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Precompleteness is a powerful property of numberings. Most numberings
commonly used in computability theory such as the Gödel numberings of the
partial computable functions are precomplete. As is well known, exactly the
precomplete numberings have the effective fixed point property. In this pa-
per extensions of precompleteness to partial numberings are discussed. As is
shown, most of the important properties shared by precomplete numberings
carry over to the partial case.

1 Introduction

A numbering is a map from the natural numbers onto a given set. Numberings are
a central tool in Russian style constructive mathematics allowing the transfer of
computability concepts to abstract structures.

Apart from early investigations, e.g. by Mal’tsev [6, 5], in later studies mostly
only totally defined numberings have been considered in the literature (cf. e.g.
[1, 2]). Totality can always be assumed as long as purely algebraic structures are
discussed. As was shown by the author [10], the situation changes if topological
structures are studied: standard numberings of spaces without finite points are only
partially defined, by necessity. Their domain of definition is Π0

2-hard. Here, a point
is called finite if its neighbourhood filter has a finite base.

A numbered set is a set together with a numbering of it. The natural numbers,
e.g., form a numbered set with respect to the identity function as numbering. Mor-
phisms between numbered sets are maps between the sets coming with a realizer,
i.e. a computable function tracking names (indices) of the arguments to names of
the corresponding objects under the map. In case of total numberings, realizers are
total functions too.

A numbering is precomplete if every partial computable transformation of in-
dices can be totalized relative to the numbering. A prominent example are the
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Gödel numberings of the partial computable functions, sometimes also called ac-
ceptable numberings. Precomplete numberings have important properties. Each
of its fibers uniformly contains an infinite computably enumerable subset. More-
over, a numbering is precomplete, exactly if it has the effective fixed point property.
As part of his work on numbered sets, Ershov [1] studied the category of (totally)
numbered sets. This category has no nontrivial injective objects. If, however, we
relativize the notion of an injective object by restricting universal quantification in
its definition to those subobjects of the natural numbers that are effectively enu-
merable, a class of objects is obtained which turns out to contain exactly the pre-
completely numbered sets. This gives a nice category theoretic characterization of
precompletely numbered sets.

In this paper we want to extend these results to the case of partial numberings.
Realizers of morphisms need only be defined for names of objects in this case, not
for all natural numbers. As has already been mentioned, in important special cases
the logical complexity of the name set is much higher than that of computably enu-
merable sets. So, realizers will also be defined for numbers which are not names.
They might even map such numbers to names of objects in the range of the mor-
phism. The category of partially numbered sets is known to be Cartesian closed
and equivalent to the category of modest sets which has been extensively studied in
semantics of type systems [4]. Precompleteness can be extended to partial number-
ings in several ways. The notions differ e.g. in whether we demand that all values
of a totalizer are names or not. Independently of how we decide, it may happen for
some index that the value of a totalizer is a name while the value of the partial in-
dex function is not, though it exists. Correctly precomplete numberings satisfy the
additional requirement that values of totalizers are names, just if the corresponding
values of the given partial index functions are names. If totalizers are required to
have only names as values, an analogue of Ershov’s category theoretic characteri-
zation can be derived. The other properties of precomplete numberings mentioned
above carry over to the partial case for all the extensions of precompleteness we
study. Numberings of the respective kind are characterized by versions of the ef-
fective fixed point theorem, and their fibers uniformly contain infinite effectively
enumerable sets. In case of correctly precomplete numberings we have in addition
that also the set of non-names contains such a set.

The paper is organized as follows: Section 2 contains basic definitions. Then, in
Section 3, various precompleteness notions are introduced and a category-theoretic
characterization for one of these notions is derived. As we will see in Section 4,
also in the partial case, for all the notions of precompleteness, exactly the num-
berings for which the effective fixed point theorem holds are precomplete. Further
properties of precomplete numberings are discussed in Section 5.
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2 Basic definitions

In what follows, let 〈 , 〉 : ω2 → ω be a computable pairing function with cor-
responding projections π1 and π2 such that πi(〈a1, a2〉) = ai. Let P (n) (R(n))
denote the set of all n-ary partial (total) computable functions. For some Gödel
numbering ϕ, we let ϕi(a)↓mean that the computation of ϕi(a) stops, ϕi(a)↓ ∈ C
that it stops with value in C, and ϕi(a)↓n that it stops within n steps. The comple-
ment of a set A is denoted by A. Moreover, we write F : A ⇀ B to mean that F is
a partial function from set A into set B with domain dom(F ).

