco	Colorado	Municipal/Domestic	220	11/29/1966
1480	W T YETT	Blanco	Colorado	Recreation		4/1/1967
1481	TEXAS PARKS & WILDLIFE DEPT	Blanco	Colorado	Municipal/Domestic	30	4/24/1972
1482	NANCY WARREN FRASHER	Blanco	Colorado	Irrigation	34	9/7/1962
3673	GARY & BRUCE GRANBERG	Blanco	Guadalupe	Irrigation	7	
3728	STEVE MARSHALL ET AL	Blanco	Guadalupe	Recreation		1/7/1980
3871	W J HAAS	Blanco	Guadalupe	Irrigation	12	9/30/1957
3872	HALL STREET HAMMOND	Blanco	Guadalupe	Irrigation	20	
3872	STETLER FAMILY LIVING TRUST	Blanco	Guadalupe	Irrigation	7	
3872	THOMAS A SIKES ET AL	Blanco	Guadalupe	Irrigation	5	
3873		Blanco	Guadalupe	Irrigation	49	
3874	JIMMY C PARKER ET AL	Blanco	Guadalupe	Irrigation	24	
3875	MCCOMBS LEGACY LTD	Blanco	Guadalupe	Irrigation	45	
3876	NORVAL A HAILE ET UX	Blanco	Guadalupe	Recreation		5/28/1974
3876	WAYNE A ZERCHER	Blanco	Guadalupe	Recreation		5/28/1974
3876	WILLIAM W ATWELL	Blanco	Guadalupe	Recreation		5/28/1974
3877	CITY OF BLANCO	Blanco	Guadalupe	Municipal/Domestic	600	8/29/1955
3878	TEXAS PARKS & WILDLIFE DEPT	Blanco	Guadalupe	Recreation	300	5/26/1969
3879	STEPHEN E MARSHALL ET UX	Blanco	Guadalupe	Recreation		6/14/1976
3930	WAYMOND LIGHTFOOT TRUSTEE	Blanco	Guadalupe	Recreation		9/20/1982
3988	A DEAN MABRY ET AL	Blanco	Guadalupe	Recreation		1/10/1983
4041	LUXURY TRAILS INCORPORATED	Blanco	Colorado	Recreation		5/23/1983
5556	CHARLES JAMES TESAR	Blanco	Guadalupe	Irrigation	20	7/31/1996
2607	GOODRICH RANCH	Burnet	Colorado	Irrigation	43	
2608	GOODRICH RANCH	Burnet	Colorado	Domestic and Livestock Only	40	9/7/1950
2609	JAMES BARBER JOHANSON	Burnet	Colorado	Irrigation	33	
2614	FAMILY TRUST NO 1	Burnet	Colorado	Irrigation	46	
2615	ESTATE OF KATHLEEN BARNETT	Burnet	Colorado	Irrigation	150	
2629	FRITZ & BERNICE BRUNS	Burnet	Colorado	Irrigation	8	
2630	AGNES ANDERSON HEFNER ET AL	Burnet	Colorado	Irrigation	438	
2631	TEXAS GRANITE CORPORATION	Burnet	Colorado	Industrial	33	

Water Right Number	Owner	County	Basin	Use	Max. Permitted Diversion (ac-ft/yr)	Priority Date
2632	CITY OF MEADOWLAKES	Burnet	Colorado	Irrigation	78	4/4/1895
2633	JOAN BREWER	Burnet	Colorado	Irrigation	18	12/31/1934
2634	MOUSTAPHA ABOU-SAMRA ET UX	Burnet	Colorado	Irrigation	144	12/31/1953
2635	MARGERY RUTH FELPS TRUST	Burnet	Colorado	Irrigation	11	12/31/1953
2636	BILLIE J PRATT	Burnet	Colorado	Irrigation	2	3/31/1966
2637	BILLIE J PRATT	Burnet	Colorado	Irrigation	6	3/31/1966
2638	BILLIE J PRATT	Burnet	Colorado	Irrigation	6	3/31/1966
2639	P H & JANICE L SMITH	Burnet	Colorado	Irrigation	10	3/31/1966
2640	R G FUSSELL ET UX	Burnet	Colorado	Irrigation	10	3/31/1966
2641	G S ALLEN	Burnet	Colorado	Irrigation	253	2/28/1958
2642	D M DOYLE	Burnet	Colorado	Irrigation	89	12/31/1961
2643	COSTILLO C LEWIS	Burnet	Colorado	Irrigation	80	4/30/1967
2989	CAROLYN SUE CAROTHERS	Burnet	Brazos	Irrigation	9	12/31/1923
2989	GARY L REID ET AL	Burnet	Brazos	Irrigation	19	12/31/1923
2990	HERBERT A & BARBARA MAAS	Burnet	Brazos	Irrigation	63	4/30/1966
2991	SAWTOOTH ENTERPRISES LTD	Burnet	Brazos	Irrigation	145	12/31/1965
2992	FLORENCE ELIZABETH BROWN	Burnet	Brazos	Irrigation	34	3/14/1954
2992	MARY ANGELINE GAGE	Burnet	Brazos	Irrigation	34	3/14/1954
2993	HANSFORD B SMITH ET AL	Burnet	Brazos	Irrigation	44	12/31/1925
2994	THOMAS M & BETTY L R SPENCER	Burnet	Brazos	Irrigation	6	12/31/1925
2995	MORSE RANCH A PARTNERSHIP	Burnet	Brazos	Irrigation	120	3/7/1966
2996	JOHN TAYLOR ET UX	Burnet	Brazos	Irrigation	56	4/1/1966
3411	THE MEADOWLAKES COMPANY	Burnet	Colorado	Irrigation	403	11/22/1976
3735	HENRY GRADY RYLANDER	Burnet	Brazos	Irrigation	26	6/30/1963
5116	BUCKNER BAPTIST BENEVOLENCES INC	Burnet	Colorado	Recreation		12/30/1986
5193	GREENSMITHS INC	Burnet	Colorado	Other		9/6/1988
5216	GOLDSTAR INVESTMENTS LTD ET AL	Burnet	Colorado	Domestic and Livestock Only		2/10/1989
5327	CITY OF BURNET	Burnet	Colorado	Recreation		10/26/1990
5452	BASKIN FAMILY CAMPS INC	Burnet	Colorado	Recreation		2/23/1993
5478	LOWER COLORADO RIVER AUTHORITY	Burnet	Colorado	Municipal/Domestic	1500000	3/29/1926
5479	LOWER COLORADO RIVER AUTHORITY	Burnet	Colorado	Hydroelectric		3/29/1926
5480	LOWER COLORADO RIVER AUTHORITY	Burnet	Colorado	Industrial	15700	3/29/1926
5481	LOWER COLORADO RIVER AUTHORITY	Burnet	Colorado	Hydroelectric		3/29/1926
5593	JERRY W GLAZE ET UX	Burnet	Brazos	Irrigation	130	7/1/1997
2079	LAKE SHERIDAN ESTATES INC	Colorado	Lavaca	Recreation		10/7/1963
2080	ENGSTROM BROTHERS PARTNERSHIP	Colorado	Lavaca	Irrigation	248	12/31/1938
2081	TRUMAN ENGSTROM JR ET AL	Colorado	Lavaca	Irrigation	683	4/30/1955
	WILLIAM MARK WIED	Colorado	Lavaca	Irrigation	13	
2086	A J RICHTER ET AL	Colorado	Lavaca	Irrigation	282	
2087	LEO M KORENEK	Colorado	Lavaca	Irrigation	84	
2088	LEO M KORENEK	Colorado	Lavaca	Irrigation	45	
2089	LOUIS P HOFFMAN	Colorado	Lavaca	Irrigation	48	
	MERIDEE BATLA CORLEY	Colorado	Brazos-Colorado	Irrigation	11	
3415	ORA LEE BATLA PLENGEMEYER	Colorado	Brazos-Colorado	Irrigation	14	
3416	JOHN W ADKINS	Colorado	Brazos-Colorado	Irrigation	150	
3417	ALICE M ADKINS ET AL	Colorado	Brazos-Colorado	Irrigation	150	
3904	NORBERT WEID AND PAT WISHERT	Colorado	Lavaca	Irrigation	60	
3906	HERBERT J & JOSEPHINE POPP	Colorado	Lavaca	Irrigation	140	
3908	ELIZABETH B MILLER	Colorado	Lavaca	Irrigation	279	
	US DEPARTMENT OF THE INTERIOR	Colorado	Brazos-Colorado	Other		9/15/1987
5429	C G JOHNSON	Colorado	Colorado	Irrigation	73	
5432	CHARLES T TREFNY	Colorado	Colorado	Irrigation	21	
5434	CITY OF CORPUS CHRISTI	Colorado	Colorado	Municipal/Domestic	35000	
5434	LOWER COLORADO RIVER AUTHORITY	Colorado	Colorado	Irrigation	133000	11/1/1900
5475	LOWER COLORADO RIVER AUTHORITY	Colorado	Colorado	Irrigation	131250	
5523	CLARK & VICKI POWERS	Colorado	Brazos-Colorado	Irrigation	300	
5728	CITY OF WEIMAR	Colorado	Colorado	Irrigation	300	1/25/2001
	H D WRIGHT ET UX	Fayette	Lavaca	Irrigation	2	

Water Right Number	Owner	County	Basin	Use	Max. Permitted Diversion (ac-ft/yr)	Priority Date
2075	O C TOWNSEND ET UX	Fayette	Lavaca	Irrigation	2	12/31/1954
3469	JEAN A PHARR	Fayette	Colorado	Recreation		6/14/1976
3522	JOHN WETH	Fayette	Colorado	Irrigation	35	6/20/1977
5410	FIVE H & ONE LTD	Fayette	Colorado	Recreation		2/17/1975
5416	CLEAR LAKE PINES MAINTENANCE CORP	Fayette	Colorado	Recreation		9/16/1974
5417	G W OEDING	Fayette	Colorado	Recreation		9/17/1973
5418	EDMUND KAPPLER ET AL	Fayette	Colorado	Irrigation	128	2/10/1975
5420	WILLIAM GOLDAPP	Fayette	Colorado	Irrigation	32	6/10/1968
5421	WILLIE G LEHMANN	Fayette	Colorado	Irrigation	30	5/22/1972
5422	ROBERT LEHMANN	Fayette	Colorado	Irrigation	3	6/30/1967
5423	CLEAR LAKE PINES INC	Fayette	Colorado	Recreation		7/5/1976
5424	ERNEST G BARTEK ET UX	Fayette	Colorado	Irrigation	47	7/31/1967
5425	CHARLES T TREFNY	Fayette	Colorado	Irrigation	76	7/31/1956
5426	HAGEMANN	Fayette	Colorado	Irrigation	10	7/31/1956
5427	C A HENSEL	Fayette	Colorado	Irrigation	14	7/31/1956
5428	RALPH T JOHNSON ET UX	Fayette	Colorado	Irrigation	15	7/31/1956
5433	KELLY K REYNOLDS TRUSTEE	Fayette	Colorado	Irrigation	35	11/4/1974
5474	LOWER COLORADO RIVER AUTHORITY	Fayette	Colorado	Industrial		2/3/1975
1405	CUATRO ESTRELLAS LTD	Gillespie	Colorado	Irrigation	10	1/1/1959
1405	MARY C VEHLE	Gillespie	Colorado	Irrigation	27	1/1/1959
1405	R J SECHRIST ET UX	Gillespie	Colorado	Irrigation	21	1/1/1959
1405	REDDING RANCH LTD	Gillespie	Colorado	Irrigation	16	
	REDDING RANCH LTD	Gillespie	Colorado	Irrigation	8	
1407	CLETIS GRONA ET AL	Gillespie	Colorado	Irrigation	11	12/31/1940
1407	FALCON SEABOARD DIVERSIFIED INC	Gillespie	Colorado	Irrigation	33	12/31/1940
1407	PENNY LEIGH GRONA CRENWELGE ET UX	Gillespie	Colorado	Irrigation	16	
1408	HERBERT REEH	Gillespie	Colorado	Irrigation	8	
1409	KEYSER BIERSCHWALE	Gillespie	Colorado	Irrigation	13	12/31/1958
1410	JAY D RUTLEDGE III ET AL	Gillespie	Colorado	Irrigation	25	12/31/1970
1411	PAUL D & BETTY MEEK	Gillespie	Colorado	Irrigation	50	12/31/1951
1412	C H BONN & SONS	Gillespie	Colorado	Irrigation	118	3/31/1955
1413	EDWIN & WERNER HENKE	Gillespie	Colorado	Irrigation	21	9/30/1954
	ERNEST W KOTT	Gillespie	Colorado	Irrigation	12	12/31/1955
1415	STEVE & HILMER JUENKE	Gillespie	Colorado	Irrigation	13	7/1/1974
	MELVIN BONN ET UX	Gillespie	Colorado	Irrigation	22	4/30/1955
1417	ALLEN ROY HENKE ET AL	Gillespie	Colorado	Irrigation	7	
	E J COP	Gillespie	Colorado	Irrigation	120	
	ROY RICHARD HENKE	Gillespie	Colorado	Irrigation	113	
1418	NATHAN KOTT ET AL	Gillespie	Colorado	Irrigation	44	
1419	WALTON HEIMANN	Gillespie	Colorado	Irrigation	3	
1420	LILLIAN WISSEMANN ET VIR	Gillespie	Colorado	Irrigation	10	
1420	YUCCA LILY LTD	Gillespie	Colorado	Irrigation	10	
	BRIAN T MCLAUGHLIN	Gillespie	Colorado	Irrigation	31	12/31/1935
	DONALD M PARRISH ET UX	Gillespie	Colorado	Irrigation	67	
1421	WEIRICH BROTHERS INC	Gillespie	Colorado	Mining	50	
1423	GREGORY KEITH HAGEL	Gillespie	Colorado	Irrigation	80	4/15/1967
1424	THOMAS G LOEFFLER ET UX	Gillespie	Colorado	Irrigation	33	
1425	RAY E & ANNETTE GILBERT	Gillespie	Colorado	Irrigation	2	
1425	F W BURGESS	Gillespie	Colorado	Irrigation	17	
1427	CITY OF FREDERICKSBURG	Gillespie	Colorado	Recreation	17	4/1/1968
1427	VAN C BROWN	Gillespie	Colorado	Irrigation	21	12/31/1952
1429	CONRAD ERNST	Gillespie	Colorado	Irrigation	6	
1430	MILTON C BOOS	Gillespie	Colorado	Irrigation	25	
1431	LILLIAN M WISSEMANN	Gillespie	Colorado	Irrigation	11	4/15/1967
1431	DAYTON SOLBRIG ET AL	Gillespie	Colorado	Irrigation	25	
	MARVIN G PIPKIN ET UX	Gillespie	Colorado	Irrigation	12	
				· ·		
	THEODORE J STEHLING	Gillespie	Colorado	Irrigation	30	
1434	DR J HARDIN PERRY	Gillespie	Colorado	Irrigation	6	12/31/1963

Water Right Number	Owner	County	Basin	Use	Max. Permitted Diversion (ac-ft/yr)	Priority Date
1435	CLEMENS IMMEL ESTATE	Gillespie	Colorado	Irrigation	12	12/31/1957
1436	GAY NELL MILLARD ET AL	Gillespie	Colorado	Irrigation	12	5/31/1965
1437	DR DOR W BROWN JR	Gillespie	Colorado	Irrigation	30	4/30/1964
1438	ALBERT G DWARSHUS JR	Gillespie	Colorado	Irrigation	3	1/1/1952
1438	HENRY J FRANTZEN	Gillespie	Colorado	Irrigation	4	1/1/1952
1438	LESTER C FRANTZEN	Gillespie	Colorado	Irrigation	33	1/1/1952
1439	HILMER WEINHEIMER	Gillespie	Colorado	Irrigation	221	5/31/1948
1440	BOOT RANCH DEVELOPMENT LP	Gillespie	Colorado	Irrigation	121	12/31/1943
1441	BOOT RANCH DEVELOPMENT LP	Gillespie	Colorado	Irrigation	34	1/1/1943
1442	LISTON MANER	Gillespie	Colorado	Irrigation	12	1/1/1940
1443	EUGENE PATTESON	Gillespie	Colorado	Irrigation	13	1/1/1966
1443	JANICE C PATTESON	Gillespie	Colorado	Irrigation	0	1/1/1966
1445	WAYNE E MOHR	Gillespie	Colorado	Mining	30	1/1/1951
1446	PARTNERSHIP	Gillespie	Colorado	Irrigation	45	12/31/1964
1447	MICHAEL G PAINTER	Gillespie	Colorado	Irrigation	21	8/1/1964
1448	VICTOR KLINKSIEK	Gillespie	Colorado	Irrigation	22	1/1/1923
1449	DANIEL HOHENBERGER	Gillespie	Colorado	Irrigation	26	1/1/1966
1450	CLAYTON KLINKSIEK ET AL	Gillespie	Colorado	Irrigation	35	1/1/1943
1452	JEANINE M BELL	Gillespie	Colorado	Irrigation	19	
1452	SHEILA E PETSCH	Gillespie	Colorado	Irrigation	19	1/1/1952
1453	WILLIE A WEHMEYER JR	Gillespie	Colorado	Irrigation	41	1/1/1964
1454	WILLIE A WEHMEYER JR	Gillespie	Colorado	Irrigation	68	1/1/1962
1456	ELGIN O BEHRENDS	Gillespie	Colorado	Irrigation	4	
1456	MELVIN RAY BEHRENDS	Gillespie	Colorado	Irrigation	6	1/1/1967
	BERNARD STAUDT ESTATE	Gillespie	Colorado	Irrigation	14	
1458	HILMAR O NEBGEN	Gillespie	Colorado	Irrigation	2	
1459	RUBEN RUEBSAHM	Gillespie	Colorado	Irrigation	26	
1460	CHARLES W KLEIN	Gillespie	Colorado	Irrigation	10	
1461	BRYON C HULETT ET UX	Gillespie	Colorado	Irrigation	13	
1461	J MIKE HOWARD ET UX	Gillespie	Colorado	Irrigation	14	
1461	JOE KIRK FULTON	Gillespie	Colorado	Irrigation	500	1/1/1966
1461	THE LBJ COMPANY	Gillespie	Colorado	Irrigation	3	
1462	TEXAS PARKS & WILDLIFE DEPT	Gillespie	Colorado	Recreation		5/8/1972
1463	ERNEST HODGES ESTATE	Gillespie	Colorado	Industrial	39	1/1/1950
1464	THE LBJ COMPANY	Gillespie	Colorado	Irrigation	86	
1465	US DEPARTMENT OF THE INTERIOR	Gillespie	Colorado	Irrigation	114	
1466	JOE KIRK FULTON	Gillespie	Colorado	Irrigation	16	
1466	THE LBJ COMPANY	Gillespie	Colorado	Irrigation	1244	
1466	US DEPARTMENT OF THE INTERIOR	Gillespie	Colorado	Irrigation		1/1/1952
1467	AUSTIN INVESTMENTS COMPANY	Gillespie	Colorado	Irrigation	220	
1467	US DEPARTMENT OF THE INTERIOR	Gillespie	Colorado	Irrigation	==0	1/1/1953
1469	TEXAS PARKS & WILDLIFE DEPT	Gillespie	Colorado	Irrigation	160	
1471	ESTATE OF J O TANNER	Gillespie	Colorado	Irrigation	22	
1471	GEORGE RICHARD TANNER	Gillespie	Colorado	Irrigation	1	
1471	KENNETH LINDIG	Gillespie	Colorado	Irrigation	33	
1474	KERMIT ECKHARDT	Gillespie	Colorado	Irrigation	26	
1475	CHARLES OTTMERS	Gillespie	Colorado	Irrigation	3	
1476	JOHNNIE W OTTMERS	Gillespie	Colorado	Irrigation	3	
1632	BRADLEY OWEN BAETHGE ET AL	Gillespie	Colorado	Irrigation	6	
	BYRON KEITH HOOPER ET AL	Gillespie	Colorado	Irrigation	10	
2619	BILL TEAGUE	Gillespie	Colorado	Irrigation	114	
2620	LEVY ERSCH	Gillespie	Colorado	Irrigation	1	
2621	DANIEL J PETERSEN	Gillespie	Colorado	Irrigation	15	
2622	LEROY RABKE	Gillespie	Colorado	Industrial	1	9/30/1944
3405	DANIEL J PETERSEN	Gillespie	Colorado	Irrigation	55	
3409	J D HEXT ESTATE	Gillespie	Colorado	Irrigation	19	
5427	CITY OF FREDERICKSBURG	Gillespie	Colorado	Recreation	13	7/15/1992
4143	STEVEN R SPRINKEL ET UX	Hays	Colorado	Irrigation	25	

Water Right Number	Owner	County	Basin	Use	Max. Permitted Diversion (ac-ft/yr)	Priority Date
5086	STEPHEN P CARRIGAN	Hays	Colorado	Irrigation	88	8/15/1986
5273	COYOTE CREW RANCH LTD	Hays	Colorado	Irrigation	60	12/18/1989
5360	RIVER OAKS RANCH DEVELOPMENT CORP	Hays	Colorado	Recreation		5/15/1991
5387	JAMES H ARNOLD JR	Hays	Colorado	Irrigation	61	1/13/1965
5387	JAMES H ARNOLD JR ET AL	Hays	Colorado	Irrigation	61	1/13/1965
5387	WILLIAM H CUNNINGHAM ET UX	Hays	Colorado	Irrigation	61	1/13/1965
5388	TRAVIS ALLISON MATHIS	Hays	Colorado	Irrigation	16	7/31/1965
5389	ANNA MARIE WIDEN SPEIR ET AL	Hays	Colorado	Irrigation	5	12/31/1939
5389	HANCOCK/HANKS INVESTMENTS LTD	Hays	Colorado	Irrigation	0	12/31/1939
5390	SLAUGHTER FAMILY RANCH ET AL	Hays	Colorado	Irrigation	6	12/31/1954
5391	KATHRYN LAURA NAGEL ELLIOTT	Hays	Colorado	Irrigation	12	5/31/1955
5696	ASSOCIATION INC	Hays	Colorado	Recreation		8/15/2000
5768	FSP DEVELOPMENT OF TEXAS LLC	Hays	Colorado	Recreation		3/25/2002
1571	KINGSLAND WSC	Llano	Colorado	Municipal/Domestic	40	5/1/1910
1642	RANDOLPH C LEIFESTE	Llano	Colorado	Industrial	5	1/1/1956
1643	CHARLES T PERKINS JR ET UX	Llano	Colorado	Industrial	1	1/1/1959
1644	NORMAN GRENWELGE	Llano	Colorado	Industrial	30	1/1/1947
1645	CLYDE C BUSH ET AL	Llano	Colorado	Recreation		1/1/1960
1646	MRS LUKE MOSS	Llano	Colorado	Recreation		1/1/1954
1647	MRS RACHEL E JONES TALKINGTON	Llano	Colorado	Irrigation	15	1/1/1900
1648	FLOYD KOTHMANN	Llano	Colorado	Irrigation	2	1/1/1930
1649	ODIS K JONES	Llano	Colorado	Irrigation	6	1/1/1964
1650	CITY OF LLANO	Llano	Colorado	Municipal/Domestic	400	12/10/1956
1651	LILA FAYE JOHNSON	Llano	Colorado	Irrigation	24	9/1/1964
1652	KENNETH D RHODES ET UX	Llano	Colorado	Irrigation	11	3/1/1966
1653	MRS LUKE MOSS	Llano	Colorado	Recreation		12/31/1945
1654	MAUD MOSS	Llano	Colorado	Recreation		1/1/1939
1655	CITY OF LLANO	Llano	Colorado	Municipal/Domestic	1380	6/13/1914
1656	GUY L CLYMER	Llano	Colorado	Recreation		11/29/1946
1658	D MALCOLM LONG	Llano	Colorado	Irrigation	60	1/1/1904
1659	ROY B SILER	Llano	Colorado	Irrigation	24	9/18/1918
2610	T-BAR-O RANCH PARTNERSHIP LTD	Llano	Colorado	Irrigation	99	8/31/1957
2611	DRACE WILLIAMS ET AL	Llano	Colorado	Irrigation	52	12/31/1910
2612	T M CASH	Llano	Colorado	Irrigation	12	5/31/1955
2613	SOUTHERN PACIFIC LINES	Llano	Colorado	Other	1	1/19/1915
2616	ANN ETTA HALL	Llano	Colorado	Recreation		12/31/1935
2617	J A RATLIFF ET AL	Llano	Colorado	Recreation		12/31/1950
2618	JAMES M INKS ET AL	Llano	Colorado	Recreation		12/31/1939
2623	CAROLINE OEHLER JOHNSON	Llano	Colorado	Irrigation	3	12/31/1964
2623	MARY OEHLER GOFF	Llano	Colorado	Irrigation	1	12/31/1964
2623	SAMUEL OEHLER	Llano	Colorado	Irrigation	3	12/31/1964
2624	HAROLD DONOVAN HOHMANN ET AL	Llano	Colorado	Irrigation	7	3/31/1966
2625	HAROLD DONOVAN HOHMANN ET AL	Llano	Colorado	Irrigation	6	3/31/1966
2626	OTTO DOYLE HOHMANN ET UX	Llano	Colorado	Irrigation	10	3/31/1966
3883	LAKE LBJ IMPROVEMENT CORP	Llano	Colorado	Irrigation	750	2/17/1982
4121	LAKE LBJ INVESTMENT CORPORATION	Llano	Colorado	Recreation		4/25/1983
4152	LAKE LBJ INVESTMENT CORPORATION	Llano	Colorado	Recreation		7/10/1984
5033	DEBORAH SLATOR GILLAN ET AL	Llano	Colorado	Domestic and Livestock Only		12/12/1985
3426	JOHN S RUNNELLS III	Matagorda	Brazos-Colorado	Irrigation	17	3/1/1971
3426	TIMOTHY BLAYLOCK ET UX	Matagorda	Brazos-Colorado	Irrigation	26	3/1/1971
3427	MICHAEL D STONE	Matagorda	Brazos-Colorado	Irrigation	24	11/7/1977
3428	ESTATE OF P J REEVES JR	Matagorda	Brazos-Colorado	Irrigation	20	11/6/1978
3429	D R ALFORD	Matagorda	Brazos-Colorado	Irrigation	40	6/27/1977
3430	HUDGINS DIVISION OF J D HUDGINS	Matagorda	Brazos-Colorado	Irrigation	800	11/1/1954
3431	MICHAEL J PRUETT	Matagorda	Brazos-Colorado	Irrigation	44	8/25/1964
3431	SAMANTHA ANNETTE HUDGINS	Matagorda	Brazos-Colorado	Irrigation	41	8/25/1964
3432	JOHNNY WAYNE & VICKI LYNN JONES	Matagorda	Brazos-Colorado	Irrigation	2	12/12/1977
3434	DONALD R & JANICE M KOPNICKY	Matagorda	Brazos-Colorado	Irrigation	30	10/29/1979

3437 FRANCIS ISAVASE Metagoords migration 411 94111951 3437 73 0 B STANLEY Metagoords migration 438 94111951 3439 E CROSS CATTLE COMPANY INC Metagoords migration 528 94111951 3439 E CROSS CATTLE COMPANY INC Metagoords migration 529 625191 3439 E CROSS CATTLE COMPANY INC Metagoords migration 520 625191 3439 E CROSS CATTLE COMPANY INC Metagoords migration 520 625191 3439 E CROSS CATTLE COMPANY INC Metagoords migration 520 625191 3439 E CROSS CATTLE COMPANY INC Metagoords migration 520 625191 3439 E CROSS CATTLE COMPANY INC Metagoords migration 500 5177188 33657 FUTURO FARMS INC Metagoords migration 500 5177188 33677 FUTURO FARMS INC Metagoords migration 450 1107198 33672 GUNNELLIS RASTLER COMPANY ITD Metagoords migration 35 1220198 33692 RUNNELLIS RASTLER COMPANY ITD Metagoords migration 35 1220198 33692 RUNNELLIS RASTLER COMPANY ITD Metagoords migration 35 1220198 33692 RUNNELLIS RASTLER COMPANY ITD Metagoords migration 219 228198 34692 34	Water Right Number	Owner	County	Basin	Use	Max. Permitted Diversion (ac-ft/yr)	Priority Date
3437 FRANCIS I SAVACE	3435	JOHN A HUEBNER JR ET AL	Matagorda	Brazos-Colorado	Irrigation	550	4/2/1969
3439 COROS CATILE COMPANY INC Matagords Mazon-Colorado (1941)	3436	RUSSELL A & JUANITA L MATTHES	Matagorda	Brazos-Colorado	Irrigation	880	12/16/1974
2439 ECROSS CATTLE COMPANY INC Matagords Mazzan-Colorado (migation 592 625/1914)	3437	FRANCIS I SAVAGE	Matagorda	Brazos-Colorado	Irrigation	411	9/11/1967
STATES CAROSE CATTLE COMPANY INC. Metapords Marane-Colorado Irrigation SE 1222/1918	3437	O B STANLEY	Matagorda	Brazos-Colorado	Irrigation	2339	9/11/1967
3846 LILLANO GZERNICEK Matagorda Brazes-Colorado Irigation 90 112/22/1886 3895 THE MINZE LAND INVESTMENTS LP Matagorda Brazes-Colorado Irigation 90 114/27/1888 3997 FUTINO FARIS NO Matagorda Brazes-Colorado Irigation 400 475/17/1888 3997 G P HARDY III Metagorda Brazes-Colorado Irigation 400 475/17/1888 3997 G P HARDY III Metagorda Brazes-Colorado Irigation 400 475/17/1888 3997 G P HARDY III Metagorda Brazes-Colorado Irigation 475/17/1888 3997 G P HARDY III Metagorda Brazes-Colorado Irigation 1500 3311/1883 3997 CONN SCHMERMIND Metagorda Brazes-Colorado Irigation 25 12/201/388 3997 CONN SCHMERMIND Metagorda Brazes-Colorado Irigation 21 22/201/388 4722 AVAIDA METAGORDA Metagorda Brazes-Colorado Irigation 25 12/201/388 4722 AVAIDA METAGORDA Metagorda Brazes-Colorado Irigation 25 12/201/388 4722 AVAIDA METAGORDA Metagorda Brazes-Colorado Irigation 25 12/201/388 4722 AVAIDA METAGORDA Metagorda Golorado-Lavaca Irigation 26 12/201/388 4722 AVAIDA METAGORDA Metagorda Golorado-Lavaca Irigation 400 12/24/1981 4723 AVAIDA METAGORDA Metagorda Golorado-Lavaca Irigation 400 12/24/1981 4723 AVAIDA METAGORDA Metagorda Golorado-Lavaca Irigation 400 12/24/1981 4723 AVAIDA METAGORDA Metagorda Golorado-Lavaca Irigation 301 12/31/1981 4723 AVAIDA Metagorda Golorado-Lavaca Irigation 2601/35 331/1983 4728 MATAGORDA BAY AQUACULTURE INC Metagorda Golorado-Lavaca Irigation 2601/35 331/1983 4728 AVAIDA METAGORDA BAY AQUACULTURE INC Metagorda Golorado-Lavaca Irigation 400 12/21/31/31/31/31/31/31/31/31/31/31/31/31/31	3438	E CROSS CATTLE COMPANY INC	Matagorda	Brazos-Colorado	Irrigation	668	6/25/1914
3895 THE MINZE LAND INVESTMENTS LP Malagorda Brazon-Colorado Irrigation 100 11/3/1981 3995 FUTURIO FARNS INC Malagorda Brazon-Colorado Irrigation 450 11/10/1983 3995 FOR PARDY III Malagorda Brazon-Colorado Irrigation 450 11/10/1983 3995 FOR PARDY III Malagorda Brazon-Colorado Irrigation 450 11/10/1983 3995 BETTY GENE MCAFERTY ET AL Malagorda Brazon-Colorado Irrigation 35 12/20/1983 3992 RUNNELLIS PASTURE COMPANY LTD Malagorda Brazon-Colorado Irrigation 1500 13/11/383 3992 RUNNELLIS PASTURE COMPANY LTD Malagorda Brazon-Colorado Irrigation 250 13/11/383 41/22 JULIA HOLUB ET AL Malagorda Brazon-Colorado Irrigation 251 11/24/1981 41/22 JULIA HOLUB ET AL Malagorda Brazon-Colorado Irrigation 251 11/24/1981 41/22 JULIA HOLUB ET AL Malagorda Brazon-Colorado Irrigation 251 11/24/1981 41/22 JULIA HOLUB ET AL Malagorda Colorado-Lavaca Irrigation 251 11/24/1981 41/22 JULIA HOLUB ET AL Malagorda Colorado-Lavaca Irrigation 400 11/24/1981 41/24 41	3439	E CROSS CATTLE COMPANY INC	Matagorda	Brazos-Colorado	Irrigation	592	6/25/1914
39895 THE MINZE LAND INVESTMENTS LP	3795	LILLIAN G ZERNICEK		Brazos-Colorado	Irrigation	80	12/22/1980
3997 FUTURO FARNS INC	3846	LINDA C MOORE	Matagorda	Brazos-Colorado		90	11/9/1981
3967 G P HARDY	3895	THE MINZE LAND INVESTMENTS LP	Matagorda	Brazos-Colorado	Irrigation	1000	5/17/1982
3972 JOHN SCHMERNUND Matagords Brazos-Colorado Irrigation 35 12/201185	3957	FUTURO FARMS INC	Matagorda	Brazos-Colorado	Irrigation	450	1/10/1983
3992 JOHN SCHMERNUND Matagorda Colorado-Lavaca Impation 1500 1/31/1981 1/3	3957	G P HARDY III	Matagorda	Brazos-Colorado	Irrigation		1/10/1983
3992 RUNNELLS PASTURE COMPANY LTD	3967	BETTY GENE MCAFERTY ET AL	Matagorda	Brazos-Colorado	Irrigation	35	12/20/1982
4207 DON A CULWELL & LESUEL LAPPELT Matagorda Colorado-Lavaca Infigation 225 11/28/1985 4780 MAX CORNELIUS JOHNSON ET AL Matagorda Colorado-Lavaca Infigation 400 11/24/1986 4781 LAWRENCE J PETERSON & WIFE Matagorda Colorado-Lavaca Infigation 400 11/24/1986 4782 FARMERS CANAL COMPANY Matagorda Colorado-Lavaca Infigation 120 11/24/1986 4783 LOUIS F HARPER Matagorda Colorado-Lavaca Infigation 93 12/31/1946 4786 WILLIAM J NAISER Matagorda Colorado-Lavaca Infigation 93 12/31/1946 4787 FARMERS CANAL COMPANY Matagorda Colorado-Lavaca Infigation 93 12/31/1946 4787 FARMERS CANAL COMPANY Matagorda Colorado-Lavaca Infigation 7 12/31/1956 4780 PARTINERSHIP Matagorda Colorado-Lavaca Infigation 7 12/31/1956 4790 PARTINERSHIP Matagorda Colorado-Lavaca Infigation 11/24/1961 11/24/19	3972	JOHN SCHMERMUND		Colorado-Lavaca	Irrigation	1500	1/31/1983
4770 DON A CULVELL & LEGUE LAPPELT Matagorda Colorado-Lavaca Infigation 400 11/24/1986 4781 LAWRENCE J PETERSON & WIFE Matagorda Colorado-Lavaca Infigation 400 11/24/1986 4782 FARMERS CANAL COMPANY Matagorda Colorado-Lavaca Infigation 120 17/24/1986 4783 LOUIS F HARPER Matagorda Colorado-Lavaca Infigation 120 17/24/1986 4786 WILLIAM J NAISER Matagorda Colorado-Lavaca Infigation 391 12/31/1984 4786 WILLIAM J NAISER Matagorda Colorado-Lavaca Infigation 393 12/31/1984 4787 FARMERS CANAL COMPANY Matagorda Colorado-Lavaca Infigation 393 12/31/1984 4788 MRS GLEN HUTSON ET AL Matagorda Colorado-Lavaca Infigation 7 12/31/1984 4790 PARTINERSHIP Matagorda Colorado-Lavaca Infigation 7 12/31/1984 4790 PARTINERSHIP Matagorda Colorado-Lavaca Infigation 1500 11/21/1977 13/31/1984 13/31 13/31/1984	3992	RUNNELLS PASTURE COMPANY LTD	Matagorda	Brazos-Colorado	Irrigation	219	2/28/1983
4780 MAX CORNELUS JOHNSON ET AL Metagorda Colorado-Lavaca Irrigation 400 11/24/1985 4781 CAWRENCE J FETERSON & WIFE Metagorda Colorado-Lavaca Irrigation 400 11/24/1986 4782 FARMERS CANAL COMPANY Matagorda Colorado-Lavaca Irrigation 301 1/23/1964 4786 WILLIAM JANISER Matagorda Colorado-Lavaca Irrigation 301 31/23/1964 4787 FARMERS CANAL COMPANY Matagorda Colorado-Lavaca Irrigation 2015 5/31/1908 4780 PARTMERSHIP Matagorda Colorado-Lavaca Irrigation 7 1/23/1964 4790 PARTMERSHIP Matagorda Colorado-Lavaca Irrigation 1500 1/12/1976 5498 LLP Matagorda Colorado Industrial 316 9/25/1986 5437 AGENT Matagorda Colorado Industrial 6/10/1972 5438 MATAGORDA CO DRAINAGE DIST NO 1 Matagorda Locacado Industrial 10/20/20<				Brazos-Colorado		25	11/28/1983
4781 LAWRENCE J PETERSON & WIFE Matagorda Colorado-Lavaca Irrigation 400 1/24/1916 4782 FARMERS CANAL COMPANY Matagorda Colorado-Lavaca Irrigation 301 12/3/1961 4786 WILLIAM J NAISER Matagorda Colorado-Lavaca Irrigation 93 12/3/1964 4787 FARMERS CANAL COMPANY Matagorda Colorado-Lavaca Irrigation 20616 53/1904 4788 MRS GLEN HUTSON ET AL Matagorda Colorado-Lavaca Irrigation 7 12/3/1965 4790 PARTNERSHIP Matagorda Colorado-Lavaca Irrigation 7 12/3/1965 5939 MATAGORDA BAY AQUACULTURE INC Matagorda Colorado-Lavaca Irrigation 1 150 1/12/1975 5437 NRG TEXAS LP Matagorda Colorado Industrial 316 92291986 5437 AGENT ET AL Matagorda Colorado Industrial 670/1972 5438 MATAGORDA CO DRAINAGE DIST NO 1 Matagorda Colorado <td< td=""><td>4207</td><td>DON A CULWELL & LESLIE L APPELT</td><td></td><td>Colorado-Lavaca</td><td></td><td>2250</td><td>1/3/1985</td></td<>	4207	DON A CULWELL & LESLIE L APPELT		Colorado-Lavaca		2250	1/3/1985
AFREERS CANAL COMPANY	4780	MAX CORNELIUS JOHNSON ET AL	Matagorda	Colorado-Lavaca	Irrigation	400	11/24/1969
4783 LOUIS F HARPER Matagorda Colorado-Lavaca Irrigation 301 12/31/1964 4786 WILLIAM J NAISER Matagorda Colorado-Lavaca Irrigation 293 12/31/1945 4788 MRS GLEN HUTSON ET AL Matagorda Colorado-Lavaca Irrigation 7 12/31/1945 4790 PARTNERSHIP Matagorda Colorado-Lavaca Irrigation 1500 1500 17/21977 5099 MATAGORDA BAY AQUACULTURE INC Matagorda Colorado-Lavaca Irrigation 14143 6/26/1911 5437 ARGENT Matagorda Colorado Industrial 316 9/25/1986 5437 AGENT Matagorda Colorado Industrial 6/10/197- 5437 AGENT ET AL Matagorda Matagorda Industrial 10/2000 6/10/197- 5437 AGENT ET AL Matagorda Matagorda Industrial 10/2000 6/10/197- 5437 AGENT ET AL Matagorda Industrial 10/2000 6/10/197-	4781	LAWRENCE J PETERSON & WIFE	Matagorda	Colorado-Lavaca	Irrigation	400	1/24/1916
4766 WILLIAM J NAISER	4782	FARMERS CANAL COMPANY	Matagorda	Colorado-Lavaca	Irrigation	120	1/24/1916
4787 FARMERS CANAL COMPANY Matagorda Colorado-Lavaca rigation 26615 5/31/1905 4788 MRS GLEN HUTSON ET AL Matagorda Colorado-Lavaca Irrigation 7 12/31/1905 4790 PARTNERSHIP Matagorda Colorado-Lavaca Irrigation 1500 11/21/1976 5099 MATAGORDA BAY AQUACULTURE INC Matagorda Colorado Irrigation 316 9/25/1986 5436 LLP Matagorda Colorado Irrigation 1443 6/26/1914 5437 AGENT Matagorda Colorado Industrial 6/10/1977 5437 AGENT ET AL Matagorda Colorado Industrial 10/20/20 5438 MATAGORDA CO DRAINAGE DIST NO 1 Matagorda Brazos-Colorado Other 260 11/17/1992 5476 LOWER COLORADO RIVER AUTHORITY Matagorda Brazos-Colorado Other 260 11/17/1992 5692 HERFE CORNELIUS Matagorda Brazos-Colorado Irrigation 240 3/27/200 <	4783	LOUIS F HARPER	Matagorda	Colorado-Lavaca	Irrigation	301	12/31/1961
4788 MRS GLEN HUTSON ET AL Matagorda Colorado-Lavaca Irrigation 7 12/31/1956 4790 PARTNERSHIP Matagorda Colorado-Lavaca Irrigation 1500 1/12/1976 5099 MATAGORDA BAY AQUACULTURE INC Matagorda Colorado Industrial 316 9/25/1984 5436 LLP Matagorda Colorado Irrigation 1443 6/26/1914 5437 AGENT Matagorda Colorado Industrial 6/10/1972 5437 AGENT ET AL Matagorda Colorado Industrial 10/2000 6/10/1972 5437 AGENT ET AL Matagorda Colorado Industrial 10/2000 6/10/1972 5438 MATAGORDA CO DRAINGE DIST NO 1 Matagorda Brazos-Colorado Other 250 11/17/1902 5476 LOWER COLORADO RIVER AUTHORITY Matagorda Brazos-Colorado Other 250 11/17/1902 5692 HERFE CORNELIUS Matagorda Brazos-Colorado Irrigation 240 3/27/200	4786	WILLIAM J NAISER	Matagorda	Colorado-Lavaca	Irrigation	93	12/31/1945
4790 PARTINERSHIP Matagorda Colorado-Lavaca Irrigation 1500 11/2/1976 5099 MATAGORDA BAY AQUACULTURE INC Matagorda Colorado-Lavaca Industrial 316 9/25/1986 5437 LIP Matagorda Colorado Irrigation 1443 8/26/1914 5437 AGENT Matagorda Colorado Industrial 6/10/1974 5437 AGENT ET AL Matagorda Colorado Industrial 102000 6/10/1974 5437 AGENT ET AL Matagorda Colorado Industrial 102000 6/10/1974 5438 MATAGORDA CO DRAINAGE DIST NO 1 Matagorda Bizzos-Colorado Other 260 11/17/1995 5476 LOWER COLORADO RIVER AUTHORITY Matagorda Colorado Irrigation 2404680 12/1/1900 5609 TEXAS BRINE CO LLC Matagorda Colorado Irrigation 2404680 12/1/1906 5682 HERFE CORNELIUS Matagorda Rolorado Irrigation 240 32/2/2/200 </td <td>4787</td> <td>FARMERS CANAL COMPANY</td> <td>Matagorda</td> <td>Colorado-Lavaca</td> <td>Irrigation</td> <td>20615</td> <td>5/31/1909</td>	4787	FARMERS CANAL COMPANY	Matagorda	Colorado-Lavaca	Irrigation	20615	5/31/1909
6099 MATAGORDA BAY AQUACULTURE INC Matagorda Colorado Irrigation 1443 6/26/1946 5436 LLP Matagorda Colorado Irrigation 1443 6/26/194 5437 NRG TEXAS LP Matagorda Colorado Industrial 6/10/197 5437 AGENT ET AL Matagorda Colorado Industrial 10200 6/10/197 5438 MATAGORDA CO DRAINAGE DIST NO 1 Matagorda Brazos-Colorado Other 260 11/17/1993 5476 LOWER COLORADO RIVER AUTHORITY Matagorda Colorado Irrigation 2404680 12/1/1900 5609 TEXAS BRINE CO LLC Matagorda Colorado Irrigation 2400 3/27/200 1744 L L GILGER Mills Colorado Irrigation 95 1/1/190 1745 JOHN JUDSON GRAVES ET AL Mills Colorado Irrigation 80 7/1/190 1748 SLEDGE CATTLE COMPANY INC Mills Colorado Irrigation 47 1/1/190 <	4788	MRS GLEN HUTSON ET AL		Colorado-Lavaca	Irrigation	7	12/31/1956
Sea	4790	PARTNERSHIP		Colorado-Lavaca	Irrigation	1500	1/12/1976
5437 NRG TEXAS LP Matagorda Colorado Industrial 6/10/197-6437 5437 AGENT Matagorda Colorado Industrial 6/10/197-6437 5437 AGENT ET AL Matagorda Colorado Industrial 102000 6/10/197-6438 5438 MATAGORDA CO DRAINAGE DIST NO 1 Matagorda Brazos-Colorado Other 260 11/17/1992 5476 LOWER COLORADO RIVER AUTHORITY Matagorda Colorado Irrigation 2404680 12/1/1906 5699 TEXAS BRINE CO LC Matagorda Colorado Irrigation 2400 3/27/2000 1744 L L GILGER Mills Colorado Irrigation 95 1/1/1906 1745 JOHN JUDSON GRAVES ET AL Mills Colorado Irrigation 80 7/1/4/1958 1746 JOHN JUDSON GRAVES ET AL Mills Colorado Irrigation 47 1/1/1906 1748 SLEDGE CATTLE COMPANY INC Mills Colorado Irrigation 47 1/1/1906	5099	MATAGORDA BAY AQUACULTURE INC	Matagorda	Colorado-Lavaca	Industrial	316	9/25/1986
5437 AGENT Matagorda Colorado Industrial 6/10/1974 5437 AGENT ET AL Matagorda Colorado Industrial 102000 6/10/1974 5438 MATAGORDA CO DRAINAGE DIST NO 1 Matagorda Colorado Other 260 11/17/1902 5476 LOWER COLORADO RIVER AUTHORITY Matagorda Colorado Irrigation 2404680 12/1/1900 5609 TEXAS BRINE CO LLC Matagorda Colorado Industrial 528/1998 5682 HERFF CORNELIUS Matagorda Colorado Irrigation 2404 32/2/2000 1744 L L GILGER Mills Colorado Irrigation 95 1/1/1906 1745 JOHN JUDSON GRAVES ET AL Mills Colorado Irrigation 80 7/1/1966 1748 SLEDGE CATTLE COMPANY INC Mills Colorado Irrigation 47 1/1/1900 1749 GENE SLEDGE CATTLE CO INC Mills Colorado Irrigation 78 1/1/1906 1750	5436	LLP	Matagorda	Colorado	Irrigation	1443	6/26/1914
5437 AGENT ET AL Matagorda Colorado Industrial 102000 6/10/197-6 5438 MATAGORDA CO DRAINAGE DIST NO 1 Matagorda Brazos-Colorado Other 260 11/17/1992 5476 LOWER COLORADO RIVER AUTHORITY Matagorda Colorado Irrigation 2404680 12/1/1906 5609 TEXAS BRINE CO LLC Matagorda Colorado Irrigation 2404680 12/1/1906 5682 HERFF CORNELIUS Matagorda Brazos-Colorado Irrigation 2400 3277200 1744 L L GILGER Mills Colorado Irrigation 95 1/1/1906 1745 JOHN JUDSON GRAVES ET AL Mills Colorado Irrigation 160 1/1/1906 1746 JOHN JUDSON GRAVES ET AL Mills Colorado Irrigation 47 1/1/1906 1748 ZEPHYR LAND COMPANY Mills Colorado Irrigation 47 1/1/1906 1749 GENE SLEDGE CASTLECO INC Mills Colorado Irrigation 32	5437	NRG TEXAS LP	Matagorda	Colorado	Industrial		6/10/1974
5438 MATAGORDA CO DRAINAGE DIST NO 1 Matagorda Brazos-Colorado Other 260 11/17/1992 5476 LOWER COLORADO RIVER AUTHORITY Matagorda Colorado Irrigation 2404680 12/1/1900 5609 TEXAS BRINE CO LLC Matagorda Colorado Industrial 2400 32/27/200 5682 HERFF CORNELIUS Matagorda Brazos-Celorado Irrigation 2400 32/27/200 1744 L L GILGER Mills Colorado Irrigation 95 1/1/1961 1745 JOHN JUDSON GRAVES ET AL Mills Colorado Irrigation 160 1/1/1904 1748 SLEDGE CATTLE COMPANY INC Mills Colorado Irrigation 47 1/1/1904 1748 ZEPHYR LAND COMPANY Mills Colorado Irrigation 78 1/1/1904 1749 ZEPHYR LAND COMPANY Mills Colorado Irrigation 20 1/1/21966 1750 J DON WYLIE Mills Colorado Irrigation 32 11/1	5437		Matagorda	Colorado	Industrial		6/10/1974
5476 LOWER COLORADO RIVER AUTHORITY Matagorda Colorado Irrigation 2404680 12/1/1906 5609 TEXAS BRINE CO LLC Matagorda Colorado Industrial 5/28/1998 5682 HERFF CORNELIUS Matagorda Brazos-Colorado Irrigation 2400 32/71/2006 1744 L L GILGER Mills Colorado Irrigation 95 11/1/1906 1745 JOHN JUDSON GRAVES ET AL Mills Colorado Irrigation 80 7/14/1968 1748 SLEDGE CATTLE COMPANY INC Mills Colorado Irrigation 47 1/1/1906 1748 ZEPHYR LAND COMPANY Mills Colorado Irrigation 76 1/1/1906 1750 J DON WYLIE Mills Colorado Irrigation 20 11/2/1986 1751 PEGGY JEAN ROSS Mills Colorado Irrigation 20 4/2/7/1970 1752 P V KING Mills Colorado Irrigation 52 6/9/1965 1753			Matagorda			102000	6/10/1974
5609 TEXAS BRINE CO LLC Matagorda Colorado Industrial 5/28/1998 5682 HERFF CORNELIUS Matagorda Brazos-Colorado Irrigation 2400 3/27/2000 1744 L L GILGER Mills Colorado Irrigation 95 1/1/1963 1745 JOHN JUDSON GRAVES ET AL Mills Colorado Irrigation 160 1/1/1906 1748 SLEDGE CATTLE COMPANY INC Mills Colorado Irrigation 47 1/1/1906 1748 ZEPHYR LAND COMPANY Mills Colorado Irrigation 78 1/1/1/1906 1749 GENE SLEDGE / SLEDGE CATTLE CO INC Mills Colorado Irrigation 20 11/2/1964 1750 J DON WYLIE Mills Colorado Irrigation 32 1/1/1/1906 1751 MARY ALICE STALCUP Mills Colorado Irrigation 20 4/27/1970 1752 P V KING Mills Colorado Irrigation 127 3/1/1973 1753	5438	MATAGORDA CO DRAINAGE DIST NO 1	Matagorda		Other	260	11/17/1992
HERFF CORNELIUS		LOWER COLORADO RIVER AUTHORITY	Matagorda	Colorado	Irrigation	2404680	12/1/1900
1744 L GILGER Mills Colorado Irrigation 95 1/1/1963 1745 JOHN JUDSON GRAVES ET AL Mills Colorado Irrigation 80 7/14/1968 1746 JOHN JUDSON GRAVES ET AL Mills Colorado Irrigation 160 1/1/1906 1748 SLEDGE CATTLE COMPANY INC Mills Colorado Irrigation 47 1/1/1904 1748 ZEPHYR LAND COMPANY Mills Colorado Irrigation 78 1/1/1904 1749 GENE SLEDGE / SLEDGE CATTLE CO INC Mills Colorado Irrigation 20 1/1/2/1964 1750 J DON WYLIE Mills Colorado Irrigation 32 11/1/2/1966 1751 PEGGY JEAN ROSS Mills Colorado Irrigation 20 4/2/1/1970 1752 P V KING Mills Colorado Irrigation 52 6/9/1966 1753 CHARLES & CATHERINE MANGHAM Mills Colorado Irrigation 52 6/9/1966 <td< td=""><td></td><td></td><td></td><td></td><td>Industrial</td><td></td><td>5/28/1998</td></td<>					Industrial		5/28/1998
1745 JOHN JUDSON GRAVES ET AL Mills Colorado Irrigation 80 7/14/1968 1746 JOHN JUDSON GRAVES ET AL Mills Colorado Irrigation 160 1/1/1906 1748 SLEDGE CATTLE COMPANY INC Mills Colorado Irrigation 47 1/1/1904 1748 ZEPHYR LAND COMPANY Mills Colorado Irrigation 78 1/1/1904 1749 GENE SLEDGE / SLEDGE CATTLE CO INC Mills Colorado Irrigation 20 1/1/2/1962 1750 J DON WYLIE Mills Colorado Irrigation 32 1/1/12/1962 1751 MARY ALICE STALCUP Mills Colorado Irrigation 200 4/27/197C 1751 PEGGY JEAN ROSS Mills Colorado Irrigation 127 3/1/1973 1752 P V KING Mills Colorado Irrigation 52 6/9/1968 1753 CHARLES & CATHERINE MANGHAM Mills Colorado Irrigation 52 6/9/1968	5682						
1746 JOHN JUDSON GRAVES ET AL Mills Colorado Irrigation 160 1/1/1906 1748 SLEDGE CATTLE COMPANY INC Mills Colorado Irrigation 47 1/1/1902 1748 ZEPHYR LAND COMPANY Mills Colorado Irrigation 78 1/1/1906 1749 GENE SLEDGE / SLEDGE CATTLE CO INC Mills Colorado Irrigation 20 11/2/1966 1750 J DON WYLIE Mills Colorado Irrigation 32 11/1/2/1966 1751 MARY ALICE STALCUP Mills Colorado Irrigation 200 4/27/1970 1751 PEGGY JEAN ROSS Mills Colorado Irrigation 127 3/1/1973 1752 P V KING Mills Colorado Irrigation 127 3/1/1973 1753 CHARLES & CATHERINE MANGHAM Mills Colorado Irrigation 52 6/9/1997 1755 JOHN C SMITH ET AL Mills Colorado Irrigation 60 2/2/1970							
1748 SLEDGE CATTLE COMPANY INC Mills Colorado Irrigation 47 1/1/1904 1748 ZEPHYR LAND COMPANY Mills Colorado Irrigation 78 1/1/1904 1749 GENE SLEDGE / SLEDGE CATTLE CO INC Mills Colorado Irrigation 20 11/2/1966 1750 J DON WYLIE Mills Colorado Irrigation 32 11/12/1968 1751 MARY ALICE STALCUP Mills Colorado Irrigation 200 4/27/1970 1751 PEGGY JEAN ROSS Mills Colorado Irrigation 20 4/27/1970 1752 P V KING Mills Colorado Irrigation 127 3/1/1973 1753 CHARLES & CATHERINE MANGHAM Mills Colorado Irrigation 52 6/9/1968 1755 JOHN C SMITH ET AL Mills Colorado Irrigation 60 2/2/1970 1756 VIRGIL KEITH ANDERSON ET UX Mills Colorado Irrigation 16 1/1/1964							
1748 ZEPHYR LAND COMPANY Mills Colorado Irrigation 78 1/1/1904 1749 GENE SLEDGE / SLEDGE CATTLE CO INC Mills Colorado Irrigation 20 11/2/1964 1750 J DON WYLIE Mills Colorado Irrigation 32 11/12/1968 1751 MARY ALICE STALCUP Mills Colorado Irrigation 200 4/27/1970 1751 PEGGY JEAN ROSS Mills Colorado Irrigation 200 4/27/1970 1752 P V KING Mills Colorado Irrigation 127 3/1/1973 1753 CHARLES & CATHERINE MANGHAM Mills Colorado Irrigation 52 6/9/1968 1755 JOHN C SMITH ET AL Mills Colorado Irrigation 60 2/2/1970 1756 VIRGIL KEITH ANDERSON ET UX Mills Colorado Irrigation 16 1/1/1964 1757 MILLS COUNTY HUNTING & FISHING CLUB Mills Colorado Irrigation 3 8/1/1966 <			-				1/1/1906
1749 GENE SLEDGE / SLEDGE CATTLE CO INC Mills Colorado Irrigation 20 11/2/1962 1750 J DON WYLIE Mills Colorado Irrigation 32 11/12/1963 1751 MARY ALICE STALCUP Mills Colorado Irrigation 200 4/27/1970 1751 PEGGY JEAN ROSS Mills Colorado Irrigation 4/27/1970 1752 P V KING Mills Colorado Irrigation 127 3/1/1972 1753 CHARLES & CATHERINE MANGHAM Mills Colorado Irrigation 52 6/9/1968 1755 JOHN C SMITH ET AL Mills Colorado Irrigation 60 2/2/1970 1756 VIRGIL KEITH ANDERSON ET UX Mills Colorado Irrigation 16 1/1/1964 1757 MILLS COUNTY HUNTING & FISHING CLUB Mills Colorado Irrigation 3 8/1/1966 1758 JAMES R FARMER ET UX Mills Colorado Irrigation 69 3/1/1962 1759							
1750 J DON WYLIE Mills Colorado Irrigation 32 11/12/1965 1751 MARY ALICE STALCUP Mills Colorado Irrigation 200 4/27/1970 1751 PEGGY JEAN ROSS Mills Colorado Irrigation 4/27/1970 1752 P V KING Mills Colorado Irrigation 127 3/1/1973 1753 CHARLES & CATHERINE MANGHAM Mills Colorado Irrigation 52 6/9/1966 1755 JOHN C SMITH ET AL Mills Colorado Irrigation 60 2/2/1970 1756 VIRGIL KEITH ANDERSON ET UX Mills Colorado Irrigation 16 1/1/1964 1757 MILLS COUNTY HUNTING & FISHING CLUB Mills Colorado Recreation 7/6/1964 1758 JAMES R FARMER ET UX Mills Colorado Irrigation 3 8/1/1965 1759 W M STANSBERRY Mills Colorado Irrigation 69 3/1/1965 1760 DUREN TRUST							
1751 MARY ALICE STALCUP Mills Colorado Irrigation 200 4/27/1970 1751 PEGGY JEAN ROSS Mills Colorado Irrigation 4/27/1970 1752 P V KING Mills Colorado Irrigation 127 3/1/1973 1753 CHARLES & CATHERINE MANGHAM Mills Colorado Irrigation 52 6/9/1969 1755 JOHN C SMITH ET AL Mills Colorado Irrigation 60 2/2/1970 1756 VIRGIL KEITH ANDERSON ET UX Mills Colorado Irrigation 16 1/1/1964 1757 MILLS COUNTY HUNTING & FISHING CLUB Mills Colorado Recreation 7/6/1916 1758 JAMES R FARMER ET UX Mills Colorado Irrigation 3 8/1/1965 1759 W M STANSBERRY Mills Colorado Irrigation 69 3/1/1965 1760 DUREN TRUST Mills Colorado Irrigation 4 1/1/1957 1761 JERRY L SPRINKLE ET UX <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1751 PEGGY JEAN ROSS Mills Colorado Irrigation 4/27/1970 1752 P V KING Mills Colorado Irrigation 127 3/1/1973 1753 CHARLES & CATHERINE MANGHAM Mills Colorado Irrigation 52 6/9/1969 1755 JOHN C SMITH ET AL Mills Colorado Irrigation 60 2/2/1970 1756 VIRGIL KEITH ANDERSON ET UX Mills Colorado Irrigation 16 1/1/1964 1757 MILLS COUNTY HUNTING & FISHING CLUB Mills Colorado Recreation 7/6/1916 1758 JAMES R FARMER ET UX Mills Colorado Irrigation 3 8/1/1965 1759 W M STANSBERRY Mills Colorado Irrigation 69 3/1/1965 1760 DUREN TRUST Mills Colorado Irrigation 60 2/7/1972 1761 JERRY L SPRINKLE ET UX Mills Colorado Irrigation 4 1/1/1955 1762 DORIS CATHERINE STELING							
1752 P V KING Mills Colorado Irrigation 127 3/1/1973 1753 CHARLES & CATHERINE MANGHAM Mills Colorado Irrigation 52 6/9/1968 1755 JOHN C SMITH ET AL Mills Colorado Irrigation 60 2/2/1970 1756 VIRGIL KEITH ANDERSON ET UX Mills Colorado Irrigation 16 1/1/1962 1757 MILLS COUNTY HUNTING & FISHING CLUB Mills Colorado Recreation 7/6/1916 1758 JAMES R FARMER ET UX Mills Colorado Irrigation 3 8/1/1962 1759 W M STANSBERRY Mills Colorado Irrigation 69 3/1/1962 1760 DUREN TRUST Mills Colorado Irrigation 60 2/7/1972 1761 JERRY L SPRINKLE ET UX Mills Colorado Irrigation 4 1/1/1957 1762 DORIS CATHERINE STERLING TRUSTEE Mills Colorado Irrigation 41 1/1/1955 1920						200	
1753 CHARLES & CATHERINE MANGHAM Mills Colorado Irrigation 52 6/9/1965 1755 JOHN C SMITH ET AL Mills Colorado Irrigation 60 2/2/1970 1756 VIRGIL KEITH ANDERSON ET UX Mills Colorado Irrigation 16 1/1/1962 1757 MILLS COUNTY HUNTING & FISHING CLUB Mills Colorado Recreation 7/6/1916 1758 JAMES R FARMER ET UX Mills Colorado Irrigation 3 8/1/1965 1759 W M STANSBERRY Mills Colorado Irrigation 69 3/1/1965 1760 DUREN TRUST Mills Colorado Irrigation 60 2/7/1972 1761 JERRY L SPRINKLE ET UX Mills Colorado Irrigation 4 1/1/1957 1762 DORIS CATHERINE STERLING TRUSTEE Mills Colorado Irrigation 41 1/1/1958 1920 WALLACE MADDOX ET AL Mills Colorado Irrigation 1460 12/31/1961							
1755 JOHN C SMITH ET AL Mills Colorado Irrigation 60 2/2/1970 1756 VIRGIL KEITH ANDERSON ET UX Mills Colorado Irrigation 16 1/1/1962 1757 MILLS COUNTY HUNTING & FISHING CLUB Mills Colorado Recreation 7/6/1916 1758 JAMES R FARMER ET UX Mills Colorado Irrigation 3 8/1/1965 1759 W M STANSBERRY Mills Colorado Irrigation 69 3/1/1965 1760 DUREN TRUST Mills Colorado Irrigation 60 2/7/1972 1761 JERRY L SPRINKLE ET UX Mills Colorado Irrigation 4 1/1/1957 1762 DORIS CATHERINE STERLING TRUSTEE Mills Colorado Irrigation 41 1/1/1955 1920 WALLACE MADDOX ET AL Mills Colorado Industrial 14 6/3/1914 2472 O P LEONARD JR ET UX Mills Colorado Irrigation 120 12/31/1963 252					Ť		
1756 VIRGIL KEITH ANDERSON ET UX Mills Colorado Irrigation 16 1/1/1964 1757 MILLS COUNTY HUNTING & FISHING CLUB Mills Colorado Recreation 7/6/1916 1758 JAMES R FARMER ET UX Mills Colorado Irrigation 3 8/1/1965 1759 W M STANSBERRY Mills Colorado Irrigation 69 3/1/1965 1760 DUREN TRUST Mills Colorado Irrigation 60 2/7/1972 1761 JERRY L SPRINKLE ET UX Mills Colorado Irrigation 4 1/1/1957 1762 DORIS CATHERINE STERLING TRUSTEE Mills Colorado Irrigation 41 1/1/1955 1920 WALLACE MADDOX ET AL Mills Colorado Industrial 14 6/3/1914 2472 O P LEONARD JR ET UX Mills Colorado Irrigation 120 12/31/1963 2524 PARTNERSHIP Mills Colorado Irrigation 14 5/15/1963 2526							
1757 MILLS COUNTY HUNTING & FISHING CLUB Mills Colorado Recreation 7/6/1916 1758 JAMES R FARMER ET UX Mills Colorado Irrigation 3 8/1/1965 1759 W M STANSBERRY Mills Colorado Irrigation 69 3/1/1965 1760 DUREN TRUST Mills Colorado Irrigation 60 2/7/1972 1761 JERRY L SPRINKLE ET UX Mills Colorado Irrigation 4 1/1/1957 1762 DORIS CATHERINE STERLING TRUSTEE Mills Colorado Irrigation 41 1/1/1955 1920 WALLACE MADDOX ET AL Mills Colorado Industrial 14 6/3/1914 2472 O P LEONARD JR ET UX Mills Colorado Irrigation 1460 12/31/1962 2524 PARTNERSHIP Mills Colorado Irrigation 12 12/31/1963 2526 W H HICKS Mills Colorado Irrigation 14 5/15/1963 2527 CH							
1758 JAMES R FARMER ET UX Mills Colorado Irrigation 3 8/1/1965 1759 W M STANSBERRY Mills Colorado Irrigation 69 3/1/1965 1760 DUREN TRUST Mills Colorado Irrigation 60 2/7/1972 1761 JERRY L SPRINKLE ET UX Mills Colorado Irrigation 4 1/1/1957 1762 DORIS CATHERINE STERLING TRUSTEE Mills Colorado Irrigation 41 1/1/1955 1920 WALLACE MADDOX ET AL Mills Colorado Industrial 14 6/3/1914 2472 O P LEONARD JR ET UX Mills Colorado Irrigation 1460 12/31/1963 2524 PARTNERSHIP Mills Colorado Irrigation 12 12/31/1963 2526 W H HICKS Mills Colorado Irrigation 14 5/15/1963 2527 CHARLES A HICKS Mills Colorado Irrigation 14 5/15/1963						16	
1759 W M STANSBERRY Mills Colorado Irrigation 69 3/1/1965 1760 DUREN TRUST Mills Colorado Irrigation 60 2/7/1972 1761 JERRY L SPRINKLE ET UX Mills Colorado Irrigation 4 1/1/1957 1762 DORIS CATHERINE STERLING TRUSTEE Mills Colorado Irrigation 41 1/1/1955 1920 WALLACE MADDOX ET AL Mills Colorado Industrial 14 6/3/1914 2472 O P LEONARD JR ET UX Mills Colorado Irrigation 1460 12/31/1963 2524 PARTNERSHIP Mills Colorado Irrigation 120 12/31/1963 2526 W H HICKS Mills Colorado Irrigation 14 5/15/1963 2527 CHARLES A HICKS Mills Colorado Irrigation 14 5/15/1963							
1760 DUREN TRUST Mills Colorado Irrigation 60 2/7/1972 1761 JERRY L SPRINKLE ET UX Mills Colorado Irrigation 4 1/1/1957 1762 DORIS CATHERINE STERLING TRUSTEE Mills Colorado Irrigation 41 1/1/1958 1920 WALLACE MADDOX ET AL Mills Colorado Industrial 14 6/3/1914 2472 O P LEONARD JR ET UX Mills Colorado Irrigation 1460 12/31/1961 2524 PARTNERSHIP Mills Colorado Irrigation 120 12/31/1963 2526 W H HICKS Mills Colorado Irrigation 14 5/15/1963 2527 CHARLES A HICKS Mills Colorado Irrigation 14 5/15/1963							
1761 JERRY L SPRINKLE ET UX Mills Colorado Irrigation 4 1/1/1957 1762 DORIS CATHERINE STERLING TRUSTEE Mills Colorado Irrigation 41 1/1/1958 1920 WALLACE MADDOX ET AL Mills Colorado Industrial 14 6/3/1914 2472 O P LEONARD JR ET UX Mills Colorado Irrigation 1460 12/31/1961 2524 PARTNERSHIP Mills Colorado Irrigation 12/31/1923 2526 W H HICKS Mills Colorado Irrigation 14 5/15/1963 2527 CHARLES A HICKS Mills Colorado Irrigation 14 5/15/1963					· · ·		
1762 DORIS CATHERINE STERLING TRUSTEE Mills Colorado Irrigation 41 1/1/1955 1920 WALLACE MADDOX ET AL Mills Colorado Industrial 14 6/3/1912 2472 O P LEONARD JR ET UX Mills Colorado Irrigation 1460 12/31/1961 2524 PARTNERSHIP Mills Colorado Irrigation 120 12/31/1923 2526 W H HICKS Mills Colorado Irrigation 14 5/15/1963 2527 CHARLES A HICKS Mills Colorado Irrigation 14 5/15/1963							
1920 WALLACE MADDOX ET AL Mills Colorado Industrial 14 6/3/1914 2472 O P LEONARD JR ET UX Mills Colorado Irrigation 1460 12/31/1961 2524 PARTNERSHIP Mills Colorado Irrigation 120 12/31/1923 2526 W H HICKS Mills Colorado Irrigation 14 5/15/1963 2527 CHARLES A HICKS Mills Colorado Irrigation 14 5/15/1963							
2472 O P LEONARD JR ET UX Mills Colorado Irrigation 1460 12/31/1961 2524 PARTNERSHIP Mills Colorado Irrigation 120 12/31/1923 2526 W H HICKS Mills Colorado Irrigation 14 5/15/1963 2527 CHARLES A HICKS Mills Colorado Irrigation 14 5/15/1963							
2524 PARTNERSHIP Mills Colorado Irrigation 120 12/31/1923 2526 W H HICKS Mills Colorado Irrigation 14 5/15/1963 2527 CHARLES A HICKS Mills Colorado Irrigation 14 5/15/1963							
2526 W H HICKS Mills Colorado Irrigation 14 5/15/1963 2527 CHARLES A HICKS Mills Colorado Irrigation 14 5/15/1963							
2527 CHARLES A HICKS Mills Colorado Irrigation 14 5/15/1963					•		
	252 <i>7</i> 2528	TRUMAN LONG	Mills	Colorado	Irrigation Irrigation	203	

Water Right Number	Owner	County	Basin	Use	Max. Permitted Diversion (ac-ft/vr)	Priority Date
2532	A J BECK ESTATE	Mills	Colorado	Irrigation	90	5/7/1973
2535	DAVID SWENSON ET AL	Mills	Colorado	Irrigation	313	6/22/1914
2537	L I TANNER	Mills	Colorado	Irrigation	125	12/31/1913
2538	BILLY W BORHO ET UX	Mills	Colorado	Irrigation	66	5/31/1913
2538	GRENETTA BELL BERRY	Mills	Colorado	Irrigation	17	5/31/1913
2539	GRENETTA BELL BERRY	Mills	Colorado	Irrigation	102	6/30/1906
2541	SHERAL M RAINBOLT ET AL	Mills	Colorado	Irrigation	57	12/31/1905
2542	MILDRED HALE CHANEY ET AL	Mills	Colorado	Irrigation	13	8/15/1967
2543	BILLY B HALE	Mills	Colorado	Irrigation	100	12/31/1956
2544	J WAYNE WILCOX	Mills	Colorado	Irrigation	16	12/31/1957
2545	JAMES C BLUE ET UX	Mills	Colorado	Irrigation	16	12/31/1957
2547	RYON DUNLAP ET UX	Mills	Colorado	Irrigation	171	9/30/1965
2549	O P LEONARD JR ET UX	Mills	Colorado	Irrigation	249	
2550	O P LEONARD JR ET AL	Mills	Colorado	Irrigation	3680	
2551	WILLIAM HAYDEN COCKRELL ET AL	Mills	Colorado	Irrigation	81	12/31/1926
2552	MARTIN HUGHES DVM ET UX	Mills	Colorado	Irrigation	37	
2552	ROBERT LEE LONG JR ET UX	Mills	Colorado	Irrigation	73	
2553	CITY OF GOLDTHWAITE	Mills	Colorado	Municipal/Domestic	1750	
2554	LEE P SHELLBERG TRUSTEE	Mills	Colorado	Irrigation	24	9/27/1949
2555	FRED E HARTLEY ET UX	Mills	Colorado	Irrigation	34	
2556	A & A LANDSCAPE & IRRIGATION LP	Mills	Colorado	Irrigation	75	
2565	THE ESTATE OF OTHEL OTTO SMITH	Mills	Colorado	Irrigation	100	6/30/1964
2566	DORTHEY DUCKETT	Mills	Colorado	Irrigation	159	
2568	KELLIS LANDRUM	Mills	Colorado	Irrigation	168	
2569	MILLS COUNTY STATE BANK	Mills	Colorado	Irrigation	2	12/31/1905
2569	R C JOHNSON	Mills	Colorado	Irrigation	106	
2570	TRUST	Mills	Colorado	Irrigation	189	
2570	MILLS COUNTY STATE BANK	Mills	Colorado	Municipal/Domestic	277	12/31/1904
2570	TRUSTEE	Mills	Colorado	Irrigation	5	
2576	DONALD D BURNHAM	Mills	Colorado	Irrigation	84	
2916	LEE ROY SCHWARTZ	Mills	Brazos	Irrigation	53	5/31/1959
2917	WILFORD & RUTH WITZSCHE	Mills	Brazos	Irrigation	25	3/31/1963
2918	PAMELA ANN MARWITZ POPE ET AL	Mills	Brazos	Irrigation	20	4/30/1949
2919	FRITZ HOPPER	Mills	Brazos	Irrigation	27	4/30/1958
2920	DOUG HOPPER	Mills	Brazos	Irrigation	12	5/31/1965
2955	MARTIN P SHELTON ET AL	Mills	Brazos	Irrigation	150	
2957	HOWARD K MOORE	Mills	Brazos	Irrigation	65	8/31/1940
5111	NEW HORIZONS RANCH & CENTER INC	Mills	Colorado	Municipal/Domestic	15	11/24/1986
1847	LLANO PARTNERS LTD	San Saba	Colorado	Irrigation	200	1/1/1951
1856	JUDY DUNNEGAN	San Saba	Colorado	Irrigation	16	6/26/1914
1856	KATHLEEN HAWKINS	San Saba	Colorado	Irrigation	18	6/24/1914
1857	MABEL FLEMING	San Saba	Colorado	Irrigation	6	6/24/1914
1858	E L BYRD	San Saba	Colorado	Irrigation	19	6/24/1914
1859	CHRISTINE DIANE POOL BESSENT ET AL	San Saba	Colorado	Irrigation	171	6/27/1914
1860	LARRY BAKER ET UX	San Saba	Colorado	Irrigation	96	
1861	WILLARD KEITH BESSENT ET UX	San Saba	Colorado	Irrigation	20	
1862	CHRISTINE DIANE POOL BESSENT ET AL	San Saba	Colorado	Irrigation	28	
1863	FRANK CHURCHILL ET UX	San Saba	Colorado	Irrigation	15	
1863	JIMMY N SHOOK ET AL	San Saba	Colorado	Irrigation	35	
1864	DON FOWLER ET UX	San Saba	Colorado	Irrigation	26	
1864	SHARON KAY LEWIS	San Saba	Colorado	Irrigation	7	
1865	CLARENCE G JOHNSON III	San Saba	Colorado	Irrigation	15	
1866	SEIDERS SAN SABA RANCH LTD	San Saba	Colorado	Irrigation	93	
1867	JOHNSON REVOCABLE TRUST	San Saba	Colorado	Irrigation	54	
1868	JOHNSON REVOCABLE TRUST	San Saba	Colorado	Irrigation	190	
1869		1			190	
	CRAIG STENCIL ET UX	San Saba	Colorado	Irrigation		1/1/1925
1869	HOMER R OWENS ET UX	San Saba	Colorado	Irrigation	26	
1870	HOMER R OWENS ET UX	San Saba	Colorado	Irrigation	88	5/2/1914

Water Right Number	Owner	County	Basin	Use	Max. Permitted Diversion (ac-ft/yr)	Priority Date
1871	LARRY GENE CONNER	San Saba	Colorado	Irrigation	120	1/1/1955
1872	TRIPLE M CATTLE COMPANY	San Saba	Colorado	Irrigation	225	6/24/1914
1873	EUGENE CONNER	San Saba	Colorado	Irrigation	104	1/1/1952
1874	BEN F AMONETT ET AL	San Saba	Colorado	Irrigation	1	1/1/1922
1874	DENNIS HARDMAN ET UX	San Saba	Colorado	Irrigation	34	1/1/1922
1875	CHARLES B MARTIN JR ET UX	San Saba	Colorado	Irrigation	114	6/22/1914
1876	THE ESTATE OF RILEY C HARKEY ET AL	San Saba	Colorado	Irrigation	142	1/1/1922
1877	BONNIE HARKEY	San Saba	Colorado	Irrigation	146	11/14/1914
1878	THE ESTATE OF RILEY C HARKEY	San Saba	Colorado	Irrigation	120	1/1/1910
1879	RANDY KIRK HARKEY ET AL	San Saba	Colorado	Irrigation	25	1/1/1913
1880	CHRISTINE BAGLEY EDMONDSON	San Saba	Colorado	Irrigation	29	1/1/1956
1881	CHRISTINE BAGLEY EDMONDSON	San Saba	Colorado	Irrigation	21	1/1/1910
1881	CONNIE BAGLEY ADAMS	San Saba	Colorado	Irrigation	37	1/1/1910
1881	DEAN BAGLEY JR	San Saba	Colorado	Irrigation	103	1/1/1910
1882	MARJORIE GUNTER ET AL	San Saba	Colorado	Irrigation	150	1/1/1919
1883	ESTATE OF BYRON E & GEORGIA L LEWIS	San Saba	Colorado	Irrigation	31	1/1/1933
1884	JAMES B BONHAM CORPORATION	San Saba	Colorado	Irrigation	72	1/1/1963
1885	T N WOOD	San Saba	Colorado	Irrigation	64	9/4/1962
1886	MAXINE MIFFLETON	San Saba	Colorado	Irrigation	4	1/1/1911
1886	RICKY LAMBERT ET UX	San Saba	Colorado	Irrigation	31	1/1/1911
1886	RONNIE MCBRIDE ET UX	San Saba	Colorado	Irrigation	4	1
1887	ROGER RICKY LAMBERT ET UX	San Saba	Colorado	Irrigation	329	1/1/1911
1888	SLOAN LIVESTOCK LTD	San Saba	Colorado	Irrigation	88	
	MRS HOPE CRUTSINGER	San Saba	Colorado	Irrigation	41	1/1/1925
1890	THE GREAT SAN SABA RIVER PECAN CO	San Saba	Colorado	Irrigation	434	1/1/1911
1891	JOE ROGAN MILLER	San Saba	Colorado	Municipal/Domestic	118	1/1/1921
1891	THE ESTATE OF SARA JEAN CAMERON	San Saba	Colorado	Irrigation	25	1/1/1921
1892	ESTATE OF JOHN P MCCONNELL JR	San Saba	Colorado	Irrigation	53	
1892	JOHNETTE MCCONNELL EARLY ET AL	San Saba	Colorado	Irrigation	180	1/1/1953
1893	DEAN BAGLEY JR	San Saba	Colorado	Irrigation	52	1/1/1959
1894	GAILIAN DEAN BAGLEY JR	San Saba	Colorado	Irrigation	272	1/1/1913
1895	THE GREAT SAN SABA RIVER PECAN CO	San Saba	Colorado	Irrigation	48	1/1/1955
1896	GAILIAN DEAN BAGLEY JR	San Saba	Colorado	Irrigation	64	1/1/1950
1897	WILTON & BETTY MARTIN	San Saba	Colorado	Irrigation	80	5/16/1914
1898	DAVID GILGER	San Saba	Colorado	Irrigation	40	3/30/1914
1899	ANITA OWEN	San Saba	Colorado	Irrigation	340	
1900	STEVE D STIFFLEMIRE	San Saba	Colorado	Irrigation	54	
	ROY BAGLEY	San Saba	Colorado	Irrigation	49	
1902	JOHN T & GLENNETTA SANDERSON	San Saba	Colorado	Irrigation	2	
1903	CITY OF SAN SABA	San Saba	Colorado	Municipal/Domestic	550	
1904	WINSTON MIKE MILLICAN	San Saba	Colorado	Irrigation	5	
1905	L F & MARY B TOWNSEND	San Saba	Colorado	Irrigation	38	
1906	CITY OF SAN SABA	San Saba	Colorado	Irrigation	54	
1907	PATSY RAYE MCCONNELL	San Saba	Colorado	Irrigation	198	
1908	W L OWEN JR	San Saba	Colorado	Irrigation	40	
1909	JOE C SMITH	San Saba	Colorado	Irrigation	84	
1910	EDGAR HUBBERT JR ET AL	San Saba	Colorado	Irrigation	14	
1911	JIMMY N SHOOK ET AL	San Saba	Colorado	Irrigation	95	
1912	J M GAGE JR	San Saba	Colorado	Irrigation	112	1/1/1915
	EMMETT LEE GRUMBLES	San Saba	Colorado	Irrigation	270	
1913	JOHN PAT GRUMBLES	San Saba	Colorado	Irrigation		1/1/1932
1914	MARTHA OWEN BURNHAM ET AL	San Saba	Colorado	Irrigation	207	1/1/1931
1915	MAX MAHAN	San Saba	Colorado	Irrigation	220	
1916	ALAN LANE JOHNSON ET UX	San Saba	Colorado	Irrigation	103	
1917	MARTHA OWEN BURNHAM ET AL	San Saba	Colorado	Irrigation	188	
1918	MIKE REAVIS ET UX	San Saba	Colorado	Irrigation	40	
1919	JIMMIE D SHAHAN	San Saba	Colorado	Irrigation	15	
1921	SAN SABA IRREVOCABLE TR AGREEMENT	San Saba	Colorado	Irrigation	20	

Water Right Number	Owner	County	Basin	Use	Max. Permitted Diversion (ac-ft/yr)	Priority Date
1922	WILLIE MAY SHAHAN	San Saba	Colorado	Irrigation	40	6/3/1914
1924	RAYMOND A OLIVER	San Saba	Colorado	Irrigation	49	1/1/1905
1925	WILLIE MAY SHAHAN	San Saba	Colorado	Irrigation	37	5/30/1914
1926	R L OLIVER ET AL	San Saba	Colorado	Irrigation	6	1/1/1905
1927	MARJORIE ANN O'BANNON ALTIZER	San Saba	Colorado	Irrigation	54	1/1/1905
1928	ELSIE MILLICAN ET AL	San Saba	Colorado	Irrigation	118	1/1/1905
2452	O P LEONARD JR ET AL	San Saba	Colorado	Irrigation	1302	12/31/1864
2516	J PHILLIP KEETER	San Saba	Colorado	Irrigation	12	12/31/1966
2518	OSCAR L GRANT	San Saba	Colorado	Irrigation	6	12/31/1966
2519	JEAN IRBY	San Saba	Colorado	Irrigation	8	12/31/1966
2525	C BARTON DRAPER ET UX	San Saba	Colorado	Irrigation	620	12/31/1903
2529	T WARD LOCKLEAR	San Saba	Colorado	Irrigation	239	12/31/1924
2530	RIVER CREEK LTD	San Saba	Colorado	Irrigation	41	12/31/1904
2531	DON TAPP ET UX	San Saba	Colorado	Irrigation	73	12/31/1960
2531	PAT REAGAN ET UX	San Saba	Colorado	Irrigation	55	12/31/1960
2531	RICHARD M BARNEY	San Saba	Colorado	Irrigation	28	12/31/1960
2531	STEWART LIVING TRUST DATED 3/13/02	San Saba	Colorado	Irrigation	43	12/31/1960
2533	KITTY JO SIMPSON CUMMINGS	San Saba	Colorado	Irrigation	44	12/31/1912
2533	NANCY C BUSH	San Saba	Colorado	Irrigation	44	12/31/1912
2533	ROGER D BUSH ET UX	San Saba	Colorado	Irrigation	44	12/31/1912
2534	1997	San Saba	Colorado	Irrigation	156	12/31/1955
2536	CHARLES E JONES ET UX	San Saba	Colorado	Irrigation	96	12/31/1912
2536	THE JOAN PEET MCMULLAN TRUST NO 1	San Saba	Colorado	Irrigation	140	12/31/1912
2540	J C EDMONDSON	San Saba	Colorado	Irrigation	67	12/31/1937
2546	KENNETH O O'REAR ET UX	San Saba	Colorado	Irrigation	1600	12/31/1956
2557	JOHN W & JEAN BARFIELD	San Saba	Colorado	Irrigation	16	8/31/1928
2558	CECIL CAMPBELL	San Saba	Colorado	Irrigation	71	8/31/1928
2559	J C & LOUISE OSWALD	San Saba	Colorado	Irrigation	27	8/31/1928
2560	ROBERT E & DEBORAH O MILLICAN	San Saba	Colorado	Irrigation	27	8/31/1928
2561	CECIL CAMPBELL	San Saba	Colorado	Irrigation	39	8/31/1928
2562	JOHN H BANNISTER ET UX	San Saba	Colorado	Irrigation	47	7/31/1913
2562	MELBA LOU WHITT ESTATE ET AL	San Saba	Colorado	Irrigation	49	7/31/1913
2563	O P LEONARD JR ET AL	San Saba	Colorado	Irrigation	173	12/31/1937
2564	HASKEL G HUDSON ET UX	San Saba	Colorado	Irrigation	606	12/31/1929
2564	KENDALL C MONTGOMERY ET UX	San Saba	Colorado	Irrigation	20	12/31/1929
2564	LUTHER W SIMPSON ET UX	San Saba	Colorado	Irrigation	474	12/31/1929
2567	RICHARD TURNER MILLER	San Saba	Colorado	Irrigation	70	
2571	JAMES R CROMER	San Saba	Colorado	Irrigation	113	7/31/1965
2572	ALTA FERN EDMONDSON FREEMAN ET AL	San Saba	Colorado	Irrigation	232	6/30/1910
2573	STEPHEN BURKE ET UX	San Saba	Colorado	Irrigation	11	12/31/1952
2574	JOHN J OLIVER	San Saba	Colorado	Irrigation	45	
2575	TOMMIE WORTH WOOD ET AL	San Saba	Colorado	Irrigation	93	12/31/1911
2577	CHEREE HAMBLEN	San Saba	Colorado	Irrigation	44	
2578	SUE BETH O'BANON GRIMES ET AL	San Saba	Colorado	Irrigation	30	
2582	DICK GLOVER COMPANY INC	San Saba	Colorado	Irrigation	71	12/31/1905
2583	MICHAEL H ROCKAFELLOW ET UX	San Saba	Colorado	Irrigation	259	12/31/1912
2584	MYLES D MCDOWELL ET AL	San Saba	Colorado	Irrigation	96	6/23/1914
2591	KENNETH R & JUDITH ANNE MCCOY	San Saba	Colorado	Irrigation	73	1/31/1911
2593	KENNETH R & JUDITH ANNE MCCOY	San Saba	Colorado	Irrigation	57	9/30/1963
2595	WILLIAM G BURGESS ET UX	San Saba	Colorado	Irrigation	205	12/31/1914
2601	BOBBY JOHN FOSTER	San Saba	Colorado	Irrigation	105	12/31/1957
2602	W D PORCH	San Saba	Colorado	Irrigation	30	6/30/1964
2603	JACKIE BRISTER	San Saba	Colorado	Irrigation	187	5/31/1907
2604	W N CLARK	San Saba	Colorado	Irrigation	60	5/31/1907
2606	ELSIE MILLICAN ET AL	San Saba	Colorado	Irrigation	18	12/31/1961
5288	TOMMY LEE JONES ET UX	San Saba	Colorado	Irrigation	20	3/20/1990
2644	US FISH & WILDLIFE SERVICE	Travis	Colorado	Irrigation	28	12/31/1954
2645	LAGO VISTA INC	Travis	Colorado	Irrigation	9	1/28/1974

Water Right Number	Owner	County	Basin	Use	Max. Permitted Diversion (ac-ft/yr)	Priority Date
2646	JAMES L ANDERSON	Travis	Colorado	Irrigation	0	4/30/1964
2647	TEX CONF ASSOC SEVENTH DAY ADVENTS	Travis	Colorado	Irrigation	6	4/30/1964
2648	SAAAM LTD	Travis	Colorado	Irrigation	0	4/30/1964
2649	JAMES L ANDERSON	Travis	Colorado	Irrigation	10	7/31/1963
2650	MARVIN T & PEGGY JEAN TALBOTT	Travis	Colorado	Irrigation	1	7/31/1963
2651	US FISH & WILDLIFE SERVICE	Travis	Colorado	Irrigation	14	12/31/1954
3344	ONION CREEK CLUB INC	Travis	Colorado	Irrigation	12	8/2/1976
3379	HYDE PARK BAPTIST CHURCH	Travis	Colorado	Recreation	64	9/13/1976
3414	CARROLL & JAMES SANSOM	Travis	Colorado	Irrigation	200	9/27/1976
3815	APACHE SHORES INC	Travis	Colorado	Recreation		3/30/1981
3841	ASSN INC	Travis	Colorado	Irrigation	76	
4007	CITY OF CEDAR PARK	Travis	Colorado	Municipal/Domestic	5600	7/18/1983
4008	CITY OF AUSTIN / DRAINAGE UTILITY	Travis	Colorado	Recreation		4/18/1983
4025	THE LAKEWAY COMPANY	Travis	Colorado	Irrigation		4/18/1983
4169	HURST CREEK MUD OF TRAVIS COUNTY	Travis	Colorado	Irrigation	1700	11/1/1982
5042		Travis	Colorado	Recreation		1/29/1986
5058	HHCC PROPERTIES INC	Travis	Colorado	Recreation		5/16/1986
5070	THI AUSTIN LP	Travis	Colorado	Recreation		6/27/1986
5095		Travis	Colorado	Recreation		9/8/1986
5102	AQUAPLEX INC	Travis	Colorado	Recreation		10/8/1986
5179	WINDERMERE A JOINT VENTURE AND	Travis	Colorado	Other		5/4/1988
5268	APPLIED MATERIALS INC	Travis	Colorado	Recreation		12/6/1989
5269	MARKBOROUGH DEVELOPMENT CO LTD	Travis	Colorado	Recreation	44	12/6/1989
5368	239 RIO VISTA LTD	Travis	Colorado	Irrigation	14	
5368	DORIS WILKERSON	Travis	Colorado	Irrigation	0	
5368	JAY C CHOWNING ET AL	Travis	Colorado	Irrigation	0	
5368	LA/WCD FAMILY WATERWORKS LTD	Travis	Colorado	Irrigation	2	6/30/1954
5368	LAKE AUSTIN LAND & CATTLE LTD	Travis	Colorado	Irrigation	1	0,00,00
5368 5368	MICHAEL G MCCARTHY MINI-ME MANAGEMENT LTD	Travis Travis	Colorado Colorado	Irrigation	12	
5368			Colorado	Irrigation	0	
5368	ROBERT L STEINER TRUSTEE RONALD LEE FINN	Travis		Irrigation	0	
5368	LTD	Travis Travis	Colorado Colorado	Irrigation	123	6/30/1954
5368	THL RANCH LTD	Travis	Colorado	Irrigation Irrigation	8	
5369	BOHLS CATTLE RANCH & INVEST VENTURE		Colorado	Irrigation	22	
5371	MARION FOWLER	Travis	Colorado	Irrigation	8	
5372		Travis	Colorado	Irrigation	25	
5373	RANDOLPH G MUELLER ET AL	Travis	Colorado	Irrigation	11	
5374	GREAT HILL LTD	Travis	Colorado	Irrigation	13	
5375		Travis	Colorado	Irrigation	40	
5376	HILL COUNTRY GOLF INC	Travis	Colorado	Recreation	40	3/13/1972
5377	CITY OF AUSTIN	Travis	Colorado	Recreation		3/24/1975
5378		Travis	Colorado	Irrigation	60	
5379		Travis	Colorado	Irrigation		6/10/1914
5379	EXECUTOR	Travis	Colorado	Irrigation	1323	6/10/1914
5380	CAPITOL AGGREGATES LTD	Travis	Colorado	Mining	2540	
5382	WILLIAM D MCMORRIS ET AL	Travis	Colorado	Irrigation	50	
5384	SHAPARD FARMS	Travis	Colorado	Irrigation	74	
5385	WILLIAM D MCMORRIS ET AL	Travis	Colorado	Irrigation	67	
5386	TEXAS INDUSTRIES INC	Travis	Colorado	Mining	110	
5393		Travis	Colorado	Industrial	95	
5393		Travis	Colorado	Industrial	20	
5394		Travis	Colorado	Irrigation	150	
5396		Travis	Colorado	Irrigation	180	
5397	CLARENCE WASHINGTON	Travis	Colorado	Industrial	17	
5401		Travis	Colorado	Irrigation	30	
5471	CITY OF AUSTIN	Travis	Colorado	Municipal/Domestic	270403	
5482		Travis	Colorado	Industrial	1470	

Water Right Number	Owner	County	Basin	Use	Max. Permitted Diversion (ac-ft/yr)	Priority Date
5483	NIX O BODDEN ET UX	Travis	Colorado	Irrigation	1	12/31/1961
5489	CITY OF AUSTIN	Travis	Colorado	Municipal/Domestic	36456	8/20/1945
5491	ROBERT D HEJL	Travis	Colorado	Irrigation	22	12/31/1952
5542	WELLS BRANCH MUD	Travis	Colorado	Recreation		11/20/1995
5564	NATIONAL INSTRUMENTS CORPORATION	Travis	Colorado	Recreation		12/9/1996
5677	LOWER COLORADO RIVER AUTHORITY	Travis	Colorado	Municipal/Domestic	6400	2/2/2000
5781	BAE SYSTEMS	Travis	Colorado	Recreation		7/3/2002
5790	CITY OF PFLUGERVILLE	Travis	Colorado	Municipal/Domestic	12000	12/20/2002
5888	NINE HIDDEN LAKE LTD	Travis	Colorado	Recreation		6/6/2005
3418	GLEN D LAAS ET UX	Wharton	Brazos-Colorado	Irrigation	480	5/7/1979
3418	HARRY H ANDERSON ET UX	Wharton	Brazos-Colorado	Irrigation	110	12/31/1910
3419	HARRY H ANDERSON ET UX	Wharton	Brazos-Colorado	Irrigation	800	5/7/1979
3420	PEMM PARTNERS LTD	Wharton	Brazos-Colorado	Irrigation	300	9/10/1979
3421	CONOCOPHILLIPS CO	Wharton	Brazos-Colorado	Municipal/Domestic	1000	9/13/1928
3421	LEONARD WITTIG GRASS FARMS INC	Wharton	Brazos-Colorado	Mining	1000	9/13/1928
3421	WHARTON COUNTY GENERATION LLC	Wharton	Brazos-Colorado	Municipal/Domestic	1600	9/13/1928
3814	JAMES L FORGASON ET UX	Wharton	Brazos-Colorado	Irrigation	912	3/24/1981
3816	CHARLIE F JOCHETZ ET AL	Wharton	Brazos-Colorado	Irrigation	400	5/30/1981
3847	S W K LAND COMPANY ET AL	Wharton	Brazos-Colorado	Irrigation	1011	11/30/1981
3887	RAYMOND A & JO MARIE RABIUS	Wharton	Brazos-Colorado	Irrigation	275	4/19/1982
3926	WAYNE LEE CORMAN ET AL	Wharton	Brazos-Colorado	Irrigation	300	9/7/1982
3996	RONALD D & JOHNNIE M CLOUGH	Wharton	Brazos-Colorado	Irrigation	130	2/22/1983
4177	WAYNE ALLEN & THERESA A GUESS ET AL	Wharton	Brazos-Colorado	Irrigation	164	9/25/1984
4229		Wharton			297	
	MARCIAL SORRELL III TRUSTEE ET AL		Brazos-Colorado	Irrigation		3/19/1985
	MERLE T CARLSON ET AL	Wharton	Colorado-Lavaca	Other	111	5/7/1985
4284		Wharton	Brazos-Colorado	Irrigation	450	7/30/1985
4288	LEROY MACHA ET AL	Wharton	Brazos-Colorado	Irrigation	1151	9/3/1985
4773	EDMUND HOLUB	Wharton	Colorado-Lavaca	Irrigation	160	
4774	JOHN T GANN JR	Wharton	Colorado-Lavaca	Irrigation	63	
4775	KATHRYN E ALLEN	Wharton	Colorado-Lavaca	Irrigation	640	
4776	JOHN T GANN JR	Wharton	Colorado-Lavaca	Irrigation	228	12/31/1941
4777	PATSY RUTH COX CARLQUIST	Wharton	Colorado-Lavaca	Irrigation	640	4/30/1944
4778	JAMES R HLAVINKA ET AL	Wharton	Colorado-Lavaca	Irrigation	1093	3/31/1953
4779	ELIAS R CALLAHAN ET UX	Wharton	Colorado-Lavaca	Irrigation	116	
4779	SOUTH TEXAS RICE INC	Wharton	Colorado-Lavaca	Irrigation	347	4/30/1923
4784	PARTNERSHIP	Wharton	Colorado-Lavaca	Irrigation	324	4/30/1944
4785	MAREK FARMS	Wharton	Colorado-Lavaca	Irrigation	26	4/30/1944
5067	ELIZABETH ANN ULLMAN	Wharton	Brazos-Colorado	Irrigation	2290	6/4/1986
5067	OMAR ARLT TRUST	Wharton	Brazos-Colorado	Irrigation		6/4/1986
5067	ROBERT STRUNK TRUST	Wharton	Brazos-Colorado	Irrigation		6/4/1986
5324	RABIUS CHILDREN TRUST	Wharton	Brazos-Colorado	Irrigation	87	10/25/1990
5338	BERNARD O STONE JR	Wharton	Brazos-Colorado	Irrigation	420	12/19/1990
5435	TRI-GEN LAND CORPORATION	Wharton	Colorado	Irrigation	192	12/31/1955
5459	S & S FARMS A JOINT VENTURE WITH	Wharton	Brazos-Colorado	Irrigation	1000	4/21/1993
5477	LOWER COLORADO RIVER AUTHORITY	Wharton	Colorado	Irrigation	55000	9/1/1907
5477	LOWER COLORADO RIVER AUTHORITY	Wharton	Colorado	Municipal/Domestic		9/1/1907
5477	LOWER COLORADO RIVER AUTHORITY	Wharton	Colorado	Industrial		9/1/1907
5568	MORRISON TRUST	Wharton	Brazos-Colorado	Irrigation	1120	1/15/1997
5573	ANNIE LEE ANSLEY	Wharton	Brazos-Colorado	Irrigation	1289	1/21/1997
5623	STEVEN C CALLAWAY ET AL	Wharton	Brazos-Colorado	Irrigation	185	
5674	F JOE PREISLER JR ET AL	Wharton	Brazos-Colorado	Irrigation	152	2/4/2000
5684	WILLIAM A ANSLEY ET AL	Wharton	Brazos-Colorado	Irrigation	184	
5685	MARIE E SIKORA	Wharton	Brazos-Colorado	Irrigation	33	
5702	LESLIE W HUDGINS	Wharton	Brazos-Colorado	Irrigation	217	
5702	NIZAR MULLANI ET AL	Wharton	Brazos-Colorado	Irrigation	72	

DESCRIPTION OF REGION K WAM RUN 3 CUTOFF MODEL

The TCEQ's Colorado WAM Run 3 (circa September 17, 2007) was used as the base model for constructing the current version of what is referred to as the Region K WAM Run 3 Cutoff Model. This model is believed to be exactly the same as the TCEQ's current Run 3 version of the Colorado Basin WAM, except that it has been modified to reflect historical and existing operations of water rights with respect to reservoirs in the upper basin above Ivie and Brownwood Dams and to be generally consistent with procedures for determining the firm yield of the Highland Lakes as incorporated in the currently effective LCRA 1999 Water Management Plan (WMP). Specifically, the following modifications have been made to the TCEQ model for purposes of Region K planning:

- 1) The Colorado River Basin has been divided into two subbasins; one above Ivie and Brownwood Dams and one below these dams, with all water rights in the upper basin made senior in priority to all water rights in the lower subbasin while still maintaining priority order among the water rights in each subbasin.
- 2) The interruptible supply of water from the Highland Lakes that is authorized under the LCRA 1999 WMP for supplementing the water supply of downstream run-of-the-river water rights has been eliminated to reflect future firm yield operation of the Highland Lakes in accordance with policies incorporated in the WMP.
- 3) In accordance with provisions of the 2006 Settlement Agreement between the LCRA and the South Texas Project (STP), the available supply of run-of-river water for STP under Certificate of Adjudication No. 14-5437 is authorized at 102,000 ac-ft/yr (excluding Highland Lakes backup water), and the available supply of backup water for STP from the Highland Lakes is limited to 20,000 ac-ft/yr (as a 5-year rolling average) with two generating units in operation (as will be the case through the year 2015 according to STP) and to 40,000 ac-ft/yr (as a 5-year rolling average) with any additional generating units in operation (beginning in the year 2016 according to STP). In the WAM, water requirements for STP in excess of these limits are assumed to be obtained from external sources other than the Colorado River.
- 4) While the combined effects of these modifications to the model have resulted in changes in the overall available supply of water for various users in the basin, the authorized diversion amount (demand) for the LCRA "uncommitted card" (WAM Water Right ID No. 61405482001C) is still set at 132,000 ac-ft/yr in order to maintain the Highland Lakes system in a firm yield condition in accordance with WMP procedures.

Following is a summary of specific features and information regarding the Region K WAM Run 3 Cutoff Model as it currently exists:

1) All water rights in the entire Colorado River Basin and the Colorado-Brazos Coastal Basin (San Bernard River) are individually represented and simulated in accordance with their full authorized diversion and reservoir storage amounts.

- 2) All streamflow restrictions and environmental flow requirements stipulated in individual water rights, including the LCRA 1999 WMP, that limit diversions and/or reservoir storage are accounted for in the model.
- 3) Simulations with the WAM are made using a monthly time step over the entire period from 1940 through 1998.
- 4) Monthly naturalized streamflows are input to the model at primary control points (gaging stations) for the entire 1940-1998 simulation period and used to describe the available naturalized flows at all water right locations based on drainage area ratios.
- 5) The original naturalized flows for September 1952 for all primary control points on the mainstem of the Colorado River from Mansfield Dam to the Gulf of Mexico have been reduced by 300,000 acre-feet to reflect an adjustment in the original procedures used to estimate inflows to Lake Travis from its upstream ungaged watershed.
- 6) The area-capacity relationships for all reservoirs represented in the model correspond to authorized conservation storage quantities stipulated in existing water rights; however, for purposes of evaluating future water supply strategies, these area-capacity relationships will be adjusted to reflect future sedimentation conditions in the reservoirs corresponding to the future demand (decade) conditions being analyzed.
- 7) Bay and estuary (B&E) freshwater inflow requirements for Critical and Target conditions as stipulated in the LCRA 1999 WMP are fully engaged in the model based on the 1997 FINS criteria, including the Buchanan-Travis combined storage triggers for determining when Highland Lakes water is made available for satisfying the various B&E inflow needs. For purposes of evaluating future water supply strategies, alternative B&E inflow requirements may be used such as the 2006 FINS criteria or the LCRA/SAWS Water Project bay health criteria.
- 8) Instream environmental flow requirements at various locations along the Lower Colorado River are represented in the model in accordance with the LCRA 1999 WMP, including the Buchanan-Travis combined storage triggers for determining when Highland Lakes water is made available for satisfying the various instream environmental flow needs.
- 9) Annual and multi-year environmental flow caps from the LCRA 1999 WMP are included in the model for limiting the use of Highland Lakes water for satisfying instream and B&E environmental flow requirements. For purposes of evaluating future water supply strategies, it is anticipated that these caps will be eliminated from the model because the need for environmental flows will change as other demands for water from the Highland Lakes change in the future.
- 10) In accordance with the restructuring of the model for Region K planning, no interruptible water from the Highland Lakes is provided for supplying the demands of any water rights in the lower basin. For purposes of evaluating future water supply strategies, it is anticipated that interruptible water from the Highland Lakes will be provided for supplying demands in the lower basin in order to be more consistent with actual system operations and that appropriate irrigation demand curtailment procedures will be used in accordance with current WMP practices.
- 11) Water demands for LCRA's four lower basin irrigation operations are set at the annual diversion amounts authorized in the existing water rights for these operations, which totals

- 636,750 ac-ft/yr; however, for purposes of evaluating future water supply strategies, these irrigation water demands will be reduced to levels consistent with anticipated future usage and may be varied annually and monthly as a function of weather conditions.
- 12) Unless specified otherwise in a particular water right, no Municipal or Industrial return flows, including those from the City of Austin, are accounted for in the model. Municipal or Industrial return flows may be addressed as part of future water supply strategies.
- 13) No Irrigation return flows are discharged into the Colorado River or any of its tributaries in the model. Irrigation return flows may be addressed as part of future water supply strategies.
- 14) In accordance with provisions in water rights owned by Austin and LCRA, Austin's most senior water authorizing the diversion of 250,000 ac-ft/yr from the Colorado River is designated as being senior in priority to all of LCRA's water rights, with the exception of the Garwood right, even though some of LCRA's water rights have priority dates older than the Austin senior water right.
- 15) The provisions of the recent Settlement Agreement between the LCRA and the City of Austin are not represented in the model, but may be incorporated as part of the evaluation of future water supply strategies.
- 16) The provisions of the recent Settlement Agreement between LCRA and the South Texas Project are represented in the model.
- 17) Operating rules for Lakes Buchanan and Travis maintain consistent levels of drawdown in each of the reservoirs under specified demands, with Lake Buchanan serving as the last source of water for meeting demands during extreme drought conditions. Reservoir operating rules may change as part of the evaluation of future water supply strategies.
- 18) No existing term permits for water rights are included in the model.

LOWER COLORADO REGIONAL WATER PLANNING GROUP

John E. Burke, P.E. Chairman P.O. Drawer P Bastrop, TX 78602 Phone: 512/303-3943 Fax: 512/303-4881

February 22, 2008

Mr. Kevin Ward Executive Administrator Texas Water Development Board Stephen F. Austin Bldg. P.O. Box 13231 Austin, Texas 78711-3231

Subject: Request by the Lower Colorado Regional Water Planning Group (Region K) to use a model other than the TCEQ WAM Run 3 for determining availability of surface water resources

Dear Mr. Ward:

During the last round of regional water planning, it was determined very late in the planning effort that the required TCEQ WAM Run 3 did not adequately reflect the historical operation of water rights and existing contractual commitments in the Colorado River Basin. To remedy the situation, Region F developed a modeling process called the Region F No-Call Run 3 WAM that was used by Region K to determine its surface water availability numbers. Results from the Region F model were presented in the 2006 Region K Plan and used to evaluate some of Region K's water management strategy needs. However, there were several issues and concerns that Region K had with the Region F model and its assumptions but there was not sufficient time or budget to resolve such.

Because of these issues and concerns, Region K applied for and received first round funding to fully evaluate which model it should use in its future planning efforts in determining surface water availability. Region K's Water Modeling Committee fully evaluated all of the modeling platforms which are capable of providing such analyses. After an extensive review, the Modeling Committee and subsequently the full Region K planning group adopted LCRA's No-Call Run 3 WAM (Region K WAM Run 3 Cutoff Model) as the model that most reflects the existing contractual commitments and historic operation of the water rights in the basin. The LCRWPG officially approved, at its most recent meeting on January 9, 2008, the use of the model as the base platform for determining surface water availabilities. Region K has been in contact with the consultant for Region F regarding Region K's use of the Region K WAM Run 3 Cutoff model. We do not anticipate that there will be significant conflicts between the two regions with respect to this model's use.

The Region K WAM Run 3 Cutoff Model uses the base TCEQ WAM 3 model with several modifications as described in the attached document by TRC/Brandes, entitled *Description of Region K WAM Run 3 Cutoff Model*. The model will be adjusted for sedimentation when determining the availabilities for the years 2010 through 2060.

Our Water Modeling Committee has reviewed all of the assumptions that are currently embedded in the Region K WAM Run 3 Cutoff Model and agrees with them. This is the model that Region K proposes to use to determine surface water availability under its first round funded tasks items for this planning cycle. We are happy to provide you with a copy of the model for your review.

If the Board has any issues or concerns with Region K's use of this particular model, we would appreciate hearing back as quickly as possible. Developing the scope of work for the next biennium will need to begin shortly, and the Board's decision on the use of this model for planning purposes could significantly affect the scope.

John E. Burke, Chairman

Truly Yours

Lower Colorado Regional Water Planning Group

JEB/cb

Enclosure:

Description of Region K WAM Run 3 Cutoff Model

CD containing the Region K WAM Run 3 Cutoff model

c: Mr. David Meesey, TWDB

TEXAS WATER DEVELOPMENT BOARD

James E. Herring, *Chairman*William W. Meadows, *Member*Edward G. Vaughan, *Member*

J. Kevin Ward

Executive Administrator

Jack Hunt, *Vice Chairman* Thomas Weir Labatt III, *Member* Joe M. Crutcher, *Member*

March 11, 2008

Mr. John E. Burke, P.E.

Chairman, Lower Colorado Regional Water Planning Group

P.O. Drawer P

Bastrop, Texas 78602

Dear Mr. Burke:

Thank you for your letter dated February 22, 2008 in which you requested permission to use a modified surface water availability model, termed the "Region K WAM Run 3 cutoff model", in the current phase of regional water planning. Approval by the Texas Water Development Board's (TWDB) Executive Administrator for use of a locally-modified water availability model is required by the regional planning grant contract between the TWDB and the political subdivision for your planning group. Because of problems experienced in the last round of regional water planning with the base model, region-specific modifications were made which resulted in the "cutoff model."

After a review of the proposed model by our Surface Water Resources Division, the TWDB agrees that the "Region K WAM Run 3 cutoff model" is an appropriate tool for your region to use in determining surface water availability during the current planning cycle. Use of this model is approved for development of the 2011 Region K plan.

We appreciate your ongoing commitment to regional water planning. If you have any questions, please contact Mr. David Meesey, Team Leader for State and Regional Water Planning, at (512) 936-0852.

Sincerely,

J. Kevin Ward

Executive Administrator

RECEIVED

MAR 25 2008

SUMMARY OF REGION K WAM MODELING ASSUMPTIONS REGARDING SUPPLY AND STRATEGY ANALYSES

NO.	ASSUMPTION	INCLUDE	INCLUDE
		FOR	FOR
		SUPPLY	STRATEGY
		ANALYSIS	ANALYSIS
1	Use of Natural Priority for All Upstream Water Rights	No	No
2	Use of 1999 Water Management Plan Environmental Flow Caps	Yes	No
3	Use of Pending 2003 Water Management Plan Environmental Flow Caps	No	No
4	Use of Reservoir Area-Capacity Relationships Reflecting Future Sedimentation Conditions by Decade	Yes	Yes
5	Use of 1997 FINS Criteria for B&E Inflow Requirements	Yes	No
6	Use of 2006 FINS Criteria for B&E Inflow Requirements	No	Yes [1]
7	Use of 1999 Water Management Plan Instream Flow Criteria	Yes	Yes
8	Simulate Interruptible Water from the Highland Lakes	No	Yes
9	Include Curtailment of Total Demand of LCRA Interruptible Water Users	No	Yes
	as Necessary to Satisfy LCRA Municipal/Industrial Demands		
10	Set Irrigation Demands Associated with LCRA Lower-Basin Run-of-River	Yes	No
	Rights Equal to Full Authorized Diversion Amounts		
11	Set Irrigation Demands Associated with LCRA Lower-Basin Run-of-River	No	Yes
	Rights Equal to Projected Future Demands		
12	Apply Weather-Variable Irrigation Demands for LCRA Lower-Basin Run-	No	Yes
	of-River Rights		
13	Include LCRA Irrigation Return Flows to the Colorado River	No	Yes
14	Include Reuse Provisions of LCRA-Austin 2007 Settlement Agreement,	No	No [2]
1.5	Including Environmental Flow Mitigation	N T	N. 101
15	Include Return Flows from Municipal/Industrial Wastewater Treatment	No	No [2]
16	Plants Include Previsions of LCD A STD 2006 Settlement Agreement	Yes	Yes
17	Include Provisions of LCRA-STP 2006 Settlement Agreement Include Operating Pulse for Leles Purkenen and Travis to Maintain	Yes	Yes
1 /	Include Operating Rules for Lakes Buchanan and Travis to Maintain	ies	ies
18	Consistent Levels of Drawdown in the Lakes Assist in Macting Junction and Brady Future Water Demands in Region F.	No	As a Strategy
10	Assist in Meeting Junction and Brady Future Water Demands in Region F	NO	As a Strategy
19	Include Term Permits as Water Demands	No	[3] No
17	metude Term I ermits as water Demands	110	INU

^[1] The 2006 Freshwater Inflow Needs Study criteria have been approved by the State agencies, but have not been included in any permit or Water Management Plan. They will be applied to the Highland Lakes for the Strategy Analysis, but they will be considered on a case-by-case basis for their application to individual strategies.

^[2] Only as part of the LSWP Model

^[3] Only at the request of the Region F Water Planning Group.

