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Message from the 
FAST ’22 Program Co-Chairs 

Welcome to the 20th USENIX Conference on File and Storage Technologies (FAST ’22). This year’s conference continues 
the tradition of bringing together researchers and practitioners from both industry and academia for a program of innovative 
and rigorous storage-related research. As we continue living and working in unprecedented times, this year’s conference is the 
first hybrid FAST (both in-person and online). This is a welcome return for at least some of the storage community to be able 
to congregate after last year’s first fully virtual conference. We are pleased to include activities that allow wider participation 
than a strictly in-person event, as well as accommodate “mask-to-mask” interaction for those who can make the trip. We have a 
program with talks and posters on a wide range of topics, including emerging and traditional storage technologies; distributed 
storage; key-value stores and graph analytics; deduplication; performance analysis; and, as always, new file system designs.

To commemorate the 20th FAST conference, we will have several small activities throughout the conference, including trivia 
and memories from early FAST conferences and an opportunity to make predictions for the future of storage. We will share 
some predictions and memories throughout the conference, and put them in a time capsule for a future FAST conference where 
the capsule will be opened to see our community’s ability to predict the future. We hope these activities will be fun, informative, 
and a good chance to think about where we want our community to grow and evolve over the next two decades.

FAST ’22 received 130 submissions from authors in academia, industry, government labs, and the open-source communities. Of 
these, we accepted 28 papers, for an acceptance rate of 21%. The Program Committee (PC) used a two-round online review pro-
cess.  In the first round, each paper was assigned three reviewers. This year, we adopted an early rejection notification for papers 
that did not advance to round two, allowing authors to receive and act upon feedback earlier. In the second round, 72 papers were 
assigned at least two more reviews, and these authors were invited to submit a response to the reviews before the PC meeting. 
This is the second year that FAST has included an author response period. After the author response period and online discussion, 
the PC discussed 51 papers to select the final program. The two-day hybrid PC meeting was held on December 6-7, 2021 and 
had six PC members attend in-person in Chapel Hill, NC, with the rest joining virtually from global locations that spanned 10 
time-zones. We used Eddie Kohler’s excellent HotCRP service to manage all stages of the review process, from submission to 
author notification. All accepted papers were assigned a shepherd from the PC, who worked with the authors to address  
comments from the reviews and provided editorial advice and feedback on the final manuscripts.

We continued including a special category of deployed-systems papers, which address experience with the practical design, 
implementation, analysis, or deployment of large-scale, operational systems. We received three deployed-systems submissions 
and accepted one. 

This year we introduced a new mentoring program, which was spearheaded by Vasily Tarasov. Joining a new community can be 
daunting. The goal of the mentorship program is to match FAST community newcomers with more seasoned participants to  
nurture a sense of belonging and remove barriers by introducing them to others, answering questions, offering advice on how 
to get the most out of the experience, and even just meeting up for a chat. We hope the FAST community benefited from the 
program and would like to thank all mentors, mentees, and particularly Vasily for leading this valuable program. 

We wish to thank the many people who contributed to this conference. First and foremost, we are grateful to all the authors who 
submitted their work to FAST ’22. We would also like to thank the attendees of FAST ’22 and the future readers of these papers. 
Together with the authors, you form the FAST community and make storage research vibrant and exciting. We extend our thanks 
to the entire USENIX staff, who have provided outstanding support throughout the planning and organizing of this conference 
with the highest degree of professionalism and friendliness. Most importantly, their behind-the-scenes work makes this conference 
actually happen. We would like to thank the Work-in-Progress Session Chairs, Alex Conway and Deniz Altinbüken and our  
delegates to the ;login: editorial board, Sasha Fedorova and Xiaosong Ma. Our thanks go also to the members of the FAST 
Steering Committee who provided invaluable advice and feedback, and to our Steering Committee Liaison, Keith Smith, for his 
guidance and encouragement on many issues, large and small, over the past year.

Finally, we wish to thank our Program Committee for their many hours of hard work reviewing, discussing, and shepherding 
the submissions. In total, the PC wrote 529 thoughtful reviews and 1282 online comments. HotCRP recorded approximately 
344,209 words in reviews (excluding HotCRP boilerplate language)—the same rough length as one book in George R.R. 
Martin’s Song of Ice and Fire series (a.k.a. Game of Thrones). The reviewers’ evaluations, and their thorough and conscientious 
deliberations at the PC meeting, contributed significantly to the quality of our decisions. Similarly, the paper shepherds’ efforts 
led to significant improvements in the final quality of the program. We look forward to an interesting and enjoyable conference!

Dean Hildebrand, Google 
Don Porter, University of North Carolina 
FAST ’22 Program Co-Chairs
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NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching

Kan Wu, Kaiwei Tu, Yuvraj Patel, Rathijit Sen†, Kwanghyun Park†,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin–Madison †Microsoft

Abstract. We present NyxCache (Nyx), an access regulation
framework for multi-tenant persistent memory (PM) caching
that supports light-weight access regulation, per-cache re-
source usage estimation and inter-cache interference analysis.
With these mechanisms and existing admission control and
capacity allocation logic, we build important sharing policies
such as resource-limiting, QoS-awareness, fair slowdown, and
proportional sharing: Nyx resource-limiting can accurately
limit PM usage of each cache, providing up to 5⇥ better per-
formance isolation than a bandwidth-limiting method. Nyx
QoS can provide QoS guarantees to latency-critical caches
while providing higher throughput (up to 6⇥ vs. previous
DRAM-based approaches) to best-effort caches that are not
interfering. Finally, we show that Nyx is useful for realistic
workloads, isolating write spikes, and ensuring that important
caches are not slowed down by increased best-effort traffic.

1 Introduction
Memory-based look-aside key-value caches (e.g., mem-

cached [14]) are a critical component of many systems and
applications [3, 5, 23, 74]. To improve utilization and simplify
management, multiple cache instances are often consolidated
onto a single multi-tenant server. For example, Facebook [54]
and Twitter [74] each maintain hundreds of dedicated cache
servers that host thousands of cache instances. However, multi-
tenant servers have the added challenge of ensuring that each
client cache meets its performance goals; a range of produc-
tion and research in-memory multi-tenant caches currently
provide different sharing policies, such as enforcing a limit
on the used memory capacity and bandwidth [7], guarantee-
ing a level of quality-of-service (QoS) [18], and allocating
resources proportionately [60].

Persistent memory (PM), such as that provided by Intel’s
Optane DC PMM [10], is emerging as an appealing building
block for these caches, due to PM’s large capacity, low cost
per byte, and comparable performance to DRAM. However,
PM performance differs from DRAM and Flash in a number
of ways that reduce the effectiveness of current multi-tenant
caches for other devices [34,62]. In particular, unlike DRAM,
Optane DC PMM exhibits highly asymmetric read vs. write
performance (for a single DC PMM, max read bandwidth is
6.6GB/s whereas max write bandwidth is 2.3GB/s) [45], se-
vere and unfair interference between reads and writes (writing
at 1GB/s can cause the same throughput and P99 latency slow-
down to a co-running read workload as reading at 8GB/s) [55],
and especially efficient access for multiples of 256B [73].

Unfortunately, existing multi-tenant DRAM and storage

caching techniques do not readily translate to PM. Some
approaches focus exclusively on capacity allocation across
clients [34, 60, 62]; capacity allocation is necessary but
not sufficient for PM sharing because the rate of requests
to PM must also be regulated. Host-level request regula-
tion has been explored extensively for Flash devices using
block-layer I/O scheduling [58, 61], but these software over-
heads are prohibitive given 100ns PM accesses [24]. Device-
level request scheduling assumes special hardware that PM
lacks [53, 65, 78, 79]. Finally, coarse-grain request throttling
underpins the vast majority of DRAM bandwidth allocation
techniques; however, these approaches assume both hardware
counters and performance characteristics that do not hold for
PM (e.g., bandwidth is an accurate estimate of utilization).

In this paper, we introduce NyxCache (Nyx), a standalone
lightweight and flexible PM access regulation framework for
multi-tenant key-value caches that is optimized for today’s
PM without special hardware support. Given a PM server and
a sharing policy (e.g., QoS), cache instances are admitted and
assigned space using existing load admission [36, 37, 52] and
capacity allocation [34, 60, 62] techniques. At runtime, Nyx
monitors information (e.g., PM resource utilization) of caches,
regulates the rate at which each cache is allowed to access
PM, and thus enforces the sharing policy’s performance goals.
Nyx works with any in-memory key-value store that adheres
to the memcached interface [14]; the current implementation
includes a PM-optimized version of Twitter’s Pelikan [17]
that can improve single-cache performance by more than 50%
for get-heavy workloads and 3⇥ for write-heavy workloads.
Nyx’s central contribution is a set of software mechanisms
designed for PM to extract the information required to flexibly
enforce popular sharing policies.

Nyx provides new mechanisms to efficiently i) regulate PM
accesses, ii) obtain a client’s PM resource usage, iii) analyze
inter-client interferences, and has two particularly useful and
novel mechanisms for PM. First, Nyx efficiently estimates
not only the total PM DIMM utilization (building on pio-
neering work in this space [55]), but also the PM utilization
caused by each cache instance, as is needed for sharing poli-
cies; estimating PM utilization is challenging because the
number of transferred bytes is not an accurate proxy of PM
utilization, unlike on DRAM. Second, Nyx can determine
which cache instance most interferes with another cache in-
stance; in PM-based systems, these interactions are difficult
to identify because a harmed client may be impacted more by
a low-bandwidth client than a high-bandwidth client, unlike
DRAM. Both of these mechanisms accurately account for the
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Quality Proportional
Resource of Fair Resource

Limit Service Slowdown Allocation

Request Regulation 3 3 3 3
Resource Usage 3 3

Interference 3 *
Application Slowdown 3 3

Table 1: Control and Information Needed. 3indicates con-
trol or information is required by the policy. * indicates optional.

CPU cache prefetching that is essential for high performance
on PM. These new mechanisms enable Nyx to easily and
efficiently support sharing policies such as resource limiting,
QoS, fair slowdown, and proportional sharing.

The sharing policies provided by Nyx are powerful. Nyx
can accurately limit the PM utilization of each cache (simi-
lar to Google Cloud’s memcache [7]), whereas an approach
that measures only bandwidth cannot. Nyx can provide QoS
guarantees to latency-critical caches while providing higher
throughput (up to 6⇥) to best-effort caches that are not in-
terfering. Nyx can provide proportional resource allocation
while redistributing idle PM utilization to clients that will
not inadvertently slowdown others. Finally, as shown for real
large-scale cache traces from Twitter, Nyx can isolate clients
from write spikes and ensure that important caches are not
slowed down by increased best-effort traffic.

In the rest of this paper, we evaluate previous multi-tenant
caches and their limits for PM (§2); discuss the Nyx design
(§3); evaluate overheads of Nyx’s mechanisms and the effec-
tiveness of its policies (§4); discuss potential extensions (§5);
compare to related work (§6); and conclude (§7).

2 Motivation and Challenges
We provide background on the sharing policies provided

by many in-memory multi-tenant key-value caches and the
mechanisms needed to implement those policies. We explain
why previous approach for providing control and information
on DRAM or block I/O do not work well on PM.

2.1 Sharing Policies for Multi-Tenant Caches
In-memory key-value caches such as memcached [14], Re-

dis [66], and Pelikan [17] are an essential part of web infras-
tructure for many real-time and batch applications [3, 74].
Before accessing data from slow backend-storage or compute
nodes, applications first check an in-memory cache server.
In production environments, cache servers are usually multi-
tenant: many cache instances are consolidated on a single
server to improve utilization and simplify management and
scaling [54]. In a multi-tenant cache, requests are routed to
the cache instance of the corresponding tenant. For example,
large companies such as Facebook [54] and Twitter [74] main-
tain hundreds of large-memory dedicated servers that host
thousands of cache instances. Smaller companies use caching-
as-a-service providers such as ElastiCache [1], Redis [20] and
Memcachier [16]. In this paper, we focus on managing an

individual multi-tenant cache server.
Giving competing clients, enforcing performance and shar-

ing goals is critical in multi-tenant caching. Different indus-
trial and research multi-tenant systems have provided different
objectives; we focus on the following four.

Resource Limiting: A common objective when clients pay
for resources is to guarantee that each client cannot exceed
some amount of usage such as bandwidth, ops/sec, or number
of resources [2, 7]. For example, Google Cloud memcache
limits operations according to a pricing tier, such as “Up to
10k reads or 5k writes (exclusive) per sec per GB” [7]. Mul-
tiple resources can be limited simultaneously, e.g., Amazon
ElastiCache [2] charges for both memory and vCPUs.

There are two requirements for a multi-tenant cache to
enforce per-client resource limits. First, the system must accu-
rately determine the amount of resource each client is using;
we refer to this as resource usage estimation. Second, the sys-
tem must reschedule or throttle requests of each client if they
exceed this limit, which we call request regulation. Below
(§2.2), we describe how previous multi-tenant caches have
provided request regulation and resource usage estimation,
and why these previous approaches are not sufficient for PM.

Quality-of-Service: A multi-tenant system may ensure
that each client’s performance goals (throughput, latency, or
tail latency) are met regardless of other co-located clients, as
in Twitter [18] and Microsoft [62]. This objective is useful for
latency-critical clients that must meet service-level objectives
(SLOs). For example, production caches at Twitter provide a
p999 latency of <5 milliseconds [18].

Providing QoS requires knowledge of whether each client
is meeting its goals at run-time. When the system observes
that one client is not meeting its performance guarantee, in-
terfering clients are identified and limited [31, 39, 51] (e.g.,
with request regulation). Identifying the client causing the
most harm is usually straightforward and based on simple
bandwidth [39] for DRAM-based caches, but not for PM. A
new technique involving interference estimation is required
on PM to determine how the workloads compose.

In addition to run-time support, guaranteeing QoS requires
admission control and space allocation. Admission control
must be performed on newly arriving clients to ensure that the
system has sufficient resources and that the new client will not
interfere with existing clients [36, 37, 52]. Space allocation
across cache instances must be performed to provide a speci-
fied hit ratio for each client to ensure each can meet its goals.
Previous research has focused on this challenge. For example,
Microsoft [62] allocates space to meet QoS bandwidth tar-
gets, and Robinhood [29] to minimize tail latency. Admission
control and space allocation are mostly orthogonal to the new
challenges introduced by PM and are not our focus.

Fair Slowdown: Multi-tenant systems in more coopera-
tive environments may ensure that all clients are slowed down
by the same amount. Formally, these approaches minimize
the ratio of the maximum slowdown to the minimum slow-
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down [38, 63]. In web cache settings, application requests
may fan out, in which case the cache access with the longest
latency determines overall latency [29, 54]; thus, balancing
slowdown benefits overall request latency.

Enforcing fair slowdown requires knowledge of each
cache’s slowdown at runtime. The system must monitor each
cache’s current performance when sharing the server with
others and know its performance if run alone. A technique
for slowdown estimation is required. Furthermore, to equalize
slowdowns of different caches, caches with small slowdown
should be further limited and caches with larger slowdowns
should be less limited (e.g., with request regulation).

Proportional Resource Allocation: Finally, a multi-
tenant system may incent clients to share resources by guar-
anteeing that each of N clients performs within 1/N-th of
its stand-alone performance. This guarantee can be general-
ized to give each client a different proportional share. Idle
resources may be redistributed across clients, such that some
obtain more than their guarantee. For example, FairRide [60]
ensures proportional cache space allocation.

To guarantee proportional allocation, a multi-tenant cache
must meet three requirements. The system must perform re-
quest regulation and resource usage estimation to guarantee
that each client does not consume more than its allocation.
When assigning idle resources to clients, the system must val-
idate that the additional resource usage does not interfere with
others; therefore, the system must track each client’s slow-
down (i.e., with slowdown estimation) and stop idle resource
re-allocation before it severely impacts some clients.

In summary, for a multi-tenant cache to provide the above
policies, it must control resource usage of each cache instance
and obtain information about resources and application per-
formance. Table 1 summarizes the needed control and infor-
mation for each policy.

2.2 Challenges of PM Cache Sharing
Persistent memory is an appealing building block for key-

value caches. After presenting PM background, we describe
the challenges of using PM for multi-tenant caching.
2.2.1 Persistent Memory Characteristics

PM is becoming a reality in products and research proto-
types. For example, Intel Optane DC PMM [10] is a popularly
available device; there are also research prototypes [30,49,70].
In this paper, we use PM to refer to Optane DC PMM. PM
performance is similar to DRAM but can deliver extremely
large capacity at low cost [10, 11]. PM is significantly faster
than NAND Flash and is byte-addressable. PM is directly con-
nected to the memory bus and, when configured in App Direct
Mode, can be accessed using loads and stores. Different CPU
caching options exist for PM access: loads and stores with
CPU caching and prefetching; loads and stores with prefetch-
ing disabled (for both PM and DRAM); non-temporal (NT)
operations that bypass the CPU cache entirely [73].

Table 2 summarizes the bandwidth and latency of Optane

Metric Load No-Prefetch NT-Load Store Store+clwb NT-Store

256B GB/s 1.59 1.53 0.29 1.12 0.52 3.73
us 0.49 0.52 0.84 0.38 0.47 0.08

4KB GB/s 4.08 2.92 2.24 1.03 1.50 3.44
us 1.22 1.69 1.84 4.14 2.71 1.22

Table 2: PM Load/Store Performance. This table summarizes the
throughput/latency of single thread random 256B and 4KB load/store opera-
tions (on 2⇥ DC PMMs). No-Prefetch: the CPU’s prefetching is turned off
(for DRAM/PM); NT: non-temporal operations that bypass the CPU cache.

DC PMM for a workload relevant to key-value caches: ran-
dom 256B and 4KB loads and stores. As shown, for loads,
regular loads perform best: CPU cache prefetching is essential
for hiding PM latency and increasing throughput. For stores
on a random workload, NT-stores that bypass the CPU cache
have much better performance. Thus, we use in-PM key-value
caches optimized to use regular loads and NT-stores.

PM has unique characteristics that impact multi-tenant
caching. For instance, as previously identified, PM exhibits
asymmetric read vs. write performance [45], especially effi-
cient access for specific sizes (e.g., 256B) [73], and severe
and unfair interference across reads and writes [55]. As we
will describe, these characteristics deeply impact the ability
to perform request regulation and to estimate resource usage,
interference, and application slowdown.
2.2.2 Request Regulation

Previous approaches for request regulation have been de-
signed for both DRAM and for block I/O. However, none of
these approaches are suitable for PM.

Existing techniques for regulating memory requests have
adjusted the number of cores dedicated to an application [39],
used clock modulation (DVFS) [57], and Intel Memory Band-
width Allocation (MBA) [9]. In multi-tenant caching, reduc-
ing the number of cores is not suitable because a cache in-
stance is often allotted only a single core [2]. Intel MBA
manages last-level cache (LLC) misses from each core to
limit memory traffic, but does not distinguish between misses
to PM and DRAM [8] and so cannot restrict PM accesses
without also slowing down DRAM. Furthermore, Intel MBA
does not have access to accurate information about resource
usage, interference, and application slowdown, as we will dis-
cuss. Likewise, adjusting CPU frequency has an effect on all
instructions; Oh et al. [55] demonstrated the ineffectiveness
of CPU frequency scaling on regulating PM traffic.

I/O requests have been regulated via software with block-
layer I/O scheduling [12], which is not suitable for PM for
two reasons. First, the block abstraction would add significant
read/write amplification for byte-addressable PM. Second,
scheduling requests with merging, reordering, and other syn-
chronization would add unacceptable overhead to otherwise
low-latency PM accesses [24].
2.2.3 Resource Usage Estimation

Previous techniques for estimating the memory or I/O us-
age of clients do not work well for PM. We describe the
problems with previous software approaches for tracking I/O
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(a) Read vs. Write Interferences (b) Interferences Related to Access Sizes

Figure 1: PM Load Performance with Various Interferences. We place a victim workload (single thread 256B loads) with various interferences. (a)
shows the victim throughput and tail latency when colocated with varying amounts of read and write interferences. (b) shows the victim performance when
colocated with 1GB/s store traffic of varying access sizes (range from 64B to 512B with step of 64B).

usage and with hardware approaches for DRAM.
As discussed above, CPU cache prefetching is required for

PM to deliver high bandwidth and low latency. However, when
estimating block I/O traffic in software [4, 35, 76], extra PM
accesses caused by prefetching are not observed. Running an
experiment with 1KB random loads, we found that software-
level tracking accounted for only 60% of actual memory traf-
fic, leading to inaccurate resource-usage estimation.

Accounting on DRAM uses hardware counters to track L3
cache line misses to the memory controller per core. While
hardware counters accurately measure prefetching, they do
not account for the difference between cache line size and
PM access granularity, which is needed for PM accounting.
Because PM has a 256B minimum access granularity, a 64B
load (a single L3 cache line) utilizes the same amount of PM
resources as a 256B load (four L3 cache lines). Thus, four
cache line accesses can result one to four PMEM accesses.
Previous systems for resource estimation have often used
bandwidth consumption as a proxy for resource usage [39,51,
77], but this is not appropriate for PM where operation cost is
affected by access size and is different for reads versus writes.

Unfortunately, current hardware counters in PM are also
not sufficient; existing PM counters are at the DIMM media-
level and do not track per-client or per-core usage [13, 55].
2.2.4 Interference Estimation

In memory-based approaches, interference caused by a par-
ticular client was assumed to be related to memory bandwidth.
For example, Caladan [39] identifies the client with the high-
est number of LLC misses, which corresponds directly to the
client with the highest memory bandwidth. This simplifica-
tion does not work for PM, as PM interference depends on
both volume and pattern of traffic.

Specifically, on PM, write-intensive clients generate greater
interference than read-intensive clients with the same band-
width, as shown in Figure 1.a. For example, on a read-
intensive client, a competing 1GB/s write causes the same
throughput and tail latency interference as a competing 8GB/s
read. As shown in Figure 1.b, smaller accesses (64B) can
cause more interference than larger accesses (256B). Since
PM has a minimum granularity of 256B, a 64B access is am-
plified into 256B on the device; thus, at the same bandwidth,

64B accesses generate significantly more interference than
256B accesses. In short, the bandwidth of a competing client
is not a good estimation of interference in PM, unlike DRAM.
2.2.5 Application Slowdown Estimation

Numerous efforts have estimated slowdown for DRAM
and Flash-based systems; however, all require specialized de-
vice support. For example, FST [38] requires in-DRAM bank
conflict counters that are updated with each memory access;
MISE [64] and ASM [63] require the DRAM controller to as-
sign priorities to application requests. FLIN [65] changes the
Flash controller to track and rearrange each flash transaction.
Although application slowdown is not inherently different on
PM than DRAM or I/O, previous approaches require special
hardware which is not available on PM.
Summary: Multi-tenant PM caching demands new methods
for regulating PM accesses and extracting PM resource usage,
interference information, and application slowdown.

3 NyxCache Design
Given that existing multi-tenant cache servers cannot han-

dle PM, we introduce NyxCache (Nyx). Nyx provides mech-
anisms for control (e.g., request throttling) and information
estimation on PM (e.g., resource usage, interference, and ap-
plication slowdown), and supports a range of sharing policies
(e.g., resource limiting, quality-of-service, fair slowdown, and
proportional resource usage). We describe the overall archi-
tecture of Nyx, present our design goals, describe how Nyx
provides these mechanisms and policies.