As is well known, a subset C ⊆ ω is decidable if there is a function f ∈ R(1)

with C = f−1({0}). For i ∈ ω such that ϕi ∈ R(1) let Zi = ϕ−1i ({0}). In any
other case let Z be undefined. Then Z is a partial indexing of all decidable subsets
of ω.

A (partial) numbering ν of a set S is a partial map ν : ω ⇀ S (onto). The
value of ν at n ∈ dom(ν) is denoted, interchangeably, by νn and ν(n). If s ∈ S
and n ∈ dom(ν) with νn = s, then n is said to be an index or a name of s.
Numberings ν with dom(ν) = ω, are called total. Let Nump(S) be the set of all
partial numberings of set S.

As was shown in [10], standard numberings of topological spaces like the com-
putable real numbers with the Euclidean topology are only partially defined, by
necessity. In these cases the domain of the numbering is Π0

2-hard.

Definition 1. For S′ ⊆ S, ν′ ∈ Nump(S′) and ν, κ ∈ Nump(S),

1. ν′ is m-reducible to ν, written ν′ ≤m ν, if there is some reduction function
g ∈ P (1) with dom(ν′) ⊆ dom(g), g(dom(ν′)) ⊆ dom(ν), and ν′n = νg(n),
for all n ∈ dom(ν′).

2. ν is m-equivalent to κ, written ν ≡m κ, if ν ≤m κ and κ ≤m ν.

This definition is due to Mal’cev [6].

Lemma 1. Let S be nonempty and ν ∈ Nump(S) such that dom(ν) is computably
enumerable. Then S has a total numbering m-equivalent to ν.

Proof. Since S is not empty, the same is true for dom(ν). Therefore, there is some
function g ∈ R(1) with range(g) = dom(ν). Set g∗(j) = µi : g(i) = j. Then
g∗ ∈ P (1) with dom(g∗) = range(g). Moreover, for j ∈ range(g), g(g∗(j)) = j.
Let ν̄ = ν ◦ g. Then ν̄ is a total numbering of S. In addition, ν̄ ≤m ν via g and
ν ≤m ν̄ via g∗.

A somewhat stronger result has been shown by Mal’cev under the additional
assumption that dom(ν) is infinite [6, Theorem 2.2.1]. In this case g can be chosen
as one-to-one.
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A subsetX of S is completely enumerable, if there is a computably enumerable
set C ⊆ ω such that νi ∈ X if and only if i ∈ C, for all i ∈ dom(ν). Thus, X
is completely enumerable if we can enumerate all indices of elements of X and
perhaps some numbers which are not used as names by numbering ν.

3 Precompleteness

Precompleteness is a powerful property shared by most numberings commonly
used in computability theory: all Gödel numberings, e.g., as well as the number-
ing W of the computably enumerable sets are precomplete. Here, we will discuss
extensions of this notion to partial numberings. We start with a definition due to
Selivanov [9].

Definition 2. A numbering ν ∈ Nump(S) is precomplete, if for any function p ∈
P (1) there is a function g ∈ R(1) with range(g) ⊆ dom(ν) such that for all i ∈
p−1(dom(ν)),

νp(i) = νg(i).

Function g is called totalizer of p or said to totalize p.

Mal’tsev defined precomplete numberings as partial numberings with the effec-
tive fixed point property. In [6] they were called “complete”. Later, when introduc-
ing the completeness notion for total numberings that we still use [7], he changed
the notion into “precomplete”. Mal’cev’s first definition was rather strong as he
could show that such numberings are necessarily totally defined [6, p. 182]. Ershov
[1, 2] considered only total numberings and gave two new characterizations of pre-
complete numberings: in categorical terms and in terms of totalizers. The later one
has become the standard definition of precompleteness in modern text books (cf.
e.g. [12]). Both of Ershov’s characterizations carry over to the partial case, thus
showing the naturalness of the above definition.

If S is a set and ν ∈ Nump(S), (S, ν) is called numbered set. With respect to
the identical numbering idω the set ω of all natural numbers is a numbered set which
we denote by N . In the case of total numberings morphisms between numbered
sets are such that in particular every total numbering ν : ω → S is a morphism from
N to (S, ν). Therefore, morphisms between partially numbered sets need not be
total maps.

As has already been pointed out, in order to allow computability considerations
for abstract objects, such objects are represented by natural numbers via number-
ings. So, the computability of a map between spaces of abstract objects can only
mean that we have an algorithm tracking names of arguments into names of values
under the given map.
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Definition 3. Let (S, ν) and (S′, ν′) be numbered sets. A partial map F : S ⇀ S′

is realizable if it has a realizer, i.e. a function f ∈ P (1) with dom(f) ⊇
ν−1(dom(F )) and f(ν−1(dom(F ))) ⊆ dom(ν′) such that

F (νi) = ν′f(i),

for all i ∈ ν−1(dom(F )).

