
Avoidance of Lin13 by Teichmüller Curves
in a Stratum ofM4,2

J Z

D T

S JP. D. G WS
D. A K
P. D. F H

I  A  G
D  M

K I  T

 J 





Declaration
I hereby confirm that this document has
been composed by myself, and describes
my own work, unless otherwise
acknowledged in the text.

Erklärung
Ich erkläre hiermit die vorliegende
Arbeit selbstständig verfasst zu haben
und keine außer den angegebenen
ellen verwendet zu haben.

Karlsruhe, th January 

iii





Contents

Introduction vii

 Preliminaries 
. Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Presheaves and Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Stalks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Sheaves on Different Spaces . . . . . . . . . . . . . . . . . . . . . . . 

. Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Affine Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Projective Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Geometric Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Projective Subschemes and Coherent Sheaves . . . . . . . . . . . . . . . . . . 

.. Closed Subschemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Twisted Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Pulling Back and Pushing Forward . . . . . . . . . . . . . . . . . . . 
.. Global Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Ample and Very Ample Sheaves . . . . . . . . . . . . . . . . . . . . . 

. Cohomology of Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Derived Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Algebraic Curves 
. Linear Systems and Projective Morphisms . . . . . . . . . . . . . . . . . . . 

.. Divisors and Invertible Sheaves . . . . . . . . . . . . . . . . . . . . . 
.. Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Morphisms into Projective Space . . . . . . . . . . . . . . . . . . . . 
.. Differentials and the Canonical Sheaf . . . . . . . . . . . . . . . . . . 

. e Riemann-Roch eorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Observations on l(D) . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Serre Duality and a Proof of the Riemann-Roch eorem . . . . . . . 
.. Some First Consequences . . . . . . . . . . . . . . . . . . . . . . . . 

. Intersection eory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. e Degree of a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Intersections of Curves on a Surface . . . . . . . . . . . . . . . . . . 
.. Varieties in Projective Space . . . . . . . . . . . . . . . . . . . . . . . 
.. e Chow Ring and Chern Classes . . . . . . . . . . . . . . . . . . . 

v



Contents

. e Canonical Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Linear Systems and Projective Embeddings . . . . . . . . . . . . . . 
.. Constructing the Canonical Embedding . . . . . . . . . . . . . . . . 
.. e Geometric Version of the Riemann-Roch eorem . . . . . . . . 

 Moduli Spaces and Teichmüller Curves 
. Moduli Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Mд andMд,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. e Divisor Lin13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Teichmüller Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Intersections of Curves and Divisors 
. A adric in P3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. e Regular Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. e Group ClQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. e Singular Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Non-Hyperelliptic Genus 4 Curves . . . . . . . . . . . . . . . . . . . . . . . . 
. Lin13 and ΩM4(3, 3)

non-hyp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Teichmüller Curves and Divisors in Hyperelliptic Strata . . . . . . . . . . . . 

Conclusion 

Index of Definitions 

Bibliography 

vi



Introduction

Mathematics is at its most fascinating when several seemingly unrelated theories coincide.
In algebraic geometry, such occasions are omnipresent. e idea of studying the geometry
of the solutions of algebraic equations is, arguably, as old as mathematics itself. Yet to what
extent this is intertwined with most other areas of mathematics became apparent only fairly
recently.

e close relationship between spaces obtained as the zero locus of polynomials over C and
complex analytic spaces was already fairly well understood in the th century and provided
the existing theory with a whole range of analytic tools and ideas. On the other hand, the
revolutionarywork in the s and s, most notably byGrothendieck in [EGAI], generalised
the theory by moving away from polynomial rings over a field, permiing instead algebraic
equations in any commutative ring. is paved the way for unleashing the entire theory of
commutative algebra upon geometry. At the same time, it opened the door to other branches
of mathematics, strengthening for instance the ties to number theory. More recently, various
aempts to extend these ideas by transporting, for example, homotopy theory into this world,
have followed.

We, however, want to turn our aention to very classical objects: curves. Intuitively, we
may think of a curve as the zero locus of a single polynomial in two variables, embedded in
some space. In fact, we will later devote some time to introducing a theory that allows us
to generalise this definition correctly and neatly. Although studying a single curve surely
has its merits, we want to take it one step further: “modern” algebraic geometry allows us to
consider entire families of curves and—fascinatingly—endow these with their own intrinsic
geometric structures and even an algebraic one. In particular, we are interested in the space
parametrising all smooth curves of genus д, which is calledMд. Constructing these “moduli
spaces” is—in general—very difficult. Some methods will be discussed in Chapter . Pioneer-
ing work was achieved in the analytic world by Teichmüller in the s and the geometric
invariant theory, developed by Mumford in the s (cf. [Mum]), finally allowed an al-
gebraic construction. In particular, it was the idea of Deligne and Mumford in [DM] to
introduce a more general concept of curves. is allowed Mumford, Knudsen and Gieseker
to construct the “correct compactification” of this space which turns out to be a projective
variety (cf. e.g. [Knu]), i.e. is geometrically much beer behaved than the “actual” moduli
space.

Nonetheless, the geometry of these spaces is very difficult to understand. is leads us to
focus our aention instead on the geometry of divisors onMд, i.e. certain subspaces of codi-

 For a discussion of the controversies surrounding the person of Teichmüller with respect to his inglorious
behaviour during the s, we refer to [Hau+], in particular the facsimile of his leer to Edmund Landau
[Hau+, pp. –].
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Introduction

mension 1 that may arise geometrically in a number of natural ways. We will be particularly
interested in divisors that may be obtained by parametrising all curves with some common
geometric property. Not only does this imply that the divisor itself is an interesting object,
but it also allows us to use the geometry of the individual points (that are themselves curves)
to understand the global structure.

On the other hand, we can consider curves in the moduli space, i.e. curves parametrising
curves. Besides being intuitive, this approach has the advantage that general intersection
theory tells us that the intersection of a curve and a divisor will be a number—in contrast to
something of higher dimension. is allows us to use the combination of curves and divisors
to study not only these curves and divisors but also the geometry of the space as a whole.
ese techniques were powerfully demonstrated by Harris and Mumford [HM] and more
recently by Farkas [Far] or Logan [Log].

In addition, we will be concerned with a special class of curves: Teichmüller curves. ese
have been studied intensely since the work of Veech in [Vee] and arise quite naturally
during the analytic construction of Mд. Besides having interesting dynamical properties,
these curves behave very nicely inMд; in particular, plenty is known about their behaviour
on the boundaryMд \Mд and this is the property we will exploit. Additionally, Teichmüller
curves can be constructed quite explicitly, providing us with a large and fairly benign class of
curves to choose fromwhen intersecting curves and divisors. is was observed by Chen and
Möller: they took well-known divisors and used these to calculate invariants for families of
Teichmüller curves, see [CM]. is allowed them to verify a conjecture by Kontsevich and
Zorich, stating exactly which classes of Teichmüller curves had invariant sums of Lyapunov
exponents (introduced in Chapter ) in moduli spaces of low genus.

In the following, we will carefully analyse a special case of their argument, involving some
beautiful classical geometry. More concretely, we consider Teichmüller curves in the stratum
ΩM4(3, 3)

non-hyp and show ineorem  that the image of any one of those inM4,2 does not
intersect the divisor Lin13. is is the key ingredient to their proving the non-variance of the
sum of Lyapunov exponents among Teichmüller curves in this stratum, as the intersection
with Lin13 depends—in essence—only on this sum (and is always 0). Following [CM], we
then turn this argument around and use the fact that if we know that the sum of Lyapunov
exponents is non-varying, we may calculate it for any Teichmüller curve and use this to give
an explicit description of the class of Lin13. In eorem  we then use the same strategy to
provide examples of families of divisors avoiding all Teichmüller curves in hyperelliptic strata
of any genus, as these have the advantage that the sum of Lyapunov exponents is known to
be non-varying and may be calculated explicitly.

To achieve this goal, we begin by reviewing many of the fundamental tools of algebraic geo-
metry. at is the content of Chapter . It is continued in Chapter  where we recall many
results from classical algebraic geometry, translating them into a more modern language as
necessary. In particular, in eorem  we describe the relationship between the Picard group
and the divisor class group and we sketch a proof of the Riemann-Roch theorem ineorem .
e chapter concludes with a brief review of intersection theory in section . and a discus-
sion of the canonical embedding of a genus д curve into Pд−1 in section ..
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In Chapter , we finally introduce moduli spaces and discuss some of the difficulties arising
in and around the definition. Aer briefly discussing the Picard groups of the moduli spaces
concerning us, we introduce Teichmüller curves and the divisor Lin13. Chapter  is devoted to
discussing Chen andMöller’s proof. In section ., the classical theory of quadrics is reviewed
and we analyse the special behaviour of canonically embedded genus 4 curves in section ..
e last two sections assemble the gatheredmaterial to prove the above-mentionedeorem 
and eorem .

Note that, in particular in Chapter , some concepts are introduced in a slightly more general
version than would strictly be necessary, but as much of the literature—in particular regard-
ing Chapter —requires such terminology anyway, this approach can hardly be considered
harmful. To strengthen this argument, we quote Mumford [Mum, ]:

It seems to me that algebraic geometry fulfills only in the language of schemes that essential re-
quirement of all contemporary mathematics: to state its definitions and theorems in their natural
abstract and formal seing in which they can be considered independently of geometric intuition.
Moreover, it seems to me incorrect to assume that any geometric intuition is lost thereby.

None of this work would have been possible without the continued support of a large number
of people. First and foremost, I would like to thank Gabi Weitze-Schmithüsen for supervising
and guiding me, and for her patience when spending countless hours discussing my ques-
tions. I am also grateful to André Kappes for his endurance while teaching me algebraic
geometry and his continued support even aer leaving Karlsruhe. Martin Möller provided
a number of extremely helpful comments, particularly in regard to fixing some last-minute
problems. I would also like to thank Frank Herrlich and the entire Workgroup on Number
eory and Algebraic Geometry for their continued overall support and for providing an
uniquely cordial working atmosphere. Special thanks also goes to Stefan Kühnlein, without
whom I might never have developed an interest in algebra; Florian Nisbach, Myriam Finster
and Anja Randecker, who never barred me from their office; and Fabian Januszewski, who
repeatedly discussed geometric questions with me, even if they had no connection to num-
ber theory. Last but not least, I am heavily indebted to all my other “mathematical friends”,
most notably Michael Füerer, Enrica Cherubini, Miriam Schwab, Felix Wellen and Tobias
Columbus who were always eager to discuss mathematics, LATEX and any other relevant parts
of life.

Finally, I would also like to thankmy parents, Patricia and Johannes Zachhuber, andmywhole
extended family, for supportingmewhile never doubting the value and relevancy of mywork,
and, of course, Lisa MarieWichern for bearing with me, particularly during the stressful final
weeks and for being one of the only people to have proof-read the entire manuscript.
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 Preliminaries

We would like to begin by recalling some facts and definitions that will be indispensable
for the following discussion. Even if our aim is to study the situation of curves, this will
naturally lead to understanding more general objects. erefore, it is useful to first invoke
more powerful algebraic tools that may be applied to a number of geometric seings.

As this is a mix of approaches that are widely scaered about the literature, but nonetheless
vital for our purposes, this introduction is rather extensive, referring at each point to the
literature in which the current approach is elaborated on.

In this chapter, X shall always be a topological space and R a ring. Any ring we consider
is commutative (!) and contains a unit element; a homomorphism of rings is thus always
required to be unital.

. Sheaves

We begin by defining sheaves on a topological space. For a comprehensive introduction, see
e.g. [Har, Chapter II.], [LAGI, Chapter ] or, of course, [EGAI, Chapitre , §]. Recall that
a sheaf is an object that helps us keep track of “local data” on a topological space. e precise
definition is a lile technical.

.. Presheaves and Sheaves

Consider the category Op(X ) of open sets of X , more precisely: the objects of Op(X ) are the
open subsets of X and for open U ,U ′ ⊆ X , we define

Hom(U ,U ′) B

U .... U ′ if U ⊆ U ′ and

∅ otherwise.

D ..: (a) A presheaf of abelian groups on X is a contravariant functor

F : Op(X ) .... Ab.

We denote the image of U .... U ′ under F as ·|U : F (U ′) .... F (U ) and call it the
restriction morphism fromU ′ toU .

(b) Let F and G be presheaves on X . en a morphism of presheaves is a natural trans-
formation η : F .... G, i.e. a family of morphisms ηU ∈ Hom(F (U ), G(U )) for each
open U ⊆ X that is compatible with the restriction maps.





 Preliminaries

(c) Let F be a presheaf. For any open subset U ⊆ X and any open cover (Ui)i of U , let
(si)i be a family of elements with si ∈ F (Ui). We call (si)i a consistent family onU if
sj |U j∩Uk = sk |U j∩Uk for every j and k .

(d) Let F be a presheaf and (si)i a consistent family on U ⊆ X . en any element
s ∈ F (U ) is called an amalgamate of (si)i if s |Ui = si for every i .

(e) A presheaf F of abelian groups onX is called a sheaf onX if every consistent family
admits a unique amalgamate.

Clearly, we may restrict any sheaf F on X to any open subsetU ⊂ X to obtain a sheaf onU .
We denote this by F |U .
R ..: Let F and G be two sheaves on X . en a morphism of sheaves is simply a

morphism of presheaves η : F .... G. Observe that, due to the compatibility with the re-
striction maps, such a morphismmust map consistent families of F to consistent families
of G and amalgamates to amalgamates. Hence this gives a useful notion of a morphism.
We denote the category of sheaves of abelian groups on X by Ab(X ).

R ..: Let F be any sheaf on X . What is F (∅)? Well, as we have ∅ ∪ ∅ = ∅ =
∅ ∩ ∅, any two elements of F (∅) form a consistent family. Hence, F (∅) must consist
of precisely one element: F (∅) = 0.

R ..: Fix an open subset U ⊆ X . en “evaluating a sheaf at U ” is functorial: we
define the global sections functor by the association

Γ(U , −) : Ab(X ) .... Ab, F ... F (U ).

By definition, any morphism of sheaves F .... G is a natural transformation. us, it
yields a morphism F (U ) .... G(U ); hence, this construction is clearly functorial.

Of course, in Definition .., we may replace Ab with any sufficiently similar category and
thus define presheaves and sheaves of Rings, R-Algebras or sets, obtaining the categories
Rings(X ), R-Alg(X ) and Set(X ), respectively. Occasionally, we will write Sh(X ) to denote
sheaves on X (in any suitable of the above categories), and compare this to Psh(X ), the cat-
egory of presheaves.
E ..: (a) Consider the complex plane C. en the assignment

O : U .... O(U ) B {f : U .... C | f is holomorphic} ∈ Ob(Rings)
is functorial. Indeed, it is a sheaf of rings, as being holomorphic is a local property.
We call O the sheaf of holomorphic functions on C.

(b) Let G be an abelian group and p any point of X . Consider the presheaf F with

F (U ) B

G , if p ∈ U ;

0, otherwise;
for any openU ⊆ X .

e restriction maps are taken to be the identity and the trivial map, accordingly.

 Note that, due to the functoriality, this definition is independent of the chosen cover.





. Sheaves

In fact, this is already a sheaf: consider any consistent family (si)i with si ∈ F (Ui)
for some open covering (Ui)i of X . Let s B si for one fixed i so thatUi ∋ p. Observe
that for anyUj ∋ p we have sj = s . Indeed,Ui∩Uj is open and non-empty (it contains
p) and the restriction maps are the identity, as all three sets contain p. We claim that
s is an amalgamate of the whole family (si)i . Note first that p ∈ X so F (X ) = G ∋ s .
Naturally, we have s |U j = sj for any Uj ∋ p. But if p < Uj , sj is necessarily zero
and the restriction morphism is trivial, so s |U j = sj also. erefore, s is in fact an
amalgamate. Moreover, it is also unique: let s′ be another amalgamate and Ui ∋ p.
en we must have s′|Ui = si = s . But both sets contain p, hence the restriction map
is the identity and s = s′ in F (U ).

Of course, we are most interested in sheaves of rings on topological spaces and these allow
us to construct algebras and modules in a relative seing. A space X together with a sheaf
of rings O is sometimes called a ringed space (X ,O).
D ..: Let O be a sheaf of rings on X .

(a) Let F be a sheaf of abelian groups on X . en F is an O-module sheaf if F (U ) is
an O(U )-module for every openU ⊆ X and the module structure is compatible with
the restriction maps.

(b) Let F be an O-module sheaf. We say F is locally free if there exists an open cover
(Ui)i of X so that F |Ui is a free O|Ui -module. In this case, we call Ui a trivialising
open set and F |Ui a trivialisation of F . If X is connected, it makes sense to speak
of the rank of F . Sometimes we shall refer to a locally free sheaf of rank one as an
invertible sheaf. e reason will become apparent in Remark ...

(c) Let I be a sheaf of O-submodules. en we call I an ideal sheaf .

(d) Let F be a sheaf of rings on X . en F is a sheaf of O-algebras if F (U ) is an O(U )-
algebra for every open U ⊆ X and the structure is compatible with the restriction
maps.

.. Stalks

Consider a point p ∈ X . e open neighbourhoods p ∈ U ⊆ X of p form a directed poset via
the partial ordering “⊆”. Unfortunately, in most topologies the limit of this system does not
exist; it is therefore senseless to speak of a “smallest open neighbourhood of p”. Considering
presheaves, however, we may avoid this shortcoming to some extent: Consider instead the
colimit of F (U ) for all neighbourhoodsU ∋ p. at usually does exist and hence we gain an
understanding of the sheaf on an “infinitesimal neighbourhood of p”. is discussion should
motivate the following definition.
D ..: Let F be a presheaf of abelian groups on X .

(a) For any point p ∈ X , define the stalk of F at p to be

Fp B colim
p∈U open

F (U ).

 Recall that presheaves are contravariant functors.
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(b) An element of Fp may be considered an equivalence class (s ,U ) with U an open
neighbourhood of p and s ∈ F (U ). We call (s ,U ) ∈ Fp a germ of the stalk Fp .

(c) We call the set suppF B {p ∈ X | Fp , 1}, i.e. the set of points at which the stalk
is not trivial, the support of F .

Note that these definitions make sense as the category of abelian groups is bicomplete.

R ..: Given a presheaf F on X , there is an universal way to construct a sheaf, i.e.
there exists a sheaf F + so that for any sheaf morphism F .... G there exists an unique
morphism leing the following diagram commute in the category of presheaves:

..

..F ..F +

. ..G

...

In particular, F + is unique up to canonical isomorphism. Moreover, the association is
functorial in F . Luckily, this construction is very explicit. It can be shown that

F +(U ) =

s : U ....
⨿
p∈U
Fp

∣∣∣∣∣∣∣∣ ∀p : s(p) ∈ Fp and
∃Up ∋ p open, t ∈ F (Up) : tq = s(q) ∀q ∈ Up


for open U ⊆ X is a sheaf and fulfills the desired property [Har, Proposition II..].
We denote this process by sheafification and the sheaf F + as the sheaf associated to the
presheaf F .

Observe that the stalks are unaffected, i.e. F +
p = Fp for all p ∈ X .

E ..: LetG be an abelian group. Consider the presheaf F that associatesG to every
open set of X with the identity map for restriction morphisms. is is in general not a
sheaf. Indeed, ifX is reducible andG is not trivial, pick two open subsetsU ,U ′ ⊆ X with
U ∩ U ′ = ∅ and two distinct elements a,b ∈ G. en a ∈ F (U ) and b ∈ F (U ′) is a
consistent family (onU ∪U ′) that admits no amalgamate.

What is the sheafification of F ? Obviously, for every p, the stalk Fp = G and there exists
an open neighbourhoodUp , F (Up) = G also. erefore, by Remark .., F + is the sheaf
of locally constant functions onX with values inG. Nonetheless, we call F + the constant
sheaf G and denote it by GX or G.

Sheafification will be very helpful for a number of further constructions:

 More precisely, we have (s ,U ) ∼ (s ′,U ′) iff there exists an open U ′′ ⊆ U ∩U ′ with s |U ′′ = s ′ |U ′′ .
 In fact, the functor ·+ is le adjoint to the forgetful functor fromSh to Psh [LAGI, §..].
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R ..: (a) Let η : F .... G be a morphism of sheaves, i.e. η ∈ HomAb(X )(F , G).
en the presheaf kerη(U ) for all open U ⊆ X is in fact a sheaf and we call it
the kernel of η. Note that the presheaf imη(U ) fails to be a sheaf, in general; we
therefore denote the sheaf associated to this presheaf as image of η or imη.

(b) Let O be a sheaf of rings and F and G sheaves of O-modules. Again, the presheaf
F (U ) ⊗O(U ) G(U ) fails to be a sheaf and we therefore define the tensor product
F ⊗O G as the sheaf associated to this presheaf.

e above Remark .. (a) allows us to speak of exact sequences of sheaves: Consider the
sheaves F , G andH on X with morphisms

0 .... F ... ϕ. G ... ψ. H .... 0. (.)

We say this sequence is exact if imϕ = kerψ . Note additionally that we say that a map of
sheaves ϕ : F .... G is injective if its kernel is the zero sheaf and that we say it is surjective
if its image is G. In fact, the injective morphisms are exactly the monomorphisms, while the
surjective morphisms correspond to the epimorphisms in the category of sheaves. Moreover,
Ab(X ) is an abelian category [LAGI, §.].

R ..: In this situation, wemay form the quotient presheafG(U )/F (U ). Again, this
is not a sheaf and we call the sheafification of this presheaf the quotient sheaf denoted
by G/F . In particular, we have G/F � H .

What happens to ϕ at a point p ∈ X? Observe the following diagram:

..

..F ..G

..Fp ..Gp

.

ϕ

...

ϕp

By the universal property of the colimit, the morphism ϕ induces a morphism of the stalks

yielding a functor

·p : Ab(X ) .... Ab.

It turns out that this functor is exact and this will simplify many arguments, as it is oen
much easier to argue on the stalks than on the sheaf as a whole.

 Observe that these definitions correspond to the kernel and image defined in the categoryAb(X ) via universal
mapping properties, cf. [LAGI, §.] or [Vak, Proposition .. and ..I].

 Indeed, the natural transformation ϕ consists of morphisms ϕ(U ) for every open U ⊆ X that are compatible
with the restriction maps. But these morphisms on the open neighbourhoods of p induce a morphism on the
stalk by the universal property of the colimit.

 Do we really want to call this “stalking”?


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P ..: A sequence (.) on X is exact if and only if it is exact on stalks, i.e. the
sequence

0 .... Fp ...
ϕp. Gp ...

ψp. Hp
.... 0

is exact for every p ∈ X .

Consequently, a morphism ϕ : F .... G of sheaves onX is an epimorphism, monomorph-
ism or isomorphism if and only if the corresponding morphism ϕp : Fp .... Gp is an epi-
morphism, monomorphism or isomorphism for every p ∈ X .

Proof: is is discussed in [Vak, §.]. □

Note, however, that Proposition .. requires a morphism of sheaves to exist. A morphism
on stalks does not necessarily glue to give a morphism of sheaves!

.. Sheaves on Different Spaces

Up to this point, we have only considered sheaves on a fixed space X . In practice, however,
it will frequently be necessary to compare sheaves on different spaces. erefore, we must
define how to “transport” a sheaf to another space via a continuous map.
D ..: Let Y be another topological space and f : X .... Y a continuous map.

(a) Let F be a sheaf on X . en we define the direct image sheaf of F via

f∗F (V ) B F (f −1(V )) for every open V ⊆ Y .

Note that, as f is continuous, f −1(V ) is open in X and that f∗(F ) is in fact a sheaf
on Y .

(b) Now let G be a sheaf on Y . For an open set U ⊆ X , f (U ) will, in general, not be
open, so we must once again recede to a limit and sheafify: We define the inverse
image sheaf of G as the sheaf associated to the presheaf

f −1G(U ) B colim
V⊇f (U )
open

G(U ).

(c) Both these relations are functorial, more precisely: the functors f∗ : Sh(X ) .... Sh(Y )
and f −1 : Sh(Y ) .... Sh(X ) are in fact adjoint, i.e. there is a natural bijection

HomSh(X )(F , f −1G) � HomSh(Y )(f∗F , G).

(d) is allows us to define the notion of a morphism of ringed spaces: Consequently,
these consist of a pair (f , f ♯) : (X , OX ) .... (Y , OY )where f : X .... Y is a continuous
map and f ♯ : OY .... f∗OX is a morphism of sheaves.

 is is necessary: consider, for example, any space X and the constant map f , taking X to a point p. A sheaf
G on p is nothing but a groupG and taking the inverse image of G places us in the situation of Example ...

 In both F and G, cf. e.g. [LAGI, §..].
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(e) Consider again the case that (X , OX ) and (Y , OY ) are ringed spaces, f is a morphism
and F and G are OX and OY -modules, respectively. en f∗F is an OY -module

but f −1G, in general, fails to be an OX -module. erefore we define

f ∗G B f −1G ⊗f −1OY OX

and may verify that f∗ and f ∗ are again adjoint functors (between the categories
Mod(X ) andMod(Y )), cf. e.g. [Har, p. ] or [Vak, §.].

E ..: Consider any point p ∈ X together with its embedding ι : p .... X and let F
be any sheaf on X . en ι−1F = Fp , the stalk at p. Indeed, in both cases the limit ranges
over all open neighbourhoods of p in X .

Now endow p with any sheaf F . Note that, by Remark .. a sheaf on a point is just a
groupG with F (p) = G. Observe that ι∗F is the skyscraper sheaf from Example .. (b).
Indeed, for any open U ⊆ X , ι∗F (U ) = G iff p ∈ U and otherwise ι∗F (U ) is the trivial
group.

. Schemes

e ingenuity of algebraic geometry lies in the fact that it allows us to study geometric objects
by “translating” their geometry into algebraic objects. is is best done via the construction
of schemes. To define what a scheme should be, we must first recall the notion of an affine
scheme. A comprehensive introductionmay be found in, e.g. [Har, §II.] or [EGAI, Chapitre
, §–].

.. Affine Schemes

Consider the set SpecR of all prime ideals of the ring R, which we call the spectrum of the
ring R. We will define a topology on it and turn it into a ringed space. We need a slightly
more precise notion, though.
D ..: A locally ringed space consists of a topological spaceX and a sheaf of rings,
O, with the additional condition that for every p ∈ X the stalk Op is a local ring.

A morphism of locally ringed spaces (X , OX ) and (Y ,OY ) consists of a continuous map
f : X .... Y and a morphism of sheaves f ♯ : OY .... f∗OX satisfying the additional prop-
erty that the induced morphism of local rings f ♯p : OY ,f (p) .... f∗OX ,p is a local morphism
for every p ∈ X , i.e. f ♯−1p (mp) = mf (p), wheremp andmf (p) are the corresponding unique
maximal ideals.

 Note that f∗OX is an OY -algebra as f is a morphism of ringed spaces, thereby endowing OX with a canonical
OY -module structure.

 Note that in the cited version, what we call a scheme today was denoted as a “prescheme”. Grothendieck
himself abolished that term in the  reprint; what was then a scheme is now a separated scheme.

 Note that a prime ideal is always a proper ideal, i.e. contains no units.


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R ..: Let X be a locally ringed space and p ∈ X any point. en we denote by
κ(p) B OX ,p/mp the residue field of p. Observe that the above requirement of morphisms
being local implies that they descend to the residue field, i.e. for any morphism f and
q ∈ f −1(p), the field κ(q) is an extension field of κ(p).

If R B k[x1, . . . , xn] is a polynomial ring and p B (p1, . . . ,pn) ∈ kn is a point, recall that f
having a zero at p is equivalent to f lying in the maximal ideal (x1 − p1, . . . , xn − pn) ≤ R.
We use this to motivate the following definition.
D ..: Let R be any (commutative) ring.

(a) We say that f ∈ R has a zero at a point p ∈ SpecR iff f ≡ 0 mod p, i.e. f ∈ p.
Occasionally, we write f (p) = 0 in this case.

(b) For any ideal I ≤ R, we set

V(I) B {p ∈ SpecR | ∀f ∈ I : f (p) = 0} = {p ∈ SpecR | I ⊆ p}.
(c) For any subset Y ⊆ SpecR, we define

I(Y ) B {f ∈ R | f (p) = 0 ∀p ∈ Y} =
∩
p∈Y
p ≤ R.

(d) For any f ∈ R, we denote the complement of V(f ) as D(f ) B SpecR \V(f ).
R ..: Observe that V(0) = SpecR, V(R) = V(1) = ∅, V(I1 · I2) = V(I1) ∪ V(I2)

and V(
∑
Ii) =

∩
V(Ii), permiing us to define a topology on SpecR with closed sets of

the form V(I) for some ideal I . We call this the Zariski topology and, unless otherwise
stated, will always endow SpecR with this topology.