3.1 Architecture
As shown in Figure 2, Nyx provides a multi-tenant in-

PM caching framework. Each PM server running Nyx may
contain any number of cache instances (e.g., memcached,
Pelikan, Redis). Thousands of users may send requests (e.g.,
set/get) to their associated cache instance. When cache space
is exhausted, a cache instance can use any eviction strategy
(e.g., FIFO, LRU, and LFU). As in other look-aside caches,
users explicitly write desired data into the cache; Nyx does
not fetch data from remote storage on a cache miss.

Nyx can be configured with different sharing policies and
parameters (e.g., a resource limit, latency target, or propor-
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Figure 2: NyxCache Architecture. Nyx implements throttling and
resource usage accounting for each cache instance, and enforces sharing
policies across cache instances. Nyx contains two major components: 1) a
Nyx Library for each instance, and 2) a centralized Nyx Controller.

tional weight). Administrators can implement new policies us-
ing the control and information mechanisms provided by Nyx.
At runtime, Nyx enforces the desired sharing policy. Based on
information Nyx acquires about per-instance resource usage
and performance, the Nyx controller dynamically adjusts the
throttling and space allocated to instances.

Nyx has two requirements for cache instances. First, each
cache instance must report application-level performance met-
rics such as throughput and tail latency; most systems have
this capability or can be extended [15]. Second, the instances
must be integrated with a trusted Nyx-library. When a cache
instance reads/writes from/to PM, it must use Nyx library
APIs (e.g., read(dest, src), write(dest, src)). For each PM ac-
cess, the Nyx library throttles access, tracks PM usage, and
performs the actual access. The library uses a separate thread
to communicate with the Nyx controller. The controller inter-
acts with the library to query statistics and to set configuration,
space, and throttling values. Nyx leverages techniques from
previous multi-tenant in-memory caches for basic sharing
functionality such as admission control and space allocation.
As of now, Nyx only manages cache instances on a single
NUMA node that share PM (and all PM accesses are lo-
cal); multiple Nyx can be used to manage multiple NUMA
nodes. We leave NUMA-aware management for future work.

3.2 Design goals
Nyx has the following goals. (i) Lightweight: Performance

is critical for in-PM caching; thus the cost of adding control
and acquiring information must be low relative to the cost
of accessing PM. (ii) Flexible Sharing Policies: Different
sharing policies may be required by administrators for dif-
ferent scenarios. Thus, Nyx can be configured with several
policies based on a common set of simple mechanisms. (iii)
No Special Hardware: Previous work has assumed smart re-
sources (e.g. Flash, DRAM) that provide configurable control
and information [53, 65, 78, 79]. Nyx handles current devices
with existing hardware interfaces. (iv) Minimal Assump-
tions: Storage devices are continuously evolving, with new
generations having new performance characteristics. There-
fore, Nyx does not assume a particular performance model for
all PM devices (e.g., the interference for different operations).

Figure 3: MaxIOPS Profile. MaxIOPS for random reads and writes of
different sizes on our 2⇥ Intel Optane DC PMM system.

3.3 Nyx Mechanisms
Nyx contains low-level mechanisms that enable higher-

level sharing policies to be implemented easily. Since request
regulation, estimation of resource usage, interference, and
application slowdown are changed significantly by PM, we
describe these Nyx mechanisms in detail. Access control
and space allocation are largely independent of PM and not
the focus of this paper; Nyx borrows these techniques from
previous systems [29, 34, 52, 60, 62].

PM Access Regulation: To minimize the overhead of reg-
ulating requests to PM, Nyx adheres to the basic principle
used by previous techniques for DRAM regulation: throttle
requests in a coarse-grained manner without reordering or
prioritizing. To mimic the behavior of Intel MBA, Nyx imple-
ments simple throttling by delaying PM accesses at user-level.

Our current implementation adds delays in units of 10ns
with a simple computation-based busy loop. In some cases
PM operations may need to be delayed indefinitely (e.g., when
a resource limit is reached); in this case, PM operations are
stalled until the Nyx controller sets the delay to a finite value.

Resource Usage Estimation: Nyx must determine how
much PM resource each cache instance is using. As described
in Section 2, for PM the number of transferred bytes is not
a good estimate of resource usage; on PM, each operation
type (e.g., read or write) and access pattern (e.g., request
size) consumes a different amount of the resource and has a
different maximum operations per second. Therefore, Nyx
determines the utilization of PM as a function of the current
IOPS of each operation type relative to the maximum IOPS
for that operation type. For example, if the maximum IOPS
of pattern A is MaxIOPSA, then the cost of each operation of
pattern A is 1/MaxIOPSA. If the maximum IOPS of pattern
B is 1/N ⇥MaxIOPSA, then each B operation consumes N
times more PM than an A operation and has N times the cost.
The IOPS cost model accurately captures that writes are more
expensive than reads, and the dependency on request size.

Nyx determines the MaxIOPS of each access pattern
through profiling, performed once per PM server. The pro-
filer measures IOPS for random read and write operations
between 64B and 4KB (in steps of 64B). Because prefetching
occurs during profiling, the measured MaxIOPS accurately
represents the cost of both the operation itself and any wasted
prefetching. Profiling concentrates on random accesses as
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multi-tenant key-value caches are mostly random: first, be-
cause multiple tenants access PM simultaneously (in different
address spaces), their requests are interleaved; second, keys
tend to be mapped to arbitrary PM locations based on their
time-to-live and size [14, 75]. The profiler stops at request
sizes of 4KB which obtain the device’s maximum bandwidth.

Figure 3 shows the profiled MaxIOPS for reads and writes
as a function of request size. As shown, writes have lower
IOPS and thus a higher cost per operation than reads. While
larger requests generally have lower IOPS, there is a complex
relationship with the minimal PM access size: for example,
a 64B random store has a similar maximum IOPS as 256B,
the minimum PM access size; accesses that are not aligned to
256B have lower MaxIOPS.

At runtime, Nyx tracks the PM usage of each cache in-
stance. When a cache instance accesses PM, Nyx looks up the
MaxIOPS for this operation and size, and increments a cost
counter for this cache instance by 1

MaxIOPS . To reduce synchro-
nization overhead, these counters are maintained per-thread
and only lazily combined when needed (e.g., for responding
to a resource usage query from Nyx Controller).

While the CPU cache can theoretically introduce errors in
PM cost estimation, these errors are negligible for Nyx. First,
since CPU prefetching waste depends in part on spatial local-
ity, the profiler mimics the random accesses of cache instances
that have little sequentiality. Second, given a cache instance
that uses NT-store (as in Nyx-Pelikan), the CPU cache has
no effect on stores. Finally, although a PM load could be
served in the CPU cache and never access PM, in multi-tenant
caches few PM loads hit in the CPU cache: because each
instance’s working set is typically tens of GBs [28, 74] (and
there are many instances), there is little temporal locality in
CPU caches of tens of MBs. More intricate cost models for
cache instances with spatial (e.g., scan) and temporal locality
(e.g., bursty retries) are left for future work.

Interference Analysis: When multiple cache instances are
co-located, Nyx determines which instance most impacts an-
other. For example, when an efficient QoS implementation
observes that an affected client W is not meeting its guarantee,
it will iteratively slow down the one competing client that will
produce the greatest benefit for W. In PM-based systems, un-
like DRAM, these interactions are difficult to identify because
an affected client may be impacted more by a low-bandwidth
client than a high-bandwidth client. The amount of interfer-
ence is due to complex scheduling within the PM device; as
future generations of PM devices become available, which
clients interfere with which others may change. Therefore,
Nyx assumes no prior knowledge of these interactions.

Nyx determines which client is interfering the most with
the affected client with a runtime micro-experiment. Given
affected client W and several competing clients, Nyx itera-
tively throttles each competing client by X for some metric of
interest while measuring the impact on client W. The throttled
client that helps W attain the greatest performance improve-

Algorithm 1: Resource Limit The gray area denotes
unique functionality used to deal with PM issues

EpochLen: ticks in an epoch (e.g. 100), TickLen: (e.g. 10ms)
A.getResCounter(): query A’s Nyx-Lib for resource usage
A.setThrottling(t): add t⇥10ns delay to each access of A
ResAssigned[1..N]: each cache’s assigned resource per epoch
while true do

# Step 1: Begin an epoch and set all cache throttling to 0
foreach cache A do

A.setThrottling(0)
InitResCounter[A] = A.getResCounter()

# Step 2: Monitor resource utilization and pause clients
who have used up their allotted resources.

while Epoch is not completed do
SleepFor(TickLen)
foreach cache A do

ResUsed = A.getResCounter() - InitResCounter[A]
if ResUsed > ResAssigned[A] then

A.setThrottling(INFINITE) # Pause

ment is identified as the client that interferes with W the
most. The value of X is configurable, as is the metric (e.g.,
throughput, average latency, or tail latency). Nyx uses simple
pruning techniques to throttle only the clients with the highest
resource usage. Optimizations for reducing micro-experiment
times (e.g., focus on different client subsets in different trials)
are left for future work.

SlowDown Estimation: Nyx determines the slowdown
that each client experiences at runtime by calculating Talone

Tshare
;

Talone is the client’s performance (for some metric of interest)
when it is running alone, and Tshare is its current performance
in the shared environment. As we assume no special hardware,
Nyx uses an approach similar to previous work [47].

First, to learn Talone, Nyx briefly pauses all other clients;
Talone is updated on a regular basis (e.g., 1s) or whenever a
workload change is observed. Second, slowdown is period-
ically calculated using a runtime measurement of Tshare. As
we will show, at the cost of a small loss of bandwidth and
increase in tail latency, this solution adequately approximates
slowdown without hardware support. The impact of the pause
can be reduced for workloads that do not change frequently.

3.4 Nyx Sharing Policies
Nyx implements four popular sharing policies. We describe

how these policies leverage the mechanisms of Nyx for PM.
Resource Limit: Nyx can limit the amount of the PM re-

source used by each client in multi-tenant caching, isolating
the performance of clients from one another. Our policy de-
fines resource limits in terms of standard operations, similar
to Google Cloud’s memcache [7] (e.g., 1000 1KB random
reads per second, or 1MB/s random reads).

As shown in Algorithm 1, Nyx provides resource lim-
its for each client epoch by epoch, extending existing ap-
proaches [77]. Each epoch, Nyx monitors the resource utiliza-
tion of each client; if a client reaches its limit for this epoch,
its accesses to PM are delayed until the next epoch. When the
epoch ends, the throttling value for each client is reset to zero.
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Algorithm 2: QoS The gray area denotes functionality
for PM. We omit code to rollback throttling when the
action violates any LC task’s target.

ExperimentStep: a cache’s throughput expense pays for an
interference analysis experiment. (e.g. 500MB/s)

while true do
# Step 1: Monitor each client’s SLO slack
foreach cache A do

slack[A] = (A.target - A.latency) / A.target
S = cache with the smallest slack
# Step 2: Protect clients violating SLO
if slack[S] < 0 then

if S is throttled then
throttle down S

else
# Step 2.1: Pick candidates to throttle
if there are BE caches then

candidates = top 3 resource usage BE
else

candidates = top 3 res usage LC, slack > 0.2
if all LCs have little slack then

candidates = LC with the most slack
# Step 2.2: Find the most interfering client
I = getLargestInterference(S, candidates)
throttle up I

else if slack[S] > 0.2 then
# All caches have slack -> relax throttling
throttle down every cache

Function getLargestInterference(S, Candidates):
# Find the tenant who will most improve S at the same

expense (throughput)
If there is only one client in Candidates, return the client
foreach C in Candidates do

throttle up C by ExperimentStep
track S latency change after the experiment
restore all throttle to previous state

return L who helps S get the largest improvement

The implementation allows the administrator to configure the
epoch and tick length to trade-off the overhead of checking
counters with reaction time.

Quality-of-Service: Nyx can ensure that latency-critical
(LC) tenants meet a service-level-objective while maintain-
ing high PM utilization for best-effort (BE) tenants on the
same server. As in earlier work [36, 37], admission control
prevents workloads with unachievable QoS targets and space-
allocation provides the necessary hit ratio.

As shown in Algorithm 2, Nyx employs an approach similar
to Parties [31] and Caladan [39]: for each LC client, the differ-
ence between the guaranteed and the current performance is
tracked; when the guarantee is violated (i.e., negative slack),
a competing tenant is throttled.

Nyx differs in how it identifies the client to be throttled.
Caladan always throttles the BE tenant with the maximum
bandwidth (LLC misses), whereas Nyx throttles the BE or LC
cache that most improves the LC cache, for the same expense
across competing tenants. The implementation allows the
administrator to configure ExperimentStep, allowing a balance
between aggressive throttling and faster convergence.

Fair Slow Down: Nyx can achieve fairness in terms of

Algorithm 3: Fair Slow Down
A.getSlowDown(): return A’s current performance / Talone
while true do

if Talone info is older than P sec then
foreach cache A do

refreshTalone(A)

# Adjust throttling to equalize slowdowns
foreach cache A do

SlowDown[A] = A.getSlowDown()
find cache L and S with the largest and smallest slowdowns
unfairness = SlowDown[L] / SlowDown[S]
if unfairness > UnfairnessThreshold then

throttle down L and throttle up S
FairIntervals = 0

else
# With fair slowdown, try to improve utilization
FairIntervals ++
if FairIntervals > FairIntervalThreshold then

throttle down all caches

Function refreshTalone(A):
A.setThrottling(0), and pause every other cache
A.Talone = measure A throughput
restore throttle of all caches to previous state

equalized slowdown across caches. As in Algorithm 3 [38,63],
Nyx minimizes (MaxSlowDown/MinSlowdown) by gradu-
ally increasing the throttling of the MinSlowDown cache
and decreasing the throttling of the MaxSlowDown cache.
The tuning process is terminated when the unfairness met-
ric falls under an UnfairnessThreshold. The implementation
periodically (every P seconds) refreshes the estimate of the
stand-alone performance (Talone) for each client. Administra-
tors can customize P to balance between lower overhead and
faster adjustments for dynamic workloads.

The policy can be generalized to guarantee weighted slow-
downs and a hard limit on some cache’s slowdown. For the
hard limit, Nyx tracks the particular slowdown at runtime and
throttles other caches when the hard limit is exceeded.

Proportional Resource Allocation: Nyx implements pro-
portional sharing with actual proportional resource allocation
(instead of simple bandwidth allocation) and with interference-
aware idle resource redistribution. Nyx ensures that each
cache achieves performance equal to or better than accessing
PM alone for a given amount of time (time-sharing [67]). For
example, if a cache has a weight of 2 out of 3, then it is guar-
anteed to obtain at least 2/3 of its stand-alone performance.

Nyx first allocates resources (not bandwidth) proportionally
to each cache and enforces the resource limit during an epoch
(Algorithm 4). We assume cache space has been allocated
proportionately. Following an epoch, Nyx forecasts each ten-
ant’s desired amount of resources: a tenant that did not use
all its given resource may donate idle resources, whereas a
tenant that used all assigned resources may consume more (a
simple linear model predicts desired resources [77]).

Nyx provides interference-aware resource donation (Op-
tion 2 in the Alg.). On PM, idle resource redistribution faces
the difficulty that the donated resource may severely interfere
with the original donor’s performance. For example, as shown
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Algorithm 4: Proportional Resource Allocation The
slowdown refreshing code is omitted.

DonateStep: step to donate idle resources (e.g. 10%)
TotalResource = 1
while true do

# Step 1: Enforce and track resource usage in an epoch
Begin a New Epoch
foreach cache A do

Enforce A uses resource <= ResourceAssigned[A]
if A depleted resources, record how long:

TimeUseUp[A] (e.g. half of the epoch)
if A left idle resources, record ResourceUsed[A]

End of the Epoch
# Step 2: Redistribute Idle resources
foreach cache A do

if A has idle resources then
# Option 1: Donate all extra resources
DesiredResource[A] = ResourceUsed[A]
# Option 2: Interference-aware resource donation
if A.getSlowdown() < TotalWeight / A.weight then

# Donate a step when within slowdown limit
DesiredResource[A] =
Max(ResourceAssigned[A] * (1 - DonateStep),
ResourceUsed[A])

else
# Revoke a step when under slowdown limit
DesiredResource[A] =

Min(ResourceAssigned[A] * (1 +
DonateStep), TotalResource * A.weight/
TotalWeight)

if A depleted resources: DesiredResource[A] =
ResourceAssigned[A] / TimeUseUp[A]

ResourceAssigned[1..N] = Allocate resources
proportionally based on weight and desired resource

in Section 4.5, if a get-heavy cache A donates idle resources
to a write-heavy cache, the new write traffic can dramatically
harm A’s performance. To prevent this interference, Nyx re-
allocates resources in increments, stopping when the donating
cache’s slowdown is near its lower bound; if the slowdown
exceeds the lower bound, a portion of the donated resources
are returned. Thus, Nyx guarantees the “time-sharing” lower
bound while maximizing resource utilization. The implemen-
tation allows the administrator to set DonateStep, balancing
quick idle resource donation and the proportional guarantee.

With Admission Control and Capacity Allocation: In a
nutshell, cache instances are 1) admitted, 2) allocated space,
and 3) governed by Nyx. A PM free-space check, for example,
suffices for resource limiting as admission control for a cache;
QoS policy requires logic like [36,37] to predict SLA compli-
ance given existing caches. The cache size is then determined.
For instance, it can be set based on the instance’s price tier;
to enforce QoS, administrators can profile a client’s hit-rate
v.s. cache space relationship [62] and allocate enough space
to meet SLAs. While running, Nyx assumes the admission
logic is correct and is unconcerned about the space allocated.

3.5 Cache Instances: PM-Optimized Pelikan
Nyx has been designed to handle any in-memory key-value

store; our current implementation is built upon Pelikan – Twit-
ter’s in-memory KV cache [17, 75]. We describe the original

(a) Get (b) Write
Figure 4: Optimization: Nyx-Pelikan. (a) presents Get (single-
thread) throughput improvement due to key-value separation. (b) presents
Write (replace, 8 threads) improvement due to changing stores to NT-stores.

Pelikan and optimizations for higher PM performance.
Pelikan (SegCache [75]) maintains a hash table for index-

ing and segments for storing key-value pairs. Each segment
includes items, where each item is a tuple of (key, value, meta-
data). On a get operation, Pelikan hashes the key to find items.
Because of conflicts, multiple keys are likely to be read for a
single get. Thus, Pelikan must compare each read item with
the key; if the keys match, the value is returned.

When the default version of Pelikan is configured for PM,
the hash index is kept in DRAM and the segments in PM.
However, this placement is inefficient due to the frequent key
accesses in PM: the keys in caching workloads are often much
smaller [74] than the granularity of PM access (256B), and
small reads perform relatively poorly on PM [73].

Nyx-Pelikan addresses this by separating keys (and meta-
data) from values into different segments; the keys (and meta-
data) are placed in DRAM and the values in PM. This design
requires DRAM for keys and metadata, which works well
because they are typically much smaller than values [73].

As shown previously in Table 2, because non-temporal
stores to PM can provide much greater throughput than con-
ventional stores, Nyx-Pelikan uses NT-store. Although non-
temporal stores may not benefit from temporal locality in
the CPU cache, this loss is negligible on large-scale caching
workloads which typically have large working sets. As shown
in Figure 4, Nyx-Pelikan improves Pelikan Get performance
by up to 55% and set performance by up to 3⇥.

3.6 Nyx Parameter Values
The values of Nyx’s parameters affect its behavior; as previ-

ously stated, the appropriate settings depend on the tradeoffs
made by administrators. Nyx enables users to configure all of
these parameters while also setting defaults.

Nyx follows existing guidelines [38, 63, 77] for policy pa-
rameter values’ selection. For resource limiting, Nyx uses 10
ms tick and 100 ticks per epoch to limit resource usage offset
to 1%. For fair slowdown, Nyx sets the Talone refresh inter-
val to one second to achieve a relatively quick response to
workload changes and a within 2% overhead (§4.1).

Nyx provides defaults for newly introduced parameters
via sensitivity tests (§4.7). Nyx QoS uses 500MB/s Experi-
mentStep because it is the smallest step that produces good
interference analysis. In interference-aware resource dona-
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Trace Type Avg.Key/Value Sizes(B) Operations (Get/Write ratio)
S1 Storage 36/799 0.86/0.13
C1 Computation 67/2439 0.93/0.07
C2 Computation 18/67485 0.52/0.48

Table 3: Twitter Traces.
tion, Nyx sets a 10% DonateStep to balance quick donation
and steady donator performance. Nyx sets 10ns throttling de-
lay granularity for fine-grained access rate regulation, which
is an order of magnitude less than 100ns PM latency. We
will discuss potential optimizations like dynamic/adaptive
parameters and automatic parameter value selection in §5.

4 Evaluation
We evaluate the overhead of Nyx’s mechanisms and how

well Nyx provides the sharing policies of resource limit, QoS,
fair slowdown, and proportional resource allocation.

Setup: We use a 16-core, single-socket Intel Xeon Gold
5128 CPU @ 2.3GHz server (Ubuntu 18.04), with a 22 MB
L3 Cache, 2x16GB DRAM, and 2x128GB Intel Optane DC
PMM in app direct mode. We mount an ext4 file system in
DAX mode on the PM.

Synthetic Workloads: We begin with synthetic workloads
to illustrate key features. Unless specified, the workloads have
uniform random accesses to each cache instance, a working
set of 10GB per instance, and 4B keys and variable-sized
value. To focus on PM accesses, we use get workloads with a
high hit ratio (>99 percent). We use in-place replacement for
write-heavy workloads; a cache write implies a replace. The
cache is warmed to begin.

Realistic Workloads: We conclude with three large-scale
cache traces from Twitter [74] (Table 3). The traces cover
caches with various value sizes (799B to 67845B) and get-
percentages (93% to 52%). We pre-load one million opera-
tions from the traces and loop through them.

4.1 Mechanisms Overhead
Request Regulation and Resource Usage Estimation:

With Nyx, each PM access incurs a call into Nyx-lib, throt-
tling logic, and resource accounting. Figure 5.a shows this
can add up to 12% overhead for extremely small value sizes
(e.g., a cache line), but less than 6% for access sizes above
256B. Given the benefit of request regulation and resource
usage accounting, we believe this overhead is justified.

Interference Analysis: Determining the most interfering
client takes longer than simply selecting the client with the
greatest bandwidth due to the lag necessary to observe tail
latency. In Section 4.3 we will demonstrate the benefit of
trading increased analysis time for more precise information.

SlowDown Estimation: The overhead of slowdown esti-
mation is influenced by the time to measure Talone per instance,
the frequency of this measurement, and the number of cache
instances. We determined that 1ms is a sufficient pause time
to accurately determine Talone for a client. Figure 5.b shows
that calculating Talone for up to 12 instances adds less than
2.5% overhead, even when performed every 500ms.

(a) Regulation, Accounting Overhead (b) Slowdown Estimation Overhead

Figure 5: Mechanisms Overhead. (a) shows Nyx request regulation
and resource usage accounting overhead (throughput). It is measured with
8-threads get-only caches. A similar percentage of latency overhead was
observed. (b) shows Nyx slowdown estimation overhead (throughput). It is
measured with 1ms Talone pausing time, different number of clients (x axis)
and different frequency (0.5/1/10s) of updating Talone for all caches.

