Lecture #12
- Ciritical resolved shear stress
- Slip by dislocation movement
- Deformation produced by motion of dislocations (Orowan s Eq.)
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Critical resolved shear stress:

Slip results in the formation of steps on the surface of the crystal. These are
readily detected if the surface is carefully polished before plastic
deformation.
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(a) Straight slip bands on a single crystal of 3.25 per cent silicon iron.
(b) Sketch of a section across the slip bands normal to surface shown
in (a). Each band is made up of a large number of slip steps on closely
spaced parallel slip planes.

Erich Schmid discovered that if a crystal is stressed, slip begins when the
shear stress on a dlip system reaches a critical value, 7., often caled the



critical resolved shear stress. In most crystas, slip occurs with equal ease
forward or backward, so a characteristic shear stressis required for glip.
Consider a crystal with a cross-sectional area A, being deformed in tension
by an applied force F along the axis of the cylindrical crystal.
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Plastic deformation of a single crystal is initiated at a critical )_
stress, the critical resolved shear stress (CRSS). This is the
same stress at which dislocations begin to move.
NORMAL Force: FN =F cosg ~ //
SHEAR Force: E =F cos & Ly slip-plane
S - rss ™~ . normal

* Area of slip-plane: A; =A; /cos@
NORMAL Stress to the ¢-plane: ¢ = Fy /A

’siip plane

lip directi
= (Feosg)/ (Ay /cosQ)= 0 c052¢ SHp direction

SHEAR Stress in the ¢-plane: 3= Fy /A = (Feosh)/(Ay/cos@)

= 0 COS( COSh

The shear stress causes slip to occur.

2 is the angle between the slip direction
and the tensile axis

Terss = O COSQ cosh ¢ is the angle between the tensile axis and
the slip-plane normal

where cosf cosl is Schmid Factor. The active dip system will have the
largest Schmid factor.
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s =0 for | :J =90 (NO dlip, so fracture)

Example 1: A tensile stressof o =5 kPa is applied parallel to the [432]
direction of a cubic crystal. Find the shear stress, 7, on the (111) plane in the
[011] direction.

SOL. First find m = cos 4 cos ¢ for (111)[011] dlip. In cubic crystals, the
normal to a plane has the same indices as the plane, so the normal to (111) is
[111]. Also, in cubic crystals, the cosine of the angle between two directions
Is given by the dot product of unit vectors in those directions. Therefore
cosg = (41 + 3.1+ 2. 1)/[(4* + 3% + 2412 + 12 + 197

= 5/ (N29V3),



cosA = (40 + 3-1 + 2.1)/[(4? + 3% + 2HY(0? + 1%+ 1319
= 5/ (N29V2),

m=cos A cos ¢ = 25/(29vV6) = 0.352,

= mo = 0.352 x 5kPa = 1.76 KPa.

Example 2 Determine the tensile stress that is applied along the [110] axis of a
silver crystal to cause slip on the (111)[011] system. The critical resolved shear
stress 15 6 MPa.

The angle between tensile axis [110] and normal to (111) is
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The angle between tensile axis [110] and slip direction [011] is
(1©O) + (-1)(-1) + (0)(-1) 1 1

BV + (-1 + (-1 V222

COos ¢

Terss 6
. g = = = 6oy6 = 14.7 MPa
So: cospeosh  2/vV6 x L e

- Impuritiesincrease critical resolved shear stress (see Cu & Ag)

Room-temperature slip systems and critical resolved
shear stress for metal single crystals

Critical
Crystal Purity, Slip Slip shear stress,

Metal structure % plane direction MPa
Zn hep 99,999 {0001) [1120] 0.18
Mg hep 99.996 {0001) [1120] 0.77
Ag fee 99,99 (111) [110] 0.48

99.97 (111) [110 .73

9593 (111) {110] 1.3
Cu fee 99,999 {111) (110} 0.65

909 98 (111} [114] 0.94
Fe bec 9996 {11y [111] 275

(112)
(123)




- Alloying element additions (to produce a solid solution) have their
effect on increasing the critical resolved shear stress (see Au & Ag).

