

#### Galileo's Contribution to Interoperable GNSS SSV

UNOOSA ICG 10 – Working Group B Boulder, CO, U.S., 04 November 2015





European Space Agency

Navigation solutions powered by Europe

# Outline

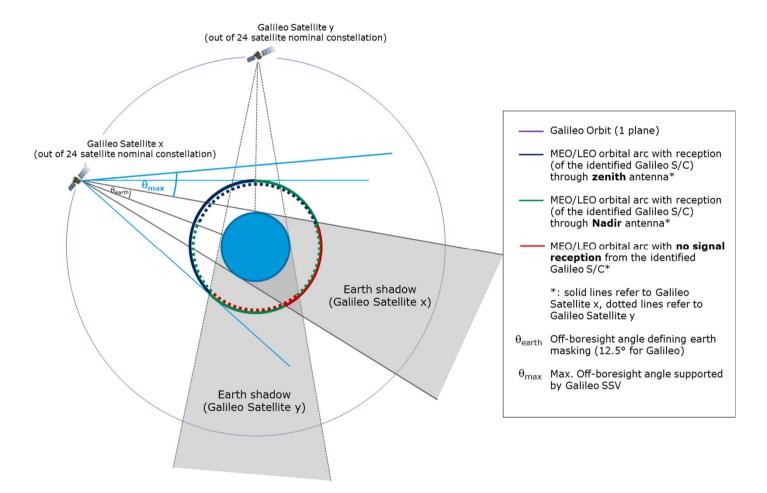
- ★ Relevance of GNSS SSV
- ★ Galileo SSV Characteristics
- ★ GSAT0201/0202 Orbit Anomaly Unique Opportunity for SSV Characterization
- ★ Conclusions



## **GNSS Space Applications**

- ★ Main applications of GNSS in space:
  - ★ Orbit determination
  - ★ AOCS & Timing
  - ★ Formation Flying & Rendezvous
  - ★ Scientific instruments (RO, Reflectometry)
- ★ GNSS is used at LEO, MEO and GEO altitudes
- Several studies done at ESA-level identifying the benefits of adding the new GNSS systems
- Several GNSS technologies under development, new ASICs and receivers

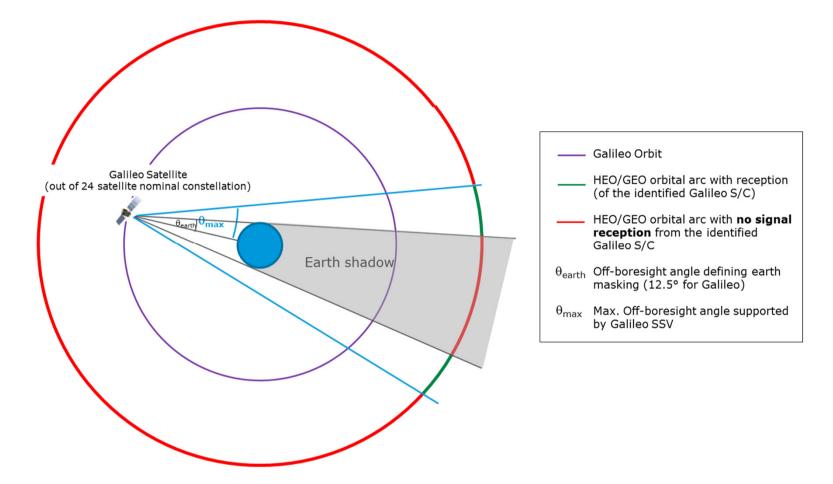



#### **Relevance of Space Service Volume**

- Relevance and added value of an interoperable GNSS Space Service Volume (SSV) is well noted
- Already today a large number of ESA and EU Member State space missions have GNSS space receivers embarked

EGNG

| Application                          |                      | Mission Examples                                                                                         | Orbit          |
|--------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------|----------------|
|                                      | LEO Orbit            | PLEIADES, UK-DMC, all ESA Earth Obs. (Explorers, Copernicus, MetOp), GlobalStar, Proba-2, Demeter, TDS-1 | LEO            |
| Absolute Navigation<br>(Platform Rx) | GEO/GTO/HEO<br>Orbit | STENTOR, SkyLAN, IntelSat, GMP, SmallGEO, MTG, STE-QUEST,<br>Proba-3                                     | GEO/HEO        |
|                                      | Re-entry             | ARD, Pre-X                                                                                               | LEO to ground  |
|                                      | Launcher             | Ariane V, VEGA                                                                                           | Ground to GTO  |
| Relative Navigation<br>(Platform Rx) | Rendevous            | ATV                                                                                                      | LEO            |
|                                      | Formation Flying     | GRACE, PRISMA, Proba-2, MMS, TerraSAR-x, FF Xeus, NGGM                                                   | LEO/HEO<br>GEO |
| EO/Scientific<br>Instruments         | Support to POD       | ESA Explorers (GOCE, SWARM,), Copernicus Sentinels, MetOp-<br>SG, MetOp, CHAMP, GRACE                    | LEO            |
|                                      | Atm. Sounding        | MetOp, CHAMP, Jason-CS, MetOp-SG                                                                         | LEO<br>HEO     |
|                                      | Reflectometry        | UK-DMC, TDS-1, GEROS-ISS                                                                                 | LEO<br>HEO     |
| Support to Other<br>Systems          | Attitude             | PLEIADES, ROCSAT, ALPHABUS                                                                               | LEO<br>GEO     |
|                                      | Timing               | GEO telecom, GlobalStar, Iridum, MTG                                                                     | LEO<br>GEO     |