Let NUMp be the category of numbered sets with realizable partial maps as
morphisms. For objects S = (S, ν) and S ′ = (S′, ν′) in NUMp, (S ′, F ′) is a
subobject of S in NUMp, if F ′ : S′ → S is a total one-to-one realizable map.

Definition 4. Let S = (S, ν) be a numbered set.

1. A numbering ν′ of a subset S′ of S is principal, if for every κ ∈ Nump(S′),

κ ≤m ν =⇒ κ ≤m ν′.

2. A subobject ((S′′, ν′′), F ′′) of S is a c-subobject, if F ′′ ◦ ν′′ is a principal
numbering of range(F ′′).

Definitions 4(1) and (2) are due to Mal’cev [7] and Ershov [2], respectively.

Lemma 2. Let S = (S, ν) be a numbered set and S′ a nonempty completely enu-
merable subset of S. Then S′ has a principal numbering.

Proof. The proof is a modification of the proof in [1]. Let A ⊆ ω witness that
S′ is completely enumerable and let f ∈ R(1) enumerate A. Define ν′ = ν ◦ f .
If f(n) ∈ dom(ν) then ν′n ∈ S′. Otherwise, ν′n is undefined. Thus, dom(ν′) =
f−1(dom(ν)), which means that ν′ ∈ Nump(S′).

Now, let κ ∈ Nump(S′) with κ ≤m ν and let g ∈ P (1) be the corresponding
reduction function. Then

g(dom(κ)) ⊆ ν−1(S′) ⊆ range(f). (1)

Set

h(n) =

{
µm : f(m) = g(n) if g(n)↓,
undefined otherwise.

Then h ∈ P (1) with dom(h) ⊆ dom(g). Moreover, f(h(n)) = g(n), for n ∈
dom(h). Let n ∈ dom(κ). Then n ∈ dom(g), from which we obtain with (1)
that g(n) ∈ range(f). Hence, g(n) = f(h(n)). Since g(dom(κ)) ⊆ dom(ν),
it follows that f(h(n)) ∈ dom(ν). We thus have that dom(κ) ⊆ dom(h) and
h(dom(κ)) ⊆ dom(ν′). Moreover, κn = νg(n) = νf(h(n)) = ν′h(n). Therefore,
κ ≤m ν′.
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Definition 5. A subobject ((S′, ν′), F ′) of a numbered set S = (S, ν) is an e-
subobject of S if ((S′, ν′), F ′) is a c-subobject of S and F ′(S′) is a completely
enumerable subset of S.

Definition 5 is due to Ershov [2].
As we have seen in the preceding lemma, for each completely enumerable sub-

set S′ of S a numbering ν′ can be defined so that (S′, ν′) is an e-subobject of S
with respect to the identical embedding.

Theorem 3. Let S = (S, ν) be a numbered set. Then ν is precomplete if, and only
if, for each e-subobject (T , F ) of N and every realizable map H : T ⇀ S there is
a total realizable map G : ω → S such that

H = G ◦ F.

Proof. Let us first assume that ν is precomplete. Moreover, let (T , F ) with T =
(T, κ) be an e-subobject of N and H : T ⇀ S a realizable map. Suppose that F
and H , respectively, are realized by f, h ∈ P (1). Then F (T ) = f(dom(κ)). By
assumption F (T ) is computably enumerable. Thus, f−1(F (T )) is computably
enumerable as well. In addition, f−1(F (T )) ⊇ dom(κ).

If T is empty, κ and F are empty maps. Let p be the nowhere defined func-
tion in this case. Otherwise, if T is not empty, the sets F (T ), dom(κ) and hence
f−1(F (T )) are nonempty as well. Let some enumeration of f−1(F (T )) be fixed
and for n ∈ ω, set k(n) to be the first m in this enumeration with f(m) = n. Then
k ∈ P (1) and f(k(n)) = n, for n ∈ F (T )). Now, let p = h ◦ k.

In both cases, p ∈ P (1). Let g ∈ R(1) with range(g) ⊆ dom(ν) be a totalizer
of p, i.e., νp(n) = νg(n), for n ∈ p−1(dom(ν)). Set G = ν ◦ g. Since g is total, we
have that G : ω → S is a total map realized by g.

Suppose that T is not empty and let x ∈ T . Then F (x) ∈ F (T ). Thus,
k(F (x)) is defined. Since F (κk(F (x))) = f(k(F (x))) = F (x) and F is one-to-
one, it follows that κk(F (x)) = x, whereby we obtain that

H(x) = H(κk(F (x))) = νh(k(F (x))) = νg(F (x)) = G(F (x)).

