Lecture 7.1 Epipolar geometry

Thomas Opsahl

Weekly overview - Two-view geometry

- Epipolar geometry
- Algebraic representation \& estimation
- The essential matrix
- The fundamental matrix
- Triangulation
- Sparse 3D scene reconstructing from 2D correspondences
- Relative pose from epipolar geometry
- Estimating the relative pose from the essential matrix
- Visual odometry

Introduction

- Observing the same points in two views puts a strong geometrical constraint on the cameras
- Algebraically this epipolar constraint is usually represented by two related 3×3 matrices

u

Introduction

- Observing the same points in two views puts a strong geometrical constraint on the cameras
- Algebraically this epipolar constraint is usually represented by two related 3×3 matrices
- The fundamental matrix F

$$
\widetilde{\boldsymbol{u}}^{\prime T} F \widetilde{\boldsymbol{u}}
$$

- The essential matrix E

$$
\widetilde{\boldsymbol{x}}^{\prime T} E \widetilde{\boldsymbol{x}}
$$

- These are coupled through the two calibration matrices K and K^{\prime}

The essential matrix E

- Let ${ }^{C} \boldsymbol{x} \leftrightarrow{ }^{C^{\prime}} \boldsymbol{x}^{\prime}$ be corresponding points in the normalized image planes and let the pose of $\{C\}$ relative to $\left\{C^{\prime}\right\}$ be

$$
{ }^{\prime} \xi_{C}=\left[\begin{array}{ll}
R & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

The essential matrix E

- Let ${ }^{C} \boldsymbol{x} \leftrightarrow{ }^{C^{\prime}} \boldsymbol{x} \boldsymbol{x}^{\prime}$ be corresponding points in the normalized image planes and let the pose of $\{C\}$ relative to $\left\{C^{\prime}\right\}$ be

$$
{ }^{C^{\prime}} \xi_{C}=\left[\begin{array}{ll}
R & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

- In terms of vectors, the equation for the epipolar plane can be written like

$$
\left({ }^{C} \widetilde{\boldsymbol{x}}^{\prime} \times \boldsymbol{t}\right) \cdot\left(R^{C} \widetilde{\boldsymbol{x}}\right)=0
$$

- Rewritten in terms of matrices this takes the form

$$
{ }^{C} \widetilde{\boldsymbol{x}}^{\prime T}[\boldsymbol{t}]_{\times} R^{C} \widetilde{\boldsymbol{x}}=0
$$

- This relationship defines the essential matrix $E=[t]_{\times} R$

$$
\tilde{\boldsymbol{x}}^{\prime T} E \widetilde{\boldsymbol{x}}=0
$$

The essential matrix E

- The essential matrix E represents the epipolar constraint on corresponding normalized points
- Note that although $\widetilde{\boldsymbol{x}}^{\prime T} E \widetilde{\boldsymbol{x}}=0$ is a necessary requirement for the correspondence $\boldsymbol{x} \leftrightarrow \boldsymbol{x}^{\prime}$ to be geometrically possible, it does not guarantee its correctness

The essential matrix E

- Properties of E
$-E=[t]_{\times} R$
- Homogeneous
- $\operatorname{rank}=2$
$-\operatorname{det}=0$
- 5 degrees of freedom
- E can be estimated from a minimum of 5 point correspondences
- If \boldsymbol{x} and \boldsymbol{x}^{\prime} are corresponding normalized image points, then $\widetilde{\boldsymbol{x}}^{\prime T} E \widetilde{\boldsymbol{x}}=0$
- E has 2 singular values that are equal and a third that is zero

- It is possible to decompose $E=[t]_{\times} R$ to determine the relative pose between cameras
- Translation only up to scale
- Topic of another lecture

The fundamental matrix F

- The epipolar constraint on image points is naturally connected to the essential matrix by the calibration matrices K and K^{\prime}

$$
\begin{aligned}
K^{C} \tilde{\boldsymbol{x}} & =\tilde{\boldsymbol{u}} \Rightarrow{ }^{C} \tilde{\boldsymbol{x}}=K^{-1} \tilde{\boldsymbol{u}} \\
K^{\prime C^{\prime}} \tilde{\boldsymbol{x}}^{\prime} & =\tilde{\boldsymbol{u}}^{\prime}
\end{aligned} \Rightarrow^{C^{\prime} \tilde{\boldsymbol{x}}^{\prime}=K^{\prime-1} \tilde{\boldsymbol{u}}^{\prime} \Rightarrow{ }^{C^{\prime}} \tilde{\boldsymbol{x}}^{\prime T}=\tilde{\boldsymbol{u}}^{\prime T} K^{\prime-T}}
$$

- Combined with the epipolar constraint for normalized image points we get

$$
\begin{aligned}
C^{\prime} \tilde{\boldsymbol{x}}^{\prime T} E^{C} \tilde{\boldsymbol{x}} & =0 \\
\tilde{\boldsymbol{u}}^{\prime T} K^{\prime-T} E K^{-1} \tilde{\boldsymbol{u}} & =0
\end{aligned}
$$