# SSV Geometry for LEO/MEO



- Important note: It is assumed that the user has capability to receive signals from
  - ★ NADIR direction and
  - ★ Zenith direction



#### SSV Geometry for GEO/HEO



 Important note: It is assumed that the user has capability to receive signals from NADIR



## Galileo SSV Characteristics (1/3)

- ★ Galileo SSV characterization was conducted following the conventions identified by ICG WG-B regarding
  - ★ Relevant User Orbits
    - ★ LEO (represented by sphere at 3000 km altitude above earth)
    - ★ MEO (represented by sphere at 8000 km altitude above earth)
    - ★ GEO/HEO (represented by sphere at 36000 km altitude above earth)
  - ★ Availability Evaluation
    - ★ Availability of 1 satellite and availability of 4 satellites
    - ★ Availability evaluation done per user on a sphere at relevant radius over time
    - ★ Availability to report is the minimum out of the best 95% of all user locations
  - ★ SSV Characteristics Reporting
    - ★ User received power (not necessarily constrained by data demodulation threshold) at GEO altitude and corresponding off-boresight angle
    - ★ Availability evaluation at GEO altitude
    - Availability evaluation at MEO altitude (based on off-boresight angle specification for GEO altitude)



## Galileo SSV Characteristics (2/3)

Definitions

| Definition                                                                                | Notes                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lower Space Service Volume (also known as 'MEO altitudes'): 3000 to 8000 km altitude      | Four Galileo signals available simultaneously a majority<br>of the time but Galileo signals over the limb of the Earth<br>become increasingly important. Capability of the user to<br>receive both from Nadir and from Zenith is considered. |
| Upper Space Service Volume (also known as 'HEO/GEO altitudes'): 8000 to 36000 km altitude | Nearly all Galileo signals received over the limb of the Earth. Users will experience periods when no Galileo satellites are available.                                                                                                      |

| Parameters                             | Typical Characteristics of Nominal GSAT02xx Satellites |                               |  |
|----------------------------------------|--------------------------------------------------------|-------------------------------|--|
| User Range Error                       | 1.1 meters                                             |                               |  |
| Minimum Received Civilian Signal Power | 0 dBi RCP antenna at GEO                               | Reference Off-Boresight Angle |  |
| E1B/C                                  | -182.5 dBW                                             | 20.5 deg                      |  |
| E6B/C                                  | -182.5 dBW                                             | 21.5 deg                      |  |
| E5b                                    | -182.5 dBW                                             | 22.5 deg                      |  |
| E5ABOC                                 | -182.5 dBW                                             | 23.5 deg                      |  |
| E5a                                    | -182.5 dBW                                             | 23.5 deg                      |  |

- ★ Galileo SSV Characteristics are provided for Galileo FOC (GSAT02xx) satellites!
- At this stage, the results presented above are not yet validated at programme level. They can under no circumstance be interpreted as commitment from the European Commission to comply with such characteristics for the already launched or future satellites. Official information related to SSV characteristics of Galileo will be published through the Galileo OS Service Definition Document

Power

## Galileo SSV Characteristics (3/3)

| Parameters                              | Typical Characteristics of Nominal GSAT02xx Satellites |                    |  |
|-----------------------------------------|--------------------------------------------------------|--------------------|--|
| Signal Availability                     |                                                        |                    |  |
| Lower Space Service Volume (MEO)        | At least 1 signal                                      | 4 or more signals  |  |
| E1B/C                                   | 100%                                                   | > 99% <sup>6</sup> |  |
| E6B/C                                   | 100%                                                   | 100%               |  |
| E5ABOC                                  | 100%                                                   | 100%               |  |
| E5a or E5b                              | 100%                                                   | 100%               |  |
| Upper Space Service Volume<br>(GEO/HEO) | At least 1 signal                                      | 4 or more signals  |  |
| E1B/C                                   | ≥ 64% <sup>2</sup>                                     | 0%                 |  |
| E6B/C                                   | ≥ 72% <sup>3</sup>                                     | 0%                 |  |
| E5b                                     | ≥ 80% <sup>4</sup>                                     | 0%                 |  |
| E5ABOC                                  | ≥ 86% <sup>5</sup>                                     | 0%                 |  |
| E5a                                     | ≥ 86% <sup>5</sup>                                     | 0%                 |  |

Note 1: Assumes a nominal, Galileo Walker 24/3/1 constellation, full navigation message availability and no Galileo spacecraft failures. Signal availability at 95% of the areas within the specific altitude.