If T is empty, the last equation holds trivially.
For the converse implication let p, h ∈ P (1) with range(h) = dom(p) and set

T = (dom(p), h). Moreover, set F (x) = x, for x ∈ dom(p). Then we have for
n ∈ dom(h) that F (h(n)) = h(n) = idω(h(n)). Thus, F : dom(p)→ ω is a
one-to-one realizable total map and (T , F ) is an e-subobject of N .

Now, define H(n) = νp(n), for n ∈ p−1(dom(ν)). Then we have for n ∈
h−1(p−1(dom(ν))) that H(h(n)) = νp(h(n)). Therefore, H : T ⇀ S is a real-
izable partial map. By assumption there is some total realizable map G : ω → S
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with H = G ◦ F . Let g ∈ P (1) realize G. Then we have that dom(g) ⊇ ω and
range(g) ⊆ dom(ν), which in particular means that g ∈ R(1). Moreover, we have
for n ∈ p−1(dom(ν)) that

νp(n) = H(n) = G(F (n)) = G(n) = νg(n).

As follows from Definition 2, for a totalizer g of a function p ∈ P (1) we always
have that g(n) ∈ dom(ν), though there may be some n ∈ dom(p) with p(n) 6∈
dom(ν). In the case of total numberings this problem will not occur. When dealing
with partial numberings, however, there are situations in which a more symmetric
notion of precompleteness is needed (cf. [11]).

Definition 6. A numbering ν ∈ Nump(S) is

1. faintly precomplete, if for any function p ∈ P (1) there is a function g ∈ R(1)

such the following two conditions hold, for all i ∈ dom(p),

(a) p(i) ∈ dom(ν) =⇒ g(i) ∈ dom(ν),

(b) p(i) ∈ dom(ν) =⇒ νp(i) = νg(i).

Function g is called faint totalizer of p or said to faintly totalize p.

2. correctly precomplete, if for any function p ∈ P (1) there is a function g ∈
R(1) such the following two conditions hold, for all i ∈ dom(p),

(a) p(i) ∈ dom(ν)⇐⇒ g(i) ∈ dom(ν),

(b) p(i) ∈ dom(ν) =⇒ νp(i) = νg(i).

In this case g is called correct totalizer of p or said to correctly totalize p.

Note that in case of a correctly precomplete numbering ν and a correct totalizer
g of some computable partial function p, for an argument i 6∈ dom(p) the value
g(i) is not determined to be in dom(ν), or not to be in dom(ν), respectively, by the
above definition.

Obviously, precompleteness in the sense of Definition 2 and correct precom-
pleteness both imply faint precompleteness. In the case of total numberings all
three notions coincide. As follows from the next results, however, the first two
concepts are incomparable in the case of proper partial numberings.

Lemma 4. If ν ∈ Nump(S) is not total, there is some p ∈ P (1) such that no
g ∈ R(1) both totalizes and correctly totalizes p.
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Proof. Since ν is not total, there is some ā ∈ dom(ν). Set p(ā) = ā and let p be
undefined, otherwise. Moreover, assume that g ∈ R(1) totalizes as well as correctly
totalizes p. Then

range g ⊆ dom(ν) (2)

and for a ∈ dom(p),

p(a) ∈ dom(ν)⇐⇒ g(a) ∈ dom(ν). (3)

By the choice of ā and p, it follows from (3) that g(ā) 6∈ dom(ν), in contradiction
to (2).

Let ϕ be a Gödel numbering of P (1) and ϕ̂ be the co-restriction of ϕ to R(1).

Lemma 5. ϕ̂ is correctly precomplete, but not precomplete.

Proof. We first show that ϕ̂ is correctly precomplete. Let to this end p ∈ P (1).
Since Gödel numberings are precomplete [12], there is some g ∈ R(1) with ϕp(i) =
ϕg(i), for i ∈ dom(p). It follows that g correctly totalizes p with respect to ϕ̂.

Let us next assume that ϕ̂ is also precomplete. Define q ∈ P (1) by q(i) = i, for
i ∈ ω. Then there is some f ∈ R(1) with range(f) ⊆ dom(ϕ̂) and ϕ̂q(i) = ϕ̂f(i),
for i ∈ q−1(dom(ϕ̂)). Thus, ϕ̂f(i) = ϕ̂i, for i ∈ dom(ϕ̂). It follows that λi.ϕf(i)

is an enumeration of R(1) with computable universal function. By [12, p. 116,
Theorem 13], however, such enumerations do not exist.

