
Verification of Stack Manipulation in the SCIP Processor

J. Aaron Pendergrass
Johns Hopkins University Applied Phyics Laboratory

Copyright c© 2008 The Johns Hopkins Univer-
sity/Applied Physics Laboratory. All rights reserved.

Abstract
This paper presents a case study in the formal verification
of the hardware description level specification of a gen-
eral purpose computer processor. The major contribu-
tions of this paper are a framework for modelling VHDL
hardware designs in the ACL2 language, a discipline for
managing the layering of abstractions when verifying a
hierarchical design, and a description of the significant
theorems proved.

1 Introduction

Computer systems play a central role in nearly every as-
pect of modern life. Unfortunately, computer systems are
typically complex amalgams of software and hardware,
both of which frequently contain errors. Although ap-
proaches exist to minimize the prevalence and impact of
bugs, formal approaches based on mathematical reason-
ing are the only tools that can lead to a true understand-
ing of system behavior and proofs of correct operation.
In particular, formal correctness proofs can show that a
system, when used in accordance with a well-defined set
of assumptions, will conform to some stated specifica-
tion. Unfortunately, formal proof is difficult: complex
systems require proportionally complex models; specifi-
cations are rarely stated formally, and thus are often am-
biguous and/or inconsistent; reasoning tools require ded-
icated expertise; and the correct assumptions are difficult
to know in advance.

We present a detailed account of our application of the
ACL2 theorem proving system to the verification of the
design of the Scalable Configurable Instrument Proces-
sor (SCIP). The SCIP is a light-weight, low-power pro-
cessor designed for use in satellite borne scientific in-
struments. Our key correctness theorems prove that the

VHDL design of the SCIP correctly implements the basic
push and pop operations for an abstract stack. Although
this theorem may at first sound trivial, its proof relies on
basic properties of modular bitwise arithmetic, signifi-
cant results for every major functional unit of the SCIP,
and unifying theorems spanning multiple clock cycles.

2 Motivation

The principal application of the SCIP is controlling sci-
entific instruments on satellites, but the light-weight,
low-power design may make the SCIP attractive in a
wider array of applications, such as wearable computing.

The use of the SCIP on satellites is enough to motivate
formal verification. A bug or unexpected feature in the
implementation of a processor may lead to unpredictable
software behavior. For the SCIP’s intended application
this may mean the loss or silent corruption of important
scientific data, reducing the benefit of the costly satellite.
Such failures are difficult to correct due to the limited
communications channel between the satellite and the
software authors. The high cost of failure motivates both
rigorous specification of the SCIP’s expected behavior,
and high confidence in its correct implementation. For-
mal verification is the only approach capable of meeting
these goals.

The SCIP’s simplicity also makes the processor an at-
tractive target for formal verification. The processor per-
forms no pipelining, out of order execution, or other opti-
mizations which may complicate instruction effects. The
entire implementation is roughly 5000 lines of VHDL
code, was written by a single designer, and uses a small,
consistent set of idioms and VHDL features. A possi-
ble area of future work is using the formal instruction set
specification as a verification tool for a more advanced
revision of the SCIP which may include more advanced
features such as pipelining.

Tool choice is an important first step in formal verifica-
tion. Verification tools can be roughly divided into model



checkers, which use exhaustive state space exploration
to automatically prove or refute assertions phrased in a
(typically temporal) logic, and theorem provers/proof as-
sistants which rely on axiomatic reasoning to produce
proofs by applying logical inference rules.

Model checkers are popular in hardware design cir-
cles, and can be used to easily demonstrate the absence
of particular faults in a system, e.g., that certain events
always occur in a particular order. Model checkers are
well-suited to hardware design because, like hardware
description languges, their modeling languages tend to
be designed around the concept of interacting state ma-
chines executing in parallel. The most common criti-
cism of model checkers is that they are susceptible to a
state explosion problem on large models. Although mod-
ern model checkers may scale well enough to handle the
SCIP, they are still not particularly well-suited to the de-
velopment of axiomatic specification that we have begun
to develop as part of our verification.

In contrast, theorem provers like ACL2 are designed
from the ground up to support reasoning in terms of pre-
and post-conditions of pieces of sequences. This makes
them a natural fit for our goals. Unfortunately, the lin-
ear reasoning used by most theorem provers is not ide-
ally suited to the parallelism of hardware description lan-
guages.

