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Abstract

Flash memory cells typically undergo a few thousand
Program/Erase (P/E) cycles before they wear out. How-
ever, the programming strategy of flash devices and pro-
cess variations cause some flash cells to wear out signif-
icantly faster than others. This paper studies this vari-
ability on two commercial devices, acknowledges its un-
avoidability, figures out how to identify the weakest cells,
and introduces a wear unbalancing technique that let the
strongest cells relieve the weak ones in order to lengthen
the overall lifetime of the device. Our technique periodi-
cally skips or relieves the weakest pages whenever a flash
block is programmed. Relieving the weakest pages can
lead to a lifetime extension of up to 60% for a negligible
memory and storage overhead, while minimally affect-
ing (sometimes improving) the write performance. Fu-
ture technology nodes will bring larger variance to page
endurance, increasing the need for techniques similar to
the one proposed in this work.

1 Introduction

NAND flash is extensively used for general storage and
transfer of data in memory cards, USB flash drives, solid-
state drives, and mobile devices, such as MP3 players,
smartphones, tablets or netbooks. It features low power
consumption, high responsiveness and high storage den-
sity. However, flash technology also has several disad-
vantages. For instance, devices are physically organized
in a very specific manner, in blocks of pages of bits,
which results in a coarse granularity of data accesses.
The memory blocks must be erased before they are able
to program (i.e., write) their pages again, which results
in cumbersome out-of-place updates. More importantly,
flash memory cells can only experience a limited num-
ber of Program/Erase (P/E) cycles before they wear out.
The severity of these limitations is somehow mitigated
by a software abstraction layer, called a Flash Transla-
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Figure 1: Page degradation speed variation. These
data were generated by continuously writing random val-
ues into the 128 pages of a single block of flash. The
BER grows at widely different speeds among pages of
the same block. We suggest to reduce the stress on the
weakest pages in order to enhance the block endurance.

tion Layer (FTL), which interfaces between common file
systems and the flash device.

This paper proposes a technique to extend flash de-
vices’ lifetime that can be adopted by any FTL mapping
the data at the page level. It is also suitable for hybrid
mappings [13, 6, 12, 5], which combine page level map-
ping with other coarser granularities.

The starting point of our idea is the observation that
the various pages that constitute a block deteriorate at
significantly different speeds (see Figure 1). Conse-
quently, we detect the weakest pages (i.e., the pages de-
grading faster) to relieve them and improve the yield of
the block. In essence, to relieve a page means not pro-
gramming it during a P/E cycle. The idea has a similar
goal as wear leveling, which balances the wear of ev-
ery block. However, rather than balancing the wear, our
technique carefully unbalances it in order to transfer the
stress from weaker pages to stronger ones. This means
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that every block of the device will be able to provide its
full capacity for a longer time.

The result is a device lifetime extension of up to 60%
for the experimented flash chips, at the expense of neg-
ligible storage and memory overheads, and with a stable
performance. Importantly, the increase of process varia-
tions of future technology nodes and the trend of includ-
ing a growing number of pages in a single block let us
envision an even more significant lifetime extension in
future flash memories.

2 Related Work

Flash lifetime is one of the main concerns of these de-
vices and is becoming even more worrisome today due to
the increasing variability and retention capability inher-
ent to smaller technology nodes. Most of the techniques
trying to improve the device lifetime focus on improving
the ECC robustness [15, 26], on reducing garbage col-
lection overheads [14, 25], or on improving traditional
wear-leveling techniques [20]. All of these contributions
are complementary to our technique.

Lue et al. suggest to add a built-in local heater on
the flash circuitry [16], which would heat cells at 800 ° C
for milliseconds to accelerate the healing of the accumu-
lated damage on the oxide layer that isolates the float-
ing gates. Based on prototyping and simulations, the
authors envision a flash cell endurance increase of sev-
eral orders magnitude. While the endurance improve-
ment is impressive, it would require significant efforts
and modifications in current flash architectures before
being available on the market. Furthermore, further anal-
ysis (e.g., power, temperature dissipation, cost) might re-
veal constraints that are only affordable for a niche mar-
ket, whereas our technique can be used today with off-
the-shelf NAND flash chips.

Wang and Wong [24] combine the healthy pages of
multiple bad blocks to form a smaller set of virtually
healthy blocks. In the same spirit, we revive Multi-Level
Cell (MLC) bad blocks in Single-Level Cell (SLC) mode
in a previous work [11]: writing a single bit per cell is
more robust and can sustain more stress before a cell be-
comes completely unusable. Both techniques wait for
blocks to turn bad before acting, which somehow limits
their potentials (17% lifetime extension at best); on the
other hand, by relieving early the weakest pages, we ben-
efit more from the strongest cells and thus show a better
lifetime improvement.

Pan et al. acknowledge the block endurance variance
and suggest to adapt classical wear-leveling algorithm to
compare blocks on their Bit Error Rate (BER) rather than
their P/E cycles count [20]. However, in order to moni-
tor a block BER, the authors assume homogeneous page
endurance and a negligible faulty bit count variance be-
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Figure 2: Flash cells organization. Figure 2(a) shows
the organization of cells inside a block. A block is made
of cell strings for each bitline (BL). Each bit of an MLC
is mapped to a different page. Figures 2(b) and 2(c) show
two examples of cell-to-page mappings in 2-bit MLC
flash memories. For instance, in Figure 2(b), the LSB
and MSB of WL, are mapped to pages 1 and 4, respec-
tively. The page numbering also gives the programming
order.

tween P/E cycles. For the two chips we studied, both
assumptions were not applicable and would require a
more complex approach to compare the BER of multiple
blocks. Furthermore, we observed a significantly larger
endurance variance on the page level than the block level.
Hence, by acting on the page endurance, our approach
has more room to expand the device lifetime.