4.2 Resource Limiting
We demonstrate that Nyx can enforce a true resource limit

on PM, in contrast to an approach based only on bandwidth.
We begin with a workload containing one unlimited (U) cache
and one limited (L) cache. Cache U is a get-heavy cache
instance, while Cache L changes: get-only or write-only, with
varied value sizes. L has a resource limit of 1.25M 4KB
random load OPS, or 42% of the total device resource given
that MaxIOPS for 4KB random loads is 3 Million. Defined
in terms of bandwidth, this equates to 5GB/s for these 4KB
random loads; however, this IOPS limit results in different
bandwidths for other workloads.

Figure 6.a shows the bandwidth of L; the target IOPS, in
which no more than 42% of the device resource is used, is
shown in red. As desired, Nyx always limits L’s throughput to
the target limit, regardless of L’s access pattern (determined
by value sizes and read/write). In contrast, a policy based
only on bandwidth mistakenly allows L to significantly ex-
ceed the target limit, up through the maximum bandwidth
of 5GB/s. When L is get-only, this problem is most notice-
able when the value size is around 1KB; as previously noted,
1KB accesses result in significant CPU prefetching waste
not captured by software-level bandwidth accounting. On the
other hand, Nyx’s MaxIOPS cost model accurately captures
resource usage. Similarly, bandwidth cannot capture PM write
cost and fails to properly limit L’s throughput.

The impact on the unlimited client (U) is shown in Fig-
ure 6.b for the same L workloads. With the bandwidth policy,
U’s performance depends on L’s access pattern. Due to asym-
metric read/write cost of PM, whether L performs reads or
writes significantly impacts U; similarly, the varied prefetch-
ing waste of each access pattern causes up to 45% impact on
U. In contrast, Nyx provides U with steady and predictable
performance, regardless of L’s access pattern: across all of L’s
workloads, the standard deviation of U’s performance is only
130MB/s (bandwidth limit’s deviation is 678MB/s). Finally,
Figure 6.c shows that when the percentage of gets in L is
varied, Nyx provides steady performance for U, whereas a
PM-oblivious bandwidth-based approach does not.
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(a) L Throughput (b) U Throughput (c) U + Broader L Setups

Figure 6: Resource Limit: Cache U (unlimited) + Cache L (limited). Cache U is get-only. (a) Cache L throughput when resource limit is 5GB/s
(1.25M 4KB random load OPS, or 42% of the total device resources). The red dotted line represents L’s performance under the “ideal limit”, which is calculated
as 42% of the current access pattern’s MaxIOPS. L is get-only or write-only, and its value sizes varies (x axis). (b) Cache U’s performance when colocated with
the same L in (a), comparing bandwidth limit and Nyx resource limit. (c) Additional L setups: 1KB/4KB value sizes and 10% - 90% gets. U is a lighter cache
than (a) and (b). The label indicates U’s max bandwidth when colocated with a 5GB/s cache instance (4KB-value, get-only).

Figure 7: Resource Limit: Behaviors with a Varying Hit Rate.
Operations Per Second (OPS) for a Cache with 1KB Get-only workloads
when resource limit is 5GB/s. We vary the workloads with different working
sets to achieve a different hit rate; note there is no insertion after each miss.

Figure 7 demonstrates Nyx’s resource limiting behaviors
as the cache hit rate varies. As shown, Nyx restricts PM re-
source usage from (get) hits. Misses in look-aside caches
(e.g., Pelikan) are simply returned after checking the index (in
DRAM) and do not use PM resources, so they are not limited.

4.3 QoS-Aware
Nyx can provide QoS guarantees for latency-critical (LC)

caches while providing high utilization to best-effort (BE)
caches with interference-aware regulation; in contrast, a PM-
oblivious approach such as that in Caladan may not be able
to deliver the same performance to the BE cache. For compar-
ison, we implemented the Caladan approach in Nyx-Caladan.

Figure 8 shows an LC cache (P99 latency target of 1.5µs)
colocated with two BE caches: BE1 is get-heavy, BE2 is
write-heavy. Initially, when BE2 has low throughput and BE1
has moderate throughput of 2.4GB/s, LC meets its P99 ob-
jective; however, at 12s, BE2 performs many bursty writes,
causing LC’s P99 latency to exceed 3µs and violate its target.
Both Nyx-Caladan and Nyx resolve the situation by itera-
tively throttling a BE cache. Nyx-Caladan throttles the cache
currently consuming the most bandwidth, shown in the left
two subfigures; as a result, Nyx-Caladan throttles both BE1
and BE2, resulting in ⇥6 less bandwidth for BE1. Nyx, on
the other hand, identifies the cache that most interferes with
LC as BE2, the write-heavy cache. As a result, Nyx stabilizes
to throttling only the correct interference source; after 28 sec-
onds, only BE2 is throttled, and BE1 returns to its original
throughput. To summarize, Nyx provides high utilization for
multiple caches while guaranteeing each target.

Figure 8: QoS: Nyx-Caladan vs. Nyx Tuning. This figure shows
how Nyx and Nyx-Caladan throttle BE caches to ensure LC cache P99
latency. LC cache is colocated with two BE caches; BE1 is get-heavy, B2 is
write-heavy (i.e., more interference to LC). BE2 has burst at 12s, breaking LC
latency targets. Nyx-Caladan (left) throttles the highest-bw client, whereas
Nyx (right) throttles the client with the most interferences to LC. Nyx-Caladan
incorrectly throttles BE1, resulting in ⇥6 less bandwidth for BE1.

Nyx’s convergence time of tens of seconds is similar to
prior work such as Parties [31]: the majority of the converging
time is spent monitoring tail latencies. As in Parties, Nyx
measures tail latency for 500ms because shorter intervals can
result in noisy measurements. We leave faster tail latency
measurement at network packet queues (as utilized in the
original Caladan [39]) for future investigation.

Our experiments reveal that Nyx has an intriguing effect on
convergence time: as shown in the Figure, Nyx can bring the
LC cache to its target performance in a comparable amount
of time to just selecting the cache with the highest bandwidth
(which does not require any micro-experiment time). The
implication of these results is that, rather than simply act-
ing quickly and throttling any competing instance, Nyx acts
correctly and throttles the source of the interference.

4.4 Fair Slowdown
Nyx implements fair slowdown by iteratively regulating

requests according to the measured slowdown of each client
(i.e., Talone

Tshare
). Figure 9.a shows Nyx’s tuning given colocated

light and intensive get-heavy caches. Initially, the slowdown
of the light cache is 2.2 times higher than that of the inten-
sive cache. Over time, Nyx dynamically increases the throt-
tling of the cache with the minimum slowdown and decreases
throttling for the cache with maximum slowdown. Relatively

10    20th USENIX Conference on File and Storage Technologies USENIX Association



(a) Tuning Process (Light + Intensive) (b) L + various B
Figure 9: Fair Slowdown. (a) shows how Nyx equalizes slowdown over time for two cache instances (a light one (L) and an intensive one (I)). Both cache
instances are get-heavy. (b) shows the unfairness metric when colocating L (a light get-heavy cache) with different B instances (get-heavy -> write-heavy, and
light -> intensive). Unfairness = MaxSlowDown / MinSlowDown, the more close to 1, the more fair.

(a)A: Get-heavy, B: Write-heavy (b) A: Efficient-Get, B: Inefficient-Get
Figure 10: Proportional Sharing. (a) shows A (get-heavy cache) and B (write-heavy cache)’s throughput with different weight configuration. The labels
indicate running alone throughput of A and B. With bandwidth allocation, B surpasses its allotted proportional performance. (b) shows A (efficient get-intensive
cache, 4KB value sizes) and B (inefficient get-intensive cache, 1KB value sizes).

quickly, both caches converge to a slowdown near 1.5 and the
unfairness metric of MaxSlowdown

MinSlowdown settles near 1.05.
Figure 9.b shows Nyx’s fair slowdown policy on a range

of caches. Cache L remains a light get-heavy cache; Cache B
varies the number of threads and can be get-heavy, 50% mixed,
or write-heavy. Without Nyx, L can experience dramatically
unfair slowdown (due to PM’s complex performance); for
example, colocating A with a multi-threaded get-heavy cache
B gives unfairness near 2.4. In contrast, Nyx achieves fair
slowdown (< 1.05 unfairness) for all 12 cases.

4.5 Proportional Resource Allocation
Nyx achieves proportional resource allocation and guar-

antees a time-sharing lower bound while performing idle
resource re-distribution. We begin with simple scenarios in
which two caches that use all their assigned resources are
colocated. The scenarios in Figure 10 vary the desired propor-
tional share for A and B along the x-axis; the red line indicates
the ideal proportional throughput given their throughput when
run alone. Figure 10.a shows that a PM-oblivious bandwidth
approach cannot guarantee a proportional share; in particular,
the write-intensive B cache obtains up to 3⇥ more throughput
than desired and the get-intensive cache A suffers significantly
(⇠40%). However, by correctly estimating resource usage,
Nyx delivers the desired allocation to each cache. Figure 10.b
shows a similar effect occurs when efficient-get (value: 4KB)
and inefficient-get (value: 1KB) caches are colocated.

Proportional allocation is more challenging when there
are idle resources to be redistributed. Figure 11.a shows two

caches A and B, where A uses only 25% of its share. When
B is get-heavy (left-top subfigure), A can donate all its idle
resources to B; A’s performance is slightly degraded, but B
receives substantially higher throughput. However, when B
is write-heavy (right-top subfigure), if A donates all its idle
resources, the higher throughput of B substantially interfere
with A, breaching A’s time-sharing lower bound (2/3 of A’s
stand-alone throughput). Therefore, Nyx does not perform
naive donation; instead, Nyx donates idle resources in incre-
ments while monitoring each cache’s slowdown. As shown
in the bottom two graphs, Nyx guarantees the time-sharing
lower bound for each cache while improving utilization.

We next examine workloads varying the percentage of
idle resources in Cache A. When cache B is get-heavy, all
of A’s idle resources can be safely redistributed to B, and
Nyx achieves the same performance for cache B as simple
donation (Figure not shown due to space limit). However,
when cache B is write-heavy, simple donation of A’s idle
resources to B violates A’s time-sharing bound (Figure 11.b);
Nyx accurately protects cache A’s performance while still
improving the performance of cache B relative to no donation.

4.6 Realistic Traces
Nyx provides isolation for realistic workloads. We demon-

strate use cases for resource limiting and slowdown limiting.
In production workloads, write spikes are common; for

example, when a cache is used for ML models, write spikes
occur with model parameters are regularly refreshed [74].
Figure 12.a shows how Nyx can isolate caches S1 and C1
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(a) Problem of Naive “Donate All” Strategy (b) Re-distribution between Get and Write-heavy Caches

Figure 11: Proportional Share: Extra Resource Re-distribution. Cache weight A:B is 2:1. (a) shows cache A (light, get-heavy) throughput before
and after it donates its extra allocated resource. A has a 75 percent idle resource. Y axis is the normalized difference. When cache B is get-heavy (the top-left
figure), A gets nominal performance drop due to donation. However, when cache B is write-heavy (top-right figure), donating cause severe slowdown for A.
Unlike naive extra re-distribution, Nyx (two bottom figures) ensures that tenant A’s performance is always more than two-thirds of its running alone performance.
TimeStep = 2ms. (b) shows A’s slowdown (left figure) and B’s throughput (right figure) before and after A donating extra resource. A is get-heavy and B is
write-heavy. The label indicates absolute throughput number. Naive extra resource allocation can easily break isolation guarantee, while Nyx always ensures it.

(a) Protecting Caches from Write Spikes (b) Limiting S1 Slowdown During Day and Night

Figure 12: Realistic Traces. (a) shows the performance of Cache S1 and C1 when colocated with Cache C2. Cache C2 has write spikes. Nyx (bottom
figure) can isolate write spikes, whereas bandwidth limits cannot (top figure). (b) shows the performance of Cache S1 (the cache we guarantee its slowdown is
always smaller than 1.5⇥). S1 is colocated with C1 and C2; both C1 and C2 have a strong diurnal pattern (light during the night, and intensive during the day).
Without Nyx, S1 performance plummets during the day (because the impact from C1 and C2), discouraging sharing. However, Nyx can always offer reasonable
performance (e.g. within x1.5 slowdown vs. running alone). The red line represents S1’s performance guarantee.

from (added) write spikes in cache C2. If resource limiting is
based only on the bandwidth of C2, S1 and C1 suffer when
C2 experiences write spikes. However, Nyx’s resource-limit
policy can cap C2’s resource usage (at 4GB/s, defined as 1M
4KB random load OPS) to keep S1 and C1 steady.

Nyx can also protect the performance of critical caches. To
encourage tenants to use multi-tenant PM environments, some
caches must be guaranteed performance similar to exclusive
use of the PM device. In the experiment shown in Figure 12.b,
S1 (the critical cache) is colocated with C1 and C2 which
have diurnal patterns [74]. With no control (gray lines), the
performance of S1 drops below its target during the day due to
the heavy accesses of C1 and C2. However, Nyx can establish
a hard limit of slowdown (e.g., 1.5) for S1. As observed, Nyx
keeps S1 performance loss within a fair range.

4.7 Parameters Sensitivity Analysis
Here, we present the sensitivity analysis of Nyx behaviors

with different ExperimentStep and DonateStep values.
The ExperimentStep affects the Nyx interference analy-

sis’s accuracy. As shown in Figure 13.b, using the same
configuration as Figure 8, a smaller ExperimentStep is more

likely to result in a lower BE 1 final throughput. When Exper-
imentStep is small, the tail latency change is more likely to
be due to measurement noise rather than interference, leading
to a less accurate interference analysis. Our experiments sug-
gest an ExperimentStep of at least 500MB/s. ExperimentStep
also influences how quickly the Nyx QoS can ensure LC tail
latency. As shown in Figure 13.a, a larger ExperimentStep
indicates faster convergence. However, it increases the risk
of over-throttling BE caches and lowering system utilization.
ExperimentStep in Nyx QoS defaults to 500MB/s for good
interference analysis and high system utilization while main-
taining a reasonable convergence time.

Figure 14 shows how DonateStep affects Nyx proportional
resource allocation. A larger DonateStep causes faster idle
resource donation, but also potentially large performance fluc-
tuations (e.g., 60% DonateStep, 12s and 18s in the figure). At
runtime, cache throughput always varies slightly, causing do-
nation adjustments. These adjustments are subtle with small
DonateSteps but significant with large ones. The fluctuation
harms donors by slowing them down at times (exceeding the
limit). Nyx uses a 10% DonateStep, which balances between
quick resource donation and steady donor performance.
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(a) Convergence Time (b) BE 1 Final Throughput

Figure 13: QoS: ExperimentStep Sensitivity Analysis. Same as
in Figure 8. (a) shows how fast Nyx QoS can ensure LC P99 latency varying
ExperimentSteps. (b) shows BE 1 final throughput (boxplot, five runs) varying
ExperimentSteps; BE 2 has near zero final throughput in all cases.

5 Discussion
Beyond Basic Policies: Nyx can be extended to more so-
phisticated policies for more complex setups. For instance,
a proportional sharing policy can be applied across groups
of caches. Then, within a group, another sharing policy (e.g.,
QoS) can be enforced. We leave a full study as a future work.
Multi-tenant Caching Alternatives: Nyx manages caches,
each with its own space. There are alternatives to shared
caching; for instance, a single large instance can be shared
by multiple users [60]. This model can make use of the Nyx
resource usage accounting and interference analysis tech-
niques. However, it may create new problems like: how should
users be charged for PM writes to commonly cached objects?
Smarter Parameter Value Selection: i) Adaptive parame-
ters can be beneficial, e.g., the DonateStep can be larger when
it is far from the threshold (for quick donation) and smaller
when it is close (to avoid performance fluctuations). ii) Auto-
tuning [46, 68] may ease the load for choosing parameter
values. We leave these optimizations as future work.
Security: Nyx policies can be attackable, e.g., in resource
limiting, an adversary client may limit its access in the first
ticks while putting significant load in the last. A solution
would be to use randomized measuring points rather than
fixed ones. We leave Nyx security studies as future work.

6 Related Work
Multi-tenant in-mem key-value caching: Our work builds
on past research in multi-tenant in-memory key-value cache
systems. These efforts include techniques for allocating space
across tenants [29, 32, 34, 60, 62] as well as optimization of
individual cache instances [25,27,28,33,42,54,75]. Our work
instead focuses on the challenges of access regulation and
information extraction when many caches share PM.
PM Caching: There have been efforts to integrate PM
with individual caching systems. Previous work covers
databases [50, 72, 81], file systems [22, 48, 80], in-memory
key-value caches [6, 19, 21], and general policies [26, 27].
However, to the best of our knowledge, we are the first to
address PM issues in multi-tenant caching settings.
PM Interference: Several efforts have characterized PM de-

Figure 14: Proportional Share: DonateStep Sensitivity Analy-
sis. We use the same setup as in Figure 11 when B is write-heavy. This figure
shows A, the donator’s throughput over time with different DonateStep.

vices [45, 69, 71, 73]. However, only a few have investigated
the interference effect in PM. To our knowledge, Dicio [55]
is the first work in this space. Both Dicio and our work ob-
serve the different read-write interference effect in PM. How-
ever, the goals of Dicio and Nyx differ. Dicio’s purpose is
to identify when PM DIMM bandwidth is saturated. Dicio
approximates this by using the write pending queue (WPQ)
delay as a heuristic. We, on the other hand, aim to provide
mechanisms for per-client (not per-DIMM) resource usage ac-
counting, slowdown estimation, and cross-client interference
analysis. Dicio protects a single LC task from a single BE
task, while our QoS policy applies to multiple clients. Dicio
acknowledges that deciding which best-effort task to throttle,
with PM media-level statistics, was challenging (and hence
not done); we address this issue with a run-time method for
interference analysis. Finally, Dicio extends Caladan [39] to
use CPU scheduling to regulate PM accesses. This approach
is applicable to all applications, including cache, but requires
application modifications to use Caladan’s unique runtime
system (not fully Linux compatible). We leave CPU schedul-
ing approaches for PM regulation to future work.
Sharing Other Resources: Efforts have been made to man-
age and share other resources such as network, CPU, LLC,
storage devices, and locks [31,39–41,43,44,51,56,57,59,65].
They are essentially orthogonal to our work; we plan to inte-
grate PM management into these systems in the future.

7 Conclusion
We demonstrated that prior DRAM or storage device-

intended approaches for access regulation, resource-usage
estimation, and interference analysis fail to work on PM due
to its unique properties. We introduced Nyx, which enables
these mechanisms in a lightweight manner without hardware
support. We showed that Nyx can support a variety of multi-
tenant cache sharing policies, meeting performance or sharing
goals better than earlier DRAM or storage approaches.
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Abstract
File system designs are usually a trade-off between perfor-

mance and consistency. A common practice is to sacrifice data
consistency for better performance, as if high performance
and strong consistency cannot be achieved simultaneously.
In this paper, we revisit the trade-off and propose HOP, a
lightweight hardware-software cooperative mechanism, to
present the feasibility of leveraging hardware transactional
memory (HTM) to achieve both high performance and strong
consistency in persistent memory (PM) file systems. The key
idea of HOP is to pick the updates visible to the file system
interface and warp them into HTM. HOP adopts an FS-aware
Optimistic Concurrency Control (OCC)-like mechanism to
overcome the HTM capacity limitation and utilizes coopera-
tive locks as fallbacks to guarantee progress. We apply HOP
to build HTMFS, a user-space PM file system with strong
consistency. In the evaluation, HTMFS presents up to 8.4×
performance improvement compared to state-of-the-art PM
file systems, showing that strong consistency can be achieved
in high-performance persistent memory.

1 Introduction
File systems are the key cornerstones of many storage services
such as key-value stores and databases and applications that
persistently store data. In the early days, file systems are
designed for performance with loose consistency guarantees.
For example, FFS [47] relies on the clean unmount of the file
system to avoid consistency issues. In case of crash or power
shortages, file system users have to invoke and wait for the
lengthy file system consistency checker, i.e., fsck, which will
detect consistency issues and attempt to recover but with no
guarantee [26].

Nowadays, with the speedup of storage devices and their
widespread use in applications, performance is not the only
feature that applications need. Applications also require
strong consistency in order to provide reliable services. For
example, key-value stores and databases need strong crash
consistency to guarantee that all returned writes are persisted
and can be correctly read after a system crash. Upon file

systems with no or weak consistency guarantee, these appli-
cations have to either compromise on the consistency level
or use complicated mechanisms to provide reliable storage.
Programming efforts can also be reduced if the file system
can provide strong consistency.

The strong consistency of the file system implies per-
request sequential consistency, which consists of two aspects.
First, for arbitrary file system requests, the modification to
the file system states observed by concurrent tasks should be
atomic. Most file systems use inode-level locks, which en-
sures the modification order of different requests to guarantee
sequential consistency. Second, whenever the system crashes,
after a reboot, all previous file system requests should satisfy
the all-or-nothing semantics, i.e., all changes to the file system
state by a single file system request should be applied or none
of them should be applied. File systems do not necessarily
guarantee strong crash consistency. For example, ZoFS [16]
do not provide the atomicity of data modification. Suppose
a writer crashes halfway through writing; it is possible for
a reader to read the partially updated value after the system
recovers.

At the same time, modern storage devices have become
faster and different. The emerging persistent memory (PM)
enforces memory with durability. Consequently, file systems
can use load/store instructions to access PM storage with near-
DRAM performance. Several PM file systems [11, 13, 16–18,
37, 42, 74, 80] are proposed to exploit the PM characteristics;
many of them provide strong consistency.

However, existing PM file systems still require complicated
and expensive mechanisms, such as journaling [6, 10] and
shadow paging [7,64], for strong crash consistency. Journaling
has the double writes problems, while shadow paging needs
to propagate the changes to an atomic update, thus it only fits
dedicated data structures. The write amplification is related
to the data structure it uses and the pattern it writes.

Previous approaches are limited to atomicity unit of CPU
writes. Intel’s restricted transactional memory (RTM) [32]
can provide atomicity of multiple updates. However, file sys-
tem is incompatible with RTM naturally. Block device based
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Table 1: Crash consistency mechanism comparison. The specific write amplification of shadow paging corresponds to the data
structure and write locations. The write set size of RTM is evaluated with sequential writes on our platform.

Mechanism Write Amplification Write Set Data Strucute Crash Consistency

In-place Update 1 Unlimited Any No guarantee
Journaling >2 (double writes) Unlimited Any Strong
Shadow Paging >1 Unlimited Dedicated Strong
Soft Updates 1 Unlimited Dedicated Weak
RTM 1 <16k Any Strong
HOP Nearly 1 Unlimited Any Strong

file systems access data via IO, which will abort the RTM.
Although persistent memory can be accessed directly by CPU
load/store instructions, the PM write operations need to be
persisted with the help of cache line flush instructions (such
as clflush, clflushopt, and clwb) which will abort the
RTM.

