

Universität Ulm

Prof. Dr. W. Arendt Robin Nittka Wintersemester 2008/09

Gesamt: 20 Punkte

Lösungen zur Funktionalanalysis

Blatt 15

58. Sei U ein Unterraum eines normierten Vektorraums X und $\varphi \colon U \to \mathbb{K}$ linear und stetig. Zeige, dass U genau dann dicht in X ist, wenn es genau eine stetige lineare Fortsetzung von φ auf X gibt!

(2)

Lösung: Ist U dicht in X, so gibt es laut Vorlesung genau eine stetige lineare Fortsetzung von φ auf X.

Sei nun also U nicht dicht in X und damit $V := \overline{U} \neq X$. Nach dem Satz von Hahn-Banach gibt es eine stetige lineare Fortsetzung ψ_1 von φ auf X. Nach dem Satz von Hahn-Banach gibt es zudem ein $\chi \in X'$ mit $\chi|_V = 0$ und $\chi \neq 0$. Dann ist $\psi_2 := \psi_1 + \chi \neq \psi_1$ eine weitere stetige lineare Fortsetzung von φ auf X. Die Fortsetzung ist also in diesem Fall nicht eindeutig.

Bemerkung: Ist die Fortsetzung nicht eindeutig, so gibt es sogar stets unendlich viele stetige lineare Fortsetzungen, beispielsweise die Funktionale $\psi_1 + t\chi$, $t \in \mathbb{R}$.

- **59.** Sei X ein normierter Raum, U ein abgeschlossener Unterraum von X, V ein endlichdimensionaler Unterraum von X und W := U + V. Zeige:
 - (a) W ist ein abgeschlossener Unterraum von X.

(2)

Lösung: Es ist klar, dass W ein Unterraum ist. Sei zuerst dim V=1, also $V=\operatorname{span}\{v\}$ mit $v\in X$. Ist $v\in U$, so ist W=U und daher nichts mehr zu zeigen. Sei also $v\not\in U$. Dann ist

$$W = \{u + tv : u \in U, t \in \mathbb{R}\}.$$

Sei nun (w_n) eine gegen w konvergente Folge in W, $w_n = u_n + t_n v$. Nach dem Satz von Hahn-Banach gibt es $\varphi \in X'$ mit $\varphi|_U = 0$ und $\varphi(v) = 1$. Dann gilt $t_n = \varphi(w_n) \to \varphi(w)$. Definiere $t := \varphi(w)$ und u := w - tv. Wegen $w_n \to w$ und $t_n \to t$ folgt $u_n \to u$, also $w \leftarrow w_n \to u + tv \in W$, was $w \in W$ und damit die Abgeschlossenheit von W zeigt.

Der allgemeine Fall folgt per Induktion. Sei nämlich $(v_i)_{i=1}^n$ eine Basis von V. Setze $W_0 := U$. Nach obigen Überlegungen sind die Unterräume $W_i := W_{i-1} + \operatorname{span}\{v_i\}$ für jedes $1 \le i \le n$ abgeschlossenen, insbesondere also auch $W = W_n$.

(b) Ist U projezierbar, so auch W.

(2)

Lösung: Sei zuerst dim V=1, also $V=\operatorname{span}\{v\}$ mit $v\in X$. Ist $v\in U$, so ist W=U und daher nichts mehr zu zeigen. Sei also im Folgenden $v\not\in U$. Sei P eine Projektion auf U und w:=v-Pv. Wegen $v\notin U$ ist $v\not=Pv$ und daher $w\not=0$. Wegen $v\in V$ und $Pv\in U$ ist aber $w\in W$. Wegen W=U+V gilt daher auch $W=U+\operatorname{span}\{w\}$; man kann dies aber auch direkt nachrechnen. Zudem ist Pw=0. Nach dem Satz von Hahn-Banach gibt es $\varphi\in X'$ mit $\varphi|_U=0$ und $\varphi(w)=1$. Definiere $Q\colon X\to X$ durch $Qx:=Px+\varphi(x)w$. Dann ist Q linear und stetig und es gilt

$$Q^{2}x = P(Px + \varphi(x)w) + \varphi(Px + \varphi(x)w)w$$

= $P^{2}x + \varphi(x)Pw + \varphi(Px)w + \varphi(x)\varphi(w)w = Px + \varphi(x)w = Qx.$

Zudem ist $Qx \in W$ für alle $x \in X$, Qu = u für $u \in U$ und Qw = w. Also ist $\operatorname{Rg} Q = W$, und damit Q eine stetige, lineare Projektion auf W, also W projezierbar. Der allgemeine Fall folgt genau wie im ersten Aufgabenteil mittels Induktion.