In this work, for more efficiency, we restrict the relief
mechanism to data that is frequently updated, which is a
strategy shared with techniques proposing to allocating
those data in SLC-mode (i.e., programming only one bit
per cell) to reduce the write latency [9, 10]. In a previ-
ous work, we characterized the effect of the SLC-mode
and observed that it could write more data for the same
amount of wear compared to regular writes and provided
a lifetime improvement of up to 10% [10]. In this work,
we propose to go further in the lifetime extension.

3 NAND Flash

NAND flash memory cells are grouped into pages (typ-
ically 8-32 kB) and blocks of hundreds of pages. Fig-
ure 2(a) illustrates the cell organization of a NAND flash
block. In current flash architectures, more than one page
can share the same WordLine (WL). This is particularly
true for Multi-Level Cells (MLC), where the Least Sig-
nificant Bits and Most Significant Bits (LSB and MSB)
of a cell are mapped to different pages. Figures 2(b) and
2(c) show two cell-to-page mappings used in MLC flash
devices, All-BitLine (ABL) and interleaved, respectively.

Flash memories store information by using electron
tunneling to place and remove charges into floating gates.
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Figure 3: Pages state transitions. Figure (a) shows the
various page states found in typical flash storage: clean
when it has been freshly erased, valid when it holds valid
data, and invalid when its data has been updated else-
where. In Figure (b), data D1 and D4 are invalidated
from blocks A and B, and updated in block D. In Fig-
ure (c), block A is reclaimed by the garbage collector; its
remaining valid data are first copied to block D, before
block A gets erased. Figure (d) illustrates the mechanism
proposed in this work: we opportunistically relieve weak
pages to limit their cumulative stress.

The action of adding a charge to a cell is called program-
ming, whereas its removal is called erasing. Reading
and programming cells is performed on the page level,
whereas erasing must be performed on an entire block.
Furthermore, pages in a block must be programmed se-
quentially. The sequence is designed to minimize the
programming disturbance on neighboring pages, which
receive undesired voltage shifts despite not being se-
lected. In the sequences defined by both cell-to-page
mappings, the LSBs of WL, are programmed before
the MSBs of WL;. In this manner, any interference oc-
curring between the WL; LSB and MSB program will be
inhibited after the WL; MSB is programmed [17].
Importantly, the flash cells have limited endurance:
they deteriorate with P/E cycles and become unreliable
after a certain number of such cycles. Interestingly, the
different pages of a block deteriorate at different rates, as
shown in Figure 1. This observation serves as motivation
for this work, which proposes a technique to reduce the
endurance difference by regularly relieving the weakest

pages.

3.1 Logical to Physical Translation

Flash Translation Layers (FTLs) hide the flash physical
aspects to the host system and map logical addresses to

Logical
Layer

N N
FTL s

Hot Warm \COlC

Physical
Layer

block

relieved page invalid pages clean pages

Figure 4: Flash Translation Layer example. An ex-
ample of page-level mapping distinguishing update fre-
quencies in three categories: hot, warm and cold. In this
work, we propose to idle the weakest pages when their
corresponding block is allocated to the hot partition. It
limits the capacity loss to a small portion of the storage
but still benefits from high update frequency to increase
page-relief opportunities.

physical flash locations to provide a simple interface sim-
ilar to classical magnetic disks. To do this, the FTL needs
to maintain the state of every page—typical states are
clean, valid, or invalid, as illustrated in Figure 3(a). Only
clean pages (i.e., erased) can be programmed. Invalid
and valid pages cannot be reprogrammed without being
erased before, which means the FTL must always have
clean pages available and will direct incoming writes to
them. Whenever data is written, the selected clean page
becomes valid and the old copy becomes invalid. This
is illustrated in Figure 3(b), where D1 and D4 have been
reallocated.

To enable our technique, we introduced a fourth page
state, relieved, to indicate pages to be relieved (i.e., not
programmed) during a P/E cycle. Relieving pages dur-
ing a P/E cycle is perfectly practical, because it does not
break the programming sequentiality constraint and does
not compromise the neighbors information. In fact, it
is electrically equivalent to programming a page to the
erase state (i.e., all 1’s). Hence, to the best of our knowl-
edge, any standard NAND flash architecture should sup-
port this technique.

3.2 Garbage Collection

The number of invalid pages grows as the device is writ-
ten. At some point, the FTL must trigger the reuse of in-
valid pages into clean pages. This reuse process is known
as garbage collection, which is illustrated in Figure 3(c),
where block A is selected as the victim.
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Copying the remaining valid data of a victim block
represents a significant overhead, both in terms of per-
formance and lifetime. Therefore, it is crucial to select
the data that will be allocated onto the same block care-
fully in order provide an efficient storage system. Wu
and Zwaenepoel addressed this problem by regrouping
data with similar update frequencies [25]. Hot data have
a higher probability of being updated and invalidated
soon, resulting in Aot blocks with a large number of in-
valid pages that reduce the garbage collection overhead.
Figure 4 shows an example FTL that identifies three dif-
ferent temperatures (i.e., update frequencies), labeled as
hot, warm, and cold. Literature is rich with heuristics to
identify hot data [12, 4, 9, 22, 21].

In the present study, we propose to relieve the weak-
est pages in order to balance their endurance with their
stronger neighbors. We have restricted the relieved pages
to the hottest partition in order to limit the resulting ca-
pacity loss to a small and contained part of the storage,
while benefiting from a large update frequency to better
exploit the presented effect. Following sections will fur-
ther analyze the costs and benefits of our approach, as
well as its challenges.