Region K Current Water Availability Sources

	0	0	0				V	Nater Availal	bility (ac-ft/yr)			
Source Name	Source Type	Source RWPG	Source County	Source Basin	Source Identifier	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060	Comments
City of Austin - ROR (Municipal)	0	K	County	Colorado	3461405471A	208,225	200,293	200,293	200,293	200,293		REGION K WAM CUTOFF MODEL
City of Austin - ROR (Municipal)	0	K		Colorado	3461405489A	4,365	4,173	4,173	4,173	4,173		REGION K WAM CUTOFF MODEL
City of Austin - ROR (Steam Elec.)	0	K		Colorado	3461405471A-SE	7,438	7,438	7,438	7,438	7,438		REGION K WAM CUTOFF MODEL
City of Austin - ROR (Steam Elec.)	0	K		Colorado	3461405489A-SE	982	982	982	982	982		REGION K WAM CUTOFF MODEL
LCRA - Garwood ROR	0	K		Colorado	3461405434A	130,141	130,141	130,141	130,141	130,141		REGION K WAM CUTOFF MODEL
LCRA - Gulf Coast ROR	0	K		Colorado	3461405476A	44,827	43,540	43,540	43,540	43,540		REGION K WAM CUTOFF MODEL
LCRA - Lakeside ROR	0	K		Colorado	3461405475	22,971	22,938	22,938	22,938	22,938	22,938	REGION K WAM CUTOFF MODEL
LCRA - Pierce Ranch ROR	0	K		Colorado	3461405477	14,116	14,173	14,173	14,173	14,173	14,173	REGION K WAM CUTOFF MODEL
STP Nuclear Operating Co ROR	0	K		Colorado	3461405437	51,857	46,072	46,072	46,072	46,072	46,072	REGION K WAM CUTOFF MODEL
San Bernard ROR	0	K		Brazos-Colorado	3461303421	665	597	597	597	597	597	REGION K WAM CUTOFF MODEL
Goldthwaite Reservoir	0	K		Colorado	14350	0	0	0	0	0	0	REGION K WAM CUTOFF MODEL
Highland Lakes	0	K		Colorado	140B0	402,172	390,001	384,001	378,101	372,201	366,468	REGION K WAM CUTOFF MODEL
Llano Reservoir	0	K		Colorado	14520	0	0	0	0	0	0	REGION K WAM CUTOFF MODEL
Blanco Reservoir	0	K		Guadalupe	18120	596	596	596	596	596	596	TCEQ WAM
Irrigation Local Supply	0	K	Bastrop	Brazos	011996	0	0	0	0	0	0	TWDB IRLS table
Irrigation Local Supply	0	K	Bastrop	Colorado	011996	786	786	786	786	786	786	TWDB IRLS table
Irrigation Local Supply	0	K	Bastrop	Guadalupe	011996	0	0	0	0	0	0	TWDB IRLS table
Irrigation Local Supply	0	K	Blanco	Colorado	016996	67	67	67	67	67	67	TWDB IRLS table
Irrigation Local Supply	0	K	Blanco	Guadalupe	016996	9	9	9	9	9	9	TWDB IRLS table
Irrigation Local Supply	0	K	Burnet	Brazos	027996	0	0	0	0	0	0	TWDB IRLS table
Irrigation Local Supply	0	K	Burnet	Colorado	027996	276	276	276	276	276	276	TWDB IRLS table
Irrigation Local Supply	0	K	Colorado	Brazos-Colorado	045996	0	0	0	0	0	0	TWDB IRLS table
Irrigation Local Supply	0	K	Colorado	Colorado	045996	3,000	3,000	3,000	3,000	3,000	3,000	TWDB IRLS table
Irrigation Local Supply	0	K	Colorado	Lavaca	045996	4,002	4,002	4,002	4,002	4,002	4,002	TWDB IRLS table
Irrigation Local Supply	0	K	Fayette	Brazos	075996	0	0	0	0	0	0	TWDB IRLS table
Irrigation Local Supply	0	K	Fayette	Colorado	075996	534	534	534	534	534	534	TWDB IRLS table
Irrigation Local Supply	0	K	Fayette	Guadalupe	075996	0	0	0	0	0	0	TWDB IRLS table
Irrigation Local Supply	0	K	Fayette	Lavaca	075996	20	20	20	20	20	20	TWDB IRLS table
Irrigation Local Supply	0	K	Gillespie	Colorado	086996	880	880	880	880	880	880	TWDB IRLS table
Irrigation Local Supply	0	K	Gillespie	Guadalupe	086996	0	0	0	0	0	0	TWDB IRLS table
Irrigation Local Supply	0	K	Hays	Colorado	105996	41	41	41	41	41	41	TWDB IRLS table
Irrigation Local Supply	0	K	Llano	Colorado	150996	440	440	440	440	440		TWDB IRLS table
Irrigation Local Supply	0	K	Matagorda	Brazos-Colorado	161996	4,000	4,000	4,000	4,000	4,000	4,000	TWDB IRLS table
Irrigation Local Supply	0	K	Matagorda	Colorado	161996	900	900	900	900	900	900	TWDB IRLS table
Irrigation Local Supply	0	K	Matagorda	Colorado-Lavaca	161996	4,000	4,000	4,000	4,000	4,000	4,000	TWDB IRLS table
Irrigation Local Supply	0	K	Mills	Brazos	167996	0	0	0	0	0		TWDB IRLS table
Irrigation Local Supply	0	K	Mills	Colorado	167996	2,378	2,378	2,378	2,378	2,378		TWDB IRLS table
Irrigation Local Supply	0	K	San Saba	Colorado	206996	8,800	8,800	8,800	8,800	8,800		TWDB IRLS table
Irrigation Local Supply	0	K	Travis	Brazos	227996	0	0	0		-		TWDB IRLS table
Irrigation Local Supply	0	K	Travis	Colorado	227996	756	756	756	756	756		TWDB IRLS table
Irrigation Local Supply	0	K	Travis	Guadalupe	227996	124	124	124	124	124		TWDB IRLS table
Irrigation Local Supply	0	K	Wharton	Brazos-Colorado	241996	2,000	2,000	2,000	2,000			TWDB IRLS table
Irrigation Local Supply	0	K	Wharton	Colorado	241996	7,650	7,650	7,650	7,650	7,650		TWDB IRLS table
Irrigation Local Supply	0	K	Wharton	Colorado-Lavaca	241996	0	0	0	0	0		TWDB IRLS table
Irrigation Local Supply	0	K	Williamson	Colorado	246996	0	0	0	0	0		TWDB IRLS table
Livestock Local Supply	0	K		Brazos	12997	566	566	566	566	566		2001 Plan: Sum of Demands
Livestock Local Supply	0	K		Brazos-Colorado	13997	394	394	394	394	394		2001 Plan: Sum of Demands
Livestock Local Supply	0	K		Colorado	14997	6,262	6,262	6,262	6,262	6,262		2001 Plan: Sum of Demands
Livestock Local Supply	0	K		Colorado-Lavaca	15997	289	289	289	289	289		2001 Plan: Sum of Demands
Livestock Local Supply	0	K		Guadalupe	18997	298	298	298	298			2001 Plan: Sum of Demands
Livestock Local Supply	0	K		Lavaca	16997	649	649	649	649			2001 Plan: Sum of Demands
Other Local Supply	0	K		Brazos-Colorado	13999	1,696	1,746	1,793	1,844	1,900		TWDB
Other Local Supply	0	K		Colorado	14999	19,282	20,890	22,717	24,883	27,470		TWDB
Carrizo-Wilcox	1	K	Bastrop	Brazos	01110	1,744	1,744	1,744	1,744	1,744		Lost Pines GCD, checked 05/2009
Carrizo-Wilcox	1	K	Bastrop	Colorado	01110	24,916	24,916	24,916	24,916	24,916		Lost Pines GCD, checked 05/2009
Carrizo-Wilcox	1	K	Bastrop	Guadalupe	01110	1,340	1,340	1,340	1,340	1,340	1,340	Lost Pines GCD, checked 05/2009
Carrizo-Wilcox	1	K	Fayette	Colorado	07510	290	290	290	290	290		based on % of area
Carrizo-Wilcox	1	K	Fayette	Guadalupe	07510	66	66	66				based on % of area
Carrizo-Wilcox	1	K	Fayette	Lavaca	07510	44	44	44	44	44		based on % of area
Edwards-BFZ	1	K	Hays	Colorado	10511	2,576	2,576	2,576	2,576	2,576	2,576	BSEACD, updated 05/2009

Region K Current Water Availability Sources

Source Name									Water Availa	hility (ac-ft/yr)			
Indexts P		Source	Source	Source			V 0040					V 0000	
Friedrich PF													
Friender 1													
Friedwick PT													, ,,,
Freedome FPT							21				21		
Contract Printy Plateauy 1							6	6	6	6	6		
Exercit Printy (Pisters)							4	4	4	4	4		
Consequent Printing (Printanay)							0	0		ŭ	0		
Financian Princips Patentary							1 110	U		ŭ	1 110		
Elemotrages-San Salata													
Elemonger-San Sabba	,		1		•								
Filendagers-San Saha													
Elemburger-San Saha		<u>'</u>											
Elemburger-San Sacha		<u>'</u>											
Ellenburger-San Stabs		1											
Ellenburger-San Saba		1											
Ellenburger-San Saba		1											
Ellenburger-Sam Saba		1					5	5			5		
Elenburger-Sam Sabs		1					494	494			494		
Gulf Coset 1		1											
Gulf Cosset 1 1 K Colorado Colorado O4516 17,436 17,436 17,436 17,436 17,436 17,436 based on % of area, no updates as of 0520009 Gulf Cosset 1 1 K Feyette Brazos 07516 65 65 65 65 65 65 65 65 65 65 65 65 65		1											
Gulf Coast 1 1 K Colorado Lavaca 0,4515 18,9		- '											
Gulf Coast 1 1 K Fayette Brazos 07515 65 65 65 65 65 65 65 65 65 65 65 65 65		1											
Guif Coast 1 1 K Fayette Colorado 07515 3,300 3,		1								·			·
Guil Coast 1 K Fayette Lavaca 07515 5144 144 144 144 144 144 144 based on % of area, no updates as of 052009 (au Coast 1 K Fayette Lavaca 07515 5188 5,188 5		1											
Gulf Coast		1											
Sulf Coast		1											
Gulf Coast		1											
Gull Coast 1 K Matagorda Colorado-Lavaea 16115 23,880 23,880 23,880 23,880 23,880 23,880 based on % of area, no updates as of 05/2009 Gull Coast 1 K Whatnon Colorado-Lavaea 24115 42,985 42,985 42,986 42,98		1											
Gulf Coast		1											
Gulf Coast 1 1 K Wharton Colorado 24115 41.812 41.812 41.812 41.812 41.812 14.8		1											
Gulf Coast		1	1										
Hickory		1											
Hickory		1											
Hickory		1											
Hickory	Hickory	1	K				0	0			0		
Hickory	Hickory	1	K	Burnet	Colorado		2,148	2,148	2,148	2,148	2,148		
Hickory	Hickory	1	K										
Hickory 1 K Llano Colorado 15016 12,517 12,5	Hickory	1	K										
Hickory 1 K Mills Brazos 16716 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hickory	1	K			15016	12,517	12,517				12,517	TWDB GW-U table
Hickory 1 K Mills Colorado 16716 35 35 35 35 35 35 MAG (GMA-8), updated 02/2010 Hickory 1 K San Saba Colorado 20616 6,540 6,540 6,540 6,540 6,540 6,540 7WDB GW-U table Marble Falls 1 K Blanco Colorado 01619 300 300 300 300 300 300 300 300 300 30	Hickory	1	K	Mills		16716	1	1				1	MAG (GMA-8), updated 02/2010
Marble Falls 1 K Blanco Colorado 01619 300	Hickory	1	K	Mills		16716	35	35	35	35	35		
Marble Falls 1 K Burnet Brazos 02719 93 93 93 93 93 93 93 93 93 MAG (GMA-8), updated 07/2009 Marble Falls 1 K Burnet Colorado 02719 1,885 1,8	Hickory	1	K	San Saba	Colorado	20616	6,540	6,540	6,540	6,540	6,540	6,540	TWDB GW-U table
Marble Falls 1 K Burnet Colorado 02719 1,885 1,885 1,885 1,885 1,885 1,885 MAG (GMA-8), updated 07/2009 Marble Falls 1 K San Saba Colorado 20619 12,380 12,380 12,380 12,380 12,380 12,380 12,380 12,380 10,380 12,282	Marble Falls	1	K	Blanco	Colorado	01619	300	300	300	300	300	300	GWbyBasin file 9/24/99
Marble Falls 1 K San Saba Colorado 20619 12,380 12,380 12,380 12,380 12,380 12,380 12,380 12,380 12,380 12,380 12,380 12,380 TWDB GW-U table Queen City 1 K Bastrop Colorado 01124 227 227 227 227 227 based on % of area Queen City 1 K Bastrop Gudalupe 01124 403	Marble Falls	1	K	Burnet	Brazos	02719	93	93	93	93	93	93	MAG (GMA-8), updated 07/2009
Queen City 1 K Bastrop Brazos 01124 227	Marble Falls	1	K	Burnet	Colorado	02719	1,885	1,885	1,885	1,885	1,885	1,885	MAG (GMA-8), updated 07/2009
Queen City 1 K Bastrop Colorado 01124 2,126 2,126 2,126 2,126 2,126 2,126 based on % of area Queen City 1 K Bastrop Guadalupe 01124 403 403 403 403 403 based on % of area Queen City 1 K Fayette Colorado 07524 1,034 </td <td>Marble Falls</td> <td>1</td> <td>K</td> <td>San Saba</td> <td>Colorado</td> <td>20619</td> <td>12,380</td> <td>12,380</td> <td>12,380</td> <td>12,380</td> <td>12,380</td> <td>12,380</td> <td>TWDB GW-U table</td>	Marble Falls	1	K	San Saba	Colorado	20619	12,380	12,380	12,380	12,380	12,380	12,380	TWDB GW-U table
Queen City 1 K Bastrop Guadalupe 01124 403 403 403 403 403 403 based on % of area Queen City 1 K Fayette Colorado 07524 1,034 <	Queen City	1	K	Bastrop	Brazos	01124	227	227	227	227	227	227	based on % of area
Queen City 1 K Fayette Colorado 07524 1,034 <	Queen City	1	K	Bastrop	Colorado	01124	2,126	2,126	2,126	2,126	2,126	2,126	based on % of area
Queen City 1 K Fayette Guadalupe 07524 175 175 175 175 175 based on % of area Queen City 1 K Fayette Lavaca 07524 26 26 26 26 26 based on % of area Sparta 1 K Bastrop Brazos 01127 49 49 49 49 49 based on % of area Sparta 1 K Bastrop Colorado 01127 5,000 5,000 5,000 5,000 5,000 based on % of area Sparta 1 K Bastrop Guadalupe 01127 340 340 340 340 340 based on % of area Sparta 1 K Fayette Colorado 07527 3,667 <td>Queen City</td> <td>1</td> <td>K</td> <td>Bastrop</td> <td>Guadalupe</td> <td>01124</td> <td>403</td> <td>403</td> <td>403</td> <td>403</td> <td>403</td> <td>403</td> <td>based on % of area</td>	Queen City	1	K	Bastrop	Guadalupe	01124	403	403	403	403	403	403	based on % of area
Queen City 1 K Fayette Lavaca 07524 26 <td>Queen City</td> <td>1</td> <td>K</td> <td>Fayette</td> <td>Colorado</td> <td>07524</td> <td>1,034</td> <td>1,034</td> <td>1,034</td> <td>1,034</td> <td>1,034</td> <td>1,034</td> <td>based on % of area</td>	Queen City	1	K	Fayette	Colorado	07524	1,034	1,034	1,034	1,034	1,034	1,034	based on % of area
Sparta 1 K Bastrop Brazos 01127 49 50	Queen City	1	K			07524			175				
Sparta 1 K Bastrop Brazos 01127 49 49 49 49 49 49 49 49 based on % of area Sparta 1 K Bastrop Colorado 01127 5,000 5,000 5,000 5,000 5,000 based on % of area Sparta 1 K Bastrop Guadalupe 01127 340 340 340 340 340 based on % of area Sparta 1 K Fayette Colorado 07527 598	Queen City	1	K		•			26					
Sparta 1 K Bastrop Colorado 01127 5,000 5,000 5,000 5,000 5,000 based on % of area Sparta 1 K Bastrop Guadalupe 01127 340 340 340 340 340 based on % of area Sparta 1 K Fayette Colorado 07527 598 598 598 598 598 based on % of area Sparta 1 K Fayette Lavaca 07527 235 235 235 235 based on % of area Sparta 1 K Fayette Lavaca 07527 235 235 235 235 based on % of area Trinity 1 K Bastrop Colorado 01128 12 12 10 10 8 6WbyBasin file 9/24/99	Sparta	1	K	Bastrop	Brazos			49	49	49		49	based on % of area
Sparta 1 K Fayette Colorado 07527 3,667 3,667 3,667 3,667 3,667 3,667 3,667 3,667 3,667 3,667 3,667 based on % of area Sparta 1 K Fayette Lavaca 07527 235 235 235 235 235 based on % of area Trinity 1 K Bastrop Colorado 01128 12 12 10 10 8 8 GWbyBasin file 9/24/99	Sparta	1	K		Colorado	01127	5,000	5,000	5,000	5,000	5,000	5,000	based on % of area
Sparta 1 K Fayette Colorado 07527 3,667 3,667 3,667 3,667 3,667 3,667 3,667 based on % of area Sparta 1 K Fayette Guadalupe 07527 598 598 598 598 598 based on % of area Sparta 1 K Fayette Lavaca 07527 235 235 235 235 based on % of area Trinity 1 K Bastrop Colorado 01128 12 12 10 10 8 8 GWbyBasin file 9/24/99	Sparta	1	K		Guadalupe		340						
Sparta 1 K Fayette Lavaca 07527 235 235 235 235 235 based on % of area Trinity 1 K Bastrop Colorado 01128 12 12 10 10 8 8 GWbyBasin file 9/24/99	Sparta	1	K	Fayette	Colorado		3,667	3,667	3,667	,	3,667	3,667	based on % of area
Sparta 1 K Fayette Lavaca 07527 235 235 235 235 235 based on % of area Trinity 1 K Bastrop Colorado 01128 12 12 10 10 8 8 GWbyBasin file 9/24/99	Sparta	1	K	Fayette	Guadalupe	07527	598	598	598	598	598	598	based on % of area
	Sparta	1	K	Fayette	Lavaca				235		235	235	based on % of area
Trinity 1 K Blanco Colorado 01628 1.149 1.149 1.149 942 942 942 based on % of area	Trinity	1	K	Bastrop	Colorado	01128	12				-		
y 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Trinity	1	K	Blanco	Colorado	01628	1,149	1,149	1,149	1,149	942	942	based on % of area

Region K Current Water Availability Sources

	Source	Source	Source				1	Water Availal	oility (ac-ft/yr)			
Source Name	Type	RWPG	County	Source Basin	Source Identifier	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060	Comments
Trinity	1	K	Blanco	Guadalupe	01628	451	451	451	451	373	373	based on % of area
Trinity	1 1	K	Burnet	Brazos	02728	2,723	2,723	2,723	2,723	2,723		MAG (GMA-8), updated 05/2009
Trinity	1	K	Burnet	Colorado	02728	823	823	823	823	823		MAG (GMA-8), updated 05/2009
Trinity	1	K	Gillespie	Colorado	08628	3,354	3,354	3,354	3,354	3,354		Based on HCUWCD Data
Trinity	1 1	K	Gillespie	Guadalupe	08628	46	46	46	46	46		Based on HCUWCD Data
Trinity	1 1	K	Hays	Colorado	10528	2,500	2,500	2,500	2,500	2,500		MAG (GMA-8), updated 05/2009
Trinity	1 1	K	Mills	Brazos	16728	1,273	1,273	1,273	1,273	1,273		MAG (GMA-8), updated 05/2009
Trinity	1 1	K	Mills	Colorado	16728	1,128	1,128	1,128	1,128	1,128		MAG (GMA-8), updated 05/2009
Trinity	1 1	K	Travis	Brazos	22728	8	8	8	8	8		MAG (GMA-8), updated 05/2009
Trinity	1 1	K	Travis	Colorado	22728	3,882	3,882	3,882	3,882	3,882		MAG (GMA-8), updated 05/2009
Trinity	1 1	K	Travis	Guadalupe	22728	33	33	33	33	33		GAM
Trinity	1 1	K	Williamson	Brazos	24628	157	157	157	157	157		MAG (GMA-8), updated 05/2009
Trinity	1 1	K	Williamson	Colorado	24628	61	61	61	61	61		MAG (GMA-8), updated 05/2009
Yegua-Jackson	1 1	K	Fayette	Colorado	07531	17,000	17,000	17,000	17,000	17,000		Fayette County GCD
Yegua-Jackson	1	K	Favette	Guadalupe	07531	2,700	2,700	2,700	2,700	2,700		Fayette County GCD
Yegua-Jackson	1	K	Fayette	Lavaca	07531	300	300	300	300	300		Fayette County GCD
Other Aquifer	1	K	Bastrop	Brazos	01122	000	000 0	0	0	0		l ayour county cob
Other Aquifer	1	K	Bastrop	Colorado	01122	5,340	5,340	5,340	5,340	5,340		Alluvial supplies
Other Aquifer	1	K	Bastrop	Guadalupe	01122	0,040	0,040	0,040	0,040	0,040	0,040	Tillaviai supplies
Other Aquifer	1	K	Blanco	Colorado	01622	0	0	0	0	0	0	
Other Aquifer	1	K	Burnet	Colorado	02722	305	305	305	305	305	305	Alluvial supplies
Other Aquifer	1	K	Colorado	Colorado	04522	4,269	4,269	4,269	4,269	4,269		Alluvial supplies
Other Aquifer	1	K	Fayette	Brazos	07522	4,203	7,209	7,209	7,203	7,209	7,209	
Other Aquifer	1	K	Fayette	Colorado	07522	3,696	3,696	3,696	3,696	3,696	3 696	Alluvial supplies
Other Aquifer	1	K	Fayette	Guadalupe	07522	0,030	0,030	0,030	0,030	0,030		
Other Aquifer	1	K	Fayette	Lavaca	07522	0	0	0	0	0	0	
Other Aquifer	1	K	Gillespie	Colorado	08622	0	0	0	0	0	0	
Other Aquifer	1	K	Hays	Colorado	10522	0	0	0	0	0	- J	
Other Aquifer	1	K	Llano	Colorado	15022	109	109	109	109	109	J	Alluvial supplies
Other Aquifer Other Aquifer	1	K	Mills	Brazos	16722	109	109	0	0	109	109	
Other Aquifer	1	K	Mills	Colorado	16722	0	0	0	ŭ	0	0	
Other Aquifer	1	K	San Saba	Colorado	20622	0	0	0		0	ŭ	
Other Aquifer	1	K	Travis	Brazos	22722	0	0	0		0		
Other Aquifer	1	K	Travis	Colorado	22722	1,818	1,835	1,848	1,853	1,856	2	Alluvial supplies
Other Aquirer Other Aquirer	1	K	Travis	Guadalupe	22722	25	30	34	37	40		Alluvial supplies
Other Aquifer	1	K	Williamson	Brazos	24622	20		0		0		n silatiai supplies
Other Aquifer Other Aquifer	1		Williamson	Colorado	24622	0	0	0		0		
Other Addition	'	1	Williamson	Colorado	Region K Subtotal	1,328,579	1,302,848	1,298,737	1,295,062	•	1,285,811	
Lake Brownwood	0	l F	<u> </u>	Colorado	14140	10	10	8	8	0	7	Based on Brookesmith SUD
Lake Diowiiwood	<u> </u>			Colorado	14140	10	10	0	0	0	,	Estimate based on TCEQ maximum production
Brazos River Authority System				Brazos	120B0	318	413	511	606	707	827	capacity at treatment plant (Stillhouse Reservoir) multiplied by the percent of Kempner demand in
	0	G										Region K.
Edwards-BFZ	1	G	Williamson	Brazos	24611G	8	8	8	8	8	8	Based on Chisholm Trail SUD
Canyon Lake	0	L		Guadalupe	18020	2,800	2,800	2,800	2,800	2,800		Estimate based on CLWSC Water Availability Reporand demand.
					Subtotal	3,136	3,231	3,327	3,422	3,523	3,642	
Note: Downstream water availabilit					TOTAL	1,331,715	1,306,079	1,302,064	1,298,484	1,295,047	1,289,453	

Note: Downstream water availability does not include return flows.

Page 3 of 3 February 2010

					region it mater culpry raise (is)							
WUG Name	WUG County	RWPG Water Source	Water Source County Name	Water Source Basin Name	Specific Source Name Identifier	Year 2010 SUPPLY (ac-ft/yr)	Year 2020 SUPPLY (ac-ft/yr)	Year 2030 SUPPLY (ac-ft/yr)	Year 2040 SUPPLY (ac-ft/yr)	Year 2050 SUPPLY (ac-ft/yr)	Year 2060 SUPPLY (ac-ft/yr)	Source of Data*
AQUA WSC	BASTROP	К		Colorado	01110 Carrizo-Wilcox	5,952	5,952	5,952	5,952	5,952	5,952	New WUG: Supply Estimate based on Aqua WSC 3/29/04
AQUA WSC	BASTROP	L	Caldwell	Guadalupe	02810 Carrizo-Wilcox	3,489	3,251	3,050	2,912	2,766		Source changed from Highland Lakes to Carrizo-Wilcox Aquifer in Caldwell County (Region L) 5,000 ac-ft split between Bastrop, Fayette, and Travis 08/09
BASTROP	BASTROP	K	Bastrop	Colorado	01122 Other Aquifer	1,927	1,927	1,927	1,927	1,927		Supply estimate based on TCEQ total production. 2/8/05
BASTROP COUNTY WCID #2	BASTROP	K	Bastrop	Colorado	01110 Carrizo-Wilcox	1,171	1,171	1,171	1,171	1,171		New WUG: Supply based on Bastrop County WCID #2 9/20/04
COUNTY-OTHER	BASTROP	K	Bastrop	Brazos	01110 Carrizo-Wilcox	363	422	486	524	536	536	2001 Plan: Demand
COUNTY-OTHER	BASTROP	K		Colorado	140B0 Highland Lakes	1,634	1,634	1,634	1,634	1,634	1,634	Updated number 08/09, Extend contract 5/2009
COUNTY-OTHER	BASTROP	K	Bastrop	Colorado	01110 Carrizo-Wilcox	446	446	446	446	446	446	Agua WSC email 3/29/04
COUNTY-OTHER	BASTROP	K	Bastrop	Colorado	01110 Carrizo-Wilcox	805	561	222	0	0	0	2001 Plan: Demand - other supplies
COUNTY-OTHER	BASTROP	K	Bastrop	Guadalupe	01124 Queen City	196		196	196	196		2001 Plan: A-ALL, % & Tbl 4
CREEDMOOR-MAHA WSC	BASTROP	K		Colorado	01110 Carrizo-Wilcox	6	6	6	6	6	6	New WUG: Supply Estimate based on Aqua WSC email 3/29/04
CREEDMOOR-MAHA WSC	BASTROP	К	Travis	Colorado	22711 Edwards-BFZ	13	20	27	37	45	56	Rearranged Creedmoor-Maha demands to reduce # of strategies needed 10/26/07 New WUG: Supply Estimate based on BSEACD
ELGIN	BASTROP	К	Bastrop	Colorado	01110 Carrizo-Wilcox	1,679	1,674	1,671	1,670	1,670	1,671	Based on TCEQ maximum production capacity and proportioned by total demand. 1/14/05
LEE COUNTY WSC	BASTROP	K	Bastrop	Brazos	01110 Carrizo-Wilcox	725	725	725	725	725	725	New WUG: Supply based on Lee County WSC 9/20/04
LEE COUNTY WSC	BASTROP	K	Bastrop	Colorado	01110 Carrizo-Wilcox	1,123	1,075	1,006	952	891	804	New WUG: Supply based on Lee County WSC 9/20/04
MANVILLE WSC	BASTROP	К	Bastrop	Colorado	01110 Carrizo-Wilcox	127	131	133	136	140		New WUG: Supply estimated from TCEQ well production capacities and proportioned by total population. 1/11/05
MANVILLE WSC	BASTROP	К	Bastrop	Colorado	01122 Other Aquifer	41	42	46	52	60	68	New WUG: Supply estimated from TCEQ well production capacities and proportioned by total population. 1/11/05
MANVILLE WSC	BASTROP	K	Travis	Colorado	22722 Other Aquifer	0	0	0	0	7	52	Water from Travis County wells
POLONIA WSC	BASTROP	К	Bastrop	Colorado	01110 Carrizo-Wilcox	25	24	25	25	27		New WUG: Supply estimated from TCEQ well production capacities and proportioned by total population. 1/20/05
SMITHVILLE	BASTROP	K	Bastrop	Colorado	01110 Carrizo-Wilcox	830	922	1,025	1,072	1,283	1,283	2001 Plan: Demand
IRRIGATION	BASTROP	K	Bastrop	Brazos	01124 Queen City	23	23	23	23	23	23	2001 Plan: AllocFile10 9/24/99
IRRIGATION	BASTROP	K	Bastrop	Brazos	01127 Sparta	5	5	5	5	5	5	2001 Plan: AllocFile10 9/24/99
IRRIGATION	BASTROP	K	Bastrop	Colorado	011996 Irrigation Local Supply	750	750	750	750	750	750	2001 Plan: TWDB
IRRIGATION	BASTROP	K	Bastrop	Colorado	01127 Sparta	500	500	500	500	500	500	2001 Plan: AllocFile10 9/24/99
IRRIGATION	BASTROP	K	Bastrop	Colorado	01124 Queen City	213	213	213	213	213	213	2001 Plan: AllocFile10 9/24/99
IRRIGATION	BASTROP	K	Bastrop	Guadalupe	01124 Queen City	40	40	40	40	40	40	2001 Plan: AllocFile10 9/24/99
IRRIGATION	BASTROP	K	Bastrop	Guadalupe	01127 Sparta	34	34	34	34	34	34	2001 Plan: AllocFile10 9/24/99
LIVESTOCK	BASTROP	K	Bastrop	Brazos	01127 Sparta	39		39	39	39	39	2001 Plan: AllocFile10 90% reduced
LIVESTOCK	BASTROP	K		Brazos	12997 Livestock Local Supply	154		154	154	154		2001 Plan: LCRA Provided data
LIVESTOCK	BASTROP	K	Bastrop	Brazos	01124 Queen City	141		141	141	141		2001 Plan: AllocFile10 9/24/99
LIVESTOCK	BASTROP	K	•	Colorado	01124 Queen City	1,322		1,322	1,322	1,322		2001 Plan: AllocFile10 9/24/99
LIVESTOCK	BASTROP	ĸ		Colorado	01127 Sparta	4,000	4,000	4,000	4,000	4,000		2001 Plan: AllocFile10 90% reduced
LIVESTOCK	BASTROP	ĸ	200000	Colorado	14997 Livestock Local Supply	696		696	696	696		2001 Plan: LCRA Provided data
LIVESTOCK	BASTROP	K	Bastrop	Guadalupe	01124 Queen City	125		125	125	125		2001 Plan: AllocFile10 9/24/99
LIVESTOCK	BASTROP	ĸ		Guadalupe	18997 Livestock Local Supply	5	120	125	5	5		2001 Plan: LCRA Provided data
LIVESTOCK	BASTROP	ĸ	Bastrop	Guadalupe	01127 Sparta	272	272	272	272	272		2001 Plan: AllocFile10 90% reduced
MANUFACTURING	BASTROP	ĸ		Brazos	01110 Carrizo-Wilcox							2001 Plan: Demand - other supplies
MANUFACTURING	BASTROP	ĸ	Bastrop	Colorado	01110 Carrizo-Wilcox	38	46	54	64	75		2001 Plan: Demand - other supplies
MANUFACTURING	BASTROP	ĸ	Dadiiop	Colorado	14999 Other Local Supply	48		48	48	48		2001 Plan: LCRA Provided data
MANUFACTURING	BASTROP	ĸ	Bastrop	Guadalupe	01110 Carrizo-Wilcox	40	70	70	- - -0	70		2001 Plan: Demand
MINING	BASTROP	ĸ	Bastrop	Brazos	01124 Queen City	23	23	23	23	23		2001 Plan: AllocFile10 9/24/99
MINING	BASTROP	ĸ	Bastrop	Brazos	01127 Sparta	23	23	23	23	23 E		2001 Plan: AllocFile10 9/24/99
MINING	BASTROP	K .		Colorado	01127 Sparta 01124 Queen City	213	213	213	2	0		Reduced supply due to reduced demand
IVIIIIIIIG	DASIKUP	Īī.	Dasirop	CUIUI auU	01124 Queen Oity	213	213	213	4	3	4	rzegacea suppry age to reduced demand

WUG Name	WUG County	RWPG Water	Water Source County	Water Source Basin Name	Specific Source	Specific Source Name	Year 2010 SUPPLY	Year 2020 SUPPLY	Year 2030 SUPPLY	Year 2040 SUPPLY	Year 2050 SUPPLY	Year 2060 SUPPLY	Source of Data*
		Source	Name	Name	Identifie		(ac-ft/yr)	(ac-ft/yr)	(ac-ft/yr)	(ac-ft/yr)	(ac-ft/yr)	(ac-ft/yr)	
MINING	DACTROR	1/		Calarada	04407	Charte	500	500	500	7	7	7	Deduced cumply due to reduced demand
MINING	BASTROP	K.	Bastrop	Colorado		Sparta	500		500	7	7		Reduced supply due to reduced demand
MINING	BASTROP	K	D	Colorado		Other Local Supply	10		/	/	9		2001 Plan: LCRA Provided data
MINING	BASTROP	K	Bastrop	Guadalupe		Queen City	40	40	40	40	40		2001 Plan: AllocFile10 9/24/99
MINING	BASTROP	K	Bastrop	Guadalupe	01127	Sparta	34	34	34	34	34		2001 Plan: AllocFile10 9/24/99
STEAM ELECTRIC POWER	BASTROP						0	0	0	0	0		New WUG: 0 Demand, therefore 0 Supply
STEAM ELECTRIC POWER	BASTROP	K		Colorado	140B0	Highland Lakes	5,970	5,970	5,970	5,970	5,970	5,970	Extend contract 5/2009
STEAM ELECTRIC POWER	BASTROP	K		Colorado	140B0	Highland Lakes	10,750	10,750	10,750	10,750	10,750	10,750	Region K WAM Run 3 Cutoff; TCEQ WAM 5/6/05; LCRA Cooling Water
STEAM ELECTRIC POWER	BASTROP					<u> </u>	0	0	0	0	0	0	New WUG: 0 Demand, therefore 0 Supply
BLANCO	BLANCO		Blanco	Guadalupe	18120	Blanco Reservoir	596	596	596	596	596		TCEQ WAM 2/21/05
BLANCO	BLANCO	V	Blanco	Guadalupe		Trinity	25				25		2001 Plan: A-ALL, LIMIT
		N	Dianico										
BLANCO	BLANCO	L		Guadalupe	18020	Canyon Lake	600	600	600	600	600		New GBRA contract 09/2009
CANYON LAKE WSC	BLANCO	L		Guadalupe	18020	Canyon Lake	188	263	334	397	466	545	New WUG: Supply Estimate based on CLWSC Water Availability Report and demand 2/4/05
COUNTY-OTHER	BLANCO	K	Blanco	Colorado	01614	Ellenburger-San Saba	150	150	150	150	150	150	2001 Plan: A-ALL, LIMIT
COUNTY-OTHER	BLANCO	K	Blanco	Colorado	01616	Hickory	60	60	60	60	60	60	2001 Plan: A-ALL, LIMIT
COUNTY-OTHER	BLANCO	K		Colorado	14999	Other Local Supply	43	49	55	57	56	56	2001 Plan: LCRA Provided data
COUNTY-OTHER	BLANCO	K	Blanco	Colorado		Trinity	1.148	1,148	1,148		941		Reallocation strategy from 2006 Region K Plan
COUNTY-OTHER	BLANCO	K	Blanco	Guadalupe		Edwards-Trinity (Plateau)	0	1,110	0	0	0.11		Blanco Pedernales GCD 05/2009
		14				i i i i i i i i i i i i i i i i i i i	100	470	407	407	47.4		Updated supply numbers based on usage (demand) and
COUNTY-OTHER	BLANCO	K	Blanco	Guadalupe		Trinity	160	173	187	197	174	174	availability 09/2009
JOHNSON CITY	BLANCO	K	Blanco	Colorado	01614	Ellenburger-San Saba	887	887	887	887	887	887	2001 Plan: A-ALL, LIMIT
IRRIGATION	BLANCO	K	Blanco	Colorado	01614	Ellenburger-San Saba	667	667	667	667	667	667	2001 Plan: A-ALL, % & Tbl 4
IRRIGATION	BLANCO	K	Blanco	Guadalupe	016996	Irrigation Local Supply	9	9	9	9	9	9	2001 Plan: LCRA Provided data
IRRIGATION	BLANCO	K	Blanco	Guadalupe		Trinity	89	89	89	89	76		2001 Plan: A-ALL, 100% reduced
LIVESTOCK	BLANCO	K	2.000	Colorado		Livestock Local Supply	101	101	101	101	101		2001 Plan: Demand, LCRA provided data
LIVESTOCK	BLANCO	K K	Blanco	Colorado		Ellenburger-San Saba	749						2001 Plan: A-ALL, % & Tbl 4
LIVESTOCK	BLANCO	K	Blanco	Guadalupe		Trinity	69		69		56		2001 Plan: A-ALL, 42.6% reduced
		K	Dianico	· · · · · · · · · · · · · · · · · · ·		Livestock Local Supply					101		2001 Plan: A-ALL, 42.0 % reduced 2001 Plan: Demand, LCRA provided data
LIVESTOCK	BLANCO	K		Guadalupe	18997	Livestock Local Supply	101	101	101	101	101	101	Updated supply to meet demand (Reallocation strategy
MANUFACTURING	BLANCO	K	Blanco	Colorado	01628	Trinity	1	1	1	1	1	1	from 2006 Region K Plan)
MANUFACTURING	BLANCO	K K	Blanco	Guadalupe		Trinity	0	0	0	0	7	7	2001 Plan: AllocFile10 100% reduced
MINING	BLANCO	K	Blanco	Colorado		7	285	305	285	285	285		2001 Plan: A-ALL, % & Tbl 4
		N.				Ellenburger-San Saba			285				
MINING	BLANCO	K	Blanco	Guadalupe	01628	Trinity	43	43	43	43	35		2001 Plan: AllocFile10 9/24/99
STEAM ELECTRIC POWER	BLANCO						0	0	0	0	0		New WUG: 0 Demand, therefore 0 Supply
STEAM ELECTRIC POWER	BLANCO						0	0	0	0	0		New WUG: 0 Demand, therefore 0 Supply
BERTRAM	BURNET	K	Burnet	Colorado	02714	Ellenburger-San Saba	500	500	500	500	500	500	Changed basin, increased supply as told by Bertram 10/09
BURNET	BURNET	K	Burnet	Colorado	02714	Ellenburger-San Saba	1,862	1,862	1,862	1,862	1,862	1,862	2001 Plan: A-ALL, LIMIT
BURNET	BURNET	K		Colorado		Highland Lakes	4,100	4,100	4,100	4,100	4,100		Extend contract 5/2009
							,	•	.,,,,,,				
CHISHOLM TRAIL SUD	BURNET	G		Brazos	120B0	Brazos River Authority System	20	32	45	58	71	86	Supply by BRA based on discussion with HDR 01/12/10
CHISHOLM TRAIL SUD	BURNET	G	Williamson	Brazos	24611G	Edwards-BFZ	8	8	8	8	8	8	New WUG: less than 1% of population in Region K. All currently served by groundwater but contracts in place for Colorado River and Brazos River water. 1/11/05
COTTONWOOD SHORES	BURNET	K		Colorado	140B0	Highland Lakes	138	138	138	138	138	138	Extend contract 5/2009
COUNTY-OTHER	BURNET	K	Burnet	Brazos		Ellenburger-San Saba	0	0	0	0	55		Reduced due to decreased availability 7/2009
COUNTY-OTHER	BURNET	K	Burnet	Brazos		Trinity	972	960	947	934	921		2001 Plan: A-ALL, LIMIT
COUNTY-OTHER	BURNET	K				Ellenburger-San Saba			947	934	921		2001 Plan: A-ALL, % & Tbl 4
		N.	Burnet	Colorado			10		- 0	- 0	- 0		·
COUNTY-OTHER	BURNET	K	Burnet	Colorado		Hickory	54		54		54		2001 Plan: A-ALL, % & Tbl 4
COUNTY-OTHER	BURNET	K	_	Colorado		Highland Lakes	3,265		3,265	3,265	3,265		Updated number 08/09, Extend contract 5/2009
COUNTY-OTHER	BURNET	K	Burnet	Colorado		Marble Falls	21	21	21	21	21		2001 Plan: A-ALL, % & Tbl 4
COUNTY-OTHER	BURNET	K	Burnet	Colorado		Trinity	227	227	192				2001 Plan: A-ALL, % & Tbl 4
GRANITE SHOALS	BURNET	K		Colorado	140B0	Highland Lakes	830	830	830	830	830	830	Extend contract 5/2009
KEMPNER WSC	BURNET	G		Brazos	120B0	Brazos River Authority System	298	381	466	548	636	741	Total Kempner demand in Region K met by BRA, based on discussion with HDR (Region G) on 1/12/10
KINGSLAND WSC	BURNET	К		Colorado	140R0	Highland Lakes	78	78	78	78	78		Extend contract 5/2009, split with Llano
LAKE LBJ MUD		K		Colorado		Highland Lakes	259						Extend contract 5/2009
E THE EDO MOD	DOME	1	l	Colorado	17000	i ngmana Lakoo	200	204	521	550	503	720	Exterior contract of 2000

						Tracer Supply Tubic (by							
WUG Name	WUG County	RWPG Water Source	Water Source County	Water Source Basin Name	Specific Source Identifier	Specific Source Name	Year 2010 SUPPLY (ac-ft/yr)	Year 2020 SUPPLY (ac-ft/yr)	Year 2030 SUPPLY (ac-ft/yr)	Year 2040 SUPPLY (ac-ft/yr)	Year 2050 SUPPLY (ac-ft/yr)	Year 2060 SUPPLY (ac-ft/yr)	Source of Data*
			Name										
MARBLE FALLS	BURNET	K		Colorado		lighland Lakes	2,000	2,000	2,000	2,000	2,000	,	Extend contract 5/2009
MARBLE FALLS	BURNET	K		Colorado		lighland Lakes	1,000	1,000	1,000	1,000	1,000	1,000	Extend contract 5/2009
MEADOWLAKES	BURNET	K		Colorado	14999	Other Local Supply	486	486	486	486	486	486	2001 Plan: TCB & LCRA provided data
MEADOWLAKES	BURNET	K		Colorado	140B0 H	lighland Lakes	75	75	75	75	75	75	Updated LCRA Commitment list 07/2009
IRRIGATION	BURNET	K	Burnet	Brazos	02728 7		0	0	0	0	0	0	2001 Plan: AllocFile10 18.4% reduced
IRRIGATION	BURNET	K	Burnet	Colorado	02716 H	•	1,540	1,540	1,540	1,540	1,540	1 540	Reduced due to decreased availability 5/2009
IRRIGATION	BURNET	K	Burnet	Colorado		Marble Falls	533	533	533		533		2001 Plan: AllocFile10 9/24/99
IRRIGATION	BURNET	K	Burnet	Colorado	02718 T		104	104	88		72		2001 Plan: AllocFile10 9/24/99
IRRIGATION	BURNET	K K		Colorado		rigation Local Supply	276		276		276		2001 Plan: TWDB
		N.											
IRRIGATION	BURNET	N.	Burnet	Colorado		Ellenburger-San Saba	25		25		25		2001 Plan: ALLOC-F10 9/24/99
LIVESTOCK	BURNET	K	Burnet	Brazos	02728 T	,	45		45	45	45		2001 Plan: A-ALL, 12.6% reduced
LIVESTOCK	BURNET	K		Brazos		ivestock Local Supply	341	341	341		341	-	2001 Plan: Demand
LIVESTOCK	BURNET	K	Burnet	Colorado	02716 H	, ,	189		189		189		2001 Plan: A-ALL, % & Tbl 4
LIVESTOCK	BURNET	K		Colorado	14997 L	ivestock Local Supply	210	210	210	210	210	210	2001 Plan: Demand
LIVESTOCK	BURNET	K	Burnet	Colorado	02728 T	rinity	71	71	60	60	50	50	2001 Plan: AllocFile10 9/24/99
LIVESTOCK	BURNET	K	Burnet	Colorado	02719 N	Marble Falls	1,208	1,208	1,208	1,208	1,208	1.208	Reduced due to decreased availability 5/2009
LIVESTOCK	BURNET	K	Burnet	Colorado		Ellenburger-San Saba	25		25		25		2001 Plan: A-ALL, LIMIT
MANUFACTURING	BURNET		2 411.00	00.0.00	02		0	0	0	0	0		New WUG: 0 Demand, therefore 0 Supply
MANUFACTURING	BURNET	K	Burnet	Colorado	0271 <i>/</i> LF	Ellenburger-San Saba	25	25	25	25	25		2001 Plan: ALLOC-F10 9/24/99
MANUFACTURING		K K	Durilet							_			2001 Plan: LCRA Provided data
	BURNET	K.		Colorado		Other Local Supply	1,367	1,503	1,643		1,933		
MANUFACTURING		K	_	Colorado		lighland Lakes	500	500	500				Supply Estimate based on LCRA 4/9/04
MINING	BURNET	K	Burnet	Brazos	02728 T	,	54		54		45		2001 Plan: A-ALL, 5% reduced
MINING	BURNET	K		Colorado	14999	Other Local Supply	747	762	778		826		2001 Plan: LCRA provided data
MINING	BURNET	K	Burnet	Colorado	02719 N	Marble Falls	123		123	123	123	123	2001 Plan: A-ALL, % & Tbl 4
MINING	BURNET	K	Burnet	Colorado	02716 H	lickory	315	315	315	315	315	315	2001 Plan: A-ALL, % & Tbl 4
MINING	BURNET	K	Burnet	Colorado	02728 1	rinity	4	4	3	3	3	3	2001 Plan: AllocFile10 9/24/99
MINING	BURNET	K	Burnet	Colorado	02714 E	Ellenburger-San Saba	25	25	25	25	25	25	2001 Plan: A-ALL, LIMIT
STEAM ELECTRIC POWER	BURNET						0	0	0	0	0		New WUG: 0 Demand, therefore 0 Supply
STEAM ELECTRIC POWER	BURNET	K	Burnet	Colorado	02714 F	Ellenburger-San Saba	25	25	25	25	25		2001 Plan: AllFile10 9/24 Limit
COLUMBUS	COLORADO	K	Colorado	Colorado		Gulf Coast	1,350		1,350	_	1,350		2001 Plan: A-ALL, LIMIT
COUNTY-OTHER	COLORADO	K				Gulf Coast	1,330		1,330		1,330		2001 Plan: A-ALL, % & Tbl 4
		N.		Brazos-Colorado									
COUNTY-OTHER	COLORADO	K		Colorado		Gulf Coast	800	800	800		800		2001 Plan: A-ALL, % & Tbl 4
COUNTY-OTHER	COLORADO	K		Lavaca		Gulf Coast	250		250		250		2001 Plan: A-ALL, % & Tbl 4
EAGLE LAKE	COLORADO	K		Brazos-Colorado		Gulf Coast	418				418		Revised supplies based on demands 09/2009
EAGLE LAKE	COLORADO	K	Colorado	Colorado		Gulf Coast	452	452	452		452		Revised supplies based on demands 09/2009
WEIMAR	COLORADO	K	Fayette	Colorado	07515	Gulf Coast	1,804	1,804	1,804	1,804	1,804	1,804	2001 Plan: A-ALL, LIMIT
WEIMAR	COLORADO	K	Fayette	Lavaca	07515	Gulf Coast	2,119	2,119	2,119	2,119	2,119	2,119	2001 Plan: A-ALL, LIMIT 2218 reduced
							0.040	0.004	0.004	0.004	0.004	0.004	Region K WAM Run 3 Cutoff; Lakeside ROR split
IRRIGATION	COLORADO	K		Colorado	3461405475 L	.CRA - Lakeside ROR	6,340	6,331	6,331	6,331	6,331	6,331	between 3 basins.
							05.4.40	05.440	05.4.40	05.440	05.440	05.440	Desired K WAM Done 2 Contests 700% of Commend DOD
							25,143	25,143	25,143	25,143	25,143		Region K WAM Run 3 Cutoff; 70% of Garwood ROR
IRRIGATION	COLORADO	K		Colorado		.CRA - Garwood ROR							water in a minimum year (LCRA) split between 3 basins.
IRRIGATION	COLORADO	K	Colorado	Brazos-Colorado	04515	Gulf Coast	7,775	7,775	7,775	7,775	7,775		2001 Plan: Demand
							3,078	3,073	3,073	3,073	3,073		Region K WAM Run 3 Cutoff; Lakeside ROR split
IRRIGATION	COLORADO	K		Colorado	3461405475 L	.CRA - Lakeside ROR	3,070	3,073	3,073	3,073	3,073	3,073	between 3 basins.
IRRIGATION	COLORADO	K	Colorado	Colorado	04515 (Gulf Coast	11,191	11,191	11,191	11,191	11,191	11,191	2001 Plan: Demand
IRRIGATION	COLORADO	K	Colorado		045996 [rrigation Local Supply	3,000	3,000	3,000	3,000	3,000	3.000	2001 Plan: LCRA Provided data
						migament access a spp.y	3,555	0,000	0,000	0,000	0,000	0,000	
							12,207	12,207	12,207	12,207	12,207	12 207	Region K WAM Run 3 Cutoff; 70% of Garwood ROR
IRRIGATION	COLORADO	IZ		Colorado	24644054244	.CRA - Garwood ROR	12,207	12,207	12,207	12,207	12,201	12,207	water in a minimum year (LCRA) split between 3 basins.
IRRIGATION	COLORADO	N.		Colorado	3401403434A L	.CRA - Galwood ROR							
IRRIGATION	COLORADO	K		Colorado	3461405475	.CRA - Lakeside ROR	13,553	13,534	13,534	13,534	13,534		Region K WAM Run 3 Cutoff; Lakeside ROR split between 3 basins.
IRRIGATION	COLORADO	K	Colorado	Lavaca		Gulf Coast	14,050	14,050	14,050	14,050	14,050		2001 Plan: Demand
		IX											
IRRIGATION	COLORADO	I.V.	Colorado	∟dvaca	U45996 I	rrigation Local Supply	4,002	4,002	4,002	4,002	4,002	4,002	2001 Plan: LCRA Provided data
													D : 1/1/4/14 D : 0 0 : # ==== 15
	1						53,749	53,749	53,749	53,749	53,749	53,749	Region K WAM Run 3 Cutoff; 70% of Garwood ROR
IRRIGATION	COLORADO	K		Colorado		.CRA - Garwood ROR							water in a minimum year (LCRA) split between 3 basins.
LIVESTOCK	COLORADO	K	Colorado	Brazos-Colorado		Gulf Coast	65		65		65		2001 Plan: A-ALL, % & Tbl 4
LIVESTOCK	COLORADO	K		Brazos-Colorado	13997 L	ivestock Local Supply	39					39	2001 Plan: LCRA Provided data
-					· <u> </u> -	11.7							

		Region R Water Supply Tuble (by West											
WUG Name	WUG County	RWPG Water Source	Water Source County Name	Water Source Basin Name	Specific Source Identifier	Specific Source Name	Year 2010 SUPPLY (ac-ft/yr)	Year 2020 SUPPLY (ac-ft/yr)	Year 2030 SUPPLY (ac-ft/yr)	Year 2040 SUPPLY (ac-ft/yr)	Year 2050 SUPPLY (ac-ft/yr)	Year 2060 SUPPLY (ac-ft/yr)	Source of Data*
LIVESTOCK	COLORADO	K		Colorado	14997	Livestock Local Supply	860	860	860	860	860	860	2001 Plan: LCRA Provided data
LIVESTOCK	COLORADO	K	Colorado	Colorado		Gulf Coast	25		25	25	25		2001 Plan: A-ALL, LIMIT
LIVESTOCK	COLORADO	K K	Colorado	Lavaca		Livestock Local Supply	177		177	177	177		2001 Plan: LCRA Provided data
LIVESTOCK	COLORADO	K	Colorado	Lavaca		Gulf Coast	283		283	283	283		2001 Plan: A-ALL, % & Tbl 4
		N.				Gulf Coast							2001 Plan: A-ALL, % & Tbl 4 2001 Plan: A-ALL, % & Tbl 4
MANUFACTURING	COLORADO	K	Colorado	Brazos-Colorado			27		27	27	27		•
MANUFACTURING	COLORADO	K		Colorado	14999	Other Local Supply	1,215	1,285	1,353	1,418	1,481		2001 Plan: A-ALL, TCB
MANUFACTURING	COLORADO						0	0	0	0	0		New WUG: 0 Demand, therefore 0 Supply
MINING	COLORADO	K	Colorado	Brazos-Colorado		Gulf Coast	100		100	100	100		2001 Plan: A-ALL, % & Tbl 4
MINING	COLORADO	K		Colorado		Other Local Supply	10,508		12,443	13,785	15,402		2001 Plan: A-ALL and LCRA provided data
MINING	COLORADO	K	Colorado	Lavaca	04515	Gulf Coast	1,627	1,627	1,627	1,627	1,627		2001 Plan: A-ALL, 100% reduced
STEAM ELECTRIC POWER	COLORADO						0	0	0	0	0		New WUG: 0 Demand, therefore 0 Supply
STEAM ELECTRIC POWER	COLORADO	K	Colorado	Colorado	04515	Gulf Coast	0	0	0	0	0		2001 Plan: AllFile10 9/24 Limit
STEAM ELECTRIC POWER	COLORADO						0	0	0	0	0	0	New WUG: 0 Demand, therefore 0 Supply
AQUA WSC	FAYETTE	L	Caldwell	Guadalupe	02810	Carrizo-Wilcox	90	115	135	150	168	194	Source changed from Highland Lakes to Carrizo-Wilcox Aquifer in Caldwell County (Region L) 5,000 ac-ft split between Bastrop, Fayette, and Travis 08/09
COUNTY-OTHER	FAYETTE	K	Fayette	Brazos	07515	Gulf Coast	0	0	0	0	0	0	2001 Plan: A-ALL, % & Tbl 4
COUNTY-OTHER	FAYETTE	К	Fayette	Colorado	07515	Gulf Coast	154		0	0	0	0	2001 Plan: A-ALL, LIMIT; adjusted year 2000 value based on reduced total available Gulf Coast supplies 2/7/05
COUNTY-OTHER	FAYETTE	K	Fayette	Colorado		Queen City	90	90	90	90	90		2001 Plan: AllFile10 limit
COUNTY-OTHER	FAYETTE	K	Fayette	Colorado		Sparta	0	0	0	0	0	0	2001 Plan: A-ALL, LIMIT
COUNTY-OTHER	FAYETTE	K		Colorado		Highland Lakes	102		102	102	102		Extend contract 5/2009
COUNTY-OTHER	FAYETTE	K	Fayette	Guadalupe	07515	Gulf Coast	76	76	76	76	76	76	2001 Plan: A-ALL, % & Tbl 4
COUNTY-OTHER	FAYETTE	K	Fayette	Guadalupe	07527	Sparta	90	90	90	90	90	90	2001 Plan: A-ALL, % & Tbl 4
COUNTY-OTHER	FAYETTE	K	Fayette	Lavaca	07515	Gulf Coast	226	204	96	9	0	0	2001 Plan: A-ALL, % & Tbl 4
FAYETTE WSC	FAYETTE	К	Fayette	Colorado	07524	Queen City	282	282	282	282	282	282	New WUG: Supply Estimate based on TCEQ maximum production capacity for listed wells and proportioned based on demand per basin. 1/13/05
FAYETTE WSC	FAYETTE	К	Fayette	Colorado	07515	Gulf Coast	675	675	675	675	675	675	New WUG: Supply Estimate based on TCEQ maximum production capacity for listed wells and proportioned based on demand per basin. 1/13/05 New WUG: Supply Estimate based on TCEQ maximum
FAYETTE WSC	FAYETTE	К	Fayette	Lavaca	07524	Queen City	25	25	25	25	25	25	production capacity for listed wells and proportioned based on demand per basin. 1/13/05
FAYETTE WSC	FAYETTE	κ	Fayette	Lavaca	07515	Gulf Coast	59	59	59	59	59	59	New WUG: Supply Estimate based on TCEQ maximum production capacity for listed wells and proportioned based on demand per basin. 1/13/05
FLATONIA	FAYETTE	К	·	Guadalupe		Yegua-Jackson	145		145	145	145	145	Supply Estimate based on TCEQ maximum production capacity for listed wells (168). 1/20/05 Total supply was reduced due to limited Carrizo supplies in Fayette County.
FLATONIA	FAYETTE	K	Fayette	Lavaca		Yegua-Jackson	101		101	101	101		New permit data from Fayette GCD 08/2009
FLATONIA	FAYETTE	K	Fayette	Lavaca	07515	Gulf Coast	269	269	269	269	269		New permit data from Fayette GCD 08/2009
LA GRANGE	FAYETTE	К	Fayette	Colorado		Queen City	662		662	662	662	662	Supply available to Queen City aquifer in Fayette County, Colorado basin minus supply to Fayette WSC and County Other.
LA GRANGE	FAYETTE	K	Fayette	Colorado	07527	Sparta	1,850	1,850	1,850	1,850	1,850		2001 Plan: A-ALL, 100% reduced
LEE COUNTY WSC	FAYETTE	K	Fayette	Colorado		Carrizo-Wilcox	290		290		290	290	Supply available to Carrizo-Wilcox aquifer in Fayette County, Colorado basin
LEE COUNTY WSC	FAYETTE	K	Bastrop			Carrizo-Wilcox	0		117	171	232		Water from Bastrop County wells
SCHULENBURG	FAYETTE	K	Fayette	Lavaca		Yegua-Jackson	113		113	113	113		New permit data from Fayette GCD 08/2009
SCHULENBURG	FAYETTE	K		Lavaca		Gulf Coast	706	706	706	706	706		New permit data from Fayette GCD 08/2009
IRRIGATION	FAYETTE	K		Brazos		Gulf Coast	1	1	1	1	1		2001 Plan: AllocFile10 9/24/99
IRRIGATION	FAYETTE	K	Fayette	Colorado	07515	Gulf Coast	150	150	150	150	150		2001 Plan: AllocFile10 9/24/99
IRRIGATION	FAYETTE	K	Fayette	Colorado		Irrigation Local Supply	534		534	534	534	534	2001 Plan: LCRA provided data and Demand
IRRIGATION	FAYETTE	K	Fayette	Colorado	07510	Carrizo-Wilcox	0	0	0	0	0	0	Reduced supply due to over allocation of Carrizo-Wilcox in Fayette County Colorado basin 2/7/05
IRRIGATION	FAYETTE	ĮΚ	Fayette	Colorado	07527	Sparta	484	484	484	484	484	484	2001 Plan: AllocFile10 9/24/99

						Trace Supply Tuble (by						
WUG Name	WUG County	RWPG Water Source	Water Source County Name	Water Source Basin Name	Specific Source Identifier	Specific Source Name	Year 2010 SUPPLY (ac-ft/yr)	Year 2020 SUPPLY (ac-ft/yr)	Year 2030 SUPPLY (ac-ft/yr)	Year 2040 SUPPLY (ac-ft/yr)	Year 2050 SUPPLY (ac-ft/yr)	Year 2060 SUPPLY (ac-ft/yr) Source of Data*
IRRIGATION	FAYETTE	K	Fayette	Guadalupe	07515	Gulf Coast	2	2	2	2	2	2 2001 Plan: AllocFile10 10% reduced
		K K		 			2	2	60	2	2	
IRRIGATION	FAYETTE	n.	Fayette	Guadalupe		Sparta	60			60	60	
IRRIGATION	FAYETTE	K	Fayette	Lavaca		Gulf Coast	14	14	14	14	14	
IRRIGATION	FAYETTE	K	Fayette	Lavaca		Sparta	3	3	3	3	3	3 2001 Plan: AllocFile10 9/24/99
LIVESTOCK	FAYETTE	K		Brazos		Livestock Local Supply	2	2	2	2	2	2 2001 Plan: Demand
LIVESTOCK	FAYETTE	K	Fayette	Colorado		Gulf Coast	140			140	140	
LIVESTOCK	FAYETTE	K	Fayette	Colorado		Sparta	733			733	733	
LIVESTOCK	FAYETTE	K		Colorado	14997	Livestock Local Supply	1,746			1,746	1,746	
LIVESTOCK	FAYETTE	K	Fayette	Guadalupe	07527	'Sparta	179	179	179	179	179	179 2001 Plan: AllocFile10 9/24/99
LIVESTOCK	FAYETTE	K		Guadalupe	18997	Livestock Local Supply	142	142	142	142	142	142 2001 Plan: LCRA Provided data
LIVESTOCK	FAYETTE	K	Fayette	Guadalupe	07515	Gulf Coast	2	2	2	2	2	2 2001 Plan: A-ALL, % & Tbl 4
LIVESTOCK	FAYETTE	K	Fayette	Lavaca		Gulf Coast	176	176	176	176	176	
LIVESTOCK	FAYETTE	K	Fayette	Lavaca		Sparta	71			71	71	
LIVESTOCK	FAYETTE	K	1 0.7 0 1.10	Lavaca		Livestock Local Supply	472			472	472	
MANUFACTURING	FAYETTE						0	2	0	0	0	0 New WUG: 0 Demand, therefore 0 Supply
MANUFACTURING	FAYETTE	K	Fayette	Colorado	07515	Gulf Coast	0	0	0	0	0	0 2001 Plan: AllocFile10 9/24/99
MANUFACTURING	FAYETTE	K	Fayette	Guadalupe		Sparta	22	22	22	22	22	
MANUFACTURING	FAYETTE	K		 		Sparta	22	22	22	22	22	8 2001 Plan: AllocFile10 9/24/99
		K K	Fayette	Lavaca		Gulf Coast	450	450	450	δ 450	450	
MANUFACTURING	FAYETTE	n.	Fayette	Lavaca			152			152	152	
MINING	FAYETTE	K	Fayette	Brazos		Gulf Coast	42			1	0	0 2001 Plan: A-ALL, 100% reduced
MINING	FAYETTE	K	Fayette	Colorado		Sparta	367			367	367	
MINING	FAYETTE	K	Fayette	Colorado		Gulf Coast	103			103	103	
MINING	FAYETTE	K	Fayette	Guadalupe		Sparta	60			60	60	
MINING	FAYETTE	K	Fayette	Lavaca		Gulf Coast	10	10	10	10	10	
MINING	FAYETTE	K	Fayette	Lavaca	07527	Sparta	24	24	24	24	24	24 2001 Plan: AllocFile10 9/24/99
STEAM ELECTRIC POWER	FAYETTE						0	0	0	0	0	0 New WUG: 0 Demand, therefore 0 Supply
STEAM ELECTRIC POWER	FAYETTE	K		Colorado	3461405471A-SE	City of Austin - ROR (Steam Elec.)	1,267	1,267	1,267	1,267	1,267	1,267 Region K WAM Run 3 Cutoff; FPP
STEAM ELECTRIC POWER	FAYETTE	K		Colorado	140B0	Highland Lakes	38,101	38,101	38,101	38,101	38,101	Region K WAM Run 3 Cutoff; TCEQ WAM 5/6/05; LCRA Cooling Water
STEAM ELECTRIC POWER	FAYETTE	K		Colorado		Highland Lakes	3,500	3,500	3,500	3,500	3,500	
STEAM ELECTRIC POWER	FAYETTE			Colorado	14000	Tilgilland Lakes	0,000	0,000	0,000	0,000	0,500	0 New WUG: 0 Demand, therefore 0 Supply
STEAM ELECTRIC POWER	FAYETTE						0	0	0	0	0	
		1/	Cillognia	Calarada	00040	Edwards Trinity (Distance)	U	U	000	000	U	1
COUNTY-OTHER	GILLESPIE	K K	Gillespie	Colorado		Edwards-Trinity (Plateau)	968				968	
COUNTY-OTHER	GILLESPIE	K	Gillespie	Colorado		Ellenburger-San Saba	436			436	436	
COUNTY-OTHER	GILLESPIE	K	Gillespie	Colorado		Hickory	596				596	
COUNTY-OTHER	GILLESPIE	K		Colorado		Highland Lakes	56			56	56	
COUNTY-OTHER	GILLESPIE	K	Gillespie	Colorado		Trinity	1,123	· · · · · · · · · · · · · · · · · · ·		1,123	1,123	
COUNTY-OTHER	GILLESPIE	K		Guadalupe		Edwards-Trinity (Plateau)	90					
COUNTY-OTHER	GILLESPIE	K	Gillespie	Guadalupe		Ellenburger-San Saba	65				65	
COUNTY-OTHER	GILLESPIE	K	Gillespie	Guadalupe		Hickory	66				66	
COUNTY-OTHER	GILLESPIE	K	Gillespie	Guadalupe		Trinity	26			26	26	
FREDERICKSBURG	GILLESPIE	K	Gillespie	Colorado	08614	Ellenburger-San Saba	3,174	3,174	3,174	3,174	3,174	
FREDERICKSBURG	GILLESPIE	K	Gillespie	Colorado		Hickory	662	662	662	662	662	662 Hill Country UWCD 5/14/04
IRRIGATION	GILLESPIE	K	Gillespie	Colorado	08613	Edwards-Trinity (Plateau)	71	71	71	71	71	71 2001 Plan: A-ALL, LIMIT reduced
IRRIGATION	GILLESPIE	K	Gillespie	Colorado	086996	Irrigation Local Supply	880	880	880	880	880	880 2001 Plan: LCRA provided data?
IRRIGATION	GILLESPIE	K	Gillespie	Colorado	08628	Trinity	1,149	1,149	1,149	1,149	1,149	1,149 Hill Country UWCD 5/14/04
IRRIGATION	GILLESPIE	K	Gillespie	Colorado	08616	Hickory	210	210		210	210	210 Hill Country UWCD 5/14/04
IRRIGATION	GILLESPIE	K	Gillespie	Colorado		Ellenburger-San Saba	1,239			1,239	1,239	
IRRIGATION	GILLESPIE	K	Gillespie	Guadalupe		Trinity	n ,	1, <u>1</u> 30	0	n	n ,	0 2001 Plan: AllocFile10 10% reduced
LIVESTOCK	GILLESPIE	K		Colorado		Livestock Local Supply	515	515	515	515	515	• • • • • • • • • • • • • • • • • • • •
LIVESTOCK	GILLESPIE	ĸ	Gillespie	Colorado		Edwards-Trinity (Plateau)	266				266	
LIVESTOCK	GILLESPIE	ĸ	Gillespie	Colorado		Ellenburger-San Saba	266				266	
LIVESTOCK	GILLESPIE	ĸ	Gillespie	Colorado		Hickory	266			266	266	
LIVESTOCK	GILLESPIE	ĸ	Gillespie	Colorado		Trinity	932			932	932	
LIVESTOCK	GILLESPIE	K .	Gillespie	Guadalupe		Trinity	20			20	20	
LIVESTOCK	GILLESPIE	\ \	Gillespie	 							_	
		IV.	Cillaga:	Guadalupe		Livestock Local Supply	13			13	13	-1
MANUFACTURING	GILLESPIE	r.	Gillespie	Colorado		Edwards-Trinity (Plateau)	34			34	34	
MANUFACTURING	GILLESPIE	r\	Gillespie	Colorado		Ellenburger-San Saba	398				398	
MANUFACTURING	GILLESPIE	ľ	Gillespie	Colorado	08616	Hickory	150	150	150	150	150	150 Hill Country UWCD 5/14/04

					Region it Water Supply Tuble (by			, , , , , , , , , , , , , , , , , , , 				
WUG Name	WUG County	RWPG Water Source	Water Source County Name	Water Source Basin Name	Specific Source Name Identifier Specific Source Name	Year 2010 SUPPLY (ac-ft/yr)	Year 2020 SUPPLY (ac-ft/yr)	Year 2030 SUPPLY (ac-ft/yr)	Year 2040 SUPPLY (ac-ft/yr)	Year 2050 SUPPLY (ac-ft/yr)	Year 2060 SUPPLY (ac-ft/yr)	Source of Data*
MANUFACTURING	GILLESPIE	K		Colorado	14999 Other Local Supply	158	158	158	158	158	158	2001 Plan: Demand
MANUFACTURING	GILLESPIE			00.0.00	. 1000 Canor 2000 Cappiy	0	0	0	0	0		New WUG: 0 Demand, therefore 0 Supply
MINING	GILLESPIE	K	Gillespie	Colorado	08616 Hickory	50	50	50	50	50		Hill Country UWCD 5/14/04
MINING	GILLESPIE	K K		Colorado	08628 Trinity	150		150	150	150		Hill Country UWCD 5/14/04
MINING	GILLESPIE	K						71		71		2001 Plan: AllFile10 9/24 Limit reduced
		N.		Colorado	08613 Edwards-Trinity (Plateau)	71			71			
MINING	GILLESPIE	K	Gillespie	Colorado	08614 Ellenburger-San Saba	22	22	22	22	22		2001 Plan: AllocFile10 9/24/99
MINING	GILLESPIE	K	Gillespie	Guadalupe	08628 Trinity	0	0	0	0	0		2001 Plan: AllocFile10 10% reduced
STEAM ELECTRIC POWER	GILLESPIE	K	Gillespie	Colorado	08613 Edwards-Trinity (Plateau)	0	0	0	0	0		Hill Country UWCD 5/14/04
STEAM ELECTRIC POWER	GILLESPIE					0	0	0	0	0		New WUG: 0 Demand, therefore 0 Supply
BUDA	HAYS	K	Hays	Colorado	10511 Edwards-BFZ	591	591	591	591	591		BSEACD 10/24/07
BUDA	HAYS	L			18020 Canyon Lake	1,120	1,680	1,680	1,680	1,680	1,680	City of Buda, 09/2009
CIMARRON PARK WATER COMPANY	HAYS		Hays	Colorado	10511 Edwards-BFZ	253	253	253	253	253		BSEACD 12/18/07 New WUG: BSEACD 3/9/04
COUNTY-OTHER	HAYS	К		Colorado	140B0 Highland Lakes	1,425	1,425	1,425	1,425	1,425	1,425	5/2009
COUNTY-OTHER	HAYS	κ	Hays	Colorado	10511 Edwards-BFZ	1,014	921	1,031	1,031	1,028		BSEACD 10/24/07 Permittees plus 10% exempt pumpage; 2050 and 2060 subtract 3 for livestock
COUNTY-OTHER	HAYS	L			18020 Canyon Lake	1,680	1,680	1,680	1,680	1,680	1,680	Updated strategy to supply 09/2009
DRIPPING SPRINGS	HAYS	К		Colorado	140B0 Highland Lakes	506	506	506	506	506	506	Extend contract 5/2009: Supply Estimate based on LCRA 4/9/04 (from Dripping Springs WSC)
DRIPPING SPRINGS WSC	HAYS	K		Colorado	140B0 Highland Lakes	560	560	560	560	560	560	07/2009 LCRA commitment list
		17		0 1 1	Ŭ							New WUG: Supply based on Dripping Springs WSC
DRIPPING SPRINGS WSC	HAYS	K	Hays	Colorado	10528 Trinity	240	240	240	240	240	240	9/20/04 New WUG: Supply Estimate based on COA email
HILL COUNTRY WSC	HAYS	K		Colorado	3461405489A City of Austin - ROR (Municipal)	0	0	0	0	0		2/18/04
HILL COUNTRY WSC	HAYS	К		Colorado	140B0 Highland Lakes	440	702	980	1,249	1,582	1,844	New WUG: Retail customer of West Travis RWS. Subtracted demand from West Travis Contract. 2/10/05
MOUNTAIN CITY	HAYS		Hays	Colorado	10511 Edwards-BFZ	93	93	93	93	93	93	BSEACD 12/18/07 New WUG: BSEACD 3/9/04
IRRIGATION	HAYS	K	Hays	Colorado	10511 Edwards-BFZ	10	10	10	10	10	10	BSEACD 10/24/07 (permitted amount)
IRRIGATION	HAYS	K	Hays	Colorado	10528 Trinity	2	2	2	2	1	1	2001 Plan: AllocFile10 9/24/99
IRRIGATION	HAYS	K	Hays	Colorado	105996 Irrigation Local Supply	41	41	41	41	41	41	2001 Plan: LCRA Provided data
LIVESTOCK	HAYS	K		Colorado	14997 Livestock Local Supply	192	192	192	192	192	192	2001 Plan: LCRA Provided data
LIVESTOCK	HAYS	K	Hays	Colorado	10528 Trinity	30	30	30	30	25	25	2001 Plan: A-ALL, 17.6% reduced
LIVESTOCK	HAYS	K	Hays	Colorado	10511 Edwards-BFZ	0	0	0	0	3		Reduced due to demand being met by other sources (livestock demand = 220) and reduced availability in Edwards-BFZ 10/24/07
MANUFACTURING	HAYS	K	Hays	Colorado	10511 Edwards-BFZ	598	598	598	598	598	598	BSEACD 12/18/07 BSEACD 3/9/04 855 ac-ft/yr; rest Plan2001
MINING	HAYS	K	Hays	Colorado	10511 Edwards-BFZ	0	0	0	0	0	()	Reduced due to lack of demand (mining demand <=12) and reduced availability in Edwards-BFZ 10/24/07
MINING	HAYS	K	Hays	Colorado	10528 Trinity	12	12	12	12	10	10	2001 Plan: A-ALL, 3.5% reduced
STEAM ELECTRIC POWER	HAYS				ĺ	0	0	0	0	0	0	New WUG: 0 Demand, therefore 0 Supply
COUNTY-OTHER	LLANO	K	Llano	Colorado	15014 Ellenburger-San Saba	120	120	120	120	120	120	2001 Plan: A-ALL, LIMIT
COUNTY-OTHER	LLANO	K	Llano	Colorado	15016 Hickory	42		42	42	42		2001 Plan: A-ALL, LIMIT
COUNTY-OTHER	LLANO	K		Colorado	140B0 Highland Lakes	2,222	2,222	2,222	2,222	2,222		Updated number 08/09, Extend contract 5/2009
KINGSLAND WSC	LLANO	K		Colorado	140B0 Highland Lakes	405		405	405	405		Updated number 08/09, Extend contract 5/2009
KINGSLAND WSC	LLANO	K	Llano	Colorado	15022 Other Aquifer	109		109	109	109		New WUG: Supply Estimate based on TCEQ capacity for listed wells. Assumes all GW is supplied within Llano
LAKE LBJ MUD	LLANO	K		Colorado	140B0 Highland Lakes	1,530	1,495	1,462	1,431	1,400	1,364	County. 1/14/05 Extend contract 5/2009
LLANO	LLANO	K		Colorado	140B0 Highland Lakes	87		87	87	87		Extend contract 5/2009
LLANO	LLANO	K		Colorado	14520 Llano Reservoir	0	0	0	0	0	0	Region K WAM Run 3 Cutoff
SUNRISE BEACH VILLAGE	LLANO	K		Colorado	140B0 Highland Lakes	278	278	278	278	278	278	New WUG: Supply Estimate based on TCEQ maximum production capacity for system. 1/14/05
SUNRISE BEACH VILLAGE	LLANO	К	Llano	Colorado	15016 Hickory	65	65	65	65	65	65	New WUG: Supply Estimate based on TCEQ maximum production capacity for listed wells. 1/14/05
IRRIGATION	LLANO	K	Llano	Colorado	150996 Irrigation Local Supply	440	440	440	440	440	440	2001 Plan: LCRA Provided data
IRRIGATION		K		Colorado	15016 Hickory	10,051	10,051	10,051	10,051	10,051		2001 Plan: A-ALL, % & Tbl 4

						Trater Supply Tubic (b)			,				
WUG Name	WUG County	RWPG Water Source	Water Source County Name	Water Source Basin Name	Specific Source Identifier	Specific Source Name	Year 2010 SUPPLY (ac-ft/yr)	Year 2020 SUPPLY (ac-ft/yr)	Year 2030 SUPPLY (ac-ft/yr)	Year 2040 SUPPLY (ac-ft/yr)	Year 2050 SUPPLY (ac-ft/yr)	Year 2060 SUPPLY (ac-ft/yr)	Source of Data*
IRRIGATION	LLANO	V		Colorado	15014	Ellenburger-San Saba	76	76	76	76	76	76	2001 Plan: A-ALL, % & Tbl 4
		N IZ							_				
LIVESTOCK	LLANO	K		Colorado		Livestock Local Supply	393			393			2001 Plan: LCRA Provided data
LIVESTOCK	LLANO	K	Llano	Colorado		Hickory	288	288	288	288	288		2001 Plan: A-ALL, % & Tbl 4
LIVESTOCK	LLANO	K	Llano	Colorado		Ellenburger-San Saba	8	8	8	8	8		2001 Plan: A-ALL, % & Tbl 4
MAANU JEA OTI JEINIO		17		0.1	15016	Hickory	3	3	3	3	3		Updated supply to meet demand (Reallocation strategy
MANUFACTURING	LLANO	K		Colorado	45040	HICKORY	4.050	4.050	4.050	4.050	4.050		from 2006 Region K Plan)
MINING	LLANO	K	Llano	Colorado		Hickory	1,252	1,252		1,252	1,252		2001 Plan: A-ALL, % & Tbl 4
MINING	LLANO	K	Llano	Colorado	15014	Ellenburger-San Saba	76	76	76	76	76	76	2001 Plan: A-ALL, % & Tbl 4
STEAM ELECTRIC POWER	LLANO	K		Colorado	140B0	Highland Lakes	15,700	15,700	·	15,700	15,700	15,700	Region K WAM Run 3 Cutoff; TCEQ WAM 5/6/05; LCRA Cooling Water
BAY CITY	MATAGORDA	K	Matagorda	Brazos-Colorado	16115	Gulf Coast	6,255	6,255	6,255	6,255	6,255		2001 Plan: A-ALL, LIMIT 9725 reduced
COUNTY-OTHER	MATAGORDA			Colorado	140B0	Highland Lakes	0	0	0	0	0	0	Updated LCRA Commitment list 07/2009
COUNTY-OTHER	MATAGORDA	K	Matagorda	Brazos-Colorado	16115	Gulf Coast	1,936	1,933	1,932	1,932	1,933		2001 Plan: ALLOC-F10 9/24/99
COUNTY-OTHER	MATAGORDA	K	Matagorda			Gulf Coast	250	250		250	250	250	2001 Plan: A-ALL, % & Tbl 4
COUNTY-OTHER	MATAGORDA			Brazos-Colorado		Gulf Coast	789	789		789	789	789	,
COUNTY-OTHER	MATAGORDA	K		Colorado-Lavaca		Gulf Coast	3,900	3,900		3,900	3,900	3.900	2001 Plan: A-ALL, % & Tbl 4
							0,000	0,000	0,000	0,000	0,000		Updated supply to meet demand (Reallocation strategy
ORBIT SYSTEMS INC	MATAGORDA		Matagorda	Colorado-Lavaca	16115	Gulf Coast	2	2	2	2	2	2	from 2006 Region K Plan)
PALACIOS	MATAGORDA	K	Matagorda	Colorado-Lavaca	16115	Gulf Coast	2,152	2,152	2,152	2,152	2,152	2,152	2001 Plan: A-ALL, LIMIT
SOUTHWEST UTILITIES	MATAGORDA		Matagorda	Colorado-Lavaca	16115	Gulf Coast	140	140	140	140	140	140	New WUG: Supply Estimate based on TCEQ maximum production capacity for listed wells. 1/13/05
IRRIGATION	MATAGORDA	К		Colorado	3461405476A	LCRA - Gulf Coast ROR	21,069	20,464	20,464	20,464	20,464	20 464	Region K WAM Run 3 Cutoff; Gulf Coast ROR split by basin.
IRRIGATION	MATAGORDA	K	Matagorda	Brazos-Colorado		Irrigation Local Supply	4,000	4,000	4,000	4,000	4,000	4.000	2001 Plan: TWDB
IRRIGATION	MATAGORDA	K		Brazos-Colorado		Gulf Coast	4,082	4,082		4,082	4,082		2001 Plan: Demand
TATALOTATION .	Wirthtoon		Matagoraa	Diazoo Colorado	10110	Cui Codot		•	·	•	,		
IRRIGATION	MATAGORDA	ĸ		Colorado	3461405476A	LCRA - Gulf Coast ROR	2,689	2,612	2,612	2,612	2,612	2,612	basin.
IRRIGATION	MATAGORDA	K	Matagorda			Gulf Coast	1,389	1,389	1,389	1,389	1,389	1.389	2001 Plan: Demand
IRRIGATION	MATAGORDA	K	Matagorda			Irrigation Local Supply	900	900		900	900		2001 Plan: TWDB
IRRIGATION	MATAGORDA	K		Colorado		LCRA - Gulf Coast ROR	21,069	20,464		20,464	20,464	20 464	Region K WAM Run 3 Cutoff: Gulf Coast ROR split by
IRRIGATION	MATAGORDA	K	Matagorda	Colorado-Lavaca		Gulf Coast	7,108	7,108	7,108	7,108	7,108		2001 Plan: Demand
IRRIGATION	MATAGORDA	K		Colorado-Lavaca		Irrigation Local Supply	4,000	4,000		4,000	4,000		2001 Plan: TWDB
LIVESTOCK	MATAGORDA	K		Brazos-Colorado		Livestock Local Supply	206				206	,	2001 Plan: Demand
LIVESTOCK	MATAGORDA	K		Brazos-Colorado		Gulf Coast	875	875		875	875		2001 Plan: AllocFile10 9/24/99
LIVESTOCK	MATAGORDA	K K	Matagorda	Colorado		Livestock Local Supply	25				25		2001 Plan: LCRA Provided data
LIVESTOCK	MATAGORDA	K	Matagorda			Gulf Coast	171						2001 Plan: A-ALL, % & Tbl 4
		N.									171		
LIVESTOCK	MATAGORDA MATAGORDA	N.		Colorado-Lavaca		Livestock Local Supply	215 215						2001 Plan: LCRA Provided data
LIVESTOCK		r.		Colorado-Lavaca		Gulf Coast Gulf Coast	1,823	215 1,823		1,823	215		2001 Plan: A-ALL, LIMIT 2001 Plan: ALLOC-F10 8% reduced
MANUFACTURING MANUFACTURING	MATAGORDA	N.		Brazos-Colorado							1,823	,	
	MATAGORDA	K		Colorado		Highland Lakes	7,438	7,438		7,438	7,438		Extend contract 5/2009
MANUFACTURING	MATAGORDA	K	Matagorda			Gulf Coast	929	929		929	929		2001 Plan: A-ALL, % & Tbl 4
MANUFACTURING	MATAGORDA	K		Colorado		Highland Lakes	6,784	6,784		6,784	6,784	,	Extend contract 5/2009
MANUFACTURING	MATAGORDA	K		Colorado-Lavaca		Gulf Coast	2,537	2,537		2,537	2,537		2001 Plan: A-ALL, % & Tbl 4
MINING	MATAGORDA	K		Brazos-Colorado		Gulf Coast	182	182	182	182	182		2001 Plan: A-ALL, % & Tbl 4
MINING	MATAGORDA	K	Matagorda			Gulf Coast	0	0	0	0	0		2001 Plan: AllocFile10 9/24/99
MINING	MATAGORDA	K	Matagorda	Colorado-Lavaca	16115	Gulf Coast	664	664	664	664	664		2001 Plan: A-ALL, % & Tbl 4
STEAM ELECTRIC POWER	MATAGORDA						0	0	0	0	0		New WUG: 0 Demand, therefore 0 Supply
STEAM ELECTRIC POWER	MATAGORDA	K	Matagorda			Gulf Coast	443			443	443		2001 Plan: A-ALL, % & Tbl 4
STEAM ELECTRIC POWER	MATAGORDA	K		Colorado	3461405437	STP Nuclear Operating Co ROR	51,857	46,072	46,072	46,072	46,072		Region K WAM Run 3 Cutoff Region K WAM Run 3 Cutoff; LCRA contract: Back-up
							27,507	32,480	32,480	32,480	32,480		of STP WR , Need strategy for LCRA contract with
STEAM ELECTRIC POWER	MATAGORDA	K		Colorado		Highland Lakes							White Stallion (30,000)
STEAM ELECTRIC POWER	MATAGORDA	K	Matagorda	Colorado-Lavaca	16115	Gulf Coast	3,000	3,000	3,000	3,000	3,000	3,000	Groundwater for STP
BROOKSMITH SUD	MILLS	F		Colorado	14140	Lake Brownwood	10	10	8	8	8	7	New WUG: Supply based on Brookesmith SUD 9/20/04
COUNTY-OTHER	MILLS	K	Mills	Brazos	16728	Trinity	259	259	227	227	186	186	2001 Plan: A-ALL, % & Tbl 4
COUNTY-OTHER	MILLS	K		Colorado		Trinity	285						2001 Plan: A-ALL, % & Tbl 4
•													*

						Trater Supply Tuble (by							
WUG Name	WUG County	RWPG Water Source	Water Source County Name	Water Source Basin Name	Specific Source Identifier	Specific Source Name	Year 2010 SUPPLY (ac-ft/yr)	Year 2020 SUPPLY (ac-ft/yr)	Year 2030 SUPPLY (ac-ft/yr)	Year 2040 SUPPLY (ac-ft/yr)	Year 2050 SUPPLY (ac-ft/yr)	Year 2060 SUPPLY (ac-ft/yr)	Source of Data*
GOLDTHWAITE	MILLS	К	Mills	Brazos	16728	Trinity	1	1	1	1	1	1	New WUG: Supply Estimate based on TCEQ maximum production capacity for listed wells and proportioned based on demand per basin. 1/20/05
GOLDTHWAITE	MILLS	К		Colorado	14350	Goldthwaite Reservoir	0	0	0	0	0	0	Region K WAM Run 3 Cutoff; New WUG: TCEQ WAM 5/6/05
GOLDTHWAITE	MILLS	К		Colorado	14350	Goldthwaite Reservoir	0	0	0	0	0	0	Region K WAM Run 3 Cutoff; New WUG: TCEQ WAM 5/6/05
GOLDTHWAITE	MILLS	К	Mills	Colorado	16728	Trinity	67	67	67	67	68	68	Supply Estimate based on TCEQ maximum production capacity for listed wells and proportioned based on demand per basin. 1/20/05
IRRIGATION	MILLS	K	Mills	Brazos	16728	Trinity	143	143	125	125	103	103	2001 Plan: AllocFile10 9/24/99
IRRIGATION	MILLS	K	Mills	Colorado		Trinity	76				54		2001 Plan: AllocFile10 9/24/99
IRRIGATION	MILLS	ĸ	Mills	Colorado		Irrigation Local Supply	2,378		2,378	2,378	2,378		2001 Plan: TWDB
LIVESTOCK	MILLS	K		Brazos		Trinity	438		438	438	438		2001 Plan: A-ALL, % & Tbl 4
LIVESTOCK	MILLS	IX	Mills	Colorado		Trinity	407	407	357	357	293		2001 Plan: A-ALL, % & Tbl 4
		K	IVIIIIS			1 ,							2001 Plan: LCRA Provided data
LIVESTOCK	MILLS	K		Colorado	14997	Livestock Local Supply	314	314	314	314	314		
MANUFACTURING	MILLS						0	0	0	0	0	0	New WUG: 0 Demand, therefore 0 Supply
MANUFACTURING	MILLS	К	Mills	Colorado	16728	Trinity	1	1	1	1	1		Updated supply to meet demand (Reallocation strategy from 2006 Region K Plan)
MINING	MILLS	K	Mills	Brazos	16728	Trinity	143	143	125	125	103	103	2001 Plan: AllocFile10 9/24/99
MINING	MILLS	K	Mills	Colorado		Trinity	133		117		96	96	2001 Plan: AllocFile10 9/24/99
STEAM ELECTRIC POWER	MILLS						0	0	0	0	0		New WUG: 0 Demand, therefore 0 Supply
STEAM ELECTRIC POWER	MILLS						0	0	0	0	0	0	New WUG: 0 Demand, therefore 0 Supply
COUNTY-OTHER	SAN SABA	К	San Saba			Ellenburger-San Saba	7,744	7,744	7,744	7,744	7,744	7,744	Supply available to Ellenburger-San Saba aquifer in San Saba County, Colorado basin minus supply to Richland and San Saba WUG.
COUNTY-OTHER	SAN SABA	K	San Saba			Hickory	50		50				2001 Plan: A-ALL, LIMIT
COUNTY-OTHER	SAN SABA	K	San Saba			Marble Falls	250		250	250	250		2001 Plan: A-ALL, LIMIT
COUNTY-OTHER	SAN SABA	K		Colorado	140B0	Highland Lakes	20	20	20	20	20	20	Extend contract 5/2009
RICHLAND SUD	SAN SABA	К	San Saba	Colorado	20614	Ellenburger-San Saba	210	210	210	210	210	210	New WUG: Supply Estimate based on TCEQ maximum production capacity for listed wells. 1/14/05
SAN SABA	SAN SABA	K	San Saba	Colorado	20614	Ellenburger-San Saba	2,240	2,240	2,240	2,240	2,240	2 240	2001 Plan: Plant verbal confirmation
IRRIGATION	SAN SABA	K	San Saba			Hickory	4,715	4,715	4,715	4,715	4,715	, -	2001 Plan: AllocFile10 9/24/99
IRRIGATION	SAN SABA	K	San Saba			Marble Falls	4,643		4,643		4,643	,	2001 Plan: AllocFile10 9/24/99
IRRIGATION	SAN SABA	K	San Saba					8,800	8,800	8,800	8,800		2001 Plan: TWDB
		K				Irrigation Local Supply	8,800						
LIVESTOCK	SAN SABA	K	San Saba			Marble Falls	2,612	2,612	2,612	2,612	2,612		2001 Plan: A-ALL, % & Tbl 4
LIVESTOCK	SAN SABA	K		Colorado		Livestock Local Supply	224				224		2001 Plan: Demand
LIVESTOCK	SAN SABA	K	San Saba			Hickory	994		994		994		2001 Plan: A-ALL, % & Tbl 4
MANUFACTURING	SAN SABA	K	San Saba	Colorado	20616	Hickory	144	144	144	144	144		2001 Plan: AllocFile10 9/24/99
MANUFACTURING	SAN SABA	K	San Saba	Colorado	20619	Marble Falls	2,612	2,612	2,612	2,612	2,612	2,612	2001 Plan: AllocFile10 9/24/99
MINING	SAN SABA	K	San Saba	Colorado	20619	Marble Falls	1,238	1,238	1,238	1,238	1,238	1,238	2001 Plan: AllocFile10 9/24/99
MINING	SAN SABA	K	San Saba	Colorado	20616	Hickory	301	301	301	301	301	301	2001 Plan: A-ALL, % & Tbl 4
STEAM ELECTRIC POWER	SAN SABA					,	0	0	0	0	0		New WUG: 0 Demand, therefore 0 Supply
ANDERSON MILL MUD	TRAVIS	К		Colorado	140B0	Highland Lakes	0	0	0	0	0	0	New WUG Name: Supply Estimate based on OLD name & COA meeting 3/16/04
AQUA WSC	TRAVIS	L	Caldwell	Guadalupe	02810	Carrizo-Wilcox	1,421	1,634	1,815	1,938	2,066	2,214	Source changed from Highland Lakes to Carrizo-Wilcox Aquifer in Caldwell County (Region L) 5,000 ac-ft split between Bastrop, Fayette, and Travis 08/09
AUSTIN	TRAVIS	K		Colorado	3461405471A	City of Austin - ROR (Municipal)	162,341	152,267	142,065	127,408	116,926	106,263	Region K WAM Run 3 Cutoff; remaining supply after wholesale commitment allocation
AUSTIN	TRAVIS	K		Colorado	3461405489A	City of Austin - ROR (Municipal)	2520	3335	3351	3370	3377	3377	Region K WAM Run 3 Cutoff; remaining supply after wholesale commitment allocation 5/2009
AUSTIN	TRAVIS	К		Colorado	140B0	Highland Lakes	112,410	120,534	120,534	120,534	120,534		Region K WAM Run 3 Cutoff; COA contract with LCRA after ROR (this supply makes the COA municipal and manufacturing supply total 325,000 ac-ft/yr)
BARTON CREEK WEST WSC	TRAVIS	K		Colorado	140B0	Highland Lakes	348	348	348	348	348	348	Served by West Travis RWS, New WUG: Supply Estimate based on LCRA 4/9/04

		RWPG	Water Source	Water Source Basin	e Basin Specific Source Specific Source Name		Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060	
WUG Name	WUG County	Water Source	County Name	Name	Identifier	Specific Source Name	SUPPLY (ac-ft/yr)	SUPPLY (ac-ft/yr)	SUPPLY (ac-ft/yr)	SUPPLY (ac-ft/yr)	SUPPLY (ac-ft/yr)	SUPPLY (ac-ft/yr)	Source of Data*
BEE CAVE VILLAGE	TRAVIS	K		Colorado	140B0	Highland Lakes	241	241	241	241	241	241	Served by West Travis RWS, New WUG: Supply Estimate based on LCRA 4/9/04
BRIARCLIFF VILLAGE	TRAVIS	K		Colorado	140B0	Highland Lakes	300	300	300	300	300	300	Extend contract 5/2009
CEDAR PARK	TRAVIS	К		Colorado		Highland Lakes	188		384	443	506	570	Extend contract 5/2009: Supply Estimate based on LCRA 4/9/04 (split by region); Contract to Williamson-Travis MUD #1 has been taken from 2000 and 2010 planning periods.
COUNTY-OTHER	TRAVIS	K	Bastrop	Colorado	01110	Carrizo-Wilcox	64	64	64	64	64		Aqua WSC email 3/29/04
COUNTY-OTHER	TRAVIS	κ		Colorado	3461405471 <i>A</i>	City of Austin - ROR (Municipal)	4,477	4,649	4,243	4,104	4,268	4,656	Based on information from COA 10/27/09(portion of demand)
COUNTY-OTHER	TRAVIS	K	Travis	Colorado		Edwards-BFZ	900	880	860	842	829		BSEACD 11/01/07 San Leanna's supply taken out
COUNTY-OTHER	TRAVIS	K	Travis	Colorado	22711	Edwards-BFZ	1	1	1	1	1		BSEACD 3/9/04
COUNTY-OTHER	TRAVIS	К		Colorado	140B0	Highland Lakes	19,172	19,174	19,176	19,177	19,177	19,177	Extend contract 5/2009 Supply based on LCRA revised data 07/2009 (Travis County WCID #19 supply taken out)
COUNTY-OTHER	TRAVIS	K	Travis	Colorado	22728	Trinity	592	592	592	592	485		2001 Plan: A-ALL, 100% reduced
CREEDMOOR-MAHA WSC	TRAVIS	K		Colorado	3461405489 <i>A</i>	City of Austin - ROR (Municipal)	596	0	0	0	0	0	Based on information from COA 10/27/09(portion of demand)
CREEDMOOR-MAHA WSC	TRAVIS	κ	Travis	Colorado	22711	Edwards-BFZ	321	286	272	252	236	223	Reduced supply to reduce # of strategies needed 10/26/07New WUG: Supply Estimate based on BSEACD 3/9/04 (Proportioned by basin demand)
CREEDMOOR-MAHA WSC	TRAVIS	K		Colorado	3461405489 <i>A</i>	City of Austin - ROR (Municipal)	16	0	0	0	0	Ü	Based on information from COA 10/27/09(portion of demand)
CREEDMOOR-MAHA WSC	TRAVIS	κ	Travis	Guadalupe	22711	Edwards-BFZ	0	19	21	23	25	27	Rearranged demands to reduce # of strategies needed 10/26/07 New WUG: Supply Estimate based on BSEACD 3/9/04 (Proportioned by basin demand)
ELGIN	TRAVIS	К	Bastrop	Colorado	01110	Carrizo-Wilcox	14	20	22	23	23	22	New WUG: Supply Estimate based on TCEQ maximum production capacity for groundwater treatment facility and proportioned by total demand. 1/14/05
GOFORTH WSC	TRAVIS	K	Travis	Colorado	22711	Edwards-BFZ	19	18	17	15	15	15	BSEACD 12/18/07 revised supply based on 70%.
HILL COUNTRY WSC	TRAVIS	K		Colorado	3461405489A	City of Austin - ROR (Municipal)	0	0	0	0	0	0	Based on information from COA 10/27/09
HILL COUNTRY WSC	TRAVIS	К		Colorado	140B0	Highland Lakes	238	364	484	555	633	714	New WUG: Retail customer of West Travis RWS. Subtracted demand from West Travis Contract. 2/10/05
JONESTOWN	TRAVIS	К		Colorado	140B0	Highland Lakes	338	315	296	284	270	255	Extend contract 5/2009 Jonestown WSC split between Jonestown and Jonestown WSC WUGs.
JONESTOWN WSC	TRAVIS	К		Colorado	140B0	Highland Lakes	122	145	164	176	190		Extend contract 5/2009: Supply Estimate based on LCRA 7/2009; supply split between Jonestown and Jonestown WSC
LAGO VISTA	TRAVIS	K		Colorado		Highland Lakes	6,500		6,500	6,500	6,500	6,500	Extend contract 5/2009; Updated LCRA supplies 07/2009
LAKEWAY	TRAVIS	K		Colorado	140B0	Highland Lakes	3,069	3,069	3,069	3,069	3,069		Extend contract 5/2009
LAKEWAY MUD	TRAVIS	K		Colorado	140B0	Highland Lakes	0	0	0	0	0	0	New WUG: Supply Estimate based on revised LCRA data. 2/2/05
LOOP 360 WSC	TRAVIS	K		Colorado		Highland Lakes	1,250		1,250	1,250	1,250	1,250	Extend contract 5/2009; Updated LCRA supplies 07/2009
LOST CREEK MUD	TRAVIS	K		Colorado	3461405471 <i>A</i>	City of Austin - ROR (Municipal)	935	921	906	891	882	882	Assume COA contract extended 5/2009
MANOR	TRAVIS	K	Travis	Colorado	22722	Other Aquifer	661	661	661	661	661		Supply estimate based on TCEQ total production. 2/8/05
MANOR	TRAVIS	K		Colorado	3461405471 <i>A</i>	City of Austin - ROR (Municipal)	1,680	0	0	0	0	0	Based on information from COA 10/27/09(portion of demand)
MANOR	TRAVIS	K		Colorado	140B0	Highland Lakes	280						5-year agreement to purchase from Pflugerville 10/2009
MANVILLE WSC	TRAVIS	K		Colorado		Highland Lakes	1,008		1,008		-		Contract with Pflugerville to purchase 0.9 MGD 10/2009
MANVILLE WSC	TRAVIS	K		Colorado	3461405471 <i>A</i>	City of Austin - ROR (Municipal)	2,240	2,240	0	0	0	0	Based on information from COA 10/27/09

WUG Name	WUG County	RWPG Water Source	Water Source County Name	Water Source Basin Name	Specific Source Identifier	Specific Source Name	Year 2010 SUPPLY (ac-ft/yr)	Year 2020 SUPPLY (ac-ft/yr)	Year 2030 SUPPLY (ac-ft/yr)	Year 2040 SUPPLY (ac-ft/yr)	Year 2050 SUPPLY (ac-ft/yr)	Year 2060 SUPPLY (ac-ft/yr)	Source of Data*
MANVILLE WSC	TRAVIS	κ	Travis	Colorado	22711	Edwards-BFZ	0	0	0	0	0	0	New WUG: Supply reduced from estimated from TCEQ well production capacities due to other supplies and reduction of Edwards-BFZ in Travis County Colorado Basin 2/7/05
MANVILLE WSC	TRAVIS	К	Travis	Colorado	22722	Other Aquifer	1,064	1,063	1,059	1,053	1,038		New WUG: Supply estimated from TCEQ well production capacities and proportioned for percent total population. 1/14/05
MUSTANG RIDGE	TRAVIS	К	Travis	Colorado	22722	Other Aquifer	93	111	128	139	150	162	New WUG: No Data; Assumed alluvial supplies (no major or minor aquifers in the area)
MUSTANG RIDGE	TRAVIS	К	Travis	Guadalupe		Other Aquifer	25	30	34	37	40	43	New WUG: No Data; Assumed alluvial supplies (no major or minor aquifers in the area)
NORTH AUSTIN MUD #1	TRAVIS	K		Colorado	3461405489A	City of Austin - ROR (Municipal)	109	107	106	103	102	102	Extend contract 05/2009
NORTH TRAVIS COUNTY MUD #5	TRAVIS	К		Colorado	140B0	Highland Lakes	514	792	1,045	1,196	1,366	1,540	Extend contract 5/2009 TCEQ database shows MUD as annexed by Pflugerville 2/8/05 (Met Demand from Pflugerville supplies)
NORTH TRAVIS COUNTY MUD #5	TRAVIS	К		Colorado	3461405471A	City of Austin - ROR (Municipal)	0	0	0	0	0	0	TCEQ database shows MUD as annexed by Pflugerville 2/8/05 (Met Demand from Pflugerville supplies)
PFLUGERVILLE	TRAVIS	К		Colorado	140B0	Highland Lakes	10,198	10,200	9,947	10,804	10,634	10,460	Extend contract 5/2009 Supply Estimate based on LCRA 4/9/04 (12000 reduced by North Travis County MUD 5)
PFLUGERVILLE	TRAVIS	К		Colorado	3461405471A	City of Austin - ROR (Municipal)	0	0	0	0	0	0	COA email 2/18/04; COA contract expires 12/31/07 and is replaced with LCRA contract (11201 reduced by North Travis County MUD 5)
PFLUGERVILLE	TRAVIS	κ	Travis	Colorado	22711	Edwards-BFZ	0	0	0	0	0	0	Supply reduced from estimated from City of Pflugerville Update due to other supplies and reduction of Edwards-BFZ in Travis County Colorado Basin 2/7/05
RIVER PLACE ON LAKE AUSTIN	TRAVIS	K		Colorado	140B0	Highland Lakes	900	900	900	900	900	900	Extend contract 5/2009
ROLLINGWOOD	TRAVIS	K		Colorado	3461405489A	City of Austin - ROR (Municipal)	377	0	0	0	0	0	Based on information from COA 10/27/09
ROUND ROCK	TRAVIS	K		Colorado		City of Austin - ROR (Municipal)	0	0	0	0	0		Based on information from COA 10/27/09
ROUND ROCK	TRAVIS	К		Colorado		Edwards-BFZ	241	266	264	240	223	210	New WUG: Supply estimated from TCEQ well production capacities and proportioned for percent total demand. 1/14/05
SAN LEANNA	TRAVIS	K		Colorado		Edwards-BFZ	100		140	158	171	184	NEW WUG 05/2009 subtact from county-other
SAN LEANNA	TRAVIS	K	Travis	Colorado		City of Austin - ROR (Municipal)	100						New WUG 05/2009
SHADY HOLLOW MUD	TRAVIS	K		Colorado		City of Austin - ROR (Municipal) Highland Lakes	747				694		Assume COA contract extended 5/2009 Extend contract 5/2009
THE HILLS TRAVIS COUNTY WCID #17	TRAVIS TRAVIS	K		Colorado Colorado		Highland Lakes	1,600 9,354	1,600 9,354	1,600 9,354	1,600 9,354	1,600 9,354		Extend contract 5/2009 Extend contract 5/2009
	TRAVIS	K		Colorado		Highland Lakes	1,400						Extend contract 5/2009 Extend contract 5/2009
	TRAVIS	К		Colorado		Highland Lakes	376		372	371	371	371	Extend contract 5/2009: Supply based on demand and Travis County WCID No. 19 9/20/04 (supplied by Travis County MUD #4 which is contained in Travis County Other)
TRAVIS COUNTY WCID #20	TRAVIS	K		Colorado	140B0	Highland Lakes	1,135	1,135	1,135	1,135	1,135	1,135	Extend contract 5/2009
WELLS BRANCH MUD	TRAVIS	K		Colorado	3461405471A	City of Austin - ROR (Municipal)	1,539	1,520	1,502	1,474	1,464	1,464	Assume COA contract extended 5/2009, Include supply for Region G demands 01/05/10
WEST LAKE HILLS	TRAVIS	K		Colorado	3461405471A	City of Austin - ROR (Municipal)	1,605	0	0	0	0	0	Based on information from COA 10/27/09
REGIONAL WS	TRAVIS	К		Colorado	140B0	Highland Lakes	10,042	9,654	9,256	8,916	8,505		Updated LCRA contract numbers 08/0009 New WUG: Supply Estimate based on LCRA. Retail supplies to various WUGs have been subtracted out. 2/10/05
WILLIAMSON-TRAVIS COUNTY MUD #1	TRAVIS	K		Colorado	140B0	Highland Lakes	198	274	344	385	433	482	Extend contract 5/2009 Supply based on Williamson- Travis Counties MUD No. 1 (supplied by Cedar Park)
WINDERMERE UTILITY COMPANY	TRAVIS	К		Colorado	3461405471A	City of Austin - ROR (Municipal)	2,157	0	0	0	0	0	Based on information from COA 10/27/09

			100			T Water Supply Table (by			,				
WUG Name	WUG County	RWPG Water Source	Water Source County Name	Water Source Basin Name	Specific Source Identifier	Specific Source Name	Year 2010 SUPPLY (ac-ft/yr)	Year 2020 SUPPLY (ac-ft/yr)	Year 2030 SUPPLY (ac-ft/yr)	Year 2040 SUPPLY (ac-ft/yr)	Year 2050 SUPPLY (ac-ft/yr)	Year 2060 SUPPLY (ac-ft/yr)	Source of Data*
WINDERMERE UTILITY COMPANY	TRAVIS	К	Travis	Colorado	22711	Edwards-BFZ	0	0	0	0	0	0	New WUG: Supply reduced from estimated from Windermere Utility Co. numbers due to other supplies and reduction of Edwards-BFZ in Travis County Colorado Basin 2/7/05
IRRIGATION	TRAVIS	K	Travis	Colorado	22711	Edwards-BFZ	319	319	319	319	319	319	BSEACD permitted supply 10/26/07
IRRIGATION	TRAVIS	K	Travis	Colorado	227996	Irrigation Local Supply	756	756	756	756	756		Updated supply to meet demand (Reallocation strategy from 2006 Region K Plan)
IRRIGATION	TRAVIS	K	Travis	Brazos		Edwards-BFZ	5	5	5	5	5		New WUG Basin: AllocFile10 9/24/99
IRRIGATION	TRAVIS	K	Travis	Colorado	22728	Trinity	85	85	85	85	70	70	2001 Plan: AllocFile10 9/24/99
IRRIGATION	TRAVIS	K	Travis	Guadalupe	227996	Irrigation Local Supply	124	124	124	124	124	124	Updated supply to meet demand (Reallocation strategy from 2006 Region K Plan)
LIVESTOCK	TRAVIS	K	Travis	Brazos		Edwards-BFZ	1	1	1	1	1	1	New WUG Basin: AllocFile10 9/24/99
LIVESTOCK	TRAVIS	K	Travis	Colorado	22711	Edwards-BFZ	0	0	0	0	0	0	Livestock demand met by local livestock supply, and lack of permits for Edwards-BFZ 10/26/07 Reduced 2001 Plan value to account for reduction in available Edwards-BFZ supply to Travis County Colorado Basin 2/7/05
LIVESTOCK	TRAVIS	K	TTUVIO	Colorado		Livestock Local Supply	870	870	870	870	870	870	2001 Plan: LCRA provided data and Demand
LIVESTOCK	TRAVIS	K	Travis	Colorado		Trinity	2	2	2	2	1		2001 Plan: AllocFile10 9/24/99
LIVESTOCK	TRAVIS	K		Guadalupe	18997	Livestock Local Supply	36			36	36	36	2001 Plan: A-ALL, Demand
MANUFACTURING	TRAVIS	K	Travis	Colorado	22711	Edwards-BFZ	167	167	167	167	167	167	2001 Plan: AllocFile10 9/24/99
MANUFACTURING	TRAVIS	K		Colorado	3461405471A	City of Austin - ROR (Municipal)	22,309	27,601	37,815	49,790	57,010	63,959	Based on COA discussion 10/20/09 (portion of demand)
MANUFACTURING	TRAVIS	K		Colorado	140B0	Highland Lakes	526	526	526	526	526	526	Extend contract 5/2009; Updated LCRA supplies 07/2009
MINING	TRAVIS	K		Colorado	14999	Other Local Supply	4,700	5,200	5,745	6,361	7,070		Revised 2001 number by 46 ac-ft/yr since supply was over allocated 2/7/05
MINING	TRAVIS	К	Travis	Colorado		Edwards-BFZ	187			187	187	187	Reduced 2001 Plan value to account for reduction in available Edwards-BFZ supply to Travis County Colorado Basin 2/7/05
MINING	TRAVIS	K	Travis	Colorado	22728	Trinity	171	171	171	171	140	140	2001 Plan: AllocFile10 9/24/99
STEAM ELECTRIC POWER	TRAVIS	K		Colorado		Highland Lakes	15,174		·	15,174	15,174	·	Region K WAM Run 3 Cutoff (firms up Town Lake and Decker supply) 05/2009
STEAM ELECTRIC POWER	TRAVIS	K		Colorado		City of Austin - ROR (Steam Elec.)	6,171		6,171	6,171	6,171		Region K WAM Run 3 Cutoff; Town Lake 05/2009
STEAM ELECTRIC POWER	TRAVIS	K		Colorado		City of Austin - ROR (Steam Elec.)	982	982	982	982	982		Region K WAM Run 3 Cutoff; Decker 05/2009
STEAM ELECTRIC POWER STEAM ELECTRIC POWER	TRAVIS TRAVIS	K	Travis	Colorado	22728	Trinity	3	3	3	3	3		2001 Plan: AllocFile10 9/24/99 New WUG: 0 Demand, therefore 0 Supply
COUNTY-OTHER	WHARTON	K	Wharton	Brazos-Colorado	24115	Gulf Coast	5,592	5,584	5,583	5,587	5,590	5.593	2001 Plan: A-ALL, 100% reduced
COUNTY-OTHER	WHARTON	K	Wharton	Colorado		Gulf Coast	1,106				1,106		2001 Plan: A-ALL, % & Tbl 4
COUNTY-OTHER	WHARTON	K	Wharton	Colorado-Lavaca		Gulf Coast	299				299		2001 Plan: A-ALL, % & Tbl 4
EAST BERNARD	WHARTON	K	Wharton	Brazos-Colorado	24115	Gulf Coast	277				279	276	NEW WUG 05/2009 subtract from county-other
WHARTON	WHARTON	K	Wharton	Brazos-Colorado	24115	Gulf Coast	5,636	5,636	5,636	5,636	5,636		2001 Plan: 2/3 OF DEMAND
WHARTON	WHARTON	K	Wharton	Colorado	24115	Gulf Coast	540	540	540	540	540	540	2001 Plan: 1/3 OF DEMAND
IRRIGATION	WHARTON	K		Colorado		LCRA - Garwood ROR	21,275			21,275	21,275		Region K WAM Run 3 Cutoff; 30% of Garwood ROR water in a minimum year (LCRA) split between 3 basins
IRRIGATION	WHARTON	K	Wharton	Brazos-Colorado		Gulf Coast	25,816	25,816	25,816	25,816	25,816		2001 Plan: Demand
IRRIGATION	WHARTON	K	Wharton	Brazos-Colorado	241996	Irrigation Local Supply	2,000	2,000	2,000	2,000	2,000	2,000	2001 Plan: TWDB
IRRIGATION	WHARTON	K		Colorado	3461405477	LCRA - Pierce Ranch ROR	7,692	7,692	7,692	7,692	7,692	7,692	Region K WAM Run 3 Cutoff; Pierce Ranch ROR split by basin.
IRRIGATION	WHARTON	К		Colorado	3461405434A	LCRA - Garwood ROR	11,045	11,045	11,045	11,045	11,045	,	Region K WAM Run 3 Cutoff; 30% of Garwood ROR water in a minimum year (LCRA) split between 3 basins
IRRIGATION	WHARTON	K	Wharton	Colorado		Gulf Coast	29,567	29,567	29,567	29,567	29,567		2001 Plan: Demand
IRRIGATION	WHARTON	K	Wharton	Colorado	241996	Irrigation Local Supply	7,650	7,650		7,650	7,650		2001 Plan: TWDB
IRRIGATION	WHARTON	K		Colorado	3461405477	LCRA - Pierce Ranch ROR	3,994	3,994	3,994	3,994	3,994	3,994	Region K WAM Run 3 Cutoff; Pierce Ranch ROR split by basin.

