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Mutually coupled inductors. Coupling coefficient. Power and energy
of mutually coupled inductors. Analysis of circuits with mutually

coupled inductor.

6.1. Equivalent circuits of mutually coupled inductors

As was already mentioned in the second topic, when the magnetic field of one coil reaches a second
one  the  two  inductors  are  mutually  coupled  and  are  characterized  by  a  coefficient  of  mutual
inductance M . Depending on the connection between inductors there are a number of equivalent
circuits which could be used to simplify the circuit analysis.

6.1.1. Mutually coupled inductors in series
Consider there are two inductors  L1  and  L2  in series, which are magnetically coupled and
have  a  mutual  inductance M .  The  magnetic  field  of  the  two  inductors could  be  aiding  or
opposing each other, depending on their orientation (fig 6.1).

   
a)

b)
Fig. 6.1. Mutually coupled inductors and dot convention: a) series aiding inductors; b) series

opposing inductors.

Aiding inductors  in  series as well  as  the dot  convention are presented in  fig.  6.1a.  Since their
magnetic fields aid each other, the KVL for this situation is:

v=v1+vM+v2+vM=L1

d iL
dt

+M
diL
dt

+L2

d iL
dt

+M
diL
dt

=(L1+ L2+2 M )
d iL
dt

In the above equation vM  is the voltage drop caused by the mutual inductance M . There are
two voltage drops  vM : one is produced by the additional magnetic flux coming from L1  to

L2  and the second one – by the magnetic flux coming from L2  to L1 . Then the equivalent
inductance is:

LE=L1+ L2+2 M
The second situation is when the magnetic field of the two coils oppose each other (fig. 6.1b). Then
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the KVL law is:

v=v1−vM+v2−vM=L1

d iL
dt

−M
di L

dt
+ L2

d iL

dt
−M

d iL
dt

=( L1+L2−2M )
d iL
dt

And the equivalent inductance is:
LE=L1+L2−2M

6.1.2. Mutually coupled inductors in parallel

Consider two inductors  L1  and  L2  are connected in parallel and are mutually coupled with
mutual inductance M . The voltage applied on the inductors is v S . Once again there are two
possibilities: the magnetic fields of the two inductors could be aiding or opposing each other.

   
a) b)

Fig. 6.2. Mutually coupled inductors in parallel: a) aiding inductors; b) opposing inductors.

First,  we accept  that  the inductors  are  aiding  each other  (fig.  6.2a)  and write  down two KVL
equations:

|vS=L1

d i1
dt

+M
d i2
dt

vS=L2

d i2
dt

+M
d i1
dt

Next, the above system is written in matrix form:

|vS

vS
|=|L1 M

M L2
|.|

d i1
dt
d i2
dt

|
The determinants are:

∆=|L1 M
M L2

|=L1. L2−M 2

∆1=|v S M
v S L2

|=v S (L2−M )

∆2=|L1 vS

M vS
|=v S (L1−M )

The solutions for the current derivatives are:
d i1
dt

=
∆1

∆

d i2
dt

=
∆2

∆
The KVL for the circuit is:

i=i1+ i2
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The above equation is differentiated:

di
dt

=
d i1
dt

+
d i2
dt

=
∆1+∆2

∆
=

v S (L2−M )+vS (L1−M )

L1. L2−M 2 =vS

L1+L2−2. M

L1 . L2−M 2

Then the equivalent inductance is:

v S (t )=LE

di (t )

dt
=

L1 .L2−M2

L1+L2−2. M
.
di (t )

dt
or

LE=
L1. L2−M 2

L1+L2−2. M
In  a  similar  manner  can  be  proven  that  the  equivalent  inductance  of  parallel  inductors  whose
magnetic fields are oppose each other, is:

LE=
L1 .L2−M 2

L1+L2+2. M

6.1.3. Elimination of mutual inductance
Consider the case when two coils are mutually coupled (fig. 6.3). They could be replaced with an
equivalent circuit without mutual inductance and three coils as shown in the figure. To prove this
we write the system of equations for the original circuit:

|v1=L1

d i1
dt

+M
di2
dt

v2=L2

d i2
dt

+M
di1
dt

Then we write the system of equations for the equivalent circuit:

|v1=(L1−M )
d i1
dt

+M
d i0
dt

v2=(L2−M )
d i2
dt

+M
d i0
dt

Considering 
d i0
dt

=
d i1
dt

+
d i2
dt

 we obtain the same system of equations as for the original circuit:

|v1=(L1−M )
d i1
dt

+M
d i1
dt

+M
d i2
dt

=L1

d i1
dt

+M
d i2
dt

v2=(L2−M )
d i2
dt

+M
d i1
dt

+M
d i2
dt

=L2

d i2
dt

+M
di1
dt

In a similar manner we can prove the circuit for the mutually opposing inductors.

a)
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b)
Fig. 6.3. Equivalent circuit for: a) aiding inductors; b) opposing inductors.

Note that the nodes 1 and 2 of the original circuit may or may not be connected and that doesn’t
change the equivalent circuit.