3.3 Block Endurance

While accumulating P/E cycles, a block becomes pro-
gressively less efficient in the retention of charges and its
BER increases exponentially. Typically, flash blocks are
considered unreliable after a specified number of P/E cy-
cles known as the endurance. Yet, it is well understood
that the endurance specified by manufacturers serves as
a certification but is hardly sufficient to evaluate the ac-
tual endurance of a block [8, 18]. A block endurance de-
pends on the following factors: First, the cell design and
technology will define its resistance to stress; this is gen-
erally a trade-off with performance and density. Second,
the endurance is associated with a retention time, that
is, how long data is guaranteed to remain readable after
being written; a longer retention time requirement will
require relatively healthy cells and limit the endurance
to lower values. Finally, ECCs are typically used to cor-
rect a limited number of errors within a page; the ECC
strength (i.e., number of correctable bits) influences the
block endurance. The ECC strength required to maintain
the endurance specified by manufacturers increases dras-
tically at every new technology nodes. A stronger ECC
grows in size and requires a more complex and longer er-
ror decoding process, which compromises read latency.
Additionally, the strength of an ECC is chosen accord-
ing to the weakest page of a block and, as suggested by
Figure 1, the chosen strength will only be justified for a
minority of pages. Our proposed balancing of page en-
durance within a block will reduce the BER of the weak-

est pages; therefore, our idea can either be used to re-
duce the ECC strength requirement or to extend the de-
vice lifetime. However, in this work, we only explore the
impact of our technique in device lifetime extension.
FTLs implement several techniques that maximize the
use of this limited endurance to guarantee a sufficient de-
vice lifetime and reliability. Typical wear-leveling algo-
rithms implemented in FTLs target the even distribution
of P/E counts over the blocks. Additionally, to avoid la-
tent errors, scrubbing [1, 23] may be used, which con-
sists in detecting data that accumulates too many errors
and rewriting it before it exceeds the ECC capability.

3.4 Bad Blocks

A block is considered bad whenever an erase or program
operation fails, or when the BER grows close to the ECC
capabilities. In the former case, an operation failure is
notified by a status register to the FTL, which reacts by
marking the failing block as bad. In the latter case, de-
spite a programming operation having been completed
successfully, a certain number of page cells might have
become too sensitive to neighboring programming dis-
turbances or have started to leak charges faster than the
specified retention time and will compromise the stored
data [17]. Henceforth, the FTL will stop using the block
and the flash device will die at the point in time when no
spare blocks remain to replace all failing blocks.

To study the degradation speed of the different pages
within a block, we conducted an experiment on a real
NAND flash chip in which we continuously programmed
pages with random data and monitored each page BER
by averaging their error counts over 100 P/E cycles. We
have already anticipated the results in Figure 1, which
shows how the number of error bits increases with the
number of P/E operations for all the pages in a particular
block. At some point in time, the weakest page (darker
line on the graph) will show a BER that is too high and
the entire block will be considered unreliable. Interest-
ingly, a large majority of the remaining pages could with-
stand a significant amount of extra writes before becom-
ing truly unreliable. Clearly, flash blocks suffer a prema-
ture death if no countermeasures are taken and our ap-
proach attempts to postpone the moment at which a page
block becomes bad by proactively relieving its weakest
pages. The following sections further study the degrada-
tion process of individual pages and detail the technique
that uses strong pages to relieve weak ones.

4 Relieving Pages

In this section we introduce the relief strategy and char-
acterize its effects from experiments on two real 30-nm
class NAND flash chips.
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Figure 5: Measured effect of relieving pages. The degradation speed for various relief rates and types are measured
on both chips. The Ref curve reports the BER of the entire reference blocks, whereas for the relieved blocks, the BER
is only evaluated on the relieved page. The labels ‘25°, ‘50°, and ‘75’ indicate the corresponding relief rate in percent.

The BER is evaluated over a 100-cycle period.

4.1 Definition

We define a relief cycle on a page the fact of not pro-
gramming it between two erase cycles. Although re-
lieved pages are not programmed, they are still erased,
which, in addition to the disturbances coming from
neighbors undergoing normal P/E cycles, generates some
stress that we characterize in Section 4.2. In the case of
MLC, the cells are mapped to an LSB and MSB page
pair and can either be fully relieved, when both pages
are skipped, or half relieved, when only the MSB page
is skipped. The level of damage done to a cell during a
P/E cycle is correlated to the amount of charge injected
for programming; of course, more charges means more
damage to the cell. Therefore, a page will experience
minimal damage during a full relief cycle while a half
relief cycle will apply a stress level somewhere between
the full relief and a normal P/E cycle.

