
HAEMATOLOGY

- Chronic Leukemias,
- Multiple Myeloma,
- Myelodysplastic Syndrome

Lymphoma

Lymphoma is a type of cancer involving lymphocytes.

Cancer occurs when normal cells undergo a transformation whereby they grow and multiply uncontrollably.

Lymphomas fall into 1 of 2 major categories: -Hodgkin lymphoma (HL, previously called Hodgkin's disease) and -all other lymphomas (non-Hodgkin lymphomas or NHLs). Lymphoma represents about 35 different malignant transformation of either lymphocytes B or T cells or their subtypes.

	B Cell Disorders					
1	B-cell chronic lymphocytic leukaemia/small lymphocytic lymphoma					
2	3 cell prolymphocytic leukaemia					
3	Lymphoplasmacytic lymphoma					
4	Splenic marginal zone lymphoma					
5	Hairy cell leukaemia					
6	Plasma cell myeloma including plasmacytoma					
7	Extra nodal marginal zone B-cell lymphoma					
8	of mucosa associated lymphoid tissue type (MALT-Lymphoma) Nodal marginal zone B-cell lymphoma					
9						
	Follicular lymphoma,					
10	Mantle cell lymphoma					
11	Diffuse Large B-cell lymphoma					
	Mediastinal (thymic) lymphoma					
	Intravascular large B-cell lymphoma					
	Primary effusion lymphoma					
12	Burkitt lymphoma/leukaemia					

	T & NK Disorders				
13	Extranodal NK/T cell lymphoma nasal type				
14	Enteropathy-type intestinal T-cell lymphoma				
15	Hepatosplenic T-cell lymphoma				
16	Angioimmunoblastic T-cell lymphoma (AILD)				
17	Anaplastic large cell lymphoma (ALCL)				
18	Peripheral T-cell lymphomas, unspecified				
19	Precursor T-lymphoblastic lymphoma/leukaemia				
20	Blastic NK cell lymphoma				
21	T-cell prolymphocytic leukaemia				
22	T-cell large granular lymphocytic leukaemia				
23	Aggressive natural killer cell leukaemia				
24	Adult T-cell lymphoma/leukaemia (ATL/L)				

	Hodgkin Lymphoma						
25	Classical						
	Nodular sclerosis						
	Lymphocyte rich classical						
	Mixed cellularity						
	Lymphocyte depleted						
26	Nodular lymphocyte predominance						

	Macrophage/ Histiocytic Neoplasms
27	Histiocytic sarcomas
28	Langerhans' cell histiocytosis
29	Langerhans' cell sarcoma
30	Interdigitating dendritic cell sarcoma/tumour
31	Follicular dendritic cell sarcoma/tumour
32	Dendritic cell sarcoma not otherwise specified

Chronic lymphocytic leukemia (CLL)

- Is characterised by the accumulation of nonproliferating matureappearing lymphocytes in the blood, marrow, lymph nodes, and spleen
- In most cases, the cells are monoclonal B lymphocytes -markers of B-cell lineage (CD19, CD20 and CD23).
- T cell CLL can occur rarely

Chronic lymphocytic leukemia

- Is the most common form of leukemia in North America and Europe, but is extremely rare in the Orient
- Typically occurs in older patients, with the highest incidence being in those aged 50 to 55 years
- Affects men twice as often as women