Our approach is to show that, although the VHDL pro-
cesses may execute in parallel, their effects are indepen-
dent and thus they can be treated as independent func-
tions. Section 5 describes our approach in more depth.
We chose ACL2 over other axiomatic proof systems such
as Coq or Isabelle due to the abundance of literature fo-
cused on the topic of using ACL2 for hardware descrip-
tion verification. In fact we initially believed translation
from VHDL to ACL2’s lisp dialect was a solved prob-
lem. No simple tool is available for performing this
translation. There is a significant body of work which
served as a starting point for our own embedding of
VHDL in ACL2.

3 Related Work

ACL2 and its predecessor Nqthm have a long history of
use in hardware design verification. Probably the best
known example is the verification of the kernel of the
AMD floating point division algorithm by Moore et al.
[10]. This work focused on proving that the algorithm
correctly implemented floating point division as defined
in the IEEE floating point standard. It did not attempt to
verify the HDL specification of the algorithm. Hunt and
Brock [8] introduce an HDL with semantics formally de-
fined in ACL2, and use it to specify and verify the design
of the FM9001 processor. Their HDL can be mechani-
cally translated into a preexisting HDL for synthesis.

Georgelin et al. [4] describe a system for modelling
VHDL in ACL2 which uses macros to provide syntac-
tic constructs similar to the original VHDL. We build
on their work by introducing a more faithful model of
VHDL types and support for hierarchically nested com-
ponents.

4 ACL2

ACL2, or A Computational Logic for Applicative Com-
mon Lisp, is both a LISP-like language and an automated
term rewriting theorem prover [9]. ACL2 was principally
developed by Matt Kaufmann and J. Strother Moore as
the successor to Nqthm and the Boyer-Moore theorem
prover[1]. ACL2 is an attractive tool for hardware de-
sign verification because of its high level of automation,
familiar syntax, history of application in the field, and
active user community.

4.1 Programming in ACL2
ACL2’s input language is a LISP dialect, which makes
it straightforward for anyone with a LISP background to
write simple functions in ACL2. However, as ACL2’s in-
teractive top-level frequently reminded us, “ACL2 is not
Common LISP.” To enable automated reasoning, ACL2
imposes several restrictions on its input language: all
functions must provably terminate, statements may not
have side-effects, and all functions are first-order.

To ensure termination, ACL2 requires that all func-
tions either be non-recursive, or recur with a strictly de-
creasing measure function. This was not a significant
burden in our work. The majority of the functions we
wrote were non-recursive and those which were recur-
sive were either structurally recursive on lists or on non-
negative integers. ACL2 is able to automatically recog-
nize these basic forms of recursion and discharge the ter-
mination proof automatically.

ACL2 functions must always be pure (mathematical)
functions from their inputs to their outputs. This re-
quirement guarantees that the rewriting system can con-
sider function invocations without concern for the order
or context in which they are called. In particular it im-
plies that it is safe to replace the invocation of a func-
tion with its result. ACL2 does support a notion of a
“single threaded object” which allows a limited form of
side-effecting by preventing aliasing [2]. We avoid side
effects by writing our models as functions from the com-
plete current state of a hardware unit to the complete next
state (including unchanged values).

Higher-order functions, i.e., functions that accept
functions as arguments or return functions, are a promi-
nent and popular feature of most LISP-like languages.

2



Unfortunately, to allow for greater automation of theo-
rem proving, ACL2 does not support higher-order func-
tions. This restriction makes it difficult or impossible to
generalize interfaces in ways common to LISP; functions
such as mapcar, which applies a function to each ele-
ment of a list, is not expressible in ACL2.

ACL2 supports LISP-style macros which allow the
programmer to introduce new syntactic forms and con-
trol the order of term evaluation. Some applications of
higher-order functions can be simulated using macros.
Our framework for modeling VHDL in ACL2 relies
heavily on macros to allow a nearly line for line transla-
tion without exposing the difficulty of mapping between
the differing semantics of the two languages.

4.2 Proofs in ACL2
Theorems in ACL2 are introduced using the top-level
defthm event form. Theorems are given as standard S-
expressions with an implicit universal quantification over
all free variables. Example 1 shows a common form of
such a theorem. If given such an event, ACL2 would
attempt to use the definitions of h1, h2, f, and g and
any other currently active theorems or definitions to show
that for any choice of x, y, and z satisfying both (h1 x
y z) and (h2 x y z), (f x y z) is equal to (g
x y z). If successful, ACL2 introduces a new rewrite
rule, which it may use in future proofs to replace (f x
y z) with (g x y z). Every theorem and function
introduced in ACL2 affects the way ACL2 attempts to
prove future theorems.

