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Abstract: Generalized transmission line equations (GTLEs) are derived by circuit theory, and 
equation parameters are determined by the method of moments (MoM).  In comparison with 
conventional transmission line equations (CTLEs), the new equations have added two new terms 
expressed by dependent series voltage and shunt current sources.  For an infinite-length uniform 
transmission line, the GTLEs are the same as the CTLEs since two coefficients for the two added terms 
in the GTLEs are found to be zero.   For a finite-length uniform transmission line or nonuniform 
transmission line, the GTLEs, however, are quite different from the CTLEs since two coefficients for 
the two added terms in the GTLEs are found to be nonzero.  In words, the GTLEs are modifications to 
the CTLEs.   

 
Introduction 

It is known that the derivation of conventional transmission line equations (CTLEs) is  based 
on such an assumption of an infinite-length transmission line and the CTLEs are extended into an 
infinite-length nonuniform transmission line without any mathematical derivation.  Unfortunately, 
practical transmission lines are finite-length.  When the CTLEs are used in a finite-length unmatched 
uniform transmission line or arbitrary length nonuniform transmission line, the description of the 
CTLEs for such line discontinuities needs  further scrutiny.  The reason is that when the nonuniform 
transmission line (including continuously varying transmission line) is generally treated as  a cascading 
of many short uniform transmission lines, the discontinuities between any two neighbouring segments 
are not only generate reflections, but also produce radiations.  Although the radiation from the sharp 
discontinuities is observed for a long time, no one has given us the transmission line equations that can 
take account of both reflections and radiations.  In this paper, based on the finite-length line concept, 
we derive generalized transmission line equations (GTLEs) by using circuit theory.  However, the 
coefficients of the GTLEs need to be determined by numerical methods, such as moment of methods 
(MoM).  In comparison with the CTLEs, the CTLEs have added two new terms that express dependent 
series voltage and shunt current sources, respectively.  For an infinite-length uniform transmission line, 
the GTLEs are the same as the CTLEs since two coefficients for the two added terms in the GTLEs are 
found to be zero.   For a finite-length uniform transmission line or nonuniform transmission line, the 
GTLEs, however, are quite different from the CTLEs since two coefficients for the two added terms in 
the GTLEs are found to be nonzero.  In words, the GTLEs are modifications to the CTLEs.   
 

Generalized Transmission Line Equations  
For simplicity, we start with a 1-D finte-length nonuniform transmission line.  As mentioned 

above, the nonuniform transmission line could be regarded as the cascading of infinitely short segments  
of the uniform transmission line with different characteristic parameters.  For each segment, the per-
unit length series impedance Z  and per-unit length shunt admittance Y are different.  For an infinite-
length nonuniform transmission line, the CTLEs are 
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where the per-unit length series impedance Z  and shunt admittance Y are a function of position l.  If 
the transmission line is uniform, Z  and Y in eq. (1) would be constant.  For the nonuniform 
transmission line, eq. (1) is not perfect because the local radiation generated by the transmission line 
itself discontinuities has not been considered yet.  When working frequency is getting higher, such a 
radiation becomes significant, especially for interconnect of the high-speed transmission lines. 

Now we begin to derive new equations of a finite-length nonuniform transmission line by 
means of the circuit theory.  Let us consider an infinitely short segment with length l∆ in the 
nonuniform transmission line.  This segment can be regarded as a circuit with two ports.  Thus, the 
transmission matrix in the circuit theory can be used to express this circuit,  
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where 1v , 1i and 2v , 2i are the voltages and currents in input and output ports, respectively.  It should 

be pointed out that the input current 1i and output current 2i defined in (2) have the same reference 
direction so that it is convenient to derive the current differential equation.  Eq. (2) can be rewritten as  
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Let the short section length 0→∆l ,  the new nonuniform transmission line equation can be 
approximately obtained, 
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where v and i are the average voltage and current for each infinite short segment of the transmission 

line.  For the lossless case, Lj
l

B
Z ω=

∆
=  and Cj

l
C

Y ω=
∆

= .  L  and C are the per unit length 

series inductance and shunt capacitance.  )(lα and )(lβ are the coefficients for the per unit length 

series dependent voltage source and shunt dependent current source.  Compared with eq. (1),  two 
additional terms are added into eq.(4), which stand for the local radiation of the nonuniform 
transmission line.  However, for an infinite uniform transmission line, the radiation parameter α  and 

β should be found to be zero.   It should be emphasized that the transmission line parameters will be 
directly extracted by the transmission line equation in (4) rather than by the transmission matrix 
parameters in (2).  For an arbitrary shaped lossless nonuniform transmission line, all the parameters, L , 
C , α , and β  can be determined by solving eq.(4) two times through the MoM program to obtain two 

linear independent solutions of the voltage and current.  In practice, two solutions of current and 
voltage distributions along the transmission line are first calculated from two arbitrary loads and then 
substituted into eq.(4) to find parameters L , C , α , and β .  Usually, one solution is for a short load, 

another for an open load.  
 

Examples 
The validity of the new telegrapher equation  can be verified by the following examples.   In 

all the examples, the transmission line is assumed to be lossless.  The first example is for a uniform 
microstrip line.  The second example is for a right angle bend built up by the above microstrip line.  

For both structures, relative dielectric constant rε is 9.8, height h between metal strip and metal ground 
plate is 0.635 mm, thickness t of the metal strip is 2 mµ , width w of the metal strip is 0.6 mm.  The 

MoM software of the Zeland IE3D has been used to calculate the currents and voltages of the above 
two structures, respectively. For the uniform microstrip line, the extracted parameters L  and C are 
constant and the radiation parameters α  and β  equal zero.   For the right angle microstrip bend, the 

extracted parameters L  and C  along the bend are vary significantly and the radiation parameters α  



 3

and β are not equal to zero.  Fig.1 shows comparison of the inductance between the uniform line and 

right angle bend.   Fig.2 shows compar ison of the capacitance between the uniform line and right angle 
bend.  For the uniform transmission line in figures 1 and 2, the per unit length inductance and per unit 
length capacitance extracted by the new equation are compared with the data calculated by TEM semi-
experimence formulas and are of agreement well.  Fig.3 shows comparison of the radiation parameter 
α  between the uniform line and right angle bend.  Fig.4 shows comparison of the radiation parameter 

β  between the uniform line and right angle bend.  The above figures express that the right angle bend 

not only produces the reflection of the current and voltage due to the variation of L  and C , but also 
generates the local radiation due to the values of α  and β .  All the data for Fig.1 - Fig.4 were 

calculated under the frequency of 1.1 GHz.  Figures 5 and 6 show the variation of radiation parameters 
α  and β  with frequency.  It is obvious that the radiation parameters α  and β  increase with the 

frequency.  These results coincide well with the physical phenomena of radiation.  
 

Conclusions 
The GTLEs for a finite-length transmission line is derived by circuit theory and the 

coefficients of the GTLEs need to be determined by the MoM.  In comparison with conventional 
transmission line equation, the new equation has added two terms repres enting the local radiation of the 
transmission line itself.  
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Figure 1. Comparison of inductance between uniform line and right angle bend 
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Figure 2. Comparison of capacitance between uniform line and right 

angle bend 
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Figure 3. Comparison of α  between uniform line and right angle bend 