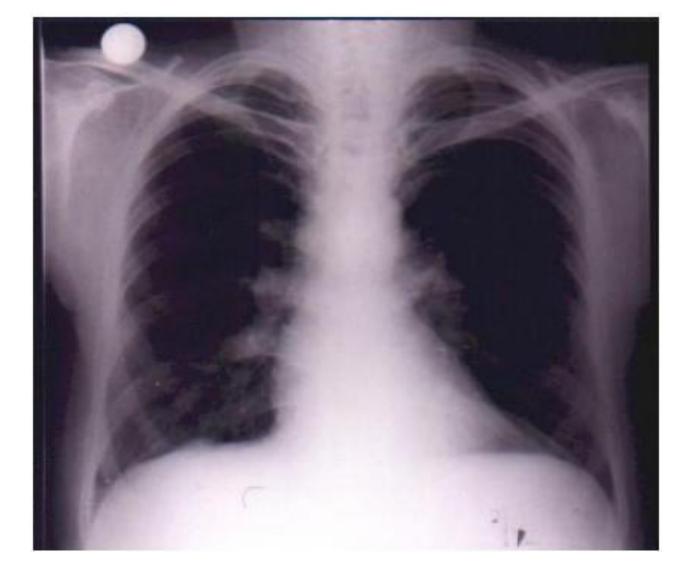
Etiology

- The cause of CLL is unknown
- There is increased incidence in farmers, rubber manufacturing workers, asbestos workers, and tire repair workers
- Genetic factors have been postulated to play a role in high incidence of CLL in some families

Etiology (2)

- Cytogenetics
 - clonal chromosomal abnormalities are detected in approximately 50% of CLL patients
 - the most common clonal abnormalities are:
 - trisomy 12
 - structural abnormalities of chromosomes 13, 14 and 11
 - patients with abnormal karyotypes have a worse prognosis
- Oncogenes
 - in most cases of CLL is overexpressed the proto-oncogene c-fgr
 9a member of the src gene family of tyrosine kinases

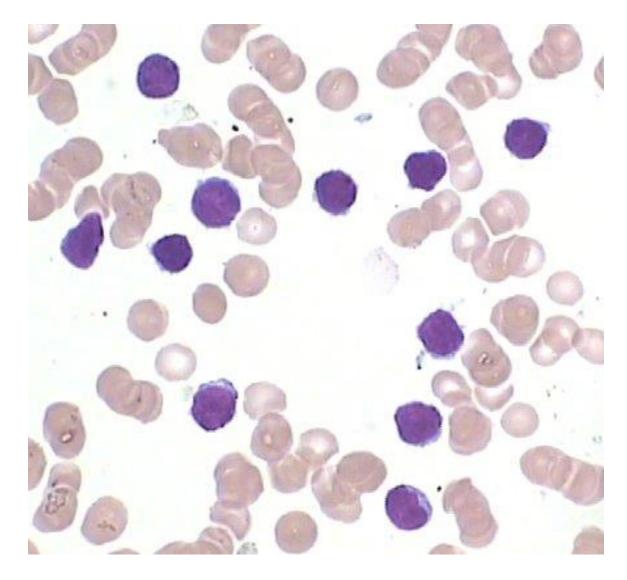
Clinical findings (1)


- Approximately 40% of CLL patients are asymptomatic at diagnosis
- In symptomatic cases the most common complaint is fatigue
- Less often the initial complaint are enlarged nodes or the development of an infection (bacterial)

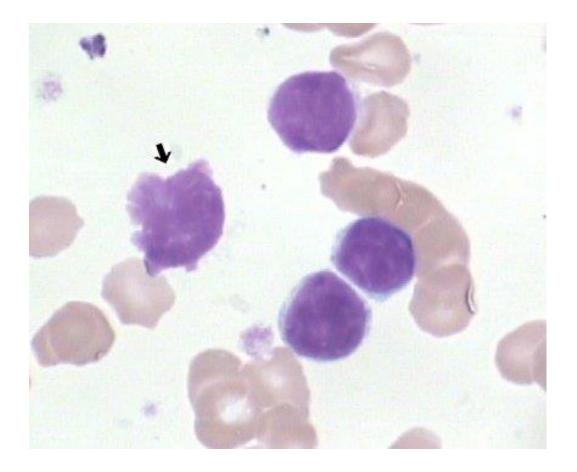
Clinical findings (2)

- Most symptomatic patients have enlarged lymph nodes (more commonly cervical and supraclavicular) and splenomegaly
- The lymph nodes are usually discrete, freely movable, and nontender
- Hepatomegaly may occure
- Less common manifestation are infiltration of tonsils, mesenteric or retroperitoneal lymphadenopathy, and skin infiltration
- Patients rarely present with features of anemia, and bruising or bleeding