Recently, Intel proposes its second-generation Optane Per-
sistent Memory products, which in cooperation with the new
Xeon platforms enable enhanced asynchronous DRAM re-
fresh (eADR) technique that embraces the CPU cache in the
domain of persistence in case of crashes [29]. In particular, the
platforms guarantee the persistence of memory writes once
they become globally visible, which means that data modi-
fication to the persistent memory no longer requires cache
line flush for persistence. This gives us the possibility of
combining RTM and persistent memory to provide atomicity,
concurrency, and persistence at the same time.

Although RTM can be used with PM, several challenges
prevent RTM-PM from being used directly in PM file systems.
At first, users use file systems to process large data storage
and retrieval. However, RTM is limited in both read and write
set size, thus can easily abort due to file data copy. Second,
there are certain dependencies in the code paths of FS-related
system calls. For example, path-related operations (such as
open and mkdir) must be preceded by path lookups, and file
indexing must be done before reading and writing a file. The
operations can be lengthy and may include memory accesses
that do not need to be tracked by RTM. Simply wrapping
the entire operation within an RTM not only easily leads to
capacity abort, but also increases the probability of conflict
aborts.

In this paper, we propose HOP1, a lightweight hardware-
software cooperative mechanism for providing strong consis-
tency in PM file systems. HOP builds on the recent eADR-
compliant platforms and leverages Hardware Transactional
Memory (HTM) to guarantee the atomic durability of file
system updates. To address the capacity limitation of HTM,
HOP adopts an OCC2 [41]-like mechanism to chop a large
file system request into smaller pieces, while retaining both
concurrent consistency and crash consistency during the exe-

1HOP is short for Hardware-assisted Optimistic Persistence.
2Optimistic Concurrency Control

cution. To guarantee file system progress, HOP designs co-
operative locks as the fallback of HTM. The comparison of
HOP and other crash consistency mechanisms is shown in
Table 1.

To illustrate HOP, we implement HTMFS, a user-space PM
file systems base on ZoFS. Evaluation using FxMark [52],
Filebench [72], LevelDB [24], and TPC-C [15] on SQLite [70]
shows that HOP outperforms state-of-the-art PM file systems,
achieving a similar performance to the weak consistency FS
implemention while providing strong consistency. With care-
fully designed fine-grained concurrency control, HTMFS pro-
vides even better performance in competitive cases.

The contributions of the paper include:

• The design of HOP, a lightweight hardware-software
cooperative mechanism to provide strong consistency in
persistent memory file systems (§3);
• The implemention of HTMFS which provides both

strong consistency and performance using HOP (§4);
• Comprehensive evaluation that shows that HTMFS out-

performs state-of-the-art persistent memory file systems,
proving the effectiveness of HOP (§5).

2 Background and Motivation
In this section, we introduce the background knowledge and
motivation of our work.

2.1 File System Consistency and Performance
The original file systems are not built with consistency as
the priority, e.g., FFS has no consistency guarantee if a crash
happens before a clean unmount [26].

An ancient fsck tool simply makes the file system mount-
able [26], without any guarantees on data consistency or per-
sistency. A fsck tool helps recover, repair, and refresh the
system.

Without file systems providing consistency, applications
need to take responsibility for guaranteeing consistency. For
example, to guarantee that data are persisted to file A in
atomic, applications need to do the following operations in
sequence.

1. Create file B with the same content as file A;
2. Write new data to file B;
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3. Flush file B to guarantee that the new data is persisted in
storage;

4. Rename file B as file A;
5. Sync the directory change;

This obviously is costly for applications. Thus some file
systems, such as Ext4 and NOVA [80], provide strong consis-
tency as an optional feature.

However, strong consistency does not come for free. Ext4
uses data journal to provide atomic updates for the data, and
therefore has the problem of double writes as shown in Ta-
ble 1. NOVA can use the CoW (copy-on-write) approach to
update data atomically. However, CoW may degrade NOVA’s
performance by up to more than 60% in our evaluation part.

2.2 Persistent Memory and PM File Systems
Persistent Memory (PM) is an emerging storage technology
that enforces byte-addressable memory with persistence. With
the same interfaces as volatile memory (i.e., DRAM), data
written to PM are guaranteed to retain across power cycling.
As a result, the storage hierarchy has changed.

Based on these changes, several PM file systems are pro-
posed to better exploit the PM characteristics for better perfor-
mance. These file systems revisit existing crash consistency
mechanisms in the new scenarios brought by PM, rather than
exploring fundamentally different (and more efficient) crash
consistency mechanisms of file systems. The only difference
would be leveraging atomic instructions to provide small up-
dates up to a single cache line. BPFS [13] organizes the whole
file system in a tree structure and provides strong consis-
tency via shadow paging and atomic instructions. PMFS [18]
introduces fine-grained journaling and combines atomic in-
structions and optional shadow paging for data consistency.
NOVA [80] is a log-structured file system designed for PM,
which combines all the atomic instructions, shadow paging,
and journaling for strong consistency. SoupFS [17] is a revisit
of the soft update technique on PM and provides no strong
consistency guarantee.

Traditional file systems, such as Ext4 and XFS, introduce
direct access mode (DAX) to bypass page cache in the data
path, optimizing their performance when running on PM.
However, this doesn’t change the crash consistency level of
these file systems.

The byte-addressability and persistence of PM also mo-
tivate several user-space file systems, e.g., Aerie [74],
Strata [42], SplitFS [37], ZoFS [16], and Libnvmmio [11].
Strata and Libnvmmio use logs to guarantee consistency.
SplitFS relies on the underlying Ext4 for metadata processing.
ZoFS takes the soft update approach to protect data modifica-
tion, thus only providing weak consistency. It first updates the
data in place and then modifies the size of the file to complete
the operation. However, if the system crashes before the file
size is changed, partial updates may be read by the next read
operation.

In summary, PM brings new opportunities in the design

of file systems; while existing new file systems still stick to
existing mechanisms for crash consistency, leaving the trade-
off between performance and strong consistency a lasting
barrier towards fast and reliable file systems.

2.3 Hardware Transactional Memory
Transactional memory provides programmers with an easy
(and sometimes efficient) approach to implementing concur-
rent applications. Hardware transactional memory technolo-
gies, such as Intel’s Restricted Transactional Memory (RTM)
in TSX [1] and ARM’s TME [46], provide hardware support
of transactional memory. Programmers only need to identify
the critical section that wraps the shared memory resources
and mark it with xbegin and xend instructions. The transac-
tional memory mechanism will guarantee that the execution
of critical sections can be serialized so that no data race oc-
curs. Executing transactions failing to meet the serializable
requirements will be aborted by the hardware, which is de-
tected via the cache coherence protocol. Specifically, data
writes of an uncommitted transaction are kept in the private
cache of that CPU core and only become globally visible
when the transaction successfully commits.

Due to the strong affiliation to the cache implementation,
the following limitations will cause HTM to abort, which the
users should take care of.

Conflict aborts. HTM uses read/write set to track accesses
to memory. Cache lines read in the HTM are added to the
read set, and cache lines written are added to the write set.
Before HTM is successfully committed, if a cache line in the
read set is modified or the write set is accessed by another
core, this transaction will be aborted due to conflicts. This
type of abort may succeed by retrying the transactions.

Capacity aborts. CPU’s private cache size is limited; thus,
HTM has limited read and write sets. Any transaction that
exceeds the read or write set will inevitably be aborted, no
matter how many times the transaction is retried.

Other aborts. Besides conflict and capacity aborts, some
other sources could abort a transaction, such as interrupts and
HTM-incompatible instructions. It depends on the specific
scenario to tell whether a simple retry will make the transac-
tion succeed. For example, if a page fault occurs during the
transaction, the interrupt will cause the transaction to abort.
In this case, a prefault (trigger the page fault in advance) is
necessary before retrying the transaction.

2.4 HTM in PM File Systems
HTM was never an option for file system consistency in the
era of block-based storage devices. The emergence of byte-
addressable persistent memory gives a chance to use HTM
in file systems. However, the volatility of CPU cache forces
the use of cache line flush instructions for durability, which
intrinsically conflicts with the HTM mechanism that stashes
in-flight transaction data within the CPU cache. Until January
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2021, Intel’s new platform included the CPU cache in the
persistence domain, meaning that data that reaches the CPU
cache can be guaranteed to be durable even in case of crashes
and power shortage, it becomes possible to use HTM upon
persistent memory. And it goes beyond that. HTM becomes
a good companion to be used with persistent memory. Ac-
cording to Intel [29], only globally visible data will be made
durable if a power shortage occurs. In other words, HTM
in-flight data modifications will be discarded, making HTM
a good alternative approach to enforce atomic updates for
crash consistency in file systems. HTM seems promising to
be used in file systems to provide both crash consistency and
concurrency guarantees at the same time.

3 Design
At first sight, it seems straightforward to equip file systems
with HTM: simply wrapping each file system request in a
pair of xbegin and xend can guarantee the ACID of the file
system request. However, the reality proves that this is far
from enough. Due to the long code path and complicated
operations in file system requests, wrapping the entire file
system request directly within a hardware transaction will
frequently (if not always) result in transaction aborts. Directly
adopting HTM in a file system will lead to the following three
problems:

1. The long code path may permanently cause capacity
aborts;

2. The long code path make the transaction easier to abort
due to data conflicts;

3. More works need to be repeated in the retry of the abort
transaction.

To resolve the above problems, we designed a lightweight
hardware-software cooperative mechanism named HOP.
Next, we will first introduce what HOP is and then describe
how we use HOP to build an RTM-compliant file system,
namely HTMFS.

3.1 HOP
To shorten the code path in the HTM, we split a single file
system operation into multiple small pieces. When joined to-
gether, they will perform similarly to a single huge transaction.
This idea is similar to transaction chopping [68].

All memory accesses in file system operations can be clas-
sified into three types:

1. Reads;
2. Invisible writes: updates that cannot be observed via the

file system interface (such as memory allocation and
updates to the shadow pages);

3. Visible writes: updates that can be observed by the file
system interface (like timestamp modification, in-place
updates, and the change of file size).

To alleviate the capacity aborts caused by complex file system

Record 
seqcount A 

Read data A

Record 
seqcount B 

Read data B

RTM begin

Validate 
seqcount records

Visible writes

RTM end

If A is changed

If B is changed

RTM abort

Invisible writes 
& other ops

Invisible writes & 
other ops

1

1

Figure 1: HOP: A transaction wants to read critical data A and
B, and write something in atomic. It can read the seqcount and
the data in sequence, and validate them in the same RTM with
the visible writes to ensure A and B do not change during the
whole execution; i.e., the whole process can be considered as
an atomic transaction.

operations, HOP only wraps visible writes (3) in the transac-
tions. Invisible updates are designed to be able to roll back
with minimal overhead, while critical reads are protected by
sequence counts.

In more detail, we first perform all reads and invisible
writes outside the RTM. Then we wrap the visible writes
to persistent memory using an RTM to complete them atomi-
cally. However, not applying any protection to the first part
may lead to concurrency errors. HOP ensures concurrent con-
sistency by protecting the fields that may cause concurrency
errors by sequence counts. As shown in Figure 1, when we
want to access the protected fields outside an RTM, we will
first record the corresponding sequence count and then access
the persistent memory. These sequence numbers will be vali-
dated when entering the RTM-protected region to ensure that
the rest remains unchanged throughout the process as long
as the RTM commits successfully. If the validation fails (i.e.,
there is a sequence count that has been changed), HOP will
roll back to the first changed point to restart the transaction.
For example, if we find that A’s seqcount has not changed, but
B’s seqcount has been modified, we will take the red dotted
line “B is changed” to re-record B’s seqcount and re-read B.

Besides a modified seqcount, many reasons (introduced in
§2.3) may also cause the aborts. If it is an accidental abort
caused by an interruption or something else, retrying the RTM
transaction again (“RTM abort” in Figure 1) is enough, as
going back to the very beginning would cause unnecessary
overhead.

Discussion of concurrency correctness. Next, we will dis-
cuss all concurrency scenarios (read-read, write-write, write-
read, and read-write) in the HOP. Read-read will not bring
problems anytime. Since potentially conflicting writes in the
HOP are protected by RTM, two conflicting writes will cause
each other to conflict abort until one of them succeeds (or keep
aborting each other, making it impossible to move forward,
which we will avoid by other methods).
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RSC → Record the Sequence Count RD → Read the Data

VR → Verify the Records M → Modification

RTM 
begin

Thread 1

RTM 
end

VR MRSC RD

Thread 2

Time

A AB B B C C

A → No effect B → Verification failed C → RTM abort

Figure 2: HOP: Thread 2 modifies the sequence count
recorded (or to be recorded) by thread 1 at different times,
leading to three results. A has no effect on thread 1, while
B and C both cause thread 1 to redo, thus guaranteeing that
there will be no concurrency errors.

Write-read/read-write, however, will cause an RTM to abort
if they conflict, given that potentially confliting write opera-
tions are all executed inside the RTM. Any abort will trigger
a redo in Figure 1, so a successfully committed transaction
guarantees that no concurrency errors exist.

For the read-write scenario, as shown in Figure 2, thread
1 first reads some variables protected by the sequence count,
then begins the RTM, validates the sequence numbers, and
performs all visible write operations. Thread 2 is simplified to
modify the conflict variable at some point in time. The time
point modified by thread 2 can be divided into three ranges,
resulting in three consequences.

• Result A: If Thread 2 modifies seqcount before Thread
1 reads it or after Thread 1 finishes all operations, it has
no effect on the result of Thread 1.
• Result B: If Thread 2 modifies seqcount between Thread

1 reading seqcount and verifying seqcount, it causes
Thread 1 to fail validation and thus redo the whole task.
• Result C: If Thread 2 modifies seqcount after Thread

1 verifies successfully (while before the RTM ends), it
causes an RTM abort in Thread 1 as it modified Thread
1’s read set, thus redoing the whole task.

With HOP, we can break the RTM capacity limit. Then we
will introduce how HOP helps to build HTMFS through some
specific operations in the file system.

3.2 File Operations
3.2.1 Data Read

For data reads, we use a seqcount-based method to make it
atomic. Specifically, the structure of a file is shown in Fig-
ure 3, for each page, we first record the persistent pointer
(with the sequence count) of the last page, and then read its
content. After finishing reading, we verify that the pointers to
all records and their sequence counts are unchanged. We will
re-read the page that changed and then verify all the sequence

Shadow page 
0

Shadow page 
1

…

Ptr NSeq

Ptr 0Seq

Ptr 1Seq

Inode

File

Page 0

Page N

Page 1

1. Prepare the data2. Replace the pointer and the 
sequence count in an RTM

Figure 3: A file is organized in a page table like manner. A
single-page update is performed directly wrapped in a trans-
action. Multi-page updates need to allocate new pages (the
shadow pages) for the data, and then copy the new data to
the shadow pages. Pointers and the corresponding sequence
counts are updated atomically in an RTM.

counts again until all records in this progress stay stable. As
only data writes modify the sequence counts or the persistent
pointers, we can ensure that there are no changes to the pages
we read throughout the entire read operation.

3.2.2 Data Write

Data updates are the foundation of file system operations. One
of the major challenges that HTMFS faces is the conflicts be-
tween RTM’s capacity limitation and the large amount of
data involved in file system operations. As a result, directly
wrapping the whole file system operation in an RTM trans-
action will inevitably cause capacity aborts that prevent the
operations from being completed.

To address this issue, we propose a hybrid approach that
combines the copy-on-write and journalling to convert data
updates to metadata updates that can be embedded in the
RTM transactions.

Small writes, which fit in a single PM page, are wrapped in
an RTM directly. For large data writes, as shown in Figure 3,
our strategy first writes data to the persistent memory so that
large bulk of data can be represented by pointers, enabling
it to be easily embedded in the limited RTM transaction. To
explain in detail, we first allocate PM space to store the data.
Note that the allocation information is in DRAM, which will
not be persisted after a crash. But the data is in PM. Then we
start an RTM transaction, in which file system metadata is
modified, including the modification of allocation metadata.
The persistence point is the RTM commit. Upon a successful
commit, the file data and metadata are persistent in an atomic
approach. Upon a transaction abort, no changes to the file
systems are visible after reboots, with the only exception
that the file data are written to the unallocated PM, which
is benign most of the time. But the blocks may have leaked
after a system crash. Time-consuming scanning of the whole
persistent memory can help retrieve the leaked space. To
eliminate the recovery process, we design a new allocator
based on the free list (as shown in Figure 4) to prevent a
memory leak.
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AllocatedFree page

4096 bytes

Figure 4: The atomical allocator. C stands for Current. The
pages before Current are free pages, while the after is allo-
cated.

3.2.3 Allocation

We split the allocation into two parts: first we move the al-
located blocks into a temporal allocating list, which has the
same structure as the unallocated space list. Then we simply
discard the temporal list inside a transaction to persist the
allocation. If a crash happens, we add the temporal list into
the unallocated space list to prevent a memory leak.

To ensure that the file system does not reference any unallo-
cated data block, usually the file system modifies (or removes)
the reference to the data block before releasing the block. A
memory leak may also occur if the file system crashes after
a reference to a block of data has been removed (when this
block of memory has not yet been freed). When we need to
free multiple data blocks, we may also have a crash halfway
through the release. An easier way to ensure atomicity is wrap-
ping all these operations in a transaction, but RTM is likely to
have a capacity abort. To solve this, we adopt a method simi-
lar to the allocation for the free operations. Only operations
that must be completed atomically are placed inside RTM,
thus avoiding the probability of a capacity abort.

3.3 Directory Operations
3.3.1 Path Walk

File systems usually use a tree structure to maintain the di-
rectory hierarchy. Path walking is a quite common scenario
in file systems. Many file-system-related system calls require
path walking, such as open, mkdir, unlink, etc. These func-
tions will first do a path walk, where the file system will split
the full path by slash. It then looks for each level of pathname
in turn, starting from the root directory, until it reaches the last
level. Then the specified operation (e.g. open) is performed
on the last file name in the last directory.

All operations that need to walk the path will record the
sequence numbers of the directory entries (dentry) it visits,
and validate these sequence numbers in the same RTM with
the data writes (as shown in Figure 1). Take touch /a/b as
an example, this operation will first search the dentry a in the
root directory (/). When it finds the matching dentry, it will
first record the sequence number of the dentry (Dseq of the
dentry a) and then read the inode number of the directory a.

InodeDirectory

Hash table

Dir 

Entries

inoDseq Name

…

inoDseq Name…

PtrBseq

PtrBseqBucket 0

Bucket N

Dentry 0

Dentry M

Figure 5: HTMFS uses hash tables to manage the directory
entries. Bseq is used to serialize changes to directory entries
within the same bucket. This prevents the insertion of two
files with the same name, etc.

Then it will begin a transaction, validate the sequence number
read previously, insert the new dentry b into the directory /a,
and finally commit the transaction.

3.3.2 Directory Updates

We do not use locks on the directory inode to protect updates
to the same directory (add/remove a dentry). Instead, we use
a separate seqcount in each bucket, and all insert operations
need to modify the seqcount of the corresponding bucket in
the hash table (Bseq in Figure 5). When inserting multiple
different directory entries into a directory simultaneously,
the competition will result in only one directory insertion
operation succeeding. At the same time, the other will have
to redo the whole operation because the sequence number
has been modified. In the process of redoing the operation,
the operation will find that a directory entry with the same
name already exists in the directory and return the error code
EEXIST.

In file systems, directories can be removed by the system
call rmdir. However, only empty directories can be removed
to avoid deleting useful data accidentally. The utility rm can
be used to remove a non-empty directory with a parameter -r,
which will remove directories and their contents recursively.
In the implementation, it will remove all the children of the
directory first and then delete the empty directory from the
file system tree by rmdir. This process does not break the
restriction that only empty directories can be removed in file
systems.

We need to consider the situation that process A tries to
touch a new file /a/b/c into an empty directory /a/b while
process B attempts to delete this empty directory /a/b.

As shown in Figure 1, A will first walk the path and record
the sequence count Dseq of /a/b’s dentry. Then it will vali-
date the sequence number in the same RTM with the insertion
of /a/b/c. If the sequence number has been changed be-
fore the validation, then A will fail to validate it and rollback
(lookup the path again). If the sequence number is changed af-
ter A succeeds in validation, the modification of this sequence
number (B changes it in another transaction) will cause the
transaction of A to abort. Then A will be rolled back and do
again. In the new round of path lookup, it will find that the
directory /a/b does not exist, which has the same results as
if B’s entire operation had finished before A, will not cause
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any problem.
B also needs to validate and modify this sequence number

in the same RTM with the operation that deletes this empty
directory. Once successfully committed, the insert operation
that has not finished the path walking will not be able to find
this directory (/a/b), the others will fail to validate the Dseq
or be aborted by the modification of the Dseq, thus protecting
the correctness of this case. If B is aborted by A because of
a conflict, B will find that the directory is not empty when it
retries, thus returning ENOTEMPTY as if it is trying to delete a
non-empty directory, which is the same as if A operation is
finished atomically before B.

This Dseq guarantees that the results of both operations
in this case are consistent with a serial execution. So it is
no longer necessary to use locks to protect its concurrent
correctness.

3.4 Other File Types
Symbolic links. Symbolic links are first expanded to a nor-
mal path, and the new path will be returned to the dispatcher,
which will re-dispatch the file request. The rest of the opera-
tion is just like a normal file.

3.5 The Timestamps
There are several timestamps in file systems to record some
information about a file.

• Access timestamp (atime): the last time the file was
accessed.
• Modified timestamp (mtime): the last time the file’s con-

tents were modified.
• Changed timestamp (ctime): the last time the metadata

of the file was changed.

Many file system operations (even read operations such as
read, stat, etc.) will modify some of the timestamps. Modi-
fying the timestamp should theoretically happen at the same
time as accessing the file, so they need to be done atomically.
We need to modify the timestamps in the same transaction as
the other operations. Here we observe that placing accesses
and modifications to critical variables at the end of a transac-
tion significantly reduces the probability of an abort due to
conflicts.

3.6 The Special Case: Rename
Both unlink and rmdir can only remove leaf nodes (files and
empty directories) from the file system. Rename, however,
has no such limitation and can move a filesystem subtree to
another location.

Rename is a special operation that requires atomically re-
moving a directory or a file from the file system tree and
adding it to another directory. Usually we will hold locks on
both directories to ensure the correctness. However, it may
happen that two rename operations both hold a lock and wait
to take each other’s lock, resulting in a deadlock. This prob-
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B
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Figure 6: Rename cycle. If rename only locks the parent
inode of the source and destination, the rename cycle (outside
of the directory tree) may occur.

lem can be solved by comparing the two locks and taking the
locks in a certain order. However, taking only the locks of
the two directories modified cannot prevent the occurrence
of a cycle. As shown in Figure 6, there are two path /A/B/C
and /X/Y/Z in the directory tree. There are two rename oper-
ations; one wants to rename /A/B to /X/Y/Z/B and another
wants to rename /X/Y to /A/B/C/Y.

Take the first operation as an example. 1. First it will walk
the path and find the source directory A/B (lock the parent
inode A) and the destination /X/Y/Z (lock the inode Z). 2.
Then it tries to delete the directory entry B from the directory A
and insert a new directory entry B to the directory Z. 3. Finally
it will release the two held locks. However, between step 1
and 2, another operation may also finish the path walking
and get the two inodes (source Y and destination C). Without
other protection, both operations can succeed, thus resulting
in a rename cycle. So we need to take extra steps to avoid
the cycle, for example, by adding a global rename lock to
serialize all rename operations.