- This defines the fundamental matrix $F=K^{\prime-T} E K^{-1}$

$$
\widetilde{\boldsymbol{u}}^{\prime T} F \widetilde{\boldsymbol{u}}=0
$$

The fundamental matrix F

- Properties of F
$-\quad F=K^{\prime-T} E K^{-1}$
- Homogeneous
- rank $=2$
$-\operatorname{det}=0$
- 7 degrees of freedom
- F can be estimated from a minimum of 7 point correspondences
- If \boldsymbol{u} and \boldsymbol{u}^{\prime} are corresponding image points, then $\widetilde{\boldsymbol{u}}^{\prime T} F \widetilde{\boldsymbol{u}}=0$
- For any point \boldsymbol{u} in image 1, the corresponding epipolar line \boldsymbol{l}^{\prime} in image 2 is given by

$$
\tilde{\boldsymbol{l}}^{\prime}=F \widetilde{\boldsymbol{u}}
$$

- For any point \boldsymbol{u}^{\prime} in image 2, the corresponding epipolar line \boldsymbol{l} in image 1 is given by

$$
\tilde{\boldsymbol{l}}=F^{T} \widetilde{\boldsymbol{u}}^{\prime}
$$

- The epipole \boldsymbol{e}^{\prime} in image 2 is F 's left singular vector corresponding to the zero singular value
- The epipole \boldsymbol{e} in image 1 is F 's right singular vector corresponding to the zero singular value

Example

- These fundamental lines were determined using the fundamental matrix between images
- Recall that points and lines are dual in \mathbb{P}^{2}

$$
\tilde{\boldsymbol{I}}^{T} \tilde{\boldsymbol{u}}=0 \Leftrightarrow\left[\begin{array}{lll}
l_{0} & l_{1} & l_{2}
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=0 \Leftrightarrow l_{0} u+l_{1} v+l_{2}=0
$$

Estimating F

- Several algorithms
- Non-iterative: 7-pt, 8-pt
- Iterative: Minimize epipolar error
- Robust: RANSAC with 7-pt
- From the definition it follows that each point correspondence $\boldsymbol{u}_{i} \leftrightarrow \boldsymbol{u}_{i}{ }^{\prime}$ contributes with 1 equation

$$
\begin{array}{r}
\left.\quad \begin{array}{llll}
u_{i}^{\prime T} & v_{i}^{\prime} & 1
\end{array}\right]\left[\begin{array}{cccc}
f_{1} & f_{2} & f_{3} \\
f_{4} & f_{5} & f_{6} \\
f_{7} & f_{8} & f_{9}
\end{array}\right]\left[\begin{array}{l}
u_{i} \\
v_{i} \\
1 \\
1
\end{array}\right]=0
\end{array}
$$

- So given several correspondences we get a homogeneous system of linear equations that we can solve by SVD

$$
\left[\begin{array}{ccccccccc}
u_{1} u_{1}^{\prime} & u_{1}^{\prime} v_{1} & u_{1}^{\prime} & u_{1} v_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1}^{\prime} & u_{1} & v_{1} & 1 \\
\vdots & \vdots \\
u_{n} u_{n}^{\prime} & u_{n}^{\prime} v_{n} & u_{n}^{\prime} & u_{n} v_{n}^{\prime} & v_{n} v_{n}^{\prime} & v_{n}^{\prime} & u_{n} & v_{n} & 1
\end{array}\right] \boldsymbol{f}=0
$$

- As before, we see that the matrix A contains terms that can be very different in scale, so point sets $\left\{\boldsymbol{u}_{i}\right\}$ and $\left\{\boldsymbol{u}_{i}{ }^{\prime}\right\}$ should be normalized in advance
- Centroids \rightarrow origin
- Mean distance from origin should be $\sqrt{2}$

Estimating F

The normalized 8-point algorithm

Given $n \geq 8$ correspondences $\boldsymbol{u}_{i} \leftrightarrow \boldsymbol{u}_{i}{ }^{\prime}$, do the following

1. Normalize points $\left\{\boldsymbol{u}_{i}\right\}$ and $\left\{\boldsymbol{u}_{i}{ }^{\prime}\right\}$ usingsimilarity transforms T and T^{\prime}
2. Build matrix A from point-correspondences and compute its SVD
3. Extract the "solution" \bar{F} from the right singular vector corresponding to the smallest singular value
4. Compute the SVD of $\bar{F}: \bar{F}=U S V^{T}$
5. Enforce zero determinant by setting $s_{33}=0$ and compute a proper fundamental matrix

$$
\hat{F}=U S V^{T}
$$

6. Denormalize $F=T^{\prime T} \hat{F} T$

Estimating F

The normalized 8-point algorithm

Given $n \geq 8$ correspondences $\boldsymbol{u}_{i} \leftrightarrow \boldsymbol{u}_{i}{ }^{\prime}$, do the following