WUG Name	WUG County	RWPG Water Source	Water Source County Name	Water Source Basin Name	Specific Source Identifier	Specific Source Name	Year 2010 SUPPLY (ac-ft/yr)	Year 2020 SUPPLY (ac-ft/yr)	Year 2030 SUPPLY (ac-ft/yr)	Year 2040 SUPPLY (ac-ft/yr)	Year 2050 SUPPLY (ac-ft/yr)	Year 2060 SUPPLY (ac-ft/yr)	Source of Data*
							6,722	6,722	6,722	6,722	6,722		Region K WAM Run 3 Cutoff; 30% of Garwood ROR
IRRIGATION	WHARTON	K		Colorado		LCRA - Garwood ROR	7.000	7.000	7.000	7.000	7.000		water in a minimum year (LCRA) split between 3 basins
IRRIGATION	WHARTON	K	Wharton	Colorado-Lavaca	24115	Gulf Coast	7,060	7,060	7,060	7,060	7,060		2001 Plan: Demand
IRRIGATION	WHARTON	κ		Colorado		LCRA - Pierce Ranch ROR	2,430	2,430	2,430	2,430	2,430	2,430	by basin.
LIVESTOCK	WHARTON	K		Brazos-Colorado		Gulf Coast	222	222	222		222		2001 Plan: A-ALL, % & Tbl 4
LIVESTOCK	WHARTON	K		Brazos-Colorado		Livestock Local Supply	149	149	149				2001 Plan: LCRA Provided data
LIVESTOCK	WHARTON	K		Colorado		Livestock Local Supply	115	115	115				2001 Plan: LCRA Provided data
LIVESTOCK	WHARTON	K		Colorado		Gulf Coast	171	171	171		171		2001 Plan: A-ALL, % & Tbl 4
LIVESTOCK	WHARTON	K	Wharton	Colorado-Lavaca		Gulf Coast	113	113	113				2001 Plan: A-ALL, % & Tbl 4
LIVESTOCK	WHARTON	K		Colorado-Lavaca		Livestock Local Supply	74	74	74				2001 Plan: LCRA Provided data
MANUFACTURING	WHARTON	K		Brazos-Colorado		Gulf Coast	90						2001 Plan: A-ALL, % & Tbl 4
MANUFACTURING	WHARTON	K		Colorado		Gulf Coast	335	335	335		335		2001 Plan: A-ALL, % & Tbl 4
MANUFACTURING	WHARTON	K		Colorado-Lavaca		Gulf Coast	165	165	165		165		2001 Plan: A-ALL, % & Tbl 4
MINING	WHARTON	K		Brazos-Colorado		Other Local Supply	1,696	1,746	1,793		1,900		2001 Plan: LCRA Provided data
MINING	WHARTON	K		Brazos-Colorado		Gulf Coast	850	850	850		850		2001 Plan: A-ALL, % & Tbl 4
MINING	WHARTON	K		Colorado		Gulf Coast	1,005	1,005	1,005		1,005		2001 Plan: A-ALL, % & Tbl 4
MINING	WHARTON	K	Wharton	Colorado-Lavaca	24115	Gulf Coast	23	23	23	23			2001 Plan: A-ALL, % & Tbl 4
STEAM ELECTRIC POWER	WHARTON						0	0	0	0	0		New WUG: 0 Demand, therefore 0 Supply
STEAM ELECTRIC POWER	WHARTON	K		Brazos-Colorado	3461303421	San Bernard ROR	665	597	597	597	597	597	New WUG: Based on TCEQ water rights database; Reliability of WR has not been verified 2/8/05
STEAM ELECTRIC POWER	WHARTON	K		Colorado	140B0	Highland Lakes	0	0	0	0	0	0	Need strategy for LCRA contract for new water user (Navasota Energy, 2,300 ac-ft))
STEAM ELECTRIC POWER	WHARTON	K		Colorado	24115	Gulf Coast	2,300	2,300	2,300	2,300	2,300	2.300	New WUG: Based on information from GCD
STEAM ELECTRIC POWER	WHARTON						0	0	0	0	0		New WUG: 0 Demand, therefore 0 Supply
ANDERSON MILL MUD	WILLIAMSON	K		Colorado	3461405471A	City of Austin - ROR (Municipal)	0	0	0	0	0	0	No longer a WUG, annexed by COA 5/2009
AUSTIN	WILLIAMSON	K		Colorado		City of Austin - ROR (Municipal)	5,457	7,398	9,691	12,161	14,834		Based on information from COA 10/27/09
AUSTIN	WILLIAMSON	К		Colorado	3461405489A	City of Austin - ROR (Municipal)	0	0	0	0	0		New WUG Basin: Supply Estimate based on OLD basir 2/21/04
AUSTIN	WILLIAMSON	К		Colorado	140B0	Highland Lakes	0	0	0	0	0	0	New WUG Basin: Supply Estimate based on OLD basir 2/21/04
COUNTY-OTHER	WILLIAMSON	К		Colorado	3461405471A	City of Austin - ROR (Municipal)	2,401	2,729	3,118	3,536	3,989	4,469	Based on information from COA 10/27/09
COUNTY-OTHER	WILLIAMSON	К	Williamson	Brazos	24628	Trinity	49	53	57	58	58	58	New WUG Basin: Supply available to Trinity aquifer in Williamson County, Brazos basin minus Mining Demand. 2/7/05
COUNTY-OTHER	WILLIAMSON	К	Williamson	Brazos	24611	Edwards-BFZ	6	6	6	6	6	6	New WUG Basin: Supply available to Edwards-BFZ aquifer in Williamson County, Brazos basin. 05/2009
NORTH AUSTIN MUD #1	WILLIAMSON	K		Colorado	3461405471A	City of Austin - ROR (Municipal)	983	968	952	928	920	920	Assume COA contract extended 5/2009
IRRIGATION	WILLIAMSON					,	0	0	0	0	0		New WUG Basin: 0 Demand, therefore 0 Supply
LIVESTOCK	WILLIAMSON						0	0	0	0	0		New WUG Basin: 0 Demand, therefore 0 Supply
MANUFACTURING	WILLIAMSON						0	0	0	0	0		New WUG Basin: 0 Demand, therefore 0 Supply
MINING	WILLIAMSON	K	Williamson	Brazos	24628	Trinity	9	5	1	0	0		New WUG Basin: Met Demand.
MINING	WILLIAMSON	K	Williamson			Edwards-BFZ	0	0	0	0	0	0	New WUG Basin
STEAM ELECTRIC POWER	WILLIAMSON						0	Λ	Λ	0	Λ	0	New WUG Basin: 0 Demand, therefore 0 Supply

BSEACD = Barton Springs Edwards Aquifer Conservation District

TWDB = Texas Water Development Board

A-ALL = TWDB allocation tables

LIMIT = Volume limitation based on TWDB allocation

% & Tbl 4 = Percent of available supply identified in 2001 Region K Table 4 based on TWDB allocation LCRA = Lower Colorado River Authority (modeling results or contract amounts) 2001 Plan: Demand = Based on historic use

COA = City of Austin

Hill Country UWCD = Hill Country Underground Conservation District

TCEQ = Texas Commission on Environmental Quality

WUG = Water User Group

Page 12 of 12 February 2010

Water Availability Results Comparison

2001 Region K Plan 2006 Region K Plan 2011 Region K Plan

	2010 (ac-ft/yr)			2020			2030			2040				2	2050					1				
				Difference				Difference				Difference				Difference				Difference			Difference	
2006 111 4 5	2001 Plan	2006 Plan	Draft 2011	(Draft 2011	2001 Plan	2006 Plan	Draft 2011	(Draft 2011	2001 Plan	2006 Plan	Draft 2011	(Draft 2011	2001 Plan	2006 Plan	Draft 2011	(Draft 2011	2001 Plan	2006 Plan	Draft 2011	(Draft 2011	2006 Plan	Draft 2011	(Draft 2011	C A Diff.
2006 Water Source	2001 Plan	2006 Pian	Plan	Plan - 2006	2001 Plan	2006 Plan	Plan	Plan - 2006	2001 Plan	2006 Plan	Plan	Plan - 2006	2001 Plan	2006 Pian	Plan	Plan - 2006	2001 Plan	2006 Plan	Plan	Plan - 2006	2006 Plan	Plan	Plan - 2006	Comment on Difference
				Plan)				Plan)				Plan)				Plan)				Plan)			Plan)	
City of Austin - ROR Municipal	172,673	181,657	212,590	30,933	172,673	182,261	204,466	22,205	172,673	182,865	204,466	21,601	172,673	183,469	204,466	20,997	172,673	184,073	204,466	20,393	184,677	204,479	19,802	2008 CUTOFF VS. 2006 "NO CALL"
City of Austin - ROR Steam Electric	7,159	9,477	8,420	(1,057)	7,159	9,341	8,420	(921)	7,159	9,205	8,420	(785)	7,159	9,069	8,420	(649)	7,159	8,933	8,420	(513)	8,795	8,420	(375)	2008 CUTOFF VS. 2006 "NO CALL"
LCRA - Garwood ROR	50,000	111,740	130,141	18,401	50,000	111,740	130,141	18,401	50,000	130,141	130,141	-	50,000	130,141	130,141	-	50,000	130,141	130,141	-	130,141	130,141	-	2008 CUTOFF VS. 2006 "NO CALL"
LCRA - Gulf Coast ROR	-	74,124	44,827	(29,297)	-	74,111	43,540	(30,571)	-	74,098	43,540	(30,558)	-	74,085	43,540	(30,545)	-	74,072	43,540	(30,532)	74,056	43,540	(30,516)	2008 CUTOFF VS. 2006 "NO CALL"
LCRA - Lakeside #1 ROR	-	19,769	12,531	(7,238)	-	19,769	12,498	(7,271)	-	19,769	12,498	(7,271)	-	19,769	12,498	(7,271)	-	19,769	12,498	(7,271)	19,769	12,498	(7,271)	2008 CUTOFF VS. 2006 "NO CALL"
LCRA - Lakeside #2 ROR	4,232	10,769	10,440	(329)	4,232	10,769	10,440	(329)	4,232	10,769	10,440	(329)	4,232	10,769	10,440	(329)	4,232	10,769	10,440	(329)	10,769	10,440	(329)	2008 CUTOFF VS. 2006 "NO CALL"
LCRA - Pierce Ranch ROR	-	10,769	14,116	3,347	-	10,769	14,173	3,404	-	10,769	14,173	3,404	-	10,769	14,173	3,404	-	10,769	14,173	3,404	10,769	14,173	3,404	2008 CUTOFF VS. 2006 "NO CALL"
San Bernard ROR	-	1,600	665	(935)	-	1,600	597	(1,003)	-	1,600	597	(1,003)	-	1,600	597	(1,003)	-	1,600	597	(1,003)	1,600	597	(1,003)	Reliability of WR verified.
STP Nuclear Operating Co. ROR	41,320	49,039	51,857	2,818	41,320	48,989	46,072	(2,917)	41,320	48,939	46,072	(2,867)	41,320	48,889	46,072	(2,817)	41,320	48,839	46,072	(2,767)	48,791	46,072	(2,719)	2008 CUTOFF VS. 2006 "NO CALL"
Highland Lakes	445,766	381,545	402,172	20,627	445,766	380,166	390,001	9,835	445,766	378,787	384,001	5,214	445,766	377,408	378,101	693	445,766	376,029	372,201	(3,828)	374,642	366,468	(8,174)	2008 CUTOFF VS. 2006 "NO CALL"
Goldthwaite Reservoir	400	144	-	(144)	400	144	-	(144)	400	145	-	(145)	400	145	-	(145)	400	145	-	(145)	145	-	(145)	2008 CUTOFF VS. 2006 "NO CALL"
Lake Bastrop	1,000	-	-	-	1,000	-	-	-	1,000	-	-	-	1,000	-	-	-	1,000	-	-	-	-	-	-	Included as part of Highland Lakes
Lake Fayette	1,400	-	-	-	1,400	-	-	_	1,400	-	-	-	1,400	-	-	-	1,400	-	-	-	-	-	-	Included as part of Highland Lakes
Llano Reservoir	400	178	-	(178)	400	169	-	(169)	400	160	-	(160)	400	151	-	(151)	400	142	-	(142)	135	-	(135)	2008 CUTOFF VS. 2006 "NO CALL"
Walter E. Long (Decker Lake)	1,000	-	-	-	1,000	-	-	-	1,000	-	-	-	1,000	-	-	-	1,000	-	-	-	-	-	-	Included as part of Highland Lakes
Blanco Reservoir	300	596	596	-	300	596	596	-	300	596	596	-	300	596	596	-	300	596	596	-	596	596	-	RESPONSE VS. WAM
																								This value shows as 40,704 in the 2001
																								Table 3.19, but only adds up to 40,663
Irrigation Local Supply	40,663	40,663	40,663	-	40,663	40,663	40,663	-	40,663	40,663	40,663	-	40,663	40,663	40,663	-	40,663	40,663	40,663	-	40,663	40,663	-	in 2001 Table 4 (<i>Appendix 3E</i>).
Livestock Local Supply	8,458	8,458	8,458	-	8,458	8,458	8,458	-	8,458	8,458	8,458	-	8,458	8,458	8,458	-	8,458	8,458	8,458	-	8,458	8,458	-	` 11
Other Local Supply	20,978	20,978	20,978	-	22,636	22,636	22,636	-	24,510	24,510	24,510	_	26,727	26,727	26,727	-	29,370	29,370	29,370	-	29,370	29,370	-	
***						,					ĺ		,	,				,			,			Lost Pine GCD availability number in
Carrizo-Wilcox Aquifer	22,350	28,400	28,400	_	22,350	28,400	28,400	_	22,350	28,400	28,400	_	22,350	28,400	28,400	_	22,350	28,400	28,400	_	28,400	28,400	_	Bastrop County.
i	,,,,,,	.,	.,		,	.,			,	.,			,	-,	-,		,	.,	- 7		.,	-,		GMA-8 MAG, BSEACD, refer to Ch. 3
Edwards Aquifer BFZ (Austin)	20,995	8,375	9,496	1,121	20,995	8,375	9,496	1,121	20,995	8,375	9,496	1,121	20,995	8,375	9,496	1,121	20,995	8,375	9,496	1,121	8,375	9,496	1.121	Section 3.2.2.1.3.
Edwards-Trinity Aquifer (Plateau)	1,657	1,657	1,500	(157)	1,657	1,657	1,500	(157)	1,657	1,657	1,500	(157)	1,657	1,657	1,500	(157)	1,659	1,659	1,500	(159)	1,659	1,500	(159)	Blanco-Pedernales GCD
Ellenburger-San Saba Aquifer	23,574	23,574	26,451	2,877	23,574	23,574	26,451	2,877	23,574	23,574	26,451	2,877	23,574	23,574	26,451	2,877	23,574	23,574	26,451	2,877	23,574	26,451	2,877	Central Texas GCD
Gulf Coast Aquifer	198,425	198,425	198,425	-	198,425	198,425	198,425	-	198,425	198,425	198,425	-	198,425	198,425	198,425	-	198,425	198,425	198,425	-	198,425	198,425	-	
Hickory Aquifer	27,380	27,380	24,153	(3,227)	27,380	27,380	24.153	(3,227)	27,380	27,380	24,153	(3,227)	27,380	27,380	24,153	(3,227)	27,380	27,380	24,153	(3,227)	27,380	24,153	(3,227)	Central Texas GCD
Marble Falls Aquifer	18,305	18,305	14,658	(3,647)	18,305	18,305	14,658	(3,647)	18,305	18,305	14,658	(3,647)	18,305	18,305	14,658	(3,647)	18,305	18,305	14,658	(3,647)	18,305	14,658	(3,647)	GMA-8 Draft MAG
Queen City Aquifer	3,991	3,991	3,991	-	3,991	3,991	3,991	-	3,991	3,991	3,991	-	3,991	3,991	3,991	-	3,991	3,991	3,991	-	3,991	3,991	-	
Sparta Aquifer	9,889	9,889	9,889	_	9,889	9,889	9,889	-	9,889	9,889	9,889	-	9,889	9,889	9,889	-	9,889	9,889	9,889	-	9,889	9,889	-	
1	2,002	2,002	,,,,,,		7,007	,,,,,,	2,002		.,	,,	7,007		2,002	,,,,,	-,,,,,		2,002	2,002	2,002		2,002	-,,,,,		GMA-8 MAG, refer to Ch. 3 Section
Trinity Aquifer	11,841	16,782	17.600	818	11,841	16,782	17.600	818	11,077	16,440	17,598	1,158	11,077	16,440	17.598	1,158	9,698	15,717	17.311	1,594	15,717	17.311	1,594	3.2.2.1.4.
Yegua-Jackson Aquifer	11,0.1	10,702	20,000	20,000	11,011	10,702	20,000	20,000	11,077	10,110	20,000	20,000	11,077	10,110	20,000	20,000	,,0,0	15,717	20,000	20,000	15,717	20,000	20,000	Yegua-Jackson Aquifer added
0-4 vacaoon 1 Iquitoi			20,000	20,000			20,000	20,000			20,000	20,000			20,000	20,000			20,000	20,000		20,000	20,000	Reduced Other Aquifer supplies to only
																								represent areas that we know are
Other Aquifer	120,000	13,572	15,562	1,990	120,000	13,594	15,584	1,990	120,000	13,611	15,601	1.990	120,000	13,619	15,609	1,990	120,000	13,625	15,615	1.990	13,632	15,622	1.990	supplied by alluvial sources.
oner riquier	120,000	13,372	13,302	1,390	120,000	13,394	15,564	1,330	120,000	13,011	13,001	1,270	120,000	13,019	13,009	1,550	120,000	15,025	15,015	1,270	13,032	13,022	1,390	Added sources from outside region to
Sources Outside the Region			3,136	3,136			3,231	3,231			3,327	3,327			3,422	3,422			3,523	3,523		3,642	3,642	table
Region K Totals	1,254,156	1 271 956		-	1,255,814	1,272,553	1.306.079	33,526	1 256 024	1,291,521	1,302,064	10,543	1 250 141	1,292,763	1,298,484	5,721	1 260 407	1,293,708	1,295,047	1,339	1,292,723		(3,270)	
Region K Totals	1,454,150	1,2/1,850	1,331,/15	37,639	1,255,814	1,474,553	1,300,079	33,320	1,250,924	1,291,521	1,302,064	10,343	1,239,141	1,292,703	1,298,484	3,721	1,400,407	1,293,708	1,295,047	1,339	1,292,723	1,289,453	(3,270)	

LCRWPG July 2010

TABLE OF CONTENTS – CHAPTER FOUR

CHAPTER 4.0: IDENTIFICATION, EVALUATION, AND SELECTION OF WATER	
MANAGEMENT STRATEGIES BASED ON NEED	
4.1 IDENTIFICATION OF WATER NEEDS	
4.2 COUNTY SUMMARIES OF WATER NEEDS	
4.2.1 Bastrop County	
4.2.2 Blanco County	
4.2.3 Burnet County	
4.2.4 Colorado County	
4.2.5 Fayette County	
4.2.6 Gillespie County	
4.2.7 Hays County	
4.2.8 Llano County	
4.2.9 Matagorda County	
4.2.10 Mills County	
4.2.11 San Saba County	
4.2.12 Travis County	
4.2.13 Wharton County	
4.2.14 Williamson County	
4.2.15 County-Wide Surpluses	
4.3 BASIN SUMMARY OF WATER NEEDS	
4.3.1 Brazos River Basin	
4.3.2 Brazos-Colorado Coastal River Basin	
4.3.3 Colorado River Basin	
4.3.4 Colorado-Lavaca Coastal River Basin	
4.3.5 Lavaca River Basin	
4.3.6 Guadalupe River Basin	12
4.4.1 Lower Colorado River Authority	
4.4.1 Lower Colorado River Authority	
4.5 EVALUATION AND SELECTION OF WATER MANAGEMENT STRATEGIES	
4.5.1 Utilization of Return Flows	
4.5.1.1 COA Return Flows Strategy	
4.5.1.2 Downstream Return Flows	
4.6 WHOLESALE WATER PROVIDER MANAGEMENT STRATEGIES	
4.6.1 LCRA Water Management Strategies	
4.6.1.1 General LCRA Strategy - LCRA System Operation Approach	
4.6.1.2 Amendments to Water Management Plan	
4.6.1.3 Amendments to ROR Rights	
4.6.1.4 LCRA Contract Amendments	
4.6.1.5 LCRA New Water Sale Contracts	
4.6.1.6 Advanced Conservation to Meet Demand for Irrigation	
4.6.1.7 Groundwater Development to Meet Irrigation Shortages During Drought	
4.6.1.8 Application for Unappropriated Flows and Off-Channel Storage	
4.6.1.9 LCRA-SAWS Water Project (LSWP)	
4.6.1.10 Enhanced Municipal and Industrial Conservation	
4.6.1.11 Aquifer Storage and Recovery (ASR)	38

4.6.1.12 Reuse by Highland Lakes Communities	39
4.6.1.13 Description of the Impact of the Management Strategies on Navigation	40
4.6.2 COA Water Management Strategies	
4.6.2.1 Water Conservation	41
4.6.2.2 Water Reclamation Initiative (Direct Reuse)	42
4.7 REGIONAL WATER MANAGEMENT STRATEGIES	46
4.7.1 Expansion of Current Groundwater Supplies	46
4.7.1.1 Carrizo-Wilcox Aquifer	
4.7.1.2 Ellenburger-San Saba Aquifer	49
4.7.1.3 Gulf Coast Aquifer	
4.7.1.4 Hickory Aquifer	53
4.7.1.5 Queen City Aquifer	54
4.7.1.6 Sparta Aquifer	55
4.7.1.7 Trinity Aquifer	
4.7.1.8 Yegua-Jackson Aquifer	59
4.7.1.9 Other Aquifer	
4.7.2 Development of New Groundwater Supplies	61
4.7.2.1 Carrizo-Wilcox Aquifer	
4.7.2.2 Edwards-BFZ Aquifer (Brackish Groundwater Desalination)	
4.7.2.3 Ellenburger-San Saba Aquifer	
4.7.2.4 Hickory Aquifer	
4.7.2.5 Queen City Aquifer	
4.7.2.6 Trinity Aquifer	
4.7.2.7 Other Aquifer	
4.7.3 Transfer/Allocate Water From WUGs with Surplus	
4.7.4 Temporary Drought Period Use of Aquifers	
4.7.5 Drought Management	
4.8 MUNICIPAL WATER MANAGEMENT STRATEGIES	77
4.8.1 Water Conservation	
4.8.1.1 Additional Conservation	
4.8.2 Recharge Edwards-BFZ With Onion Creek Recharge Structure for Hays County	
4.8.3 Obtain Surface Water From the COA for Hays County	
4.8.4 Construct Goldthwaite Channel Dam in Mills County	
4.8.5 HB 1437 (Region G) for Williamson County	
4.9 IRRIGATION WATER MANAGEMENT STRATEGIES	
4.9.1 On-Farm Water Conservation	
4.9.1.1 Laser Land Leveling	93
4.9.1.2 Use of Multiple Field Inlets	
4.9.1.3 Reduced Levee Intervals	94
4.9.1.4 Combining Land Leveling With Multiple Field Inlets	
4.9.2 Irrigation Operations Conveyance Improvements	
4.9.3 Conjunctive Use of Groundwater Resources	
4.9.4 Development of New Rice Varieties	
4.9.5 HB 1437	
4.10 LIVESTOCK WATER MANAGEMENT STRATEGIES	
4.11 MANUFACTURING WATER MANAGEMENT STRATEGIES	
4.12 MINING WATER MANAGEMENT STRATEGIES	
4.13 STEAM ELECTRIC POWER WATER MANAGEMENT STRATEGIES	

4.13.1 LCRA Steam Electric Water Management Strategies	106
4.13.2 COA Steam Electric Water Management Strategies	
4.13.3 STP Nuclear Operating Company Water Management Strategies	107
4.13.3.1 Water Right Permit Amendment	108
4.13.3.2 Expand Supply from STPNOC Reservoir	109
4.13.3.3 Blend Brackish Surface Water in STPNOC Reservoir	
4.13.3.4 Rainwater Harvesting	
4.13.4 Other Steam Electric Water Management Strategies	110
4.14 COUNTY SUMMARIES OF WATER MANAGEMENT STRATEGIES	111
4.15 ALTERNATIVE WATER MANAGEMENT STRATEGIES	112
4.15.1 Alternative Strategies for Rice Irrigation	113
4.15.2 Alternative Strategies for LCRA Wholesale Water Supply	
4.15.2.1 Groundwater Importation	
4.15.2.2 Brackish Groundwater Desalination from the Gulf Coast Aquifer (Desalination)	
4.15.3 Alternative Strategy for Mills County-Other (Desalination)	
4.16 OTHER POTENTIAL FUTURE WATER MANAGEMENT STRATEGIES EVALUATED	
4.16.1 Lower Colorado River Inflatable Channel Dams	119
4.16.2 Advanced Conservation	
4.16.3 Brush Management	
4.16.4 Weather Modification	
4.16.5 Additional Water Reuse	123
4.16.6 Rainwater Harvesting	123
4.16.7 Additional Studies	124
4.17 ENVIRONMENTAL IMPACTS OF WATER MANAGEMENT STRATEGIES	124
4.17.1 Environmental Impacts of Strategies from the 2006 Region K Plan	124
4.17.1.1 Criteria Used	124
4.17.1.2 Strategies Evaluated	125
4.17.2 2011 Region K Plan New Strategies or Changed Condition Strategies	126
4.17.2.1 Criteria Used	126
4.17.2.2 Strategies Evaluated	130
LIST OF FIGURES	
Figure 4.1: Number of WUGs With Identified Water Needs in the LCRWPA	
Figure 4.2: Identified Amount of Water Needs in the LCRWPA	2
Figure 4.3: Obtain Surface Water From the COA	83
LIST OF TABLES	
Table 4.1 Bastrop County Water Supply Needs (ac-ft/yr)	5
Table 4.2 Blanco County Water Supply Needs (ac-ft/yr)	
Table 4.3 Burnet County Water Supply Needs (ac-ft/yr)	
Table 4.4 Colorado County Water Supply Needs (ac-ft/yr)	
Table 4.5 Fayette County Water Supply Needs (ac-ft/yr)	
Table 4.6 Hays County Water Supply Needs (ac-ft/yr)	
Table 4.7 Llano County Water Supply Needs (ac-ft/yr)	
Table 4.8 Matagorda County Water Supply Needs (ac-ft/yr)	Q

Table 4.9 I	Mills County Water Supply Needs (ac-ft/yr)	9
Table 4.10	San Saba County Water Supply Needs (ac-ft/yr)	9
Table 4.11	Travis County Water Supply Needs (ac-ft/yr)	10
Table 4.12	Wharton County Water Supply Needs (ac-ft/yr)	10
	County and Regional Water Supply Condition Summary (surplus/deficit, ac-ft/yr)	
	County and Regional Water Supply Condition Summary Excluding Surpluses (deficit, ac-	
	ft/yr)	12
Table 4.15	Brazos River Basin Water Supply Needs (ac-ft/yr)	12
	Brazos-Colorado Coastal River Basin Water Supply Needs (ac-ft/yr)	
	Colorado River Basin Water Supply Needs (ac-ft/yr)	
	Colorado-Lavaca Coastal River Basin Water Supply Needs (ac-ft/yr)	
	Lavaca River Basin Water Supply Needs (ac-ft/yr)	
	Guadalupe River Basin Water Supply Needs (ac-ft/yr)	
	LCRA Municipal, Manufacturing, and Steam Electric Water Supply/Commitment Comparis	
	(ac-ft/yr)	
Table 4.22	LCRA Irrigation Water Supply/Commitment Comparison (ac-ft/yr)	16
	COA Municipal and Manufacturing Water Supply/Commitment Comparison (ac-ft/yr)	
	COA Steam Electric Water Supply/Commitment Comparison (ac-ft/yr)	
	Example of Austin Municipal Return Flow Partitioning.	
	Estimated Continued Benefits of Projected City of Austin Return Flows in the 2011 Region	
14010 1.20	Plan.	
Table 4.27	Estimated Benefits of Projected Pflugerville and Aqua WSC Return Flows	
	Summary of LCRA Water Management Strategies (ac-ft/yr)	
	Available Interruptible LCRA Water Supply for Irrigation	
	Amendment to Irrigation Water Rights for Municipal and Industrial Needs	
	LCRA Contract Amendments.	
	New LCRA Contracts	
	Additional Water Savings from Enhanced Conservation (ac-ft/yr)	
	Reuse Strategy as a Supply for LCRA (ac-ft/yr)	
	Example Cost for Reuse Strategy (Transport 1 MGD of Effluent 10 Miles)	
	COA Water Management Strategies (ac-ft/yr)	
	Anticipated Reclaimed Water Capacity (Direct Reuse)	
	COA Reclaimed Water (Direct Reuse for Municipal, Manufacturing, and Steam-Electric)	
14010 1100	Opinion of Probable Unit Costs	45
Table 4.39	Projected COA Effluent Minus Reuse by Decade*	
	Carrizo-Wilcox Aquifer Expansions	
	Carrizo-Wilcox Aquifer Expansion Costs	
	Ellenburger-San Saba Aquifer Expansions	
	Ellenburger-San Saba Aquifer Expansion Costs	
	Gulf Coast Aquifer Expansions	
	Gulf Coast Aquifer Expansion Costs	
	Hickory Aquifer Expansions	
	Hickory Aquifer Expansion Costs	
	Queen City Aquifer Expansions	
	Queen City Aquifer Expansion Costs	
	Sparta Aquifer Expansions	
	Sparta Aquifer Expansion Costs	
	Trinity Aquifer Expansions	57

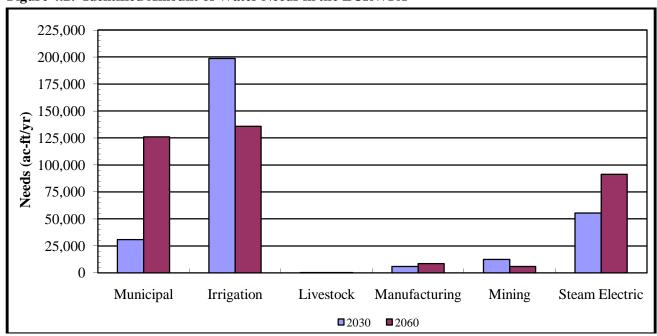
Table 4.53 Trinity Aquifer Expansion Cost	58
Table 4.54 Yegua-Jackson Aquifer Expansions	59
Table 4.55 Yegua-Jackson Aquifer Expansion Costs	59
Table 4.56 Other Aquifer Expansions	
Table 4.57 Other Aquifer Expansion Costs	61
Table 4.58 Carrizo-Wilcox Aquifer Development	62
Table 4.59 Carrizo-Wilcox Aquifer Development Costs	63
Table 4.60 Edwards-BFZ Aquifer Development (Brackish Groundwater Desalination)	64
Table 4.61 Edwards-BFZ Aquifer Development Costs	
Table 4.62 Ellenburger-San Saba Aquifer Development	65
Table 4.63 Ellenburger-San Saba Aquifer Development Costs	
Table 4.64 Hickory Aquifer Development	
Table 4.65 Hickory Aquifer Development Costs	67
Table 4.66 Queen City Aquifer Development	
Table 4.67 Queen City Aquifer Development Costs	
Table 4.68 Trinity Aquifer Development	
Table 4.69 Trinity Aquifer Development Costs	
Table 4.70 Other Aquifer Development	
Table 4.71 Other Aquifer Development Costs	
Table 4.72 Transfer Water Strategy	
Table 4.73 Allocate Water Strategy	
Table 4.74 Temporary Drought Period Use of Aquifers	
Table 4.75 Temporary Drought Period Use of Aquifers Additional Pumping Costs	
Table 4.76 Drought Management	
Table 4.77 Municipal Water Needs (ac-ft/yr)	
Table 4.78 Municipal Water Conservation Savings (ac-ft/yr)	
Table 4.79 Municipal Water Conservation Savings Unit Costs	
Table 4.80 Anticipated Reduction From Additional Municipal Conservation (ac-ft/yr)	
Table 4.81 COA Waterline Opinion of Probable Cost	
Table 4.82 New Goldthwaite Channel Dam Opinion of Probable Cost	
Table 4.83 HB 1437 Strategy	
Table 4.84 Irrigation Water Needs (ac-ft/yr)	
Table 4.85 Rice Irrigation Water Needs (ac-ft/yr)	
Table 4.86 Rice Irrigation Water Management Strategies	
Table 4.87 On-Farm Conservation Estimates	
Table 4.88 Estimated Unit Cost of Agricultural Conservation Improvements	
Table 4.89 On-Farm Conservation Issues	
Table 4.90 Anticipated On-Farm Conservation for Rice Crops and Summer Instream Flows ¹	
Table 4.91 Irrigation District Conveyance Improvement Estimates	
Table 4.92 Irrigation District Conveyance Improvement Issues	
Table 4.93 Development of the Gulf Coast Aquifer Estimated Yield	
Table 4.94 Number of Wells Required for Conjunctive Use	
Table 4.95 Impact of Conjunctive Use on Aquifer Levels (ft)	
Table 4.96 Conjunctive Use of Groundwater Issues	
Table 4.97 Development of New Rice Varieties	
Table 4.98 Development of New Rice Varieties Issues	
Table 4.99 HB 1437 Strategy for Irrigation WUGs	
Table 4.100 Livestock Water Needs (ac-ft/yr)	104

Table 4.101 Manufactu	ring Water Needs (ac-tt/yr)	104
Table 4.102 Mining Wa	ater Needs (ac-ft/yr)	105
Table 4.103 Steam Elec	etric Power Water Needs (ac-ft/yr)	105
	m Electric Power Water Demand (ac-ft/yr)	
	m-Electric Supplies and Water Management Strategies (ac-ft/yr)	
	ctric Shortages in Matagorda County (ac-ft/yr)	
	Aquifer Development Costs	
	nagement Strategy County Summary (ac-ft/yr)	
	on of County Shortages Versus Total County Strategies (ac-ft/yr)	
	tion Needs (ac-ft/yr)	
	tion Alternative Water Management Strategies (ac-ft/yr)	
	olesale Water Supply Alternative Water Management Strategies (ac-ft/yr)	
	e Desalination of Brackish Ellenburger-San Saba Strategy (Desalination) (a	
	on of Brackish Ellenburger-San Saba Groundwater Costs	
Table 4.115 Anticipated	d Reduction From Municipal Conservation (ac-ft/yr)	120
	Water Conservation Savings Unit Costs	
	egories and Range of Inflow Criteria	
	nded MBHE Inflow Regime Criteria and Proposed Distribution	
	low Guidelines for the Lower Colorado River Specific to the LSWP (cfs)	
	low Guidelines for the Lower Colorado River (ac-ft/yr))	
APPENDICES		
ADDENINIY / A. Wate	r Management Strategy Tables	
	r Management Strategy Cost Breakdown, Cost Assumptions & Methodolog	W.
	nical Memorandums for Goldthwaite, Llano, and Enhanced Recharge Grour	
	egies	iawatci
	inability and Advanced Water Conservation Analyses, Drought Managemer	nt
Table	•	11
APPENDIX 4E: Dry Y		
	onmental Impacts of Strategies from the 2006 Region K Plan	
	commental Impacts of Strategies from the 2000 Region K Fian	2011
	on K Plan	5 ZUII
Regi	JII IX F IAII	

CHAPTER 4.0: IDENTIFICATION, EVALUATION, AND SELECTION OF WATER MANAGEMENT STRATEGIES BASED ON NEED

4.1 IDENTIFICATION OF WATER NEEDS

The comparison of water demands for each water user group (WUG) to the water supplies available to each WUG within the Lower Colorado Regional Water Planning Area (LCRWPA) is a simple mathematical comparison of the estimates developed in Chapters 2 and 3 of this report. This comparison was completed and summarized in three different ways. First, a comparison of water demands and supplies was completed on a county-by-county basis. Second, the comparison was completed and summarized for each of the six river basins. Finally, a comparison of the water demands and supplies for the two designated wholesale water providers within the LCRWPA was also completed.


Regionwide, the comparison of available water supplies and water demands identified 73 separate WUGs that have projected water supply shortages, or "needs," by the year 2030, and an additional 19 WUGs with projected water supply shortages before the year 2060. Note that throughout this chapter, the word "need" is consistently used to indicate a water supply shortage. The estimated water need is approximately 297,000 acre-feet per year (ac-ft/yr) in 2030 and 367,000 ac-ft/yr in 2060. This identified shortage is based on conservative water availability estimates, which assume (1) only water that is available during a repeat of the historical drought of record (DOR), (2) that all water rights in the basin are being fully and simultaneously utilized, and (3) excludes both water available from the Lower Colorado River Authority (LCRA) on an interruptible basis and water projected to be available as a result of municipal return flows to the Colorado River. In Region K, return flows discharged by the City of Austin (COA) constitute the vast majority of municipal return flows. Based upon the assumptions above, water needs have been identified in all of the six water use categories. *Figure 4.1* contains an illustration of the distribution, by use category, of the number of WUGs with identified water needs in the years 2030 and 2060. *Figure 4.2* contains an illustration of the magnitude of the identified needs, by use category, for the years 2030 and 2060.

60
50
40
8
30
8
20
10
Municipal Irrigation Livestock Manufacturing Mining Steam Electric

2030 2060

Figure 4.1: Number of WUGs With Identified Water Needs in the LCRWPA

The majority of the identified water supply shortages fall into three main categories. The first shortage is associated with rice irrigation demands in the lower three counties of Colorado, Matagorda and Wharton. It is estimated that irrigators in these three counties would experience a water supply shortage of approximately 235,000 ac-ft/yr under the existing demand conditions (year 2010 scenario), should a repeat of the driest year during the DOR occur. This shortage is estimated to decrease to 199,000 ac-ft/yr in 2030 (15 percent decrease) and to 136,000 ac-ft/yr in 2060 (42 percent decrease) due to projected declining rice irrigation acreage. These shortages would be reduced or eliminated through the implementation of water conservation and alternative water supply development measures under the LCRA-SAWS (San Antonio Water System) Water Project, the House Bill (HB) 1437 program, and the continued availability of interruptible water supplies and return flows over the planning period.

These estimated shortfalls are based on the available supply determined in Chapter 3. In accordance with Texas Water Development Board (TWDB) rules, the available supply of water for irrigation was estimated based on the available run-of-river (ROR) water rights and groundwater supplies in the area. The interruptible supply of water provided by the LCRA and municipal return flows were not considered in these calculations. As a result, the estimated shortages for rice irrigation in Colorado, Matagorda, and Wharton Counties are significantly overstated under typical conditions expected over the planning period. The continued use of interruptible water supplies to meet irrigation and other needs will be considered as one of the water management strategies.

The second category of identified shortages includes WUGs that purchase water from one of the two wholesale water providers within the LCRWPA - the COA and the LCRA. The renewal of these current wholesale water contracts will be assumed and shown as a continued supply, while expansion of these contracts will be considered as a water management strategy. However, the COA's current policy is that much of its water currently being supplied to wholesale customers may need to be provided by LCRA in the future. The COA will plan to continue to treat and transport this water.

LCRA is the major water supplier for the Lower Colorado Region. The COA also supplies a major portion of the municipal needs. LCRA holds water rights to use annually about 2.1 million acre-feet (acft) of water and provides water to 125 to 150 entities for municipal, industrial, irrigation, recreational, environmental, and other purposes. LCRA's strategy for meeting the region's changing and future water needs will be predicated on LCRA's ability to continue to use all of its water rights as a system. This includes not only the amendment of its water rights to meet changing and future water needs, but also an aggressive water conservation program and the development of alternative water supplies and conjunctive water management strategies.

Programs seeking to accomplish this have included HB 1437 and the concept of the LCRA-SAWS Water Project (LSWP). The concept of the LSWP¹, was adopted in the first round of regional water planning. Legislative conditions on the proposed transfer of water to the San Antonio region include, but are not limited to, the protection of inbasin needs including adequate flows for environmental purposes, a limited contract term, and maintaining and enhancing average lake levels for recreational uses. Water provided under contract by LCRA to the Brazos River Authority (BRA) for BRA's customers in Williamson County under HB 1437 requires a "no net loss" of surface water to the Colorado River Basin through water replacement or offset strategies funded by a surcharge on the sale of water to BRA. Subject to regulatory approval, potential litigation and competing applications, LCRA is also actively pursuing the

¹ The project is the subject of litigation. For a description of the status of the project, *see* p. 4-34.

acquisition of any remaining unappropriated water and the voluntary purchase and reallocation of any strategic, unused water rights to help meet LCRA's legislative mandate as a regional water supplier.

The third category of identified shortages includes steam-electric demands. This is a water usage type that is expected to expand over the future decades, as population growth occurs throughout the electrical grid for Texas. The majority of the steam-electric water demands in the LCRWPA are in Matagorda County. Ways of meeting the shortages include contracts with LCRA, water rights permit amendments, and desalination.

Some of the strategies in this plan are predicated upon identified water needs or possible water supply scenarios which are affected by the outcomes of pending or future permitting processes at the Texas Commission on Environmental Quality (TCEQ). The planning group recognizes that the plan is typically updated on an every five-year cycle, providing regular opportunities to update future plans to reflect the resolution of such processes. This plan includes various alternative strategies, which may be needed depending on the outcome of pending or future litigation or permitting processes (see Section 4.15 Alternative Water Management Strategies for a discussion of alternative strategies included in the plan).

4.2 COUNTY SUMMARIES OF WATER NEEDS

The following sections provide summaries of the needs identified for each county within the LCRWPA. The tables presented in these sections provide a listing of individual WUGs with identified water supply needs (negative numbers in the tables indicate a water supply shortage). Following the information for the individual WUGs with water supply needs is a summation of the total needs identified within the county. This information is also included in the TWDB online database, DB12.

4.2.1 Bastrop County

The primary sources of water for Bastrop County are the Carrizo-Wilcox and Queen City aquifers. Surface water supplies are primarily associated with power generation and are supplied by firm water from the Highland Lakes. Local surface water supplies are available to irrigation and livestock users. Municipal water demands range from about one-third to two-thirds of the total demand in Bastrop County. Steam electric generation accounts for an additional one-third of the total demand. A summary of the estimated water shortages identified for Bastrop County is presented in *Table 4.1*.

2010 Needs 2020 Needs 2050 Needs 2030 Needs 2040 Needs 2060 Needs **Water User Group Name** Aqua WSC (3.709)(6.221)(9.415)0 0 (602) $(81\overline{2})$ Bastrop (65)(1,532)(2,590)(3,455)(4,542)Bastrop County WCID #2 0 0 0 0 0 (144)County-Other 0 (663) (1.879)(3,437)(5.880)(4,528)Elgin 0 (604)(1,176)(2.033)(2,734)(3.624)Manville WSC 0 0 (52 0 0 Polonia WSC 0 (2)(7)(23)(16)(30)Smithville (74)(311)(526)(946)(1.115)(1.601)Irrigation (119)(50)(40)(31) (24)(17)Manufacturing (8) (17)(28)(38)(46)(60)Mining (4,293)(4,297)(4,298)0 0 0 (1,280)(2,780)(2,780)Steam Electric Power 0 0 0 (10,088)(4,559)**Bastrop County Total Needs** (6,756)(14,080)(20,933)(28,145)

Table 4.1 Bastrop County Water Supply Needs (ac-ft/yr)

4.2.2 Blanco County

Groundwater is available to users in Blanco County from the Ellenburger-San Saba, Trinity, Edwards-Trinity Plateau, and Hickory aquifers. Surface water supplies in the county are available from the City of Blanco's reservoirs and other local supplies. Municipal water demands account for well over one-half of the total water demands in Blanco County. The remainder of the demand consists primarily of irrigation and livestock needs. A summary of the estimated water shortages identified for Blanco County is presented in *Table 4.2*.

Table 4.2 Blanco County Water Supply Needs (ac-ft/yr)

Water User Group Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
County-Other	0	0	0	0	(41)	(64)
Blanco County Total Needs	0	0	0	0	(41)	(64)

4.2.3 Burnet County

Groundwater is available to users in Burnet County from the Ellenburger-San Saba, Trinity, Marble Falls, and Hickory aquifers. Surface water supplies in the county are available from the Highland Lakes through contracts with the LCRA and other local supplies. Municipal water demands account for over one-half of the total water demands in Burnet County. A summary of the estimated water shortages identified for Burnet County is presented in *Table 4.3*.

(8,136)

2020 Needs **Water User Group Name** 2010 Needs 2030 Needs 2040 Needs 2050 Needs 2060 Needs 0 0 0 (27)(74)(130)Bertram Cottonwood Shores (26)(198)(386)(601)(840)(1,130)County-Other 0 0 (232)(898)(1,345)(1,720)Granite Shoals 0 0 (14)0 0 (95 Kingsland WSC 0 0 0 0 (7)(17)Marble Falls 0 (211)(976)(1,719)(2,154)(2,653)Meadowlakes (318)(576)(857)(1.130)(1.292)(1.470)Livestock (23)(23)(23)(23)(23)(23)(688)(800)(833) (853) (898) Mining (766)

(1,774)

(3,274)

(5,231)

(6,602)

Table 4.3 Burnet County Water Supply Needs (ac-ft/yr)

4.2.4 Colorado County

Burnet County Total Needs

The primary source of groundwater in Colorado County is the Gulf Coast aquifer. Surface water supplies are available pursuant to LCRA's ROR rights, presently being used within LCRA's Lakeside and Garwood Irrigation Divisions, as well as other local supply sources. Irrigation demands in Colorado County represent 90 percent of the water demand in the county and are the primary water supply shortage identified. A summary of the estimated water shortages identified for Colorado County is presented in *Table 4.4*.

(1,055)

Table 4.4	Colorado	County '	Water S	Supply I	Needs	(ac-ft/y)	r)

Water User Group Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
County-Other	(105)	(109)	(106)	(97)	(93)	(90)
Irrigation	(49,300)	(42,090)	(35,089)	(28,312)	(21,723)	(15,416)
Livestock	(25)	(25)	(25)	(25)	(25)	(25)
Mining	(8,569)	(8,079)	(7,246)	(6,111)	(4,692)	(4,867)
Colorado County Total Needs	(57,999)	(50,303)	(42,466)	(34,545)	(26,533)	(20,398)

4.2.5 Fayette County

Groundwater supplies in Fayette County are available from the Carrizo-Wilcox, Gulf Coast, Sparta, Queen City, and Yegua-Jackson aquifers. Surface water is available for steam electric generation through the LCRA and the COA. Steam electric generation represents more than three-fourths of the total water demand in the county with the remainder of the demand split primarily between municipal and livestock needs. The estimated water shortages identified for Fayette are presented in *Table 4.5*.

Water User Group Name 2010 Needs 2020 Needs 2030 Needs 2040 Needs 2050 Needs 2060 Needs County-Other (118)(115)(14)(32)(25)Fayette WSC (257)(782)(1,062)0 Lee County WSC 0 (48) (117)(171)Schulenburg 0 0 Irrigation (20)(18)(16)(14)(12)Livestock (22)(22)(22)(22)(22)Manufacturing (45) (70)(94)(117)(137 Mining 0 (4) (22)(28) (29)0 (20,975 (20.975)Steam Electric Power 0 0 **Fayette County Total Needs** (205)(534)(837)(22,175)(22,594)(29,069)

Table 4.5 Fayette County Water Supply Needs (ac-ft/yr)

4.2.6 Gillespie County

Groundwater supplies in Gillespie County are available from the Ellenburger-San Saba, Edwards-Trinity, Trinity, and Hickory aquifers. Surface water is available from local sources. Municipal water demands represent more than one-half of the total water demand in the county. Livestock and irrigation needs make up the majority of the remaining water demand. There are no water shortages expected for Gillespie County.

4.2.7 Hays County

Groundwater supplies in Hays County are available from the Edwards-Balcones Fault Zone (BFZ) and Trinity aquifers. Surface water is available from the Highland Lakes System and COA ROR rights. Municipal demand represents over 80 percent of the total demand in the county and represents the majority of supply shortages identified for Hays County, as presented in *Table 4.6*.

Table 4.6	Hays County	Water Supply	y Needs ((ac-ft/yr)

Water User Group Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Buda	0	0	(332)	(817)	(1,395)	(1,869)
Cimarron Park Water Company	(150)	(236)	(329)	(423)	(536)	(629)
County-Other	0	(728)	(2,072)	(3,440)	(5,144)	(6,482)
Dripping Springs	(574)	(1,350)	(1,791)	(2,239)	(2,794)	(3,230)
Dripping Springs WSC	0	0	0	(17)	(213)	(366)
Mountain City	(25)	(23)	(23)	(22)	(22)	(22)
Manufacturing	(93)	(211)	(330)	(450)	(558)	(657)
Hays County Total Needs	(842)	(2,548)	(4,877)	(7,408)	(10,662)	(13,255)

4.2.8 Llano County

Groundwater supplies in Llano County are available from the Hickory and Ellenburger-San Saba aquifers. Surface water is available from the City of Llano Reservoir, the Highland Lakes, and local sources. Municipal demands represent approximately one-half of the total demand in the county and all of the

identified water supply shortage. A summary of the estimated water shortages identified for Llano County is presented in *Table 4.7*.

Table 4.7 Llano County Water Supply Needs (ac-ft/yr)

Water User Group Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
County-Other	0	0	(44)	(224)	(400)	(586)
Kingsland WSC	(175)	(220)	(217)	(215)	(223)	(237)
Lake LBJ MUD	(135)	(290)	(338)	(382)	(439)	(510)
Llano	(1,090)	(1,171)	(1,183)	(1,192)	(1,207)	(1,232)
Livestock	(62)	(62)	(62)	(62)	(62)	(62)
Llano County Total Needs	(1,462)	(1,743)	(1,844)	(2,075)	(2,331)	(2,627)

4.2.9 Matagorda County

The primary source of groundwater in Matagorda County is the Gulf Coast aquifer. Surface water supplies are available pursuant to LCRA's ROR rights, presently being used within LCRA's Gulf Coast Irrigation Division, and the LCRA-STPNOC water right, STPNOC's contract with LCRA for backup firm water, as well as LCRA firm water contracts for other industrial needs and other local supply sources. Irrigation demands in Matagorda County represent 70 percent of the water demand in the county with steam electric generation being the second largest demand. Significant water supply shortages have been identified for irrigation, manufacturing, and steam electric generation. A summary of the estimated water shortages identified for Matagorda County is presented in *Table 4.8*.

Table 4.8 Matagorda County Water Supply Needs (ac-ft/yr)

Water User Group Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Irrigation	(126,742)	(121,053)	(114,334)	(107,897)	(101,703)	(95,731)
Livestock	(56)	(56)	(56)	(56)	(56)	(56)
Manufacturing	0	0	0	0	0	(47)
Steam Electric Power	(193)	(53,005)	(53,005)	(53,005)	(53,005)	(53,125)
Matagorda County Total Needs	(126,991)	(174,114)	(167,395)	(160,958)	(154,764)	(148,959)

4.2.10 Mills County

The primary source of groundwater in Mills County is the Trinity aquifer. Surface water supplies are available through the City of Goldthwaite Reservoir and other local supply sources. Irrigation demands in Mills County represent 60 percent of the water demand in the county with most of the remainder of the demand being livestock and municipal demand. A summary of the estimated water shortages identified for Mills County is presented in *Table 4.9*.

Table 4.9 Mills County Water Supply Needs (ac-ft/yr)

Water User Group Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
County-Other	0	0	0	0	(34)	(54)
Goldthwaite	(501)	(553)	(561)	(555)	(548)	(547)
Irrigation	(339)	(275)	(241)	(180)	(193)	(186)
Mills County Total Needs	(840)	(828)	(802)	(735)	(775)	(787)

4.2.11 San Saba County

Groundwater supplies in San Saba County are available from the Ellenburger-San Saba, Marble Falls, and Hickory aquifers. Surface water availability is primarily limited to local sources. Irrigation demand represents over half of the total demand in the county with the remaining demand being livestock and municipal demands. The water needs for San Saba County are listed in Table 4.10.

Table 4.10 San Saba County Water Supply Needs (ac-ft/yr)

Water User Group Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Richland SUD	0	0	0	(3)	(3)	(5)
San Saba County Total Needs	0	0	0	(3)	(3)	(5)

4.2.12 Travis County

Groundwater supplies in Travis County are available from the Edwards-BFZ and Trinity aquifers. Surface water is available through the LCRA and COA ROR water rights. Municipal water demands represent approximately 85 percent of the total demand in the county. Manufacturing and steam electric generation account for most of the remaining demands. A summary of the estimated water shortages identified for Travis County is presented in *Table 4.11*.

Table 4.11 Travis County Water Supply Needs (ac-ft/yr)

Water User Group Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Austin	0	0	0	0	(30,459)	(62,934)
Barton Creek West WSC	(53)	(50)	(47)	(45)	(43)	(43)
Bee Cave Village	(936)	(1,172)	(1,406)	(1,615)	(1,768)	(1,923)
Briarcliff Village	0	0	(45)	(87)	(117)	(149)
Creedmoor-Maha WSC	0	(431)	(548)	(632)	(715)	(807)
Elgin	0	0	0	0	(1)	(3)
Goforth WSC	(11)	(21)	(30)	(37)	(43)	(48)
Jonestown	(129)	(233)	(329)	(416)	(481)	(554)
Lakeway	(1,681)	(2,613)	(3,513)	(4,338)	(4,954)	(5,572)
Manor	0	(940)	(1,173)	(1,390)	(1,552)	(1,717)
Manville WSC	0	0	(831)	(2,184)	(2,577)	(2,982)
Pflugerville	0	0	0	0	(918)	(1,981)
River Place on Lake Austin	(570)	(823)	(823)	(817)	(817)	(817)
Rollingwood	0	(376)	(374)	(372)	(371)	(373)
Round Rock	(158)	(339)	(528)	(669)	(813)	(957)
Travis County WCID #18	0	0	0	(4)	(135)	(283)
West Lake Hills	0	(1,833)	(2,049)	(2,178)	(2,320)	(2,471)
Windermere Urility Company	0	(2,222)	(2,201)	(2,180)	(2,180)	(2,180)
Steam Electric Power	0	0	(170)	(1,170)	(5,170)	(6,170)
Travis Co. Total Needs	(3,538)	(11,053)	(14,067)	(18,134)	(55,434)	(91,964)

4.2.13 Wharton County

The primary source of groundwater in Wharton County is the Gulf Coast aquifer. Surface water supplies are available pursuant to LCRA's ROR rights, presently being used within LCRA's Lakeside, Garwood Irrigation Divisions and by Pierce Ranch. In addition, surface water is available from other local supply sources. Irrigation demands in Wharton County represent over 95 percent of the water demand in the county with municipal demands being the second largest demand. A summary of the estimated water shortages identified for Wharton County is presented in *Table 4.12*.

Table 4.12 Wharton County Water Supply Needs (ac-ft/yr)

Water User Group Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Wharton	0	0	(4)	(4)	0	0
Irrigation	(58,218)	(53,525)	(48,997)	(44,636)	(40,429)	(24,462)
Manufacturing	0	0	0	0	0	(8)
Steam-Electric	(2,300)	(2,300)	(2,300)	(2,300)	(2,300)	(2,382)
Wharton County Total Needs	(60,518)	(55,825)	(51,301)	(46,940)	(42,729)	(26,852)

4.2.14 Williamson County

Groundwater supplies in Williamson County are available from the Trinity and Edwards-BFZ aquifers. Surface water is available through the COA and LCRA. Municipal water demands represent 99 percent of the demand in the County. Both of the supply shortages identified for Williamson County are associated with municipal demands and wholesale contract expirations. There are no water shortages expected for Williamson County within the LCRWPA.

4.2.15 County-Wide Surpluses

As part of the 2011 regional water planning process, areas with water supply surpluses were identified as well as areas with water supply needs. This analysis was conducted by comparing the countywide estimated water supplies with the countywide estimated water demands. It is important to note that although a particular county may have a countywide water supply surplus, individual WUGs within that county may have water supply needs because they do not have access to the surplus water. *Table 4.13* contains a summary of the water supply condition within each county. It is also important to note that the regional totals shown in *Table 4.13* are less than the water supply needs identified in *Figure 4.2* due to surpluses in some counties. The fact that the regional totals show water supply needs despite considering the surpluses in some counties indicates that additional strategies must be developed to meet all of the needs in the LCRWPA. Simply moving surplus water from one area to another will not be sufficient to meet the needs of all WUGs in the LCRWPA. Additionally, movement of surplus water can be very costly, in some cases.

Table 4 13	County	and Regional	Water S	unnly (Condition	Summary	(surplus/deficit	ac_ft/vr)
1 avic 7.13	County	anu ixteivna	i vvaici s	uppiv v	Conunci	Summary	(Sui Dius/uciicii	. ac-14 vi i

County ¹	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Bastrop	12,970	5,488	(1,050)	(5,942)	(13,033)	(20,420)
Blanco	3,994	3,846	3,706	3,589	3,176	2,990
Burnet	11,128	8,647	5,884	3,196	1,536	(411)
Colorado	(50,101)	(41,370)	(32,433)	(23,351)	(14,331)	(7,330)
Fayette	17,677	16,924	13,076	(18,189)	(18,670)	(25,288)
Gillespie	5,758	5,102	4,853	4,925	4,963	4,944
Hays	688	(2,056)	(4,683)	(7,352)	(10,611)	(13,204)
Llano	24,041	23,510	23,283	9,567	9,323	9,038
Matagorda	(108,545)	(156,979)	(151,072)	(145,305)	(139,629)	(134,783)
Mills	(160)	(156)	(304)	(203)	(410)	(371)
San Saba	30,876	30,961	31,049	31,135	31,238	31,323
Travis	177,469	132,149	78,224	29,259	(19,323)	(57,538)
Wharton	(46,704)	(40,460)	(34,237)	(28,193)	(22,368)	(220)
Williamson	55	59	63	64	64	64
Regional Totals ²	78,861	(14,543)	(63,780)	(146,898)	(188,134)	(211,206)

Overall County Surplus/Deficit = Countywide Water Supply – Countywide Water Demand

By comparison, *Table 4.14* shows all of the water supply needs by county in Region K if the surpluses are not taken into account. Region K is tasked with developing water management strategies to meet all of

² Overall Regional Surplus/Deficit = Summation of County Surplus/Deficit

these needs. One potential strategy is to identify the WUGs with surpluses and determine if it is possible for this surplus water to meet the needs of WUGs with shortages.

Table 4.14 County and Regional Water Supply Condition Summary Excluding Surpluses (deficit, ac-ft/yr)

County ¹	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Bastrop	(4,559)	(6,756)	(10,088)	(14,080)	(20,933)	(28,145)
Blanco	0	0	0	0	(41)	(64)
Burnet	(1,055)	(1,813)	(3,370)	(5,378)	(6,798)	(8,389)
Colorado	(57,999)	(50,303)	(42,466)	(34,545)	(26,533)	(20,398)
Fayette	(205)	(534)	(837)	(22,175)	(22,594)	(29,069)
Gillespie	0	0	0	0	0	0
Hays	(842)	(2,548)	(4,877)	(7,408)	(10,662)	(13,255)
Llano	(1,462)	(1,743)	(1,844)	(2,075)	(2,331)	(2,627)
Matagorda	(126,991)	(174,114)	(167,395)	(160,958)	(154,764)	(148,959)
Mills	(840)	(828)	(802)	(735)	(775)	(787)
San Saba	0	0	0	(3)	(3)	(5)
Travis	(3,538)	(11,053)	(14,067)	(18,134)	(55,434)	(91,964)
Wharton	(60,518)	(55,825)	(51,301)	(46,940)	(42,729)	(26,852)
Williamson	0	0	0	0	0	0
Regional Totals ²	(258,009)	(305,517)	(297,047)	(312,431)	(343,597)	(370,514)

Overall County Deficit

4.3 BASIN SUMMARY OF WATER NEEDS

The following sections contain summaries of the water shortages identified in each of the six basins located wholly or in part within the LCRWPA.

4.3.1 Brazos River Basin

The majority of shortages identified in the Brazos River Basin were the result of expiring contracts to municipalities. Smaller shortages were associated with other communities, irrigation, livestock, and mining. *Table 4.15* contains the detailed information.

Table 4.15 Brazos River Basin Water Supply Needs (ac-ft/yr)

Water User Group Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Bertram	0	0	0	(27)	(74)	(130)
County-Other	0	0	0	0	(1)	(9)
Goldthwaite	(8)	(9)	(9)	(9)	(8)	(8)
Irrigation	(241)	(223)	(224)	(208)	(217)	(203)
Livestock	(45)	(45)	(45)	(45)	(45)	(45)
Mining	(7)	(14)	(34)	(50)	(53)	(54)
Brazos River Basin Total Needs	(301)	(291)	(31)	(339)	(398)	(449)

² Overall Regional Deficit = Summation of County Deficit

4.3.2 Brazos-Colorado Coastal River Basin

Surface water supply is available in the irrigation divisions operated by LCRA through its ROR water rights and through Highland Lakes' water as interruptible supply. Water supply shortages in the Brazos-Colorado Coastal River Basin were identified for irrigation in Colorado, Matagorda, and Wharton Counties. In addition, various shortages in manufacturing and mining were identified. *Table 4.16* contains the detailed information.

Table 4.16 Brazos-Colorado Coastal River Basin Water Supply Needs (ac-ft/yr)

Water User Group Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Irrigation	(120,679)	(112,140)	(103,310)	(94,812)	(86,603)	(69,653)
Mining	(19)	(22)	(23)	(24)	(25)	(26)
Steam-Electric Power	0	0	0	0	0	(82)
Brazos-Colorado River Basin Total Needs	(120,698)	(112,162)	(103,333)	(94,836)	(86,628)	(69,761)

4.3.3 Colorado River Basin

Water supply shortages were identified throughout the Colorado River Basin. *Table 4.17* contains information detailing these shortages.

Table 4.17 Colorado River Basin Water Supply Needs (ac-ft/yr)

Water User Group Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Aqua WSC	0	0	(602)	(3,709)	(6,221)	(9,415)
Austin	0	0	0	0	(30,459)	(62,934)
Barton Creek West WSC	(53)	(50)	(47)	(45)	(43)	(43)
Bastrop	(65)	(812)	(1,532)	(2,590)	(3,455)	(4,542)
Bastrop County WCID #2	0	0	0	0	0	(144)
Bee Cave Village	(936)	(1,172)	(1,406)	(1,615)	(1,768)	(1,923)
Briarcliff Village	0	0	(45)	(87)	(117)	(149)
Buda	0	0	(332)	(817)	(1,395)	(1,869)
Cimarron Park Water Company	(150)	(236)	(329)	(423)	(536)	(629)
Cottonwood Shores	(26)	(198)	(386)	(601)	(840)	(1,130)
County-Other	(118)	(1,506)	(4,241)	(7,999)	(11,450)	(14,697)
Creedmoor-Maha WSC	0	(431)	(548)	(632)	(715)	(807)
Dripping Springs	(574)	(1,350)	(1,791)	(2,239)	(2,794)	(3,230)
Dripping Springs WSC	0	0	0	(17)	(213)	(366)
Elgin	0	(604)	(1,176)	(2,033)	(2,735)	(3,627)
Fayette WSC	0	(236)	(507)	(719)	(976)	(1,317)
Goforth WSC	(11)	(21)	(30)	(37)	(43)	(48)
Goldthwaite	(493)	(544)	(552)	(546)	(540)	(539)
Granite Shoals	0	0	0	0	(14)	(95)

Table 4.17 Colorado River Basin Water Supply Needs (ac-ft/yr) (continued)

Water User Group Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Jonestown	(129)	(233)	(329)	(416)	(481)	(554)
Kingsland WSC	(175)	(220)	(217)	(215)	(230)	(254)
Lake LBJ MUD	(135)	(290)	(338)	(382)	(439)	(510)
Lakeway	(1,681)	(2,613)	(3,513)	(4,338)	(4,954)	(5,572)
Lee County WSC	0	(48)	(117)	(171)	(232)	(319)
Llano	(1,090)	(1,171)	(1,183)	(1,192)	(1,207)	(1,232)
Manor	0	(940)	(1,173)	(1,390)	(1,552)	(1,717)
Manville WSC	0	0	(831)	(2,184)	(2,584)	(3,034)
Marble Falls	0	(211)	(976)	(1,719)	(2,154)	(2,653)
Meadowlakes	(318)	(576)	(857)	(1,130)	(1,292)	(1,470)
Mountain City	(25)	(23)	(23)	(22)	(22)	(22)
Pflugerville	0	0	0	0	(918)	(1,981)
Polonia WSC	0	(2)	(7)	(16)	(23)	(30)
Richland SUD	0	0	0	(3)	(3)	(5)
River Place on Lake Austin	(570)	(823)	(823)	(817)	(817)	(817)
Rollingwood	0	(376)	(374)	(372)	(371)	(373)
Round Rock	(158)	(339)	(528)	(669)	(813)	(957)
Smithville	(74)	(311)	(526)	(946)	(1,115)	(1,601)
Travis County WCID #18	0	0	0	(4)	(135)	(283)
West Lake Hills	0	(1,833)	(2,049)	(2,178)	(2,320)	(2,471)
Wharton	0	0	(4)	(4)	0	0
Windemere Utility Company	0	(2,222)	(2,201)	(2,180)	(2,180)	(2,180)
Irrigation	(6,822)	(6,365)	(5,917)	(5,477)	(5,102)	(4,744)
Livestock	(76)	(76)	(76)	(76)	(76)	(76)
Manufacturing	(93)	(218)	(347)	(475)	(590)	(748)
Mining	(13,424)	(12,978)	(12,158)	(6,730)	(5,312)	(5,515)
Steam-Electric Power	(2,493)	(55,305)	(55,475)	(78,730)	(84,230)	(91,260)
Colorado River Basin Total Needs	(29,689)	(94,333)	(103,566)	(135,945)	(183,466)	(237,882)

4.3.4 Colorado-Lavaca Coastal River Basin

Surface water supply is available in the irrigation divisions operated by LCRA through its ROR water rights and through Highland Lakes' water as interruptible supply. The greatest water needs identified in the Colorado-Lavaca River Basin were associated with irrigation usage in Matagorda County. *Table 4.18* contains the detailed information.

(8)

(51,230)

0

(57,863)

2010 2020 2030 2040 2050 2060 **Water User Group Name** Needs **Needs** Needs **Needs Needs Needs** Irrigation (73,845)(70,046)(65,801)(61,727)(57,807)(51,166)Livestock (56)(56)(56)(56)(56)(56)

0

(70,102)

0

(61,783)

(65,857)

0

(73,901)

Table 4.18 Colorado-Lavaca Coastal River Basin Water Supply Needs (ac-ft/yr)

4.3.5 Lavaca River Basin

Colorado-Lavaca River Basin

Manufacturing

Total Needs

Surface water supply is available in the irrigation divisions operated by LCRA through its ROR water rights and through Highland Lakes' water as interruptible supply. The majority of shortages in the Lavaca River Basin were associated with irrigation in Colorado County. Several minor shortages were also recognized and are listed below in *Table 4.19*.

Table 4.19 Lavaca River Basin Water Supply Needs (ac-ft/yr)

Water User Group Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
County-Other	(105)	(109)	(106)	(129)	(118)	(106)
Fayette WSC	0	(21)	(45)	(63)	(86)	(116)
Schulenburg	0	0	0	(34)	(100)	(193)
Irrigation	(33,151)	(28,237)	(23,465)	(18,846)	(14,355)	(10,056)
Livestock	(11)	(11)	(11)	(11)	(11)	(11)
Manufacturing	(45)	(70)	(94)	(117)	(137)	(162)
Mining	(100)	(132)	(151)	(168)	(184)	(199)
Lavaca River Basin Total Needs	(33,412)	(28,580)	(23,872)	(19,368)	(14,991)	(10,843)

4.3.6 Guadalupe River Basin

Water supply shortages in the Guadalupe River Basin were identified for Bastrop and Blanco Counties. *Table 4.20* contains the detailed information.

Table 4.20 Guadalupe River Basin Water Supply Needs (ac-ft/yr)

Water User Group Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
County-Other	0	0	0	0	(41)	(80)
Manufacturing	(8)	(10)	(11)	(13)	(14)	(16)
Guadalupe River Basin Total Needs	(8)	(10)	(11)	(13)	(55)	(96)

4.4 WHOLESALE WATER PROVIDER NEEDS

As previously discussed, the LCRA and COA have been identified as wholesale water providers within the LCRWPA. The following sections present a comparison of the water supplies for these two entities and their water supply commitments.

4.4.1 Lower Colorado River Authority

The LCRA has two major sources for its water. These sources include the Highland Lakes System and ROR water rights in the lower portion of the basin. The LCRA has commitments to provide water to individual users and cities throughout the basin. In addition, the LCRA uses water at its electric generating facilities. Finally, LCRA provides water to meet requirements for environmental needs of the river and bay according to the LCRA Water Management Plan. *Table 4.21* contains a comparison of LCRA's Highland Lakes supplies and water commitments. *Table 4.22* contains a comparison of LCRA's Irrigation water supplies and water commitments.

Table 4.21 LCRA Municipal, Manufacturing, and Steam Electric Water Supply/Commitment Comparison (ac-ft/yr)

LCRA Water Supply	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Highland Lakes Firm						
Water Supply	402,172	390,001	384,001	378,101	372,201	366,468
Firm Water Commitments	402,723	415,820	415,820	415,820	415,820	415,687
Water Surplus/Deficit	(551)	(25,819)	(31,819)	(37,719)	(43,619)	(49,219)

Note: The water supply is detailed in *Table 3.24*. The water commitments are detailed in *Tables 2.20* and *3.25*. The Firm Water Commitments presented in *Table 4.21* represent LCRA's Highland Lakes water commitments and their anticipated expiration dates. The contract extensions presented in this table represent the value of water required to extend LCRA's Highland Lakes contracts through 2060. Commitments include the out-of-basin 25,000 ac-ft/yr demand from Region G in Williamson County under the HB 1437 program and other current, separate out-of-region commitments (Leander, Cedar Park, and Lometa).

Table 4.22 LCRA Irrigation Water Supply/Commitment² Comparison (ac-ft/yr)

LCRA Water Supply	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Irrigation Water Supply	212,055	210,792	210,792	210,792	210,792	210,792
Irrigation Water Commitments	415,152	399,449	384,322	369,728	355,610	335,851
Water Surplus/Deficit	(203,097)	(188,657)	(173,530)	(158,936)	(144,818)	(125,059)

Note: The water supply is detailed in Table 3.24. The water commitments are detailed in Tables 2.20 and 3.25. The total water commitment presented in Table 4.22 includes a portion of the rice irrigation demands for Region K (ratio for Colorado, Matagorda and Wharton Counties applied from the 2001 plan: 0.75, 0.87 and 0.55).

These tables indicate that the LCRA does not have enough water to meet all of its water commitments under the assumptions being used in this plan. How LCRA proposes to meet these additional needs is discussed in Section 4.6.1. It is also important to recognize that this analysis does not include

² The irrigation water commitments discussed here reflect the projected demands within LCRA's Irrigation Divisions and Pierce Ranch which are currently being met by LCRA's ROR water rights and supplemental interruptible stored water from lakes Buchanan and Travis in accordance with LCRA's Water Management Plan on an annual contract basis.

interruptible water supplies projected to be available over the planning horizon through the implementation of the Water Management Plan (WMP) or projected municipal return flows. These supplies are discussed later in this chapter as water management strategies.

4.4.2 City of Austin

The COA currently has two major sources for its surface water. These sources include the ROR water rights and a contract with LCRA to receive firm water from any source under the LCRA water rights system. These rights are separated by the use of the water. The COA has separate rights for municipal and manufacturing uses and steam electric power generation. *Tables 4.23* and *4.24* contain comparisons of the COA's water supplies to its water commitments in these two areas.

Table 4.23 COA Municipal and Manufacturing Water Supply/Commitment Comparison (ac-ft/yr)

COA Water Supply	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Municipal and Manufacturing						
Water Supply	325,000	325,000	325,000	325,000	325,000	325,000
Municipal and Manufacturing						
Water Commitment	197,877	228,695	271,486	314,731	355,430	387,905
Water Surplus/Need	127,123	96,305	53,514	10,269	(30,430)	(62,905)

Note: The water supply is detailed in *Table 3.26*. The water commitments are detailed in *Tables 2.18* and *3.27*. The Water Commitments presented in *Table 4.23* represent the COA's water commitments. Note that some current COA wholesale customers will be getting new LCRA raw water contracts, but as a requirement of their contract, COA will continue to treat and transport their potable water supplies. These customers/contracts are listed in *Table 4.31*.

This table indicates that the COA has sufficient water to meet its municipal and manufacturing needs through the year 2040. By the year 2050, it is anticipated that the COA will have a deficit of approximately 30,000 ac-ft/yr. By the year 2060, it is anticipated that the COA will have a deficit of approximately 63,000 ac-ft/yr.

Table 4.24 COA Steam Electric Water Supply/Commitment Comparison (ac-ft/yr)

COA Water Supply	Year 2010	Year 2020	Year 2030	Year 2040	Year 2050	Year 2060
Steam Electric Water Supply	27,094	27,094	27,094	27,094	27,094	27,094
Steam Electric Water Commitment	31,722	32,802	40,102	49,239	53,239	60,149
Water Surplus/Need	(4,628)	(5,708)	(13,008)	(22,145)	(26,145)	(33,055)

Note: The water supply is detailed in *Table 3.26*. The water commitments are detailed in *Tables 2.19* and *3.27*. The water commitments presented in *Table 4.24* represent all of the steam electric generating demands for Travis County plus a portion of the Fayette County demands (based on estimated current supply levels and approved projections).

This table indicates that by the year 2030, it is anticipated that the COA will have a deficit of approximately 13,000 ac-ft/yr. By 2060, the COA will have a deficit of approximately 33,000 ac-ft/yr.

4.5 EVALUATION AND SELECTION OF WATER MANAGEMENT STRATEGIES

The primary emphasis of the regional water planning effort is the development of regional water management strategies sufficient to meet the projected needs of WUGs throughout the state. Water needs are determined by comparing user group water demands to the water supplies available to that user group. The following sections present information concerning the identification, evaluation, and selection of specific water management strategies to meet specific projected water supply shortages for the LCRWPA (Region K). It should be noted that local plans that are not inconsistent with the regional water supply plan are also eligible to apply for TWDB financial assistance to implement those local plans even though they have not been specifically recommended in this plan.

Regionwide, the comparison of available water supplies and water demands identified 73 separate WUGs that have projected water supply shortages, or needs, by the year 2030, and an additional 19 WUGs with projected water supply shortages before the year 2060. The estimated water need is approximately 297,000 ac-ft/yr in 2030 and 370,000 ac-ft/yr in 2060. This identified shortage is based on conservative water availability estimates, which assume only water available during a repeat of the worst DOR, that all rights are being fully and simultaneously utilized, and exclude water available from LCRA on an interruptible basis and water available as a result of municipal return flows to the Colorado River. The water management strategies are intended to alleviate these projected water supply shortages. A table of the recommended water management strategies by WUG is contained in *Appendix 4A*. *Appendix 4B* contains the cost breakdown for each strategy and assumptions/methodology for the cost calculations.

In this plan, the LCRWPG looked at opportunities for the LCRA to expand their regional water supply to new areas, including portions of Bastrop County. The LCRWPG also looked at strategies such as off-channel reservoirs that would potentially help the LCRA to more efficiently manage their regional water system.

4.5.1 Utilization of Return Flows

Approximately 60 percent of all municipal diversions by the City of Austin (COA) and others are currently returned to the Colorado River as effluent discharges. Unless otherwise authorized by permit, once discharged to the river, this water is subject to diversion under existing water rights' permits. State law currently allows a water right holder to consumptively use all of the water authorized by permit, unless discharge is required by permit. Direct reuse is one possible manner in which a water right holder may increase consumptive use of the water authorized for diversion and use under the water right. The Region K Cutoff WAM for the Colorado River that was used for determining water supply in this round of planning excludes all sources of return flows from the model. The inclusion of return flows in the model is proposed as a water management strategy for the benefit of water rights and environmental flows and indirect reuse by the City of Austin in future regional water plans, consistent with a settlement agreement between Austin and the Lower Colorado River Authority.

The exclusion of all return flows in the determination of water supply leads to conservatively low estimates of available surface water supply for planning purposes. Water shortages for entities that currently use and rely upon the return flows may not be realistic as long as upstream return flow discharges continue into the future. For purposes of this plan, the water management strategies include use of projected state surface water that result from discharge of return flows by the COA, the City of Pflugerville, and Aqua Water Supply Corporation. Strategies related to COA's reuse of treated effluent are described in Section 4.6.2.2. This plan assumed projected levels of effluent to be discharged by the

City of Pflugerville and Aqua Water Supply Corporation of 60 percent of the total projected demand for raw water in 2060, or about 12,500 ac-ft/yr. Effluent not being directly reused by Austin as a strategy and these other projected levels of effluent were made available to help meet environmental flow needs of the river and Matagorda Bay and water rights, according to the prior appropriation doctrine. Therefore, return flow assumptions for purposes of developing LCRA's water strategies incorporate and reflect the COA's proposed strategies of direct reuse of effluent to meet municipal demand and demand at the Sand Hill Energy Center in Travis County and the return flow sharing strategy described in Section 4.5.1.1.

4.5.1.1 COA Return Flows Strategy

In 2007, the City of Austin and LCRA signed a settlement agreement that resolved several permitting disputes and outlined a proposed arrangement for shared rights to the beneficial use of return flows discharged by the City of Austin. According to the settlement agreement, the two parties will seek regulatory approval to effectuate the strategy of joint return flow benefit. The settlement contemplates that the return flows will be managed between the two parties to first help satisfy environmental flow needs before Austin conducts indirect reuse. If Austin has an indirect reuse project in operation that is consistent with the terms and conditions of the Settlement Agreement, LCRA will not call on return flow passage unless environmental needs and Austin's indirect reuse needs are met.

At this time, the City of Austin has not developed plans for implementing an indirect reuse project; therefore, the model did not include a City of Austin indirect reuse component. Future Region K plans are expected to include assumptions related to indirect reuse by the City of Austin. Consistent with the 2007 settlement agreement language regarding the shared rights to the beneficial use of return flows and because Austin has not proposed a specific indirect reuse project for this plan, return flows were modeled for downstream water right availability. First, return flows were allocated towards meeting environmental flow requirements (instream flow and bay and estuary freshwater inflow requirements) of LCRA's Water Management Plan, as contained in the Region K Cutoff model. Thereafter, the return flows were made available for use by downstream water rights according to the doctrine of prior appropriation.

In this plan, after meeting the LCRA WMP environmental flow requirements in the Region K Cutoff model, the projected remaining return flows were made available to meet all downstream demands, including environmental, municipal, irrigation, and industrial (including steam electric) water needs, in accordance with the prior appropriation doctrine. The partitioning of Austin's municipal return flows between environmental flow requirements and water rights is indicated by *Table 4.25*. It should be noted that the partitioning of return flows shown in *Table 4.25* is dependent on the modeling assumptions used in the Region K Cutoff model and is presented here only as a illustration of concept. Environmental flow requirements will likely change in the future based on the latest scientific studies and actual water right utilization levels throughout the basin. The settlement agreement contemplates a framework for joint management between the two parties so that environmental flow requirements, as based on the best available science at the time, will be satisfied with Austin's return flows prior to beneficial use by either party's water rights.

Table 4.25 Example of Austin Municipal Return Flow Partitioning

	2010	2020	2030	2040	2050	2060
Total Projected Austin Municipal Return Flow Discharged to Stream After Direct Reuse by Austin, ac-ft/yr	98,638	99,792	105,750	116,775	124,632	132,660
Average Return Flow Used to Satisfy Environmental Flows During Drought of Record, ac-ft/yr	51,341	51,562	54,843	61,035	64,012	66,789
Average Return Flow Available for Any Water Right by Priority Order During Drought of Record, ac-ft/yr	47,296	48,230	50,907	55,739	60,619	65,871
Total	98,637	99,792	105,750	116,775	124,631	132,660
Average Return Flow Used to Satisfy Environmental Flows for All Years in Period of Record, ac-ft/yr	38,346	37,094	38,952	43,286	45,616	47,662
Average Return Flow Available for Any Water Right by Priority Order for All Years in Period of Record, ac-ft/yr	60,291	62,698	66,798	73,489	79,015	84,998
Total	98,637	99,792	105,750	116,775	124,631	132,660

Modeling for Table 4.25 uses the Region K Cutoff assumption, the 1999 LCRA Water Management Plan environmental flow requirements for Lakes Travis and Buchanan, and assumes all water rights are exercised according to their fully authorized amounts. City of Austin municipal return flows are added to the model according to the decadal projection of discharge to the river as given by Table 4.26.

As indicated in *Table 4.26*, the presence of these return flows reduces the calculated shortages identified in Chapter 4 which were the result of the conservative modeling assumptions used in Chapter 3.

The quantity of return flows is projected to increase over the 50-year planning period due to increased water demands in the Austin area even though the quantity of water reused during this period will increase as well, as shown in *Table 4.37*. However, beyond 2060, the COA projects that it will significantly increase its reuse of treated effluent to nearly 100 percent through direct and indirect reuse with the indirect reuse being implemented only in accordance with the 2007 settlement agreement. As return flows discharged by Austin diminish in the future due to enhanced reclamation of water, other sources may need to be dedicated or developed to meet needs that may currently be met by return flows discharged by Austin.

Table 4.26 Estimated Continued Benefits of Projected City of Austin Return Flows in the 2011 Region K Plan

COA Return Flows	2010	2020	2030	2040	2050	2060			
Projected COA Effluent minus reuse	98,638	99,792	105,750	116,775	124,632	132,660			
Estimated Benefits to Major ROR Water Rights ¹									
Highland Lakes ¹	26,535	26,685	26,822	29,067	28,384	29,542			
COA 1	27,188	24,954	25,692	33,549	33,263	39,528			
STP 1	1,088	998	1,028	1,118	1,109	1,129			
Garwood ²	848	779	802	872	865	881			
Gulf Coast 2	3,263	2,995	3,083	3,355	3,326	3,388			
Lakeside ²	2,175	1,996	2,055	2,237	2,218	2,259			
Pierce Ranch ²	4,601	4,223	4,348	4,731	4,691	4,778			
Irrigation ³	18,665	19,687	22,900	27,781	30,382	33,838			
Estimated Benefit to Matagorda Bay	14,276	17,474	19,020	14,066	20,394	17,317			

Note: Estimates derived from 2006 Region K Plan RJ Brandes Company preliminary modeling using updated demands.

Opinion of Probable Costs

There are no capital costs associated with the diversion of this water because the diversions are done under existing water rights permits with existing infrastructure.

Issues and Considerations

Issues related to ownership of treated wastewater effluent are discussed in Sections 4.15 and Chapter 8 (Section 8.2).

4.5.1.2 Downstream Return Flows

In addition to the COA, return flows for the City of Pflugerville and Aqua Water Supply Corporation were also taken into consideration. This plan assumed projected levels of effluent to be discharged by the City of Pflugerville and Aqua Water Supply Corporation of 60 percent of the total projected demand for raw water in 2060, or about 12,500 ac-ft/yr. *Table 4.27* shows the estimated benefits of these return flows to the major water rights holders in the region.

¹ The benefits for each major water right were computed by adjusting the estimated benefits from the modeling work completed in the 2006 Region K Plan for return flow amounts projected in the 2011 Region K Plan. The benefits represent the estimated increase in firm supply available to each water right due to the addition of the City of Austin return flows in the model.

² These values represent the gains due to return flows in the portions of the water rights used for non-irrigation purposes.

³ This value represents the gains due to return flows in the portion of the Irrigation ROR water rights that are used for irrigation purposes.

Table 4.27 Estimated Benefits of Projected Pflugerville and Aqua WSC Return Flows

Return Flows	2000	2010	2020	2030	2040	2050	2060
Projected Effluent				1,250	5,000	9,375	12,500
Estimated Benefits to M	ajor ROR Wa	iter Rights 1					
Highland Lakes ¹				300	1,200	2,250	3,000
COA ¹				238	950	1,781	2,375
STP ¹				11	45	84	113
Garwood ²				10	40	75	100
Gulf Coast ²				169	675	1,266	1,688
Lakeside ²				106	425	797	1,063
Pierce Ranch ²				100	400	750	1,000
Irrigation ³				213	850	1,594	2,125
Estimated Benefit to Matagorda Bay				104	415	778	1,038

Note: Estimates derived from 2006 Region K Plan RJ Brandes Company preliminary modeling using updated demands.

Opinion of Probable Costs

There are no capital costs associated with the diversion of this water because the diversions are done under existing water rights permits with existing infrastructure.

Issues and Considerations

Issues related to ownership of treated wastewater effluent are discussed in Sections 4.15 and Chapter 8 (Section 8.2).

4.6 WHOLESALE WATER PROVIDER MANAGEMENT STRATEGIES

There are two Wholesale Water Providers, as defined by the State planning process in Region K, LCRA and the COA. The COA is also a water customer of LCRA, and together they supply a large portion of Region K's water needs for multiple beneficial purposes.

4.6.1 LCRA Water Management Strategies

LCRA holds water rights to over 2.1 million ac-ft of water in the Colorado River Basin. Combined, these water rights authorize every legal purpose of use, and also provide for protection of certain environmental flow needs. The LCRA is directed by the Texas Legislature to be the steward of this water in serving as the regional water supplier. The LCRA supplies water for municipal, irrigation, manufacturing, steam electric, mining, and other water uses. The LCRA currently supplies water to entities in Bastrop, Burnet,

¹ The values for each major water right represent the estimated increase in firm supply available to each water right due to the addition of the Pflugerville and Aqua WSC return flows in the river.

² These values represent the gains due to return flows in the portions of the water rights used for non-irrigation purposes.

³ This value represents the gains due to return flows in the portion of the Irrigation ROR water rights that are used for irrigation purposes.

Colorado, Fayette, Hays, Lampasas (Region G), Llano, Matagorda, San Saba, Travis, Wharton, and Williamson (including the portion of Williamson in Region G) Counties.

Table 4.28 below provides a summary of all of the recommended strategies related to the LCRA as a wholesale water provider. The sections following the tables discuss the strategies in more detail.

Table 4.28 Summary of LCRA Water Management Strategies (ac-ft/yr)

LCRA Strategies	2010	2020	2030	2040	2050	2060
Available Interruptible Water for Irrigation	255,493	196,568	137,643	78,718	19,793	0
Amendment to Irrigation for Municipal and Industrial	43,000	47,000	55,000	65,000	65,000	106,600
LCRA Contract Amendments	3,708	5,265	6,165	8,503	10,955	12,911
LCRA New Water Sale Contracts	300	35,864	37,082	59,722	60,477	70,210
LCRA Commitment Reductions ¹		15,000	17,000			
LCRA-SAWS Water Project ²		201,950	201,950	201,950	201,950	201,950
Unappropriated Flows and Off- Channel Storage						47,000
Enhanced Municipal and Industrial Conservation			2,000	10,000	20,000	20,000
Aquifer Storage and Recovery				10,000	10,000	10,000
Reuse by Highland Lakes Communities		500	2,000	5,000	5,000	5,000

¹ Reduction in LCRA Commitments is due to improved efficiency in Ferguson and COA reuse. The use of this strategy is based on calculated surpluses shown in the 2011 Region K Water Plan only and does not assume that any legal changes to existing commitments would occur as a result of this strategy.

4.6.1.1 General LCRA Strategy - LCRA System Operation Approach

The State has directed LCRA to optimize and conserve available water to meet the existing and future water needs of the region. To meet existing water needs in the basin, LCRA has traditionally used its water rights together as a system. To date, LCRA has largely done this through its Water Management Plan (discussed below) and thus, its efforts have been focused on the management of Lakes Buchanan and Travis to meet firm municipal and industrial customer demands while continuing to provide interruptible supplies to downstream irrigators and provide both firm and interruptible supplies to meet environmental flow needs.³

To meet increased and changing water needs over time, LCRA plans to continue to employ a system approach. Future amendments to LCRA's WMP will be required. As firm demands change over time, the amount of interruptible water supply that will be available from the Lakes to help meet irrigation, environmental, recreational, and other water needs will require adjustment. Further, LCRA's ROR rights that are currently used primarily to meet irrigation needs will be needed to meet increased municipal and industrial needs. LCRA has sought and will continue to seek amendment of all of these other existing

_

² Strategy components of the LCRA-SAWS Water Project for Region K include On-Farm Conservation, Irrigation District Conveyance Improvements, Development of New Rice Varieties, and Conjunctive Use of Groundwater. Please see Section 4.9 for detailed discussion of these various components.

³ For a general description of the LCRA Water Management Plan (WMP), see Section 3.2.1.1.2.1.

water rights to allow for the diversion and use of water for multiple beneficial purposes in other locations as needed to supplement the firm water supply available from the Lakes. Future irrigation water shortages that result from use of these ROR rights to meet other municipal and industrial demands will be largely addressed through continued availability of interruptible water, enhanced water conservation, development of groundwater, and other water management strategies described in this section. Throughout the basin, LCRA will continue to pursue aggressive water conservation measures and other water use efficiencies to continue to meet new and increasing water needs within LCRA's water service area.

Issues and Considerations

The use of a system approach allows LCRA to maximize the various amounts of water available. It also allows interruptible flows to contribute to instream flow needs in all of the river segments prior to the main rice growing areas in the Lower Basin, and allows greater flexibility to meet all needs, including instream flow and bay and estuary needs not only in quantity but also in timing of the flow needs. The system approach that LCRA plans to continue to employ, involves the use of a number of specific strategies tied to major projects such as the LSWP⁴ and HB 1437 conservation savings, which are examined in greater detail in succeeding sections, with an analysis of the environmental consequences of each.

4.6.1.2 Amendments to Water Management Plan

To meet increased firm customer demands, LCRA will seek to amend its Water Management Plan to adjust the triggers at which it curtails the availability of interruptible water supply from Lakes Buchanan and Travis to meet irrigation, environmental and other needs. Both pending and potential revisions to the WMP are considered in this regional plan without waiver of arguments in potential or pending litigation.

4.6.1.2.1. Environmental Flow Assumptions for WMP Revisions

For purposes of environmental flow commitments, this plan reflects conditions specified in the 1999 WMP, as well as certain aspects of the proposed WMP now pending before the Texas Commission on Environmental Quality (TCEQ).

For the simulation of 2010 conditions, all of the key environmental flow elements of the current (1999) WMP are represented in the modeling, including critical instream flow and bay and estuary freshwater inflow criteria engaged all of the time, target instream flow criteria engaged when the system storage is greater than 1,100,000 ac-ft, and target freshwater inflow criteria engaged when the system storage is greater than 1,700,000 ac-ft,, with the maximum environmental flow caps implemented as stipulated in the WMP.

For the simulation of 2060 conditions, the critical instream flow and bay and estuary freshwater inflow criteria are engaged all of the time, and the additional environmental flow criteria are modified to reflect the draft 2003 WMP so that the target instream flow criteria are engaged when the system storage is greater than 1,400,000 ac-ft, and the target bay and estuary freshwater inflow criteria are engaged only when the system storage is above 1,700,000 ac-ft, which is about 93 percent of the year-2060 system

⁴ The LSWP project is the subject of litigation. For a description of the status of the project *see* p. 4-34.

conservation storage capacity (1,832,000 ac-ft). Intermediate freshwater inflow criteria are engaged when system storage is less than 1,700,000 ac-ft and greater than 1,100,000 ac-ft.

Issues and Considerations

The current (1999) WMP commits 15,950 acre feet of firm water for instream and bay and estuary flows. The pending amendment (2003) to the WMP will allocate an additional 17,490 acre feet of firm water for a total commitment of 33,440 acre feet. This water will provide some additional benefit to those two areas. However, the main issue of growth in municipal, manufacturing and steam electric demand has a potential to reduce the amount of interruptible supply available for providing over and above the minimum amounts currently included in the LCRA Water Management Plan. LCRA's ability to continue to provide interruptible surface water supplies to the lower counties for rice production does provide benefit to instream flows as these interruptible flows make their way through the river system up to the point of diversion. There is also an element of irrigation return flows during July which provides needed instream flows as well as bay and estuary flows during a historically dry time of year.

4.6.1.2.2. Interruptible Water Supply for Irrigation for WMP Revisions

The LCRA supplies water to four major irrigation operations within the three rice-producing counties. These operations include the Lakeside, Gulf Coast, and Garwood Irrigation Divisions, which are owned and operated by LCRA and the Pierce Ranch. LCRA supplies water to these four irrigation operations from its four ROR water rights to the extent that flows in the river are available, based on each water right's priority date, and up to the limits of each right. However, often in the height of the irrigation season, flows available in the Colorado River are insufficient to supply all of the needs of the four operations.

Pursuant to LCRA's Water Management Plan for Lakes Buchanan and Travis, LCRA has been able to provide water stored in these lakes to the rice irrigators on an interruptible basis during periods of low flow when ROR rights are insufficient to meet demands. Under LCRA's water rights, LCRA is permitted to develop contractual commitments with water users whose demands do not have to be met 100 percent of the time. LCRA's Water Management Plan allows such demands for interruptible stored water to be met to the extent water is available each year after firm demands are satisfied. The portion of the Combined Firm Yield of Lakes Buchanan and Travis that is not yet committed and the water that is committed but not yet being used determines the interruptible stored water that is available each year. The water that is captured and stored during flood events also adds to the amount of interruptible stored water that is available. Under the 1999 Water Management Plan, interruptible water is gradually curtailed when storage levels in the two lakes on January 1 are less than 52 percent. The curtailment is approximately a 4 percent reduction in available interruptible supply for each 100,000 ac-ft decrease in combined storage. All interruptible supply is cut off when the combined storage is less than 325,000 ac-ft on January 1 or after certain specific criteria have been met and the LCRA Board has declared a drought worse than a drought of record.

LCRA does not expect its firm customers to fully utilize their commitments for some time. Therefore, continued implementation of the LCRA Water Management Plan will provide interruptible water to rice irrigators when sufficient water is available in the Highland Lakes System.

Over time, as the current firm contracts draw fully on their commitments and the remainder of the Combined Firm Yield is contracted for, there will be less interruptible stored water available on an annual

basis and the allocation of that available interruptible supply among the irrigation operations will likely be modified.⁵ For this plan, assumed revisions to the WMP curtailment triggers for interruptible water from the Highland Lakes have been incorporated that affect the availability of interruptible supply to meet irrigation demands within the four irrigation operations. For example, in 2060, it has been assumed that interruptible irrigation supplies would be curtailed proportional to the system storage in Lakes Buchanan and Travis beginning when the storage falls below the full conservation capacity, with no interruptible water available when the system storage is below 325,000 ac-ft. The water availability analyses needed to estimate what the future triggers should be for this plan based on incorporating regional water planning demand projections for LCRA's existing customers, updated estimates for future irrigation water needs in LCRA's lower basin irrigation operations, and assumed levels of water conservation discussed elsewhere in this plan.

As discussed above, this plan includes an analysis of the amount of interruptible water expected to be available during each decade of the planning period using a modified version of the Region K Cutoff Model to include projected municipal and industrial demands, while also including projected return flows discharged by the COA over the planning period. *Table 4.29* presents the results of this analysis. The amount of interruptible stored water available to irrigators from Lakes Buchanan and Travis is estimated to decrease from approximately 255,493 ac-ft/yr in 2010 to 0 ac-ft/yr in 2060 due to increased firm demands in the basin.

Table 4.29 Available Interruptible LCRA Water Supply for Irrigation

	Available ¹ Interruptible			
Decade	Water Supply (ac-ft/yr)			
2010	255,493			
2020 ²	196,568			
2030 ²	137,643			
2040 ²	78,718			
2050	19,793			
2060	0			

Annual supply of interruptible stored water available during the critical drought year having the minimum run-of-river supply for the LCRA irrigation water rights (1956).

As the table indicates, the availability of interruptible water supply is expected to decrease significantly in the future as the demands for firm water increase.

Opinion of Probable Costs

Capital expenditures for water supply purposes would not be required to implement this alternative since diversions would be made under existing water rights. The cost of raw water for the Lakeside and Gulf Coast irrigation operations under this alternative currently ranges from \$5.93 per ac-ft. LCRA also charges additional cost for distribution and delivery of this water.

Issues and Considerations

² Simulations were conducted for only 2010, 2050, and 2060. Information for other decades was interpolated from the 2010 and 2050 results.

⁵ When LCRA purchased both the Garwood Irrigation Company and Pierce Ranch water rights, it made certain commitments to provide interruptible stored water based upon specific requirements in the purchase agreements. This affects the manner in which LCRA allocates available interruptible water supply among the four irrigation operations.

The availability of interruptible supply is a function of the actual demand for firm water supply from LCRA's Lakes Buchanan and Travis and is determined on an annual basis. Therefore, actual availability of this supply from year to year can vary greatly, largely as a function of drought conditions, lake levels, inflows into the lakes, and demands for firm water.

Environmental and Other Impacts

As noted above, the increasing municipal, manufacturing and steam electric demands have reduced the amount of interruptible water that is available for the four downstream irrigation operations, which has the potential to reduce the flows in the lower basin.

Impacts to Agriculture

Although the management strategies proposed include the amendment of existing water rights to allow uses other than agriculture, the plan is structured to provide the water that agriculture needs according to the forecast demands. Since that is the case, impacts to agriculture are expected to be low, with the possible exception of the increased cost of pumping groundwater for those irrigators using groundwater if permanent drawdowns occur from additional groundwater pumpage for irrigation. The issue of the extent and length of time that drawdowns will occur is still being investigated.

4.6.1.3 Amendments to ROR Rights

Significant amendments to LCRA's ROR irrigation rights are included as a strategy in this plan without waiver of arguments in any pending litigation or contested case hearing. These amendments are proposed to meet increased municipal and industrial demand within the Lower Colorado River Basin and are also a necessary component of the LSWP (discussed below). LCRA owns 503,750 ac-ft of water per year of water rights on the Lower Colorado River authorized for irrigation use in the Lakeside, Gulf Coast, and Pierce Ranch Irrigation Divisions. Projected total irrigation demand for water in 2060 within these three operations is expected to be approximately 250,000 ac-ft/yr, which reflects some moderate level of conservation as projected by TWDB. The future demand, with implementation of advanced agricultural conservation measures as part of the LSWP, is approximately 55,000 ac-ft/yr less than the projected level of demand for these three operations. Analysis conducted to date shows that to meet the 2060 demand, about 150,000 to 200,000 ac-ft of water per year from LCRA's water rights would be used for irrigation, along with advanced conservation, limited groundwater development for LSWP, and some interruptible supply from Lakes Buchanan and Travis.

Another existing water right owned by LCRA is the former Garwood Irrigation Company water right, which authorizes the diversion of up to 133,000 ac-ft of water per year from the Colorado River for irrigation, municipal, and industrial uses. Water demands in the Garwood operation are estimated to be approximately 80,000 ac-ft of water per year based on TWDB projections. With extensive conservation measures and improved farming practices implemented, the projected future demand in 2060 for irrigation water within this operation is expected to be on the order of 55,000 ac-ft of water per year.

Significant potential exists to optimize system operations and make additional water supplies from these water rights available to meet future water demands. Portions of these ROR irrigation water rights that would no longer be needed for irrigation because of conservation and other factors resulting in reduced irrigation demands are proposed for use as part of a system operation employing off-channel storage, potential new water rights associated with LCRA's permit application for the remaining unappropriated

water in the Lower Colorado River Basin, and backup from the Highland Lakes to develop water supplies that would help meet in-basin future needs as well as needs in the San Antonio region and Williamson County. LCRA is also proposing to use some portion of these ROR rights to meet other municipal and industrial demands in the basin. Storage of these water rights in either the Highland Lakes or in the off-channel reservoirs to be constructed as part of the LSWP is projected to increase the firm supply available from these rights on the order of 100,000 ac-ft/yr and is proposed as a strategy to meet in-basin needs by 2060. Moreover, portions of these water rights not used to meet in-basin demands are proposed for storage in off-channel reservoirs for delivery to SAWS as part of the LSWP.

For example, LCRA is proposing to use part of its Gulf Coast and Garwood Irrigation Divisions' water rights as early as 2010 to meet municipal and industrial shortages. LCRA already has a pending application to amend its Garwood water right for such purposes. LCRA is proposing to use the balance of the authorized diversions under the Garwood right (about 75,000 ac-ft/yr) to meet other needs within the Colorado River Basin such as the COA's projected 2060 demand beyond its authorized water rights, the Fayette Power Plant backup demand for LCRA, and other municipal and industrial demands downstream or in the vicinity of Lake Travis. The amendments of specific irrigation water rights contemplated at this time are provided in *Table 4.30*. These water rights were selected for amendment largely for illustrative purposes, recognizing that LCRA intends to amend any and all of its irrigation water rights to meet future and changing water needs.

Table 4.30 Amendment to Irrigation Water Rights for Municipal and Industrial Needs

Irrigation District	2010	2020	2030	2040	2050	2060
Garwood	(28,000)	(32,000)	(40,000)	(40,000)	(40,000)	(74,600)
Pierce Ranch	(15,000)	(15,000)	(15,000)	(15,000)	(15,000)	(15,000)
Lakeside						(7,000)
Gulf Coast				(10,000)	(10,000)	(10,000)

Note: Estimates derived from RJ Brandes Company preliminary modeling.

Opinion of Probable Costs

Capital expenditures for water supply purposes would not be required to implement this alternative. It is anticipated that diversions of these rights for other purposes will be done at locations already authorized for diversion under other water rights held by LCRA using existing infrastructure. The average cost of providing raw water under this alternative is currently \$138 per ac-ft, and is estimated to increase on average about 3 percent per year over the next five years, or up to \$160/ac-ft.

Issues and Considerations

Conversion of irrigation rights to serve municipal, manufacturing, and steam electric needs may not have a significant impact on downstream instream and bay and estuary flows as long as water is provided from other sources to meet the downstream irrigation needs. In addition, use of this water for municipal needs could result in a greater volume of return flows, which if returned to the river in the Austin and surrounding area locations, would provide for instream flow needs as well. In addition, the flows from such activities are more constant than the flows required for irrigation, all of which are needed during the spring, summer, and early fall. Return flows from municipal supplies are expected to be provided year

round. One exception to this is the periods of time where groundwater is used for irrigation in the lower three counties. Under this situation, the irrigation rights are not supplied by water in the Colorado and flows could be less during the months of water use by rice irrigation.

Impacts to Agriculture

As noted above, minimal impacts to agriculture are anticipated as long as alternative supplies or strategies are provided. Agricultural users of groundwater may see increased cost of production of groundwater as a result of additional drawdown related to LSWP⁶.

4.6.1.4 LCRA Contract Amendments

LCRA has wholesale contracts or Board reservations of raw water that are attributed to numerous water user groups. LCRA has indicated that it expects to continue providing water to these entities throughout the 50-year planning period and expects to meet these customers' projected increased demands for water through amendments to existing contracts to increase contract quantities. For purposes of this plan, water supplied to these customers is designated as largely coming from Lakes Buchanan and Travis. However, as discussed in more detail elsewhere in this chapter, LCRA operates its water rights as a system. To the extent that these customers have obtained contracts or amendments to contracts since 1999, their current LCRA contract expressly recognizes that water may be provided under the contract from any source available to LCRA, including supply from Lakes Buchanan and Travis, LCRA's ROR rights, groundwater, or other sources that might come under LCRA's control. To the extent that existing customer contracts do not contain this language, LCRA contracting rules require any customers seeking contract renewals or amendments to existing contracts to convert to a new form of contract that contains this language.

Capital expenditures for water supply purposes were not assumed to be required to implement this alternative. The average cost of providing raw water under this alternative is currently \$138 per ac-ft and is estimated to increase on average about 3 percent per year. As a result, it was assumed that the preferred strategy for these contractual users would be to amend the contracts with LCRA, as appropriate, to meet their needs through the 50-year planning period. *Table 4.31* contains a summary of the WUGs for which this alternative applies and the amount of water planned for in the contract amendment (where increased amounts of water are needed).

In addition, commitment reductions on LCRA contracted supplies by LCRA and City of Austin steam-electric facilities in Llano County and Travis County are potentially feasible for the 2020 and 2030 decades, based on the current demand projections included in this plan. These potential reductions of 15,000 ac-ft/yr in 2020 and 17,000 ac-ft/yr in 2030 could be made available to meet additional municipal needs for those decades only. Reduction in LCRA Commitments is due to improved efficiency in Ferguson and COA reuse. The use of this strategy is based on calculated surpluses shown in the 2011 Region K Water Plan only and does not assume that any legal changes to existing commitments would occur as a result of this strategy.

⁶ The LSWP project is the subject of litigation. For a description of the status of the project *see* p. 4-34.

Table 4.31 LCRA Contract Amendments

TTTIC	Contract Amendments (ac-ft/yr)					e-ft/yr)	
WUG	County	2010	2020	2030	2040	2050	2060
Steam Electric Power	Bastrop				1,280	2,780	2,780
Cottonwood Shores	Burnet	26	198	386	601	840	1,130
Granite Shoals	Burnet					14	95
Kingsland WSC	Burnet	10	11	12	13	14	17
Marble Falls	Burnet			56	304	275	248
Meadow Lakes	Burnet	241	382	506	593	593	593
Dripping Springs	Hays	493	1,073	1,321	1,690	2,133	2,482
Dripping Spring WSC	Hays				17	213	366
Kingsland WSC	Llano	240	240	240	240	240	240
Barton Creek West WSC*	Travis	16					
Bee Cave Village*	Travis	830	925	989	1,015	990	958
Briarcliff Village	Travis				21	47	74
Jonestown	Travis	129	233	329	416	481	554
Lakeway	Travis	1,285	1,675	1,934	2,041	2,041	2,041
Pflugerville	Travis					3	995
River Place on Lake Austin	Travis	438	528	392	268	156	55
Travis County WCID #18	Travis				4	135	283
TOTAL		3,708	5,265	6,165	8,503	10,955	12,911

^{*}LCRA Contract Amendment strategy for these WUGs includes purchase of water from West Travis County Regional Water System, which is an LCRA water utility system.

Opinion of Probable Costs

Capital expenditures for water supply purposes were not assumed to be required to implement this alternative. The average cost of providing raw water under this alternative is currently \$138 per ac-ft and is estimated to increase on average about 3 percent per year.

Issues and Considerations

Expansion of existing contracts to meet increasing municipal, manufacturing, and steam electric demands will provide for the needs of a growing population, but will reduce the amount of interruptible water available for irrigation and environmental flows. As customers use more and more of their allocation, the available interruptible supply from Lakes Buchanan and Travis will shrink and less water will be available. The system operations approach will maximize the use of the remaining interruptible supplies both for irrigation and environmental needs.

Environmental Impacts

Environmental impacts to instream flows and freshwater inflows to Matagorda Bay were analyzed for the expansion of LCRA contracts, including amendments to existing contracts (this section) and new water

sale contracts (Section 4.6.1.5). Models were run for the 2010 and 2060 scenarios. There were no resulting impacts from the 2010 contract amendments and sales. The 2060 scenario negative impacts to freshwater inflows to Matagorda Bay were less than five percent, while the instream flow impacts were generally positive (increased flows) due to the expected 30,000 ac-ft authorized diversion for steam-electric in Matagorda County that would be met by storage release. Discussion of the methodology behind the impact analysis is in Section 4.17. Tabular results of the impact analysis are in Appendix 4G. Impacts to Agriculture

The increasing municipal and manufacturing needs for water would have had a significant impact on agriculture as the available supply of interruptible water gradually diminishes over time. However, the strategies, if implemented, do contain sufficient water such that any impact on agriculture should be low.

4.6.1.5 LCRA New Water Sale Contracts

Region K has identified shortages within LCRA's service area that are not currently covered by a water sale contract from LCRA but for which LCRA may be willing and able to provide raw water. In particular, many of these include rural communities in the upper portion of the LCRWPA and current customers of the COA whose contract has or is expected to expire during the planning period. The City's current policy is that much of the raw water currently being supplied by the City to wholesale customers may need to be provided by LCRA in the future. The COA will plan to continue to treat and transport this water. As new customers, contracts for water supplied to these customers will come from any source available to LCRA, including supply from Lakes Buchanan and Travis, LCRA's ROR rights, groundwater, or other sources that might come under LCRA's control. The cities of Goldthwaite and Brady hold water rights, but they do not provide firm water during the drought-of-record. For this reason, it is suggested that the City of Goldthwaite negotiate a contract with LCRA to purchase water, which would provide a more reliable supply during times of drought. A new planned steam-electric demand in Matagorda County expects to purchase water from LCRA as well. *Table 4.32* summarizes the new LCRA contracts over the planning horizon.

Table 4.32 New LCRA Contracts

WUG	County	2010	2020	2030	2040	2050	2060
Elgin	Bastrop						3,000
Steam Electric Power	Fayette				20,975	20,975	26,885
Steam Electric Power	Matagorda		30,000	30,000	30,000	30,000	30,000
Goldthwaite	Mills	300	300	300	300	300	300
Creedmoor-Maha WSC	Travis		431	548	632	715	807
Manor	Travis		705	780	900	1,030	1,160
Manville WSC	Travis			831	2,184	2,584	3,034
Rollingwood	Travis		373	373	373	373	373
West Lake Hills	Travis		1,833	2,049	2,178	2,320	2,471
Windermere Utility Company	Travis		2,222	2,201	2,180	2,180	2,180
TOTAL		300	35,864	37,082	59,722	60,477	70,210

Opinion of Probable Costs

With the exception of Elgin, capital expenditures for water supply purposes were not assumed to be required to implement this strategy. The average cost of providing raw water under this strategy is currently \$138 per ac-ft and is estimated to increase on average about 3 percent per year. Because Elgin is currently on groundwater, they would require infrastructure to treat surface water. The assumed infrastructure is a surface water treatment plant, pump stations, and a transmission pipeline. Capital costs were calculated to be approximately \$17.5 million, with total project costs equaling \$23.5 million, and an annual per acre-foot cost of \$1,142. More details are available in *Appendix 4B*.

Issues and Considerations

Much of the water that would be dedicated to new LCRA contracts in Travis County is already being supplied from the Highland Lakes system. The only change will be that LCRA will be supplying them with raw water instead of the City of Austin. Austin will continue to treat and transport the water to these entities. As a result, the environmental impact will likely be negligible since switching to LCRA allows LCRA to provide service from any one of their sources of water which increases flexibility and allows greater utilization of existing sources LCRA's release of water from the Highland Lakes benefit the instream flows in the Colorado River on the way to the customers. See *Section 4.6.1.4* for more discussion on environmental impacts.

Impacts on Agriculture

Large new contracts that would need to utilize supplies from Lakes Buchanan and Travis or other LCRA firm water supplies may decrease the amount of water available for agriculture.

4.6.1.6 Advanced Conservation to Meet Demand for Irrigation

LCRA has two projects that contemplate the implementation of advanced conservation to extend the available water supplies to the four irrigation operations. These projects include those necessary to implement HB 1437 (see Sections 4.8.6 and 4.9.5 herein for a summary of HB 1437) and the LSWP⁷ (refer to Section 4.9). Generally, these strategies include a variety of on-farm conservation measures, indivision irrigation improvements, and development of a new rice variety to reduce water consumption. Water conservation potential under the LSWP is estimated to be up to 118,000 ac-ft/yr and under HB 1437, 25,000 ac-ft/yr or more by 2060.

These strategies are more fully described in Sections 4.9 and 4.15 of this chapter.

4.6.1.7 Groundwater Development to Meet Irrigation Shortages During Drought

The development and use of groundwater in the Lower Colorado River Basin is also being proposed as a means for meeting some of the demand for irrigation water. The use of this groundwater will reduce dependence of these irrigation operations on the Highland Lakes for backup supplies of surface water during dry periods, thus allowing more water to be retained in storage in the Highland Lakes or used to meet future needs.

⁷ The project is the subject of litigation. For a description of the status of the project *see* p. 4-34.

Recent information regarding the status of the LSWP groundwater studies and this strategy are more fully described in Sections 4.9.3 and 4.15 of this chapter.

4.6.1.8 Application for Unappropriated Flows and Off-Channel Storage

LCRA has pending an application to appropriate remaining flows in the lower part of the Colorado River Basin for storage in off-channel reservoirs. Subject to potential or pending litigation and the discussion in Section 4.15 of this chapter, LCRA intends to capture these flows and use them in conjunction with other water supplies available to it as part of a system operation. This water may ultimately be used to meet demands within the Colorado River Basin or to meet requirement of the LSWP. Water available under this permit will depend on the conditions imposed on the permit for purposes of protecting environmental flows. As a very conservative measure, this analysis included an assumption that target instream flow and freshwater inflow requirements would be imposed on this junior water right before diversions would occur.

The environmental impacts of this strategy on the Colorado River and Matagorda Bay were evaluated in Phase I of this round of planning. Due to the stringent environmental requirements that need to be met prior to excess flows being diverted for off-channel storage, limited impacts to instream flows and freshwater inflows to Matagorda Bay are expected during lower-flow conditions. Negative impacts of less than five percent occur during high-flow periods. The results of this analysis can be found in *Appendix 4F*, as well as in the Region K Phase I Task 2 Study Report. Discussion of the methodology behind the impact analysis is in *Section 4.17*. An alternative form of this strategy is discussed in Section 4.15, with results in *Appendix 4G*.

4.6.1.9 LCRA-SAWS Water Project (LSWP)⁸

The 2002 State Water Plan included a proposal to temporarily transfer up to 150,000 ac-ft/yr of water from the Lower Colorado River Basin to the Region L water planning area. The objective of this proposal was and is to satisfy long-term water shortages in both Region K and Region L. In 2001, the Region K planning group also considered and passed a resolution that set out a nine-point policy to be considered by the regional planning group in evaluating the proposed inter-basin transfer of this water to Region L. That policy is included in this plan under Section 8.2.1.

In 2002, LCRA entered into an agreement with the San Antonio Water System (SAWS) to effectuate this proposal. This project is now referred to as the LCRA-SAWS Water Project (LSWP). Prior to finalizing the agreement with SAWS, specific legislation was enacted that imposes several restrictions and requirements on the LSWP (Texas Special District Code 8503 (30). Specifically, the LCRA Board must find that the contract:

- 1. Protects and benefits the Lower Colorado River watershed and the authority's water service area, including municipal, industrial, agricultural, recreational, and environmental interests
- 2. Is consistent with regional water plans filed with the Texas Water Development Board on or before January 5, 2001
- 3. Ensures that the beneficial inflows remaining after any water diversions will be adequate to maintain the ecological health and productivity of the Matagorda Bay system

 $^{^{8}}$ The project is the subject of litigation. For a description of the status of the project *see* p. 4-34.

- 4. Provides for in-stream flows no less protective than those included in the authority's WMP for the Lower Colorado River Basin, as approved by the commission
- 5. Ensures that, before any water is delivered under the contract, the municipality has prepared a drought contingency plan and has developed and implemented a water conservation plan that will result in the highest practicable levels of water conservation and efficiency achievable within the jurisdiction of the municipality
- 6. Provides for a broad public and scientific review process designed to ensure that all information that can be practicably developed is considered in establishing beneficial inflow and instream flow provisions
- 7. Benefits stored water levels in the authority's existing reservoirs

These and additional requirements contained in the legislation and final agreement between LCRA and SAWS mirror many of those contained in the nine-point policy of the 2001 Plan. For example, the transfer is temporary; it benefits both regions by substantially reducing projected water shortages in Region K and in Region L; the system operation necessary for the project maximizes use of inflows available below Austin; and the goal is to design a project that has minimal detrimental environmental, social, economic and cultural impacts and provides benefits to lake recreation over what would occur without the LSWP.

Opinion of Probable Costs

The total estimated capital cost for the LSWP is \$2,159,600,000. Per the Definitive Agreement between LCRA and SAWS, SAWS is responsible for LSWP capital costs. The costs are paid primarily through water use fees and surcharges over the life of the project. Region K is not responsible for the capital costs associated with the LSWP.

Issues and Considerations

The project is being developed in two phases, study and implementation. The study phase is intended to determine whether a project can be designed to meet these legislative requirements, and the policies adopted by the Region K Planning Group for inter-basin transfers. At the conclusion of the study period, a determination will be made whether to proceed with the project. This project uses an innovative approach to meeting the demands of two basins by enhancing LCRA's ability to optimize the use of its water rights, in combination with aggressive conservation and development of limited groundwater for inbasin uses. Many of the strategies identified in this plan are also component projects of the LSWP. As such, there is a significant environmental component that must be satisfied prior to any projects from LSWP going forward.

The project is currently in litigation. Feasibility studies as of early 2009 indicated that water cannot be made available for SAWS while meeting all requirements of the LCRA Act and of the Definitive Agreement between LCRA and SAWS (including quantity and duration terms). At the request of SAWS made on January 14, 2009, LCRA has taken steps to reduce ongoing study expenses during 2009. While work was done to finalize studies which were close to completion, all other work, including all permitting work, has been postponed at SAWS' request pending evaluation of the latest feasibility studies and their implications. On August 24, 2009, SAWS filed a lawsuit concerning the project in Travis County District Court.

As to status of particular studies:

Environmental Studies

- Colorado River and Off-channel Storage Facility Water Quality: In early 2009, the study team updated the Diel Dissolved Oxygen (DO) model memo; performed analysis of the lower boundary condition for future scenarios; and revised the structural equation modeling (SEM) memo. All other work has been postponed at SAWS' request pending evaluation of the latest feasibility studies and their implications.
- Colorado River Flow Relationships to Aquatic Habitat and State Threatened Species: Blue Sucker: During early 2009, this study finalized a memorandum on temperature tolerances of freshwater fish in the lower Colorado River as part of the climate change work. All other work has been postponed at SAWS' request pending evaluation of the latest feasibility studies and their implications.
- *Matagorda Bay Health Evaluation:* In early 2009, the team finalized the long-term monitoring recommendations; bio-stats report; bay health impact and alternatives assessment approach memorandum; and sea level change document. All other work has been postponed at SAWS' request pending evaluation of the latest feasibility studies and their implications.

Groundwater Studies

• *Groundwater for Agriculture:* During early 2009, the team finalized the groundwater model report. All other work has been postponed at SAWS' request pending evaluation of the latest feasibility studies and their implications.

Conservation Studies

• Agricultural Conservation in Key Irrigation Divisions and Rice Research: During early 2009, the agricultural conservation team members completed final drafts on the potential effect of irrigation return flows on flows in the San Bernard River and Sandy Creek report and climate change analysis report. The rice varietal research continued throughout 2009. An application to the Texas Seed Certification Program and Plant Board for approval of a variety under the Texas Seed Certification Program and for the Plant Variety / Germplasm Disclosure Form and Breeder / Contributor Data Sheet for the Office of Technology Commercialization of the Texas A&M System was submitted. All other work, besides the rice varietal research, has been postponed at SAWS' request pending evaluation of the latest feasibility studies and their implications.

Engineering Studies

- Surface Water Availability Assessment: In early 2009, the surface water availability team incorporated project requirements into the water availability model under 2050 and 2060 conditions to determine the firm water delivery available to SAWS. These results showed that water cannot be made available for SAWS while meeting all requirements of the LCRA Act and the Definitive Agreement between LCRA and SAWS (including quantity and duration terms).
- Facility Siting, Design, and Affected Environment: During early 2009, the facility siting team finalized the dam breach analysis impacts memo, uncertainty analysis memo, and geotechnical investigations memo. All other work has been postponed at SAWS' request pending evaluation of the latest feasibility studies and their implications.

The following additional activities are ongoing.

- Permitting Processes Required for Implementation: During 2009, all permitting work was
 postponed at SAWS' request pending evaluation of the latest feasibility studies and their
 implications.
- Communications and Public and Stakeholder Involvement: In 2009, the project team maintained
 a public Web site and posted project work products as they were completed. In February 2009,
 three project update meetings were held in El Campo and Burnet. All other work has been
 postponed at SAWS' request pending evaluation of the latest feasibility studies and their
 implications.
- Science Review Panel: During 2009, the science review panel reviewed work products submitted in late 2008 and early 2009. All other work has been postponed at SAWS' request pending evaluation of the latest feasibility studies and their implications.
- Social and Economic Studies: During early 2009, the socioeconomic team finalized the Farm Income Maximization Model (FIMM) report. All other work has been postponed at SAWS' request pending evaluation of the latest feasibility studies and their implications.
- Waterfowl and Wildlife: During early 2009, the team members updated the Waterfowl Energy Availability Model (WEAM) with model validation data in preparation for further alternatives analysis. All other work has been postponed at SAWS' request pending evaluation of the latest feasibility studies and their implications.
- *Uncertainty and Climate Change:* During early 2009, the uncertainty team members submitted the Phase I Comprehensive Uncertainty Report. All other work has been postponed at SAWS' request pending evaluation of the latest feasibility studies and their implications.

Impacts to Agriculture

The proposed project would have a significant beneficial impact on agriculture to the extent that funds will be provided for conservation improvements that could not be afforded by most farmers. Implementation and long term success of conservation measures will require some adaptation by farmers, but many of the more successful farmers have already implemented these measures to try to stay competitive.

For more information about how this proposed project relates to irrigation water management strategies refer to Section 4.9.

Environmental Impacts

As part of the regional water planning process, this strategy was evaluated by the LCRWPG for its environmental impacts in the same way other strategies in the plan were. The results of the planning group's impact analysis showed that impacts to instream flows and freshwater inflows were both positive and negative, depending on the season (month(s) of year) and the location point on the river of the analysis. This is a complicated strategy with multiple components including streamflow diversions and agricultural conservation that would reduce irrigation demands during certain parts of the year. The

freshwater inflows to Matagorda Bay are impacted negatively by less than five percent, and the number of times the threshold level of flow (15,000 ac-ft/month) is met increases slightly. The impacts on instream flows vary widely, although the subsistence-level flows are less impacted by the strategy, with negative impacts of 10 percent or less. Discussion of the methodology behind the impact analysis is in *Section 4.17*. Tabular results of the impact analysis are in Appendix 4G. When this strategy is included as part of the comprehensive strategy model, the comprehensive impact is much less negative, due to the City of Austin return flows (see Chapter 7).

4.6.1.10 Enhanced Municipal and Industrial Conservation

Sections 4.6.1.10, 4.6.1.11, and 4.6.1.12 are water management strategies that LCRA is considering that were developed as part of their Water Supply Resource Plan. This water would either decrease demand or provide additional firm yield to LCRA as a wholesale water provider. The descriptions of the strategies are from the *Water Supply Resource Plan: Water Supply Option Analysis*, prepared by CH2M Hill for LCRA, in July 2009.

This water management strategy assumes water savings beyond the Conservation and Additional Conservation strategies discussed in *Section 4.8.1*. This strategy includes industrial conservation as well as municipal, the minimum values of 120 gpcd was used (rather than 140 gpcd which is used in *Section 4.8.1*), and the percent reduction of projected per capita use is approximately one-half percent per year for forty years,

As a wholesale water provider, any conservation program implemented would rely on, and require coordination with, water user groups within the LCRA's service area, as well as other stakeholders. It is anticipated that the LCRA's role in an enhanced conservation program would be primarily to provide education, enforce regulations, or fund incentives for its firm water customers (e.g. wholesale customers, utilities, and industrial and power customers).

LCRA recently completed its 2009 Water Conservation Plan that addresses water conservation practices for its firm water customers (municipal, industrial, power generation and recreational). These efforts include five-year and ten-year implementation plans that will guide effective water conservation throughout communities in LCRA's rapidly growing service area. More details on the 2009 Water Conservation Plan can be found online at:

http://www.lcra.org/library/media/public/docs/savewater/2009_LCRA_Water_Conservation.pdf.

Potential conservation measures include education, regulations and rebates and other incentives for water efficiency. These measures focus on the municipal, commercial and industrial sectors. Because landscape irrigation represents the largest water use in the residential and commercial sectors, several of the measures are geared toward irrigation water use reduction, e.g., rain and freeze sensors, irrigation standards, and no-waste ordinances.

Leak detection, typically associated with a municipal water system audit, is a useful tool in eliminating water loss and a specific effort LCRA might consider as part of an enhanced conservation program. LCRA could encourage customers to use the leak detection and audit assistance programs offered by the Texas Water Development Board. In addition, LCRA could develop a conservation loan, grant or rebate program to encourage leak detection and repair within the planning area. In this program, customers would receive loans, grants, rebates or other incentives to implement leak detection and repair programs.

Alternately, LCRA could assist their customers with system leak detection programs themselves by providing staff to conduct the audits and/or aid in leak repair.

Table 4.33 below shows the expected additional water savings from the enhanced municipal and industrial conservation strategy.

Table 4.33 Additional Water Savings from Enhanced Conservation (ac-ft/yr)

Decade	Water Savings (ac-ft/yr)
2010	0
2020	0
2030	2,000
2040	10,000
2050	20,000
2060	20,000

The cost for this strategy was developed as part of the *Water Supply Resource Plan: Water Supply Option Analysis* for LCRA. The cost was determined to be a maximum of \$400 per ac-ft. The cost per volume of water is expected to vary over implementation, and LCRA anticipates a range between \$300 and \$400 per ac-ft. The most cost effective conservation measures would be expected to be implemented first, and thus the cost per volume saved would expect to increase over time.

Environmental Impact

Conservation does not require additional infrastructure which has the potential to require environmental mitigation or other measures to address impacts.

Conservation has other potential impacts for WUGs that are served by groundwater. Communities that are served by surface water will divert less water from streams, meaning more water will remain in channels for downstream uses. However, groundwater communities contribute to streamflow by discharging treated groundwater into streams (typically 60 percent of water supplied is discharged following treatment.) Conservation measures implemented by these WUGs may lead to an overall decrease in streamflow, which is derived from groundwater sources. However, streamflow would not be expected to be decreased if the conservation is in the irrigation usage sector.

4.6.1.11 Aquifer Storage and Recovery (ASR)

This strategy utilizes surface water that is diverted from the Colorado River and treated at a surface water treatment facility. The treated water would either be delivered to meet existing demands, or diverted to aquifer storage for later recovery and use. A firm yield of 10,000 ac-ft/yr was determined for this strategy, beginning in 2040, which assumes the water is diverted during periods of high flow. For the analysis for the Region K Plan, it is assumed that the diversion point would be located in Bastrop County with the ASR wells located in the Carrizo-Wilcox, but implementation of this strategy could occur at a more downstream diversion point as well.

Costs

The assumptions for determining costs of the strategy include: 2 miles of transmission pipeline to convey the raw water from the diversion point to a 20 mgd traditional lime softening water treatment plant, a high service pump station to feed the treated water through a 20-mile 36-inch pipeline to the ASR wellfield for

storage, twelve (12) 16-inch diameter wells spaced one-mile apart and completed to a depth of 650 feet that store at a rate of 850 gpm and recover at a rate of 1,000 gpm,

An annual unit cost of \$3,802.48/ac-ft was determined. Total project costs are \$270,627,490, with \$168,711,000 of that being capital costs.

Environmental Impact

The diversion of surface water could reduce instream flows downstream, which in turn, could negatively impact water quality during certain months of the year when instream flows are already lower. This could potentially impact both agricultural and environmental uses. The assumed junior nature of this water right creates a strategy that has limited impacts to instream flows and freshwater inflows to Matagorda Bay. Discussion of the methodology behind the impact analysis is in *Section 4.17*. Tabular results of the impact analysis are in *Appendix 4G*.

4.6.1.12 Reuse by Highland Lakes Communities

Wastewater reuse, beneficial use of wastewater treatment plant effluent, was studied as a potential source of water supply for this analysis. Effluent is domestic or municipal wastewater that has been treated to a quality suitable for a particular beneficial use. Direct beneficial uses of effluent include landscape, agricultural or commercial irrigation, industrial cooling and process water, and, potentially after additional treatment, drinking water. Only non-potable uses were considered in this water supply option.

The volume of water available for reuse was determined by taking the water demands of the communities in three counties surrounding the Highland Lakes (Burnet, County, Llano County, and Travis County), assuming a conservative 40 percent of the demand would be returned as wastewater. Of that volume available, LCRA estimated 25 percent would be used for direct reuse purposes by 2020 and 50 percent would be used for direct reuse purposes by 2030 and through the planning period. In this option, each individual wastewater utility would treat its water to a level appropriate for irrigation or process water use, as defined by Title 30 of the Texas Administrative Code, Chapter 210, Subchapters A, B, C, and D.

At this time, LCRA is currently in discussions with communities in the Highland Lakes area to determine their specific needs and level of interest in reuse. Many communities are interested due to the TCEQ policy that does not allow wastewater effluent discharge to the Highland Lakes. At this point in the study, the reuse strategy is being recommended as a supply strategy for LCRA rather than an individual strategy for various WUGs. In future planning cycles, the strategy will likely be recommended for specific WUGs rather than for LCRA because the WUGs themselves will be the ones implementing the strategy. For now, it can be assumed that any reuse by communities in the Highland Lakes will reduce the demand required from LCRA. *Table 4.34* below identifies the amount of reuse the strategy can supply.

Table 4.34 Reuse Strategy as a Supply for LCRA (ac-ft/yr)

Strategy	2010	2020	2030	2040	2050	2060
Reuse by Highland Lakes	0	500	2,000	5,000	5,000	5,000
Communities	U	300	2,000	3,000	3,000	3,000

Costs

Costs will vary depending on the size of the community, the amount of effluent that can be reused, and the length of pipeline needed to transport the effluent to its destination. It is assumed that no additional wastewater treatment would be required of a utility, and no additional storage or land for disposal would be required (i.e., the relevant utility would address storage facilities and land for disposal purposes). The project team also assumed that the reclaimed water user would bear the cost of the distribution system once the water was delivered. A representative pipeline would be made of High Density Polyethylene (HDPE), would require one pump station facility, and would span approximately 10 miles. For perspective, generally, less than 0.1 mgd would require a 2-inch diameter pipe; 5 mgd would require an 18-inch diameter pipe. The assumptions used in developing the costs are appropriate for the type of topography and soil encountered in the Highland Lakes area.

An example cost of a pipeline used to transport 1 mgd of effluent 10 miles to a customer was determined in the LCRA Water Supply Resource Plan. Note that some utilities already have this type of infrastructure in place, particularly those that are located in the Lake Travis watershed. The costs are shown in *Table 4.35* below. More detailed cost information can be found in the *Water Supply Resource Plan: Water Supply Option Analysis*, prepared by CH2M Hill for LCRA, in July 2009.

Table 4.35 Example Cost for Reuse Strategy (Transport 1 MGD of Effluent 10 Miles)

Strategy	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac- ft)
Reuse	\$3,566,000	\$5,751,000	\$610,500	\$550.00

Environmental Impact

Limited environmental impacts are expected during construction of the reuse pipeline system. No impacts should occur to instream flows or bay and estuary inflows since the majority of the communities that would incorporate this strategy are not currently allowed to discharge their effluent to the Highland Lakes.

4.6.1.13 Description of the Impact of the Management Strategies on Navigation

The overall impact on navigation in Region K is negligible in the area of the Colorado River and Matagorda Bay that is tidally influenced. This is the area where the most shipping occurs and navigation will be least affected in this zone. Once beyond the tidally influenced areas, the overall impact of the management strategies will be to reduce the amount of currently available interruptible water supplies as the current WUGs increase in demand over time through growth in population. However, the current LCRA Water Management Plan calls for a minimum release of approximately 16,000 acre feet annually through 2010, and then increasing to approximately 33,000 acre feet annually after 2010. However, these amounts may change as the results of the LSWP studies and mitigation strategies are better known. In addition, inflows originating downstream of the Highland Lakes would add to these release amounts. The 16,000 ac-ft/yr release translates to a rate of approximately 22 cubic feet per second. Navigation on the Colorado upstream of the tidally influenced areas is primarily for pleasure craft, and the impact of the mandated releases under the LCRA Management Plan plus other downstream flows may provide sufficient water for navigation purposes. Based in terms of a high, medium, or low impact, the estimated impact to navigation will be low.

4.6.2 COA Water Management Strategies

The COA provides water for municipal, manufacturing, and steam electric water uses. COA's existing service area covers portions of Travis, Williamson, and Hays Counties.

The COA water management strategies include water conservation, direct reuse, and purchasing water from LCRA. The total amounts for each strategy are summarized below in *Table 4.36*.

	0	0	` •	,		
COA Strategies	2010	2020	2030	2040	2050	2060
Conservation	11,030	18,795	24,036	25,385	30,401	36,370
Direct Reuse (Municipal and Manufacturing)	5,143	13,620	22,077	30,268	36,218	40,468
Direct Reuse (Steam Electric) Travis	2,315	3,315	7,315	8,315	12,315	13,315
Purchase Water from LCRA (Steam Electric)	0	0	0	20,975	20,975	26,895
TOTAL	18,487	35,730	53,428	84,943	99,909	117,047

Table 4.36 COA Water Management Strategies (ac-ft/yr)

4.6.2.1 Water Conservation

The COA began an aggressive water conservation campaign in the mid 1980s in response to rapid growth and a series of particularly dry years. COA has achieved significant reductions in both per capita consumption and peak day to average day demand ratio. For the per capita use calculations, the COA used year 1998 as their base year instead of year 2000, since the COA had mandatory water conservation measures in place during year 2000.

The adopted LCRWPG projections for municipal, manufacturing, and wholesale water commitments for the COA and its wholesale customers are projected to increase from approximately 198,290 ac-ft/yr in the year 2010 to approximately 384,103 ac-ft/yr in 2060. Projections for water demands in succeeding decades assume the continuation and expansion of the City's conservation programs. These programs represent a roughly 9 percent savings in 2060 over the demands with no per capita reduction. With conservation and reuse an overall per capita reduction of roughly 11 percent is projected.

In 1990, the City's conservation program evolved from primarily reacting to high summertime demands to a comprehensive program with the goals of reducing both per capita consumption and peak day demand. To achieve these broader goals, the City has implemented and anticipates continuing water conservation programs in a number of areas including:

- Public education and outreach including school programs
- Rebate and incentive programs
- Local ordinances that increase water efficiency by customers
- Support of legislation that increases water efficiency in plumbing products and appliances at both the State and Federal level.

- Increased water efficiency in utility operations
- Conservation-oriented rate structures

In 2006, Austin City Council set a water conservation goal of reducing peak day water use by 1% per year for 10-years. The Council created a Water Conservation Task Force with a goal drafting a policy document for Council consideration consisting of strategies and implementation plans for new water conservation initiatives to meet this goal. In 2007, the Austin City Council approved the final policy recommendations aimed at meeting this goal, including enhanced water use management (2-day per week water limits). Through its various water conservation programs, the COA has made significant advances toward reducing the per capita consumption of water in its service area. The COA states that it is committed to continuing to seek ways to reduce its per capita demands as a Best Management Practice for its utility and to reduce overall capital costs for new construction to meet increasing demands. Through on-going efforts including continued conservation planning and comprehensive Water Resources Planning Study effort, COA is in the process of analyzing its current water conservation programs, goals, and per capita demands. For example, the Austin City Council recently adopted a resolution endorsing a goal of reducing total per capita per day water production to an average of 140 gpcd by 2020 and to increase Austin's customers' understanding of their water use and educate them on ways to use water more efficiently. The city council directed city staff to develop a 10-year water conservation action plan to achieve this goal. Plan development is currently underway. Austin Water Utility is expected to present the plan for adoption to the Austin city council in December of 2010. Future plan updates will reflect changes as additional COA water conservation program information becomes available. The range of conservation program costs is from \$60 to \$830 per acre foot, depending on the program.