6.1.4. General case
Consider two inductors with mutual inductance which may or may not have an electric connection.
If the two inductors are aiding each other, the equivalent circuit is presented in fig. 6.4. The mutual

inductance is replaced by two dependent sources M
d i2
dt

 and M
d i1
dt

, which are opposing the

direction of the currents.

Fig. 6.4.
The KVL eqations for both the original and the equivallent circuit is:

|v1 (t )=L1

d i1
dt

+M
di2
dt

v2 (t )=L2

d i2
dt

+M
d i1
dt

Next consider the two inductors are opposing each other (fig. 6.5.). The equivallent circuit is the

same however this time dependent sources are with a negative sign: −M
di2
dt

 and −M
di1
dt

.
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Fig. 6.5.

The KVL eqations for both the original and the equivallent circuit is:

|v1 (t )=L1

d i1
dt

−M
d i2
dt

v2 (t )=L2

d i2
dt

−M
di1
dt

If  the  above  time  domain  variables  are  replaced  with  phasors,  the  dependent  sources  in  the

equivallent circuits becomes jωM I
•

1
 and jωM I

•

2
 for aiding inductors and − jωM I

•

1
 and

− jωM I
•

2
 for opposing inductors (fig. 6.6).

Fig. 6.6.

The KVL eqations in complex form for the circuits are:

|V
•

1= jωL1 I
•

1± jωM I
•

2

V
•

2= jωL2 I
•

2± jωM I
•

1

where the plus sign corresponds to aiding inductors and the minus sign – to opposing inductors.

6.2. Energy in mutually coupled inductors

It was already demonstrated in the second topic that the energy stored in an inductor is:

W L=
1
2
. L. i2

Let’s consider two mutually coupled inductors (fig. 6.7). The power transferred from the first to the
second coil is:

pM 12 (t )=i2 .vM=i2 .M
di1
dt
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Fig. 6.7.

If we integrate the power from t1  to t2  the energy is:

W M 12=∫
t1

t2

pM 12 (t ) dt=∫
t1

t2

i2 .M
di1
dt

dt=∫
0

I

M . i2.d i1=
1
2
. M . i1i2

The power transferred form the second to the first coil is:

pM 21 (t )=i1 .vM=i1 .M
di2
dt

Then the transferred energy is:

W M 12=∫
t1

t2

pM 21 ( t ) dt=∫
t1

t2

i1 .M
di2
dt

dt=∫
0

I

M .i1.d i2=
1
2
. M . i1i2

The energy stored in the two coils due to their self-inductance is:

W L1=
1
2
. L1 .i1

2 ,W L 2=
1
2

.L2 .i2
2

Then the total energy stored in two mutually coupled inductors is:

W=
1
2
. L1. i1

2
+

1
2
. L2. i2

2±M .i1i2

The plus sign corresponds to aiding inductors and the minus – to opposing ones.
Since energy usage is always positive we can rewrite the above equation (use equation for opposing
inductors) as:

1
2

.L1 .i1
2
+

1
2
. L2. i2

2
−M . i1i2≥0

or
1
2

(√L1 . i1−√L2 i2)
2
+i1 i2 (√L1L2−M )≥0

Considering (√L1. i1−√L2 i2 )
2

 is always positive or zero, then the second term is also greater or
equal to zero:

√L1 L2−M≥0
This way is defined the coupling coefficient k :

k=
M

√L1L2

The coupling coefficient takes values in the range  0≤k≤1  and shows how good the coupling
between the two coils is. For coils which are not coupled,  k=0  and in case of ideal coupling
(only possible in theory) k=1 .

6.3. Analysis of circuits with magnetically coupled inductors

6.3.1. Kirchhoff’s laws analysis
The analysis of circuits with magnetically coupled inductors could be achieved using an equivallent
circuit  without magnetic couples.  The analysis  using the Kirchhoff’s laws includes creating the
equivallent circuit and analyzing it by writing a system of equation whose number is equal to the
number of unknown currents.
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Example: Estimate the currents for the circuit in fig. 6.8 using the Kirchhoff’s laws.

Fig. 6.8.

It can be seen that the mutual inductance jωM  is given as mutual resistance:

jωM= j0.5 Ω
First  we  are  going  to  create  an  equivallent  circuit  by  replacing  the  mutual  inductance  with

dependent  source  (fig.  6.9).  Since  both  currents  I
•

1
 and  I

•

2
 enterthe  dots,  the  dependent

sources are with plus sign.
Next we write the system of equations:

| I
•

1=I
•

2+ I
•

3

1− j 0.5 I
•

3=10 I
•

1+(1+ j 2 ) I
•

2

j 0.5 I
•

3− j 0.5 I
•

2=−(1+ j2 ) I
•

2+0 I
•

3

Fig. 6.9.
In matrix form it becomes:

[
I
•

1

I
•

2

I
•

3

][−1 1 1
10 1+ j 2 j 0.5
0 1+ j 1.5 j 0.5]=[

0
1
0]
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The determinants are:

∆=[−1 1 1
10 1+ j2 j 0.5
0 1+ j1.5 j 0.5]=− j0.5 (1+ j2 )+10 (1+ j 1.5 )+ j0.5 (1+ j1.5 )− j 0.5∗10=

=− j 0.5+1+10+ j15+ j0.5−0.75− j 5=10.25+ j10

∆1=[
0 1 1
1 1+ j 2 j 0.5
0 1+ j 1.5 j 0.5]=1+ j 1.5− j0.5=1+ j

∆2=[
−1 0 1
10 1 j 0.5
0 0 j 0.5]=− j0.5

∆3=[
−1 1 0
10 1+ j 2 1
0 1+ j 1.5 0]=1+ j1.5

And the currents are:

I
•

1=
∆1

∆
=

1+ j
10.25+ j10

=0.099+ j 0.001 A

I
•

2=
∆2

∆
=

− j 0.5
10.25+ j10

=−0.024− j0.025 A

I
•

3=
∆2

∆
=

1+ j1.5
10.25+ j10

=0.123+ j 0.026 A

6.3.2. Nodal analysis
The nodal analysis cannot be applied if dependent sources are used. However in certain situations
where the mutual inductance could be eliminated, the nodal analysis can be applied.
Example: Estimate the currents for the circuit in fig. 6.8 using nodal analysis.
Considering the two coils have a common end, the mutual inductance could be replaced with an
equivallent circuit with three coils (fig. 6.10). Their resistances are:

jω L1= j 2− j0.5= j 1.5Ω
jω L2= j 3− j 0.5= j2.5Ω

jω L3= j 0.5Ω

Fig. 6.10.

Now we can apply nodal voltage analysis. The KCL is:
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I
•

1=I
•

2+ I
•

3=¿
1−V

•

1

10+ j 0.5
=

V
•

1

1+ j1.5
+

V
•

1

− j0.5
The node voltage then becomes:

V
•

1=

1
10+ j 0.5

1
1+ j1.5

−
1

j 0.5
+

1
10+ j 0.5

=
0.100− j 0.005
0.407+ j1.533

=0.013− j 0.062

And the currents are:

I
•

1=
0.987+ j 0.062

10+ j0.5
=0.099+ j 0.001 A

I
•

2=
0.013− j 0.062

1+ j1.5
=−0.025− j0.025 A

I
•

3=
0.013− j 0.062

− j 0.5
=0.124+ j 0.026 A

6.3.3. Mesh analysis

The mesh analysis method can be applied for analysis of circuits with mutual indcutance. However
in order to do that the dependent sources should be expressed with the mesh currents. Once this is
done the equations are written according to KVL.
Example: Estimate the currents for the circuit in fig. 6.8 using mesh analysis.
First we should estimate the branch currents with the mesh currents:

I
•

1=I
•

1
(k)

I
•

2=I
•

1
( k )−I

•

2
( k )

I
•

3=I
•

2
(k)

Then the equivallent dependent sources become (fig. 6.11):

j 0.5 I
•

2= j 0.5(I
•

1
( k )−I

•

2
(k ))

j 0.5 I
•

3= j 0.5 I
•

2
(k)

Fig. 6.11.
The two KVL equations are:
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1− j0.5 I
•

2
(k )=I

•

1
(k ) (10+1+ j2 )−I

•

2
( k ) (1+ j2 )

1=I
•

1
(k ) (11+ j2 )−I

•

2
(k ) (1+ j 1.5 )

and

j 0.5 I
•

2
( k )− j 0.5 I

•

1
( k )+ j 0.5 I

•

2
(k )=I

•

2
( k ) (1+ j 2+ j 3− j3 )−I

•

1
( k ) (1+ j 2 )

0=−I
•

1
(k ) (1+ j1.5 )+ I

•

2
(k ) (1+ j )

In matrix form the equations are:

[I
•

1
( k )

I
•

2
( k ) ][ 11+ j2 −(1+ j 1.5 )

−(1+ j 1.5 ) 1+ j ]=[10]
The determinants are:

∆=[ 11+ j 2 −(1+ j 1.5 )

−(1+ j 1.5 ) 1+ j ]=11+ j 11+ j2−2−1− j1.5− j 1.5+2.25=¿10.25+ j10

∆1=[1 −(1+ j1.5 )

0 1+ j ]=1+ j

∆2=[ 11+ j 2 1
−(1+ j 1.5 ) 0]=1+ j 1.5

And the mesh currents are:

I
•

1
( k )
=

∆1

∆
=

1+ j
10.25+ j10

=0.099+ j 0.001

I
•

2
( k )
=

∆2

∆
=

1+ j1.5
10.25+ j10

=0.123+ j 0.026

Then the branch currents are:

I
•

1=I
•

1
(k)=0.099+ j 0.001 A

I
•

2=0.099+ j 0.001−0.123− j 0.026=−0.024− j 0.025 A

I
•

3=0.123+ j 0.026 A
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