- **60.** Sei $U := \{(x_k) \in \ell^2 : kx_{2k-1} = x_{2k} \ \forall k \in \mathbb{N}\}$ und $V := \{(x_k) \in \ell^2 : x_{2k-1} = 0 \ \forall k \in \mathbb{N}\}.$ Zeige:
 - (a) U und V sind abgeschlossene, projezierbare Unterräume von ℓ^2 . (2)

Lösung: Es ist leicht zu sehen, dass U und V Unterräume sind. Ist (x^n) eine Folge in U bzw. V, die gegen x konvergiert, so konvergiert insbesondere (x_k^n) gegen x_k für jedes $k \in \mathbb{N}$. Nach den Grenzwertrechenregeln folgt dann $x \in U$ bzw. $x \in V$. Damit sind U und V abgeschlossene Unterräume von ℓ^2 . Weil ℓ^2 ein Hilbertraum ist, sind U und V daher auch projezierbar; man kann hierfür die orthogonale Projektion wählen.

$$(b) \quad U \cap V = \{0\}$$

Lösung: Ist $x \in U \cap V$, so ist $x_{2k-1} = 0$ für alle $k \in \mathbb{N}$ und daher $x_{2k} = kx_{2k-1} = 0$ für alle $k \in \mathbb{N}$, also x = 0.

(c) Ist
$$x \in U \oplus V$$
, so ist $(kx_{2k-1}) \in \ell^2$. (1)

Lösung: Ist $u \in U$, so ist

$$\sum_{k=1}^{\infty} |ku_{2k-1}|^2 = \sum_{k=1}^{\infty} |u_{2k}|^2 \le \sum_{k=1}^{\infty} |u_k|^2 = ||u||_2 < \infty,$$

also $(ku_{2k-1}) \in \ell^2$. Ist $x \in U \oplus V$, so gibt es $u \in U$ und $v \in V$ mit x = u + v. Nach Definition von V und obiger Überlegung folgt $(kx_{2k-1}) = (ku_{2k-1}) \in \ell^2$.

(d) $U \oplus V$ ist dicht in ℓ^2 .

Lösung: Sei $n \in \mathbb{N}$. Ist n gerade, also n = 2k, so ist $e_n \in V$, also $e_n \in U \oplus V$. Ist n ungerade, also n = 2k - 1, so ist $e_n = (e_{2k-1} + ke_{2k}) + (-ke_{2k}) \in U \oplus V$, da der erste Summand in U und der zweite Summand in V liegt. Hieraus folgt $e_n \in U \oplus V$ für alle $n \in \mathbb{N}$, was zeigt, dass $U \oplus V$ dicht in ℓ^2 ist.

(e) $U \oplus V$ ist nicht abgeschlossen. (1)

Lösung: Wäre $U \oplus V$ abgeschlossen, so wäre nach dem vorigen Aufgabenteil $U \oplus V = \ell^2$. Allerdings nach Aufgabenteil (c) aber die durch $x_k := \frac{1}{k}$ gegebene Folge x zwar in ℓ^2 , nicht aber in $U \oplus V$, denn $(\frac{k}{2k-1}) \notin \ell^2$.

- **61.** Sei X ein normierter Raum, $\varphi \in X'$ und $U := \operatorname{Kern} \varphi$. Zeige:
 - (a) Gibt es ein $y \in X$ mit ||y|| = 1 und $\varphi(y) = ||\varphi||$, so gibt es zu jedem $x \in X$ ein $u \in U$ mit $||x u|| = \operatorname{dist}(x, U) = \inf_{v \in U} ||x v||$. (2)

Lösung: Der Fall $x \in U$ ist trivial, da man dann u = x wählen kann. Insbesondere ist für $\varphi = 0$ nichts zu zeigen, da dann U = X ist. Sei also $\varphi \neq 0$ und $x \notin U$. Ist $v \in U$, so gilt

$$|\varphi(x)| = |\varphi(x - v)| < ||\varphi|| ||x - v||.$$

Weil dies für jedes $v \in U$ richtig ist, folgt $|\varphi(x)| \leq ||\varphi|| \operatorname{dist}(x, U)$. Der natürliche Kandidat für u ist eine Verschiebung von x entlang y nach U, also $u := x - \frac{\varphi(x)}{||\varphi||} y$.

Dann ist $\varphi(u)=\varphi(x)-\frac{\varphi(x)}{\|\varphi\|}\varphi(y)=0$, also $u\in U$. Außerdem ist

$$||x - u|| = \frac{|\varphi(x)|}{||\varphi||} ||y|| \le \operatorname{dist}(x, U)$$

nach obiger Überlegung. Die Abschätzung $||x - u|| \ge \operatorname{dist}(x, U)$ folgt aus $u \in U$.