Environmental and Other Impacts

Water conservation holds several advantages over alternative strategies in the fact that implementation of conservation practices does not require any additional water system infrastructure and does not require the movement of water between locations. In the event that, over time, water conservation causes changes to wastewater concentrations, treatment processes may need to be adjusted to maintain permitted discharge parameters. In addition, water conservation generally does not result in adverse impacts to environmental flows or other environmental considerations.

Impacts to Agriculture

No adverse impacts to agriculture are anticipated as a result of this strategy.

4.6.2.2 Water Reclamation Initiative (Direct Reuse)

This COA reclaimed water program includes the continued development of water distribution systems to provide reclaimed water to meet non-potable water demands within the City's service area. The City has established its Central Reclaimed Water System from the Walnut Creek Wastewater Treatment Plant (WWTP) and its South system from the South Austin Regional WWTP. These systems are expected to have a planning horizon capacity of approximately 40,000 ac-ft/yr. Austin has also evaluated the feasibility of developing reclaimed water facilities in other areas of the City. The City projects that it will need to develop the use of reclaimed water to the maximum extent possible, up to, if necessary, 100 percent reuse of its effluent to meet future needs. As the level of authorized reclaimed water use in the COA increases, the amount of flow it returns to the Colorado River may decrease accordingly.

Development of reclaimed water facilities necessary to provide for the projected 2060 direct municipal reuse (non-potable) demands of approximately 40,400 ac-ft/yr is anticipated to require a capital expenditure of \$227 million. The unit cost of reclaimed water is expected to be \$851 per ac-ft.

In addition to the water conservation measures the COA has implemented to reduce water demands, the COA is pursuing the development of reclaimed water as an additional supply of water to meet non-potable demands in the area. The COA has indicated that it will develop and use reclaimed water as the primary strategy to meet the projected needs in 2060, and likely beyond. To meet the total projected water demands, the Water Reclamation Initiative would need to supply up to 40,400 ac-ft/yr for direct municipal non-potable purposes by the year 2060 plus approximately 13,300 ac-ft/yr of COA direct non-potable use for steam electric needs in Travis County. The approximate total amount of this direct reuse supply in Travis County is 53,700 ac-ft/yr.

The City is currently using reclaimed water from its existing reclaimed system to irrigate several golf courses and meet other non-potable needs. The City estimates this use to be approximately 6,100 ac-ft/yr. In order to expand the availability and use of reclaimed water, the COA has completed a series of planning activities, including the publication of the 1998 Water Reclamation Initiative (WRI) Planning Document, and completion of the north and south system master plans. In addition, COA completed a Title XVI federal cost-share program feasibility study in conjunction with the Federal Bureau of Reclamation (FBR).

The City anticipates that the use of reclaimed water will increase steadily from the current level of 6,100 ac-ft/yr. The COA will continue to pursue implementation of its WRI and anticipates that additional capacity will be available in the future as the needs increase over the planning horizon. *Table 4.37* shows the projected capacity increases for the three main categories of reuse for each decade of the planning period. Note: WRI system master plans have been developed to a system capacity level of approximately 30,000 ac-ft/yr. Additional non-potable water demand and system infrastructure will be required to increase the direct reuse system capacity to achieve the increased volumes included in this plan.

 Table 4.37 Anticipated Reclaimed Water Capacity (Direct Reuse)

Decade	Direct Reuse - Municipal and Manufacturing (ac- ft/yr)	Direct Reuse – Steam-Electric Travis County (ac-ft/yr)
2010	5,143	2,315
2020	13,620	3,315
2030	22,077	7,315
2040	30,268	8,315
2050	36,218	12,315
2060	40,468	13,315

Note: Anticipated capacity information provided by COA.

Through its current comprehensive Water Resources Planning Study, COA is in the process of evaluating its water reuse program and options. Future plan updates will reflect changes as additional Austin water reclamation program information becomes available.

Projected Reduction of Return Flows

The COA recognizes that the water demand projections contained in the Lower Colorado Regional Water Plan are only projections. Actual water demands may increase faster or slower than projected. The City will monitor the growth of its water demands and adjust its reclaimed water program, as well as its other water conservation programs, accordingly. As a result, the City has indicated that it may increase the use of reclaimed water at a faster rate than projected in this plan. The City believes that the increased use of reclaimed water will provide, in addition to the benefit of conserving sources of raw water, a monetary benefit to the COA through decreased raw water costs and delayed capital expenditures. As return flows discharged by Austin diminish in the future due to increasing reclamation of water, other sources may need to be dedicated or developed to meet needs that may currently be met by return flows discharged by Austin.

Any decrease in municipal return flows will likely be gradual. However, the City projects that it will increase its use of reclaimed water to the maximum extent feasible to meet demands above 325,000 ac-ft/yr, whether those demands occur before or after 2060.

Opinion of Probable Costs

In addition to water conservation, the use of reclaimed water has been identified as a significant source of water to meet the COA's projected demand deficits in 2060. The City has completed planning studies for a Reclaimed Water System to serve potential customers in the City. The system will provide a portion of the water supply required to meet the COA's identified needs. Planning efforts for additional water reclamation options are in progress, including a comprehensive Water Resources Planning Study.

Table 4.38 presents the probable cost for the central and south systems. As previously indicated, the direct reuse non-potable system for municipal purposes will need to have a capacity of approximately 40,500 ac-ft/yr. Direct reuse for steam-electric purposes in Travis County is projected to be approximately 13,300 ac-ft/yr. In September 2008 numbers, the probable cost for Austin to meet all of its planning horizon identified direct reuse needs through the use of reclaimed water (53,700 ac-ft/yr) is approximately \$429,195,000. This would result in a total annual cost (including operations and maintenance [O&M]) of approximately \$46 million per yr. The opinion of probable unit cost of reclaimed water is \$851 per ac-ft, or approximately \$2.61 per 1,000 gallons.

Table 4.38 COA Reclaimed Water (Direct Reuse for Municipal, Manufacturing, and Steam-Electric) Opinion of Probable Unit Costs

Phase	Cost Opinion
Capital Costs	
Plant Pump Station, Storage, and Misc. Improvements ¹	\$38,141,473
Transmission System ¹	\$217,175,767
System Pumping and Storage ¹	\$46,933,270
Total Capital Costs	\$302,250,510
Engineering, Contingencies and Legal Services (35%)	\$105,787,679
Land Acquisition and Survey (5%)	\$15,112,526
Environmental and Architectural Studies, Mitigation, and Permitting (2%)	\$6,045,010
Total Project Costs	\$429,195,724
Annual Costs	
Debt Service (6 percent for 20 years)	\$37,419,239
Operation and Maintenance ²	\$8,347,255
Total Annual Costs	\$45,766,494
Available Project Yield (ac-ft/yr)	53,783
Unit Cost of Water (\$/ac-ft)	\$851
Unit Cost of Water (\$/1000 gallons)	\$ 2.61

Cost taken from draft U.S. FBR Feasibility Study of COA's Reclaimed Water System (July 2005). Values were increased proportionally to the amount of yield as compared to the amount in the study and converted to September 2008 using the ENR Construction Cost Index.

Capital costs for this strategy were updated to September 2008 dollars using the *Engineering News-Record* (ENR) Construction Cost Index (CCI). Land acquisition, environmental study, and O&M costs were adjusted to September 2008 dollars using the U.S. Department of Labor's Consumer Price Index.

Environmental and Other Impacts

The water quality impacts from direct reuse of reclaimed water is regulated by the TCEQ through 30 TAC Chapter 210. Reclaimed water projects authorized under these regulations are presumed to be protective of human health and the environment. The potential impacts generated through the construction of the proposed pipelines and pump stations will need to be addressed in the preliminary engineering studies to be conducted for these projects.

The use of reclaimed water presents an alternative for providing water for non-potable uses without the development of new water supplies for the City of Austin for the planning period. The costs and environmental impacts of expanding the City's current reuse system will have to be determined as more specific information, such as the locations of customers to be served, is identified. The extent of pipeline and other transmission facilities will have to be determined before specific environmental impacts can be estimated. However, the majority of the facilities needed will most likely be placed in existing easements and, therefore, minimize the impact upon natural resources.

² O&M Cost taken from draft U.S. FBR Feasibility Study of COA's Reclaimed Water System (July 2005). O&M costs were adjusted to September 2008 dollars using the U.S. Department of Labor's Consumer Price Index

Table 4.39 shows the expected return flows from the COA, less the expected amount of reuse. Over the planning period, return flow amounts are projected to increase. The environmental impact analysis for this strategy compared the impact of return flows less the amount of reuse to the impact of no return flows for 2010 and 2060 scenarios. As would be expected, the impacts to instream flows and freshwater inflows to Matagorda Bay showed mainly flow increases. Discussion of the general methodology of the impact analysis is in *Section 4.17*. Tabular results of the impact analysis are presented in *Appendix 4G*.

Impacts to Agriculture

Impact to agriculture is low based on the projected return flow amounts over the planning period.

Table 4.39 Projected COA Effluent Minus Reuse by Decade*

COA Return Flows	2010	2020	2030	2040	2050	2060
Projected COA Effluent minus reuse	98,638	99,792	105,750	116,775	124,632	132,660

^{*}Based on data provided by COA.

As allowed by state law and as contemplated by the City of Austin and LCRA 2007 Settlement Agreement, the City intends to use reclaimed water to the maximum extent feasible to meet demands above 325,000 ac-ft/yr, whether those demands occur before or after 2060. As a result, although current projections do not indicate that the City will need to reuse all of its effluent during this planning cycle, this strategy could result in the City potentially reusing all of its effluent to meet growing demands and, ultimately, the City could have zero return flow to the Colorado River from its wastewater treatment plants (WWTP).

4.7 REGIONAL WATER MANAGEMENT STRATEGIES

There are several water management strategies that apply to multiple WUG categories. These strategies are discussed in the regional water management section of the report. For strategies specific to a category of water use, (Municipal, Irrigation, Livestock, Manufacturing, Mining, and Steam Electric Power) refer to later sections of the report.

For municipal WUGs with shortages water conservation was considered before these regional strategies, please refer to Section 4.8.1.

4.7.1 Expansion of Current Groundwater Supplies

This group of strategies includes WUGs with existing groundwater sources that will be seeking to expand the amount of groundwater they produce from that source or sources to meet their increasing needs.

4.7.1.1 Carrizo-Wilcox Aquifer

This alternative would involve pumping additional groundwater from the Carrizo-Wilcox aquifer, either using the WUG's existing wells or drilling additional wells. This additional water, referred to as

remaining supply, was determined by subtracting the water that is currently allocated from the available water.

Table 4.40 presents the WUGs that would utilize this strategy along with the implementation decade and the amount of water to be pumped. Additional groundwater was only allocated to meet each WUG's individual shortage. It should be noted that Elgin in Bastrop County will pump 1 ac-ft/yr in 2050 and 3 ac-ft/yr in 2060 to supply the portion of Elgin located in Travis County. The county needs for Elgin are separated in the table below but will essentially both be pumped from the Carrizo-Wilcox aquifer.

Table 4.40 Carrizo-Wilcox Aquifer Expansions

WUG Name	Country	River Basin	7	Water Ma	nagemen	t Strategi	es (ac-ft/y	r)
W UG Name	County	Kiver basiii	2010	2020	2030	2040	2050	2060
Aqua WSC	Bastrop	Colorado			602	3,709	6,109	7,850
Bastrop County WCID #2	Bastrop	Colorado						144
County-Other	Bastrop	Colorado		663	1,879	3,037	2,922	3,700
Elgin	Bastrop	Colorado		525	1,136	2,033	2,734	400
Polonia WSC	Bastrop	Colorado		2	7	16	23	30
Smithville	Bastrop	Colorado	49	311	526	946	1,115	733
Manufacturing	Bastrop	Colorado		7	17	25	32	44
Mining	Bastrop	Colorado	4,293	4,297	4,298			
Elgin*	Travis	Colorado					1	3
County Total for Colorado River Basin		4,342	5,805	8,465	9,766	12,936	12,904	
Manufacturing	Bastrop	Guadalupe	8	10	11	13	14	16
County Total for	Guadalup	e River Basin	8	10	11	13	14	16

^{*}This portion of Elgin in Travis County will be supplied from wells in Bastrop County

This strategy was applied to the following WUGs in Bastrop County: Aqua WSC, Bastrop County WCID #2, County-Other, Elgin, Polonia WSC, Smithville, Manufacturing, and Mining. Elgin falls into both Bastrop and Travis Counties. It was assumed that the portion of the WUG in Travis County would also receive water in 2050 and 2060 from the Carrizo-Wilcox aquifer.

Opinion of Probable Costs

Table 4.41 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For this strategy, there were assumed to be two potential capital expenditures. These were drilling and installation of the required additional wells (including pump installation) and installation of a one-half-mile long transmission pipe(s) to tie the additional well(s) to the distribution system. Assumptions were made for well capacity, depth of drilling required, well diameter, and pumping distance according to the aquifer being utilized and the approximate location of the WUG. For the Carrizo-Wilcox aquifer, the values used were 1.5 mgd, 500 ft, 16 in, and 200 ft, respectively. These assumptions were based on familiarity with similar projects and project locations, as well as the characteristics of nearby existing wells. Wells were assumed to operate 24 hours per day, at 80 percent efficiency for determining production capacity and a unit cost of \$41 per in-ft (to include installation, chlorination, and pump) was used to estimate the cost once the well had been sized. Transmission piping was sized based on the maximum flow anticipated in each pipe (the largest strategy amount in one decade, increased by a factor

of two to account for peak demands) and an assumed 5 feet per second (ft/s) velocity. The smallest assumed diameter was 6 inches.

Additional project costs included Engineering, Contingencies and Legal Services (35 percent), land acquisition (assuming 1 acre per well at \$5,000 per acre), and Environmental and Archeological Studies, Mitigation, and Permitting (assumed equal to the land acquisition cost). The total project cost was annualized over a 20-year term of debt. Along with this annualized cost, O&M, and annual energy costs to pump the water made up the annual cost. The unit cost was taken as the largest annual cost, divided by the largest volume of water generated by the strategy in any one decade over the planning horizon.

Table 4.41	Carri	zo-Wilcox	Aquifer Ex	pansion Costs

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
Aqua WSC	Bastrop	Colorado	\$6,248,640	\$9,069,004	\$4,254,054	\$541.92
Bastrop County WCID #2	Bastrop	Colorado			\$5,386	\$37.41
County-Other	Bastrop	Colorado	\$4,280,640	\$6,189,196	\$1,410,336	\$381.17
Elgin	Bastrop	Colorado	\$2,082,880	\$3,023,001	\$700,216	\$256.11
Polonia WSC	Bastrop	Colorado			\$1,122	\$37.41
Smithville	Bastrop	Colorado	\$1,041,440	\$1,511,501	\$235,904	\$211.57
Manufacturing	Bastrop	Colorado			\$1,646	\$37.41
Mining	Bastrop	Colorado	\$3,219,360	\$4,670,504	\$1,393,011	\$324.11
Elgin	Travis	Colorado			\$112	\$37.41
Manufacturing	Bastrop	Guadalupe			\$598	\$37.41

For the purposes of developing costs for this strategy, any WUG generating a maximum supply, in a single decade, of less than 1/4 mgd (approximately 280 ac-ft/yr) from the strategy, was assumed to acquire the additional groundwater through additional pumping of existing wells. For these WUGs, only the increased annual energy cost was factored into the unit cost for the strategy, with no capital expenditures.

The above rule was utilized for all WUGs other than Livestock WUGs, whose capital costs were generated assuming one well per ac-ft/yr needed, with no transmission line costs. Each well for Livestock WUGs was estimated to cost \$9,860, fully installed and operational. In addition, no additional project costs were added in for Livestock WUGs and a 5-year term of debt was utilized when annualizing the capital costs. A listing of assumptions and/or methodology is provided in *Appendix 4B*.

Environmental Impacts

The environmental impacts of expanded groundwater use will vary depending upon site characteristics. Some impacts may occur from the expansion of existing groundwater infrastructure, but well sites are generally small in areal extent, and the disturbance from pipeline construction is temporary. Availability numbers were developed by the Lost Pines Groundwater Conservation District for this aquifer in Bastrop County, and they attempt to limit the groundwater use to the amount that can be replenished on an annual basis. If this is the case, then the impact on the environment should be low.

Impacts to Agriculture

There are currently no irrigation WUGs with supplies of irrigation water or livestock water from the Carrizo-Wilcox Aquifer in Region K. This is not a source of choice, probably because of the depth of the aquifer. In addition, the terrain in Bastrop County is often not conducive to irrigated agriculture. Therefore, the impact on agriculture is low.

4.7.1.2 Ellenburger-San Saba Aquifer

This alternative would involve pumping additional groundwater from the Ellenburger-San Saba aquifer, either using the WUG's existing wells or drilling additional wells. This additional water, referred to as remaining supply, was determined by subtracting the water that is currently allocated from the available water.

Table 4.42 presents the WUGs that would utilize this strategy along with the implementation decade and the amount of water to be pumped. Additional groundwater was only allocated to meet each WUG's individual shortage.

	ciibui 5c	Dan Daba Aquine	LAPans	10113						
WIIC Name	Country	Dimon Dogin	V	Water Management Strategies (ac-ft/yr)						
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060		
Bertram	Burnet	Colorado (to Brazos)						24		
County-Other	Burnet	Colorado				418	804	1,179		
Mining	Burnet	Colorado	681	756	788	811	829	873		
County Total for Colorado River Basin			681	756	788	1,229	1,633	2,076		

Table 4.42 Ellenburger-San Saba Aquifer Expansions

This strategy was applied to the following WUGs in Burnet County: Bertram, County-Other, and Mining.

Opinion of Probable Costs

Table 4.43 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For the purposes of developing costs for this strategy within the Ellenburger-San Saba aquifer, any WUG generating a maximum supply, in a single decade, of less than 1/4 mgd (approximately 280 ac-ft/yr) from the strategy was assumed to acquire the additional groundwater through added pumping of existing wells. For these WUGs, only the increased annual energy cost was factored into the unit cost for the strategy, with no capital expenditures. All WUGs utilizing this strategy in this aquifer fit into this category. Note that annual energy costs were based on the assumed pumping distance, which was taken to be 200 ft plus 5 ft for every 1,000 ft of transmission pipe, as well as \$0.09 per kWh. A listing of assumptions and/or methodology is provided in *Appendix 4B*.

Largest **Total Capital** Unit Cost River **Total Project** Annual **WUG Name County** Basin Cost Cost (\$/ac-ft) Cost Colorado Bertram Burnet \$898 (to Brazos) \$37.41 County-Other Colorado \$8,367,840 \$12,249,979 \$2,308,805 \$1,958.27 Burnet Mining Burnet Colorado \$6,114,960 \$8,951,908 \$1,483,219 \$1,698.99

Table 4.43 Ellenburger-San Saba Aquifer Expansion Costs

Environmental Impact

The environmental impacts of expanded groundwater use from the Ellenburger-San Saba Aquifer will vary depending upon site characteristics but are not expected to be significant. Some impacts may occur from the expansion of existing groundwater infrastructure, but well sites are generally small in areal extent and the disturbance from pipeline construction is temporary. No Ellenburger-San Saba Aquifer use is expected to surpass the current, sustainable yield of the aquifer as determined in Chapter 3.. However, there is no current model of the Ellenberger San Saba, so it is not possible to determine the potential impacts on spring flows. As a result, long term impacts upon groundwater resources and spring flows are unknown. Additionally, the treated return flows from the City of Llano may introduce additional return flows that contribute to in-stream habitat.

Impacts to Agriculture

The Ellenburger-San Saba is a source of water supply for agricultural interests in Burnet, Blanco, Gillespie and Llano Counties. The additional drafting of this aquifer has the potential to draw down the static and pumping water levels and increase the cost of production for agricultural users. This represents a medium to high impact.

4.7.1.3 Gulf Coast Aquifer

This alternative would involve pumping additional groundwater from the Gulf Coast aquifer, either using the WUG's existing wells or drilling additional wells. This additional water, referred to as remaining supply, was determined by subtracting the water that is currently allocated from the available water.

Table 4.44 presents the WUGs that would utilize this strategy along with the implementation decade and the amount of water to be pumped. Additional groundwater was only allocated to meet each WUG's individual shortage.

Table 4.44 Gulf Coast Aquifer Expansions

THE ST	G .	D: D :	W	ater Man	agement	Strategies	(ac-ft/yr)
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
Mining	Colorado	Brazos-Colorado	19	22	23	24	25	26
County Total for	r Brazos-Colo	rado River Basin	19	22	23	24	25	26
Livestock	Colorado	Colorado	14	14	14	14	14	14
Mining	Colorado	Colorado	3,626	3,626	2,803	1,650	214	373
County Total for	r Colorado Ri	ver Basin	3,640	3,640	2,817	1,664	228	387
County-Other	Colorado	Lavaca	105	109	106	97	93	90
Livestock	Colorado	Lavaca	11	11	11	11	11	11
Mining	Colorado	Lavaca (to Colorado)	555	30				
Mining	Colorado	Lavaca	100	132	151	168	184	199
County Total for	r Lavaca Rive	r Basin	771	282	268	276	288 300	
Mining	Fayette	Brazos		4	22	28	29	29
County Total for	r Brazos Rive	r Basin		4	22	28	29	29
Fayette WSC	Fayette	Colorado		236	428	428	428	428
County Total for	r Colorado Ri	ver Basin		236	428	428	428	428
County-Other	Fayette	Lavaca				32	25	16
Fayette WSC	Fayette	Lavaca		21	45	63	86	116
Manufacturing	Fayette	Lavaca				2	20	43
County Total for	r Lavaca Rive	r Basin		21	45	97	131	175
Livestock	Matagorda	Colorado-Lavaca	56	56	56	56	56	56
County Total for	r Colorado-La	vaca River Basin	56	56	56	56	56	56
Manufacturing	Wharton	Colorado-Lavaca						8
County Total for	r Colorado-La	vaca River Basin						8

This strategy was applied to County-Other, Livestock, and Mining in Colorado County; County-Other, Fayette WSC, Manufacturing, and Mining in Fayette County; Livestock in Matagorda County; and Manufacturing in Wharton County. Supply for Mining in Colorado and in the Colorado River Basin was obtained by pumping water from the Colorado River Basin, the Brazos-Colorado River Basin, and the Lavaca River Basin. There was not enough available groundwater from just one basin to meet the entire shortage for this WUG.

Opinion of Probable Costs

Table 4.45 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For this strategy, there were assumed to be two potential capital expenditures. These were drilling and installation of the required additional wells (including pump installation) and installation of a one-half-mile-long transmission pipe(s) to tie the additional well(s) to the distribution system. Assumptions were made for well capacity, depth of drilling required, well diameter, and pumping distance according to the

aquifer being utilized and the approximate location of the WUG. For the Gulf Coast aquifer, the values used were 0.5 mgd, 500 ft, 8 in, and 200 ft, respectively. These assumptions were based on familiarity with similar projects and project locations, as well as the characteristics of nearby existing wells. Wells were assumed to operate 24 hours per day, at 80 percent efficiency for determining production capacity and a unit cost of \$41 per in-ft (to include installation, chlorination, and pump) was used to estimate the cost once the well had been sized. Transmission piping was sized based on the maximum flow anticipated in each pipe (the largest strategy amount in one decade, increased by a factor of two to account for peak demands) and an assumed 5 ft/s velocity. The smallest assumed diameter was 6 inches.

Additional project costs included Engineering, Contingencies and Legal Services (35 percent), land acquisition (assuming 1 acre per well at \$5,000 per acre), and Environmental and Archeological Studies, Mitigation, and Permitting (assumed equal to the land acquisition cost). The total project cost was annualized over a 20-year term of debt. Along with this annualized cost, O&M, and annual energy costs to pump the water made up the annual cost. The unit cost was taken as the largest annual cost, divided by the largest volume of water generated by the strategy in any one decade over the planning horizon.

Table 4.45 Gulf Coast Aquifer Expansion Cos
--

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
Mining	Colorado	Brazos-				
Willing	Colorado	Colorado			\$228	\$8.77
Livestock	Colorado	Colorado	\$138,040	\$146,322	\$45,615	\$3,258.22
Mining	Colorado	Colorado			\$31,809	\$8.77
County-Other	Colorado	Lavaca			\$4,077	\$37.41
Livestock	Colorado	Lavaca	\$108,460	\$114,968	\$34,682	\$3,152.95
Mining	Colorado	Lavaca			\$1,746	\$8.77
Mining	Calamada	Lavaca (to				
Mining	Colorado	Colorado)			\$4,869	\$8.77
Mining	Fayette	Brazos			\$1,085	\$37.41
Fayette WSC	Fayette	Colorado	\$676,480	\$989,243	\$130,712	\$305.40
County-Other	Fayette	Lavaca			\$1,197	\$37.41
Fayette WSC	Fayette	Lavaca			\$4,339	\$37.41
Manufacturing	Fayette	Lavaca			\$1,608	\$37.41
T	Matarania	Colorado-				
Livestock	Matagorda	Lavaca	\$552,160	\$585,290	\$264,991	\$4,731.98
Manufaatuuina	VI/le cost cos	Colorado-				
Manufacturing	Wharton	Lavaca			\$299	\$37.41

For the purposes of developing costs for this strategy, any WUG generating a maximum supply, in a single decade, of less than 1/4 mgd (approximately 280 ac-ft/yr) from the strategy was assumed to acquire the additional groundwater through additional pumping of existing wells. For these WUGs, only the increased annual energy cost was factored into the unit cost for the strategy, with no capital expenditures. The use of increased annual energy cost only also applied to the Mining-Colorado County WUGs because these mines are located over the Recharge Zone of the Gulf Coast Aquifer, and the mines typically extend into the groundwater with their excavations. Therefore, no well costs are assumed for these WUGs and a pumping lift distance of only 50 feet was used in the energy calculation.

In addition, the above rule did not apply to Livestock WUGs, whose capital costs were generated assuming one well per ac-ft/yr needed, with no transmission line costs. Each well for Livestock WUGs

was estimated to cost \$9,860, fully installed and operational. In addition, no additional project costs were added in for Livestock WUGs and a 5-year term of debt was utilized when annualizing the capital costs. A listing of assumptions and/or methodology is provided in *Appendix 4B*.

Environmental Impact

The environmental impacts of expanded groundwater use will vary depending upon site characteristics but are not expected to be significant. Some impacts may occur from the expansion of existing groundwater infrastructure, but well sites are generally small in areal extent and the disturbance from pipeline construction is temporary. No Gulf Coast aquifer use is expected to surpass the current, sustainable yield of the aquifers as determined in Chapter 3. However, personal observation of springs in the area by Bob Pickens has occurred. Based on his observations, it is not possible to tell whether the springs noted are from perched water tables from years of higher precipitation or springs from the Gulf Coast Aquifer. In any event, the Gulf Coast Aquifer formally had springs identified, but the known springs from the past have not flowed for many years. It appears based on the information above that impacts on the environment from this strategy are likely minimal under current conditions. However the impact on springflows is unknown at this time.

Impacts to Agriculture

The amounts of water proposed in this strategy are based on initial studies of the aquifer as a part of the LSWP. The additional drawdown from these strategies may be of concern and could have an impact on agricultural operations that rely on groundwater depending on actual final well siting decisions and pumping scenarios. The LSWP studies still need to provide further definition of the extent and timing of additional drawdown, if any.

4.7.1.4 Hickory Aquifer

This alternative would involve pumping additional groundwater, either using their existing wells or drilling additional wells. The WUGs were assumed to pump this additional water from their current supply. *Table 4.46* presents the WUGs that would utilize this strategy along with the implementation decade and the amount of water to be pumped. Additional groundwater was only allocated to meet each WUG's individual shortage.

Table 4.46 Hickory Aquifer Expansions

WUG Name	Name County River Water Management Strategies (ac-ft/yr))
WUG Name	County	Basin	2010	2020	2030	2040	2050	2060
Livestock	Llano	Colorado	62	62	62	62	62	62

This strategy was applied to Livestock in Llano County.

Opinion of Probable Costs

Table 4.47 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

The Livestock WUG capital costs were generated assuming one well per ac-ft/yr needed, with no transmission line costs. Each well for Livestock WUGs was estimated to cost \$9,860, fully installed and operational. In addition, no additional project costs were added in for Livestock WUGs and a 5-year term of debt was utilized when annualizing the capital costs. The unit cost was taken as the largest annual cost, divided by the largest volume of water generated by the strategy in any one decade over the planning horizon. A listing of assumptions and/or methodology is provided in *Appendix 4B*.

Table 4.47 Hickory Aquifer Expansion Costs

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
Livestock	Llano	Colorado	\$611,320	\$647,999	\$306,436	\$4,942.52

Environmental Impact

The sustainable yield of the Hickory aquifer has been provided by analysis of drawdown and pumping records, in the absence of a current model of the aquifer. The impacts from well construction and pipeline construction are limited to the disturbance during construction, and should not be a major environmental factor. The intent is to use no more from the aquifer than is returned to it on an annual basis. This aquifer has limited springs, but in the absence of a model, it is not possible to determine whether or not these springs would be negatively impacted.

Impacts to Agriculture

The Hickory aquifer is used for both livestock watering and irrigation in Burnet, Gillespie, Llano, and San Saba Counties. The amounts used for these activities are far in excess of the amounts proposed in this strategy, and livestock needs will be served from this strategy as well. As a result, anticipated impact on agriculture is low.

4.7.1.5 Queen City Aquifer

This alternative would involve pumping additional groundwater, either using their existing wells or drilling additional wells. The WUGs were assumed to pump this additional water from their current supply. *Table 4.48* presents the WUGs that would utilize this strategy along with the implementation decade and the amount of water to be pumped. Additional groundwater was only allocated to meet each WUG's individual shortage.

Table 4.48 Queen City Aquifer Expansions

WUG Name	County	River	Water Management Strategies (ac-ft/yr)						
WUG Name	County	Basin	2010	2020	2030	2040	2050	2060	
Irrigation	Bastrop	Brazos	40	40	40	31	24	17	
Irrigation	Bastrop	Colorado	58						

This strategy was applied to Irrigation in Bastrop County.

Opinion of Probable Costs

Table 4.49 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For the purposes of developing costs for this strategy within the Queen City aquifer, any WUG generating a maximum supply, in a single decade, of less than 1/4 mgd (approximately 280 ac-ft/yr) from the strategy was assumed to acquire the additional groundwater through additional pumping of existing wells. For these WUGs, only the increased annual energy cost was factored into the unit cost for the strategy, with no capital expenditures. All WUGs utilizing this strategy in this aquifer fit into this category. Note that annual energy costs were based on the assumed pumping distance, which was taken to be 200 ft plus 5 ft for every 1,000 ft of transmission pipe, as well as \$0.09 per kWh. A listing of assumptions and/or methodology is provided in *Appendix 4B*.

Table 4.49 Queen City Aquifer Expansion Costs

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
Irrigation	Bastrop	Brazos			\$794	\$19.86
Irrigation	Bastrop	Colorado			\$1,152	\$19.86

Environmental Impact

The model of the Queen City aquifer had not been released at the time the water supply determinations were made, so the estimate of supply came from previous determinations of water levels and pumpage. The impact on the environment from construction of wells and pipelines is expected to be low, with most of the impact occurring during the construction process itself. It was not possible to determine whether there would be any major impacts to any potential springs from this aquifer.

Impacts to Agriculture

This strategy provides water to meet an agricultural need so this will have a positive impact on agriculture. In addition, the amounts provided are small so the additional demand is unlikely to cause significant additional drawdown to impact other agricultural producers although it is not possible to determine that for certain.

4.7.1.6 Sparta Aquifer

This alternative would involve pumping additional groundwater, either using their existing wells or drilling additional wells. The WUGs were assumed to pump this additional water from their current supply. *Table 4.50* presents the WUGs that would utilize this strategy along with the implementation decade and the amount of water to be pumped. Additional groundwater was only allocated to meet each WUG's individual shortage.

Table 4.50 Sparta Aquifer Expansions

WUG Name	County	River Water Management Strategies (ac-ft/yr)						
w o G Name		Basin	2010	2020	2030	2040	2050	2060
County-Other	Fayette	Colorado	123	120	19			
Irrigation	Fayette	Lavaca	20	18	16	14	12	10
Manufacturing	Fayette	Lavaca	45	70	94	115	117	119

This strategy was applied to the following WUGs in Fayette County: County-Other, Irrigation, and Manufacturing.

Opinion of Probable Costs

Table 4.51 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For the purposes of developing costs for this strategy within the Sparta aquifer, any WUG generating a maximum supply, in a single decade, of less than 1/4 mgd (approximately 280 ac-ft/yr) from the strategy was assumed to acquire the additional groundwater through added pumping of existing wells. For these WUGs, only the increased annual energy cost was factored into the unit cost for the strategy, with no capital expenditures. All WUGs utilizing this strategy in this aquifer fit into this category. Note that annual energy costs were based on the assumed pumping distance, which was taken to be 200 ft plus 5 ft for every 1,000 ft of transmission pipe, as well as \$0.09 per kWh. A listing of assumptions and/or methodology is provided in *Appendix 4B*.

Table 4.51 Sparta Aquifer Expansion Costs

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
County-Other	Fayette	Colorado			\$4,601	\$37.41
Irrigation	Fayette	Lavaca			\$748	\$37.41
Manufacturing	Fayette	Lavaca			\$4,451	\$37.41

Environmental Impact

The model of the Sparta Aquifer had not been released at the time the water supply determinations were made, so the estimate of supply came from previous determinations of water levels and pumpage. The impact on the environment from construction of wells and pipelines is expected to be low, with most of the impact occurring during the construction process itself. It was not possible to determine whether there would be any major impacts to any potential springs from this aquifer.

Impacts to Agriculture

Sparta water is used extensively for agricultural purposes in Fayette County. One of the purposes of this strategy is to provide for an irrigation need, which will have a positive impact on agriculture. The increase in demand is small in comparison to amounts already produced, and it is unlikely to have more than a low impact on agriculture.

4.7.1.7 Trinity Aquifer

This alternative would involve pumping additional groundwater, either using their existing wells or drilling additional wells. The WUGs were assumed to pump this additional water from their current supply. *Table 4.52* presents the WUGs that would utilize this strategy along with the implementation decade and the amount of water to be pumped. Additional groundwater was only allocated to meet each WUGs individual shortage.

Table 4.52 Trinity Aquifer Expansions

WUG Name	County	River	Water Management Strategies (ac-ft/yr)					
w og Name		Basin	2010	2020	2030	2040	2050	2060
County-Other	Burnet	Colorado			480	480	541	541
Livestock	Burnet	Brazos	23	23	23	23	23	23
Mining	Burnet	Brazos	7	10	12	22	24	25
County-Other	Mills	Brazos					1	9
County-Other	Mills	Colorado					40	52
Goldthwaite *	Mills	Brazos	7	7	6	6	5	2
Goldthwaite *	Mills	Brazos (to Colorado)	102	109				
Goldthwaite *	Mills	Colorado		7	226	226	320	283
Irrigation	Mills	Brazos	180	173	184	177	193	186
Irrigation	Mills	Colorado	109	102	57	3		

^{*}Note: The City of Goldthwaite is located in two river basins (Brazos and Colorado) and has needs in both. One proposed strategy to meet their needs is to pump additional Trinity aquifer groundwater. This strategy would be used for all of Goldthwaite (both river basins) and will only have one cost associated with it, but it shows as three pieces due to the river basin split and the availability limitations of the Trinity aquifer in Mills County. Refer to *Appendix 4C* for further discussion of this strategy.

This strategy was applied to County-Other, Livestock, and Mining in Burnet County; and County-Other, Goldthwaite, and Irrigation in Mills County.

Opinion of Probable Costs

Table 4.53 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For this strategy, there were assumed to be two potential capital expenditures. These were drilling and installation of the required additional wells (including pump installation) and installation of a one-half-mile-long transmission pipe(s) to tie the additional well(s) to the distribution system. Assumptions were made for well capacity, depth of drilling required, well diameter, and pumping distance according to the aquifer being utilized and the approximate location of the WUG. For the Trinity aquifer, the values used were 0.2 mgd (0.04 mgd for Goldthwaite), 500 ft, 8 in, and 200 ft (350 ft in Burnet County), respectively. These assumptions were based on familiarity with similar projects and project locations, as well as the characteristics of nearby existing wells. Wells were assumed to operate 24 hours per day, at 80 percent efficiency for determining production capacity and a unit cost of \$41 per in-ft (to include installation, chlorination, and pump) was used to estimate the cost once the well had been sized. Transmission piping was sized based on the maximum flow anticipated in each pipe (the largest strategy amount in one

decade, increased by a factor of two to account for peak demands) and an assumed 5 ft/s velocity. The smallest assumed diameter was 6 inches.

Additional project costs included Engineering, Contingencies and Legal Services (35 percent), land acquisition (assuming 1 acre per well at \$5,000 per acre), and Environmental and Archeological Studies, Mitigation, and Permitting (assumed equal to the land acquisition cost). The total project cost was annualized over a 20-year term of debt. Along with this annualized cost, O&M, and annual energy costs to pump the water made up the annual cost. The unit cost was taken as the largest annual cost, divided by the largest volume of water generated by the strategy in any one decade over the planning horizon.

	Table 4.53	Trinity	Aquifer	Expansion	Cost
--	-------------------	----------------	----------------	------------------	------

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
County-Other	Burnet	Colorado	\$2,029,440	\$2,967,729	\$499,632	\$923.53
Livestock	Burnet	Brazos	\$226,780	\$226,780	\$92,894	\$4,038.88
Mining	Burnet	Brazos			\$1,593	\$63.72
County-Other	Mills	Brazos			\$337	\$37.41
County-Other	Mills	Colorado			\$1,945	\$37.41
Goldthwaite *	Mills	Colorado	\$1,352,960	\$1,903,826	\$239,228	\$736.09
Goldthwaite *	Mills	Brazos (to Colorado)		(See WUG a	bove)	
Goldthwaite *	Mills	Brazos				
Irrigation	Mills	Brazos			\$7,219	\$37.41
Irrigation	Mills	Colorado			\$4,077	\$37.41

^{*}Note: The City of Goldthwaite is located in two river basins (Brazos and Colorado) and has needs in both. One proposed strategy to meet their needs is to pump additional Trinity aquifer groundwater. This strategy would be used for all of Goldthwaite (both river basins) and will only have one cost associated with it, but it shows as three pieces due to the river basin split and the availability limitations of the Trinity aquifer in Mills County. Refer to *Appendix 4C* for further discussion of this strategy.

For the purposes of developing costs for this strategy, any WUG generating a maximum supply, in a single decade, of less than 1/4 mgd (approximately 280 ac-ft/yr) from the strategy was assumed to acquire the additional groundwater through additional pumping of existing wells. For these WUGs, only the increased annual energy cost was factored into the unit cost for the strategy, with no capital expenditures.

The above rule was utilized for all WUGs other than Livestock WUGs, whose capital costs were generated assuming one well per ac-ft/yr needed, with no transmission line costs. Each well for Livestock WUGs was estimated to cost \$9,860, fully installed and operational. In addition, no additional project costs were added in for Livestock WUGs and a 5-year term of debt was utilized when annualizing the capital costs. A listing of assumptions and/or methodology is provided in *Appendix 4B*.

Environmental Impact

The Trinity aquifer was modeled to allow the use of water from the aquifer until the simulated drought of record springflow with no pumpage from the aquifer was still equal to 90 percent of the observed springflow during the drought of record. In the absence of definitive studies, it is hoped that this amount of spring flow will be sufficient to maintain any threatened or endangered populations, but it is not known for sure if that is the case. The impacts of construction of wells and pipelines, if properly managed, are expected to produce low impact to the environment, and primarily during the construction period itself.

Impacts to Agriculture

This strategy provides small amounts of water for livestock in Burnet County and for irrigation in Mills County, all of which will have a positive impact on agriculture. Increased drawdown from the municipal demands to be served from the aquifer will likely have a low negative impact on agriculture.

4.7.1.8 Yegua-Jackson Aquifer

This alternative would involve pumping additional groundwater, either using their existing wells or drilling additional wells. The WUGs were assumed to pump this additional water from their current supply. *Table 4.54* presents the WUGs that would utilize this strategy along with the implementation decade and the amount of water to be pumped. Additional groundwater was only allocated to meet each WUG's individual shortage.

Table 4.54 Yegua-Jackson Aquifer Expansions

WUG Name	County	River	,	Water Ma	nagement	Strategie	s (ac-ft/yr)
WUG Name	County	Basin	2010	2020	2030	2040	2050	2060
Schulenburg	Fayette	Lavaca						9

Opinion of Probable Costs

Table 4.55 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For the purposes of developing costs for this strategy within the Yegua-Jackson aquifer, any WUG generating a maximum supply, in a single decade, of less than 1/4 mgd (approximately 280 ac-ft/yr) from the strategy was assumed to acquire the additional groundwater through added pumping of existing wells. For these WUGs, only the increased annual energy cost was factored into the unit cost for the strategy, with no capital expenditures. The WUG utilizing this strategy in this aquifer fit into this category. Note that annual energy costs were based on the assumed pumping distance, which was taken to be 200 ft plus 5 ft for every 1,000 ft of transmission pipe, as well as \$0.09 per kWh. A listing of assumptions and/or methodology is provided in *Appendix 4B*.

Table 4.55 Yegua-Jackson Aquifer Expansion Costs

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
Schulenburg	Fayette	Lavaca			\$337	\$37.41

Environmental Impact

The model of the Yegua-Jackson Aquifer had not been released at the time the water supply determinations were made, so the estimate of supply came from permit data provided by the Fayette County Groundwater Conservation District. No construction is required for this strategy, so no impact on the environment from construction of wells and pipelines is expected. It was not possible to determine whether there would be any major impacts to any potential springs from this aquifer.

Impacts to Agriculture

This small increase in supply should have little to no impact on agriculture. There are additional aquifers in Fayette County that supply water for irrigation needs.

4.7.1.9 Other Aquifer

Other Aquifer refers to alluvial groundwater supplies that have not been identified, named, or studied. The most likely source of these Other Aquifer supplies in Region K is the Colorado River alluvium and related terrace deposits.

This alternative would involve pumping additional groundwater either using their existing wells or drilling additional wells. The WUGs were assumed to pump this additional water from their current supply. *Table 4.56* presents the WUGs that would utilize this strategy along with the implementation decade and the amount of water to be pumped. Additional groundwater was only allocated to meet each WUG's individual shortage.

Alluvial water may legally constitute state water for which a water right from the State must be obtained if it is determined to be the 'underflow' of a state watercourse. If a direct hydrologic connection exists between the surface water in the stream and the alluvial water, then pumping from the alluvium will diminish the streamflow proportionally.

Table 4.56 Other Aquifer Expansions

WUG Name	Country	River	,	Water Ma	nagement	Strategie	s (ac-ft/yr))
WUG Name	County	Basin	2010	2020	2030	2040	2050	2060
Bastrop	Bastrop	Colorado		416	777	1,366	2,017	2,814

This strategy was applied to the City of Bastrop in Bastrop County.

Opinion of Probable Costs

Table 4.57 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For this strategy, there were assumed to be two potential capital expenditures. These were drilling and installation of the required additional wells (including pump installation) and installation of a one-half-mile-long transmission pipe(s) to tie the additional well(s) to the distribution system. Assumptions were made for well capacity, depth of drilling required, well diameter, and pumping distance according to the aquifer being utilized and the approximate location of the WUG. For Aquifer Other, the values used were 0.75 mgd, 100 ft, 10 in, and 20 ft, respectively. These assumptions were based on familiarity with similar projects and project locations, as well as the characteristics of nearby existing wells. Wells were assumed to operate 24 hours per day, at 80 percent efficiency for determining production capacity and a unit cost of \$41 per in-ft (to include installation, chlorination, and pump) was used to estimate the cost once the well had been sized. Transmission piping was sized based on the maximum flow anticipated in each pipe (the largest strategy amount in one decade, increased by a factor of two to account for peak demands) and an assumed 5 ft/s velocity. The smallest assumed diameter was 6 inches.

Additional project costs included Engineering, Contingencies and Legal Services (35 percent), land acquisition (assuming 1 acre per well at \$5,000 per acre), and Environmental and Archeological Studies, Mitigation, and Permitting (assumed equal to the land acquisition cost). The total project cost was annualized over a 20-year term of debt. Along with this annualized cost, O&M, and annual energy costs to pump the water made up the annual cost. The unit cost was taken as the largest annual cost, divided by the largest volume of water generated by the strategy in any one decade over the planning horizon. A listing of assumptions and/or methodology is provided in *Appendix 4B*.

Table 4.57 Other Aquifer Expansion Costs

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
Bastrop	Bastrop	Colorado	\$1,721,920	\$2,548,868	\$333,193	\$118.41

Environmental Impacts

Impacts of additional pumping from the Other Aquifer category are more difficult to pinpoint. There is no model to use to determine the potential drawdown impacts from this strategy, and there is also no means to determine the impact on streamflows if this water is withdrawn. The impact of the construction of wells and pipelines is expected to be low provided that sufficient care is taken to avoid wetland issues in site selection and construction. Construction impacts should be limited primarily to the construction period. Impacts would be expected to be low unless there is a noticeable reduction in streamflows as a result of this strategy.

Impacts to Agriculture

No agricultural WUGs in Bastrop County use Other Aquifer as a source. As a result, no impact to agriculture is anticipated, although potential impacts on downstream water rights that supply water to irrigation could occur if streamflows of the Colorado River are being intercepted by the alluvium formation.

4.7.2 Development of New Groundwater Supplies

This group of strategies includes those WUGs that are obtaining groundwater from groundwater sources which they have not tapped previously.

4.7.2.1 Carrizo-Wilcox Aquifer

This alternative would involve developing a new well field to pump water from the Carrizo-Wilcox aquifer in the Guadalupe River Basin, with most of the water being provided to County-Other users in the Colorado River Basin. This strategy assumes that one or more new developments would be located fairly close to the Guadalupe River Basin. A new well field will consist of acquisition of a site, new wells, 5 miles of distribution line, one-half mile of transmission line, new pump stations, and will assume that the WUG has the available storage capacity to store this additional water. *Table 4.58* presents the WUGs that would utilize this strategy along with the implementation decade and the amount of water needed. Additional groundwater was only allocated to meet each WUG's individual shortage.

Water Management Strategies (ac-ft/yr) **WUG Name** County **River Basin** 2010 2020 2030 2040 2050 2060 Guadalupe (to County-Other **Bastrop** Colorado) 975 1,230 County-Other Bastrop Guadalupe 16 Colorado (from Buda Hays 1,687 Region L) 1,687 1,687 1,687 1,687

Table 4.58 Carrizo-Wilcox Aquifer Development

This strategy was applied to the following WUGs in Bastrop County: County-Other in the Guadalupe River Basin and the Colorado River Basin. This strategy is also applied to the City of Buda in Hays County as part of the Hays-Caldwell Public Utility Agency's development of the Carrizo-Wilcos aquifer in Caldwell and Gonzalez Counties (Region L) for transport to multiple municipal WUGs in Hays County located in both Region L and Region K.

Opinion of Probable Costs

Table 4.59 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For this strategy for the WUGs in Bastrop County, there were assumed to be four potential capital expenditures. These were drilling and installation of the required additional wells (including pump installation), installation of a one- mile- long transmission pipe(s) to tie the additional well(s) to the distribution system, a 10-mile distribution pipe, and a pump station. Assumptions were made for well capacity, depth of drilling required, well diameter, and pumping distance according to the aquifer being utilized and the approximate location of the WUG. For the Carrizo-Wilcox aquifer, the values used were 1.5 mgd, 500 ft, 16 in, and 200 ft, respectively. These assumptions were based on familiarity with similar projects and project locations, as well as the characteristics of nearby existing wells. Wells were assumed to operate 24 hours per day, at 80 percent efficiency for determining production capacity and a unit cost of \$41 per in-ft (to include installation, chlorination, and pump) was used to estimate the cost once the well had been sized. Transmission piping was sized based on the maximum flow anticipated in each pipe (the largest strategy amount in one decade, increased by a factor of two to account for peak demands) and an assumed 5 ft/s velocity. The smallest assumed diameter was 6 inches. Distribution pipe was sized to handle the maximum total flow (from all new wells as part of the strategy), again, increased by a factor of two to account for peak demands and assuming a 5 ft/s velocity. The pump station cost estimate was based on \$197,250 per mgd, taken from the San Marcos Water Supply Master Plan, December 2004, and updated to September 2008 costs.

Additional project costs included Engineering, Contingencies and Legal Services (35 percent), land acquisition (assuming 1 acre per well and 5 acres for the pump station, at \$5,000 per acre), and Environmental and Archeological Studies, Mitigation, and Permitting (assumed equal to the land acquisition cost). The total project cost was annualized over a 20-year term of debt. Along with this annualized cost, O&M, and annual energy costs to pump the water made up the annual cost. The unit cost was taken as the largest annual cost, divided by the largest volume of water generated by the strategy in any one decade over the planning horizon.

The costs for the City of Buda were determined through discussions with City of Buda personnel who explained that the project costs for City of Buda would be a percentage of the total project costs that is equal to the percentage of total water that City of Buda would receive from the project.

Table 4.59 Carrizo-Wilcox Aquifer Development Costs

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
County-Other	Bastrop	Guadalupe (to Colorado)	\$5,434,871	\$7,932,044	\$881,392	\$707.38
County-Other	Bastrop	Guadalupe			\$11,318	\$707.38
Buda	Hays	Colorado (from Region L)	\$6,807,200	\$10,905,253	\$1,300,027	\$770.61

A listing of assumptions and/or methodology is provided in *Appendix 4B*.

Environmental Impacts

The impacts to the environment from the additional yield being sought from the Carrizo-Wilcox aquifer area expected to be low. Impacts from construction of wells and pipelines should be limited primarily to the construction period as long as care is taken to avoid environmentally sensitive areas and provide proper restoration to the surface when complete.

Impacts to Agriculture

There are currently no irrigation WUGs with supplies of irrigation water or livestock water from the Carrizo-Wilcox Aquifer in Region K. This is not a source of choice, probably because of the depth of the aquifer. In addition, the terrain in Bastrop County is often not conducive to irrigated agriculture. Therefore, the impact on agriculture is low.

4.7.2.2 Edwards-BFZ Aquifer (Brackish Groundwater Desalination)

This strategy would involve developing a new well field over the Saline Zone of the Edwards-BFZ Aquifer in eastern Travis County to pump saline groundwater and desalinate the water on-site prior to connecting to an existing distribution system that would distribute the water to customers in southern Travis and northern Hays County. The system includes a well field, pump station, well collection lines, distribution lines, a water treatment plant, and a brine disposal system.

Barton Springs/Edwards Aquifer Conservation District (BS/EACD) is currently working with Texas Disposal Systems (TDS) and other partners to evaluate well field locations, water quality, and buffer zone distances to prevent any impact to the freshwater zone of the aquifer. The partnership is also exploring options for using Refuse Derived Fuels (RDFs) and for reusing brine waste, rather than disposing of it.

Table 4.60 presents the WUGs that would utilize this strategy along with the implementation decade and the amount of water needed.

Water Management Strategies (ac-ft/vr) **WUG Name** County **River Basin** 2010 2020 2030 2040 2050 2060 Buda Colorado 500 Hays Cimarron Park Hays Colorado 250 350 500 600 Water Company Hays 2,500 2,500 5,000 County-Other Colorado 250 6.000

 Table 4.60 Edwards-BFZ Aquifer Development (Brackish Groundwater Desalination)

This strategy was applied to the following WUGs in Hays County: Buda, Cimarron Park Water Company, and County-Other.

Opinion of Probable Costs

Table 4.61 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For this strategy, there were assumed to be six potential capital expenditures. These were drilling and installation of the required additional wells (including pump installation), installation of a 1 mile well collection line(s), a 1 mile distribution pipe, a pump station, a water treatment plant, and a brine disposal system. Assumptions were made for well capacity, depth of drilling required, well diameter, and pumping distance according to the aquifer being utilized and the approximate location of the WUG. For the Edwards-BFZ aguifer, the values used were 1 mgd, 1,000 ft, 12 in, and 300 ft, respectively. These assumptions were based on familiarity with similar projects and project locations, as well as the characteristics of nearby existing wells. Wells were assumed to operate 24 hours per day, at 80 percent efficiency for determining production capacity and a TWDB groundwater desalination formula (to include installation, chlorination, and pump) was used to estimate the cost once the well had been sized. Transmission piping was sized based on the maximum flow anticipated in each pipe (the largest strategy amount in one decade, increased by a factor of two to account for peak demands) and an assumed 5 ft/s velocity. The smallest assumed diameter was 6 inches. Distribution pipe was sized to handle the maximum total flow (from all new wells as part of the strategy), again, increased by a factor of two to account for peak demands and assuming a 5 ft/s velocity. The pump station cost estimate was based on \$197,250 per mgd, taken from the San Marcos Water Supply Master Plan, December 2004, and updated to September 2008 costs.

Additional project costs included Engineering, Contingencies and Legal Services (35 percent), land acquisition (assuming 5 acres per well, at \$5,000 per acre), and Environmental and Archeological Studies, Mitigation, and Permitting (assumed equal to the land acquisition cost). The total project cost was annualized over a 20-year term of debt. Along with this annualized cost, O&M, and annual energy costs to pump the water made up the annual cost. The unit cost was taken as the largest annual cost, divided by the largest volume of water generated by the strategy in any one decade over the planning horizon.

Largest **Total Project Unit Cost Total Capital WUG Name County River Basin** Annual Cost Cost (\$/ac-ft) Cost \$1,391,124 \$1,949,445 \$489,334 \$978.67 Buda Hays Colorado Cimarron Park Hays Colorado Water Company \$1,669,349 \$2,339,334 \$587,200 \$978.67 County-Other Colorado \$16,693,491 \$23,393,343 Hays \$5,872,020 \$978.67

Table 4.61 Edwards-BFZ Aquifer Development Costs

4.7.2.3 Ellenburger-San Saba Aquifer

This alternative would involve developing a new well field to pump water from the Ellenburger-San Saba aquifer. A new well field will consist of acquisition of a site, new wells, five (5) miles of distribution line, one-half mile of transmission line, new pump stations, and assumes that the WUG has the available storage capacity to store this additional water. *Table 4.62* presents the WUG that would utilize this strategy along with the implementation decade and the amount of water needed. Additional groundwater was only allocated to meet each WUG's individual shortage.

Table 4.62 Ellenburger-San Saba Aquifer Development

WUG Name	County	River Basin	7	Vater Ma	nagement	Strategie	s (ac-ft/yr)
WUG Name	County	Kiver Dasiii	2010	2020	2030	2040	2050	2060
County-Other	Blanco	Guadalupe					41	64
Llano	Llano	Colorado	478	478	478	478	478	478

Additional information on this strategy for the City of Llano is available in *Appendix 4C*.

Opinion of Probable Costs

Table 4.63 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For this strategy, there were assumed to be four potential capital expenditures. These were drilling and installation of the required additional wells (including pump installation), installation of a one-half-mile-long transmission pipe(s) to tie the additional well(s) to the distribution system, a 5-mile distribution pipe, and a pump station. Assumptions were made for well capacity, depth of drilling required, well diameter, and pumping distance according to the aquifer being utilized and the approximate location of the WUG. For the Ellenburger-San Saba aquifer, the values used were 0.1 mgd, 600 ft, 6 in, and 200 ft, respectively. These assumptions were based on familiarity with similar projects and project locations, as well as the characteristics of nearby existing wells. Wells were assumed to operate 24 hours per day, at 80 percent efficiency for determining production capacity and a unit cost of \$41 per in-ft (to include installation, chlorination, and pump) was used to estimate the cost once the well had been sized. Transmission piping was sized based on the maximum flow anticipated in each pipe (the largest strategy amount in one decade, increased by a factor of two to account for peak demands) and an assumed 5 ft/s velocity. The smallest assumed diameter was 6 inches. Distribution pipe was sized to handle the maximum total flow (from all new wells as part of the strategy), again, increased by a factor of two to account for peak demands and assuming a 5 ft/s velocity. The pump station cost estimate was based on \$197,250 per mgd,

taken from the San Marcos Water Supply Master Plan, December 2004, and updated to September 2008 costs.

Additional project costs included Engineering, Contingencies and Legal Services (35 percent), land acquisition (assuming 1 acre per well and 5 acres for the pump station, at \$5,000 per acre), and Environmental and Archeological Studies, Mitigation, and Permitting (assumed equal to the land acquisition cost). The total project cost was annualized over a 20-year term of debt. Along with this annualized cost, O&M and annual energy costs to pump the water made up the annual cost. The unit cost was taken as the largest annual cost, divided by the largest volume of water generated by the strategy in any one decade over the planning horizon. A listing of assumptions and/or methodology is provided in *Appendix 4B*.

Table 4.63 Ellenburger-San Saba Aquifer Development Costs

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
County-Other	Blanco	Guadalupe	\$1,977,110	\$2,868,976	\$276,304	\$4,317.25
Llano	Llano	Colorado	\$3,624,413	\$5,411,080	\$736,897	\$1,541.63

Environmental Impacts

The additional pumpage from the Ellenburger-San Saba aquifer is within the sustainable yield of the aquifer for all decades. The construction of well sites and pipelines is anticipated to have a low environmental impact primarily during the construction period, if proper precautions are taken to avoid environmentally sensitive areas. There is some potential beneficial impact to streamflows from the increased return flow from Llano.

Impacts to Agriculture

The amount of additional pumping from the Ellenburger-San Saba aquifer may result in additional drawdown that will have a low negative impact on agricultural producers from increased cost to produce water.

4.7.2.4 Hickory Aquifer

This strategy would involve developing a new well field to pump water from the Hickory aquifer. A new well field will consist of acquisition of a site, new wells, five (5) miles of distribution line, one-half mile of transmission line, new pump stations, and assumes that the WUG has the available storage capacity to store this additional water. *Table 4.64* presents the WUG that would utilize this strategy along with the implementation decade and the amount of water needed. Additional groundwater was only allocated to meet the WUG's individual shortage.

Table 4.64 Hickory Aquifer Development

WUG Name	County	River Basin	1	Vater Ma	nagement	Strategie	s (ac-ft/yr)
		Kiver basiii	2010	2020	2030	2040	2050	2060
Llano	Llano	Colorado	512	488	406	331	261	196

Additional information on this strategy for the City of Llano is available in Appendix 4C.

Opinion of Probable Costs

Table 4.65 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For this strategy, there were assumed to be four potential capital expenditures. These were drilling and installation of the required additional wells (including pump installation), installation of a one-half-milelong transmission pipe(s) to tie the additional well(s) to the distribution system, a 5-mile distribution pipe, and a pump station. Assumptions were made for well capacity, depth of drilling required, well diameter, and pumping distance according to the aquifer being utilized and the approximate location of the WUG. For the Hickory aguifer, the values used were 0.2 mgd, 1,000 ft, 6 in, and 300 ft, respectively. These assumptions were based on familiarity with similar projects and project locations, as well as the characteristics of nearby existing wells. Wells were assumed to operate 24 hours per day, at 80 percent efficiency for determining production capacity and a unit cost of \$41 per in-ft (to include installation, chlorination, and pump) was used to estimate the cost once the well had been sized. Transmission piping was sized based on the maximum flow anticipated in each pipe (the largest strategy amount in one decade, increased by a factor of two to account for peak demands) and an assumed 5 ft/s velocity. The smallest assumed diameter was 6 inches. Distribution pipe was sized to handle the maximum total flow (from all new wells as part of the strategy), again, increased by a factor of two to account for peak demands and assuming a 5 ft/s velocity. The pump station cost estimate was based on \$197,250 per mgd, taken from the San Marcos Water Supply Master Plan, December 2004, and updated to September 2008 costs.

Additional project costs included Engineering, Contingencies and Legal Services (35 percent), land acquisition (assuming 1 acre per well and 5 acres for the pump station, at \$5,000 per acre), and Environmental and Archeological Studies, Mitigation, and Permitting (assumed equal to the land acquisition cost). The total project cost was annualized over a 20-year term of debt. Along with this annualized cost, O&M and annual energy costs to pump the water made up the annual cost. The unit cost was taken as the largest annual cost, divided by the largest volume of water generated by the strategy in any one decade over the planning horizon. A listing of assumptions and/or methodology is provided in *Appendix 4B*.

Table 4.65 Hickory Aquifer Development Costs

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
Llano	Llano	Colorado	\$4,697,200.00	\$6,908,443	\$876,077	\$1,711.09

Environmental Impacts

The additional pumpage from the Hickory aquifer is within the sustainable yield of the aquifer for all decades. The construction of well sites and pipelines is anticipated to have a low environmental impact primarily during the construction period, if proper precautions are taken to avoid environmentally sensitive areas. There is some potential beneficial impact to streamflows from the increased return flow from Llano.

Impacts to Agriculture

The location of this proposed strategy currently has no irrigation wells, so no impact to agriculture is expected.

4.7.2.5 Queen City Aquifer

This strategy would involve developing a new well to pump water from the Queen City aquifer. A new well field will consist of acquisition of a site, new wells, 5 miles of distribution line, one-half mile of transmission line, new pump stations, and assumes that the WUG has the available storage capacity to store this additional water. *Table 4.66* presents the WUGs that would utilize this strategy along with the implementation decade and the amount of water needed.

Table 4.66 Queen City Aquifer Development

WUG Name	Country	River Basin	Water Management Strategies (ac-ft/yr)					
WUG Name	County	Kiver Dasiii	2010	2020	2030	2040	2050	2060
Smithville	Bastrop	Colorado	-			-	_	580

Opinion of Probable Costs

Table 4.67 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For this strategy, there were assumed to be four potential capital expenditures. These were drilling and installation of the required additional wells (including pump installation), installation of a one-half-milelong transmission pipe(s) to tie the additional well(s) to the distribution system, an 8-mile distribution pipe, and a pump station. Assumptions were made for well capacity, depth of drilling required, well diameter, and pumping distance according to the aquifer being utilized and the approximate location of the WUG. For the Queen City aquifer, the values used were 0.75 mgd, 500 ft, 16 in, and 200 ft, respectively. These assumptions were based on familiarity with similar projects and project locations, as well as the characteristics of nearby existing wells. Wells were assumed to operate 24 hours per day, at 80 percent efficiency for determining production capacity and a unit cost of \$41 per in-ft (to include installation, chlorination, and pump) was used to estimate the cost once the well had been sized. Transmission piping was sized based on the maximum flow anticipated in each pipe (the largest strategy amount in one decade, increased by a factor of two to account for peak demands) and an assumed 5 ft/s velocity. The smallest assumed diameter was 6 inches. Distribution pipe was sized to handle the maximum total flow (from all new wells as part of the strategy), again, increased by a factor of two to account for peak demands and assuming a 5 ft/s velocity. The pump station cost estimate was based on \$197,250 per mgd, taken from the San Marcos Water Supply Master Plan, December 2004, and updated to September 2008 costs.

Additional project costs included Engineering, Contingencies and Legal Services (35 percent), land acquisition (assuming 1 acre per well and 5 acres for the pump station, at \$5,000 per acre), and Environmental and Archeological Studies, Mitigation, and Permitting (assumed equal to the land acquisition cost). The total project cost was annualized over a 20-year term of debt. Along with this annualized cost, O&M and annual energy costs to pump the water made up the annual cost. The unit cost was taken as the largest annual cost, divided by the largest volume of water generated by the strategy in

any one decade over the planning horizon. A listing of assumptions and/or methodology is provided in *Appendix 4B*

Table 4.67 Queen City Aquifer Development Costs

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
Smithville	Bastrop	Colorado	\$4,190,135	\$6,132,554	\$627,800	\$1,082.41

Environmental Impacts

The additional pumpage from the Queen City aquifer is within the sustainable yield of the aquifer for all decades. The construction of well sites and pipelines is anticipated to have a low environmental impact primarily during the construction period, if proper precautions are taken to avoid environmentally sensitive areas.

Impacts to Agriculture

Although within the sustainable yield of the aquifer, additional drawdown of the Queen City aquifer by the City of Smithville may impact agricultural users of the Queen City aquifer by increasing their energy costs required to pump the groundwater.

4.7.2.6 Trinity Aquifer

This alternative would involve developing a new well to pump water from the Trinity aquifer. A new well field will consist of acquisition of a site, new wells, 5 miles of distribution line, one-half mile of transmission line, new pump stations, and assumes that the WUG has the available storage capacity to store this additional water. *Table 4.68* presents the WUGs that would utilize this strategy along with the implementation decade and the amount of water needed. Additional groundwater was only allocated to meet each WUG's individual shortage.

Table 4.68 Trinity Aquifer Development

WUG Name	County	County River Basin Water Management Strategies (ac						
WUG Name	County	Kiver Dasiii	2010	2020	2030	2040	2050	2060
Manufacturing	Hays	Colorado			75	200	301	400

Opinion of Probable Costs

Table 4.69 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For this strategy, there were assumed to be four potential capital expenditures. These were drilling and installation of the required additional wells (including pump installation), installation of a one-half-mile-long transmission pipe(s) to tie the additional well(s) to the distribution system, a 5-mile distribution pipe, and a pump station. Assumptions were made for well capacity, depth of drilling required, well diameter, and pumping distance according to the aquifer being utilized and the approximate location of the WUG. For the Trinity aquifer, the values used were 0.2 mgd, 1200 ft, 8 in, and 200 ft, respectively. These

assumptions were based on familiarity with similar projects and project locations, as well as the characteristics of nearby existing wells. Wells were assumed to operate 24 hours per day, at 80 percent efficiency for determining production capacity and a unit cost of \$41 per in-ft (to include installation, chlorination, and pump) was used to estimate the cost once the well had been sized. Transmission piping was sized based on the maximum flow anticipated in each pipe (the largest strategy amount in one decade, increased by a factor of two to account for peak demands) and an assumed 5 ft/s velocity. The smallest assumed diameter was 6 inches. Distribution pipe was sized to handle the maximum total flow (from all new wells as part of the strategy), again, increased by a factor of two to account for peak demands and assuming a 5 ft/s velocity. The pump station cost estimate was based on \$197,250 per mgd, taken from the San Marcos Water Supply Master Plan, December 2004, and updated to September 2008 costs.

Additional project costs included Engineering, Contingencies and Legal Services (35 percent), land acquisition (assuming 1 acre per well and 5 acres for the pump station, at \$5,000 per acre), and Environmental and Archeological Studies, Mitigation, and Permitting (assumed equal to the land acquisition cost). The total project cost was annualized over a 20-year term of debt. Along with this annualized cost, O&M and annual energy costs to pump the water made up the annual cost. The unit cost was taken as the largest annual cost, divided by the largest volume of water generated by the strategy in any one decade over the planning horizon. A listing of assumptions and/or methodology is provided in *Appendix 4B*.

Table 4.69 Trinity Aquifer Development Costs

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
Manufacturing	Hays	Colorado	\$4,084,198	\$6,000,820	\$662,608	\$1,656.52

Environmental Impacts

As noted during the section on expansion of groundwater, this aquifer was modeled to maintain 90 percent of springflow with no pumping during the critical period of the drought of record. If that level is sufficiently protective of local species, then environmental impacts are expected to be low. Impacts from construction of well sites and pipelines are also expected to be low, and confined primarily to the construction period.

Impacts to Agriculture

As noted above, the aquifer was modeled to maintain 90 percent of springflow with no pumping. As a result, potential drawdown is limited and impacts to agriculture are low.

4.7.2.7 Other Aquifer

Other Aquifer refers to alluvial groundwater supplies that have not been identified, named, or studied. The most likely source of these Other Aquifer supplies in Region K is the Colorado River alluvium and related terrace deposits.

This alternative would involve developing a new well to pump water from the Other Aquifer in the Colorado and Lavaca River Basins. A new well field will consist of acquisition of a site, new wells, 5

miles of distribution line, one-half mile of transmission line, new pump stations, and assumes that the WUG has the available storage capacity to store this additional water. *Table 4.70* presents the WUGs that would utilize this strategy along with the implementation decade and the amount of water needed. Additional groundwater was only allocated to meet each WUG's individual shortage.

Alluvial water may legally constitute state water for which a water right from the State must be obtained if it is determined to be the 'underflow' of a state watercourse. If a direct hydrologic connection exists between the surface water in the stream and the alluvial water, then pumping from the alluvium will diminish the streamflow proportionally.

	1										
WUG Name	Country	River	Water Management Strategies (ac-ft/yr)								
WUG Name	County	Basin	2010	2020	2030	2040	2050	2060			
Mining	Colorado	Colorado	4,269	4,269	4,269	4,269	4,269	4,269			
Fayette WSC	Fayette	Colorado			79	291	548	889			
Livestock	Fayette	Colorado (to Brazos)	22	22	22	22	22	22			

Table 4.70 Other Aquifer Development

This strategy was applied to Mining in Colorado County and Fayette WSC and Livestock in Fayette County.

Opinion of Probable Costs

Table 4.71 presents a summary of the probable costs for each WUG utilizing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For this strategy, there were assumed to be four potential capital expenditures. These were drilling and installation of the required additional wells (including pump installation), installation of a one-half-milelong transmission pipe(s) to tie the additional well(s) to the distribution system, a 5 mile distribution pipe, and a pump station. Assumptions were made for well capacity, depth of drilling required, well diameter, and pumping distance according to the aquifer being utilized and the approximate location of the WUG. For the Other Aquifer, the values used were 0.75 mgd, 100 ft, 10 in, and 20 ft, respectively. These assumptions were based on familiarity with similar projects and project locations, as well as the characteristics of nearby existing wells. Wells were assumed to operate 24 hours per day, at 80 percent efficiency for determining production capacity and a unit cost of \$41 per in-ft (to include installation, chlorination, and pump) was used to estimate the cost once the well had been sized. Transmission piping was sized based on the maximum flow anticipated in each pipe (the largest strategy amount in one decade, increased by a factor of two to account for peak demands) and an assumed 5 ft/s velocity. The smallest assumed diameter was six inches. Distribution pipe was sized to handle the maximum total flow (from all new wells as part of the strategy), again, increased by a factor of two to account for peak demands and assuming a 5 ft/s velocity. The pump station cost estimate was based on \$197,250 per mgd, taken from the San Marcos Water Supply Master Plan, December 2004, and updated to September 2008 costs.

Additional project costs included Engineering, Contingencies and Legal Services (35 percent), land acquisition (assuming 1 acre per well and 5 acres for the pump station, at \$5,000 per acre), and

Environmental and Archeological Studies, Mitigation, and Permitting (assumed equal to the land acquisition cost). The total project cost was annualized over a 20-year term of debt. Along with this annualized cost, O&M and annual energy costs to pump the water made up the annual cost. The unit cost was taken as the largest annual cost, divided by the largest volume of water generated by the strategy in any one decade over the planning horizon.

Table 4.71 Other Aquifer Development Costs

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
Mining	Colorado	Colorado			\$37,449	\$8.77
Fayette WSC	Fayette	Colorado	\$2,887,868	\$4,260,602	\$436,506	\$491.01
Livestock	Fayette	Colorado (to Brazos)	\$216,920	\$229,935	\$62,958	\$2,861.71

Because the Mining-Colorado WUG is located over the Recharge Zone of the Gulf Coast aquifer, and the mines typically extend into the groundwater with their excavations, no well costs were assumed for this WUG and a pumping lift distance of only 50 feet was used in the energy calculation. No capital costs were assumed for the Mining WUG.

The methodology also deviated for the Livestock WUGs, whose capital costs were generated assuming one well per ac-ft/yr needed, with no transmission or distribution line costs and no pump station costs. Each well for Livestock WUGs was estimated to cost \$9,860, fully installed and operational. In addition, no additional project costs were added in for Livestock WUGs and a 5-year term of debt was utilized when annualizing the capital costs. A listing of assumptions and/or methodology is provided in *Appendix 4B*.

Environmental Impacts

The potential environmental impacts from this strategy are related to whether or not there is a direct impact to streamflow. Other Aquifer in this plan primarily refers to alluvial sands in the vicinity of the Colorado River. The probability of making a significant change in river flow from the withdrawal of this relatively small amount is low and the impacts are likely low as well. Impacts from construction of well sites and pipelines are also expected to be low and confined primarily to the construction period.

Impacts to Agriculture

As noted previously, there are no known agricultural users of Other Aquifer water and impacts would be low to none.

4.7.3 Transfer/Allocate Water From WUGs with Surplus

Significant shortages as well as ample surpluses appear for several WUGs within the Region K planning area. This strategy evaluates the idea of the WUGs with a surplus transferring their water to WUGs with shortages as long as they were in the same vicinity.

Analysis

The WUG in *Table 4.72* utilizes the transfer strategy in which water is transferred either within the same WUG but in a different county or within the same WUG but from a different river basin. There are no costs associated with this strategy.

Table 4.72 Transfer Water Strategy

WUG Name	County River		Water Management Strategies (ac-ft/yr)						
WUG Name	County	Basin	2010	2020	2030	2040	2050	2060	
Goforth WSC	Travis	Colorado	11	21	30	37	43	48	
ТО	TAL		11	21	30	37	43	48	

The WUGs in *Table 4.73* have water allocated to them from another WUG (usually the County-Other WUG) within the same county. These County-Other supplies that are being reallocated using this strategy were estimated in the 2001 Plan. The water demands have changed and the number of WUGs included in County-Other has changed since the last plan; therefore, this strategy involves adjusting the 2001 supply allocation estimates to better represent the current plan conditions. There are no costs associated with this strategy.

Cimarron Park Water Company in Hays County will have available groundwater allocated to it by County-Other in 2010 and 2020.

The Irrigation WUG in Mills County can help meet its need in 2010 by being allocated surplus Trinity aquifer water from County-Other.

Table 4.73 Allocate Water Strategy

WUG Name County		River	Water Management Strategies (ac-ft/yr					
WUG Name	County	Basin	2010	2020	2030	2040	2050	2060
Cimarron Park Water								
Company	Hays	Colorado	17	110				
Irrigation	Mills	Colorado	50					
TO	OTAL		67	110	0	0	0	0

Impacts to Agriculture

Allocations to Irrigation would have a positive, though small, impact on agriculture.

4.7.4 Temporary Drought Period Use of Aquifers

The following WUGs (*Table 4.74*) utilize the temporary aquifer additional use strategy in which additional groundwater is pumped to meet the projected shortage during the DOR.

For Irrigation in Bastrop County, which already has wells in the Queen City aquifer, the strategy is to pump additional groundwater in the early years to alleviate the drought shortage.

For Manufacturing in Matagorda County, which already has wells in the Gulf Coast aquifer, the strategy is to pump additional groundwater in 2060 to alleviate the drought shortage.

River Water Management Strategies (ac-ft/vr) **WUG Name County** Aquifer Basin 2010 2020 2030 2040 2050 2060 Irrigation **Bastrop** Brazos **Oueen City** 21 10 0 0 0 0 Manufacturing Matagorda Colorado **Gulf Coast** 0 0 0 0 0 47 10 0 0 TOTAL 21 0 47

Table 4.74 Temporary Drought Period Use of Aquifers

Opinion of Probable Costs

The costs associated with this strategy involve the additional energy cost that will be incurred during the temporary additional use of the aquifer. This cost assumes that the pumping distance required would be approximately 200 feet plus an additional 5 feet for every 1,000 feet of transmission line the pumped water would need to pass through (one-half-mile used). The energy calculation uses the value of \$0.09/kWh, and is also based on the assumption that the wire to water efficiency in the pumps and motors is 75 percent. The anticipated costs for the WUGs listed above are summarized in *Table 4.75* below.

Table 4.75 Temporary Drought Period Use of Aquifers Additional Pumping Costs

WUG Name	County	River Basin	Aquifer	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
Irrigation	Bastrop	Brazos	Queen City			\$417	\$19.86
Manufacturing	Matagorda	Colorado	Gulf Coast			\$1,758	\$37.41

Issues and Considerations

The additional drought period use of the Queen City Aquifer that is proposed will only occur during occurrence of the drought of record, and it will result in a limited additional drawdown of the water table. This additional drawdown will increase the cost of each unit of water produced as a result of the increased pumping lift. During years of more normal rainfall, the aquifer will recharge, and the irrigation demand will be decreased as a result of more rain falling on the crops. During this time period, the aquifer will recover over time and the water levels will return to normal. In addition, the demand decreases over time, so that by 2030, there is no longer an overdraft on the aquifer and the amounts produced are within the sustainable yield. In addition, the nature of agricultural irrigation is that water is produced during a fairly narrow window of time and the aquifer recovers until the next growing season. These conditions tend to further mitigate the additional drawdown that will be produced by the temporary additional use. However in areas of the aquifer where the transmissivities are lower, the local impacts and drawdowns will be correspondingly greater.

There are no known impacts to streamflows from water leaving the Queen City as springflow, so there should be no negative impacts on downstream flows as a result of this strategy.

The additional drought period use of the Gulf Coast aquifer for manufacturing in Matagorda County does not start until 2060. Therefore, impacts during this planning period will be negligible. In addition, the amount is a small fraction of the water produced from the Gulf Coast aquifer, so only minor and localized additional drawdowns would be anticipated to result from this strategy.

The Gulf Coast aquifer is close to the Gulf of Mexico at this location and there are no known springs which would contribute to instream flows or bay and estuary flows from the aquifer. As a result, there would be no negative impact on streamflows from the production of this additional amount of water, and there could be a minor positive impact if there are return flows from this location.

In addition to the additional use issues noted above, there is also a strategy for temporary drought period use of the Gulf Coast Aquifer in Matagorda and Wharton Counties as a part of the overall LSWP. Each of the components of LSWP is addressed separately in Section 4.9. This additional use is part of a strategy of conjunctive use of groundwater and surface water that will minimize the impacts of the additional pumping. The use of surface water when it is available is assured because of its lesser cost to pump into the system. As a result, surface water will be used whenever it is available, significant amounts of groundwater will be used only when surface water is not available, and the aquifer will recover. There is currently some question as to whether the aquifer levels will recover fully in terms of drawdown. The LSWP has a significant portion of its study dedicated to the development of a groundwater availability model that builds upon the current version to make it more site-specific in the lower counties of Region K. This study will provide more definitive data on the long-term impacts to the aquifer and will be incorporated into any deliberations or revisions to the plan.

Environmental Impacts

Impacts from the construction of wells and pipelines associated with this strategy are expected to be low and to be confined primarily to the construction period. The potential amounts of additional use are relatively small and limited in extent of time that they will occur.

Impacts to Agricultural Resources

This strategy provides water for agricultural use, which has a positive impact, but at the same time may result in increased costs of water production for some users based on greater pumping lifts from increased drawdown. Further studies are underway to better determine these impacts with more localized groundwater models for the Gulf Coast aquifer, which has the largest amount of irrigation usage and the greatest potential impact.

4.7.5 Drought Management

With the reduced rainfall that occurred during 2008 and 2009, causing severe, and even exceptional, states of drought in certain parts of Texas, drought management as a water management strategy was looked at more closely by several of the regional water planning groups, including the LCRWPG.

Drought Management is different from conservation in that conservation tends to look at the long-term, and takes more permanent steps to reduce a community's GPCD slowly over time. Actions such as replacing old water fixtures with new low-flow fixtures, providing public education to the community about native vegetation that requires less water, and performing audits on waterlines to check for leaks are examples of conservation measures that over time can reduce the amount of water that a community needs. Drought management, on the other hand, attempts to reduce a community's GPCD by a larger amount over a shorter period of time. Both drought management and conservation can be important and effective in their own ways.

The GPCD numbers used in this plan are an annual average. The actual amount of water used is generally higher in the summer and lower in the winter, mainly due to outdoor watering in the warmer months. By restricting outdoor watering during the warmer months as a way of managing drought, the annual average GPCD for a community can be significantly lowered, depending on the level of restriction and the effort to provide the appropriate information to the public. Tiered water rates, which charge higher \$/1000 gallon rates once a customer uses more than a specified amount, have also been found to be effective in reducing water use.

Many WUGs implemented water use restrictions during the summer of 2009. The Edwards-BFZ aquifer in Hays County and Travis County that is permitted by the BS/EACD reached Critical Drought Stage, which requires users to reduce water use by 30 percent. The City of Austin restricted outdoor watering to one day per week. Both types of restrictions were effective in reducing water use. The City of Austin showed that municipal WUGs that currently have their demands met (no shortage/need) can still be proactive by implementing drought management during times of reduced rainfall.

For this planning cycle, drought management is not recommended for every WUG, but a table is provided in *Appendix 4D* that shows the amount of water in acre-feet that each municipal WUG could save by implementing both five percent and ten percent water use restrictions, as a suggestion. For some of the WUGs that have drought management recommended as a strategy, the percent of water use reduction is as high as 30 percent, because that is the amount they have to reduce by during a critical drought. For those without existing regulations, water use reductions ranged between five and ten percent. *Table 4.76* below shows the WUGs that would utilize this strategy along with the implementation decade and the amount of water saved.

Table 4.76 Drought Management

WUG Name	Country	River	Water Management Strategies (ac-ft/yr)						
WUG Name	County	Basin	2010	2020	2030	2040	2050	2060	
Aqua WSC	Bastrop	Colorado						898	
Elgin	Bastrop	Colorado						265	
Smithville	Bastrop	Colorado						288	
Cimarron Park Water									
Company	Hays	Colorado	109	109	109	109	109	109	
Mountain City	Hays	Colorado	39	39	39	39	39	39	
Manufacturing	Hays	Colorado	257	257	257	257	257	257	
Goldthwaite	Mills	Colorado	56	56	56	56	56	56	
To	OTAL		461	461	461	461	461	1,912	

Opinion of Probable Costs

The costs associated with this strategy are related mainly to public outreach and enforcement. Depending on the number of customers who need to be informed of the water use restrictions, and the methods chosen to reach the customers, along with the level of enforcement, the annual costs can vary. In some cases, increased water rates and fines can recover the expenses of public outreach. The East Bay Municipal Utility District (EBMUD) in California provided an example for costs by hiring a public outreach consultant with the goal of saving a certain amount of water. The contract was for \$1.75 million

with a goal of saving 36,000 ac-ft of water. This works out to a unit cost of \$50/ac-ft. (See www.ebmud.com, Meeting Action Summary 06/10/08 #9a for more information.)

Environmental Impact

In many cases, reducing groundwater use during a drought allows for more springflow to provide water downstream. Reducing surface water use allows more water to remain in the streams, rivers, and lakes.

4.8 MUNICIPAL WATER MANAGEMENT STRATEGIES

Region K has 282 WUGs and 132 are Municipal. The municipal WUGs include cities, water utilities, and County-Other (rural/unincorporated areas of municipal water use aggregated on a county basis). *Table 4.77* shows the water needs for all of the Municipal WUGs in Region K and the number of WUGs with water deficits for each decade.

Table 4.77 Municipal Water Needs (ac-ft/yr)

Category Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Municipal	(6,894)	(19,640)	(29,753)	(44,719)	(88,591)	(136,233)
No. of WUGs	21	34	41	46	54	56

Several strategies were identified to meet the municipal shortages including conservation and contract renewals; conservation was the first strategy considered for municipal WUGs with needs. For several municipal WUGs with shortages, the following regional management strategies were selected:

- Expansion of Current Groundwater Supplies
- Development of New Groundwater Supplies
- Transfer/Allocate Water From WUGs with Surplus
- Drought Management

These regional strategies are explained in detail in Section 4.7 of this report.

In addition to these strategies, several municipal WUGs with shortages purchase water from the LCRA or the COA. Amendment of these contracts or new contracts are also identified as a strategy to meet shortages. These strategies are explained in *Sections 4.6.1.4* and *4.6.1.5*.

Part of the LSWP feasibility study will also determine how water shortages for rural communities in the upper portion of the LCRWPA can be better met.

In addition to the strategies identified above, additional municipal strategies have been identified to meet specific WUG needs. The following sections provide a description, analysis, and cost breakdown for these municipal strategies.

4.8.1 Water Conservation

Reduction of municipal water demand through conservation was a focal point of the 2006 round of Regional Water Planning in Texas and continues to be a focal point for the 2011 round. The water

demands approved by TWDB and the individual Regional Water Planning Groups (RWPGs) have already been adjusted to incorporate the effects of the 1991 State Water Saving Performance Standards for Plumbing Fixtures Act. In addition, RWPGs are required to consider further water conservation measures in their plan or explain reasons for not recommending conservation.

The LCRWPA currently anticipates 58 municipal WUGs with shortages in the year 2060. Twenty-six of these WUGs have per capita water demands in excess of the 140 gallons per capita per day (gpcd) limit proposed by the Water Conservation Implementation Task Force (WCITF) and may be able to reduce their shortages through conservation practices.

A methodology was developed to determine the anticipated municipal water conservation savings for the WUGs within the LCRWPA. First, WUGs were required to meet the following criteria to be chosen for conservation measures:

- Be a municipal WUG.
- Develop a shortage at some point from 2010 through 2060; WUGs without shortages were not considered.
- Have a year 2010 per capita water usage of greater than 140 gpcd indicating a potential for savings through conservation.

Per capita water demands were determined from the measured or projected population and water demands for each WUG during each decade. The potential reduced per capita demand for the year 2020 was determined from the 2010 per capita demand and from the previous decade (D_{i-1}) for each subsequent decade (D_i) in the following manner:

$$D_i = D_{i-1} (0.99)^{10} \tag{1}$$

This method follows the recommendation of a 1 percent per year reduction in per capita water demand in order to reach the target demand of 140 gpcd proposed by WCITF. Conservation was applied immediately in 2010 regardless of the beginning year of a WUG shortage so that conservation could be implemented early enough to have significant effects on demand by the time the shortage was realized.

After conservation was applied, several WUGs had very low per capita water usage which did not seem attainable; therefore, a lower limit of 140 gpcd was set. This was done so that conservation was only recommended to reach reasonable levels. For WUGs that were anticipated to reach a per capita usage below 140 gpcd without conservation in later decades, the lower demands approved by the Regional Planning Board and TWDB were carried forward.

The new per capita usage for each decade was then used along with the WUG population to determine the new water demands for each decade. These values were subtracted from the original water demands to determine the amount of water conserved in each decade.

This strategy was evaluated using the criteria above for the following WUGs shown in *Table 4.78*:

Table 4.78 Municipal Water Conservation Savings (ac-ft/yr)

WHO	Comme	River		Ar	nount Con	served (ac-	ft/yr)	
WUG	County	Basin	2010	2020	2030	2040	2050	2060
Bastrop	Bastrop	Colorado	146	396	755	1,224	1,438	1,728
Elgin	Bastrop	Colorado	91	79	40	0	0	0
Smithville	Bastrop	Colorado	25	0	0	0	0	0
Bertram	Burnet	Brazos	22	54	80	91	96	106
Marble Falls	Burnet	Colorado	199	510	920	1,415	1,879	2,405
Meadowlakes	Burnet	Colorado	77	194	351	537	710	897
Schulenberg	Fayette	Lavaca	43	104	157	159	167	184
Cimarron Park Water Company	Hays	Colorado	24	17	13	9	5	7
Dripping Springs	Hays	Colorado	81	277	470	549	661	748
Mountain City	Hays	Colorado	2	0	0	0	0	0
County-Other	Llano	Colorado	873	1,150	1,408	1,568	1,724	1,890
Lake LBJ MUD	Llano	Colorado	135	290	420	541	666	777
Llano	Llano	Colorado	100	205	299	383	468	558
Goldthwaite	Mills	Brazos	1	2	3	3	3	3
Goldthwaite	Mills	Colorado	46	98	144	184	220	256
Richland SUD	San Saba	Colorado	13	22	19	15	14	15
Austin ¹	Travis	Colorado	11,030	18,795	24,036	25,385	30,401	36,370
Barton Creek West WSC	Travis	Colorado	37	68	97	123	147	163
Bee Cave Village	Travis	Colorado	106	247	417	600	778	965
Briarcliff Village	Travis	Colorado	16	39	61	66	70	75
Lakeway	Travis	Colorado	396	938	1,579	2,297	3,017	3,765
Manor	Travis	Colorado	102	235	393	490	522	557
Pflugerville	Travis	Colorado	541	748	810	844	915	986
River Place on Lake Austin	Travis	Colorado	132	295	431	549	661	762
Rollingwood	Travis	Colorado	31	60	85	109	132	143
Round Rock	Travis	Colorado	32	93	179	243	277	312
West Lake Hills	Travis	Colorado	139	303	495	677	870	1,074
West Travis County Regional WS	Travis	Colorado	17	9	0	0	0	0
Wharton	Wharton	Colorado	41	29	18	8	4	4
TC	TAL	<u> </u>	14,498	25,257	33,680	38,069	45,845	54,750

¹ The amount of savings from Conservation for the City of Austin was provided by the City of Austin and was not determined using the methodology presented in this section. Please refer to Section 4.6.2.1

Opinion of Probable Cost

The conservation cost estimates were developed using information from the TWDB GDS Associates Inc. Study; *Quantifying the Effectiveness of Various Water Conservation Techniques in Texas*, May 2003.

The study divided each RWPG into urban, suburban, and rural areas. The urban areas in Region K are comprised of the City of Austin and the City of Round Rock. The suburban areas are Travis, Hays, Bastrop, and Williamson Counties; and all of the other counties are considered rural.

For the cost estimates, the conservation savings were divided into plumbing fixture savings and irrigation savings. The plumbing fixture savings include toilet retrofits, showerhead and aerator replacements, and clothes washer rebates. The irrigation savings include irrigation audits. The total conservation savings calculated for each WUG was proportioned between plumbing fixture savings and irrigation savings using an average of the estimated savings per measure in the study. Then the savings costs for plumbing fixture savings and irrigation savings were calculated using the cost per acre foot estimates in the study. These unit costs were only applied to the incremental savings; therefore, the savings that occur the year before will not have a cost the next year, only the additional savings have a cost associated with them.

The table below contains the percent of plumbing savings versus irrigation savings and the cost per ac-ft for the three categories (urban, suburban, and rural).

Conservation Savings	Percent of Total Savings	Cost per Acre-Foot
Urban		
Plumbing Fixture Savings	32%	\$481.60
Irrigation Savings	68%	\$515.89
Suburban		
Plumbing Fixture Savings	31%	\$564.82
Irrigation Savings	69%	\$540.94
Rural		
Plumbing Fixture Savings	30%	\$704.65
Irrigation Savings	70%	\$543.28

Table 4.79 Municipal Water Conservation Savings Unit Costs

It should be noted that much of the information on costs and anticipated savings for conservation measures is based on TWDB Report 362 – *Water Conservation Best Management Practices Guide*, prepared for the TWDB by GDS Associates. This publication is an excellent reference work for WUGs seeking information for starting or expanding their conservation programs.

Environmental Impact

As mentioned with the strategy for City of Austin conservation, conservation does not require additional infrastructure which has the potential to require environmental mitigation or other measures to address impacts.

Conservation has other potential impacts for WUGs that are served by groundwater. Communities that are served by surface water will divert less water from streams, meaning more water will remain in channels for downstream uses. However, groundwater communities contribute to streamflow by discharging treated groundwater into streams (typically 60 percent of water supplied is discharged following treatment.) Conservation measures implemented by these WUGs may lead to an overall decrease in streamflow, which is derived from groundwater sources. However, streamflow would not be expected to be decreased if the conservation is in the irrigation usage sector.

4.8.1.1 Additional Conservation

An additional conservation scenario for increasing water conservation was proposed and analyzed in the same manner as the original conservation figures developed above. This scenario involved applying a 0.25 percent savings annually to all municipal WUGs with shortages and a per capita demand between 100 and 140 gpcd.

This scenario could be performed in conjunction with conservation practices already recommended in the section above. Additional conservation would be applied until the per capita water demand reached 100 and 140 gpcd, respectively. No conservation would be applied below these respective levels. *Table 4.80* shows the additional amount of water conserved by implementing this scenario. This strategy is recommended for two WUGs in Bastrop County that could attain relatively large amounts of water savings using this strategy.

Table 4.80 Anticipated Reduction From Additional Municipal Conservation (ac-ft/yr)

WUG	Country	Basin	Amount Conserved (ac-ft/yr)					
WUG	County	Dasiii	2010	2020	2030	2040	2050	2060
Aqua WSC	Bastrop	Colorado	0	0	0	122	396	908
County-Other	Bastrop	Colorado	0	0	0	400	631	936
TOTAL			0	0	0	522	1,027	1,844

For many of the other municipal WUGs, anticipated reductions in demand from this scenario are considerably less than the expected savings from the conservation strategy recommended in Section 4.8.1, so it is not recommended for them at this time.

Opinion of Probable Cost

The costs were calculated using the same methodology for both the municipal conservation and additional municipal conservation strategies. Refer to Section 4.8.1 for a breakdown of the costs for this strategy.

Environmental Impact

The environmental impacts for this strategy are discussed in Section 4.8.1.

Impacts to Agricultural Resources

No impacts to agriculture are anticipated as a result of municipal conservation.

4.8.2 Recharge Edwards-BFZ With Onion Creek Recharge Structure for Hays County

In previous rounds, more analysis of this strategy was recommended due to various study findings that placed less confidence on the determined firm yields from the Onion Creek Recharge Structure. During this round of planning, discussions with the City of Austin (COA) and the Barton Springs / Edwards Aquifer Conservation District (BS/EACD) took place as part of the Phase I studies (Task 3 – Evaluation of High Growth Areas), and opinion letters on the strategy were received by both entities.

In general, it is the opinion of the BS/EACD that the Onion Creek recharge structure strategy is not feasible and would not be effective. The basis for this is three different viewpoints consisting of infrastructure and land-use compatibility, use of water resources, and relative recharge effectiveness. The District has some suggestions for alternative recharge enhancement strategies to consider. These include a number of smaller-scale recharge enhancement structures and facilities on Onion Creek and adjacent recharge streams.

The City of Austin also believes that the proposed in-channel reservoirs are ineffective and cause additional concerns, and offers discussion of four alternative projects as replacements for the in-channel reservoirs. These projects include expanding the CenTex quarry, based on current data; protection of riparian corridors along major Colorado River tributaries; protection and maintenance of existing individual in-channel recharge features; and purchasing conservation zones in the contribution zone of Onion Creek. In addition, the City of Austin staff feels that there is an underestimate in the current Region K plan of the long-term benefits of recharge enhancement, and that additional analysis should be done to assess the volume of water available and the aquifer residence time of water resulting from recharge enhancement. These opinion letters were provided in the Phase I Task 3 Study Report (Evaluation of High Growth Areas Study).

During Phase II of this round of planning, further discussions with BS/EACD were held regarding the strategies to attempt to confirm a reliable firm water value. The discussions that took place resulted in the understanding that the Onion Creek Recharge Structure had become more of a water quality tool that may have some positive impact on springflow, although no numbers are currently available. BS/EACD indicated that they would not increase existing permit amounts or issue new permits if the recharge structure increased recharge to the aquifer. This indication led to the realization that this particular strategy would not create additional firm yield for Hays County-Other, and therefore, it is no longer being recommended as a strategy.

4.8.3 Obtain Surface Water From the COA for Hays County

This alternative would involve the construction of transmission facilities to transport water from the COA's distribution system into Northern Hays County. Water provided by the COA would be specifically designated for the Spillar Ranch and Pfluger Ranch developments (located in Hays County-Other). A schematic layout of this alternative is presented on *Figure 4.3*.

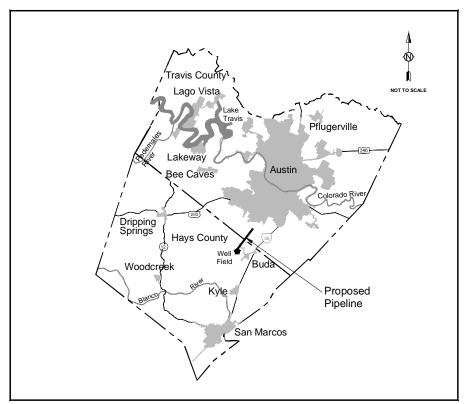


Figure 4.3: Obtain Surface Water From the COA

The improvements necessary to move water from the COA to the proposed developments would involve a looped 16-inch transmission main. These facilities would have the capacity to provide approximately 1,100 ac-ft/yr to the proposed developments.

Opinion of Probable Cost

The probable costs for this alternative are presented in *Table 4.81*. The costs presented include the transmission main from the COA and are based on information provided by City staff.

Table 4.81 COA Waterline Opinion of Probable Cost

Phase	Cost Opinion
Total Project Costs ¹	\$2,987,000
Annual Costs	
Debt Service (6% for 30 years)	\$217,000
Operation and Maintenance	\$24,400
Purchase of Treated Water from COA ²	\$1,144,000
Total Annual Costs	\$1,385,400
Unit Cost of Water (\$/ac-ft)	\$1,259
Unit Cost of Water (\$/1000 gallons)	\$3.87

¹ Opinion of probable costs update provided through COA staff 7/5/05 and updated to September 2008 dollars.

Capital costs for this strategy were updated to September 2008 dollars using the *Engineering News-Record* (ENR) Construction Cost Index (CCI). O&M costs were adjusted to September 2008 dollars using the U.S. Department of Labor's Consumer Price Index.

Environmental Impact

This strategy would convey treated water from the COA system to customers in Hays County. There may be issues concerning the mixing of treated surface water with groundwater in the Hays County distribution systems. Environmental aspects of the proposed pipe alignment would have to be considered. An assessment of the potential environmental impacts of this project has not been completed and would have to be performed before implementing this alternative. Beyond the short-term impact associated with typical construction costs, it is anticipated that implementation of this project would have the positive benefit of limiting the demand on the Barton Springs segment of the Edwards aquifer.

Impacts to Agricultural Resources

This strategy does not take water from rural areas and should have no impact on agriculture.

4.8.4 Construct Goldthwaite Channel Dam in Mills County

A strategy involving the construction of a new channel dam below the City's existing diversion structure was identified, however, according to the Region K Cutoff Model this strategy would not provide a firm supply of water during the drought-of-record due to the junior status of the reservoir compared to the other water rights in the river.

A strategy to meet water shortages in this eventuality would be to contract with LCRA for water that would be counted against the firm yield of the Highland Lakes.

² The purchase of treated wholesale water from COA is assumed to be an average cost of \$3.20 per 1,000 gallons.

Analysis

For this strategy, a channel dam below the City's existing diversion structure would be constructed on the Colorado River. This low dam structure would be located approximately 300 feet downstream of the City's existing structure. The channel dam would be approximately 10 feet in height and the construction of this structure would provide a source of water for the City's diversion pumps, allowing the City to continue providing service for a longer period without flow in the river. The water impounded behind this dam would provide a consistent source of water from which to pump, as well as an additional 400 ac-ft/yr; modeling showed that this supply would not be a firm supply during the drought-of-record. The City would consider entering into a partnership with the Fox Crossing Water District, LCRA, or private landowners to construct the channel dam. The actual size and location of this structure should be determined by engineering studies, this report only contains estimated values.

Opinion of Probable Cost

The opinion of probable project costs is presented in *Table 4.82*.

Table 4.82 New Goldthwaite Channel Dam Opinion of Probable Cost

Phase	Cost Opinion
Capital Costs ¹	
Reservoir Construction	\$1,841,800
Total Capital Costs	\$1,841,800
Engineering, Contingencies and Legal Services (35%)	\$644,630
Environmental and Archaeological Studies, Mitigation, and Permitting	\$566,000
Site Acquisition	\$92,000
Interest Accrued During Construction ²	\$376,668
Interest Earned on Unused Principal ²	(\$251,617)
Total Project Costs	\$3,269,481
Annual Costs	
Debt Service (6% for 40 years)	\$217,287
Operations and Maintenance	\$70,000
Treatment at Existing Plant	\$127,500
Total Annual Costs	\$414,787
Unit Cost of Water (\$/ac-ft)	NA
Unit Cost of Water (\$/1000 gallons)	NA

¹ Cost information taken from LCRA report *Cost Estimation and Location of a Channel Dam on the Colorado River Near Goldthwaite, Texas*, May 1998

Capital costs and additional treatment cost for this strategy were taken from costs developed in the 2001 Region K Plan, and updated to September 2008 dollars using the *Engineering News-Record* (ENR) Construction Cost Index (CCI). Land acquisition, environmental study, and O&M costs were adjusted to September 2008 dollars using the Department of Labor's Consumer Price Index.

² Interest earned and accrued based on a five (5) year construction period

³ The adjustment of the firm yield to zero makes it impossible to calculate per unit cost.

Issues and Considerations

The following is a summary of the advantages and disadvantages for this alternative:

Advantages

• Operation of the City's water system would remain the same

Disadvantages

- Construction of the dam would require acquisition of land or the rights to inundate land
- Construction of a channel dam would require a water rights permit amendment
- Construction of a channel dam may have environmental impacts
- Future sedimentation of the reservoir may become an issue
- Implementation of this alternative may take several years (3 to 5)

Environmental Impact

No downstream water rights would be affected due to the junior status of the reservoir, and compliance with target bay and estuary inflows would be slightly reduced. Water quality downstream may be beneficially impacted by reduced sediment loading. The environmental impacts of this strategy on the Colorado River and Matagorda Bay were evaluated in Phase I of this round of planning. The results of this analysis can be found in *Appendix 4F*, as well as in the Region K Phase I Task 2 Study Report. Discussion of the methodology behind the impact analysis is in *Section 4.17*.

Impacts to Agricultural Resources

No water is diverted from agricultural use and impacts to agriculture should be low to none.

4.8.5 HB 1437 (Region G) for Williamson County

In 1999, the 76th Session of the Texas Legislature enacted HB 1437, authorizing LCRA to transfer up to an additional 25,000 ac-ft/year from the Colorado River Basin to new customers within the Brazos River Basin (in Williamson County). This legislation is now codified at Texas Water Code §222.029. HB 1437 represents a water conservation strategy in which improvements are made in farms and in the irrigation districts that reduce agricultural use of surface water. The legislation allows the transfer only if there is "no net loss" to the Colorado River Basin and requires the adverse effects of the transfer to be mitigated. HB 1437 establishes an Agricultural Water Conservation Fund (Ag Fund) to pay for the mitigation, funded through a conservation surcharge set by the LCRA Board and collected from Williamson County customers. To receive funding from the Ag Fund, the mitigation projects must reduce the reliance of irrigated agriculture in the Colorado River Basin on surface water.

LCRA entered into a contract for a 50-year water sale pursuant to HB 1437. The agreement also includes a clause that allows the Brazos River Authority (BRA) to terminate the agreement after 10 years. Water transfers from LCRA to Williamson County are expected to begin in 2012. Projections show that by 2025, the annual volume of water transferred could be as high as 16,000 ac-ft/yr. Currently, this strategy envisions two water conservation projects, implemented in phases that match the demand projections from Williamson County. The proposed plan includes a system of automated check structures and control

systems in a LCRA irrigation division (to save approximately 12,000 ac-ft/yr) plus precision land leveling of rice farms (to save approximately 13,500 ac-ft/yr) within the irrigation divisions to generate the necessary water saving.

This Region G strategy affects Round Rock in Region K (this WUG is shared by the regions). Other customers of BRA within Region G that are affected include Round Rock, Georgetown, Liberty Hill, and the Chisholm Trail SUD.

Table 4.83 HB 1437 Strategy

WUG Name	County	River	Wa	gies (ac-ft/yr)				
wug name	County	Basin	2010	2020	2030	2040	2050	2060
Round Rock	Travis	Colorado	126	246	349	426	536	645

Opinion of Probable Cost

The total estimated construction cost to implement these strategies is \$23,624,000. Today, the expected HB 1437 customers pay the current LCRA raw water rate of \$138 per ac-ft for water diverted and \$69.00 per ac-ft for water reserved but not diverted, and a 25 percent surcharge on all fees collected for water. These surcharge funds will be used to fund these strategies. HB 1437 customers in Williamson County will fund most of the implementation of these strategies through payment of the surcharge. Including the surcharge, the two municipal WUGs listed above will pay a unit cost of \$172.50/ac-ft.

Issues and Considerations

The LCRA Board has approved HB 1437 implementation procedures and policies including the definition of "no net loss" and has approved funding for initial strategies to meet the short term demands for BRA customers in Williamson County. These strategies primarily include agricultural water conservation measures such as precision land leveling for farmland in Colorado, Wharton, and Matagorda counties where rice is grown. A plan to meet the longer term demands is being developed by LCRA with advice from the HB 1437 Agricultural Water Conservation Advisory Committee and updated demand projections from BRA.

Environmental Impact

The transfer of water anticipated under HB 1437 would constitute an inter-basin transfer to the Brazos River Basin. With this distinction comes the potential for issues resulting from mixing water supplies from multiple sources. The environmental impacts of this strategy on the Colorado River and Matagorda Bay were evaluated in Phase I of this round of planning. Impacts to the instream flows and freshwater inflows to Matagorda Bay from the modeling analysis are limited due to the interruptible nature of the irrigation water rights. The results of this analysis can be found in *Appendix 4F*, as well as in the Region K Phase I Task 2 Study Report. Discussion of the methodology behind the impact analysis is in *Section 4.17*.

Impacts to Agriculture

This strategy will provide money for agricultural conservation and will not take water that agriculture is currently using so the impacts will be low to none.

4.9 IRRIGATION WATER MANAGEMENT STRATEGIES

Region K has 282 WUGs and 30 are Irrigation. The existing water supplies available to the irrigators in Region K are not sufficient to meet the projected needs. A shortage would occur in all decades of the planning period should the critical drought be repeated. Using the Region K Cutoff Model with no return flows and assuming full use of the ROR irrigation rights to meet irrigation demands in those operations, the maximum annual shortage is projected to decrease from just under 235,000 ac-ft/yr in 2010 to approximately 136,000 ac-ft/yr in 2060. The calculated shortages are expected to decrease due to projected decreases in the amount of acreage placed in rice production. However, these estimated shortages require an upward adjustment to reflect LCRA's strategy for meeting other municipal and industrial firm demands, which includes amending its existing ROR rights to meet these other demands. *Table 4.84* shows the water needs for all of the Irrigation WUGs in Region K and the number of WUGs with water deficits for each decade, and *Table 4.85* shows the irrigation needs for the rice counties in Region K.

Table 4.84 Irrigation Water Needs (ac-ft/yr)

Category Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Irrigation	(234,738)	(217,011)	(198,717)	(181,070)	(164,084)	(135,822)
No. of WUGs	12	11	11	11	10	10

Table 4.85 Rice Irrigation Water Needs (ac-ft/yr)

County Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Colorado	(49,300)	(42,090)	(35,089)	(28,312)	(21,723)	(15,416)
Matagorda	(126,742)	(121,053)	(114,334)	(107,897)	(101,703)	(95,731)
Wharton	(58,218)	(53,525)	(48,997)	(44,636)	(40,429)	(24,462)
TOTAL	(234,260)	(216,668)	(198,420)	(180,845)	(163,855)	(135,609)

Rice irrigators in Colorado, Wharton, and Matagorda Counties have the largest irrigation needs in Region K. LCRA's strategies to be implemented as part of its sale of water to Williamson County under HB 1437 and those contained within the LSWP are designed to minimize the impacts of these projects to the available water supply for irrigation and otherwise extend the availability of interruptible water supply to meet irrigation demands beyond that which would be expected without the LSWP. The recommended plan to meet the rice irrigation shortage that is reflected in the LSWP is based on recommendations presented by the Irrigation Water Supply Working Group of the LCRWPG for the 2001 Plan. This Working Group included several rice irrigators, representatives from the affected counties, a representative from LCRA, environmental representatives, and representatives interested in the impacts on the Highland Lakes. The recommended plan includes the following components, in priority order. The strategies, which are outlined in detail in this section rely heavily on implementation of the LSWP. *Table 4.86* provides a summary of the water management strategies recommended for rice irrigation.

Table 4.86 Rice Irrigation Water Management Strategies

Rice Irrigation Strategies	2010	2020	2030	2040	2050	2060
Continued Use of Austin						
Return Flows ¹	18,665	19,687	22,900	27,781	30,382	33,838
Continued Use of						
Downstream Return Flows ²	0	0	213	850	1,594	2,125
1999 Water Management						
Plan-Interruptible Water						
Supply	255,493	196,568	137,643	78,718	19,793	0
On-Farm Conservation ³		34,150	34,150	34,150	34,150	34,150
Irrigation Operations						
Conveyance Improvements ³		65,000	65,000	65,000	65,000	65,000
Conjunctive Use of						
Groundwater 4		62,000	62,000	62,000	62,000	62,000
Development of New Rice						
Varieties ³		40,800	40,800	40,800	40,800	40,800
LSWP Subtotal		201,950	201,950	201,950	201,950	201,950
Firm up ROR With Off-						
Channel Reservoir						47,000
HB 1437	4,000	4,000	4,000	4,000	14,800	25,000
Supply Reduction due to						
LSWP						(71,381)
Amendment to Irrigation						
Rights for Municipal and						
Industrial Needs	(25,365)	(42,769)	(50,769)	(57,769)	(67,769)	(90,487)
TOTAL Note: Limited simulations were cor	252,793	379,436	315,937	255,530	200,750	148,045

Note: Limited simulations were conducted for only 2010, 2050, and 2060. Information for other decades was interpolated from the 2010 and 2050 results.

¹ Amounts reflect the benefit of Austin return flows to the portion of LCRA's downstream run-of-river rights used for irrigation

purposes. ² The downstream return flows are from Pflugerville and Aqua WSC. Amounts reflect the benefit of return flows to the portion of LCRA's downstream run-of-river rights used for irrigation purposes.

³ Demand reductions through advanced conservation made available under LSWP were distributed to county-basin irrigation WUGs based on the location of shortages. These estimates continue to be refined as a part of the LSWP studies (see p. 4-35) and it is anticipated that these needs will be addressed by managing all of the components as a LCRA system.

⁴ Groundwater supplies made available under LSWP as shown here are estimated for planning and modeling purposes, and were distributed to county-basin irrigation WUGs based on the location of shortages. The modeling conducted for the LSWP strategy was done assuming a long-term average not to exceed 36,000 ac-ft/yr, 62,000 ac-ft/yr as the 10-year rolling average (repeat of the drought of record), and 95,000 ac-ft/yr as the annual maximum limit. These estimates are to be refined as a part of the LSWP studies (see p. 4-35) with development of a site-specific GAM. It is anticipated that these needs will be addressed by managing all of the components as a LCRA system.

For Irrigation WUGs with shortages outside of Colorado, Matagorda, and Wharton Counties, the following regional water management strategies were selected:

- Expansion of Current Groundwater Supplies
- Transfer/Allocate Water From WUGs with Surplus
- Temporary Drought Period Use of Aquifer

These regional strategies are explained in detail in Section 4.7 of this report.

A discussion of the rice irrigation strategies: Continued Use of Austin Return Flows, Water Management Plan-Interruptible Water Supply, Firm up ROR with Off-Channel Reservoir, the Supply Reduction due to LSWP, and the Transfer ROR Supply to Municipal and Industrial are contained in Section 4.6.1.

4.9.1 On-Farm Water Conservation

The water needed for irrigation in Colorado, Wharton, and Matagorda Counties is the largest deficit identified within the LCRWPA. On-farm water conservation for irrigation is one of the water management strategies developed under LSWP to address the issue.

Analysis

It is anticipated that significant water savings can be achieved through the use of precision land leveling, multiple field inlets, and reduced levee intervals. The estimated amount of water savings from on-farm water conservation from the LSWP 2008 Project Viability Assessment (PVA) is 34,150 ac-ft/yr of water savings in an average scenario which is slightly less than the 37,348 ac-ft/yr that the 2001 Region K Water Plan estimated.

The conservation estimate was based on updated estimates of total rice acreage in each irrigation operation, and the estimates are slightly different from those used in the 2001 Region K Water Plan. The estimate also assumes 50 percent adoption of conservation tillage, 55 percent adoption of land leveling, 10 percent adoption of tailwater recovery, and 70 percent adoption of multiple inlets.

These estimates will continue to be refined throughout the LSWP study period. Recent changes to the conservation estimates are reflected in the table below.

Water Management Strategies (ac-ft/yr) WUG **County River Basin** Name 2030 2050 2010 2040 2060 4,715 4,715 4,715 4,715 4,715 Colorado Irrigation Brazos-Colorado Irrigation Colorado 9,405 9,405 9,405 9,405 9,405 Lavaca Matagorda Irrigation Brazos-Colorado 2,848 2,848 2,848 2,848 2,848 Irrigation Matagorda Colorado 502 502 502 502 502 Irrigation Matagorda Colorado-Lavaca 3,617 3,617 3,617 3,617 3,617 Irrigation Wharton Brazos-Colorado 8,803 8,803 8,803 8,803 8,803 Irrigation Wharton Colorado 150 150 150 150 150 Wharton Irrigation Colorado-Lavaca 4,110 4,110 4,110 4,110 4,110 TOTAL 34,150 34,150 34,150 34,150 34,150

Table 4.87 On-Farm Conservation Estimates

Note: Demand reductions through advanced conservation made available under LSWP were distributed to county-basin irrigation WUGs based on the location of shortages. These estimates are to be refined as a part of the ongoing LSWP studies and it is anticipated that these needs will be addressed by managing all of the components as a LCRA system.

Rice utilizes significantly more water than other Texas crops because of the growing environment adopted for rice production. Rice is grown in standing water during most of its vegetative and reproductive stages to minimize competition from plants that cannot tolerate standing water, basically as a weed control measure. The flood culture is not required to grow rice, but is almost universally accepted as the most economical method to control weeds and sustain the rice crop.

Shallow levees are used to separate the individual cuts in a rice field. Maintenance of a uniform shallow water depth allows the levees to maintain greater freeboard or levee height above the water surface. If there is insufficient freeboard, rainfall can cause the levees to overtop and fail with the worst-case result being loss of water from the entire field. Minimizing the flooding depth allows the producer to capture rainwater, replacing an equal amount of water that would normally have been diverted from the river or pumped from wells. The amount of water saved can vary with rainfall during the growing season, but can replace a significant quantity of the water normally diverted from the river and minimize the amount of tail water or rice field runoff water that can carry dissolved fertilizer and potential pollutants downstream.

There are many potential on-farm irrigation improvements, but in general water savings can best be achieved by minimizing flooding depth and improving management of the flushing and flooding operations. The techniques that have the most significant impact in accomplishing these goals include precision or laser land leveling, use of a field lateral with multiple field inlets, reducing the vertical interval or elevation difference between levees, improved management of water control activities, and improved recordkeeping. Individual water conservation measures are discussed in the following sections.

Opinion of Probable Cost

The total estimated cost for the LCRA-SAWS Water Project is \$2,159,600,000, as developed by the Region L consultant. Per the Definitive Agreement between LCRA and SAWS, SAWS is responsible for LSWP costs. The costs are paid primarily through water use fees and surcharges over the life of the project. Region K is not responsible for the costs associated with the LSWP. *Table 4.88* shows the cost of the various conservation strategies based on September 2008 costs.

Table 4.88 Estimated Unit Cost of Agricultural Conservation Improvements

Improvement	Improvement Cost per Acre
Land Leveling	\$141.68
Multiple Inlets	\$2.83
Reduced Levee Interval	\$0.71
Irrigation Pipeline	\$233.76

Issues and Considerations

Table 4.89 On-Farm Conservation Issues

Management Strategy	Environmental Flows	Wildlife Habitat	Cultural Resources	Agricultural Resources	Other Water Resources	Social/Economic
On-Farm Conservation	Reduced irrigation return flows to bay and estuaries.	None anticipated.	None anticipated.	None anticipated.	None anticipated.	Cost exceeds irrigators' ability to pay.

Environmental Impact

On-farm conservation for rice production could influence the instream water balance during dry, summer months in two ways: (1) by reducing the amount of return flows introduced to streams and (2) by reducing the amount of water diverted from streams to irrigate for the second rice crop immediately following harvest of the first. The balance of these two impacts could potentially result in a net gain or loss in dry weather instream flows, depending on the farming practices used. First, the reduced application rates required by conservation would negatively impact return flows to streams, which occur during the summer months when this discharge can provide habitat for species and other ecological services. However, following the harvest of the first rice crop, a certain acreage is flooded again to grow a second crop to be harvested in September and October. Second, conservation could have a positive impact on instream flows by reducing the amount of water diverted to provide for rice irrigation at this time.

The overall balance of return flows and withdrawals for this period was estimated from information that was originally assembled for calculating irrigation water demands in Colorado, Matagorda, and Wharton Counties. The ratios of water used for first and second crops for both groundwater and surface water irrigated fields for each county were used to divide the expected conservation, as estimated by LCRA, between the first and second crops. It was assumed that all water that could be conserved by on-farm practices was water that would otherwise be discharged to streams in return flows. In addition, return flows were assumed to be 4 inches for all fields before conservation. The expected surface water withdrawals after implementing conservation were then used to determine an overall balance for water being returned and diverted during the summer.

Results

Table 4.90 shows the instream water balance resulting from recommended conservation in Colorado, Matagorda, and Wharton Counties. This analysis shows that the reduction in return flows to streams is of a greater magnitude than the reduced diversions for irrigating the second crop resulting from conservation. For instance, in Colorado County, the amount of water reentering the streams from rice fields would be reduced by nearly 5,500 ac-ft after conservation, while conservation would only reduce the diversion of water from streams by just under 4,000 ac-ft. Therefore, although on-farm conservation would result in lower average diversions throughout the year and greater average instream flows, the practice would result in a net reduction in instream flows during the summer when flows are typically at their lowest. This is due to the larger number of acres farmed for the first crop than the second crop and because reduced return flows from both groundwater and surface water irrigated lands are impacted by conservation while instream flows only benefit from reduced surface water diversions.

Table 4.90 Anticipated On-Farm Conservation for Rice Crops and Summer Instream Flows ¹

		Colorado	Matagorda	Wharton	Notes
	Before Conservation	10,900	9,594	6,739	
Summer Return Flows	After Conservation	5,401	4,400	1,825	2
	Net Change	(5,499)	(5,194)	(4,914)	
C	Before Conservation	66,459	42,502	28,102	
Summer Surface Water Diversions	After Conservation	62,494	40,212	25,475	3
water Diversions	Net Change	(3,965)	(2,290)	(2,627)	
Net Change in Summer Instream Flows		(1,534)	(2,904)	(2,287)	4

These figures were produced following rice irrigation assumptions developed by the planning group for each of the three counties (i.e. application rate, percent of total acreage for second crop, etc.). Current typical return flows were estimated to be approximately 4 in-ac/ac.

If this strategy were implemented along with the use of new rice varieties, return flows occurring later in the year would be reduced, but there would be no diversions made for a second crop. Therefore, conservation effects would only negatively impact summer instream flows by reducing the volume of return flows. The implementation of off-channel storage recommended in the LSWP potentially offset the impacts of conservation by maintaining streamflow during dry periods for at least a portion of the river, depending upon the location. These reservoirs will receive at least a portion of their supply from stored rights which will provide some replacement streamflow.

4.9.1.1 Laser Land Leveling

In the production of rice, there are many benefits to having fields that are almost level but still have some slope for drainage, typically 0.15 foot or less in elevation change for 100 feet of distance. An almost level field will allow a more uniform shallow water depth across the field, reducing the total amount of water applied to the field. Land grading can give a field this desired condition by using a laser-guided grader.

² Includes return flows related to summer rice harvests for both fields irrigated with groundwater and surface water. Does not include return flows related to flushing associated with planting of the first crop in the spring.

³ Includes water required for growth of the second crop for surface water irrigated fields only.

⁴ Represent the benefits to instream flows resulting from reduced diversions, less the reduction in return flows associated with conservation.

Precision leveling or land grading can reduce the amount of water used by 25 to 30 percent and increase production by 10 to 15 percent.

Interest in conservation in the rice industry is almost exclusively confined to those rice growers who own their own land. In that case, improvements benefit the landowner and make sense economically, particularly when there is matching grant money available from the Natural Resources Conservation Service. However, in many cases, land is leased on an annual basis for rice production. There is no long-term agreement between the landowner and farmer. This makes it difficult for the farmer to justify a significant capital expenditure, and limits the amount of land where precision leveling is being implemented. The topography and soil type also may limit the amount of land where this practice could be implemented.