4.2 Understanding the Relieving Effect

In order to characterize the effects of relieving pages, we
selected two typical 32 Gb MLC chips from two differ-
ent manufacturers. We will refer them as C1 and C2;
their characteristics are summarized in Table 1. The read
latency, the block size, and the cell-to-page mapping ar-
chitecture are the most relevant differences between the
two chips. The CI1 chip has slower reads and smaller
blocks than C2, and it implements the All-Bit Line (ABL)
architecture illustrated in Figure 2(b). The C2 chip im-
plements the interleaved architecture illustrated in Fig-
ure 2(c). We design an experiment to measure on our
flash chips how the relief rate impacts the page degrada-
tion speed. Accordingly, we selected a set of 28 blocks

Table 1: MLC NAND Flash Chips Characteristics

Features Cl1 C2
Total size 32Gb 32Gb
Pages per block 128 256
Page size 8 kB 8 kB
Spare bytes 448 448
Read latency 150 us 40-60 us
LSB write lat. 450 us 450 us
MSB write lat. 1,800 us 1,500 us
Erase latency 4 ms 3 ms
Architecture ABL interleaved

and divided them into seven sets of four blocks each.
One set is configured as a reference, where blocks are
always programmed normally—i.e., no page is ever re-
lieved. We allocate then three sets for each of the two
relief types (i.e., full and half), and each of these three
sets is relieved at a different frequency (25%, 50% and
75%). For each relieved block, only one LSB/MSB page
pair out of four is actually relieved, while the others
are always programmed normally. Therefore, the re-
lieved page pairs are isolated from each other by three
normally-programmed page pairs. Hence, we take into
account the impact of normal neighboring pages activity
on the relieved pages. Furthermore, within each four-
block relieved sets, we alternate the set of page pairs that
are actually relieved in order to evaluate evenly the relief
effects for every page pair physical position and discard
any measurement bias. Finally, every ten P/E cycles we
enforce a regular program cycle for every relieved blocks
(including relieved pages) in order to average out the ab-
sence of disturbance coming from relieved neighbors and
collect unbiased error counts for every page. Indeed,
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Figure 6: Normalized page endurance vs. relief rate.
The graph shows how relieving pages extends their en-
durance. The endurance is normalized to the normal
page endurance, corresponding to a maximum BER of
10~*. For each chip, the relative stress of the full and half
relief type is extracted by fitting the measured points.

pages close to relieved pages experience less disturbance
and show a significantly lower BER.

Figure 5 shows the evolution of the average BER with
the number of P/E cycles for every set of blocks as mea-
sured on the chips. For the relieved sets, only the re-
lieved pages are considered for the average BER evalua-
tion. Clearly, the relief of pages slows down the degrada-
tion compared to regular cycles and extends the number
of possible P/E cycles before reaching a given BER.

In order to model the stress endured by pages undergo-
ing a full or half relief cycle, we first define the relation-
ship between page endurance and the stress experienced
during a P/E cycle. The endurance E of a page is in-
versely proportional to the stress @ that the page receives

during a P/E cycle:

1

E=_. (1

Considering a page being relieved with a relative stress
« at a given rate p, the resulting extended endurance Ey
is expressed as the inverse of the average stress:

1 E
l-p)o+paw (1-p)+pa’

Assuming a maximum BER of 10~* to define a page en-
durance, we show in Figure 6 the endurance of relieved
pages for the three relief rates measured, with the en-
durance normalized to the reference set. For each chip,
we also fit the data points to the model of Equation (2)
and report the extracted o parameters on the figure. Con-
sistently across the two chips, a full relief incurs less
damage to the cell than a half relief, which in turn in-
curs less damage than regular P/E cycles. Interestingly,
half reliefs are more efficient than full reliefs in term of
stress per written data: for example, for chip Cl1, the frac-
tion of stress associated to half and full relief cycles is

Reference

25% full relief

50% full relief

Pages

75% full relief

_ eiballhn |

0K 5K 10K 15K 20K

Endurance in P/E cycles

Figure 7: Measured page endurance distribution.
The clusters on the left and right correspond to MSB and
LSB pages, respectively. Both clusters endurance are ex-
tended homogeneously when relieved.

oy = 0.61 and o = 0.39, respectively. Over two P/E
cycles, if an LSB/MSB page pair gets twice half relieved
or once fully relieved, two pages would have been writ-
ten in both cases but the cumulated stress would be larger
with a full relief:

2oay=122<139=1+ap. 3)

Furthermore, a half relief cycle consists in programming
solely the LSB of a LSB/MSB pair, and, intrinsically,
programming the LSB has a significantly smaller latency
than the MSB (see Table 1). Thus, a half relief is not only
more efficient for the same amount of written data, but it
also displays better performance.

Figure 7 provides further insight on the relief effect on
a page population. The figure shows the number of P/E
cycles tolerated by the different pages before reaching an
BER of 10~ evaluated over 100 P/E cycles.

In the next sections we will discuss how relief cy-
cles can opportunistically be implemented into common
FTLs to balance the page endurance and improve the de-
vice lifetime.

S Implementation in FTLs

In this section, we describe the implementation details
required to upgrade existing FTL with our technique.

5.1 Mitigating the Capacity Loss

Relieving pages during a P/E cycle temporarily reduces
the effective capacity of a block. Therefore, relieving
pages in a block-level mapped storage would be im-
practical. Conversely, performing it on blocks that are
mapped to the page level (or finer level) is straightfor-
ward. Consequently, in order to limit the total capac-
ity loss while still being able to frequently relieve pages,
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we propose to exclusively enable relief cycles in blocks
that are allocated to the hottest partition, where the FTL
writes data identified as very likely to be updated soon.

Actually, the hot partition is an ideal candidate for our
technique because of two reasons: (1) hot data gener-
ally represent a small portion of the total device capacity
(e.g., less than 10%), which bounds the capacity loss to
a small fraction; also, (2) hot partitions usually receive
a significant fraction of the total writes (our evaluated
workloads show often more than 50% of writes identified
as hot), which provides plenty of opportunities to relieve
pages. Note that flash blocks are dynamically mapped to
the logical partitions, and thus, all of the physical blocks
in the device will eventually be allocated to the hottest
partition. Furthermore, classical wear-leveling mecha-
nisms will regularly swap cold blocks with hot blocks
in order to balance their P/E counts. Accordingly, our
technique has a global effect on the flash device despite
acting only on a small logical partition.

