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Epipolar geometry
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* Epipolar geometry
— Algebraic representation & estimation
— The essential matrix
— The fundamental matrix

e Triangulation

— Sparse 3D scene reconstructing from 2D A
correspondences N

-
0

{1

* Relative pose from epipolar geometry

— Estimating the relative pose from the essential AN camyey camy
matrix h
| N R aeSeg
— Visual odometry (5 =
o “Ck+1 ‘>

4690



Introduction

* Observing the same points in two views puts a X

strong geometrical constraint on the cameras RN

: : : oL X At i -\n\q x'
» Algebraically this epipolar constraint is usually Pt S ~38
. ¢l e - &~ N
represented by two related 3 x 3 matrices c tIITTT . T
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u ® .‘ o o ° u/
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Introduction

* Observing the same points in two views puts a
strong geometrical constraint on the cameras

» Algebraically this epipolar constraint is usually
represented by two related 3 X 3 matrices

e The fundamental matrix F
UTFu

e The essential matrix E
¥TEX

 These are coupled through the two calibration
matrices K and K’
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The essential matrix E

« Let ‘x & “x’ be corresponding points in the
normalized image planes and let the pose of {C}

relative to {C'} be

/ R t
CfC: 0 1

(C}
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The essential matrix E

« Let ‘x & “x’ be corresponding points in the
normalized image planes and let the pose of {C}

relative to {C'} be

/ R t
CfC: 0 1

* Interms of vectors, the equation for the epipolar
plane can be written like
(“X' xt) - (R¢%) =0

e Rewritten in terms of matrices this takes the form
CUXT[t] R =0

(C}

» This relationship defines the essential matrix
E = [t]xR

YTEX =0
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The essential matrix E

The essential matrix E represents the epipolar
constraint on corresponding normalized points

Note that although ¥'TE% = 0 is a necessary
requirement for the correspondence x < x' to
be geometrically possible, it does not guarantee
Its correctness

(C}

4690




The essential matrix E

 Properties of E

E = [t]«R
Homogeneous

rank = 2

det= 0

5 degrees of freedom

E can be estimated from a minimum of 5
point correspondences

If x and x" are corresponding normalized
image points, then ¥TE¥ = 0

E has 2 singular values that are equal and
a third that is zero

e Itis possible to decompose E = [t]«R to

determine the relative pose between

cameras
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The fundamental matrix F

 The epipolar constraint on image points is naturally
connected to the essential matrix by the calibration
matrices K and K’

K‘k=l0= “X=K™

KIC’)'Z/: Gr:> C’)'zf — Ki—la/: C')"(’!T _ l]IT KI—T

« Combined with the epipolar constraint for normalized
Image points we get
Cc’ )~('IT E C )'Z — O
0"K'TEK™G=0

e This defines the fundamental matrix F = K'"TEK ™1

uWT'Fii=0
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The fundamental matrix F

Properties of F
— F=K"TEK™!
— Homogeneous
— rank =2
— det=0
— 7 degrees of freedom

— F can be estimated from a minimum of 7 point
correspondences

— If w and u’ are corresponding image points, then
UWTFui=0
— For any point u in image 1, the corresponding
epipolar line ' in image 2 is given by
I'=Fu

— For any point 4’ in image 2, the corresponding
epipolar line L in image 1 is given by
[=FT"w
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— The epipole e’ inimage 2 is F’s left singular
vector corresponding to the zero singular value

— The epipole e inimage 1 is F’s right singular
vector corresponding to the zero singular value
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Example

These fundamental lines were determined using the fundamental matrix between images
Recall that points and lines are dual in P?

"d=0<[l, I, L]v|=0lu+lv+l,=0
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Estimating F

« Several algorithms * So given several correspondences we get a
— Non-iterative: 7-pt, 8-pt homogeneous system of linear equations that
— lterative: Minimize epipolar error we can solve by SVD

— Robust: RANSAC with 7-pt

! ! !

uu,  uv,ou uv vy vy 1
e From the definition it follows that each point o F=0
correspondence u; < u;’ contributes with 1 Uty UpVy Uy UV ViV Vo Uy VL
equation Af =0
u" Fu, = _ _
P " * As before, we see that the matrix A contains
o Pt terms that can be very different in scale, so
v 1t ks Vl point sets {u;} and {u;'} should be normalized
L 1 In advance
[uiu: UV, Ui uvi viveoviou Y 1] f=0 — Centroids - origin

— Mean distance from origin should be v/2
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Estimating F

The normalized 8-point algorithm ‘X X

Given n > 8 correspondences u; < u; , do the

following * [ NS
C o’ ] )