Enlarged cervical lymph nodes

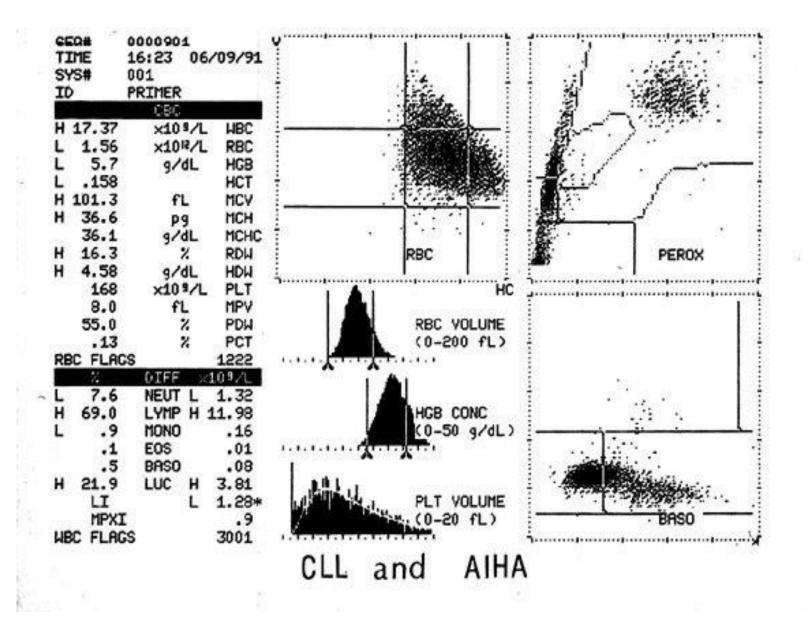


Enlargement hilar lymph nodes


Laboratory findings (1)

- The blood lymphocyte count above 5,0 G/L
- In most patients the leukemic cells have the morphologic appearance of normal small lymphocytes
- In the blood smears are commonly seen ruptured lymphocytes ("basket" or "smudge" cells)
- Careful examination of the blood smear can usually differentiate CLL, and the diagnosis can be confirmed by immunophenotyping

Pacjent: Oddzial: POR HEMATOLOGICZNA			Zlecenie: 86 Nr pacjenta:			
Badanie	Wynik k	adania	J.miary	Wart.re	eferencyjne	Obraz mikroskopowy
WBC %NEUT %LYMPH %MONO %EOS %BASO %LUC #NEUT #LUC #MONO #EOS #BASO #LUC	6.96 0.85 0.11	159.9 4.4 80.3 0.5 0.1 2.3 14.7 128.4 3.67 23.52	10 ³ /uL 8 8 8 8 8 10 ³ /uL 10 ³ /uL 10 ³ /uL 10 ³ /uL 10 ³ /uL 10 ³ /uL 10 ³ /uL	(4.0) (40) (18) (2.5) (0.5) (0.0) (1.9) (0.9) (0.1) (0.05) (0.0)	$\begin{array}{c} - 10.0 \\ - 72 \\) \\ - 48 \\) \\ - 10.0 \\) \\ - 6.0 \\) \\ - 1.5 \\) \\ - 4.0 \\) \\ - 7.5 \\) \\ - 4.5 \\) \\ - 1.0 \\) \\ - 0.50 \\) \\ - 0.2 \\) \\ - 0.4 \\ \end{array}$	BLAST- $\$$ PROMYELO- $\$$ MYELO- $\$$ META- $\$$ BAND- $\$$ BAND- 4 EOSIN- 4 BASO- $\$$ BASO- $\$$ BASO- $\$$ BASO- $\$$ ATYP- 4 90 $\$$
RBC HGB HCT MCV MCH MCHC CHCM RDW HDW	96.7 31.7 32.7 31.8 12.3 2.39	3.37 10.7 32.6	10^6/ul g/dL % fL pg g/dL g/dL % g/dL	(4.0 (12 (37 (81 (27 (31 (31 (11.5 (2.2	$\begin{array}{c} - 5.5 \\ - 16 \\) \\ - 47 \\ - 99 \\) \\ - 34 \\) \\ - 37 \\ - 37 \\) \\ - 14.5 \\) \\ - 3.2 \end{array}$	NRBC - Komentarz: <u>pojed. ciewie</u> <u>Guempvechke</u>
PLT MPV PCT PDW Atypical SLASTS	137 7.6 51.3 Lymph	0.10 +++ ++	10^3/uL fL % %	(130 (7.0 (0.12 (40.0	- 350) - 12.0) - 0.36) - 60.0)	RETIC : Wiestawa Menak Wykonal: Wykonal: wykonal: ki med


May-Grunwald-Giemsa-stained peripheral blood. Predominant morphology is the small lymphocyte with thin cytoplasmic rim, giving a low cytoplasm:nuclear ratio

May-Grunwald-Giemsa-stained peripheral blood. High power magnification showing **'smear cell'** (arrowed).