Note thatV(I1) = V(I2) is equivalent to the equality of their radical ideals, i.e.
√
I1 =

√
I2.

Also, we have I(V(I)) =
√
I and V(I(Y )) = Y for any ideal I and subset Y . [EGAI,

Chapitre , Propositions .. and ..].

For Noetherian R, this construction turns SpecR into a Noetherian topological space
[EGAI, Chapitre , Corollaire ..]. Meanwhile, for any ring R the sets D(f ) for f ∈
R form a basis of the topology and SpecR is always a quasi-compact space [EGAI,
Chapitre , Proposition ..].

E ..: (a) Let k be an algebraically closed field. en we define affine space over
k , An

k
, as Speck[x1, . . . , xn]. Note that the closed points are in one-to-one corres-

pondence with the points of kn. Additionally, the zero ideal corresponds to one
non-closed point, which is dense. In analogy to this, we define affine space over R,
AnR , as SpecR[x1, . . . , xn], for any (commutative) ring R.

(b) Consider any ideal I ≤ R. en SpecR/I can be canonically identified with the closed
set V(I) ⊆ SpecR. Indeed, the prime ideals of R/I bijectively correspond to those
containing I in R. In fact, this is a homeomorphism.

 Note that the Zariski topology is Hausdorff only in trivial cases: for example, any prime ideal that is not
maximal corresponds to a non-closed point in the spectrum.
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P ..: SpecR is irreducible as a topological space if and only if R is an integral
domain.

Proof: [EGAI, Chapitre , Proposition ..]. □

Consider the following presheaf of rings on X = SpecR: to each set D(f ), we assign the
localisation of R by f . is is in fact a sheaf, which we call the sheaf of regular functions, O,
cf. [EGAI, Chapitre , éorème ..]. More specifically we write OX if more than one space
is involved and—by abuse of notation—oen also just OR .

is construction turns (SpecR, OR) into a locally ringed space. By abuse of notation, we
will continue speaking of SpecR only, even when considering the locally ringed space.

D ..: Let (X , OX ) be a locally ringed space. enwe say that (X , OX ) is an affine
seme if it is isomorphic—as a locally ringed space—to (SpecR, OR) for some ring R.

R ..: By abuse of notation, we will occasionally only speak of the affine scheme R,
of course referring to the affine scheme (SpecR, OR).

More generally, consider any R-module M . We then obtain a sheaf of O-modules in the
following fashion: to each D(f ), we assign the Rf -module Mf ; correspondingly the stalk
at p is Mp, cf. [EGAI, Chapitre , éorème ..]. We call this the sheaf associated to M , M̃ .
Observe that R̃ = OR and that the association M ... M̃ is functorial.

R ..: Observe that for R-modules M and N , M̃ ⊗ N � M̃ ⊗ Ñ [EGAI, Chapitre ,
Corollaire ..].

Now consider any ring homomorphism ϕ : R .... S . For a prime ideal p ≤ S , ϕ−1(p) ≤ R is
also prime. is allows us to define a map

Specϕ : Spec S .... SpecR, p ... ϕ−1(p).

It turns out that this map is in fact continuous and gives rise to a morphism of locally ringed
spaces. Hence, we may consider Spec as a functor from Rings to affine schemes, AffSch. In
fact, it induces an equivalence of categories, which we capture in the following proposition.

P ..: e association R ... (SpecR, OR) is functorial, associating Specϕ to
any ring homomorphism ϕ. is induces an anti-equivalence of the categories Rings and
AffSch.

Proof: [LAGII, eorem ..]. □

 Note that it suffices to define a presheaf on the basis of a topology, as any open set may be considered as a
limit of open sets of the basis, cf. [EGAI, Chapitre , §.].

 I.e. we localise by the multiplicative system {1, f , f 2 , . . . }. is is not to be confused with the localisation Rp
of R by a prime ideal p, where the multiplicative system is R \ p.

 Recall that localisation of a module is defined via the tensor product: Mf B M ⊗R R f and accordingly for
any prime ideal p.


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.. Schemes

Finally, we are able to define a scheme.
D ..: A locally ringed space (X , OX ) is a seme if there exists a covering (Ui)i

of X so that (Ui , OX |Ui ) is an affine scheme, for every i . We call OX the structure sheaf
of X . By abuse of notation, we tend to write X for the scheme, implicitly assuming the
existence of the structure sheaf OX .

A morphism of semes is a morphism of ringed spaces, giving rise to the category of
schemes,Sch.

In the case of affine schemes, the entire geometric structure was contained in a single ring.
For general schemes, this is no longer the case. Indeed, many interesting schemes will have
only constant global sections of the structure sheaf. However, when studying morphisms
between schemes and affine schemes, it is enough to consider the ring morphisms between
the corresponding global sections. More precisely:
P ..: e Spec functor and the global sections functor form an adjoint pair,

i.e. for any scheme X and any ring R there is a natural bijection

HomSch(X , SpecR) � HomRings(R, Γ(X , OX )).

Proof: [EGAI, Chapitre , Proposition ..]. □

D ..: Let X ,Y be schemes. An open subseme of X consists of an open sub-
space U ⊆ X endowed with the structure sheaf OU = OX |U . An open immersion is a
morphism f : X .... Y inducing an isomorphism of X with an open subscheme of Y .

For closed subschemes we are motivated by Example .. (b): a closed subseme is a
scheme ι : Y .... X with ι the inclusion map and Y a closed subspace of X and the addi-
tional requirement that ι♯ : OX .... ι∗OY is surjective. Consequently, a closed immersion
is an isomorphism onto a closed subscheme of X .

We say that ι : X .... Y is an immersion if it gives an isomorphism of X with an open
subscheme of a closed subscheme of Y .

Oen, it will be useful to look at schemes in a relative seing. is is formalised as follows.
D ..: Let S be a scheme. en we define a seme over S or S-scheme to be a

scheme X with a fixed morphism f : X .... S . We sometimes refer to f as the structure
morphism of X .

Let X and Y be S-schemes. en a morphism of S-schemes is a morphism f : X .... Y
leing the following diagram commute inSch:

..
..X . ..Y

. ..S .

.

f

..


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E ..: (a) Let R and S be k-algebras for some ring k . en the corresponding
affine schemes are k-schemes and the morphisms of k-schemes correspond to the
k-algebra morphisms.

(b) Note that for any scheme X , there is a unique morphism Z .... Γ(OX ,X ) and hence,
by Proposition .., a unique morphism of schemes X .... SpecZ. erefore, we
may consider any scheme as a scheme over Z in a canonical way.

.. Products

Recall that whenever two categories are anti-equivalent, products in one category correspond
to coproducts in the other category [Mac, §§IV. and V.]. By Proposition .., it will thus
be sufficient to look at (fibred) coproducts inRings to find (fibred) products of affine schemes.
We have thereby proven the following result.
P ..: Let X B SpecS and Y B SpecS′ be affine schemes over R. en

X ×R Y = Spec(S ⊗R S′).

In particular, we have X × Y = Spec(S ⊗Z S′).

For general schemes, this construction must be applied locally and these affines must then be
glued together to build the fibred product.
P ..: LetX andY be schemes over a scheme S . en the fibred product X ×SY

exists.

Proof: Take an affine cover SpecAi of S and affine covers of the preimages in X and Y . ese
affine fibre products can be glued [Har, eorem II..]. □

E ..: Note that, in general, the fibred product of schemes will not be homeo-
morphic to the fibred product of the underlying topological spaces. Consider a Galois
extension L/k of degree n. en the inclusion k .... L makes L into a k-scheme and we
have

L ×k L = Spec(L ⊗k L) = SpecLn =
⨿
n

SpecL

by Galois theory and the fact that products correspond to coproducts. us, this fibred
product consists of n distinct points. But the topological fibre product is simply the
product of one point with itself over another point and thus consists of only a single
point.

However, if we limit ourselves to schemes over algebraically closed fields, these problems
do not occur, i.e. the points of the fibred products of schemes correspond to the points of
the fibred products of the topological spaces, cf. [Vak, ..]. is allows us to generalise
many geometric notions via fibre products.
D ..: Let f : X .... Y be a morphism. For any subscheme Y ′ ⊆ Y , we define the

preimage of Y ′ under f as X ×Y Y ′. In particular, we thus obtain the fibre Xp B X ×Y κ(p)
for any point p ∈ Y .

 Recall that the fibred coproduct in Rings is the tensor product, which in turn is the coproduct in the category
of R-algebras, where R is the base ring of the tensor product [Lan, Proposition XVI..].


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R ..: In particular, for anyp ∈ Y , the scheme f −1(p) corresponds to the topological
fibre product, i.e. the fibre as a scheme is homeomorphic to the fibre of the continuous
map f .

For an affine morphism f : SpecA .... SpecB and any closed subscheme V(I) ⊆ B, the
preimage is Spec(A ⊗B B/I) � A/(f ♯(I)), which again corresponds to the preimage of the
map f . See also the discussion in [Vak, §.], in particular [Vak, §..].

Recall that, in the categorySet, given subsets X ,X ′ ⊆ Y , the corresponding fibre product is
the intersection: X ∩ X ′ = X ×Y X ′. is motivates the following definition.

D ..: Let X ,X ′ be subschemes of Y . en we define the intersection seme
X ∩ X ′ as the fibre product X ×Y X ′, obtained via the inclusion morphisms.

.. Projective Schemes

An important class of schemes is formed by projective schemes. As they will provide an
essential environment for our later observations, this is a good time to recall some of their
useful properties. To do this, we must first consider graded algebras.

D ..: Let R be a ring and S an R-algebra. en we say that S is a (Z-)graded
R-algebra if there exists a decomposition

S =
⊕
d∈Z

Si

so that S0 is an R-algebra and the multiplication satisfies Si · Sj ⊆ Si+j .

An element f of Sd is called a homogeneous element and d is called the degree of f .

Let S and S′ be graded R-algebras. A morphism of graded algebras is an R-algebra ho-
momorphism ϕ : S .... S′ that respects the grading, i.e. there exists some n ∈ N so that
ϕ(Sd) ⊆ S′

nd
for all d .

We call S a Z≥0-graded ring if Sd = 0 for d < 0. From now on, we assume all graded
rings to be Z≥0-graded and finitely generated by elements of S1 as an S0-algebra unless
otherwise stated.

Note that S is an S0-algebra and that S+ B
⊕

d>0 Sd is an ideal, which we call the irrel-
evant ideal. Consequently, an ideal I is called a relevant ideal if S+ 1 I .

An ideal in S is called a homogeneous ideal if it is generated by homogeneous elements.

E ..: Consider the polynomial ring S B R[x1, . . . , xn] over any ring R. en S is
a graded R algebra with S0 = R and the standard grading. Note especially that Sd = 0
for d < 0.


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R ..: Note that an ideal I is homogeneous iff for any I ∋ f = ⊕fi , fi ∈ I for all i .
is induces a natural grading on the quotient S/I [Bou, p. ].

Further, observe that p is a homogeneous prime ideal if and only if for any homogeneous
a,b ∈ S , ab ∈ p implies a ∈ p or b ∈ p [Bou, §III.., Proposition ].

Given any multiplicative set T of homogeneous elements, T −1S may be endowed with
a canonical structure of a Z-graded ring. In particular, for any homogeneous f ∈ S , we
obtain a grading on Sf by seing deg f −1 = − deg f [Bou, §II.., Proposition  and
the following remarks].

Now we will define a “projective variant” of the Spec construction. For a graded ring S ,
consider the set

ProjS B {p ≤ S | p is a homogeneous relevant prime ideal}.
R ..: In analogy to Definition .., wemay defineV(I) for any homogeneous ideal

I ⊂ S+, again giving rise to the Zariski topology on Proj S . As before, we set D(f ) B
Proj S \V(f ) for any homogeneous f ∈ S+, yielding a basis of the topology.

By observingD(f ) = Spec(Sf )0, i.e. the spectrum of the subring of degree zero elements

of the homogeneous localisation at f , we may assign a sheaf of rings to Proj S and see
immediately that this endows Proj S with a scheme structure. Details may be found, e.g.,
in [EGAII, Chapitre II, §.] and [EGAII, Chapitre II, ..].

D ..: A scheme of the form Proj S for some finitely generated graded R-algebra
S is called a projective seme over R; a quasi-projective seme over R is a quasi-compact
open subscheme of some projective scheme over R.

In particular, we call PnR B ProjR[x0, . . . , xn] projective R-space. Oen we omit the R if
no confusion can arise and in most cases concerning us, R will be a field.

Given any scheme Y , we define projective space over Y as Y ×Z PnZ. Note that for Y =
SpecR, we have PnY = PnR as expected.

E ..: Projective space PnR comes with a natural cover by affines: observe that

D(xi) = Spec(R[x0, . . . , xn]xi )0 = SpecR
[
x0
xi
, . . . , xnxi

]
= AnR .

In the case that R = k , an algebraically closed field, this allows us to assign coordinates
to the closed points of Pn

k
. Clearly, these correspond to elements of (kn+1 \ {0})/k× . We

denote such a point by (x0 : · · · : xn) where two points are equal if there exists λ ∈ k×
so that

(x′0 : · · · : x′n) = (λx0 : · · · : λxn).

Hence the points of D(xi) correspond to points (p0 : · · · : pn) with pi , 0. In this case,
we may of course fix pi = 1.

 Or put differently: the elements a
b ∈ S f with dega = degb.
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R ..: Given an affine scheme SpecR, all relevant information about the sheaf of
regular functions was contained in the global sections, the ring R. In contrast, O(Pn

k
) = k

for any field k, i.e. the global sections contain no real information about the regular
functions. In particular, this shows that Pn

k
is not affine for n > 0. Similarly, O(ProjS) =

S0 for any (non-trivially) graded ring S .

Unfortunately, in contrast to Proposition .., the Proj construction is not functorial. e
major obstruction is that given a morphism ϕ : S′ .... S of graded rings and a homogeneous
primep ≤ S , the irrelevant ideal of S′may be contained inϕ−1(p), i.e. this does not necessarily
yield a point of Proj S′.

R ..: Let ϕ : S′ .... S be a morphism of graded rings. We set G(ϕ) B Proj S \
V(ϕ(S′+)). en—as in the affine case—ϕ induces a continuous map Specϕ : G(ϕ) ....

Proj S′. us, ifG(ϕ) = ProjS , we obtain a morphism Specϕ : Proj S .... Proj S′ [EGAII,
Chapitre II, Proposition ..]. Note in particular, however, that different morphisms of
rings may induce the same morphism of schemes, cf. also the discussion in [Vak, §.].

E ..: Again, consider any graded ring S . en, by Proposition .., the canon-
ical morphism S0 .... Γ(Proj S , O) induces a morphism Proj S .... Spec S0, making any
projective scheme Proj S a Spec S0-scheme.

Despite these limitations, we observe some similarities to Proposition ...

R ..: Let S and T be finitely generated graded R-algebras. en we may describe
the coproduct in the category of graded R-algebras by

S ⊗R T =
⊕

(S ⊗R T )i .

Note that the grading is given by (S ⊗ T )i =
⊕

Sλ ⊗ Tµ where the sum is taken over all
λ, µ satisfying µ + λ = i [Bou, §II..] and [Bou, §III.., Proposition ].

is helps us formulate a practical analogy to the affine situation.

P ..: Let S ,T be finitely generated graded R-algebras. en

Proj S ×R ProjT � Proj(S ⊗R T ).

Proof: emorphism is given in, e.g., [Stacks, Lemma .. (WD)] and it is clear from the
proof that the image is Proj(S ⊗RT ). Alternatively, as Proj is a special case of a projective
bundle, this is a special case of the discussion in [EGAII, Chapitre II, §.]. A detailed
construction can also be found in [Vak, §.]. □

 Indeed, consider any f ∈ O(Pnk). en we may restrict f to, say, f |D(x i) C д and f |D(x j) C h where д is
a polynomial in x0

x i
, . . . , xnx i and h a polynomial in x0

x j
, . . . , xnx j and these must coincide on D(xi) ∩D(x j) =

D(xix j). But xi appears in д with only non-positive and in h with only non-negative exponents (the same
holds for x j , respectively), hence it may appear only with exponent 0. erefore д must already be constant
onD(xi) and h onD(x j). As this works for any i and j, f must be globally constant, cf. also [Vak, ..E] or
[GW, Proposition .].
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E ..: In particular, this provides a closed embedding of PnR × PmR into Pmn+m+n
R

and it is known as the Segre embedding. is morphism is given locally, i.e. as a map
D(xi) × D(yj) .... D(zij) via

R
[
z00
zi j
, z01zi j
. . . , znmzi j

]
.... R

[
x0
xi
, . . . , xnxi

]
⊗ R

[
y0
y j
, . . . ,

ym
y j

]
zab
zi j

... xa
xi
⊗ yb

y j
.

Choosing coordinates, this amounts to(
(x0 : · · · : xn), (y0 : · · · : ym)

)
... (x0y0 : x0y1 : · · · : xnym).

See also [Vak, §.].

. Geometric Aspects

We now introduce a series of definitions that will allow us to speak precisely of several geo-
metric aspects of a scheme. We loosely follow [Har, §II. and §II.].
D ..: Let X be a scheme, then we call X irreducible if the underlying topological

space is irreducible. We call X reduced if OX (U ) is reduced for every openU ⊆ X .

While being irreducible seems independent of the structure sheaf, we can provide a sufficient
algebraical condition.
R ..: X is irreducible and reduced if and only if OX (U ) is an integral domain for

every open U ⊆ X . In this case, we call X integral.
Proof: LetX be integral. Any integral domain admits no nilpotent elements, i.e.X is reduced.

Let U ⊆ X be a reducible set. en we find disjoint open non-empty subsets U1,U2 ⊂ U
and O(U1 ⊔U2) = O(U1) × O(U2) is no integral domain.

Conversely, letX be irreducible and reduced and assume, for some openU , we find r , s ∈
O(U ) with rs = 0. As O(U ) is reduced, this implies r , s . Hence, we have open sets

D(r) ∩D(s) = D(rs) = D(0) = ∅ and as U is irreducible, one of these must be empty,
i.e. r or s must be nilpotent. But as the ring is reduced, there are no non-zero nilpotent
elements; therefore there exist no zero divisors. □

E ..: For any integral domain R, AnR and PnR are integral.

We now have the terminology to speak of dimension.
D ..: Let X be a scheme. e dimension of X , dimX , is the dimension of X

as a topological space, i.e. the supremum of lengths of ascending chains of irreducible
subspaces. In particular, dim SpecR = dimR, i.e. the Krull dimension.

To obtain the correct notion of codimension, we should restrict ourselves to irreducible
subschemes. Let Y ⊂ X be irreducible. en the codimension of Y in X is the supremum
of lengths of chains starting with Y . In particular, in SpecR, the codimension of a prime
p is the height of p.

 For any r ∈ O(U ) we may define D(r) by taking an affine cover Ui B SpecRi of U and seing D(r) to the
union of D(r |Ui ), an open set in U . In other words, D(r) consists of those points where the corresponding
germ is invertible in the stalk.
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E ..: For any field k , the dimension of An
k
and Pn

k
are both n.

R ..: Observe that the preimage of an affine set is in general not affine. We call
a morphism f : X .... Y an affine morphism if f −1(V ) is affine for every affine V ⊆ Y .
Note that it suffices to check this condition for one fixed open affine cover of Y [GW,
Proposition and Definition .].

Now consider themorphism SpecQ .... SpecQ. Geometrically, this fibre consists only of one
point, but algebraically, it essentially contains the absolute Galois group of Q. In a geometric
seing, it is therefore oen useful to require additional finiteness conditions for morphisms
to minimise unexpected behaviour on the fibres.
D ..: Let f : X .... Y be a morphism. For any affine cover SpecAi of Y and any

affine cover SpecBij of f −1(SpecAi), f induces an Ai-algebra structure on each Bij .

We call f locally of finite type if every Bij may be finitely generated as an Ai-algebra and
of finite type if for every i finitely many j’s suffice, i.e. every f −1(SpecAi) possesses a
finite cover by affines. We call f finite if every f −1(SpecAi) is affine and may be finitely
generated as an Ai-module. Note that this implies that any fibre over a point is finite.

R ..: Fortunately, in the above definitions it is again equivalent to require that the
conditions hold for one particular or any cover, cf. [GW, Proposition and Definition
. and .].

Note that in footnote  we already observed that the Zariski topology is hardly ever Haus-
dorff. e correct analogy of this criterion is checking if the “diagonal embedding” is closed,
cf. also the discussion in [EH, §III..].
D ..: Let f : X .... S be a morphism of schemes and consider the associated

fibred product X ×S X . en we obtain a morphism ∆: X .... X ×S X induced by the
universal mapping property via

..

. ..X .

..X ..X ×S X ..X .

. id.id ...∆

We call f separated if ∆ is a closed immersion and we call the scheme X separated if
f : X .... SpecZ is separated.

Another topological notion we would like to have is that of compactness. However, as dis-
cussed, the Zariski topology is far from Hausdorff but almost always quasicompact. Intu-
itively, compactness should be something An does not fulfill but Pn does. It turns out that
properness is the property of compact spaces that offers a useful generalisation into this set-
ting.

 Indeed, even for a non-Noetherian ringR the space SpecR is quasicompact: consider any open cover SpecR =∪
Ui . As the D(r) form a basis of the topology, we may assume Ui = D(fi) for fi ∈ R. Hence, we have

R =
⊕

(fi) ∋ 1, i.e. 1 may be expressed as a finite linear combination of the fi . In other words, these finitely
many D(fi) suffice for covering SpecR.


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D ..: Let f : X .... Y be a morphism of schemes. We call f closed if closed sets
are mapped to closed sets. We call f proper if it is separated and universally closed, i.e.
for any base change Y ′ .... Y the pullback f ′ : X ×Y Y ′ .... Y ′ of f is also closed.

We say that f is projective if it factors via PnY by a closed immersion and the canonical
projection; f is quasi-projective if the same holds for an open immersion into PnY followed
by a projective morphism.

R ..: Amorphism of affine schemes is always separated; in particular,An is always
separated. Open and closed immersions are separated and closed immersions are proper;
both are stable under composition and base change. As promised, An

k
is not proper over

Speck but for any graded ring S , Proj S is proper and projective over Spec S0. Further-
more, any projectivemorphism of Noetherian schemes is proper and any quasi-projective
morphism of Noetherian schemes is of finite type and separated. See [Har, §II.].

Two more topological notions will be important in the next section. e definitions might
seem slightly peculiar but they will turn out to be just the right conditions for a morphism
to behave “nicely” when transfering quasi-coherent sheaves along it.

Recall that a scheme is quasi-compact if every open cover contains a finite subcover. A scheme
is quasi-separated if the intersection of two quasi-compact open sets is again quasi-compact.
We now state relative versions of these conditions.
D ..: Let f : X .... Y be a morphism of schemes. We call f quasi-compact if

the preimage of every open affine subset of Y is again quasi-compact. Similarly, f is
quasi-separated if the pre-image of every open affine set is a quasi-separated scheme.
In particular, the absolute conditions again amount to the relative conditions over Y =
SpecZ.

R ..: As above, it suffices to check both conditions on a fixed open affine cover of
Y [Vak, ..C]. Note that if X is Noetherian (i.e. all cases of concern to us), any such f
will be quasi-separated and quasi-compact [Vak, ..B].

. Projective Subschemes and Coherent Sheaves

We briefly collect some important results about the classification of closed subschemes and
several important classes of sheaves.

.. Closed Subschemes

Recall the notion of a closed ι : Y .... X subscheme (Definition ..). Denote byI the kernel
of the sheaf morphism ι♯. By Remark .. (a), this gives rise to an exact sequence

0 .... I .... OX .... ι∗OY .... 0 (.)

of sheaves on X . We call I the ideal sheaf of Y . Observe that for any open U ⊆ X , I(U ) is
an ideal in O(U ). In particular, if X and Y are affine, we have Y = V(I) for some ideal and in
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this case I = Ĩ . We will now generalise these concepts to obtain a similar result for general
schemes.
D ..: (a) Let X be a Noetherian scheme, F an OX -module. en F is called

quasi-coherent if we can cover X by open affine Ui = SpecAi so that F |Ui � M̃i for
some Ai-module Mi .

(b) LetM be an R-module. We callM coherent ifM is finitely generated and for any map⊕
n R

.... M , the kernel is finitely generated. Consequently, we call F coherent if
the Mi are coherent modules.

R ..: Note that F is (quasi-)coherent if the above conditions hold for any cover of
X by affine open sets. See, for example, the discussion in [Vak, §.], in particular
[Vak, eorem .. and ..].

E ..: Not every OX -module is quasi-coherent. Indeed, quasi-coherence implies
that all local information is contained in the global sections over an affine set. is can
fail dramatically. Consider, for example, a discrete valuation ring R with maximal ideal
m and quotient field K . en the open sets of X B SpecR are (0) and X , while m is the
only closed point. Define F via F (0) = K and F (X ) = 0. As the only covers are by the
points themselves, F is trivially a sheaf and an OX -module (note that OX (0) = R(0) = K ).
But F is not (quasi-)coherent, as this would imply F = 0̃ but F(0) = K while 0 = 0̃0.

Note that quasi-coherent and coherent sheaves form abelian categoriesQCoh(X ) and Coh(X )
[Vak, §. and ..].
R ..: Let X = SpecR be an affine scheme. en the functor ·̃ from the category of

R-modules to QCoh(X ) is exact and even gives rise to an equivalence of categories. e
inverse is given by the global sections functor. In particular, note that in this case the
global sections functor is exact.

For Noetherian X , the same functors induce an equivalence of the category of finitely
generated R-modules and Coh(X ). See [Har, Corollary II.. and Proposition II..].

In Example .. (b) we observed that ideals of a ring give rise to closed subschemes of the cor-
responding affine scheme; at the beginning of this section, we noted that closed subschemes
give rise to ideal sheaves. We now have the language to make this relationship more precise.
P ..: Let X be a scheme. en the quasi-coherent ideal sheaves are in one-to-

one correspondence to the closed subschemes ofX . Concretely, the support of the sheaf
OX /I is a closed subscheme determined uniquely by an ideal sheaf I.

If X is Noetherian, we may replace “quasi-coherent” by “coherent”.

Proof: [Har, Proposition II..]. □

R ..: Observe that combining this with Remark .. yields a one-to-one corres-
pondence of closed subschemes of SpecR to ideals of R. In particular, note that any
closed subscheme of an affine scheme is affine.

 Strange things may happen if X is not Noetherian, cf. [Vak, §.].
 at is the points of X where the stalk is not zero.
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.. Twisted Sheaves

To obtain a similar result for projective schemes, we want an analogy of Remark .. for
coherent sheaves on projective space. To achieve this, we must replace R-modules by graded
S-modules for some graded ring S .
D ..: Let S be a graded ring and M B

⊕
i∈ZMi a graded abelian group with an

additional S-module structure, satisfying Si · Mj ⊆ Mi+j for any i , j. en we call M a
graded S-module.

For some integer l , we define the twist of M by l to be the graded module M(l) with
grading M(l)d B Md+l . Observe in particular that M(l)0 = Ml .

Next we define the sheaf associated to M as M̃ |D(f ) B (̃Mf )0, i.e. sheaf associated to the
module of degree 0 elements in Mf , for any homogeneous f ∈ S+. Note that (Mf )0 is in
fact a OProj S(D(f )) = (Sf )0-module and that OProj S = S̃ . In particular, M̃p = Mp for any
p ∈ Proj S . Details may be found in, e.g., [Vak, §.].

Note that ·̃ is again an exact functor. However, in contrast to Remark .., it does not (yet)
give rise to an equivalence of categories. Achieving this is quite a bit more subtle.

D ..: Let n be some integer. en we define OX (n) B S̃(n) forX B ProjS . Now,
given any OX -module sheaf F , we may define the twisted sheaf F (n) B F ⊗O O(n).

R ..: Observe that, for any graded S-module M and any n ∈ Z, we have M̃(n) �
M̃(n). In particular, this implies O(m)⊗O(n) � O(m+n) for anym,n. Note, in addition,
that any O(n) is locally free of rank 1 [Har, Proposition II..].

E ..: Recall that in Remark .. (b) we defined the tensor sheaf as the sheaf
associated to the tensor presheaf. Without any effort, we can now show that this is in
fact necessary: consider O(−1) and O(1) on Pn

k
. en Γ(Pn , O(1)) = k[x0, . . . , xn]1, i.e.

it consists of all degree 1 polynomials, while—by the same argument—Γ(Pn , O(−1)) = 0.
But by Remark .., O(−1) ⊗O O(1) = O(0) = O and Γ(Pn , O) = k by Remark ..
while Γ(Pn , O(1)) ⊗k Γ(Pn , O(−1)) = 0.