Next, let K be the halting set. Set νi = 0, if i ∈ K, and let ν be undefined,
otherwise. Then ν ∈ Nump({0}).

Lemma 6. ν is precomplete, but not correctly precomplete.

Proof. Let p ∈ P (1) and a0 ∈ K. Set g(a) = a0, for a ∈ ω. Then g ∈ R(1) with
range(g) ⊆ dom(ν) and νp(a) = νg(a), for a ∈ p−1(dom(ν)). Thus, g totalizes p.

In order to see that ν is not correctly precomplete, let a1 ∈ K and set q(a) = a1,
for a ∈ K. In any other case, let q be undefined. Then q ∈ P (1). As is well
known [8, p. 81, Theorem II(a)],K is notm-reducible to its complement, i.e., h(K)
intersects K, for all h ∈ R(1). Let ah ∈ K with h(ah) ∈ K. Then ah ∈ dom(q)
such that h(ah) ∈ dom(ν), but q(ah) 6∈ dom(ν). It follows that q cannot be
correctly totalized.
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4 The effective fixed point property

As we will see next, also in the partial case and for all precompleteness notions
just introduced, precomplete numberings are exactly those numberings that have
an effective fixed point property. We start with faint precompleteness.

Theorem 7. Let ν ∈ Nump(S). Then the following four statements are equivalent:

1. Numbering ν is faintly precomplete.

2. There is some function h ∈ R(1) such that the subsequent two requirements
hold, for all i ∈ ω,

(a) ϕi(h(i))↓ ∈ dom(ν) =⇒ h(i) ∈ dom(ν),

(b) ϕi(h(i))↓ ∈ dom(ν) =⇒ νϕi(h(i)) = νh(i).

3. There is some function h ∈ R(1) such that the subsequent two requirements
hold, for all i ∈ ω with ϕi ∈ R(1),

(a) ϕi(h(i)) ∈ dom(ν) =⇒ h(i) ∈ dom(ν),

(b) ϕi(h(i)) ∈ dom(ν) =⇒ νϕi(h(i)) = νh(i).

4. There is some function h ∈ R(1) such that the subsequent two requirements
hold, for all i ∈ ω with ϕi ∈ R(1) and range(ϕi) ⊆ dom(ν),

(a) h(i) ∈ dom(ν),

(b) νϕi(h(i)) = νh(i).

Proof. The proof follows the one for total numberings [12]. We first show that
(1) implies (2). Let p ∈ P (1) be defined by p(n) = ϕn(n) and g ∈ R(1) faintly
totalize p. Moreover, let q ∈ R(1) such that ϕq(i) = ϕi ◦ g and set h = g ◦ q.
Then h ∈ R(1). In addition, we have for i ∈ ω with ϕi(h(i)) being defined
that ϕi(h(i)) = ϕi(g(q(i))) = ϕq(i)(q(i)) = p(q(i)). By definition, h(i) =
g(q(i)). If ϕi(h(i)) ∈ dom(ν), it follows that p(q(i)) ∈ dom(ν) and hence that
g(q(i)) ∈ dom(ν), as g faintly totalizes p. Furthermore, νp(q(i)) = νg(q(i)). Thus,
νϕi(h(i)) = νh(i).

Obviously, (3) is a special case of (2) and (4) a special case of (3). So, it
remains to show that (4) entails (1). Assume that p ∈ P (1) and let q ∈ R(1)

with ϕq(n)(m) = p(n). Set g = h ◦ q. Then g ∈ R(1). Moreover, we have for
i ∈ dom(p) with p(i) ∈ dom(ν) that ϕq(i) ∈ R(1) and range(ϕq(i)) ⊆ dom(ν).
Hence, h(q(i)) ∈ dom(ν) as well and νϕq(i)(h(q(i))) = νh(q(i)), i.e., g(i) ∈ dom(ν)
and νp(i) = νg(i).
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The corresponding result for precomplete numberings is just a consequence of
this proof.

Theorem 8. Let ν ∈ Nump(S). Then the following four statements are equivalent:

1. Numbering ν is precomplete.

2. There is some function h ∈ R(1) with range(h) ⊆ dom(ν) such that for all
i ∈ ω with ϕi(h(i))↓ ∈ dom(ν),

νϕi(h(i)) = νh(i).

3. There is some function h ∈ R(1) with range(h) ⊆ dom(ν) such that for all
i ∈ ω with ϕi ∈ R(1) and ϕi(h(i)) ∈ dom(ν),

νϕi(h(i)) = νh(i).

4. There is some function h ∈ R(1) with range(h) ⊆ dom(ν) such that for all
i ∈ ω with ϕi ∈ R(1) and range(ϕi) ⊆ dom(ν),

νϕi(h(i)) = νh(i).