We will now describe two different approaches to bal-
ance the page endurance with our relief strategies. The
first one can be qualified as reactive, in that it will regu-
larly monitor the faulty bit count to identify weak pages.
The second one, which we call proactive, estimates be-
forehand what the endurance of every page will be and
sets up a relief plan that can be followed from the first
P/E cycle. Currently, manufacturers do not provide all
the information that would be required to directly spec-
ify the parameters needed for our techniques. Until then,
both techniques would require some characterization of
the chips to be used in order to extract parameters o and
ay, and the page endurance distribution.

5.2 Identifying Weak Pages on the Fly

The reactive relief technique relies on the evolution of
the page BER to detect weakest pages as early as pos-
sible. The FTL must therefore periodically monitor the
amount of faulty bits per page which is very similar to
the scrubbing process [1]. This monitoring happens ev-
ery time that a cold (i.e., non-hot) block is selected by
the garbage collector. Concretely, we must read every
page and collect the error counts reported by the ECC
unit before erasing a block.

A simple approach to identify the weakest pages is to
detect which ones reach a particular error threshold first.
Assuming that an ECC can handle up to n faulty bits per
page, we can set an intermediate threshold &, with k < n,
that can be used to flag pages getting close to their en-
durance limit. The parameter # is given by the strength
of the ECC in place, while the parameter £ must be cho-
sen to maximize the efficiency of the technique and will
depend on the page endurance variance. As soon as a
page reaches the threshold &, our heuristic will system-

atically relieve the corresponding LSB/MSB page pair
when it is allocated to the hot partition. In order to con-
trol the capacity loss, we also set a maximum amount of
pages to relieve per block; only the r first pages reach-
ing the threshold within a block will get relieved. For
our evaluation, we bound the relieved page count, 7, to
25% of the block capacity. A larger r would increase
the range of pages that can be relieved but decrease the
efficiency of the buffer. Besides, the latest pages to be
identified as weak do not require a relief as aggressive
than the weakest ones. Hence, we propose to fully relieve
the ry, first weak pages and to half relieve the remaining
r — ry pages. In our case, we found the best compromise
with ry, equal to 5% and 10% of the block capacity for C1
and C2, respectively. Choosing efficiently r;, for a new
chip requires the information on its page endurance dis-
tribution. The larger is its variance, the larger ;, should
be.

The reactive approach requires extra storage for its
metadata. This overhead includes two bits per LSB/MSB
page pair, which will indicate whether any of the pages
has reached the k threshold and whether it should be fully
or half relieved, and a (redundant) counter indicating the
number of detected weak LSB/MSB page pairs so far.
Accordingly, 133 extra bits (128 bits for the flags and 5
bits for the counter) per block will need to be stored in a
device containing 128-page blocks. In the concrete case
of C1, for instance, this extra storage corresponds to an
insignificant amount of the total 458,752 spare bits that
are available for extra storage in every block. Addition-
ally, the FTL main memory will need to temporally store
the practically insignificant metadata of a single block to
be able to restore the metadata after erasing the block.
Overall, the extra storage needed by this technique ap-
pears to be negligible in typical flash devices.

The monitoring required by this technique needs the
FTL to read a whole block before erasing it, which adds
an overhead to the erasing time. The monitoring repre-
sents an overhead of 10% of the total time spent writ-
ing cold data, since flash read latency is typically ten
times smaller than write latency. However, the monitor-
ing process can often be performed in the background,
making this estimation—which we will use in all of our
experiments—quite conservative. If hiding the monitor-
ing in the background is not feasible or not sufficiently
effective, the FTL can also monitor the errors only every
several erase cycles. Accordingly, we evaluated how the
lifetime improvement is affected by a limited monitoring
frequency and observed that a monitoring frequency of
20% (i.e., blocks are monitored once every five P/E cy-
cles) provides sufficient information to sustain the same
lifetime extension than full monitoring. In substance,
while the process of identifying the weakest pages could
at worst require one page read per page written, simple

USENIX Association

12th USENIX Conference on File and Storage Technologies 53



Plan 0 (p,=60%) Plan 1 (p=75%) Plan 2 (p,=90%)
4000 cycles 2000 cycles 2000 cycles
Page # | Half rel. | Full rel. Half rel. | Full rel. Half rel. | Full rel.
0 N N N N
1 40% - 60% 40%
2 - - - - - -
3| 30% - - 100% 60% 40%
4 - - - - - -
5 100% - 100% 60% 40%
6 - - - - -
7
8 - - - -
9 30% - 60% 40%
10 - - - - - -
11 - - - - 100%
12 - - - - - -
13 | 90% 10% - 100% 60% 40%
14 - - - - - -
15

Figure 8: Example of a relief plan. The relief plan is
actually made of several plans, each valid for a given
amount of relief cycles. According to this plan, blocks
will follow Plan O during the first 4000 relief cycles then
move on to Plan 1 for the next 2000 relief cycles and so
on. A plan provides for each page its probability to be
relieved. In the example, page 5 is the weakest page and
is relieved to the maximum in Plan O and Plan 1.

techniques can reduce this overhead to negligible levels
without a loss in the effectiveness of the idea.

5.3 Relief Planning Ahead of Time

The reactive approach requires to identify the weakest
pages during operation and while significant deteriora-
tion has already occurred, which somehow limits the po-
tential for relief. More efficient would be to relieve the
weakest pages from the very first writes to the device.
Interestingly, previous work observed noticeable BER
correlation with the page number [7, 3]. Similarly, we
observe on our chips a significant correlation between a
page position in a block and its endurance. This correla-
tion is important enough to allow us to rank every page
per endurance. Thereby, we developed a proactive tech-
nique to exploit the relief potential more efficiently.