4.9.1.2 Use of Multiple Field Inlets

Another method used by rice producers to conserve water is the utilization of multiple field inlets for applying water to the individual cuts or land sections between levees. The use of multiple inlets allows for many benefits that result in water savings. The water savings is further enhanced when multiple inlets are applied in combination with land leveling. The most significant benefits are the ability to apply water where it is needed and at a shallower depth. Because of the shallow water, rice production is increased while the total water applied is minimized. A side lateral with multiple inlets is often paired with a similar drain, as opposed to draining all water from a field through the lowest cut. This allows the field to drain much quicker, shortening the time to harvest and increasing the potential for production of a ratoon crop.

4.9.1.3 Reduced Levee Intervals

Another approach to minimizing the water depth is to reduce the typical contour interval between levees from 0.2 feet to 0.15 feet. The cost associated with making this change can be very minimal with only a few additional levees plowed into place at the beginning of the rice growing season. The smaller interval allows average flooding depth to be minimized, which is both more compatible with the current dwarf varieties of rice that are grown and allows more freeboard for capturing rainfall. The levees themselves can also be smaller resulting in not only less rice being grown on the levees because they are narrower, but the yield from rice grown on the levees is less impacted. Smaller levees also result in less wear and tear on equipment that must cross the levees during production and harvest. Reducing the levee interval can save about 0.3 feet per acre irrigated when used in conjunction with precision land leveling and 0.4 feet per acre irrigated when applied without precision leveling.

4.9.1.4 Combining Land Leveling With Multiple Field Inlets

Several combinations of conservation practices could be evaluated, but the LCRWPG Rice Irrigation Working Group decided that the most common combined approach that would result in the greatest water savings would be the combination of land leveling with the use of multiple inlets. In many cases the farmers that use these two conservation practices may also implement a reduced levee interval, but the cost associated with the additional combination of conservation practices becomes less discernible as does the water savings.

4.9.2 Irrigation Operations Conveyance Improvements

The water needed for irrigation in Colorado, Wharton, and Matagorda Counties is the largest deficit identified within the LCRWPA. Irrigation operation conveyance improvement is one of the water management strategies developed under LSWP to address the issue.

Analysis

In addition to the water conservation measures implemented on-farm, substantial water can be saved by improving the efficiency of the canal systems that deliver water to the individual irrigator. These improvements would include improving the flow control structures by adding checks structures, automating the operation of the flow control structures, and adding flow regulating reservoirs to balance flows.

The 2008 LSWP PVA estimated 65,000 ac-ft/yr of water savings from improved efficiency of rice irrigation delivery system by the LCRA irrigation divisions in an average scenario. The 2001 Region K Plan estimated an amount of 45,650 ac-ft/yr of water savings from this water management strategy. The improved efficiency of rice irrigation delivery system savings amount adopted for the 2006 Region K Water Plan is 46,184 ac-ft/yr.

The PVA analysis estimates a higher savings amount for this strategy compared to the 2001 Region K water plan because the former takes the water savings by Garwood into account which has been acquired by LCRA since the 2001 Region K Water Plan was developed.

Details of this conservation estimate can be found in a report titled Conservation Strategies in the LCRA Irrigation Divisions – 2007 dated May 23, 2008. Recent changes to the conservation estimates are reflected in the table below.

Table 4.91	Irrigation District	Conveyance	Improvement	Estimates
Tank Til	HIIZAUUH DISUIC	Conveyance.		Louma

WUG	County	River Basin	Draft Water Management Strategies (ac-ft/yr)						
Name	County	Kivei Dasiii	2010	2020	2030	2040	2050	2060	
Irrigation	Colorado	Brazos-Colorado		8,282	8,282	8,282	8,282	8,282	
Irrigation	Colorado	Lavaca		14,056	14,056	14,056	14,056	14,056	
Irrigation	Matagorda	Brazos-Colorado		6,107	6,107	6,107	6,107	6,107	
Irrigation	Matagorda	Colorado		2,983	2,983	2,983	2,983	2,983	
Irrigation	Matagorda	Colorado-Lavaca		6,160	6,160	6,160	6,160	6,160	
Irrigation	Wharton	Brazos-Colorado		16,303	16,303	16,303	16,303	16,303	
Irrigation	Wharton	Colorado		2,518	2,518	2,518	2,518	2,518	
Irrigation	Wharton	Colorado-Lavaca		8,591	8,591	8,591	8,591	8,591	
TOTAL				65,000	65,000	65,000	65,000	65,000	

Note: Demand reductions through advanced conservation made available under LSWP were distributed to county-basin irrigation WUGs based on the location of shortages. These estimates are to be refined as a part of the LSWP studies and it is anticipated that these needs will be addressed by managing all of the components as a LCRA system.

Opinion of Probable Cost

The total estimated cost for the LCRA-SAWS Water Project is \$2,159,600,000, as developed by the Region L consultant. Per the Definitive Agreement between LCRA and SAWS, SAWS is responsible for LSWP costs. The costs are paid primarily through water use fees and surcharges over the life of the project. Region K is not responsible for the costs associated with the LSWP.

Issues and Considerations

Table 4.92 Irrigation District Conveyance Improvement Issues

Management Strategy	Environmental Flows	Wildlife Habitat	Cultural Resources	Agricultural Resources	Other Water Resources	Social/Economic
Irrigation	Reduced	None	None	None	None	Cost exceeds
Delivery	irrigation return	anticipated.	anticipated.	anticipated.	anticipated.	irrigators' ability
System	flows to bay					to pay.
Improvements	and estuaries.					

Environmental Impact

The improvement of existing irrigation conveyances that provide water to farms will allow for customers to be served with fewer losses in transmission. This will result in a reduced overall demand for water and will reduce the volume of diversions that will have to be dedicated to maintaining flow in canals. This may be environmentally beneficial to instream flows in certain portions of the basin, but transfer of water out of the basin may not be beneficial to bay and estuary freshwater inflows or instream flows in the lower portions of the Colorado River.

4.9.3 Conjunctive Use of Groundwater Resources

The water needed for irrigation in Colorado, Wharton, and Matagorda Counties is the largest deficit identified within the LCRWPA. Conjunctive use of groundwater from the Gulf Coast aquifer during drought is one of the water management strategies developed under the LSWP to address the issue.

Analysis

This water management strategy would involve the construction of approximately 90-133 wells scattered throughout the Garwood, Gulf Coast, Lakeside, and Pierce Ranch Irrigation Operations. All wells would be completed into either the Evangeline or Chicot Formations. Groundwater would be pumped from these wells into the irrigation canal systems during conditions when surface water availability is not sufficient to meet the demands.

It was anticipated in the 2001 Plan that conjunctive use of groundwater in LCRWPA could generate an average yield of 62,000 ac-ft/yr during a repeat of the drought of record. The 2008 PVA of LSWP confirmed that at least 62,000 ac-ft/yr of groundwater would be available to support agriculture in the Lower Colorado River Basin on average, with an annual maximum of 95,000 ac-ft/yr. For the 2011 Plan, a value of 62,000 ac-ft/yr is shown in the tables by decade as representing the average annual pumping during the 10 year drought of record conditions. An annual maximum year pumpage of 95,000 acre-feet

annually was used in the modeling of the conjunctive use system. Estimated yield of water from this strategy by WUG is presented in *Table 4.93*.

Table 4.93 Development of the Gulf Coast Aquifer Estimated Yield

WUG	County	River Basin		Draft W	Vater Man	agement S	t Strategies (ac-ft/yr)			
Name	County	Kivei Basiii	2000	2010	2020	2030	2040	2050	2060	
Irrigation	Colorado	Brazos- Colorado			4,886	4,886	4,886	4,886	4,886	
Irrigation	Colorado	Lavaca			9,920	9,920	9,920	9,920	9,920	
Irrigation	Matagorda	Brazos- Colorado			14,437	14,437	14,437	14,437	14,437	
Irrigation	Matagorda	Colorado			1,473	1,473	1,473	1,473	1,473	
Irrigation	Matagorda	Colorado- Lavaca			13,553	13,553	13,553	13,553	13,553	
Irrigation	Wharton	Brazos- Colorado			12,766	12,766	12,766	12,766	12,766	
Irrigation	Wharton	Colorado			532	532	532	532	532	
Irrigation	Wharton	Colorado- Lavaca			4,433	4,433	4,433	4,433	4,433	
TOTAL					62,000	62,000	62,000	62,000	62,000	

Note: Groundwater supplies made available under LSWP as shown here are estimated to be the average over the DOR, and were distributed to county-basin irrigation WUGs based on the location of shortages. These estimates are to be refined as a part of the LSWP studies and it is anticipated that these needs will be addressed by managing all of the components as a LCRA system.

Groundwater aquifers located within the three rice irrigation counties are a potential source of water for the irrigators. These groundwater resources could be developed in a manner to be used conjunctively with the existing surface water supply. The groundwater wells would only be used to provide water when the surface water available was not sufficient to meet the demands in conjunction with advanced conservation for LSWP and HB 1437. During these conditions, water would be pumped from the ground and released into the irrigation distribution canals.

Modeling Performed for 2000 Region K Water Planning

In the 2001 Plan, three alternative scenarios were evaluated to supplement the supply of water to the Lakeside and Gulf Coast Irrigation Divisions with groundwater. The three scenarios included various levels of average groundwater dependence, 25,000 ac-ft/yr, 50,000 ac-ft/yr, and 100,000 ac-ft/yr. It was assumed that the wells would be constructed so that they would be scattered throughout the two irrigation divisions. All of the wells in the Gulf Coast Irrigation Division were assumed to be located within the Chicot Formation of the Gulf Coast aquifer. For the 25,000 ac-ft/yr alternative, all of the wells in the Lakeside Irrigation Division would be in the Evangeline Formation. For the 50,000 and 100,000 ac-ft/yr alternatives, one-third of the wells in the Lakeside Irrigation Division would be in the Chicot Formation, and the remainder would be in the Evangeline Formation.

The three alternatives were modeled using the Gulf Coast aquifer hydrologic model to determine the temporary and long-term impacts of the conjunctive use alternatives. The demand for groundwater was simulated based on results from the LCRA's Response Model for various levels of irrigation demands, which incorporates the following assumptions:

- A full drought cycle was modeled based on the 1941 to 1965 historic rainfall conditions.
- The drought cycle would begin in the year 2026 and continue through 2050.
- If groundwater pumping is required, it would occur during the first six months of the year.
- The modeling cycle was extended by 10 years to evaluate the aquifer recovery after the drought cycle.
- Each well would have a capacity of 2,000 gpm, which equates to an annual capacity of 1,613 ac-ft based on 6 months of operation.
- The number of wells required was based on the peak demand plus 10 percent.
- The projected demands for groundwater from other WUGs were imposed on the model at the same time.

The number of wells required for each of the alternative scenarios is presented in *Table 4.94*.

Table 4.94 Number of Wells Required for Conjunctive Use

Aquifer	25,000 ac-ft/yr Conjunctive Use	50,000 ac-ft/yr Conjunctive Use	100,000 ac-ft/yr Conjunctive Use	
Lakeside District				
Evangeline	16	12	24	
Chicot	0	5	11	
Gulf Coast District				
Chicot	17	20	42	

The conjunctive use of the groundwater wells will have both short-term and long-term impacts on groundwater levels in the region. The predicted impacts on these two formations are presented in *Table 4.93*.

Table 4.95 Impact of Conjunctive Use on Aquifer Levels (ft)

Formation	No Conjunctive Use			100,000 ac-ft/yr Conjunctive Use
Evangeline Formation				
Maximum Short-Term Drawdown	30	90	100	190
Maximum Long-Term Drawdown	30	40	50	60
Chicot Formation				
Maximum Short-Term Drawdown	10	75	90	170
Maximum Long-Term Drawdown	10	12	12	15

As the table indicates, the model results show that the Chicot Formation will almost fully recover following the drought cycle. In addition, the maximum temporary aquifer drawdowns in the Chicot Formation are associated with pumpage from the Gulf Coast Division. The temporary drawdowns in the Lakeside Division are smaller. The Evangeline Formation is shown to have much larger temporary drawdowns and does not fully recover following the drought cycle.

This alternative was specifically evaluated for the Lakeside and Gulf Coast Irrigation Divisions. However, it may be possible to obtain similar results through the conjunctive use of groundwater in Pierce Ranch.

Status of Modeling for the Current Plan Development

The LSWP Groundwater Team ("GWT") completed a study in 2008 to quantify the predicted impacts of LSWP on groundwater drawdowns in the LCRWPA. As part of the study the GWT developed and calibrated a groundwater model capable of simulating the impacts of the LSWP's pumping activities on drawdown, land subsidence, groundwater availability estimates, and changes in surface water-groundwater interactions. The model was used to evaluate the impact of pumping up to an average of 36,000 ac-ft/yr of additional supply from the Lakeside, Garwood, Gulf Coast, and Pierce Ranch Irrigation Operations in the Lower Colorado River Basin. The model simulations included changes to the LSWP pumping rates and recharge rates based on a Drought of Record (DOR) from 1947 to 1956. For the 10-year DOR period in the simulation with LSWP (Case 2), the average LSWP pumping is 62,000 ac-ft/yr. The simulation is for the years 2000 to 2090 and the DOR was 2056 to 2065.

The primary drawdown metric used in the GWT report was the net drawdown caused by LSWP at 5,579 well locations representing all the permitted and registered wells in Wharton and Matagorda Counties, and the Colorado County wells in the GWT database. Net drawdown was defined as the difference between drawdown with and without LSWP. The 2008 GWT report characterize the regional drawdowns as follows:

- Net drawdown is greatest in 2060 during the time of increased pumping caused by the DOR.
- For the majority of the area in the three counties (Colorado, Wharton, Matagorda), the maximum values for net drawdown range between 2-10 feet within the irrigation operations.
- For 2040, 2060, and 2080 snapshots, the largest net drawdown values consistently occur in two areas: Colorado County near the upper portions of Lakeside and Garwood Irrigation Districts, and in Matagorda County near the middle of the East and West sections of the Gulf Coast Irrigation Division.
- The drawdown values for the five model layers (shallow aquifer system and aquifer outcrop, Beaumont Formation, Lissie Formation, Willis Formation, Upper Goliad Formation, and Lower Goliad Formation) are the smallest for the shallow aquifer.
- Among Colorado, Wharton, and Matagorda Counties, Wharton County has the smallest net drawdown values.

The release of the information contained in this study coincides with activities being performed by Groundwater Management Area 15 (GMA 15) and the groundwater districts in the three counties. At this time there has not been adequate review of the LSWP GWT study by GMA 15 and the groundwater districts to allow incorporation of this information into the GMA process. For this reason the availability of groundwater in Colorado, Matagorda, and Wharton Counties is based on the management plans from the respective groundwater districts.

Consistency with Plans of Local Groundwater Conservation Districts

Matagorda and Wharton Counties have existing groundwater conservation districts, each of which have developed groundwater management plans based on the estimation of the sustainable amounts of

groundwater that can be produced annually. The addition of the of 95,000 ac-ft/yr annual maximum of groundwater planned for the LSWP to be available during the drought, when added to the existing and proposed groundwater uses of these two counties, will cause the total groundwater demand to exceed the sustainable supplies as defined by the Coastal Bend GCD (Wharton County) and the Coastal Plains GCD (Matagorda County). The amount of additional groundwater to be produced will be produced only during a DOR condition when surface water is not available. Surface water is less expensive to produce and will be chosen over groundwater when it is available. This will allow the aquifer to recover during times of more plentiful surface water. This strategy will require the concurrence of the two GCDs noted above.

Opinion of Probable Cost

The total estimated cost for the LSWP is \$2,159,600,000, as developed by the Region L consultant. Per the Definitive Agreement between LCRA and SAWS, SAWS is responsible for LSWP costs. The costs are paid primarily through water use fees and surcharges over the life of the project. Region K is not responsible for the costs associated with the LSWP. The portion of these costs related to development of groundwater assumed development of wells that pump the annual maximum amount of groundwater or 95,000 ac-ft/yr.

Issues and Considerations

Table 4.96	Conjunctive	Use of Grou	ndwater	Issues
I add T.Ju	Communicate	OSC OI GIVU	nu water	133 ucs

Management Strategy	Environmental Flows	Wildlife Habitat	Cultural Resources	Agricultural Resources	Other Water Resources	Social/Economic
Conjunctive Groundwater Use	Increased irrigation return flows to bay and estuaries.	None anticipated.	None anticipated.	None anticipated.	Localized drawdowns of aquifer may affect wells.	Cost exceeds irrigators' ability to pay.

Environmental Impact

- Sustained water fowl habitat.
- Decreases in aquifer level; however, no known significant springs in the area are currently flowing so decreased spring flow would not be an issue.

The use of groundwater supplies to augment surface water diversions during dry periods can potentially sustain rice irrigation during a drought of record. This strategy would introduce groundwater to streams through return flows when there would normally be very little streamflow. This could potentially benefit instream flows in certain portions of the basin, though this water would be diverted from the basin before it could make a positive impact on instream flows and bay and estuary freshwater inflows in the lower portions of the river. Maintaining the acreage of planted rice during dry periods would also provide beneficial habitat for waterfowl.

Increased demands on the aquifer caused by this strategy could result in both short term and long term impacts to aquifer levels. Impacts to existing wells may occur from this additional drawdown. No significant springs are known to be fed by the aquifers in the lower counties of the basin, and therefore there would be no impact to wildlife from short-term increased withdrawals from groundwater. If

drawdowns become severe enough to impact rice acreage, the reduced acreage would have a negative impact on wildlife habitat and return flows.

Impacts to Agriculture

This strategy could have both positive and negative impacts on agriculture. Those producers using surface water will have access to sufficient water to grow crops that would not otherwise have been available. However, those producers using primarily groundwater will probably see increased costs for bringing water to the surface for use. These increases will be small, and additional modeling will be needed to determine whether they occur only during the heavy pumping through the drought of record or if the potential long term drawdowns are still present.

4.9.4 Development of New Rice Varieties

Table 4.97 Development of New Rice Varieties

The water needed for irrigation in Colorado, Wharton, and Matagorda Counties is the largest deficit identified within the LCRWPA. Development of high yielding/water efficient rice varieties is one of the water management strategies developed under the LSWP to address the water shortage for irrigation.

Analysis

Irrigation

Wharton

TOTAL

Estimates of savings were originally based on the 2004 PVA of LSWP, but ongoing studies have continued to refine the estimates. Results of the 2008 PVA indicate an estimated savings of 40,800 acft/yr based on a 75 percent adoption of the new rice variety.

The table below presents the water that the irrigation WUGs would save by implementing this strategy.

WUG	County	County River Basin Draft Water Man					nagement Strategies		
Name	County	Kivei Dasiii	2000	2010	2020	2030	2040		
Irrigation	Colorado	Brazos-Colorado			4,548	4,548	4,548		
Irrigation	Colorado	Lavaca			10,181	10,181	10,181		

Colorado-Lavaca

2050 2060 4,548 4,548 10.181 10.181 Irrigation Matagorda Brazos-Colorado 3,661 3,661 3,661 3,661 3,661 Irrigation Matagorda Colorado 486 486 486 486 486 Irrigation Matagorda Colorado-Lavaca 4,468 4,468 4,468 4,468 4,468 Irrigation Wharton Brazos-Colorado 13,293 13,293 13,293 13,293 13,293 Irrigation Wharton Colorado 144 144 144 144 144

Note: Demand reductions through advanced conservation made available under LSWP were distributed to countybasin irrigation WUGs based on the location of shortages. These estimates are to be refined as a part of the LSWP studies and it is anticipated that these needs will be addressed by managing all of the components as a LCRA system.

4,019

40,800

4,019

40,800

4,019

40,800

The availability and cost of water for rice irrigation are key factors in the continued economic viability of the rice industry in the region. Reducing the amount of water needed to irrigate the rice fields would provide the producers a financial benefit, while at the same time address the overall water supply shortage within the basin. Agricultural research has been successful in developing new varieties of crops that meet

4,019

(ac-ft/yr)

4.019

40,800

specific requirements. The development of new, high yield-lower water use rice varieties could provide a significant reduction in the water demands.

According to the LSWP report, a study has been conducted by Texas A&M University on the development of a new rice variety. It estimates that this new variety would produce a 24 percent water savings (based on a two-crop system using approximately 3.5 ac-ft/ac of water), take slightly longer to grow, and produce a higher yield. This alternative would eliminate the ration crop due to the longer growing season, thus eliminating the income produced by that crop. However, since this variety has a higher yield and would require only one crop, the profits should increase.

Opinion of Probable Cost

The total estimated cost for the LSWP is \$2,159,600,000, as developed by the Region L consultant. Per the Definitive Agreement between LCRA and SAWS, SAWS is responsible for LSWP costs. The costs are paid primarily through water use fees and surcharges over the life of the project. Region K is not responsible for the costs associated with the LSWP.

Issues and Considerations

Table 4.98 Development of New Rice Varieties Issues

Management Strategy	Environmental Flows	Wildlife Habitat	Cultural Resources	Agricultural Resources	Other Water Resources	Social/Economic
Development of New Rice Varieties	Reduced reliance on instream surface water	Potential reduction in migratory geese habitat	None anticipated.	None anticipated.	None anticipated.	Cost exceeds irrigators' ability to pay.

This alternative is a concern to the waterfowl hunting industry because of their dependency on the second crop. It is unclear as to how this will affect the income of this industry.

Environmental Impact

The development of new rice varieties that require less water for production would decrease the demand for surface water resources in the LCRWPA and allow more water to be retained instream for ecological uses in some portions of the basin. However, this water would, ultimately, be diverted to Region L before its beneficial impacts on instream flows and bay and estuary inflows were realized in the lower basin. Use of a rice variety that would increase efficiency by eliminating the need for a second crop may limit habitat for waterfowl later in the year, although the primary migratory waterfowl season occurs later in the year.

Impacts to Agricultural Resources

The overall impact on agriculture from the implementation of this strategy should be beneficial. The implementation of a single rice variety that provides the same approximate yield that is now produced

from a first and a second crop, will lead to savings in labor and machinery cost in not having to manage and harvest two crops.

4.9.5 HB 1437

HB 1437 requires water being transported out of the Colorado River Basin to the Brazos River Basin to be replaced to the extent that there is no net loss of surface water in the Colorado River Basin. One of the methods for replacing that water is through on-farm conservation in the lower three counties. Through the HB 1437 process, farmers within LCRA's irrigation divisions will receive funding of about 80 percent of the total costs, with farmers bearing 20 percent of the cost for implementing laser land leveling for conservation savings. In September 2008 numbers, this is estimated to cost \$19,019,500 for the total 25,000 ac-ft of water expected to be saved in the later decades of the planning horizon by such strategy. *Table 4.99* below lists each of the irrigation WUGs in Region K that will utilize this strategy and the corresponding cost estimates for each. The total estimated cost to be paid by Region K farmers was divided among the various irrigation WUGs based on the amount of supply to be provided to that WUG by the strategy.

Table 4.99 HB 1437 Strategy for Irrigation WUGs

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
Irrigation	Colorado	Brazos- Colorado	\$0	\$0	\$0	\$0
Irrigation	Colorado	Lavaca	\$0	\$0	\$0	\$0
Irrigation	Matagorda	Brazos- Colorado	\$1,863,134	\$1, 863,134	\$162,437	\$13.31
Irrigation	Matagorda	Colorado	\$30,543	\$30,543	\$2,663	\$13.31
Irrigation	Matagorda	Colorado- Lavaca	\$1,313,357	\$1,313,357	\$114,504	\$13.31
Irrigation	Wharton	Brazos- Colorado	\$549,777	\$549,777	\$47,932	\$13.31
Irrigation	Wharton	Colorado	\$30,543	\$30,543	\$2,663	\$13.31
Irrigation	Wharton	Colorado- Lavaca	\$30,543	\$30,543	\$2,663	\$13.31

Environmental Impact

On-farm conservation for rice production could influence the instream water balance during dry, summer months in two ways: (1) by reducing the amount of return flows introduced to streams, and (2) by reducing the amount of water diverted from streams to irrigate for the second rice crop immediately following harvest of the first. The balance of these two impacts could potentially result in a net gain or loss in dry weather instream flows, depending on the farming practices used. First, the reduced application rates required by conservation would negatively impact return flows to streams, which occur during the summer months when this discharge can provide habitat for species and other ecological services. However, following the harvest of the first rice crop, a certain acreage is flooded again to grow a second crop to be harvested in September and October. Second, conservation could have a positive

impact on instream flows by reducing the amount of water diverted to provide for rice irrigation at this time.

The overall balance of return flows and withdrawals for this period was estimated from information that was originally assembled for calculating irrigation water demands in Colorado, Matagorda, and Wharton Counties. The ratios of water used for first and second crops for both groundwater and surface water irrigated fields for each county were used to divide the expected conservation, as estimated by LCRA, between the first and second crops. It was assumed that all water that could be conserved by on-farm practices was water that would otherwise be discharged to streams in return flows. In addition, return flows were assumed to be 4 inches for all fields before conservation. The expected surface water withdrawals after implementing conservation were then used to determine an overall balance for water being returned and diverted during the summer.

Impacts to Agricultural Resources

The proposed overall strategy replaces water supplies moved to other uses. As long as the alternative supplies are provided and provided in a timely manner, there should be no negative impact on agriculture.

4.10 LIVESTOCK WATER MANAGEMENT STRATEGIES

Region K has 282 WUGs, 30 are Livestock. *Table 4.100* shows the water needs for all of the Livestock WUGs in Region K and the number of WUGs with water deficits for each decade.

Table 4.100 Livestock Water Needs (ac-ft/yr)

Category Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Livestock	(188)	(188)	(188)	(188)	(188)	(188)
No. of WUGs	6	6	6	6	6	6

The following regional water management strategies were selected to meet these Livestock needs:

- Expansion of current groundwater supplies
- Development of new groundwater supplies

These regional strategies are explained in detail in Section 4.7 of this report.

4.11 MANUFACTURING WATER MANAGEMENT STRATEGIES

Region K has 282 WUGs, 30 are Manufacturing. *Table 4.101* shows the water needs for all of the Manufacturing WUGs in Region K and the number of WUGs with water deficits for each decade.

Table 4.101 Manufacturing Water Needs (ac-ft/yr)

Category Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Manufacturing	(146)	(298)	(452)	(605)	(741)	(934)
No. of WUGs	3	4	4	4	4	6

Several strategies have been identified to meet manufacturing WUG needs. The following regional water management strategies were selected to meet some of these Manufacturing needs:

- Expansion of current groundwater supplies
- Transfer/Allocate water from WUGS with surplus
- Drought Management

These regional strategies are explained in detail in Section 4.7 of this report.

4.12 MINING WATER MANAGEMENT STRATEGIES

Region K has 282 WUGs, 30 are Mining. *Table 4.102* shows the water needs for all of the Mining WUGs in Region K and the number of WUGs with water deficits for each decade.

Table 4.102 Mining Water Needs (ac-ft/yr)

Category Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Mining	(13,550)	(13,146)	(12,366)	(6,972)	(5,574)	(5,794)
No. of WUGs	6	7	7	6	6	6

The following regional water management strategies were selected to meet these Mining needs:

- Expansion of current groundwater supplies
- Development of new groundwater supplies

These regional strategies are explained in detail in Section 4.7 of this report.

4.13 STEAM ELECTRIC POWER WATER MANAGEMENT STRATEGIES

Region K has 282 WUGs, 30 are Steam Electric Power. *Table 4.103* shows the water needs for all of the Steam Electric Power WUGs in Region K and the number of WUGs with water deficits for each decade.

Table 4.103 Steam Electric Power Water Needs (ac-ft/yr)

Category Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs
Steam Electric	(193)	(53,005)	(53,175)	(76,430)	(81,930)	(89,042)
No. of WUGs	1	1	2	4	4	5

Several strategies have been identified to meet steam electric power WUG needs. The following regional water management strategy was selected to meet some of these Steam Electric Power needs:

• Expansion of current groundwater supplies

This regional strategy is explained in detail in Section 4.7 of this report.

The following sections provide a description, analysis, and cost breakdown for the other steam electric power strategies.

4.13.1 LCRA Steam Electric Water Management Strategies

LCRA has assumed, as part of its strategies discussed in Section 4.6.1, that it will make additional water available to meet shortages in steam electric power water needs from the operation of its system. LCRA intends to use a portion of its Garwood water right to meet its own demand at the Fayette Power Project, although this would require an amendment of the Garwood water right.

4.13.2 COA Steam Electric Water Management Strategies

The City of Austin has steam electric power needs in Fayette, Matagorda, and Travis Counties. Austin's portion of the South Texas Nuclear Project (STNP) demand is included in the STNP total steam electric demand in Matagorda County, and is therefore not addressed here. *Table 4.104* shows the steam electric water demands in Fayette and Travis Counties.

Table 4.104 COA Steam Electric Power Water Demand (ac-ft/yr)

County Name	2010 Demand	2020 Demand	2030 Demand	2040 Demand	2050 Demand	2060 Demand
Fayette – Austin's						
portion	14,622	14,702	18,002	25,742	25,742	31,652
Travis	17,500	18,500	22,500	23,500	27,500	28,500
TOTAL	32,122	33,202	40,502	49,242	53,242	60,152

To meet Austin's steam electric power needs, Austin has identified three main sources of water. These are COA ROR water rights, LCRA firm water supply contracts (purchase water from LCRA), and direct water reuse. These are summarized in *Table 4.105* showing the steam electric supplies and water management strategies in Fayette and Travis Counties.

Table 4.105 COA Steam-Electric Supplies and Water Management Strategies (ac-ft/yr)

COA Cumpling &						
COA Supplies & Strategies	2010	2020	2030	2040	2050	2060
Supplies						
COA Run of River						
(Steam Electric - Fayette)	1,267	1,267	1,267	1,267	1,267	1,267
LCRA Contract (Steam						
Electric - Fayette)	3,500	3,500	3,500	3,500	3,500	3,500
Strategies						
Purchase from LCRA						
(Steam Electric) Fayette				20,975	20,975	26,885
Fayette Total	4,767	4,767	4,767	25,742	25,742	31,652
Supplies						
COA Run of River						
(Steam Electric - Decker						
& Lady Bird Lake)	7,153	7,153	7,153	7,153	7,153	7,153
LCRA Contract (Steam						
Electric Decker & Lady						
Bird Lake)	15,174	15,174	15,174	15,174	15,174	15,174
Strategies						
Direct Reuse (Steam						
Electric) Travis	2,315	3,315	7,315	8,315	12,315	13,315
Travis Total	24,642	25,642	29,642	30,642	34,642	35,642
Total Steam-Electric	29,409	30,409	34,409	56,384	60,384	67,294

It is anticipated that there will be additional infrastructure needed. The probable costs associated with the Austin's direct reuse water management strategy for supplying steam electric needs in Travis County are estimated to be approximately \$851/ac-ft (see water reclamation cost Section 4.6.2.2, *Table 4.38*). Further, it is anticipated that there will be additional long-term costs associated with Austin's indirect steam electric power water management strategy to meet its projected shortages at the Fayette Power Project over the planning period. It is expected that there will be infrastructure costs associated with increasing the capacity of the pump station, and associated infrastructure, as well as other potential costs. However, it is assumed that these anticipated long-term costs would be essentially the same for all feasible alternatives, and are therefore not quantified here.

4.13.3 STP Nuclear Operating Company Water Management Strategies

The STP Nuclear Operating Company (STPNOC)'s water demand is reflected in *Table 2.10*. This demand is based on higher availability of generation capacity, added generating capacity, and blowdown of the reservoir to maintain water quality. This demand during the 50-year planning horizon will be satisfied significantly through (1) the management strategies of continued run-of-the-river diversions of up to 102,000 ac-ft/yr, under Certificate of Adjudication No. 14-5437⁹, (2) continued use of STPNOC's existing off-channel reservoirs authorized under Certificate of Adjudication No. 14-5437 and a potential

⁹ STPNOC's interest in the water rights evidenced in the certificate are as agent for the STPNOC owners, the City of San Antonio acting through the City Public Service Board, COA, and NRG South Texas, LP.

amendment to 14-5437 to pump greater than 102,000 acre-feet when the water is available (Water Right Permit Amendment strategy); and (3) continued pumpage of groundwater for the purposes of incorporation in STPNOC's processes. Supplementing its run-of-the-river diversions, STPNOC also has a contract with LCRA for firm backup water of 20,000 acre-feet for 2-unit operation and 40,000 acre-feet for additional generating units, for so long as electric generation facilities are operated at the site.

Refer to Section 1.2.2.2 for socioeconomic information related to the STPNOC and Section 3.2.1.1.2 for a description of reservoir operation. Based on current projections completed for the 2011 Lower Colorado Regional Water Plan (Region K), shortages of 53,000 ac-ft/yr or more have been identified commencing as early as 2020 for Steam Electric supplies in Matagorda County during a repeat of the DOR, refer to Table 4.106). It is of additional note that STPNOC's run-of-the-river diversions can be affected by water quality at the STPNOC diversion point. In order to support a long-term reliable electric supply for Texas, alternative strategies have been identified for offsetting these shortages and to guard against the continuing escalation in upstream demands which may affect water quality at the current permitted diversion point near the plant, although the recent amendment to the water right to allow diversion upstream of the LCRA Bay City dam may provide some ability to mitigate any water quality impacts.

Table 4.106 Steam-Electric Shortages in Matagorda County (ac-ft/yr)

Category Name	2010 Needs	2020 Needs	2030 Needs	2040 Needs	2050 Needs	2060 Needs	
Steam Electric	(100)	(52.005)	(50.005)	(50.005)	(50.005)	(50.105)	
Matagorda County	(193)	(53,005)	(53,005)	(53,005)	(53,005)	(53,125)	

Note: For 2020-2060, 30,000 ac-ft of Matagorda County's shortage is due to a future planned steam-electric power plant that is not part of STPNOC. More about this shortage is discussed in Section 4.13.4

STPNOC and LCRA negotiated an extension and amendment to the water supply contract in 2006, which helps ensure a long-term, cost effective water supply for the STP plant. Additional and alternative strategies include but are not limited to the following:

- Expand supply from STPNOC reservoir
- Blend brackish surface water in STPNOC reservoir
- Rainwater harvesting
- Subordination of upstream senior water rights
- Dedication of return flows from other users

Conservation also is an integral part of STPNOC's operational philosophy as documented in the Water Conservation Plan filed with the TCEQ.

4.13.3.1 Water Right Permit Amendment

This strategy would amend STPNOC's current water right permit to increase the total authorized diversion, which would allow STPNOC to pump additional water from the Colorado River during times of high flow. During the wetter years of a drought-of-record, STPNOC would be able to increase the amount of water to their reservoir, which would provide a higher firm yield averaged over the drought-of-record.

For the Region K Plan, a firm yield analysis was performed to determine the amount of water that would potentially be available. The annual diversion limit was increased from 102,000 ac-ft to 145,000 ac-ft. This increased diversion provided an additional firm yield of 5,500 ac-ft.

Prior to applying for the permit amendment, additional studies and modeling would need to be performed. Project costs for studies and application costs are estimated at \$50,000 by STPNOC, or a per ac-ft cost of \$9.09/ac-ft.

STPNOC is located within the tidal reaches of Matagorda Bay, so environmental impacts to instream flows would be small. During periods of high flows, this strategy would divert water that would otherwise increase the freshwater inflows to Matagorda Bay, but should not have an impact during periods of low or average flow. Tabular results of the quantitative environmental impact are presented in *Appendix 4G*. No impacts to agriculture are expected.

4.13.3.2 Expand Supply from STPNOC Reservoir

This strategy is recommended to meet a 2010 shortage of 193 ac-ft. Because the shortage is small and near-term, the best option would be to use an additional 193 ac-ft from their on-site reservoir. This strategy has no cost associated with it, no environmental impacts, and no impacts to agriculture.

4.13.3.3 Blend Brackish Surface Water in STPNOC Reservoir

During an emergency situation, when the STPNOC reservoir reaches 30 feet mean sea level (MSL), STPNOC and LCRA will pursue relief from the TCEQ to be allowed to pump brackish surface water to blend in with the existing fresh water in the STPNOC reservoir. A firm yield of 17,505 ac-ft was determined for this planning cycle. This strategy has no cost associated with it, no environmental impacts, and no impacts to agriculture.

4.13.3.4 Rainwater Harvesting

STPNOC has proposed rainwater harvesting as a potential management strategy for meeting steam electric power generation water shortages for Matagorda County. STPNOC currently operates a Main Cooling Reservoir with a surface acreage of 7,000 acres and a maximum permitted storage of 202,600 acft, plus a 47-acre Essential Cooling Pond at their facilities in Matagorda County. Both of these reservoirs are currently represented in the Region K Cutoff Model. These reservoirs are fed by a ROR diversion right and groundwater which is backed up by an LCRA contract up to a total maximum diversion of 102,000 ac-ft/yr. These reservoirs have a required low water level of approximately 59,000 ac-ft to provide necessary reliability of storage for cooling water for STPNOC's nuclear power generation plant. While these facilities are included in the model, there is no separate firm yield calculated for the storage, primarily because of the requirement to maintain a large minimum storage pool.

Since the reservoir is included in the model, the calculations of rainfall and evaporation from the surface are included in the computations of reservoir surface elevations. STPNOC estimates that an inch of rainfall falling upon the surface of the reservoirs translates into potentially 580 ac-ft of water in storage per rainfall occurrence. While the WAM only computes reservoir surfaces on a monthly basis, the impact of significant rainfall is felt on a daily basis if certain significant rainfall events were to occur. In this instance, if the reservoir is modeled as calling for water from the ROR, the water that is otherwise supplied by rainfall results in a potential supply to instream flows to the bay and estuary. Since there is a

6-day travel time between the Highland Lakes and the STP diversion location, any intervening rain cannot be subtracted from the release of inflows that have already been made to satisfy the STPNOC demand as well as meet the freshwater inflow requirements for the bay. Therefore, allowing up to 580 ac-ft to flow by its diversion location may not provide any additional benefit to the yield of the Highland Lakes. In addition, this small amount of water provided at unpredictable times may have a significant impact.

Total Cost \$0

Capital Cost \$0. All of the necessary infrastructure is already in place to lift water from the river

O&M Cost \$0. There is actually a reduction in O&M cost as the water does not have to be pumped from the river into STPNOC's reservoirs

Firm Yield 0 ac-ft annually. It is not possible to come up with a firm yield computation with the current models. However, it is possible to estimate the reduction in the ROR draw based on the amount of rainfall that occurs during the DOR. Amounts of diversion foregone would be larger during years of normal rainfall.

Analysis

STPNOC provided rainfall information from data collected by its plant personnel. The rainfall data covered the period from 1996 through 2004. Annual rainfall during that period ranged from 12.35 inches per year for the low to 58.55 inches per year for the high. These rainfall amounts translate to 7,279 ac-ft/yr under the lowest annual rainfall to approximately 34,000 ac-ft during the highest annual rainfall period. Average rainfall for the area is reported by STPNOC as 42 inches per year and that translates to approximately 24,000 ac-ft/yr.

The entire cooling water need for STPNOC is met either through run of the river diversions or through contract water from LCRA released from the Highland Lakes. In either event, the scheduling of releases is such that rainfall impacting the STPNOC reservoir in small amounts during dry periods does not provide sufficient warning to LCRA to curtail releases, or the plant will not have the cooling water it needs if it doesn't rain, given the amount of time it takes water to travel from the Highland Lakes to STPNOC's location in Matagorda County. As a result, the only potential beneficiary of this water is the instream and bay and estuary flows. This small amount of water provided at unpredictable times may not have a significant benefit to the bay.

Issues and Considerations

There are no known environmental drawbacks from the strategy. It is currently in place and intercepting rainwater. While it is not possible to quantify the amounts of water expected from this strategy, there is certainly a benefit to reducing water drawn from the river, either ROR flows or flow released from storage. Since it is dependent upon rainfall, it is not considered a firm yield supply.

4.13.4 Other Steam Electric Water Management Strategies

A new steam-electric power plant is planned for Matagorda County that would implement a need for 30,000 ac-ft of water in 2020. The strategy to meet this need, which is also discussed in Section 4.6.1.5, is to purchase water through a contract with LCRA.

Capital expenditures were not included with the cost of this strategy, which is currently \$138 per ac-ft of water and is estimated to increase on average about 3 percent per year.

An existing industrial plant in Wharton County has a need in 2060 based on their current demands, but also has future plans for expansion. Their run-of-river water right on the San Bernard River does not provide enough firm water to meet their current demands in 2060, leaving the plant with a need of 82 acft. The strategy recommended to meet this need and any potential future needs is the development of a new well field in the Gulf Coast Aquifer.

Table 4.107 Gulf Coast Aquifer Development Costs

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
Steam-Electric	Wharton	Brazos- Colorado	\$164,000	\$247,800	\$30,825	\$375.92

4.14 COUNTY SUMMARIES OF WATER MANAGEMENT STRATEGIES

Table 4.108 contains the total of all of the water management strategies in each county.

There are a few strategies that involve the transfer/allocation of water from a WUG with a surplus to a WUG with a shortage. The amount of water transferred/allocated was included in the table as a strategy, but the corresponding negative shortage (subtraction from surplus) was not included in the table since these totals are going to be compared to the true shortages (WUGs that do not have surpluses).

Table 4.108 Water Management Strategy County Summary (ac-ft/yr)

County	2010	2020	2030	2040	2050	2060
Bastrop	4,731	6,756	10,088	14,202	21,217	28,429
Blanco	0	0	0	0	41	64
Burnet	1,286	2,138	3,614	5,308	6,642	8,156
Colorado	81,208	144,678	125,706	95,581	74,761	109,959
Fayette	253	643	999	22,300	22,661	29,069
Gillespie	0	0	0	0	0	0
Hays	2,122	4,919	7,821	8,507	12,005	14,295
Llano	2,400	2,913	3,313	3,603	3,899	4,201
Matagorda	130,282	231,667	206,424	192,460	172,720	179,211
Mills	851	854	976	955	1,138	1,150
San Saba	13	22	19	15	14	15
Travis	50,059	72,911	94,662	116,950	134,646	156,063
Wharton	76,657	108,163	96,041	85,596	79,981	80,137
Williamson	0	0	0	0	0	0
TOTAL	349,862	575,664	549,663	545,477	529,725	610,750

Table 4.109 shows the difference between Table 4.14 (County and Regional Water Supply Condition Summary Excluding Surpluses, which shows the total shortages in each county) and Table 4.108 (Water Management Strategy County Summary, which shows the strategies for each county). The result is that all of the shortages in Region K are being met from 2010 through 2060, and in some instances there are surpluses due to the strategy implementation. There are also some additional surpluses in counties that contained WUGs that did not have any shortages and had some excess water above their demands; these surpluses are not accounted for in this table.

These surpluses in *Table 4.109* are a direct result of strategy implementation and will change as strategies are studied, refined, and updated.

Table 4.109 Comparison of County Shortages Versus Total County Strategies (ac-ft/yr)

County	2010	2020	2030	2040	2050	2060
Bastrop	172	0	0	122	284	284
Blanco	0	0	0	0	0	0
Burnet	231	325	244	77	40	20
Colorado	23,209	94,375	83,240	61,036	48,228	89,561
Fayette	48	109	162	125	67	0
Gillespie	0	0	0	0	0	0
Hays	1,280	2,371	2,944	1,099	1,343	1,040
Llano	938	1,170	1,469	1,528	1,568	1,574
Matagorda	3,291	57,553	39,029	31,502	17,956	30,252
Mills	11	26	174	220	363	363
San Saba	13	22	19	12	11	10
Travis	46,521	61,858	80,595	98,816	79,212	64,100
Wharton	16,139	52,338	44,740	38,656	37,252	53,285
Williamson	0	0	0	0	0	0
TOTAL	91,853	270,147	252,616	233,193	186,324	240,489

4.15 ALTERNATIVE WATER MANAGEMENT STRATEGIES

The viability of the future LSWP water management strategy and its use to meet various needs in Region K is currently unclear due to a recent lawsuit filed by the San Antonio Water System (SAWS). As such, the LCRWPG desires to identify alternative strategies that would meet the various needs if the LSWP strategy was no longer an option. In addition, the LCRA is looking at several options to help meet future needs in the decades to come, and would like to include some of the potential strategies as alternative strategies while the evaluation process continues. Mills County is interested in keeping their options open for sources of water that can meet future needs. As such, an alternative strategy for Mills County-Other is also included.

4.15.1 Alternative Strategies for Rice Irrigation

Rice irrigation in the Lower Basin is one water user that has a significant portion of its needs met by the LSWP strategy through agricultural conservation and groundwater development. *Table 4.110* below shows the irrigation needs that would require strategies if the LSWP strategy was no longer a viable strategy. These needs assume that the non-LSWP irrigation water management strategies would still occur. The non-LSWP irrigation strategies are shown in *Table 4.84* in *Section 4.9*.

Table 4.110 Rice Irrigation Needs (ac-ft/yr)

Category Name	2010	2020	2030	2040	2050	2060
	Needs	Needs	Needs	Needs	Needs	Needs
Rice Irrigation	0	48,269	77,738	100,583	126,694	141,656

The recommended group of alternative strategies to meet these specific needs is shown below in *Table 4.111*. Descriptions of the strategies follow the table.

Table 4.111 Rice Irrigation Alternative Water Management Strategies (ac-ft/yr)

Water Management Strategy	2010	2020	2030	2040	2050	2060
	2010	2020	2030	2040	2030	2000
Expansion of Gulf Coast						
Aquifer		10,000	10,000	10,000	10,000	10,000
Off-Channel Storage in						
Reservoirs			30,000	40,000	40,000	40,000
On-Farm Conservation		20,000	20,000	35,000	35,000	35,000
Irrigation Divisions Delivery						
System Improvements		20,000	25,000	40,000	48,000	48,000
Conjunctive Use of						
Groundwater Resources					15,000	15,000
Enhanced Recharge of						
Groundwater					17,200	17,200
Total		50,000	85,000	125,000	165,200	165,200

Expansion of Gulf Coast Aquifer

This strategy would involve pumping additional groundwater from the Gulf Coast Aquifer, and assumes that no additional wells would need to be drilled. The unit cost, provided by the LCRWPG members involved with rice farming, was determined to be \$80/ac-ft, and includes no capital costs. Environmental impacts of this strategy can be found in *Section 4.7.1.3*.

Off-Channel Storage in Reservoirs

This strategy involves the construction of multiple reservoirs throughout the lower portion of the basin which would divert excess flow from the Colorado River for storage while allowing average flow to pass by. The reservoirs, depending on location, could either release water directly to the irrigation canals or could release stored water back into the Colorado River for downstream diversion. The shorter distance between the stored releases and the irrigators would decrease the travel time of the releases, which in turn, would potentially reduce the number of unnecessary releases that occur when unexpected rainfall hits the lower basin.

An annual unit cost of \$345/ac-ft was determined. Total project costs are approximately \$122,936,000, with approximately \$53,388,000 of that being capital costs.

Environmental impacts should be minimal if the appropriate environmental flow restrictions are put in place. This strategy will reduce some of the higher pulse flows to Matagorda Bay by diverting water during periods of high flow. Quantitative environmental impacts are less than five percent. Tabular results are shown in *Appendix 4G*. Discussion of the methodology behind the impact analysis is in *Section 4.17*.

On-Farm Conservation

This strategy is generally equivalent to the strategy presented in *Section 4.9.1* as part of the LSWP strategy. An annual unit cost of \$51/ac-ft was determined. Total project costs are \$6,580,000, with \$5,425,000 of that being capital costs. Environmental impacts can be found in *Section 4.9.1* as well.

Irrigation Divisions Delivery System Improvements

This strategy is generally equivalent to the strategy presented in *Section 4.9.2* as part of the LSWP strategy. An annual unit cost of \$39/ac-ft was determined. Total project costs are \$6,192,000, with \$4,944,000 of that being capital costs. Environmental impacts can be found in *Section 4.9.2* as well.

Conjunctive Use of Groundwater Resources

This strategy is generally equivalent to the strategy presented in *Section 4.9.3* as part of the LSWP strategy. An annual unit cost of \$963.83/ac-ft was determined. Total project costs are \$19,483,200, with \$14,432,000 of that being capital costs. Environmental impacts can be found in *Section 4.9.3* as well. This strategy would not require as much groundwater as the strategy for LSWP would need, which would create a smaller environmental impact.

Enhanced Recharge of Groundwater

This strategy consists of diverting water from the Colorado River, when available, and pumping to one or more recharge basins where the underlying aquifer is artificially recharged by means of surface spreading or potentially deep-well injection. Environmental flow requirements and senior water rights must be satisfied before water can be diverted from the river, resulting in very low reliability as a direct supply. By utilizing recharge, water is stored in the aquifer for later use. During drought conditions, when backup surface water supplies are intermittent, additional water stored underground can provide a reliable supply without detrimental impacts to the aquifer.

A detailed technical memorandum discussing this strategy is provided in *Appendix 4C*. Analysis and costs were performed assuming infiltration through surface spreading was the method of recharge. The annual unit cost of \$354/ac-ft. Total project costs are \$56,296,000, with \$41,049,000 of that being capital costs. Due to instream flow and freshwater inflow requirements being met before water can be diverted, limited impacts to the environment are expected.

4.15.2 Alternative Strategies for LCRA Wholesale Water Supply

This section contains alternative new water supply options for LCRA that were developed as part of their Water Supply Resource Plan. This water would provide additional firm yield to LCRA as a wholesale water provider and could be used to meet various needs throughout Region K, including irrigation needs. The descriptions of these strategies are from the *Water Supply Resource Plan: Water Supply Option Analysis*, prepared by CH2M Hill for LCRA in July 2009.

Table 4.112 LCRA Wholesale Water Supply Alternative Water Management Strategies (ac-ft/yr)

Water Management Strategy	2010	2020	2030	2040	2050	2060
Groundwater Importation				35,000	35,000	35,000
Brackish Desalination of the Gulf Coast Aquifer (Desalination)				22,400	22,400	22,400
Total				57,400	57,400	57,400

4.15.2.1 Groundwater Importation

This water supply option would deliver approximately 35,000 acre-feet per year of untreated groundwater from outside the Planning Area and Colorado River basin to an area in eastern Travis County. The basic infrastructure required would include production wells, collection piping and other wellfield facilities, as well as an approximately 80-mile conveyance pipeline and pump stations. Costs for water treatment and disinfection are not included. The conceptual wellfield was assumed to be located in Burleson County and the conceptual delivery point was assumed to be located at approximately SH 130 and the Colorado River. Groundwater acquisition was assumed to be leased; annual payments are included in the operation and maintenance costs. The estimated development cost is approximately \$395.9 million. An alternative option would be to purchase the groundwater via a third-party contract. This option would be somewhat less expensive with no capital costs.

Opinion of Probable Costs

Unit Cost of Water: \$1,330 /ac-ft/yr Raw Water Delivered Unit Cost of Water: \$4.08 /1,000 gal/yr Raw Water Delivered

Quantity of Water: 35,000 ac-ft/yr, beginning in 2040

Reliability = Firm

Est. Development Time: 60 months

Environmental Considerations

There are several endangered or threatened species that would be taken into consideration during design. Additionally, there is one Unique Reservoir and 12 Unique Stream Segments within 10 miles of the proposed pipeline alignment. A quantitative impact analysis on instream flows and freshwater inflows to Matagorda Bay was performed by assuming that 60 percent of the imported groundwater would be discharged as effluent to the Colorado River. These additional return flows would mainly increase

instream flows and freshwater inflows. Discussion of the impact analysis methodology is provided in Section 4.17. Tabular results of the impacts are in *Appendix 4G*.

Water Resources Considerations

No groundwater modeling was conducted as part of this analysis. It is assumed that the production of this volume would conform to the water management plan and rules of the Post Oak Savannah Groundwater Conservation District.

Agricultural & Natural Resources Considerations

None anticipated.

Permitting and Water Rights Considerations

Well drilling, production and transport permits are required by the Post Oak Savannah Groundwater Conservation District. Costs for obtaining the necessary permits are included in the project development cost; production and transport fees are included in the annual costs. Groundwater rights would need to be leased or purchased based on the maximum withdrawal of 2 acre feet, per contiguous acre controlled, per year.

4.15.2.2 Brackish Groundwater Desalination from the Gulf Coast Aquifer (Desalination)

This option includes the extraction of brackish groundwater from the Gulf Coast Aquifer in Matagorda County, its treatment using reverse osmosis (RO), and the delivery of approximately 22,400 acre-feet per year (20 mgd) to an area near the Port of Bay City. The RO permeate would be disposed of directly into the ground via a deep injection wellfield. The estimated development cost associated with this project is \$177.6 million.

A similar strategy was recommended for STPNOC in the 2006 Region K Plan. During this round of planning, it was determined that other strategy options would be more feasible for STPNOC (See *Section 4.13.3*) than desalination. For additional information on desalination strategies in Matagorda County, please refer to the 2006 Region K Plan.

Opinion of Probable Costs

Unit Cost of Water: \$1,260 /ac-ft/yr Treated Water Delivered Unit Cost of Water: \$3.88 /1,000 gal/yr Treated Water Delivered

Quantity of Water: 22,400 ac-ft/yr, beginning in 2040

Reliability = Firm

Est. Development Time: 72 months

Environmental Considerations

The Matagorda Bay region includes a significant amount of acreage designated as wetlands, which serve as the habitat for numerous terrestrial and marine species, some of which are threatened and/or endangered. Thus, impacts must be eliminated to the extent possible during construction and mitigated otherwise.

Some additional potential environmental impacts would be related to the potential degradation of the quality of the groundwater in the vicinity of the proposed wells, the impacts of the additional demand on springflows, and the management of the byproducts such as concentrated salt solution. The current groundwater availability models do not include quality information or capability to model changes in water quality. For that reason, it is not possible to determine whether or not the flows being pumped will impact the overall quality of the aquifer in this area. There are no known springs in the area, so it is unlikely there would be any negative impacts from reduced springflow. Management of the concentrated salt solution by deep well injection should adequately confine the materials within deep aquifers with similar salt concentrations to minimize any negative impacts.

Agricultural & Natural Resources Considerations

This strategy does not put increased demand on water supplies already being used by agriculture and does not move supply from agricultural uses to other usage. As a result, there is no anticipated impact on agricultural resources.

Permitting and Water Rights Considerations

Well drilling and production permits would be required from Coastal Plains Groundwater Conservation District. A Class 1 Deep Injection permit from the TCEQ for discharge of RO permeate via a deep injection wellfield would also be required. TCEQ has recently proposed to draft a general permit that would streamline deep well injection permit processes.

4.15.3 Alternative Strategy for Mills County-Other (Desalination)

Mills County, in coordination with Fox Crossing Water District, has expressed interest in a strategy that involves the desalination of brackish groundwater from the Ellenburger-San Saba Aquifer. At this time, the cost to implement this strategy is higher than simply expanding the use of the Trinity Aquifer, so it is being included in this plan as an alternative strategy.

This alternative strategy would involve developing a new well field to pump water from the Ellenburger-San Saba Aquifer. The new well field will consist of an acquired site, four new wells, 2 ½ miles of well collection line, eight miles of distribution/transmission line, new pump stations, a water treatment plant, a brine disposal evaporation pond, and assumes that available storage capacity exists to store the additional water. *Table 4.113* presents the amount of firm yield available from the strategy along with the implementation decade.

Table 4.113 Alternative Desalination of Brackish Ellenburger-San Saba Strategy (Desalination) (ac-ft/yr)

WUG	Country	Basin	W	Water Management Strategy (ac-ft/y					
WUG	County	Dasiii	2010	2020	2030	2040	2050	2060	
County-Other	Mills	Colorado	0	0	384	384	384	384	

Opinion of Probable Costs

Table 4.114 presents a summary of the probable costs for implementing this strategy. The four cost components analyzed during cost estimation of this strategy were: Total Capital Cost, Total Project Cost, Annual Cost, and Unit Cost.

For this strategy, there were assumed to be six potential capital expenditures. These were drilling and installation of the required additional wells (including pump installation), installation of a well collection line(s), a distribution pipe, a pump station, a water treatment plant, and a brine disposal system. Assumptions were made for well capacity, depth of drilling required, well diameter, and pumping distance according to the aquifer being utilized. For the Ellenburger-San Saba aquifer, the values used were 200 gpm, 3,000 ft, 6 in, and 300 ft, respectively. Wells were assumed to operate 24 hours per day, at 80 percent efficiency for determining production capacity and a TWDB groundwater desalination formula (to include installation, chlorination, and pump) was used to estimate the cost once the well had been sized. Transmission piping was sized based on the maximum flow anticipated in each pipe (the largest strategy amount in one decade, increased by a factor of two to account for peak demands) and an assumed 5 ft/s velocity. The smallest assumed diameter was 6 inches. Distribution pipe was sized to handle the maximum *total* flow (from all new wells as part of the strategy), again, increased by a factor of two to account for peak demands and assuming a 5 ft/s velocity. The pump station cost estimate was based on \$197,250 per mgd, taken from the San Marcos Water Supply Master Plan, December 2004, and updated to September 2008 costs.

Additional project costs included Engineering, Contingencies and Legal Services (35 percent), land acquisition (assuming 5 acres per well, at \$5,000 per acre), and Environmental and Archeological Studies, Mitigation, and Permitting (assumed equal to the land acquisition cost). The total project cost was annualized over a 20-year term of debt. Along with this annualized debt cost, O&M, and annual energy costs to pump the water made up the annual cost. The unit cost was taken as the largest annual cost, divided by the largest volume of water generated by the strategy in any one decade over the planning horizon.

Table 4.114 Desalination of Brackish Ellenburger-San Saba Groundwater Costs

WUG Name	County	River Basin	Total Capital Cost	Total Project Cost	Largest Annual Cost	Unit Cost (\$/ac-ft)
County-Other	Mills	Colorado	\$6,285,000	\$8,577,000	\$1,216,400	\$3,168

Environmental Impacts

The additional pumpage from the Ellenburger-San Saba aquifer is within the sustainable yield of the aquifer for all decades. The construction of well sites and pipelines is anticipated to have a low environmental impact primarily during the construction period, if proper precautions are taken to avoid environmentally sensitive areas. If an evaporation pond is used for brine disposal, appropriate permits will need to be obtained regarding what will be done with the evaporated salt. Two options include commercial sale and burying.

Impacts to Agriculture

Irrigators in Mills County currently use other sources of water, so there should be no impact to agriculture.

4.16 OTHER POTENTIAL FUTURE WATER MANAGEMENT STRATEGIES EVALUATED

The TWDB rules require the RWPG to evaluate all potentially feasible water management strategies to meet the region's identified demand deficits. Feasibility is based on evaluation criteria established by the TWDB and the RWPG including project cost, unit cost, yield, reliability, environmental impact, local preference, and institutional constraints. Several water management strategies were identified and evaluated in terms of the potential impact on the Lower Colorado Region as a whole. These strategies are discussed in the following sections.

4.16.1 Lower Colorado River Inflatable Channel Dams

The use of small in-channel inflatable dams on the main stem of the lower Colorado river has previously been considered as a method to add additional system storage in the lower basin and to improve system operations and diversions for water systems in this area. A fairly detailed study of this strategy was conducted by the LCRA in 1997 which evaluated the feasibility of constructing various sized small channel dams using inflatable rubber "bladders" within the lower Colorado River between Bastrop and Wharton. The dams which were evaluated consisted of different sizes and designs ranging from approximately 3 to 10 feet in height depending on the channel characteristics at each location considered. Preliminary site locations were evaluated based on criteria designed to minimize impacts to the environment and enhance potential benefits by containing lake elevations inside the existing channel, allowing safe passage of floods by deflating the bladder and folding the dam into the channel during flood events, and providing positive impacts to local communities through enhanced water supply and recreation opportunities. System benefits were estimated in the previous study to potentially range from a combined 10,000-25,000 afy through improvements in the flexibility of releases from the Highland Lakes and by allowing for reduced operational losses in the system.

The LCRWPG is interested in conducting future additional studies for this strategy in order to further evaluate the potential dam site locations and their respective water supply and operational benefits, and to quantify the expected environmental impacts of these in-channel dam structures as well as potential impacts to downstream water rights holders. Known environmental issues include the creation of: 1) increased fluctuation of water levels in the river, 2) temporary obstruction to fish migration, 3) potential barriers to sediment transport, and 4) possible eutrophication complications. At the same time, there are potential desirable environmental features created by these potential structures, such as providing: 1) locally increased river pool depths, 2) reduced extreme temperatures during summer and winter seasons, 3) increased habitat variability, and 4) other smaller positive impacts. Further study is needed to determine if some, if not all, of the various issues associated with this future potential water management strategy could be mitigated.

4.16.2 Advanced Conservation

The water demands approved by TWDB and the individual Regional Water Planning Groups (RWPGs) have already been adjusted to incorporate the effects of the 1991 State Water Saving Performance Standards for Plumbing Fixtures Act. In addition, RWPGs are required to consider further water conservation measures in their plan or explain reasons for not recommending conservation. In the 2006 LCRWPG Water Plan, conservation was applied to municipal WUGs with identified shortages and a year 2000 per capita water consumption of greater than 140 gpcd as recommended by the Water Conservation Implementation Task Force (WCITF). Additional conservation was applied to the municipal WUGs with shortages and a per capita demand between 100 and 140 gpcd. This section describes an analysis that was

performed to determine the possibility for expanding water conservation to municipal WUGs without shortages in the planning area.

There are several WUGs in the LCRWPA that do not have needs. The LCRWPG recommends that these entities consider water conservation as a strategy to lower their per capita water consumption and as a means of extending water supply for the entire region.

Two scenarios for increasing water conservation were proposed and analyzed in the same manner as the original conservation figures developed for the LCRWPA:

- **Scenario 1 -** Apply 0.25 percent savings annually to all municipal WUGs without shortages and with a per capita demand above 140 gpcd.
- **Scenario 2 -** Apply 0.5 percent savings to all municipal WUGs without shortages and with a per capita demand above 140 gpcd; Apply 0.25 percent savings annually to all municipal WUGs with a per capita demand between 100 and 140 gpcd.

Each of the scenarios listed above could be performed in conjunction with conservation practices already recommended earlier in Chapter 4. Conservation in Scenario 1 would be applied until the per capita water demand was between 100 and 140 gpcd, respectively. No conservation would be applied below these respective levels. For Scenario 2, conservation would be applied to municipal WUGs with a demand greater than 140 gpcd until demand dropped below that amount. Conservation was then applied at a rate 0.25 percent for each following decade with the per capita demand not to drop below 100 gpcd. *Table 4.115* shows the amount of water conserved by implementing the conservation practices already outlined in Sections 4.6.2.1 and 4.8.1 and the impacts of practices from each of the two scenarios.

Table 4.115 Anticipated Reduction From Municipal Conservation (ac-ft/yr)

Conservation	2010	2020	2030	2040	2050	2060
COA Conservation	7,600	13,000	18,800	25,000	29,500	33,537
Municipal Conservation	2,947	6,104	9,205	11,834	14,706	17,778
Additional Municipal						
Conservation	28	168	407	1,055	2,227	3,928
Scenario 1	264	580	990	1,485	2,106	2,949
Scenario 2	1,570	2,276	3,238	4,712	6,426	8,276

Note: The City of Austin conservation program is discussed in Section 4.6.2.1. Municipal conservation and additional municipal conservation is discussed in Section 4.8.1. Scenario 1 and 2 are for municipal WUGs that do not have anticipated shortages at this time.

Anticipated reductions in demand from the two scenarios are considerably less than the expected savings from the strategies already recommended in Sections 4.6.2.1 and 4.8.1.

Opinion of Probable Cost

The conservation cost estimates were developed using information from the TWDB GDS Associates Inc. Study, *Quantifying the Effectiveness of Various Water Conservation Techniques in Texas*, May 2003. The study divided each RWPG into urban, suburban, and rural areas. The urban areas in Region K are

comprised of the City of Austin and the City of Round Rock. The suburban areas are Travis, Hays, Bastrop, and Williamson Counties; and all of the other counties are considered rural.

For the cost estimates, the conservation savings were divided into plumbing fixture savings and irrigation savings. The plumbing fixture savings included toilet retrofits, showerhead and aerator replacements, and clothes washer rebates. The irrigation savings included irrigation audits. The total conservation savings calculated for each WUG was proportioned between plumbing fixture savings and irrigation savings using an average of the estimated savings per measure in the study. Then the savings costs for plumbing fixture savings and irrigation savings were calculated using the cost per acre foot estimates in the study. These unit costs were only applied to the incremental savings; therefore, the savings that occur the year before will not have a cost the next year, only the additional savings have a cost associated with them.

The table below contains the percent of plumbing savings versus irrigation savings and the cost per ac-ft for the three categories (urban, suburban, and rural).

Table 4.116 Municipal Water Conservation Savings Unit Costs

Conservation Savings	Percent of Total Savings	Cost per Acre-Foot
Urban		
Plumbing Fixture Savings	32%	\$481.60
Irrigation Savings	68%	\$515.89
Suburban		
Plumbing Fixture Savings	31%	\$564.82
Irrigation Savings	69%	\$540.94
Rural		
Plumbing Fixture Savings	30%	\$704.65
Irrigation Savings	70%	\$543.28

Environmental Impact

The environmental impacts for this strategy are discussed in Section 4.8.1.

4.16.3 Brush Management

Texas rangelands were generally described as grassland or open savanna prior to widespread settlement of the area. The pressure on the vegetation created by grazing animals tended to be light and/or periodic, allowing for the establishment of a robust stand of grass. Tree seedlings that were able to survive the competition with the grass stands tended to perish in wildfires, which periodically occur in "natural" rangelands. Thus, with fire and light grazing pressure, grasslands and savannas were stable and sustainable ecosystems characteristic of many Texas rangelands.

Over time, however, the character of rangelands has been altered through increased grazing and fire suppression activities. These changes allowed the development of large stands of trees and other woody vegetation, termed "brush." Continuous, often heavy, livestock grazing pressure reduced the ability of grasses to suppress tree seedling establishment. Furthermore, some invasive woody species (e.g., juniper and mesquite) have noxious chemicals in their leaves, resulting in livestock tending to avoid the tree seedlings, while repeatedly grazing the adjacent palatable grasses. This selective grazing behavior gives noxious-tasting tree seedlings a competitive advantage over the native grasses.

These changes have allowed juniper and mesquite trees to dominate large areas of the Edwards Plateau. These species have been documented to adversely affect the water yield from the land (groundwater recharge and surface runoff) due to the significant evapotranspiration rates. It has been documented that juniper and the associated litter have an annual interception loss averaging 73 percent of precipitation, compared with 46 percent interception loss for live oak and 14 percent interception loss for grass (Thurow and Hester 1997). These data indicate that the amount of water reaching the soil is markedly different depending on the type of vegetation.

Brush management as a water supply strategy is currently being investigated within the state of Texas. Both field studies and modeling investigations conclude that water yield increases exponentially as brush cover declines (i.e., very little change in water yield from dense brush cover down to about 15 percent brush cover, and a rapid rise in water yield from 15 percent cover to 0 percent brush cover). These findings imply that it is necessary to have sustained removal of most of the brush cover to maximize water yield potential. This conclusion is corroborated by numerous anecdotal observations by ranchers and agency personnel with brush control experience in the region (C. F. Kelton 1975; Willard, et al. 1993). The exponential pattern of water yield increase relative to a decrease in brush cover has also been postulated for the Colorado River Basin (Hibbert 1983). The exponential relationship is believed to occur because the intraspecific competition among trees (Ansley et al. 1998) and interspecific competition with herbaceous vegetation results in little increase in water yield until the tree density becomes sparse. In other words, trees have a capability for luxuriant water use; thus, if a stand is thinned, the remaining trees will expand their root systems to use the extra water in a short time. Only when the thinning reduces tree cover to less than about 15 percent is an opportunity created for significant yields of surplus water.

The use of brush management to increase the supply of water may provide excellent results for individual owners of large tracts of land. However, brush management on a regional scale requires the cooperation of numerous private landowners. It is not realistic to expect communities like Blanco or Goldthwaite to influence the range management practices of enough landowners to make this alternative a reliable long-term source of water. Although brush management is a preferred water supply strategy within the LCRWPA, the LCRWPG supports efforts to develop brush management on a statewide basis, as indicated in Chapter 6 of the regional water planning report.

4.16.4 Weather Modification

The modern science of weather modification began in 1946. By the 1960s and 1970s, Texas was the site for many weather modification studies, including cloud seeding. Water droplets that form in the atmosphere by condensation of water vapor onto existing particles suspended in the atmosphere are called cloud condensation nuclei (CCN). Concentrations of CCN vary from place to place and even from day to day at a given location and are affected by proximity to cities and industrial areas. The most successful attempts to deliberately modify clouds have involved some modification of the population of CCN on which cloud droplets form, or of the ice nuclei (IN), which are responsible for the appearance of ice and are important in the formation of precipitation in some clouds. The background aerosol or small particle concentration in the atmosphere varies between 1,000 particles per cubic centimeter (cm³) in clean air, to around 100,000 particles/cm³ in heavily polluted air. These particles range in size from less than 0.01 microns to over 10 microns in diameter; where one micron is one thousandth of a millimeter. An ambitious cloud seeding program might increase (locally and for a very short time) this atmospheric load by 15 percent in the case of clean air or 0.15 percent in an urban environment. Any nuclei added would be almost immediately swept up into the treated cloud and washed out in the resulting rainfall. Silver

iodide, dry ice, and potassium chloride crystals have been used as CCN, none of which are harmful to the environment.

Cloud seeding has been used to reduce hail damage in the High Plains and has been investigated as a means of drought prevention in the Edwards aquifer area, Corpus Christi, and West Central Texas. San Angelo and the Colorado River Municipal Water District in Big Spring sponsored testing to see if weather modification increases the amount of water in lakes and boosts cotton yields.

Different sizes and types of clouds are seeded depending upon the weather modification goal. To lessen hail damage, large thunderstorms likely to produce hail are seeded. To increase rainfall, smaller clouds that are likely to grow are seeded. Successful cloud seeding involves many variables due to the array of environmental conditions and seeding procedures that exist; therefore, a successful seeding program in one region does not guarantee success in another. In addition, the unpredictable nature of weather modification in general continues to fuel debate within the scientific community regarding its validity.

As with brush management, weather modification has demonstrated the capacity to provide additional water to a region, but the results may not provide a reliable quantifiable source of additional water to help meet the demand deficits identified within the LCRWPA. Therefore, these strategies should be dealt with more as long-term best management practices rather than specific water supply options to meet demands. In addition, issues concerning the negative impact on rainfall amounts in areas surrounding the target area persist.

4.16.5 Additional Water Reuse

The use of reclaimed water to meet water demands is increasing in Texas. However, with the exception of the City of Austin's uses, this strategy is not deemed appropriate due to the nature of the identified demand deficits. The municipal needs identified in the Hill Country area are generally isolated and stem from a lack of sufficient storage to draw from during extended dry periods when river flows cease. These municipalities generally restrict non-essential water use when the river stops flowing. Therefore, the use of reclaimed water would not extend their water supply. Use of reclaimed water to meet other needs is discussed in Section 4.5.1 of this chapter.

The COA is currently constructing the major infrastructure needed to allow the use of reclaimed water as an additional source of water. Information concerning the City's Water Reclamation Initiative is presented in Section 4.6.2.2.

4.16.6 Rainwater Harvesting

Rainwater catchment systems provide a source of soft, high-quality water, reduce reliance on wells and other water sources, and can be cost-effective. In light of Texas' current regional water planning efforts and increased attention on conservation and sustainability, a renewed interest in rainwater harvesting has emerged due to the following:

- The escalating environmental and economic costs of providing water by centralized water systems or by well drilling
- Health concerns regarding the source and treatment of polluted waters
- A perception that there are cost efficiencies associated with reliance on rainwater

RWPG and the TWDB should focus on rainwater catchment as a water management strategy and develop specific cost and yield data that will enable the consideration of this strategy as a meaningful source of water.

4.16.7 Additional Studies

Two additional analyses are contained in the appendices to this chapter. These analyses were completed with supplemental funding from TWDB during this planning round, but they were completed after the completion of the Initially Prepared Plan. The Sustainability and Advanced Water Conservation Analyses, contained in *Appendix 4D*, looked at developing policies that would fit the supply available to the population to be served, and also included an analysis of the potential for advanced conservation to provide greater use of the existing supplies. The second study, Dry Year Option, is shown in *Appendix 4E*. This study looked at potential buy out of second crops of rice as a means of providing additional water for other uses, or of reducing the need for pumping groundwater.

4.17 ENVIRONMENTAL IMPACTS OF WATER MANAGEMENT STRATEGIES

4.17.1 Environmental Impacts of Strategies from the 2006 Region K Plan

During the initial development of the 2006 Region K Plan, each strategy was evaluated qualitatively in sufficient detail to address its potential overall impact on wildlife and general natural resources; however, the water availability assumptions which were incorporated into the model for the 2006 Plan did not allow for practical model adjustments needed to obtain information on environmental flow impacts. Therefore, the quantitative analyses included a large amount of uncertainty with regard to simulated changes in instream and bay and estuary flows. As a part of the first biennium studies for the 2011 Lower Colorado Regional Water Plan, the TWDB provided additional funding for this study to conduct these further analyses in order to better quantify the potential changes to these flows which may result over time as a result of the various strategies contained in the 2006 Region K Plan.

4.17.1.1 Criteria Used

The Region K Cutoff Model (cutoff model) was used for the surface water availability modeling in a separate portion of the first biennium studies for the current round of planning. Discussion of the cutoff model and its availability results can be found in Chapter 3. In order to use the cutoff model for analysis of the environmental flow impacts, a few adjustments were required, including:

- 1. turning off the environmental flow caps ("caps" are upper limits on the amount of flow released turning them off allows more water to be released to the environment, if available),
- 2. using the 2006 FINS Criteria for the bay and estuary inflow requirements (the supply model used the 1997 FINS),
- 3. using weather-variable irrigation demands for the run-of-river irrigation rights, owned by LCRA
- 4. using the curtailment of LCRA interruptible water to satisfy LCRA municipal and industrial firm demands, and
- 5. using projected decadal demands versus authorized demands.

The adjusted cutoff model was used to quantifiably measure the impact that certain water management strategies could potentially have on the Colorado River and its major tributaries, as well as Matagorda

Bay, by comparing the regulated stream flow in the base model without the strategy to the regulated stream flow in the model with the strategy in place. The instream flow results were also compared to the seven-day, two-year low-flow (7Q2 flows) obtained from the *Texas Administrative Code (TAC) 307.10(2)* – *Appendix B – Low Flow Criteria*. It should be noted that the 7Q2 flow information was provided simply as information and was not used to determine whether or not a strategy was reasonable based on whether the strategy caused the instream flows to go above or below a particular value. Again, the main comparison for the study was the flow with and without the strategy implemented.

The bay and estuary inflow results were also compared to the target and critical bay and estuary monthly inflows as presented in the 2006 Matagorda Bay Freshwater Inflow Needs Study. The frequency of the flows meeting the target and critical levels at certain control points were analyzed for each strategy, as well as duration and flow volume statistics in order to provide a more complete picture of the impacts of each strategy. Thirteen proposed water management strategies from the 2006 Region K Plan were chosen as potentially impacting the Colorado River or its major tributaries in a way that could be quantifiably determined using the adjusted cutoff model. The strategies were analyzed for the years 2010 and 2060 if they were expected to be implemented by 2010, as dictated by the 2006 Plan. If a strategy was expected to be implemented after 2010, it was analyzed only for 2060.

4.17.1.2 Strategies Evaluated

Several of the recommended water management strategies from the 2006 Region K Plan that were evaluated using the above criteria are not listed as strategies in the 2011 Region K Plan because either they had already been implemented since the 2006 planning cycle, and thus are now considered supplies rather than strategies, or they were determined to no longer be appropriate strategies and were replaced in this planning cycle.

Some of the recommended strategies from the 2006 Region K Plan that were evaluated using the above criteria had new or changed conditions for this planning cycle and have been re-evaluated using new criteria that is discussed in *Section 4.17.2*.

The recommended water management strategies in this chapter that were evaluated only using the above criteria as part of the first biennium studies include the following:

- Construct Goldthwaite Channel Dam (Section 4.8.4)
- HB 1437 (Sections 4.8.6 and 4.9.5)
- LCRA Excess Flows Permit and Off-Channel Storage (Section 4.6.1.8)

The results of the comparison of environmental impacts from these strategies can be found in *Appendix 4F*.

For the full list of strategies evaluated as part of the first biennium studies, please refer to the report entitled *LCRWPG 2011 Water Plan*, *First Biennium Studies*, *Environmental Impacts of Water Management Strategies Study*, which is available on the TWDB website.

4.17.2 2011 Region K Plan New Strategies or Changed Condition Strategies

As part of the development of Chapter 4 for the 2011 Region K Plan, new water management strategies or changes to certain water management strategies from the 2006 Region K Plan were recommended. In addition, alternative water management strategies are suggested that would take the place of those under LSWP if the LSWP strategy was unable to happen. The qualitative and quantitative environmental impacts for these new or changed conditions strategies have been evaluated as well, but the evaluation involved revised criteria recommended by the Environmental Flows Committee of the LCRWPG during the second half of the 2011 planning cycle.

4.17.2.1 Criteria Used

The same cutoff model as the one discussed above in *Section 4.17.1.1* was used for the evaluation of the new or changed condition water management strategies. The main difference is in the criteria used as the benchmark for comparing the model with and without the strategy. For new or changed condition water management strategies in the 2011 Region K Plan, the flow criteria (recommended guidelines) presented in the LSWP Environmental Studies on both the *Lower Colorado River, Texas Instream Flow Guidelines* and the *Matagorda Bay Health Evaluation* was recommended for use by the Environmental Flows Committee of the LCRWPG. The use of these studies for the environmental impact analysis does not mean the LCRWPG endorses the results of the studies. These results meet the TWDB's best available site-specific definition of environmental criteria, which is the reason for their use.

4.17.2.1.1. Freshwater Inflow Criteria

The following tables are taken from the *Matagorda Bay Health Evaluation* as part of the LSWP Studies to help define the criteria used for environmental impact analysis of the freshwater inflows to Matagorda Bay (Control Point M10000 in the cutoff model). An exhibit showing control point locations can be found in *Appendix 4G*.

Table 4.117 Inflow Categories and Range of Inflow Criteria

Inflow Category	Inflow Criteria	Description
LONG-TERM	Long-term Average Volume and Variability	provide adequate bay food supply to maintain the essential food supply and existing primary productivity of the bay system
	MBHE 4	provide inflow variability and support high levels of primarily productivity, and high quality oyster reef health, benthic condition, low estuarine marsh, and shellfish and forage fish habitat.
MBHE INFLOW REGIME	MBHE 3	provide inflow variability and support quality oyster reef health, benthic condition, low estuarine marsh, and shellfish and forage fish habitat.
REGIME	MBHE 2	provide inflow variability and sustain oyster reef health, benthic condition, low estuarine marsh, and shellfish and forage fish habitat
	MBHE 1	maintain tolerable oyster reef health, benthic character, and habitat conditions
MINIMUM	Threshold	refuge conditions for all species and habitats

Table 4.117 above shows the different levels of criteria and gives a description of what each level of flow can provide to the bay. There are three categories of criteria: long-term, minimum, and the MBHE inflow regime, which consists of four levels of increasing flow volumes.

Table 4.118 below shows specific numerical flow volumes for the four levels of the MBHE inflow regime, which are separated into three "seasons". Achievement guidelines for the percentage of time a particular MBHE level should be met are also provided. It should be noted that the achievement guidelines are provided as information, but that the environmental impact analysis that was done for the water management strategies as part of the 2011 Region K Plan did not try to determine whether or not a strategy was reasonable based on whether the strategy caused the freshwater inflows to go above or below a particular value. Again, the main comparison for the study was the flow with and without the strategy implemented.

Table 4.118 Recommended MBHE Inflow Regime Criteria and Proposed Distribution

	Flow		INFLOW CRITERIA (Acre-feet)							
Onset Month	Distribution (% of annual)	MBHE 1	MBHE 2	МВНЕ 3	MBHE 4					
Spring January February March April May	38%	114,000 ac-ft 3 consecutive month total	168,700 ac-ft 3 consecutive month total	246,200 ac-ft 3 consecutive month total	433,200 ac-ft 3 consecutive month total					
Fall August September October	27%	81,000 ac-ft 3 consecutive month total	119,900 ac-ft 3 consecutive month total	175,000 ac-ft 3 consecutive month total	307,800 ac-ft 3 consecutive month total					
Intervening Six months	35%	105,000 ac-ft Total for 6 month period	155,400 ac-ft Total for 6 month period	226,800 ac-ft Total for 6 month period	399,000 ac-ft Total for 6 month period					
Achievemen	t Guideline	90%	75%	60%	35%* (See Sec. 5.2)					

^{*}modified application as discussed in Section 5.2. (Of the Matagorda Bay Health Evaluation Study)

4.17.2.1.2. Instream Flow Criteria

The following tables show the Colorado River Instream Flow Criteria that was developed as part of the LSWP Studies to help define the criteria used for environmental impact analysis of the water management strategies on the Colorado River instream flows at various control points downstream of the Highland Lakes. An exhibit showing control point locations can be found in *Appendix 4G*.

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC AUSTIN REACH Subsistence BASTROP REACH Subsistence 2/4 2/5 13/ 12/ Dase-DRY Base-AVERAGE COLUMBUS REACH Subsistence Base-DRY Base-AVERAGE 1,020 1,316 1,440 WHARTON REACH Subsistence 3/1 10/ 1/3 Dase-DRY 1,036 1,512 Base-AVERAGE 1,011 1,397

Table 4.119 Instream Flow Guidelines for the Lower Colorado River Specific to the LSWP (cfs)

Table 4.119 provides the instream flow guidelines (in cfs) for three different categories of flow conditions and four separate reaches downstream of the Highland Lakes. The Austin Reach begins at Control Point I20000 in Travis County (see exhibit in *Appendix 4G*). The Bastrop Reach begins at Control Point J30000 in Bastrop County. The Columbus Reach begins at Control Point J10000 in Colorado County. The Wharton Reach begins at Control Point K20000 in Wharton County. The three categories of flow are: Subsistence, Base-Dry Conditions, and Base-Average Conditions. The LSWP report also recommends pulse flows, but the modeling used to analyze the environmental impacts is a monthly flow application, which makes it difficult to analyze pulse flows which occur on a daily level rather than monthly. The Austin Reach only has a Subsistence Flow guideline due to the limited locations of return flows downstream of the Longhorn Dam.

Table 4.120 below provides the instream flow guidelines in ac-ft/yr.

	Table 4.120 Instream Flow	Guidelines for the Lower	Colorado River	(ac-ft/vr))
--	---------------------------	---------------------------------	----------------	-------------

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
AUSTIN REACH												
Subsistence	3,074	2,777	3,074	2,975	3,074	2,975	3,074	3,074	2,975	3,074	2,975	3,074
BASTROP REACH												
Subsistence	12,789	15,217	16,848	11,127	16,909	12,020	8,424	7,563	7,319	7,809	10,711	11,437
Base-DRY	19,246	17,605	16,848	17,078	35,601	24,873	21,336	11,929	14,043	15,064	16,840	19,123
Base-AVERAGE	26,624	27,602	30,559	37,785	50,666	43,617	37,507	23,427	25,170	26,624	25,230	27,669
COLUMBUS REACH												
Subsistence	20,906	20,826	23,058	17,792	26,132	31,775	21,029	11,683	16,602	11,683	12,020	18,508
Base-DRY	29,944	32,767	32,281	32,965	59,397	57,540	35,048	19,061	24,099	21,890	28,562	28,530
Base-AVERAGE	50,912	49,706	62,717	58,136	80,918	85,686	55,031	31,728	36,298	45,562	44,926	45,316
WHARTON REACH												
Subsistence	19,369	16,828	12,543	16,066	18,692	22,076	13,035	6,579	11,187	9,039	10,294	12,420
Base-DRY	30,252	33,156	32,650	33,382	60,565	58,552	35,478	19,307	24,397	22,136	28,919	28,899
Base-AVERAGE	51,527	50,317	63,701	60,159	85,898	89,970	55,708	32,097	36,714	46,054	45,461	45,870

The instream flow impact analysis was focused on a comparison of the percentage of time the model met these values, both with and without the strategy was implemented. The impact is shown as the difference

between the two scenarios, rather than how often either the base model or the model with the strategy met the criteria.

4.17.2.2 Strategies Evaluated

The recommended and alternative water management strategies in this chapter that were evaluated using the criteria developed as part of the LSWP studies include the following:

- LCRA New Contracts and Contract Amendments (Sections 4.6.1.4 and 4.6.1.5)
- LCRA Off-Channel Storage (Section 4.15.1)
- LCRA Aguifer Storage and Recovery (ASR) (Section 4.6.1.11)
- LCRA-SAWS Water Project (LSWP) (Section 4.6.1.9)
- City of Austin Return Flows/Reuse (Section 4.6.2)
- STPNOC Water Right Permit Amendment (Section 4.13.3.2)
- Groundwater Importation (Section 4.15.2.1)
- A Comprehensive Model containing all Strategies (Discussed in Chapter 7)

Results of the environmental impacts are discussed in their respective chapter sections and tabular results can be found in $Appendix\ 4G$.

APPENDIX 4A WATER MANAGEMENT STRATEGY TABLES

APPENDIX 4B

WATER MANAGEMENT STRATEGY COST BREAKDOWN & THE COST ASSUMPTIONS & METHODOLOGY

APPENDIX 4C

TECHNICAL MEMORANDUMS FOR GOLDTHWAITE, LLANO, AND ENHANCED RECHARGE GROUNDWATER STRATEGIES

APPENDIX 4D

SUSTAINABILITY AND ADVANCED WATER CONSERVATION ANALYSES

DROUGHT MANAGEMENT TABLE

APPENDIX 4E DRY YEAR OPTION

APPENDIX 4F

ENVIRONMENTAL IMPACTS OF STRATEGIES FROM THE 2006 REGION K PLAN

APPENDIX 4G

ENVIRONMENTAL IMPACTS OF NEW STRATEGIES OR CHANGED CONDITION STRATEGIES IN THE 2011 REGION K PLAN

					Water Ma	anagement S	Strategies (ac	:-ft/yr)		
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2010	2020	2030	2040	2050	2060
		Shortage	/Surplus		3,812	1,157	(602)	(3,709)	(6,221)	(9,415)
AQUA WSC	BASTROP	COLORADO	Expand current Carrizo-Wilcox supply	Carrizo-Wilcox	5,6.2	.,	602	3,709	6,109	7,850
AQUA WSC	BASTROP	COLORADO	Additional Municipal Conservation					122	396	908
AQUA WSC	BASTROP	COLORADO	Drought Management (5% water use reduction)							898
		Remaining Sui	plus/Shortage		3,812	1,157	0	122	284	241
		Shortage	/Surnlus		(65)	(812)	(1,532)	(2,590)	(3,455)	(4,542)
BASTROP	BASTROP	COLORADO	Conservation		146	396	755	1,224	1,438	1,728
BASTROP	BASTROP	COLORADO	Expand Other Aquifer supply	Other Aquifer	1	416	777	1,366	2,017	2,814
5,1011101	<i>B</i> /1011101	Remaining Sur		Other Addition	81	0	0	0	0	0
						698				,
	Shortage/Surplus STROP COUNTY WCID #2 BASTROP COLORADO Expand current Carrizo-Wilcox supply Carrizo-Wilcox						545	370	142	(144)
BASTROP COUNTY WCIE) #2 BASTROP			Carrizo-Wilcox	920	COO	E 4 E	270	142	144
		Remaining Sui	pius/Snortage		830	698	545	370	142	0
		Shortage	Surplus		524	(663)	(1,879)	(3,437)	(4,528)	(5,864)
COUNTY-OTHER	BASTROP	COLORADO	Expand current Carrizo-Wilcox supply	Carrizo-Wilcox		663	1,879	3,037	2,922	3,700
COUNTY-OTHER	BASTROP	COLORADO	New Carrizo-Wilcox well field (Guadalupe basin)	Carrizo-Wilcox					975	1,230
			Additional municipal conservation					400	631	936
		Remaining Sui	plus/Shortage		524	0	0	0	0	2
		Shortage	/Surplus		133	108	84	49	20	(16)
COUNTY-OTHER	BASTROP	GUADALUPE	New Carrizo-Wilcox well field	Carrizo-Wilcox	1	,,,,				16
	•	Remaining Sui	plus/Shortage		133	108	84	49	20	0
		Chartaga	Complete		24	(004)	(4.470)	(2.022)	(2.724)	(0.004)
ELGIN	BASTROP	Shortage COLORADO	Conservation		21 91	(604) 79	(1,176) 40	(2,033)	(2,734)	(3,624)
ELGIN	BASTROP	COLORADO	Expand current Carrizo-Wilcox supply	Carrizo-Wilcox	91	525	1,136	2,033	2,734	400
ELGIN	BASTROP	COLORADO	Drought Management (5% water use reduction)			020	1,100	2,000	_,,	265
ELGIN	BASTROP	COLORADO	New LCRA Contract	Highland Lakes						3,000
	•	Remaining Sur	plus/Shortage		112	0	0	0	0	41
		Shortage	/Surplus		7	(2)	(7)	(16)	(23)	(30)
POLONIA WSC	BASTROP	COLORADO	Expand current Carrizo-Wilcox supply	Carrizo-Wilcox	†	2	7	16	23	30
	•	Remaining Sur			7	0	0	0	0	0
		Chartaga	Complete		(74)	(244)	(500)	(0.40)	(4.445)	(4.004)
SMITHVILLE	BASTROP	Shortage COLORADO	Conservation		(74) 25	(311)	(526)	(946)	(1,115)	(1,601)
SMITHVILLE	BASTROP	COLORADO	Expand current Carrizo-Wilcox supply	Carrizo-Wilcox	49	311	526	946	1,115	733
SMITHVILLE	BASTROP	COLORADO	Drought Management (10% water use reduction)	Canizo Friioon	70	011	020	0-10	1,110	288
SMITHVILLE	BASTROP	COLORADO	New Well Field in Queen City Aquifer	Queen City	+					580
······	12, 13, 11(3)	Remaining Sur		Quoon ony	0	0	0	0	0	000

						Water Ma	anagement S	Strategies (ac	-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2010	2020	2030	2040	2050	2060
		Shortage/	Surplue		(61)	(50)	(40)	(31)	(24)	(17)
IRRIGATION	BASTROP	BRAZOS	Expand current Queen City supply	Queen City	40	40	40	31	24	17
IRRIGATION	BASTROP	BRAZOS	Temporary Drought Period Use of Queen City		21	10		0.		
		Remaining Surp	, , ,		0	0	0	0	0	0
		Chartaga	Curplus		(FQ)	124	205	450	E04	694
IRRIGATION	BASTROP	Shortage/	Expand current Queen City supply	Queen City	(58) 58	134	305	450	581	694
IKKIGATION	BASTROF	Remaining Sur		Queen Oity	0	134	305	450	581	694
		3 1	<u> </u>	<u> </u>	- 1					
		Shortage/			2	(7)	(17)	(25)	(32)	(44)
MANUFACTURING	BASTROP	COLORADO	Expand current Carrizo-Wilcox supply	Carrizo-Wilcox		7	17	25	32	44
		Remaining Surp	blus/Snortage		2	0	0	0	0	0
		Shortage/	Surplus		(8)	(10)	(11)	(13)	(14)	(16)
MANUFACTURING	BASTROP	GUADALUPE	Expand current Carrizo-Wilcox supply	Carrizo-Wilcox	8	10	11	13	14	16
		Remaining Sur	olus/Shortage		0	0	0	0	0	0
		Shortage/	Curalua		(4,293)	(4,297)	(4,298)	٥	0	0
MINING	BASTROP	COLORADO	Expand current Carrizo-Wilcox supply	Carrizo-Wilcox	4,293	4,297	4,298	U	0	U
IVIII VIII VO	D/ (OTTO)	Remaining Surp	117	Carrizo Wildox	0	0	0	0	0	0
		<u> </u>	<u> </u>							
OTE AM EL FOTDIO DOMED	DAOTROR	Shortage/		I Palata a I I al a a	4,720	2,720	720	(1,280)	(2,780)	(2,780)
STEAM ELECTRIC POWER	BASTROP	COLORADO Remaining Surp	Amend Contract with LCRA	Highland Lakes	4,720	2,720	720	1,280 0	2,780 0	2,780
		rtemaining out	olus/Orlortage		4,720	2,720	720	<u> </u>	<u> </u>	
		Shortage/	Surplus		0	0	0	0	(41)	(64)
COUNTY-OTHER	BLANCO	GUADALUPE	New well field in Ellenburger-San Saba	Ellenburger-San Saba					41	64
			Aquifer	Ziionibargor Carr Caba						
		Remaining Surp	blus/Shortage		0	0	0	0	0	0
		Shortage/	Surplus		218	140	55	(27)	(74)	(130)
BERTRAM	BURNET	BRAZOS	Conservation		22	54	80	91	96	106
BERTRAM	BURNET	BRAZOS	Expand current Ellenburger-San Saba supply (Colorado Basin)	Ellenburger-San Saba						24
	•	Remaining Surp	blus/Shortage		240	194	135	64	22	0
		Charteral	Surplus	Γ	(06)	(400)	(206)	(601)	(040)	(4.420)
COTTONWOOD SHORES	BURNET	Shortage/	Amend Contract with LCRA	Highland Lakes	(26) 26	(198) 198	(386) 386	601	(840) 840	(1,130) 1,130
COTTONWOOD SHOKES	DOMNET	Remaining Sur		Tilgilialia Lakes	0	0	0	0	0	0
		<u> </u>	<u> </u>							
00111177 071150	DUBLET	Shortage/		+ · · ·	1,048	482	(232)	(898)	(1,345)	(1,720)
COUNTY-OTHER	BURNET	COLORADO	Expand current Trinity supply	Trinity			480	480	541	541
COUNTY-OTHER	BURNET	COLORADO Remaining Sur	Expand current Ellenburger-San Saba supply	Ellenburger-San Saba	4 0 4 0	400	240	418	804	1,179
		Remaining Surp	рius/Snortage		1,048	482	248	0	0	0
		Shortage/	Surplus		406	295	172	55	(14)	(95)
GRANITE SHOALS	BURNET	COLORADO	Amend contract with LCRA	Highland Lakes					14	95
		Remaining Surp	olus/Shortage		406	295	172	55	0	0

						Water Ma	anagement S	Strategies (ac	-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2010	2020	2030	2040	2050	2060
		Shortage/S	Surplue	1	23	15	Q	1	(7)	(17
KINGSLAND WSC	BURNET	COLORADO	Amend Contract with LCRA	Highland Lakes	10	11	12	13	14	17
KINGGLAND WOO	IDOINILI	Remaining Surp		riigilialid Lakes	33	26	20	14	7	17
			•			•		•		
	1	Shortage/S			503	(211)	(976)	(1,719)	(2,154)	(2,653
MARBLE FALLS	BURNET	COLORADO	Conservation		199	510	920	1,415	1,879	2,40
MARBLE FALLS	BURNET	COLORADO	Amend contract with LCRA	Highland Lakes	700	200	56	304	275	248
		Remaining Surp	olus/Snortage		702	299	0	0	0	
		Shortage/S	Surplus		(318)	(576)	(857)	(1,130)	(1,292)	(1,470
MEADOWLAKES	BURNET	COLORADO	Conservation		77	194	351	537	710	897
MEADOWLAKES	BURNET	COLORADO	Amend contract with LCRA	Highland Lakes	241	382	506	593	593	593
		Remaining Surp	olus/Shortage		0	0	0	0	11	20
		Shortage/S	Purpluo		(23)	(23)	(23)	(23)	(23)	(23)
LIVESTOCK	BURNET	BRAZOS	Expand current Trinity supply	Trinity	23	23	23	23	23	23
LIVESTOCK	DOME	Remaining Surp		Tillity	0	0	23	0	0	
		rtomaning curp	nacy emortage	L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
		Shortage/S	Surplus		(7)	(10)	(12)	(22)	(24)	(25)
MINING	BURNET	BRAZOS	Expand current Trinity supply	Trinity	7	10	12	22	24	25
		Remaining Surp	lus/Shortage		0	0	0	0	0	0
		Shortage/S	Surplue	1	(681)	(756)	(788)	(811)	(829)	(873)
MINING	BURNET	COLORADO		Ellenburger-San Saba	681	756	788	811	829	873
IVIII VIII V	DOMNET	Remaining Surp		Elichburger Garr Gaba	001	730	00	0	023	0/3
		rtemaning earp	nuo, en en age		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
		Shortage/S			(105)	(109)	(106)	(97)	(93)	(90)
COUNTY-OTHER	COLORADO	LAVACA	Expand current Gulf Coast supply	Gulf Coast	105	109	106	97	93	90
		Remaining Surp	lus/Shortage		0	0	0	0	0	0
		Shortage/S	Surplus		(16,169)	(13,871)	(11,640)	(9,480)	(7,380)	(5,370)
IRRIGATION	COLORADO	BRAZOS-COLORADO	Supply Reduction due to LSWP		0	0	0	0	0	(8,326)
IRRIGATION	COLORADO	BRAZOS-COLORADO	Transfer supply to M&I		(4,568)	(7,392)	(9,240)	(9,240)	(11,550)	(19,025)
IRRIGATION	COLORADO	BRAZOS-COLORADO	LCRA-SAWS: Develop the Gulf Coast aquifer for rice irrigation	Gulf Coast	0	4,886	4,886	4,886	4,886	4,886
IRRIGATION	COLORADO	BRAZOS-COLORADO	LCRA-SAWS: Rice irrigation on-farm water conservation		0	4,715	4,715	4,715	4,715	4,715
IRRIGATION	COLORADO	BRAZOS-COLORADO	LCRA-SAWS: Rice irrigation delivery system water conservation		0	8,282	8,282	8,282	8,282	8,282
IRRIGATION	COLORADO	BRAZOS-COLORADO	LCRA-SAWS: Develop water conserving rice variety		0	4,548	4,548	4,548	4,548	4,548
IRRIGATION	COLORADO	BRAZOS-COLORADO	Continuation of LCRA Water Management Plan for interruptible water	Highland Lakes	24,317	22,528	16,993	10,542	0	0
IRRIGATION	COLORADO	BRAZOS-COLORADO	Continued use of Austin return flows	Colorado ROR	620	728	936	1,143	1,220	1,388
IRRIGATION	COLORADO	BRAZOS-COLORADO	Continued use of Downstream return flows	Colorado ROR			6	28	55	65
IRRIGATION	COLORADO	BRAZOS-COLORADO	HB-1437: Water conservation		0	0	0	0	0	0
IRRIGATION	COLORADO	BRAZOS-COLORADO	Firm up RoR with off-channel storage		0	0	0	0	0	11,220
		Remaining Surp	lus/Shortage		4,200	24,424	19,486	15,424	4,776	2,383

						Water N	lanagement :	Strategies (ac	-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2010	2020	2030	2040	2050	2060
		Shortage			(33,131)	(28,219)	(23,449)	(18,832)	(14,343)	(10,046)
IRRIGATION	COLORADO	LAVACA	Supply Reduction due to LSWP		0	0	0	0	0	(17,704)
IRRIGATION	COLORADO	LAVACA	Transfer supply to M&I		(10,079)	(15,008)	(18,760)	(18,760)	(23,450)	(38,627)
IRRIGATION	COLORADO	LAVACA	LCRA-SAWS: Develop the Gulf Coast aquifer for rice irrigation	Gulf Coast	0	9,920	9,920	9,920	9,920	9,920
IRRIGATION	COLORADO	LAVACA	LCRA-SAWS: Rice irrigation on-farm water conservation		0	9,405	9,405	9,405	9,405	9,405
IRRIGATION	COLORADO	LAVACA	LCRA-SAWS: Rice irrigation delivery system water conservation		0	14,056	14,056	14,056	14,056	14,056
IRRIGATION	COLORADO	LAVACA	LCRA-SAWS: Develop water conserving rice variety		0	10,181	10,181	10,181	10,181	10,181
IRRIGATION	COLORADO	LAVACA	Continuation of LCRA Water Management Plan for interruptible water	Highland Lakes	46,316	45,738	32,488	9,265	0	0
IRRIGATION	COLORADO	LAVACA	Continued use of Austin return flows	Colorado ROR	1,256	1,478	1,900	2,321	2,570	3,373
IRRIGATION	COLORADO	LAVACA	Continued use of Downstream return flows	Colorado ROR			13	56	113	158
IRRIGATION	COLORADO	LAVACA	HB-1437: Water conservation		0	0	0	0	0	0
IRRIGATION	COLORADO	LAVACA	Firm up RoR with off-channel storage		0	0	0	0	0	22,780
		Remaining Sur	olus/Shortage		4,362	47,551	35,754	17,612	8,452	3,496
		Shortage	Surplus		(14)	(14)	(14)	(14)	(14)	(14)
LIVESTOCK	COLORADO	COLORADO	Expand current Gulf Coast supply	Gulf Coast	14	14	14	14	14	14
	•	Remaining Sur			0	0	0	0	0	0
		Shortage	Surplus		(11)	(11)	(11)	(11)	(11)	(11)
LIVESTOCK	COLORADO	LAVACA	Expand current Gulf Coast supply	Gulf Coast	11	11	11	11	11	11
		Remaining Sur			0	0	0	0	0	0
		Shortage	Surplus		(19)	(22)	(23)	(24)	(25)	(26)
MINING	COLORADO	BRAZOS-COLORADO	Expand current Gulf Coast supply	Gulf Coast	19	22	23	24	25	26
		Remaining Sur			0	0	0	0	0	0
		Shortage	Surnlus		(8,450)	(7,925)	(7,072)	(5,919)	(4,483)	(4,642)
MINING	COLORADO	COLORADO	New Other Aquifer well Field	Other Aquifer	4,269	4,269	4,269	4,269	4,269	4,269
MINING	COLORADO	COLORADO	Expand Gulf Coast supply (Colorado basin)	Gulf Coast	3,600	3,600	2,803	1,650	214	373
MINING	COLORADO	COLORADO	Expand Gulf Coast supply (Lavaca basin)	Gulf Coast	581	56	2,000	1,000	2	010
	1002010.00	Remaining Sur		- Cuil Codot	0	0	0	0	0	0
		Shortage	Curalua		(100)	(132)	(151)	(168)	(184)	(199)
MINING	COLORADO	LAVACA	Expand current Gulf Coast supply	Gulf Coast	100	132	151	168	184	199
MINING	JCOLONADO	Remaining Sur		Guil Coast	0	0	0	0	0	0
		Shortage	Surnlus		(118)	(115)	(14)	55	99	128
COUNTY-OTHER	FAYETTE	COLORADO	Expand current Sparta supply	Sparta	123	120	19	33	33	120
OCCIVIT OTHER	ITATETTE	Remaining Sur		Орана	5	5	5	55	99	128
		Shortage	Surnlus		41	93	28	(32)	(25)	(16)
COUNTY-OTHER	FAYETTE	LAVACA	Expand current Gulf Coast supply	Gulf Coast	41	შა	20	32	25	16
OGOITT OTHER		Remaining Sur	· · · · · · · · · · · · · · · · · · ·	Cuii Ooast	41	93	28	0	0	0
		Shortage	Surplus		111	(236)	(507)	(719)	(976)	(1,317)
FAYETTE WSC	FAYETTE	COLORADO	Expand current Gulf Coast supply	Gulf Coast	1 1	236	428	428	428	428
FAYETTE WSC	FAYETTE	COLORADO	New Other Aquifer well field	Other Aquifer	1	233	79	291	548	889
	<u> </u>	Remaining Sur	· · · · · · · · · · · · · · · · · · ·		111	0	0	0	0	0
		rtemaning our	orac, crioritago		1 111	U ₁	U	U	U _I	

	_					Water M	anagement S	Strategies (ac	-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2010	2020	2030	2040	2050	2060
		Shortage/			10	(21)	(45)	(63)	(86)	(116)
FAYETTE WSC	FAYETTE	LAVACA	Expand current Gulf Coast supply	Gulf Coast	0	21	45	63	86	116
		Remaining Sur	olus/Shortage		10	0	0	0	0	0
		Shortage	Surplus		175	86	18	(34)	(100)	(193)
SCHULENBERG	FAYETTE	LAVACA	Conservation		43	104	157	159	167	184
SCHULENBERG	FAYETTE	LAVACA	Expand Yegua-Jackson Aquifer Supply	Yegua-Jackson						9
		Remaining Sur	olus/Shortage		218	190	175	125	67	0
		Chartaga	Curalina		(20)	(40)	(16)	(1.1)	(40)	(40)
IRRIGATION	FAYETTE	Shortage/	Expand current Sparta supply	Sparta	(20) 20	(18) 18	(<mark>16)</mark> 16	(14) 14	(12) 12	(10) 10
IKKIGATION	ILAICIIC	Remaining Sur		Эрана	0	0	0	0	0	0
		rtomaning can	ond/Onlineage		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
		Shortage/	Surplus		(22)	(22)	(22)	(22)	(22)	(22)
LIVESTOCK	FAYETTE	BRAZOS	New Other Aquifer well field (Colorado Basin)	Other Aquifer	22	22	22	22	22	22
		Remaining Sur	olus/Shortage		0	0	0	0	0	0
		01 1			(45)	(70)	(0.1)	(4.4.7)	(407)	(400)
MANUFACTURING	FAYETTE	Shortage/	Surplus Expand current Gulf Coast supply	Gulf Coast	(45)	(70)	(94)	(117)	(137) 20	(<mark>162)</mark> 43
MANUFACTURING	FAYETTE	LAVACA	Expand current Sun Coast supply Expand current Sparta supply	Sparta	45	70	94	115	117	119
MANOTACTORING	ITATETTE	Remaining Sur		Oparta	0	0	0	0	0	0
	1	Shortage/			13	(4)	(22)	(28)	(29)	(29)
MINING	FAYETTE	BRAZOS	Expand current Gulf Coast supply	Gulf Coast		4	22	28	29	29
		Remaining Sur	olus/Shortage		13	0	0	0	0	0
		Shortage	Surplus		13,246	13,166	9,866	(20,975)	(20,975)	(26,885)
STEAM ELECTRIC POWER	FAYETTE	COLORADO	New Contract with LCRA	Highland Lakes	10,210	10,100	3,333	20,975	20,975	26,885
	•	Remaining Sur		0	13,246	13,166	9,866	0	0	0
	T	Shortage/			257	143	(332)	(817)	(1,395)	(1,869)
BUDA	HAYS	COLORADO	Develop Edwards-BFZ supply through brackish groundwater desalination	Edwards-BFZ						500
BUDA	HAYS	COLORADO	Development of Carrizo-Wilcox Aquifer in Caldwell and Gonzales Counties (Region L)	Carrizo-Wilcox		1,687	1,687	1,687	1,687	1,687
		Remaining Sur	olus/Shortage		257	1,830	1,355	870	292	318
						·	'			
		Shortage/	Surplus		(150)	(236)	(329)	(423)	(536)	(629)
CIMARRON PARK WATER COMPANY	HAYS	COLORADO	Conservation		24	17	13	9	5	7
CIMARRON PARK WATER COMPANY	HAYS	COLORADO	Drought Management (30% permitted pumpage reduction)		109	109	109	109	109	109
CIMARRON PARK WATER COMPANY	HAYS	COLORADO	Allocate from County-Other		17	110				
CIMARRON PARK WATER COMPANY	HAYS	COLORADO	Develop Edwards-BFZ supply through brackish groundwater desalination	Edwards-BFZ			250	350	500	600
		Remaining Sur			0	0	43	45	78	87

						Water Ma	anagement S	Strategies (ac-	·ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2010	2020	2030	2040	2050	2060
		Shortage/			760	(838)	(2,072)	(3,440)	(5,144)	(6,482)
COUNTY-OTHER	HAYS	COLORADO	Purchase water from COA for Hays County	City of Austin	1,100	1,100	1,100	1,100	1,100	1,100
COUNTY-OTHER	HAYS	COLORADO	Develop Edwards-BFZ supply through brackish groundwater desalination	Edwards-BFZ		250	2,500	2,500	5,000	6,000
		 Remaining Sur	ÿ	l	1,860	512	1,528	160	956	618
		· ·			, I					
	THAN CO.	Shortage/		1	(574)	(1,350)	(1,791)	(2,239)	(2,794)	(3,230)
DRIPPING SPRINGS	HAYS	COLORADO	Conservation Amend Contract with LCRA (through Dripping		81	277	470	549	661	748
DRIPPING SPRINGS	HAYS	COLORADO	Springs WSC)	Highland Lakes	493	1,073	1,321	1,690	2,133	2,482
		Remaining Sur	plus/Shortage		0	0	0	0	0	0
		Shortage/	Surplus	1	452	299	140	(17)	(213)	(366)
DRIPPING SPRINGS WSC	HAYS	COLORADO	Amend Contract with LCRA	Highland Lakes	-102	200	140	17	213	366
		Remaining Sur		, , , , , , , , , , , , , , , , , , , ,	452	299	140	0	0	0
		01 1	(0)	1	(05)	(00)	(00)	(00)	(00)	(00)
MOUNTAIN CITY	HAYS	Shortage/	Conservation	1	(25)	(23)	(23)	(22)	(22)	(22) 0
			Drought Management (30% permitted		_	J	0			
MOUNTAIN CITY	HAYS	COLORADO	pumpage reduction)		39	39	39	39	39	39
		Remaining Sur	plus/Shortage		16	16	16	17	17	17
		Shortage/	/Surplus		(93)	(211)	(330)	(450)	(558)	(657)
MANUFACTURING	HAYS	COLORADO	New well field for Trinity Aquifer	Trinity) (75	200	301	400
MANUFACTURING	HAYS	COLORADO	Drought Management (30% permitted		257	257	257	257	257	257
		L Remaining Sur	pumpage reduction)		164	46	2	7	0	0
				'			 1			
		Shortage/	Surplus		396	144	(41)	(221)	(397)	(583)
COUNTY-OTHER	LLANO	COLORADO	Conservation		873	1,150	1,408	1,568	1,724	1,890
		Remaining Sur	olus/Shortage		1,269	1,294	1,367	1,347	1,327	1,307
		Shortage/	Surplus	1	(175)	(220)	(217)	(215)	(223)	(237)
KINGSLAND WSC	LLANO	COLORADO	Amend contract with LCRA	Highland Lakes	240	240	240	240	240	240
		Remaining Sur			65	20	23	25	17	3
		Shortage/	Curalia	1	(135)	(290)	(338)	(382)	(439)	(510)
LAKE LBJ MUD	LLANO	COLORADO	Conservation		135	290	420	541	666	777
	1-2	Remaining Sur			0	0	82	159	227	267
		Chartaga	(C. mali e		(4.000)	(4.474)	(4.400)	(4.402)	(4.007)	(4.000)
LLANO	LLANO	Shortage/	Conservation		(1,090) 100	(1,171) 205	(1,183) 299	(1,192) 383	(1,207) 468	(1,232) 558
LLANO	LLANO	COLORADO	New Ellenburger-San Saba Well Field	Ellenburger-San Saba	478	478	478	478	478	478
LLANO	LLANO	COLORADO	Development of Hickory Aquifer	Hickory	512	488	406	331	261	196
		Remaining Sur	plus/Shortage		0	0	0	0	0	0
		Shortage/	Surplus	1	(62)	(62)	(62)	(62)	(62)	(62)
LIVESTOCK	LLANO	COLORADO	Expand current Hickory supply	Hickory	62	62	62	62	62	62
		Remaining Sur			0	0	0	0	0	0
		Oh a	Curalia	Т	44 000	44.000	14 000	700	700	700
		Shortage/	Reduction in LCRA Commitment due to		14,200	14,200	14,200	700	700	700
STEAM ELECTRIC POWER	LLANO	COLORADO	Improved Efficiency (Ferguson)		0	(12,000)	(12,000)	0	0	0

						Water M	anagement :	Strategies (ac	-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2010	2020	2030	2040	2050	2060
		Remaining Surp	lus/Shortage		14,200	2,200	2,200	700	700	700
		Shortage/	Surplus		(61,582)	(58,908)	(55,750)	(52,725)	(49,813)	(47,007)
IRRIGATION	MATAGORDA	BRAZOS-COLORADO	Supply Reduction due to LSWP		0	0	0	0	0	(6,491)
IRRIGATION	MATAGORDA	BRAZOS-COLORADO	Transfer supply to M&I		0	0	0	(3,430)	(3,430)	(3,430)
IRRIGATION	MATAGORDA	BRAZOS-COLORADO	LCRA-SAWS: Develop the Gulf Coast aquifer for rice irrigation	Gulf Coast	0	14,437	14,437	14,437	14,437	14,437
IRRIGATION	MATAGORDA	BRAZOS-COLORADO	LCRA-SAWS: Rice irrigation on-farm water conservation		0	2,848	2,848	2,848	2,848	2,848
IRRIGATION	MATAGORDA	BRAZOS-COLORADO	LCRA-SAWS: Rice irrigation delivery system water conservation		0	6,107	6,107	6,107	6,107	6,107
IRRIGATION	MATAGORDA	BRAZOS-COLORADO	LCRA-SAWS: Develop water conserving rice variety		0	3,661	3,661	3,661	3,661	3,661
IRRIGATION	MATAGORDA	BRAZOS-COLORADO	Continuation of LCRA Water Management Plan for interruptible water	Highland Lakes	55,615	42,626	33,684	25,847	6,427	0
IRRIGATION	MATAGORDA	BRAZOS-COLORADO	Continued use of Austin return flows	Colorado ROR	8,108	8,488	9,440	11,357	12,373	13,747
IRRIGATION	MATAGORDA	BRAZOS-COLORADO	Continued use of Downstream return flows	Colorado ROR			67	351	429	910
IRRIGATION	MATAGORDA	BRAZOS-COLORADO	HB-1437: Water conservation		0	0	0	0	10,800	12,200
IRRIGATION	MATAGORDA	BRAZOS-COLORADO	Firm up RoR with off-channel storage		0	0	0	0	0	6,370
		Remaining Surp	olus/Snortage		2,141	19,259	14,494	8,453	3,839	3,352
		Shortage/	Surplus		(6,605)	(6,263)	(5,860)	(5,474)	(5,102)	(4,744)
IRRIGATION	MATAGORDA	COLORADO	Supply Reduction due to LSWP		0	0	0	0	0	(344)
IRRIGATION	MATAGORDA	COLORADO	Transfer supply to M&I		0	0	0	(350)	(350)	(350)
IRRIGATION	MATAGORDA	COLORADO	LCRA-SAWS: Develop the Gulf Coast aquifer for rice irrigation	Gulf Coast	0	1,473	1,473	1,473	1,473	1,473
IRRIGATION	MATAGORDA	COLORADO	LCRA-SAWS: Rice irrigation on-farm water conservation		0	502	502	502	502	502
IRRIGATION	MATAGORDA	COLORADO	LCRA-SAWS: Rice irrigation delivery system water conservation		0	2,983	2,983	2,983	2,983	2,983
IRRIGATION	MATAGORDA	COLORADO	LCRA-SAWS: Develop water conserving rice variety		0	486	486	486	486	486
IRRIGATION	MATAGORDA	COLORADO	Continuation of LCRA Water Management Plan for interruptible water	Highland Lakes	5,979	15,248	8,556	5,078	150	0
IRRIGATION	MATAGORDA	COLORADO	Continued use of Austin return flows	Colorado ROR	776	870	1,380	1,857	2,150	2,180
IRRIGATION	MATAGORDA	COLORADO	Continued use of Downstream return flows	Colorado ROR			36	75	150	0
IRRIGATION	MATAGORDA	COLORADO	HB-1437: Water conservation		0	0	0	0	0	200
IRRIGATION	MATAGORDA	COLORADO	Firm up RoR with off-channel storage		450	45.000	0.550	2 222	0.140	650
		Remaining Surp	olus/Shortage		150	15,299	9,556	6,630	2,442	3,036
		Shortage/	Surnlus		(58,555)	(55,882)	(52,724)	(49,698)	(46,788)	(43,980)
IRRIGATION	MATAGORDA	COLORADO-LAVACA	Supply Reduction due to LSWP		(55,555)	(00,002)	(02,124)	(49,090)	(+0,700)	(5,587)
IRRIGATION	MATAGORDA	COLORADO-LAVACA	Transfer supply to M&I		0	0	0	(3,220)	(3,220)	(3,220)
IRRIGATION	MATAGORDA	COLORADO-LAVACA	LCRA-SAWS: Develop the Gulf Coast aquifer for rice irrigation	Gulf Coast	0	13,553	13,553	13,553	13,553	13,553
IRRIGATION	MATAGORDA	COLORADO-LAVACA	LCRA-SAWS: Rice irrigation on-farm water conservation		0	3,617	3,617	3,617	3,617	3,617
IRRIGATION	MATAGORDA	COLORADO-LAVACA	LCRA-SAWS: Rice irrigation delivery system water conservation		0	6,160	6,160	6,160	6,160	6,160
IRRIGATION	MATAGORDA	COLORADO-LAVACA	LCRA-SAWS: Develop water conserving rice variety		0	4,468	4,468	4,468	4,468	4,468
IRRIGATION	MATAGORDA	COLORADO-LAVACA	Continuation of LCRA Water Management Plan for interruptible water	Highland Lakes	50,711	42,077	29,744	22,306	13,216	0
IRRIGATION	MATAGORDA	COLORADO-LAVACA	Continued use of Austin return flows	Colorado ROR	7,844	8,002	9,062	10,862	11,767	12,788