1. Normalize points {u;} and {u;'} usingsimilarity
transforms T and T’
I« |

2. Build matrix A from point-correspondences and
compute its SVD

3. Extract the “solution” F from the right singular u ® F s
vector corresponding to the smallest singular <
value

4. Compute the SVD of F: F = USVT lT T’ l

5. Enforce zero determinant by setting s;; = 0 and

compute a proper fundamental matrix ire , F S o o
F=usvT o
: T A UTFG=0
6. Denormalize F =T"FT A o
(Tu) F(Tu)=0 = F=T7FT
UTTFTu=0
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Estimating F

The normalized 8-point algorithm The 7-point algorithm
Given n > 8 correspondences u; < u;’, do the  Given 7 correspondences, A will be a 7 x 9 matrix
following which in general will be of rank 7

- : . N einmcimilar So the null space of 4 is 2-dimensional and the
1. Normalize points {u;} and {u;'} usingsimilarity fundamental matrix must be a linear combination of

transforms T and T the two right null vectors of A
2. Build matrix A from point-correspondences and fla)=af,+ (1 —a)f,

compute its SVD F(a)=aF; + (1 — a)F,

3. Extract the “solution” F from the right singular

vector corresponding to the smallest singular The additional constraint det(F) = 0 leads to a
value cubic polynomial equation in a which has 1 or 3

4. Compute the SVD of F: F = USVT solutions a; which in turn yields 1 or 3 F’s

5. Enforce zero determinant by setting s;; = 0 and _ , , ,
» This algorithm is to prefer in a RANSAC scheme,

compute a proper fundamental matrix : I : : .
£ = ysyT since it is minimal and since for a single sampling
- of 7 correspondences one might get 3 fundamental
6. Denormalize F = T'TFT matrices to test for inliers
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Estimating F

* Improved estimates of F can be obtained using
iterative methods like Levenberg-Marquardt to
minimize the epipolar error

¢ = Z d (@i, FTa") + d (i, Fi)

u u
(] F \
\ €«
l=FTw I'=Fu

e QOpenCV

— cv::Mat cv::findFundamentalMat

— Arguments are
InputArray pointsl
InputArray points2

int method — {CV_FM_7POINT, CV_FM_8POINT,
CV_FM_RANSAC, CV_FM_LMEDS}

double paraml
double param?2
OutputArray mask

« Matlab
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Estimating F

Improved estimates of F can be obtained using
iterative methods like Levenberg-Marquardt to
minimize the epipolar error

¢ = Z d (@i, FTa") + d (i, Fi)

!

u u

~ T~/
d(u’Fu)\k PELIN \ dG, Fii)

~

i:FTﬁ’ l’=Fﬁ

Distance between homogeneous point 1 and line
~ ~ ~ ~AT
1= 0,0, 1;]

e QOpenCV

— cv::Mat cv::findFundamentalMat

— Arguments are
InputArray pointsl
InputArray points2

int method — {CV_FM_7POINT, CV_FM_8POINT,
CV_FM_RANSAC, CV_FM_LMEDS}

double paraml
double param?2
OutputArray mask

« Matlab
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— estimateFundamentalMatrix
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Estimating E

» For calibrated cameras (K and K’ are known), « OpenCV
we can first estimate F and then compute — cv::Mat cv::findEssentialMat
E =K'TFK

— 5-pt algorithm

e Itis also possible to estimate E directly from 5

. . , « Matlab
normalized point correspondences x; < x;

— Currently not available as a built in function in

— Algorithm proposed by David Nistér in 2004 Matlab
— Involves finding the roots of a 10" degree — MexOpenCV
polynomial

 OpenGV: http://laurentkneip.github.io/opengv/
contains several interesting functions
— 5-pt algorithm
— 2-pt algorithm based on known relative rotation

* In RANSAC schemes, the 5-point algorithm is
the fastest alternative

— To acieve 99% confidence with 50% outliers, the
5-point algorithm only requires 145 tests while
the 8-point algorithm requires 1177 tests
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http://laurentkneip.github.io/opengv/

Summary

Algebraic representation of epipolar geometry
— The essential matrix
— The fundamental matrix

Estimating the epipolar geometry
— Estimate F: 7pt, 8pt, RANSAC
— Estimate E: 5pt

Additional reading:
— Szeliski: 7.2

4690

19



	Lecture 7.1�Epipolar geometry
	Weekly overview – Two-view geometry
	Introduction
	Introduction
	The essential matrix E
	The essential matrix E
	The essential matrix E
	The essential matrix E
	The fundamental matrix F
	The fundamental matrix F
	Example
	Estimating F
	Estimating F
	Estimating F
	Estimating F
	Estimating F
	Estimating E
	Summary

