Präsenzaufgaben für 08.06.2018.

Aufgabe 1

Beweisen Sie Fells Absorptionsprinzip:

Sei $\pi:\Gamma\to\mathcal{B}(\mathcal{H})$ eine unitäre Darstellung. Zeigen Sie: $\lambda\otimes\pi$ ist unitär äquivalent zu $\lambda\otimes 1_{\mathcal{H}}$.

Aufgabe 2

Sei Γ eine abzählbare diskrete Gruppe, und sei Λ eine Untergruppe von Γ . Zeigen Sie, dass es kanonische Inklusionen $C^*(\Lambda) \subset C^*(\Gamma)$ und $C^*_{\lambda}(\Lambda) \subset C^*_{\lambda}(\Gamma)$ gibt.

Aufgabe 3

Sei Γ eine mittelbare abzählbare diskrete Gruppe.

- (a) Zeigen Sie, dass jede Untergruppe von Γ mittelbar ist. (Hinweis: Benutzen Sie approximativ invariante Mittel.)
- (b) Zeigen Sie, dass jede Quotientengruppe von Γ mittelbar ist.

Aufgabe 4

Eine C^* -Algebra A heißt lokal nuklear, falls für jede endliche Menge $F \subset A$ and jedes $\varepsilon > 0$ eine nukleare C^* -Unteralgebra B von A existiert, sodass B die Menge F bis auf einer Toleranz ε enthält.

- (a) Zeigen Sie, dass wenn eine C^* -Algebra lokal nuklear ist, sie automatisch nuklear ist.
- (b) Hieraus folgt, dass die Klasse der nuklearen C^* -Algebren bezüglich induktiver Limiten mit injektiven Verbindungsabbildungen abgeschlossen ist. Warum?

Die Injektivität der Verbindungsabbildungen braucht nicht vorausgesetzt werden, aber wir wissen noch nicht, dass Quotienten nuklearer C^* -Algebren nuklear sind, was schwierig ist.

Aufgabe 5

Zeigen Sie, dass eine C^* -Algebra genau dann exakt ist, wenn alle ihre separable C^* -Unteralgebren exakt sind. Können Sie das Analogon für nuklearität auch zeigen?