1. Normalize points $\left\{\boldsymbol{u}_{i}\right\}$ and $\left\{\boldsymbol{u}_{i}{ }^{\prime}\right\}$ usingsimilarity transforms T and T^{\prime}
2. Build matrix A from point-correspondences and compute its SVD
3. Extract the "solution" \bar{F} from the right singular vector corresponding to the smallest singular value
4. Compute the SVD of $\bar{F}: \bar{F}=U S V^{T}$
5. Enforce zero determinant by setting $s_{33}=0$ and compute a proper fundamental matrix

$$
\hat{F}=U S V^{T}
$$

6. Denormalize $F=T^{\prime T} \hat{F} T$

The 7-point algorithm

- Given 7 correspondences, A will be a 7×9 matrix which in general will be of rank 7
- So the null space of A is 2-dimensional and the fundamental matrix must be a linear combination of the two right null vectors of A

$$
\begin{aligned}
& \boldsymbol{f}(\alpha)=\alpha \boldsymbol{f}_{1}+(1-\alpha) \boldsymbol{f}_{2} \\
& F(\alpha)=\alpha F_{1}+(1-\alpha) F_{2}
\end{aligned}
$$

- The additional constraint $\operatorname{det}(F)=0$ leads to a cubic polynomial equation in α which has 1 or 3 solutions α_{i} which in turn yields 1 or 3 F's
- This algorithm is to prefer in a RANSAC scheme, since it is minimal and since for a single sampling of 7 correspondences one might get 3 fundamental matrices to test for inliers

Estimating F

- Improved estimates of F can be obtained using iterative methods like Levenberg-Marquardt to minimize the epipolar error

$$
\epsilon=\sum d\left(\widetilde{\boldsymbol{u}}, F^{T} \widetilde{\boldsymbol{u}}^{\prime}\right)+d\left(\widetilde{\boldsymbol{u}}^{\prime}, F \widetilde{\boldsymbol{u}}\right)
$$

- OpenCV
- cv::Mat cv::findFundamentalMat
- Arguments are

InputArray points1
InputArray points2
int method - \{CV_FM_7POINT, CV_FM_8POINT,
CV_FM_RANSAC, CV_FM_LMEDS\}
double param1
double param2
OutputArray mask

- Matlab
- estimateFundamentalMatrix

Estimating F

- Improved estimates of F can be obtained using iterative methods like Levenberg-Marquardt to minimize the epipolar error

$$
\epsilon=\sum d\left(\widetilde{\boldsymbol{u}}, F^{T} \widetilde{\boldsymbol{u}}^{\prime}\right)+d\left(\widetilde{\boldsymbol{u}}^{\prime}, F \widetilde{\boldsymbol{u}}\right)
$$

- OpenCV
- cv::Mat cv::findFundamentalMat
- Arguments are

InputArray points1
InputArray points2
int method - \{CV_FM_7POINT, CV_FM_8POINT,
CV_FM_RANSAC, CV_FM_LMEDS\}
double param1
double param2
OutputArray mask

- Matlab
- estimateFundamentalMatrix
- Distance between homogeneous point $\widetilde{\boldsymbol{u}}$ and line

$$
\begin{aligned}
& \tilde{\boldsymbol{l}}=\left[\tilde{l}_{1}, \tilde{l}_{2}, \tilde{l}_{3}\right]^{T} \\
& \qquad d(\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{l}})=\frac{\tilde{\mathbf{u}}^{T} \tilde{\boldsymbol{l}}}{\sqrt{\tilde{l}_{1}^{2}+\tilde{l}_{2}^{2}}}
\end{aligned}
$$

Estimating E

- For calibrated cameras (K and K^{\prime} are known), we can first estimate F and then compute $E=K^{\prime T} F K$
- It is also possible to estimate E directly from 5 normalized point correspondences $\boldsymbol{x}_{i} \leftrightarrow \boldsymbol{x}_{i}{ }^{\prime}$
- Algorithm proposed by David Nistér in 2004
- Involves finding the roots of a $10^{\text {th }}$ degree polynomial
- In RANSAC schemes, the 5-point algorithm is the fastest alternative
- To acieve 99% confidence with 50% outliers, the 5-point algorithm only requires 145 tests while the 8 -point algorithm requires 1177 tests
- OpenCV
- cv::Mat cv::findEssentialMat
- 5-pt algorithm
- Matlab
- Currently not available as a built in function in Matlab
- MexOpenCV
- OpenGV: http://laurentkneip.github.io/opengv/ contains several interesting functions
- 5-pt algorithm
- 2-pt algorithm based on known relative rotation

Summary

- Algebraic representation of epipolar geometry
- The essential matrix
- The fundamental matrix
- Estimating the epipolar geometry
- Estimate F: 7pt, 8pt, RANSAC
- Estimate $E: 5 \mathrm{pt}$
- Additional reading:
- Szeliski: 7.2