Via twisting, we may now assign a graded module to any sheaf. We follow [Har, p. ].
D ..: Let X = Proj S for some graded ring S and let F be an OX -module. We

define the graded S-module associated to F to be

Γ∗(F ) B
⊕
n∈Z

Γ(X , F (n)).

Note that Γ∗(F ) is in fact a graded S-module: consider any s ∈ Sn and t ∈ Γ(X , F (m)). en
we may consider s as an element of Γ(X , O(n)) � Sn and define s · t B s ⊗ t ∈ O(n) ⊗ F (m).
But, by definition, this yields a global section of F (m + n), i.e. our multiplication respects
the grading.
E ..: Let S = k[x0, . . . , xn]. en Γ∗(Proj S , O) � S .

It was a fundamental observation by Serre [Ser, § and §] that this construction “re-
trieves” the module that induced a quasi-coherent sheaf.
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P ..: LetX = Proj S for some graded ring S and let F be some quasi-coherent
sheaf on X . en Γ̃∗(F ) is naturally isomorphic to F .

Proof: For a detailed discussion, see [Vak, §.] or [Har, Proposition II..]. □

Finally, this lets us state the correspondence between projective subschemes and ideals.
P ..: (a) Any closed subscheme Y ⊆ PnR is of the form Proj

(
R[x0, . . . , xn]/I

)
for some homogeneous ideal I .

(b) A scheme over SpecR is projective if and only if it is isomorphic to Proj S for some
graded ring S with S0 = R.

Proof: [Har, Corollary II..]. □

.. Pulling Back and Pushing Forward

Recall that in Definition .. we observed the relationship between sheaves on different
spaces. We now want to briefly examine what we can say in the special case of coherent and
quasi-coherent sheaves. We begin by noting an obvious obstruction.
E ..: Consider f : A1

k
.... Speck induced by the inclusion k .... k[t ]. en OA1

is a coherent sheaf but as k[t ] is no finitely generated k-module, f∗OA1 is not coherent.
Clearly, being finite is a necessary requirement for a morphism to preserve coherence.

In most cases, however, quasi-coherent sheaves behave well.
P ..: Let f : X .... Y be a morphism of schemes.

(a) If f is quasi-compact and quasi-separated, f∗ : QCoh(X ) .... QCoh(Y ) is functorial.

(b) f ∗ : QCoh(Y ) .... QCoh(X ) is functorial.

(c) If f is quasi-compact and quasi-separated, f ∗ and f∗ are an adjoint pair.

(d) f ∗OY � OX .

(e) If f is a finite morphism of Noetherian schemes, f∗ : Coh(X ) .... Coh(Y ) is functorial.

() If X and Y are Noetherian, f ∗ : Coh(Y ) .... Coh(X ) is functorial.

(g) Let G ∈ QCoh(Y ). If G is locally free of rank r then so is f ∗G. In particular, pullbacks
of invertible sheaves are invertible and preimages of trivialising neighbourhoods
trivialise the pullback.

(h) (f ∗G)p � Gp ⊗OY ,f (p) OX ,p for any G ∈ QCoh(Y ) and p ∈ Y .

(i) f ∗(G ⊗OY G′) � f ∗G ⊗OX f ∗G′ for any G , G′ ∈ QCoh(Y ).
Proof: See, e.g. [Vak, §§.–] or [Har, Proposition II..]. □

Observe that the adjoint property yields a natural map G .... f∗f ∗G [Mac, p. ]. In other
words, the sections of G(U ) give rise to sections of f ∗G(f −1(U )). In this context, we speak
of pulling ba sections and, by abuse of notation, given a section s ∈ G(U ) we write f ∗(s)
for the corresponding section of f ∗G(f −1(U )).


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E ..: In particular, if X = SpecA and Y = SpecB, we can be very concrete. Any
quasi-coherent sheaf F onX is of the form M̃ for someA-moduleM . e induced morph-
ism B .... A allows us to consider M as a B-module which we denote by BM . We then
have

f∗M̃ = B̃M .

Similarly, let N be any B-module. en we have

f ∗Ñ � Ñ ⊗B A.

See, e.g. [Har, Proposition II..] or [Vak, .A and ..].

Note that the pulling back of coherent sheaves is geometrically a very natural notion. For
example, given a map f : X .... Pn, by Proposition .., f ∗OPn(1) is an invertible sheaf on
X . is will be studied in section ...
E ..: Consider first the embedding ι : p C Y .... X for some p ∈ X . Recall that

ι−1F = Fp for any sheaf F on X . Now let F be a quasi-coherent sheaf on X . en

ι∗F = ι−1F ⊗ι−1OX OY = Fp ⊗OX ,p κ(p) C F |p ,

as the structure sheaf on p is the constant sheaf κ(p). We call this the fibre of F over p.

Now we replace p by some open subset ι : U .... X . en

ι∗F = ι−1F ⊗ι−1OX OU = F |U ⊗OU OU = F |U

as ι is an open map. See also [Vak, §.].

.. Global Constructions

If S is an R-algebra, Spec S is a SpecR-scheme and Proposition .. tells us that all affine
SpecR-schemes arise in this way. Wewant to “globalise” this to describe any affinemorphism.
e idea is to replace all rings by sheaves in the Spec and Proj constructions.

Given a quasi-coherent sheaf F of OX -algebras, we may glue the SpecF (U ) for affineU ⊆ X
to obtain an X -scheme SpecF . is is sometimes called global Spec. Note that it comes
with a canonical affine morphism SpecF .... X (as every F (U ) is an O(U )-algebra). Con-
versely, given any affine morphism f : Y .... X , we obtain a quasi-coherent sheaf f∗OY of
OX -algebras and Y � Spec f∗OY . In other words, the functor F ... SpecF induces an
anti-equivalence of the category of quasi-coherent OX -algebras and the category of affine X -
schemes. e quasi-inverse is given by associating f∗OY to any affine morphism f : Y .... X .
See [GW, Proposition . and Corollary .] or [Vak, §.].

In particular, locally, SpecF .... X is of the form Spec S .... SpecR for some R-algebra S .

A similar construction works with Proj: given a graded quasi-coherent OX -algebra F B⊕
Fi , we may glue the schemes ProjF (U ) (for all affine U ⊆ X ) to obtain an X -scheme

 Note that affine implies quasi-compact and quasi-separated.
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ProjF that we call global Proj. e structure morphism π : ProjF .... X is always separ-
ated and under certain benign conditions also projective [Har, Proposition II..]. Unfor-
tunately, in this case we are unable to state such nice universal property as we had for global
Spec. See also [Vak, Remark ..].
E ..: Observe that, by definition, for any affine schemeX , SpecOX = X while for

any projective scheme X , ProjOX = X .

Note that, in analogy to Definition .., we obtain an exact ·̃-functor from the category of
graded quasi-coherent F -modules into the category of quasi-coherent OProjF -modules and
may define the twisting operation in the same manner. In particular, we have

OProjF (n) B F̃ (n).

Note that the results of section ..may be globalisedwith lile effort [GW,eorem .].
In particular, OProjF (n) is again invertible for alln andwe obtain F0-module homomorphisms

αn : Fn .... π∗
(
OProjF (n)

)
. (.)

An important application of these global constructions is that they allow us to define the
“correct” analogue of topological vector bundles in the world of schemes, cf. [GW, §.].

Recall that there is a universal construction to turn an arbitrary module into a ring: for any
R-module M , we define the tensor algebra T (M) by seing

T0(M) B R, Tn(M) B M⊗n , and T (M) B
⊕

Tn(M).

T (M) comes with a natural structure of a graded (non-commutative!) R-algebra by defining
the multiplication

Tn(M) × Tm(M) ∋ (tn , tm) ... tn ⊗ tm ∈ Tn+m(M).

We define the symmetric algebra SymR M as the quotient of T (M) by the ideal generated by
(homogeneous) elements of the form a ⊗ b − b ⊗ a (a ∈ Tn(M), b ∈ Tm(M)). Observe that
this yields a (commutative) graded R-algebra and that any R-morphism from M into some
commutative R-algebra factors uniquely through SymR M . Conversely, SymR M is uniquely
determined by this universal mapping property.
E ..: In particular, if M = Rd , SymR M is the polynomial ring in d variables.

e universal property implies that Sym commutes with tensor products, i.e. for any morph-
ism A .... B there is an isomorphism

SymA(M) ⊗A B ....∼ SymB(M ⊗A B). (.)

Now we imitate this construction for sheaves. Let F be some sheaf of OX -modules. en
we define Sym(F ) as the sheaf associated to the presheaf U ... SymO(U ) F (U ). is is a
sheaf of graded OX -algebras and (.) shows that any quasi-coherent F gives rise to a quasi-
coherent OX -algebra Sym(F ) and for any f : Y .... X we have f ∗ Sym(F ) � Sym(f ∗F ).


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Moreover, if f : X .... Y andX is quasi-separated and quasi-compact (e.g. ifX is Noetherian),
f∗ Sym(F ) is a quasi-coherent OY -algebra. See also [GW, §.].

Given a quasi-coherent OX -module F , we call V(F ) B Spec Sym(F ) the quasi-coherent
bundle defined by F . Note that this association is functorial [GW, §.]. As Sym(F ) is
a graded sheaf of OX -algebras, we may define P(F ) B Proj Sym(F ), the projective bundle
associated to F .

Note that for any invertible sheaf L on X , P(F ) � P(F ⊗ L) [GW, Lemma .]. In
particular, we have P(L) � P(OX ) = S .
E ..: Consider X = Speck and let F be the sheaf associated to kn. en V(F ) =
An
k
and P(F ) = Pn

k
by Example ...

Observe that in this case, as Sym1 F = F , (.) specialises to

α1 : F .... π∗
(
OPF (1)

)
and the adjoint property of ·∗ then gives us a natural morphism of OPF -modules

α ♯1 : π
∗F .... OPF (1).

.. Ample and Very Ample Sheaves

We end this section by introducing some special classes of invertible sheaves that will be very
important to us later on. We follow [Har, §II.].

Recall that if S is a graded ring, we required S to be generated by S1 as an S0-algebra. Given
a scheme Proj S , this implies that we are able to construct the entire sheaf O given only the
twisted sheaf O(1) (in fact, knowing the global sections of O(1) will suffice). is motivates
the following definition.
D ..: Given any scheme Y , define the twisting sheaf O(1) on PnY as д∗(O(1)),

where д : PnY
.... PnZ.

Now let X be any scheme over Y and L an invertible sheaf on X . We say that L is very
ample relative to Y if there is an immersion ι : X .... PnY for some n so that ι∗(O(1)) � L.

Very ample sheaves will be an important tool in embedding varieties into projective spaces.
For many purposes, it will be convenient, however, to replace this notion by an absolute one.
Before we may do so, we must introduce some finiteness conditions.
D ..: Let X be a scheme, F an O-module. en we say that F is globally

generated if a surjection
⊕
O .... F exists. F is finitely globally generated if a finite

number of summands suffice.

E ..: Let F be a quasi-coherent scheme on some affine scheme SpecR. en F
is globally generated. Indeed, F = M̃ for some R-module M . Picking generators of M ,
we obtain a surjection

⊕
R .... M and this induces a morphism of sheaves.

e following important result is again due to Serre:
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R .. ([Har, eorem II..]): Let X be a projective scheme over a Noetherian
ring R, let O(1) be a very ample invertible sheaf onX and let F be a coherent OX -module.
en there exists an integer n0 so that for all n ≥ n0, the sheaf F (n) can be generated by
a finite number of global sections.

is yields a useful generalisation of “very ample”.
D ..: Let X be a Noetherian scheme. We call an invertible sheaf L on X ample

if, for every coherent F on X , we find some integer n0 so that for every n ≥ n0 the sheaf
F ⊗ L⊗n is generated by its global sections.

In particular, we see that any very ample sheaf is ample. e relationship, however, is more
intricate.
P .. ([Har, Proposition II..]): LetL be an invertible sheaf on aNoetherian

scheme X . en the following conditions are equivalent:

(a) L is ample;

(b) L⊗m is ample for allm > 0; and

(c) L⊗m is ample for somem > 0.

. Cohomology of Sheaves

Recall the global sections functor from Remark ... Γ is additive and, by Remark .. (a),
preserves kernels, i.e. is le exact but in general not right exact.
E ..: Let X = P1

k
for some algebraically closed k and let Y be the disjoint union

of two closed points p ,q of X . en Y is a closed subscheme of X via the canonical
embedding ι and—in analogy to (.)—we obtain an exact sequence

0 .... I .... OP1 .... ι∗OY .... 0

for the ideal sheaf I of Y . Now, taking global sections, we observe that Γ(P1, OP1) = k
by Remark ... But Γ(P1, ι∗OY ) = Γ(Y , OY ) = k2 as the sheaf ι∗OY is zero outside of
Y and OY (Y ) = OY (p) × OY (q) = k2. Hence the k-linear map

Γ(P1,OP1) .... Γ(Y , OY )

is not surjective, cf. [Har, Exercise II..].

e idea of sheaf cohomology is to now take the tools offered by homological algebra to
carefully examine to what extent a functor deviates from being exact.

Concretely, consider any exact sequence of sheaves

0 .... F ′ .... F .... F ′′ .... 0.

en F /F ′ � F ′′ as sheaves. Recall, however, that the quotient sheaf was the sheafification
of the quotient presheaf. In a sense, the cohomology will measure to what extent the quotient
presheaf deviates from the quotient sheaf.

is turns out to be an indispensable element in the study of the geometry of schemes.
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.. Derived Functors

e approach we choose may be traced back to Alexander Grothendieck’s famous “Tôhoku”
paper, [Tôhoku, Chapitre II, §–]. A quick overview of the facts and results most important
for algebraic geometry may be found in [Har, §III.–]. A greater emphasis is placed on
the relationship to “classical” topological (co)homology theories in [Wei], while a rigorous
discussion of the relevant algebraic results may be found in, e.g. [Lan, Chapter XX].

First, we must introduce some terminology and recall some general results from homological
algebra. In the following, let A and B be abelian categories.
D ..: We call a sequence

· · · .... F i ...
d i. F i+1 ...d

i+1
. F i+2 .... · · ·

a complex if di+1 ◦di = 0 for every i . A complex is said to be exact if imdi = kerdi+1 for
every i . We define the i-th cohomology object of the complexC asH i(C) B kerdi/imdi+1.

Hence, we may picture the cohomology as measuring the “exactness” of a complex.
R ..: Note that the H i are functorial and that any short exact sequence of com-

plexes gives rise to a long exact sequence of cohomology groups. See for example [Lan,
§XX.].

In order to carry these notions into the world of sheaves, it will be helpful to generalise the
described situation.
D ..: We call F a (covariant cohomological) δ -functor fromA to B if F consists

of a family {Fn}n≥0 of covariant additive functors and, for every short exact sequence

0 .... M′ .... M .... M′′ .... 0 (.)

inA, a δn : Fn(M′′) .... Fn+1(M′), naturally transforming (.) into a long exact sequence.
More precisely: F must satisfy

(∆1) the long sequence

0 .... F 0(M′) .... F 0(M) .... F 0(M′′) ...
δ1. F 1(M′) .... · · · (.)

is exact; and

(∆2) for any two short exact sequences

..
..0 ..M′′ ..M ..M′ ..0

..0 ..N ′′ ..N ..N ′ ..0

...........

 An introduction to abelian categories may be found, e.g., in [Tôhoku, Chapitre I] or [Vak, §.].
 Recall that a functor F : A .... B is additive if the induced Hom(A, B) .... Hom(F (A), F (B)) is a group

homomorphism for any objects A, B.
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and every n, we require that the following diagram commutes:

..
..Fn(M′′) ..Fn+1(M′)

..Fn(N ′′) ..Fn+1(N ′).

..

δ n

..
δ n

To summarise, we may imagine F as being a functor from the category of short exact
sequences in A into the category of long exact sequences in B.

In complete analogy, we may of course define contravariant δ -functors. Note that in the
contravariant case, all arrows in (.) must be reversed.
R ..: Observe that F 0 is always le exact.

D ..: We call a δ -functor universal if for any other δ -functorG and any natural
transformation f0 : F

0 .... G0 there exist unique natural transformations fn : Fn .... Gn

extending f0 that are compatible with the δn.

R ..: Given any two universal δ -functors F and G with F 0 � G0, the universality
yields that F � G.

We now introduce an important criterion for a δ -functor to be universal.
D ..: Let F be any additive functor. en we call F erasable if, given any object

A in A, there exists some monomorphism u : A .... M satisfying F (u) = 0.

P ..: Let F be any covariant δ -functor. If the Fn are erasable for n > 0 then F
is universal.

Proof: [Lan, eorem XX..]. □

Next, we study an example that forms the prime reason of our interest in δ -functors.

First, recall that an object A is called injective if any morphism B .... A may be extended via
any monomorphism B .... C , i.e. for any B, C , the following diagram commutes:

..
..0 ..B ..C

. ..A. .

.... ∃

e dual notion is that of a projective object. See, e.g., [Lan, §XX.] for an introduction to
injective and projective objects.

In particular, if F is an erasable functor for which theM fromDefinition .. can be chosen as
being injective or projective, we say that F is erasable by injectives or projecties, respectively.

We say that a category has enough injectives (respectively, enough projectives), if any object
may be embedded into an injective (respectively, surjects into some projective) object. e
categories Ab, R-Mod, Ab(X ) andMod(X ) all have enough injectives, cf. e.g. [Lan, eorem
XX..], [Vak, §..] and [Har, §III.].

 Oen this is also referred to as effaceable, but see the “linguistic note” in [Lan, p. ].
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D ..: Let A be any object of A. en an injective resolution of A is an exact
sequence

0 .... A .... I0 .... I1 .... · · ·

where all I i are injective objects in A.

R ..: Observe that we can construct an injective resolution for any object of a
category that has enough injectives. Indeed, by assumption, given any A, we find an
injective object A .... I0. e same holds for the object I0/A: we find an injective object
I0/A .... I1. Inductively, this yields an injective resolution as may be observed in the
following diagram.

..

..0 ..A ..I0 . ..I1 ..· · ·

. . . ..I0/A . .

. . ..0 . ..0 .

........

LetC be a complex inA. Given any functor F : A .... B, F (C) yields a complex in B as any
functor of abelian categories respects the zero morphism. However, ifC is an exact complex,
F (C) will, in general, not be exact. is motivates the following definition.
D ..: LetA have enough injectives and let F : A .... B be a covariant le exact

functor. For each object of A, we fix an injective resolution. en we define the right
derived functors of F via RiF (A) B H i(F (I)) where I is the chosen resolution of A.

E ..: F is an exact functor if and only if RiF (A) = 0 for every A and every i > 0,
as the image of the injective resolutions remain exact in this case.

Note that the derived functors are independent of the choice of resolution: given a second
injective resolution I ′, we have H i(F (I)) � H i(F (I ′)) for every i and the isomorphism is in
fact unique [Lan, p. ].
P ..: Let A be a category with enough injectives and let F be any covariant

le exact functor. en the derived functors RiF form a universal δ -functor with F � R0F .
Conversely, if Gi is a universal δ -functor then G0 is le exact and Gi � RiG0 for all i .

Proof: e fact that the derived functors are a δ -functor may be found in, e.g., [Lan, e-
orem XX..]. e main ingredient is showing that RnF (I) = 0 for any F and any in-
jective I and any n > 0. en Proposition .. implies that the derived functor is a
universal δ -functor. e second part follows immediately from the definition of univer-
sal δ -functors. □

In particular, any derivation of a le exact functor transforms short exact sequences into long
exact sequences.

Finally, we are able to define sheaf cohomology.
D ..: Consider the global sections functor Γ(X , −) : Ab(X ) .... Ab. We set

Hi(X , −) B RiΓ(X , −) and call these the cohomology functors. For any sheaf F ∈ Ab(X ),
we call Hi(X , F ) the i-th cohomology group of F .
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In practice, however, injective resolutions are no fun to calculate. Hence, we finish this ex-
cursion into homological algebra by briefly describing sheaves that are sometimes easier to
calculate than injective sheaves but work just as well for describing cohomology.
D ..: Let F be a sheaf. en we call F flasque if all restriction morphisms are

surjective.

In other words, if F is flasque any section of F (U ) may be extended to any largerU ′ ⊇ U .

Flasque sheaves have a series of convenient properties. For example, if F is any flasque sheaf,
Hi(X , F ) = 0 for i > 0 [Har, Proposition III..]. In general, given any covariant le exact
functor F , we call an object A (F -)acyclic if RiF (A) = 0 for all i > 0.
P ..: Let F be a le exact covariant functor and A an object with an acyclic

resolution B, i.e. there exist objects Bi so that

0 .... A .... B1 .... B2 .... · · ·

is exact and the Bi are acyclic. en there exist unique isomorphismsH i(F (B)) � RiF (A).

Proof: Again, this is an immediate consequence of Proposition ... See, e.g., [Wei, p. ]
or [Lan, eorem XX..]. □

R ..: Note that if X is a Noetherian scheme, any quasi-coherent sheaf on X may
be embedded into a flasque sheaf [Har, Corollary III..]. Just as in Remark .., we
may construct a resolution of flasque sheaves for any sheaf and, by Proposition .., we
thus obtain cohomology groups of quasi-coherent sheaves.

We conclude by briefly mentioning that one may analogously define le derivatives of con-
travariant functors using projective resolutions. is approach is taken, e.g. by [Wei, §.].

.. Invariants

Having spent the previous section tediously applying the tools of homological algebra to
the world of sheaves, it is now time to reap the harvest of our expedition. Cohomology
groups will allow us to define a series of invariants that will be indispensable in the following
discussion.

To begin, wemust briefly collect some fundamental results about the finiteness and vanishing
of certain cohomology groups. In general, we should assume that our schemes are Noetherian
for these results to hold, but as the geometric situations we shall be concerned with satisfy
this property anyway, this turns out to be no real restriction for us.
P ..: Let X = SpecR Noetherian. en Hi(X , F ) = 0 for any i > 0 and any

quasi-coherent sheaf F on X .

Proof: Essentially, once we have Remark .., this is a consequence of Remark .., as the
global sections functor is exact in this seing. □

R ..: In fact, these notions are equivalent. It can be shown ([Har, eorem
III..]) that for any Noetherian scheme X , the following statements are equivalent.

(a) X is affine;
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(b) Hi(X , F ) = 0 for all quasi-coherent F and all i > 0; and

(c) H1(X ,I) = 0 for all coherent sheaves of ideals I.
R ..: In the projective case, the situation is also well understood. Let X = PnR for

some Noetherian ring R and d ≥ 1. By Proposition .., we have H0(X , OX (m)) =
R[x0, . . . , xn]m form ≥ 0. By counting generators, we see that this is a free R-module of
rank (n+m

n ) (we choosem ofn variables without caring for the order). Also, Hn(X , OX (m))

is a free R-module of rank ( −m−1−n−m−1) if m ≤ −n − 1 and Hi(X , OX (m)) = 0 in all other
cases [Vak, eorem ..].

R ..: Note that if F is a coherent sheaf on X and ι : X .... Y is a closed immersion
of separable Noetherian schemes, we have Hi(X , F ) � Hi(Y , ι∗F ). See [Vak, ..E]
or [Stacks, Lemma .. (W)] in combination with Remark ...

Finally, there are two fundamental vanishing theorems, which we cite here.
P ..: Let X = ProjS for a Noetherian graded ring S . en:

(a) for all coherent sheaves F , all Hi(X , F ) are finitely generated S0-modules; and

(b) for every coherent F there exists an n0 so that for n ≥ n0, Hi(X , F (n)) = 0 for all
i > 0.

Proof: Originally, this was proven in [Ser, §]. See also [Har, eorem III..]. □

P .. (Grothendieck’s Vanishing eorem): Let X be a Noetherian topological
space of dimension n. en Hi(X , F ) = 0 for any F ∈ Ab(X ) and all i > n.

Proof: Originally, this was proven in [Tôhoku, éorème ..]. See also [Har, eorem
III..]. □

is allows us to define several invariants well-known from topology (compare this definition
to the theorem [Hat, eorem .]).
D ..: Let X be a Noetherian projective scheme over a field k and F a coherent

sheaf on X . en we define the Euler aracteristic χ(F ) as

χ(F ) B
∑
i≥0

(−1)i dimk Hi(X , F ).

Note that this sum is finite by Proposition .. and Proposition ... Additionally, we
define the arithmetic genus дa(X ) via

дa(X ) B (−1)dimX (χ(OX ) − 1).

R ..: Note that the Euler characteristic is additive on short exact sequences: Let

0 .... F ′ .... F .... F ′′ .... 0 (.)

be an exact sequence of coherent sheaves. enwe have χ(F ) = χ(F ′)+χ(F ′′). Indeed,
given any short exact sequence of vector spaces,

0 .... A .... B .... C .... 0,
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the dimension is clearly additive, i.e. dimA − dimB + dimC = 0. If we have a longer
sequence, we may factor it into short exact sequences:

..

. . . . ..0 . ..0 . .

. . . . . ..A12 . . .

..0 ..A0 ..A1 . ..A2 . ..A3 . ..· · ·

. . . ..A01 . . . ..A23 .

. . ..0 . ..0 . ..0 . ..0

..α0 .α1 . α2. α3............

where Aij B imαi = kerαj as the sequence is exact. is shows that

dimA0 − dimA1 + dimA2 − dimA3 + dimA23 = 0

and, inductively, in particular that for any finite exact sequence, the dimension is again
additive, i.e.

∑
(−1)i dimAi = 0. Applying this to the cohomology sequence of (.),

0 .... H0(X , F ′) .... H0(X , F ) .... · · · .... Hn(X , F ′′) .... 0,

we see that the Euler characteristic is additive:

0 =
∑

(−1)i dimHi(X , F ) +
∑

(−1)i dimHi(X , F ′) +
∑

(−1)i dimHi(X , F ′′)

=
∑

(−1)i
(
dimHi(X , F ′) − dimHi(X , F ) + dimHi(X , F ′′)

)
= 0.
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Having dutifully reviewed the basic concepts of Algebraic Geometry, we will now focus our
aention on the case of curves. In particular, we will mostly limit this discussion to a “purely
geometric” seing, i.e. everything should happen over an algebraically closed field k of char-
acteristic 0.

However, as our ultimate aim is to study families of curves and how they vary, it will oen be
worthwhile to take a slightly more general view on things. is will permit us to eventually
apply some of these techniques to moduli spaces.
D ..: A variety is a Noetherian integral separated scheme of finite type over an

algebraically closed field k . We say a variety is complete if it is also proper over k .

A curve is a complete variety of dimension one. We call a curve regular or non-singular
if all local rings are regular. In particular, this implies that a regular curve is always
projective (cf. e.g. [Har, Proposition II..]).

We shall denote the structure sheaf by O B OX and the (constant sheaf of the) field of
rational functions by k(X ).

R ..: Recall that the category of non-singular curves with surjective k-morphisms
is anti-equivalent to the category of finitely generated fields of transcendence degree 1
over k , see [Vak, eorem ..] or [Har, Corollary I..]. Note also that for any
morphism ϕ : X .... Y of curves, ϕ(X ) is either a point or surjective. In the second case,
the induced k(X ) ⊆ k(Y ) is a finite algebraic field extension and ϕ is a finite morphism
[Har, Proposition II..].

is allows us to define the degree of ϕ as degϕ B [k(X ) : k(Y )], the degree of the field
extension.

In particular, this implies that if X is any curve and f ∈ k(X ) is a rational function,
f induces a morphism ϕ : X .... P1. If f is constant, this is clear. If f < k , k[f ] is of
transcendence degree 1 over k as f cannot be algebraic but k[f ] ⊆ k(X ). erefore,
k(f ) � k(P1) and the inclusion into k(X ) induces a morphism X .... P1, cf. e.g. [LAGII,
§.].

. Linear Systems and Projective Morphisms

Our first aim is to study maps of a curve X into a projective space Pn. Embeddings are of
course of special interest to us, as they allow us to regard our curve as a projective subscheme,
paving the way for the application of many different techniques. We will see that in many
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cases, the canonical sheafωX will give rise to such an embedding, and—incidentally—this will
be the most important for our purposes.

.. Divisors and Invertible Sheaves

Let us review some facts about divisors and their relationship to invertible sheaves. A refer-
ence for this is, e.g., [Har, §II.], [LAGII, §.] or [Vak, Chapter ]. We start with the
simplest case:

D ..: Let X be a variety that is regular in codimension one, i.e. every local ring
Ox of dimension one is regular. en we call a closed integral subscheme of codimension
one a prime divisor on X . A Weil Divisor is then defined to be an element of the free
abelian group generated by the prime divisors. We will denote this group by Div(X ).