We still adopt a lock-free design (HOP) for the rename
process. In the path walking (namex), we record the sequence
count of all the directories we traversed (as described in
§ 3.3.1), and finally check if all the sequence counts have
changed in one RTM. If there is a change, the namex opera-
tion will be executed again from the point of change; if there
is no change, the operation of deleting the directory entry
and adding it is continued. Since all of the above operations
(checking for path changes and modifying directory entries)
are done within the same RTM, a successful RTM commit
guarantees that the entire rename operation completes atomi-
cally. In the preceding example, if both operations complete
the path walking and enter the directory modification step
(step 2), then when one operation completes, the other opera-
tion will abort as its read set is modified, thus re-validating
the sequence number and failing because the sequence count
has been modified. It then rolls back, redos the path walking
and finds the directory tree has changed finally.
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Figure 7: HTMFS consists of a KernFS and a user-space li-
brary (LibFS). LibFS calls Coffer_enlarge to ask for more
PM space from the kernel. When there are too many free
pages, LibFS return some to KernFS via Coffer_shrink.

4 Implementation
To illustrate the effectiveness of HTMFS, we implement a
new file system. After comparing several file systems, we
decide to implement HTMFS based on ZoFS [16] because
all operations in ZoFS are in user space, thus avoiding the
possibility of transaction abort due to system calls.

The overall architecture is shown in Figure 7. ZoFS con-
sists of a kernel-state KernFS and one (or more) user-space
file system libraries. HTMFS also consists of two parts, the
original KernFS of ZoFS and a new LibFS. In ZoFS, the en-
tire file system tree is divided into multiple zones according
to permissions.

4.1 KernFS
KernFS is responsible for maintaining information about all
the zones in the entire file system, and the attribution of all
persistent memory pages. Each zone has a root page that
stores the metadata for that zone. KernFS uses a persistent
hash table to store all the zones, where the key is the path
prefix of each zone and the value is the relative address of the
root page of each zone. When a user-space filesystem library
needs to access a path, KernFS uses this hash table to find the
root page of that zone and further access that zone.

KernFS manages all PM space globally at page granularity.
ZoFS uses a two-level allocation. KernFS allocates PM pages
to zones in bulk, and each zone further allocates its pages to
store data and metadata. KernFS keeps track of the allocation
status of each page, i.e., which zone each page belongs to and
which pages are free and can be allocated. In this process,
ZoFS uses a global volatile red-black tree to track all free
spaces in the allocation table, and another red-black tree [5]
to track all allocated spaces and the root page address of the
corresponding zone. These volatile data structures can be
easily recreated after a system crash.

4.2 LibFS
LibFS is responsible for managing all the metadata and data

inside a zone, including mainly files and directories. It con-
tains all the designs in § 3. The file structure, shown in Fig-
ure 3, is a three-level structure similar to a page table, support-
ing files up to 512 GB. Of course, it can be easily extended to
support larger files. The directory structure is a hash table as
shown in Figure 5.

Since KernFS uses a free list to manage free space, when
a zone issues a system call to the kernel to get more free
space (Coffer_enlarge), KernFS returns a free list. Thus,
our LibFS needs to convert the free list to a version recognized
by HTMFS (as shown in Figure 4). This prevents modifica-
tions to the kernel side.
Fallback path. When RTM fails, we choose to retry or fall-
back path depending on the return value. We also walk the
fallback path when the number of failed retries exceeds the
threshold (We choose 60 in the implementation as it gives
the best performance when varing the maximum retry num-
ber from 10 to 100.). In the fallback path we use inode-level
read/write locks for concurrency control and use RTM for
crash consistency. When RTM still fails in the fallback path,
we use journal as a last resort.

Operations on the normal path will first check if the write
lock is held by someone after RTM begins. If the write lock is
held by another task, the operation will rollback to the fallback
path and try to hold the write lock. If the lock is not held by
others during the check, but someone else gets the write lock
before the RTM commit, the operation will abort because it’s
read set has been modified, then retry the RTM operation, and
re-check the lock state.

4.3 Prevent RTM abort
There are many causes of RTM abort, starting with RTM
capacity abort. The simplest implementation is to wrap the
entire file system call in an RTM, and after experimenting
we find that most directory and file operations yield capacity
abort. After using HOP, HTMFS solve this type of problem.

In our implementation we find that one common cause of
RTM abort is page fault, which cannot be predicted. So we
prevent page fault failures by first accessing the memory that
needs to be accessed and preloading the code to be executed
after an RTM abort.

Lastly, the failure is due to conflict, which returns a spe-
cific value. In that case HTMFS tries to retry first, which can
resolve these conflicts if there is not much competition. If the
retries fail a certain number of times, HTMFS fallbacks to
the fallback path, i.e., using locks to protect critical code for
concurrency control. In fallback path we will first take locks
to prevent concurrent accesses and then use HOP to ensure its
crash consistency. So it can still meet the strong consistency
requirement.

There are some other reasons, such as intermixing AVX
and SSE instructions in an RTM, long strings in REP-MOV* in-
structions, etc., which can cause RTM abort [31]. In practice,
we found that the REP-MOV* instruction used by memcpy will
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cause RTM abort in a high probability. So we use cyclic as-
signments (SSE2-MOV*) to replace the memcpy inside RTM.

5 Evaluation
In this section, we evaluate HTMFS against state-of-the-art
file systems using different data consistency mechanisms to
answer the following questions.

• Can HTMFS’s HTM-based hybrid strong crash consis-
tency techniques provide almost as good performance as
weak consistency?
• Can HTMFS improve the applications’ performance?
• How does HTM improve the performance of file sys-

tems?

5.1 Platform Setup
Experiments are conducted on a twenty-eight-core Intel®

Xeon® Gold 6330 CPU server. Hyper-threading is disabled,
and the CPU frequencies are set to 2.0GHz to get stable results
during the evaluation. The server is equipped with 512GB
DDR4 DRAM and 1024GB Intel® Optane™ Persistent Mem-
ory 200 series.

To evaluate the performance of HTMFS, we compare it
against state-of-the-art file systems. ZoFS [16] is evaluated
as the baseline. We also evaluate three state-of-art PM-aware
file systems (NOVA [80], SplitFS [37], and Libnvmmio [11]
on NOVA) to compare. Inode-level locks are used in these
file systems. We remove all clflush, clflushopt, clwb, and
fence instructions in all of these file systems to improve their
performance because these operations are not needed on the
eADR platform.

We use FxMark [52], filebench [72], TPC-C [15] on
SQLite [70], and LevelDB [24] to evaluate the performance
of HTMFS.

5.2 Micro-benchmarks
FxMark includes a set of micro-benchmarks that stress the
performance of FS-related system calls. We use FxMark to
evaluate the performance and scalability of HTMFS.

Figure 8 shows the performance of file data and meta-
data operations as the number of threads increases. HTMFS
outperforms other file systems in most workloads, including
data writes( 8(a)(b)) and metadata operations( 8(e)(g)(h)). For
some workloads, the results of SplitFS and Libnvmmio are not
fully displayed, as they get stuck or encounter self-contained
errors with an increasing number of threads.

Figure 8a shows the performance for data overwrite opera-
tions when different threads overwrite the first 4KB block of
different files (DWOL). HTMFS is slower than ZoFS because
we replace memcpy (which uses REP-MOV* instructions) with
SSE2-MOV* instructions, which takes more time. If we use
SSE2-MOV* instructions in ZoFS, the degradation disappears,
as ZoFS-SSE2 in the figure shows. Other workloads do not
suffer from this degradation because REP-MOV*-based mem-
cpy (in ZoFS) only outperforms SSE2-MOV*-based memcpy

(in HTMFS) when hitting the cache. In DWOL, almost all
writes hit the cache, while in other workloads, throughputs
are dominated by writes to PM.

With the medium sharing level, where different threads
overwrite different blocks in a shared file (DWOM), HTMFS
shows the best scalability. In contrast, the throughputs of other
file systems drop as the number of threads increases, as shown
in Figure 8b. When there are 28 threads, the throughput of
HTMFS is 8.4× of ZoFS. The good scalability of HTMFS
mainly comes from the HTMFS’s lock-free design. For tests
like DWOL and DWOM where the write operations only
write to the cache, this part of the difference is magnified to
become obvious.

For data append (DWAL, Figure 8c), HTMFS fails to scale
after 12 threads. NOVA scales best in this workload, thanks to
its per-core allocator. The performance gap between NOVA
and HTMFS mainly comes from the different write instruc-
tions they use. NOVA uses non-temporal write (NT-write)
instructions to store data, which bypass the cache and directly
write to PM. It only occupies the write bandwidth of the PM.
In contrast, HTMFS uses normal write instructions to store
data. In case of a cache miss, HTMFS first reads the data into
a cache line, then writes to the cache line, occupying both read
and write bandwidth of the PM. However, the reads and writes
to the PM interfere with each other, causing a decline in the
total bandwidth [81]. Therefore, in DWAL, where most writes
miss the cache, HTMFS has lower throughput than NOVA.
We replace the write instructions in ZoFS and HTMFS with
non-temporal ones and name them ZoFS-NT and HTMFS-
NT. They show similar good scalability as NOVA. However,
the performance begins to degrade after four threads because
ZoFS and HTMFS have reached the upper limit of the PM
write bandwidth, which keeps decreasing as the number of
threads increases [34, 81].

For data read workloads, when different threads read a
block in their respective private file (DRBL, Figure 8d), all
file systems scale nearly linearly. Reading a private block in
the shared file (DRBM) and reading the same block (DRBH)
show similar performance, so these results are not shown here.

For metadata creation workloads, Figure 8e shows the per-
formance when different threads create files in different direc-
tories (MWCL). HTMFS and ZoFS stop to scale after eight
threads. This is because HTMFS and ZoFS are bounded by
the limited PM write bandwidth resource.

However, NOVA performs better than HTMFS with less
PM write bandwidth. The reason is that ZoFS uses zero in-
dexes to indicate a non-exist page (as shown in Figure 3). It
needs to initialize the file index to zero when creating a file,
occupying significant PM bandwidth. ZoFS cannot use file
size to indicate whether a page exists in a file because when a
crash happens before an update operation completes, the file
size will be inconsistent with the file index after reboot. How-
ever, the file size and the file index are consistent at any time
in HTMFS, which makes it feasible for HTMFS to remove the
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(b) Data overwrite, medium contention
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(c) Data append, low contention
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(d) Data read, low contention
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(e) Metadata create, low contention
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(f) Metadata create, medium contention
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(g) Metadata rename, low contention
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(h) Metadata rename, medium contention
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Figure 8: Results of FxMark workloads. HTMFS outperformaces ZoFS in DWOM(8b), MWCM(8f), MWRM(8h) and achieves
similar performance in most cases. The worse performance of HTMFS (compared with ZoFS, e.g., DWOL(8a)) mainly comes
from the gap between a certain instruction we replace.

file index initialization when creating a file. After removing
the zero operation from HTMFS and ZoFS, the scalability
becomes better than NOVA, as shown by HTMFS-NZ (No
Zero) and ZoFS-NZ.

When creating files in a shared directory (MWCM, Fig-
ure 8f), HTMFS still scales well while other file systems
exhibit poor scalability as the number of threads increases.
The good scalability of HTMFS mainly comes from our lock
strategy. Instead of locking the parent directory before ev-
ery create operation, we only need hash table related lock,
which avoids a lot competition. HTMFS-NZ performs better
than HTMFS because it removes unnecessary memset from
code path. It achieves maximum throughput when using eight
threads, and degrades as threads increases [34, 81].

For metadata rename workloads, when different threads
rename files in different directories (MWRL, Figure 8g),
all file systems scale nearly linearly and HTMFS performs
best among them. When moving files into a shared directory
(MWRM, Figure 8h), like MWCM, HTMFS performs best
among them. Thanks to the fine-grained concurrency control
provided by HOP, HTMFS outperforms ZoFS by up to 6×.

Abort rate. Since we will retry for up to 60 times, an operation

Table 2: Abort rate. The abort operation accounts for a small
proportion of total operations, as well as the fallback path.

Operation Average Abort Count Fallback Rate
DWAL-8threads 0.002 0%
DWOL-1thread 0 0%
Varmail-1thread 0.004 0%
Varmail-28threads 0.303 0.17%
TPC-C SQLite 0.001 0%

may trigger abort up to 60 times, being counted as 60 aborts.
The average abort count is calculated by dividing the number
of aborts by the total number of operations completed. After
an operation has failed for all the 60 times, it will give up
and walk the fallback path. We count the number of times the
fallback path is executed and obtain the fallback rate as shown
in Table 2. In the several tests both the number of aborts and
the number of fallback path executions are negligible.
The latency of the fallback path. For the write operation, we
evaluate the operation latency of the normal path (RTM suc-
ceeds), the fallback path (RTM fails), and the journal-based
path. The results are shown in Table 3. Although the scala-
bility of the normal path is better than the fallback path, their
latency is about the same. For writing 4KB files, the latency
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Table 3: Operation latency. Each path is independent. e.g.,
Fallback path latency does not contain that of running a nor-
mal path. The journal-based path is slower than others because
it requires writing more additional data.

Latency/cycles Write (4KB) Mkdir Rename

Normal path 620.77 12360.67 3378.03
Fallback path 654.47 12486.87 3390.23
Journal-based path 4924.00 13627.00 3548.53
CoW path (NT write) 2293.00 / /

Table 4: The throughput under high abort rate. We write
DWOH that multiple threads write to a shared block in a
shared file. HTMFS can fallback to lock rapidly to avoid
dramatic performance drops.

Throughput (Kops/s)/#Thread 1 8 28

HTMFS 3732 1309 1111
ZoFS 6148 1241 983
NOVA-CoW 517 416 408
NOVA-relax 1036 1026 992
Libnvmmio 520 416 413

of the journal-based path should be twice the normal path
theoretically. However, it is much higher than the theoretical
value since the normal path writes are not all written to the
PM (reside in the cache). To verify that, we add the latency of
the CoW path (using non-temporal write, where the writes fall
into the PM directly). The latency of the journal-based path
is slightly higher than twice that of the CoW path because the
former needs to record some metadata updates.

The latency difference between the different paths is not sig-
nificant for other metadata operations. The journal-based path
requires logging metadata updates, so the latency is slightly
higher than the others.
The performance under high abort rate. We design a work-
load with strong competition for fxmark that multiple threads
write to a shared block in a shared file to evaluate how
HTMFS’s fallback path performs. As shown in Table 4,
HTMFS is able to fall back to locks quickly. As the number
of threads increases, HTMFS’s performance becomes better
than ZoFS. The performance of HTMFS is weaker than ZoFS
with a single thread, the reason of which is still because we
use a slower memcpy to avoid RTM abort.

5.3 Macro-benchmarks
We select two filebench [72] workloads to evaluate the perfor-
mance of HTMFS. Table 5 summarizes the characteristics of
these workloads and the results are shown in Figure 9. We can
observe that HTMFS performs well in all chosen workloads.

Webproxy is a read-dominated workload, HTMFS achieves
similar performance with ZoFS and shows slightly higher
throughput than NOVA and Libnvmmio.

Varmail emulates an email server with a large number

Table 5: Filebench workload characteristics.

Workload # Files Dir Width File Size R/W Ratio

Webproxy 10,000 1,000,000 16KB 5:1
Varmail 1,000 1,000,000 16KB 1:1

of small files and involves both read and write operations.
HTMFS is a good fit for this workload as Varmail involves
more metadata operations. Besides, NOVA and Libnvmmio
also show good scalability.

In both workloads, SplitFS is also tested but not shown
here as it fails to scale after 8 threads and not outperforms
HTMFS.

5.4 Crash Consistency Correctness
Correctness is difficult to be proven without formal verifica-
tion. To show the crash consistency correctness of HTMFS,
we design a simple experiment to show the difference between
HTMFS and ZoFS (a weak crash consistency file system).

We first create a 4KB-file filled with character ‘a’. Then
we open it and write 8KB ‘b’ into it with a file system call
write(fd, data, 8192). In this process, the file system
1) first allocates a new free page as the second page (4KB–
8KB), 2) overwrites the first page (0–4KB) with ‘b’, 3) fills
the allocated page with ‘b’, 4) then links it to the file data
index, 5) and finally updates the file size from 4KB to 8KB
and updates both ctime and mtime in the file’s metadata to
the current time.

We inject several system crashes during the file system call
write(fd, data, 8192) and then check some characteris-
tics after rebooting the file system. As all PM writes in the
RTM are guaranteed to be persisted atomically [66], rather
than injecting crash in the RTM, we insert crash begin/after
the RTM. The results are shown in Table 6.

The first two rows show the characteristic of consistent
(all-or-nothing) states, respectively. If no change is applied,
we should see 4KB “a” in the file, the length of the freelist
being 249 (measured in the experiment), the ctime and mtime
both unchanged. If the whole operation is finished, the file
size, the content, the length of freelist (which should be 248
since a new page will be allocated) and the ctime and mtime
should be updated altogether.

Row 3–8 (from ZoFS-1 to HTMFS-3) show the character-
istic when ZoFS and HTMFS crash at different points. For
every crash point, ZoFS has some difference with both consis-
tent states. For example, at crash point 1, ZoFS is inconsistent
for its freelist is reduced by 1, which means there is a per-
sistent memory leak in ZoFS. At the same time, HTMFS is
consistent with “nothing” or “all” state, proving HTMFS has
stronger crash consistency than ZoFS.

5.5 Application Benchmarks
TPCC on SQLite. SQlite is a widely used lightweight yet full-
featured SQL database engine. We drive SQLite with TPC-
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Figure 9: Filebench. HTMFS achieves similar throughput as ZoFS in these workloads.

Table 6: Crash consistency states of ZoFS and HTMFS. We
insert three crash points when writing 8KB ‘b’ into a file of
4KB ‘a’. HTMFS is consistent with all-or-nothing states after
crash, while ZoFS fail to restore consistent state.

Crash Point File Size Content[0] Len(freelist) Ctime&Mtime
Nothing 4KB ‘a’ 249 Not changed
All 8KB ‘b’ 248 Changed
ZoFS-1 4KB ‘a’ 248 Not changed
HTMFS-1 4KB ‘a’ 249 Not changed
ZoFS-2 4KB ‘b’ 248 Not changed
HTMFS-2 4KB ‘a’ 249 Not changed
ZoFS-3 8KB ‘b’ 248 Not changed
HTMFS-3 8KB ‘b’ 248 Changed

Table 7: TPC-C transaction mix.

Transaction NEW PAY OS DLY SL
Ratio 44% 44% 4% 4% 4%

C [15], which is an online transaction processing benchmark
that simulates an order processing application.

TPC-C involves five types of transactions: New-Order
(NEW), Payment (PAY), Order-Status (OS), Delivery (DLY),
and Stock-Level (SL). We use the mixed workload in the
experiment and run it with a single thread. Table 7 gives the
ratio of different transactions.

Figure 10 summarizes the throughput of different file sys-
tems. HTMFS achieves the second highest throughput, which
is 2% lower than ZoFS. While NOVA-CoW is 67% slower
than NOVA. This demonstrates the low overhead of HTMFS
in achieving strong consistency.
LevelDB. LevelDB [24] is a key-value storage library devel-
oped by Google. We use LevelDB’s db_bench benchmarks
to prove that we can achieve strong consistency with little
overhead. SplitFS and NOVA provide both strong and weak
consistent modes. However, we cannot run this benchmark
on SplitFS, so we only compare HTMFS with NOVA.

For the read operations, NOVA-CoW and NOVA-relax
perform almost the same. For the update operations (fill,
overwirte, and delete), NOVA-CoW is obviously slower than
NOVA-relax, while HTMFS always performs as well as ZoFS.

0 20000 40000 60000 80000 100000
Throughput (TpmC)

Ext4-DAX

SplitFS

NOVA-CoW

NOVA-relax

Libnvmmio

ZoFS

HTMFS

Figure 10: TPC-C SQLite. HTMFS provides stronger con-
sistency with acceptable performance reduction compared
to ZoFS, while NOVA sacrifices much more to get the same
consistency.
Table 8: Latency of LevelDB. HTMFS and ZoFS perform
almost identically, while we can observe a clear latency gap
between NOVA-CoW and NOVA-relax. This indicates that
HTMFS efficiently achieves data consistency guarantees.

Latency/µs NOVA-CoW NOVA-relax ZoFS HTMFS
Fill sync. 6.605 5.262 3.190 3.134
Fill seq. 4.605 3.284 2.071 2.039
Fill rand. 31.528 25.142 24.125 24.313
Overwrite. 39.662 31.641 42.128 42.207
Read seq. 1.020 1.004 2.111 2.136
Read rand. 7.357 7.029 11.027 10.600
Read hot. 1.373 1.373 1.289 1.281
Delete rand. 3.169 2.120 1.335 1.281

6 Discussion
6.1 Other File System Features
Previous sections mainly focus on the common file system
interfaces, like read/write. We suggest that our design can be
further combined with other features.

Compression Some file systems support data compression
features to reduce space on storage devices. The compression
procedure can be viewed as normal read (read the data and
apply the compression algorithm) plus write (write the com-
pressed data), which falls into the scope of our HOP design.
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Deduplication Deduplication features the ability to reduce
redundancy in stored data to reclaim disk space. It involves
scanning all data at intervals to find duplicate blocks and
remove them. The scanning part does not introduce any con-
flicts, and the removing part is no different from common file
operations, which can also be handled by the HOP design to
ensure consistency.

Checksumming/Encrypting Checksumming and Encrypt-
ing features are supported for error-detection and security
considerations, which works by checksumming/encrypting
the data before write operations and verifying the checksum
during read operations. This procedure can be easily wrapped
in the original read and write operations protected by HOP.

To summarize, these advanced features are orthogonal to
our work and can be implemented in further works.

6.2 HOP in Key-Value Stores
Since key-value stores have a fixed access interface (e.g.
put/get/scan) like the file system, it is relatively easy to
use HOP for key-value stores. Like applying HOP to the
file system, when using it for key-value stores, we need to
consider how each API needs to be modified to reduce the
transaction size.

7 Related Work
To our best knowledge, no prior work has discussed using
HTM to improve the performance of strong consistent file
systems. We discuss related work in this section.

Persistent Transactions. As PM adds durability to mem-
ory, researchers study how to facilitate the PM program-
ming via transaction semantics. Some of these studies [9,
12, 14, 23, 25, 27, 38–40, 44, 45, 48, 49, 56, 61, 62, 75, 82, 83]
use software approaches, such as undo and/or redo logs,
to guarantee transaction semantics on PM; while the oth-
ers [3,4,8,21,33,35,36,44,54,63,71] leverage modified hard-
ware mechanisms. All these existing persistent transaction
systems targets on user-space applications or data structures,
while our work focuses on using HTM in PM file systems.
Compared with the data structures, the file systems put extra
challenges due to the FS’s inevitable large memory footprint
and complex operations.

Before eADR [29] is available, many HTM implementa-
tions or modifications are proposed to facilitate PM with
HTM [3, 4, 22, 35, 60, 77]. The design of HTMFS is orthog-
onal to these HTM hardware implementation. Furthermore,
HTMFS can be simplified if transaction suspend and resume
are supported on the platform, as what is planned in the next-
generation Intel’s server platform [30].

