
Lecture 7.1 
Epipolar geometry 

 
Thomas Opsahl 



Weekly overview – Two-view geometry 

• Epipolar geometry 
– Algebraic representation & estimation 
– The essential matrix 
– The fundamental matrix 

 
• Triangulation 

– Sparse 3D scene reconstructing from 2D 
correspondences 

 
• Relative pose from epipolar geometry 

– Estimating the relative pose from the essential 
matrix 

– Visual odometry 
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Introduction 

• Observing the same points in two views puts a 
strong geometrical constraint on the cameras 

 
• Algebraically this epipolar constraint is usually 

represented by two related 3 × 3 matrices 
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Introduction 

• Observing the same points in two views puts a 
strong geometrical constraint on the cameras 

 
• Algebraically this epipolar constraint is usually 

represented by two related 3 × 3 matrices 
 

• The fundamental matrix 𝐹 
𝒖�′𝑇𝐹𝒖� 

 
• The essential matrix 𝐸 

𝒙�′𝑇𝐸𝒙� 
 

• These are coupled through the two calibration 
matrices 𝐾 and 𝐾′ 
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The essential matrix E 

• Let 𝒙𝐶 ↔ 𝒙′𝐶𝐶   be corresponding points in the 
normalized image planes and let the pose of 𝐶  
relative to 𝐶𝐶  be 

𝜉𝐶𝐶𝐶 = 𝑅 𝒕
𝟎 1  

 

5 

𝒕 

𝒙𝐶  

𝒙′𝐶′  

𝐶  

𝐶′  

 



The essential matrix E 

• Let 𝒙𝐶 ↔ 𝒙′𝐶𝐶   be corresponding points in the 
normalized image planes and let the pose of 𝐶  
relative to 𝐶𝐶  be 

𝜉𝐶𝐶′ = 𝑅 𝒕
𝟎 1  

 
• In terms of vectors, the equation for the epipolar 

plane can be written like 
𝒙�′𝐶𝐶 × 𝒕 ∙ 𝑅 𝒙�𝐶 = 0 

 
• Rewritten in terms of matrices this takes the form 

𝒙�′𝑇𝐶𝐶 𝒕 ×𝑅 𝒙�𝐶 = 0 
 

• This relationship defines the essential matrix 
𝐸 = 𝒕 ×𝑅 
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The essential matrix E 

• The essential matrix 𝐸 represents the epipolar 
constraint on corresponding normalized points 
 

• Note that although 𝒙�′𝑇𝐸𝒙� = 0 is a necessary 
requirement for the correspondence 𝒙 ↔ 𝒙𝒙 to 
be geometrically possible, it does not guarantee 
its correctness 
 

8 

𝒙𝐶  

𝒙′𝐶′  

𝐶  

𝐶′  

𝒕 
𝒙�′𝐶′  

𝒙�𝐶  

 



The essential matrix E 

• Properties of 𝐸 
– 𝐸 = 𝒕 ×𝑅 
– Homogeneous 
– 𝑟𝑟𝑟𝑟 = 2 
– det =  0 
– 5 degrees of freedom  
– 𝐸 can be estimated from a minimum of 5 

point correspondences 
– If 𝒙 and 𝒙𝒙 are corresponding normalized 

image points, then 𝒙�′𝑇𝐸𝒙� = 0 
– 𝐸  has 2 singular values that are equal and 

a third that is zero 
 

• It is possible to decompose 𝐸 = 𝒕 ×𝑅 to 
determine the relative pose between 
cameras 
– Translation only up to scale  
– Topic of another lecture 
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The fundamental matrix F 

• The epipolar constraint on image points is naturally 
connected to the essential matrix by the calibration 
matrices 𝐾 and 𝐾′ 

 
 
 

• Combined with the epipolar constraint for normalized 
image points we get 
 
 
 

• This defines the fundamental matrix 𝐹 = 𝐾𝐾−𝑇𝐸𝐾−1 
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The fundamental matrix F 

• Properties of 𝐹 
– 𝐹 = 𝐾𝐾−𝑇𝐸𝐾−1 
– Homogeneous 
– 𝑟𝑟𝑟𝑟 = 2 
– det =  0 
– 7 degrees of freedom 
– 𝐹 can be estimated from a minimum of 7 point 

correspondences 
– If 𝒖 and 𝒖𝒖 are corresponding image points, then 

𝒖�′𝑇𝐹𝒖� = 0 
– For any point 𝒖 in image 1, the corresponding 

epipolar line 𝒍′ in image 2 is given by 
𝒍̃′ = 𝐹𝒖� 

 
– For any point 𝒖𝒖 in image 2, the corresponding 

epipolar line 𝒍 in image 1 is given by 
𝒍̃ = 𝐹𝑇𝒖�′ 

– The epipole 𝒆𝒆 in image 2 is 𝐹’s left singular 
vector corresponding to the zero singular value 

– The epipole 𝒆 in image 1 is 𝐹’s right singular 
vector corresponding to the zero singular value 
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Example 

• These fundamental lines were determined using the fundamental matrix between images 
• Recall that points and lines are dual in ℙ2 
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Estimating F 

• Several algorithms 
– Non-iterative: 7-pt, 8-pt  
– Iterative: Minimize epipolar error  
– Robust: RANSAC with 7-pt 

 
• From the definition it follows that each point 

correspondence 𝒖𝑖 ↔ 𝒖𝑖′ contributes with 1 
equation 
 
 
 
 
 

• So given several correspondences we get a 
homogeneous system of linear equations that 
we can solve by SVD 
 
 
 
 
 

• As before, we see that the matrix A contains 
terms that can be very different in scale, so 
point sets 𝒖𝑖  and 𝒖𝑖′  should be normalized 
in advance 