Example 1 A common structure for ACL2 defthm
events: given hypotheses (h1 x y z) and (h2 x y
z) the form (f x y z) can be replaced by (g x y
z)
(defthm my-theorem

(implies (and (h1 x y z) (h2 x y z))
(equal (f x y z) (g x y z))))

The key to effective use of ACL2 is understanding
how the proof engine decides which rules to use un-
der what circumstances. A common stumbling block is
ACL2’s difficulty in moving between levels of abstrac-
tion: once ACL2 expands the definition of a term, any
theorem which refers to the term by name can no longer
be applied (since the term’s name has been replaced by
its body).

Example 4.2 demonstrates this problem. Our
model of VHDL types includes a function,
std-logic-list-append, for appending to
lists of logical values. This function just calls the

Example 2 evenp-std-logic-list-append fol-
lows directly from the preceeding three theorems but ap-
plying the first theorem requires unfolding the definition
of std-logic-list-append which prevents ACL2
from applying the latter two theorems.
(defthm append-car

(implies (and l1 (true-listp l1) (true-listp l2))
(equal (car (append l1 l2) (car l1)))))

(defthm std-logic-list-p-append
(implies (and (std-logic-list-p l1)

(std-logic-list-p l2))
(std-logic-list-p (std-logic-list-append l2 l1))))

(defthm evenp-std-logic-list-to-int
(implies (and (std-logic-list-p l1)

(equal (car l1) 0))
(evenp (std-logic-list-to-int l1))))

(defthm evenp-std-logic-list-append
(implies (and l1 (std-logic-list-p l1)

(std-logic-list-p l2)
(equal (car l1) 0))

(evenp (std-logic-list-to-int
(std-logic-list-append l2 l1)))))

ACL2 append function with the arguments in reverse
order (to match the VHDL & operator). Theorems
about std-logic-list-append rely on facts both
about list appending in general, and on the properties
of logical values. In Example 4.2 this prevents ACL2
from applying evenp-std-logic-list-to-int
because satisfying its second hypothesis requires un-
folding the definition of std-logic-list-append
to apply append-car. This unfolding prevents
the application of std-logic-list-p-append
which is necessary to satisfy the first hypothesis of
evenp-std-logic-list-to-int.

The solution to this problem is to carefully control the
set of rules that ACL2 will use to prove new theorems,
called the “current theory”. One approach is to carefully
introduce rules which pattern match on function bodies
to reassemble the original invocation [12]. The key to
this approach is strategically enabling and disabling the-
orems during subproofs. We found this approach some-
what contrary to the goal of automated proof finding, and
instead focused on a strategy of disciplined abstraction
levels.

Rather than allow ACL2 to “simplify” instances
of std-logic-list-append to append, we
explicitly lift the needed theorems and disable
the definition of std-logic-list-append.
Thus to solve the problem of Example 4.2 we
would define a lifted version of append-car
called std-logic-list-append-car

3



which states essentially the same theo-
rem in terms of std-logic-list-p and
std-logic-list-append This approach re-
quires a fair amount of additional boiler plate code for
lifting “obvious” theorems, but prevents excessive case
splitting, and reduces the prover’s reliance on explicit
hints. In Section 5.4 we discuss another benefit of this
approach: because of the strict layering, we were able
to replace the underlying data model of our framework
without requiring significant changes to the model of the
SCIP processor.

5 Modeling Architecture

The first critical task facing any attempt at formal veri-
fication is modeling the system to be verified in the lan-
guage of the verification tool. Any confidence gained by
performing formal verification is limited by the fidelity
and accuracy of the model. To represent the SCIP’s de-
sign in ACL2’s LISP dialect, we build on the work of
Georgelin et al. [4]. We use ACL2/LISP macros to pro-
vide a syntactic layer that is nearly line-for-line compa-
rable to the original VHDL source code. These macros
expand to ACL2 functions that implement the VHDL be-
havior and theorems that guarantee the validity of the
model.

The key goals of our modeling system are enabling
both automated and by-hand translation of VHDL code,
and allowing for independent auditing to ensure that the
VHDL model and the ACL2 model for a particular sys-
tem correspond. To support these goals we focused
on providing VHDL-like syntactic constructs in ACL2.
This approach allowed us to incrementally improve the
faithfulness of the modeling system’s semantics without
breaking the existing translation of the SCIP’s design. In
Section 5.4 we describe our motivations for altering the
core datatypes used by the SCIP model. This change was
straightforward because of the syntactic abstractions we
used to build the model initially.