For Div(X ) ∋ D C
∑
nYY we call the set of closed subschemes Y so that nY , 0 the

support of D, in symbols: suppD.

is yields a natural group homomorphism deg : Div(X ) .... Z via
∑
nYY ... ∑

nY we
call the degree.

E ..: Let X be a curve. en X is regular in codimension one iff it is regular and
in this case the prime divisors are exactly the closed points P ∈ X . A (Weil) divisor may
thus be considered as a (finite) linear combination of points.

If X = SpecR is any affine variety that is regular in codimension 1, the prime divisors
correspond to the prime ideals p of height 1 in R. Note, in particular, that Rp is required
to be a regular local ring and that p is the (unique) generic point of the closed subscheme
Y B p of codimension 1.

R ..: Note that we obtain a partial ordering on Div(X ): let D B
∑
nYY and D′ B∑

mYY be divisors. en we say that D ≥ D′ iff nY ≥ mY for every prime divisor Y of X .
In the case that D′ is the zero divisor (i.e.mY = 0 for all Y ), we call D an effective divisor.

D ..: For any prime divisor Y on X , let η ∈ Y be its generic point. As Y is a
prime divisor, Oη will be a discrete valuation ring and asX is integral, its quotient field is
equal to k(X ), the function field of X . Hence we obtain a discrete valuation vY on k(X )
which we call the valuation of Y .

Let f be in k(X )× . en, in accordance with Definition .. (a), we say that f has a zero
at Y if vY (f ) > 0 (i.e. f lies in the maximal ideal mη) and that it has a pole at Y if vY < 0.
If vY = 0, we say that f is invertible at Y .

We call vY (f ) the order of f at Y and write ordY f B vY (f ).

For any variety X that is regular in codimension one, any non-zero regular function f ∈
k(X )× is invertible at all but finitely many prime divisors of X [Har, Lemma II..], giving
rise to the following definition.
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D ..: Let f be a non-zero rational function on X . en we define the divisor of
f by

div f B
∑

vY (f ) · Y ,
where the sum is taken over all prime divisors Y of X .

In fact, by the property of valuations, it is evident that the map

div : k(X )× .... Div(X )

is actually a homomorphism of groups. e image of this map forms the (normal) sub-
groupPrin(X ) of principal divisors and any divisor D ∈ Div(X ) that lies in this subgroup
may be referred to as a principal divisor. e quotient is called the divisor class group of
X , in symbols:

Cl(X ) B Div(X )
/
Prin(X ) .

Consequently, if D − D′ ∈ Prin(X ) for D ,D′ ∈ Div(X ), we write D ∼ D′ and say that D
and D′ are linearly equivalent.

E ..: Consider X = P1
k
. en Cl(X ) � Z. Indeed, let P1

k
= Projk[x0, x1] and

P0 B (x0) and let Q be any (closed) point (ax0 + bx1). en

f B
x0

ax0 + bx1

is a rational function with div f = P − Q , i.e. P ∼ Q in Div P1
k
.

In fact, the same argument works for arbitrary dimensions, i.e. Cl(Pn
k
) � Z for all n.

Moreover, this isomorphism is given by the degree map, see [Har, Proposition II..].
R ..: Consider the case of non-singular curves, f : X .... Y . In the case that f is

a finite morphism, it gives rise to a morphism f ∗ : Div(Y ) .... Div(X ). Indeed, as Y
is a non-singular curve, for any closed point Q ∈ Y , the corresponding maximal ideal
mQ C (tQ) is a principal ideal. is allows us to define

f ∗Q B
∑

P∈f −1(Q)
vp(tQ ◦ f )P ,

a divisor onX (note that as f is finite, the sum is finite). As any other generator t ′Q differs
only by a unit from tQ , this is well-defined. By linear extension, we obtain a morphism
f ∗ as claimed. Note that the morphism of the function fields induced by f ensures that
f ∗ respects linear equivalence. is allows us to consider the morphism of class groups:

f ∗ : Cl(Y ) .... Cl(X ).

What happens to the degree of a divisor under themap f ∗? Counting preimages weighted
by the valuation of tQ ◦ f (cf. e.g. [Har, Proposition II..]) yields

deg f ∗D = deg f · degD.

In particular, as any non-constant rational function on a curve is a finite morphism onto
P1, any principal divisor on a non-singular curve is of degree 0 by Example .. (cf. [Har,
Corollary II..]). As a consequence, for any non-singular curve the degree function
descends onto the class groups.
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To deal with more general schemes, we must generalise our concept of divisor:
D ..: Let X be a Noetherian integral scheme. en we define the group of

Cartier Divisors to be
CaDiv(X ) B H0

(
X , k(X )×

/
O×X

)
where k(X )× denotes the constant sheaf of invertible rational functions. Hence we may
consider a Cartier divisor to be a family (fi ,Ui) where Ui is an open cover of X and
fi ∈ k(X )× subject to the condition that fi

f j
∈ OX (Ui ∩Uj)

× .

Correspondingly, we call D ∈ CaDiv(X ) a principal divisor, if it is already an element of
H0(X , k(X )×), i.e. all the fi come from a single global f ∈ k(X )× .

e factor group is called the Cartier class group and denoted by

CaCl(X ) B CaDiv(X )
/
H0(X , k(X )×) .

R ..: In a sense, the group CaCl(X ) describes the effect of sheafification on the
quotient sheaf k(X )× /O×X , i.e. the difference between the global sections of the quotient
sheaf and the quotient of the global sections of the sheaves. We can make this precise
using cohomology groups: Consider the short exact sequence of sheaves on X

1 .... O× .... k(X )× .... k(X )×
/
O× .... 1.

Taking cohomology gives rise to a long exact sequence

0 .... H0(X , O×) .... H0(X , k(X )×) ...
γ. H0(X , k(X )×

/
O× ) ...

δ.

... δ. H1(X , O×) .... H1(X , k(X )×) .... · · ·

where we have H0(X , k(X )× /O×) = CaDiv(X ). Consider the group H1(X , O×). As our
sequence is exact, we have kerδ = imγ . But this is just the group of principal divisors.
erefore, we obtain an injective map CaCl(X ) .... H1(X , O×X ).

When is this map also surjective? If X is an integral scheme, surely any constant sheaf
is a flasque sheaf and hence H1(X , k(X )×) = 0. Consequently, in this case we have

CaCl(X ) � H1(X , O×X ).

Closely related to these is another group:
D ..: Let X be a Noetherian scheme. Recall that by Definition .., we call

an OX -module sheaf L on X invertible if it is locally free of rank one, i.e. there exists an
open covering Ui of X so that L|Ui � OUi for all i . We denote the set of isomorphism
classes of invertible sheaves on X by Pic(X ).

 It is also possible to define Cartier Divisors on more general schemes, however, then we may no longer talk
of the function field of X . Instead, we must work with the sheaf of total quotient rings.

 Indeed, in this case X—and therefore any open subset—is irreducible and thus connected. But that means
that k(X )×(U ) = k(X )× for any open U ⊆ X and all restriction maps are in fact the identity map.


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D ..: Let X be a Noetherian scheme and L an OX -module sheaf. en we call
any section of L a regular section or regular function of L, while we refer to elements of
L⊗k(X ) as rational sections or rational functions ofL. In other words, for any irreducible
component Y of X , the rational sections are the elements of Lη where η is the generic
point of Y .

Now let L be invertible and choose a trivialising open cover (Ui)i of X , i.e. L|Ui is gen-
erated by some xi . Note that, as X is Noetherian, it is quasi-compact and hence we may
choose our cover to be finite. erefore, any regular (respectively rational) section of
L is locally of the form fixi for some regular (respectively rational) fi . is allows us to
apply the construction of div from Definition .. to this situation, as the finiteness con-
dition assures that the sum in the divisor will be finite. Observe that this is well-defined
as different local generators of L differ by some unit s ∈ OX (Ui)

× and div s = 0 for any
such s .

Now consider a non-zero rational section f of L and the corresponding divisor div f .
en supp div f is a finite (and therefore closed) union of irreducible subschemes of codi-
mension one. Call the complement U . en f |U is a regular section and U is dense in
X . Indeed, f is invertible at every point outside of supp div f , in particular it is therefore
regular on U . As U lies dense in every irreducible component, it is dense in all of X .
erefore, we may consider any rational section as consisting of a dense open subset U
and a section f that is regular on U .

Before we move on, we note a technical detail:
R ..: Recall that for any two sheaves of OX -modules F and G we may form the

tensor product F ⊗ G B F ⊗OX G, cf. Remark .. (b). In particular, this implies that
we may obtain the stalks of the tensor sheaf just by tensoring the corresponding modules
over the corresponding local ring. ereby it is clear that the tensor operation gives a
monoid structure toPic(X ) (the neutral element being of course the sheaf OX itsel). We
claim that (Pic(X ), ⊗) is actually a group.

To see this, recall that the sheaf Hom(F , G) was defined as the sheafification of the
presheaf U ... HomOU (F |U , G|U ) and consider the sheaf L−1 B Hom(L , OX ), the
dual sheaf to L. en L ⊗ L−1 � OX , i.e. for any L we find an inverse element L−1.
Indeed, on the stalks this is lile more than linear algebra; especially, it is clear thatL−1 is
again an invertible sheaf. e interesting part is that these isomorphisms patch together
to give a “global” isomorphism of sheaves. Locally we may assume that O(U ) = R for
some ring R and some open subset U and L(U ) = l · R for some generator l . en any
R-morphism of l · R into R is determined solely by the image of l · 1 and hence we see
that HomO|U (L|U , O|U ) � HomR(l ·R , R) via the tilde functor. Now consider the bilinear
map

ϕU : L(U ) ⊗ HomR(L(U ), O(U )) .... O(U )

s ⊗ψ ... ψ (s).

 Indeed, tensor products commute with limits, as the tensor functor is a le adjoint [Lan, §XVI.] and le
adjoint functors preserve colimits [Mac, §V.].

 Note that L|U � l̃ · R and O|U � R̃ and that the tilde functor is compatible with the tensor operation.


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In fact, ϕU is an isomorphism. Indeed, ϕU is surjective: given an arbitrary r ∈ O(U ), we
need only to consider s = l and we will find a linear ψ : L(U ) .... O(U ) sending l to r .
To see that ϕU is injective consider s ⊗ ψ so that ϕU (s ⊗ ψ ) = 0. en we must have
ψ (s) = 0. But s = r ·l for some r ∈ O(U ), yieldingψ (rl) = rψ (l) = 0 and—as l generates
L(U )—this shows that rψ is the zero map. Now the bilinearity implies that

s ⊗ψ = rl ⊗ψ = l ⊗ rψ = l ⊗ 0 = 0

and hence ϕU is injective.

But as ϕU does nothing more than evaluating ψ , it is actually a map of sheaves O ⊗
Hom(L , O) .... O and bywhat we have just seen, it is in fact an isomorphism. erefore
L−1 is indeed the inverse to L (up to isomorphism) and Pic(X ) is in fact a group.

In the “classical case”, it turns out that these three groups are isomorphic and we may there-
fore switch freely between the various points of view. is result, while beingwell-document-
ed in the literature, e.g. [Har, §II.] or [LAGII, §.], is usually obtained rather implicitly.
However, as we will later want to explicitly transform sheaves into divisors and vice-versa,
we must go into some more detail.
eorem : Let X be a variety that is locally factorial, i.e. all local rings are UFDs, and denote

by η its generic point. en we obtain isomorphisms

Cl(X ) � CaCl(X ) � Pic(X ).

More concretely, these maps are given by

Cl(X ) ....∼ CaCl(X )

D ... (Ux , fx)x∈X∑
vx(fi)x ... (Ui , fi)i

where, for every prime divisor x ∈ X , div fx is the principal divisor corresponding to the
restriction of D to SpecOx andUx is an open neighbourhood of x on whi D coincides with
div fx and, for the inverse map, oose some fi so thatUi ∩ x , ∅;

CaCl(X ) ....∼ Pic(X )

(Ui , fi)i ... (f −1i · O|Ui )i

(Ui , l
−1
i )i ... (li · O|Ui )i

 Note that this is in fact an arbitrary element, as both modules are of rank 1.
 As a maer of fact, the condition locally factorial is only required for the first isomorphism. In particular, the

groups CaCl(X ) and Pic(X ) are isomorphic for any integral scheme X .
 Any prime divisor is irreducible, hence contains a unique generic point, x .
 Recall that asOx is a UFD, any prime ideal of height 1 is a principal ideal. But every prime divisor corresponds

to a prime ideal of height 1, the restriction to Ox is consequently the principal divisor belonging to the
generator. Hence every prime—and thereby any—divisor is principal on some open neighbourhood of x .

 Note that this is well-defined as x is irreducible and choosing some other f j implies that fif −1j is invertible,
as (Ui , fi)i is a Cartier divisor.


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where we assume both the Cartier divisor as well as the invertible sheaf to consist of an open
covering (Ui)i of X and elements of k(X )/O(Ui)

× and local generators of O|Ui , respectively;
and

Cl(X ) ....∼ Pic(X )

D ... O(D)
div s ... L

where O(D)(U ) B {f ∈ k(X ) | div f + D |U ≥ 0} ∪ {0} for any open subset U ⊆ X and s
is an Oη-generator of Lη .

Proof: e first isomorphism is described in detail in [Har, Proposition II..]. At this
point it should be clear that the two maps are inverse group homomorphisms; a number
of checks are, however, still required to see that these maps are in fact well-defined.

Consider the second isomorphism. Note that for any Cartier Divisor (Ui , fi)i the OX -
module (f −1i · OUi )i is well-defined and invertible. Indeed, it is obviously locally free
of rank one and as—by definition of Cartier Divisor—fif −1j ∈ O(Ui ∩Uj)

× , the modules
f −1i · OUi and f −1j · OU j coincide on the intersection and hence glue together to form a
sheaf.

Now, as X is integral, we may consider any invertible sheaf as a subsheaf of the constant
sheaf k(X ) (this is done simply by tensoring with k(X ), cf. [Har, Proposition II..]).
erefore, we may consider any invertible sheaf as an open cover (Ui)i of X together
with elements fi ∈ k(X ) that generate the (free) OUi -module. But this yields a Cartier
Divisor as both f −1i and f −1j generate the OUi∩U j -module and hence fif −1j is invertible on
the intersection. is shows that we have a bijection of Cartier Divisors and invertible
sheaves. Indeed, it also respects the group structures and linear equivalence and is
hence an isomorphism of groups.

e third isomorphism is obtained simply by composition of the first two. Let Y be any
prime (Weil) divisor. Whatwill the image of its class inPic(X ) be? Well, for anyx ∈ X the
restriction of Y to x is a principal ideal, as X is assumed locally factorial. More explicitly,
if x < Y , the restriction is the zero divisor, i.e. locally div 1; if x ∈ Y , Y restricts to a
minimal, i.e. height 1, prime ideal (f ) in Ox , which is principal by factoriality. Hence, in
this case, Y is locally div f . is gives rise to an invertible sheaf that is generated by f −1

on an open neighbourhood of Y and by a unit on every neighbourhood not containing
Y . Indeed, as f is invertible outside of Y , this is well-defined. But by the properties of
valuations, this is O(Y ).

Conversely, let L be any invertible sheaf. Observe that given an Oη-generator s of Lη ,
we may construct a divisor div s: choose a trivialising open coverUi ofX . en s |Ui = fiti
for some fi ∈ O(Ui) and ti ∈ L(Ui). As they come from a global s , the divisors patch
together, i.e.

div s B
∑

div fi

 e tensor product of two freemodules is just themodule generated by the products of the original generators.
erefore the product of twoCartier Divisors is simply the tensor product of the two sheaves. Now, respecting
linear equivalence means nothing more than D − D ′ is principal iff O(D − D ′) � O. But both are equivalent
to the local generators gluing together to give a global generator, cf. e.g. [Har, Proposition II..].


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is well-defined. Note that this is well-defined as choosing instead some generators t ′i
implies that t ′i t

−1
i ∈ O(Ui)

× and therefore the associated divisor is 0. Choosing a different
Oη-generator s′ of Lη changes the resulting divisor only by a rational function, hence
yields a linear equivalent divisor and the same arguments hold when replacing L by an
isomorphic L′.

Now, given any r ∈ L(U ), we may consider it as an element of Lη and hence find some
r ′ ∈ Oη = k(X ) so that r = r ′s . Hence, div r = div r ′ + div s ≥ 0 as r is regular, i.e.
r ′ ∈ O(div s)(U ). We may reverse this argument to see that any section of O(D)(U )
gives rise to a section of L(U ). ereby, the maps are inverse.

Clearly, the described isomorphism is the composition of the first two. □
C ..: Let D and D′ be Weil Divisors. en

O(D − D′) � O(D) ⊗ O(D′)−1

and D ∼ D′ if and only if O(D) � O(D′).
Proof: is is nothing but a restatement of the fact that the above bijections are indeedmorph-

isms. □
R ..: Observe that if X is non-singular, it is locally factorial. Indeed, in this case

every local ring is regular and, by the Auslander-Buchsbaum eorem [Eis, eorem
.], therefore factorial.

R ..: Let f : X .... Y be a morphism of curves, D a divisor on Y . en, by Re-
mark .., f ∗D is a divisor onX . On the other hand, by Proposition .., f ∗OY (D) is an
invertible sheaf on X . Note that OX (f ∗D) � f ∗OY (D) as f ∗tQ = tQ ◦ f for any tQ ∈ mQ .

R ..: Let L be any invertible sheaf and D a divisor. Consider the sheaf L ⊗ O(D).
Locally, L will be of the form д · O(U ) for some generator д and O(D)(U ) consists of
rational functions f ∈ k(X ) with div f + D ≥ 0 on U . erefore, sections of L ⊗ O(D)
will, locally, be of the form s B дf satisfying div(s) + D ≥ 0. Hence we may think of
L ⊗ O(D) as “allowing poles at D” for the sections of the sheaf L, i.e. any section of
O(D) will do as a coefficient in the modules of L. We call this process twisting L by D
and write

L(D) B L ⊗ O(D).
In regard of Definition .., this amounts to those rational sections of L being “con-
strained” by D and is hence in complete analogy to the definition of O(D).

.. Linear Systems

Specifically when studying the case of curves we want to concentrate on the linear equival-
ence class of a fixed divisor. erefore, we introduce the notion of a linear system and study
their relationship to embeddings into projective space.

For this purpose, let X be a non-singular curve for the entire section, unless otherwise stated.
D ..: LetX be a curve andD a divisor onX . en we define the complete linear

system belonging to D to be the set of all effective divisors D′ that are linearly equivalent
to D. We denote it by |D |.


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It is oen practical to consider the corresponding invertible sheaf instead of the divisor. In
the case of linear systems, this point of view helps in giving them the structure of a projective
vector space.
P ..: LetD be a divisor onX , |D | be the corresponding complete linear system,
O(D) the corresponding invertible sheaf (cf. eorem ) and let L(D) B H0(X , O(D)).

en the map

(L(D) \ {0})/k× .... |D |
s ... D + div s

is a one-to-one correspondence.
Proof: Let s ∈ L(D). en div s + D ≥ 0, so the divisor is effective and—as s is a rational

function on X—by definition linearly equivalent to D.

Now for any c ∈ k× we have div s = div(cs), therefore the map in the proposition is
well-defined. On the other hand, if div s = div s′ for s , s′ ∈ L(D), we have

0 = div s − div s′ = div
s

s′

i.e. s
s ′ ∈ H0(X , O×) = k× , as X is projective. Hence the map is also injective.

To see that it is also surjective, let D′ ∈ |D | be any effective divisor linearly equivalent to
D. But this means that we find a s ∈ k(X )× so that D′−D = div s , i.e. D+div s = D′ ≥ 0,
as D′ is an effective divisor. us we have s ∈ L(D) and we have found a preimage of
D′. □

D ..: A linear system d on X is a subset of |D | that corresponds to a projective
linear subspace V ⊆ L(D) via the map of Proposition ...

e dimension of d is its dimension as a linear projective variety, that is

dim d B dimV − 1.

e degree of a linear system is the degree of the corresponding divisor, in symbols:

deg d B degD.

As all the divisors in the system are linearly equivalent, the degree is well-defined (cf.
Remark ..).

Now we will describe a special type of linear system that will turn out to be very important.
D ..: A linear system d is called a gr

d
iff

deg d = d and dim d = r .

As an even more special case, we shall call a g1
d
a pencil.

Additionally, we shall refer to any curve X of genus greater than one that admits a g12 as
hyperelliptic.

 Recall that by Proposition .. all these dimensions are finite and hence well-defined.


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.. Morphisms into Projective Space

Our aim is to define morphisms of X into some projective space Pn. e idea is to choose
some line bundle that has “enough” global sections s0, . . . , sn and to define a map

X .... Pn

p ...
(
s0(p) : · · · : sn(p)

)
.

An obvious prerequisite for this to work is that for every point p ∈ X at least one of the
sections s0, . . . , sn must be non-zero. As we will see in a moment, we can express this as a
condition on a linear system, more specifically the associated divisor.
D ..: Let d be a linear system and p ∈ X . We call p a base point of d, iff p ∈

suppD for every D ∈ d, i.e. if D =
∑
nqq, then np , 0.

A linear system with no base points is called base-point-free.

P .. (cf. [Har, Lemma II..]): Let d be a linear system and V ⊆ H0(X ,L)
the corresponding vector space. en p ∈ X is a base point if and only if sp ∈ mpLp for
all s ∈ V and d is base-point-free if and only if the global sections of V generate L.

Proof: Let d be a subset of |D | for some divisor D =
∑
nqq. By Proposition .., s ∈ V

corresponds to div s + D ≥ 0. What happens at the point p?

Recall that by embedding L in k(X ), the ideal mp gives rise to a submodule mpLp of the
germ Lp consisting of s ∈ k(X ) so that vp(s) ≥ −np + 1, where vp is the valuation of the
regular ring Op .

Now, for any base point p we have

vp(s) + np ≥ 1

if s ∈ V is a section of L corresponding to an element of d. So we see that indeed p is a
base point if and only if sp ∈ mpLp for all s ∈ V .

If d is base-point-free, then—by the above—at every point p there exists an s < mpLp . But
as Op is a local ring, this implies that s ∈ O×p and thus is a generator of Lp , as L is locally
free of rank one. On the other hand, any such generator must also be a unit in Op and
therefore not in mpLp . □

In other words, a base point of L is a point of X at which all global sections of L vanish.
Conversely, if L is base-point-free, we find—for any p ∈ X—a global section s ∈ H0(X ,L)
that does not vanish at p.

Take any s ∈ H0(X ,L). en we obtain an open set D(s) B {p ∈ X | sp < mpLp} and
Proposition .. tells us that a linear system V is base-point-free if and only if the D(s),
s ∈ V , cover X .

We are now in a situation to describe all maps into projective space.

 Indeed, we may cover X by trivialising neighbourhoods Ui . On each of these open sets we find a generator
ti so that s |Ui = fiti for some regular function fi . en we clearly have D(s) =

∪
D(fi).


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eorem : Let X be any k-seme. en there is a bijection

{(L , s0, . . . , sn)} .... HomSch(X , Pn)

where L is an invertible sheaf on X and s0, . . . , sn are global sections that generate L, up
to isomorphism of these data.

Proof: Let ϕ : X .... Pn
k
= Projk[x0, . . . , xn] be a morphism and consider the invertible sheaf

O(1) on Pn. By Proposition .., ϕ∗O(1) is an invertible sheaf on X and the preimages
of trivialising neighbourhoods trivialise the pullback. In particular, we haveD(ϕ∗(xi)) =
ϕ−1(D(xi)), showing that

∪
D(ϕ∗(xi)) = X . erefore, by Proposition .., si B ϕ∗(xi)

are n + 1 global sections that generate the invertible sheaf L B ϕ∗O(1).

Now let L be an invertible sheaf and let s0, . . . , sn be generating global sections. Observe
that L trivialises over D(si): locally, si is of the form fjtj where tj is the generator of L
over some trivialisingUj and fj is a regular function. As si has “no zeros” inD(si), all the
fj are also invertible, hence patch to give some fi ∈ OX (D(si))× and this induces the local
isomorphism. By abuse of notation, we identify the fi and si . Consider the morphism

ϕi : D(si) .... D(xi) = Speck
[
x0
xi
, . . . , xnxi

]
⊂ Pn

that is induced by the ring homomorphism x j
xi

... s j
si
∈ OX (D(si)) (via Proposition ..).

Clearly, these maps glue to give a mapϕ : X .... Pn. Note thatϕ∗O(1) � L, asϕ∗(xi) = si
and the si trivialise L over D(si).

erefore, these constructions are inverse to one another, as claimed. See also [Har,
eorem II..] and [Vak, Important eorem ..]. □

In other words, the morphisms X .... Pn correspond to the base-point-free linear systems
of dimension n on X , cf. [Har, Remark II...]. Note that this really is the morphism we
wanted: take any point p ∈ X . en the stalk Op is generated by the (si)p and Oϕ(p) is
generated by the (xi)p . e associated ring homomorphism sends (xi)p to (si)p and therefore
ϕ(p) = (s0(p) : · · · : sn(p)), as si(p) = (si)p mod mp , i.e. the image in the residue field κ(p)
and ϕ respects this, being a morphism of schemes.

We now describe a criterion that determines if the morphism induced by some invertible
sheaf L is a closed immersion. Recall that, in this case, we called L very ample.
P ..: Let X be a variety, d be a base-point-free linear system and ϕ : X .... Pn

the induced morphism. en ϕ is a closed immersion if and only if ϕ is injective on closed
points and tangent vectors at closed points. In the case that X is a non-singular curve,
this translates to

(a) d separates points, i.e. given distinct closed points p ,q ∈ X we find a D ∈ d with
p ∈ suppD and q < suppD; and

(b) d separates tangent vectors, i.e. for any closed p ∈ X we find some D ∈ d so that
np = 1 in D.

 Indeed, restrict si to any affine subset of D(si). en this element is not contained in any maximal ideal,
hence it must be a unit. ese patch together giving an invertible element of O(D(si)).


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Proof: Let s0, . . . , sn be a basis of d so that ϕ is the morphism described above. en ϕ is
injective on points iff for any p ,q ∈ X there exists some si with si(p) , si(q). But then
s B si −si(p) belongs to a divisor that is linearly equivalent to the divisor of si and whose
support contains p but not q.

Consider the second condition. Any morphism f : X .... Y induces, for any p ∈ X , a
local morphism f ♯p : OY ,f (p) .... f∗OX ,p and thereby a morphism of the dual vector spaces(
mp/m2

p

)∗ .... (
mf (p)/m

2
f (p)

)∗
, i.e. a morphism of the tangent spaces. Here, ϕ induces

a morphism
(
mpLp/m2

pLp

)∗ .... (
mϕ(p)/m

2
ϕ(p)

)∗
. By linear algebra, this is injective iff

the dual morphism mϕ(p)/m
2
ϕ(p)

.... mpLp/m2
pLp is surjective. But the space mϕ(p)/m

2
ϕ(p)

is generated by those sections s with sp ∈ mp i.e. those with a zero of order one at p
and in the case that X is a non-singular curve, the tangent space at p will be one di-
mensional. Hence, the map on tangent spaces is injective iff there exists a non-zero
(si)p ∈ mϕ(p)/m2

ϕ(p)
. But such an si corresponds to a divisor with np = 1.

erefore, in the case of curves, the separation conditions are equivalent to ϕ being in-
jective on closed points and on tangent vectors at closed points. e fact that this is
equivalent to ϕ being a closed immersion may be found in [Vak, eorem ..] or
[Har, Proposition II..]. □

Before we are able to express these conditions exclusively by the numerical data of the corres-
ponding divisors, we must introduce more sophisticated techniques relating the dimension
of a linear system to the degree of the corresponding divisor.

.. Differentials and the Canonical Sheaf

Beside the sheaf of regular functions, there is another sheaf (almost) every variety is equipped
with: the sheaf of differential forms. Indeed, it is of such fundamental importance that it is
known as the “canonical shea”. To be able to define it correctly, however, we must start by
encoding all information about “tangent spaces” into suitable algebraic objects.

To begin with, we must therefore collect some algebraic results. A classical reference for this
is, e.g. [Mat, §].

In the following, let A be a k-algebra and M a module over A.
D ..: A (k-)derivation from A to M is a k-linear map D : A .... M that satisfies

the Leibniz formula, i.e.

D(f + д) = D(f ) + D(д) and D(f д) = f D(д) + D(f )д

for any f ,д ∈ A. e set of all such derivations is denoted by Derk(A,M) C Der(A,M).

R ..: As any k-derivation D is k-linear, we have

D(1) = D(1 · 1) = 1D(1) + D(1)1

and thus D(a) = 0 for any a ∈ k .