In the preceding theorems it may happen that ϕi(h(i))↓ 6∈ dom(ν), but h(i) ∈
dom(ν). A similar asymmetry was found in the definitions of precompleteness and
faint precompleteness. It motivated us to introduce correct precompeteness. As we
will see now, in this case we also have a symmetric version of the effective fixed
point theorem.

Theorem 9. Let ν ∈ Nump(S). Then the following three statements are equiva-
lent:

1. Numbering ν is correctly precomplete.

2. There is some function h ∈ R(1) such that the subsequent two requirements
hold, for all i ∈ ω for which ϕi(h(i)) is defined,

(a) ϕi(h(i)) ∈ dom(ν)⇐⇒ h(i) ∈ dom(ν),

(b) ϕi(h(i)) ∈ dom(ν) =⇒ νϕi(h(i)) = νh(i).

3. There is some function h ∈ R(1) such that the subsequent two requirements
hold, for all i ∈ ω with ϕi ∈ R(1),

(a) ϕi(h(i)) ∈ dom(ν)⇐⇒ h(i) ∈ dom(ν),
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(b) ϕi(h(i)) ∈ dom(ν) =⇒ νϕi(h(i)) = νh(i).

Proof. Because of Theorem 7 we only have to show that the additional implica-
tions hold. Assume first that ν is correctly precomplete and let h be as in the
proof of 7((1)⇒(2)). Suppose that h(i) ∈ dom(ν), i.e., g(q(i)) ∈ dom(ν).
Since g correctly totalizes p, it follows that p(q(i)) ∈ dom(ν), which means that
ϕi(h(i)) ∈ dom(ν) as well.

Next, assume that Statement (3) holds and p ∈ P (1). Let g ∈ R(1) be the
totalizer constructed in the proof of 7((4)⇒(1)) and suppose that g(i) ∈ dom(ν),
for i ∈ dom(p). Then h(q(i)) ∈ dom(ν) and hence ϕq(i)(h(q(i))) ∈ dom(ν), i.e.,
p(i) ∈ dom(ν).

5 Further properties

The subsequent result shows that each fiber of a faintly precomplete numbering is
uniformly undecidable.

Lemma 10. Let S contain at least two elements and ν ∈ Nump(S) be faintly
precomplete. Then there is some function r ∈ P (1) such the following properties
hold, for all j ∈ dom(Z) and s ∈ S,

1. r(j)↓,

2. ∅ 6= Zj ⊆ ν−1({s}) =⇒ r(j) ∈ ν−1({s}) \ Zj .

If ν is even correctly precomplete, r has the additional property that for j ∈
dom(Z),

3. ∅ 6= Zj ⊆ dom(ν) =⇒ r(j) ∈ dom(ν) \ Zj .

Proof. The proof is again a refinement of the one for total numberings [12]. Since
S has at least two elements there are indices a, b ∈ dom(ν) with νa 6= νb. Define
f, g ∈ P (1) as follows:

f(〈j, n〉) =


a if ϕj(n)↓ with ϕj(n) = 0,
π1(µ〈d, e〉 : [ϕj(d)↓e ∧ ϕj(d) = 0]) if ϕj(n)↓ with ϕj(n) 6= 0

and for some d ∈ ω, ϕj(d)↓ with ϕj(d) = 0,
undefined otherwise,

g(〈j, n〉) =


b if ϕj(n)↓ with ϕj(n) = 0,
a if ϕj(n)↓ with ϕj(n) 6= 0,
undefined otherwise.
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Since ν is faintly precomplete there are functions f ′, g′ ∈ R(1) such that for all
i ∈ dom(f),

f(i) ∈ dom(ν) =⇒ f ′(i) ∈ dom(ν) (4)
νf ′(i) = νf(i), if f(i) ∈ dom(ν), (5)

and for all i ∈ dom(g),

g(i) ∈ dom(ν) =⇒ g′(i) ∈ dom(ν) (6)
νg′(i) = νg(i), if g(i) ∈ dom(ν).

As ν has the effective fixed point property, there are further on functions h, k ∈
R(1) so that for all j ∈ ω,

f ′(〈j, h(j)〉) ∈ dom(ν) =⇒ h(j) ∈ dom(ν) (7)
νf ′(〈j,h(j)〉) = νh(j), if f ′(〈j, h(j)〉) ∈ dom(ν), (8)

and

g′(〈j, k(j)〉) ∈ dom(ν) =⇒ k(j) ∈ dom(ν) (9)
νg′(〈j,k(j)〉) = νk(j), if g′(〈j, k(j)〉) ∈ dom(ν).