(b) Gibt es ein $x \notin U$ und ein $u \in U$ mit ||x - u|| = dist(x, U), so existiert ein $y \in X$ mit ||y|| = 1 und $\varphi(y) = ||\varphi||$. (2)

Lösung: Nach Voraussetzung ist $\varphi \neq 0$. Zuerst zeigen wir $|\varphi(x)| \geq ||\varphi|| \operatorname{dist}(x, U)$. Sei dazu $v \in X$, $||x - v|| < R := \frac{|\varphi(x)|}{||\varphi||}$. Dann ist

$$|\varphi(v)| \ge |\varphi(x)| - |\varphi(x - v)| > |\varphi(x)| - ||\varphi||R = 0,$$

also $B(x,R) \cap U = \emptyset$, was $\operatorname{dist}(x,U) \geq R$ zeigt.

Der Beweis der ersten Teilaufgabe legt die Definition $y:=\frac{z}{\|z\|}$ mit $z:=\frac{x-u}{\varphi(x)}$ nahe. Dann ist $\|y\|=1$ und mit der ersten Überlegung

$$\varphi(y) = \frac{\varphi(z)}{\|z\|} = \frac{1}{\|z\|} = \frac{|\varphi(x)|}{\operatorname{dist}(x, U)} \ge \|\varphi\|,$$

also $\varphi(y) = \|\varphi\|$.

(c) Sei $X = c_0$ und $\varphi(x) := \sum_{k=1}^{\infty} \frac{x_k}{2^k}$. Es gibt kein $y \in c_0$ mit $||y||_{\infty} = 1$ und $\varphi(y) = ||\varphi||$. (2)

Lösung: Für $x = (x_n)$ mit $x_n := \sum_{k=1}^n e_k$ ist $||x||_{\infty} = 1$ und $\varphi(x) = \sum_{k=1}^n 2^{-k} = 1 - 2^{-n} \to 1$, also $||\varphi|| \ge 1$.

Sei nun $y \in c_0$ und $||y||_{\infty} \le 1$. Nach Definition gibt es $n_0 \in \mathbb{N}$ mit $|y_n| \le \frac{1}{2}$ für $n \ge n_0$. Dann gilt

$$|\varphi(y)| \le \sum_{k=1}^{\infty} \frac{|y_k|}{2^k} \le \sum_{k=1}^{n_0 - 1} 2^{-k} + \sum_{k=n_0}^{\infty} 2^{-k - 1}$$
$$= \sum_{k=1}^{\infty} 2^{-k} - 2^{-n_0} = 1 - 2^{-n_0} < 1 \le ||\varphi||.$$

Also kann es kein $y \in c_0$ mit $||y||_{\infty} = 1$ und $\varphi(y) = ||\varphi||$ geben.

(d) Sei $X = L^1(0,1)$ und $\varphi(f) := \int_0^1 t f(t) dt$. Es gibt kein $g \in L^1(0,1)$ mit $||g||_1 = 1$ und $\varphi(g) = ||\varphi||$. (2)

Lösung: Wähle $f_n := \mathbb{1}_{(1-\frac{1}{n},1)}$. Dann ist $||f_n||_1 = \frac{1}{n}$ und daher

$$\frac{1}{n} \|\varphi\| \ge |\varphi(f_n)| = \int_{1-\frac{1}{n}}^1 t \, \mathrm{d}t = \frac{1}{2} (1 - (1 - \frac{1}{n})^2) = \frac{1}{n} - \frac{1}{2n^2}.$$

Also ist $\|\varphi\| \ge 1 - \frac{1}{2n}$ für jedes $n \in \mathbb{N}$, was $\|\varphi\| \ge 1$ zeigt.

Sei nun $g \in L^1(0,1)$, $||g||_1 \le 1$ und $g \ne 0$. Es gibt $t_0 < 1$ mit $\int_0^{t_0} |g(t)| \mathrm{d}t > 0$, da nach dem Satz von Lebesgue die Folge $(\mathbbm{1}_{(0,1-\frac{1}{n})}g)$ in $L^1(0,1)$ gegen $g \ne 0$ konvergiert. Daraus folgt

$$|\varphi(g)| \le \int_0^{t_0} t|g(t)| \, \mathrm{d}t + \int_{t_0}^1 t|g(t)| \, \mathrm{d}t \le t_0 \int_0^{t_0} |g(t)| \, \mathrm{d}t + \int_{t_0}^1 |g(t)| \, \mathrm{d}t$$
$$= \int_0^1 |g(t)| \, \mathrm{d}t - (1 - t_0) \int_0^{t_0} |g(t)| \, \mathrm{d}t < \|g\|_1 \le 1 \le \|\varphi\|.$$

Also kann es kein $g \in L^1(0,1)$ mit $||g||_1 = 1$ und $\varphi(g) = ||\varphi||$ geben.