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Now, the set Der(A,M) may be considered as an A-module by defining

D + D′ via
(
D + D′

)
(f ) B D(f ) + D′(f ) and aD via

(
aD

)
(f ) B aD(f ).

E ..: ere is a close relationship between lis of morphisms and derivations.
Consider the following commutative diagram in the category of k-algebras:

..

..B ..A

. ..C

.

f

. д. h.
h′

In this situation, we refer to h and h′ as being (respectively) a li of д to B. As the diagram
commutes, h − h′ is a morphism from C to ker f C I ◁ B. Also, we may identify f (B)
with B/I , thereby obtaining an f (B)-module structure on I /I2. As the diagram commutes,
we have f (B) ⊆ д(C) and therefore we may consider I /I2 as a C-module. But then
h − h′ ∈ Der(C , I /I2) as it is obviously k-linear and additive, and satisfies the Leibniz
formula: to understand this, we must take a closer look at theC-module structure of I /I2.
We have

c · (i + I2) B h(c) · i + I2 = h′(c) · i + I2

asд = f ◦h = f ◦h′ andh(c) does not differ fromh′(c), when both are viewed as elements
of B/I . But now the multiplication in B yields(
h − h′

)
(cc′) = h(c)h(c′) − h′(c)h′(c′) = h(c)h(c′) − h(c′)h′(c) + h′(c)h(c′) − h′(c)h′(c′)

= h(c′) ·
(
h − h′

)
(c) + h′(c) ·

(
h − h′

)
(c′)

and this is just the Leibniz formula in I /I2 considered as a C-module.

On the other hand, let D ∈ Der(C , I /I2). en h + D is a li of д to B/I2. Indeed, the
C-module structure of I /I2 is again induced by h, i.e. the Leibniz rule for D amounts to

D(cc′) = h(c)D(c′) + h(c′)D(c)

and thus we see that(
h + D

)
(c) ·

(
h + D

)
(c′) = h(c)h(c′) + h(c)D(c′) + D(c)h(c′) + D(c)D(c′)

and as D(c)D(c′) ∈ I2 and h + D is clearly additive, h + D is a homomorphism of rings,
as claimed. Also, as imD ⊆ ker f , h + D is a li of д for any li h.

All in all, we obtain a bijection of lis of д to B/I2 and Der(C , I /I2).

Fixing A, we obtain a covariant functor M ... Der(A,M) fromModA to itself, which, as it
turns out, is representable:

 Indeed, let ϕ : M .... M ′ be a morphism of modules, then it induces a map Der(A,M) .... Der(A,M ′) via
f ... ϕ ◦ f and this respects the module structure of Der as ϕ itself is A-linear.

 e pedantic reader may wish in prior to compose with a forgetful functor.


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P ..: Consider f : A ⊗k A .... A given by a ⊗ b ... ab and let I B ker f .

en ΩA/k B I /I2 is the representing object of Der(A, −), i.e.

Der(A, −) � Hom(ΩA/k , −).

In particular, we obtain a distinguished derivation d : A .... ΩA/k andΩA/k is generated
by im d as an A-module.

Proof: e idea is to apply Example .. to the above seing. See [Mat, p. ]. □

D ..: We call ΩA/k the Module of (Kähler) differentials of A over k .

Of course, the representability of the functor implies that ΩA/k satisfies a universal mapping
property:
R ..: Let A and ΩA/k be defined as above. en for any A-module M and D ∈

Der(A,M) there exists a unique A-module homomorphism f so that the following dia-
gram commutes:

..

..A ..ΩA/k

. ..M .

.

d

. ∃! f.
D

R ..: As we never really made use of the fact that k is a field, we may conduct all
these constructions in a relative seing: we may simply replace k by any commutative
ring R in the entire section thus giving rise to the R-derivations ofA intoM , theA-module
DerR(A,M) and the module of relative differential forms ofA over R, ΩA/R . Note however,
that in the construction of ΩA/R (Proposition ..), we must now tensor over R.

Our aim is now to place these constructions in a geometric seing. e map A ⊗ A .... A is
well-known and gives a first hint, as to how we shall accomplish this: in the affine case, this
is the ring homomorphism that corresponds to the diagonal embedding

∆: X .... X ×Speck X . (.)

e true importance of these objects reveals itself only in a local seing:
P ..: Let A be a local ring with maximal ideal m and containing a field k

isomorphic to its residue field A/m. en we have an isomorphism:

δ : m
/
m2 ....∼ ΩA/k ⊗A k .

Proof: [Har, Proposition II..]. □

 Concretely, this is the map defined by a ... 1 ⊗ a − a ⊗ 1 + I2.
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As the cotangent space at a given point (of a given scheme) is justm/m2 (wherem is the max-
imal ideal of the corresponding local ring), we have just seen that the module of differentials
of the local ring of the point contains this information. As a consequence of this, we will see
that our usual concept of regularity at a point (the dimension of the tangent and thus also the
cotangent space equals the local dimension at that point) is also compatible with the concept
of the differential module:
P ..: In the seing of Proposition .., assume further that k is perfect and

A is a localisation of a finitely generated k-algebra. en ΩA/k is a freeA-module of rank
equal to dimA if and only if A is a regular local ring.

Proof: [Har, eorem II..]. □

Having reassured ourselves that this algebraic construct has its uses in geometry, it is high
time to transport it into the world of sheaves and schemes. e idea is as stated above:
D .. (cf. [Har, p. ]): Let X ,Y be schemes f : X .... Y a morphism, ∆ the

diagonal morphism (see (.)) and I the sheaf of ideals of ∆(X ). en we define the
sheaf of relative differentials of X over Y to be the following sheaf on X :

ΩX/Y B ∆∗
(
I
/
I2

)
R ..: e sheaf I/I2 comes with a natural structure as O∆(X )-module and—since

∆ is a homeomorphism on its image—ΩX/Y inherits a natural OX -module structure. Addi-
tionally, ΩX/Y is quasi-coherent and in the case that Y is Noetherian and f is a morphism
of finite type, ΩX/Y will even be a coherent sheaf [Har, Remark II...].

Furthermore, locally the sheaf ΩX/Y comes from the module of differentials of the cor-
responding rings (cf. [Har, Remark II...]). Especially, note that if Y = k , the fibres
of ΩX/k correspond to the cotangent spaces, i.e. ΩX/k |p � mp/m2

p at every point of X via
Proposition ... Hence, we will occasionally refer to ΩX/k as the cotangent bundle of
X .

In light of Proposition .., for any (integral, seperated) regular scheme X that is of finite
type over k and of dimension n, the sheaf ΩX/k will be locally free of rank n. is is good,
but oen not good enough for our purposes.
D ..: Let X be a non-singular variety of dimension n over k . en we define

the canonical sheaf of X to be the nth exterior power of the sheaf of differentials, i.e.

ωX B
∧n ΩX/k .

If X is in addition projective, we define the geometric genus of X to be

дд B дд(X ) B dimH0(X ,ωX ).

Occasionally we shall refer to global sections of ωX as differential forms or 1-forms.

 While∆(X ) is only a closed subscheme ofX ×YX if f is a separated morphism, locally f is always a morphism
of affine schemes and thus separated (the map a ⊗ a′ ... aa′ is always surjective!). erefore, ∆(X ) is a
locally closed subscheme, i.e. a closed subscheme of an open subscheme of X and this is in fact all we need to
construct our ideal sheaf.


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Before moving on, let us quickly note a vital fact about the geometric genus:

P ..: LetX andX ′ be two birationally equivalent non-singular projective vari-
eties over k . en дд(X ) = дд(X

′).

Proof: [Har, eorem II..]. □

Recall that rank
∧k Rn = (nk) for any free R-module of rank n. Hence ωX is locally free of

rank one, as ΩX/k is locally free of rank n and thereforeωX is always an invertible sheaf. is
gives rise to the next definition.

D ..: Let X satisfy the prerequisites of eorem . en we denote the class of
divisors corresponding to ωX by K and call this the canonical divisor of X .

Note that if X is a curve, we simply have ωX = ΩX/k . Even beer, all concepts of genus
coincide, so there is no more reason to distinguish them. Indeed, when X is a curve, the
arithmetic genus simplifies to

дa(X ) = (−1)dimX (χ(OX ) − 1) = dimH1(X , OX )

as H0(X , OX ) = k , i.e. the dimension is 1, and Hi(X , OX ) = 0 for i > 1 by Proposition ...

P ..: Let X be a curve. en we have дa = дд, more explicitly:

д B д(X ) = dimH1(X , OX ) = dimH0(X ,ωX ).

We call д simply the genus of X . By Proposition .., this is a birational invariant.

Proof: Actually, this equality follows from Serre Duality (eorem ). See e.g. [Har, Pro-
position IV..]. □

Additionally, it can even be shown that in the case k = C, the genus д of a curve X is equal
to the (topological) genus of the corresponding Riemann Surface [Mir, p. ].

. The Riemann-Roch Theorem

Arguably the most important tool in the study of curves is the theorem of Riemann-Roch.
It expresses the relationship of the dimension of a linear system to the degree of the corres-
ponding divisor using only basic invariants of the curve: the genus (cf. Proposition ..)
and the canonical divisor (cf. Definition ..). More precisely:

eorem  (Riemann-Roch): LetX be a curve, D any divisor on X andK the canonical divisor.
en we have

l(D) − l(K − D) = degD − д + 1 (.)

where д denotes the genus of X and l(D) B dimL(D) = dimH0(X , O(D)).


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.. Observations on l(D)

Before we can sketch the proof, it is useful to make some general observations about the
dimensions of the linear systems involved as well as to cite some technically more demanding
results.

We start with some simple—but practical—observations on the degree and dimension of a
linear system:
L .. (cf. [Har, Lemma IV..]): Let D be a divisor on a curve X . en:

(a) l(D) , 0 implies that degD ≥ 0 and

(b) if l(D) , 0 and degD = 0, we must have D ∼ 0 and thus O(D) � OX .
Proof: If l(D) , 0, then the complete linear system |D | is non-empty, i.e. there exists an

effective divisor D′ linearly equivalent to D. But the degree of a divisor is invariant
under linear equivalence and surely an effective divisor will have non-negative degree
so we must also have degD ≥ 0.

Consider the case that degD = 0. Again, if l(D) , 0, |D | contains some effective divisor
D′ of degree 0. But the only effective divisor of degree 0 is the zero divisor, henceD ∼ 0.□

L ..: Let D be any effective divisor on a curve X and P < suppD. en

l(D − P) ≤ l(D) − 1.

Proof: Indeed, as D is an effective divisor, sections in L(D) include all (global) regular func-
tions onX , i.e.k , as well as any function with poles bounded byD. All sections in L(D−P)
are, however, required to have a zero at the point P thus definitely excluding all the
constants (possibly even more). Hence the dimension will decrease. □

.. Serre Duality and a Proof of the Riemann-Roch Theorem

e technically truly demanding aspect of the proof of the Riemann-Roch theorem lies in
Serre’s duality theorem, in its simplest form (for curves) it may be summarised as follows:
eorem  (Serre Duality): Let D be any divisor on the curve X , ωX the canonical sheaf. en

the vector spaces
H0(X ,ωX ⊗ O(D)−1) and H1(X ,O(D))

are dual to one another.

Unfortunately, a proof of this statement would lead us too far astray! A proof involving
sheaves of derivations of the Hom functor may be found in e.g. [Har, §II.], another using
spectral sequences in e.g. [LAGI, §.]. Accepting this, however, we may give an otherwise
complete proof of the Riemann-Roch theorem.

 I.e. the corresponding germ in the local ring OP must lie in the maximal ideal mP , cf. Definition ...
 But this will not change the dimension, as we will see in a moment (Remark ..) using slightly fancier

arguments.


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Proof of eorem : We are guided by [Har, eorem V..]. Usingeorem , we see that—
as the divisor K − D corresponds to the invertible sheaf ωX ⊗ O(D)−1—the dimension
of H0(X , O(K −D)) = H0(X ,ωX ⊗ O(D)−1) is the same as H1(X , O(D)). erefore, we
may restate our formula to read

dimH0(X , O(D)) − dimH1(X , O(D)) = degD + 1 − д.

But we know the le hand side of the equation: it is the Euler characteristic χ(O(D)).

e aim is now to show this equation for all concievable divisors D. We start with the
easiest case: for D = 0, we must verify

dimH0(X , OX ) − dimH1(X , OX ) = 0 + 1 − д

as O(0) � OX . But as any projective variety admits only constant global sections and
д = dimH1(X , OX ) by definition, this formula does indeed hold.

Now comes the trick: We show that the formula holds for a divisor D if and only if it
is true for D + P for any point P . us, we can reach any divisor (in a finite number of
steps) and we are done.

To accomplish this, consider P as a closed subscheme of X via ι. en the structure sheaf
O{P} of P may be identified with its pushforward on X , i.e. the skyscraper sheaf ι∗O{P}.
is gives rise to the short exact sequence

0 .... I{P} .... OX .... ι∗O{P} .... 0 (.)

where the corresponding ideal sheaf I{P} is just O(−P). Indeed, any section of O(−P)
has a zero at P and is therefore in the kernel of the projection onto ι∗O{P}. Conversely,
this is the only condition imposed, as the skyscraper sheaf only cares for the point P .

Now we tensor this sequence with O(D + P). Since this is locally free of rank one and
a sequence of sheaves is exact if it is exact on the stalks, the sequence remains exact.
Furthermore, it is clear what happens on the first two sheaves: we must simply add the
divisors. But the stalks of the skyscraper sheafO{P} are all zero except at the point P ; here
the stalk is simply equal to our ground field k . Especially, we note, it remains indifferent
to being tensored with O(D + P). All in all, this yields

0 .... O(D) .... O(D + P) .... O{P} .... 0. (.)

Now is a good time to remember that the Euler characteristic is additive on short exact
sequences (Remark ..). Also, as P is zero-dimensional, H1(P , O{P}) = 0 by Proposi-
tion .. and thus χ(O{P}) = dimH0(P , O{P}) = 1, yielding

χ(O(D + P)) = χ(O(D)) + 1.

But—trivially—deg(D + P) = degD + 1 so indeed the formula holds for D if and only if
it holds for D + P . □

 See, for example, [Eis, Chapter ] for a discussion of flatness.


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R ..: Similar techniques allow us to “generalise” Lemma .. to any divisor D and
any point P ∈ X : We apply equations (.) and (.) of the above proof to the situation
of Lemma .., obtaining an exact sequence

0 .... O(D − P) .... O(D) .... ι∗O{P} .... 0.

Now, taking global sections is le exact, so we obtain

0 .... L(D − P) .... L(D) .... k .

Hence, as the image of L(D) must be a subvector space of k , we see that, for any P ,
l(D) − l(D − P) ≤ 1 and l(D) ≥ l(D − P).

Applying this result to Lemma .. means that we may replace the “≤” by an “=” in the
formula.

.. Some First Consequences

As a first demonstration of the power of the theorem, we may now calculate the degree of
the canonical divisor and the dimension of the corresponding complete linear system with
seemingly no effort at all:
C ..: Let X be a curve of genus д, let K denote the canonical divisor. en:

(a) l(K ) = д and

(b) degK = 2д − 2.
Proof: is is just (.) for the divisors D = 0 and D = K , respectively. □

Now for a “true” geometric application of eorem :
C ..: Let X be a curve of genus 2. en X is hyperelliptic.
Proof: Indeed, the canonical divisor K on X gives rise to a g12: By Corollary .., we have

degK = 2 and l(K ) = 2. Hence—by Definition ..—the dimension of the correspond-
ing complete linear system is 1 as required. □

Taking a closer look at the Riemann-Roch formula (.), the term l(K − D) stands out: if it
weren’t for that number, we would have a direct linear relationship between the degree of a
divisor and the dimension of the corresponding linear system. In fact, it is not uncommon
for this term to vanish entirely. Indeed, it is a common enough occurrence to deserve its own
name.
D ..: A divisor D is called special if l(K − D) , 0. Otherwise we say that D is

non-special. We will refer to the number l(K − D) as its index of speciality.
E ..: As a first example, note that Lemma .. together with Corollary .. yields

that any D with degD > 2д − 2 is non-special.
R ..: To give another notion of the concept of a special divisor, consider the follow-

ing: byeorem ,K −D corresponds to the invertible sheaf O(K )⊗O(−D) � ωX (−D),
i.e. the sheaf ωX twisted by D, consisting of differential forms with “coefficients” in
O(−D) (cf. Remark ..). us, the index of speciality of D may be thought of as count-
ing the number of linearly independent differentials that are locally of the form f · dx
where dx is a local generator of ωX and f ∈ O(−D), i.e. locally, div f − D ≥ 0.


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. Intersection Theory

Picturing a curve as the zero locus of some polynomial automatically gives rise to some
concept of the “degree” of a curve. Also, if we imagine curves embedded in, e.g. A2, there is
some intuitive notion of “intersection multiplicity”: two curves intersecting “transversally”
such as V(x) and V(y) should intersect with “multiplicity 1” while curves meeting “tangen-
tially” such asV(y) andV(y−x2) should intersect with “multiplicity 2”. Clearly, the concepts
of multiplicities and degrees are interrelated. But giving adequate definitions that generalise
properly and behave well turns out to be surprisingly complicated and technical.

.. The Degree of a Curve

Up to this point, we have successfully avoided mention of the degree of a curve. Clearly,
however, when intersecting curves, their degree will play a part in studying the intersection.
In the case that we are dealing with a plane curve, i.e. one that admits an embedding into P2,
this curve is necessarily a divisor in Cl(P2), hence comes with some notion of degree. ese
should agree. Also, given some hypersurface arising as the projective space of the quotient
of some polynomial ring by a degree d polynomial, we expect this to also be of degree d .

Hence, we require a definition that is general enough to be applicable to various kinds of
varieties, but specialises to the two mentioned cases. Let F be any coherent sheaf on some
projective k-scheme X ⊆ Pn. en we define the Hilbert polynomial of F via

pF (m) B χ(X , F (m)) =
∑
i≥0

(−1)i dimHi(X , F (m)).

Note that it is a polynomial of degree dim suppF (see, e.g. [Vak,eorem ..] or [Ser,
§, Proposition ]). In particular, in combination with Proposition .. (b) this implies that
dimH0(X , F (m)) is polynomial for large m. Further, we set pX B pOX and call this the
Hilbert polynomial of X . Consequently, it is of degree dimX .
D ..: Let X ⊂ Pd be a projective k-scheme of dimension n. en we define the

degree of X , degX , as the leading coefficient of pX multiplied with n!.

Note that pF (m) is always in Z and, in particular, the degree of X is always a natural number
([Har, Proposition I..a]).

We should check that this agrees with our intuition of degree.
E ..: Let X = Pn = Projk[x0, . . . , xn]. What is pX ? Recall that, by Remark ..,

dimH0(X , OX (m)) = (m+n
n ) if m ≥ 0. Apart from dimHn(X , OX (m)) = ( −m−1−n−m−1) if

m ≤ −n − 1, all other cohomology groups vanish. erefore, the hilbert polynomial is

pPn(m) =
(m + n)(m + n − 1) · · · (m + 1)

n!

and in particular the leading coefficient (belonging tomn) is 1
n! . Hence, deg Pn = 1which

seems reasonable.
 In fact, observe that if F � M̃ , by Proposition .., it agrees with the Hilbert polynomial of M [Ser, §,

Proposition ]. See, for example, [Eis, §.] for Hilbert polynomials of modules.
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E ..: Now let X = V(f ) ⊆ Pn be a hypersurface for some homogeneous f of
degree d , i.e. X = Projk[x0, . . . , xn]/(f ). But the ideal (f ) corresponds (as a module)
to the polynomial ring twisted by −d as the inclusion morphism sends any degree m
element д to the degree d +m element f д ∈ R. Via the ·̃-functor, we obtain a short exact
sequence

0 .... OPn(−d) .... OPn .... ι∗OX .... 0,

where ι is the inclusion of X in Pn. Now recall that the Euler characteristic is additive on
short exact sequences (Remark ..), hence the same holds for the Hilbert polynomial.
In other words, we have pX (m) = pPn(m) − pPn(m − d). So what is the degree of X? By
Example .., we have

pX =
(m + n) · · · (m + 1)

n!
− (m − d + n) · · · (m − d + 1)

n!

=
1

n!

(
mn + (m − d)n + n(n + 1)

2
mn−1 − n(n + 1)

2
mn−1 + · · ·

)
where we ignore summands of degree (inm) less than n − 1. Indeed, the monomials of
degree n cancel and the termmn−1 occurs in pP1(m) only in products where all but one
factor ism and the remaining factor runs over 1, . . . ,n. e same happens in pP1(m −d),
so these coefficients cancel. But in this case, the term

(m − d)n =
n∑

k=0

(
n

k

)
mk(−d)n−k =mn − ndmn−1 + · · ·

tells us the coefficient ofmn−1: 1
n!nd = 1

(n−1)!d . As we obtain degX by multiplying with
the factorial of dimX = n − 1, we see that degX = d as we wished.

E ..: Next we consider the situation of section ... Let X be some curve that
admits a very ample divisorD. We setn B dim |D | and letϕ : X .... Pn be the embedding
induced byD. Recall that, by Remark .., Hi(X , OX ) � Hi(Pn ,ϕ∗OX ) for all i . Observe,
however, what happens when we twist ϕ∗OX :(

ϕ∗OX
)
(m) = (ϕ∗OX ) ⊗ OPn(m) � ϕ∗

(
OX ⊗ ϕ∗

(
OPn(m)

))
by the projection formula ([Stacks, Lemma .. (E)] or [Vak, ..H]). As above,
the cohomology does not care for ϕ∗ and we have ϕ∗

(
OPn(m)

)
�

(
ϕ∗OPn

)
(m), by Pro-

position ... Recall that, by the construction of ϕ, we have ϕ∗OPn(1) � O(D) and
therefore

χ
(
ϕ∗OX (m)

)
= χ

(
OX ⊗ O(D)⊗m

)
= χ

(
OX (mD)

)
=m · degD + χ(OX )

by Riemann-Roch. Hence, pX is linear and the leading coefficient is degD, i.e. degX =
degD which, again, appears reasonable.

In summary, we see that the Euler characteristic does not care for the embedding of X into
projective space, while the Hilbert polynomial does in fact depend on it very much.
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.. Intersections of Curves on a Surface

Let X be a surface, i.e. a non-singular projective variety of dimension 2. By Definition ..,
the prime divisors on X correspond to the (possibly singular) curves on X . Hence, we may
picture any divisor onX as a weighted sum of curves. In order to understand the intersection
of curves on X it will therefore suffice to understand the intersection of any two divisors.

Furthermore, “counting intersection points” of two curves a priori only makes sense if they
intersect “nicely”, i.e. they have no components or singularities in common. Considering di-
visors, our intersection theory should be independent of linear equivalence and count points
when representatives intersect appropriately.

We will now aempt to make these concepts precise.
D ..: Let C and D be curves on X and p ∈ X a point. en we say that C meets

D transversally at p, iff mp = (f ,д), where mp is the maximal ideal of the local ring OX ,p
of p and f and д are local equations of C and D, respectively.

R ..: Observe that bothC and D must be regular at p to meet transversally: Indeed,
we have OC ,p = OX ,p/(д) and OD ,p = OX ,p/(f ). But a quotient of a regular ring by a
generator of its maximal ideal is always regular [Mat, eorem .].

Fortunately, an intersection theory fulfilling all our wishes exists:
eorem : ere is a unique pairing Div(X ) × Div(X ) .... Z, whi we call the intersection

pairing and denote by C · D for any two divisors C , D, su that

(a) if C and D are non-singular curves meeting transversally, then C · D = ♯(C ∩ D);

(b) it is symmetric: C · D = D ·C ;

(c) it is additive: (C1 +C2) · D = C1 · D +C2 · D; and

(d) it depends only on the linear equivalence classes: if C1 ∼ C2 then C1 · D = C2 · D.

More concretely, ifC is an irreducible non-singular curve on X and D is any effective divisor
meeting C transversally, we have

C · D = ♯(C ∩ D) = degC(L(D) ⊗ OC), (.)

where L(D) ⊗ OC is an invertible sheaf onC and degC refers to the degree of the associated
Weil divisor.

Proof: [Har, eorem V.. and Lemma V..]. □

is allows us to view divisors as elements of a (graded) commutative ring. It is a special case
of the Chow Ring A(X ) (see section ..).

In practice, curves will not always intersect transversally and it is tedious and cumbersome
to find the appropriate representatives in the divisor class group. e trick is to instead count
intersection points “correctly”, by adding an appropriate weight.

 I.e. generators of the maximal ideal in the local rings OC ,p and OD ,p , respectively.
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D ..: (a) Recall that, for any R-module M , we may form a composition series

M = M0 ⊃ M1 ⊃ · · · ⊃ Mr = 0

so that the factors Mi/Mi+1 are simple modules and we call r the length of M .

(b) LetC and D be effective divisors on X with no common irreducible component. For
p ∈ C ∩ D, we define the intersection multiplicity (C · D)p of C and D at p to be the
length of OX ,p/(f ,д) (as a k-module). Note in particular that this is a local property.

Indeed, this definition does not disappoint.
P .. ([Har, Proposition V..]): LetC andD be effective divisors onX having

no common irreducible component. en

C · D =
∑

p∈C∩D
(C · D)p .

R ..: Observe that the intersection multiplicity is a generalisation of the order of a
regular function as defined in Definition ..: If f and д are polynomials defining plane
curves with f irreducible and д is the rational function induced on V(f ) by projecting д
to k[x ,y]/(f ), we have

(V(f ) ·V(д))p = ordV(f ),p д

for any p ∈ V(f ), cf. [Ful, Example ..].
E ..: (a) Consider the intersection of the two coordinate axes in A2

k
. At the ori-

gin, i.e. the point corresponding to the ideal O B (x ,y), we have an intersection
multiplicity of dimk k[x ,y](x ,y)/(x ,y) = 1.

(b) Now consider the intersection of C1 B V(y − x2) and C2 B V(y) in A2, i.e. the
intersection of a quadratic parabola and the x-axis in the plane. Again, we compute
the intersection number at O and find

(C1 ·C2)O = dimk
OA2 ,O

/
(y ,y − x2) = dimk

k[x ]
/
x2 = 2.

Hence the intersection number corresponds to our ad hoc concept of a tangent line versus
a transversal intersection.

Given any curveC , we can now use (.) to calculate the self-intersection ofC: by eorem 
we simply have to intersect two linear equivalent representatives of C (considered as a di-
visor).
E ..: Recall that Div(P2) = Z by Example ... Hence we may choose any line

(i.e. curve of degree one) as generator, say C B V(x0). Now, any two lines are linearly
equivalent, as both are hypersurfaces of degree one and—by virtue of projective space—
any two lines meet in a single point. erefore, eorem  yields C2 = 1.

 Recall that this is well-defined by the Jordan-Hölder theorem [Mat, p. ].
 Note that in this case the length corresponds to the k-vector-space dimension.
 Observe that this is in accordance with Definition .. by Example ...
 Indeed, two lines are given by linear polynomials. We fix a line ax0 +x1 and intersect it with either cx0 +x1

or x0 + bx1. But unless they are equal, two such polynomials will always generate a maximal ideal, i.e. the
two lines intersect at precisely one point.
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Again by Example .., any curve of degree d is linearly equivalent to dC and thereby
the intersection of a curve of degree n with one of degreem yields something of degree
nm. Considering the local intersection numbers, we obtain a special case of Bézout’s
theorem (cf. Proposition ..).

Consider the canonical divisor K on X . e self-intersection K 2 gives rise to another inter-
esting invariant of our curve. Moreover, K turns out to contain vital geometric information
for all curves on X .
P .. (Adjunction Formula): LetC be a non-singular curve of genusд onX and
K the canonical divisor on X . en we have

2д − 2 = C · (C +K ).

Proof: is requires fiddling around with (.) in order to apply Serre Duality, cf. [Har,
Proposition V..]. □

E ..: Proposition .. provides an easy way to compute the degree of the canon-
ical divisorK of P2: again, letC B V(x0) be a line on P2. enC is isomorphic to P1, in
particular it has genus 0 and—with the help of Example ..—the Adjunction Formula
yields

−2 = 1 + degK ,
i.e. degK = −3.

To further demonstrate the power of the Adjunction Formula, we prove a special case of the
Plücker Formula, which turns out to be a handy criterion for testing if a curve is a plane
curve.
P .. (Plücker Formula): LetC be a non-singular plane curve of degreed . en

д =
1

2
(d − 1)(d − 2).

Proof: By Example .., Cl(P2) is generated by a line l and C = dl in Cl(P2). On the other
hand, K = −3l by Example .., hence Proposition .. yields

2д − 2 = d(d − 3),

as, Example .., the intersection pairing is simply multiplication of degrees forX = P2.
But this amounts to the Plücker Formula. □

.. Varieties in Projective Space

We now move to the case where X is a variety of dimension greater than 2. Unfortunately,
describing the intersection of subvarieties becomes significantly more complicated and we
must introduce more powerful techniques.