					Water Ma	anagement S	Strategies (ac	-ft/yr)		
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2010	2020	2030	2040	2050	2060
IRRIGATION	MATAGORDA	COLORADO-LAVACA	Continued use of Downstream return flows	Colorado ROR			90	335	834	973
IRRIGATION	MATAGORDA	COLORADO-LAVACA	HB-1437: Water conservation		0	0	0	0	0	8,600
IRRIGATION	MATAGORDA	COLORADO-LAVACA	Firm up RoR with off-channel storage							5,980
	•	Remaining Surp	lus/Shortage		0	21,995	13,970	8,383	3,607	3,352
		Shortage/S	Surplus		(56)	(56)	(56)	(56)	(56)	(56)
LIVESTOCK	MATAGORDA	COLORADO-LAVACA	Expand current Gulf Coast supply	Gulf Coast	56	56	56	56	56	56
		Remaining Surp	1 117		0	0	0	0	0	0
		Shortage/S	Surplus		1,902	1,390	1,038	707	433	(47)
MANUFACTURING	MATAGORDA	COLORADO	Temporary Drought Period Use of Gulf Coast	Gulf Coast	1,002	1,000	1,000		100	47
		Remaining Surp	. ,		1,902	1,390	1,038	707	433	0
		Tromaining Carp	ide, errorrage	L	1,502	1,000	1,000	701	400	
	I	Shortage/S			(193)	(53,005)	(53,005)	(53,005)	(53,005)	(53,125)
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	Expand supply from STPNOC reservoir		193					
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	Water Right Permit Amendment	Colorado ROR		5,500	5,500	5,500	5,500	5,500
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	Blend brackish surface water in STPNOC reservoir	Gulf of Mexico Sea Water		17,505	17,505	17,505	17,505	17,625
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	ROR Increase due to COA Return Flows	Colorado ROR	1,000	1,000	1,000	1,000	1,000	1,000
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	Reduction in LCRA Commitment	Highland Lakes	(1,000)	(1,000)	(1,000)	(1,000)	(1,000)	(1,000)
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	ROR Increase due to downstream Return	Colorado ROR			9	36	68	90
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	Reduction in LCRA Commitment	Highland Lakes			(9)	(36)	(68)	(90)
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	New LCRA Contract	Highland Lakes		30,000	30,000	30,000	30,000	30,000
	•	Remaining Surp	lus/Shortage		0	0	0	0	0	0
		Shortage/S	Surplus	Т	83	80	42	56	(1)	(9)
COUNTY-OTHER	MILLS	BRAZOS	Expand current Trinity supply	Trinity	00	00	72	30	1	9
		Remaining Surplus/Sh			83	80	42	56	0	0
		Shortage/S	Surplus		27	73	23	43	(33)	(45)
COUNTY-OTHER	MILLS	COLORADO	Expand current Trinity supply	Trinity		,,,	20	10	40	52
O O O O O O O O O O O O O O O O O O O	J	Remaining Surplus/Sh	. , , , , ,		27	73	23	43	7	7
		Shortage/S	Surplue		(8)	(9)	(9)	(9)	(0)	(0)
GOLDTHWAITE	MILLS	BRAZOS	Conservation		(0)	(9)	(9)	(9)	(0)	(0)
GOLDTHWAITE	MILLS	BRAZOS	Expand current Trinity supply	Trinity	7	7	6	6	5	5
COLDITIVITAL	IMILLO	Remaining Surp		Timity	0	0	0	0	0	0
					(100)	(= (()	(550)	(5.40)	(5.40)	(=00)
GOLDTHWAITE	MILLS	Shortage/S	Surplus Conservation		(493) 46	(544) 98	(552) 144	(546) 184	(540) 220	(539) 256
GOLDTHWAITE	MILLS	COLORADO	Expand current Trinity supply (Brazos Basin)	Trinity	102	109	0	104	220	250
	+			, , , , , , , , , , , , , , , , , , ,	102	103	<u> </u>			
GOLDTHWAITE	MILLS	COLORADO	Expand current Trinity supply	Trinity	0	7	226	226	320	283
GOLDTHWAITE	MILLS	COLORADO	Drought Management		56	56	56	56	56	56
GOLDTHWAITE	MILLS	COLORADO	New LCRA Contract	Highland Lakes	300	300	300	300	300	300
GOLDTHWAITE	MILLS	COLORADO	Construct Goldthwaite channel dam	Goldthwaite Res.	0	0	0	0	0	0
		Remaining Surp	lus/Shortage		11	26	174	220	356	356

tage/Surplus Expand current Trinity supply Surplus/Shortage	Source Name	2010	2020	0000			
Expand current Trinity supply				2030	2040	2050	2060
		(180)	(173)	(184)	(177)	(193)	(186)
Surplus/Shortage	Trinity	180	173	184	177	193	186
							0
to an /Curnlun		(450)	(402)	(57)	(2)	39	90
tage/Surplus Expand current Trinity supply	Trinity	(159) 109	(102) 102	57	(3)	39	90
Allocate water from County-Other	Trinity	50	102	37	3		
Surplus/Shortage	Tillity	0	0	0	0	39	90
- Carpital Onortago		<u> </u>	<u> </u>	<u> </u>	<u> </u>	00	- 30
			4.41	0	(0)	(0)	(5)
tage/Surplus Conservation		22 13	11 22	3 19	(3) 15	(3) 14	<u>(5)</u> 15
Surplus/Shortage		35	33	22	12	11	10
Surplus/Siloitage] 33	၁၁	22	12	111	10
tage/Surplus		127,091	96,275	53,817	10,238	(30,459)	(62,934)
Advanced water conservation for the City of		11,030	18,795	24,036	25,385	30,401	36,370
Austin COA reuse	Reuse	5,143	13,620	22,077	30,268	36,218	40,468
ROR Increase due to COA Return Flows	Colorado ROR	27,188	24,954	25,692	33,549	33,263	39,528
Reduction in LCRA Commitment	Highland Lakes	(27,188)	(24,954)	(25,692)	(33,549)	(33,263)	(39,528)
ROR Increase due to downstream Return Flows	Colorado ROR	(27,100)	(24,004)	190	760	1,425	1,900
Reduction in LCRA Commitment	Highland Lakes			(190)	(760)	(1,425)	(1,900)
Surplus/Shortage	19	143,263	128,690	99,930	65,891	36,161	13,904
Water sold to Hays County-Other	City of Austin	(1,100)	(1,100)	(1,100)	(1,100)	(1,100)	(1,100)
lus/Shortage After Sales	•	142,163	127,590	98,830	64,791	35,061	12,804
1		(50)	(50)	(47)	(45)	(40)	(40)
tage/Surplus Conservation		(53)	(50) 68	(47) 97	(45) 123	(43) 147	(43) 163
Purchase additional water from West Travis		37	08	97	123	147	163
County RWS (Amend LCRA Contract)	Highland Lakes	16					
Surplus/Shortage	<u> </u>	0	18	50	78	104	120
- Carpeter Create Green		1 -1					
tage/Surplus		(936)	(1,172)	(1,406)	(1,615)	(1,768)	(1,923)
Conservation		106	247	417	600	778	965
Purchase additional water from West Travis County RWS (Amend LCRA Contract)	Highland Lakes	830	925	989	1,015	990	958
Surplus/Shortage		0	0	0	0	0	0
tage/Surplus		46	1	(45)	(87)	(117)	(149)
Conservation		16	39	61	66	70	75
Amend Contract with LCRA	Highland Lakes	10	00	01	21	47	74
Surplus/Shortage		62	40	16	0	0	0
		005	(404)	(5.40)	(000)	(745)	(0.07)
	I Bakland Labas	305	\ /	\ /	\ /	\ /	(807)
	Highland Lakes	305		048			807 0
- Carpias/Onortage		1 303	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
		0	3	3	1	(1)	(3)
Expand current Carrizo-Wilcox supply (Bastrop County)	Carrizo-Wilcox					1	3
Surplus/Shortage		0	3	3	1	0	0
g	New LCRA Contract g Surplus/Shortage ortage/Surplus Expand current Carrizo-Wilcox supply (Bastrop County) g Surplus/Shortage	New LCRA Contract Highland Lakes g Surplus/Shortage ortage/Surplus Expand current Carrizo-Wilcox supply (Bastrop County) Carrizo-Wilcox	New LCRA Contract Highland Lakes g Surplus/Shortage 305 ortage/Surplus 0 Expand current Carrizo-Wilcox supply (Bastrop County) Carrizo-Wilcox	New LCRA Contract Highland Lakes 431 g Surplus/Shortage 305 0 ortage/Surplus 0 3 Expand current Carrizo-Wilcox supply (Bastrop County) Carrizo-Wilcox	New LCRA Contract Highland Lakes 431 548 g Surplus/Shortage 305 0 0 0 cortage/Surplus 0 3 3 3 Expand current Carrizo-Wilcox supply (Bastrop County) Carrizo-Wilcox	New LCRA Contract Highland Lakes 431 548 632 g Surplus/Shortage 305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	New LCRA Contract

						Water M	anagement S	Strategies (ac	-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2010	2020	2030	2040	2050	2060
		Shortage/	Surplus		(11)	(21)	(30)	(37)	(43)	(48)
GOFORTH WSC	TRAVIS	COLORADO	Transfer water from Goforth WSC in Region L	Canyon Reservoir	11	21	30	37	43	48
	•	Remaining Sur	olus/Shortage		0	0	0	0	0	0
		01 1			(400)	(000)	(000)	(440)	(404)	(55.4)
JONESTOWN	TRAVIS	Shortage/	Amend Contract with LCRA	Highland Lakes	(129) 129	(233) 233	(329) 329	(416) 416	(481) 481	(<mark>554)</mark> 554
JONESTOWN	TIKAVIS	Remaining Sur		Highland Lakes	129	233	329	0	0	ეე <u>4</u>
		rtemaining ear	ond/Onlineage		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
		Shortage/	Surplus		(1,681)	(2,613)	(3,513)	(4,338)	(4,954)	(5,572)
LAKEWAY	TRAVIS	COLORADO	Conservation		396	938	1,579	2,297	3,017	3,765
LAKEWAY	TRAVIS	COLORADO	Amend Contract with LCRA	Highland Lakes	1,285	1,675	1,934	2,041	2,041	2,041
		Remaining Sur	olus/Shortage		0	0	0	0	104	234
		Shortage/	Surnlus		1,265	(940)	(1,173)	(1,390)	(1,552)	(1,717)
MANOR	TRAVIS	COLORADO	Conservation		1,265	235	393	490	522	557
MANOR	TRAVIS	COLORADO	New LCRA Contract	Highland Lakes	102	705	780	900	1,030	1,160
	1	Remaining Sur		g	1,367	0	0	0	0	0
		Shortage/			2,581	1,961	(831)	(2,184)	(2,584)	(3,034)
MANVILLE WSC	TRAVIS	COLORADO	New LCRA Contract	Highland Lakes			831	2,184	2,584	3,034
		Remaining Sur	olus/Shortage		2,581	1,961	0	0	0	0
		Shortage/	Surnlus		3,299	1,996	442	140	(918)	(1,981)
PFLUGERVILLE	TRAVIS	COLORADO	Conservation		541	748	810	844	915	986
PFLUGERVILLE	TRAVIS	COLORADO	Amend Contract with LCRA	Highland Lakes					3	995
	•	Remaining Sur	olus/Shortage	•	3,840	2,744	1,252	984	0	0
		Chartaga	Complete		(570)	(000)	(000)	(047)	(047)	(047)
RIVER PLACE ON LAKE		Shortage/	Surpius T		(570)	(823)	(823)	(817)	(817)	(817)
AUSTIN	TRAVIS	COLORADO	Conservation		132	295	431	549	661	762
RIVER PLACE ON LAKE AUSTIN	TRAVIS	COLORADO	Amend Contract with LCRA	Highland Lakes	438	528	392	268	156	55
		Remaining Sur	olus/Shortage		0	0	0	0	0	0
		Objections	0		1 0	(070)	(07.4)	(070)	(074)	(070)
ROLLINGWOOD	TRAVIS	Shortage/	Surplus Conservation		31	(376) 60	(374) 85	(372) 109	(371) 132	(<mark>373)</mark> 143
ROLLINGWOOD	TRAVIS	COLORADO	New LCRA Contract	Highland Lakes	31	373	373	373	373	373
ROLLINGWOOD	TIVAVIO	Remaining Sur		riigilialia Lakes	31	57	84	110	134	143
					·	9-1	<u> </u>			
		Shortage/			(158)	(339)	(528)	(669)	(813)	(957)
ROUND ROCK	TRAVIS	COLORADO	Conservation		32	93	179	243	277	312
ROUND ROCK	TRAVIS	COLORADO	HB 1437 - Region G	Highland Lakes	126	246	349	426	536	645
		Remaining Sur	olus/Shortage		0	0	0	0	0	0
		Shortage/	Surnlus		547	325	122	(4)	(135)	(283)
TRAVIS COUNTY WCID #18	3 TRAVIS	COLORADO	Amend Contract with LCRA	Highland Lakes	347	323	122	4	135	283
		Remaining Sur		ga. Lanco	547	325	122	0	0	0
MEOTIAKELIII	ITD AV (10	Shortage/			0	(1,833)	(2,049)	(2,178)	(2,320)	(2,471)
WEST LAKE HILLS	TRAVIS	COLORADO	Conservation	- المداملة	139	303	495	677	870	1,074
WEST LAKE HILLS	TRAVIS	COLORADO	New LCRA Contract	Highland Lakes		1,833	2,049	2,178	2,320	2,471

						Water M	anagement S	Strategies (ac	-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2010	2020	2030	2040	2050	2060
		Remaining Surp	lus/Shortage		139	303	495	677	870	1,074
		Shortage/S	Surplus		9,260	8,540	7,836	7,311	6,694	6,139
WEST TRAVIS COUNTY REGIONAL WS	TRAVIS	COLORADO	Conservation		17	9	0	0	0	0
REGIONAL WO	1	Remaining Surp	lus/Shortage		9,277	8,549	7,836	7,311	6,694	6,139
WEST TRAVIS COUNTY REGIONAL WS	TRAVIS	COLORADO	Water sold to Barton Creek West	Highland Lakes	(16)					
WEST TRAVIS COUNTY REGIONAL WS	TRAVIS	COLORADO	Water sold to Bee Cave Village	Highland Lakes	(830)	(925)	(989)	(1,015)	(990)	(958)
		Remaining Surplus/Sh	nortage After Sales		8,431	7,624	6,847	6,296	5,704	5,181
		Shortage/S	Surplus		0	(2,222)	(2,201)	(2,180)	(2,180)	(2,180)
WINDERMERE UTILITY COMPANY	TRAVIS	COLORADO	New LCRA Contract	Highland Lakes		2,222	2,201	2,180	2,180	2,180
		Remaining Surp	lus/Shortage		0	0	0	0	0	0
		Shortage/S	Surplus		287	369	443	511	558	615
IRRIGATION	TRAVIS	COLORADO	Water allocated to Irrigation (Guadalupe basin)	Irrigation Local Supply	(124)	(114)	(105)	(97)	(89)	(82)
	•	Remaining Surplus/Sh	nortage After Sales		163	255	338	414	469	533
		Shortage/S	Surplus		4,830	3,830	(170)	(1,170)	(5,170)	(6,170)
STEAM ELECTRIC POWER	TRAVIS	COLORADO	COA Reuse	Reuse	2,315	3,315	7,315	8,315	12,315	13,315
STEAM ELECTRIC POWER	TRAVIS	COLORADO	Reduction in LCRA Commitment due to COA Reuse			(3,000)	(5,000)			
		Remaining Surp	lus/Shortage		7,145	4,145	2,145	7,145	7,145	7,145
		Shortage/S	Surplus		18	3	(4)	(4)	0	6
WHARTON	WHARTON	COLORADO	Conservation		41	29	18	8	4	4
		Remaining Surp	lus/Shortage		59	32	14	4	4	10
		Shortage/S	Surplus		(42,928)	(39,361)	(35,920)	(32,607)	(29,410)	(17,276)
IRRIGATION	WHARTON	BRAZOS-COLORADO	Supply Reduction due to LSWP		0	0	0	0	(40.554)	(15,709)
IRRIGATION IRRIGATION	WHARTON WHARTON	BRAZOS-COLORADO BRAZOS-COLORADO	Transfer supply to M&I LCRA-SAWS: Develop the Gulf Coast aquifer	Gulf Coast	(5,351)	(14,666) 12,766	(16,394) 12,766	(16,394) 12,766	(18,554) 12,766	(18,601) 12,766
IRRIGATION	WHARTON	BRAZOS-COLORADO	for rice irrigation LCRA-SAWS: Rice irrigation on-farm water conservation		0	8,803	8,803	8,803	8,803	8,803
IRRIGATION	WHARTON	BRAZOS-COLORADO	LCRA-SAWS: Rice irrigation delivery system water conservation		0	16,303	16,303	16,303	16,303	16,303
IRRIGATION	WHARTON	BRAZOS-COLORADO	LCRA-SAWS: Develop water conserving rice variety		0	13,293	13,293	13,293	13,293	13,293
IRRIGATION	WHARTON	BRAZOS-COLORADO	Continuation of LCRA Water Management Plan for interruptible water	Highland Lakes	45,689	12,253	8,312	3,658	0	0
IRRIGATION	WHARTON	BRAZOS-COLORADO	Continued use of Austin return flows	Colorado ROR	44	87	131	174	217	261
IRRIGATION	WHARTON	BRAZOS-COLORADO	Continued use of Downstream return flows	Colorado ROR			1	4	9	13
IRRIGATION	WHARTON	BRAZOS-COLORADO Romaining Surp	HB-1437: Water conservation		3,600	3,600	3,600	3,600	3,600	3,600
		Remaining Surp	шь/эпопаде		1,054	13,078	10,895	9,600	7,027	3,453
	_	Shortage/S			484	2,335	4,121	5,843	7,503	13,802
IRRIGATION	WHARTON	COLORADO	Supply Reduction due to LSWP		0	0	0	0	0	(13,238)
IRRIGATION	WHARTON	COLORADO	Transfer supply to M&I		(575)	(611)	(683)	(683)	(773)	(775)

						Water M	lanagement	Strategies (a	c-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2010	2020	2030	2040	2050	2060
IRRIGATION	WHARTON	COLORADO	LCRA-SAWS: Develop the Gulf Coast aquifer for rice irrigation	Gulf Coast	0	532	532	532	532	532
IRRIGATION	WHARTON	COLORADO	LCRA-SAWS: Rice irrigation on-farm water conservation		0	150	150	150	150	150
IRRIGATION	WHARTON	COLORADO	LCRA-SAWS: Rice irrigation delivery system water conservation		0	2,518	2,518	2,518	2,518	2,518
IRRIGATION	WHARTON	COLORADO	LCRA-SAWS: Develop water conserving rice variety		0	144	144	144	144	144
IRRIGATION	WHARTON	COLORADO	Continuation of LCRA Water Management Plan for interruptible water		3,528	6,079	3,021	152	0	0
IRRIGATION	WHARTON	COLORADO	Continued use of Austin return flows		2	4	6	7	9	11
IRRIGATION	WHARTON	COLORADO	Continued use of Downstream return flows	Colorado ROR			0	0	1	1
IRRIGATION	WHARTON	COLORADO	HB-1437: Water conservation		200	200	200	200	200	200
	1	Remaining Sur	blus/Shortage		3,639	11,351	10,009	8,863	10,284	3,345
		Chartaga	Cumulus		(45.200)	(4.4.404)	(42.077)	(40,000)	(44.040)	/7.40C\
IRRIGATION	MULADION	Shortage/			(15,290)	(14,164)	(13,077)	(12,029)	(11,019)	(7,186)
	WHARTON	COLORADO-LAVACA	Supply Reduction due to LSWP		(4.700)	(5.000)	(F. COO)	(F. COO)	(0.440)	(3,982)
IRRIGATION	WHARTON	COLORADO-LAVACA	Transfer supply to M&I		(4,792)	(5,092)	(5,692)	(5,692)	(6,442)	(6,459)
IRRIGATION	WHARTON	COLORADO-LAVACA	LCRA-SAWS: Develop the Gulf Coast aquifer for rice irrigation	Gulf Coast	0	4,433	4,433	4,433	4,433	4,433
IRRIGATION	WHARTON	COLORADO-LAVACA	LCRA-SAWS: Rice irrigation on-farm water conservation		0	4,110	4,110	4,110	4,110	4,110
IRRIGATION	WHARTON	COLORADO-LAVACA	LCRA-SAWS: Rice irrigation delivery system water conservation		0	8,591	8,591	8,591	8,591	8,591
IRRIGATION	WHARTON	COLORADO-LAVACA	LCRA-SAWS: Develop water conserving rice variety		0	4,019	4,019	4,019	4,019	4,019
IRRIGATION	WHARTON	COLORADO-LAVACA	Continuation of LCRA Water Management Plan for interruptible water	Highland Lakes	23,338	10,019	4,845	1,870	0	0
IRRIGATION	WHARTON	COLORADO-LAVACA	Continued use of Austin return flows	Colorado ROR	15	30	45	60	76	90
IRRIGATION	WHARTON	COLORADO-LAVACA	Continued use of Downstream return flows	Colorado ROR			0	1	3	5
IRRIGATION	WHARTON	COLORADO-LAVACA	HB-1437: Water conservation		200	200	200	200	200	200
	,	Remaining Sur			3,471	12,146	7,474	5,563	3,971	3,821
		01 /	0 1		101	0.41	00	401	<u>-</u> I	(0)
MANUEACTURING	IMILA DECAS	Shortage/		0.1(0)	43	31	22	13	5	(8)
MANUFACTURING	WHARTON	COLORADO-LAVACA Remaining Sur	Expand current Gulf Coast supply	Gulf Coast	43	31	22	13	5	<u>8</u>
		rtomaining out	ond, on one ago		1 +3	311	22	13	31	
		Shortage/	Surplus		420	246	186	114	25	(82)
STEAM-ELECTRIC	WHARTON	BRAZOS-COLORADO		Gulf Coast						82
		Remaining Sur			420	246	186	114	25	0

Region K New Potentially Feasible Water Management Strategy Screening (for 2011 Region K Plan)

	Water Management Strategy	Water User Group or Wholesale Provider	Strategy Description	Alternative ?	Strategy Cost (\$)	Cost of Water (\$/ac-ft)	Max Yield (ac-ft/yr)	Starting Decade	Basin	Interbasin Transfer (Yes/No)	Impacts on Habitat / Stream / B&E Flows	Impacts on Landform	Additional Impacts
1	Drought Management	Various	Mandatory water use reduction by certain percentage (e.g. 5% or 10%) Increased conservation efforts of additional	Yes	NA	\$50.00	Varies	2010	All	No	None expected	None expected	None expected
2	Additional Municipal Conservation	Aqua WSC (Bastrop)	0.25% per year GPCD reduction between 140 GPCD and 100 GPCD Increased conservation efforts of additional	No	\$442,823	\$487.69	908	2040	Colorado	No	None expected	None expected	None expected
3	Additional Municipal Conservation	County-Other (Bastrop)	0.25% per year GPCD reduction between 140 GPCD and 100 GPCD	No	\$456,478	\$487.69	936	2040	Colorado	No	None expected	None expected	None expected
4	New Carrizo-Wilcox Aquifer well field	County-Other (Bastrop)	New well fields in Guadalupe Basin with distribution	No	\$859,055	\$689.45	1,246	2050	Guadalupe	NA	None expected	Construction of wells and pipeline	None expected
5	Purchase water from LCRA with new SWTP	Elgin (Bastrop)	Purchase SW through contract and construct new SWTP and transmission line from Colorado River	Yes	\$3,426,000	\$1,142.00	3,000	2060	Colorado	No	Decrease stream flow downstream of Lake Travis	Construction of pipeline	
6	Purchase water from LCRA	Steam-Electric (Fayette)	Purchase SW through contract	No	\$3,710,130	\$138.00	26,885	2040	Colorado	No	May increase or decrease instream flows and lake levels	None expected	None expected
7	Purchase water from LCRA	Steam-Electric (Matagorda)	Purchase SW through contract	No	\$4,140,000	\$138.00	30,000	2020	Colorado	No	May increase instream flows	None expected	None expected
8	Temporary overdraft of Carrizo-Wilcox	Elgin (Bastrop)	overdraft aquifer in 2060	Yes	\$112,230	\$37.41	3,000	2060	Colorado	NA	None expected	None expected	increases aquifer drawdown
9	Temporary overdraft of Carrizo-Wilcox	Smithville (Bastrop)	overdraft aquifer in 2060	Yes	\$32,472	\$37.41	868	2060		NA	None expected	None expected	increases aquifer drawdown
10	Expansion of Current Carrizo-Wilcox Aquifer supply	Polonia WSC (Bastrop)	Pump additional groundwater, using existing wells	No	\$1,122	\$37.41	30	2020	Colorado	NA	None expected	None expected	None expected
11	New "Other Aquifer" well field	Smithville (Bastrop)	New well field site with distribution	Yes	\$80,834	\$146.97	550	2060	Colorado	NA	None expected	Construction of wells and pipeline	None expected
12	New Sparta Aquifer well field	Smithville (Bastrop)	New well field site with distribution	Yes	\$9,732	\$19.86	490	2060	Colorado	NA	None expected	Construction of wells and pipeline	None expected
13	New Queen City Aquifer well field	Smithville (Bastrop)	New well field site with distribution	Yes	\$11,519	\$19.86	580	2060	Colorado	NA	None expected	Construction of wells and pipeline	None expected
14	New Yegua-Jackson Aquifer well field	Smithville (Bastrop)	New well field site with distribution (Fayette County)	Yes	NA	NA	868	2060	Colorado	NA	None expected	Construction of wells and pipeline	None expected
15	New well field in Ellenburger-San Saba	County-Other (Blanco)	New well field site with distribution	No	\$2,394	\$37.41	64	2050	Guadalupe	NA	None expected	Construction of wells and pipeline	None expected
16	Expansion of Current Ellenburger-San Saba Aquifer supply	Bertram (Burnet)	Pump additional groundwater, using existing wells or drilling new wells	No	\$401,283	\$785.29	511	2010	Colorado	NA	None expected	Construction of wells and pipeline	None expected
17	Expansion of Current Ellenburger-San Saba Aquifer supply	County-Other (Burnet)	Pump additional groundwater, using existing wells or drilling new wells	No	\$947,410	\$803.57	1,179	2040	Colorado	NA	None expected	Construction of wells and pipeline	None expected
18	Expansion of Current Ellenburger-San Saba Aquifer supply	Mining (Burnet)	Pump additional groundwater, using existing wells or drilling new wells	No	\$692,766	\$793.55	873	2010	Colorado	NA	None expected Decrease amount of	Construction of wells and pipeline	None expected
19	Amend (Expand) Contract with LCRA	Granite Shoals (Burnet)	Increase amount of currently contracted surface water with LCRA	No	\$13,110	\$138.00	95	2040	Colorado	No	uncommitted Highland Lakes water Decrease amount of	None expected	None expected
20	Amend (Expand) Contract with LCRA	Marble Falls (Burnet)	Increase amount of currently contracted surface water with LCRA	No	\$41,952	\$138.00	304	2030	Colorado	No	uncommitted Highland Lakes water Decrease amount of	None expected	None expected
21	Amend (Expand) Contract with LCRA	Kingsland WSC (Llano)	Increase amount of currently contracted surface water with LCRA	No	\$33,120	\$138.00	240	2010	Colorado	No	uncommitted Highland Lakes water	None expected	None expected
22	Conservation	Schulenberg (Fayette)	Conservation	No	\$108,871	\$591.69	184	2010	Lavaca	No	None expected	None expected	None expected

Region K New Potentially Feasible Water Management Strategy Screening (for 2011 Region K Plan)

	Water Management Strategy	Water User Group or Wholesale Provider	Strategy Description	Alternative ?	Strategy Cost (\$)	Cost of Water (\$/ac-ft)	Max Yield (ac-ft/yr)	Starting Decade	Basin	Interbasin Transfer (Yes/No)	Impacts on Habitat / Stream / B&E Flows	Impacts on Landform	Additional Impacts
22	Evened Vegus Jackson Cumply	Cabulanhara (Fayatta)	Dump additional groundwater	No	¢227	¢27.44	0	2060	Lavasa	No	None eveneted	Nana aynastad	None evacated
23	Expand Yegua-Jackson Supply	Schulenberg (Fayette)	Pump additional groundwater	No	\$337	\$37.41	9	2060	Lavaca	No	None expected	None expected	None expected
24	Conservation	Mountain City (Hays)	Conservation	No	\$1,097	\$548.34	2	2010	Colorado	No	None expected	None expected potential distribution	None expected
25	Expand Edwards-BFZ Supply through brackish groundwater desalination	County-Other (Hays)	Desalination of "saline zone" of Edwards- BFZ aquifer in Travis County	No	\$4,740,000	\$790.00	6,000	2030	Colorado	NA	None expected	system construction potential	brine waste
26	Expand Edwards-BFZ Supply through brackish groundwater desalination	Cimarron Park Water Company (Hays)	Desalination of "saline zone" of Edwards- BFZ aquifer in Travis County	No	\$513,500	\$790.00	650	2030	Colorado	NA	None expected	distribution system construction potential	brine waste
27	Expand Edwards-BFZ Supply through brackish groundwater desalination	Buda (Hays)	Desalination of "saline zone" of Edwards- BFZ aquifer in Travis County	No	\$395,000	\$790.00	500	2060	Colorado	NA	None expected	distribution system construction	brine waste
28	Development of Carrizo-Wilcox Aquifer in Caldwell and Gonzales Counties (Region L)	Buda (Hays)	Purchase groundwater Allocate oversupply of County-Other	No	\$1,149,235	\$681.23	1,687		Colorado	NA	None expected	Construction of pipeline	None expected
29	Water Allocation	Cimarron Park Water Company (Hays)	groundwater to be available for pumping by another WUG within the same basin Allocate oversupply of County-Other groundwater to be available for pumping by	No	NA	NA	110	2010 - 2020 2010 -	Colorado	NA	None expected	None expected	None expected
30	Water Allocation	Mountain City (Hays)	another WUG within the same basin Allocate oversupply of County-Other groundwater to be available for pumping by	Yes	NA	NA	23	2060	Colorado	NA	None expected	None expected	None expected
31	Water Allocation	Manufacturing (Hays)	another WUG within the same basin Allocate oversupply of County-Other groundwater to be available for pumping by	No	NA	NA			Colorado	NA	None expected	None expected	None expected
	Water Allocation	Llano (Llano)	another WUG within the same basin Allocate oversupply of County-Other groundwater to be available for pumping by	No	NA	NA			Colorado	NA	None expected	None expected	None expected
	Water Allocation Water Allocation	Irrigation (Matagorda) Irrigation (Matagorda)	another WUG within the same basin Allocate oversupply of County-Other groundwater to be available for pumping by another WUG within the same basin Allocate oversupply of County-Other	No No	NA NA	NA NA		2010 only 2010 only	Colorado-Lavaca Colorado	NA NA	None expected	None expected None expected	None expected None expected
35	Water Allocation	Irrigation (Mills) Steam-Electric	groundwater to be available for pumping by another WUG within the same basin Use additional reservoir supply to meet	No	NA	NA	50	2010 only	Colorado	NA	None expected	None expected	None expected Reduce supply held
36	Expand Supply from STPNOC Reservoir	(Matagorda)	remaining need	No	NA	NA	193	2010	Colorado	No	None expected	None expected	in reservoir
37	Pump brackish surface water to blend in STPNOC reservoir	Steam-Electric (Matagorda)	approve STPNOC to pump brackish surface water to blend with the freshwater in their	No	\$0	\$0.00	17,505	2020	Colorado	No	None expected	None expected	None expected
38	Water Right Permit Amendment	Steam-Electric (Matagorda)	Amend existing water right permit to divert additional water, when available Pump additional groundwater, using existing	No	\$49,995	\$9.09	5,500	2020	Colorado	No	Decrease in streamflow during periods of high flow	None expected	None expected
39	Expand Current Trinity Aquifer Supply	County-Other (Mills)	wells Pump additional groundwater, using existing	No	\$337	\$37.41	9	2050	Brazos	NA	None expected	None expected	None expected
40	Expand Current Trinity Aquifer Supply	County-Other (Mills)	wells Pump additional groundwater, using existing	No	\$30,768	\$591.69	52	2050	Colorado	NA	None expected	None expected	None expected
41	Expand Current Trinity Aquifer Supply	Goldthwaite (Mills)	wells Pump additional groundwater, using existing	No	\$4,142	\$591.69	7	2010	Brazos	NA	None expected	None expected	None expected
42	Expand Current Trinity Aquifer Supply	Goldthwaite (Mills)	wells Pump additional groundwater, new well	No	\$64,494	\$591.69	109	2010	Brazos	NA	None expected	None expected	None expected
43	Expand Current Trinity Aquifer Supply	Goldthwaite (Mills)	needed Pump additional groundwater, using existing	No	\$189,341	\$591.69	320	2020	Colorado	NA	None expected	None expected	None expected
44	Expand Current Trinity Aquifer Supply	Irrigation (Mills)	wells	No	\$64,495	\$591.69	109	2010	Colorado	NA	None expected	None expected	None expected
45	Temporary overdraft of Trinity Aquifer	Goldthwaite (Mills)	Overdraft aquifer in 2010 and 2020	No	\$6,621	\$37.41	177	2010	Colorado	NA	None expected	None expected	increases aquifer drawdown
46	Brackish groundwater desalination	Goldthwaite (Mills)	Desalination of saline groundwater through treatment	No	\$1,961,000	\$1,961.00	1,000	2020	Colorado	NA	None expected	distribution system construction	brine waste

Region K New Potentially Feasible Water Management Strategy Screening (for 2011 Region K Plan)

	Water Management Strategy	Water User Group or Wholesale Provider	Strategy Description	Alternative ?	Strategy Cost (\$)	Cost of Water (\$/ac-ft)	Max Yield (ac-ft/yr)	Starting Decade	Basin	Interbasin Transfer (Yes/No)	Impacts on Habitat / Stream / B&E Flows	Impacts on Landform	Additional Impacts
47	Conservation	Manor (Travis)	Conservation	No	\$305,428	\$548.34	557	2010	Colorado	No	None expected	None expected	None expected
											Decrease amount of		
40	Amend (Expand) Contract with LCRA	Pflugerville (Travis)	Increase amount of currently contracted surface water with LCRA	No	\$137.310	\$138.00	995	2060	Colorado	No	uncommitted Highland Lakes water	None expected	None expected
40	Amena (Expana) Contract with LCRA	Steam-Electric	Surface water with LCRA	INO	\$137,310	\$136.00	990	2000	Colorado	INO	Lakes water	Construction of	None expected
49	New Well Field in Gulf Coast Aquifer	(Wharton)	New well field site with distribution	No	\$0	\$0.00	82	2060	Brazos-Colorado	NA	None expected	wells and pipeline	None expected
50													
	Full and a distribution of the desertation		Advanced conservation methods for										
51	Enhanced Municipal and Industrial Conservation	LCRA	reducing municipal and industrial water use by LCRA and its customers	Yes	\$8,000,000	\$400.00	20,000	2030	Colorado	No	Possible decrease in streamflow	None expected	None expected
31	Conservation	LONA	by LORA and its customers	163	ψ0,000,000	ψ+00.00	20,000	2030	Colorado	140	Streamnow	Potential	None expected
			Divert excess Colorado River flow for									distribution	
		l	treatment and immediate use or storage			4					Possible decrease in	system	
52	Aquifer Storage and Recovery (ASR)	LCRA	underground for later use	Yes	\$38,024,800	\$3,802.48	10,000	2040	Colorado	No	streamflow	construction	None expected
			Reuse wastewater effluent for irrigation purposes in Highland Lakes Communities									Potential distribution	
			which are not allowed to discharge to the									system	
53	Reuse by Highland Lakes Communities	LCRA	lakes	Yes	\$2,750,000	\$550.00	5,000	2020	Colorado	No	None expected	construction	None expected
54													
55	Alternative Water Management S	Irrigation (Colorado,									Increased return flows to		
	Expand Gulf Coast Aquifer Supply	Matagorda, and Wharton Counties)	Pump additional groundwater using existing wells		\$1,200,000	\$80.00	15.000	0040	Various	No	river during times of low flow	None expected	
	Develop High Yield Rice Variety	Irrigation (Colorado, Matagorda, and Wharton Counties)	High Yield rice variety reduces amount of water needed per year		\$19,200	\$0.64	30,000		Various	No	Reduced return flows to river, but less diversion needed from no ratoon crop	None expected	No ratoon crop may affect waterfowl
58	On-Farm Conservation	Irrigation (Colorado, Matagorda, and Wharton Counties)	On-Farm conservation measures to reduce the amount of water required for rice growing		\$1,537,301	\$51.24	30,000	2020	Various	No	Reduced return flows to river	None expected	
59	In-District Water Delivery System Improvements	Irrigation (Colorado, Matagorda, and Wharton Counties)	Improvements to the methods of water delivery to the rice fields in order to reduce the amount of water needed/lost Use an off-channel infiltration basin that		\$2,151,766	\$39.12	55,000	2020	Various	No	Reduced diversions from river	None expected	
	Enhanced Aquifer Recharge through Infiltration Basin	Irrigation (Colorado, Matagorda, and Wharton Counties)	would receive excess surface water flows and allow infiltration into the aquifer to provide additional groundwater		\$5,882,400	\$342.00	17,200	2050	Various	No	Reduced pulse flows to Matagorda Bay	None expected	None expected
61	Development of New Groundwater (conjunctive use)	Irrigation (Colorado, Matagorda, and Wharton Counties)	Installing additional wells in the Gulf Coast Aquifer to provide an extra amount of water for irrigation, using a rolling average		\$14,457,450	\$963.83	15,000	2050	Various	No	Increased return flows to river during times of low flow	None expected	additional aquifer drawdown
62	Off-Channel Storage in Reservoirs	Irrigation (Colorado, Matagorda, and Wharton Counties)	Divert excess Colorado River flow for storage in constructed reservoirs		\$13,800,000	\$345.00	40,000	2030	Various	No	Reduction in some of the higher pulse flows to Matagorda Bay	Construction of reservoirs	None expected
63	Groundwater Importation	LCRA	Importation of groundwater from outside of the planning area		\$46,550,000	\$1,330.00	35,000	2040	Colorado	No	Increased return flows to river	Construction of pipeline Construction of	None expected
64	Brackish desalination of Gulf Coast aquifer	LCRA	Installing wells in the Gulf Coast Aquifer to pump brackish groundwater, desalinate it, and provide it to local LCRA customers		\$28,224,000	\$1,260.00	22,400	2040	Colorado	No	Increased return flows to river		Disposal of brine
	Brackish desalination of Ellenburger-San Saba aquifer	Mills County-Other	Aquifer to pump brackish groundwater, desalinate it, and provide it through a distribution system to county residents		\$1,216,512	\$3,168.00	384	2030	Colorado	No	None expected	Construction of Desal plant and pipeline	Disposal of brine

Alternative Water Management Strategy Summary Table

						Wate	er Supply V	olume (ac-f	t/yr)		
				First Decade							Year 2060
				Estimated Annual							Estimated Annual
			Total Capital	Average Unit Cost							Average Unit Cost
Region	ID	Alternative Water Management Strategy	Costs (\$)	(\$/ac-ft/yr)	2010	2020	2030	2040	2050	2060	(\$/ac-ft/yr)
K	KS	Desalination of Ellenburger-San Saba Aquifer	\$6,285,000	\$3,168	0	0	384	384	384	384	\$3,168
K	KS	Desalination of Brackish Gulf Coast Aquifer	\$177,600,000	\$1,260	0	0	0	22400	22400	22400	\$1,260
K	KT	Groundwater Importation	\$395,900,000	\$1,330	0	0	0	35000	35000	35000	\$1,330
K	KD4	Expansion of Gulf Coast Aquifer	\$0	\$80	0	10000	10000	10000	10000	10000	\$80
K	KL1	On-Farm Conservation	\$5,425,000	\$51	0	20000	20000	30000	35000	35000	\$51
		Irrigation Divisions Delivery System									
K	KL2	Improvements	\$4,944,000	\$39	0	20000	25000	40000	48000	48000	\$39
		Conjunctive Use of Groundwater - Includes									
K	KL3	Overdrafts	\$14,432,000	\$964	0	0	0	0	15000	15000	\$964
		Enhanced Recharge of Groundwater (Gulf									
K	KO3	Coast Aquifer)	\$41,049,000	\$354	0	0	0	0	17200	17200	\$354
K	KO4	Off-Channel Storage in Additional Reservoirs	\$53,388,000	\$345	0	0	30000	40000	40000	40000	\$345

WUG Name	County	River Basin	Water Management Strategy	Strategy Description	Total Capital Cost (\$)	Total Project Costs (\$)	Total Annual Cost 2010 (\$)	Total Annual Cost 2020 (\$)	Total Annual Cost 2030 (\$)	Total Annual Cost 2040 2050 (\$) (\$)	st Total Annual Cost 2060 (\$)	Largest Firm Yield (ac-ft/yr)	Largest Annual Cost (\$)	Unit Cost (\$/ac-ft)
AQUA WSC	BASTROP	COLORADO	Expand current Carrizo- Wilcox supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ 6,248,640	\$ 9,069,004	\$ -	s -	\$ 1,185,314	\$ 2,500,791 \$ 3,516,93	0 \$ 4,254,054	7,850	\$ 4,254,054	\$ 541.92
AQUA WSC	BASTROP	COLORADO	Additional Municipal Conservation							\$ 66,897 \$ 150,24	5 \$ 280,750	512	\$ 280,750	\$ 548.34
AQUA WSC	BASTROP	COLORADO	Drought Management								\$ 44,900	898	\$ 44,900	\$ 50.00
BASTROP	BASTROP	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$ -	\$ -	\$ 80,058	\$ 137,086	\$ 196,856	\$ 257,174 \$ 117,34	6 \$ 159,020	469	\$ 257,174	\$ 548.34
BASTROP	BASTROP	COLORADO	Expand Other Aquifer supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ 1,721,920	\$ 2,548,868	\$ -	\$ 260,323	\$ 271,293	\$ 289,191 \$ 308,97	4 \$ 333,193	2,814	\$ 333,193	\$ 118.41
BASTROP COUNTY WCID #2	BASTROP	COLORADO	Expand current Carrizo- Wilcox supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$ -	\$ 5,386	144	\$ 5,386	\$ 37.41
COUNTY-OTHER	BASTROP	COLORADO	Additional Municipal Conservation							\$ 219,336 \$ 126,66	7 \$ 167,244	400	\$ 219,336	\$ 548.34
COUNTY-OTHER	BASTROP	COLORADO	Expand current Carrizo- Wilcox supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ 4,280,640	\$ 6,189,196	\$ -	\$ 763,900	\$ 1,022,730	\$ 1,269,214 \$ 1,244,73	6 \$ 1,410,336	3,700	\$ 1,410,336	\$ 381.17
COUNTY-OTHER	BASTROP	COLORADO	New Carrizo-Wilcox well field (Guadalupe basin)	Expand groundwater pumping efforts through installation of new well(s).	\$ 5,434,871	\$ 7,932,044	\$ -	\$ -	\$ -	\$ - \$ 856,99	1 \$ 881,392	1,246	\$ 881,392	\$ 707.38
COUNTY-OTHER	BASTROP	GUADALUPE	New Carrizo-Wilcox well field	Expand groundwater pumping efforts through installation of new well(s). Costs accounted for in County-Other Bastrop Guadalupe	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$ -	\$ 11,318	16	\$ 11,318	\$ 707.38
ELGIN	BASTROP	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$ -	\$ -	\$ 49,899	\$ -	\$ -	s - s -	\$ -	91	\$ 49,899	\$ 548.34
ELGIN	BASTROP	COLORADO	Expand current Carrizo- Wilcox supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ 2,082,880	\$ 3,023,001	\$ -	\$ 385,048	\$ 472,222	\$ 600,201 \$ 700,21	6 \$ 367,214	2,734	\$ 700,216	\$ 256.11
ELGIN	BASTROP	COLORADO	New LCRA Contract	Purchase water from the LCRA	\$ 17,556,000	\$ 23,545,000	\$ -	\$ -	\$ -	\$ - \$ -	\$ 3,425,066	3,000	\$ 3,425,066	\$ 1,142.00
ELGIN	BASTROP	COLORADO	Drought Management								\$ 13,250	265	\$ 13,250	\$ 50.00
POLONIA WSC	BASTROP	COLORADO	Expand current Carrizo- Wilcox supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ -	\$ -	\$ -	\$ 75	\$ 262	\$ 598 \$ 86	0 \$ 1,122	30	\$ 1,122	\$ 37.41
SMITHVILLE	BASTROP	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$ -	\$ -	\$ 13,709	\$ -	\$ -	\$ - \$ -	\$ -	25	\$ 13,709	\$ 548.34
SMITHVILLE	BASTROP	COLORADO	Expand current Carrizo- Wilcox supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ 1,041,440	\$ 1,511,501	\$ 158,624	\$ 177,618	\$ 193,205	\$ 223,652 \$ 235,90	4 \$ 208,211	1,115	\$ 235,904	\$ 211.57
SMITHVILLE	BASTROP	COLORADO	New Well Field in Queen City Aquifer	Expand groundwater pumping efforts through installation of new well(s)	\$ 4,190,135	\$ 6,132,554	\$ -	\$ -	\$ -	s - s -	\$ 627,800	580	\$ 627,800	\$ 1,082.41
SMITHVILLE	BASTROP	COLORADO	Drought Management								\$ 14,400	288	\$ 14,400	\$ 50.00

WUG Name	County	River Basin	Water Management Strategy	Strategy Description	Total	Capital Cost (\$)	Total Project (Costs	Total Annual Cost 2010 (\$)	t Tota	d Annual Cost 2020 (\$)	Total Annual Cos 2030 (\$)	Total Annual Cos 2040 (\$)	Total Annual Co	Total Annual Cos 2060 (\$)	Largest Firm Yield (ac-ft/yr)	An	Largest nnual Cost (\$)	Unit Cost (\$/ac-ft)
IRRIGATION	BASTROP	BRAZOS	Expand current Queen City supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$	-	\$	-	\$ 794	\$	794	\$ 794	\$ 616	\$ 47	7 \$ 338	3 40	\$	794 \$	19.86
IRRIGATION	BASTROP	BRAZOS	Temporary Drought Period Use of Queen City Aquifer	Temporary measure. Cost associated with additional pumping costs (energy costs)	\$	-	\$	-	\$ 417	\$	199	\$ -	\$ -	\$ -	\$ -	21	\$	417 \$	19.86
IRRIGATION	BASTROP	COLORADO	Expand current Queen City supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$	•	\$	-	\$ 1,152	\$	-	\$ -	\$ -	\$ -	\$ -	58	\$	1,152 \$	19.80
MANUFACTURING	BASTROP	COLORADO	Expand current Carrizo- Wilcox supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$		\$	-	\$ -	\$	262	\$ 636	\$ 935	\$ 1,19	7 \$ 1,640	6 44	\$	1,646 \$	37.4
MANUFACTURING	BASTROP	GUADALUPE	Expand current Carrizo- Wilcox supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$	-	\$	-	\$ 299	\$	374	\$ 411	\$ 486	\$ 52	4 \$ 598	3 16	\$	598 \$	37.4
MINING	BASTROP	COLORADO	Expand current Carrizo- Wilcox supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$	3,219,360	\$ 4,670	0,504	\$ 1,391,947	\$	1,392,798	\$ 1,393,011	\$ -	\$ -	\$ -	4,298	\$	1,393,011 \$	324.1
STEAM ELECTRIC POWER	BASTROP	COLORADO	Amend contract with LCRA	Purchase water from the LCRA	\$	-	\$	-	\$ -	\$	-	\$ -	\$ 176,640	\$ 383,64	383,64	2,780	\$	383,640 \$	138.00
COUNTY-OTHER	BLANCO	GUADALUPE	New Well Field in Ellenburger-San Saba	Expand groundwater pumping efforts through installation of new well(s)	\$	1,977,110	\$ 2,86	8,976						\$ 275,44	4 \$ 276,30	64	\$	276,304 \$	4,317.25
BERTRAM	BURNET	BRAZOS	Conservation	Reduction of municipal water demand through municipal conservation	\$	•	\$	-	\$ 13,017	\$	18,934	\$ 15,384	\$ 6,509	\$ 2,95	5,91	32	\$	18,934 \$	591.69
BERTRAM	BURNET	BRAZOS	Expand current Ellenburger-San Saba supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$	-	\$	-	\$ -	\$		\$ -	\$ -	\$ -	\$ 89	3 24	\$	898 \$	37.41
COTTONWOOD SHORES	BURNET	COLORADO	Amend contract with LCRA	Purchase water from the LCRA	\$	-	\$	-	\$ 3,588	\$	27,324	\$ 53,268	\$ 82,938	\$ 115,92	\$ 155,940	1,130	\$	155,940 \$	138.00
COUNTY-OTHER	BURNET	COLORADO	Expand current Trinity supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$	2,029,440	\$ 2,96	7,729	\$ -	\$	-	\$ 477,016	\$ 477,016	\$ 499,63.	2 \$ 499,63	2 541	\$	499,632 \$	923.53
COUNTY-OTHER	BURNET	COLORADO	Expand current Ellenburger-San Saba supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$	8,367,840	\$ 12,24	9,979	\$ -	\$	-	\$ -	\$ 1,612,760	\$ 1,965,81	3 \$ 2,308,809	1,179	\$	2,308,805 \$	1,958.2
GRANITE SHOALS	BURNET	COLORADO	Amend contract with LCRA	Renew contract with LCRA - WUG exists in several counties, contract amount split based on demands of each	\$		\$	-	\$ -	\$	-	\$ -	\$ -	\$ 1,93	2 \$ 13,110	95	\$	13,110 \$	138.00
KINGSLAND WSC	BURNET	COLORADO	Amend contract with LCRA	Purchase water from the LCRA	\$	-	\$	-	\$ 1,380	\$	1,518	\$ 1,656	\$ 1,794	\$ 1,93	2 \$ 2,34	5 17	\$	2,346 \$	138.00
MARBLE FALLS	BURNET	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$	-	\$	-	\$ 117,747	\$	184,016	\$ 242,594	\$ 292,888	\$ 274,54	5 \$ 311,230	526	\$	311,230 \$	591.69
MARBLE FALLS	BURNET	COLORADO	Amend contract with LCRA	Purchase additional water from the LCRA	\$	-			\$ -	\$	-	\$ 7,728	\$ 41,952	\$ 37,95	34,224	304	\$	41,952 \$	138.00
MEADOWLAKES	BURNET	COLORADO		Reduction of municipal water demand through municipal conservation	\$		\$	-	\$ 45,560	\$	69,228	\$ 92,896	\$ 110,055	\$ 102,36	3 \$ 110,64	187	\$	110,647 \$	591.69
MEADOWLAKES	BURNET	COLORADO	Amend contract with LCRA	Purchase water from the LCRA	\$	-	\$	-	\$ 33,258	\$	52,716	\$ 69,828	\$ 81,834	\$ 81,83	4 \$ 81,83	593	\$	81,834 \$	138.00
LIVESTOCK	BURNET	BRAZOS	Expand current Trinity supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$	226,780	\$ 220	6,780	\$ 92,894	\$	92,894	\$ 92,894	\$ 92,894	\$ 92,89	4 \$ 92,89	23	\$	92,894 \$	4,038.88

WUG Name	County	River Basin	Water Management Strategy	Strategy Description	apital Cost (\$)	Total Project (\$)	Costs	Total Ann 201 (\$	10	Annual Cost 2020 (\$)	Total A	Annual Cost 2030 (\$)	Total Annual 2040 (\$)	Cost	Cotal Annual Cost 2050 (\$)	Total A	Annual Cost 2060 (\$)	Largest Firm Yield (ac-ft/yr)	Largest nual Cost (\$)	Unit Cost (\$/ac-ft)
MINING	BURNET	BRAZOS	Expand current Trinity supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ -	\$	-	\$	446	\$ 637	\$	765	\$ 1	402	1,529	\$	1,593	25	\$ 1,593 \$	63.72
MINING	BURNET	COLORADO	Expand current Ellenburger-San Saba supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ 6,114,960	\$ 8,9	51,908	\$ 1,	,354,768	\$ 1,404,944	\$	1,426,353	\$ 1,441	740	1,453,783	\$	1,483,219	873	\$ 1,483,219 \$	1,698.99
COUNTY-OTHER	COLORADO	LAVACA	Expand current Gulf Coast supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ -	\$	-	\$	3,928	\$ 4,077	\$	3,965	\$ 3	628	3,479	\$	3,366	109	\$ 4,077 \$	37.41
IRRIGATION	COLORADO	BRAZOS- COLORADO	Supply Reduction due to LSWP	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$	-	\$		\$ -	\$	-	\$	- !	-	\$	-		\$ - \$	-
IRRIGATION	COLORADO	BRAZOS-	Transfer supply to M&I	Part of LCRA-SAWS Plan. No	\$ -	\$	-	\$	-	\$ -	\$	-	\$	- !	-	\$	-		\$ - \$	-
IRRIGATION	COLORADO	COLORADO BRAZOS- COLORADO	LCRA-SAWS: Develop the Gulf Coast aquifer for rice irrigation	cost applicable Part of LCRA-SAWS Plan. No cost applicable															\$	-
IRRIGATION	COLORADO	BRAZOS- COLORADO	LCRA-SAWS: Rice irrigation on-farm water conservation	Part of LCRA-SAWS Plan. No cost applicable															\$	-
IRRIGATION	COLORADO	BRAZOS- COLORADO	LCRA-SAWS: Rice irrigation delivery system water conservation	Part of LCRA-SAWS Plan. No cost applicable															\$	-
IRRIGATION	COLORADO	BRAZOS- COLORADO	LCRA-SAWS: Develop water conserving rice variety	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$	-	\$	-	\$ -	\$	-	\$	- !	-	\$	-		\$ - \$	-
IRRIGATION	COLORADO	BRAZOS- COLORADO	Continuation of LCRA Water Management Plan for interruptible water	No change in usage. No cost associated	\$ -	\$	-	\$	-	\$ -	\$	-	\$	- !	-	\$	-	-	\$ - \$	-
IRRIGATION	COLORADO	BRAZOS- COLORADO	Continued use of Austin return flows	No change in usage. No cost associated	\$ -	\$	-	\$	-	\$ -	\$	-	\$	- !	-	\$	-		\$ - \$	-
IRRIGATION	COLORADO	BRAZOS- COLORADO	Continued use of Downstream return flows	No cost associated as this is simply a continuation of current practices															\$	-
IRRIGATION	COLORADO	BRAZOS- COLORADO	HB-1437: Water conservation	Irrigation users will split 20% of capital cost of precision leveling. Split based on quantity of water received	\$ -	\$	-	\$	-	\$ -	\$	-	\$	- !	-	\$	-	-	\$ - \$	-
IRRIGATION	COLORADO	BRAZOS- COLORADO	Firm up RoR with off- channel storage	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$	-	\$		\$ -	\$	-	\$	- !	-	\$	-		\$ - \$	-
IRRIGATION	COLORADO	LAVACA	Supply Reduction due to	Part of LCRA-SAWS Plan. No	\$ -	\$	-	\$	-	\$ -	\$	-	\$	- 5	-	\$	-		\$ - \$	_
IRRIGATION	COLORADO	LAVACA	LSWP Transfer supply to M&I	cost applicable Part of LCRA-SAWS Plan. No	\$ -	\$	-	\$	-	\$ -	\$	-	\$	- 5	-	\$	-		\$ - \$	-
IRRIGATION	COLORADO	LAVACA	LCRA-SAWS: Develop the	cost applicable Part of LCRA-SAWS Plan. No cost applicable															\$	-
IRRIGATION	COLORADO	LAVACA	LCRA-SAWS: Rice irrigation on-farm water conservation	Part of LCRA-SAWS Plan. No cost applicable															\$	-
IRRIGATION	COLORADO	LAVACA	LCRA-SAWS: Rice irrigation delivery system water conservation	Part of LCRA-SAWS Plan. No cost applicable															\$	-
IRRIGATION	COLORADO	LAVACA	LCRA-SAWS: Develop water conserving rice variety	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$	-	\$	-	\$ -	\$	-	\$	- !	-	\$	-		\$ - \$	-
IRRIGATION	COLORADO	LAVACA	Continuation of LCRA Water Management Plan for interruptible water	No change in usage. No cost associated	\$ -	\$	-	\$	-	\$ -	\$	-	\$	- !	-	\$	-	-	\$ - \$	-
IRRIGATION	COLORADO	LAVACA	Continued use of Austin	No change in usage. No cost associated	\$ -	\$	-	\$	-	\$ -	\$	-	\$	- :	-	\$	-		\$ - \$	-
IRRIGATION	COLORADO	LAVACA	Continued use of Downstream return flows	No cost associated as this is simply a continuation of current practices															\$	-

WUG Name	County	River Basin	Water Management Strategy	Strategy Description	Total Capital Cost (\$)	Total Project Costs	Total Annual Cos 2010 (\$)	Total Annual C 2020 (\$)	Total Annual Cos 2030 (\$)	Total Annual Cost 2040 2050 (\$) (\$)	Cost Total Annual (2060 (\$)	Cost Largest Firm Yield (ac-ft/yr)	Largest Annual Cost (\$)	Unit Cost (\$/ac-ft)
IRRIGATION	COLORADO	LAVACA	HB-1437: Water conservation	Irrigation users will split 20% of capital cost of precision leveling. Split based on quantity of water	\$ -	\$ -	\$ -	\$ -	\$ -	s - s	- \$		\$ -	\$ -
IRRIGATION	COLORADO	LAVACA	Firm up RoR with off- channel storage	Part of LCRA-SAWS Plan. No cost applicable	\$ -		\$ -	\$ -	\$ -	\$ - \$	- \$	-	\$ -	\$ -
LIVESTOCK	COLORADO	COLORADO	Expand current Gulf Coast supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ 138,040	\$ 146,322	\$ 45,615	\$ 45,6	\$ 45,615	\$ 45,615 \$ 45	615 \$ 45,	615 14	\$ 45,615	\$ 3,258.22
LIVESTOCK	COLORADO	LAVACA	Expand current Gulf Coast supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ 108,460	\$ 114,968	\$ 34,682	\$ 34,6	32 \$ 34,682	\$ 34,682 \$ 34	682 \$ 34,	682 11	\$ 34,682	\$ 3,152.95
MINING	COLORADO	BRAZOS- COLORADO	Expand current Gulf Coast supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ -	\$ -	\$ 167	\$ 1	93 \$ 202	\$ 211 \$	219 \$	228 26	\$ 228	\$ 8.77
MINING	COLORADO	COLORADO	New Other Aquifer well Field	Expand groundwater pumping efforts through installation of new well(s)	\$ -	\$ -	\$ 37,449	\$ 37,4	\$ 37,449	\$ 37,449 \$ 37	449 \$ 37,	4,269	\$ 37,449	\$ 8.77
MINING	COLORADO	COLORADO	Expand Gulf Coast supply (Colorado basin)	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ -	\$ -	\$ 31,809	\$ 31,8	9 \$ 24,589	\$ 14,474 \$ 1	877 \$ 3,	3,626	\$ 31,809	\$ 8.77
MINING	COLORADO	COLORADO	Expand Gulf Coast supply (Lavaca basin)	Use additional water provided by expansion of current groundwater pumping efforts by the Mining- Colorado County-Lavaca river	\$ -	\$ -	\$ 4,869	\$ 2	53 \$ -	s - s	- \$	- 555	\$ 4,869	\$ 8.77
MINING	COLORADO	LAVACA	Expand current Gulf Coast supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ -	\$ -	\$ 877	\$ 1,1	58 \$ 1,325	\$ 1,474 \$ 1	614 \$ 1,	746 199	\$ 1,746	\$ 8.77
COUNTY-OTHER	FAYETTE	COLORADO	Expand current Sparta supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ -	\$ -	\$ 4,601	\$ 4,4	89 \$ 711	s - s	- \$	- 123	\$ 4,601	\$ 37.41
COUNTY-OTHER	FAYETTE	LAVACA	Expand current Gulf Coast supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 1,197 \$	935 \$	598 32	\$ 1,197	\$ 37.41
FAYETTE WSC	FAYETTE	COLORADO	Expand current Gulf Coast supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ 676,480	\$ 989,243	\$ -	\$ 116,7	3 \$ 130,712	\$ 130,712 \$ 130	712 \$ 130,	712 428	\$ 130,712	\$ 305.40
FAYETTE WSC	FAYETTE	COLORADO	New Other Aquifer well field	Expand groundwater pumping efforts through installation of new well(s)	\$ 2,887,868	\$ 4,260,602	\$ -	\$ -	\$ 411,892	\$ 418,334 \$ 426	144 \$ 436,	506 889	\$ 436,506	\$ 491.01
FAYETTE WSC	FAYETTE	LAVACA	Expand current Gulf Coast supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ -	\$ -	\$ -	\$ 7	36 \$ 1,683	\$ 2,357 \$ 3	217 \$ 4,	339 116	\$ 4,339	\$ 37.41
SCHULENBURG	FAYETTE	LAVACA	Conservation	Reduction of municipal water demand through municipal conservation			\$ 25,443	\$ 36,0	31,360	\$ 1,183 \$ 4	734 \$ 10,	059 61	\$ 36,093	\$ 591.69
SCHULENBURG	FAYETTE	LAVACA	Expand current Yegua- Jackson supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)			\$ -	\$ -	\$ -	s - s	- \$	337 9	\$ 337	\$ 37.41
IRRIGATION	FAYETTE	LAVACA	Expand current Sparta supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ -	\$ -	\$ 748	\$ 6	73 \$ 598	\$ 524 \$	449 \$	374 20	\$ 748	\$ 37.41

WUG Name	County	River Basin	Water Management Strategy	Strategy Description	Total Capital	Cost	Total Project Costs (\$)	Total Annual (2010 (\$)	Cost T	Total Annual Cost 2020 (\$)	Tota	Al Annual Cost 2030 (\$)	Total Annual Cost 2040 (\$)	Total Annual Cost 2050 (\$)	Total Annual Cos 2060 (\$)	t Largest Firm Yield (ac-ft/yr)	Largest Annual Cost (\$)		Unit Cost (\$/ac-ft)
LIVESTOCK	FAYETTE	BRAZOS	New Other Aquifer well field (Colorado Basin)	Expand groundwater pumping efforts through installation of new well(s)	\$ 21	6,920	\$ 229,935	\$ 62,	958 \$	\$ 62,958	\$	62,958	\$ 62,958	\$ 62,958	\$ 62,958	22	\$ 62,958	8 \$	2,861.71
MANUFACTURING	FAYETTE	LAVACA	Expand current Gulf Coast supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$	-	\$ -	\$	- \$	-	\$	-	\$ 75	\$ 748	\$ 1,608	43	\$ 1,600	8 \$	37.41
MANUFACTURING	FAYETTE	LAVACA	Expand current Sparta supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$	-	\$ -	\$ 1,	683 \$	2,618	\$	3,516	\$ 4,302	\$ 4,376	\$ 4,451	119	\$ 4,45	1 \$	37.41
MINING	FAYETTE	BRAZOS	Expand current Gulf Coast supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$	-	\$ -	\$	- \$	\$ 150	\$	823	\$ 1,047	\$ 1,085	\$ 1,085	29	\$ 1,08	5 \$	37.41
STEAM ELECTRIC POWER	FAYETTE	COLORADO	New LCRA Contract	Purchase water from the LCRA	\$	-	\$ -	\$	- \$	-	\$	-	\$ 2,894,550	\$ 2,894,550	\$ 3,710,130	26,885	\$ 3,710,130	0 \$	138.00
BUDA	HAYS	COLORADO	Expand Edwards-BFZ supply through brackish GW desalination	Develop new wellfield in Saline Zone of Edwards-BFZ	\$ 1,39	1,124	\$ 1,949,445	\$	- \$	-	\$	-	\$ -	\$ -	\$ 489,334	500	\$ 489,334	4 \$	978.67
BUDA	HAYS	COLORADO	Development of Carrizo- Wilcox Aquifer in Caldwell and Gonzales Counties (Region L.)	Purchase water through HCPUA	\$ 6,80	7,200	\$ 10,905,253	\$	- \$	\$ 1,300,027	\$	1,300,027	\$ 1,300,027	\$ 1,300,027	\$ 1,300,027	1,687	\$ 1,300,02	.7 \$	770.61
CIMARRON PARK WATER COMPANY	HAYS	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$	-	\$ -	\$ 13,	160 \$	-	\$	-	\$ -	\$ -	\$ 1,097	24	\$ 13,160	0 \$	548.34
CIMARRON PARK WATER COMPANY	HAYS	COLORADO	Allocate from county-other	No cost associated due to re- allocation of supply. See text.														\$	-
CIMARRON PARK WATER COMPANY	HAYS	COLORADO	Expand Edwards-BFZ supply through brackish GW desalination	Develop new wellfield in Saline Zone of Edwards-BFZ	\$ 1,66	9,349	\$ 2,339,334				\$	244,667	\$ 342,534	\$ 489,335	\$ 587,200	600	\$ 587,200	0 \$	978.67
COUNTY-OTHER	HAYS	COLORADO	Purchase water from COA for Hays County	Construction of transmission facilities to transport water from the COA's dist. System to N. Hays County	\$ 2,28	0,200	\$ 2,280,200	\$ 1,059,	254 \$	1,059,254	\$	1,059,254	\$ 1,059,254	\$ 1,059,254	\$ 1,059,254	1,100	\$ 1,059,254	4 \$	962.96
COUNTY-OTHER	HAYS	COLORADO	Expand Edwards-BFZ supply through brackish GW desalination	Develop new wellfield in Saline Zone of Edwards-BFZ	\$ 16,69	3,491	\$ 23,393,343		\$	\$ 244,668	\$	2,446,680	\$ 2,446,680	\$ 4,893,350	\$ 5,872,020	6,000	\$ 5,872,020	0 \$	978.67
DRIPPING SPRINGS	HAYS	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$	-	\$ -	\$ 44,	416 \$	\$ 107,476	\$	105,830	\$ 43,319	\$ 61,415	\$ 47,700	196	\$ 107,476	6 \$	548.34
DRIPPING SPRINGS	HAYS	COLORADO	Amend contract with LCRA (through Dripping Springs WSC)	Purchase water from the LCRA	\$	-	\$ -	\$ 68,	034 \$	\$ 148,074	\$	182,298	\$ 233,220	\$ 294,354	\$ 342,510	2,482	\$ 342,510	6 \$	138.00
DRIPPING SPRINGS WSC	HAYS	COLORADO	Amend contract with LCRA	Purchase water from the LCRA	\$	-	\$ -	\$	- \$	-	\$	-	\$ 2,346	\$ 29,394	\$ 50,508	366	\$ 50,50	8 \$	138.00
MOUNTAIN CITY	HAYS	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation				\$ 1,	097 \$	-	\$	-	\$ -	\$ -	\$ -	2	\$ 1,09	7 \$	548.34
MOUNTAIN CITY	HAYS	COLORADO	Allocate from county-other	No cost associated due to re- allocation of supply. See text.				\$ 6,	249 \$	6,249	\$	6,249	\$ 6,249	\$ 6,249	\$ 6,249	39	\$ 6,249	9 \$	160.22
MANUFACTURING	HAYS	COLORADO	New well field for Trinity Aquifer	Expand groundwater pumping efforts through installation of new well(s)	\$ 4,08	4,198	\$ 6,000,820	\$	- \$	-	\$	610,537	\$ 630,564	\$ 646,747	\$ 662,608	400	\$ 662,600	8 \$	1,656.52
COUNTY-OTHER	LLANO	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$	-	\$ -	\$ 516,	548 \$	\$ 163,899	\$	152,657	\$ 94,671	\$ 92,304	\$ 98,221	873	\$ 516,54	8 \$	591.69
KINGSLAND WSC	LLANO	COLORADO	Amend contract with LCRA	Purchase water from the LCRA	\$	-	\$ -	\$ 33,	120 \$	33,120	\$	33,120	\$ 33,120	\$ 33,120	\$ 33,120	240	\$ 33,120	0 \$	138.00
LAKE LBJ MUD	LLANO	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$	-	\$ -	\$ 79,	879	\$ 91,712	\$	76,920	\$ 71,595	\$ 73,962	\$ 65,678	155	\$ 91,712	2 \$	591.69
LLANO	LLANO	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$	-	\$ -	\$ 59,	169 \$	62,128	\$	55,619	\$ 49,702	\$ 50,294	\$ 53,252	105	\$ 62,125	8 \$	591.69

WUG Name	County	River Basin	Water Management Strategy	Strategy Description	Total Capital Cost (\$)	Total Project Costs (\$)	Total Annual Cost 2010 (\$)	Total Annual Cost 2020 (\$)	Total Annual Cost 2030 (\$)	Total Annual Cost 2040 2050 (\$) (\$)	Cost Total Annual C 2060 (\$)	Largest Firm Yield (ac-ft/yr)	Largest Annual Cost (\$)	Unit Cost (\$/ac-ft)
LLANO	LLANO	COLORADO	New Ellenburger-San Saba Well Field	Expand groundwater pumping efforts through installation of new well(s)	\$ 3,624,413	\$ 5,411,080	\$ 736,897	\$ 736,897	\$ 736,897	\$ 736,897 \$ 736	897 \$ 736,8	97 478	\$ 736,897	\$ 1,541.63
LLANO	LLANO	COLORADO	New Hickory Well Field	Expand groundwater pumping efforts through installation of new well(s)	\$ 4,697,200	\$ 6,908,443	\$ 876,077	\$ 866,336	\$ 833,057	\$ 802,618 \$ 774	209 \$ 747,8.	29 512	\$ 876,077	\$ 1,711.09
LIVESTOCK	LLANO	COLORADO	Expand current Hickory supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ 611,320	\$ 647,999	\$ 306,436	\$ 306,436	\$ 306,436	\$ 306,436 \$ 306	436 \$ 306,4	62	\$ 306,436	\$ 4,942.52
MANUFACTURING	LLANO	COLORADO	Allocate water from Llano County - Other	No cost associated due to re- allocation of supply. See text.										\$ -
STEAM ELECTRIC POWER	LLANO	COLORADO	Reduction in LCRA Commitment due to Improved Efficiency (Ferguson)	No cost associated										\$ -
IRRIGATION	MATAGORDA	BRAZOS- COLORADO		Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$	- \$ -		\$ -	\$ -
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	Transfer supply to M&I	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$	- \$ -		\$ -	\$ -
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	LCRA-SAWS: Develop the Gulf Coast aquifer for rice irrigation	Part of LCRA-SAWS Plan. No cost applicable										\$ -
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	LCRA-SAWS: Rice irrigation on-farm water conservation	Part of LCRA-SAWS Plan. No cost applicable										\$ -
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	LCRA-SAWS: Rice irrigation delivery system water conservation	Part of LCRA-SAWS Plan. No cost applicable										\$ -
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	LCRA-SAWS: Develop water conserving rice variety	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$	- \$ -		\$ -	\$ -
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	Continuation of LCRA Water Management Plan for interruptible water	No change in usage. No cost associated	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$	- \$ -	-	\$ -	\$ -
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	Continued use of Austin return flows	No change in usage. No cost associated	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$	- \$ -		\$ -	\$ -
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	Continued use of Downstream return flows	No cost associated as this is simply a continuation of current practices										\$ -
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	HB-1437: Water conservation	Irrigation users will split 20% of capital cost of precision leveling. Split based on quantity of water received	\$ 1,863,134	\$ 1,863,134	\$ -	\$ -	\$ -	\$ - \$ 162	437 \$ 162,4	12,200	\$ 162,437	\$ 13.31
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	channel storage	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$	- \$ -		\$ -	\$ -
IRRIGATION	MATAGORDA	COLORADO	Supply Reduction due to LSWP	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$	- \$ -		\$ -	\$ -
IRRIGATION	MATAGORDA	COLORADO	Transfer supply to M&I	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$	- \$ -		\$ -	\$ -
IRRIGATION	MATAGORDA	COLORADO	irrigation	Part of LCRA-SAWS Plan. No cost applicable										\$ -
IRRIGATION	MATAGORDA	COLORADO	LCRA-SAWS: Rice irrigation on-farm water conservation	Part of LCRA-SAWS Plan. No cost applicable										\$ -
IRRIGATION	MATAGORDA	COLORADO	LCRA-SAWS: Rice irrigation delivery system water conservation	Part of LCRA-SAWS Plan. No cost applicable										\$ -
IRRIGATION	MATAGORDA	COLORADO	LCRA-SAWS: Develop water conserving rice variety	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$	- \$ -		\$ -	\$ -
IRRIGATION	MATAGORDA	COLORADO	Continuation of LCRA Water Management Plan for interruptible water	No change in usage. No cost associated	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$	- \$ -	-	\$ -	\$ -

WUG Name	County	River Basin	Water Management Strategy	Strategy Description	Total	Capital Cost	Total	Project Costs (\$)	Tota	al Annual Cost 2010 (\$)	Total	Annual Cost 2020 (\$)	Total	Annual Cost 2030 (\$)	Total	Annual Cost 2040 (\$)	Tota	ll Annual Cost 2050 (\$)	Total	l Annual Cost 2060 (\$)	Largest Firm Yield (ac-ft/yr)	Large Annual		Unit Cost (\$/ac-ft)
IRRIGATION	MATAGORDA	COLORADO	Continued use of Austin	No change in usage. No cost	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	(4.5 - 1 % -)	\$	-	\$ -
IRRIGATION	MATAGORDA	COLORADO	Continued use of Downstream return flows	No cost associated as this is simply a continuation of current practices																				\$ -
IRRIGATION	MATAGORDA	COLORADO	HB-1437: Water conservation	Irrigation users will split 20% of capital cost of precision leveling. Split based on quantity of water received	\$	30,543	\$	30,543	\$	-	\$		\$		\$	-	\$	-	\$	2,663	200	\$	2,663	\$ 13.31
IRRIGATION	MATAGORDA	COLORADO	Firm up RoR with off- channel storage																					\$ -
IRRIGATION	MATAGORDA	COLORADO- LAVACA		Part of LCRA-SAWS Plan. No cost applicable	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-		\$	-	\$ -
IRRIGATION	MATAGORDA	COLORADO- LAVACA	Transfer supply to M&I	Part of LCRA-SAWS Plan. No	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-		\$	-	\$ -
IRRIGATION	MATAGORDA	COLORADO- LAVACA	LCRA-SAWS: Develop the Gulf Coast aquifer for rice irrigation	Part of LCRA-SAWS Plan No.																				\$ -
IRRIGATION	MATAGORDA	COLORADO- LAVACA	LCRA-SAWS: Rice irrigation on-farm water conservation	Part of LCRA-SAWS Plan. No cost applicable																				\$ -
IRRIGATION	MATAGORDA	COLORADO- LAVACA	LCRA-SAWS: Rice irrigation delivery system water conservation	Part of LCRA-SAWS Plan. No cost applicable																				\$ -
IRRIGATION	MATAGORDA	COLORADO- LAVACA	LCRA-SAWS: Develop water conserving rice variety	Part of LCRA-SAWS Plan. No cost applicable	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-		\$	-	\$ -
IRRIGATION	MATAGORDA	COLORADO- LAVACA	Continuation of LCRA Water Management Plan for interruptible water	No change in usage. No cost associated	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	-	\$	-	\$ -
IRRIGATION	MATAGORDA	COLORADO- LAVACA	Continued use of Austin	No change in usage. No cost	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-		\$	-	\$ -
IRRIGATION	MATAGORDA	COLORADO- LAVACA	Continued use of Downstream return flows	No cost associated as this is simply a continuation of current practices																				\$ -
IRRIGATION	MATAGORDA	COLORADO- LAVACA	HB-1437: Water conservation	Irrigation users will split 20% of capital cost of precision leveling. Split based on quantity of water received	\$	1,313,357	\$	1,313,357	\$	-	\$	-	\$	-	\$	-	\$	-	\$	114,504	8,600	\$ 11-	1,504	\$ 13.31
IRRIGATION	MATAGORDA	COLORADO- LAVACA	Firm up RoR with off- channel storage																					
LIVESTOCK	MATAGORDA	COLORADO- LAVACA	Expand current Gulf Coast supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$	552,160	\$	585,290	\$	264,991	\$	264,991	\$	264,991	\$	264,991	\$	264,991	\$	264,991	56	\$ 26	1,991	\$ 4,731.98
MANUFACTURING	MATAGORDA	COLORADO	Temporary drought period use of Gulf Coast Aquifer	Temporary measure. Cost associated with additional pumping costs (energy costs)	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	1,758	47	\$	1,758	\$ 37.41
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	ROR Increase due to COA Return Flows	No cost associated	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-		\$	-	\$ -
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	Reduction in LCRA Commitment	No cost associated	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-		\$	-	\$ -
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	ROR Increase due to	No cost associated																				\$ -
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	Reduction in LCRA Commitment	No cost associated																				\$ -
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	New LCRA Contract	Purchase water from the LCRA					\$	-	\$	4,140,000	\$	4,140,000	\$	4,140,000	\$	4,140,000	\$	4,140,000	30,000	\$ 4,14	0,000	\$ 138.00
COUNTY-OTHER	MILLS	BRAZOS	Expand current Trinity supply	Expand groundwater pumping efforts through installation of new well(s)	\$	-			\$	-	\$	-	\$	-	\$	-	\$	37	\$	337	9	\$	337	\$ 37.41
COUNTY-OTHER	MILLS	COLORADO	Expand current Trinity supply	Expand groundwater pumping efforts through installation of new well(s)	\$	-			\$	-	\$	-	\$	-	\$	-	\$	1,496	\$	1,945	52	\$	1,945	\$ 37.41

WUG Name	County	River Basin	Water Management Strategy	Strategy Description	Tota	l Capital Cost		roject Costs (\$)	Total	Annual Cost 2010 (\$)	Total	Annual Cost 2020 (\$)	2	nnual Cost (030 (\$)	Total Annual Cos 2040 (\$)	2	nnual Cost 2050 (\$)	Total .	Annual Cost 2060 (\$)	Largest Firm Yield (ac-ft/yr)	Largest Annual Cost (\$)	nit Cost (\$/ac-ft)
GOLDTHWAITE	MILLS	BRAZOS	Conservation	Reduction of municipal water demand through municipal conservation	\$	-	\$	-	\$	592	\$	592	\$	592	\$ -	\$	-	\$	-	1	\$ 592	\$ 591.69
GOLDTHWAITE	MILLS	BRAZOS	Expand current Trinity supply	See Goldthwaite-Mills-Colorado for costs. No additional for this basin	\$	-															\$ -	\$ -
GOLDTHWAITE	MILLS	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$	-	\$	-	\$	27,218	\$	30,768	\$	27,218	\$ 23,660	\$ \$	21,301	\$	21,301	52	\$ 30,768	\$ 591.69
GOLDTHWAITE	MILLS	COLORADO	Expand current Trinity supply (from Brazos basin)	See Goldthwaite-Mills-Colorado for costs. No additional costs	\$	-	\$	-										\$	-		\$ -	\$ -
GOLDTHWAITE	MILLS	COLORADO	Expand current Trinity supply	Expand groundwater pumping efforts through installation of new well(s)	\$	1,352,960	\$	1,903,826	\$	233,664	\$	231,381	\$	225,960	\$ 225,960	\$	239,228	\$	233,949	325	\$ 239,228	\$ 736.09
GOLDTHWAITE	MILLS	COLORADO	Construct Goldthwaite channel dam	Construction of a low dam approx. 300' downstream of the City of Goldthwaite's existing intake structure on the Colorado	\$	1,405,950	\$	2,495,692	\$	317,203	\$	317,203	\$	317,203	\$ 317,200	\$ \$	317,203	\$	317,203	-	\$ 317,203	NA
IRRIGATION	MILLS	BRAZOS	Expand current Trinity supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$	-	\$	-	\$	6,733	\$	6,471	\$	6,883	\$ 6,62	\$	7,219	\$	6,957	193	\$ 7,219	\$ 37.41
IRRIGATION	MILLS	COLORADO	Expand current Trinity supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$,	\$	-	\$	4,077	\$	3,815	\$	2,132	\$ 11:	2 \$	-	\$		109	\$ 4,077	\$ 37.41
IRRIGATION	MILLS	COLORADO	Allocate water from County- Other	No cost associated due to re- allocation of supply. See text.																		\$ -
MANUFACTURING	MILLS	COLORADO	Allocate water from Mills County - Other	No cost associated due to re- allocation of supply. See text.																		\$ -
RICHLAND SUD	SAN SABA	COLORADO		Reduction of municipal water demand through municipal conservation	\$	-	\$	-	\$	7,692	\$	5,325	\$	- :	\$ -	\$	-	\$	592	13	\$ 7,692	\$ 591.69
AUSTIN	TRAVIS	COLORADO	COA reuse	City of Austin reclaimed water initiative to provide reclaimed water to meet non-potable water demands	\$	302,250,510	\$ 4	429,195,724	\$	4,376,693	\$	11,590,620	\$ 1	18,787,527	\$ 25,758,600	3 \$ 3	30,821,518	\$	34,438,268	40,468	\$ 34,438,268	\$ 851.00
AUSTIN	TRAVIS	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation					\$	5,569,268	\$	3,920,704	\$	2,646,286	\$ 681,13	\$	2,532,679	\$	3,013,867	11,030	\$ 5,569,268	\$ 504.92
AUSTIN	TRAVIS	COLORADO	ROR Increase due to COA Return Flows	No cost associated	\$	-	\$	-	\$	-	\$	-	\$	- :	\$ -	\$	-	\$	-		\$ -	\$ -
AUSTIN	TRAVIS	COLORADO	Reduction in LCRA Commitment	No cost associated	\$	-	\$	-	\$	-	\$	-	\$	- :	\$ -	\$	-	\$	-		\$ -	\$ -
AUSTIN	TRAVIS	COLORADO	ROR Increase due to downstream Return Flows	No cost associated																		\$ -
AUSTIN	TRAVIS	COLORADO	Reduction in LCRA Commitment	No cost associated																		\$ -
BARTON CREEK WEST WSC	TRAVIS	COLORADO		Reduction of municipal water demand through municipal conservation	\$	-	\$	-	\$	20,289	\$	16,999	\$	15,902	\$ 14,25	\$	13,160	\$	8,774	37	\$ 20,289	\$ 548.34
BARTON CREEK WEST WSC	TRAVIS	COLORADO	Purchase additional water from West Travis County RWS (Amend contract with LCRA)	Purchase water from the LCRA	\$		\$	-	\$	2,208	\$	-	\$	- :	\$ -	\$	-	\$	-	16	\$ 2,208	\$ 138.00
BEE CAVE VILLAGE	TRAVIS	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$	-	\$	-	\$	58,125	\$	77,317	\$	93,219	\$ 100,34	\$	97,605	\$	102,540	187	\$ 102,540	\$ 548.34
BEE CAVE VILLAGE	TRAVIS	COLORADO	Purchase additional water from West Travis County RWS (Amend contract with LCRA)	Purchase water from the LCRA	\$	-	\$	-	\$	114,540	\$	127,650	\$	136,482	\$ 140,070	\$	136,620	\$	132,204	1,015	\$ 140,070	\$ 138.00

WUG Name	County	River Basin	Water Management Strategy	Strategy Description	Total Capital Cost (\$)	Total Project Costs (\$)	Total Annual Cost 2010 (\$)	Total Annual Cos 2020 (\$)	Total Annual Cost 2030 (\$)	Total Annual Cost 2040 2050 (\$) (\$)	Total Annual Cost 2060 (\$)	Largest Firm Yield (ac-ft/yr)	Largest Annual Cost (\$)	Unit Cost (\$/ac-ft)
BRIARCLIFF VILLAGE	TRAVIS	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$ -	\$ -	\$ 8,774	\$ 12,612	\$ 12,064	\$ 2,742 \$ 2,1	3 \$ 2,742	23	\$ 12,612	\$ 548.34
BRIARCLIFF	TRAVIS	COLORADO	Amend contract with	Purchase water from the LCRA	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 2,898 \$ 6,4	66 \$ 10,212	74	\$ 10,212	\$ 138.00
CREEDMOOR-MAHA WSC	TRAVIS	COLORADO	New LCRA Contract	Purchase water from the LCRA	\$ -	\$ -	\$ -	\$ 59,478	\$ 75,624	\$ 87,216 \$ 98,6	70 \$ 111,366	807	\$ 111,366	\$ 138.00
ELGIN	TRAVIS	COLORADO	Expand current Carrizo- Wilcox supply (Bastrop County)	Expand current groundwater pumping efforts through increased pumping rates or new well(s). See costs for Elgin Bastrop Colorado Basin. No additional costs	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$	\$7 \$ 112	3	\$ 112	\$ 37.41
GOFORTH WSC	TRAVIS	COLORADO	Transfer water from	No cost. Transfer of water within	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$ -	\$ -		\$ -	\$ -
JONESTOWN	TRAVIS	COLORADO	Goforth WSC in Region L Amend contract with LCRA	Purchase water from the LCRA	\$ -	\$ -	\$ 17,802	\$ 32,154	\$ 45,402	\$ 57,408 \$ 66,3	76,452	554	\$ 76,452	\$ 138.00
LAKEWAY	TRAVIS	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$ -	\$ -	\$ 217,144	\$ 297,203	\$ 351,489	\$ 393,711 \$ 394,8	8 \$ 410,162	748	\$ 410,162	\$ 548.34
LAKEWAY	TRAVIS	COLORADO	Amend contract with LCRA	Purchase water from the LCRA	\$ -	\$ -	\$ 177,330	\$ 231,150	\$ 266,892	\$ 281,658 \$ 281,6	8 \$ 281,658	2,041	\$ 281,658	\$ 138.00
MANOR	TRAVIS	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation			\$ 55,931	\$ 72,930	\$ 86,638	\$ 53,189 \$ 17,5	\$ 19,192	158	\$ 86,638	\$ 548.34
MANOR	TRAVIS	COLORADO	New LCRA Contract	I dienase water nom the Bortin	\$ -	· ·	•	\$ 97,290				1,160		
MANVILLE WSC PFLUGERVILLE	TRAVIS TRAVIS	COLORADO	New LCRA Contract Conservation	Purchase water from the LCRA Reduction of municipal water demand through municipal	\$ - \$ -	\$ - \$ -	\$ - \$ 296,654	\$ - \$ 113,507	\$ 114,678 \$ 33,997		2 \$ 418,692 32 \$ 38,932	3,034 541	\$ 418,692 \$ 296,654	
PFLUGERVILLE	TRAVIS	COLORADO	Amend contract with LCRA	conservation Renew contract with LCRA - WUG exists in several counties, contract amount split based on	\$ -	\$ -	\$ -	\$ -	\$ -		4 \$ 137,310	995	\$ 137,310	
RIVER PLACE ON LAKE AUSTIN	TRAVIS	COLORADO	Conservation	demands of each Reduction of municipal water demand through municipal conservation	\$ -	\$ -	\$ 72,381	\$ 89,380	\$ 74,575	\$ 64,705 \$ 61,4	.5 \$ 55,383	163	\$ 89,380	\$ 548.34
RIVER PLACE ON LAKE AUSTIN	TRAVIS	COLORADO	Amend contract with LCRA	Purchase water from the LCRA	\$ -	\$ -	\$ 60,444	\$ 72,864	\$ 54,096	\$ 36,984 \$ 21,5	8 \$ 7,590	528	\$ 72,864	\$ 138.00
ROLLINGWOOD	TRAVIS	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$ -	\$ -	\$ 16,999	\$ 15,902	\$ 13,709	\$ 13,160 \$ 12,6	2 \$ 6,032	31	\$ 16,999	\$ 548.34
ROLLINGWOOD	TRAVIS	COLORADO	New LCRA Contract	Purchase water from the LCRA	\$ -	\$ -	\$ -	\$ 51,474	\$ 51,474	\$ 51,474 \$ 51,4	4 \$ 51,474	373	\$ 51,474	\$ 138.00
ROUND ROCK	TRAVIS	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$ -	\$ -	\$ 16,157	\$ 30,800	\$ 43,423	\$ 32,315 \$ 17,10	\$ 17,672	86	\$ 43,423	\$ 504.92
ROUND ROCK	TRAVIS	COLORADO	HB 1437 - Region G	Farm and irrigation conservation. The conserved water can be utilized by some municipal users.	\$ -	\$ -	\$ 21,735	\$ 42,435	\$ 60,203	\$ 73,485 \$ 92,4	50 \$ 111,263	645	\$ 111,263	\$ 172.50
TRAVIS COUNTY WCID #18	TRAVIS	COLORADO	Amend contract with LCRA	Purchase water from the LCRA	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 552 \$ 18,6	39,054	283	\$ 39,054	\$ 138.00
WEST LAKE HILLS	TRAVIS	COLORADO	Conservation	Reduction of municipal water demand through municipal conservation	\$ -	\$ -	\$ 76,220	\$ 89,928	\$ 105,282	\$ 99,799 \$ 105,8	60 \$ 111,862	204	\$ 111,862	\$ 548.34
WEST LAKE HILLS	TRAVIS	COLORADO	New LCRA Contract	Purchase water from the LCRA	\$ -	\$ -	\$ -	\$ 252,954	\$ 282,762	\$ 300,564 \$ 320,1	60 \$ 340,998	2,471	\$ 340,998	\$ 138.00
WEST TRAVIS COUNTY REGIONAL WS	TRAVIS	COLORADO		Reduction of municipal water demand through municipal conservation	\$ -	\$ -	\$ 9,322	\$ -			\$ -	17	\$ 9,322	\$ 548.34
WINDERMERE UTILITY COMPANY	TRAVIS	COLORADO	New LCRA Contract	Purchase water from the LCRA	\$ -	\$ -	\$ -	\$ 306,636	\$ 303,738	\$ 300,840 \$ 300,8	300,840	2,222	\$ 306,636	\$ 138.00
IRRIGATION	TRAVIS	GUADALUPE	Allocate from Irrigation (Colorado basin)	Additional supply taken from local irrigation surface water supply (stock ponds). No costs as irrigation ditches already in place.	\$ -	s -	\$ -	\$ -	\$ -	s - s -	\$ -		\$ -	\$ -

WUG Name	County	River Basin	Water Management Strategy	Strategy Description	Total Capital Cost (\$)	Total Project Costs (\$)	Total Annual Co 2010 (\$)	Total Annu 2020 (\$))	Total Annual Cost 2030 (\$)	Total Annual Cost 2040 (\$)	Total Annual Cost 2050 (\$)	Total Annual (2060 (\$)	Cost Largest Firm Yield (ac-ft/yr)	Larges Annual (Unit Cost (\$/ac-ft)
MANUFACTURING	TRAVIS	COLORADO	Water from City of Austin	Part of the COA system, no cost associated											\$	-	\$ -
STEAM ELECTRIC POWER	TRAVIS	COLORADO	COA Reuse	Costs shown as part of Austin- Travis-Colorado reuse strategy ABOVE	\$ -	\$ -	\$ 1,970,06	5 \$ 2,8	321,065	\$ 6,225,065	\$ 7,076,065	\$ 10,480,065	\$ 11,331,	065 13,315	\$ 11,331	,065	\$ 851.00
STEAM ELECTRIC POWER	TRAVIS	COLORADO	Reduction in LCRA Commitment	Reduction of LCRA commitment assumes no cost	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -
WHARTON	WHARTON	COLORADO		Reduction of municipal water demand through municipal conservation	\$ -	\$ -	\$ 24,25	\$	-	\$ -	\$ -	\$ -	\$	- 41	\$ 24	,259	\$ 591.69
IRRIGATION	WHARTON	BRAZOS- COLORADO	Supply Reduction due to LSWP	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -
IRRIGATION	WHARTON	BRAZOS- COLORADO	Transfer supply to M&I	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -
IRRIGATION	WHARTON	BRAZOS- COLORADO	LCRA-SAWS: Develop the Gulf Coast aquifer for rice irrigation	Part of LCRA-SAWS Plan. No cost applicable													\$ -
IRRIGATION	WHARTON	BRAZOS- COLORADO	LCRA-SAWS: Rice irrigation on-farm water conservation	Part of LCRA-SAWS Plan. No cost applicable													\$ -
IRRIGATION	WHARTON	BRAZOS- COLORADO	LCRA-SAWS: Rice irrigation delivery system water conservation	Part of LCRA-SAWS Plan. No cost applicable													\$ -
IRRIGATION	WHARTON	BRAZOS- COLORADO	LCRA-SAWS: Develop water conserving rice variety	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -
IRRIGATION	WHARTON	BRAZOS- COLORADO	Continuation of LCRA Water Management Plan for interruptible water	No change in usage. No cost associated	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -
IRRIGATION	WHARTON	BRAZOS- COLORADO	Continued use of Austin return flows	No change in usage. No cost associated	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -
IRRIGATION	WHARTON	BRAZOS- COLORADO	Continued use of Downstream return flows	No cost associated as this is simply a continuation of current practices													\$ -
IRRIGATION	WHARTON	BRAZOS- COLORADO	HB-1437: Water	Irrigation users will split 20% of capital cost of precision leveling. Split based on quantity of water received.	\$ 549,777	\$ 549,777	\$ 47,93	2 \$	47,932	\$ 47,932	\$ 47,932	\$ 47,932	\$ 47,	932 3,600	\$ 47	,932	\$ 13.31
IRRIGATION	WHARTON	COLORADO	Supply Reduction due to LSWP	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -
IRRIGATION	WHARTON	COLORADO	Transfer supply to Maxi	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -
IRRIGATION	WHARTON	COLORADO	LCRA-SAWS: Develop the Gulf Coast aquifer for rice irrigation	Part of LCRA-SAWS Plan. No cost applicable													\$ -
IRRIGATION	WHARTON	COLORADO	LCRA-SAWS: Rice irrigation on-farm water conservation	Part of LCRA-SAWS Plan. No cost applicable													\$ -
IRRIGATION	WHARTON	COLORADO	LCRA-SAWS: Rice irrigation delivery system water conservation	Part of LCRA-SAWS Plan. No cost applicable													\$ -
IRRIGATION	WHARTON	COLORADO	LCRA-SAWS: Develop water conserving rice variety	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -
IRRIGATION	WHARTON	COLORADO	Continuation of LCRA Water Management Plan for interruptible water	No change in usage. No cost associated	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -
IRRIGATION	WHARTON	COLORADO		No change in usage. No cost associated	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -
IRRIGATION	WHARTON	COLORADO	Continued use of Downstream return flows	No cost associated as this is simply a continuation of current practices													\$ -
IRRIGATION	WHARTON	COLORADO	HB-1437: Water	Irrigation users will split 20% of capital cost of precision leveling. Split based on quantity of water received	\$ 30,543	\$ 30,543	\$ 2,66	\$	2,663	\$ 2,663	\$ 2,663	\$ 2,663	\$ 2,	663 200	\$ 2	,663	\$ 13.31

REGION K WMS COST BREAKDOWN All Calculated Costs Based on September 2008 \$

WUG Name	County	River Basin	Water Management Strategy	Strategy Description	Total Capital Cost (\$)	Total Project Co	osts	Γotal Annual Cost 2010 (\$)	Total	Annual Cost 2020 (\$)	Total	Annual Cost 2030 (\$)	Tota	al Annual Cost 2040 (\$)	Total Annual Cos 2050 (\$)	t Tot	tal Annual Cost 2060 (\$)	Largest Firm Yield (ac-ft/yr)	Largest Annual Cost (\$)	it Cost /ac-ft)
IRRIGATION	WHARTON	COLORADO- LAVACA	Supply Reduction due to LSWP	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$	- :	\$ -	\$	-	\$	-	\$	-	\$ -	\$	-		\$ -	\$ -
IRRIGATION	WHARTON	COLORADO- LAVACA	Transfer supply to M&I	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$	- :	\$ -	\$	-	\$	-	\$	-	\$ -	\$	-		\$ -	\$ -
IRRIGATION	WHARTON	COLORADO- LAVACA	LCRA-SAWS: Develop the Gulf Coast aquifer for rice irrigation																	\$ -
IRRIGATION	WHARTON	COLORADO- LAVACA	LCRA-SAWS: Rice irrigation on-farm water conservation	Part of LCRA-SAWS Plan. No cost applicable																\$ -
IRRIGATION	WHARTON	COLORADO- LAVACA	LCRA-SAWS: Rice irrigation delivery system water conservation	Part of LCRA-SAWS Plan. No cost applicable																\$ -
IRRIGATION	WHARTON	COLORADO- LAVACA	LCRA-SAWS: Develop water conserving rice variety	Part of LCRA-SAWS Plan. No cost applicable	\$ -	\$	- :	\$ -	\$	-	\$	-	\$	-	\$ -	\$	-		\$ -	\$ -
IRRIGATION	WHARTON	COLORADO- LAVACA	Continuation of LCRA Water Management Plan for interruptible water	No change in usage. No cost associated	\$ -	\$	- :	\$ -	\$	-	\$	-	\$	-	\$ -	\$			\$ -	\$ -
IRRIGATION	WHARTON	COLORADO- LAVACA	Continued use of Austin return flows	No change in usage. No cost associated	\$ -	\$	- :	\$ -	\$	-	\$	-	\$	-	\$ -	\$	-		\$ -	\$ -
IRRIGATION	WHARTON	COLORADO- LAVACA	Continued use of Downstream return flows	No cost associated as this is simply a continuation of current practices																\$ -
IRRIGATION	WHARTON	COLORADO- LAVACA	HB-1437: Water conservation	Irrigation users will split 20% of capital cost of precision leveling. Split based on quantity of water received	\$ 30,543	\$ 30	,543	\$ 2,663	\$	2,663	\$	2,663	\$	2,663	\$ 2,663	\$ \$	2,663	200	\$ 2,663	\$ 13.31
MANUFACTURING	WHARTON	COLORADO- LAVACA	Expand current Gulf Coast supply	Expand current groundwater pumping efforts through increased pumping rates or new well(s)	\$ -	\$	- :	\$ -	\$	-	\$	-	\$	-	\$ -	\$	299	8	\$ 299	\$ 37.41
STEAM ELECTRIC POWER	WHARTON	BRAZOS- COLORADO	New well field in Gulf Coast	Expand groundwater pumping efforts through installation of new well(s)	\$ 164,000	\$ 247	,800									\$	30,825	82	\$ 30,825	\$ 375.92
VARIOUS	N/A	N/A	Reuse by Highland Lakes Communities	LCRA WWP strategy	\$ 15,920,000	\$ 25,675	,000		\$	275,000	\$	1,100,000	\$	2,750,000	\$ 2,750,000	\$	2,750,000	5,000	\$ 2,750,000	\$ 550.00

List of assumptions/methodology for strategy cost development

Expansion of Groundwater

All costs based on or converted to September 2008 \$

Assumed that any need less than 1/4 mgd could be met by additional pumping w/o need for additional wells for all WUGs except Livestock

For these WUGS, only the increased Annual Energy Cost was assumed to be required for providing the water. (livestock received 1 well per ac-ft/yr needed)

Capital Costs Assumed

Probable capacity (mgd) of well to be installed based on location and aquifer (see table below) Wells -

Assumed well runs 24hrs a day at 80% efficiency

Number of wells anticipated to be installed based on each well's production (@ 80% efficiency) and the largest quantity of water supplied (ac-ft/yr) by the strategy over the planning period,

times a factor of two for peak demands.

Quantity includes any amounts supplied to different WUG(s), if applicable

Assumed well diameter based on assumed capacity and guidance from Randy Williams Depth assumed using guidance from Randy Williams based on location and aquifer

Cost determined by using \$41/in-ft - assumed to include all installation, clorination, and pump

Different assumptions used for livestock WUGs

Number wells based on 1ac-ft/yr per well and largest quantity of water supplied (ac-ft/yr) by the strategy over the planning period

8" well diameter assumed (not used in cost calculation)

Cost determined using \$9860 per well - assumed to include all installation, treatment, pump

Transmission Line- Assumed 1/2 mile transmission line for each well needed to connect to existing system Max flow in line taken from the largest quantity of water supplied, value converted to cfs

Velocity in line assumed to be 5 ft/s

Calculate cross-sectional area of line based on max flow and assumed velocity.

Calculate required diameter based on circular pipe

Smallest possible diameter allowed = 6". Rounded required diameter up nearest readily available

Unit cost of X" diameter pipe taken from 2nd Q 2002 value provided by Region H, converted to September 2008 \$

Cost based on length of 1/2 mile, multiplied by the unit cost, multiplied by the number of wells

required from well calc sheet

Different assumptions used for livestock WUGs

No transmission line assumed for livestock WUGs

Project Costs Assumed

Engineering, etc -

35% of the total capital cost

Environmental, etc - Assumed to be equal to the land acquisition cost.

Assumption borrowed from San Marcos Water Supply Master Plan (SMWSMP)

Land acquisition -

Assumed 1 acre per well, at \$5,000/acre

Interest Earned -Interest Accrued -

Assumes 4% interest and uses an assumed construction time of 1 year Assumes 6% interest and uses an assumed construction time of 1 year

Different assumptions used for livestock WUGs

No Project Costs assumed for livestock WUGs

Annual Costs Assumed

Term of Debt -

20 years assumed for this strategy. Conforms with Exhibit B

O&M -

Calculated as 4% of well costs and 1% of transmission/distribution pipe costs plus a 15% contingency

Pumping Water

Level Distance -

Pumping lift from table below, based on location and aquifer PLUS five feet for every 1000' of

transmission pipe required

Annual Energy Cost Calculated based on the max. quantity of water (ac-ft/yr) provided over the planning period, the

pumping distance, and \$0.09/kWh*

Unit Cost - Based on the largest quantity of water (ac-ft/yr) provided by the strategy (per decade)

and the largest annual cost over the planning period (per decade)

Different assumptions used for livestock WUGs

Term of Debt at 5 years.

*Annual Energy Conversion: acft/yr * 325851 = gal/yr; gal/yr * 8.34 = lb(water)/yr; lb(water/yr*head(ft) = lb-ft/yr; $lb-ft/yr * 3.766x10^-7 = kWh/yr$

Well assumptions

	,	Well capacity	•		Pumping water level
County	Aquifer	(MGD)	Depth (ft)	Diameter (in)	height
Bastrop	Carrizo-Wilcox	1.5	500	16	200
Bastrop	Sparta	0.2	300	6	50
Bastrop	Queen City	0.75	500	16	100
Bastrop	other (alluvial)	0.75	100	10	20
	Ellenburger-				
Blanco	San Saba	0.1	200	6	100
Burnet	Trinity	0.2	500	8	350
Burnet	Marble Falls	0.25	500	8	200
Colorado	other (alluvial)	0.75	100	10	20
Colorado	Gulf Coast	0.5	500	8	200
Fayette	Gulf Coast	0.5	500	8	200
Fayette	other (alluvial)	0.75	100	10	20
Hays	Trinity	0.2	500	8	200
Hays	Edwards BFZ	0.5	400	8	200
	Ellenburger-				
Llano	San Saba	0.1	600	6	200
Mills	Trinity	0.04	500	8	200

New Well or Well Field

All costs based on or converted to September 2008 \$

Capital Costs Assumed

Wells - Probable capacity (mgd) of well to be installed from Randy Williams based on location and aquifer

Assumed well runs 24hrs a day at 80% efficiency

Number of wells anticipated to be installed based on each well's production (@ 80% efficiency) and the largest quantity of water supplied (ac-ft/yr) by the strategy over the planning period, times a

factor of two for peak demands.

Quantity includes any amounts supplied to different WUG(s), if applicable

Assumed well diameter based on assumed capacity and guidance from Randy Williams Depth assumed using guidance from Randy Williams based on location and aquifer Cost determined by using \$41/in-ft - assumed to include all installation and pump

Transmission Line - Assumed 1/2 mile transmission line for each well needed to connect to existing system

Max flow in pipe taken from the largest quantity of water supplied, value converted to cfs

Velocity in line assumed to be 5 ft/s

Calculate cross-sectional area of line based on max flow and assumed velocity.

Calculate required diameter based on circular pipe

Smallest possible diameter allowed = 6". Rounded required diameter up nearest readily available

pipe size

Unit cost of X" diameter pipe taken from 2nd Q 2002 value provided by Region H

Cost based on length of 1/2 mile, multiplied by the unit cost, multiplied by the number of wells

required from well calc sheet

Distribution Line - Assumed 5 mile distribution pipe to transport water from pump station to treatment plant.

Assume just one pipe

Max flow in pipe taken from the largest quantity of water supplied, multiplied by 2 to account for

peak - value converted to cfs Velocity in line assumed to be 5 ft/s

Calculate cross-sectional area of line based on max flow and assumed velocity.

Calculate required diameter based on circular pipe

Smallest possible diameter allowed = 6". Rounded required diameter up nearest readily available

pipe size

Unit cost of X" diameter pipe taken from 2nd Q 2002 value provided by Region H, converted to September 2008 \$

Cost based on length of 5 miles, multiplied by the unit cost

Pump Station - Cost estimate based on \$197,226/MGD, taken from 2006 Region K Water Plan and adjusted to Sept 2008 costs

Value converted to \$/ac-ft/yr and multiplied by the largest supply provided

Project Costs Assumed

Engineering, etc - 35% of the total capital cost

Environmental, etc - Assumed to be equal to the land acquisition cost. Assumption borrowed from San Marcos Water

Supply Master Plan (SMWSMP)

Land acquisition - Assumed 5 acres for pump station PLUS 1 acre per well, at \$5,000/acre

Interest Earned - Assumes 4% interest and uses an assumed construction time of 1 year

Interest Accrued - Assumes 6% interest and uses an assumed construction time of 1 year

Annual Costs Assumed

Term of Debt - 20 years assumed for this strategy. Conforms with Exhibit B

O&M - Calculated as 4% of well costs, 2.5% of pump station costs, and 1% of transmission/distribution pipe

costs plus a 15% contingency

Pumping Water

Level Distance - Pumping lift from table below, based on location and aquifer

PLUS five feet for every 1000' of transmission pipe required PLUS 100' to storage tank

Annual Energy

Cost- Calculated based on the max. quantity of water (ac-ft/yr) provided over the planning period,

the pumping distance, and \$0.09/kWh*

Unit Cost - Based on the largest quantity of water (ac-ft/yr) provided by the strategy (per decade)

and the largest annual cost over the planning period (per decade)

*Annual Energy Conversion: acft/yr * 325851 = gal/yr; gal/yr * 8.34 = lb(water)/yr; lb(water/yr*head(ft) = lb-ft/yr; lb-ft/yr * $3.766 \times 10^{\text{-}} - 7 = \text{kWh/yr}$

Well assumptions

	V	Vell capacity	•		
County	Aquifer	(MGD)	Depth (ft)	Diameter (in)	Pumping water level height
Bastrop	Carrizo-Wilcox	1.5	500	16	200
Bastrop	other (alluvial)	0.75	100	10	20
Burnet	Trinity	0.2	500	8	350
Burnet	Marble Falls	0.25	500	8	200
Colorado	other (alluvial)	0.75	100	10	20
Colorado	Gulf Coast	0.5	500	8	200
Fayette	Gulf Coast	0.5	500	8	200
Fayette	other (alluvial)	0.75	100	10	20
Hays	Trinity	0.2	500	8	200
Hays	Edwards BFZ	0.5	400	8	200
	Ellenburger-				
Llano	San Saba	0.1	600	6	200
Mills	Trinity	0.04	500	8	200

Municipal Conservation

Strategy breaks costs down into two savings categories - plumbing fixture repairs and irrigation upgrades

The costs per family for achieving savings in these two categories is different for Urban,

Suburban, and Rural WUG type classifications

The percentage of water conserved between the two savings categories was applied to the costs for each, to develop a composite unit cost for each WUG type

Annual Costs Assumed

Unit Cost - \$591.69/acft for Rural users, \$548.34/acft for Suburban users, \$504.92/acft for Urban users

Total Annual Cost - Based on the amount of water conserved mulitplied by the unit cost for that WUG type

A 3% annual increase was applied to 2nd gtr 2002 costs

Purchase Water

Costs updated to current water purchase prices (2009)

Annual Costs Assumed

Unit Cost - Based on water purchase price from the major water provided (LCRA - \$138/acft, COA - \$990.71/acft)

Total Annual Cost Based on the amount of water needed mulitplied by the unit cost

House Bill 1437 - Municipal Users

Costs updated to current water purchase prices (2009)
For municipal users, the strategy simply involves the purchase of conserved LCRA water at a 25% premium Assumes that users have treatment capacity for additional water

Annual Costs Assumed

Unit Cost - \$138/acft increased by 25% - Total of \$172.50/ac-ft

Total Annual Cost - Based on the amount of water supplied mulitplied by the unit cost

House Bill 1437 - Irrigation Users

For irrigation users in Region K, the strategy involves a WUG contribution totalling 20% of the Precision Leveling Construction Cost

 2nd Q 2002 value:
 \$14,518,454

 CCI Factor (2008/2002):
 1.31484327

 September 2008 value:
 \$19,089,492

Capital Costs Assumed

Precision Leveling The total Region K irrigation WUG contribution was split between WUGs.

Split based on the quantity of supply provided to that WUG

For WUGs whose supply provided varies over each decade, the largest supply

provided was used to determine the cost for that WUG.

Annual Costs Assumed

Term of Debt - 20 years assumed for this strategy.

O&M - none

Unit Cost - Based on the largest quantity of water (ac-ft/yr) provided by the strategy

(per decade) and the largest annual cost over the planning period (per decade)

Purchase Water from City of Austin for Hays County

Capital Costs Assumed

Project Costs Assumed

ALL CAPITAL AND PROJECT COSTS PROVIDED AS ONE VALUE FROM THE COA. Costs converted to September 2008 \$

Annual Costs Assumed

Term of Dc30 years assumed for this strategy. Conforms with Exhibit B

O&M - Assumed to be equal to the O&M cost provided by the COA, converted to September 2008 \$

Purchase

of water Dollar amount provided by the COA

Unit Cost - Based on the largest quantity of water (ac-ft/yr) provided by the strategy (per decade) and the largest annual cost over the planning period (per decade)

Construct Goldthwaite Channel Dam

Capital Costs Assumed

Capital construction cost taken from the old Region K Plan, increased Reservoir Construction -

to September 2008 \$

Project Costs Assumed

35% of the total capital cost Engineering, etc -

Environmental, etc -Assumed to be equal to the environmental cost from the old Region K Plan, increased

to Septmber 2008 \$

Land acquisition -Assumed to be equal to the land acquisition cost from the old Region K Plan, increased

to Septmber 2008 \$

Interest Earned -Assumes 4% interest and uses an assumed construction time of 5 years Interest Accrued -

Assumes 6% interest and uses an assumed construction time of 5 year

Annual Costs Assumed

40 years assumed for this strategy. Conforms with Exhibit B Term of Debt -

Assumed to be equal to the O&M cost from the old Region K Plan, increased to O&M -

September 2008 \$

Treatment at Existing

Facility Assumed to be equal to the cost from the old Region K Plan, increased to

September 2008 \$

Unit Cost -Based on the largest quantity of water (ac-ft/yr) provided by the strategy (per decade)

and the largest annual cost over the planning period (per decade)

City of Elgin Costs

Purchase Water from LCRA with Construction of a Surface Water Treatment Plan

Costs based on September 2008 \$

Probable Construction Costs

Item	Cost
Treatment Plant	\$9,407,000
Transmission Pump Stations (2)	\$1,066,000
Transmission Pipeline (12 in. dia., 17 miles total)	\$7,083,000
TOTAL	\$17,556,000

Probable Capital Costs

Item	Cost
Construction (Capital) Cost	\$17,556,000
Engineering, Legal, and Contingencies	\$5,541,000
Land Acquisition and Environmental Studies	\$180,000
Interest During Construction (1 year)	\$268,000
TOTAL	\$23,545,000

Annual Costs

Item	Cost
Debt Service	\$2,053,000
Operation and Maintenance:	
Treatment Plant	\$749,066
Transmission Pump Station	\$36,000
Transmission Pipeline (? in. dia., ? miles)	\$93,000
	\$0
Purchased water	\$414,000
Energy Cost	\$80,000
TOTAL	\$3,425,066

Yield and Unit Cost

Item	Value
Project Yield (ac-ft/yr)	3,000
Annual Cost Per Ac-Ft	\$1,142
Annual Cost Per 1,000 gallons	\$3.50

REGION K EDWARDS-BFZ BRACKISH DESAL COST SUMMARY

Description	Capital Cost	O&M
Water Plant	\$16,735,000	\$3,988,000
Wells	\$1,502,365	\$390,386
Well Collection Lines	\$427,700	\$4,277
Pump Station	\$2,442,000	\$61,000
Line to Distribution	\$496,600	\$4,966
Brine Disposal	\$5,763,680	\$86,455
Int. During Constr.	\$314,778	\$0
TOTALS:	\$27,682,123	\$4,535,084

2,867,489 x1000 gal/yr \$2.42 per 1000 gal

8,800 ac-ft \$790 per ac-ft

Debt Service: \$2,413,454 Annual Cost: \$6,948,538

			Wat	er Mana	agemen	t Strate	gy (ac-f	t/yr)	Project	Annual	Capital
WUG	County	River Basin	2010	2020	2030	2040	2050	2060	Cost	Cost	Cost
Buda	Hays	Colorado						500	\$1,949,445	\$489,334	\$1,391,124
Cimarron Park Water											
Company	Hays	Colorado			250	350	500	600	\$2,339,334	\$587,200	\$1,669,349
County-Other	Hays	Colorado			2,500	2,500	5,000	6,000	\$23,393,343	\$5,872,004	\$16,693,491

					ī	
Plant Capacity:		•			yrs	
	9.9 m	nga int	Rate:	6.0%		
CCIs:	Aug-00	6233	Jun-02	6532	2nd Qtr 2002	6508
	Sep-08	8557	Sep-08	8557	Sep-08	8557
	Factor:	1.37	Factor:	1.31	Factor:	1.31
Water Treatment Plant (S	ep-2008 Costs)				Yr 2000 Trtmt Pint	Costs from HDR Report
Plant Construction:	\$12,396,000				Capacity (mgd)	Cost
Eng, Legal, & Cont (35%):	\$4,339,000				0.1	\$478,000
Total Project Cost:	\$16,735,000				0.5	\$1,077,000
					1	\$1,823,000
O&M Cost / 1000 gal:	\$1.10				3	\$3,946,000
Annual O&M Cost:	\$3,988,000				5	\$5,718,000
					10	\$9,097,000
Wells					Yr 2000 O&M Co	sts from HDR Report
Number Wells:	23				Capacity (mgd)	Cost per 1000 gal
Well Capacity (gpm):	750				0.1	1.32
Casing Dia (in):	12				0.5	1.30
Depth to Hydrostatic LvI (ft):	300	(confined w	/ large pressurizi	ing head)	1	1.25
Well Depth (ft):	1,000				3	1.12
					5	1.00
Construction Cost:	\$260,365	(per TWDB	GW Desal cost e	eq'n)	10	0.80
Eng, Legal, & Cont (35%):	\$92,000					
Land Cost:	\$575,000	(5 ac/well x	\$5k/ac)			
Env. Cost:	\$575,000	(= land cost)			3,198,414
Total Cost:	\$1,502,365					3,998,017
						\$359,822
O&M Cost / 1000 gal:	\$0.40					
Annual O&M Cost:	\$10,415	4.00% of a				
Energy Cost:	\$379,972	80% pump	eff, \$0.09/kWh			
Well Collection Lines					Capital Cost	\$19,753,965
Total Length of Line (ft):	5,000				Project Cost	\$27,367,345
Velocity (ft/s):	5				-,	+= -,, 0 0
Calculated Line Size (in):	8					
Actual Line Size (in):	6	(minimum 6	" diameter			
` /		,				

Pump Station

Total Cost:

Construction Cost:

Eng, Legal, & Cont (30%):

Annual O&M Cost (1%):

Annual O&M Cost (2.5%):

•	
Construction Cost:	\$1,953,000
Eng, Legal, & Cont (35%):	\$489,000
Total Cost:	\$2,442,000

\$329,000 \$98,700

\$427,700

\$4,277

\$61,000

Distribution Line (Pump St to Distribution Sys)

Length (ft):	5,280
Velocity (ft/s):	5
Calculated Line Size (in):	23.60
Actual Line Size (in):	8

(1 miles)

 Construction Cost:
 \$382,000

 Eng, Legal, & Cont (30%):
 \$114,600

 Total Cost:
 \$496,600

Annual O&M Cost (1%): \$4,966

Brine Disposal (Deep well injection)

Waste (ac-ft/yr)	550
No. of wells	2
Tubing diameter (in.)	12
Depth of injection (feet)	1000
Construction Cost (\$)	\$4,433,600
Eng, Legal, & Cont (30%):	\$1,330,080
Total Cost:	\$5,763,680

Annual O&M Cost (1.5%): \$86,455

Cost Table for Desalination of Brackish Groundwater from the Ellenburger-San Saba for Mills County-Other (Alternative Strategy)

Costs based on September 2008 \$

Probable Construction Costs

Item	Cost
Treatment Plant	\$1,479,000
Transmission Pump Station	\$99,000
Transmission Pipeline (6 in. dia., 8 miles)	\$2,777,000
Water Wells and Collection Lines (4-200 gpm wells, 4.75 mi of 6 in. line)	\$1,449,000
Brine Disposal	\$481,000
TOTAL	\$6,285,000

Probable Capital Costs

Item	Cost
Construction (Capital) Cost	\$6,285,000
Engineering, Legal, and Contingencies	\$1,994,000
Land Acquisition and Environmental Studies	\$200,000
Interest During Construction (1 year)	\$98,000
TOTAL	\$8,577,000

Annual Costs

Item	Cost
Debt Service	\$748,000
Operation and Maintenance:	
Treatment Plant	\$326,000
Transmission Pump Station	\$3,400
Transmission Pipeline (6 in. dia., 8 miles)	\$37,000
Water Wells and Collection Lines	\$35,000
Brine Disposal	\$10,000
Energy Cost	\$57,000
TOTAL	\$1,216,400

Yield and Unit Cost

Item	Value
Project Yield (ac-ft/yr)	384
Annual Cost Per Ac-Ft	\$3,168
Annual Cost Per 1,000 gallons	\$9.72

Groundwater Supply Alternative for the City of Goldthwaite

According to the demand projections and water availability analysis, the City of Goldthwaite will have a maximum water shortage of 454 acre-feet per year (ac-ft/yr) in 2010 after municipal conservation is applied. To determine groundwater options available for this area, the following resources were consulted: TWDB Report 319 – Evaluation of Water Resources in Part of Central Texas (January 1990), a general knowledge of the groundwater resources for the area, and TWDB groundwater database on wells information posted at http://wiid.twdb.state.tx.us/ims/wwm_drl/viewer.htm

The TWDB well information available for Mills County gave information on four of the City of Goldthwaite's wells, and this information was used in evaluating the available options. These wells are around 500 feet deep and are producing water from the Travis Peak Formation in the Trinity Group. These wells are approximately 1 mile outside the city limits and yield water at roughly 30 gallons per minute (gpm).

Using this information, it was assumed that additional wells drilled in the Goldthwaite area would draw from the Travis Peak Formation as well. *Table 1* gives more information on this hydrologic unit.

Table 1: Goldthwaite Area Geological and Hydrological Units and Their Water-Bearing Properties*

		G	eological Units				
Era		Mesozoic					
System			Creta	ceous			
Group				nity			
Formation			Antlers F	Formation			
rormation			Travis Peal	x Formation			
Member or Unit	Hensell Sand Member	Pearsall Member	Cow Creek Limestone Member	Sligo		Hosston Member	
Hydrological Units		Middle Trinity			Lower Trinity		
Approximate Range in thickness (feet)	175	85	130	140	130	1,550	
Character of Rocks	Sand, gravel, conglomerate, sandstone, siltstone, & shale. Grades into sandy limestone and dolomite.	Predominately shale interbedded with sand; however, in the calcareous facies, the unit is composed almost entirely of calcareous sediments.	Massive, often sandy, dolomitic limestone, frequently forming cliffs and waterfalls. Contains gypsum & anhydrite beds.	Shale & clay with some sand, dolomitic limestone & conglomerate.	Limestone, dolomite, occasionally sandy, & shale. Thins to the west.	Basal conglomerate grading upward into a mixture of sand, siltstone, & shale, with some limestone beds.	
Water- Bearing Properties	Yields small to large quantities of fresh to slightly saline water.		Not known to	ot known to yield water in the study area. Yields moderate to larg quantities of fresh to moderately saline water		of fresh to	

^{*}Information taken from the Texas Water Development Board's Report 319: Evaluation of Water Resources in Part of Central Texas (January 1990).

The location suggested for these new wells is approximately 1 mile southwest of the city limits, as shown in *Figure 1*. The production capacity of each well was assumed to be 30 gpm at a well depth of 550 feet.

Comparing topographic maps of the area with the water level maps given in the literature resulted in a depth to water of 400 feet. The area's transmissivity was also taken from the literature. This was assumed to be 2,000 gallons per day/foot. Existing wells drilled in the area also have 8-inch diameter screens in the lower 70 feet. Well efficiency was assumed to be 80 percent.

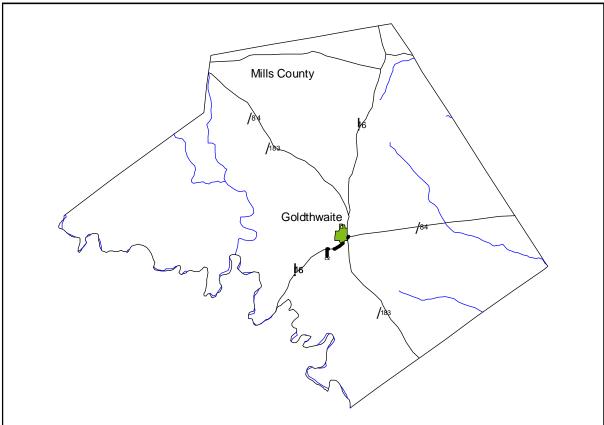


Figure 1: Goldthwaite Groundwater Supply Option

Using the assumed aquifer conditions and remaining availability, a system of 8 wells would be sufficient to produce 320 ac-ft/yr of water under average conditions. However, to meet peak demand conditions the number of wells in the well field would have to be expanded to 16. A well field consisting of 16 wells was used for the cost analysis for this strategy.

The overall available groundwater supply from the Trinity aquifer in Mills County remaining after other water management strategies have been considered is only sufficient to meet the projected shortage for the City of Goldthwaite in 2050 and 2060. However, neither the Colorado Basin nor the Brazos Basin Trinity aquifer supply is sufficient to meet the projected shortage alone. The location of the City of Goldthwaite is on the Colorado-Brazos Basin Divide. A well field sited in reasonable proximity to the corporate limits of the City might reasonably be assumed to be capable of producing groundwater from the Trinity aquifer groundwater supplies in both the Colorado and Brazos Basins. Under this assumption, the City of Goldthwaite could avoid the cost of constructing a well field in each basin. In earlier decades, additional strategies are needed to meet the total shortage. Those recommended strategies include drought management, purchasing water from LCRA, and constructing an in-channel dam.

Groundwater Supply Alternative for the City of Llano

According to the demand projections and water availability analysis, the City of Llano will have a maximum water shortage of approximately 990 ac-ft/yr in 2010 after municipal conservation is applied. To determine groundwater options available for this area, the following resources were consulted: TWDB Report 346 – The Paleozoic and Related Aquifers of Central Texas (March 1996), a general knowledge of the groundwater resources for the area, and conversations with a drilling contractor familiar with the area of interest.

