Title:	Study of the phosphorus adsorption capacity of synthetic basaluminite using a fixed-bed column
Student:	Ramon Bargalló Expósito
Date:	June 2020
Supervisor/s:	Dra. Mercè Granados Juan Department of Chemical Engineering and Analytical Chemistry
	Dra. Alba Lozano Letellier Institute of Environmental Assessment and Water Research (CSIC)

During the last decades, the phosphorus concentration in wastewaters has increased worldwide causing water eutrophication. Thus, many studies have focused on looking for conventional and non-conventional methods and materials for phosphorus removal. One of the non-conventional materials is the acid mine drainage sludge which has been previously studied as phosphorus adsorbent with good results. This fact motivates the study of basaluminite, an aluminum oxy-hydroxysulfate, one of the compounds of the sludge that can precipitate separated from the rest of acid mine drainage sludge, and which is expected to be a good phosphorus adsorbent.

A fixed-bed column using synthetic basaluminite has been constructed to know the P sorption capacity in this mineral. First, a tracer test has been carried out to determine the porosity and the average residence time of the column with a result of 0.34 and 31.20 minutes. respectively. After that, a breakthrough curve has performed measuring daily the phosphorus concentration from column effluent daily in order to calculate the adsorption phosphorus capacity in basaluminite. These results conclude that synthetic basaluminite presented a maximum phosphorus adsorption capacity of 46.0 mg P/g adsorbent. It has a similar adsorption capacity than schwertmannite and natural basaluminite and, a better capacity than other sorbents such as activated aluminum oxide or magnetic iron oxide. As a conclusion, the basaluminite, a non-conventional material which was a residue at first, has proved to be a remarkable Р adsorbent compared to other commercial adsorbents