Sadly, going beyond a brief survey of the most elementary facts of this fascinating theory
would lead us too far astray. us we must restrict ourselves to quickly gathering the most
important results and then moving on.
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We begin with the case of projective varieties intersecting hypersurfaces in a fixed Pn
k
. At

first, we make some observations about dimensions. We follow [Har, §I.].
R ..: Given two varieties X ,Y ⊆ Pn the intersection will in general not be irredu-

cible. Be that as it may, we observe that if dimX = r and dimY = s , every irreducible
component of X ∩ Y has dimension greater or equal to r + s − n. Note that this is also
true if we replace Pn by An. In the projective case, however, we additionally have that if
r + s −n is non-negative, then Y ∩Z is non-empty [Har, Proposition I.. and eorem
I..].

R ..: In addition, given some subscheme Y ⊆ Pn and Y = Y1 ∪ Y2 with dimYi =
dimY and dim(Y1 ∩ Y2) < dimY , the degree is additive, i.e. degY = degY1 + degY2
[Har, Proposition I..(b)].

e greatest difficulty lies in generalising the notion of intersection multiplicity. Even in this
rather special case, it is very technical.

Given a finitely generated graded module M over some Noetherian graded ring S , we define
the annihilator of M as AnnM B {s ∈ S | s ·M = 0}. Note that this is a homogeneous ideal
in S . In this case, we call any prime p ≤ S that is minimal containing AnnM aminimal prime
ofM . Now, for any minimal prime p ofM , we may define the multiplicity ofM at p to be the
length of Mp over Sp . We write µp(M).
D ..: Let Y ⊆ Pn be a variety of dimension r and H ⊆ Pn be a hypersurface not

containingY . LetY ∩H C Z1∪· · ·∪Zs be the irreducible components of the intersection
and denote by pj the generic point of Zj . Recall that, by Proposition .. (a), Y and H
correspond to homogeneous ideals IY and IH in S B k[x0, . . . , xn]. en we define the
intersection multiplicity of Y and H along Zj as

i(Y ,H ;Zj) B µpj
(
S
/
IH + IY

)
. (.)

Note that, by Remark .., dimZj = r −1 so the pj are in fact minimal primes as pj ⊇ IH + IY
is minimal, as Zj is an irreducible component of V(IH + IY ) = Y ∩ H .
E ..: Let n = 2. Given two distinct curves C = V(f ) and D = V(д), the ir-

reducible components of C ∩ D are points p1, . . . ,ps . At each point, the intersection
multiplicity is

i(C ,D;pj) = µp j
(
k[x0, x1, x2]

/
(f ) + (д)

)
= length

(
OX ,p

/
(f ,д)

)
as localisation commutes with taking the quotient. Hence this notion of intersection
multiplicity does in fact generalise Definition .. (b).

E ..: Next, consider a curve X ⊆ Pn and an (irreducible) hypersurface H B
V(f ) ⊆ Pn for some polynomial f ∈ S that does not containX . Again, by Remark ..,
dimX ∩H ≥ 1+n − 1−n = 0, hence non-empty and of dimension 0, as X is irreducible.
In analogy to Remark .., the divisor (on X )

D B
∑

p∈H∩X
i(X ,H ;p) · p

 Note that, as the polynomial ring is factorial, any height 1 prime ideal is principal so in fact every hypersurface
is of this form [Eis, Proposition .b].
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that we obtain corresponds to (div f )0, the divisor of zeros of f , where f is the image of
f in S/I where I is the ideal belonging to X by Proposition .. (a).

We are now able to state the theorem of Bézout that relates intersection numbers to the
degrees of the involved varieties. Note that this generalises Example ...
P .. (Bézout): Let Y be a variety in Pn and H a hypersurface not containing

Y . Let Z1, . . . ,Zs be the irreducible components of Y ∩H . en

s∑
j=1

i(Y ,H ;Zj) · degZj = (degY )(degH).

Proof: [Har, m I..]. □

.. The Chow Ring and Chern Classes

In analogy toeorem , it is possible to define an intersection theory on higher-dimensional
schemes that give rise to a ring structure generalising the Picard group that is called the Chow
ring. It bears striking similarities to the Homology ring in algebraic topology.

As we require it only peripherally, we must again revert to mentioning only a few basic facts,
doing lile justice to the complexity of this theory. We follow [Har, Appendix A], for a
comprehensive introduction, see e.g. [Ful] or [Stacks, Chapter ].

Let X be any k-variety. When intersecting two arbitrary subvarieties of, say, codimension
r and s , we cannot expect to get an intersection number. Instead, we obtain a variety of
codimension r + s up to some form of “rational equivalence”. is leads us to the following.
D ..: Consider Âr (X ), the free abelian group generated by the subvarieties of

codimension r of X . A cycle of codimension r on X is an element of Âr (X ). Given any
closed subscheme Y ⊆ X of codimension r , we may associate a cycle [Y ] ∈ Âr (X ) to Y by
defining [Y ] B

∑
niZi where Zi are the codimension r irreducible components of Y and

ni B lengthOY ,ηi for ηi , the generic point of Zi . We call this the cycle associated to Y .

In analogy to Definition .., we define rational equivalence: for any (r + 1)-dimensional
subvarietyW ⊆ X and any f ∈ k(W )× , we define a (n − r)-cycle (where n = dimX ) by

[div f ] B
∑

length OW ,V
/
(f ) ·V

where the sum is taken over all dimension r subvarieties ofW .

An r -cycle Z is called rationally equivalent to 0 if there exist finitely many fi so that Z =∑
[div fi ]. ese form a subgroup and we denote the quotient by Ar (X ) [Ful, §.].

is gives rise to a graded group A(X ) B ⊕Ai(X ) where the sum is taken from 0 to dimX .
As X is the only component of codimension 0, A0(X ) = Z and Ar (X ) = 0 for r > n.
P .. ([Har, Appendix A, eorem .]): In the case that X is a non-singular

quasi-projective variety over k , there exists a unique bilinear intersection pairing Ar ×
As .... Ar+s making A(X ) into a graded ring that we call the Chow ring.
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is pairing is functorial in the following sense: any morphism of varieties f : X .... X ′ in-
duces a ring homomorphism f ∗ : A(X ′) .... A(X ) and this is compatible with composition.

It should come as no surprise that a useful definition of intersection numbers is again difficult.
e intersection pairing comes together with a local intersection multiplicity: given subvari-
eties Y ,Z ⊆ X so that every irreducible componentWj of Y ∩ Z is of codimension equal to
codimY + codimZ , there exist integers i(Y ,Z ;Wj) depending only on local data that satisfy
Y · Z =

∑
i(Y ,Z ;Wj) ·Wj .

Serre provided a formula for this multiplicity. Recall that for any R-module M the functor
− ⊗R M is right exact. By section .., we may therefore form the le derived functors that
we denote by TorRn (−,M). en we have, in the above situation,

i(Y ,Z ;W ) =
∑

(−1)i lengthTorOX ,ηW
i

(
OX ,ηW

/
p , OX ,ηW

/
q

)
where p and q are the (local) ideals of Y and Z and ηW is the generic point ofW .

We finish this section by drawing aention to a special construction of elements ofA(X ). Let
F be a locally free sheaf of rank r onX and P(F ) the associated projective space bundle. If π
is the structure morphism P(F ) .... X , π ∗ endows A(P(F )) with an A(X )-module structure.

Now observe that A1(X ) corresponds to closed subschemes of codimension 1, i.e. Weil di-
visors, up to linear equivalence. Hence, by eorem , A1(X ) � Pic(X ). is gives us an
element ξ B [OP(F )(1)] ∈ A1(P(F )) as OP(F )(1) is an invertible sheaf. Note that in this
case, A(P(F )) is a free A(X ) module of rank r and that we may choose 1, ξ , ξ 2, . . . , ξ r−1 as
generators [Har, Appendix A, A].
D ..: We define the i-th Chern class ci(F ) ∈ Ai(X ) by seing c0(F ) = 1 and

requiring
r∑

i=0

(−1)iπ ∗ci(F ) · ξ r−i = 0

in A(P(F )). Note that as A(P(F )) is free of rank r , this determines the ci uniquely.

E ..: Let F be an invertible sheaf, i.e. F = O(D) for some divisor D. en we
find an affine coverUi of X and ti ∈ F (Ui) so that F |Ui = ti · OUi . In particular, F (Ui) is
a free O(Ui)-module of rank 1 and

Sym tiO(Ui) � O(Ui)[ti ],

i.e. a polynomial ring over O(Ui). erefore, P(F ) � X and OP(F )(1) = F , as F is
locally generated by the ti , the degree 1 elements of O(Ui)[ti ]. Consequently, we have
c1(F ) = D.

. The Canonical Embedding

Recall that in section .. we established that a base-point-free linear system induces a
morphism into projective space and saw a criterion for this morphism to be an immersion.


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We will now apply the techiques of section . to translate this into a more “workable” con-
dition.

In particular, given a curve, this will allow us to determine if the canonical sheaf is very
ample and in this case the Riemann-Roch theorem will give us a deeper understanding of the
geometry of the image of our curve in projective space.

roughout this section, X is a non-singular curve of genus д over k .

.. Linear Systems and Projective Embeddings

We would like to determine whether the map to projective space induced by a linear system
is a morphism and more specifically an embedding only by virtue of the dimension of its
linear system. We begin by giving a criterion for a linear system to be base-point-free only
in terms of its dimension. See also [Har, Proposition IV..] or [Vak, §.].

L ..: LetD be a divisor onX . en |D | has no base points if and only if dim |D−p | =
dim |D | − 1 for every closed p ∈ X .

Proof: By Lemma .. and Remark .., if p is no base point, there exists some D′ ∈ |D |
so that l(D′ − p) = l(D′) − 1. erefore, dim |D − p | = dim |D | − 1, as dim |D | =
dim |D′| = l(D′) − 1. On the other hand, by Remark .., if dim |D − p | , dim |D | − 1,
then dim |D | = dim |D−p | and thereforep ∈ suppD′ for everyD′ ∈ |D | by Lemma ...□

Recall that in Proposition .., we provided a criterion to determine whether a line bundle
is very ample, i.e. gives rise to a closed embedding into some Pn. We are now able to restate
this in a form that again requires only knowledge of the dimension of linear systems. Note
that we say that a divisor D is very ample iff O(D) is.
P ..: D is very ample if and only if dim |D −p −q | = dim |D | − 2 for every (not

necessarily different) points p ,q ∈ X .

Proof: In any case, we may assume that |D | has no base points. Indeed, if D is very ample,
in particular it induces a morphism into some Pn and hence must be base-point-free. On
the other hand, as Remark .. implies that dim |D | − dim |D − p | ∈ {0, 1}, Lemma ..
assures that any |D | satisfying dim |D − p − q | = dim |D | − 2 for all p ,q ∈ X has no base
points.

We now test the criterion established in Proposition ... Note that the linear system
|D − p | consists of all effective divisors D′ = D − p + div f for some f ∈ k(X )× . In
particular, |D | separates points if and only if for any distinct p ,q ∈ X , q is no base point
of |D − p |, as this is the case iff there exists some D′ ∈ |D | so that D′ − p is effective
but D′ − p − q is not. In this case, dim |D − p − q | = dim |D − p | − 1 = dim |D | − 2 by
Lemma .. as p is no base point of |D |.

|D | separates tangent vectors iff, given any p, we find a D′ ∈ |D | so that np = 1 in D′, i.e.
D′ − p is effective but D′ − 2p is not. In other words, p is no base point of |D − p |. Again,
by Lemma .., this is equivalent to dim |D−2p | = dim |D | −2 as |D | is base-point-free.□
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E ..: Let D be a divisor. Recall that if D is non-special, by Riemann-Roch, dim |D |
depends only on degD. erefore, dim |D − p | = dim |D | − 1 and dim |D − p − q | =
dim |D | − 2 for any p ,q if the divisors D − p and D − p − q are non-special, respectively.
Now, by Example .., any D′ is non-special if degD′ > 2д − 2 and thus D − p is non-
special if degD ≥ 2д and D − p − q is non-special if degD ≥ 2д + 1. Hence, the first is
a criterion for |D | to be base-point-free and the second condition implies that |D | is very
ample.

.. Constructing the Canonical Embedding

What happens if we choose D = K , the canonical divisor, in section ..? e observations
of section . combined with section .. will yield very concrete answers to this question.
See also [Har, §IV.] and [Vak, §. and ..A].

By Corollary .., dim |K | = 2д − 1. erefore, if д = 0, |K | is empty and if д = 1,
dim |K | = 0, i.e. it determines the constant map to a point. e other cases, however, are
more fruitful.

We begin with a technical observation.
L ..: Let p ∈ X . If dim |p | > 0 then X � P1.

Proof: Indeed, let p be any point with dim |p | > 0. en |p | must contain some effective
divisor q , p of degree 1. But this means there exists some rational function f ∈ k(X )×

with div f = p −q and this induces a morphism ϕ : X .... P1 as in Remark .. (note that
this is the same morphism that is induced by the 2-dimensional linear system d spanned
by p and q that is base-point-free as p , q). Hence, ϕ(p) = (s0(p) : s1(p)) with s0 and s1
corresponding to elements of |p | via Proposition ... In particular, deg div si = degp =
1, i.e. each si has exactly one zero.

Now consider 0 B (0 : 1) ∈ P1. en deg 0 = 1 as 0 is a closed point, but ϕ∗({0}) =
p = degϕ · deg 0 (see Remark ..), as s0 has only one zero by the above. erefore, 1 =
degϕ = [k(P1) : k(X )], i.e. the function fields are isomorphic. But then, by Remark ..,
X � P1. See also [Vak, Proposition ..] and [Har, Example II...]. □

P ..: If X is of genus д ≥ 2 then |K | is base-point-free.
Proof: We use Lemma ... Again, by Corollary .., dim |K | = д − 1. Consider any p ∈ X .

By eorem , we have

dim |p | − dim |K − p | = deg |p | − д + 1 = 2 − д.

But as д ≥ 2, X is not rational, hence dim |p | = 0 for all p by Lemma .. and therefore
dim |K − p | = dim |K | − 1. □

We can even say in which cases this map is an embedding.
P ..: If X is of genus д ≥ 2. en K is very ample if and only if X is not

hyperelliptic.
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Proof: We now apply the criterion for K to be very ample, Proposition ... Given any
p ,q ∈ X , K is very ample iff dim |K − p − q | = dim |K | − 2. We know dim |K | = д − 1.
What can we say about dim |K − p − q |? Riemann-Roch yields

dim |p + q | − dim |K − p − q | = deg(p + q) − д + 1 = −(д − 1 − 2).

Hence, it remains to show that dim |p + q | = 0 iff X is not hyperelliptic. As p + q is
effective, dim |p+q | ≥ 0. But if dim |p+q | ≥ 1, it admits a one-dimensional subspace, i.e.
a g12. In other words, X is hyperelliptic (Definition ..). Conversely, any g12 contains a
divisor of the form p + q with dim |p + q | = 1 so we are done. □

Recall that by Corollary .. any genus 2 curve is hyperelliptic. Hence, we may conclude for
д ≥ 3 and any non-hyperellipticX , we obtain an embedding ϕK : X .... Pд−1 that we call the
canonical embedding. We call the image of X under this embedding a canonical curve. Note
that, by Example .., a canonical curve is of degree degK = 2д − 2.
R ..: Observe that, conversely, any curve of genus д and degree 2д − 2 in Pд−1 is

a canonical curve. Indeed, if ι : X .... Pд−1 is the corresponding embedding, ι∗OPд−1(1)
corresponds to a gд−12д−2 on X . But the only gд−12д−2 C |D | on any curve is K , as Riemann-
Roch yields

dim |D | − dim |K − D | = degD − д + 1,

i.e. dim |K − D | = 0. Hence |K − D | is nonempty so K − D is linearly equivalent to an
effective divisor of degree 0, i.e. the zero divisor. erefore, gд−12д−2 = |K | and X is in fact
a canonical curve.

.. The Geometric Version of the Riemann-Roch Theorem

It will oen be significantly easier (or at least more practical) to study our curveX embedded
in some projective space Pn. By Proposition .., if д ≥ 3 and X is not hyperelliptic, the
canonical divisor K gives rise to the canonical embedding

ϕK : X .... Pд−1

and—more generally—every base-point-free linear system d induces somemorphism into pro-
jective space as seen in section ...

e idea is therefore to fix some morphism ϕ of X into some projective space Pn and to use
this to “transport” eorem  into projective space in order to work with the image of X
under ϕ. We follow the lead of [ACGH, §I.] to make this notion of “transporting” more
precise.

Let D be any effective divisor on X and ϕ : X .... Pn any non-constant morphism. Further-
more, let H C V(f ) ⊂ Pn be a hyperplane, i.e. f = a0x0 + . . . + anxn is a linear polynomial.
en the image of ϕ is a subscheme of dimension at most one and thus, if ϕ(X ) 1 H , the
intersection of ϕ(X ) and H can be thought of as a divisor on the image of ϕ, which we shall

 Indeed, ϕ(X ) is irreducible and we obtain an inclusion of functions fields k(ϕ(X )) .... k(X ).
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denote byH ′. By Remark .., the pullback ϕ∗(H ′) is then a divisor on X (counting the inter-
section points of the image ofX andH with their apropriate multiplicities, cf. Example ..)
and this gives rise to the following definition:
D ..: e image of D under ϕ is the intersection of all hyperplanes H ⊂ Pn so

that either ϕ(X ) ⊂ H or ϕ∗(H ′) ≥ D and we shall denote it by ϕ(D).

R ..: In the case that ϕ is an embedding and D = p1 + · · ·+ pm is a sum of distinct
points, ϕ(D) is simply the linear span of the points ϕ(pi) in Pn: again, by Example ..,
ϕ∗(H) ≥ D iff H ′ is generated by a linear form that vanishes at the ϕ(pi) and the inter-
section of all these is the span. Similarly, if the points are not distinct, only the H are
admied that intersect the canonical curve with the appropriate multiplicities.

If we apply this to the canonical morphism ϕK , what does this do to the Riemann-Roch for-
mula (.)? Recall that l(K − D) counted the number of (linearly independent) differential
forms ω ∈ H0(X ,Ω1

X ) with divω ≥ D (see, e.g. Remark ..). But this is exactly comple-
mentary to the space cut out by the hyperplanes H involved in creating ϕK (D): indeed, by
the construction of eorem , the canonical curve is cut out by the sections ω. Hence, we
have ϕ∗(H ′) ≥ K for the hyperplanes H lying above ϕK (D) by Example ... See also
[ACGH, p. ]. erefore, they combine to give the entire space Pд−1, yielding

l(K − D) = д − 1 − dimϕK (D).

And plugging this into eorem  completes our result:
eorem  (Geometric Riemann-Roch): Let D be an effective divisor on a non-hyperelliptic

curve X with genus д ≥ 3. en

l(D) = degD − dimϕK (D).
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Up to this point, we have only been concerned with the case of a single curve. However,
seeing as many families of algebraic curves vary naturally in an algebraic way, the techniques
introduced allow us to study entire families at once by parametrising them via a suitable
scheme. e idea is to endow the family with a relative scheme structure, which we may
then analyse. Unfortunately, things will seldom be that easy. For example, this does not
work if our curves admit non-trivial automorphisms.

Having succeeded in parametrising our families via some geometric object, we may study
the geometry of the resulting space. In this context, we will be interested in “nice” curves on
our parameter space.

. Moduli Problems

ese classification problems are generally known asmoduli problems and may be formalised
in the following way. First, we must define the notion of a “family of objects” over a base
scheme and observe what happens when the base scheme changes.

D ..: Let B be a scheme.

(a) A family over B is a morphism X .... B (of schemes).

(b) A morphism between two families X .... B and X′ .... B′ consists of a pair of morph-
isms f and д making the following square commute.

..

..X ..X′

..B ..B′

.

f

...

д

is yields a category of families over schemes, albeit not a very useful one. Observe what
happens when we change the base: Consider any morphism of schemes α : A .... B. Given

 A standard reference for this is [HM, Chapter ].
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any family X .... B, we may pull it back along α , obtaining a family X ×B A over A together
with a morphism of families:

..

..X ×B A ..X

..A ..B.

.

α∗

...

α

However, this does not yield a functor from the category of schemes to the category of families
(as defined above), as this would require some consistent choice of family for each scheme.
Rather, for every choice of base changeA .... B, we obtain amorphism of the set of all families
over B to the set of all families over A. We solve this by instead considering all families over
a fixed base B bundled together into a single object, S(B), of our category; thereby we may
view the category thus obtained as a subcategory ofSet. In fact, this is an example of a fibred
category, explaining the peculiar morphisms and behaviours. In particular, this allows us to
retrieve some of the structure lost by retreating to Set. Unfortunately, delving deeper into
this aspect would lead us too far astray; for further information see e.g. [Stacks, §. (XJ)].

In the cases we shall be concerned with, the base scheme B should possess “nice” geometric
properties, i.e. be Noetherian and of finite type over an algebraically closed field k of charac-
teristic 0. us the objects of our moduli problem are now the elements of S(Speck), i.e. the
fibres over the closed points of B.

Finally, we are able to express our moduli problem functorially.
D ..: A moduli functor is a contravariant functor F from Sch, the category of

schemes over k , to the subcategory ofSet described above, obtained by the association

B ... S(B)
/
∼

where ∼ is some equivalence relation on the set of families over B.

In other words: in order to understand the moduli problem, it suffices to understand the
moduli functor. If our functor is representable, this translates into understanding the rep-
resenting object. e reason is the following. Say thatF is representable. en F is naturally
equivalent to the functor of points HomSch(−,M) for some schemeM. But this means that—
for any base scheme B—there is a one-to-one correspondence between families X .... B (up
to equivalence) and morphisms B .... M. In particular, any closed point b ∈ B is sent to the
point inM corresponding to the fibre Xb over b.

erefore,M is precisely the parameter space we had in mind. is motivates the following
definition.
D ..: A fine moduli space (for the moduli problem F ) is a schemeM satisfying

HomSch(−,M) � F , i.e. a representing object for the moduli functor F .

 Usually this will encode the isomorphisms of the objects of our moduli problem.
 It is therefore practical to use the terms “moduli problem” and “moduli functor” interchangeably.
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Representable functors have the additional advantage of possessing a universal object. Recall
that in this situation, there is one morphism that stands out: denote the natural isomorph-
ism by Ψ: F .... Hom(−,M) and consider idM ∈ Hom(M ,M). is yields the universal
object, i.e. the family

Ψ−1M (idM) C {C .... M} ∈ F (M).

Now, given any morphism α : B .... M, we obtain a family {D .... B} B Ψ−1B (α). Altern-
atively, we obtain a family D′ B {C ×M B .... B} by pulling C back along α . But then
ΨB(D

′) = α also and as Ψ is an isomorphism, the two families must be equal.

Hence, we obtain every family D .... B in F (B) as the pullback of C along a uniquemorphism
α : B .... M. is justifies referring to C as the universal family.
E ..: (a) Consider lines in the plane passing through the origin. An obvious

choice for parameter space is P1. Let us see if we can translate this into the present
situation.

Such a line will be given as the zero locus of ax0−bx1 for a,b ∈ k not simultaneously
0. Hence, two such equations ax0 − bx1 and a′x0 − b′x1 describe the same line iff
(a : b) and (a′ : b′) are the same point in P1. us, the objects wewish to parametrise
are

V(ax0 − bx1) = Spec k[x0, x1]
/
(ax0 − bx1) ⊂ A

2

subject to the above mentioned restrictions. Over P1, our family will therefore be

{(x0, x1), (a : b) | ax0 − bx1 = 0} ⊂ A2 × P1.

Indeed, this is a scheme as A2 × P1 consists of 2 copies of A3 = A2 × A1 that
are glued along A2 × A1 \ {0}; as our polynomial is homogeneous in a and b, the
local affine subschemes patch together. Additionally, this yields a natural projection
from C onto P1 and the fibre over a point (a : b) ∈ P1 is precisely the subspace
V(ax0 − bx1) of A2.

Now let X .... B be any family of lines in the plane passing through the origin over
some scheme B. For every p ∈ B, the fibre Xp is then some line

Xp = κ(p) ×B X = V(apx0 − bpx1) ⊂ A2

for some (ap : bp) ∈ P1. But then p ... (ap : bp) is a map from B into P1 and this is
a morphism because of the scheme structure of X. In turn, this ensures that X is the
pull-back of C along this morphism.

Conversely, any morphism α : B .... P1 gives rise to a family of plane lines through
the origin over B by pulling back the family C.

erefore, P1 is indeed a fine moduli space for this problem and C is the correspond-
ing universal family.

 Recall our conventions about “nice” schemes!
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(b) In fact, this is a special case of a Hilbert seme. e Hilbert Scheme is a fine moduli
space parametrising subschemes with a fixed Hilbert polynomial in a fixed project-
ive space. It has the advantage that it can be constructed concretely as a subscheme
of the Grassmannian seme. For an elaborate construction, see [ACG, Chapter ].
In particular, the above is a special case of [ACG, Chapter , example .].

Unfortunately, most “real-life” moduli functors are not representable (in the category of
schemes). For a discussion of several examples and the exact obstructions to their admiing
a fine moduli space, see [HM, Chapter A and A].

ere are two canonical resolutions to these obstructions. e first is to enlarge our cat-
egory. For example, any moduli functor will be representable in the category Fun(Sch,Set)
of functors. Indeed, according to the Yoneda Lemma [Mac, p. ], any such F is its own
representing object. However, endowing these more abstract objects with a suitable geo-
metric structure requires considerable efforts and will sometimes not be possible or at least
viable. Nevertheless, it is an approach we will return to shortly.

e other option is, of course, to relax our conditions on the moduli spaceM. e most nat-
ural approach is to drop the requirement of admiing a natural isomorphism and be satisfied
instead with Ψ being “only” a natural transformation. However, this no longer guarantees
that the points of our moduli space correspond to our moduli objects, so we must require this
explicitly to acquire a useful theory.
D ..: LetM be a scheme and Ψ: F .... Hom(−,M) a natural transformation.

enM is a coarse moduli space for F iff

(a) ΨSpeck : F (Speck) .... Hom(Speck ,M) is a bijection of sets, i.e. the closed points
ofM correspond to the objects of the moduli problem; and

(b) M is universal in the following sense: for any schemeM′ and natural transforma-
tion Ψ′ : F .... Hom(−,M′), we obtain a unique natural transformation τ making
the following diagram commute:

..

..F ..Hom(−,M)

. ..Hom(−,M′).

.

Ψ

. ∃! τ.
Ψ′

Of course, the second condition is equivalent to requiring the existence of a unique morphism
τ̃ : M .... M′, as these stand in one-to-one correspondence to the natural transformations

 In particular, this implies that genus, degree and Euler characteristic are fixed.
 Recall that Sch becomes a subcategory of Fun(Sch,Set) via the Yoneda embedding. What happens to F ?

Well, again by Yoneda, HomFun(HomSch(−, S), F ) � F (S) is a natural isomorphism where HomSch(−, S) is
just the image of S under the Yoneda embedding. Hence, F turns out to “be” the Hom functor HomFun(−, F )
and is therefore representable by definition.

 Observe that the associationM .... M ′ ... Hom(−,M) .... Hom(−,M ′) is again a covariant functor.
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τ , again, by the Yoneda Lemma [Mac, p. ]. Hence the second condition ensures that a
coarse moduli space—if it exists—is unique up to a unique isomorphism.

. Mд andMд,n

e moduli spaces we are most interested in are Mд, the space of non-singular, complete,
connected curves of genusд and the closely related spaceMд,n of curves that are additionally
equipped with n distinct marked points. In other words, a point inMд,n may be thought of as
a tuple (C;p1, . . . ,pn)where C is a curve and thepi ∈ C are distinct points. Note in particular
that anymorphism is required to fix the set {p1, . . . ,pn}. AsMд may be canonically identified
withMд,0, the spacesMд,n can be viewed as a direct generalisation.

Unfortunately, these spaces fail to be finemoduli spaces for a number of reasons, most notably
because there are curves with non-trivial automorphisms. See also the examples in [HM,
§A].