– Centroids  origin 
– Mean distance from origin should be 2 
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Estimating F 
The normalized 8-point algorithm 
Given 𝑛 ≥ 8 correspondences 𝒖𝑖 ↔ 𝒖𝑖′, do the 
following 

 
1. Normalize points 𝒖𝑖  and 𝒖𝑖′  usingsimilarity 

transforms 𝑇 and 𝑇𝑇 
2. Build matrix 𝐴 from point-correspondences and 

compute its SVD 
3. Extract the “solution” 𝐹� from the right singular 

vector corresponding to the smallest singular 
value 

4. Compute the SVD of 𝐹�:  𝐹� = 𝑈𝑈𝑉𝑇 
5. Enforce zero determinant by setting 𝑠33 = 0 and 

compute a proper fundamental matrix 
𝐹� = 𝑈𝑈𝑉𝑇 

6. Denormalize 𝐹 = 𝑇𝑇𝑇𝐹�𝑇 
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Estimating F 
The normalized 8-point algorithm 
Given 𝑛 ≥ 8 correspondences 𝒖𝑖 ↔ 𝒖𝑖′, do the 
following 

 
1. Normalize points 𝒖𝑖  and 𝒖𝑖′  usingsimilarity 

transforms 𝑇 and 𝑇𝑇 
2. Build matrix 𝐴 from point-correspondences and 

compute its SVD 
3. Extract the “solution” 𝐹� from the right singular 

vector corresponding to the smallest singular 
value 

4. Compute the SVD of 𝐹�:  𝐹� = 𝑈𝑈𝑉𝑇 
5. Enforce zero determinant by setting 𝑠33 = 0 and 

compute a proper fundamental matrix 
𝐹� = 𝑈𝑈𝑉𝑇 

6. Denormalize 𝐹 = 𝑇𝑇𝑇𝐹�𝑇 
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The 7-point algorithm 
• Given 7 correspondences, 𝐴 will be a 7 × 9 matrix 

which in general will be of rank 7 
 

• So the null space of 𝐴 is 2-dimensional and the 
fundamental matrix must be a linear combination of 
the two right null vectors of 𝐴 

𝒇 𝛼 = 𝛼𝒇1 + 1 − 𝛼 𝒇2 
𝐹 𝛼 = 𝛼𝐹1 + 1 − 𝛼 𝐹2 

 
• The additional constraint 𝑑𝑑𝑑 𝐹 = 0 leads to a 

cubic polynomial equation in 𝛼 which has 1 or 3 
solutions 𝛼𝑖 which in turn yields 1 or 3 𝐹’s 
 

• This algorithm is to prefer in a RANSAC scheme, 
since it is minimal and since for a single sampling 
of 7 correspondences one might get 3 fundamental 
matrices to test for inliers 

 



Estimating F 
• Improved estimates of 𝐹 can be obtained using 

iterative methods like Levenberg-Marquardt to 
minimize the epipolar error 

𝜖 = �𝑑 𝒖�,𝐹𝑇𝒖�′ + 𝑑 𝒖�′,𝐹𝒖�  
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• OpenCV 
– cv::Mat cv::findFundamentalMat 
– Arguments are 

InputArray points1 
InputArray points2 
int method – {CV_FM_7POINT, CV_FM_8POINT, 
CV_FM_RANSAC, CV_FM_LMEDS} 
double param1 
double param2 
OutputArray mask 

 
• Matlab 

– estimateFundamentalMatrix 
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Estimating F 
• Improved estimates of 𝐹 can be obtained using 

iterative methods like Levenberg-Marquardt to 
minimize the epipolar error 

𝜖 = �𝑑 𝒖�,𝐹𝑇𝒖�′ + 𝑑 𝒖�′,𝐹𝒖�  

 
 
 
 
 
 
 

• Distance between homogeneous point 𝒖� and line 
𝒍̃ = 𝑙1, 𝑙2, 𝑙3

𝑻 
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• OpenCV 
– cv::Mat cv::findFundamentalMat 
– Arguments are 

InputArray points1 
InputArray points2 
int method – {CV_FM_7POINT, CV_FM_8POINT, 
CV_FM_RANSAC, CV_FM_LMEDS} 
double param1 
double param2 
OutputArray mask 

 
• Matlab 

– estimateFundamentalMatrix 
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Estimating E 

• For calibrated cameras (𝐾 and 𝐾𝐾 are known), 
we can first estimate 𝐹 and then compute 
𝐸 = 𝐾𝐾𝑇𝐹𝐹 

 
• It is also possible to estimate 𝐸 directly from 5 

normalized point correspondences 𝒙𝑖 ↔ 𝒙𝑖′ 
– Algorithm proposed by David Nistér in 2004 
– Involves finding the roots of a 10th degree 

polynomial 
 

• In RANSAC schemes, the 5-point algorithm is 
the fastest alternative 

– To acieve 99% confidence with 50% outliers, the 
5-point algorithm only requires 145 tests while 
the 8-point algorithm requires 1177 tests 

 

• OpenCV 
– cv::Mat cv::findEssentialMat 
– 5-pt algorithm 

 
• Matlab 

– Currently not available as a built in function in 
Matlab 

– MexOpenCV 
 

• OpenGV: http://laurentkneip.github.io/opengv/ 
contains several interesting functions 

– 5-pt algorithm 
– 2-pt algorithm based on known relative rotation 
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http://laurentkneip.github.io/opengv/


Summary 

• Algebraic representation of epipolar geometry  
– The essential matrix 
– The fundamental matrix 

 
• Estimating the epipolar geometry 

– Estimate 𝐹: 7pt, 8pt, RANSAC 
– Estimate 𝐸: 5pt 

 
• Additional reading: 

– Szeliski:  7.2 
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