Laboratory findings (2)

- Clonal expansion of B (99%) or T(1%) lymphocyte
 - In B-cell CLL clonality is confirmed by
 - the expression of either κ or λ light chains on the cell surface membrane
 - the presence of unique idiotypic specificities on the immunoglobulins produced by CLL cells
 - by immunoglobulin gene rearrangements
 - typical B-cell CLL are unique in being CD19+ and CD5+
- 10 25% of patients with CLL develop autoimmune hemolytic anemia, with a positive direct Coombs' test
- The marrow aspirates shows greater than 30% of the nucleated cells as being lymphoid

Autoimmuhemolitic anaemia (AIHA)

The diagnostic criteria for CLL

- 1) A peripheral blood lymphocyte count of greater than 5 G/L, with less than 55% of the cells being atypical
- 2) The cell should have the presence of Bcell-specific differentiation antigens (CD19, CD20, and CD24) and be CD5(+)
- 3) A bone marrow aspirates showing greater than 30% lymphocytes

Investigations

- Pretreatment studies of patients with CLL should include examination of:
 - complete blood count
 - peripheral blood smear
 - reticulocyte count
 - Coomb's test
 - renal and liver function tests
 - serum protein electrophoresis
 - immunoglobulin levels
 - plasma β 2 microglobulin level
- The immunophenotyping should be carried out to confirm the diagnosis
- Bone marrow biopsy and cytogenetic analysis is not routinely performed in CLL

Staging

- Rai Classification for CLL
 - 0 lymphocytosis (>5 G/L)
 - I lymphocytosis + lymphadenopathy
 - II lymphocytosis + splenomegaly +/-lymphadenopathy
 - III lymphocytosis + anemia (Hb <11g%) +/-lymphadenopathy or splenomegaly
 - IV lymphocytosis + thrombocytophenia (Plt <100G/L) +/- anemia +/lymphadenopathy +/- splenomegaly
- Binet Classification for CLL
 - A. < 3 involved areas, Hb > 10g%, Plt > 100G/L
 - B. > 3 involved areas, Hb > 10g%, Plt > 100G/L
 - C. any number of involved areas, Hb < 10g%, Plt < 100G/L

Symptoms B -night sweats and fever

Prognosis

•	Rai class	sification	 Binet classification 			
	stage	median survival	stage	median survival		
		(years)		(years)		
	0	>10	А	> 10		
	Ι	> 8	В	7		
	II	6	С	2		
	III	2				
	IV	< 2				

Treatment

- WATCH AND WAIT
- Treatment is reserved for patients with:

1. low- or intermediate risk disease who are symptomatic or have progressive disease (increasing organomegaly or lymphocyte doubling time of less than 12 months),