As mentioned in the previous section, there are two naïve solutions to this problem: either
we change our conditions or we change our category. e first solution may be realised by
simply “throwing away” the points that don’t suit us (i.e. have automorphisms) and consider
instead the spaceM0

д of remaining points. However, as this oen results in counter-intuitive
geometric consequences, this is oen no feasible approach [HM, p. ].

e other option is to turn to the language of algebraic stas. On the downside, this approach
is highly technical (see [Stacks, Definition .. (O)] or [DM, Definition .] for the
“proper” definition of a stack). Delving into the depths of this theory leads us too far astray;
we therefore choose to follow [HM] and their approach of “speaking of stacks without de-
fining stacks”, i.e. aempting to remain in a logical framework that is as self-contained as
possible. For our purposes, it will suffice to “know” that there is such a thing as a mod-
uli sta and that it behaves (more or less) as we expect it to, cf. also the discussion at the
beginning of [HM, §D].

ere exist multiple approaches to constructing the coarse moduli spaceMд, an overview
may be found in [HM, §C] or [Loo]. In particular, it can be shown thatMд is neither
affine nor projective. e strategy best-suited for our needs consists of embedding curves in
some suitable PN where the images are parametrised by suitable Hilbert schemes. To retrieve
Mд, one must then take the quotient by the automorphism group PGL(N + 1). Note that it
is a priori all but clear that the resulting quotient is “geometrically well-behaved”. is is a
result of the so called geometric invariant theory, see [HM, §A] for a short introduction or
[Mum] for an extensive one. e procedure forMд,n is similar, see [Knu].

e main advantage—besides being purely algebraic—of this approach is that it allows us to
also construct the projective closure Mд,n of Mд,n. e essential observation (in [DM])
was to admit a slightly more general type of curves.

 Alternatively, we may considerMд ,n with n large enough to fix all automorphisms. is is possible as the
number of automorphisms is bounded by 84(д − 1) (for д ≥ 2, see e.g. [GH, pp. –]) for any genus д
curve.

 Perhaps “believe” is the more accurate term in this context.
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(a)
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(b)
Figure .: e curves pictured lie dense in the boundaryMд \ Mд. Curves of type (a) are

irreducible of genus д − 1 with a single node and lie dense in δ0. On the other
hand, curves of type (b) are reducible consisting of non-singular components of
genus i and д − i , respectively, joined at a node and lie dense in each δi .

D ..: A stable curve is a complete connected curve that has only nodes as sin-
gularities and admits only finitely many automorphisms. A stable n-pointed curve is a
complete connected curve with only nodes as singularities together with distinct smooth
points p1, . . . ,pn ∈ C so that (C;p1, . . . ,pn) has only finitely many automorphisms.

Recall that any curve of genusд ≥ 2 has at most 84(д−1) automorphisms. erefore a connec-
ted curve can only fail to have a finite automorphism group if it contains a rational compon-
ent with less than 3marked/singular points or a genus 1 component with no marked/singular
points.

P ..: ere exist coarse moduli spaces Mд and Mд,n of stable curves and n-
pointed stable curves for all д,n so that 3д − 3 + n > 0. ese spaces are projective
varieties of dimension 3д − 3 + n.

Proof: A proof is outlined in [HM, Chapter ] or [Loo]. Some of the omied technical
details may be found in [ACG, Chapters XII and XIV]. □

Note in particular that in the language of stacks, it is also possible to define the Picard
group. To avoid torsion problems, we limit this discussion to the rational Picard group (where
PicQ(·) B Pic(·) ⊗ Q). Fortunately, the Picard group of the moduli stack is isomorphic to
PicQ(Mд), see [HM, §D], notably [HM, Proposition .].

What can we say about the boundary ∆ B Mд \ Mд? Clearly it must consist of all stable
curves that have at least one node. Now, it can be shown that the locus of curves with exactly
δ nodes is of codimension δ inMд and deformation theory tells us that the locus of curves
with more than δ nodes lies in the closure of those with exactly δ nodes, see e.g. [HM,
§A and §B] or [DM]. erefore, ∆ is a divisor and consists of components that are the
closures of curves with exactly one node. If we restrict our aention to the generic elements,
we see that they are easy to categorise: either it is irreducible or consists of two irreducible
non-singular components, one of genus i and one of genus д − i , joined together at a node
(see figure .). We denote these by∆i for i ∈ {0, . . . , ⌊ д2⌋}. In particular, these give rise to
elements δi and δ B

∑
δi of PicQ(Mд).

 Intuitively, it should be clear what a node or “double point” is. e precise definition is rather technical,
involving formal completion, and may be found in, e.g., [EH, Definition V-].

 Note that these pictures are a bit misleading. e nodes occur where (components o) curves meet trans-
versally and this cannot be pictured in less than 4 real dimensions. Nonetheless, it may be helpful to picture
boundary points in this way, cf. also the discussion on [HM, p. ].


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..

· · ·

Figure .: A point of δ0;{1,2}. e locus of all such points lies dense in the component.

Another class of divisors we shall be concerned with is the following. For any family

π : X .... B

of stable curves, consider the relative dualising sheaf  ωπ B ωX/B . en we define the Hodge
bundle

ΛB B c1
(
π∗(ωX/B)

)
,

where c1 is the first Chern class (Definition ..), and this gives rise to a line bundle onMд,
see [HM, p. ] or [AC, §]. We denote the associated class by λ.

is allows a complete description of the Picard group.
P ..: For д ≥ 3, PicQ(Mд) is generated freely by λ and the δi while PicQ(Mд)

is generated freely by λ.

Proof: [AC, eorem ]. □

e case of pointed curves is more technical. We adopt the notation of [CM].

Observe that the space Mд,1 has a special significance: in a way, it fulfills the purpose of
the universal curve Cд over Mд—at least for those points in Mд with no non-trivial auto-
morphisms, cf. also the discussion in [HM, §B]. In any case, we have a forgetful map
π : Mд,1

.... Mд sending any (C;p) to C, if д ≥ 2. Again, this gives rise to a dualising sheaf
ωπ B ωMд ,1/Mд . Now, starting inMд,n, we have n different maps

πi : Mд,n
.... Mд,1, (C;p1, . . . ,pn) ... (C;pi).

By Proposition .., this allows us to define

ωi ,rel B π ∗i (ωπ ) ∈ PicQ(Mд,n).

Additionally, when talking of boundary components in Mд,n, we must keep track of the
marked points. So take any subset S ⊂ {1, . . . ,n} and let δi;S be the boundary divisor with
a generic element consisting of a genus i and a genus д − i component joined at a node with
the additional requirement that the points pj , j ∈ S lie on the genus i component. Observe,
in particular, that besides the “classical” (generic) δ0 boundary component, we now have ad-
ditional δ0;S components (see figure .), if |S | ≥ 2, as stable curves are permied to contain
rational components with three marked or singular points.

 For “nice” X and B this is just the canonical sheaf. However, to cope with singularities etc., the definition
needs to be generalised. See [HM, pp. –] for a short summary or [Vak, Chapter ].


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P ..: PicQ(Mд,n) is generated by λ, ωi ,rel for i = 1, . . . ,n, δ0 and δi;S for i =
0, . . . , ⌊ д2⌋ and S ⊆ {1, . . . ,n}, with the additional requirement that |S | ≥ 2 if i = 0 and
1 ∈ S if i = д

2 .

Proof: Originally, this result is [AC, eorem ] but with slightly different generators; this
version and the relationship between the generating sets may be found in [CM, e-
orem .] or [Log, §]. □

We conclude this section by defining the slope of a divisor: given

PicQ(Mд) ∋ D = aλ −
∑

biδi ,

with b0 , 0, we define the slope of D as s(D) B a
b0
.

. The Divisor Lin13

We now want to turn our aention to specific divisors on moduli spaces. Given a certain
geometric property P , it is natural to study the locus of curves in someMд,n that satisfy P . If
this locus is in fact a divisor, we speak of a geometric divisor and say that P is a codimension
1 property. In most cases, P shall consist of requiring the admiance of some gr

d
.

Geometric divisors have been a vital tool in the study of the geometry of moduli spaces.
Notably, Harris and Mumford used the Hurwitz divisor consisting of curves admiing a g1

k
in their proof thatMд is of general type for odd д ≥ 25 [HM]. More recently, Logan used
a series of geometric divisors to determine the Kodaira dimension of various pointed moduli
spaces [Log].

As seen in section ., it is oen easier to work in the projective closure, Mд,n and in this
case, the (free) generators of the divisor class group are known. Hence, we may express any
divisor by giving coefficients with respect to the generating classes. Note also that we may
view any divisor as an element of the Chow ring and in that respect it seems very natural to
intersect divisors and curves as this yields intersection numbers (cf. Proposition ..). By
checking the intersection of a curve with the generators of the Picard group, we may then
compute the coefficients of the divisor in PicQ(Mд,n). We refer to the curves being used in
such a procedure as test curves. Examples may be found in, e.g., [HM, §F], [Log] or
[Far].

It remains to check whether requiring curves to admit a specific gr
d
is indeed a codimension

1 property. is can be achieved using results of the classical Brill-Noether theory. A brief
introduction may be found in, e.g., [HM, §A and §F].

First we define the set of points inMд,n (where n B r + 1)

Lin
r
d B {(C;p1, . . . ,pn) | C admits a grd with sections vanishing at the pi}.

In other words, any invertible sheaf L associated to a divisor of the gr
d
satisfies

dimH0(L ⊗ O(−p1 − · · · − pn)) ≥ 1.


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We will use the following criterion to check in which cases its projective closure gives rise to
a divisor.
P ..: Let ρ(д, r ,d) B д − (r + 1)(д − d + r) be the Brill-Noether number. en
Linrd is a divisor onMд,n if ρ(д, r ,d) = 0.

Proof: is is the first part of [Far, eorem .]. Note that our requirements are indeed
equivalent to those of [Far]: if ρ(д, r ,d) = 0, we have дr = (r+1)(d −r) and therefore
r divides d . Call the quotient d/r C s +1 and clearly д = s(r +1) as in the theorem. On
the other hand, for any integers r , s ≥ 1, seing д B s(r + 1) and d B r(s + 1) yields

ρ(д, r ,d) = д − (r + 1)(д − d + r) = (r + 1)(s − sr − s + rs + r − r) = 0. □

E ..: Consider the locus of curves admiing a g13. By Proposition .., this yields

a divisor if д = 2 · (3 − 1) = 4 and n = 2. In other words, we obtain a divisor Lin13 on
M4,2 of curves that admit a g13 with the non-zero section vanishing at the marked points.

. Teichmüller Curves

As mentioned in the previous section, the study of the geometry of moduli spaces naturally
leads not only to the study of divisors but also of curves. More specifically, we consider
algebraic curves lying inMд,n that may be extended to the boundary, see e.g. [Möl, §.]
for details.

Finding “interesting” curves is no easy task. We choose to concentrate on one particular
class: Teichmüller curves. ese have been studied intensively since their initial appearance
in [Vee]. Constructing them is quite technical at first, but the advantage is that there are
explicit formulas for the intersections with the generators of PicQ(Mд,n) making them ideal
candidates for test curves. For an extensive introduction, see [Möl] and the references
therein.

To obtain Teichmüller curves, wemust endow our curveswith additional structure. erefore,
we consider ΩMд, the vector bundle of differential forms overMд without the zero section,
i.e. a point in ΩMд may be thought of as a pair (X ,ω), where X ∈ Mд and ω is a global
section of the canonical sheaf on X . We call the pair (X ,ω) a flat surface. See e.g. [Zor]
for a comprehensive introduction to the theory of flat surfaces.

Observe that there is a natural stratification of the space ΩMд: by Corollary .., ω has
exactly 2д − 2 zeros; hence we may choose any partition µ B (m1, . . . ,mk) of positive
integers so that

∑
mi = 2д − 2 and consider the subspace ΩMд(m1, . . . ,mk) of points (X ,ω)

so that the coefficients of divω correspond to µ. In addition, we occasionally subdivide these
strata into a hyperelliptic component ΩMд(µ)

hyp consisting of those points (X ,ω) for which
X is hyperelliptic, i.e. admits a g12. We denote the complement by ΩMд(µ)

non-hyp, see [Möl,
§.] for details.

As Teichmüller theory’s origins lie in the study of Riemann surfaces (see e.g. [Hau+, §]),
we must restrict ourselves to the case k = C. In this case, we have an equivalence of the

 Take care not to confuse ω and ωX ! is awful notation is due only to historical reasons.
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category of compact Riemann surfaces with holomorphic maps and non-singular projective
curves (cf. e.g. [LAGI, §] or [Mir]). erefore, we use the terms “curve” and “Riemann
surface” interchangeably and we may think of (X ,ω) ∈ ΩMд as a Riemann surface of genus
д with a non-zero holomorphic 1-form ω. If Z is the set of zeros of ω, this endows X \ Z
with a translation structure, i.e. an atlas of complex charts all whose transition functions are
locally translations, and the group SL2(R) acts on these translation structures, see e.g. [HS,
§.] for details. Note that this action respects the stratification, see e.g. [Möl, Corollary
.]. Now, a Teimüller curve is the image of the projection of a closed SL2(R)-orbit from
ΩMд toMд,n, where the n marked points correspond to the points of Z on X , cf. [Möl, §].

Arguably, the “correct” way to define Teichmüller curves is as the image of a Teichmüller disk
inMд, see e.g. [HS, §.] for this approach and [Möl, §] to see that the two definitions
coincide. Exploring which points give rise to Teichmüller curves yields a rich and interesting
theory.

A strength of Teichmüller curves is that they provide a comparatively easy way of construct-
ing many interesting curves inMд. We consider a special class of flat surfaces that turns out
to be particularly fruitful: we say that (X ,ω) is a square-tiled surface if X may be obtained as
a covering of the torus, ramified over 1 point only and ω is the pull-back of the differential
form on the torus. is allows us to picture X as a series of squares where parallel sides are
glued together. In particular, every square-tiled surface gives rise to a Teichmüller curve, cf.
[Sch, §.] or [Möl, Proposition .].

As mentioned, our interest in Teichmüller curves lies in intersecting them with divisors. For-
tunately, given a Teichmüller curve C, we may give a very explicit description of the inter-
section with the generators of the Picard group. Note first that C is determined solely by
points from a single stratum of ΩMд, say µ B (m1, . . . ,mk). We may therefore define

κµ B
1

12

k∑
j=1

mj(mj + 2)

mj + 1
(.)

for any Teichmüller curve. Additionally, given any such C, we denote its sum of Lyapunov
exponents by L(C). For the precise definition of these, we refer to [Möl, §] or [Kap]
and the references provided therein. e important fact for us is that L(C)may be calculated
by a formula provided by [EKZ] for any given Teichmüller curve that is generated by a
square-tiled surface.

Now, given a Teichmüller curve C generated by (X ,ω) ∈ ΩMд(m1, . . . ,mk), we denote its
closure inMд,k by C and define the slope of C by

s(C) B C · δ0
C · λ

. (.)

Note that C avoids all boundary components except δ0 so this definition can be seen as dual
to the slope of a divisor, cf. e.g. [Möl, Corollary .].

 Note that as д = 1, we have l(K ) = 1 so there is only one differential form up to multiplication with scalars.
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P ..: We have the intersection numbers

C · ωi ,rel =
C · λ − (C · δ0)/12

(mi + 1)κµ

as well as the identity

s(C) = 12 −
12κµ

L(C) .

Proof: [Möl, Proposition .] and [Möl, Proposition .]. □
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Our goal is to study intersections of curves and divisors inMд,n, more precisely inM4,2. But
before we can do this, we must take a detailed look at genus four curves. As we will see, these
are closely related to certain quadrics in P3, so we will actually begin by studying those.

. Aadric in P3

Consider quadric surfaces in P3.
D ..: A quadric surface is a variety of dimension and degree 2.

In particular, any V(f ) for an irreducible polynomial f ∈ k[x0, . . . , x3] that is homogeneous
of degree two yields a quadric in P3.
R ..: Recall that, given any algebraically closed field that is not of characteristic 2,

we are fortunate enough to possess a complete classification of quadrics, cf. e.g. [Küh,
§.] for an introduction. Indeed, for any quadricQ ⊂ Pn, we may perform some change
of coordinates so that Q is of the form x20 + · · · + x2r for 0 ≤ r ≤ n. In particular, for
n = 3, this yields:

(a) Q � V(x20); or

(b) Q � V(x20 + x21); or

(c) Q � V(x20 + x21 + x22); or

(d) Q � V(x20 + x21 + x22 + x23).

Note, in particular, that in case (a), topologically, V(x20) = V(x0) so we may identify
Q with P2. As k is algebraically closed, in case (b), Q is reducible as x20 + x21 = (x0 +√
−1x1)(x0 −

√
−1x1). Clearly, in all other cases, Q is irreducible, as any factor that is

no unit would have to be of degree 1 and this would result in mixed terms. Observe
also that an irreducible quadric is singular if and only if it is in the isomorphism class
of (c): Indeed, by the Jacobian criterion (cf. e.g. [GW, §. and §.]), at any point
p B (a : b : c : d) ∈ Q , the tangent space Tp is isomorphic (as a vector space over k) to
the kernel of the matrix

Jp B


2a
2b
2c
0


and this is of dimension 3 = dimQ + 1 if and only if p , (0 : 0 : 0 : 1), i.e. the “origin”

 Note that we are projective!
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in D(x3). Indeed, in this case, Jp is the zero matrix, hence the kernel is of rank 4. For
any other p ∈ Q , Jp is a rank 1 matrix, hence the kernel is of rank 3, i.e.Q is regular at p.

Conversely, the same argument shows that the quadrics of cases (a) and (d) are regular
as the Jacobian matrix amounts to

Jp B


1
0
0
0

 and Jp B


2a
2b
2c
2d

 ,
respectively, and these are both always of rank 1 as (0 : 0 : 0 : 0) < P3.

.. The Regular Case

We nowwant to examine the case that our quadric is irreducible and regular. IfQ amounts to
P2 the situation is quite clear. erefore, we concentrate on quadrics of type (d). Concretely,
let Q B V(xy −wz) ⊂ P3, i.e. we apply a change of coordinates by substituting

w B
√
−1x3 − x2, x B x0 +

√
−1x1, y B x0 −

√
−1x1 and z B x2 +

√
−1x3.

In particular, Q is non-singular, hence a surface in the sense of section ...
L ..: Q � P1 × P1 via the Segre embedding.

Proof: Recall that the Segre embedding (Proposition ..) describes a closed embedding of
the product Pn × Pm into Pmn+m+n. Concretely, in this case we have

Ψ: P1 × P1 .... P3,
(
(a : b), (c : d)

)
... (ac : ad : bc : bd)

What is the image of this morphism? Clearly,

imΨ =
{
(w : x : y : z) ∈ P3

∣∣∣ ∃(a : b), (c : d) : w = ac , x = ad , y = bc , z = bd
}

But this amounts toQ as the four relations imply xy = wz. And as one of the coordinates
must be non-zero for every such tuple, each of the four relations may be regained from
the one equation. □

R ..: Next, we look at lines onQ . By Lemma .., there are two canonical projec-
tions

π1, π2 : Q � P1 × P1 .... P1,

one for each factor. Now, over any point p ∈ P1, the fibres π−1i (p) are p × P1 and P1 × p,
respectively. In other words, we have two families of curves, each parametrised by P1.
More concretely: fix a point (a0 : b0) ∈ P1. What is the fibre over this point with respect
to π1? By Lemma ..,

(a0 : b0) × P1 = {(a0c : a0d : b0c : b0d) | (c : d) ∈ P1} ⊂ Q ⊂ P3. (.)

 For a discussion of this using Fano schemes, see [EH, §IV..].
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Without loss of generality, we may assume that a0 , 0, i.e. (a0 : b0) =
(
1 : b0

a0

)
. is

translates the points of (.) into those satisfying(
c : d : b0

a0
c : b0

a0
d
)
⊂ P3,

i.e. those cut out by the two planes x2 − b0
a0
x0 and x3 − b0

a0
x1 in P3. Of course, fixing

(c0 : d0) ∈ P1 yields a line V(c0x1 − d0x0, c0x3 − d0x2) ⊂ Q by the same argument.

On the other hand, as any given point p ∈ Q corresponds to a point(
(a0 : b0), (c0 : d0)

)
∈ P1 × P1,

we find one line from each family going through p: (a0 : b0) × P1 and P1 × (c0 : d0).
Clearly, two lines in the same family do not intersect, while a pair of lines coming from
both families will intersect in exactly one point.

Are there any other lines on Q? Note that any line is an intersection of two (unequal)
hyperplanes by Remark ... By Example .., these hyperplanes have degree 1, hence
by Bézout’s theorem (Proposition ..) their intersection is irreducible and of degree
1. Now, clearly, any line on Q through p must lie in the projective closure Hp of the
tangent plane Tp at p (cf. e.g. [Vak, §..] or [GW, §.]). But this is a hyperplane
as Q is a regular surface. erefore, by Example .., it is of degree 1 and Bézout yields∑

j

i(Q ,Hp;Zj) · degZj = (degQ)(degHp) = 2

for the irreducible components Zj of Q ∩ Hp . But the two lines constructed above both
lie in this intersection and as they are each irreducible components of degree 1, there can
be no third line passing through p.

E ..: Concretely, we consider the point p B (1 : 0 : 0 : 0). e corresponding
point in P1 × P1 is

(
(1 : 0), (1 : 0)

)
. erefore, by the observations regarding (.), we

have (1 : 0) × P1 � V(x2, x3) and P1 × (1 : 0) � V(x1, x3). How does this relate to
the tangent space? Note that p ∈ D(x0). Hence, we may give local coordinates of Q (cf.
Remark ..):

Q ∩D(x0) = Spec k[x1, x2, x3]
/
x3 − x1x2 .

Now, recall that the (affine) tangent space is given by

Tp = V
(∑

i

∂(x3−x1x2)
∂xi

(p)xi
)
= V(x3)

and clearly Hp ∩ Q = V(x3) ∩V(x3 − x1x2) = V(x1x2, x3) = V(x1, x3) ∪V(x2, x3) by
Remark ...

is is an example of a more general occurrence. We call any surface S that contains some
family of lines l a ruled surface. Any family of lines on S is then called a ruling of S . Observe
thatQ is in fact a doubly ruled surface. e two rulings are the two families of lines described
in Remark ...
 As k is algebraically closed, all fibred products “behave well” by Remark ...
 Indeed, any line on Q is cut out by linear homogeneous polynomials, hence these generate some ideal I ⊃
(x0x3 − x1x2). In other words, they give rise to elements of

(
mp/m2

p

)∗
� Tp .
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.. The Group ClQ

Our next aim is to calculate ClQ , the divisor class group of Q . It turns out that it has a
pleasantly simple structure:
P ..: ClQ � Z ⊕ Z.

To prove this we require a slightly technical result.
L ..: Let X be a Noetherian, integral, separated scheme over k that is regular in

codimension one. en:

(a) if Y is an irreducible subset of codimension one, then there is an exact sequence

Z .... ClX .... Cl(X − Y ) .... 0,

where the first map is defined by 1 ... 1 ·Y , the second one by assigning P ∩ (X −Y )
to every prime divisor P on X ;

(b) ClX � Cl(X ×k A1
k
).

Proof: cf. e.g. [Har, Proposition II.. and II..]. □
Proof of Proposition ..: We follow [Har, Example II...]. e idea is to generalise Re-

mark .. to fit this case: again, denote by πi the projections Q .... P1. ese give rise
to homomorphisms

π ∗i : Div P
1 .... DivQ ,

∑
npp ...

∑
npπ

−1
i (p).

Indeed, let p ∈ P1 be any point, then π−1i (p) is a line in one of the two rulings (cf. Re-
mark ..), in particular a closed integral subscheme of codimension one, i.e. a prime
divisor, as required.

Note that for any f ∈ k(P1)× = k(x)× , π ∗i (div f ) corresponds to the divisor div f of
f considered as an element of k(Q)× = k(x ,y)× . us the morphisms π ∗i descend to
morphisms Cl P1 .... ClQ and we will consequently treat them as such.

Now we use Lemma ..: To that end, we let Y B p × P1 = π ∗1(p), for some p ∈ P1, so
that X − Y = A1 × P1 and therefore Cl(X − Y ) � Cl P1 � Z (cf. Example ..). Note
that the first isomorphism is in fact given by π ∗2 (via the correspondence of affine lines
A1 × p′ and points p′ ∈ P1, see the proof of [Har, Proposition II..]) and it factors
through ClQ by composition with the restriction map, as the function field does not care
for Y . Hence, π ∗2 (and by the same argument also π ∗1) is injective.

But now Lemma .. yields the exact sequence

Cl P1 � Z .... ClQ .... Cl(A1 × P1) � Z .... 0

and if we fix p as a generator of Cl P1, the first map is π ∗1 , i.e. the sequence is in fact short
and exact. However, as we have seen, Cl(A1 × P1) may be identified with Cl P1 via π ∗2 .
erefore, sending p′ ∈ P1 to P1 × p′ ∈ ClQ , is a one-sided inverse to the restriction
map ClQ .... Cl(A1 × P1). Indeed, π ∗2(p

′) = P1 × p′ is restricted to the affine line
A1 × p′ ∈ Cl(A1 × P1) and this corresponds to p′ ∈ Cl P1 under the isomorphism.

Hence the sequence splits, which implies ClQ � Z ⊕ Z. □
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. Aadric in P3

Note that this implies thatQ is not isomorphic to P2. In particular, compared to Remark ..,
this shows that the correspondence of curves with their function fields cannot be extended
to surfaces!

is result permits the following classification of curves on Q .
D ..: Let D be a divisor on Q . en we say that D is of type (a,b), where (a,b)

is the corresponding element in Z ⊕ Z.

Taking this a step further, we may connect these results to section ... Recall thateorem 
yields a unique pairing

ClQ × ClQ = Z2 × Z2 .... Z.

Now, as is evident from the proof of Proposition .., lines contained in the two rulings of
Remark .., are of type (1, 0) and (0, 1), respectively. Hence, if we pick lines l of type (1, 0)
andm of type (0, 1), the intersection pairing equates tom · l = ♯(m∩ l) = 1, as these meet in
exactly one point by construction, and l2 =m2 = 0 as we may pick parallel linearly equival-
ent representatives and the intersection product only distinguishes up to linear equivalence.
But as l andm generate ClQ , this fixes the entire intersection product.

In particular, given divisors C and D of type (a,b) and (a′,b′), respectively, the intersection
product yields

C · D = (al + bm) · (a′l + b′m) = aa′l2 + ab′l ·m + a′bm · l + bb′m2 = ab′ + a′b .

.. The Singular Case

Let us briefly compare the regular quadric of type (d) to the singular quadric of type (c). Again,
we perform a base change to obtain Q′ B V(xy − z2) ⊂ P3.
R ..: What can we say about the lines on Q′? As in the regular case, given a point

p ∈ Q′, any line through p on Q′ must lie in the intersection of the tangent plane Tp at p
andQ′. By Remark ..,Q′ has only one singular point: O B (1 : 0 : 0 : 0) and we claim
that all lines on Q′ pass through O . Consider any Q′ ∋ p C (p0 : p1 : p2 : p3) , O . en
the tangent plane at p is Tp = V(p2x + p1y − 2p3z) ⊂ P3 (cf. [GW, Example . and
Proposition .]). Clearly,O ∈ Tp . Now, calculatingTp ∩Q′ is no fun, so we revert to a
trick: consider the hyperplane V(z) ⊂ P3. By virtue of P3 (cf. Remark ..), given any
line and any hyperplane, the two must intersect, in particular any line in Tp ∩ Q′ must
also intersect V(z). But we can calculate this intersection:

Tp ∩Q′ ∩V(z) = V(p2x + p1y − 2p3z , xy − z2, z) = O

as p , O implies that p1 , 0 , p2 (as p ∈ Q′). erefore, any line on Q′ through p must
also pass through O and the existence of such a line is guaranteed by Bézout. But as a
line is determined by two points, there can be at most one line through any point of Q′

(with the obvious exception of O).

To summarise, the singular irreducible quadric Q′ admits exactly one ruling.

 e reason is that the intersection is a line of multiplicity 2 and (.) suggests that this will be nasty.
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. Non-Hyperelliptic Genus 4 Curves

Let X be a non-hyperelliptic curve of genus 4. en, by eorem  and Example .., the
corresponding canonical curve has degree 6 and lives in P3. We shall now explore the rela-
tionship to quadric surfaces.

First, however, we should observe that it is indeed necessary to work in P3. As д = 4, X
cannot be rational, so P1 is obviously disqualified.
L ..: ere is no closed immersion of X into P2, i.e. X is not a plane curve.

Proof: By Proposition .., a plane curve of genus д must satisfy 2д = (d − 1)(d − 2), where
d is the degree of C . But our curve X has genus 4 and therefore X cannot be a plane
curve, as there is no integer d satisfying 8 = 23 = (d − 1)(d − 2). □

Now, X is no plane curve, so the obvious question is: what kind of geometric object in P3

contains X? It should come as no surprise that the answer is a quadric surface. In relevant
cases, it will in fact be the quadric surface of section ..
P .. (cf. [Har, Example IV...]): e image of X is contained in a unique

irreducible quadric surface Q .