The proactive technique requires first a small analysis
of the flash chip that we consider. We must characterize
the endurance of LSB/MSB page pairs in every position
in a block, for a given BER. For each page pair, only
the shorter page endurance is considered. This informa-
tion can be extracted from a relatively small set of blocks
(e.g., 10 blocks). Thanks to this information, we will be
able to rank the page pairs by their endurance and know
which page should be relieved the most. Yet, building an
efficient relief plan would also require the knowledge of
how many times a block will be allocated to the hot parti-
tion during its lifetime, which corresponds to the amount
of opportunities to relieve its weakest pages. With this in-

formation, one could evaluate to what extent the weakest
page of a block can be relieved and how many times the
other pages should be relieved to meet the same extended
endurance. However, in practice, one cannot have this in-
formation ahead of time. Instead, we prepare a sequence
of plans targeting increasing hot allocation counts; Fig-
ure 8 gives an example of such a sequence. In this ex-
ample, Plan O contains the relief information for the first
4000 relief cycles. Once a block has been allocated to the
hot partition 4000 times, one moves to Plan 1 for the next
2000 relief cycles. The entries in the plans are probabil-
ities for a page to be either fully relieved, half relieved,
or normally programmed. Hence, when a block is allo-
cated to the hot partition, before programming a page,
one should first consult the plan and decide whether or
not the current page should be skipped.

To create such plans, sequentially starting from Plan 0,
we first refer to the page pairs endurance analysis to iden-
tify the weakest pair position w. Each Plan p is built as-
suming an intermediate hot allocation ratio p, (e.g., 60%
for Plan 0) that grows from one plan to the next. The
higher it is, the more flexible the plan will be and ap-
plications with large hot ratios will largely benefit from
half relief cycles, while applications with low hot ratios
will not be relieved as aggressively as they should. Af-
ter choosing a ratio, we evaluate the maximum possible
endurance extension with full relief for the weakest page
pair w, Er, = Ex w(pp, 0F). The expected number of re-
lief cycles for this Plan p is thus L, = p,, - Ex ,, minus the
total length of the previous plans. Hence in the example,
the hot allocation ratio p; of Plan 1 would provide 2000
more relief cycle than Plan 0. Thereby, when a block ex-
ceeds 4000 relief cycles before turning bad, it means that
the actual p is larger than py and the block should move
on to the next plan, which targets a higher p.

Once the target endurance is set, for every page pair
i having an endurance E; lower than E7,, we compute
the number of relief cycles R; that would be required for
them to align their endurance to E . Setting

E;

E . .7a — :E 4
xi(pir @) (1—pi) +pic ! @
and considering that p; = R;/Er, we simply obtain
Er—E;
Ri=——. 5
- &)

Here, « is the fraction of stress corresponding to half or
full relief cycles, or to a combination of the two, and we
still need to decide which type of relief to use.

As discussed in Section 4.2, half relief is most efficient
in terms of avoided stress per written data and in terms
of performance, and, hence, we will maximize its usage.
For every page i to be relieved, we evaluate with Equa-
tion (5) and @ = oy the number of half relief cycles that
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would be necessary to reach the endurance E7 . If the
required number of half relief cycles is larger than the
number of relief cycles in this plan L,, we are forced to
consider some full relief as well. Trivially, from Equa-
tion (5) and with L, = R;, we determine the fraction A of
full relief cycles such that the average fraction of stress

is
Er—E;

(XZA,OCF—I—(l—l)(XH:l (6)

Ly
To construct Plan p + 1, every page that was relieved,
even partially, according to Plan p will be set to the max-
imum relief rate (i.e., 100% full relief), and the above
process is repeated.

Similarly to the reactive approach, we restrict to r
the maximum number of relieved pages in order to limit
the potential performance drop. For the proactive tech-
nique, we can solely evaluate what would be the average
number of pages relieved per plan by summing every
page probability to get relieved. For example, in Fig-
ure 8, for Plan O the average number of relieved pages is
2-(140.1)4+ 0.3+ 0.9 = 3.4 pages out of 32 (remem-
ber that a full relief skips two pages). Limiting the aver-
age number of pages relieved will at some point bound
the target endurance. This is illustrated in Figure 8 with
Plan 2. Assuming that a maximum of eight pages on av-
erage is allowed, the original E7» would have required
the number of relieved pages to be larger than this. Hence
the E7 is reduced to meet the requirements, which re-
duces the relief rate of every page to meet the average
of eight relieved pages per cycle. The plan that requires
to reduce its original target endurance becomes the latest
plan. Once a block completed this last plan, it will sim-
ply stop having to relieve any page until the end of its
lifetime.

This technique requires to store the plans in the FTL
memory. Each plan has two entries for each LSB/MSB
pair and each entry can be encoded on 8 or 16 bits,
depending on the desired precision, resulting in 256—
512 Bytes per plan, which is negligible for most environ-
ments. Besides, the tables are largely sparse and could
be further reduced by means of classical compression
strategies (e.g., hash tables) to fit in memory sensitive
environments.

6 Experiments and Results

We evaluate here the expected lifetime extension achiev-
able with the two relief strategies presented. In the next
sections, we explain how we begin by combining error
traces acquired from real NAND flash chips with simu-
lation to obtain a first assessment of the improvements of
block endurance and, consequently, of device lifetime.
We then refine our experimental methodology by imple-
menting a trace-driven simulator and a couple of state-of-

the-art FTLs, and by evaluating more accurately the im-
pact of our technique. We use a number of benchmarks
to show not only the lifetime improvement but also the
minimal effect (often favorable) of our technique on ex-
ecution time.