Our modeling system employs three top-
level macros: defentity, defprocess, and
defarchitecture for describing VHDL entities,
processes, and architectures respectively. Example
3 illustrates the use of these macros to represent
VHDL code. There is some divergence between the
ACL2 macro-based syntax and the original VHDL;
most notably internal signals and components are
described in the defentity block, and processes are
defined at the top-level and then explicitly listed in the
defarchitecture block.

5.1 Entities
In VHDL, entities represent the interface to architec-
tural components in terms of input and output ports. In
ACL2, the defentity macro introduces the functions
and theorems necessary for instantiating and reasoning
about entities in ACL2. In particular defentity uses
defstructure[3] to introduce a type predicate for the
new entity, and accessors and mutators for the inputs,
outputs, signals, and components listed.

In Example 3, defentity is used to introduce an
entity called myent with input ports in1 and in2, out-
put ports out1 and out2, a signal sig1, and a sub-
component child. The defentity macro will intro-
duce a number of functions including a state predicate:
myent-state-p, accessors such as myent-in1, and
mutators such as myent-set-in1.

Unlike in VHDL, the internal signals and subcom-
ponents of an entity must be listed as arguments to
defentity. To simulate VHDL’s latching behav-
ior, each internal signal of the entity corresponds to
two distinct fields of the structure generated by defen-
tity; the first field has the same name as the signal
and contains the initial signal value, the second field
is named by appending a ’+’ character to the signal
name and is assigned the computed next value for the
signal. The defentity macro introduces a function
〈entity〉-update-state which is used to updates
the signal fields.

As in VHDL, the component definition must include a
mapping between the input and outputs of the child and
the signals of the parent entity. This mapping is used
by defentity to generate an update function for the
child component which uses copy-in-copy-out semantics
to provide the child’s inputs, step the child, and map the
outputs into the parent’s state.

Additionally, defentity introduces macros for
generating theorems that specify which ports are read
or written by a form. These macros are used by
defprocess and defarchitecture to ensure that
processes depend only on input ports and the input half
of internal signals, and write only to output ports and the
output half of internal signals. Because the SCIP pro-
cessor does not use input-output ports, our macro system
does not currently support them.

5.2 Processes
A VHDL process describes how the values of the input
ports and internal signals of an entity are combined to
compute the values of output ports and to update internal
signals. Processes correspond roughly to functions in a
traditional programming language and thus we use ACL2
functions to model VHDL processes.

4



Example 3 A side by side comparison of VHDL (on left) and its ACL2 equivalent (on right) using our defentity,
defprocess, and defarchitecture macros.

entity myent is
port (

in1 : in unsigned(15 downto 0);
in2 : in unsigned(15 downto 0);
out1 : out unsigned(15 downto 0);
out2 : out unsigned(15 downto 0));

end myent;
architecture rtl of myent is
signal sig1 : unsigned(15 downto 0);
component child typ
port(

cin : in unsigned(15 downto 0);
cout: out unsigned(15 downto 0)

);
end component;
begin

child: child typ
port map(

cin ⇒ in2,
cout⇒ out2

);
proc1: process (in1, in2)
begin

sig1⇐ in1(15 downto 8) & in2(7 downto 0);
end process proc1
end rtl

(defentity myent
:inputs ((in1 std-logic :array 16)

(in2 std-logic :array 16))
:outputs ((out1 std-logic :array 16)

(out2 std-logic :array 16))
:signals ((sig1 std-logic :array 16))
:components((child-typ child

((cin . in2)
(cout . out2))))

)
(defprocess myent proc1 (in1 in2)

(example-set-output sig1
(std-logic-list-append (downto in1 15 8)

(downto in2 7 0)))
)

(defarchitecture myent
myent-proc1
myent-step-child
)

(myent-arch-order-independence-thm)

The defprocess form in Example 3 generates a
function called myent-proc1. This function applies
the body of the defprocess form to an argument rep-
resenting the state of a myent instance. The process is
used in the defarchitecture block later to define
the single step behavior of the myent entity.

For convenience, the input ports and signals values
on the input state are bound to appropriately named lo-
cal variables; this allows free variables in the body of a
defprocess to be resolved as port/signal names as in
VHDL. To guarantee that the body depends only on the
inputs ports and signals of the entity and updates only
output ports and signals, defprocess uses the macros
introduced by defentity for introducing port preser-
vation and independence theorems.