Now, define r ∈ P (1) by

r(j) =


h(j) if ϕj(h(j))↓ with ϕj(h(j)) 6= 0,
k(j) if ϕj(h(j))↓ with ϕj(h(j)) = 0,
undefined otherwise.

It remains to show that r has the desired properties. Let to this end j ∈ dom(Z)
with Zj being nonempty. Then ϕj is total. Since h and k are total functions as well,
we obtain that r(j) is defined. Moreover, it follows that there is a smallest number
〈d, e〉 so that ϕj(d)↓e with ϕj(d) = 0.

Now assume that s ∈ S such thatZj ⊆ ν−1({s}). Then d ∈ Zj ⊆ ν−1({s}) ⊆
dom(ν). Thus, f(〈j, h(j)〉)↓ ∈ dom(ν), from which we obtain with (4) and (7)
that f ′(〈j, h(j)〉), h(j) ∈ dom(ν) as well.

As range(λn.g(〈j, n〉)) ⊆ dom(ν), it follows with (6) and (9) that g(〈j, k(j)〉),
g′(〈j, k(j)〉), k(j) ∈ dom(ν).

Let us now consider the cases that ϕj(h(j)) 6= 0 or ϕj(h(j)) = 0.
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Case ϕj(h(j)) 6= 0: In this case we have that r(j) = h(j). In addition, h(j) 6∈ Zj .
Thus, r(j) ∈ dom(ν) \ Zj . Because of (5) and (8) it follows further on that

νr(j) = νh(j) = νf ′(〈j,h(j)〉) = νf(〈j,h(j)〉) = νd = s.

Consequently, r(j) ∈ ν−1({s}) \ Zj .

Case ϕj(h(j)) = 0: Now, h(j) ∈ Zj ⊆ ν−1({s}) and therefore

s = νh(j) = νf ′(〈j,h(j)〉) = νf(〈j,h(j)〉) = νa.

Assume that ϕj(k(j)) = 0. Then k(j) ∈ Zj ⊆ ν−1({s}). It follows that

νa = s = νk(j) = νg′(〈j,k(j)〉) = νg(〈j,k(j)〉) = νb,

contradicting our choice of a and b. Hence, ϕj(k(j)) 6= 0, which means that
r(j) 6∈ Zj . Moreover, we have that

νr(j) = νk(j) = νg′(〈j,k(j)〉) = νg(〈j,k(j)〉) = νa.

This shows that r(j) ∈ ν−1({s}) \ Zj in the second case as well.
Next, we assume that ν is even correctly precomplete and deal with the case

that Zj ⊆ dom(ν). Note that now also the reverse implications hold in (4), (6), (7)
and (9). Again we consider the two cases:

Case ϕj(h(j)) 6= 0: Now, h(j) 6∈ Zj , r(j) = h(j), and f(〈j, h(j)〉) = d. Since
d ∈ Zj ⊆ dom(ν), we obtain with the reverse implications in (4) and (7) that
h(j) ∈ dom(ν). Thus, r(j) ∈ dom(ν) \ Zj .

Case ϕj(h(j)) = 0: In this case h(j) ∈ Zj ⊆ dom(ν). On the other hand,
f(〈j, h(j)〉) = a ∈ dom(ν), contradicting Properties (4) and (7). Thus, this case
will not appear.

As a consequence we obtain that each fiber of a faintly precomplete numbering
uniformly contains an infinite computably enumerable set.

Proposition 11. Let S contain at least two elements and ν ∈ Nump(S) be faintly
precomplete. Then there is a one-to-one function g ∈ R(2) such that for all m ∈
dom(ν) and n ∈ ω,

1. g(m,n) ∈ dom(ν),

2. νg(m,n) = νm.
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If ν is even correctly precomplete, g has the additional property that for m ∈
dom(ν),

3. g(m,n) ∈ dom(ν).

Proof. Let q ∈ R(2) with

ϕq(i,a)(n) =

{
ϕi(n) if n 6= a,
0 otherwise.

Then range(λa.q(i, a)) ⊆ dom(Z), for i ∈ dom(Z). Moreover, Zq(i,a) = Zi ∪
{a} in this case. Let a0 be a Z-index of the empty set and define

p(m, 0) = q(a0,m),

p(m,n+ 1) = q(p(m,n), r(p(m,n))),

where the function r is as in Lemma 10. Then it follows by an easy induction on n
that for all m,n ∈ ω,

p(m,n)↓ ∈ dom(Z),

r(p(m,n)) ∈ Zp(m,n+1) \ Zp(m,n),

m ∈ dom(ν) =⇒ r(p(m,n)) ∈ dom(ν), (10)
νr(p(m,n)) = νm, if m ∈ dom(ν).