System Transactions and Transactional FS. Researchers
have studied to use transactions in an operating system [58,
59]. TxLinux [65] is the first operating system that leverages
MetaTM [60], an interrupt-compatible HTM model, in a co-
operative synchronization approach that combines HTM with

software locks. TxOS [57] proposes and implements system
transactions to provide system-wide transactional support. A
transactional Ext3 is implemented in TxOS.

A set of file systems provide transactional APIs to applica-
tions so that multiple file operations could be finished in an
ACID transaction. Examples include Microsoft TxF [2,50], In-
version [55], OdeFS [20], DBFS [53], TFFS [19], Stasis [67],
Amino [78], Valor [69], CFS [51], and TxFS [28]. Unlike
these prior studies, our work focuses on leveraging HTM to
enforce the performance and strong consistency within each
single file system operation. We think it possible to extend
HTMFS to implement cross-operation transactions and we
leave further exploration as future work.

HTM-assisted OCC. Several prior work has explored to
combine HTM with OCC-like mechanisms. DBX [76] first
use an OCC-like mechanism to address the limited working
set of HTM. Leis et al. [43] proposes to split a database trans-
action into small pieces, each of which is protected by an
HTM transaction. These pieces are then glued together via
timestamps to guarantee the atomicity of the whole database
transaction. HTCC [79] combines fine-grained locks and
HTM-assisted OCC. It uses HTM-assisted OCC only on cold
data to reduce the database transaction abort rates and lever-
ages delta-restoration to minimize the overhead of transaction
restarts. In contrast to this work that focuses on concurrent
consistency of database transactions, our work focuses on pro-
viding both concurrent consistency and crash consistency with
a combination of HTM and FS-aware OCC-like mechanism.

Page fault in RTM. PfTouch [73] efficiently solves the
problem of RTM abort due to page fault by modifying the
RTM hardware to recognize page fault and triggering page
fault in the abort handler. With RTM hardware support,
HTMFS can use these methods to reduce the performance
loss due to page fault abort.

8 Conclusion
We provide HTMFS, the first HTM-based PM file system.
HTMFS provides strong crash consistency and fine-grained
concurrency control with HTM support. Evaluation shows
that the performance of HTMFS is as good as file systems
that only provide weak crash consistency guarantees while
providing strong consistency guarantees. In some competitive
scenarios, the performance improvements are significant.
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ctFS: Replacing File Indexing with Hardware Memory Translation
through Contiguous File Allocation for Persistent Memory
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Abstract
Persistent byte-addressable memory (PM) is poised

to become prevalent in future computer systems. PMs
are significantly faster than disk storage, and accesses
to PMs are governed by the Memory Management Unit
(MMU) just as accesses with volatile RAM. These unique
characteristics shift the bottleneck from I/O to operations
such as block address lookup – for example, in write
workloads, up to 45% of the overhead in ext4-DAX is
due to building and searching extent trees to translate file
offsets to addresses on persistent memory.

We propose a novel contiguous file system, ctFS, that
eliminates most of the overhead associated with indexing
structures such as extent trees in the file system. ctFS
represents each file as a contiguous region of virtual
memory, hence a lookup from the file offset to the address
is simply an offset operation, which can be efficiently
performed by the hardware MMU at a fraction of the cost
of software maintained indexes. Evaluating ctFS on real-
world workloads such as LevelDB shows it outperforms
ext4-DAX and SplitFS by 3.6x and 1.8x, respectively.

1 Introduction

The emergence of byte-addressable persistent memory
(PM) fundamentally blurs the boundary between mem-
ory and persistent storage. Intel’s Optane DC persistent
memory is byte-addressable and can be integrated as a
memory module. Its performance is orders of magnitude
faster than traditional storage devices: the sequential read,
random read, and write latencies of Intel Optane DC are
169ns, 305ns, and 94ns, respectively, which are the same
order of magnitude as DRAM (86ns) [19].

A number of file system designs have been introduced
with the aim of exploiting the characteristics of PM. For
example, Linux introduced Direct Access support (DAX)

for some of its file systems (ext4, xfs, and ext2) that elim-
inates the use of the page cache. Other designs bypass the
kernel by mapping different file system data structures
into user space to reduce the overhead of switching into
the kernel [7, 8, 21, 25, 37]. SplitFS, a state-of-the-art PM
file system, aggressively uses memory-mapped I/O [21]
for significantly improved performance.

All of these systems use conventional tree-based index
structures for translating the file offset to the device ad-
dress. This index structure was first proposed by Unix in
the 70s [34] when the speed of memory and persistent
storage differed by several orders of magnitude. How-
ever, with the emergence of PM, this speed difference
has shrunk significantly to the point of being almost neg-
ligible. This in turn has shifted the bottleneck from I/O
to file indexing overheads.

Indeed, we show in §2 that this indexing overhead can
be as high as 45% of the total runtime for write work-
loads on ext4-DAX (e.g., for Append). While memory-
mapped I/O (mmap()) can mitigate some of the indexing
overhead [11], it does not remove indexing overhead but
only shifts its timing to page fault handling or mmap()
(when pre-fault is used). For example, §2 shows that with
SplitFS, file indexing overhead can be as high as 63% of
the Append workload runtime. This is 18% higher than
that of ext4-DAX, even though the runtime of Append
is lower on SplitFS; this is because SplitFS’s improved
performance further shifts the bottleneck and exacerbates
indexing overhead.

An alternative to using file indexing is to use con-
tiguous file allocation. While simple contiguous alloca-
tion designs with fix-size or variable-size partitions are
known [36], they face two major design challenges: (1)
internal fragmentation for fix-size partitions, (2) external
fragmentation for variable-size partitions, and (3) file re-
sizing, specifically for expansion which often requires
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costly data movement. Therefore, the only use of con-
tiguous file allocation in practice today is on CD-ROMs,
where files are read-only [36]. SCMFS [39] proposed the
high-level idea of allocating files contiguously in virtual
memory. However, it does not address the challenges of
contiguous file allocation, namely how files are allocated
and how resizing is managed. (Its implementation and
evaluation are also only based on simulations).

We propose ctFS, a contiguous file system designed
from the ground up for PM. ctFS has the following key
designs elements:

• Each file (and directory) is contiguously allocated in
the 64-bit virtual memory space. We demonstrate the
practicality of this idea, given that the 64-bit address
space is enormous. Furthermore, the virtual address
space is carefully managed by a hierarchical layout,
similar to the buddy memory allocation [23], in which
each partition is subdivided into 8 equal-size sub-
partitions. This design speeds up allocation, avoids
external fragmentation, and minimizes internal frag-
mentation (§3.2).

• A file’s virtual-to-physical mapping is managed us-
ing persistent page tables (PPT). PPTs have a similar
structure as the regular, volatile page tables in DRAM,
except that PPTs are stored persistently on PM. Upon a
page fault on an address that is within a ctFS’s memory
region, the OS looks up the PPT and creates the same
mappings in the DRAM-based page tables. Therefore,
subsequence accesses are served by hardware MMU
from DRAM-based page tables, avoiding the indexing
cost.

• Initially, a file is allocated within a partition whose
size is just large enough for the file. When a file out-
grows its partition, it is moved to a larger partition in
virtual memory without copying any physical persis-
tent memory. ctFS does this by remapping the file’s
physical pages to the new partition using atomic swap,
or pswap (§3.3), a new OS system call that atomically
swaps the virtual-to-physical mappings. Atomic swap
also enables efficient crash consistency on multi-block
writes without needing to double-write the data. An
atomic write in ctFS simply writes the data to a new
space, and then pswaps it with the old data (§3.4).

In ctFS, the translation from file offset to the physical
address now needs to go through the virtual-to-physical
memory mapping, which is no less complex than the
conventional file-to-block indexes. The key difference is
that page translation can be sped up by existing hardware
support. Translations that are cached by TLB will be han-
dled transparently from the software and completed in

one cycle. In contrast, a file system’s file-to-block trans-
lation can only be cached by software. Additionally, ctFS
can adopt various optimizations for memory mapping,
such as using huge pages, to further speed up a variety
of operations.

Our evaluation on Intel Optane DC reveals that ctFS
can eliminate most indexing overheads, which results
in up to a 7.7x and 3.1x speedup over ext4-DAX and
SplitFS [21] on the Append workload. ctFS further im-
proves the throughput of LevelDB running YCSB by
up to 3.62x, 1.82x, 3.21x, and 2.45x when compared
to ext4-DAX, SplitFS, Nova [40], and PMFS [8], re-
spectively. Finally, ctFS improves RocksDB [35] per-
formance by up to 1.6x when compared to ext4-DAX.
The source code of ctFS is available at https://github.
com/robinlee09201/ctFS.

A limitation of ctFS is that we implement it as a user-
space library file system that trades protection for per-
formance. While this squeezes the most performance
out by aggressively bypassing the kernel, it sacrifice pro-
tection in that it only protect against unintentional bugs
instead of intentional attacks. We envision that this is an
acceptable, or even desirable, trade-off for data center
environments. We discuss other limitations in §5.

2 Understanding File Indexing Overhead

We analyzed the performance overhead of block address
translation in Linux’s ext4-DAX and in SplitFS [21].
Ext4-DAX is the port of the ext4 extent-based file system
to PM. It eliminates the page cache, and directly accesses
PM using memory operations (memcpy()).

Background on SplitFS. We briefly describe SplitFS for
a better understanding. SplitFS splits the file system logic
into a user-space library (U-Split) and a kernel space
component (K-Split), where K-Split uses ext4-DAX. A
file is split into multiple 2MB regions by U-Split, where
each region is mapped to one ext4-DAX file. Both U-
Split and K-Split participate in indexing: U-Split maps
a logical file offset to the corresponding ext4-DAX file,
and the ext4-DAX in K-Split further searches its extent
index to obtain the actual physical address.

SplitFS also proposed a novel operation called relink

to improve the performance of file expansion and provide
crash consistency on file writes without double-writing
data. Under its sync mode, file appends are first made to
a staging file, and then relinked to the target file either
when fsync() gets called or the staging file reaches its
size limit; file overwrites are applied in-place. Under
its strict mode, every file write, whether it’s overwriting
or appending data, is applied to a staging file and gets
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Figure 1: Performance breakdown (in percentage) of ext4-DAX and SplitFS on persistent memory. The number above
each bar is the total run time in seconds.

relinked at the end of every write. Hence, the indexing
time of SplitFS consists of relink, mmap, and indexing
in both kernel and user components.

Experimental Methodology. Our experiments were
conducted on a server with two 128GB Intel Optane DC
persistent memory (PM) modules, an 8-core Intel Xeon
4215 CPU running at 2.5 GHz, and 96 GB of DRAM.
We used Linux version v5.7.0-rc7+.

We ran a total of 6 tests. The results are shown in
Figure 1. Each test either reads or writes a 10GB file.
The first test, Append, repeatedly appends 4KB of data
to a file which is initially empty. The second test, SWE,
sequentially writes a total of 10GB of data to an empty
file with 10 pwrite() calls to write 1GB at a time. RR
reads 4KB of data from a random (4KB-aligned) offset
in a 10GB file, and RW overwrites an existing 10GB
file with 4KB of data at a random (4KB-aligned) offset,
and they do this 2,621,440 times. Finally, SR/SW we
sequentially reads/writes 10GB data, 1GB at a time.1

For the SW, RW, RR, and SR tests, we ran the ext4-
DAX tests with two types of files: those that were sequen-
tially allocated (ext4) and those that were randomly allo-
cated (ext4r). Sequentially allocated files were created by
SWE, which maximizes ext4-DAX’s grouping of blocks
into an extent. Randomly allocated files were created by
writing to them similarly to the way RW does, except
that the file is initially empty (Linux file systems support
sparse files); these randomly allocated files limit ext4-
DAX’s ability to group blocks into extents. The “ext4r”
bars in RW, RR, and SR represent tests that operated
on such randomly allocated files. Note that ext4-DAX
creates 12 extents for a sequentially allocated 10GB file,
but creates 256 extents for a randomly allocated file. For

1 We found that the version of SplitFS we tested does not support
append operations that write over 128MB under its sync mode. There-
fore, in SWE, we write 128MB at a time in SplitFS, instead of 1GB as
in ext4-DAX and other the file systems we discuss in §4.

SplitFS, all files are sequentially allocated.

Indexing overhead in ext4-DAX. Figure 1 shows the
breakdown of the completion time of each test. For ext4-
DAX, we observe that indexing overhead is significant
in Append and SWE, spending at least 45% of the total
runtime on indexing.2

For the random access workloads, RR and RW, the
proportion of time spent on indexing is lower, but still
considerable: 25% and 21% of the total runtime when
randomly writing and reading to/from a randomly allo-
cated file (ext4r), and 18% and 15% when the file was
sequentially allocated.

Indexing overhead in SplitFS. Figure 1 also shows the
breakdown of the completion time of SplitFS’s sync
mode. 3 Compared to ext4-DAX, SplitFS spends an even
higher proportion of the total runtime on indexing in the
Append (63%), SWE (45%), and RW workloads (38%),
while it spends 14% of the runtime on indexing in RR.

To understand SplitFS’s indexing overhead in more de-
tail, consider the Append workload where SplitFS spends
a total of 6.62s on indexing. Three components make up
this file indexing time: (1) the kernel indexing time as part
of page fault handling (4.37s), (2) U-split’s file indexing
time (0.84s) spent on mapping file offsets to the correct
ext4-DAX file, and (3) U-Split’s mmap() time (1.39s).

3 Design & Implementation of ctFS

This section starts with an overview of ctFS. Then we
describe the file system layout (§3.2), and how ctFS inter-
acts with the kernel’s memory management system (§3.3).
We then explain ctFS’s primitive for atomic operations
— pswap(), and how ctFS handles file updates and en-

2In both cases, the index time includes the time to build the index.
3We only show its sync mode result as its semantics is comparable

to that of ext4-DAX. SplitFS’s strict mode is further evaluated in §4.
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Mode
Atomicity Similar todata metadata

sync 7 3
NOVA-relaxed,

PMFS,
SplitFS-sync

strict 3 3
NOVA-strict, Strata,

SplitFS-strict

Table 1: The two modes provided by ctFS.

sures crash consistency (§3.4). Finally we discuss some
optimizations (§3.5) and the protection model (§3.6).

3.1 Design Overview
ctFS is a high-performance PM file system that directly
accesses and manages both file data and metadata in user
space. Each file is stored contiguously in virtual memory,
and ctFS offloads traditional file systems’ offset to block
number indexing to the memory management subsystem.
ctFS achieves the following design goals:

• POSIX compliance: ctFS currently supports over 30
commonly used functions from the POSIX-compatible
file system API.

• Synchronous writes: Write operations on ctFS are
always synchronous, i.e., writes are persisted on PM
before the operation completes. Hence there is no need
for fsync (which does nothing in ctFS).

• Crash consistency: ctFS supports both file data con-
sistency (by using pswap) and metadata consistency (by
using conventional redo logs).

• Concurrent operations: ctFS supports concurrent op-
erations on different files or concurrent reads on the
same file; a reader-writer lock is used for each file to
synchronize concurrent accesses.

Similar to prior systems, such as NOVA [40] and
SplitFS [21], ctFS offers two modes, sync and strict,
as shown in Table 1. Both modes ensure atomic meta-
data operations that include directory operations. Strict
mode further ensures file data writes are atomic (by using
pswap).

ctFS’s architecture, shown in Fig. 2, consists of two
components: (1) the user space file system library, ctU,
that provides the file system abstraction, and (2) the ker-
nel subsystem, ctK, that provides the virtual memory
abstraction. ctU implements the file system structure and
maps it into the virtual memory space. ctK maps virtual
addresses to PM’s physical addresses using a persistent
page table (PPT), which is stored in PM. Any page fault
on a virtual address inside ctU’s address range is handled

Partition 1                                Partition 2

..
..

..

..
..

..

ctK
Page fault

PPT

Populate/

invalidate

DRAM page table

ctU

....
user space

kernel

Virtual address space

Physical PM Space

Figure 2: Architecture of ctFS. Each box represents a page.
Two partitions are shown. The file allocated in partition 1 uses
3 pages (green), and the file in partition 2 uses 5 pages. ctK
maintains virtual-to-physical page mappings in the PPT.

512GB

 PGD       PUD           PMD        PTE (sub-PMD)

64GB 8GB 1GB 128MB 16MB 2MB 256KB 32KB 4KB

L9 L8 L7 L6 L5 L4 L3 L2 L1 L0

Figure 3: Size of partitions at levels L0 to L9. PGD, PUD,
PMD, and PTE refer to the four levels of page tables in Linux
(from highest to lowest). An L9 partition aligns with PGD, i.e.,
its starting address has zero in all of the lower level page tables
(PUD, PMD, PTE); Similarly, L6-L8 partitions align with PUD,
whereas L3-L5 partitions align with PMD.

by ctK. If the PPT does not contain a mapping for the
fault address, ctK will allocate a PM page, establish the
mapping in the PPT, and then copy the mapping from the
PPT to the kernel’s DRAM page table, allowing virtual
to PM address translations to be carried out by the MMU.
When any mapping in the PPT becomes obsolete, ctK
will remove the corresponding mapping from the DRAM
page table and shoot down the mapping in the TLBs.

With this architecture, there is a clear separation of
concerns. ctK is not aware of any file system semantics,
which is entirely implemented by ctU using memory op-
erations. Next, we discuss the designs that are specific
to ctFS. We omit the designs that are similar to existing
file systems. For example, we use standard transaction
logging to provide crash consistency of metadata, includ-
ing directories, inode, and ctFS data structures such as
partition headers, bitmaps, etc.

3.2 File System Structure (ctU)

ctFS’s user-space library, ctU, organizes the file system’s
virtual memory space into hierarchical partitions to facil-
itate contiguous allocations. The size of each partition at
a particular level is identical, and each level’s size is 8x
the size of the partitions at the next lower level. Figure 3
shows the sizes of the ten levels that ctFS currently sup-
ports. The lowest level, L0, has 4KB partitions, whereas
the highest level, L9, has 512 GB partitions. ctFS can be
easily extended to support more partition levels, e.g. L10
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Figure 4: Layout of ctFS in the virtual address space (VAS). The space of an entire partition is reserved in VAS, whereas the
physical PM space is allocated on-demand based on actual usage. Headers circled in the dashed-line reside on the same page.

(4TB), L11 (32TB), etc.
A file or directory is always allocated contiguously in

one and only one partition, with the size of the partition
being the smallest capable of containing the file. For
example, a 1KB file is allocated in an L0 partition (4KB);
a 2GB file is allocated in an L7 partition (8GB).

We chose each next level to be 8x the size of the previ-
ous level because the boundary of the levels should align
with the boundary of Linux page table levels (Figure 3).
This enables the optimization during pswap we describe
in §3.3. Therefore, our only options for partition size dif-
ferences were: 2x (21), 8x (23), or 512x (29). We chose
8x because 2x would be too small and 512x too large.

File System Layout. Figure 4 shows the layout of ctFS.
The virtual memory region is partitioned into two L9
partitions. The first L9 partition is a special partition used
to store file system metadata: a superblock, a bitmap for
inodes, and the inodes themselves. Each inode stores the
file’s metadata (e.g., owner, group, protection, size, etc.)
and a single field identifying the virtual memory address
of the partition that contains the file’s data. The inode
bitmap is used to track whether an inode is allocated or
not. The second L9 partition is used for data storage. 4

Each partition can be in one of the three states: Allo-
cated (A), Partitioned (P), or Empty (E). A partition in
state A is allocated to a single file; a partition in state
P is divided into eight next-level partitions. We call the
higher level partition the parent of its eight next-level
partitions. This parent partition subsumes its eight child
partitions; i.e., these 8 child partitions are sub-regions
within the virtual memory space allocated to the parent.
For example, in Figure 4, an L9 partition in state P is
divided into 8 L8 partitions. The first L8 partition is also
in state P, which means it is divided into 8 L7 partitions,

4Note that the 512GB allocated for metadata is virtual memory; The
physical pages underneath it are allocated on demand.

and so on. In this manner, the different levels of partitions
form a hierarchy.

This hierarchy of partitions has three properties.
(1) For any partition, all of its ancestors must be in state
P; and any partition in the A or E state does not have
any descendants. (2) Any address in a partition is also
an address in the partitions of its ancestors; e.g., any L3
partition in Figure 4 is contained in its ancestor L4-L9
partitions. (3) The starting address of any partition, re-
gardless of its level, is aligned to its partition size; this
is the case as long as the top-level L9 partitions are 512
GB aligned.

Partition Headers. ctU needs to maintain book keeping
information for each partition, such as its state. To store
such metadata, each partition in P-state has a header
which contains the state of each of its child partitions; ctU
stores the header directly on the first page of the partition
for fast lookup that does not involve indirections. For
example, for each partition in P state at levels L4-L9, the
state of its eight children are encoded using 2 bits packed
into a uint16_t.

To speed up allocation, the header also has an avail-
ability level field that identifies the highest level at which
a descendent partition is available for allocation. For ex-
ample, the availability level of the left-most L9 partition
in Figure 4 is 8 because this L9 partition has at least 1
L8 child partition in E state. With this information, when
allocating a level-N partition, if a P partition’s availability
level is less than N, ctU does not need to drill down fur-
ther to check its child partitions. This results in constant
worst-case time complexity for allocating a parition and
is far more efficient than using bitmaps.

Because ctU places the header in the first page of a
partition in P state, its first child partition will also contain
the same header, and as a result, this first child partition
must also be in P state; it cannot be in the Allocated
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state because the first page would need to be used for file
content. Therefore, a header page can contain the headers
of multiple partitions in the hierarchy. For example, in
Figure 4, the headers in the dashed circle are all stored
on the same page. This is achieved by partitioning the
header page into non-overlapping header spaces for each
level from L4-L9.

ctU does not partition L0–L3 further, as the 4KB
header space becomes much more wasteful for smaller
partition sizes. Instead, each L3 partition (2MB) can only
be partitioned as (1) 512 L0 child partitions, (2) 64 L1
child partitions, or (3) 8 L2 child paritions, as shown at
the bottom of Figure 4. As a result, there is only one
header in each L3 partition that is in state P, and it con-
tains a bitmap to indicate the status of each of its child
partitions, which can only be in either state A or E, but
not P.

Virtual Memory Allocation. During system initializa-
tion, ctU allocates a 1TB, empty (i.e., not backed) virtual
memory area (VMA) to accommodate two L9 partitions.
It does not restrict the starting address of this VMA, so it
can be anywhere in the virtual address space (as long as
it is aligned). If the PM size is larger than 512GB, then
the next level (L10) would be used, and an 8TB VMA
would be allocated. Note that subsequent virtual memory
allocations made from the kernel or processes will not
clash with ctU’s VMA, because the Linux kernel’s VMA
allocation will only allocate a VMA if it does not conflict
with existing VMAs.
TLB usage. ctFS does not use more TLB entries com-
pared to other file systems. In conventional (non-DAX)
file systems, the file data will be buffered in memory,
either in the file system’s buffer cache, or by the process
in the case of memory mapped I/O. Such buffering will
occupy TLB entries just as ctFS does, and the number of
entries used depend on the amount of data a process ac-
cesses. Ext4-DAX eliminates the buffer cache by directly
accessing the devives using statically mapped virtual ker-
nel addresses. However, this mapping still goes through
the page table [14] and hence still occupies TLB entries.
Therefore even compared to ext4-DAX, ctFS does not
use more TLB entries.