2. patients with high -risk disease

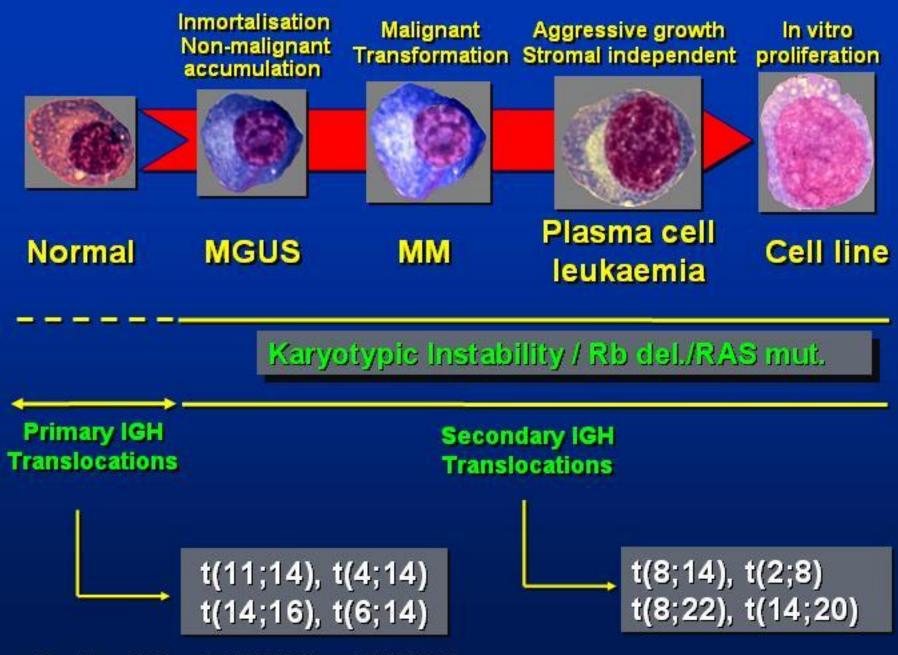
Treatment

- Alkylating agents (chlorambucil, cyclophosphamide)
- Nucleoside analogs (cladribine, fludarabine)
- Monoclonal antibodies
 (anti CD 20- rituximab, anti CD 52 alemtuzumab)
- Bone marrow transplantation (young patient with aggressive CLL) very rare
- And systemic complications requiring therapy
 - antibiotics
 - immunoglobulin
 - steroids
 - blood products

Multiple Myeloma

• Definition:

B-cell malignancy characterised by abnormal proliferation of plasma cells able to produce a monoclonal immunoglobulin (M protein)


• Incidence:

3 - 9 cases per 100000 population / yearmore frequent in elderlymodest male predominance

• Clinical forms:

multiple myeloma solitary plasmacytoma plasma cell leukemia

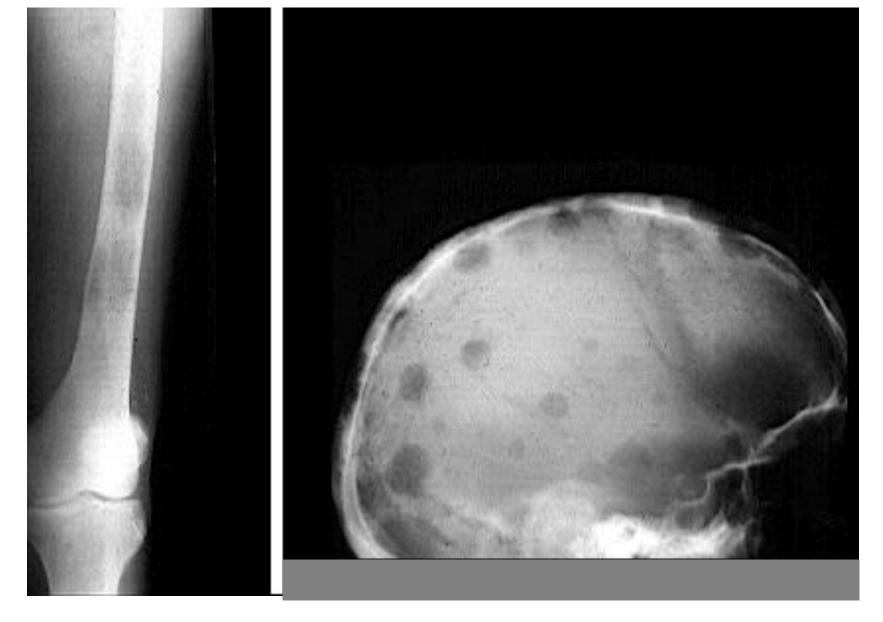
- M protein:
 - is seen in 99% of cases in serum and/or urine IgG > 50%, IgA 20-25%, IgE i IgD 1-3% light chain 20%
 - 1% of cases are nonsecretory

San Miguel J. Hematol J. 2003;4(suppl 3):201-207.