In particular, we have that r(p(m,n)) 6= r(p(m,n′)), for all n, n′ ∈ ω with n 6= n′.
If ν is correctly precomplete, also the reverse implication in (10) holds. Therefore,
the function g′(m,n) = r(p(m,n)) nearly has the desired properties. It remains
to turn it into a one-to-one function. Let to this end 〈〈m,n〉〉 = (m + n)(m + n +
1)/2 + n be the well known Cantor pairing function and set

g(0, 0 = g′(0, 0),

g(m,n) = g′(m,µa : g′(m, a) 6∈ { g(m′, n′) | 〈〈m′, n′〉〉 < 〈〈m,n〉〉 }),

for m,n ∈ ω with 〈〈m,n〉〉 > 0. Then g is as desired.

An easy conclusion of the last result is that a numbering is faintly precomplete
if every partial computable function has a uniform infinite family of faint totalizers,
and similarly in the precomplete and correctly precomplete case.

Theorem 12. Let S contain at least two elements and ν ∈ Nump(S). Then the
following statements hold:
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1. Numbering ν is faintly precomplete if, and only if, for every function p ∈ P (1)

there is a one-to-one function h ∈ R(2) such that for all m ∈ p−1(dom(ν))
and all n ∈ ω, h(m,n) ∈ dom(ν) with

νp(m) = νh(m,n).

2. Numbering ν is precomplete if, and only if, for every function p ∈ P (1) there
is a one-to-one function h ∈ R(2) with range(h) ⊆ dom(ν) such that for all
m ∈ p−1(dom(ν)) and all n ∈ ω,

νp(m) = νh(m,n).

3. Numbering ν is correctly precomplete if, and only if, for every function p ∈
P (1) there is a one-to-one function h ∈ R(2) such that for all m,n ∈ ω,

(a) p(m) ∈ dom(ν)⇐⇒ h(m,n) ∈ dom(ν),

(b) p(m) ∈ dom(ν) =⇒ νp(m) = νh(m,n).

Proof. In all three cases the “if” part is obvious. For the converse direction let g ∈
R(2) be as in the preceding proposition. Moreover, for a given function p ∈ P (1),
let f ∈ R(1) be a (correct, faint) totalizer. Then set h(m,n) = g(f(m), n). As is
easily verified, h has the desired properties.

Definition 7. A numbering ν ∈ Nump(S) is (faintly, correctly) 1-precomplete if
every function p ∈ P (1) has a (faint, correct) one-to-one totalizer.

Corollary 13. Let S have at least two elements. Then every numbering ν ∈
Nump(S) is (faintly, correctly) precomplete, exactly if it is (faintly, correctly) 1-
precomplete.

Proof. Again the “if” direction is obvious. For the other direction let p ∈ P (1) and
h ∈ R(2) as in Theorem 12. Then the function g with g(m) = h(m,m) is a (faint,
correct) one-to-one totalizer of p.

A further consequence of Theorem 12 is that a numbering is (faintly) precom-
plete, exactly if each computable total index transformation with values in dom(ν)
has a uniform infinite family of fixed points; similarly in the correctly precomplete
case.

Theorem 14. Let S have at least two elements and ν ∈ Nump(S). Then the
following statements hold:
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1. Numbering ν is faintly precomplete if, and only if, there is some function
h ∈ R(2) which is one-to-one in the second argument such that for all i ∈ ω
with ϕi ∈ R(1) and range(ϕi) ⊆ dom(ν), as well as all n ∈ ω, h(i, n) ∈
dom(ν) and

νϕi(h(i,n)) = νh(i,n).

2. Numbering ν is precomplete if, and only if, there is some function h ∈ R(2)

which is one-to-one in the second argument such that range(h) ⊆ dom(ν)
and for all i ∈ ω with ϕi ∈ R(1) and range(ϕi) ⊆ dom(ν), as well as all
n ∈ ω,

νϕi(h(i,n)) = νh(i,n).

3. Numbering ν is correctly precomplete if, and only if, there is some function
h ∈ R(2) which is one-to-one in the second argument such that for all i, n ∈
ω for which ϕi(h(i, n)) is defined,

(a) ϕi(h(i, n)) ∈ dom(ν)⇐⇒ h(i, n) ∈ dom(ν),

(b) ϕi(h(i, n)) ∈ dom(ν) =⇒ νϕi(h(i,n)) = νh(i,n).

The proof proceeds in the same way as for Theorems 7- 9. Most conclusions in
this section extend results in [3] to partial numberings.
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