6.1 Collecting Traces and Simulating Wear

To assess the impact of our technique, we first collected
real error traces from 100 blocks from each of our chips
that went through thousands of regular P/E cycles; we
collected the error count of every page at every P/E cy-
cle. We then used the collected traces to simulate what
would happen of the blocks when going through P/E cy-
cles during normal use of the device. At each simulated
P/E cycle, each block is either allocated to the hot parti-
tion (i.e., where pages can be relieved) or to the cold one,
depending on a hot-write probability; this parameter sim-
ulates the behaviour of an FTL and defines the probabil-
ity for a block to be allocated to the hot partition. When a
block is allocated to the cold partition, a normal P/E cy-
cle occurs: every page is considered programmed. When
a block is allocated to the hot partition, the weak pages
are relieved instead. The reactive approach uses the error
counts to determine pages as weak if they have reached
the predefined threshold k. The proactive approach, on
the other hand, relies solely on the relief plans prepared
in advance to determine the weak pages to be relieved.
While we simulate successive writes to the device, we
count how many times each page has been written and
to what extent it has been relieved. Whenever our real
traces tell us that one page of a block has reached a given
BER, considered as the maximum correctable BER, we
render the block as bad and stop using it. At the end, the
simulator reports the total amount of data that could be
written in each block—that is, the lifetime of the block
under a realistic usage of the device.

6.2 Block Lifetime Extension

We use our wear simulation method to first evaluate the
lifetime enhancement provided by our techniques at the
block level. In this context, we consider a block to be
bad as soon as one of its pages reaches the given BER.
Considering a 60% hot write ratio, Figure 9 shows the
lifetime of every block for both our flash chips assuming
a maximum BER of 10~4; it compares our proactive and
reactive techniques to the baseline. The blocks are or-
dered on the x-axis with the one with the lowest lifetime
on the left up to the one with the largest on the right. The
bottom curve is the lifetime of each block when stressed
normally, while the two curves on the top corresponds
to the lifetime when applying our techniques. The re-
lief effectiveness varies depending on the actual block,
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Figure 9: Block lifetime improvement.
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the device lifetime, assuming it can cumulate up to 10% bad blocks. As expected, the proactive technique is more
efficient than the reactive one. Chip C1 has a relatively small page endurance variance, which limits the efficiency of
the proactive approach to 10% lifetime extension. Comparatively, C2 offers more room to exploit the relief mechanism
and allows the proactive approach to extend by 50% the lifetime. For these graphs, we assume a limit BER of 10~# as

well as a 60% write frequency to the hot partition.

thereby the block ordering for the two curves is not nec-
essarily the same. The proactive approach is more effi-
cient, as it starts relieving pages much sooner than the
reactive approach. Yet, we believe that there is room to
improve our simple weak-page detection heuristic in or-
der to act sooner and be more efficient. Chip C1 shows
a relatively small page endurance variance, which limits
our techniques potential with a lifetime improvement of
10% maximum. This confirms the intuition that a larger
page endurance variability and a greater number of pages
per block (double for C2 compared to C1) increase the
benefit of the presented techniques. In the next section,
we translate the block lifetime extension into a device
lifetime extension.

6.3 Device Lifetime Extension

We now evaluate the lifetime extension for a set of blocks
when relieving the weakest pages. The three grey areas
of Figure 9 represent the total amount of data we could
write the device during its lifetime using the baseline
and our relief techniques. Assuming that the device dies
whenever 10% of its blocks turn bad, the ratio of a relief
gray area with the baseline area represents the additional
fraction of data that we could write: for C2, our reactive
and proactive techniques show a lifetime improvement of
more than 30% and 50%, respectively. These results are
obtained from a sample of 100 blocks, which are enough
to provide an error margin of less than 3% for a 95%
confidence level. From this figure, we can also make a
quantitative comparison between the error rate leveling

18 T
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Figure 10: Lifetime improvement w.r.t. BER thresh-
old. The BER threshold that indicates when a block is
considered unreliable directly affects a device lifetime.
Large BER thresholds increase the baseline lifetime and
remove room to improvement at the cost of a more ex-
pensive ECC.

technique proposed by Pan et al. [20]. If we were to per-
fectly predict the endurance of every block, we would
have a device lifetime that is equal to each individual
block lifetime and which corresponds to the total area
below the baseline curve. Accordingly, we would get an
extra lifetime of 5% and 11% for C1 and C2, respec-
tively, which is an optimistic estimate, yet significantly
lower than what the proactive approach can bring.

We performed a sensitivity analysis on several param-
eters that might have an effect on the lifetime extension.
For the following results, we focus on the proactive strat-
egy. The proportion of bad blocks tolerated by a device
had negligible effect on the lifetime extension. As for the
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Figure 11: Lifetime improvement w.r.t. hot write ra-
tio. The curve gives the expected lifetime extension pro-
vided by the proactive technique on chip C2. The data
points represent results from benchmarks using two dif-
ferent FTLs. Those measurements take into account the
writes overhead caused by the hot partition capacity loss.
Apart from a couple of outliers, the results are consistent
with our expectations.