5.3 Architectures

VHDL architectures are a syntactic construct which
group the internal signals, subcomponents, and processes
of an entity into a complete description of the com-
ponent’s behavior. The defarchitecture macro
is intended to indicate a similar grouping of functional

units. The defarchitecture block in 3 defines
a step function which is the composition of the two
processes and a single step of the component child.
Defarchitecture also intrudoces theorems which
show that the final state is independent of the order in
which processes are composed. A future enhancement
to our modeling system may allow defprocess forms
in the body of defarchitecture to ease translation
by more closely approximating the syntax of VHDL.

5.4 Data Types

Initially our VHDL models used ACL2 numeric types for
vectors of VHDL logical values and a symbolic represen-
tation for the SCIP’s compound instructions to simplify
decoding logic. This approach enabled us to quickly
model the SCIP using the defentity, defprocess,
and defarchitecture macros described, but made
the correctness theorems more difficult to prove. We en-
countered three main problems which led us to reimple-
ment our underlying data model using lists of logical val-
ues. We briefly describe these challenges before describ-
ing our new approach in greater detail.

5



1011 1 01 010 0010

Basic ALU instruction,
operands are ptop and pnext

Pop return stack
after execution

Push result on top
of operand stack

addition

00

ignored

Figure 1: The SCIP instruction to add the top two el-
ements of the pstack, push the result on top of the
pstack, and perform a return.

VHDL’s standard logic type includes nine different
values: U (uninitialized), X (strong drive, undefined
value), 0, 1, Z (high impedance), W (weak drive, un-
defined value), L (weak drive, logically 0), H (weak
drive, logically 1) and - (don’t care) whereas ACL2 inte-
gers may only represent (sequences of) zeros and ones.
This was rarely significant, as the SCIP’s design tends to
rely solely on the logical interpretation of values. How-
ever, the inability to faithfully represent “undefined” and
“uninitialized” meant our theorems were only valid for
well defined inputs, which is not necessarily a reason-
able assumption.

VHDL vectors are fixed width whereas ACL2 integers
are arbitrary precision. This led to the need to explic-
itly coerce any computed value using the modulus func-
tion. The implementation of modulus in ACL2 is not
particularly transparent and is difficult for a beginning
user to manipulate in theorems. We learned later that a
more powerful set of theorems for working with modu-
lar arithmetic is included in the ACL2 distribution, but
by that time we had completed our reimplementation.

A related challenge is that ACL2 integers are poorly
suited to bit slicing operations common in VHDL. As
we discuss further in Section 6, the instruction set of the
SCIP processor uses a packed bit field to specify several
primitive operations in each instruction word. Figure 1
shows an example instruction which performs an addi-
tion of ptop and pnext, pushes the result on top of the
pstack, and performs a return.

Initially we modeled instructions as lists of symbols
describing each operation performed. This avoided com-
plex bit slicing logic for decoding. For example, the in-
struction in Figure 1 we represented as the list: (alu
a+b next push return). This made decoding
trivial, but meant that instructions were a different data
type from numeric values which prevented us from em-
ploying typing rules for any port or signal which could
contain either instructions or data. This was the most
significant challenge we faced with our original typing
model; as the complexity and scope of our proofs grew it
became impossible to maintain consistency without the

ability to coerce a number into an instruction. In our new
model, the necessary bit slicing logic is simple and so
we use the faithful representation of instructions as bit
vectors.

Most of the modifications required to switch the data
model were automated search-and-replace operations.
The new data model represents VHDL’s std-logic type
directly in ACL2, and VHDL’s vector types are repre-
sented as ACL2 lists beginning with the least signifi-
cant bit. This implementation allows us to use struc-
tural recursion and existing list manipulation primitives
such as car, cdr, append, etc., to implement the com-
mon bit slicing operations of VHDL. We implement con-
version functions int-to-std-logic-list and
std-logic-list-to-int for converting between
non-negative ACL2 integers and std-logic lists. We also
implement basic arithmetic and logical operations such
as incrementing, decrementing, and, or, not, and logical
shifts on fixed length lists of std-logic values. We prove
that these operations have the expected algebraic prop-
erties, and correspond with operations on non-negative
integers (modulo 2 to the length of the list). In keeping
with our policy of disciplined level separation, the SCIP
model relies only on these theorems and not directly on
the implementation of the data types.