Clinical manifestations are related to malignant behavior of plasma cells and abnormalities produced by M protein

 plasma cell proliferation: multiple osteolytic bone lesions hypercalcemia bone marrow suppression (pancytopenia)

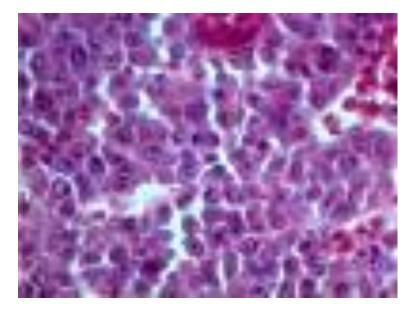
• monoclonal M protein


decreased level of normal immunoglobulins hyperviscosity

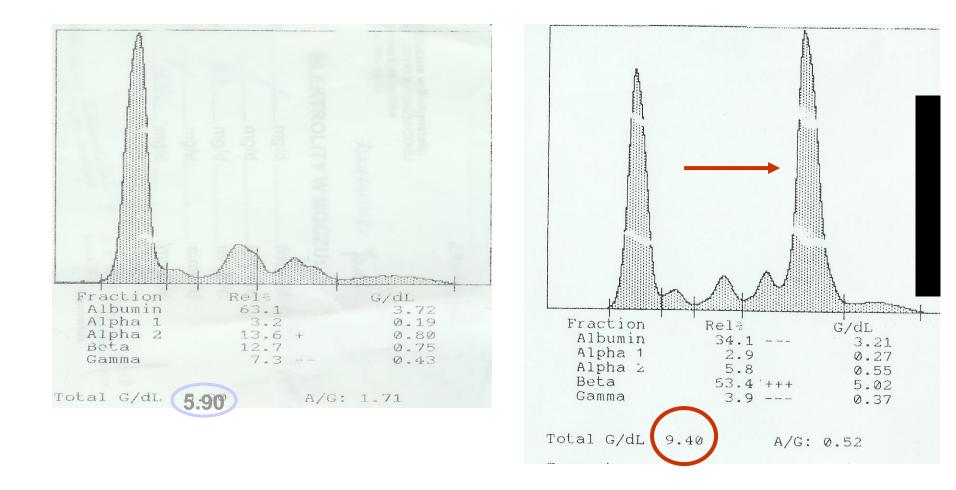
Clinical symptoms:

- bone pains,
- pathologic fractures
- weakness and fatigue
- serious infection
- renal failure
- bleeding diathesis

Pathological fracture of the bone due to plasmocytoma



Bones (especialy skull) demonstrates characteristic rouned "pounched out" lesions of multiple myeloma.


Laboratory tests:

- ESR > 100
- anaemia, thrombocytopenia
- rouleaux in peripheral blood smears
- marrow plasmacytosis > 10 15%
- hyperproteinemia
- hypercalcemia
- proteinuria
- azotemia

Bone marrow: the plasma cells of multiple myeloma. Usually, the plasma cells are differentiated enough to retain the function of immunoglobulin production.

Test	Wynik	Jedn.	Uwag:	i Zakres	Min	Max	Porn. med. y
IgA IgG IgM	13	77 mg/dl 99 mg/dl 25 mg/dl	R R R	() * (*) () *	69 723 63	382 1685 277	-> specjalista dia 1+50.0 1+50.0 1+100.0

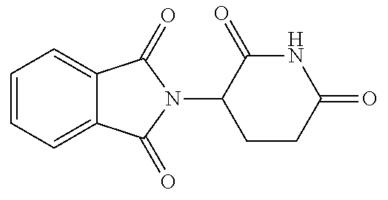
Patients with multiple myeloma show a "spike" in the β or γ regions of the serum protein electrophoresis. The abnormal antibody protein appears as a tall spike, because the molecules of M proteins are identical in size and therefore all sort out at exactly the same point. Urine electrophoresis can detect Bence Jones proteins.
 Table 2: Diagnostic Criteria for MGUS, Asymptomatic Myeloma and Symptomatic Myeloma

 (International Myeloma Working Group, 2003)