Proof: Let I denote the ideal sheaf ofX in P3, i.e. let ϕ : X .... P3 be the canonical morphism
and ϕ♯ : OP3 .... ϕ∗OX the corresponding morphism of sheaves. en ϕ♯ is surjective
because ϕ is an immersion and we have

0 .... I .... OP3 .... ϕ∗OX .... 0. (.)

We will now use a classical cohomological argument to locate our quadric. e idea is to
pick non-zero elements of the vector space H0(P3,I(2)), as these will be polynomials of
degree 2 whose zero locus contains X . e reason is that any projective subscheme X ′

that contains X as a closed subscheme must have an ideal sheaf I′ so that

I′ .... I and hence ϕ′∗OX ′ .... ϕ∗OX

where ϕ′ is the immersion of X ′ into P3 (as ϕ′∗OX ′ � OP3/I′ and ϕ∗OX � OP3/I respect-
ively).

Now—according to Serre (cf. Proposition ..)—we have

I �
˜∞⊕

n=0

H0(P3,I(n))

and each of these groups may be embedded into H0(P3, OP3(n)) = k[x0, . . . , x3]n, that
is the homogeneous polynomials of degree n, so any element of H0(P3,I(2)) will yield
a defining equation for a quadric surface containing X .

 Recall that taking global sections is le exact and twisting a sequence is exact. Indeed, a sequence of sheaves
is exact if and only if it is exact on the stalks. Twisting the sequence amounts to tensoring with O(n) and
since that sheaf is locally free of rank one, it’s stalk is a flat module.
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To show that such an element exists, we count dimensions. Taking cohomology of the
twisted sequence yields the long exact sequence

0 .... H0(P3,I(2)) .... H0(P3,OP3(2)) .... H0(P3,ϕ∗OX (2)) .... · · ·

As above, H0(P3, OP3(2)) = k[x0, x1, x2, x3]2 and simply counting (cf. Example ..)
shows that this space has dimension 10.

As ϕ is the canonical embedding,
(
ϕ∗OX

)
(m) � ϕ∗

(
OX ⊗ ϕ∗OP3(m)

)
� ϕ∗ω⊗mX (cf. Ex-

ample ..). Again, the cohomology disregards the embedding so we have

H0
(
P3,

(
ϕ∗OX

)
(m)

)
� H0(X ,ω⊗mX ).

In particular, dimH0(P3,ϕ∗OX (2)) = dimH0(X ,ω⊗2X ) = l(2K ), and we can use the
Riemann-Roch eorem (eorem ) to calculate this:

l(2K ) − l(K − 2K ) = 12 − 4 + 1 = 9.

As degK = 2д−2 = 6, deg 2K = 12. But this implies that the divisor 2K is non-special
(cf. Example ..), so l(K − 2K ) = 0. Hence, dimH0(P3,ϕ∗OX (2)) = 9 and therefore
we find that

dimH0(P3,I(2)) ≥ 1,

meaning that we find an element 0 , q ∈ H0(P3,I(2)) so that Q B V(q) is indeed a
quadric surface containing X .

It remains to show that Q is irreducible and unique. Say that (q) is no prime ideal. en
we would find polynomials a,b of degree one with q = ab. As the curve X is irreducible,
that would imply a or b ∈ I and that in turn would mean that (without loss of generality)
X ⊆ V(a). But—a being a linear polynomial—V(a) is a hyperplane in P3, i.e. a P2, and
that violates Lemma ... erefore (q) is a prime ideal and thereby Q is irreducible.

e fact that Q is unique follows from Bézout’s theorem (Proposition ..): Say X is
contained in another quadricQ′. By the same argument as above,Q′ is irreducible and of
degree 2, andX must be contained in an irreducible component ofQ ∩Q′. But by Bézout,
any such component is a curve of degree at most four. X being irreducible, it must lie
completely in one of these components, Z . But as Z is also irreducible, we have X = Z
and this is a contradiction, as the two curves have different degrees. □

We can be even more precise in our locating of X :
P ..: X is also contained in an irreducible cubic surface C . Furthermore, X is

equal to the intersection C ∩Q .

Proof: To find the cubic surface, we use once more our cohomological trick: Of course, this
time we must twist the sequence (.) three times before taking the cohomology:

0 .... H0(P3,I(3)) .... H0(P3,OP3(3)) .... H0(P3,ϕ∗OX (3)) .... · · ·
 We choose two from four variables and do not care for the order: (4+2−1

2
) = 10.
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H0(P3, OP3(3)) is again simply the space of degree three polynomials so it has dimension
(4+3−1

3 ) = 20 and—again, as above—dimH0(P3,ϕ∗OX (3)) = l(3K ), as X is a canonical
curve. By Riemann-Roch, we have

l(3K ) − l(K − 3K ) = 18 − 4 + 1 = 15

and—since 3K is also non-special—we conclude that

dimH0(P3,I(3)) ≥ 5.

is means that we have a five dimensional vector space to choose our cubic generators
from. Now, Proposition .. yielded a unique quadricQ = V(q) containing X . Multiply-
ingq with any linear polynomial l , it is evident that the l ·q’s span only a four dimensional
vector space (as l is of the form ax0 + bx1 + cx2 + dx3), and that means that we find a
cubic form c that is not divisible by q, i.e. so that X ⊂ V(c) C C and Q 1 C .

In particular, this implies that C too is irreducible. Indeed, if C were reducible, X would
be contained either in a P2 or in a quadric that is notQ , both of which is impossible. Ad-
ditionally, we are once again permied to apply Bézout’s theorem. e sum of weighted
degrees of the irreducible components of the intersectionQ∩C must equal degQ ·degC =
2 · 3 = 6. But as X is also of degree 6 and must be contained in one of these irreducible
components, X must inevitably equal the complete intersection. □

Now, as we observed in Remark .., there are only three types (up to isomorphism) of
irreducible quadrics in P3: the first is P2, the second is the regular quadricQ from Lemma ..
and the third is the singular quadric Q′ from section ... By Lemma .., X does not lie in
P2 and by Remark .. and Remark .., we can try to distinguish the other two cases by
checking how many lines lie on the canonical curve.

Note that if X lies in a regular quadric, it is necessarily of type (3, 3). Indeed, given one of
the lines of the quadric, observe that it cannot be contained in the intersectionC ∩Q , as this
is an irreducible curve of degree 6. Hence, by Bézout’s theorem Proposition .., it must
intersect C in 3 points (with multiplicity).
R ..: We can make this observation even more precise. Let l be any line in P3 that

intersects X . As X ⊂ Q , l also intersects Q and, by Bézout, either l ⊂ Q or l intersects Q
in two points (with multiplicities). But we also knowX ⊂ C and by the same argument, l
lies inC or intersectsC in three points (with multiplicities). As l cannot lie inQ ∩C = X ,
any such l can intersect X in at most 3 points and if X ∩ l consists of exactly 3 points,
l ⊂ Q , i.e. it must lie in a ruling.

. Lin13 and ΩM4(3, 3)
non-hyp

Finally, we are able to show that Lin13 contains no points in ΩM4(3, 3)
non-hyp. To see that

this is syntactically correct, note that a point (X ,ω) ∈ ΩM4(3, 3)
non-hyp defines a point

(X ,p ,q) ∈ M4,2 where p and q are the two zeros (each of order 3) of ω, cf. section .. e
following theorem is a minute generalisation of [CM, Prop. .].
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non-hyp

eorem : For any (X ,ω) ∈ ΩM4(3, 3)
non-hyp the corresponding point (X ,p ,q) ∈ M4,2 does

not admit a g13 with sections vanishing at p ,q, r for some r ∈ X , i.e. (X ,p ,q) does not lie on
Lin13.

Proof: As (X ,ω) ∈ ΩM4(3, 3)
non-hyp, the canonical divisor on X is K = divω = 3p + 3q

wherep ,q are the zeros ofω, hence we see—cf. Definition ..—ω � OX (K ) = OX (3p+
3q) for the canonical sheaf ω.

Additionally, X is of genus 4 and not hyperelliptic. erefore, by Proposition .. and
Proposition .., we may embed X into a uniquely determined quadric Q ⊂ P3 which
must be of type (c) or (d) (in the language of Remark ..).

Let us assume that the corresponding point (X ,p ,q) ofM4,2 lies on Lin13. en we find
a g13 on X containing a section s vanishing at p ,q and r , i.e. div s ≥ p + q + r C D. But
this implies l(D) ≥ 2 as we definitely find the constant functions and the (non-constant)
section s in this space. Now we may apply eorem  (Riemann-Roch), yielding

l(D) − l(K − D) = l(p + q + r) − l(2p + 2q − r) = 3 − 4 + 1 = 0

i.e. l(2p + 2q − r) = l(p + q + r) ≥ 2. Assume that r ∈ {p ,q}, say r = p. en
l(p + 2q) = l(2p + q) ≥ 2.

On the other hand, if r , p ,q, we have l(2p + 2q) ≥ 3 by Lemma ... If we remove
a point from this divisor, in the “worst case” the dimension will decrease by 1 (cf. Re-
mark ..), yielding l(2p + q) ≥ 2 and l(p + 2q) ≥ 2 respectively. erefore we are in
the same situation as above.

But this means nothing more than that the corresponding linear systems are of dimen-
sion at least 1 and hence we have found two g13s consisting of the non-constant sections
vanishing at 2p + q and p + 2q, respectively.

What is the image (in the sense of Definition ..) of these linear systems on our quadric
Q? e answer is provided by the geometric version of Riemann-Roch (eorem ): For
any such divisor D, we have

dimϕK (D) = degD − l(D) = 3 − l(D)

and as l(D) ≥ 2, we see that dimϕK (D) ≤ 1. Assume for a moment that the dimension
were 0. en l(D) = degD = 3. But now, for any point P , the divisor D − P is of degree
2 and—by Remark ..—l(D − P) ≥ 2, in other words: D − P gives rise to a g12 and that
contradicts the fact that X is non-hyperelliptic.

erefore we see that dimϕK (D) = 1 and hence the image of the divisor D is a line
in P3 for any D belonging to one of our g13s. Now, as this line is spanned by the images
(underϕK ) of points belonging to the divisor, it must intersectQ in three points, counting
multiplicities. By Bézout’s theorem (Proposition ..), however, the sum of intersection
multiplicities of Q and any line not contained in Q is 2 and therefore any such line must
lie on Q , i.e. be a line in a ruling of Q .

But then we would have l B ϕK (2p + q) = ϕK (p + 2q) as both these lines pass through
the points ϕK (p) and ϕK (q) and lines are determined by two points. However, this
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is a contradiction as any l is a ruling and any ruling meets X in exactly 3 points (cf.
Remark ..). erefore, both p +2q and q+2p would be equivalent to the intersection
divisor l ∩ ϕ(X ) and this is impossible as X is not rational (cf. Lemma ..). □

is result now permits us to use a Teichmüller curve contained in ΩM4(3, 3)
non-hyp as a

test curve to calculate the divisor class of Lin13 in PicQ(M4,2). In the following, we let δother
denote some linear combination of the boundary components not involving δ0. Recall that
Teichmüller curves avoid δother altogether, justifying this notational laxity.

P .. (cf. [CM, Proposition .]): Lin13 = k(ω1,rel+ω2,rel+8λ − δ0 − δother) in
PicQ(M4,2), for some constant k .

Proof: We pick an arbitrary Teichmüller curve C lying in ΩM4(3, 3)
non-hyp: take the one

generated by
πr = (1 2 3 4 5 6 7 8 9 10) and πu = (1 9 5 6 8), (.)

i.e. corresponding to the flat surface obtained from
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by gluing the sides with matching leers. Note that as all but 4 vertices, 20 edges and
10 faces are identified, the (topological) Euler characteristic is −6 and, consequently, the
surface is indeed of genus 4. Furthermore, we obtain a (canonical) cover of the torus
ramified at two points and as each ramification point is a conic singularity with cone
angle 8π , the pullback of the canonical differential on the torus has two zeros, each of or-
der 3. See also [Zor, §.] for an introduction on flat surfaces with a complex structure.
Clearly, our polygon does not admit enough symmetries to glue to a hyperelliptic curve
(cf. [Zor, §.]). In conclusion, the flat surface described is a point in ΩM4(3, 3)

non-hyp,
as required.

By eorem , we know that C ∩ Lin13 must be empty. What happens at the boundary?

Recall that the boundaryMд,n \Mд,n consists of pointed nodal curves and [HM, §A]
explains the geometry of these: we consider the normalisation (cf. e.g. [GW, §.])
and “replace” the canonical sheaf by the dualising sheaf. en such a nodal curve is of
arithmetic genusд, related to that of its normalisation by the number of nodes (cf. [HM,
formula (.)]). While the geometric genus is no longer defined, Serre duality is still valid
for the dualising sheaf. In other words, the space of global sections of the dualising sheaf
is also of dimension д. Moreover, the dualising sheaf is invertible and of degree 2д − 2
and, in particular, the Riemann-Roch theorem applies as in the regular case.

Note that, as C avoids all boundary components except δ0 (cf. [Möl, Corollary .]),

this is the only place where Lin13 and C could meet. Now, curves in δ0 that could lie
on C contain no separating nodes and at most two irreducible components, each con-
taining at least one zero of the differential (cf. [Möl, Corollary .]). Indeed, if (X ,ω)
corresponds to some point on C · δ0 consisting of two irreducible components Xi , joined
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. Lin13 and ΩM4(3, 3)
non-hyp

.

(a)

.

(b)
Figure .: Examples of reducible curves in δ0. In (a), we have дi = 0, n = 3 and mi = 1,

while in (b), we have дi = 0, n = 5 andmi = 0.

together by n nodes, consider the normalisation X ′i
.... Xi and denote by дi the genus

and bymi the number of nodes contained only in Xi . en the pullback of ω to the nor-
malisation X ′ is a section of the canonical sheaf of X ′ and the restriction to some X ′i is
consequently a rational section of the canonical sheaf with poles at the (preimages o)
the n connecting nodes and double poles at the (preimages o) the mi nodes contained
in Xi , cf. [Art, formula (.) and (.)]. Furthermore, each component must contain a
threefold zero of ω (as we are in the stratum (3, 3), cf. [Möl, Corollary .]). en
[HM, formula (.)] yields

2дi − 2 = 3 − n − 2mi , i.e. 0 ≤ 2(дi +mi) = 5 − n,
as the restriction of the dualising sheaf is of degree 2дi − 2. In particular, this requires
that n ∈ {1, 3, 5}; examples are depicted in figure . and figure ..

In any case, as no such X is hyperelliptic (cf. [Möl, Proposition .]), this implies that
we satisfy the prerequisites of [Art, eorem .] which asserts that the dualising sheaf
is very ample and yields an embedding of X into P3. is—together with the fact that
the degree of the dualising sheaf is again 6—shows that all arguments in section . can
be applied to this more general situation. In other words, X is again contained in the
intersection of a quadric and a cubic surface.

Describing the extension of Lin13 to the boundary is also quite technical. Details may
be found in, e.g., [HM, §G]. e correct generalisation of a g13 to stable curves can
be achieved in terms of admissible covers (see [HM, Definitions . and .] for a
proper definition). As we are interested only in the intersection with C, we need only
consider curves X in δ0 with no separating nodes. In this case, the admissible cover
corresponding to a g13 is a degree three map from X to P1 with one marked point, cf.
[HM, eorem .]; by definition of Lin13, the preimages of the marked points on
P1 must be the two marked points on X . Moreover, as we are inM4,2, the two marked
points stay away from the nodes, see [Knu, §]. erefore, we may apply geometric
Riemann-Roch, just as we did in section ., to show that any g13 corresponds to a line on
the quadric via the embedding into P3.

In summary, the arguments of section . and eorem  are all applicable to this case
and permit us to conclude that Lin13 · C = 0.

But by Proposition .., we know the generators of the Picard group. erefore, there
exist coefficients a1, a2,b and c so that

0 = C · Lin13 = C · (a1ω1,rel + a2ω2,rel + bλ − cδ0 − δother).


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.

Figure .: An example of an irreducible curve in δ0. We have д1 = 3, n = 0 andm1 = 1.

AsM4,2 admits an automorphism σ , interchanging the two marked points and, by defin-

ition, Lin13 is invariant under this automorphism, the role of ω1,rel and ω2,rel cannot be
distinguished, as they are permuted by σ . erefore, we have a1 = a2.

Recall that we defined the slope of a Teichmüller curve to be

s(C) = C · δ0
C · λ

and in this case, by [CM, Proposition .], the formula from [EKZ] yields L(C) = 2
for the sum of Lyapunov exponents (cf. section .). As in (.), we obtain

κ(3,3) =
2
12

(
3·(3+2)
3+1

)
= 5

8

and with this, Proposition .. allows us to calculate the slope of C:

s(C) = 12 −
12κµ

L(C) = 12 − 15

4
=

33

4
.

Hence we obtain the additional relation

C · λ = 4
33C · δ0.

We can also calculate the intersection of C and theωi ,rel classes, again by Proposition ..:

2 · C · ω1,rel = 2 ·
C · λ − 1

12C · δ
4 · 58

= 4
5C · λ −

4
5 ·

1
12C · δ0

= 4
5C · λ −

1
15C · δ0.

Combining all of this leads us to

C · Lin13 = 0 = 2a1C · ω1,rel + bC · λ − cC · δ0
= a1

(
4
5C · λ −

1
15C · δ0

)
+ bC · λ − cC · δ0

= a1
(
16
5·33C · δ0 −

1
15C · δ0

)
+ 4

33bC · δ0 − cC · δ0
= C · δ0

(
a1
33 +

4b
33 − c

)
(.)

and therefore a1 + 4b − 33c = 0.

Unfortunately, our Teichmüller curve only leads us this far. Picking another curve as test
curve yields the additional relation

a1 + 2b − 17c = 0,
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. Teimüller Curves and Divisors in Hyperelliptic Strata

see [CM, Proposition .] or [Möl, Proposition .]. Up to a constant, this shows

a = 1, b = 8, and c = 1,

as claimed. □

Note that a more general calculationwas done in [Far,eorem .]. In particular, he shows
that k = 1

2 in our formula.

. Teichmüller Curves and Divisors in Hyperelliptic Strata

In a sense, we want to reverse the above argument: in section ., we used the fact that
we knew that a certain divisor did not intersect a Teichmüller curve to find coefficients for
that divisor in the Picard group. Now, we want to construct a family of divisors that avoids
Teichmüller curves.

Given a single Teichmüller curve, we may proceed exactly as in Proposition ...

C ..: Any divisor in PicQ(M4,2) of the form

D = a1ω1,rel + a2ω2,rel + bλ − cδ0 − δother

with a1 + a2 + 8b − 66c = 0 avoids the Teichmüller curve C (cf. (.)).

Proof: Let D ∈ PicQ(M4,2) be any divisor. By Proposition .. (and the above arguments
regarding boundary components), we find coefficients a,b , c ∈ Q so that

D = a1ω1,rel + a2ω2,rel + bλ − cδ0 − δother.

Of course, there is no more reason to assume symmetry in the ai . But in the course of
Proposition .., we calculated

aiC · ωi ,rel =
ai

2 · 33C · δ0

and by simply ignoring the le hand side of the equation (.), we still obtain

D · C = C · δ0
(
a1+a2
66 + 4b

33 − c
)
.

In other words, any D with coefficients satisfying

a1 + a2 + 8b − 66c = 0

does not intersect C. □

 Note that these include some confusing sign errors.
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Taking a closer look at the proof, however, the only information used that is specific to the
osen Teimüller curve is the slope. As the constant κµ depends only on the stratum we are
in, we observe that any Teichmüller curves in the same stratum with the same slope intersect
the same divisors. As the slope and the sum of Lyapunov exponents are related only by κµ (cf.
Proposition ..), we may switch freely between the two when speaking of only one stratum.

Now, in [CM], Chen and Möller study strata of ΩMд in which all Teichmüller curves have
the same sum of Lyapunov exponents (hence also the same slope). By the above, if we are
in any such stratum, we may pick any Teichmüller curve, calculate the sum of Lyapunov
exponents with the help of [EKZ] and perform the above calculation to find a family of
divisors avoided by all Teichmüller curves in this stratum.

We conclude by performing this calculation in a classical case.
eorem : Any divisor of the form

D = aωrel + bλ − cδ0 − δother,

where aωrel is either a1ω1,rel or a1ω1,rel + a2ω2,rel, depending on the stratum, satisfying

a1 + bд2 − 4cд(2д + 1) = 0

avoids all Teimüller curves in the stratum ΩMд(2д − 2)hyp, while

4(a1 + a2) + bд(д + 1) − 4c(д + 1)(2д + 1) = 0

implies that D avoids all Teimüller curves of the stratum ΩMд(д − 1,д − 1)hyp.
Proof: For these strata the sum of Lyapunov exponents may be calculated with the help of

[EKZ, Corollary ], see also [Möl, eorem .]. For a Teichmüller curve C generated
by some (X ,ω) this yields

L(C) = д2

2д − 1
, if (X ,ω) ∈ ΩMд(2д − 2)hyp, and

L(C) = д + 1

2
, if (X ,ω) ∈ ΩMд(д − 1,д − 1)hyp.

Additionally, we may calculate κµ according to (.) for each stratum:

κ(2д−2) =
1

12

(2д − 2)2д

2д − 1
and κ(д−1,д−1) =

2

12

(д − 1)(д + 1)

д
=
д2 − 1

6д
.

Fortunately, this implies that Teichmüller curves from both strata have the same slope:
for (X ,ω) ∈ ΩMд(2д − 2)hyp, Proposition .. yields

s(C) = 12 −
12κ(2д−2)

L(C) = 12 − (2д − 2)2д

2д − 1

2д − 1

д2
=

12д − 4д + 4

д
= 8 +

4

д
,

while for (X ,ω) ∈ ΩMд(д − 1,д − 1)hyp we have

s(C) = 12 − 2(д2 − 1)

д

2

(д + 1)
= 12 − 4(д − 1)

д
= 8 +

4

д
.
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. Teimüller Curves and Divisors in Hyperelliptic Strata

erefore, by (.), for any such C we have

C · λ =
1

s(C)C · δ0 =
д

8д + 4
C · δ0. (.)

Unfortunately, however, the κµ differ so we are forced to make a case distinction for the
most tedious part of the calculation. We start with the case (X ,ω) ∈ ΩMд(2д − 2)hyp.
en, again by Proposition ..,

C · ω1,rel =
C · λ − C · δ0/12
1
12(2д − 1)

(2д−2)2д
2д−1

=
3C · λ − C · δ0/4

д(д − 1)
.

With (.), we obtain

C · λ 3

д(д − 1)
=

3

4(д − 1)(2д + 1)
C · δ0

and combining all this yields the intersection with the divisor D:

D ·C = C ·(a1ω1,rel+bλ−cδ0) = C ·δ0
(

3a1
4(д − 1)(2д + 1)

− a1
4д(д − 1)

+
дb

4(2д + 1)
− c

)
And as

a1
4(д − 1)

(
3

2д + 1
− 1

д

)
=

a1
4(д − 1)

д − 1

д(2д + 1)
=

a1
4д(2д + 1)

,

this shows that any D with coefficients so that

a1 + bд2 − 4cд(2д + 1) = 0,

avoids all Teichmüller curves C generated by some (X ,ω) ∈ ΩMд(2д − 2)hyp. e other
case works the same way: let C be generated by some (X ,ω) ∈ ΩMд(д − 1,д − 1)hyp.
Again, as we are in a stratum with symmetric partition, the intersection C ·ωi ,rel will not
depend on i . We have (by Proposition .. and (.))

2C · ωi ,rel =
12C · λ − C · δ0

д2 − 1
= C · δ0

(
3д

(д2 − 1)(2д + 1)
− 1

д2 − 1

)
,

for i ∈ {1, 2}. Note that

3д

(д2 − 1)(2д + 1)
− 1

д2 − 1
=

1

(д + 1)(2д + 1)

and the intersection with D is consequently

C·D = (a1+a2)C·ω1,rel+bC·λ−cC·δ0 = C·δ0
(

a1 + a2
2(д + 1)(2д + 1)

+
bд

4(2д + 1)
− c

)
.

is implies that any D with coefficients satisfying

2(a1 + a2) + bд(д + 1) − 4c(д + 1)(2д + 1) = 0

avoids all Teichmüller curves C generated by some (X ,ω) ∈ ΩMд(д − 1,д − 1)hyp. □
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Conclusion

Clearly, the calculation performed in eorem  may be done to equal effect for any stratum
of ΩMд for which the sum of Lyapunov exponents is known and known to be non-varying.
In their paper [CM], Chen and Möller show that the sum is non-varying in almost all strata
for genus 3 and 4 and in some for genus 5 and give counter-examples for many other cases (cf.
[CM, eorems .–.]). e sum is known to vary in most higher genus strata, with the
notable exception of the hyperelliptic locus, which is known to be non-varying. e formulas
provided by [EKZ] permit a concrete computation of the sum and the method ofeorem 
then yields families of divisors avoiding all curves in the stratum.

e divisor families thus obtained are quite large. Indeed, eorem  lets us choose four para-
meters, but as the Teichmüller curves avoid the “higher” boundary components altogether,
we have even more choices. is is remarkable insofar as the geometry of the image of a
stratum of ΩMд inMд,n (orMд,n) is not yet well-understood. Recall that the stratification—
while arising very naturally in ΩMд—is quite artificial on the space of curves. But now we
have a fairly large class of curves (cf. e.g. [Möl, Proposition .]) of which we know that
it avoids a fairly large class of codimension one sub-spaces ofMд,n. On the other hand, the
geometry of the divisors obtained is hard to understand. Indeed, it is not even immediately
clear which—or how many—of the divisors are effective, let alone if the corresponding codi-
mension 1 subvarieties parametrise interesting sets of curves.

Conversely, in [CM], Chen andMöller developed Proposition .. together with other tech-
niques to show that the sum of Lyapunov exponents in certain strata is indeed non-varying.
Unfortunately, it is not at all clear, how the method described in Proposition .. could
be generalised to other strata than ΩM4(3, 3)

non-hyp. Indeed, the techniques developed for
showingeorem  are extremely specific to this situation. We made repeated use of the fact
that genus four curves embed into quadrics in P3 and that a g13 corresponds to a line on such a
quadric. As the reasoning used relied heavily on this classical geometric situation, changing
any parameters puts us in a situation that is much less understood and it is unlikely that the
same arguments can be used.
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surjective, 

multiplicity, 

N
non-singular, 
normalisation, 

O
open neighbourhood D, 
open subscheme, 
order of f at Y , 

P
pencil, 
plane curve, 
pole at Y , 
presheaf, 
Proj, 
projective bundle, 
projective object, 
projective R-space, 
projective scheme over R,


projective space over Y ,


pulling back sections, 

Q
quadric surface, 
quasi-coherent, 
quasi-coherent bundle, 
quasi-projective scheme

over R, 
quotient sheaf, 

R
rational functions, 
rational sections, 
rationally equivalent to 0,


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R-derivations of A into M ,


regular, 
regular function, 
regular in codimension

one, 
regular section, 
relative differential forms

of A over R, ΩA/R ,


relative dualising sheaf,


relevant ideal, 
residue field, 
restriction morphism, 
right derived functor, 
ringed space, 
ruled surface, 
ruling of S , 

S
scheme, 

affine, 
integral, 
irreducible, 
locally closed, 
locally factorial, 
quasi-compact, 
quasi-separated, 
reduced, 
separated, 

scheme over S , 
Segre embedding, 
self-intersection, 
separates points, 

separates tangent vectors,


sheaf, 
associated to graded

module, 
associated to module,


associated to

presheaf, 
direct image, 
flasque, 
inverse image, 
invertible sheaf, 
locally free, 
of holomorphic

functions, 
of ideals, 
of O-algebras, 
of regular functions,


of relative

differentials, 
O-module, 
rank, 
short exact sequence

of, 
tensor product, 
twisted, 

sheafification, 
slope

divisor, 
Teichmüller curve, 

spectrum of the ring R, 
square-tiled surface, 
stable curve, 

stable n-pointed curve, 
stack, 
stalk, 
stratifcation of ΩMд, 
structure morphism, 
structure sheaf of X , 
support of F , 
surface, 
symmetric algebra, 

T
Teichmüller curve, 
tensor algebra, 
test curves, 
transversally, 
trivialisation of F , 
trivialising open set, 
twist of M by l , 
twisting L by D, 

U
universal family, 
universal δ -functor, 
universal object, 

V
valuation of Y , 
Vanishing Ideal I, 
variety, 

Z
Z≥0-graded ring, 
Zariski topology, , 
zero (polynomial), 
zero (ring element), 
zero at Y , 
Zero points V, 
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