6 The SCIP Processor

The SCIP’s execution model is based on the FORTH pro-
gramming language model. The processor maintains two
internal stacks: a parameter stack (pstack) used to pro-
vide operands for instructions and store results, and a re-
turn stack (rstack) used to store the return address of
call instructions. Because many instructions rely on or
manipulate these stacks, the major proofs presented in
section 7 focus on showing that the VHDL implementa-
tion of the SCIP conforms to the abstract properties of
a stack in normal operation, and behaves predictably in
exceptional situations (such as underflow or overflow).

The pstack and rstack are implemented as 16-
element arrays of word-size registers (pregfile and
rregfile respectively) combined with two 4-bit index
registers (ptopi and poveri for the pstack, rtopiand
roveri for the rstack) indicating the index of the top
element contained in the array and the overflow point
(bottom element). Note that this scheme naturally forms
a ring because incrementing the index registers will wrap
around from the last (15th) element of the array to the
first (0th) element. In addition to these arrays, the SCIP
includes dedicated registers to hold the top two elements
of the pstack (ptop, and pnext), and the top element
of the rstack (rtop). Figure 2 shows conceptually how
the pstack is constructed from these registers.

The SCIP can also be configured to store additional

6



pregfile

ptopi

0
1

2

3

4

5

6
78

9

10

11

12

13

14
15

poveri

ptop

pnext
0

15

14

13

12

11

10

9

ptop

pnext

Figure 2: The pstack is assembled from the ptop
register, the pnext register, and the elements of the
pregfile starting at ptopi and counting down (mod
16) to poveri.

elements from the stacks in main memory by setting the
stack-enabled (stackenb) bit in the processor control
register (pcr). If this bit is set, then overflow or un-
derflow of the on-processor stack registers will cause the
SCIP to enter a special overflow (resp. underflow) mode
for two clock cycles while a stack element is written to
(resp. read from) main memory. While in this special
mode, the SCIP does not execute user instructions.

Another important feature of the SCIP design is that
the instruction set consists of a small number of instruc-
tion classes, each of which is really a packed bitfield
structure specifying a number of different primitive oper-
ations and options. For example, the instruction in Figure
1 includes an arithmetic operation, a pstack operation
(push), and a bit indicating that the top of the rstack
should be popped in to the pc to perform a return. All
arithmetic and logical operations take ptop as their first
operand, but the second operand may come from an im-
mediate value, a register, or pnext. Similarly, the result
of an operation may be placed on the pstack or in a reg-
ister.

This expressiveness leads to a multiplicative explosion
in instruction set size: rather than having 1 return opera-
tion, 4 stack operations and 4 arithmetic operations, the
SCIP has 32 return+stack+arithmetic operations. In to-
tal the SCIP has 18 different instruction forms totaling
over 9000 unique opcodes. To verify the instruction set’s
correctness on a per-instruction basis would be infeasi-
ble. Instead we focused on specifying and verifying the
effects of primitive operations, such as stack manipula-
tions, with the intent to later verify that the cumulative
effect of an instruction is consistent with the composi-
tion of the effects of its component operations.

7 Proving Correctness

Although our long term goal is for a complete verifica-
tion of the instruction set semantics of the SCIP proces-
sor, in this paper we focus on proving that the SCIP’s
implementation of push and pop operations are equiva-
lent to applying the cons and cdr (prepend and tail)
operations on the parameter stack represented as a list.
We separate the problem into two cases: verifying that
stack updates are performed correctly when no overflow
or underflow occurs, and verifying that overflow and un-
derflow conditions are correctly handled.

7.1 Standard Operation
We must show that at the beginning of the clock cycle
following an instruction specifying a push operation, the
stack contains the element pushed, followed by the ele-
ments of the previous stack. Similarly, for pop operations
the new stack must be the old stack with the top element
removed. The exact statement of the theorem proved for
the case of push operation is shown in example 4. Note
that this theorem is concerned only with the portion of
the pstack contained in the register file, and does not
describe the updates to the ptop and pnext registers.