MGUS	Asymptomatic myeloma	Symptomatic myeloma***
M-protein in serum <30 g/L Bone marrow clonal plasma cells <10% and low level of plasma cell infiltration in a trephine biopsy (if done)	M-protein in serum >30 g/I <i>and/or</i> Bone marrow clonal plasma cells >10%	M-protein in serum and or urine** Bone marrow (clonal) plasma cells
No myeloma-related organ or tissue impairment (including bone lesions or symptoms No evidence of other B-cell lymphoproliferative disorder or light chain associated amyloidosis or other light chain, heavy chain or immunoglobulin-associated tissue damage*	No myeloma-related organ or tissue impairment (including bone lesions or symptoms	Myeloma-related organ or tissue impairment (including bone lesions or symptoms

Treatment of Multiple Myeloma

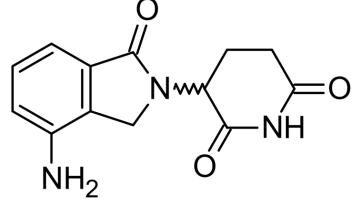
- Patients < 65 years
 - high-dose therapy with autologous stem cell transplantation
 - allogeneic stem cell transplantation (conventional and ,,mini")
- Patients > 65 years
 - conventional chemotherapy
 - non-myeloablative therapy with allogeneic transplantation (,,mini")


- Autologous transplantation
 - patients < 65-70 years
 - treatment related mortality 10-20%
 - response rate 80%
 - long term survival 40-50%
- Conventional allogeneic transplantation
 - patients < 45-50 years with HLA-identical donor
 - treatment related mortality 40-50%
 - long term survival 20-30%

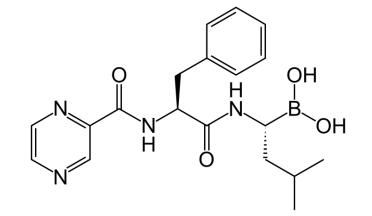
- Conventional chemotherapy
 - Melphalan +/- Prednisone
 - VAD (Vincristin, Adriamycin, Dexamethasone)
- New method
 - non-myeloablative therapy and allogeneic transplantation
 - Thalidomid, Lenalidomide
 - Bortezomib (Valcade)

- Supportive treatment
 - biphosphonates, calcitonin
 - recombinant erythropoietin
 - immunoglobulins
 - plasma exchange
 - radiation therapy

THALIDOMIDE

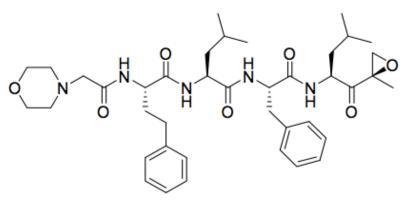

- Immunomodulatory drug
- Mechanism of action:
 - \circ induce growth arrest associated with apoptosis in MM cells
 - inhibit adhesion of MM cells to bone marrow stromal cells (BMSCs)
 - $\circ\,$ reduce expression of IL-6 and TNF- α
 - Antiangiogenic effect (VEGF, bFGF)
 - \circ Induce T-cell stimulation and proliferation, with release of IL-2 and INF-γ
- Teratogenic effects- ,,birth defects crisis"

Thalidomide


LENALIDOMIDE

- Structural thalidomide analogues
- Like thalidomide inhibits tumour angiogenesis, secrete cytokines and tumour proliferation through the induction of apoptosis
- Substantially more powerful and has fewer side effects except for greater myelosuppression

BORTEZOMIB


- First therapeutic proteasome inhibitor approved by FDA (2003)
- Mechanism of action:
 - \circ induction apoptosis myeloma cells
 - \circ inhibit proliferation of plasma cells
 - \circ antiangiogenic effect

- o disrupts the interaction between bone marrow strome cells (BMSC) and MM cells, through the downregulation of adhesion molecules and reduced NF-kB-dependent secretion of cytokines from BMSC
- increases the activity of other drugs, i.e.. melphalan, doxorubicin
- the most common side effect is peripheral neuropathy- 30-50% of patients receiving the drug

CARFILZOMIB

- new drug next-generation proteasome inhibitor
- approved by FDA (2012) as single-agent activity in patients with relapsed and refractory multiple myeloma
- selectively and irreversibly inhibits the chymotrypsin-like activities of proteasome
- In preclinical studies, carfilzomib showed greater selectivity than bortezomib for the proteasome without inhibiting off-target proteases, and had antiproliferative activity in cells resistant to bortezomib