3.3 Kernel Subsystem Structure (ctK)

ctK manages the PPT. PPT is essentially identical to a
regular Linux 4-level DRAM page table, except (1) it
is persistent, and (2) it uses relative addresses for both
virtual and physical addresses. It uses relative addresses
because ctFS’s memory region may be mapped to dif-
ferent starting virtual addresses in different processes
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Figure 5: An example of pswap. The shaded entries in the
page tables are the ones used to map the two-page arrays A
and B. The red and blue page table entries are the ones that
are modified by pswap. Before pswap, A maps to the red pages
and B maps to the blue pages, whereas after pswap A maps to
blue pages and B maps to red pages. The last 39 bits of A and
B’s address are shown at the bottom.

due to Address Space Layout Randomization [6] [9], and
hardware reconfiguration could change PM’s starting
physical address. We also note that whereas each process
has its own DRAM page table, ctK has a single PPT that
contains the mapping of all virtual addresses in ctU’s
memory range (i.e., those inside the partitions). The PPT
cannot be accessed by the MMU, so mappings in the PPT
are used to populate entries in the DRAM page table on
demand as part of page fault handling.

ctK provides a pswap system call that atomically
swaps the mapping of two same-sized contiguous se-
quences of virtual pages in the PPT. It has the following
interface:

int pswap(void* A, void* B, unsigned int N,
int* flag);

A and B are the starting addresses of each page sequence,
and N is the number of pages in the two sequences. The
last parameter flag is an output parameter. Regardless
of its prior value, pswap will set *flag to 1 if and only
if the mappings are swapped successfully. ctU sets flag
to point to a variable in the redo log stored on PM and
uses it to decide whether it needs to redo the pswap upon
crash recovery. pswap also invalidates all related DRAM
page table mappings (and shoots them down in TLBs), as
we found it is more efficient than updating the mappings.

The pswap() system call guarantees crash consis-
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tency: it is atomic, and its result is durable as it operates
on PPT. Moreover, concurrent pswap() operations oc-
cur as if they are serialized, which guarantees isolation
between multiple threads and processes. 5

pswap avoids swapping every target entry in the PTEs
(the last level page table) of the PPT whenever possible.
Figure 5 shows an example where pswap needs to swap
two sequences of pages - A and B - each containing
262,658 (512×512+512+2) pages. pswap only needs
to swap 4 pairs of page table entries or directories (as
shown in red and blue colors in Figure 5), as all 262,658
pages are covered by a single PUD entry (covering 512×
512 pages), a single PMD entry (covering 512 pages),
and two PTE entries (covering 2 pages).
pswap() can only perform this optimization if the

starting addresses of the two page sequences are swap-
aligned. We first define the reach of a page table level to
be the size of the memory region that each entry maps
— e.g., the reach of PTE, PMD, PUD, and PGD are 4K
(bytes), 2M, 1G, and 512G, respectively. Given two con-
tiguous sequences of pages in virtual memory that start
at addresses A and B, and given that each sequence spans
a memory region of size S, let L be the highest level in
the page table such that reach(L)≤ S. We then say that
the two page sequences A and B are swap-aligned if and
only if:

A mod reach(L) = B mod reach(L)

In the example of Figure 5, L is PUD, and reach(L) is 1G
(230). A mod reach(L) equals B mod reach(L) because
the last 30 bits of A and B are the same.

Figure 6 shows the performance of pswap as a function
of the number of pages that are swapped. We compare
it with the performance of the same swap implemented
with memcpy that approximates the use of conventional
write ahead or redo logging that requires copying data
twice. The pswap curve shows a wave-like pattern: as the

5pswap uses conventional redo log to ensure crash consistency.

read (fd, buf, size)

address

offset

target   

memcpy(buf, target, size)
Metadata

inode +

Figure 7: Implementing read() on ctFS.

number of pages increases, pswap latency first increases
and then drops back as soon as it can swap one entry
in a higher-level page table instead of 512 entries in the
lower-level table. The two drop points in Figure 6 are
when N is 512 (mapped by a single PMD entry) and
262,144 (mapped by a single PUD entry). In comparison,
memcpy’s latency increases linearly with the number of
pages. When N is 1,048,576 (representing 4GB of mem-
ory), memcpy takes 2.2 seconds, whereas pswap takes
only 62µs. However, when N is less than 4, memcpy is
more efficient than pswap.

Concurrent invocations to pswap() will only be serial-
ized if they operate on overlapping memory ranges. We
use a binary search tree to store the ranges of concurrent,
on-going pswap()s.

3.4 File System Operations
Since files are contiguous in virtual memory, read and
write operations require special treatment. Other opera-
tions that operate on metadata (i.e., directories and meta-
data in inodes) are similar to those on conventional file
systems.

Figure 7 shows how read() is implemented in ctFS.
Given the file offset (from the file descriptor), ctU lo-
cates the inode, and further locates the starting address
of the file. It adds offset to this starting address, which
is the virtual address of the data to be read. Then, it uses
a single memcpy() to copy the data to the user buffer. All
of these operations are performed by the user space ctU.

ctFS allocates a partition on-demand on the first write
to a file. It always allocates the smallest partition that is
big enough to store the write. Later when the file size
increases beyond the partition size, ctFS will “upgrade”
it to the next higher level partition that can accommodate
the file. Also recall that ctFS supports two modes, where
strict mode offers atomic writes. Consequently there are
two special write cases: one that triggers an upgrade and
one that requires atomicity. In the normal case where
neither applies, write does not differ from read. Both
of the special cases use pswap, and in both cases ctU
guarantees that the starting addresses are swap-aligned.
Next, we explain each case.

Write with Upgrade. When a write (append) triggers an
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Figure 8: An example of atomic write using pswap. The
yellow color indicates the original file content whereas green
indicates new data to be written.

upgrade, ctFS will first relocate the file to a new parti-
tion before applying the write. It also maintains a redo
log to ensure crash consistency of the upgrade. Say a
write requires upgrading from a level L partition, P0, to
a level M partition, P1 (where M > L). ctU first allocates
P1 in virtual memory. It then calls pswap (P0, P1, N,
flag), where N is the number of pages in the level L
partition. Note that right after the partition allocation, P1
does not map to any PM pages; therefore, after pswap(),
P1 points to the PM pages that used to map to P0, and P0
is no longer mapped. Both steps will first be recorded in
the redo log, and flag is located in the redo log, so if a
crash occurs ctU knows whether pswap had completed
successfully or not. If a crash happens before pswap com-
pletes, ctU only needs to free P1. If a crash happens right
after pswap has completed, then ctU will continue to fin-
ish the upgrade by changing the starting address in the
file’s inode to P1. Partition “downgrades” (e.g., when the
file is truncated) are handled in a similar manner.

Atomic Write. In strict mode, ctFS handles an atomic
write using a write-and-swap protocol. Assume a write
that writes N bytes to offset O of a file in a level L parti-
tion, P0. Figure 8 shows an example, where O is not page
aligned, and N spans three pages where the last page, p3,
has not been accessed and is hence not mapped to PM.
ctU carries out the following two steps.

Step 1: ctU first allocates a staging partition, P1, that
is also at level L. It then writes the new data to the same
offset O in P1. If O is not page-aligned, as is the case in
Figure 8, ctU copies the data fragment between the start
of the first page and O in P0 to P1, and similarly, it will
copy any fragment data at the end if O+N is not page
aligned. Note that ctU does not need to copy any pages
that are not modified.

Step 2: ctU invokes pswap() to atomically swap the
page sequence in P0 with its corresponding sequence in

P1. In Figure 8, it pswaps pages p1–p3 in partition P0
with pages p5–p7 in partition P1.

To handle crash consistency, ctU uses the redo log
that records the status of each step, and the flag used in
pswap() is located on this redo log.

3.5 Other Optimizations

Huge Page. ctK allocates huge pages (2MB pages) when-
ever possible. Because the address of any partition is
aligned with the partition size, all files that reside in level
L3 or above benefit from huge pages. However, when ctU
performs pswap with small N, huge pages may have to be
broken into base pages, adding extra overhead to pswap().
Note that pswap can apply its optimization whenever the
page sequences are swap-aligned regardless of whether
they are huge pages or not. Huge pages are enabled in our
evaluation unless otherwise noted. In §4.1.3, we evaluate
and explain the impact of huge pages in details.
Optimized append in strict mode. ctFS performs an
optimization on append operations by exploring the in-
variant between a file’s metadata and its data [4, 12].
Instead of using the write-and-swap protocol, it directly
appends the new data and then changes the file size in
the inode. If a crash occurs before the append completes,
the file will be consistent, as the file size still has the old
value, presenting a view as if the append did not occurr.
Instruction choices in memcpy(). We experimented
with different memory copy strategies (e.g. repeat instruc-
tions, non-temporal instructions, cache flush) and found
that AVX512 [1] non-temporal 512-bit load and store
(VMOVDQU and MOVNTDQ) performed the best, re-
sulting in a 5%–20% performance gain over what SplitFS
and ext4-DAX uses.

3.6 Protection

For protection, ctFS’s exloits both Intel Memory Protec-
tion Keys (MPK) and regular page table protection. We
first explain Intel MPK before discussing ctFS’s design.
Background on Intel MPK. MPK allows each memory
page to be tagged with one of 16 protection keys, K0, K1,
..., K15. Four unused bits in each page table entry are
used to store the key for the page. Each key’s protection
rights can be changed from user space, using a special
instruction. For example, key K0’s right can be set to no
access, K1 can be set to read only, and K2 can be set to
read/write. The access rights associated with each key are
stored in a register called PKRU. Hence the access rights
are thread-local (as each core has its own PKRU register).

A key advantage of using MPK over the conventional
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mprotect() system call is performance. While assign-
ing a key to a page still requires a system call, set-
ting/changing the access permission associated with each
key is a user-space instruction that only consumes around
20 cycles [33].
Protection in ctFS. ctFS tags each page within ctFS’s
memory region with a single MPK key, which we refer
to as NONE. When a ctFS operation is invoked, ctU sets
the access right for the NONE key to be read/write, and it
resets the access right back to no access before returning.
Therefore, any access to ctFS’s memory space from out-
side of ctFS will be prevented. If multiple processes with
different access rights access the same file concurrently,
ctFS can protect the same page differently for different
processes as the access rights for the same key, NONE,
can be set differently on different cores.

This protection strategy protects ctFS against unin-
tentional bugs. For example, a dangling pointer in an
application won’t be able to accidentally corrupt the file
system, given that changing the rights associated with the
key requires a special instruction. However, this design
does not protect against intentional attacks. For example,
a malicious application could intentionally set the rights
for the NONE key to be read/write and modify the file
system in an arbitrary manner.

4 Evaluation

In this section, we present the results of evaluating ctFS
against other PM file systems (FS) using both real-world
applications and microbenchmarks. The server and OS
settings used in our evaluation are as described in §2.

4.1 Micro-benchmarks

We evaluate the performance of ctFS and compare it
with that of SplitFS, ext4-DAX, PMFS, and NOVA, us-
ing the same 6 micro-benchmarks as in §2. We repeat
each experiment 10 times and report the average. In all
experiments, ctFS uses demand paging and does not pre-
populate any pages in order to accentuate the maximum
page fault handling overhead in ctFS. SplitFS prefaults
staging files at its system bootup time so there are no
page faults on those files.

4.1.1 Append

Append is particularly relevant as the append operation
is the dominant file system operation of many applica-
tion [21], and it is the operation on which SplitFS shows
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Figure 9: Runtime of Append normalized to the runtime of
ctFS. The different file system and configuration combinations
are grouped by the crash consistency guarantees on file data.

the most significant speedup. Figure 9 shows the perfor-
mance of Append.

ctFS achieves a 7.7x speedup against ext4-DAX for
Append in sync mode. 45% of ext4-DAX’s runtime is in
building and searching indices as it has to allocate many
small extents. Even if we deduct kernel trap overhead
(shown in Figure 1) from the runtimes of ext4, ctFS-sync
still achieves an 7.0x speedup. This shows the benefit of
using contiguous file allocation, regardless of whether it
is a user-space or kernel-space implementation.

While SplitFS is able to significantly reduce the in-
dexing time by using memory-mapped I/O, ctFS still
achieves 3.1x speedup over SplitFS in sync mode. Specif-
ically, SplitFS takes 7.2s longer than ctFS to run Append,
and 92% (6.62s) of that time comes from indexing. The
other 8% of the speedup comes from ctFS’s improved I/O
performance. In contrast, ctFS successfully eliminates
most of the overhead of file indexing, primarily by hav-
ing the MMU perform the indexing in hardware during
memory page translation. (See Figure 11 for a break-
down of ctFS’s runtime.) It only spends 24ms in page
fault handling, compared to SplitFS’s 4.4s of page fault
handling (§2). Even though ctFS has a similar number of
page faults (525,490) as SplitFS (578,260), SplitFS trig-
gers page faults whose handling requires file indexing,
whereas all of ctFS’s page faults are minor faults.

For the Append workload, whether running in sync or
strict mode does not affect ctFS performance because of
ctFS’s append optimizations (§3.5); ctFS achieves 7.66x
speedup over SplitFS in strict mode.

Compared to NOVA’s sync mode and pmfs, ctFS-sync
achieves 4.4x and 3.87x speedups, respectively.

4.1.2 Other Micro-benchmarks

Figure 10 shows ctFS’s performance compared to that of
ext4-DAX and SplitFS for the other 5 microbenchmarks.
In sync mode, ctFS achieves an average speedup of
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Figure 11: ctFS overhead breakdown under four config-
uration combinations: with huge pages enabled and disabled,
while running in sync and strict mode.

2.17x, 1.97x, 2.43X, 2.97X, against ext4-DAX, SplitFS-
sync, pmfs, and NOVA, respectively. In strict mode, ctFS
achieves an average speedup of 1.46x and 1.59X against
SplitFS-strict and NOVA-strict.

4.1.3 ctFS Runtime Breakdowns

Figure 11 shows the breakdown of ctFS’s runtime on
each test while running in sync and strict mode, and with
huge pages enabled and disabled. We first consider the
difference between ctFS’s sync and strict modes. Recall
that ctFS invokes pswap at the end of file overwrite oper-
ations under strict mode. This affects both RW and SW.
In RW, 68% of the run time of ctFS-strict is spent on
pswap. This test represents the worst-case scenario for
ctFS-strict, as each write triggers a pswap at the smallest
granularity (4KB page): pswap cannot perform any op-
timizations when swapping the entries in the last-level
page table, and it is foreced to break up the huge pages
into base pages.6 In comparison, while ctFS also needs
to invoke pswap in SW when running in strict mode, be-

6Even then, ctFS outperforms SplitFS and NOVA in strict mode as
shown in Figure 10. SplitFS also uses huge pages, so that it also needs
to break up huge pages, which makes up 37.6% of its runtime.

cause pswap is only invoked once at the end, it incurs
negligible overhead (5.7ms).

The figure also shows the difference between having
huge pages enabled and disabled. With huge pages en-
abled, ctFS indeed eliminates much of the indexing over-
head, as all workloads are bottlenecked by I/O, except for
the RW workload when ctFS runs in strict mode. With
huge pages disabled, both the persistent page table (PPT)
and the DRAM page table have 512x more entries, and
each TLB entry now only maps 4KB instead of 2MB.
For SW, RW, SR, and RR, the overhead after disabling
huge pages is negligible in both sync and strict modes (at
most 3.4% in SR-strict). This indicates that the overhead
of additional TLB misses is negligible. In RR, for exam-
ple, there are 512x more TLB misses with huge pages
disabled, yet this still results in negligible overhead. Note
that the number of page faults remains the same even
when huge pages are disabled, because ctK copies 512
page table mappings (or the mappings for a 2MB region)
from the PPT to the DRAM page tables on each page
fault. In comparison, the large overheads in Append and
SWE come from allocating physical PM page frames and
building the persistent page tables (PPT), because with
only base pages, the PPT contains 512x more entries.

Interestingly, in RW, disabling huge pages results in
a 2x speedup for ctFS-strict. This is because with huge
pages enabled, every write, which is at the granularity of
a base page (4KB), will trigger a pswap that breaks the
huge page and causes TLB shootdowns. In comparison,
when huge pages are disabled, there is no need to break
up huge pages.

4.2 Real-world Applications

We evaluated ctFS using LevelDB [28] and
RocksDB [35], both of which are persistent key-
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A Update heavy: 50/50 read/write mix
B Read mostly: 95/5 read/write mix
C Read only: 100% read
D Read latest: new records are inserted, and the most

recently inserted records are read the most
E Short ranges: short ranges of records are queried, in-

stead of individual records
F Read-modify-write: read a record, modify it, and write

back the changes

Table 2: YCSB runs and their characteristics.

value stores. We drove LevelDB with the Yahoo! Cloud
Serving Benchmark (YCSB) [5]. YCSB includes six
different key-value workloads that are described in
Table 2. We drove RocksDB using RocksDB’s built-in
benchmark db_bench with three workloads: random fill,
which creates and adds key-value pairs; random read,
which returns the values of given keys; and random
update, which updates the values of given keys. Each
of these tests carries out 5 million operations. Both
LevelDB and RocksDB use pwrite and pread instead of
memory-mapped I/O.

The LevelDB workloads demonstrate ctFS’s perfor-
mance advantage achieved by removing the indexing
overheads in a real world application. The RocksDB
workloads show that it is feasible and beneficial to re-
place write-ahead logs (WALs) with ctFS’s atomic writes.

LevelDB. Figure 12 shows the performance of different
PM file systems on LevelDB using the YCSB workloads.
ctFS outperforms all the other file systems in each of the
workloads when run at comparable consistency levels.

ctFS achieves the most significant improvement in
throughput under write-heavy workloads: Load A and

E and Run A, B, F. 7 Among these write-heavy work-
loads, ctFS-sync’s throughput is 1.64x the throughput
of SplitFS-sync on average, with 1.82x the throughput
in the best-case (under Load E). In strict mode, ctFS’s
throughput is 1.30x higher than that of SplitFS on aver-
age, with 1.50x higher in the best-case (under Load A).
Compared with ext4-DAX, ctFS-sync has 2.88x higher
throughput on average and 3.62x higher throughput in
the best case (under Run A).

On read-heavy workloads, ctFS’s thoughtput is still
higher than that of the other file systems, but by a smaller
amount. It achieves an average of 1.25x - 1.36x higher
throughput over ext4-DAX. As for SplitFS, recall from
our microbenchmarks that it spends more time on index-
ing in random reads than sequential reads. This is why
ctFS achieves better throughput than SplitFS in Run B, C,
and D, which are dominated by random reads; e.g., ctFS’s
throughput is 1.18x and 1.25x higher than that of SplitFS
under Run D when run in either sync or strict mode. For
Run E, which is dominated by sequential reads, cfFS has
1.02x and 1.22x higher throughput.

By studying the breakdowns of ext4-DAX’s time con-
sumption, we observe that indexing time takes up 19.6%,
25%, and 24.5% of the total runtime of LoadA, RunA,
and LoadE, respectively. Meanwhile, ctFS only spends
a maximum of 0.2% on indexing overhead (in handling
page faults) across all workloads. Hence, indexing ac-
counts for 39.3%, 49.9%, and 46.4% of ctFS’s speedup
over ext4-DAX on these three workloads. Another 22.5%,
36.4%, and 33% of ctFS’s speedups arise from a more
efficient I/O data path over ext4-DAX.

7Load A and Load E create the respective key value stores that are
used by the six YCSB runs.
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Figure 13: RocksDB performance.

SplitFS Ext4-
sync strict DAX ctFS

Bootstrap (µs) 1.4×106 1.1×106 0 5
open (create) (µs) 40 40 15 2

open (existing) (µs) 4 10 4 2
unlink (µs) 32 43 31 1.6

DRAM usage (MB) 198 572 N/A 0.52
Space available

230.7 230.7 248.1
after format (GB)
Space used after

5486 5337 5378
YCSB LoadA (MB)

Table 3: Metadata operation and resource overhead. There
is no difference on between sync and strict modes for ctFS.

RocksDB. We ran our RocksDB experiments two con-
figurations: strict and relaxed. With strict, where data
consistency is guaranteed, ext4-DAX is run with WAL
enabled, and ctFS is run in strict mode (ctFS-strict) but
with WAL disabled. With relaxed, where crash consis-
tency is not guaranteed, both ext4-DAX and ctFS-sync
are run with WAL disabled.

With strict, ctFS-strict has 1.60x, 1.22x and 1.3x the
throughput of ext4-DAX for the Random Fill test, the
Random Read test and the Random Update test, respec-
tively. This demonstrates the feasibility of replacing
WALs in applications with atomic writes in ctFS, as do-
ing so not only improves performance but also simplifies
application logic.

With relaxed, ctFS-sync is on par with ext4-DAX with
the Random Fill test, but has 1.25x and 1.19x the through-
put for the Random Read and Random Update test.

4.3 Resource Usage & Other Operations

Table 3 shows the cost of several frequently used file sys-
tem operations, as well as DRAM overhead after filesys-
tem initialization and space efficiency for ctFS, SplitFS
and Ext4-DAX. Notably, SplitFS spends over one sec-
ond to initialize because it needs to build the U-Split
mapping table, create and mmap all the staging files. Simi-
larly, because of the mapping table, SplitFS uses 3 orders
of magnitude more DRAM comparing with ctFS. The
DRAM usage does not change significantly for SplitFS
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Figure 14: Scalability of ctFS versus ext4-DAX and SplitFS
on LevelDB running YCSB Run A in terms of throughput.

and ctFS when running workloads as both of them pri-
marily operate on PM.

In terms of space efficiency, ctFS has 7.52% more
available space than ext4-DAX and SplitFS when newly
formatted. In fact, ctFS only incurs 10MB memory over-
head for newly formated 248.06GB space. This is be-
cause ctFS allocates inodes and inode bitmaps on de-
mand. After running Load A in the YCSB test on Lev-
elDB, ctFS occupies 0.78% more space than ext4-DAX
and 2% less than SplitFS.

4.4 Scalability

The design of the cfFS’s concurrency model is the same
as that of ext4-DAX. Figure 14 shows ctFS’s scalability
compared with ext4-DAX, running YCSB Run A on
LevelDB. All file systems scale similarly. Performance
of ctFS peaks at 6 worker threads in a 8 core machine
(as two additional threads are spawned by LevelDB for
other purpose).

5 Limitations and Discussion

The design of ctFS presents two unique trade-offs. First,
compared with an in-kernel file system, ctFS’s user-space
file system design trades protection for performance.
While ctFS is not suitable as a general purpose file sys-
tem, it presents a (rather extreme) trade-off point for data
center applications to squeeze the most out of the hard-
ware, as in data center environments each machine runs
only a small number of applications that often trust each
other, and protection against intentional attacks is ensured
at the boundary of machines or data centers. Furthermore,
ctFS can be used as an application’s private file system,
i.e., where one or several applications own one instance
of ctFS.