In discussions with the local drilling contractor, it was learned that wells had recently been drilled in the Riley Mountain area. The area is rather rocky, but the wells yield water at 70-100 gpm. These wells are about 600 feet deep, 6 inches in diameter, and producing water from the Ellenburger-San Saba aquifer.

Using this information, it was assumed that additional wells drilled in the Llano area would draw from the Ellenburger-San Saba aquifer as well. *Table 2* gives more information on this hydrologic unit as well as the Hickory aquifer.

Table 2: Llano Area Geological and Hydrological Units and Their Water-Bearing Properties*

			Geologic Units			
Era			Paleozo	oic		
System	Ordovician				Can	nbrian
Group		Ellenburge	er Group		Moore Ho	llow Group
Formation	Honeycut Formation	Gorman Formation	Tanyard I	Formation	Wilberns Formation	Riley Formation
Member or Unit	Not Differentiated	Not Differentiated	Staendebach Member	Threadgill Member	San Saba Aquifer	Hickory Sandstone Member
Hydrological Unit		Ellenbur	rger-San Saba Aq	uifer		Hickory Aquifer
Character of Rocks	Thinly to thickly bedded, light-gray, aphanitic limestone and thinly to thickly bedded, fine-grained to microgranular, gray dolomite. Both limestone and dolomite have fossiliferous chert.	Predominantly aphanitic light gray limestone in upper part and predominantly micro-granular to fine-grained, pink, gray and yellowish-gray dolomite in lower part. Has prominent bed containing fossiliferous chert nodules near middle of formation.	Thickly to thinly bedded, aphanitic, very light gray, cherty limestone and thickly to thinly bedded, fine to medium grained, gray to brownish gray, cherty dolomite. Chert is fossiliferous.	Predominantly medium to coarse grained, light gray dolomite which may locally and laterally grade to massive, light gray limestone. Lower part may be Cambrian in age.	Fine to very fine grained, yellowish to brownish to medium gray, thickly to thinly bedded, slightly cherty dolomite. Upper part may be Ordovician in age.	Thinly to thickly bedded, almost entirely cross-bedded quartz sandstone, some pebbles of feldspar, isolated quartz pebbles, large amounts of iron, color varies from white to yellow to brown, with the iron-rich beds a red-brown to almost black.
Water- Bearing Properties	Yields very small to v Gillespie and Blanco encountered by the w per minute. Where su (calcium carbonate) is quantities of fresh wa	Counties. Yield of a sell bore. Where such ch openings are not estended to sencountered well yi	well is very depender openings are encount encountered wells may elds may be significa	nt on the amount and tered, wells may be c y yield less than 5 ga ntly increased by aci-	size of fracture ope apable of yielding llons per minute. V dizing. Yields smal	enings and cavities over 1,000 gallons Where limestone

^{*}Information taken from the Texas Water Development Board's Report 346: The Paleozoic and Related Aquifers of Central Texas (March 1996).

The location suggested for these new wells is approximately 7 miles southeast of the city limits (in the Riley Mountain range), as shown in *Figure 2*. The production capacity of each well was assumed to be 70 gpm at a well depth of 600 feet. Comparing topographic maps of the area with the water level maps given in the literature resulted in a depth to water of 100 feet. The area's transmissivity was also taken from the literature. This was assumed to be 50,000 gallons per day/foot. Six-inch diameter screens in the lower 300 feet were assumed. Well efficiency was assumed to be 80 percent.

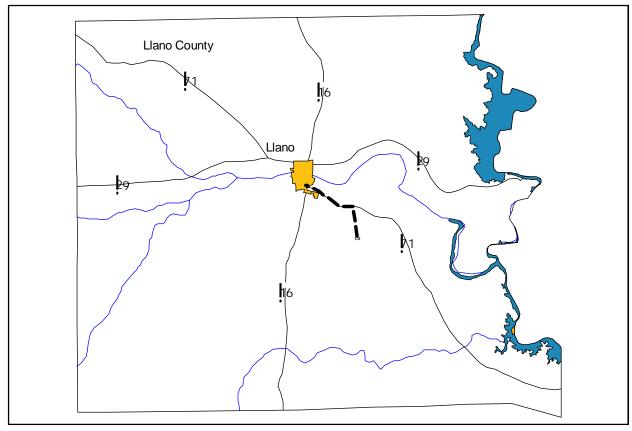


Figure 2: Llano Groundwater Supply Option

Using the assumed aquifer conditions, a system of 6 wells would be sufficient to produce the amount of water required to meet the maximum remaining availability (478 ac-ft/yr) under average conditions. However, to meet peak demand conditions the number of wells in the well field would have to be expanded to 11. A well field consisting of 11 wells was used for the cost analysis for this strategy.

The maximum projected shortage of water for the City of Llano is 990 ac-ft/yr in 2010. By 2060, the projected shortage is 674 ac-ft/yr, assuming that the municipal conservation goals recommended in this plan have been achieved. This shortage is still greater thanthe remaining available groundwater supply from the Ellenburger-San Saba aquifer in Llano County of 478 ac-ft/yr. Additional groundwater supplies from the Hickory aquifer are available in Llano County within a proximal distance to the proposed Ellenburger-San Saba aquifer. Developing a nearby wellfield in the Hickory aquifer could eliminate the need for a second transmission line.

The production capacity of each well was assumed to be 140 gpm at a well depth of 1,000 feet. Comparing topographic maps of the area with the water level maps given in the literature resulted in a

depth to water of 300 feet. The area's transmissivity was also taken from the literature. This was assumed to be 20,000 gallons per day/foot. Six-inch diameter screens in the lower 300 feet were assumed. Well efficiency was assumed to be 80 percent.

Using the assumed aquifer conditions a system of 3 wells would be sufficient to produce the amount of water required to meet the remaining shortage under average conditions. However, to meet peak demand conditions the number of wells in the well field would have to be expanded to 6. A well field consisting of 6 wells was used for the cost analysis for this strategy.

References

- 1. CH2M HILL. "Groundwater Supply Alternatives for the Cities of Blanco, Goldthwaite, and Llano Technical Memorandum." Lower Colorado Regional Water Planning Group: 2001 Region K Water Supply Plan, *Appendix 5B*, August 18, 2000.
- 2. Baker, Bernard, et al. "Evaluation of Water Resources in Part of Central Texas." Texas Water Development Board Report 319. January 1990. Texas Water Development Board: Austin, Texas.
- 3. TWDB WIID (Water Information Integration & Dissemination) System Water Well Data: TWDB Groundwater Database: http://wiid.twdb.state.tx.us/ims/wwm_drl/viewer.htm
- 4. Preston, Richard D., et al. "The Paliozoic and Related Aquifers of Central Texas." Texas Water Development Board Report 346. March 1996. Texas Water Development Board: Austin, Texas.

Enhanced Recharge in Lower Basin: Tech Memo

Introduction

Enhanced recharge is considered as a potential water management strategy for irrigation shortages in the lower Colorado River Basin. The largest irrigation demands and shortages are in the rice-growing counties in the lower basin: Colorado, Wharton, and Matagorda. Irrigation demands in these counties is met by run-of-river water rights for the LCRA irrigation districts (Garwood, Lakeside, Pierce Ranch, and Gulf Coast) and water wells in the Gulf Coast Aguifer.

Enhanced recharge can be accomplished in a variety of ways: spreading basins, vadose zone injection wells, direct injection wells, and aquifer storage and recovery (ASR) wells. Only spreading basins are considered in this study. Vadose zone injection wells, direct injection wells, and ASR wells were evaluated but not considered viable alternatives given the intended use of the stored water and cost considerations.

This strategy consists of diverting water from the Colorado River, when available, and pumping to one or more recharge basins where the underlying aquifer is artificially recharged by surface spreading. Environmental flow requirements and senior water rights must be satisfied before water can be diverted from the river, resulting in very low reliability as a direct supply. By utilizing surface spreading, water is stored in the aquifer for later use. During drought conditions, when backup surface water supplies are intermittent, additional water stored underground can provide a reliable supply without overdrafting the aquifer.

Recharge Options

Surface Spreading (Preferred Option)

Surface spreading is the simplest, oldest, and most widely applied method of artificial recharge (Todd, 1980). In this application, water diverted from the Colorado River is pumped into a recharge basin where it infiltrates and percolates through the unsaturated zone into the aquifer. For surface spreading to be feasible there must be available land in areas of suitable soil permeability and an unsaturated zone large enough so that infiltration is not limited by water mounding. The water is treated as it moves through the unsaturated zone and into the aquifer, so there are no issues related to the contamination of supply for domestic users and public water systems near the basin site. Periodic maintenance of the recharge pond is required due to the formation of a clogging layer. There is also an operational consideration in choosing the proper wet-dry cycling schedule to promote the recovery of infiltration rates and reduce the frequency of maintenance needed to scrape away the clogging layer.

This is the preferred option in this case. No infrastructure beyond the diversion facilities and recharge basin are required. Land is available and it is a simple system to operate and maintain. Other options evaluated are discussed below.

Vadose Zone Injection Wells

An alternative to spreading basins and direct injection wells is the use of vadose (unsaturated zone) injection wells. These are relatively shallow dry wells that receive a constant feed of water and continuously recharge the aquifer through infiltration. They are essentially boreholes, approximately 3-6 feet in diameter, drilled into the unsaturated zone at depths ranging from 30-160 feet. A single dry well that is 160 ft deep, 5 ft in diameter and is in soil with a hydraulic conductivity of 3 ft/d may have an infiltration rate of 1 million gallons per day (Metcalf & Eddy | AECOM, 2007). At this rate, 9 wells would be required to recharge 10,000 ac-ft/yr. The biggest advantage to this method is that it requires very little land for the wells. One major disadvantage is that this type of injection well clogs relatively quickly and there is no way to reverse flow or effectively redevelop the well. Another serious problem is that diverted water from the Colorado River is only available during times of high flow, and large volumes of water would need to be stored somewhere prior to being fed to the network of injection wells, negating the benefit of the wells having a small footprint. The disadvantages far outweigh the advantages in this case, and this option is not considered feasible.

Direct Injection Wells

This type of well injects water directly into the water bearing strata and are constructed like regular pumping wells. The infiltration rates of injection wells are comparable to production wells, particularly if the water is pretreated to avoid clogging over time.

Advantages include:

- May be used in saturated and unsaturated aguifers;
- Can inject into brackish aguifers to form an injected water bubble or "ASR bubble";
- Flow may be reversed to allow for maintenance and cleaning;
- The same well can be used for injection and recovery.

Disadvantages include:

- Expensive to construct and require large amount of energy to create sufficient injection head for the desired infiltration rate;
- TCEQ requires that water injected directly to a producing formation be pretreated to drinking
 water quality standards. This avoids the clogging problem and the related maintenance, but is
 expensive in light of the fact that the water will be used for irrigation, where the raw water was
 acceptable in the first place.

The expense of additional treatment facilities could be avoided if the water could be pretreated, stored, and recovered by an existing public water system, allowing more groundwater to be pumped by irrigators. All of the major utilities in the three lower Region K counties use groundwater, and therefore do not currently have the ability to treat raw surface water from the Colorado River. While there are no technical reasons why direct injection could not be used in this case, the additional cost of deep injection wells and the pretreatment requirement rule this option out.

Reservoir Siting and Operation

The considerations for reservoir siting include land availability, water availability, hydrogeologic factors, and soil permeability. Land availability is not a major factor since there is abundant farmland. Trial water availability model (WAM) runs were made throughout Wharton and Matagorda Counties, and there is little difference in availability from Northern Wharton County down to Southern Matagorda County. From a hydrogeologic standpoint, the main concern in surface spreading is the lack of a vadose zone. This is generally not a concern in Wharton and Matagorda Counties since unconfined water levels are well below ground level throughout the two counties. Placement of the reservoir should generally be far enough updip of the coast to stay away from highly saline water and to eliminate the possibility of the artificially recharged water flowing into the Gulf of Mexico over long storage times.

From an operational standpoint, soil permeability is the most important consideration. Surface geology of Wharton and Matagorda Counties is shown in Figure 1. Soil permeability of Wharton and Matagorda Counties is shown in Figure 2.

Figure 1. Surface Geology of Wharton and Matagorda Counties

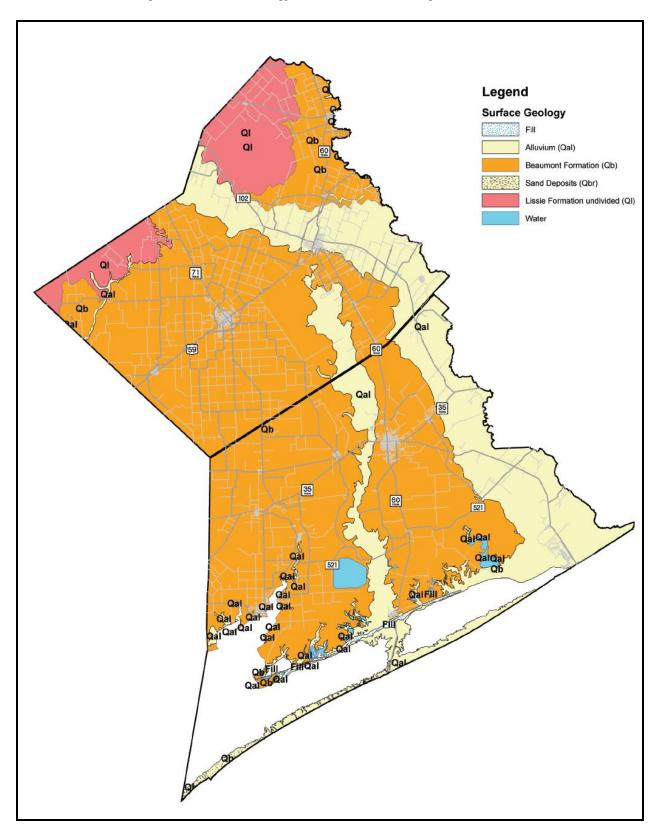
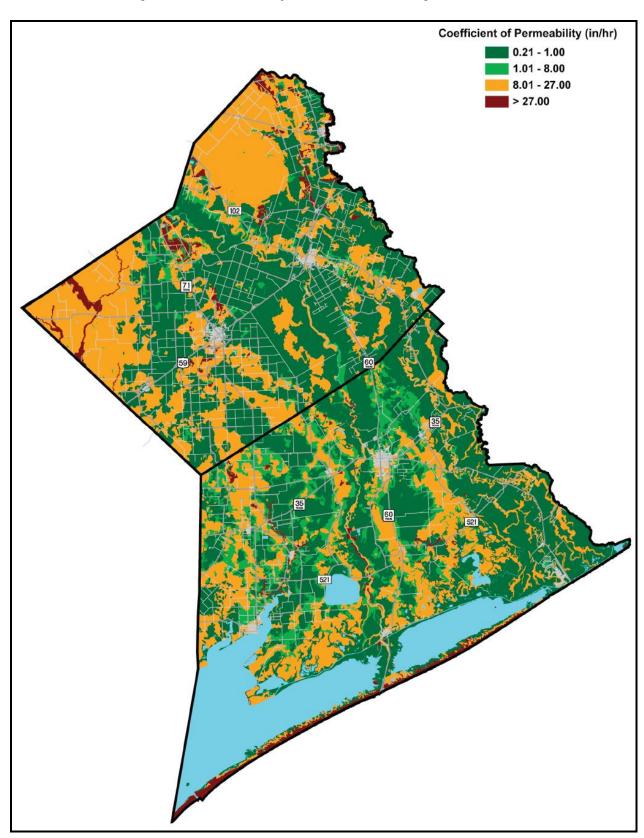



Figure 2. Soil Permeability in Wharton and Matagorda Counties

As seen in Figure 1, the Beaumont Formation (aka Beaumont Clay) outcrops throughout most of the two counties. The Beaumont Clay is composed of clay, silt, and sand, and has a relatively low coefficient of permeability (hydraulic conductivity) due to the tightness of the clay. There are overlying alluvial deposits that result in areas of higher permeability as seen in Figures 1 and 2. The older Lissie Formation underlies the Beaumont Clay and outcrops in the northern part of Wharton County, and like the Beaumont Clay, is composed of sand, silt, and clay, although of different character. As seen in Figure 2, the Lissie Formation has a much higher coefficient of permeability and is better suited for infiltration through surface spreading than the Beaumont Clay. The areas of higher permeability that coincide with the alluvial deposits allow high rates of surface infiltration, but due to the underlying clay, artificially recharged water would primarily contribute to the base flow of the streams and to perched groundwater in the alluvium rather than to recharge of the Gulf Coast Aquifer. From the standpoint of permeability and infiltration rates, the northern part of Wharton County east of the Colorado River in the Brazos-Colorado Basin is the preferred location for an off-channel settling basin.

Figure 3 shows the potential location of the pipeline and off-channel reservoir in northern Wharton County. This is but one potential site, and the pipeline route shown does not take into account rights of way, utility conflicts, soil conditions, or any other factor. This site places the off-channel reservoir in an area of relatively high soil permeability, and is updip of a cluster of existing high-capacity irrigation wells that can be used to pump the stored water. There are other areas in Wharton and Matagorda Counties that are also potentially suitable, but it is beyond the scope of regional planning to locate the optimal site and pipeline routing.

Austin Co. Eagle Lake Colorado Co. Fort Bend Co. Kendleton Wharton Co. Off-Channel Reservoir Pipeline Irrigation Wells (Wharton Co.) Capacity (gpm) Wharton 0 - 500 501 - 1100 1101 - 1850 1851 - 2850 2851 - 4500 Coefficient of Permeability Ksat (in/hr) 0.21 - 1.00 1.01 - 8.00

Figure 3. Potential Project Site

Permeability Source: USDA Natural Resources Conservation Services

8.01 - 27.00 > 27.00 The system consists of a ring dike structure for the reservoir, a pump station to divert water from the Colorado River, and a pipeline to convey water to the reservoir. The reservoir volume used in this study is 6,700 ac-ft and the dimensions are 3,940 ft square with 6:1 side slopes, and a total depth of 20 ft. Analysis performed with different pond sizes indicates that as the pond volume increases, the volume of water that can be diverted increases at a slower rate beyond a reservoir volume of approximately 6,000 – 7,000 ac-ft, therefore pond size is limited to minimize the unit cost of recharging the aquifer. Water availability analysis is discussed in more detail in the next section.

The infiltration rate through the pond bottom, given by Darcy's law, is a function of the area of the pond, the hydraulic conductivity of the soil, the total distance from the free surface of the pond to the water bearing strata, and the thickness of the vadose zone (see Figure 4 below).

Off-Channel Pond Δh Unsaturated Zone (Vadose Zone) **Unconfined Aquifer** $Q = KA\Delta h$ LQ = flow through the pond bottom and into the aquifer A = Area of pond K = hydraulic conductivity (coefficient of permeability) $\Delta h = Depth of water in pond + thickness of sandy formation$ L = thickness of sandy formation Δh/L = Hydraulic gradient

Figure 4. Darcy's Law (graphic adapted from Marsily, 1986)

Without specific soil tests, the coefficients of permeability can be taken from the NRCS values shown in Figure 3. The range for the area of Wharton County containing the proposed reservoir site is 8-27 in/hr. This value represents the saturated hydraulic conductivity (K_{sat}). In most applications, the K value in the Darcy equation is approximately one half the K_{sat} (Metcalf & Eddy|AECOM, 2007). The K value used to estimate potential infiltration then is 4 in/hr (8 ft/d). This is half of the low end of the range from Figure 3.

The theoretical maximum infiltration rate is computed as follows:

- K = 8 ft/d
- A = 3940ft x 3940ft = 15,523,600 sq ft
- $\Delta h = 200 \text{ft} + 20 \text{ft} = 220 \text{ ft}$ (assume 20 ft of pond depth and a 200 ft thick unsaturated zone)
- L = 200ft
- Multiply cubic feet per day by 0.0084 to get ac-ft/yr

$$Q = \frac{8\frac{ft}{d} \times 15523600 \text{ ft}^2 \times 220 \text{ ft}}{200 \text{ ft}} \times 0.0084 = 1,100,000 \frac{\text{acft}}{\text{yr}}$$

This is a theoretical maximum computed from Darcy's law which depends on a constant feed of water to the reservoir and a constant hydraulic conductivity that was not determined from site-specific soil tests. It also does not take account mounding on the free surface of the aquifer, which would potentially limit the infiltration rate. This equates to a rate of 8.5 ac-ft/ acre/day, which is comparable to data from surface spreading in California where infiltration rates in that range were experienced for coarse-grained deposits of sand, gravel, cobbles, and boulders (Richter, 1956). This same publication suggests that variable textured soils that are predominately sands, silts, and clays have an average infiltration rate on the order of 0.5 ac-ft/ac/day. This type of soil is more similar to the soils found in Wharton County and the 0.5 ac-ft/ac/day is likely a better (albeit conservative) approximation of the actual infiltration rate that could be expected on average.

Using the 0.5 ac-ft/ac/day rate, the infiltration rate would be 65,000 ac-ft/yr. This corresponds to a K value of approximately 0.2 in/hr, and is the value used in the water availability modeling discussed below. As will be seen later, the amount of that can be recharged to the aquifer is limited not by infiltration rate, but by the amount of water that can be diverted from the Colorado River, therefore using a conservative value for the infiltration rate does not affect the overall results.

Even though the limiting factor is not the infiltration rate, it is advisable to locate the off-channel reservoir in an area of relatively high soil permeability. The K values from the soil map assume clean water. In practice, infiltration rates will decline over time as a clogging layer develops due to various solids present in the water. The infiltration rate can be restored by alternating wet-dry periods, but the clogging layer must still be periodically removed by scraping. Placing the reservoir in an area of low permeability will result in a reservoir that does not perform as well as it could, even without the presence of a clogging layer, and may require more frequent scraping to adequately maintain the reservoir.

Water Availability from the Colorado River

The strategy diverts flow from the Colorado River when available and stores the water in one or more off-channel basins. The strategy is modeled using the WAM Run 3 Cutoff Model version modified for strategy analysis as the baseline model ("baseline model"). A description of this baseline model can be found in the report *Draft LCRWPG 2011 Water Plan First Biennium Studies – Environmental Impacts of Water Management Strategies Study*.

The baseline model was modified to include two new water rights: one to fill an off-channel reservoir at control point K20061 and a water right that diverts from the off-channel storage. Both water rights have a priority date junior to all other rights in the model. Before diversions are made from the river to fill the off-channel reservoir, instream and bay & estuary flow targets, senior to the diversion right, are imposed at control points M10020 and M10000 at the entrance to Matagorda Bay.

The off-channel reservoir has a volume of 6,700 ac-ft. The surface area is 356 acres (3,940 ft square) and the depth is 20 feet. To limit the amount of water that can be diverted from the river, a maximum diversion of 3,790 ac-ft/month, which corresponds to a 4 ft diameter pipe flowing at 5 ft/sec, is imposed.

The diversion target from off-channel storage is dictated by the infiltration rate that could be expected through the pond bottom. As discussed in the previous section, a conservative estimate of the infiltration rate is 65,000 ac-ft/yr. This is at the low end of the permeability range for Matagorda and Wharton Counties.

The historical period of record modeled is from 1940 to 1998. Annual diversion volumes from the river as well as aquifer recharge volumes are shown in Table 1.

Table 1. Annual Diversion and Recharge Volumes During the Historical Period of Record

Year	River Diversion (ac-ft/yr)	Aquifer Recharge (ac-ft/yr)	Year	River Diversion (ac-ft/yr)	Aquifer Recharge (ac-ft/yr)
1940	17,206	14,845	1970	14,320	16,310
1941	32,593	35,031	1971	7,580	3,826
1942	14,342	14,269	1972	0	3,846
1943	3,790	3,750	1973	20,791	20,913
1944	10,424	8,146	1974	18,091	16,401
1945	10,470	12,784	1975	21,938	23,479
1946	18,074	15,662	1976	14,245	12,283
1947	3,790	6,137	1977	7,580	9,588
1948	0	0	1978	3,790	3,788
1949	11,370	7,569	1979	18,040	17,984
1950	3,790	7,576	1980	0	0
1951	0	0	1981	14,262	14,276
1952	539	0	1982	3,790	3,751
1953	0	518	1983	3,778	3,733
1954	0	0	1984	3,790	3,845
1955	0	0	1985	13,366	10,997
1956	0	0	1986	6,578	6,678
1957	21,730	20,100	1987	24,404	24,568
1958	22,740	24,449	1988	0	1,945
1959	14,276	12,342	1989	0	0
1960	27,485	27,568	1990	0	0
1961	28,528	30,579	1991	11,370	7,664
1962	0	0	1992	28,343	30,135
1963	0	0	1993	15,024	17,447
1964	0	0	1994	10,518	8,497
1965	10,382	8,112	1995	14,320	12,417
1966	0	2,352	1996	0	3,771
1967	0	0	1997	28,366	26,358
1968	25,687	21,977	1998	20,909	21,238
1969	17,248	18,974			

The river diversions shown in Table 1 are intermittent due to the junior priority of this right. During the drought of record (DOR, 1947-1957), diversions are zero for four consecutive years, 1953-1956. Twice there are three consecutive years of zero diversions: 1962-1964 and 1988-1990. On average the annual diversions are 10,500 ac-ft/yr. Aquifer recharge is limited by available storage; while the reservoir is capable of recharging 65,000 ac-ft/yr, the annual average recharge from Table 1 is 10,480 ac-ft/yr.

Firm Yield

From Table 1 the average recharge over the historical period of record is 10,480 ac-ft/yr, but recharge is intermittent during that time. The firm yield depends upon the regulatory structure imposed by the Coastal Bend Groundwater Conservation District (District). The assumption is that the stored water would be banked, and that water could be used as needed with no preset annual limit as long as total usage did not exceed the stored amount, or if it did, could be made up by reducing pumpage after a period of heavy use. Details would need to be worked out, but this study envisions a regulatory framework that sets a limit on average usage over a 50 year period.

The annual average is calculated as follows:

• 10,480 ac-ft/yr x 90% recovery efficiency = 9,430 ac-ft/yr available on average

Assuming that an amount smaller than the annual average is used during non-drought years, more water could be produced during an assumed 10 year drought. Any combination of numbers is possible, but a reasonable scenario is as follows:

- Assume 7,500 ac-ft/yr during non-drought years (i.e. over 40 years)
- (10,480 ac-ft/yr x 50 yrs x 90% recovery 40 yrs x 7,500 ac-ft/yr) / 10 yrs = 17,160 ac-ft/yr

With the above assumptions, the firm yield is 17,160 ac-ft/yr.

Irrigation Wells

There is a network of irrigation wells currently in use as part of the rice farmers' conjunctive use operation (see Figure 3). The wells augment the interruptible supply of surface water from LCRA, and are particularly needed during times of drought. This strategy makes more groundwater available during a drought; during planting season, there needs to be a large pumping capacity to produce a large volume of water in a short amount of time. For this analysis, a broad assumption is made that five new 2500 gpm wells are required to provide additional capacity and to ensure full coverage of the well network.

Cost

Project costs are shown in Tables 2-5. All costs are in September 2008 dollars. Table 2 shows probable construction costs. The project components costed are the 6700 ac-ft spreading basin, transmission pump station and inlet to move water into the basin, five new wells and associated collection lines to augment the existing well network. Total construction cost is estimated to be \$41 million. Probable capital costs are shown in Table 3. Capital costs totaling \$56 million include construction cost, engineering cost, legal costs, contingencies, land acquisition, environmental studies, and interest accumulated during construction. Engineering, legal, and contingencies varies depending on the facility type, but generally runs 30-35%. The total annual cost of \$5.9 million shown in Table 4 is the sum of debt service for the loan, operation and maintenance of the facilities, and electricity cost for pumping.

Table 5 shows the project yield and the annual cost of water on a unit basis. As mentioned previously, the project is anticipated to deliver 17,200 ac-ft annually during a period of drought when surface water delivery is curtailed. Based on annual cost and project yield, the anticipated cost is \$340 per ac-ft. This is equivalent to \$1.05 per 1,000 gallons.

Table 2. Probable Construction Cost

Item	Cost
Spreading Basin (6,700 ac-ft storage, ring dike construction)	\$5,805,000
Transmission Pump Station and River Inlet (1,000 HP)	\$13,022,000
Transmission Pipeline (48 in. dia., 8.5 miles)	\$18,294,000
Water Wells and Collection Lines (5-2,500 gpm wells, 18 in. casing, 5 mi. 12 in. collection lines)	\$3,928,000
TOTAL	\$41,049,000

Table 3. Probable Capital Cost

Item	Cost
Construction (Capital) Cost	\$41,049,000
Engineering, Legal, and Contingencies	\$13,058,000
Land Acquisition and Environmental Studies	\$1,548,000
Interest During Construction (1 year)	\$641,000
TOTAL	\$56,296,000

Table 4. Annual Cost

Item	Cost
Debt Service (6% over 20 yrs)	\$4,909,000
Operation and Maintenance:	
Spreading Basin	\$88,000
Pump Station, Inlet, Pipeline	\$564,000
Water Wells and Collection Lines	\$95,000
Pumping Energy Costs	\$233,000
TOTAL	\$5,889,000

Table 5. Project Yield and Unit Cost of Water

Item	Value
Project Yield (ac-ft/yr)	17,200
Annual Cost Per Ac-Ft	\$342
Annual Cost Per 1,000 gallons	\$1.05

References

- Marsily, G. (1986) *Quantitative Hydrogeology: Groundwater Hydrology for Engineers*, Academic Press Inc., San Diego
- Metcalf & Eddy | AECOM (2007) Water Reuse: Issues, Technologies, and Applications, McGraw-Hill, New York.
- Richter, R.C. (1955) *Geologic Considerations in Artificial Recharge of Ground Water Reservoirs in California*, presented at Geological Society of America meeting, Berkely
- Todd, D.K. (1980) *Groundwater Hydrology*, John Wiley & Sons, New York.

SUSTAINABILITY AND ADVANCED WATER CONSERVATION ANALYSES

INTRODUCTION

The purpose of this analysis was to compare and contrast three scenarios of sustainable development as follows:

- 1. Meet projected population increases by finding new water supplies.
- 2. Meet projected population increases by requiring decreased per capita use for specific entities, where appropriate.
- 3. Manage population growth to reduce demands to a level which is consistent with existing supplies.

These three scenarios roughly correspond to **Scenario 1** being the plan as submitted, in which the areas with surpluses were used to provide as much water as possible to meet projected shortages before trying to develop new sources for the remaining areas of shortages; **Scenario 2** corresponds to holding the water supply at its current fixed amount and conserving that supply to cover the population increase by requiring reduced per capita consumption within the general service area; and **Scenario 3** limits population growth to only those areas where growth can be supplied by the existing unused water supplies. These three scenarios are further explained below and the impacts to the region for each are compared.

SCENARIO 1

The Lower Colorado Regional Water Planning Group (LCRWPG) Water Plan has been prepared along the lines of this scenario, i.e. maximizing the use of existing supplies. Although established water rights for existing entities have not been arbitrarily reduced even if supplies exceed demands, in most cases, Region K entities have needs during the planning horizon for all of their water, and in fact are actively looking for additional supplies. Supplies within the LCRWPG Water Plan were shared across basin splits for a number of water user groups (WUGs) that had supply in one basin and demands in another basin. The wholesale water providers, LCRA, and the City of Austin, both provided updated plans to demonstrate how their water needs would be supplied through maximizing the use of existing supplies. In addition, as required by the regional planning requirements of the Texas Water Development Board, every entity with a need and with a per capita use of greater than 140 gallons per capita day (gpcd) was required to use conservation as their first water management strategy. Therefore, conservation in the amount of a 1 percent reduction per year for each year in which the per capita use was above 140 is included as the first strategy for each entity with a shortage. In addition, there is a significant allocation of resources to "County-Other" (municipal) in anticipation of growth of entities in the suburban areas of the planning region. This suburban development currently has no specific entity in charge of their supply, since the entities to be served do not currently exist. Both LCRA and the City of Austin have included the demands of some of these growing areas in their base demands. In addition, some of the supplies allocated to these areas have been shared between and among the various "County-Other" (municipal) basin splits as appropriate, as well as shared with other WUGs which have needs and are in the same area.

For all of the above reasons, Scenario 1 is adequately represented by the LCRWPG Water Plan and information on potential costs, reliability, quantities of water and environmental impacts from this scenario is already available in the LCRWPG Water Plan.

SCENARIO 2

Scenario 2 is defined in the scope as "meeting projected population increases, but requiring decreased per capita use." As discussed in Scenario 1 above, the municipal conservation measures in the base plan of the LCRWPG Water Plan are only implemented for WUGs with shortages and with per capita usage above 140 gpcd. Therefore, the analysis for Scenario 2 looked at additional conservation and the potential means to implement such measures.

The first step in this analysis was to assemble data on each of the WUGs in terms of population, per capita use, demand, and available supplies both in terms of current supplies and with contract extensions. These tables were extracted from data in previous chapters. The only information that has not appeared elsewhere is the combination of current supplies with contract extensions. This data was then used to determine the shortage by municipal WUG. The data shows a substantial variation in per capita usage for the WUGs in Region K. Even with the implementation of all likely indoor savings mechanisms for 100 percent of the population, plus the elimination of all outdoor watering through the use of rainwater harvesting, the total demand is reduced to only 150 gpcd for single family residences and to 155 gpcd for multi-family populations based on the average per capita use in Region K as reported in the GDS study referenced elsewhere in this text. Neither of these reductions comes close to reducing per capita usage to the amounts required to eliminate the need for new supplies.

Therefore, additional analysis was needed to consider even more stringent conservation measures and to consider how such measures might be implemented and at what cost.

The measures to be implemented needed to be able to be incorporated as much as possible into new housing, as well as to minimize the disruption of the lifestyle indoors. For those and other reasons, the study focused on the installation of both gray water recycle for toilet flushing and on rainwater harvesting for potential indoor use, as well as requiring minimal residential landscape watering. Minimal in this case is in the range of 6 to 10 gallons per capita per day. These measures were applied to growth primarily in urbanized areas where the highest growth is anticipated to occur. Applying these measures to all of the projected growth, without requiring any retrofit of existing facilities resulted in a savings in 2060 of slightly more than 100,000 acre feet annually. This savings would have to be distributed from those with surpluses to those with shortages in order to meet the demands without requiring new supplies, but it would be possible to do so if sharing of the water saved became a reality.

SCENARIO 3

The amount of population growth that can be supplied with the existing supplies is roughly demonstrated by the TWDB Socioeconomic Impact Study which defines the impact of not meeting the water needs, in part, by calculating the population loss that would occur if the needs were not met. Scenario 3 is defined as the limitation of population such that the available supplies are adequate to serve the population already in place. This analysis was included in the TWDB Socioeconomic study that was done for Region K to determine the impact of not meeting the needs. For this analysis, TWDB used a model to determine the impacts on population and a number of other items. This analysis is included as *Appendix C* in Chapter 9. For the purposes of this discussion, the loss of jobs in the TWDB study is equated to a loss in population.

The primary issue in achieving the population limitations assumed from the TWDB study is the lack of availability of water for new growth. However, as noted in Scenario 2 above, there is a need for control of groundwater to the extent that new public water systems and even individual residences could not continue to develop by using groundwater. Where groundwater conservation districts (GCDs) exist there is a potential to control the use of groundwater through permits. However, not all counties in Region K are included in a GCD, and there are limitations on GCD authority that may make it difficult for them to refuse permits. The surface water supplies currently have the appropriate authority to refuse service to those for whom there are not sufficient firm yield water supplies to serve adequately. Effective control of population in an area would require a combination of control of the sources of supply as well as the implementation of strict conservation measures and punitive rates similar to the concepts shown in Scenario 2 above. These measures would tend to move development of both jobs and population to areas which are more favorable to development.

BACKGROUND DATA FOR SCENARIO 2

Table 1 shows the surpluses and shortages by water user group. Table 2 shows the reductions in acre feet per year that will be required to balance out the supplies with the demand of the increased population. To further quantify the reductions needed, Table 3 presents the individual per capita reductions that must be achieved in order to accomplish the necessary reductions. As Table 3 indicates, some of the reductions are in excess of 100 gallons per person per day.

Much of the information and analysis to follow is based on the TWDB study conducted by GDS Associates, "Quantifying the Effectiveness of Various Water Conservation Techniques in Texas." This study examined 10 years worth of population and water usage statistics to develop average usage information for each of the regional water planning areas of the state. This study also looked at incremental amounts of water use through examination of the various data that TWDB had available. Usage was developed for the low use period of December, January, and February which represents primarily indoor water usage, and is called base flow in the GDS study. The study then identified the average daily usage over the year. The difference between the base flow, and the average daily flow is called seasonal use. This increment of use corresponds roughly to the outdoor use of water for ornamental plants and lawns. The third increment of use is an additional amount of water which is used during dry weather conditions. This increment is similarly tied to outdoor water uses. For the Region K area as a whole, the water use for both urban and rural areas comprises a total of 190 gallons per capita per day. The base use is estimated at 137 gpcd for urban areas and 132 gpcd in rural areas. This represents the usage that will be affected by conservation measures such as toilet and showerhead and clothes washer rebates. The seasonal use water and the dry weather use water is that water which will be affected by irrigation audits for single family residences, multi-family residences and commercial businesses, landscaping ordinances, and potentially rainwater harvesting.

The GDS study also looked at various water conservation measures and rated 16 of those measures based on reductions to the gallons per capita per day for single family and multi-family residential measures and also rated commercial savings based on gallons per measure instituted. The analysis included the development of cost information from Year 2002 cost data using 5 percent interest for amortization of capital. No attempt was made to adjust the costs for this portion of the analysis.

This analysis looks at the potential to target specific water conservation measures to each WUG and to determine whether or not there is a likelihood of meeting the needs of the WUGs through conservation efforts. Population growth is expected to continue as identified in the LCRWPG Water Plan, but the

management strategies developed in the LCRWPG Water Plan will be discarded and the needs met by contract extension and conservation and/or reuse alone. The analysis will determine the resulting allowable per capita consumption levels of the population and whether or not implementation of each of 16 water saving measures to a level of participation of 80 percent will be sufficient to meet the shortages.

ASSUMPTIONS FOR SCENARIO 2

The actual data shows a substantial variation in per capita usage for the WUGs in Region K. As an example, Aqua WSC, with a substantially rural and single family residential population has a per capita use starting at 139 gpcd in 2000, and reducing to 126 gpcd in 2060. Bastrop, which is becoming a more urbanized trade center, with the addition of the Home Depot and other large scale facilities, has a per capita usage above 200 currently, which reduces to 191 by the end of the planning period. As a result, there is likely to be more room for reduction of commercial demand in Bastrop than there is in Aqua WSC. In order to better target the various reductions the following assumptions are made.

- 1. The indoor average use from the December, January and February period contains some irrigation when the values are at or above 137 gpcd. The percentage of this water that is used for irrigation is assumed to be 10 percent. This accounts for watering of tender vegetation in advance of a freeze, as well as the maintenance of indoor plants in office buildings, malls, and other such facilities.
- 2. For systems with a per capita use between 120 and 140, the amount of water that is allocated to irrigation use is assumed to be 5 percent.
- 3. For systems less than 120 gpcd but greater than 100 gpcd, the irrigation use is assumed to be 2 percent.
- 4. For systems with per capita use less than or equal to 100 gpcd, irrigation use is assumed to be zero, and all usage is assumed to be residential with no irrigation or dry year components. For all other systems, 100 gpcd is assumed to be the level below which measures such as rainwater harvesting and separation of plumbing indoor reuse are required to effect further savings.
- 5. 25 percent of the year 2000 population in each WUG is assumed to be already converted to water saving fixtures, both toilets and showerheads/aerators. The maximum savings that can be obtained from these programs is then based on the remaining 75 percent of the year 2000 population. All other growth has taken place after the effective date of the plumbing fixture laws.
- 6. Systems with per capita usage of less than or equal to 100 gpcd are assumed to have no outdoor water usage and will further be assumed to have some mechanism for restricting outdoor watering in the future.
- 7. 90 percent of the toilets in single and multi-family residential use have an anticipated life of 25 years. 90 percent of the toilets in commercial use have an anticipated life of 15 years.

ANALYSIS OF SCENARIO 2

Information concerning the per capita consumption:

The GDS report further included tables of the breakdown of single family versus multi-family residences for each county and other data that was used in developing this document. Those tables are included in this *Appendix 4D* as well. The primary mechanisms that were presented in the GDS report for reducing indoor water usage included replacement of higher flow toilets, showerheads and faucet aerators with low

flow fixtures, and use of low volume clothes washing machines for single family residential, multi-family residential, and commercial uses. All new toilets and showerheads are currently required to be low usage fixtures in order to be sold in Texas, but clothes washers are still available which use a greater quantity of water. As a result, the savings from toilet replacements will only occur over a 25 year period and after that time, 90 percent or more of those potential savings have been achieved and any further reductions are already programmed into the gpcd values. This analysis holds true for showerheads and aerator replacements as well. Single family savings from the GDS report indicated savings of 10.5 gallons per person per day and costs of \$85 for a toilet rebate program. \$50 was added to this cost for the toilet program to cover labor for installation of each toilet to determine the total cost of the strategy. On this basis, the cost of water developed under a toilet rebate program is \$360 per acre-foot, also assuming a 25 year life for the new toilet. Using a similar analysis for shower heads and faucet aerators, the cost of water from that program is \$61 per acre foot. Costs for washing machine programs were determined to be in the \$600 per acre foot range, assuming a 13 year life for each machine. These are the three primary savings mechanisms for indoor usage, and the combined savings is approximately 21 gpcd. Savings for multi-family residences are less because of the higher number of users for each washing machine. In any event, the implementation of all of the indoor savings mechanisms for 100 percent of the population, plus the elimination of all outdoor watering through the use of rainwater harvesting only reduces the total gpcd to 150 for single family residences and to 155 gpcd for multi-family populations. Neither of these comes close to reducing per capita usage to the amounts available.

Some alternatives that could potentially be used to further reduce the per capita consumption in the home include dual systems that would recycle shower water for toilet flushing, waterless fixtures, and composting toilets. These conservation measures work best for new construction. Facilities to separate shower water and sink water from toilet water would be extremely expensive to retrofit on a wholesale basis, but can be built into new housing for a small increase in cost. This same holds true for rainwater harvesting. Designing facilities into the house before it is built allows much greater implementation of water saving features. New construction homes with waterless urinals and constructed on vacuum sewer collection systems which also recycle shower and bath water into flushing of low flow toilets offer the best opportunities for reaching the low per capita usages necessary to avoid management strategies for meeting the municipal needs. Garden tubs, spas, hot tubs, pools, and other water using features would by necessity be prohibited by ordinance.

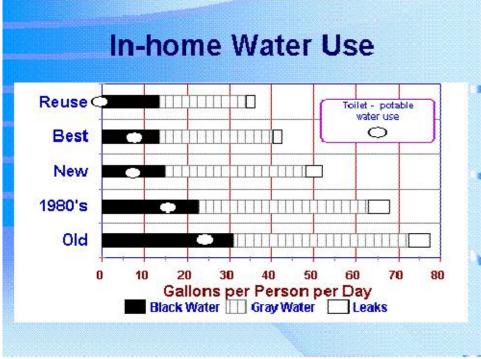


Figure 1 In-home Water Use

Note: Chart provided by Bill Hoffman, Water Conservation Specialist, City of Austin.

Figure 1 presents information on the approximate breakdown of water used in residential situations strictly for indoor uses. As Figure 1 indicates, the amount of water actually used indoors is significantly less than that normally associated with residential use. One of the reasons for this is the aggregation of commercial demand with residential demand. Another reason is the indoor use of water for watering plants and maintaining landscapes even where there is no watering of lawn and trees.

There is little data available on costs for the more extensive measures noted above. The cost to retrofit an existing house to separate the plumbing, provide a small storage tank and treatment unit, and pumps is probably in the \$8,000 to \$10,000 range for houses with slabs on grade. According to Figure 1, the average usage for toilet flushing in a home with water saving fixtures is somewhere between 14 and 22 gallons per capita per day, as opposed to the 28 gallons per capita per day found in a previous California study. Providing this volume solely from recycled gray water would reduce the need for fresh water supplies by a minimum of 14 gallons per person per day, or 34 gallons per single family residence. Assuming a \$10,000 addition to the principal of a house at a 20 year loan and 6 percent interest, the approximate annual payment would be \$870 per year with an estimated 2 percent of construction cost for operation and maintenance of pumps and filtration equipment. This yields a total annual cost of \$1,070. Annual savings would be approximately 0.04 acre-feet. The cost per acre foot would then be approximately \$25,000. In contrast, the cost of retrofitting houses that were of pier and beam or pad and block construction would be in the \$1,000 range, with the additional \$1,000 for the tank, pump, and filter apparatus. This \$2,000 cost amortized over 20 years at 6 percent interest would be \$175 per year, with a similar \$200 per year operation and maintenance for a \$375 per year total cost. Cost of the retrofit is then slightly less than \$10,000 per acre foot. It should be noted that these numbers are considerably greater than those numbers included in the GDS report because that report only includes the cost to the utility or provider of the rebate or rebates instead of the cost of implementing the strategy.

The cost picture is similar when including these features in the design of new housing. The cost of separating the plumbing to capture all of the gray water would be less than \$1,000 additional. Adding the tank and pump equipment which would be the same as that discussed above would be approximately \$1,000. Operation and maintenance would be the same.

The cost to install a rainwater harvesting facility in an existing house and lot is covered in the GDS report, and is reported at \$670. To install a 2,000 gallon tank instead of the 1,000 gallon tank would increase the cost to approximately \$1,000, with a yield of 46.7 gallons per day. This translates to approximately \$6,000 per acre foot, assuming a 15 year life for the facilities and \$200 per year for operation and maintenance. The rainwater harvested in this example would be used primarily inside the home instead of for outdoor watering.

At the same time that interiors are made more water efficient, exterior watering would have to be banned almost entirely. All landscaping would be required to be water efficient, and be able to survive extended drought conditions. Outdoor watering would be prohibited by ordinance as well as through punitive water rates that would require high fees for usage above the minimum levels. Enforcement of these rules would be difficult and expensive, but there is little information currently to determine costs.

The measures discussed above are then applied against the population as follows. The indoor water use is taken from the 1980's bar on *Figure 1*, and assumed to average 68 gallons per capita per day. If the reuse bar at the top of *Figure 1* is used for the indoor use after the implementation of the gray water toilet flushing and the rainwater harvesting for shower and irrigation water, with a value of 36 gpcd, then the resultant savings is 32 gpcd. It is further assumed that TCB's experience with master planned communities is applicable to the Austin area, and that the difference between 68 gpcd for indoor use and 130 gpcd for total use is largely irrigation. If it is further assumed that only 10 percent of the outdoor watering is permitted in the future, then there would be a savings of approximately 56 gpcd for all systems with a per capita use above 130, or the difference between the current use and 68 gpcd minus 10 percent of that difference. All indoor savings will be the same. These savings amounts are applied to the population increases between 2010 and 2060 to determine the magnitude of the potential savings. A projected savings in 2050 of slightly more than 100,000 acre feet can be realized in this manner, as compared to the total regional shortage of approximately 78,000 acre feet. These savings are shown in *Table 3*.

IMPLEMENTATION ISSUES FOR SCENARIO 2

The numbers shown above are a significant departure from the demands that have been projected for this area to continue to grow in the manner that growth has occurred historically. In order to achieve compliance as closely as possible with a severe conservation standard, measures similar to those that are enumerated below will have to be implemented.

1. All new development will have to be closely controlled. The only type of outdoor watering that can potentially be allowed would have to be drip irrigation from either rainwater harvesting or gray water recycle. For the purposes of this discussion, gray water is defined as lavatory, tub, shower, and dish water. A connection could also be made to the clothes washer depending upon whether or not there are diapers routinely processed in the clothes washer. This connection could be valved off and water with heavy bacterial loadings could be sent to the black water or toilet water system instead.

- 2. All new construction would have to incorporate water saving fixtures as well as dual plumbing system to allow the use of recycled gray water to flush commodes and for limited outside irrigation.
- 3. All clothes washers would be required to meet high water use efficiency standards, and not just energy efficiency standards.
- 4. All new dwellings would have to be inspected and approved prior to hooking up the interior plumbing.
- 5. Punitive rates would have to be implemented to provide incentives for achieving low water use, but to quickly increase to provide disincentives to wasting water. This cannot be the only means of enforcement, since some customers will use all of the water they want regardless of the cost. In addition, since the amount of water used will be related to the number of people in the home, there would have to be an accounting of the number of people present in order to determine whether or not the usage was within standards.
- 6. Water would have to be shared among communities with those having surpluses being required to provide water for those with shortages.

The six points noted above can generally be implemented by cities with building inspection departments, and utility districts as well. However, information on the number of people in each home is not routinely collected currently. For the unincorporated areas of the counties not served by public water supplies, the control of water use could potentially be through the groundwater districts. The groundwater districts would have to require metering of individual groundwater wells serving residences, which is not currently done. They would also have to require an inspection of the completed dwelling prior to providing service in order to assure that the proper water saving features are in place.

Surface water use would be controlled by the entities that provide treated surface water, since no new connections are anticipated to take place by using raw surface water. Again, this would require new service inspections of all new residences and include the inspection of the dual plumbing systems that would be required and the rainwater harvesting facilities that would be needed to support the new development.

Another feature that would be required to make this scenario a reality is the use of automated metering reading. Remote reading of meters would make possible the identification of residences that were using rates and flows of water from the public system that were in excess of the indoor needs and help identify leaks earlier, as well as to identify those users that were using amounts of irrigation water outside the home.

POTENTIAL RISKS FOR SCENARIO 2

The points laid out above represent a significant departure from the current ways by which water is managed by retail utilities. Many of the features are not permitted in current legislation, particularly for the groundwater districts. In the same vein, cities and water districts do not currently have sufficiently strict standards to actually prohibit outdoor watering of landscapes. The potential pitfalls of this approach are as follows:

8. It would require the unanimous cooperation of a large number of governmental bodies all or nearly all with elected officials and boards.

- 9. If this Central Texas area enacted such rules and municipalities outside the area did not, there is a significant likelihood that development would move outside the boundaries of the controlled area.
- 10. Livestock would be difficult to include in the control equation. If outdoor watering is banned, would horses and other recreational livestock be banned as well?
- 11. A similar area of contention would be home gardens and fruit trees. This would be particularly true of rural areas, although Austin has had community garden areas set aside for a number of years, as well as having a flourishing master gardening program. Use of gray water for gardens could lead to some difficulties with buildup of solids in the soil, as well as uptake of copper from the plumbing systems in the plants if the water is not properly stabilized. If water is used from the potable water system to care for home gardens and fruit trees, would the same rules apply and would the homeowners be penalized by the rate?
- 12. There would need to be a significantly greater reporting requirement for commercial establishments. There are a number of successful programs for reducing usage in retail establishments, but many of these are very specific to the individual usage type. The individual percentages of residential versus commercial use will continue to have an impact on the overall per capita use.
- 13. There would be a significant expense incurred in monitoring and enforcing the ordinances. In addition, any ordinances enacted would be subject to court challenges, which could invalidate one or more of the necessary features needed to ensure adherence to the low water use standards.
- 14. Current regulations require that all water that is piped into a dwelling must be potable water. This regulation was enacted to prevent developers from building subdivisions and providing substandard water but escaping from regulation by claiming that they were not serving potable water. Individual residences could use separated plumbing and recycle gray water for toilet flushing, but apartment complexes could not. Similarly, apartment complexes that provided rainwater harvesting facilities and recycled for showers would be classified as potable water systems and would be required to have certified operators and take samples.
- 15. The use of gray water for toilet flushing will lead to a reduction in return flows over time. If the return flows diminish, then other strategies could have a greater effect and return less flow to the stream than previously anticipated. This interim reuse step will further concentrate dissolved solids in the wastewater being sent to the treatment plants and will be an issue that will have to be dealt with in future treatment technology.
- 16. Widespread rainwater harvesting will have a negative effect on the downstream run of the river rights since it will reduce the amount of runoff that reaches the river.
- 17. The extensive use of automated meter reading to determine what is going on in an individual home could be seen as an infringement on personal liberty and lead to significant legal challenges. In the same way, reporting of the number of persons living in a home for the purpose of determining whether or not water is being wasted would be problematic.
- 18. Those systems that have spent large sums in developing water supplies to serve their area of jurisdiction have been and are reluctant to share those supplies with other communities either less fortunate or less proactive. This is particularly true where there is the potential that once these supplies are provided they cannot be withdrawn in the future when the supplier entity needs that water for their own needs.

Much further work would need to be pursued with the Lower Colorado Regional Water Planning Group to further define the rules and requirements needed to implement savings at the level discussed briefly above. Limitations to this level have never been imposed on a large and diverse metropolitan area before.

The most likely scenario is that areas which decided to impose such limitations would see growth moved to areas which did not have the same limitations and the planned population growth would not occur. The focus on limitations which would have minimal impact on indoor usage is an attempt to mitigate this possibility, but it will still exist.

TABLE 1 SURPLUSES AND SHORTAGES BY WUG (FROM 2006 REGION K PLAN)

				Supply	+ Contra	ct Ext - D	emand (a	ac-ft/yr)	
WUG Name	County	River Basin	S2000	S2010	S2020	S2030	S2040	S2050	S2060
AQUA WSC	BASTROP	COLORADO	(1,786)	(2,632)	(3,755)	(5,035)	(6,585)	(8,534)	(11,067)
BASTROP	BASTROP	COLORADO	(666)	(900)	(1,195)	(1,555)	(1,958)	(2,480)	(3,149)
BASTROP COUNTY WCID #2	BASTROP	COLORADO	2	(101)	(233)	(386)	(561)	(789)	(1,075)
COUNTY-OTHER	BASTROP	BRAZOS	936	347	562	786	992	1,246	1,409
COUNTY-OTHER	BASTROP	COLORADO	(1,291)	(2,143)	(3,297)	(4,615)	(6,144)	(8,079)	(10,502)
COUNTY-OTHER	BASTROP	GUADALUPE	2,202	2,178	2,148	2,112	2,053	2,001	1,936
CREEDMOOR-MAHA WSC	BASTROP	COLORADO	554	545	534	522	510	495	477
ELGIN	BASTROP	COLORADO	585	467	302	118	(90)	(357)	(702)
LEE COUNTY WSC	BASTROP	BRAZOS	234	216	195	172	146	117	83
LEE COUNTY WSC	BASTROP	COLORADO	281	266	248	226	200	168	126
MANVILLE WSC	BASTROP	COLORADO	6,209	6,188	6,161	6,130	6,094	6,048	5,989
POLONIA WSC	BASTROP	COLORADO	1,923	1,918	1,910	1,903	1,897	1,889	1,878
SMITHVILLE	BASTROP	COLORADO	403	322	216	82	(68)	(265)	(523)
Total Municipal Water Totals			9,586	6,671	3,796	460	(3,514)	(8,540)	(15,120)
BLANCO	BLANCO	GUADALUPE	341	318	290	261	240	212	176
CANYON LAKE WSC	BLANCO	GUADALUPE	0	0	0	0	0	0	0
COUNTY-OTHER	BLANCO	COLORADO	1,064	1,039	1,001	964	932	682	627
COUNTY-OTHER	BLANCO	GUADALUPE	(44)	(122)	(169)	(192)	(210)	(233)	(263)
JOHNSON CITY	BLANCO	COLORADO	599	567	527	490	458	420	375
Total Municipal Water Totals			1,960	1,802	1,649	1,523	1,420	1,081	915
BERTRAM	BURNET	BRAZOS	(19)	(58)	(105)	(150)	(186)	(221)	(272)
BURNET	BURNET	COLORADO	5,113	4,979	4,819	4,662	4,501	4,327	4,113
CHISHOLM TRAIL SUD	BURNET	BRAZOS	(3)	(18)	(31)	(44)	(58)	(71)	(86)
COTTONWOOD SHORES	BURNET	COLORADO	17	(9)	(39)	(70)	(101)	(133)	(174)
COUNTY-OTHER	BURNET	BRAZOS	993	904	794	687	581	468	340
COUNTY-OTHER	BURNET	COLORADO	(18)	(266)	(581)	(915)	(1,210)	(1,560)	(1,964)
GRANITE SHOALS	BURNET	COLORADO	503	445	377	305	238	161	67
KEMPNER WSC	BURNET	BRAZOS	73	18	(39)	(96)	(147)	(196)	(253)
KINGSLAND WSC	BURNET	COLORADO	(9)	(10)	(11)	(12)	(13)	(14)	(17)
LAKE LBJ MUD	BURNET	COLORADO	33	32	33	34	34	30	23
MARBLE FALLS	BURNET	COLORADO	1,384	1,205	984	762	548	307	16
MEADOWLAKES BURNET COLORADO			(6)	(201)	(430)	(664)	(886)	(1,132)	(1,417)
otal Municipal Water Totals			8,061	7,021	5,771	4,499	3,301	1,966	376
COLUMBUS	COLORADO	COLORADO	341	324	293	283	288	290	302
COUNTY-OTHER	COLORADO	BRAZOS-COLORADO	9	8	7	8	11	12	13

TABLE 1 SURPLUSES AND SHORTAGES BY WUG (FROM 2006 REGION K PLAN)

				Supply	+ Contra	ct Ext - D	emand (a	ac-ft/yr)	
WUG Name	County	River Basin	S2000	S2010	S2020	S2030	S2040	S2050	S2060
COUNTY-OTHER	COLORADO	COLORADO	79	76	68	75	93	100	108
COUNTY-OTHER	COLORADO	LAVACA	(100)	(105)	(109)	(106)	(97)	(93)	(90)
EAGLE LAKE	COLORADO	BRAZOS-COLORADO	269	267	264	264	267	268	270
EAGLE LAKE	COLORADO	COLORADO	35	30	25	25	31	33	37
WEIMAR	COLORADO	COLORADO	1,569	1,567	1,563	1,563	1,565	1,567	1,569
WEIMAR	COLORADO	LAVACA	2,017	2,016	2,015	2,014	2,016	2,016	2,017
Total Municipal Water Totals			4,219	4,183	4,126	4,126	4,174	4,193	4,226
AQUA WSC	FAYETTE	COLORADO	0	0	0	0	0	0	0
COUNTY-OTHER	FAYETTE	BRAZOS	0	0	0	0	0	0	0
COUNTY-OTHER	FAYETTE	COLORADO	(34)	(123)	(120)	(19)	50	94	123
COUNTY-OTHER	FAYETTE	GUADALUPE	113	135	148	155	160	162	164
COUNTY-OTHER	FAYETTE	LAVACA	(29)	41	93	28	(32)	(25)	(16)
FAYETTE WSC	FAYETTE	COLORADO	448	111	(236)	(507)	(719)	(976)	(1,317)
FAYETTE WSC	FAYETTE	LAVACA	39	10	(21)	(45)	(63)	(86)	(116)
FLATONIA	FAYETTE	GUADALUPE	50	43	36	31	27	22	14
FLATONIA	FAYETTE	LAVACA	(12)	(37)	(59)	(79)	(92)	(110)	(137)
LA GRANGE	FAYETTE	COLORADO	1,709	1,549	1,383	1,248	1,150	1,029	856
LEE COUNTY WSC	FAYETTE	COLORADO	123	36	(48)	(117)	(171)	(232)	(319)
SCHULENBURG	FAYETTE	LAVACA	1,557	1,475	1,386	1,318	1,266	1,200	1,107
Total Municipal Water Totals			3,964	3,240	2,562	2,013	1,576	1,078	359
COUNTY-OTHER	GILLESPIE	COLORADO	649	485	312	280	316	334	334
COUNTY-OTHER	GILLESPIE	GUADALUPE	1,255	1,249	1,243	1,242	1,243	1,244	1,244
FREDERICKSBURG	GILLESPIE	COLORADO	1,381	1,040	683	571	599	613	613
Total Municipal Water Totals			3,285	2,774	2,238	2,093	2,158	2,191	2,191
BUDA	HAYS	COLORADO	229	(638)	(1,514)	(1,989)	(2,474)	(3,052)	(3,526)
CIMARRON PARK WATER COMPANY	HAYS	COLORADO	0	(41)	(127)	(220)	(314)	(427)	(520)
COUNTY-OTHER	HAYS	COLORADO	385	(759)	(2,072)	(3,416)	(4,784)	(6,485)	(7,823)
DRIPPING SPRINGS	HAYS	COLORADO	239	(520)	(1,296)	(1,737)	(2,185)	(2,740)	(3,176)
DRIPPING SPRINGS WSC	HAYS	COLORADO	23	(108)	(261)	(420)	(577)	(773)	(926)
HILL COUNTRY WSC	HAYS	COLORADO	783	0	Ó	0	0	0	0
MOUNTAIN CITY	HAYS	COLORADO	0	14	16	16	17	17	17
Fotal Municipal Water Totals		1,659	(2,052)	(5,254)	(7,766)	(10,317)	(13,460)	(15,954)	
COUNTY-OTHER	LLANO	COLORADO	1,263	1,256	1,261	1,261	1,247	1,253	1,253
KINGSLAND WSC	LLANO	COLORADO	9		11	18	24	21	14

TABLE 1 SURPLUSES AND SHORTAGES BY WUG (FROM 2006 REGION K PLAN)

				Supply	+ Contra	ct Ext - D	emand (a	ac-ft/yr)	
WUG Name	County	River Basin	S2000	S2010	S2020	S2030	S2040	S2050	S2060
LAKE LBJ MUD	LLANO	COLORADO	221	191	167	150	135	110	74
LLANO	LLANO	COLORADO	(724)	(740)	(738)	(736)	(733)	(735)	(742)
SUNRISE BEACH VILLAGE	LLANO	COLORADO	170	170	171	173	175	176	176
Total Municipal Water Totals			939	887	872	866	848	825	775
BAY CITY	MATAGORDA	BRAZOS-COLORADO	3,119	3,019	2,868	2,810	2,814	2,849	2,880
COUNTY-OTHER	MATAGORDA	BRAZOS-COLORADO	1,169	1,149	1,118	1,113	1,124	1,137	1,144
COUNTY-OTHER	MATAGORDA	COLORADO	900	896	890	890	892	894	896
COUNTY-OTHER	MATAGORDA	COLORADO-LAVACA	3,335	3,321	3,301	3,298	3,306	3,315	3,320
ORBIT SYSTEMS INC	MATAGORDA	COLORADO-LAVACA	(2)	(2)	(2)	(2)	(2)	(2)	(2)
PALACIOS	MATAGORDA	COLORADO-LAVACA	1,436	1,407	1,375	1,365	1,363	1,372	1,379
SOUTHWEST UTILITIES	MATAGORDA	BRAZOS-COLORADO	61	59	56	55	55	56	57
Total Municipal Water Totals			10,018	9,849	9,606	9,529	9,552	9,621	9,674
BROOKSMITH SUD	MILLS	COLORADO	1,681	1,681	1,680	(8)	(8)	(8)	(7)
COUNTY-OTHER	MILLS	BRAZOS	94	99	93	64	67	29	32
COUNTY-OTHER	MILLS	COLORADO	94	101	93	56	60	12	16
GOLDTHWAITE	MILLS	BRAZOS	(6)	(6)	(6)	(6)	(6)	(5)	(5)
GOLDTHWAITE	MILLS	COLORADO	(360)	(351)	(364)	(362)	(360)	(352)	(345)
Total Municipal Water Totals			1,503	1,524	1,496	(256)	(247)	(324)	(309)
COUNTY-OTHER	SAN SABA	COLORADO	7,845	7,837	7,824	7,812	7,800	7,802	7,799
RICHLAND SUD	SAN SABA	COLORADO	25	22	11	3	(3)	(3)	(5)
SAN SABA	SAN SABA	COLORADO	1,348	1,356	1,363	1,371	1,378	1,384	1,384
Total Municipal Water Totals			9,218	9,215	9,198	9,186	9,175	9,183	9,178
ANDERSON MILL MUD	TRAVIS	COLORADO	0	0	0	0	0	0	0
AQUA WSC	TRAVIS	COLORADO	0	0	0	0	0	0	0
AUSTIN	TRAVIS	COLORADO	144,436	130,619	92,535	62,478	23,824	(12,217)	(46,583)
BARTON CREEK WEST WSC	TRAVIS	COLORADO	(55)	(53)	(50)	(47)	(45)	(43)	(43)
BEE CAVE VILLAGE	TRAVIS	COLORADO	(102)	(252)	(453)	(639)	(754)	(877)	(1,004)
BRIARCLIFF VILLAGE	TRAVIS	COLORADO	117	46	(50)	(139)	(194)	(252)	(314)
CEDAR PARK	TRAVIS	COLORADO	0	0	0	0	0	0	0
COUNTY-OTHER	TRAVIS	COLORADO	15,299	15,306	15,313	14,949	13,836	13,736	13,743
COUNTY-OTHER	TRAVIS	GUADALUPE	0	0	0	0	0	0	0
CREEDMOOR-MAHA WSC	TRAVIS	COLORADO	764	656	(280)	(390)	(467)	(544)	(623)
CREEDMOOR-MAHA WSC	TRAVIS	GUADALUPE	20	17	(7)	(10)	(12)	(14)	(16)
ELGIN	TRAVIS	COLORADO	4	5	6	4	2	(1)	(5)
GOFORTH WSC	TRAVIS	COLORADO	8	(3)	(14)	(23)	(30)	(38)	(43)

TABLE 1 SURPLUSES AND SHORTAGES BY WUG (FROM 2006 REGION K PLAN)

				Supply	+ Contra	ct Ext - D	emand (a	ac-ft/yr)	
WUG Name	County	River Basin	S2000	S2010	S2020	S2030	S2040	S2050	S2060
HILL COUNTRY WSC	TRAVIS	COLORADO	543	0	0	0	0	0	0
JONESTOWN	TRAVIS	COLORADO	6	(29)	(79)	(122)	(149)	(178)	(212)
JONESTOWN WSC	TRAVIS	COLORADO	2	(13)	(35)	(54)	(67)	(81)	(96)
LAGO VISTA	TRAVIS	COLORADO	5,276	4,764	4,072	3,430	3,037	2,609	2,168
LAKEWAY	TRAVIS	COLORADO	(198)	(1,074)	(2,261)	(3,341)	(4,012)	(4,744)	(5,498)
LAKEWAY MUD	TRAVIS	COLORADO	0	0	0	0	0	0	0
LOOP 360 WSC	TRAVIS	COLORADO	76	(357)	(354)	(350)	(347)	(347)	(347)
LOST CREEK MUD	TRAVIS	COLORADO	0	0	0	0	0	0	0
MANOR	TRAVIS	COLORADO	2,075	2,056	2,029	325	310	292	273
MANVILLE WSC	TRAVIS	COLORADO	2,016	1,573	953	(1,839)	(2,184)	(2,577)	(2,982)
MUSTANG RIDGE	TRAVIS	COLORADO	0	0	0	0	0	0	0
MUSTANG RIDGE	TRAVIS	GUADALUPE	0	0	0	0	0	0	0
NORTH AUSTIN MUD #1	TRAVIS	COLORADO	0	0	0	0	0	0	0
NORTH TRAVIS COUNTY MUD #5	TRAVIS	COLORADO	0	0	0	0	0	0	0
PFLUGERVILLE	TRAVIS	COLORADO	7,978	7,168	5,012	3,025	1,826	491	(882)
RIVER PLACE ON LAKE AUSTIN	TRAVIS	COLORADO	(19)	(570)	(823)	(823)	(817)	(817)	(817)
ROLLINGWOOD	TRAVIS	COLORADO	740	743	744	746	(372)	(371)	(373)
ROUND ROCK	TRAVIS	COLORADO	79	(158)	(339)	(528)	(669)	(813)	(957)
SHADY HOLLOW MUD	TRAVIS	COLORADO	0	0	0	0	0	0	0
THE HILLS	TRAVIS	COLORADO	1,229	1,033	867	867	871	871	871
TRAVIS COUNTY WCID #17	TRAVIS	COLORADO	7,317	6,498	5,410	4,388	3,770	3,083	2,375
TRAVIS COUNTY WCID #18	TRAVIS	COLORADO	712	547	325	122	(4)	(135)	(283)
TRAVIS COUNTY WCID #19	TRAVIS	COLORADO	0	0	0	0	0	0	0
TRAVIS COUNTY WCID #20	TRAVIS	COLORADO	731	673	675	678	679	680	680
WELLS BRANCH MUD	TRAVIS	COLORADO	0	0	0	0	0	0	0
WEST LAKE HILLS	TRAVIS	COLORADO	985	815	587	(2,049)	(2,178)	(2,320)	(2,471)
WEST TRAVIS COUNTY REGIONAL WS	TRAVIS	COLORADO	2,874	1,951	1,231	527	2	(615)	(1,170)
WILLIAMSON-TRAVIS COUNTY MUD #1	TRAVIS	COLORADO	338	284	208	138	97	49	0
WINDERMERE UTILITY COMPANY	TRAVIS	COLORADO	825	83	18	(2,201)	(2,180)	(2,180)	(2,180)
Total Municipal Water Totals			194,076	172,328	125,240	79,122	33,773	(7,353)	(46,789)
COUNTY-OTHER	WHARTON	BRAZOS-COLORADO	4,554	4,531	4,496	4,491	4,509	4,523	4,537
COUNTY-OTHER	WHARTON	COLORADO	610	601	588	587	593	598	604
COUNTY-OTHER	WHARTON	COLORADO-LAVACA	34	29	22	21	25	27	30

TABLE 1 SURPLUSES AND SHORTAGES BY WUG (FROM 2006 REGION K PLAN)

			Supply + Contract Ext - Demand (ac-ft/yr)						
WUG Name	County	River Basin	S2000	S2010	S2020	S2030	S2040	S2050	S2060
WHARTON	WHARTON	BRAZOS-COLORADO	4,535	4,495	4,461	4,445	4,447	4,455	4,467
WHARTON	WHARTON	COLORADO	37	18	3	(4)	(4)	0	6
Total Municipal Water Totals			9,770	9,674	9,570	9,540	9,570	9,603	9,644
ANDERSON MILL MUD	WILLIAMSON	BRAZOS	0	0	0	0	0	0	0
AUSTIN	WILLIAMSON	BRAZOS	0	0	0	0	0	0	0
COUNTY-OTHER	WILLIAMSON	BRAZOS	310	314	318	322	323	323	323
NORTH AUSTIN MUD #1	WILLIAMSON	BRAZOS	0	0	0	0	0	0	0
Total Municipal Water Totals			310	314	318	322	323	323	323

			Drou	ght Manag	gement (5	% Water L	Jse Reduc	tion)
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
AQUA WSC	BASTROP	COLORADO	281	402	480	629	747	898
BASTROP	BASTROP	COLORADO	92	117	135	165	197	237
BASTROP COUNTY WCID #2	BASTROP	COLORADO	17	24	31	40	51	66
COUNTY-OTHER	BASTROP	BRAZOS	5	7	9	11	14	16
COUNTY-OTHER	BASTROP	COLORADO	118	165	209	276	330	397
COUNTY-OTHER	BASTROP	GUADALUPE	3	4	6	7	9	11
CREEDMOOR-MAHA WSC	BASTROP	COLORADO	1	1	2	2	3	3
ELGIN	BASTROP	COLORADO	78	110	140	185	220	265
LEE COUNTY WSC	BASTROP	BRAZOS	2	4	4	6	7	8
LEE COUNTY WSC	BASTROP	COLORADO	4	5	7	9	11	13
MANVILLE WSC	BASTROP	COLORADO	3	5	6	8	10	13
POLONIA WSC	BASTROP	COLORADO	1	1	2	2	3	3
SMITHVILLE	BASTROP	COLORADO	44	62	78	101	120	144
Total Municipal Water Totals	B/(011(0)	002010120	664	931	1,148	1,502	1,793	2,160
BLANCO	BLANCO	GUADALUPE	20	23	26	29	31	34
CANYON LAKE WSC	BLANCO	GUADALUPE	9	13	17	20	23	27
COUNTY-OTHER	BLANCO	COLORADO	15	16	17	18	20	22
COUNTY-OTHER	BLANCO	GUADALUPE	8	9	9	10	11	12
JOHNSON CITY	BLANCO	COLORADO	19	22	25	28	30	33
Total Municipal Water Totals	DE 1100	002010120	73	86	97	107	118	131
BERTRAM	BURNET	BRAZOS	13	15	18	22	24	26
BURNET	BURNET	COLORADO	56	71	87	103	112	123
CHISHOLM TRAIL SUD	BURNET	BRAZOS	1	2	3	3	4	5
COTTONWOOD SHORES	BURNET	COLORADO	8	17	26	37	49	63
COUNTY-OTHER	BURNET	BRAZOS	25	31	38	45	49	52
COUNTY-OTHER	BURNET	COLORADO	78	96	120	143	154	163
GRANITE SHOALS	BURNET	COLORADO	21	27	33	39	42	46
KEMPNER WSC	BURNET	BRAZOS	14	16	18	19	20	21
KINGSLAND WSC	BURNET	COLORADO	3	3	4	4	4	5
LAKE LBJ MUD	BURNET	COLORADO	11	13	15	16	18	20
MARBLE FALLS	BURNET	COLORADO	115	135	153	165	164	162
MEADOWLAKES	BURNET	COLORADO	40	47	53	58	57	57
Total Municipal Water Totals	DURNET	COLORADO	450	572	708	843	931	1,028
COLUMBUS	COLORADO	COLORADO	430 51	55	56	56	58	60
COLUMBUS	COLORADO	BRAZOS-	31	55	36	36	36	60
COUNTY-OTHER	COLORADO							_
OOLINETY OTHER	001.004.00	COLORADO	6	6	6	6 35	6	5
COUNTY-OTHER	COLORADO	COLORADO	36	37	36		35	35
COUNTY-OTHER	COLORADO	LAVACA	18	18	18	17	17	17
EAGLE LAKE	COLORADO	BRAZOS- COLORADO	9	9	9	9	9	10
EAGLE LAKE	COLORADO	COLORADO	20	21	21	21	22	23
WEIMAR	COLORADO	COLORADO	13	13	14	13	14	14
WEIMAR	COLORADO	LAVACA	6	6	6	6	6	6
Total Municipal Water Totals	JOCLONADO	LAVAOA	158	165	166	163	166	170
AQUA WSC	FAYETTE	COLORADO	5	6	7	8	8	10
	FAYETTE	BRAZOS	0	0	0	0	0	0
COUNTY OTHER			23	15	10	7	5	3
COUNTY-OTHER COUNTY-OTHER	FAYETTE	COLORADO GUADALUPE		15	10	0	0	0
	FAYETTE		2 9	6	3	2	1	1
COUNTY-OTHER	FAYETTE	LAVACA	9	Ö	ગ	2		

Droug		ement (10		r Use Reduction)		
2010	2020	2030	2040	2050	2060	
563	805	960	1,257	1,494	1,796	
185	234	270	329	394	474	
34	47	63	80	103	132	
10	14	17	23	27	33	
236	330	418	552	661	794	
6	9	11	15	18	21	
2	3	3	4	5	6	
157	220	281	370	440	530	
5	7	9	12	14	16	
8	11	14	18	21	25	
7	9	13	16	21	27	
2	3	3	4	5	6	
88	123	155	202	240	288	
1,328	1,862	2,296	3,004	3,586	4,321	
41	45	52	58	63	69	
19	26	33	40	47	55	
30	32	35	37	40	44	
16	17	19	20	22	24	
38	45	50	55	60	66	
147	171	195	214	236	263	
26	31	37	44	48	52	
111	142	174	206	225	246	
3	4	5	7	8	9	
16	34	52	74	98	127	
50	61	76	91	98	103	
157	192	240	287	308	325	
42	54	66	78	84	95	
27	32	36	38	40	42	
6	6	7	8	9	10	
23	26	29	32	36	40	
230	270	306	330	328	325	
80 899	94	107	115	114	113	
	1,144	1,417	1,687	1,863	2,055	
103	110	113	111	115	121	
4.4	40	4.4	4.4	4.4	4.4	
11 72	12	11 73	11 71	11 70	11 69	
	73	36	35	34	34	
36	36	30	35	34	34	
17	18	19	18	19	20	
40	42	43	42	43	45	
25	27	27	27	28	29	
11	12	12	12	12	13	
316	329	333	326	332	341	
9	12	14	15	17	19	
0	0	0	0	0	0	
46	31	21	14	9	6	
3	2	1	1	0	0	
19	11	7	4	3	2	
19	111	- 1	4	3		

			Droue	ght Manag	ement (5°	% Water L	Jse Reduct	ion)
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
FAYETTE WSC	FAYETTE	COLORADO	42	60	73	84	97	114
FAYETTE WSC	FAYETTE	LAVACA	4	5	6	7	9	10
FLATONIA	FAYETTE	GUADALUPE	4	4	4	5	5	5
FLATONIA	FAYETTE	LAVACA	13	14	15	16	17	18
LA GRANGE	FAYETTE	COLORADO	48	56	63	68	74	83
LEE COUNTY WSC	FAYETTE	COLORADO	13	17	20	23	26	30
SCHULENBURG	FAYETTE	LAVACA	30	31	32	35	38	41
Total Municipal Water Totals		-U	195	221	244	262	288	325
COUNTY-OTHER	GILLESPIE	COLORADO	79	88	89	88	87	87
COUNTY-OTHER	GILLESPIE	GUADALUPE	3	3	3	3	3	3
FREDERICKSBURG	GILLESPIE	COLORADO	156	179	190	188	187	187
Total Municipal Water Totals		1000000000	237	270	282	279	277	277
BUDA	HAYS	COLORADO	73	106	130	154	183	207
CIMARRON PARK WATER								
COMPANY	HAYS	COLORADO	19	24	28	33	39	44
COUNTY-OTHER	HAYS	COLORADO	168	243	310	379	464	531
DRIPPING SPRINGS	HAYS	COLORADO	50	79	91	110	132	149
DRIPPING SPRINGS WSC	HAYS	COLORADO	17	25	33	41	51	58
HILL COUNTRY WSC	HAYS	COLORADO	22	35	49	62	79	92
MOUNTAIN CITY	HAYS	COLORADO	6	6	6	6	6	6
Total Municipal Water Totals	IIIATO	COLORADO	360	533	672	813	987	1,125
COUNTY-OTHER	LLANO	COLORADO	56	55	51	52	53	54
KINGSLAND WSC	LLANO	COLORADO	34	37	37	36	37	38
LAKE LBJ MUD	LLANO	COLORADO	77	75	69	64	59	55
LLANO	LLANO	COLORADO	54	53	49	45	41	38
SUNRISE BEACH VILLAGE	LLANO	COLORADO	10	11	11	11	11	11
Total Municipal Water Totals	LLANO	COLONADO	286	312	322	332	344	357
Total Wullicipal Water Totals		BRAZOS-	200	312	JZZ	332	344	331
BAY CITY	MATAGORDA	COLORADO	162	169	172	172	171	171
COUNTY-OTHER	MATAGORDA	BRAZOS- COLORADO	39	41	41	40	40	40
COUNTY-OTHER	MATAGORDA	COLORADO	8	8	8	8	8	8
COUNTY-OTHER	MATAGORDA	COLORADO- LAVACA	29	30	30	30	29	29
ORBIT SYSTEMS INC	MATAGORDA	COLORADO- LAVACA	0	0	0	0	0	0
PALACIOS	MATAGORDA	COLORADO- LAVACA	37	39	39	39	39	39
SOUTHWEST UTILITIES	MATAGORDA	BRAZOS- COLORADO	4	4	4	4	4	4
Total Municipal Water Totals	1	1	280	292	295	294	292	292
BROOKSMITH SUD	MILLS	COLORADO	0	0	0	0	0	0
COUNTY-OTHER	MILLS	BRAZOS	9	9	9	9	9	10
COUNTY-OTHER	MILLS	COLORADO	13	13	14	13	14	14
GOLDTHWAITE	MILLS	BRAZOS	0	0	0	0	0	0
GOLDTHWAITE	MILLS	COLORADO	26	26	24	21	19	18
otal Municipal Water Totals			51	54	55	53	54	55
COUNTY-OTHER	SAN SABA	COLORADO	11	12	13	13	13	13
RICHLAND SUD	SAN SABA	COLORADO	9	9	9	10	10	10
MOLIEVIAD 200	JOAN OADA	JOCLONADO	9	9	9	10	10	10

Droug	ght Manag	ement (10	(10% Water Use Reduction)						
2010	2020	2030	2040	2050	2060				
85	119	146	168	193	227				
7	11	13	15	17	20				
8	8	9	9	10	11				
26	29	31	32	34	36				
96	113	126	136	148	166				
25	34	41	46	52	61				
60	63	64	69	75	83				
389	442	488	524	575	650				
158	175	179	175	173	173				
6	6	6	6	6	6				
311	358	380	377	375	375				
475	540	565	558	554	554				
145	213	260	309	367	414				
38	47	57	67	78	88				
336	486	621	758	928	1,062				
100	158	183	220	264	299				
35	50	66	82	101	117				
44	70	98	125	158	184				
12	12	12	12	12	12				
720	1,066	1,345	1,627	1,974	2,250				
112	109	102	104	106	108				
69	73	73	73	74	75				
153 108	150 105	138 97	127 90	117	110				
20	22	22	22	83 22	76 23				
572	624	645	665	688	714				
312	024	043	003	000	714				
324	339	345	344	342	342				
524	333	070	577	542	542				
79	82	82	81	80	80				
16	16	16	16	16	16				
		- 10							
58	60	60	60	59	59				
0	0	0	0	0	0				
75	78	79	79	78	78				
8	8	9	9	8	8				
559	583	591	588	583	583				
1	1	1	1	1	1				
18	18	19	17	19	20				
26	26	27	25	27	29				
1	1	1	1	1	1				
51	51	48	43	39	35				
101	107	109	105	109	110				
23	24	25	26	26	27				
18	18	19	20	20	20				

			Drought Management (5% Water Use Reducti					tion)
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
SAN SABA	SAN SABA	COLORADO	44	44	43	43	43	43
Total Municipal Water Totals			65	66	66	67	67	67
ANDERSON MILL MUD	TRAVIS	COLORADO	0	0	0	0	0	0
AQUA WSC	TRAVIS	COLORADO	71	82	91	97	103	111
AUSTIN	TRAVIS	COLORADO	6,830	7,441	8,631	9,866	11,168	12,137
BARTON CREEK WEST WSC	TRAVIS	COLORADO	18	17	15	14	12	11
BEE CAVE VILLAGE	TRAVIS	COLORADO	54	58	62	63	62	60
BRIARCLIFF VILLAGE	TRAVIS	COLORADO	12	13	14	16	17	19
CEDAR PARK	TRAVIS	COLORADO	9	15	19	22	25	29
COUNTY-OTHER	TRAVIS	COLORADO	263	247	177	132	115	120
COUNTY-OTHER	TRAVIS	GUADALUPE	0	0	0	0	0	0
CREEDMOOR-MAHA WSC	TRAVIS	COLORADO	31	36	41	44	48	52
CREEDMOOR-MAHA WSC	TRAVIS	GUADALUPE	1	1	1	1	1	1
ELGIN	TRAVIS	COLORADO	1	1	1	1	1	1
GOFORTH WSC	TRAVIS	COLORADO	2	2	2	3	3	3
HILL COUNTRY WSC	TRAVIS	COLORADO	12	18	24	28	32	36
JONESTOWN	TRAVIS	COLORADO	23	27	31	35	38	40
JONESTOWN WSC	TRAVIS	COLORADO	6	7	8	9	10	10
LAGO VISTA	TRAVIS	COLORADO	113	135	157	177	192	206
LAKEWAY	TRAVIS	COLORADO	218	237	250	256	250	244
LAKEWAY MUD	TRAVIS	COLORADO	0	0	0	0	0	0
LOOP 360 WSC	TRAVIS	COLORADO	61	61	61	61	61	61
LOST CREEK MUD	TRAVIS	COLORADO	47	46	45	45	44	44
MANOR	TRAVIS	COLORADO	63	68	72	78	85	91
MANVILLE WSC	TRAVIS	COLORADO	87	118	145	162	181	201
MUSTANG RIDGE	TRAVIS	COLORADO	5	6	6	7	8	8
MUSTANG RIDGE	TRAVIS	GUADALUPE	1	2	2	2	2	2
NORTH AUSTIN MUD #1	TRAVIS	COLORADO	5	5	5	5	5	5
NORTH TRAVIS COUNTY MUD #5	TRAVIS	COLORADO	26	40	52	60	68	77
PFLUGERVILLE	TRAVIS	COLORADO	318	373	435	491	532	573
RIVER PLACE ON LAKE AUSTIN	TRAVIS	COLORADO	67	71	65	58	53	48
ROLLINGWOOD	TRAVIS	COLORADO	17	16	14	13	12	12
ROUND ROCK	TRAVIS	COLORADO	18	26	31	33	38	43
SAN LEANNA	TRAVIS	COLORADO	5	6	7	8	9	9
SHADY HOLLOW MUD	TRAVIS	COLORADO	37	37	36	35	35	35
THE HILLS	TRAVIS	COLORADO	28	37	37	36	36	36
TRAVIS COUNTY WCID #17	TRAVIS	COLORADO	236	288	317	350	367	389
TRAVIS COUNTY WCID #18	TRAVIS	COLORADO	43	54	64	70	77	84
TRAVIS COUNTY WCID #19	TRAVIS	COLORADO	19	19	19	19	19	19
TRAVIS COUNTY WCID #20	TRAVIS	COLORADO	23	23	23	23	23	23
WELLS BRANCH MUD	TRAVIS	COLORADO	75	75	74	72	72	72
WEST LAKE HILLS	TRAVIS	COLORADO	73	77	78	75	73	70
WEST TRAVIS COUNTY REGIONAL WS	TRAVIS	COLORADO	38	55	71	80	91	101
WILLIAMSON-TRAVIS COUNTY MUD #1	TRAVIS	COLORADO	10	14	17	19	22	24

Droug	ght Manag	ement (10	0% Water	Use Redu	ction)
2010	2020	2030	2040	2050	2060
88	88	87	86	86	86
130	132	133	134	133	134
0	0	0	0	0	0
142	163	182	194	207	221
13,660	14,881	17,262	19,731	22,336	24,273
36	33	30	27	24	23
107	117	123	126	123	120
24	26	28	32	35	37
19	29	38	44	51	57
526	494	354	264	231	239
0	0	0	0	0	0
61	72	82	88	95	103
2	2	2	2	3	3
1	2	2	2	2	3
3	4	5	5	6	6
24	36	48	56	63	71
47	55	63	70	75	81
12	15	16	18	19	21
226	270	314	354	383	412
435	474	500	511	501	488
0	0	0	0	0	0
123	123	122	122	122	122
94	92	91	89	88	88
125	137	144	156	169	
173	235	290	324	362	182 402
			14		
9	11 3	13 3	4	15 4	16 4
11	<u>3</u> 11	<u>3</u> 11	10	10	10
1.1	- 11	11	10	10	10
E 4	70	105	120	107	151
51 636	79	105	120	137	154
030	746	870	982	1,064	1,146
134	143	129	117	106	96
35	32	29	26	24	23
37	51	61	67	76	23 86
10	12	14	16	17	18
75	73	72	70	69	69
57	73	73	73	73	73
471		633	699	734	
85	575 108	128	140	154	778 168
38	37	37	37	37	37
46	46	46	46	46	46
151	149	147	144	144	144
147	153	155	150	145	140
77	444	4.40	404	404	000
77	111	142	161	181	202
00	0.7	0.4	00	40	40
20	27	34	39	43	48

			Droug	ght Manag	gement (5	% Water L	Jse Reduc	tion)
WUG Name	County	River Basin	2010	2020	2030	2040	2050	2060
WINDERMERE UTILITY COMPANY	TRAVIS	COLORADO	108	111	110	109	109	109
Total Municipal Water Totals			9,984	11,851	13,731	15,411	17,143	18,486
COUNTY-OTHER	WHARTON	BRAZOS- COLORADO	58	60	60	59	59	58
COUNTY-OTHER	WHARTON	COLORADO	22	23	23	22	22	22
COUNTY-OTHER	WHARTON	COLORADO- LAVACA	12	12	12	12	12	12
EAST BERNARD	WHARTON	BRAZOS- COLORADO	14	14	14	14	14	14
WHARTON	WHARTON	BRAZOS- COLORADO	57	59	60	59	59	58
WHARTON	WHARTON	COLORADO	24	25	26	27	27	27
Total Municipal Water Totals		•	189	194	196	194	192	190
ANDERSON MILL MUD	WILLIAMSON	BRAZOS						
AUSTIN	WILLIAMSON	BRAZOS	273	370	485	608	742	885
COUNTY-OTHER	WILLIAMSON	BRAZOS	120	136	156	177	199	223
NORTH AUSTIN MUD #1	WILLIAMSON	BRAZOS	49	48	48	46	46	46
otal Municipal Water Totals			442	555	688	831	987	1,154
REGION K TOTALS			12,375	13,978	15,917	17,991	20,091	21,950

Droug	ght Manag	ement (10	0% Water	Use Redu	ction)
2010	2020	2030	2040	2050	2060
216	222	220	218	218	218
19,968	23,701	27,461	30,823	34,287	36,972
116	119	120	118	117	116
44	45	45	45	44	44
24	24	24	24	24	23
28	29	29	28	28	28
114	118	119	119	118	117
48	51	53	54	54	53
378	388	391	388	385	381
546	740	969	1,216	1,483	1,769
240	273	312	354	399	447
98	97	95	93	92	92
562	695	839	995	1,161	7
24,757	27,951	31,844	35,992	40,178	43,905

Only strategy needed to take care of shortage

DRY YEAR OPTION ANALYSIS

INTRODUCTION

The Dry Year Option Analysis had its beginnings in the last planning round and was carried over into this planning round because funds were not available to analyze the impacts of such a management strategy at that time. This strategy is an outgrowth of concern on the part of the rice growers in the lower basin about priorities for surface water use. It was not the intention of the rice growers to try to suggest more ways to divert water from agricultural to municipal uses, but rather a way to try to find some means of compensation if water was going to be diverted to other uses anyway.

BACKGROUND

Current methods of culturing rice in the lower three counties of the Region, Colorado, Matagorda, and Wharton (partial) include the growth of a first crop of rice that involves complete preparation of the land, seeding of the rice, and flooding of the fields for weed control. Fields are kept flooded throughout the growing season, and then drained in time for them to dry out prior to harvest. A percentage of the farmers who grow a first crop also grow a second crop from the stubble of the first crop. This second, or ratoon, crop does not involve the expense of seedbed preparation or seed so there are fewer expenses. At the same time, however, the yield is also less per acre than the first crop yield. This second crop requires additional water during what is historically one of the driest times of the year. The purpose of this analysis is to determine whether or not water could be made available for other uses if farmers were paid a payment that would induce them not to grow a second crop of rice so that water could be made available for other uses.

DATA COLLECTION

Some of the data that was instrumental in determining the potential availability of water under a Dry Year Option was collected as a part of the process for determining the water demands of the rice industry. Meetings were held with rice growing interests in each of the counties, as well as a joint meeting with rice growing interests in Region H to the east and Region P to the west. The meetings with Region P were especially important considering that Wharton County is split between the two regions, with Region K using predominantly surface water and Region P using predominantly groundwater for irrigation of rice. Regional Water Planning Group (RWPG) members representing agriculture and small business with ties to the rice industry were asked to provide lists of contacts in their counties who would be information resources in determining the current practices for their areas. These individuals were contacted and asked to participate in a meeting to discuss rice irrigation habits and customs related to water usage. The groups included local rice farmers, county agricultural extension agents, local officials, and others as needed.

In each case the meetings noted above gathered together individuals who were familiar with the county and with the farmers operating in that county, to the extent of knowing who farmed what property and how many acres were farmed in many cases. *Table 1* was the product of those discussions. Individual discussions were held for each of the three counties. As a result of these discussions, the RWPGs were presented information on a variety of ways to determine the proposed revisions to the irrigation demands in their respective areas. Region P chose to use the spreadsheet as shown while Region K elected to use values derived from Texas Water Development Board (TWDB) data from 1995 forward on acreages irrigated. The primary reason for the difference in selected methodologies is the fact that Region K uses predominantly surface water, the vast majority of which is supplied by Lower Colorado Regional

Authority (LCRA) through its canal systems. As a result, Region K had better information on acres planted already represented in the TWDB numbers. Region P, on the other hand, relies more heavily on groundwater and the planning group felt that their demands were underrepresented in the TWDB data. As *Table 1* shows, the local representatives established the numbers of acres planted, broken down by surface water or groundwater for irrigation. They agreed on the amount of water diverted for a first crop of rice, the estimated losses in delivering that water to the rice fields, and the estimated on-farm usage. The anticipated return flow from the rice fields to the drainage basin was developed in a later task. The next piece of information that was assembled was the percent of first crop acreage that was second cropped, as well as the water usage per acre for the second cropping operations. This data formed the initial estimate of the amount of water that could potentially be available in the Dry Year Option.

Members of the RWPG with knowledge and information on economics in the rice industry were queried by telephone and during RWPG meetings concerning the financial incentive that would be needed to cause the second crop farmers to forego the second crop entirely. These discussions were held later in the planning process because of the timing of the funding of the supplemental projects. The consensus of the three individuals queried was that payments of between \$20 and \$50 per acre would be sufficient to induce farmers to forego the second crop and make that water available for other uses. The data in *Table 1* was then used to determine the number of acre-feet of water that would have been used per acre and the cost of the buyout was spread out over that number of acre-feet. In addition, it was assumed that the water to be sold would be sold at the firm yield system price of \$105 per acre-foot. This information was then used to determine the cost per acre-foot of the strategy by county. The variations in cost are due to the variation in the amount of water used per acre in each of the three lower counties.

Once the initial amounts of water to be potentially available were established, members of the consultant team met with LCRA staff and Bob Brandes with RJB Company to discuss the issue of how much of the second crop water was going to still be potentially available after other conservation measures were implemented. The LCRA-SAWS Water Project (LSWP) 2004 Project Viability Assessment (PVA) was used to come up with the anticipated implementation rate of the new rice variety. The new rice variety development is anticipated to provide a variety that will produce a higher yield but that yield will be produced over a longer growing season. As a result, farmers will not have enough time to plant a ratoon crop and most of the water from the second crop culture could be saved. The longer growing season for the first crop rice does increase the water use for the first crop by approximately 8 to 10 percent.

The 2004 PVA shows anticipated rates of conversion to the new rice variety by planted rice acreage. The most optimistic projection is that 100 percent of the rice crop areas convert to the new variety. The average adoption rate is anticipated to be 75 percent, and the pessimistic adoption rate is anticipated to be 50 percent. *Table 2* below contains estimated water available and estimated cost for this strategy based on the degree of conversion to the new rice variety.

Table 2 Supply Quantity and Costs

and a supply Qui	Percent Conversion to New Rice Variety*										
County	100%	75%	50%	0%							
	ac-ft/yr	ac-ft/yr	ac-ft/yr	ac-ft/yr							
Colorado	0	13,718	27,436	54,878							
Matagorda	0	7,269	14,538	27,077							
Eastern Wharton	0	7,619	15,237	30,475							

^{*} See explanation in Issues and Considerations Section.

County	2nd Crop Usage ac-ft/yr	Payment \$/acre	LCRA Water Cost \$/ac-ft	Strategy Cost \$/ac-ft*
Colorado	2.47	\$50	\$115	\$135
Matagorda	2.77	\$50	\$115	\$133
Eastern Wharton	1.94	\$50	\$115	\$141

^{*} Costs calculated based on the estimated usage per acre including conveyance losses, \$115 per acre-foot for LCRA system water, and \$50 per acre payment.

The discussions with LCRA staff and Bob Brandes determined that the modeling that was done in determining the availability of system yield water for the Lower Colorado River Basin under the LCRA management plan assumed that the conversion to the new rice variety was 100 percent. If that were the case, then no water would be available as a Dry Year Option strategy.

A key feature of the Dry Year Option is that it would not unduly cripple the rice industry, along with its supporting infrastructure. Many other facets of the agricultural economy, including the rice mills, railroads, and trucking industry rely upon the rice harvest for support. By diverting only the second crop portion, the supporting industry would still have the main crop to provide employment and cash flow from.

A second feature that could be of considerable interest is the ability of this strategy to provide environmental water during times of low flows in the river. Use of this water for environmental flow needs, including both instream flows and bay and estuary needs would not require the modification of any permits or adjustment to the amounts diverted. If sufficient funds were available to pay the cost of the per acre payments to the farmers plus the cost of the water from the LCRA, then the flows could be released during the driest period of time from August through September and still be within the normal flow times for agricultural demands. In addition, if the water were termed interruptible water by LCRA, the cost would be significantly less than the amount calculated in the table.

Water could be made available through this strategy by providing an opportunity for the rice industry to provide bids to LCRA for water purchase. LCRA could then solicit users to determine whether or not there was interest in the amounts available and the timing of those amounts. Farmers would have to demonstrate a consistent record of growing a second crop, with proof of growth for the past three years being a potential benchmark. Once a bid is accepted, then the potential user would negotiate with LCRA for release of the water and any potential issues related to the relocation of the diversion point.

It was noted during discussions at one or more Region K planning group meetings that LCRA has no plans and no mechanism to begin a strategy to purchase water under a Dry Year Option. This strategy is

being reviewed for informational purposes only; there is no obligation on the part of LCRA to implement any purchases until and unless there is a clear expression of interest on the part of a potential buyer of this water, and there is no other water available under the current management plan.

ISSUES AND CONSIDERATIONS

The strategy above provides benefits to the agricultural community as noted through keeping some amount of business for the ancillary industries with the first crop growth. It provides potential benefits to the environmental community as a source of water to augment both instream and bay and estuary flows when the conditions warrant, if funds can be accumulated to make the necessary payments and if the rainfall conditions can be accurately predicted in the winter for the following summer. The reservation for the water would have to occur early in the spring in order for the farmers to properly schedule those times where ratoon crops would not be grown. This water could be long-term water that could be reserved only for those times when environmental flows are the most critical without the cost of trying to acquire rights.

It is noted that the some of the firm yield LCRA irrigation rights are being converted to municipal and manufacturing uses. Agricultural needs will be met with water from the LCRA management plan yield, and this water will include interruptible supplies. This water would still potentially benefit the environment if it was purchased for that purpose, but it would have limited effect upon users relying on firm yield water.

Another issue that can potentially reduce the amount of water available for this strategy is the inclusion of canal losses. The numbers used for the calculation above include an amount of canal losses, and represent total water diverted to the farmers for the second crop. Another facet of the LSWP is the reconstruction of the canal delivery system to reduce losses in the delivery process. These improvements will reduce the amount of water diverted per acre for the second crop and reduce the total amount of water available for redirection. The price will vary somewhat as the \$50 payment per acre will be averaged over fewer acre-feet to determine the total cost per acre-foot.

The uncertainties noted above make this strategy unlikely to be implemented, unless drought of record conditions occur in the very near future. It is more likely that this potential strategy will be looked at in greater detail once the improved rice varieties being anticipated are developed and tested. If the new rice varieties have sufficient appeal to see widespread adoption, then no water will be available under this strategy.

Another consideration that would have to be accounted for is the entry into the pool of available water sellers. As a minimum, it is recommended that farmers have a past history of growing a second crop for 3 of the last 4 years. Otherwise, there would likely be a number of farmers wanting to sign up for the payments and no real ability to decide how much water would be saved. There would then be the difficulty of determining whether a year signed up not planting a second crop would constitute a year of not planting and potentially take that farmer out of the available pool for the following year. The difficulty in administering such a program makes it a less likely candidate for implementation. It could work reasonably well for one year, but in a prolonged drought, it would be difficult to manage over multiple years.

QUANTITATIVE ENVIRONMENTAL IMPACT ANALYSIS

The strategy noted may have differing environmental impacts based on the assumption of the percent of growers that convert to the new rice variety. If 100 percent conversion to the new rice variety is assumed, then the environmental impact will be a delay in the release of return flows from the first crop water by the length of the addition to the growing season. Instream flows in the river may be reduced, depending upon whether or not any of the second crop water would have been released from storage upstream.

If water is bid for and purchased by environmental groups, and is available for use, then the instream and bay an estuary flows could benefit by whatever amount is purchased, up to and including the amounts shown in *Table 2* for the various new rice variety adoption assumptions.

As an example, currently the water being released as tail water is released two times during the harvest season. The first release is after the completion of the growing season of the first crop, and the second release is after the completion of the growing season of the second crop. The second release normally occurs sometime in October. The release is estimated at approximately 2 to 3 inches per acre for the entire acreage being second cropped for rice. Using the spreadsheet numbers, the number of acres using surface water for a second rice crop is 22,418 acres for Colorado County, 9,775 acres for Matagorda County, and 15,709 acres for eastern Wharton County. At a per acre amount of 2 to 3 inches of flood that is released as return flows, the amount of water that will not be released to the drainage area from the second crop is 3,736 to 5,604 acre-feet in Colorado County, 1,629 to 2,444 acre-feet in Matagorda County, and 2,618 to 3,927 acre-feet in Wharton County. It is noted however, that if the new rice variety sees a 100 percent implementation, these return flows will be eliminated in that event also. These return flows currently take place generally in the month of October.

In addition to the impacts noted above, the three counties and their rice growing areas are important to migratory waterfowl. The waterfowl come to feed on the fields and pick up rice that was left at the harvest. The change in timing of the last flooding of the rice fields may have an impact on these migratory birds, but there is not sufficient data at this point to estimate what those impacts might be. This is called out as a need for additional investigation in the next plan update.

IMPACT ON AGRICULTURAL RESOURCES

As noted above, the impact of reducing production of the second crop has the impact of reducing the length of time over which jobs are maintained in the area. With the second crop culture, more essentially the same amount of rice is produced, but it impacts the milling and trucking and other ancillary businesses over a longer period of time. Production of the same amount of rice in a single crop will create more competition for those resources, but the harvest will be over more quickly. The overall impact is to conserve the milling and ancillary businesses by continuing to have first crop rice production as opposed to paying farmers not to plant at all, or of simply not having the water for them to use to plant. If rice production ceases entirely for one or more years, the mills and other ancillary businesses may close and move away, which will result in further impediments to future rice production when adequate water is available.

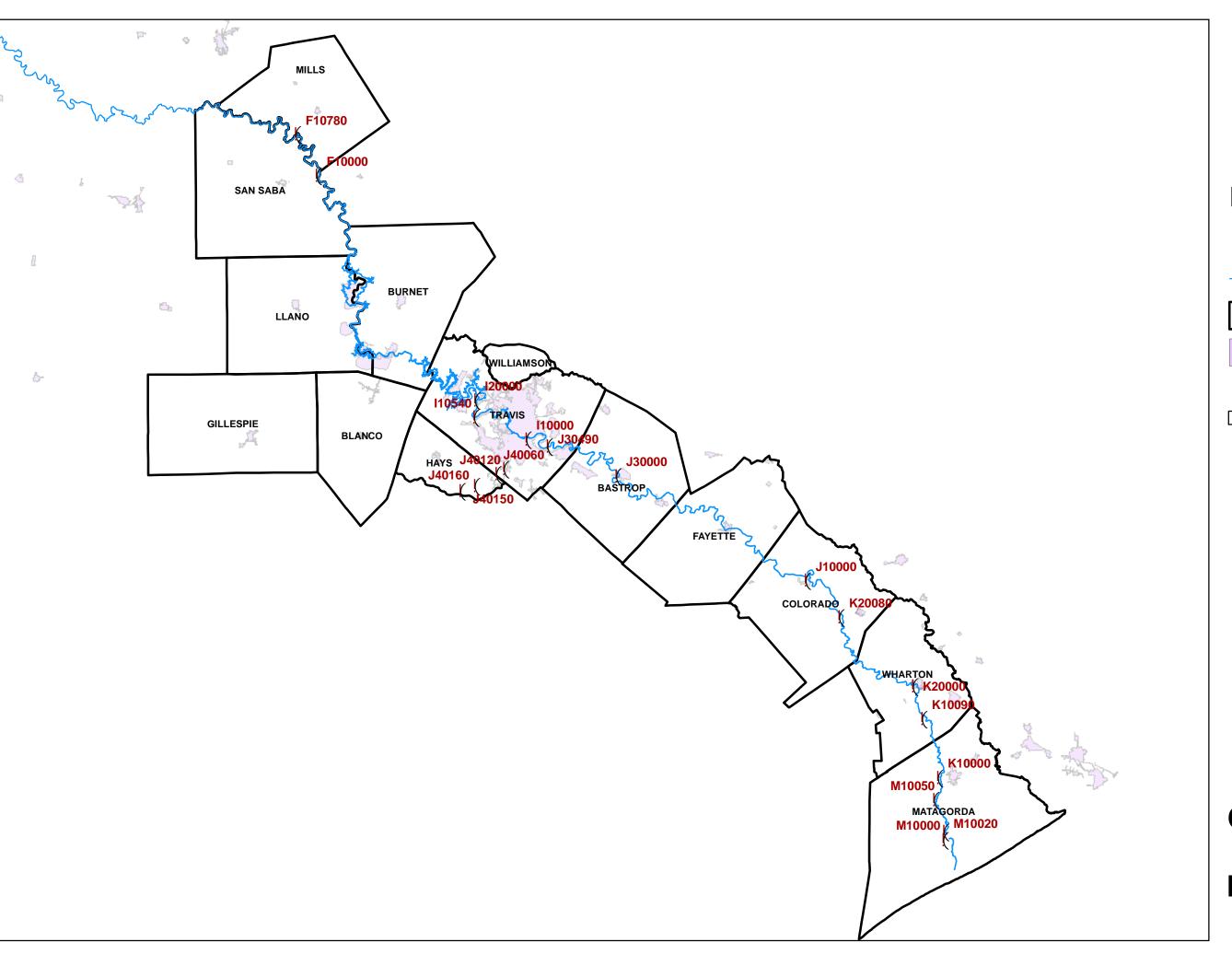
Many rice farmers are currently involved in game management on their farms, particularly with regard to migratory waterfowl. These farmers may derive significant income from these activities, and if the cessation of the second crop impacts this industry, then there could be an adverse effect on agricultural resources.

Table 1 Year 2000 Irrigation Statistics

WHARTON COUNTY (Region K)

						V	MARTON CO	DUNTY (Re	gion K)									
	Year 2000 NASS Acres	Total Acres in Region K	% Crop Irrigated	1st Crop (acres)	1st Crop water use (in/acre)	1st Crop water use (ac-ft/ac)	% Conduit Loss (%/acre)	Conduit Loss (ac- ft/ac)	Total 1st Crop (ac ft/ac)	Total 1st Crop (ac- ft)	% Acreage 2nd Crop	2nd Crop (acres)	2nd Crop water use (% of 1st crop)	2nd Crop water use (ac-ft/ac)	TOTAL 2ND CROP (ac-ft)			
RICE	53,000	57%	%	30,210														
GROUND			20%	6,042	28	2.33	20%	0.47	2.80	16,918	70%	4,229	60%	1.68	7,105	24,023		
SURFACE			80%	24,168	32	2.67	35%	0.93	3.60	87,005	65%	15,709	54%	1.94	30,539	117,543		
COTTON	86,500	71%		61,415														
irrigated	00,000		20%	12,283	12	1.00			1.00	12,283						12,283		
CORN	34,200	81%		27,702						,								
irrigated			35%	9,696	12	1.00			1.00	9,696						9,696		
MILO	66,100	48%		31,728								Total ac-ft	per acre					
irrigated			10%	3,173	6	0.50			0.50	1,586			2nd Crop)			1,586		
SOYBEANS	13,300	81%		10,773								4.48 groundwater						
irrigated			25%	2,693	12	1.00			1.00	2,693		5.54 surfac	e water			2,693		
TURFGRASS				8,000	60	5.00			5.00	40,000						40,000		
TOTAL IRRIGATION				66,055												207,825		
WATERFOWL HABITAT			3%	6,000	18	1.50			1.50	9,000						9,000		
AOUACULTURE				1,200	50	4.17			4.17	5,000						5,000		
LIVESTOCK (head)				26,000		0.028	10%	0.003	0.03	801						801		
25gl. * 365 / 325,851				.,														
MUNICIPAL																4,163		
MANUFACTURING																369		
POWER COOLING															BOLING	120		
MINING																2,370		
TOTALS																229,648		

Table 1 Year 2000 Irrigation Statistics


MATAGORDA COUNTY (Region K)

	MATAGORDA COUNTY (Region K)															
	Year 2000 NASS Acres		% Crop Irrigated	1st Crop (acres)	1st Crop water use (in/acre)	1st Crop water use (ac-ft/ac)	% Conduit Loss (%/acre)	Conduit Loss (ac- ft/ac)	Total 1st Crop (ac- ft/ac)	Total 1st Crop (ac- ft)	% Acreage 2nd Crop	2nd Crop (acres)	2nd Crop water use (% of 1st crop)	2nd Crop water use (ac-ft/ac)	TOTAL 2ND CROP (ac-ft)	TOTAL (ac-ft)
RICE	23,000		%													
GROUND			15%	3,450	35	2.92	20%	0.58	3.50	12,075	25%	863	60%	2.10	1,811	13,886
SURFACE			85%	19,550	41	3.42	35%	1.20	4.61	90,174	50%	9,775	60%	2.77	27,052	117,227
COTTON																
irrigated			5%		12	1.00			1.00							
CORN																
irrigated			5%		12	1.00			1.00							
MILO												Total ac-ft	per acre			
irrigated			5%		10	0.83			0.83			used (1st + 2nd Crop)				
SOYBEANS												5.60 groun	dwater			
irrigated			20%		12	1.00			1.00			7.38 surfac	e water			
TURFGRASS					60	5.00			5.00							
TOTAL IRRIGATION																131,113
WATERFOWL HABITAT			2%	2,000	12	1.00			1.00	2,000						2,000
AQUACULTURE				1,600	50	4.20			4.20	6,720						6,720
LIVESTOCK (head)						0.028	10%	0.003	0.03							
25gl. * 365 / 325,851																
MUNICIPAL																
MANUFACTURING																
POWER COOLING																
MINING																
TOTALS																139,833

Table 1 Year 2000 Irrigation Statistics

COLORADO COUNTY (Region K)

					C)LORADO C	OUNTY (Re	egion K)							
	Year 2000 NASS Acres	% Crop Irrigated	1st Crop (acres)	1st Crop water use (in/acre)	1st Crop water use (ac-ft/ac)	% Conduit Loss (%/acre)	Conduit Loss (ac- ft/ac)	Total 1st Crop (ac- ft/ac)	Total 1st Crop (ac- ft)	% Acreage 2nd Crop	2nd Crop (acres)	2nd Crop water use (% of 1st crop)	2nd Crop water use (ac-ft/ac)	TOTAL 2ND CROP (ac-ft)	
RICE	31,136	%													
GROUND		4%	1,245	30	2.50	20%	0.50	3.00	3,736	80%	996	80%	2.40	2,391	6,128
SURFACE		96%	29,891	34	2.83	35%	0.99	3.83	114,331	75%	22,418	65%	2.49	55,737	170,068
COTTON															
irrigated		30%		12	1.00			1.00							
CORN															
irrigated		50%		12	1.00			1.00							
MILO											Total ac-ft	per acre			
irrigated		30%		12	1.00			1.00			used (1st +				
SOYBEANS											5.40 groun	idwater _			
irrigated		80%		12	1.00			1.00			6.31 surfac	e water			
TURFGRASS			25	60	5.00			5.00	125						125
TOTAL IRRIGATION			25												176,321
WATERFOWL HABITAT		3%	5,000	15	1.25			1.25	6,250						6,250
AQUACULTURE				50	4.20			4.20							
LIVESTOCK (head)					0.028	10%	0.003	0.03							
25gl. * 365 / 325,851															
MUNICIPAL															3,115
MANUFACTURING															318
POWER COOLING															
MINING															57
TOTALS															186,061

Legend

Control PointsColorado River

Counties

Cities

10 Miles

Location of All Control Points Analyzed for Environmental Impacts

Construct Goldthwaite Channel Dam

Table numbers reference those in the LCRWPG 2011 Water Plan First Biennium Studies, Environmental Impacts of Water Managements Strategies Study

LCRWPG WATER PLAN Construct Goldthwaite channel dam

This strategy consists of the construction of a channel dam that would allow additional storage during periods of high flows, and would allow greater amounts of pumping during these times that would help extend the length of time the City of Goldthwaite could provide service. Because the strategy assumes that the 10th percentile naturalized flows are passed through, the impacts to the 10th percentile instream flows and freshwater inflows should be negligible. For the analysis, the Region K WAM Run 3 Cutoff Model, which inherently contains Strategy 1 (Expand Contract) and Strategy 7 (HB 1437), was used for the base condition.

Impacts are compared at Control Points F10000, I10000, J10000, K20000, K10000, and M10000. *Table 3.4A* shows the comparison at Control Point F10000. *Table 3.4B* shows the comparison at Control Point I10000. *Table 3.4C* shows the comparison at Control Point J10000. *Table 3.4D* shows the comparison at Control Point K20000. *Table 3.4E* shows the comparison at Control Point K10000. *Table 3.4F* shows the comparison at Control Point M10000. See *Figure 3.1* for control point locations.

Table 3.4A Gold Channel Dam Comparison of $10^{\rm th}$ Percentile Flows at CP F10000 (San Saba County) for 2010 and 2060

			2010			2060	
Month	7Q2 Flow	Base Model	Strategy	% Change	Base Model	Strategy	% Change
WOTILIT	ac-ft	ac-ft	ac-ft	76 Change	ac-ft	ac-ft	76 Change
JAN	2,317	5,037	5,037	0.0	5,077	5,077	0.0
FEB	2,317	5,074	5,074	0.0	4,979	4,979	0.0
MAR	2,317	4,028	4,028	0.0	4,286	4,286	0.0
APR	2,317	5,657	5,657	0.0	6,281	6,281	0.0
MAY	2,317	6,077	6,077	0.0	6,384	6,384	0.0
JUN	2,317	9,318	9,318	0.0	9,278	9,278	0.0
JUL	2,317	4,711	4,711	0.0	4,675	4,675	0.0
AUG	2,317	4,043	4,043	0.0	4,490	4,490	0.0
SEP	2,317	3,486	3,486	0.0	3,085	3,085	0.0
OCT	2,317	3,806	3,806	0.0	3,706	3,706	0.0
NOV	2,317	4,046	4,046	0.0	3,990	3,990	0.0
DEC	2,317	4,628	4,628	0.0	4,902	4,902	0.0
Annual	27,804	59,910	59,910	0.0	61,133	61,133	0.0

Table 3.4B Gold Channel Dam Comparison of 10th Percentile Flows at CP I10000 (Austin) for 2010 and 2060

			2010			2060	
Month	7Q2 Flow	Base Model	Strategy	% Change	Base Model	Strategy	% Change
WOTILIT	ac-ft	ac-ft	ac-ft	76 Change	ac-ft	ac-ft	76 Change
JAN	11,547	10,073	10,073	0.0	8,785	8,835	0.6
FEB	11,547	8,188	8,188	0.0	8,886	8,886	0.0
MAR	11,547	22,124	22,124	0.0	17,696	17,696	0.0
APR	11,547	22,119	22,119	0.0	19,782	19,782	0.0
MAY	11,547	32,388	32,388	0.0	31,805	31,805	0.0
JUN	11,547	36,552	36,552	0.0	26,996	26,996	0.0
JUL	11,547	33,454	33,525	0.2	20,204	20,204	0.0
AUG	11,547	37,812	38,119	0.8	27,245	27,245	0.0
SEP	11,547	18,060	18,060	0.0	17,181	17,181	0.0
OCT	11,547	13,673	13,673	0.0	12,000	12,000	0.0
NOV	11,547	11,197	11,197	0.0	9,409	9,409	0.0
DEC	11,547	10,672	10,672	0.0	10,382	10,382	0.0
Annual	138,564	256,314	256,691	0.1	210,371	210,421	0.0

Table 3.4C $\,$ Gold Channel Dam Comparison of 10^{th} Percentile Flows at CP J10000 (Colorado County) for 2010 and 2060

_			2010			2060		
Month	7Q2 Flow	Base Model	Strategy	% Change	Base Model	Strategy	% Change	
WIOTILIT	ac-ft	ac-ft	ac-ft	% Change	ac-ft	ac-ft	% Change	
JAN	18,081	17,518	17,518	0.0	12,916	12,916	0.0	
FEB	18,081	14,691	14,691	0.0	12,901	12,901	0.0	
MAR	18,081	30,275	30,275	0.0	32,006	32,006	0.0	
APR	18,081	31,476	31,476	0.0	30,281	30,281	0.0	
MAY	18,081	60,646	60,646	0.0	51,525	51,522	0.0	
JUN	18,081	70,621	70,621	0.0	53,258	53,256	0.0	
JUL	18,081	52,845	52,845	0.0	36,001	36,000	0.0	
AUG	18,081	40,628	40,628	0.0	27,029	27,029	0.0	
SEP	18,081	37,639	37,639	0.0	29,694	29,802	0.4	
OCT	18,081	22,361	22,361	0.0	16,942	16,942	0.0	
NOV	18,081	14,588	14,588	0.0	13,672	13,834	1.2	
DEC	18,081	17,822	17,822	0.0	16,264	16,264	0.0	
Annual	216,972	411,110	411,110	0.0	332,488	332,753	0.1	

LCRWPG WATER PLAN

F-4

Table 3.4D Gold Channel Dam Comparison of 10th Percentile Flows at CP K20000 (Wharton County) for 2010 and 2060

			2010			2060	
Month	7Q2 Flow	Base Model	Strategy	% Change	Base Model	Strategy	% Change
WOTILIT	ac-ft	ac-ft	ac-ft	76 Change	ac-ft	ac-ft	76 Change
JAN	23,613	20,996	20,996	0.0	14,599	14,610	0.1
FEB	23,613	19,465	19,465	0.0	17,368	17,368	0.0
MAR	23,613	30,746	30,746	0.0	33,690	33,691	0.0
APR	23,613	18,450	18,450	0.0	21,167	21,175	0.0
MAY	23,613	30,092	30,092	0.0	27,977	27,976	0.0
JUN	23,613	28,298	28,301	0.0	20,518	20,505	-0.1
JUL	23,613	22,939	22,986	0.2	15,053	15,124	0.5
AUG	23,613	16,170	16,170	0.0	11,617	11,617	0.0
SEP	23,613	13,945	13,945	0.0	11,875	12,046	1.4
OCT	23,613	12,302	12,302	0.0	9,708	9,708	0.0
NOV	23,613	19,736	19,736	0.0	16,617	16,617	0.0
DEC	23,613	20,704	20,704	0.0	17,041	17,041	0.0
Annual	283,356	253,844	253,893	0.0	217,230	217,478	0.1

Table 3.4E $\,$ Gold Channel Dam Comparison of 10^{th} Percentile Flows at CP K10000 (Matagorda County) for 2010 and 2060

			2010			2060	
Month	7Q2 Flow	Base Model	Strategy	% Change	Base Model	Strategy	% Change
WOILLI	ac-ft	ac-ft	ac-ft	76 Change	ac-ft	ac-ft	76 Change
JAN	12,374	20,205	20,205	0.0	15,015	15,186	1.1
FEB	12,374	21,826	21,826	0.0	18,782	18,782	0.0
MAR	12,374	28,665	28,665	0.0	32,712	32,551	-0.5
APR	12,374	9,294	9,294	0.0	12,388	12,407	0.1
MAY	12,374	11,743	11,743	0.0	10,349	10,349	0.0
JUN	12,374	8,204	8,234	0.4	6,701	6,701	0.0
JUL	12,374	6,264	6,341	1.2	4,063	4,058	-0.1
AUG	12,374	4,846	4,978	2.7	4,205	4,205	0.0
SEP	12,374	2,985	2,985	0.0	2,694	2,694	0.0
OCT	12,374	7,867	7,867	0.0	11,468	11,468	0.0
NOV	12,374	19,396	19,396	0.0	16,617	16,617	0.0
DEC	12,374	21,105	21,105	0.0	18,127	18,127	0.0
Annual	148,488	162,401	162,640	0.1	153,121	153,145	0.0

LCRWPG WATER PLAN

F-5

Table 2.4E Cold Channel Dam Commerciaen of 10th Percentile Flower of CR M10000 (Entrance to

Table 3.4F Gold Channel Dam Comparison of 10^{th} Percentile Flows at CP M10000 (Entrance to Matagorda Bay) for 2010 and 2060

				2010			2060	
Month	Target B&E	Critical B&E	Base Model	Strategy	% Change	Base Model	Strategy	% Change
WOITH	ac-ft	ac-ft	ac-ft	ac-ft	76 Change	ac-ft	ac-ft	% Change
JAN	205,600	36,000	16,939	16,938	0.0	12,939	13,088	1.2
FEB	194,500	36,000	19,941	19,941	0.0	14,988	14,988	0.0
MAR	63,200	36,000	23,842	23,842	0.0	26,337	26,337	0.0
APR	60,400	36,000	6,947	6,947	0.0	8,192	8,196	0.1
MAY	255,400	36,000	10,971	10,971	0.0	6,375	6,375	0.0
JUN	210,500	36,000	6,223	6,223	0.0	1,582	1,581	-0.1
JUL	108,400	36,000	3,476	3,526	1.4	1,122	1,121	-0.1
AUG	62,000	36,000	3,259	3,259	0.0	951	951	0.0
SEP	61,900	36,000	1,048	1,048	0.0	15	15	0.0
OCT	71,300	36,000	2,210	2,210	0.0	1,334	1,334	0.0
NOV	66,500	36,000	17,501	17,501	0.0	11,010	11,136	1.1
DEC	68,000	36,000	18,829	18,829	0.0	14,181	14,181	0.0
Annual	1,427,700	432,000	131,186	131,235	0.0	99,028	99,304	0.3

Overall, the impacts of the Goldthwaite channel dam strategy are negligible, due mainly to the junior priority date combined with the passing of low-flow events. This strategy is not assumed to provide the necessary shortage makeup during periods of drought, but rather to help extend the length of time the City can continue to provide service once flow in the river slows or ceases.