Variation of critical resolved shear stress with com-

[ position  in  silver-gold-alloy single crystals.
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- The magnitude of the critical resolved shear stress is deter mined by the
interaction of its dislocations with each other and with defects (as
vacancies, interstitials, and impurity atoms), so critical resolved shear stress
decreases as the density of defects decreases, provided that the total
number of imperfections is not zero (critical resolved shear stress of soft
metals can be reduced to less than one third by increasing the purity). At the
other extreme, tensile tests on whiskers (dislocation-free) have given
strengths which are approximately equal to the calculated strength of a
perfect crystal.

Critical shear stress, MPa

Slip by dislocation movement :

Dislocation motion works as a deformation mechanism because relatively
little atomic motion is required compared with the process of slip for perfect
(defect free) crystals
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Movement of an edge dislocation: the arrows indicate the applied shear
stress. When the extra half plane of atoms reaches afree surface, it results in
a glip step of one Burgers vector or one atomic distance for the ssmple cubic
|lattice.



The applied stress required to overcome the lattice resistance to the
movement of the dislocation is the Peierls-Nabarro stress. It is the applied
resolved shear stress required to make a dislocation glide in an otherwise
perfect crystal. It arises as a direct consequence of the periodic structure of
the crystal lattice and depends sensitively on the form of the force-distance
relation between individual atoms, i.e. on the nature of the interatomic
bonding. It is a function of the core structure and, for this reason; a unique
analytical expression for the Peierls stress cannot be derived.
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When: w- width of dislocation; a- distance between dlip planes and b-
distance between atomsin the dlip direction.

L P-N vary with crystal structure. In general ey << t theoreticd

The Pelerls stress is very sensitive to the atomic position at the core of
dislocation (affected by the width in the equation above), and as the



positions are not known with a high degree of accuracy the equation cannot
be used for precise calculation. The equation is accurate enough to show that
the stresses needed to move the dislocation in a metal is quite low.
Wide dislocation b low stressto move it ( asin ductile metals)
Narrow dislocation b high stress to move it (as in ceramics).

The fact that shp occurs in close-packed directions means that b is mipi-
mized, and the Peierls stress will be lower. If a < b, as for loosely packed planes,
the Peierls stress would be high, This provides a basis for the observation that
slip ocours most readily on close-packed planes in the close-packed directions.
‘u‘f’hen the crystal structure complex, without highly close-packed planes and directions.
dislocations tend to be immobile. This causes the brittleness and high hardness

of intermetallic compounds,

Defor mation pr oduced by motion of dislocations (Orowan s Eg.)
(a)- If asingle dislocation passes through a cubic crystal, the resulting strain:

Shear strain,y = b/h
this expression assumes that all

With N dibslocations, y = N.b/h
dislocations pass all of the way through the crystal. In reality we can not

make that assumption. Thus we need to revise our estimate.
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(b)- When dislocations pass partially through acrystal:
Assuming that all of the dislocations move a distance x; along the crystal

length, the strain equations will be:



The displacement for a dislocation at an intermediate position between
x;=0and x; = L would be proportional to the fractional displacement x,/L.
S0
X;b

Lh

- singledislocation: 9 =
LI
- multiple dislocation: < ~ i
multiple dislocation Lh i
If N dislocations move an average distance X then,
_ NXb
Lh
L* N = areaof the end of the crystal

.
Dislocation density = r , = N _ #" lines
Lh area

\ g=r.bx

N The total dislocation line length per unit volume or the number of
dislocation lines that cut a unit cross-sectional area.

The shear strain rate associated with this type of motion is:

g =$ = rAbg(z r.bv
dt dt

Where: v is the dislocation velocity. This equation is the Taylor- Orowan

relation, which relates dislocation motion to strain rate.