BER threshold, the effect on lifetime extension is mod-
erate, as illustrated in Figure 10. A larger BER gives
more time to benefit from relieving pages, but it also in-
creases the reference lifetime and makes the relative im-
provement smaller. Finally, the hot write ratio sets by
how much our technique can be exploited and has a sig-
nificant effect on the lifetime extension. The curve la-
beled “Estimate” in Figure 11 shows the lifetime of a de-
vice implementing the proactive technique (normalized
to the baseline lifetime) as a function of the hot write ra-
tio. We clearly see that the more writes are directed to
the hot partition, the better the relief properties can be
exploited, as one would expect. The data points on the
figure represent the normalized lifetime extension when
considering the actual execution of a set of benchmarks
with real FTLs, which will be introduced in the next sec-
tion; these measurements take into account all possible
overheads derived from the implementation of the relief
technique and match well the simpler estimate. All re-
sults show significant lifetime extensions for hot write ra-
tios larger than 40% which is, in fact, in the range where
most benchmarks (with very rare exceptions) are in prac-
tice.

6.4 Lifetime and Performance Evaluation

The temporary capacity reduction in the hot partition
produced by relieving pages decreases its efficiency and
is very likely to trigger more often the garbage collec-
tor. This effect is more critical for hybrid mapping FTLs
that rely on block-level mapping for the cold partition:
these FTLs will need to write a whole block even when
a single page needs to be evicted from the page-level

mapped hot partition (buffer partition) to the block-level
mapped cold partition. To refine our estimations and
understand the impact on performance, we developed a
trace-driven flash simulator and implemented two hybrid
FTLs, namely ComboFTL [9] and ROSE [5]. Both FTLs
have a hot partition that is mapped to the page level, how-
ever their cold partitions are mapped differently. ROSE
maps its cold data at the block level, while ComboFTL
divide its cold partition in sets of blocks, each being
mapped at the page level. Additionally, ComboFTL has
a warm partition; we will consider this third partition hot
as well, in the sense that pages of blocks allocated to
the warm partition will be subject to relief cycles when
appropriate. Thanks to the block level mapping, ROSE
requires significantly less memory than ComboFTL to
be implemented but pays the cost with an execution time
25% larger and a 20% smaller lifetime in average.

In our experimental setup, we assume a hot partition
allocating 5% of the total device size and we limit the
maximum ratio of relieved pages to 25%, which repre-
sents a maximal loss of 1.25% of the total device ca-
pacity. Hence, the page relief cost can either be con-
sidered as extra capacity requirement (1.25% here) or in
a garbage collection overhead that we will now evaluate
for two different FTLs.

We selected a large set of disk traces to be executed
by both FTLs. First the trace homesrv is a disk trace that
we collected during eight days on a small Linux home
server hosting various services (e.g., mail, file server,
web server). The traces finl and fin2 [2] are gathered
from OLTP applications running at two large financial
institutions. Lastly, we selected 15 traces that have a
significant amount of writes from the MSR Cambridge
traces [19]. In our simulation, we assume a total capacity
of 16 GBytes and a flash device with the characteristics
of C2 (see Table 1). While most of the traces were ac-
quired on disks of a larger capacity, their footprint are all
smaller and by considering only the referenced logical
blocks (2 MBytes for C2), every selected benchmark fit-
ted in the simulated disk. Importantly, when simulating
a smaller device, the hot partition size gets proportion-
ally scaled down, which effectively reduces the hot write
ratio and the potential of our approaches and renders the
following results conservative.

For the experiments, we considered again a maximum
BER of 10~ and a bad blocks limit of 10%. We re-
port in Figure 12 the performance and lifetime results
for both chips and of both FTLs executing all the bench-
marks with the proactive technique. The results are nor-
malized to their baseline counterpart, that is implement-
ing the same FTL without relieving weak pages. (Note
that this makes the results for ComboFTL and ROSE not
comparable between themselves, but our purpose here is
not to compare different FTLs but rather to show that, ir-
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Figure 12: Performance and lifetime evaluation of our proactive technique for various benchmarks running on
both chips. (a) Our relief technique gets at most 10% lifetime extension for the chip C1, (b) whereas for C2 it gives
regularly an extra 50% lifetime, but for rare exceptions. In (c) and (d), we see that the execution time is stable for most
of the benchmarks despite the capacity loss in the hot buffer. Thanks to the half relief efficiency, several benchmarks

even sport a better performance.

respective of the particular FTL, our technique remains
perfectly effective). Most of the benchmarks result in a
hot write ratio larger than 50% and show a lifetime exten-
sion between 30% and 60% for C2. In particular, we ob-
served that ComboFTL frequently fails to correctly iden-
tify hot data from the prng trace; this results in a large
amount of garbage collection, a poor hot data ratio, and a
performance drop of 20% when relieving weak pages—
ROSE performs significantly better here. Overall, de-
spite this pathological case, the proactive relief technique
brings an average lifetime extension of 45% and a exe-
cution time improvement within 1%. The execution time
improvement comes thanks to the half relief efficiency,
which provides significantly smaller write latencies. In
summary, the proactive approach provides a significant
lifetime extension with a stable performance and a negli-
gible memory overhead.

7 Conclusion

In this paper, we exploit large variations in cell quality
and sensitivity occurring in modern flash devices to ex-

tend the device lifetime. We better exploit the endurance
of the strongest cells by putting more stress on them
while periodically relieving the weakest ones of their
duty. This gain comes at a moderate cost in memory re-
quirements and without any loss in performance. The
proposed techniques are a first attempt to benefit from
page-relief mechanisms. While we already show a life-
time improvement of up to 60% at practically no cost,
we believe that further investigation of the effects of our
method on data retention as well as research on other
wear unleveling techniques could help to further balance
the endurance of every page and block. In future flash
technology nodes, process variations will only become
more critical and we are convinced that techniques such
as the ones presented here could help overcome the up-
coming challenges.
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