THE MOST COMMON SCHEME MM THERAPY

- CTD (cyclophosphamide, thalidomide, dexamethasone),
- VAD (vincristine, doxorubicin, dexamethasone)
- PAD (bortezomib, doxorubicin, dexamethasone)
- MPT (melphalan, prednisone, thalidomide)
- VMP (bortezomib, melphalan, prednisone)

Myelodysplastic syndrome (MDS)

- It is a term for a heterogeneous collection of haemopoietic stem cell disorders affecting older adults.
- There is underlying ineffectiveness of haemopoiesis that results in dysplasia of bone marrow precursors and peripheral cytopenias.

- Moderate anaemia is the most common clinical problem in MDS patients, but complete myeloid bone marrow failure also occurs leading to death from bleeding or infection.
- Approximately half of the patients transform to AML.

MDS background

- Pathobiology
 - The cardinal features of MDS are
 - Increased marrow proliferation
 - Failure of stem cells to differentiate
 - And increased marrow apoptosis.
 - The disease is of clonal origin
 - Chromosomal abnormalities are detectable in 30-70% of patients. The no. of chromosomal abn. may correlate with the risk of progression to AML.

The most common chromosomal abnormalities in patients with MDS

- Deletion 5q
- Deletion 20q
- Lack of chromosome Y

"good" karyotype

• Trisomy chromosome 8

- Monosomy chromosome 7
- Complex chromosomal rearrangements (CCRs) (≥ 3)

_ "bad" karyotype

WHO classification MDS

- Refractory cytopenia with unilineage dysplasia (RCUD)
- Refractory anemia with ring sideroblasts (RARS)
- Refractory cytopenia with multilineage dysplasia (RCMD)
- Refractory anemia with excess blasts-1 (RAEB-1) 5-9% blasts
- Refractory anemia with excess blasts-2 (RAEB-2)-10-19% blasts
- Myelodysplastic syndrome unclassified (MDS-U)
- MDS associated with isolated del(5q)
- Therapy-related MDS (t-MDS)

International Prognostic Scoring System (IPSS)

- The most practical and validated MDS classification system currently available to clinicians is the IPSS which predicts both survival and risk of transformation to AML based on:
 - Marrow blast %
 - Cytogenetics
 - And number of cytopenias.

Table 3.	International Prognostic Scoring System (IPSS) for MD			
IPSS Score	Risk Group	% of Patients	When 25% Evolve to AML	Median Survival
0	Low risk	31%	9.4 years	5.7 years
0.5-1.0	Int-1 risk	39%	3.3 years	3.5 years
1.5-2.0	Int-2 risk	22%	1.1 years	1.2 years
≥2.5	High risk	8%	0.2 years	0.4 years

Abbreviation: Int, intermediate.

The scope of MDS

- MDS is primarily a disease of the elderly, with a median age at diagnosis of between 60-80 years.
- The incidence is approximately double that of AML.
- The recent increase in MDS incidence may be related to growing awareness, better diagnosis, and an aging population.

Clinical signs and symptoms

- The common symptoms at presentation, fatigue or weakness, are attributable to cytopenia.
- Easy bruising, ecchymosis, epistaxis, gingival bleeding, and bacterial infections may also be encountered.
- 20-40 % or more of patients die of infections and/or haemorrhagic complications.

Conventional therapies

- Supportive care:
- -blood products with deferoxamine,
- -haemopoietic growth factors (EPO and GM-CSF) -antibiotics.
- Hormone suppressive therapy with danazol has been used to help resolve anaemia and reduce transfusion requirements.

• Low intensity chemotherapy with cytarabine induces response in approximately 30% of MDS patients. However, the relapse rate is high, and there is no improvement in overall survival.

• Bone marrow transplantation is currently the only potentially curative therapy for MDS patients

Conclusion

- In the majority of patients with MDS who are not eligible for allogenic transplantation, the disease is fatal.
- Approximately 2/3 of patients die within 3-4 years of diagnosis.
- Patients with high risk MDS generally survive approximately one year.