This theorem shows that after the execution of a
push operation, the pstack is defined by the cons of
the new element onto the original pstack. The the-
orem for pop operations is analogous, with the new
pstack defined by the cdr of the original. Figure
3 shows pictorially how the new value of ptopi is
computed; solid lines represent control flow and orig-
inate from diamonds which represent conditionals or
guards, while dotted lines represent data flow and orig-
inate from rectangles which show each data update.
From Figure 3, the need for at least three internal
steps is clear: the first step sets pstack[ptopi plus1]
and pstack[ptopi minus1], the second step up-
dates pstack[ptopi next], and the third step updates
ptopi n. The hypotheses of these theorems provide sim-
ilar guarantees about the state of the processor. The com-
pound predicate scip-pstack-inputs-ready-p
guarantees that the other inputs to this computation:
state, ir and ptopi are held constant until the next
clock rise. The next three hypotheses:

(not (equal (scip-reset st) 1))
(not (rising-edge (scip-clk)) st)

(equal (scip-stretch st) 0)

ensure that the processor is mid clock cycle, not op-
erating on stretched cycles, and will not reset its state
on the next clock rise. The next two hypotheses in-
dicate that the current instruction includes the stack
operation in question (push or pop). The predicate

7



Example 4 Statement of the principal correctness theorem for the pstack push operation
(defthm scip-push-pstack-cons

(implies
(and (scip-pstack-inputs-ready-p st) (not (equal (scip-reset st) 1))

(not (rising-edge (scip-clk st))) (equal (scip-stretch st) 0)
(instr-class-stack (scip-ir+ st)) (equal (stack-op (scip-ir+ st)) *st push*)
(std-logic-defined-list-p (scip-ptopi+ st)) (std-logic-defined-list-p (scip-poveri+ st))
(integerp n) (>= n 3))

(equal
(scip-get-pstack-regfile-as-list (scip-step (scip-raise-clock (scip-step-n n st))))
(let ((p (scip-ptopi+ st)) (o (scip-poveri+ st)))

(cond
((equal (std-logic-list-to-int p) (std-logic-list-to-int o))

(list (scip-pnext+ st)))
(t (cons (scip-pnext+ st) (scip-get-pstack-regfile-as-list st))))))))

state = T_EXEC /\
 instrready = 1 /\ 

instr_class_stack(ir)

rising_edge(clk) /\ 
reset = 0

pstack[ptopi_plus1] <= 
(ptopi + 1) mod 16

pstack[ptopi_minus1] <= 
(ptopi - 1) mod 16

stackop(ir)

pstack[ptopi_next] <= ptopi
pstack[ptopi_next] <= 
pstack[ptopi_plus1]

pstack[ptopi_next] <= 
pstack[ptopi_minus1]

ptopi_n <= 
pstack[ptopi_next]

ptopi <= ptopi_n

yes

no

ST_PUSH ST_POP
ST_SWAP \/ 

ST_NOP

Figure 3: The control and data flow used to calculate the
value for ptopi at the next clock cycle.

std-logic-defined-list-p is a type predicate
to guarantee that all the bits of the ptopi and poveri
registers have well-defined logical values (i.e., are nei-
ther X nor U). The two hypotheses (integerp n)
and (>= n 3) are used to force the SCIP to step
enough times for the pstack logic to update ptopi n.
The final hypothesis of scip-pop-pstack-cdr dis-
allows the case in which the ptopi and poveri reg-
isters are equal; in this case the stack is considered
empty, and thus the new stack after the pop operation
can not be defined in terms of the original. In contrast,
scip-push-pstack-cons can handle this case be-
cause pushing onto an empty stack yields a stack of one
element.

We proved a third theorem showing that the pstack
register file is unchanged if the current instruction is not

a stack operation, or specifies either a no-op or swap op-
eration. This theorem is simpler than the two above but
is otherwise analogous.

7.2 Handling Overflow and Underflow
If a push operation would cause the ptopi register to ad-
vance to the value of the poveri register the SCIP pro-
cessor suspends execution of the user program for two
clock cycles, during which it stores the element of the
stack pointed to by poveri to main memory based on
the value of the psp register, and increments poveri.
Analogously, if a pop operation causes the ptopi regis-
ter to decrease to poveri + 1, the processor will insert
cycles to read an element of the stack from main memory.
We have not yet completed a model of main memory,
and thus we cannot show that the correct data is fetched.
We have shown that the processor correctly identifies the
overflow or underflow, enters the desired state, writes the
correct values to the output ports for reading and writing
data from/to main memory, and updates the psp register
appropriately.