Figure 3.7 below shows a bar graph of the median flows, as well as lines showing the range of 10th percentile to 90th percentile flows both with and without Strategy 5 at CP M10000 for 2010, along with the target and critical bay and estuary freshwater inflows. Figure 3.8 shows a similar comparison for 2060.

LCRWPG WATER PLAN F-6

Figure 3.7 Gold Channel Dam 2010 Comparison of Freshwater Inflow Results at CP M10000 (Entrance to Matagorda Bay)

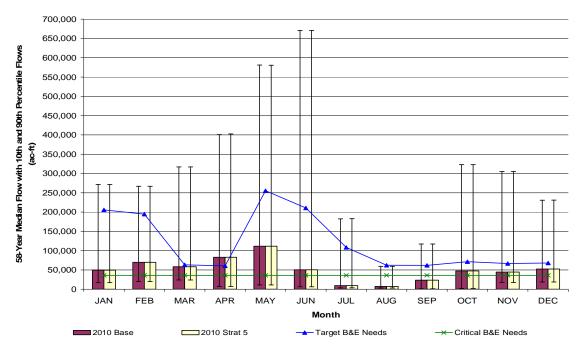


Figure 3.8 Gold Channel Dam 2060 Comparison of Freshwater Inflow Results at CP M10000 (Entrance to Matagorda Bay)

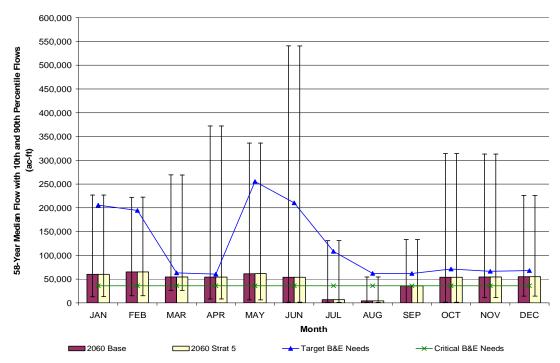


Table 3.4G Gold Channel Dam Frequency of Meeting Target and Critical Needs for 2060

	Gold Char	nnel Dam	Strategy at	CP J1000	0 (Colorad	Gold Channel Dam Strategy at CP M10000 (Matagorda Bay)						
	% of Ti	me Flow M	leets or	% of Time Flow Meets or			% of Time Flow Meets or			% of Time Flow Meets or		
	Exceeds Target Needs			Exceeds Critical Needs			Exceeds Target Needs			Exceeds Critical Needs		
	Without	With		Without	With		Without	With		Without	With	
Month	Strategy	Strategy	Difference	Strategy	Strategy	Difference	Strategy	Strategy	Difference	Strategy	Strategy	Difference
JAN	81.4%	81.4%	0.0%	98.3%	98.3%	0.0%	18.6%	18.6%	0.0%	71.2%	71.2%	0.0%
FEB	84.7%	84.7%	0.0%	100.0%	100.0%	0.0%	18.6%	18.6%	0.0%	76.3%	76.3%	0.0%
MAR	93.2%	93.2%	0.0%	93.2%	93.2%	0.0%	42.4%	42.4%	0.0%	76.3%	76.3%	0.0%
APR	100.0%	100.0%	0.0%	100.0%	100.0%	0.0%	45.8%	44.1%	-1.7%	62.7%	62.7%	0.0%
MAY	89.8%	89.8%	0.0%	100.0%	100.0%	0.0%	22.0%	22.0%	0.0%	78.0%	78.0%	0.0%
JUN	96.6%	96.6%	0.0%	100.0%	100.0%	0.0%	30.5%	30.5%	0.0%	64.4%	64.4%	0.0%
JUL	98.3%	98.3%	0.0%	100.0%	100.0%	0.0%	13.6%	15.3%	1.7%	39.0%	39.0%	0.0%
AUG	98.3%	98.3%	0.0%	100.0%	100.0%	0.0%	8.5%	5.1%	-3.4%	23.7%	23.7%	0.0%
SEP	98.3%	98.3%	0.0%	100.0%	100.0%	0.0%	25.4%	23.7%	-1.7%	59.3%	59.3%	0.0%
OCT	74.6%	74.6%	0.0%	100.0%	100.0%	0.0%	32.2%	32.2%	0.0%	66.1%	66.1%	0.0%
NOV	84.7%	84.7%	0.0%	100.0%	100.0%	0.0%	39.0%	39.0%	0.0%	67.8%	67.8%	0.0%
DEC	84.7%	84.7%	0.0%	98.3%	98.3%	0.0%	45.8%	42.4%	-3.4%	72.9%	72.9%	0.0%
Annual	100.0%	100.0%	0.0%	100.0%	100.0%	0.0%	39.0%	39.0%	0.0%	76.3%	76.3%	0.0%

Table 3.4G above shows that the Goldthwaite Channel Dam Strategy only impacts the frequency that the target needs are met at the Matagorda Bay control point. The critical needs are not impacted by implementation of the strategy. The impacts are less than four percent, although the impacts in the month of August are significant because the frequency of meeting the target needs during that month without the strategy is already so low. The strategy does not have annual impacts, only monthly.

Table 3.4H Gold Channel Dam Flow Duration Below Target and Critical Needs for 2060

	Gold Channel Dam Strategy a CP J10000 (Colorado County						
Condition	Without Strategy	With Strategy	Difference	Without Strategy	With Strategy	Difference	
Number of Times Flow Falls Below Target Level	38	38	0	85	85	0	
Maximum Duration Below Target Level (months)	6	6	0	51	51	0	
Total Duration Below Target Level (months)	68	68	0	506	511	5	
Average Duration Below Target Level (months)	2	2	0	6	6	0	
Average Volume of Flow Per Event Below Target Level (Ac-Ft)	10,659	10,618	-42	504,744	504,964	220	
Number of Times Flow Falls Below Critical Level	6	6	0	93	93	0	
Maximum Duration Below Critical Level (months)	1	1	0	11	11	0	
Total Duration Below Critical Level (months)	6	6	0	261	261	0	
Average Duration Below Critical Level (months)	1	1	0	3	3	0	
Average Volume of Flow Per Event Below Critical Level (Ac-Ft)	5,068	5,068	0	66,999	67,014	15	

Table 3.4H above shows small impacts to the total duration below target level for the freshwater inflows, and reasonably negligible impacts to the average volume of flow per event below target/critical levels.

LCRWPG WATER PLAN F-8

HB 1437

LCRWPG WATER PLAN HB 1437

The HB 1437 strategy is a Region G strategy that provides a transfer of up to an additional 25,000 ac-ft/yr from the Colorado River Basin to new customers within the Brazos River Basin in Williamson County. The strategy is a conservation strategy in which improvements are made in farms and in the irrigation districts that reduce agricultural use of the surface water. As a result, no impacts to the instream flows and freshwater inflows are expected from this strategy. The base model (Region K WAM Run 3) inherently contains both Strategy 1 (Expand Contract) and Strategy 7 (HB 1437), so for this analysis, Strategy 7 had to be removed from the base model in order to show the "without strategy" condition. See page 2-6 for more explanation.

Impacts are compared at Control Points I10000, J10000, K20000, K10000, and M10000. *Table 3.6A* shows the comparison at Control Point I10000. *Table 3.6B* shows the comparison at Control Point K20000. *Table 3.6D* shows the comparison at Control Point K20000. *Table 3.6D* shows the comparison at Control Point K10000. *Table 3.6E* shows the comparison at Control Point M10000. See *Figure 3.1* for control point locations.

Table 3.6A HB 1437 Comparison of 10th Percentile Flows at CP I10000 (Austin) for 2010 and 2060

			2010			2060	
Month	7Q2 Flow	Base Model	Strategy	% Change	Base Model	Strategy	% Change
WOILLI	ac-ft	ac-ft	ac-ft	76 Change	ac-ft	ac-ft	76 Change
JAN	11,547	10,073	10,073	0.0	8,785	8,785	0.0
FEB	11,547	8,188	8,188	0.0	8,886	8,886	0.0
MAR	11,547	22,124	22,124	0.0	17,696	17,696	0.0
APR	11,547	22,119	22,119	0.0	19,782	19,782	0.0
MAY	11,547	32,388	32,388	0.0	31,805	31,805	0.0
JUN	11,547	36,552	36,552	0.0	26,996	26,996	0.0
JUL	11,547	33,454	33,454	0.0	20,204	20,204	0.0
AUG	11,547	37,812	37,812	0.0	27,245	27,245	0.0
SEP	11,547	18,060	18,060	0.0	17,181	17,181	0.0
OCT	11,547	13,673	13,673	0.0	12,000	12,000	0.0
NOV	11,547	11,197	11,197	0.0	9,409	9,409	0.0
DEC	11,547	10,672	10,672	0.0	10,382	10,382	0.0
Annual	138,564	256,314	256,314	0.0	210,371	210,371	0.0

F-10 LCRWPG WATER PLAN

Table 3.6B HB 1437 Comparison of 10th Percentile Flows at CP J10000 (Colorado County) for 2010 and 2060

			2010						
Month	7Q2 Flow	Base Model	Strategy	% Change	Base Model	Strategy	% Change		
WOITH	ac-ft	ac-ft	ac-ft	76 Change	ac-ft	ac-ft	76 Change		
JAN	18,081	17,518	17,518	0.0	12,916	12,916	0.0		
FEB	18,081	14,691	14,691	0.0	12,901	12,901	0.0		
MAR	18,081	30,275	30,275	0.0	32,006	32,006	0.0		
APR	18,081	31,476	31,476	0.0	30,281	30,281	0.0		
MAY	18,081	60,646	60,646	0.0	51,522	51,525	0.0		
JUN	18,081	70,621	70,621	0.0	53,256	53,258	0.0		
JUL	18,081	52,989	52,845	-0.3	36,000	36,001	0.0		
AUG	18,081	40,767	40,628	-0.3	27,029	27,029	0.0		
SEP	18,081	37,639	37,639	0.0	29,694	29,694	0.0		
OCT	18,081	22,361	22,361	0.0	16,942	16,942	0.0		
NOV	18,081	14,588	14,588	0.0	13,783	13,672	-0.8		
DEC	18,081	17,822	17,822	0.0	16,264	16,264	0.0		
Annual	216,972	411,394	411,110	-0.1	332,594	332,488	0.0		

Table 3.6C HB 1437 Comparison of 10th Percentile Flows at CP K20000 (Wharton County) for 2010 and 2060

			2010			2060	
Month	7Q2 Flow	Base Model	Strategy	% Change	Base Model	Strategy	% Change
WOITH	ac-ft	ac-ft	ac-ft	76 Change	ac-ft	ac-ft	76 Change
JAN	23,613	20,996	20,996	0.0	14,599	14,599	0.0
FEB	23,613	19,465	19,465	0.0	17,368	17,368	0.0
MAR	23,613	30,746	30,746	0.0	33,691	33,690	0.0
APR	23,613	18,450	18,450	0.0	21,179	21,167	-0.1
MAY	23,613	30,092	30,092	0.0	27,976	27,977	0.0
JUN	23,613	28,298	28,298	0.0	20,505	20,518	0.1
JUL	23,613	22,939	22,939	0.0	15,053	15,053	0.0
AUG	23,613	16,170	16,170	0.0	11,617	11,617	0.0
SEP	23,613	13,945	13,945	0.0	11,938	11,875	-0.5
OCT	23,613	12,302	12,302	0.0	9,708	9,708	0.0
NOV	23,613	19,736	19,736	0.0	16,617	16,617	0.0
DEC	23,613	20,704	20,704	0.0	17,041	17,041	0.0
Annual	283,356	253,844	253,844	0.0	217,292	217,230	0.0

LCRWPG WATER PLAN **F-**11 Table 3.6D HB 1437 Comparison of 10th Percentile Flows at CP K10000 (Matagorda County) for

2010 and 2060

			2010			2060	
Month	7Q2 Flow	Base Model	Strategy	% Change	Base Model	Strategy	% Change
WOTILIT	ac-ft	ac-ft	ac-ft	76 Change	ac-ft	ac-ft	76 Change
JAN	12,374	20,205	20,205	0.0	15,015	15,015	0.0
FEB	12,374	21,826	21,826	0.0	18,782	18,782	0.0
MAR	12,374	28,665	28,665	0.0	32,551	32,712	0.5
APR	12,374	9,294	9,294	0.0	12,407	12,388	-0.1
MAY	12,374	11,743	11,743	0.0	10,349	10,349	0.0
JUN	12,374	8,204	8,204	0.0	6,701	6,701	0.0
JUL	12,374	6,264	6,264	0.0	4,058	4,063	0.1
AUG	12,374	4,846	4,846	0.0	4,205	4,205	0.0
SEP	12,374	2,985	2,985	0.0	2,694	2,694	0.0
OCT	12,374	7,867	7,867	0.0	11,468	11,468	0.0
NOV	12,374	19,396	19,396	0.0	16,617	16,617	0.0
DEC	12,374	21,105	21,105	0.0	18,127	18,127	0.0
Annual	148,488	162,401	162,401	0.0	152,973	153,121	0.1

Table 3.6E HB 1437 Comparison of 10th Percentile Flows at CP M10000 (Entrance to Matagorda Bay) for 2010 and 2060

				2010			2060	
Month	Target B&E	Critical B&E	Base Model	Strategy	% Change	Base Model	Strategy	% Change
WOITH	ac-ft	ac-ft	ac-ft	ac-ft	76 Change	ac-ft	ac-ft ac-ft	
JAN	205,600	36,000	16,939	16,939	0.0	12,939	12,939	0.0
FEB	194,500	36,000	19,941	19,941	0.0	14,988	14,988	0.0
MAR	63,200	36,000	23,842	23,842	0.0	26,337	26,337	0.0
APR	60,400	36,000	6,947	6,947	0.0	8,196	8,192	-0.1
MAY	255,400	36,000	10,971	10,971	0.0	6,375	6,375	0.0
JUN	210,500	36,000	6,223	6,223	0.0	1,581	1,582	0.1
JUL	108,400	36,000	3,482	3,476	-0.2	1,121	1,122	0.1
AUG	62,000	36,000	3,259	3,259	0.0	951	951	0.0
SEP	61,900	36,000	1,048	1,048	0.0	15	15	0.0
OCT	71,300	36,000	2,210	2,210	0.0	1,334	1,334	0.0
NOV	66,500	36,000	17,501	17,501	0.0	11,085	11,010	-0.7
DEC	68,000	36,000	18,829	18,829	0.0	14,181	14,181	0.0
Annual	1,427,700	432,000	131,192	131,186	0.0	99,105	99,028	-0.1

As expected, the impacts to the 10th percentile instream flows and freshwater inflows at the various control points can be considered negligible.

Figure 3.11 below shows a bar graph of the median flows, as well as lines showing the range of 10th percentile to 90th percentile flows both with and without Strategy 7 at CP M10000 for 2010, along with the target and critical bay and estuary freshwater inflows. Figure 3.12 below shows a similar comparison for 2060.

LCRWPG WATER PLAN F-12

Figure 3.11 HB 1437 2010 Comparison of Freshwater Inflow Results at CP M10000 (Entrance to Matagorda Bay)

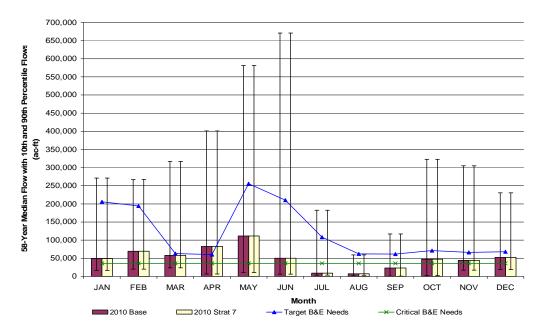
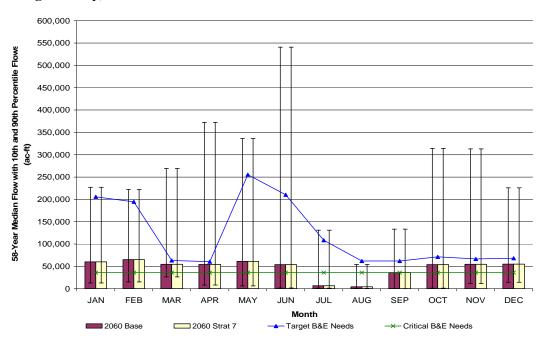



Figure 3.12 HB 1437 2060 Comparison of Freshwater Inflow Results at CP M10000 (Entrance to Matagorda Bay)

LCRWPG WATER PLAN

F-13

Table 3.6F HB 1437 Frequency of Meeting Target and Critical Needs for 2060

	HB 1	437 Strate	egy at CP J	10000 (Co	lorado Co	unty)	HB 1437 Strategy at CP M10000 (Matagorda Bay)						
		me Flow N						ime Flow N			% of Time Flow Meets or Exceeds Critical Needs		
	Without	ds Target With	neeus	Without	With	neeus	Without	eds Target With	neeus	Without	With	Neeus	
Month	Strategy	Strategy	Difference	Strategy	Strategy	Difference	Strategy	Strategy	Difference	Strategy	-	Difference	
JAN	81.4%	81.4%	0.0%	98.3%	98.3%	0.0%	18.6%	18.6%	0.0%	71.2%	71.2%	0.0%	
FEB	84.7%	84.7%	0.0%	100.0%	100.0%	0.0%	18.6%	18.6%	0.0%	76.3%	76.3%	0.0%	
MAR	93.2%	93.2%	0.0%	93.2%	93.2%	0.0%	42.4%	42.4%	0.0%	76.3%	76.3%	0.0%	
APR	100.0%	100.0%	0.0%	100.0%	100.0%	0.0%	45.8%	45.8%	0.0%	62.7%	62.7%	0.0%	
MAY	89.8%	89.8%	0.0%	100.0%	100.0%	0.0%	22.0%	22.0%	0.0%	78.0%	78.0%	0.0%	
JUN	96.6%	96.6%	0.0%	100.0%	100.0%	0.0%	30.5%	30.5%	0.0%	64.4%	64.4%	0.0%	
JUL	98.3%	98.3%	0.0%	100.0%	100.0%	0.0%	13.6%	13.6%	0.0%	39.0%	39.0%	0.0%	
AUG	98.3%	98.3%	0.0%	100.0%	100.0%	0.0%	8.5%	8.5%	0.0%	23.7%	23.7%	0.0%	
SEP	98.3%	98.3%	0.0%	100.0%	100.0%	0.0%	25.4%	25.4%	0.0%	59.3%	59.3%	0.0%	
OCT	74.6%	74.6%	0.0%	100.0%	100.0%	0.0%	32.2%	32.2%	0.0%	66.1%	66.1%	0.0%	
NOV	84.7%	84.7%	0.0%	100.0%	100.0%	0.0%	39.0%	39.0%	0.0%	67.8%	67.8%	0.0%	
DEC	84.7%	84.7%	0.0%	98.3%	98.3%	0.0%	45.8%	45.8%	0.0%	72.9%	72.9%	0.0%	
Annual	100.0%	100.0%	0.0%	100.0%	100.0%	0.0%	39.0%	39.0%	0.0%	76.3%	76.3%	0.0%	

Table 3.6F demonstrates that the HB 1437 strategy has no impact on the frequency of the instream flows and freshwater inflows meeting their target and critical levels.

Table 3.6G HB 1437 Flow Duration Below Target and Critical Needs for 2060

		trategy at orado Co	CP J10000 unty)		37 Strateo 0 (Matago	
Condition	Without Strategy	With Strategy	Difference	Without Strategy	With Strategy	Difference
Number of Times Flow Falls Below Target Level	38	38	0	85	85	0
Maximum Duration Below Target Level (months)	6	6	0	51	51	0
Total Duration Below Target Level (months)	68	68	0	506	506	0
Average Duration Below Target Level (months) Average Volume of Flow Per Event Below Target Level (Ac-Ft)	2 10,634	10,659	0 25	6 504,828	504,744	-84
Number of Times Flow Falls Below Critical Level	6	6	0	93	93	0
Maximum Duration Below Critical Level (months)	1	1	0	11	11	0
Total Duration Below Critical Level (months)	6	6	0	261	261	0
Average Duration Below Critical Level (months) Average Volume of Flow Per Event Below Critical	1	1	0	3	3	0
Level (Ac-Ft)	5,068	5,068	0	67,034	66,999	-35

 $Table \ 3.6G$ shows that the HB 1437 strategy has a minimal impact on the average volume below the target and critical levels.

LCRWPG WATER PLAN F-14

LCRA Excess Flows Permit and Off-channel Storage

This strategy uses two off-channel reservoirs, one in Matagorda County, and one in Colorado County, to collect excess flows during periods of high flow. The target bay and estuary inflows from the 2006 Matagorda Bay Freshwater Inflow Needs Study (FINS) and the target instream flows identified in the LCRA 2003 Water Management Plan were used as the bay and estuary and instream flow requirements that needed to be met before any excess flow could be diverted to either of the reservoirs. This strategy is only needed in 2060, and therefore, was only modeled for 2060. Because of the stringent environmental flow requirements, little impact to the 10th percentile flows is expected. For the analysis, the Region K WAM Run 3 Cutoff Model, which inherently contains Strategy 1 (Expand Contract) and Strategy 7 (HB 1437), was used for the base condition.

Impacts are compared for 2060 at Control Points K20000, K10000, and M10000. *Table 3.10A* shows the comparison at Control Point K20000. *Table 3.10B* shows the comparison at Control Point K10000. *Table 3.10C* shows the comparison at Control Point M10000. See *Figure 3.1* for control point locations. Please see Appendix C (pages C-106 through C-112) for impact analysis results of control points not discussed in this section.

Table 3.10A Excess Flows Comparison of 10th Percentile Flows at CP K20000 (Wharton County) for 2060

Month	7Q2 Flow	Base Model	Strategy	% Change	
WOITH	ac-ft	ac-ft	ac-ft	70 Change	
JAN	23,613	14,599	14,599	0.0	
FEB	23,613	17,368	17,368	0.0	
MAR	23,613	33,690	33,691	0.0	
APR	23,613	21,167	21,175	0.0	
MAY	23,613	27,977	27,976	0.0	
JUN	23,613	20,518	20,505	-0.1	
JUL	23,613	15,053	15,053	0.0	
AUG	23,613	11,617	11,617	0.0	
SEP	23,613	11,875	11,937	0.5	
OCT	23,613	9,708	9,708	0.0	
NOV	23,613	16,617	16,617	0.0	
DEC	23,613	17,041	17,041	0.0	
Annual	283,356	217,230	217,288	0.0	

LCRWPG WATER PLAN

F-16

Table 3.10B Excess Flows Comparison of 10^{th} Percentile Flows at CP K10000 (Matagorda County) for 2060

Month	7Q2 Flow	Base Model	Strategy	% Change
WOITH	ac-ft	ac-ft	ac-ft	76 Change
JAN	12,374	15,015	15,015	0.0
FEB	12,374	18,782	18,782	0.0
MAR	12,374	32,712	32,551	-0.5
APR	12,374	12,388	12,407	0.1
MAY	12,374	10,349	10,349	0.0
JUN	12,374	6,701	6,701	0.0
JUL	12,374	4,063	4,058	-0.1
AUG	12,374	4,205	4,205	0.0
SEP	12,374	2,694	2,694	0.0
OCT	12,374	11,468	11,468	0.0
NOV	12,374	16,617	16,617	0.0
DEC	12,374	18,127	18,127	0.0
Annual	148,488	153,121	152,973	-0.1

As is shown in *Tables 3.10A* and *3.10B* above, the 10th percentile instream flow impacts at CP K20000 and CP K10000 are very minor, and can be considered negligible. This was expected, considering the stringent environmental requirements placed on the strategy. The graphic results in Appendix C (C-107 through C-112) display the 90th percentile flow impacts at each control point, and show decreases in flow volume of as much as 10 percent for the months of January through May.

Table 3.10C Excess Flows Comparison of $10^{\rm th}$ Percentile Flows at CP M10000 (Entrance to Matagorda Bay) for 2060

Month	Target B&E	Critical B&E	Base Model	Strategy	0/ 01
Month	ac-ft	ac-ft	ac-ft	ac-ft	% Change
JAN	205,600	36,000	12,939	12,939	0.0
FEB	194,500	36,000	14,988	14,988	0.0
MAR	63,200	36,000	26,337	26,337	0.0
APR	60,400	36,000	8,192	8,196	0.1
MAY	255,400	36,000	6,375	6,375	0.0
JUN	210,500	36,000	1,582	1,581	-0.1
JUL	108,400	36,000	1,122	1,121	-0.1
AUG	62,000	36,000	951	951	0.0
SEP	61,900	36,000	15	15	0.0
OCT	71,300	36,000	1,334	1,334	0.0
NOV	66,500	36,000	11,010	11,136	1.1
DEC	68,000	36,000	14,181	14,181	0.0
Annual	1,427,700	432,000	99,028	99,156	0.1

For Strategy 13, like the impacts to the 10th percentile instream flows, the impacts to the 10th percentile freshwater inflows at CP M10000 are very small, as is shown in *Table 3.10C*, and can be considered negligible.

Figure 3.18 below shows a bar graph of the median flows, as well as lines showing the range of 10th percentile to 90th percentile flows both with and without Strategy 13 at CP M10000 for 2060, along with

LCRWPG WATER PLAN F-17

the target and critical bay and estuary freshwater inflows. An impact from the strategy that that can be seen clearly is a decrease in the 90th percentile inflows during January through April. This would seem appropriate given that the strategy diverts water during periods of high flow.

Figure 3.18 Excess Flows 2060 Comparison of Freshwater Inflow Results at CP M10000 (Entrance to Matagorda Bay)

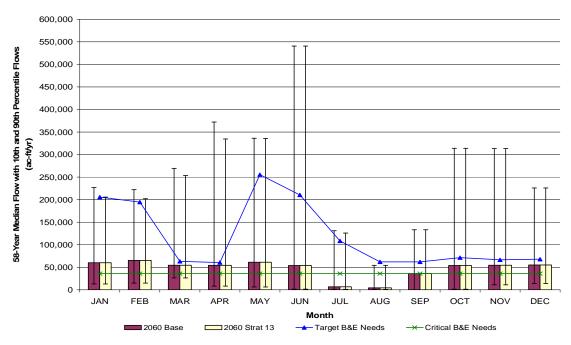


Table 3.10D Excess Flows Frequency of Meeting Target and Critical Needs for 2060

	Excess	Excess Flows Strategy at CP K20000 (Wharton County)							Excess Flows Strategy at CP M10000 (Matagorda Bay)					
	% of Ti	me Flow N	leets or	% of T	ime Flow I	Meets or	% of T	ime Flow N	Meets or	% of Ti	% of Time Flow Meets or			
	Excee	ds Target	Needs	Excee	ds Critica	l Needs	Excee	eds Target	Needs	Excee	ds Critical	Needs		
	Without	With		Without	With		Without	With		Without	With			
Month	Strategy	Strategy	Difference	Strategy	Strategy	Difference	Strategy	Strategy	Difference	Strategy	Strategy	Difference		
JAN	89.8%	89.8%	0.0%	98.3%	98.3%	0.0%	18.6%	18.6%	0.0%	71.2%	71.2%	0.0%		
FEB	91.5%	91.5%	0.0%	100.0%	100.0%	0.0%	18.6%	18.6%	0.0%	76.3%	76.3%	0.0%		
MAR	98.3%	98.3%	0.0%	93.2%	93.2%	0.0%	42.4%	42.4%	0.0%	76.3%	76.3%	0.0%		
APR	84.7%	84.7%	0.0%	74.6%	74.6%	0.0%	45.8%	45.8%	0.0%	62.7%	62.7%	0.0%		
MAY	78.0%	78.0%	0.0%	84.7%	84.7%	0.0%	22.0%	22.0%	0.0%	78.0%	78.0%	0.0%		
JUN	76.3%	76.3%	0.0%	98.3%	98.3%	0.0%	30.5%	30.5%	0.0%	64.4%	64.4%	0.0%		
JUL	89.8%	89.8%	0.0%	98.3%	98.3%	0.0%	13.6%	13.6%	0.0%	39.0%	39.0%	0.0%		
AUG	94.9%	94.9%	0.0%	96.6%	96.6%	0.0%	8.5%	8.5%	0.0%	23.7%	23.7%	0.0%		
SEP	76.3%	76.3%	0.0%	98.3%	98.3%	0.0%	25.4%	25.4%	0.0%	59.3%	59.3%	0.0%		
OCT	78.0%	78.0%	0.0%	93.2%	93.2%	0.0%	32.2%	32.2%	0.0%	66.1%	66.1%	0.0%		
NOV	89.8%	89.8%	0.0%	100.0%	100.0%	0.0%	39.0%	39.0%	0.0%	67.8%	67.8%	0.0%		
DEC	94.9%	94.9%	0.0%	100.0%	100.0%	0.0%	45.8%	45.8%	0.0%	72.9%	72.9%	0.0%		
Annual	100.0%	100.0%	0.0%	100.0%	100.0%	0.0%	39.0%	39.0%	0.0%	76.3%	71.2%	-5.1%		

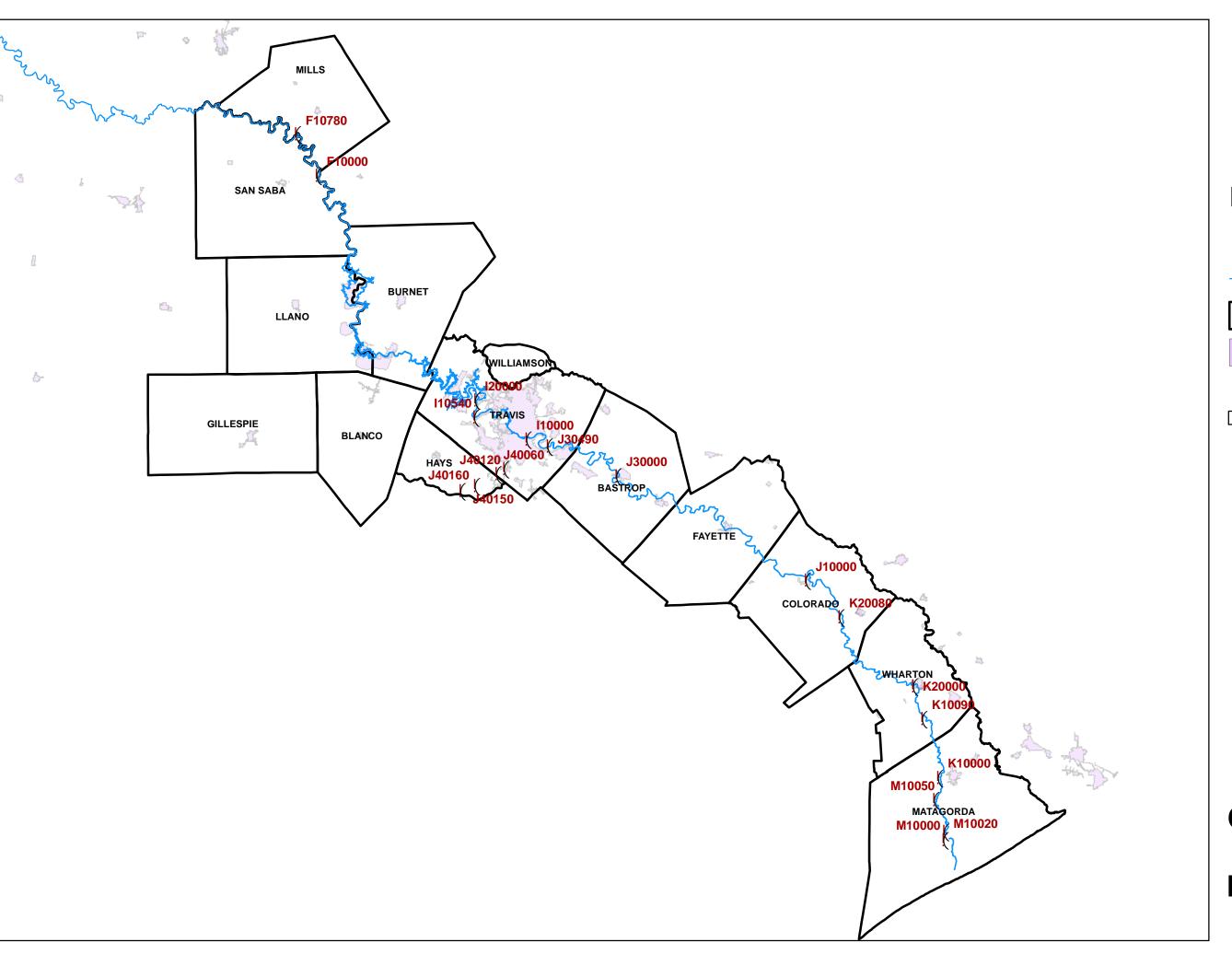

LCRWPG WATER PLAN F-18

Table 3.10D above shows that although the Excess Flows strategy has no monthly impacts to the frequency of the target and critical flow levels being met, it does have a negative impact of approximately five percent on the frequency of meeting the Matagorda Bay critical freshwater inflow level on an annual basis. The instream flows were analyzed at the Wharton County control point (CP K20000) for this strategy because the strategy occurs downstream of the J10000 control point the rest of the strategies were analyzed at. Target instream flow levels were available at this control point from the LCRA Water Management Plan, but there are no stated critical flow levels at this point. As such, the listed critical levels for the J10000 control point were used for comparison purposes only.

Table 3.10E Excess Flows Flow Duration Below Target and Critical Needs for 2060

		lows Strat (Wharton	tegy at CP County)		lows Stra 0 (Matago	tegy at CP rda Bay)
Condition	Without Strategy	With Strategy	Difference	Without Strategy	With Strategy	Difference
Number of Times Flow Falls Below Target Level	62	62	0	85	85	0
Maximum Duration Below Target Level (months)	5	5	0	51	51	0
Total Duration Below Target Level (months)	93	93	0	506	506	0
Average Duration Below Target Level (months) Average Volume of Flow Per Event Below Target Level (Ac-Ft)	2 10,977	10,979	2	6 503,853	504,827	
Number of Times Flow Falls Below Critical Level	30	30	0	92	93	1
Maximum Duration Below Critical Level (months)	2	2	0	11	11	0
Total Duration Below Critical Level (months)	38	38	0	263	261	-2
Average Duration Below Critical Level (months) Average Volume of Flow Per Event Below Critical Level (Ac-Ft)	8,177	8,224	0 47	67,895	67,032	-863

Table 3.10E shows that the Excess Flows strategy does have a small impact on the number, duration, and volume of occurrences below the target/critical flow levels. The negative impacts are small increases in the average volume of flow below the target/critical flow levels, and an increase in the number of times the freshwater inflow fell below the target level (92 to 93).

Legend

Control PointsColorado River

Counties

Cities

10 Miles

Location of All Control Points Analyzed for Environmental Impacts

2010 Freshwater Inflows to Matagorda Bay

	SPRI	NGTIME ON:	SET FLOW	CRITERIA N	IET	
CRITERIA	TARGET	BAS	ΞE	STRAT	EGY	DIFFERENCE
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%
MBHE 1	114,000	43	72.9%	43	72.9%	0.0%
MBHE 2	168,700	41	69.5%	41	69.5%	0.0%
MBHE 3	246,200	38	64.4%	38	64.4%	0.0%
MBHE 4	433,200	28	47.5%	28	47.5%	0.0%

	F	ALL ONSET	FLOW CR	TERIA MET		
CRITERIA	TARGET	BAS	SE .	STRAT	EGY	DIFFERENCE
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%
MBHE 1	81,000	34	57.6%	34	57.6%	0.0%
MBHE 2	119,900	29	49.2%	29	49.2%	0.0%
MBHE 3	175,000	20	33.9%	20	33.9%	0.0%
MBHE 4	307,800	13	22.0%	13	22.0%	0.0%

	INTERVE	NING SIX M	ONTHS FL	OW CRITERI	A MET	
CRITERIA	TARGET	BAS	Œ	STRAT	EGY	DIFFERENCE
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%
MBHE 1	105,000	52	88.1%	52	88.1%	0.0%
MBHE 2	155,400	45	76.3%	45	76.3%	0.0%
MBHE 3	226,800	40	67.8%	40	67.8%	0.0%
MBHE 4	399,000	31	52.5%	31	52.5%	0.0%

Note: Intervening six months includes June, July, November, December, and the remaining Springtime Onset months that are not used for the 3 consecutive month calculation.

N	NUMBER OF MONTHS THAT THRESHOLD LEVEL IS MET											
CRITERIA TARGET BASE STRATEGY DIFFERENC												
	(AC-FT/mo)	# OF MONTHS	%	# OF MONTHS	%	%						
THRESHOLD	15,000	546	77.1%	546	77.1%	0.0%						

2060 Freshwater Inflows to Matagorda Bay

	SPRIN	IGTIME ONS	ET FLOW	CRITERIA M	ET	
CRITERIA	TARGET	BAS	SE	STRAT	DIFFERENCE	
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%
MBHE 1	114,000	48	81.4%	46	78.0%	-3.4%
MBHE 2	168,700	39	66.1%	39	66.1%	0.0%
MBHE 3	246,200	35	59.3%	37	62.7%	3.4%
MBHE 4	433,200	22	37.3%	22	37.3%	0.0%

	F.	ALL ONSET I	FLOW CRIT	TERIA MET		
CRITERIA	TARGET	BAS	SE	STRAT	ΓEGY	DIFFERENCE
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%
MBHE 1	81,000	38	64.4%	38	64.4%	0.0%
MBHE 2	119,900	31	52.5%	30	50.8%	-1.7%
MBHE 3	175,000	19	32.2%	17	28.8%	-3.4%
MBHE 4	307,800	11	18.6%	11	18.6%	0.0%

	INTERVE	NING SIX MO	ONTHS FLO	OW CRITERIA	A MET	
CRITERIA	TARGET	BAS	SE	STRAT	ΓEGY	DIFFERENCE
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%
MBHE 1	105,000	53	89.8%	54	91.5%	1.7%
MBHE 2	155,400	46	78.0%	45	76.3%	-1.7%
MBHE 3	226,800	39	66.1%	39	66.1%	0.0%
MBHE 4	399,000	32	54.2%	32	54.2%	0.0%

Note: Intervening six months includes June, July, November, December, and the remaining Springtime Onset months that are not used for the 3 consecutive month calculation.

NU	NUMBER OF MONTHS THAT THRESHOLD LEVEL IS MET											
CRITERIA TARGET BASE STRATEGY DIFFER												
	(AC-FT/mo)	# OF MONTHS	%	# OF MONTHS	%	%						
THRESHOLD	15,000	540	76.3%	530	74.9%	-1.4%						

2010 Colorado River Instream Flow Analysis

2010 CP K10000 Matagorda Co.

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	ITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
).	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	91.5%	91.5%	0.0%	30,252	74.6%	74.6%	0.0%	51,527	57.6%	57.6%	0.0%
FEB	16,828	93.2%	93.2%	0.0%	33,156	76.3%	76.3%	0.0%	50,317	61.0%	61.0%	0.0%
MAR	12,543	100.0%	100.0%	0.0%	32,650	79.7%	79.7%	0.0%	63,701	50.8%	50.8%	0.0%
APR	16,066	79.7%	79.7%	0.0%	33,382	57.6%	57.6%	0.0%	60,159	52.5%	52.5%	0.0%
MAY	18,692	83.1%	83.1%	0.0%	60,565	61.0%	61.0%	0.0%	85,898	59.3%	59.3%	0.0%
JUN	22,076	62.7%	62.7%	0.0%	58,552	47.5%	47.5%	0.0%	89,970	42.4%	42.4%	0.0%
JUL	13,035	42.4%	42.4%	0.0%	35,478	32.2%	32.2%	0.0%	55,708	32.2%	32.2%	0.0%
AUG	6,579	74.6%	74.6%	0.0%	19,307	35.6%	35.6%	0.0%	32,097	25.4%	25.4%	0.0%
SEP	11,187	66.1%	66.1%	0.0%	24,397	50.8%	50.8%	0.0%	36,714	44.1%	44.1%	0.0%
OCT	9,039	88.1%	88.1%	0.0%	22,136	74.6%	74.6%	0.0%	46,054	55.9%	55.9%	0.0%
NOV	10,294	100.0%	100.0%	0.0%	28,919	74.6%	74.6%	0.0%	45,461	49.2%	49.2%	0.0%
DEC	12,420	98.3%	98.3%	0.0%	28,899	78.0%	78.0%	0.0%	45,870	64.4%	64.4%	0.0%

		SUBSISTE	NCE FLOWS		BA	ASE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
•	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	91.5%	91.5%	0.0%	30,252	74.6%	74.6%	0.0%	51,527	52.5%	52.5%	0.0%
FEB	16,828	91.5%	91.5%	0.0%	33,156	72.9%	72.9%	0.0%	50,317	57.6%	57.6%	0.0%
MAR	12,543	100.0%	100.0%	0.0%	32,650	86.4%	86.4%	0.0%	63,701	49.2%	49.2%	0.0%
APR	16,066	91.5%	91.5%	0.0%	33,382	64.4%	64.4%	0.0%	60,159	54.2%	54.2%	0.0%
MAY	18,692	100.0%	100.0%	0.0%	60,565	62.7%	62.7%	0.0%	85,898	61.0%	61.0%	0.0%
JUN	22,076	93.2%	93.2%	0.0%	58,552	50.8%	50.8%	0.0%	89,970	45.8%	45.8%	0.0%
JUL	13,035	98.3%	98.3%	0.0%	35,478	40.7%	40.7%	0.0%	55,708	30.5%	30.5%	0.0%
AUG	6,579	98.3%	98.3%	0.0%	19,307	84.7%	84.7%	0.0%	32,097	49.2%	49.2%	0.0%
SEP	11,187	93.2%	93.2%	0.0%	24,397	61.0%	61.0%	0.0%	36,714	49.2%	49.2%	0.0%
OCT	9,039	91.5%	91.5%	0.0%	22,136	74.6%	74.6%	0.0%	46,054	50.8%	50.8%	0.0%
NOV	10,294	100.0%	100.0%	0.0%	28,919	74.6%	74.6%	0.0%	45,461	44.1%	44.1%	0.0%
DEC	12,420	98.3%	98.3%	0.0%	28,899	79.7%	79.7%	0.0%	45,870	54.2%	54.2%	0.0%

2010 Colorado River Instream Flow Analysis

2010 CP J10000 Colorado Co.

		SUBSISTE	NCE FLOWS		BA	ASE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	ITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
-	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	20,906	86.4%	86.4%	0.0%	29,944	69.5%	69.5%	0.0%	50,912	44.1%	44.1%	0.0%
FEB	20,826	81.4%	81.4%	0.0%	32,767	64.4%	64.4%	0.0%	49,706	50.8%	50.8%	0.0%
MAR	23,058	100.0%	100.0%	0.0%	32,281	81.4%	81.4%	0.0%	62,717	47.5%	47.5%	0.0%
APR	17,792	100.0%	100.0%	0.0%	32,965	86.4%	86.4%	0.0%	58,136	50.8%	50.8%	0.0%
MAY	26,132	100.0%	100.0%	0.0%	59,397	89.8%	89.8%	0.0%	80,918	72.9%	72.9%	0.0%
JUN	31,775	100.0%	100.0%	0.0%	57,540	96.6%	96.6%	0.0%	85,686	67.8%	67.8%	0.0%
JUL	21,029	100.0%	100.0%	0.0%	35,048	98.3%	98.3%	0.0%	55,031	86.4%	86.4%	0.0%
AUG	11,683	100.0%	100.0%	0.0%	19,061	100.0%	100.0%	0.0%	31,728	96.6%	96.6%	0.0%
SEP	16,602	100.0%	100.0%	0.0%	24,099	98.3%	98.3%	0.0%	36,298	91.5%	91.5%	0.0%
OCT	11,683	100.0%	100.0%	0.0%	21,890	89.8%	89.8%	0.0%	45,562	55.9%	55.9%	0.0%
NOV	12,020	94.9%	94.9%	0.0%	28,562	62.7%	62.7%	0.0%	44,926	42.4%	42.4%	0.0%
DEC	18,508	88.1%	88.1%	0.0%	28,530	74.6%	74.6%	0.0%	45,316	44.1%	44.1%	0.0%

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	12,789	86.4%	86.4%	0.0%	19,246	69.5%	69.5%	0.0%	26,624	47.5%	47.5%	0.0%
FEB	15,217	83.1%	83.1%	0.0%	17,605	83.1%	83.1%	0.0%	27,602	57.6%	57.6%	0.0%
MAR	16,848	100.0%	100.0%	0.0%	16,848	100.0%	100.0%	0.0%	30,559	81.4%	81.4%	0.0%
APR	11,127	100.0%	100.0%	0.0%	17,078	100.0%	100.0%	0.0%	37,785	66.1%	66.1%	0.0%
MAY	16,909	100.0%	100.0%	0.0%	35,601	91.5%	91.5%	0.0%	50,666	88.1%	88.1%	0.0%
JUN	12,020	100.0%	100.0%	0.0%	24,873	100.0%	100.0%	0.0%	43,617	96.6%	96.6%	0.0%
JUL	8,424	100.0%	100.0%	0.0%	21,336	98.3%	98.3%	0.0%	37,507	94.9%	94.9%	0.0%
AUG	7,563	100.0%	100.0%	0.0%	11,929	100.0%	100.0%	0.0%	23,427	100.0%	100.0%	0.0%
SEP	7,319	100.0%	100.0%	0.0%	14,043	98.3%	98.3%	0.0%	25,170	83.1%	83.1%	0.0%
OCT	7,809	100.0%	100.0%	0.0%	15,064	96.6%	96.6%	0.0%	26,624	74.6%	74.6%	0.0%
NOV	10,711	94.9%	94.9%	0.0%	16,840	81.4%	81.4%	0.0%	25,230	52.5%	52.5%	0.0%
DEC	11,437	89.8%	89.8%	0.0%	19,123	78.0%	78.0%	0.0%	27,669	54.2%	54.2%	0.0%

2060 Colorado River Instream Flow Analysis

2060 CP K10000 Matagorda Co.

		SUBSISTE	NCE FLOWS		B/	ASE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS			
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
ο.	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	86.4%	89.8%	3.4%	30,252	78.0%	78.0%	0.0%	51,527	64.4%	64.4%	0.0%
FEB	16,828	91.5%	91.5%	0.0%	33,156	81.4%	81.4%	0.0%	50,317	67.8%	67.8%	0.0%
MAR	12,543	98.3%	98.3%	0.0%	32,650	89.8%	89.8%	0.0%	63,701	44.1%	44.1%	0.0%
APR	16,066	86.4%	84.7%	-1.7%	33,382	66.1%	67.8%	1.7%	60,159	44.1%	47.5%	3.4%
MAY	18,692	81.4%	79.7%	-1.7%	60,565	54.2%	55.9%	1.7%	85,898	47.5%	45.8%	-1.7%
JUN	22,076	71.2%	71.2%	0.0%	58,552	47.5%	47.5%	0.0%	89,970	39.0%	39.0%	0.0%
JUL	13,035	52.5%	69.5%	16.9%	35,478	39.0%	39.0%	0.0%	55,708	28.8%	32.2%	3.4%
AUG	6,579	72.9%	98.3%	25.4%	19,307	39.0%	44.1%	5.1%	32,097	27.1%	30.5%	3.4%
SEP	11,187	71.2%	76.3%	5.1%	24,397	61.0%	59.3%	-1.7%	36,714	59.3%	59.3%	0.0%
OCT	9,039	89.8%	91.5%	1.7%	22,136	76.3%	74.6%	-1.7%	46,054	55.9%	55.9%	0.0%
NOV	10,294	96.6%	96.6%	0.0%	28,919	78.0%	79.7%	1.7%	45,461	64.4%	64.4%	0.0%
DEC	12,420	100.0%	100.0%	0.0%	28,899	83.1%	83.1%	0.0%	45,870	62.7%	66.1%	3.4%

		SUBSISTE	NCE FLOWS		BA	ASE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	84.7%	86.4%	1.7%	30,252	78.0%	78.0%	0.0%	51,527	54.2%	57.6%	3.4%
FEB	16,828	89.8%	89.8%	0.0%	33,156	76.3%	76.3%	0.0%	50,317	59.3%	61.0%	1.7%
MAR	12,543	98.3%	98.3%	0.0%	32,650	93.2%	91.5%	-1.7%	63,701	44.1%	44.1%	0.0%
APR	16,066	96.6%	91.5%	-5.1%	33,382	71.2%	72.9%	1.7%	60,159	47.5%	49.2%	1.7%
MAY	18,692	93.2%	94.9%	1.7%	60,565	59.3%	59.3%	0.0%	85,898	49.2%	49.2%	0.0%
JUN	22,076	88.1%	93.2%	5.1%	58,552	57.6%	57.6%	0.0%	89,970	40.7%	40.7%	0.0%
JUL	13,035	94.9%	98.3%	3.4%	35,478	40.7%	44.1%	3.4%	55,708	30.5%	28.8%	-1.7%
AUG	6,579	96.6%	98.3%	1.7%	19,307	64.4%	81.4%	16.9%	32,097	32.2%	44.1%	11.9%
SEP	11,187	91.5%	94.9%	3.4%	24,397	62.7%	64.4%	1.7%	36,714	57.6%	57.6%	0.0%
OCT	9,039	91.5%	93.2%	1.7%	22,136	76.3%	74.6%	-1.7%	46,054	54.2%	54.2%	0.0%
NOV	10,294	96.6%	96.6%	0.0%	28,919	76.3%	78.0%	1.7%	45,461	54.2%	54.2%	0.0%
DEC	12,420	96.6%	96.6%	0.0%	28,899	81.4%	81.4%	0.0%	45,870	59.3%	59.3%	0.0%

2060 Colorado River Instream Flow Analysis

2060 CP J10000 Colorado Co.

		SUBSISTE	NCE FLOWS		B/	ASE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS			
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
-	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	20,906	81.4%	81.4%	0.0%	29,944	72.9%	72.9%	0.0%	50,912	44.1%	45.8%	1.7%
FEB	20,826	83.1%	84.7%	1.7%	32,767	74.6%	74.6%	0.0%	49,706	54.2%	54.2%	0.0%
MAR	23,058	98.3%	98.3%	0.0%	32,281	88.1%	86.4%	-1.7%	62,717	42.4%	42.4%	0.0%
APR	17,792	100.0%	100.0%	0.0%	32,965	76.3%	74.6%	-1.7%	58,136	49.2%	49.2%	0.0%
MAY	26,132	100.0%	100.0%	0.0%	59,397	78.0%	81.4%	3.4%	80,918	57.6%	57.6%	0.0%
JUN	31,775	98.3%	98.3%	0.0%	57,540	83.1%	89.8%	6.8%	85,686	57.6%	59.3%	1.7%
JUL	21,029	98.3%	98.3%	0.0%	35,048	91.5%	96.6%	5.1%	55,031	50.8%	64.4%	13.6%
AUG	11,683	98.3%	98.3%	0.0%	19,061	98.3%	98.3%	0.0%	31,728	83.1%	91.5%	8.5%
SEP	16,602	98.3%	100.0%	1.7%	24,099	94.9%	98.3%	3.4%	36,298	74.6%	81.4%	6.8%
OCT	11,683	98.3%	100.0%	1.7%	21,890	76.3%	78.0%	1.7%	45,562	61.0%	61.0%	0.0%
NOV	12,020	89.8%	89.8%	0.0%	28,562	61.0%	66.1%	5.1%	44,926	47.5%	49.2%	1.7%
DEC	18,508	84.7%	84.7%	0.0%	28,530	76.3%	78.0%	1.7%	45,316	49.2%	49.2%	0.0%

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	ITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	12,789	84.7%	88.1%	3.4%	19,246	69.5%	72.9%	3.4%	26,624	52.5%	55.9%	3.4%
FEB	15,217	84.7%	83.1%	-1.7%	17,605	78.0%	79.7%	1.7%	27,602	62.7%	64.4%	1.7%
MAR	16,848	98.3%	98.3%	0.0%	16,848	98.3%	98.3%	0.0%	30,559	81.4%	84.7%	3.4%
APR	11,127	100.0%	100.0%	0.0%	17,078	100.0%	100.0%	0.0%	37,785	57.6%	59.3%	1.7%
MAY	16,909	100.0%	100.0%	0.0%	35,601	91.5%	91.5%	0.0%	50,666	81.4%	81.4%	0.0%
JUN	12,020	100.0%	100.0%	0.0%	24,873	100.0%	100.0%	0.0%	43,617	89.8%	93.2%	3.4%
JUL	8,424	100.0%	100.0%	0.0%	21,336	94.9%	94.9%	0.0%	37,507	79.7%	83.1%	3.4%
AUG	7,563	100.0%	100.0%	0.0%	11,929	98.3%	98.3%	0.0%	23,427	98.3%	98.3%	0.0%
SEP	7,319	100.0%	100.0%	0.0%	14,043	96.6%	98.3%	1.7%	25,170	81.4%	84.7%	3.4%
OCT	7,809	100.0%	100.0%	0.0%	15,064	89.8%	93.2%	3.4%	26,624	66.1%	67.8%	1.7%
NOV	10,711	89.8%	91.5%	1.7%	16,840	69.5%	71.2%	1.7%	25,230	50.8%	50.8%	0.0%
DEC	11,437	91.5%	89.8%	-1.7%	19,123	74.6%	74.6%	0.0%	27,669	52.5%	55.9%	3.4%

2060 Freshwater Inflows to Matagorda Bay

	SPRINGTIME ONSET FLOW CRITERIA MET														
CRITERIA	TARGET	BAS	SE	STRAT	ΓEGY	DIFFERENCE									
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%									
MBHE 1	114,000	48	81.4%	48	81.4%	0.0%									
MBHE 2	168,700	39	66.1%	39	66.1%	0.0%									
MBHE 3	246,200	35	59.3%	35	59.3%	0.0%									
MBHE 4	433,200	22	37.3%	22	37.3%	0.0%									

	F/	ALL ONSET	FLOW CRIT	TERIA MET		
CRITERIA	TARGET	BAS	SE	STRAT	EGY	DIFFERENCE
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%
MBHE 1	81,000	38	64.4%	38	64.4%	0.0%
MBHE 2	119,900	31	52.5%	31	52.5%	0.0%
MBHE 3	175,000	19	32.2%	19	32.2%	0.0%
MBHE 4	307,800	11	18.6%	11	18.6%	0.0%

	INTERVENING SIX MONTHS FLOW CRITERIA MET														
CRITERIA	TARGET	BAS	SE	STRAT	EGY	DIFFERENCE									
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%									
MBHE 1	105,000	53	89.8%	53	89.8%	0.0%									
MBHE 2	155,400	46	78.0%	45	76.3%	-1.7%									
MBHE 3	226,800	39	66.1%	39	66.1%	0.0%									
MBHE 4	399,000	32	54.2%	32	54.2%	0.0%									

Note: Intervening six months includes June, July, November, December, and the remaining Springtime Onset months that are not used for the 3 consecutive month calculation.

NU	NUMBER OF MONTHS THAT THRESHOLD LEVEL IS MET													
CRITERIA TARGET BASE STRATEGY DIFFEREN														
	(AC-FT/mo)	# OF MONTHS	%	# OF MONTHS	%	%								
THRESHOLD	15,000	540	76.3%	540	76.3%	0.0%								

2060 CP K10000 Matagorda Co.

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	86.4%	86.4%	0.0%	30,252	78.0%	78.0%	0.0%	51,527	64.4%	64.4%	0.0%
FEB	16,828	91.5%	91.5%	0.0%	33,156	81.4%	81.4%	0.0%	50,317	67.8%	67.8%	0.0%
MAR	12,543	98.3%	98.3%	0.0%	32,650	89.8%	89.8%	0.0%	63,701	44.1%	44.1%	0.0%
APR	16,066	86.4%	86.4%	0.0%	33,382	66.1%	66.1%	0.0%	60,159	44.1%	44.1%	0.0%
MAY	18,692	81.4%	81.4%	0.0%	60,565	54.2%	54.2%	0.0%	85,898	47.5%	45.8%	-1.7%
JUN	22,076	71.2%	71.2%	0.0%	58,552	47.5%	47.5%	0.0%	89,970	39.0%	39.0%	0.0%
JUL	13,035	52.5%	52.5%	0.0%	35,478	39.0%	39.0%	0.0%	55,708	28.8%	28.8%	0.0%
AUG	6,579	72.9%	72.9%	0.0%	19,307	39.0%	39.0%	0.0%	32,097	27.1%	27.1%	0.0%
SEP	11,187	71.2%	71.2%	0.0%	24,397	61.0%	61.0%	0.0%	36,714	59.3%	59.3%	0.0%
OCT	9,039	89.8%	89.8%	0.0%	22,136	76.3%	76.3%	0.0%	46,054	55.9%	55.9%	0.0%
NOV	10,294	96.6%	96.6%	0.0%	28,919	78.0%	78.0%	0.0%	45,461	64.4%	64.4%	0.0%
DEC	12,420	100.0%	100.0%	0.0%	28,899	83.1%	83.1%	0.0%	45,870	62.7%	62.7%	0.0%

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	84.7%	84.7%	0.0%	30,252	78.0%	78.0%	0.0%	51,527	54.2%	54.2%	0.0%
FEB	16,828	89.8%	89.8%	0.0%	33,156	76.3%	76.3%	0.0%	50,317	59.3%	59.3%	0.0%
MAR	12,543	98.3%	98.3%	0.0%	32,650	93.2%	93.2%	0.0%	63,701	44.1%	44.1%	0.0%
APR	16,066	96.6%	96.6%	0.0%	33,382	71.2%	71.2%	0.0%	60,159	47.5%	47.5%	0.0%
MAY	18,692	93.2%	93.2%	0.0%	60,565	59.3%	59.3%	0.0%	85,898	49.2%	49.2%	0.0%
JUN	22,076	88.1%	88.1%	0.0%	58,552	57.6%	57.6%	0.0%	89,970	40.7%	40.7%	0.0%
JUL	13,035	94.9%	94.9%	0.0%	35,478	40.7%	40.7%	0.0%	55,708	30.5%	30.5%	0.0%
AUG	6,579	96.6%	96.6%	0.0%	19,307	64.4%	64.4%	0.0%	32,097	32.2%	32.2%	0.0%
SEP	11,187	91.5%	91.5%	0.0%	24,397	62.7%	62.7%	0.0%	36,714	57.6%	55.9%	-1.7%
OCT	9,039	91.5%	91.5%	0.0%	22,136	76.3%	76.3%	0.0%	46,054	54.2%	54.2%	0.0%
NOV	10,294	96.6%	96.6%	0.0%	28,919	76.3%	76.3%	0.0%	45,461	54.2%	54.2%	0.0%
DEC	12,420	96.6%	96.6%	0.0%	28,899	81.4%	81.4%	0.0%	45,870	59.3%	59.3%	0.0%

2060 CP J10000 Colorado Co.

		SUBSISTE	NCE FLOWS		BASE FLOWS - DRY CONDITIONS				BASE FLOWS - AVERAGE CONDITIONS			
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	20,906	81.4%	81.4%	0.0%	29,944	72.9%	71.2%	-1.7%	50,912	44.1%	44.1%	0.0%
FEB	20,826	83.1%	83.1%	0.0%	32,767	74.6%	74.6%	0.0%	49,706	54.2%	54.2%	0.0%
MAR	23,058	98.3%	98.3%	0.0%	32,281	88.1%	88.1%	0.0%	62,717	42.4%	42.4%	0.0%
APR	17,792	100.0%	100.0%	0.0%	32,965	76.3%	76.3%	0.0%	58,136	49.2%	49.2%	0.0%
MAY	26,132	100.0%	100.0%	0.0%	59,397	78.0%	78.0%	0.0%	80,918	57.6%	57.6%	0.0%
JUN	31,775	98.3%	98.3%	0.0%	57,540	83.1%	83.1%	0.0%	85,686	57.6%	57.6%	0.0%
JUL	21,029	98.3%	98.3%	0.0%	35,048	91.5%	91.5%	0.0%	55,031	50.8%	50.8%	0.0%
AUG	11,683	98.3%	98.3%	0.0%	19,061	98.3%	98.3%	0.0%	31,728	83.1%	83.1%	0.0%
SEP	16,602	98.3%	98.3%	0.0%	24,099	94.9%	94.9%	0.0%	36,298	74.6%	72.9%	-1.7%
OCT	11,683	98.3%	98.3%	0.0%	21,890	76.3%	76.3%	0.0%	45,562	61.0%	61.0%	0.0%
NOV	12,020	89.8%	89.8%	0.0%	28,562	61.0%	61.0%	0.0%	44,926	47.5%	47.5%	0.0%
DEC	18,508	84.7%	84.7%	0.0%	28,530	76.3%	76.3%	0.0%	45,316	49.2%	49.2%	0.0%

		OUDGIGTE	NOT TI OWO			05 51 014/0	DDV CONDITI	0110	BASE FLOWS - AVERAGE CONDITIONS				
		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI		BASE		ERAGE CONL		
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	
JAN	12,789	84.7%	81.4%	-3.4%	19,246	69.5%	66.1%	-3.4%	26,624	52.5%	49.2%	-3.4%	
FEB	15,217	84.7%	83.1%	-1.7%	17,605	78.0%	76.3%	-1.7%	27,602	62.7%	57.6%	-5.1%	
MAR	16,848	98.3%	98.3%	0.0%	16,848	98.3%	98.3%	0.0%	30,559	81.4%	79.7%	-1.7%	
APR	11,127	100.0%	100.0%	0.0%	17,078	100.0%	100.0%	0.0%	37,785	57.6%	57.6%	0.0%	
MAY	16,909	100.0%	100.0%	0.0%	35,601	91.5%	91.5%	0.0%	50,666	81.4%	81.4%	0.0%	
JUN	12,020	100.0%	100.0%	0.0%	24,873	100.0%	100.0%	0.0%	43,617	89.8%	89.8%	0.0%	
JUL	8,424	100.0%	100.0%	0.0%	21,336	94.9%	94.9%	0.0%	37,507	79.7%	79.7%	0.0%	
AUG	7,563	100.0%	100.0%	0.0%	11,929	98.3%	98.3%	0.0%	23,427	98.3%	98.3%	0.0%	
SEP	7,319	100.0%	100.0%	0.0%	14,043	96.6%	94.9%	-1.7%	25,170	81.4%	81.4%	0.0%	
OCT	7,809	100.0%	100.0%	0.0%	15,064	89.8%	89.8%	0.0%	26,624	66.1%	66.1%	0.0%	
NOV	10,711	89.8%	89.8%	0.0%	16,840	69.5%	69.5%	0.0%	25,230	50.8%	50.8%	0.0%	
DEC	11,437	91.5%	89.8%	-1.7%	19,123	74.6%	74.6%	0.0%	27,669	52.5%	52.5%	0.0%	

2060 Freshwater Inflows to Matagorda Bay

	SPRINGTIME ONSET FLOW CRITERIA MET									
CRITERIA	TARGET	BAS	SE	STRAT	EGY	DIFFERENCE				
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%				
MBHE 1	114,000	48	81.4%	46	78.0%	-3.4%				
MBHE 2	168,700	39	66.1%	39	66.1%	0.0%				
MBHE 3	246,200	35	59.3%	34	57.6%	-1.7%				
MBHE 4	433,200	22	37.3%	20	33.9%	-3.4%				

	FALL ONSET FLOW CRITERIA MET										
CRITERIA	TARGET	BAS	DIFFERENCE								
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%					
MBHE 1	81,000	38	64.4%	38	64.4%	0.0%					
MBHE 2	119,900	31	52.5%	32	54.2%	1.7%					
MBHE 3	175,000	19	32.2%	20	33.9%	1.7%					
MBHE 4	307,800	11	18.6%	11	18.6%	0.0%					

	INTERVENING SIX MONTHS FLOW CRITERIA MET										
CRITERIA	TARGET	BAS	BASE STRATEGY								
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%					
MBHE 1	105,000	53	89.8%	55	93.2%	3.4%					
MBHE 2	155,400	46	78.0%	46	78.0%	0.0%					
MBHE 3	226,800	39	66.1%	38	64.4%	-1.7%					
MBHE 4	399,000	32	54.2%	29	49.2%	-5.1%					

Note: Intervening six months includes June, July, November, December, and the remaining Springtime Onset months that are not used for the 3 consecutive month calculation.

NUMBER OF MONTHS THAT THRESHOLD LEVEL IS MET									
CRITERIA TARGET BASE STRATEGY DIFFERENCE									
	(AC-FT/mo) # OF MONTHS % # OF MONTHS %								
THRESHOLD									

2060 CP K10000 Matagorda Co.

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
о.	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	86.4%	93.2%	6.8%	30,252	78.0%	74.6%	-3.4%	51,527	64.4%	61.0%	-3.4%
FEB	16,828	91.5%	98.3%	6.8%	33,156	81.4%	86.4%	5.1%	50,317	67.8%	62.7%	-5.1%
MAR	12,543	98.3%	100.0%	1.7%	32,650	89.8%	84.7%	-5.1%	63,701	44.1%	42.4%	-1.7%
APR	16,066	86.4%	86.4%	0.0%	33,382	66.1%	59.3%	-6.8%	60,159	44.1%	47.5%	3.4%
MAY	18,692	81.4%	86.4%	5.1%	60,565	54.2%	57.6%	3.4%	85,898	47.5%	49.2%	1.7%
JUN	22,076	71.2%	71.2%	0.0%	58,552	47.5%	47.5%	0.0%	89,970	39.0%	39.0%	0.0%
JUL	13,035	52.5%	62.7%	10.2%	35,478	39.0%	39.0%	0.0%	55,708	28.8%	28.8%	0.0%
AUG	6,579	72.9%	69.5%	-3.4%	19,307	39.0%	37.3%	-1.7%	32,097	27.1%	25.4%	-1.7%
SEP	11,187	71.2%	91.5%	20.3%	24,397	61.0%	86.4%	25.4%	36,714	59.3%	67.8%	8.5%
OCT	9,039	89.8%	98.3%	8.5%	22,136	76.3%	86.4%	10.2%	46,054	55.9%	57.6%	1.7%
NOV	10,294	96.6%	98.3%	1.7%	28,919	78.0%	74.6%	-3.4%	45,461	64.4%	57.6%	-6.8%
DEC	12,420	100.0%	94.9%	-5.1%	28,899	83.1%	79.7%	-3.4%	45,870	62.7%	59.3%	-3.4%

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	84.7%	93.2%	8.5%	30,252	78.0%	76.3%	-1.7%	51,527	54.2%	49.2%	-5.1%
FEB	16,828	89.8%	98.3%	8.5%	33,156	76.3%	81.4%	5.1%	50,317	59.3%	54.2%	-5.1%
MAR	12,543	98.3%	100.0%	1.7%	32,650	93.2%	83.1%	-10.2%	63,701	44.1%	39.0%	-5.1%
APR	16,066	96.6%	91.5%	-5.1%	33,382	71.2%	62.7%	-8.5%	60,159	47.5%	47.5%	0.0%
MAY	18,692	93.2%	89.8%	-3.4%	60,565	59.3%	59.3%	0.0%	85,898	49.2%	47.5%	-1.7%
JUN	22,076	88.1%	79.7%	-8.5%	58,552	57.6%	55.9%	-1.7%	89,970	40.7%	39.0%	-1.7%
JUL	13,035	94.9%	91.5%	-3.4%	35,478	40.7%	37.3%	-3.4%	55,708	30.5%	28.8%	-1.7%
AUG	6,579	96.6%	96.6%	0.0%	19,307	64.4%	55.9%	-8.5%	32,097	32.2%	25.4%	-6.8%
SEP	11,187	91.5%	96.6%	5.1%	24,397	62.7%	81.4%	18.6%	36,714	57.6%	66.1%	8.5%
OCT	9,039	91.5%	98.3%	6.8%	22,136	76.3%	84.7%	8.5%	46,054	54.2%	52.5%	-1.7%
NOV	10,294	96.6%	98.3%	1.7%	28,919	76.3%	76.3%	0.0%	45,461	54.2%	49.2%	-5.1%
DEC	12,420	96.6%	94.9%	-1.7%	28,899	81.4%	78.0%	-3.4%	45,870	59.3%	52.5%	-6.8%

2060 CP J10000 Colorado Co.

		SUBSISTE	NCE FLOWS		B <i>A</i>	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
. JAN	20,906	81.4%	94.9%	13.6%	29,944	72.9%	69.5%	-3.4%	50,912	44.1%	45.8%	1.7%
FEB	20,826	83.1%	98.3%	15.3%	32,767	74.6%	72.9%	-1.7%	49,706	54.2%	54.2%	0.0%
MAR	23,058	98.3%	100.0%	1.7%	32,281	88.1%	93.2%	5.1%	62,717	42.4%	40.7%	-1.7%
APR	17,792	100.0%	98.3%	-1.7%	32,965	76.3%	71.2%	-5.1%	58,136	49.2%	50.8%	1.7%
MAY	26,132	100.0%	100.0%	0.0%	59,397	78.0%	81.4%	3.4%	80,918	57.6%	62.7%	5.1%
JUN	31,775	98.3%	100.0%	1.7%	57,540	83.1%	72.9%	-10.2%	85,686	57.6%	54.2%	-3.4%
JUL	21,029	98.3%	100.0%	1.7%	35,048	91.5%	64.4%	-27.1%	55,031	50.8%	33.9%	-16.9%
AUG	11,683	98.3%	98.3%	0.0%	19,061	98.3%	86.4%	-11.9%	31,728	83.1%	47.5%	-35.6%
SEP	16,602	98.3%	98.3%	0.0%	24,099	94.9%	81.4%	-13.6%	36,298	74.6%	49.2%	-25.4%
OCT	11,683	98.3%	98.3%	0.0%	21,890	76.3%	78.0%	1.7%	45,562	61.0%	52.5%	-8.5%
NOV	12,020	89.8%	100.0%	10.2%	28,562	61.0%	61.0%	0.0%	44,926	47.5%	49.2%	1.7%
DEC	18,508	84.7%	94.9%	10.2%	28,530	76.3%	72.9%	-3.4%	45,316	49.2%	47.5%	-1.7%

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	12,789	84.7%	94.9%	10.2%	19,246	69.5%	79.7%	10.2%	26,624	52.5%	49.2%	-3.4%
FEB	15,217	84.7%	96.6%	11.9%	17,605	78.0%	89.8%	11.9%	27,602	62.7%	76.3%	13.6%
MAR	16,848	98.3%	98.3%	0.0%	16,848	98.3%	98.3%	0.0%	30,559	81.4%	79.7%	-1.7%
APR	11,127	100.0%	100.0%	0.0%	17,078	100.0%	100.0%	0.0%	37,785	57.6%	57.6%	0.0%
MAY	16,909	100.0%	98.3%	-1.7%	35,601	91.5%	88.1%	-3.4%	50,666	81.4%	81.4%	0.0%
JUN	12,020	100.0%	100.0%	0.0%	24,873	100.0%	100.0%	0.0%	43,617	89.8%	81.4%	-8.5%
JUL	8,424	100.0%	98.3%	-1.7%	21,336	94.9%	89.8%	-5.1%	37,507	79.7%	54.2%	-25.4%
AUG	7,563	100.0%	100.0%	0.0%	11,929	98.3%	98.3%	0.0%	23,427	98.3%	81.4%	-16.9%
SEP	7,319	100.0%	100.0%	0.0%	14,043	96.6%	93.2%	-3.4%	25,170	81.4%	66.1%	-15.3%
OCT	7,809	100.0%	100.0%	0.0%	15,064	89.8%	91.5%	1.7%	26,624	66.1%	59.3%	-6.8%
NOV	10,711	89.8%	98.3%	8.5%	16,840	69.5%	76.3%	6.8%	25,230	50.8%	54.2%	3.4%
DEC	11,437	91.5%	100.0%	8.5%	19,123	74.6%	79.7%	5.1%	27,669	52.5%	50.8%	-1.7%

2060 Colorado River Instream Flow Analysis

2060 CP I10000 Travis Co.

		SUBSISTE	NCE FLOWS	
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	3,074	96.6%	100.0%	3.4%
FEB	2,777	98.3%	100.0%	1.7%
MAR	3,074	98.3%	100.0%	1.7%
APR	2,975	100.0%	100.0%	0.0%
MAY	3,074	100.0%	100.0%	0.0%
JUN	2,975	100.0%	100.0%	0.0%
JUL	3,074	100.0%	100.0%	0.0%
AUG	3,074	100.0%	100.0%	0.0%
SEP	2,975	100.0%	100.0%	0.0%
OCT	3,074	100.0%	100.0%	0.0%
NOV	2,975	100.0%	100.0%	0.0%
DEC	3,074	98.3%	100.0%	1.7%

2010 Freshwater Inflows to Matagorda Bay

SPRINGTIME ONSET FLOW CRITERIA MET									
CRITERIA	TARGET	BAS	SE .	STRAT	EGY	DIFFERENCE			
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%			
MBHE 1	114,000	43	72.9%	45	76.3%	3.4%			
MBHE 2	168,700	41	69.5%	42	71.2%	1.7%			
MBHE 3	246,200	38	64.4%	39	66.1%	1.7%			
MBHE 4	433,200	28	47.5%	31	52.5%	5.0%			

FALL ONSET FLOW CRITERIA MET										
CRITERIA	TARGET	BAS	SE.	STRAT	EGY	DIFFERENCE				
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%				
MBHE 1	81,000	34	57.6%	37	62.7%	5.1%				
MBHE 2	119,900	29	49.2%	31	52.5%	3.3%				
MBHE 3	175,000	20	33.9%	22	37.3%	3.4%				
MBHE 4	307,800	13	22.0%	13	22.0%	0.0%				

	INTERVENING SIX MONTHS FLOW CRITERIA MET										
CRITERIA	TARGET	BAS	SE .	STRAT	EGY	DIFFERENCE					
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%					
MBHE 1	105,000	52	88.1%	54	91.5%	3.4%					
MBHE 2	155,400	45	76.3%	50	84.7%	8.4%					
MBHE 3	226,800	40	67.8%	41	69.5%	1.7%					
MBHE 4	399,000	31	52.5%	32	54.2%	1.7%					

Note: Intervening six months includes June, July, November, December, and the remaining Springtime Onset months that are not used for the 3 consecutive month calculation.

N	NUMBER OF MONTHS THAT THRESHOLD LEVEL IS MET													
CRITERIA TARGET BASE STRATEGY DIFFERENCE														
	(AC-FT/mo)	# OF MONTHS	%	# OF MONTHS	%	%								
THRESHOLD	15,000	546	77.1%	595	84.0%	6.9%								

2060 Freshwater Inflows to Matagorda Bay

	SPRIN	IGTIME ONS	ET FLOW	CRITERIA M	ET	
CRITERIA	TARGET	BAS	SE	STRAT	EGY	DIFFERENCE
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%
MBHE 1	114,000	48	81.4%	50	84.7%	3.3%
MBHE 2	168,700	39	66.1%	44	74.6%	8.5%
MBHE 3	246,200	35	59.3%	37	62.7%	3.4%
MBHE 4	433,200	22	37.3%	25	42.4%	5.1%

	FALL ONSET FLOW CRITERIA MET														
CRITERIA	TARGET	BAS	SE	STRAT	TEGY	DIFFERENCE									
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%									
MBHE 1	81,000	38	64.4%	42	71.2%	6.8%									
MBHE 2	119,900	31	52.5%	33	55.9%	3.4%									
MBHE 3	175,000	19	32.2%	23	39.0%	6.8%									
MBHE 4	307,800	11	18.6%	13	22.0%	3.4%									

	INTERVE	NING SIX MO	ONTHS FLO	W CRITERIA	A MET	
CRITERIA	TARGET	BAS	SE	STRAT	EGY	DIFFERENCE
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%
MBHE 1	105,000	53	89.8%	59	100.0%	10.2%
MBHE 2	155,400	46	78.0%	54	91.5%	13.6%
MBHE 3	226,800	39	66.1%	44	74.6%	8.5%
MBHE 4	399,000	32	54.2%	32	54.2%	0.0%

Note: Intervening six months includes June, July, November, December, and the remaining Springtime Onset months that are not used for the 3 consecutive month calculation.

NUMBER OF MONTHS THAT THRESHOLD LEVEL IS MET													
CRITERIA TARGET BASE STRATEGY DIFFERENCE													
	(AC-FT/mo)	# OF MONTHS	%	# OF MONTHS	%	%							
THRESHOLD	15,000	540	76.3%	594	83.9%	7.6%							

2010 CP K10000 Matagorda Co.

		SUBSISTE	NCE FLOWS		B/	SE FLOWS -	DRY CONDITI	IONS	BASE	FLOWS - AV	ERAGE COND	OITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
o.	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	84.7%	93.2%	8.5%	30,252	76.3%	83.1%	6.8%	51,527	62.7%	64.4%	1.7%
FEB	16,828	89.8%	98.3%	8.5%	33,156	79.7%	79.7%	0.0%	50,317	66.1%	62.7%	-3.4%
MAR	12,543	96.6%	100.0%	3.4%	32,650	88.1%	81.4%	-6.7%	63,701	42.4%	54.2%	11.8%
APR	16,066	84.7%	86.4%	1.7%	33,382	64.4%	61.0%	-3.4%	60,159	42.4%	52.5%	10.1%
MAY	18,692	81.4%	88.1%	6.7%	60,565	54.2%	62.7%	8.5%	85,898	47.5%	62.7%	15.2%
JUN	22,076	71.2%	67.8%	-3.4%	58,552	47.5%	52.5%	5.0%	89,970	39.0%	44.1%	5.1%
JUL	13,035	52.5%	91.5%	39.0%	35,478	39.0%	32.2%	-6.8%	55,708	28.8%	32.2%	3.4%
AUG	6,579	71.2%	100.0%	28.8%	19,307	37.3%	39.0%	1.7%	32,097	25.4%	30.5%	5.1%
SEP	11,187	69.5%	78.0%	8.5%	24,397	59.3%	57.6%	-1.7%	36,714	57.6%	45.8%	-11.8%
OCT	9,039	88.1%	100.0%	11.9%	22,136	74.6%	79.7%	5.1%	46,054	54.2%	55.9%	1.7%
NOV	10,294	94.9%	100.0%	5.1%	28,919	76.3%	83.1%	6.8%	45,461	62.7%	54.2%	-8.5%
DEC	12,420	98.3%	100.0%	1.7%	28,899	81.4%	84.7%	3.3%	45,870	61.0%	72.9%	11.9%

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	ITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
).	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	84.7%	91.5%	6.8%	30,252	78.0%	83.1%	5.1%	51,527	54.2%	59.3%	5.1%
FEB	16,828	89.8%	98.3%	8.5%	33,156	76.3%	83.1%	6.8%	50,317	59.3%	61.0%	1.7%
MAR	12,543	98.3%	100.0%	1.7%	32,650	93.2%	84.7%	-8.5%	63,701	44.1%	54.2%	10.2%
APR	16,066	96.6%	100.0%	3.4%	33,382	71.2%	71.2%	0.0%	60,159	47.5%	54.2%	6.8%
MAY	18,692	93.2%	100.0%	6.8%	60,565	59.3%	66.1%	6.8%	85,898	49.2%	62.7%	13.6%
JUN	22,076	88.1%	98.3%	10.2%	58,552	57.6%	54.2%	-3.4%	89,970	40.7%	47.5%	6.8%
JUL	13,035	94.9%	98.3%	3.4%	35,478	40.7%	72.9%	32.2%	55,708	30.5%	32.2%	1.7%
AUG	6,579	96.6%	100.0%	3.4%	19,307	64.4%	94.9%	30.5%	32,097	32.2%	66.1%	33.9%
SEP	11,187	91.5%	100.0%	8.5%	24,397	62.7%	83.1%	20.3%	36,714	57.6%	52.5%	-5.1%
OCT	9,039	91.5%	100.0%	8.5%	22,136	76.3%	84.7%	8.5%	46,054	54.2%	52.5%	-1.7%
NOV	10,294	96.6%	100.0%	3.4%	28,919	76.3%	83.1%	6.8%	45,461	54.2%	49.2%	-5.1%
DEC	12,420	96.6%	100.0%	3.4%	28,899	81.4%	84.7%	3.4%	45,870	59.3%	64.4%	5.1%

2010 CP J10000 Colorado Co.

		SUBSISTE	NCE FLOWS		B/	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	20,906	81.4%	89.8%	8.5%	29,944	72.9%	81.4%	8.5%	50,912	44.1%	50.8%	6.8%
FEB	20,826	83.1%	89.8%	6.8%	32,767	74.6%	74.6%	0.0%	49,706	54.2%	57.6%	3.4%
MAR	23,058	98.3%	100.0%	1.7%	32,281	88.1%	78.0%	-10.2%	62,717	42.4%	47.5%	5.1%
APR	17,792	100.0%	100.0%	0.0%	32,965	76.3%	98.3%	22.0%	58,136	49.2%	52.5%	3.4%
MAY	26,132	100.0%	100.0%	0.0%	59,397	78.0%	94.9%	16.9%	80,918	57.6%	79.7%	22.0%
JUN	31,775	98.3%	100.0%	1.7%	57,540	83.1%	98.3%	15.3%	85,686	57.6%	78.0%	20.3%
JUL	21,029	98.3%	100.0%	1.7%	35,048	91.5%	100.0%	8.5%	55,031	50.8%	94.9%	44.1%
AUG	11,683	98.3%	100.0%	1.7%	19,061	98.3%	100.0%	1.7%	31,728	83.1%	98.3%	15.3%
SEP	16,602	98.3%	100.0%	1.7%	24,099	94.9%	100.0%	5.1%	36,298	74.6%	94.9%	20.3%
OCT	11,683	98.3%	100.0%	1.7%	21,890	76.3%	100.0%	23.7%	45,562	61.0%	57.6%	-3.4%
NOV	12,020	89.8%	100.0%	10.2%	28,562	61.0%	74.6%	13.6%	44,926	47.5%	45.8%	-1.7%
DEC	18,508	84.7%	96.6%	11.9%	28,530	76.3%	81.4%	5.1%	45,316	49.2%	50.8%	1.7%

ſ			SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	ITIONS
0	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
о.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
[JAN	12,789	83.1%	100.0%	16.9%	19,246	67.8%	89.8%	22.0%	26,624	50.8%	64.4%	13.6%
	FEB	15,217	83.1%	94.9%	11.8%	17,605	76.3%	89.8%	13.5%	27,602	61.0%	72.9%	11.9%
	MAR	16,848	96.6%	100.0%	3.4%	16,848	96.6%	100.0%	3.4%	30,559	79.7%	86.4%	6.7%
	APR	11,127	98.3%	100.0%	1.7%	17,078	98.3%	100.0%	1.7%	37,785	55.9%	84.7%	28.8%
	MAY	16,909	98.3%	100.0%	1.7%	35,601	89.8%	91.5%	1.7%	50,666	81.4%	91.5%	10.1%
Į.	JUN	12,020	98.3%	100.0%	1.7%	24,873	98.3%	100.0%	1.7%	43,617	88.1%	98.3%	10.2%
Į.	JUL	8,424	98.3%	100.0%	1.7%	21,336	93.2%	100.0%	6.8%	37,507	78.0%	96.6%	18.6%
	AUG	7,563	98.3%	100.0%	1.7%	11,929	96.6%	100.0%	3.4%	23,427	96.6%	100.0%	3.4%
[SEP	7,319	98.3%	100.0%	1.7%	14,043	94.9%	100.0%	5.1%	25,170	81.4%	96.6%	15.2%
	OCT	7,809	98.3%	100.0%	1.7%	15,064	88.1%	100.0%	11.9%	26,624	64.4%	91.5%	27.1%
	VOV	10,711	88.1%	100.0%	11.9%	16,840	67.8%	98.3%	30.5%	25,230	49.2%	69.5%	20.3%
	DEC	11,437	89.8%	100.0%	10.2%	19,123	72.9%	88.1%	15.2%	27,669	50.8%	66.1%	15.3%

2060 CP K10000 Matagorda Co.

		SUBSISTE	NCE FLOWS		B/	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
).	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	86.4%	100.0%	13.6%	30,252	78.0%	91.5%	13.5%	51,527	64.4%	72.9%	8.5%
FEB	16,828	91.5%	100.0%	8.5%	33,156	81.4%	91.5%	10.1%	50,317	67.8%	74.6%	6.8%
MAR	12,543	98.3%	100.0%	1.7%	32,650	89.8%	88.1%	-1.7%	63,701	44.1%	49.2%	5.1%
APR	16,066	86.4%	96.6%	10.2%	33,382	66.1%	72.9%	6.8%	60,159	44.1%	49.2%	5.1%
MAY	18,692	81.4%	91.5%	10.1%	60,565	54.2%	59.3%	5.1%	85,898	47.5%	50.8%	3.3%
JUN	22,076	71.2%	78.0%	6.8%	58,552	47.5%	52.5%	5.0%	89,970	39.0%	42.4%	3.4%
JUL	13,035	52.5%	76.3%	23.8%	35,478	39.0%	39.0%	0.0%	55,708	28.8%	32.2%	3.4%
AUG	6,579	72.9%	100.0%	27.1%	19,307	39.0%	47.5%	8.5%	32,097	27.1%	37.3%	10.2%
SEP	11,187	71.2%	93.2%	22.0%	24,397	61.0%	66.1%	5.1%	36,714	59.3%	59.3%	0.0%
OCT	9,039	89.8%	100.0%	10.2%	22,136	76.3%	88.1%	11.8%	46,054	55.9%	62.7%	6.8%
NOV	10,294	96.6%	100.0%	3.4%	28,919	78.0%	88.1%	10.1%	45,461	64.4%	71.2%	6.8%
DEC	12,420	100.0%	100.0%	0.0%	28,899	83.1%	93.2%	10.1%	45,870	62.7%	78.0%	15.3%

		SUBSISTE	NCE FLOWS		B/	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	ITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
).	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	84.7%	100.0%	15.3%	30,252	78.0%	91.5%	13.6%	51,527	54.2%	67.8%	13.6%
FEB	16,828	89.8%	100.0%	10.2%	33,156	76.3%	86.4%	10.2%	50,317	59.3%	67.8%	8.5%
MAR	12,543	98.3%	100.0%	1.7%	32,650	93.2%	91.5%	-1.7%	63,701	44.1%	50.8%	6.8%
APR	16,066	96.6%	100.0%	3.4%	33,382	71.2%	78.0%	6.8%	60,159	47.5%	49.2%	1.7%
MAY	18,692	93.2%	100.0%	6.8%	60,565	59.3%	64.4%	5.1%	85,898	49.2%	52.5%	3.4%
JUN	22,076	88.1%	96.6%	8.5%	58,552	57.6%	57.6%	0.0%	89,970	40.7%	45.8%	5.1%
JUL	13,035	94.9%	98.3%	3.4%	35,478	40.7%	49.2%	8.5%	55,708	30.5%	32.2%	1.7%
AUG	6,579	96.6%	100.0%	3.4%	19,307	64.4%	84.7%	20.3%	32,097	32.2%	44.1%	11.9%
SEP	11,187	91.5%	100.0%	8.5%	24,397	62.7%	79.7%	16.9%	36,714	57.6%	62.7%	5.1%
OCT	9,039	91.5%	100.0%	8.5%	22,136	76.3%	88.1%	11.9%	46,054	54.2%	61.0%	6.8%
NOV	10,294	96.6%	100.0%	3.4%	28,919	76.3%	88.1%	11.9%	45,461	54.2%	66.1%	11.9%
DEC	12,420	96.6%	100.0%	3.4%	28,899	81.4%	93.2%	11.9%	45,870	59.3%	76.3%	16.9%

2060 CP J10000 Colorado Co.

		SUBSISTE	NCE FLOWS		BA	ASE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	20,906	81.4%	100.0%	18.6%	29,944	72.9%	86.4%	13.6%	50,912	44.1%	62.7%	18.6%
FEB	20,826	83.1%	98.3%	15.3%	32,767	74.6%	84.7%	10.2%	49,706	54.2%	69.5%	15.3%
MAR	23,058	98.3%	100.0%	1.7%	32,281	88.1%	86.4%	-1.7%	62,717	42.4%	44.1%	1.7%
APR	17,792	100.0%	100.0%	0.0%	32,965	76.3%	93.2%	16.9%	58,136	49.2%	49.2%	0.0%
MAY	26,132	100.0%	100.0%	0.0%	59,397	78.0%	93.2%	15.3%	80,918	57.6%	66.1%	8.5%
JUN	31,775	98.3%	100.0%	1.7%	57,540	83.1%	94.9%	11.9%	85,686	57.6%	66.1%	8.5%
JUL	21,029	98.3%	100.0%	1.7%	35,048	91.5%	96.6%	5.1%	55,031	50.8%	71.2%	20.3%
AUG	11,683	98.3%	100.0%	1.7%	19,061	98.3%	98.3%	0.0%	31,728	83.1%	91.5%	8.5%
SEP	16,602	98.3%	100.0%	1.7%	24,099	94.9%	100.0%	5.1%	36,298	74.6%	91.5%	16.9%
OCT	11,683	98.3%	100.0%	1.7%	21,890	76.3%	98.3%	22.0%	45,562	61.0%	64.4%	3.4%
NOV	12,020	89.8%	100.0%	10.2%	28,562	61.0%	84.7%	23.7%	44,926	47.5%	57.6%	10.2%
DEC	18,508	84.7%	98.3%	13.6%	28,530	76.3%	91.5%	15.3%	45,316	49.2%	64.4%	15.3%

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	ITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
).	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	12,789	84.7%	100.0%	15.3%	19,246	69.5%	98.3%	28.8%	26,624	52.5%	86.4%	33.9%
FEB	15,217	84.7%	100.0%	15.3%	17,605	78.0%	100.0%	22.0%	27,602	62.7%	83.1%	20.4%
MAR	16,848	98.3%	100.0%	1.7%	16,848	98.3%	100.0%	1.7%	30,559	81.4%	88.1%	6.7%
APR	11,127	100.0%	100.0%	0.0%	17,078	100.0%	100.0%	0.0%	37,785	57.6%	84.7%	27.1%
MAY	16,909	100.0%	100.0%	0.0%	35,601	91.5%	93.2%	1.7%	50,666	81.4%	88.1%	6.7%
JUN	12,020	100.0%	100.0%	0.0%	24,873	100.0%	100.0%	0.0%	43,617	89.8%	94.9%	5.1%
JUL	8,424	100.0%	100.0%	0.0%	21,336	94.9%	100.0%	5.1%	37,507	79.7%	86.4%	6.7%
AUG	7,563	100.0%	100.0%	0.0%	11,929	98.3%	100.0%	1.7%	23,427	98.3%	100.0%	1.7%
SEP	7,319	100.0%	100.0%	0.0%	14,043	96.6%	100.0%	3.4%	25,170	81.4%	94.9%	13.5%
OCT	7,809	100.0%	100.0%	0.0%	15,064	89.8%	100.0%	10.2%	26,624	66.1%	88.1%	22.0%
NOV	10,711	89.8%	100.0%	10.2%	16,840	69.5%	100.0%	30.5%	25,230	50.8%	79.7%	
DEC	11,437	91.5%	100.0%	8.5%	19,123	74.6%	96.6%	22.0%	27,669	52.5%	81.4%	28.9%

2060 Freshwater Inflows to Matagorda Bay

SPRINGTIME ONSET FLOW CRITERIA MET											
CRITERIA TARGET BASE STRATEGY DIFFEREI											
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%					
MBHE 1	114,000	48	81.4%	48	81.4%	0.0%					
MBHE 2	168,700	39	66.1%	39	66.1%	0.0%					
MBHE 3	246,200	35	59.3%	35	59.3%	0.0%					
MBHE 4	433,200	22	37.3%	21	35.6%	-1.7%					

FALL ONSET FLOW CRITERIA MET										
CRITERIA	TARGET	BAS	ΓEGY	DIFFERENCE						
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%				
MBHE 1	81,000	38	64.4%	38	64.4%	0.0%				
MBHE 2	119,900	31	52.5%	30	50.8%	-1.7%				
MBHE 3	175,000	19	32.2%	17	28.8%	-3.4%				
MBHE 4	307,800	11	18.6%	11	18.6%	0.0%				

INTERVENING SIX MONTHS FLOW CRITERIA MET										
CRITERIA	ITERIA TARGET BASE STRATEGY DIFF									
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%				
MBHE 1	105,000	53	89.8%	53	89.8%	0.0%				
MBHE 2	155,400	46	78.0%	46	78.0%	0.0%				
MBHE 3	226,800	39	66.1%	39	66.1%	0.0%				
MBHE 4	399,000	32	54.2%	32	54.2%	0.0%				

Note: Intervening six months includes June, July, November, December, and the remaining Springtime Onset months that are not used for the 3 consecutive month calculation.

NUMBER OF MONTHS THAT THRESHOLD LEVEL IS MET												
CRITERIA TARGET BASE STRATEGY DIFFEREN												
	(AC-FT/mo)	# OF MONTHS	# OF MONTHS	%	%							
THRESHOLD	THRESHOLD 15,000 540 76.3% 543 76.7% 0.4%											

2060 CP K10000 Matagorda Co.

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	IONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	86.4%	86.4%	0.0%	30,252	78.0%	78.0%	0.0%	51,527	64.4%	64.4%	0.0%
FEB	16,828	91.5%	91.5%	0.0%	33,156	81.4%	79.7%	-1.7%	50,317	67.8%	67.8%	0.0%
MAR	12,543	98.3%	98.3%	0.0%	32,650	89.8%	89.8%	0.0%	63,701	44.1%	44.1%	0.0%
APR	16,066	86.4%	86.4%	0.0%	33,382	66.1%	67.8%	1.7%	60,159	44.1%	44.1%	0.0%
MAY	18,692	81.4%	81.4%	0.0%	60,565	54.2%	54.2%	0.0%	85,898	47.5%	45.8%	-1.7%
JUN	22,076	71.2%	71.2%	0.0%	58,552	47.5%	47.5%	0.0%	89,970	39.0%	39.0%	0.0%
JUL	13,035	52.5%	49.2%	-3.4%	35,478	39.0%	39.0%	0.0%	55,708	28.8%	28.8%	0.0%
AUG	6,579	72.9%	62.7%	-10.2%	19,307	39.0%	39.0%	0.0%	32,097	27.1%	27.1%	0.0%
SEP	11,187	71.2%	71.2%	0.0%	24,397	61.0%	61.0%	0.0%	36,714	59.3%	59.3%	0.0%
OCT	9,039	89.8%	88.1%	-1.7%	22,136	76.3%	74.6%	-1.7%	46,054	55.9%	59.3%	3.4%
NOV	10,294	96.6%	96.6%	0.0%	28,919	78.0%	78.0%	0.0%	45,461	64.4%	59.3%	-5.1%
DEC	12,420	100.0%	98.3%	-1.7%	28,899	83.1%	81.4%	-1.7%	45,870	62.7%	62.7%	0.0%

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE CONI	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
).	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	84.7%	84.7%	0.0%	30,252	78.0%	78.0%	0.0%	51,527	54.2%	54.2%	0.0%
FEB	16,828	89.8%	89.8%	0.0%	33,156	76.3%	76.3%	0.0%	50,317	59.3%	59.3%	0.0%
MAR	12,543	98.3%	98.3%	0.0%	32,650	93.2%	89.8%	-3.4%	63,701	44.1%	44.1%	0.0%
APR	16,066	96.6%	96.6%	0.0%	33,382	71.2%	71.2%	0.0%	60,159	47.5%	45.8%	-1.7%
MAY	18,692	93.2%	94.9%	1.7%	60,565	59.3%	59.3%	0.0%	85,898	49.2%	49.2%	0.0%
JUN	22,076	88.1%	86.4%	-1.7%	58,552	57.6%	57.6%	0.0%	89,970	40.7%	40.7%	0.0%
JUL	13,035	94.9%	94.9%	0.0%	35,478	40.7%	40.7%	0.0%	55,708	30.5%	30.5%	0.0%
AUG	6,579	96.6%	94.9%	-1.7%	19,307	64.4%	59.3%	-5.1%	32,097	32.2%	32.2%	0.0%
SEP	11,187	91.5%	89.8%	-1.7%	24,397	62.7%	62.7%	0.0%	36,714	57.6%	57.6%	0.0%
OCT	9,039	91.5%	88.1%	-3.4%	22,136	76.3%	74.6%	-1.7%	46,054	54.2%	57.6%	3.4%
NOV	10,294	96.6%	96.6%	0.0%	,		76.3%		45,461	54.2%	50.8%	-3.4%
DEC	12,420	96.6%	98.3%	1.7%	28,899	81.4%	79.7%	-1.7%	45,870	59.3%	59.3%	0.0%

2060 CP J10000 Colorado Co.

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	20,906	81.4%	81.4%	0.0%	29,944	72.9%	71.2%	-1.7%	50,912	44.1%	45.8%	1.7%
FEB	20,826	83.1%	79.7%	-3.4%	32,767	74.6%	74.6%	0.0%	49,706	54.2%	52.5%	-1.7%
MAR	23,058	98.3%	98.3%	0.0%	32,281	88.1%	86.4%	-1.7%	62,717	42.4%	42.4%	0.0%
APR	17,792	100.0%	100.0%	0.0%	32,965	76.3%	79.7%	3.4%	58,136	49.2%	49.2%	0.0%
MAY	26,132	100.0%	100.0%	0.0%	59,397	78.0%	76.3%	-1.7%	80,918	57.6%	57.6%	0.0%
JUN	31,775	98.3%	98.3%	0.0%	57,540	83.1%	81.4%	-1.7%	85,686	57.6%	57.6%	0.0%
JUL	21,029	98.3%	96.6%	-1.7%	35,048	91.5%	91.5%	0.0%	55,031	50.8%	50.8%	0.0%
AUG	11,683	98.3%	98.3%	0.0%	19,061	98.3%	98.3%	0.0%	31,728	83.1%	83.1%	0.0%
SEP	16,602	98.3%	98.3%	0.0%	24,099	94.9%	94.9%	0.0%	36,298	74.6%	71.2%	-3.4%
OCT	11,683	98.3%	98.3%	0.0%	21,890	76.3%	76.3%	0.0%	45,562	61.0%	59.3%	-1.7%
NOV	12,020	89.8%	91.5%	1.7%	28,562	61.0%	61.0%	0.0%	44,926	47.5%	49.2%	1.7%
DEC	18,508	84.7%	84.7%	0.0%	28,530	76.3%	74.6%	-1.7%	45,316	49.2%	47.5%	-1.7%

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE CONI	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	12,789	84.7%	83.1%	-1.7%	19,246	69.5%	67.8%	-1.7%	26,624	52.5%	54.2%	1.7%
FEB	15,217	84.7%	84.7%	0.0%	17,605	78.0%	76.3%	-1.7%	27,602	62.7%	62.7%	0.0%
MAR	16,848	98.3%	98.3%	0.0%	16,848	98.3%	98.3%	0.0%	30,559	81.4%	81.4%	0.0%
APR	11,127	100.0%	100.0%	0.0%	17,078	100.0%	100.0%	0.0%	37,785	57.6%	61.0%	3.4%
MAY	16,909	100.0%	100.0%	0.0%	35,601	91.5%	91.5%	0.0%	50,666	81.4%	81.4%	0.0%
JUN	12,020	100.0%	100.0%	0.0%	24,873	100.0%	100.0%	0.0%	43,617	89.8%	89.8%	0.0%
JUL	8,424	100.0%	100.0%	0.0%	21,336	94.9%	93.2%	-1.7%	37,507	79.7%	79.7%	0.0%
AUG	7,563	100.0%	100.0%	0.0%	11,929	98.3%	98.3%	0.0%	23,427	98.3%	98.3%	0.0%
SEP	7,319	100.0%	100.0%	0.0%	14,043	96.6%	96.6%	0.0%	25,170	81.4%	81.4%	0.0%
OCT	7,809	100.0%	100.0%	0.0%	15,064	89.8%	84.7%	-5.1%	26,624	66.1%	66.1%	0.0%
NOV	10,711	89.8%	91.5%	1.7%	16,840	69.5%	69.5%	0.0%	25,230	50.8%	50.8%	0.0%
DEC	11,437	91.5%	89.8%	-1.7%	19,123	74.6%	74.6%	0.0%	27,669	52.5%	52.5%	0.0%

2060 Freshwater Inflows to Matagorda Bay

SPRINGTIME ONSET FLOW CRITERIA MET											
CRITERIA	CRITERIA TARGET BASE STRATEGY DIFFERENCE										
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%					
MBHE 1	114,000	48	81.4%	48	81.4%	0.0%					
MBHE 2	168,700	39	66.1%	39	66.1%	0.0%					
MBHE 3	246,200	35	59.3%	35	59.3%	0.0%					
MBHE 4	433,200	22	37.3%	20	33.9%	-3.4%					

	FALL ONSET FLOW CRITERIA MET										
CRITERIA	TARGET	BAS	SE	STRAT	DIFFERENCE						
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%					
MBHE 1	81,000	38	64.4%	38	64.4%	0.0%					
MBHE 2	119,900	31	52.5%	31	52.5%	0.0%					
MBHE 3	175,000	19	32.2%	17	28.8%	-3.4%					
MBHE 4	307,800	11	18.6%	11	18.6%	0.0%					

INTERVENING SIX MONTHS FLOW CRITERIA MET										
CRITERIA	TARGET BASE STRATEGY									
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%				
MBHE 1	105,000	53	89.8%	53	89.8%	0.0%				
MBHE 2	155,400	46	78.0%	46	78.0%	0.0%				
MBHE 3	226,800	39	66.1%	39	66.1%	0.0%				
MBHE 4	399,000	32	54.2%	32	54.2%	0.0%				

Note: Intervening six months includes June, July, November, December, and the remaining Springtime Onset months that are not used for the 3 consecutive month calculation.

NU	NUMBER OF MONTHS THAT THRESHOLD LEVEL IS MET												
CRITERIA TARGET BASE STRATEGY DIFFERE													
	(AC-FT/mo)	# OF MONTHS	%	# OF MONTHS	%	%							
THRESHOLD	15,000	540	76.3%	540	76.3%	0.0%							

2060 CP K10000 Matagorda Co.

		SUBSISTE	NCE FLOWS		B/	ASE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
0.	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	86.4%	86.4%	0.0%	30,252	78.0%	78.0%	0.0%	51,527	64.4%	64.4%	0.0%
FEB	16,828	91.5%	91.5%	0.0%	33,156	81.4%	81.4%	0.0%	50,317	67.8%	67.8%	0.0%
MAR	12,543	98.3%	98.3%	0.0%	32,650	89.8%	89.8%	0.0%	63,701	44.1%	44.1%	0.0%
APR	16,066	86.4%	86.4%	0.0%	33,382	66.1%	66.1%	0.0%	60,159	44.1%	44.1%	0.0%
MAY	18,692	81.4%	81.4%	0.0%	60,565	54.2%	54.2%	0.0%	85,898	47.5%	47.5%	0.0%
JUN	22,076	71.2%	71.2%	0.0%	58,552	47.5%	47.5%	0.0%	89,970	39.0%	39.0%	0.0%
JUL	13,035	52.5%	52.5%	0.0%	35,478	39.0%	39.0%	0.0%	55,708	28.8%	28.8%	0.0%
AUG	6,579	72.9%	72.9%	0.0%	19,307	39.0%	39.0%	0.0%	32,097	27.1%	27.1%	0.0%
SEP	11,187	71.2%	71.2%	0.0%	24,397	61.0%	61.0%	0.0%	36,714	59.3%	59.3%	0.0%
OCT	9,039	89.8%	89.8%	0.0%	22,136	76.3%	76.3%	0.0%	46,054	55.9%	55.9%	0.0%
NOV	10,294	96.6%	96.6%	0.0%	28,919	78.0%	78.0%	0.0%	45,461	64.4%	64.4%	0.0%
DEC	12,420	100.0%	100.0%	0.0%	28,899	83.1%	83.1%	0.0%	45,870	62.7%	62.7%	0.0%

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS				
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	
JAN	19,369	84.7%	84.7%	0.0%	30,252	78.0%	78.0%	0.0%	51,527	54.2%	54.2%	0.0%	
FEB	16,828	89.8%	89.8%	0.0%	33,156	76.3%	76.3%	0.0%	50,317	59.3%	59.3%	0.0%	
MAR	12,543	98.3%	98.3%	0.0%	32,650	93.2%	93.2%	0.0%	63,701	44.1%	44.1%	0.0%	
APR	16,066	96.6%	96.6%	0.0%	33,382	71.2%	71.2%	0.0%	60,159	47.5%	47.5%	0.0%	
MAY	18,692	93.2%	93.2%	0.0%	60,565	59.3%	59.3%	0.0%	85,898	49.2%	49.2%	0.0%	
JUN	22,076	88.1%	88.1%	0.0%	58,552	57.6%	57.6%	0.0%	89,970	40.7%	40.7%	0.0%	
JUL	13,035	94.9%	94.9%	0.0%	35,478	40.7%	40.7%	0.0%	55,708	30.5%	30.5%	0.0%	
AUG	6,579	96.6%	96.6%	0.0%	19,307	64.4%	64.4%	0.0%	32,097	32.2%	32.2%	0.0%	
SEP	11,187	91.5%	91.5%	0.0%	24,397	62.7%	62.7%	0.0%	36,714	57.6%	57.6%	0.0%	
OCT	9,039	91.5%	91.5%	0.0%	22,136	76.3%	76.3%	0.0%	46,054	54.2%	54.2%	0.0%	
NOV	10,294	96.6%	96.6%	0.0%	28,919	76.3%	76.3%	0.0%	45,461	54.2%	54.2%	0.0%	
DEC	12,420	96.6%	96.6%	0.0%	28,899	81.4%	81.4%	0.0%	45,870	59.3%	59.3%	0.0%	

2060 CP J10000 Colorado Co.

		SUBSISTE	NCE FLOWS		B/	SE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS			
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
) .	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	20,906	81.4%	81.4%	0.0%	29,944	72.9%	72.9%	0.0%	50,912	44.1%	44.1%	0.0%
FEB	20,826	83.1%	83.1%	0.0%	32,767	74.6%	74.6%	0.0%	49,706	54.2%	54.2%	0.0%
MAR	23,058	98.3%	98.3%	0.0%	32,281	88.1%	88.1%	0.0%	62,717	42.4%	42.4%	0.0%
APR	17,792	100.0%	100.0%	0.0%	32,965	76.3%	76.3%	0.0%	58,136	49.2%	49.2%	0.0%
MAY	26,132	100.0%	100.0%	0.0%	59,397	78.0%	78.0%	0.0%	80,918	57.6%	57.6%	0.0%
JUN	31,775	98.3%	98.3%	0.0%	57,540	83.1%	83.1%	0.0%	85,686	57.6%	57.6%	0.0%
JUL	21,029	98.3%	98.3%	0.0%	35,048	91.5%	91.5%	0.0%	55,031	50.8%	50.8%	0.0%
AUG	11,683	98.3%	98.3%	0.0%	19,061	98.3%	98.3%	0.0%	31,728	83.1%	83.1%	0.0%
SEP	16,602	98.3%	98.3%	0.0%	24,099	94.9%	94.9%	0.0%	36,298	74.6%	74.6%	0.0%
OCT	11,683	98.3%	98.3%	0.0%	21,890	76.3%	76.3%	0.0%	45,562	61.0%	61.0%	0.0%
NOV	12,020	89.8%	89.8%	0.0%	28,562	61.0%	61.0%	0.0%	44,926	47.5%	47.5%	0.0%
DEC	18,508	84.7%	84.7%	0.0%	28,530	76.3%	76.3%	0.0%	45,316	49.2%	49.2%	0.0%

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE		DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	12,789	84.7%	84.7%	0.0%	19,246	69.5%	69.5%	0.0%	26,624	52.5%	52.5%	0.0%
FEB	15,217	84.7%	84.7%	0.0%	17,605	78.0%	78.0%	0.0%	27,602	62.7%	62.7%	0.0%
MAR	16,848	98.3%	98.3%	0.0%	16,848	98.3%	98.3%	0.0%	30,559	81.4%	81.4%	0.0%
APR	11,127	100.0%	100.0%	0.0%	17,078	100.0%	100.0%	0.0%	37,785	57.6%	57.6%	0.0%
MAY	16,909	100.0%	100.0%	0.0%	35,601	91.5%	91.5%	0.0%	50,666	81.4%	81.4%	0.0%
JUN	12,020	100.0%	100.0%	0.0%	24,873	100.0%	100.0%	0.0%	43,617	89.8%	89.8%	0.0%
JUL	8,424	100.0%	100.0%	0.0%	21,336	94.9%	94.9%	0.0%	37,507	79.7%	79.7%	0.0%
AUG	7,563	100.0%	100.0%	0.0%	11,929	98.3%	98.3%	0.0%	23,427	98.3%	98.3%	0.0%
SEP	7,319	100.0%	100.0%	0.0%	14,043	96.6%	96.6%	0.0%	25,170	81.4%	81.4%	0.0%
OCT	7,809	100.0%	100.0%	0.0%	15,064	89.8%	89.8%	0.0%	26,624	66.1%	66.1%	0.0%
NOV	10,711	89.8%	89.8%	0.0%	16,840	69.5%	69.5%	0.0%	25,230	50.8%	50.8%	0.0%
DEC	11,437	91.5%	91.5%	0.0%	19,123	74.6%	74.6%	0.0%	27,669	52.5%	52.5%	0.0%

2060 Freshwater Inflows to Matagorda Bay

	SPRIN	IGTIME ONS	ET FLOW	CRITERIA M	ET	
CRITERIA	TARGET	BAS	SE	STRAT	ΓEGY	DIFFERENCE
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%
MBHE 1	114,000	48	81.4%	48	81.4%	0.0%
MBHE 2	168,700	39	66.1%	39	66.1%	0.0%
MBHE 3	246,200	35	59.3%	35	59.3%	0.0%
MBHE 4	433,200	22	37.3%	22	37.3%	0.0%

	F <i>F</i>	ALL ONSET	FLOW CRI	TERIA MET		
CRITERIA	TARGET	BAS	SE	STRAT	ΓEGY	DIFFERENCE
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%
MBHE 1	81,000	38	64.4%	38	64.4%	0.0%
MBHE 2	119,900	31	52.5%	31	52.5%	0.0%
MBHE 3	175,000	19	32.2%	19	32.2%	0.0%
MBHE 4	307,800	11	18.6%	11	18.6%	0.0%

	INTERVE	NING SIX MO	NTHS FLO	OW CRITERI	A MET	
CRITERIA	TARGET	BAS	SE	STRAT	TEGY	DIFFERENCE
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%
MBHE 1	105,000	53	89.8%	53	89.8%	0.0%
MBHE 2	155,400	46	78.0%	46	78.0%	0.0%
MBHE 3	226,800	39	66.1%	39	66.1%	0.0%
MBHE 4	399,000	32	54.2%	32	54.2%	0.0%

Note: Intervening six months includes June, July, November, December, and the remaining Springtime Onset months that are not used for the 3 consecutive month calculation.

NU	NUMBER OF MONTHS THAT THRESHOLD LEVEL IS MET												
CRITERIA	CRITERIA TARGET BASE STRATEG												
	(AC-FT/mo)	# OF MONTHS	%	# OF MONTHS	%	%							
THRESHOLD	15,000	540	76.3%	545	77.0%	0.7%							

2060 CP K10000 Matagorda Co.

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
0.	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	86.4%	89.8%	3.4%	30,252	78.0%	81.4%	3.4%	51,527	64.4%	64.4%	0.0%
FEB	16,828	91.5%	91.5%	0.0%	33,156	81.4%	81.4%	0.0%	50,317	67.8%	67.8%	0.0%
MAR	12,543	98.3%	98.3%	0.0%	32,650	89.8%	89.8%	0.0%	63,701	44.1%	44.1%	0.0%
APR	16,066	86.4%	86.4%	0.0%	33,382	66.1%	67.8%	1.7%	60,159	44.1%	45.8%	1.7%
MAY	18,692	81.4%	81.4%	0.0%	60,565	54.2%	55.9%	1.7%	85,898	47.5%	47.5%	0.0%
JUN	22,076	71.2%	71.2%	0.0%	58,552	47.5%	47.5%	0.0%	89,970	39.0%	39.0%	0.0%
JUL	13,035	52.5%	54.2%	1.7%	35,478	39.0%	39.0%	0.0%	55,708	28.8%	28.8%	0.0%
AUG	6,579	72.9%	67.8%	-5.1%	19,307	39.0%	39.0%	0.0%	32,097	27.1%	32.2%	5.1%
SEP	11,187	71.2%	72.9%	1.7%	24,397	61.0%	61.0%	0.0%	36,714	59.3%	59.3%	0.0%
OCT	9,039	89.8%	89.8%	0.0%	22,136	76.3%	76.3%	0.0%	46,054	55.9%	57.6%	1.7%
NOV	10,294	96.6%	96.6%	0.0%	28,919	78.0%	83.1%	5.1%	45,461	64.4%	64.4%	0.0%
DEC	12,420	100.0%	98.3%	-1.7%	28,899	83.1%	83.1%	0.0%	45,870	62.7%	66.1%	3.4%

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	19,369	84.7%	88.1%	3.4%	30,252	78.0%	81.4%	3.4%	51,527	54.2%	57.6%	3.4%
FEB	16,828	89.8%	91.5%	1.7%	33,156	76.3%	76.3%	0.0%	50,317	59.3%	61.0%	1.7%
MAR	12,543	98.3%	98.3%	0.0%	32,650	93.2%	89.8%	-3.4%	63,701	44.1%	44.1%	0.0%
APR	16,066	96.6%	94.9%	-1.7%	33,382	71.2%	72.9%	1.7%	60,159	47.5%	47.5%	0.0%
MAY	18,692	93.2%	94.9%	1.7%	60,565	59.3%	59.3%	0.0%	85,898	49.2%	49.2%	0.0%
JUN	22,076	88.1%	88.1%	0.0%	58,552	57.6%	57.6%	0.0%	89,970	40.7%	42.4%	1.7%
JUL	13,035	94.9%	96.6%	1.7%	35,478	40.7%	40.7%	0.0%	55,708	30.5%	30.5%	0.0%
AUG	6,579	96.6%	96.6%	0.0%	19,307	64.4%	66.1%	1.7%	32,097	32.2%	37.3%	5.1%
SEP	11,187	91.5%	91.5%	0.0%	24,397	62.7%	62.7%	0.0%	36,714	57.6%	57.6%	0.0%
OCT	9,039	91.5%	91.5%	0.0%	22,136	76.3%	74.6%	-1.7%	46,054	54.2%	55.9%	1.7%
NOV	10,294	96.6%			28,919	76.3%	78.0%	1.7%	45,461	54.2%	54.2%	0.0%
DEC	12,420	96.6%	98.3%	1.7%	28,899	81.4%	81.4%	0.0%	45,870	59.3%	61.0%	1.7%

2060 CP J10000 Colorado Co.

		SUBSISTE	NCE FLOWS		B/	SE FLOWS -	DRY CONDITI	IONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	20,906	81.4%	81.4%	0.0%	29,944	72.9%	76.3%	3.4%	50,912	44.1%	45.8%	1.7%
FEB	20,826	83.1%	84.7%	1.7%	32,767	74.6%	74.6%	0.0%	49,706	54.2%	55.9%	1.7%
MAR	23,058	98.3%	98.3%	0.0%	32,281	88.1%	84.7%	-3.4%	62,717	42.4%	42.4%	0.0%
APR	17,792	100.0%	100.0%	0.0%	32,965	76.3%	79.7%	3.4%	58,136	49.2%	49.2%	0.0%
MAY	26,132	100.0%	100.0%	0.0%	59,397	78.0%	79.7%	1.7%	80,918	57.6%	59.3%	1.7%
JUN	31,775	98.3%	98.3%	0.0%	57,540	83.1%	83.1%	0.0%	85,686	57.6%	59.3%	1.7%
JUL	21,029	98.3%	98.3%	0.0%	35,048	91.5%	93.2%	1.7%	55,031	50.8%	52.5%	1.7%
AUG	11,683	98.3%	100.0%	1.7%	19,061	98.3%	98.3%	0.0%	31,728	83.1%	84.7%	1.7%
SEP	16,602	98.3%	100.0%	1.7%	24,099	94.9%	94.9%	0.0%	36,298	74.6%	78.0%	3.4%
OCT	11,683	98.3%	98.3%	0.0%	21,890	76.3%	78.0%	1.7%	45,562	61.0%	62.7%	1.7%
NOV	12,020	89.8%	91.5%	1.7%	28,562	61.0%	69.5%	8.5%	44,926	47.5%	49.2%	1.7%
DEC	18,508	84.7%	84.7%	0.0%	28,530	76.3%	79.7%	3.4%	45,316	49.2%	49.2%	0.0%

	SUBSISTENCE FLOWS				BASE FLOWS - DRY CONDITIONS				BASE FLOWS - AVERAGE CONDITIONS			
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
JAN	12,789	84.7%	88.1%	3.4%	19,246	69.5%	74.6%	5.1%	26,624	52.5%	55.9%	3.4%
FEB	15,217	84.7%	84.7%	0.0%	17,605	78.0%	81.4%	3.4%	27,602	62.7%	66.1%	3.4%
MAR	16,848	98.3%	98.3%	0.0%	16,848	98.3%	98.3%	0.0%	30,559	81.4%	84.7%	3.4%
APR	11,127	100.0%	100.0%	0.0%	17,078	100.0%	100.0%	0.0%	37,785	57.6%	61.0%	3.4%
MAY	16,909	100.0%	100.0%	0.0%	35,601	91.5%	91.5%	0.0%	50,666	81.4%	81.4%	0.0%
JUN	12,020	100.0%	100.0%	0.0%	24,873	100.0%	100.0%	0.0%	43,617	89.8%	89.8%	0.0%
JUL	8,424	100.0%	100.0%	0.0%	21,336	94.9%	94.9%	0.0%	37,507	79.7%	83.1%	3.4%
AUG	7,563	100.0%	100.0%	0.0%	11,929	98.3%	100.0%	1.7%	23,427	98.3%	98.3%	0.0%
SEP	7,319	100.0%	100.0%	0.0%	14,043	96.6%	98.3%	1.7%	25,170	81.4%	83.1%	1.7%
ОСТ	7,809	100.0%	100.0%	0.0%	15,064	89.8%	89.8%	0.0%	26,624	66.1%	69.5%	3.4%
NOV	10,711	89.8%	91.5%	1.7%	16,840	69.5%	72.9%	3.4%	25,230	50.8%	52.5%	1.7%
DEC	11,437	91.5%	88.1%	-3.4%	19,123	74.6%	78.0%	3.4%	27,669	52.5%	55.9%	3.4%