Note 2: Assumes less than 93 minutes of continuous outage time

Note 3: Assumes less than 75 minutes of continuous outage time

Note 4: Assumes less than 64 minutes of continuous outage time

Note 5: Assumes less than 54 minutes of continuous outage time

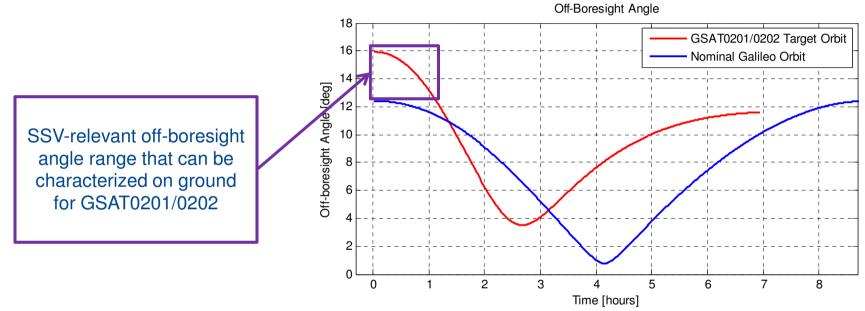
Note 6: >99% at 21.5 deg (-182.5 dBW)

- ★ Galileo SSV Characteristics are provided for Galileo FOC (GSAT02xx) satellites!
- At this stage, the results presented above are not yet validated at programme level. They can under no circumstance be interpreted as commitment from the European Commission to comply with such characteristics for the already launched or future satellites. Official information related to SSV characteristics of Galileo will be published through the Galileo OS Service Definition Document

Availability

#### GSAT0201/0202 Orbital Anomaly (1/2)

 Two Galileo FOC satellites (GSAT0201/0202) launched in August 2014 face orbital anomaly


|                               | Nominal Galileo<br>Orbit | GSAT0201/0202<br>Injection Orbit | GSAT0201/0202<br>Orbit after<br>Correction<br>Manoeuvres |
|-------------------------------|--------------------------|----------------------------------|----------------------------------------------------------|
| Semi Major Axis<br>(SMA) [km] | 29600                    | 26180                            | 27980                                                    |
| Eccentricity                  | 0                        | 0.23                             | 0.15                                                     |

 Eccentricity and lower SMA provide unique opportunity
 Characterization of SSV-relevant antenna off-boresight range from ground!

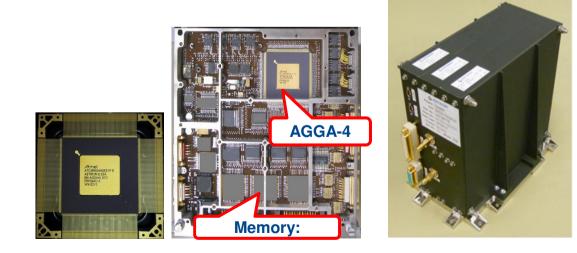


## GSAT0201/0202 Orbital Anomaly (2/2)

★ Off-boresight angles expected during In-Orbit Testing (IOT) of GSAT0202/0202



★ Galileo SSV Characterisation up to off-boresight angle of 16° is supported by onground measurements!




#### ESA technology for Space Applications: AGGA-4 Multi-Constellation GNSS chip

- ★ AGGA-4 (Adv. Galileo/GPS ASIC) available since 2014.
  - ★ Compatible with L1/L5/L2C, E1bc, E5a, E5b, Beidou, Glonass too.

#### **+** Applications

- Navigation solution, and Precise Orbit Determination (2 cm in GOCE mission)
- Scientific Radio Occultation (RO) for atmospheric sounding. With MetOp &Cosmic, it is ranked among top 5 sources for Numerical Weather Prediction
- Rapidly growing interest in GEO / GTO mission: multi-constellation is key to overcome low SNR





# Conclusions

- Importance of an interoperable GNSS SSV is fully recognized
- Characterisation of Galileo SSV conducted following the Figures of Merit established by ICG WG-B
- Characterisation also backed up by on-ground measurements over wide-offboresight angles benefit from GSAT0201/0202 orbit anomaly

Galileo SSV Characteristics are available and will be formally published through the Galileo OS Service Definition Document