These proofs are more complex than the proofs of
normal operation because they must describe behavior
spanning four clock cycles: the cycle during which over-
flow/underflow is detected, two repair cycles, and the be-
ginning of the next cycle of normal execution. One of the
most complex operations of this procedure is calculating
the new value of the psp register. In the case of over-
flow, the first repair cycle is used to compute the new
psp value by placing its high 15 bits on bbus, using the
ALU to decrement this value, writing this value onto the
wbus, and setting the high bits of the pspn signal to the
low 15 bits of the wbus padded with a 0, and finally set-
ting psp to pspn on the next rising clock edge. Figure 4
illustrates this process.

8



bbus <= 0 & psp(15 downto 1)

aluout <= (bbus - 1)

wbus <= aluout

psp_n <= wbus(14 downto 0) & 0 rising_edge(clk)

psp <= psp_n

Figure 4: During the first overflow cycle, the new psp is
computed by subtracting two from the original value.

The result is that the psp register is decreased by 2
(modulo 216) prior to the overflowed value being stored
in memory at the address referenced by psp. The un-
derflow case is essentially the inverse operation and is
performed during the second repair cycle so that the read
request is issued prior to the update to psp. The symme-
try is necessary to ensure that overflowed data is fetched
properly during the next underflow event. Further, be-
cause the read request is issued during the first underflow
repair cycle, the data is available when normal execution
is resumed after the second repair cycle. Note that if psp
is even (word aligned), the overflow procedure is a sub-
traction by 2 which is the desired effect. However, if psp
is odd, it will subtract 3 before storing the overflowed
value. The only way for psp to take on an odd value
is via direct manipulation by a user program. If the user
stores an odd value to psp, the overflow/underflow proto-
col will still function properly because the first overflow
will fix psp to an even value, and the result of under-
flow after an explicit update to psp without an interven-
ing overflow can not be meaningfully defined anyway.

8 Conclusion

Hardware verification serves two major goals: increase
confidence in hardware correctness, and facilitate verifi-
cation of software at the instruction set level.

In this paper we have described our experience pre-
cisely specifying an aspect of the SCIP processor’s be-
havior: parameter stack manipulation. We have de-
scribed the framework we developed for representing
the SCIP’s VHDL design in the language of ACL2, and
highlighted the more significant theorems we proved.
This work increases our confidence in the correctness of
the SCIP’s design, lays the foundation for a complete
specification of the SCIP’s expected behavior, and for
a verification that the design meets these expectations.
Such a specification would give us a rigorous understand-
ing of the SCIP’s instruction set semantics, and a guaran-

tee that the SCIP’s design properly implements this spec-
ification. This could in turn serve as the basis for proofs
of software behavior which would ultimately enable high
confidence in the overall system behavior.

References

[1] BM79 Robert S Boyer and J Strother Moore. A
computational logic, 1979.

[2] Robert S. Boyer and J. Strother Moore. Single-
threaded objects in ACL2. In PADL ’02: Proceed-
ings of the 4th International Symposium on Practi-
cal Aspects of Declarative Languages, pages 9–27,
London, UK, 2002. Springer-Verlag.

[3] Bishop Brock. Defstructure for ACL2. Technical
report, 1997.

[4] P Georgelin, D Borrione, and P Ostier. A frame-
work for vhdl combining theorem proving and sym-
bolic simulation. In In ACL2 Workshop, 2002.

[5] David M Goldschlag. Mechanically verifying con-
current programs with the boyer-moore prover.
IEEE Transactions on Software Engineering SE-
16, (9), 1990.

[6] D Greve, R Richards, and M Wilding. A summary
of intrinsic partitioning verification. In Proc. Fifth
Int?l Workshop ACL2 Prover and Its Applications,
2004.

[7] W Hunt. Fm8501: A verified microprocessor.
Technical report, 1985.

[8] Warren A Hunt and Bishop Brock. A formal hdl
and its use in the fm9001 verification. In Proceed-
ings of the Royal Society, 1992.

[9] Matt Kaufmann and J. Strother Moore. ACL2: An
industrial strength version of nqthm, 1996.

[10] J Strother Moore, Tom Lynch, and Matt Kaufmann.
A mechanically checked proof of the correctness of
the kernel of the amd5k86 floating-point division
algorithm. IEEE Transactions on Computers, 47,
1996.

[11] D M Russinoff. Specification and verification of
gate-level vhdl models of synchronous and asyn-
chronous circuits. Technical report, Computational
Logic, Inc, 1994.

[12] Bill Young. Reverse abstraction in ACL2. In
Fifth International Workshop on the ACL2 Theorem
Prover and its Applications (ACL2 ’04), November
2004.

9