Second, ctFS’s design is also at the expense of internal
fragmentation within each fixed-sized partition in the vir-
tual memory address space. We argue this is acceptable
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given the size of today’s virtual address spaces. Both In-
tel and Linux now support 57 bits virtual addresses with
5-level paging, enabling a 128PB virtual address space.
In comparison, the maximum size of Intel Optane DC
that can be supported by a server today is 6TB [27]. Note
that ctFS does not waste physical storage space as any
unused regions of a partition are not mapped to physical
memory. In addition, ctFS’s allocation algorithm is simi-
lar to the buddy memory allocator, and hence, the internal
fragmentation problem is fundamentally inline with that
of modern size-segregated memory allocators like jemal-
loc [10], TCMalloc [13], and Go’s runtime [16]; the wide
adoption of these allocators further suggests that internal
fragmentation is an acceptable trade-off.

6 Related Work

To the best of our knowledge, this paper is the first to
propose a complete file system that supports contiguous
files with a detailed design and evaluation.
SCMFS. SCMFS [39] proposed the high-level idea of
allocating each file contiguously in the virtual address
space. However, its design is only at a conceptual level.
How files are allocated in the virtual memory space is
not clearly described. Specifically, it does not address file
resizing and external fragmentation, the two fundamental
challenges faced by contiguous files. It is unclear what
happens if one file expands into the range of another
file. Finally, SCMFS’s implementation and evaluation
are entirely based on simulation.
File systems for PM. A number of file systems were
designed to bypass the kernel. Aerie [37], PMFS [8],
Strata [25], SplitFS [21], and ZoFS [7] all allow the user
to directly access file data through a user-space compo-
nent; PMFS, SplitFS, and ZoFS map the metadata and
data in application’s virtual memory space. In Aerie,
metadata updates and locking requests must be sent via
IPC to be processed by a trusted system service. Strata
logs updates in userspace which are then digested in the
kernel. ZoFS strives to provide security by only map-
ping the metadata to the users who have access permis-
sion, and only allows trusted library code to modify the
metadata by exploiting MPK memory protection keys.
KEVIN [24], a file system for NAND SSD instead of PM,
provides an FPGA implementation of the log-structured
merge tree, and ports file operations on top.

All of the file systems mentioned above still use a
tree-structured index for file indexing. BetrFS proposes
a Bε-tree that is a write-optimized variant B-tree [20].
HashFS [30] uses a global fixed-sized hash table for in-
dexing. However, it still suffers software indexing over-

head, and its performance is no better when compared
to SplitFS. KUCO [3] offloads some indexing from the
kernel to the userspace through “collaborative indexing”,
to improve scalability. However, it still uses traditional
ext2-style block mapping. In comparison, ctFS uses a
contiguous file design that obsoletes file indexing.
Crash consistency on file data. Conventional write-
ahead logging/journaling [15, 17, 38] typically requires
writing the data twice: first to journal before updating
the target file. The cost of double-write for data may be
large, and several mechanisms that avoid data copying
have been proposed [2, 4, 18, 26, 29]. Similar to pswap,
SplitFS’s relink is used to efficiently provide atomic
writes without copying the data to the journal. pswap
differs from relink in that the former swaps the virtual-
to-physical memory mapping, whereas relink changes
the mapping within ext4-DAX’s extent trees. Failure
atomic msync [32] atomically commits changes to a
memory mapped file by using ext4’s journalling func-
tion. SHARE [31] atomically lets pairs of pages share
the same physical page in the flash storage. It does not
explore the page table hierarchy for optimization.

SubZero [22] proposed a patch() function that atom-
ically overwrites the destination region of a mmap file
with the content of the source region. pswap is different
in a few ways. First, pswap swaps the mapping whereas
patch discards the content in the source region. In addi-
tion, pswap leverages the page table hierarchy to achieve
significant speedup. Finally, pswap is mainly used for fast
cross-partition expansion and shrink, whereas patch is
only used for atomic writes.

7 Concluding Remarks

This paper proposes ctFS, a persistent memory file sys-
tem which offloads file system indexing to the memory
management hardware by keeping files contiguous in
virtual memory. Our evaluation shows ctFS can outper-
form ext4-DAX and SplitFS by up to 7.7x and 3.1x, and
improve YCSB throughputs by up to 3.6x and 1.8x.
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Abstract
Persistent memory (PM) disaggregation improves the re-
source utilization and failure isolation to build a scalable and
cost-effective remote memory pool. However, due to offering
limited computing power and overlooking the bandwidth and
persistence properties of real PMs, existing distributed trans-
action schemes, which are designed for legacy DRAM-based
monolithic servers, fail to efficiently work in the disaggre-
gated PM architecture. In this paper, we propose FORD, a
Fast One-sided RDMA-based Distributed transaction system.
FORD thoroughly leverages one-sided RDMA to handle trans-
actions for bypassing the remote CPU in PM pool. To reduce
the round trips, FORD batches the read and lock operations
into one request to eliminate extra locking and validations.
To accelerate the transaction commit, FORD updates all the
remote replicas in a single round trip with parallel undo log-
ging and data visibility control. Moreover, considering the
limited PM bandwidth, FORD enables the backup replicas
to be read to alleviate the load on the primary replicas, thus
improving the throughput. To efficiently guarantee the remote
data persistency in the PM pool, FORD selectively flushes
data to the backup replicas to mitigate the network overheads.
Experimental results demonstrate that FORD improves the
transaction throughput by up to 2.3× and reduces the latency
by up to 74.3% compared with the state-of-the-art systems.

1 Introduction
Memory disaggregation, which decouples the compute and
memory resources from the traditional monolithic servers into
independent compute and memory pools, has gained exten-
sive interests in both industry [11, 14, 42] and academia [1,
20, 47, 57, 72]. By efficient resource pooling, the resource
utilization, elasticity, failure isolation, and heterogeneity are
significantly improved in datacenters [45]. The compute pool
runs programs with a small DRAM buffer, and the memory
pool stores application data with weak compute units only for
memory allocations and interconnections [72]. Fast networks,
e.g., RDMA, are generally adopted to connect the compute
and memory pools [57]. Recently, the persistent memory (PM)

is available on the market [12], which exhibits non-volatility
and low latency with high density and low costs [67]. Hence,
the efficient use of PM becomes important to build a persis-
tent, large, and cost-effective disaggregated PM pool [54].

To ensure that the data are atomically and consistently
accessed in the PM pool, the compute pool is required to
leverage distributed transactions (dtxns) to read/write the re-
mote data. However, existing RDMA-based dtxn systems are
designed for traditional monolithic servers, in which each
server hosts the CPU and DRAM resources. These systems
fail to work on the disaggregated PM, since the PM pool does
not contain CPUs to frequently handle extensive computa-
tion tasks during dtxn processing, e.g., concurrency control
in HTM [9, 61], data retrieving [60], locking [19, 29, 44], and
busy buffer polling [18]. Moreover, legacy systems do not
consider the bandwidth and persistence properties of real PM,
leading to low throughputs and inconsistent remote writes.
To run dtxns on the disaggregated PM, an intuitive solution
is to leverage one-sided RDMA to bypass the CPU in PM
pool. However, we observe that using one-sided RDMA in
existing dtxn systems incurs substantial round trips and access
contentions, which significantly decrease the performance. It
is non-trivial to design a high-performance dtxn system for
the disaggregated PM due to the following challenges:

1) Long-latency processing. Legacy systems adopt the
optimistic concurrency control (OCC) [32] to serialize dtxns,
and the primary-backup replication for high availability. OCC
is efficient for read-only dtxns due to no locks on read-only
data. However, for the read-write dtxns, the data in read-write
set consume 3 round trips to be read, locked, and validated
before writing remote replicas, thus heavily increasing the
latency. Furthermore, to ensure that the dtxn can roll forward
once the primary fails, prior designs consume 2 round trips to
write remote replicas, i.e., writing redo logs to backups and
updating primaries, which however delays the dtxn commit.

2) Limited PM bandwidth on the primary. When using
the primary-backup replication, legacy systems only allow
the primary to be read, since the newest data in backups are
still stored in redo logs after the dtxn commits. Hence, all the
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RDMA read/write requests are issued to the primary to be
handled. However, the PM DIMM suffers from lower write
bandwidth (e.g., 12.9 GB/s of six interleaved 256GB PM
DIMMs [67]) than recent RDMA-capable NICs or RNICs
(e.g., 25GB/s for a dual-port ConnectX-5 RNIC [52]). The
substantial RDMA reads saturate PM bandwidth and further
block write requests. As a result, the primary’s PM becomes
a performance bottleneck, which decreases the throughput.

3) Lack of remote persistency guarantee. Existing DRAM-
based systems overlook the persistence property of PM. When
issuing RDMA writes to the PM pool, the data are cached
in RNIC but not immediately persisted to PM. Hence, the
remote persistency [17, 23] is not guaranteed, which possibly
causes the remote data to be lost or partially updated once a
crash occurs in the PM pool, leading to data inconsistency.
Therefore, it is important to ensure the remote persistency in
dtxn processing with low network overheads.

Existing studies do not efficiently address these challenges
on disaggregated PM. FaSST [29] uses the remote proce-
dure call (RPC) to reduce round trips, but RPC requires the
CPU in PM pool to frequently query, lock and update data.
DrTM+H [60] employs hybrid RDMA verbs to improve per-
formance, but the two-sided RDMA fails to work in the PM
pool due to consuming the remote CPU. NAM-DB [68] de-
couples compute and storage servers to run dtxns. It adopts
snapshot isolation and operation logs without checkpointing
to disks. The data are not replicated, thus hurting the availabil-
ity. After commit, the inputs, descriptions, and timestamps of
dtxns are recorded in operation logs. Once the operation logs
fill up the memory, the system cannot serve writes. NAM-DB
works on DRAM and disks, which is not designed for PM.

To tackle the above challenges, we propose FORD, a Fast
One-sided RDMA-based Distributed transaction system. Un-
like prior systems, FORD fully leverages one-sided RDMA
to process dtxns for the new disaggregated PM architecture
with efficient round trip reductions and PM-conscious designs.
Specifically, this paper makes the following contributions:

• Hitchhiked Locking and Coalescent Commit to reduce
latency. FORD efficiently attaches the locks with read re-
quests in a hitchhiker manner, to read remote data that belong
to the read-write set in a single round trip during the dtxn
execution phase. Hence, it is unnecessary to consume extra
round trips for locking and validations after the execution
phase (§ 3.2). Furthermore, FORD leverages a coalescent
commit scheme to in-place update all the primaries and back-
ups in a single round trip to accelerate commit. To ensure that
the dtxn can roll back once the replica crashes, FORD writes
undo logs in parallel with the dtxn execution. To prevent the
updated data from being partially read, FORD temporarily
marks the data to be invisible in the commit round trip. After
commit, the data are made visible in the background, which
consumes at most 0.5 round trip time (§ 3.3).

• Backup-enabled Read to release the PM bandwidth
on the primary replicas. FORD allows the backups to serve

the read requests, thus freeing up the PM bandwidth in the
primary to serve other requests. Since the backups are in-place
updated by using our coalescent commit scheme, the compute
pool can easily read the newest data from the backups after
the dtxn commits. By balancing the load on the primaries and
backups, FORD eliminates the performance bottleneck on the
primary to improve the throughput (§ 3.4).

• Selective Remote Flush to guarantee remote per-
sistency with low overheads. FORD leverages one-sided
RDMA flush schemes to persist the written data from remote
RNIC cache to PM for remote persistency. However, flushing
each RDMA WRITE to each remote replica incurs substantial
round trips. To avoid this, FORD selectively issues the flushes
only after the final write and to the backups. Since the ( f +1)-
way primary-backup replication tolerates at most f replica
failures, once the updates are persistently stored in the f
backups, the remote persistency is guaranteed. Hence, FORD
significantly reduces the remote flush operations (§ 3.5).

2 Background and Motivation
2.1 Disaggregated Persistent Memory
Traditional datacenters consist of a collection of monolithic
servers, each of which hosts compute units and memory mod-
ules. However, such an architecture suffers from low resource
utilization, poor elasticity, and coarse failure domain [57]. For
example, even if only more CPU cores are needed, we have to
add more servers that waste the memory/storage capacities.

To address these drawbacks, memory disaggregation de-
couples the compute and memory resources from monolithic
servers to independent and RDMA-connected resource pools,
in which each compute and memory pool is flexibly deployed
and scaled, thus improving the resource utilization, elasticity,
and failure isolation [72]. The compute pool contains substan-
tial compute blades (e.g., CPU cores) to execute applications
with a small memory as cache. The memory pool consists
of many memory blades (e.g., DRAM DIMMs) to store the
application data, and contain weak compute units only for
memory allocations and network interconnections [57, 72].

The memory pool does not guarantee data persistence when
using DRAM as memory blades. Plugging UPS [19, 61] adds
“non-volatility” on DRAM, which however increases the costs
and energy consumptions. If a power failure occurs, the data
in DRAM are flushed to disks with the support of UPS, which
incurs I/O overheads. Moreover, it is hard to increase the
capacity of one DRAM DIMM due to the limited scalabil-
ity [53], causing high costs to build a large memory pool.

Persistent memory (PM) addresses the above issues by pro-
viding persistence, high density (e.g., 512 GB/DIMM [13]),
and low costs (e.g., 39.2% $/GB of DRAM [3]), while ex-
hibiting DRAM-like latency [67]. As memory disaggregation
meets the needs of datacenters, disaggregating PM also enjoys
the same benefits [54]. Hence, we leverage PM as memory
blades to build the disaggregated persistent memory (DPM),
which forms a persistent and cost-effective memory pool.
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2.2 RDMA-based Distributed Transactions
Due to the benefits of bypassing remote CPU and tradi-
tional TCP/IP stack, recent studies leverage RDMA to run
distributed transactions (dtxns) [19, 29, 44, 60, 61]. Specifi-
cally, a coordinator is leveraged to read remote data, run dtxn
logic, and commit the updated data back to remote machines.
The concurrency control schemes, such as two-phase locking
(2PL) [4] and optimistic concurrency control (OCC) [32], are
used to serialize dtxns. 2PL acquires locks for all data before
execution, and releases all locks after commit. OCC does not
lock data during execution, but acquires (or releases) locks
for all the written data before (or after) commit. Many sys-
tems adopt OCC due to not locking the read-only data, which
benefits read-only dtxns. Moreover, the primary-backup repli-
cation (PBR) [33] is incorporated in dtxn processing for high
availability [19, 60, 70]. The ( f +1)-way PBR contains 1 pri-
mary and f backups for each data shard, and tolerates at most
f replica failures. We assume that the fail-stop failures [25]
can occur in arbitrary replicas at any time. The failed replica
can be quickly detected and recovered by using RDMA [19].
Like FaRM [18,19,44], DrTM [9,60,61] and FaSST [29], we
currently do not consider the byzantine failures [26].

Our paper focuses on the efficient use of OCC and PBR.
Fig. 1 presents how existing RDMA systems [19, 60] process
dtxns over OCC and PBR. Without loss of generality, we
use 2-way replication as an example. In general, there are 5
phases: 1) Execution. A coordinator reads the required data
(i.e., read set = {A, B, C}) from primaries and locally executes
a dtxn. The updated data (i.e., write set = {A, B}) are buffered
in a local cache. 2) Locking. After execution, the coordinator
locks the write set in primaries to serialize dtxns. If locking
fails, the coordinator aborts the dtxn. 3) Validation. If lock-
ing succeeds, the coordinator reads the data versions from
primaries to validate that the versions of read and write sets
are unchanged. If the validation fails, the coordinator aborts
the dtxn. 4) Commit backup. If the validation succeeds, the
coordinator sends redo logs to remote backups. 5) Commit pri-
mary. After receiving all ACKs from backups, the coordinator
updates and unlocks the primaries to commit the dtxn.

2.3 Distributed Transactions on DPM
System Model. In the disaggregated PM architecture, PM is
used as remote memory with persistence to durably store the
application data (including the primary and backups). The
PM pool contains a small number of weak compute units
only for memory allocations and RDMA connections during
the initialization [57, 72]. Afterwards, these compute units
are not used during the execution since they are too weak to
frequently and efficiently handle substantial tasks. Moreover,
there is no PM in the compute pool that uses RDMA to access
the data stored in remote PMs at the byte granularity (no
page swap). To ensure the atomicity, the compute pool uses
coordinators to run transactions that read/write data across
remote PMs. All transactions are hence distributed, and the
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Figure 1: Using OCC and PBR to process dtxns.

replication is accessed by multiple coordinators, which use
RDMA to commit each dtxn. Two-sided RDMA-based RPC
reduces the network round trips by consuming remote CPUs
to handle multiple operations in one round trip [29]. But the
PM pool does not contain CPUs to process requests during
execution, and RPC fails to work. Hence, the coordinators
need to use one-sided RDMA to bypass remote CPUs.

Legacy RDMA-based dtxn systems become inefficient on
disaggregated PM since they are not designed for memory
disaggregation and real PM. Directly using one-sided RDMA
will incur extensive round trips that decrease the performance:

1) As shown in Fig. 1, due to no locks in the execution
phase, the intersected data between read and write sets (i.e.,
read-write set = {A, B}) are operated in execution, locking, and
validation phases, which consume 3 round trip times (RTTs)
before updating the replicas. In general, the read-write set is
equal to the write set, since the data need to be read before
being written back [29]. Hence, these round trips widely exist
in read-write dtxns, causing extra latency. Moreover, if the
locking (or validation) fails, the dtxn aborts, which wastes
the execution (or execution+locking) phases. As a result, the
coordinator consumes useless round trips before processing
the next dtxn, thus decreasing the throughput. DrTM+H [60]
merges the locking and validation phases, but still consumes
an RTT to validate the read-write set.

2) Fig. 1 shows that existing systems [19, 29, 44, 60] con-
sume 2 RTTs to first write backups (redo logs) and then write
primaries (in-place updates) for high availability. By doing
so, the dtxn is ensured to commit after receiving all ACKs
from backups, since even if the primary fails, the new data
can be recovered from redo logs in the backup. In the mono-
lithic architecture, the coordinator can co-locate with a pri-
mary or backup, and hence the local commit can save an RTT.
But in the disaggregated architecture, the compute pool does
not store any replica. Hence, each read-write dtxn inevitably
spends 2 RTTs to commit, which incurs high latency.

Moreover, prior systems work on DRAM+SSD. FaRM [19]
and DrTM [61] regard the battery-backed DRAM as PM,
but the bandwidth and persistence properties of real PM are
overlooked, causing inefficiency on the disaggregated PM:

1) Prior systems [9, 19, 44, 60] do not allow backups to
serve read requests, since in backups the redo logs are asyn-
chronously migrated to the in-place locations after updating
the primary. Hence, only the primary can serve the latest data
after commit [44]. As a result, all requests from coordinators
are sent to the primary, causing a high load on the primary’s
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Figure 2: The throughput of RDMA writes to remote PM
when mixing different frequencies of RDMA reads, e.g., 0.5
means that 5 reads are mixed with every 10 writes.

PM. However, PM shows lower write bandwidth than the new
generations of RNICs, as mentioned before. We use 128GB
Optane PM DIMMs and ConnectX-5 RNIC with 100Gbps
InfiniBand to evaluate the throughput of RDMA writes when
mixing different frequencies of RDMA reads. As shown in
Fig. 2, when using 32 threads to concurrently issue read re-
quests, the write throughput decreases by up to 87.5%. Hence,
only using the primary to serve all requests makes the PM
bandwidth become a performance bottleneck.

2) Lack of remote persistency guarantee. Current RDMA
verbs have no persistency semantic [17]. For RDMA writes,
the data are first buffered in a volatile cache in remote RNIC,
which acknowledges (ACK) the writes once validated [59].
Hence, even if the client receives all ACKs, some data may not
be persisted to remote PM in case of a crash. This misleads
the client into considering that the data are durably stored
in the remote PM. Hence, it is important to guarantee the
remote persistency for RDMA writes, which is however not
considered in prior dtxn systems due to using DRAM.

In summary, state-of-the-art dtxn systems become ineffi-
cient on the disaggregated PM due to causing substantial
round trips and overlooking the PM properties. Our paper
proposes FORD, an efficient one-sided RDMA-based dtxn
processing system for the new disaggregated PM architecture.

3 The FORD Design
3.1 Overview
Fig. 3 shows the overview of FORD. The compute blades run
dtxns and access application data in PM blades. The com-
pute and PM pools communicate using connection managers
(CMs), which maintain the RDMA queue pair connections.

FORD’s workflow contains two stages. 1) The Init stage:
❶ The clients use the weak compute units in the PM pool (by
RPCs) to allocate and register memory for subsequent RDMA
operations [57, 72], and then load database (DB) tables. The
DB tables are organized by indexes (§ 4.1). ❷ The compute
and PM pools build RDMA connections using CMs. To calcu-
late the remote address for one-sided RDMA in the compute
pool, the CM in PM pool sends the metadata of all the indexes
to each compute blade. These metadata only consume several
MBs and are buffered in the compute pool (§ 4.1). Moreover,
each memory blade notifies the compute blade about the roles
(i.e., primary or backup) of its stored tables, so that the coordi-
nator can correctly access the data during processing. 2) The
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Figure 3: The system overview of FORD.

Run stage: ❸ The clients issue substantial dtxns to the com-
pute blades, which spawn threads as coordinators to leverage
our runtime library for fast dtxn processing. This library con-
tains our novel designs in § 3.2–§ 3.5, and exposes easy-to-use
interfaces (§ 4.2). ❹ Each coordinator uses one-sided RDMA
to process dtxns, which are serialized by locking and ver-
sion validations. Hence, there is no consistency requirement
among compute blades. ❺ After processing, the coordinators
report “tx_commited" or “tx_aborted" to clients. The Init
stage performs only once before the Run stage, and the weak
compute units in PM pool are not involved in the Run stage.

3.2 Hitchhiked Locking
As analyzed in § 2.3 and shown in Fig. 4a, prior works con-
sume 3 RTTs to separately read, lock, and validate data to
process a general read-write dtxn in Fig. 3.

To reduce the heavy round trips, FORD proposes a hitch-
hiked locking scheme to lock the data that belong to the read-
write set when reading them in the execution phase. The read
and write sets are known according to the transaction logic.
FORD sends the lock request together with the read request
in a hitchhiker manner. In this way, the read-write data do not
need to be locked and validated after execution, since other
transactions cannot modify the locked data. Therefore, the
total round trips of processing a dtxn are efficiently reduced.

Due to not using the CPUs in PM pool, it is hard to lock
and read data using one-sided RDMA in one round trip. To
address this issue, FORD adopts the doorbell mechanism [28]
to batch the RDMA CAS followed by an RDMA READ in
one request, which is delivered and ACKed in one round trip,
instead of being separately issued in two round trips, as shown
in Fig. 4b. The RDMA CAS first tries to lock the remote data,
and RDMA READ further fetches the data. Since the transport
mode is reliable connection, the two RDMA operations are
reliably delivered to the remote RNIC in order [51]. Then the
batched operations are executed by RNIC as the delivering
order to ensure correctness. After receiving the ACK of the
batched request, the coordinator checks whether the locking
is successful by comparing the return value of RDMA CAS
with the previously sent lock value, i.e., only equality means
a success. If the locking fails, the coordinator aborts the dtxn
and unlocks the previously locked data to avoid deadlocks.
Fig. 4c shows our hitchhiked locking scheme, which locks
and reads the read-write data (e.g., {A, B}) using one-sided
RDMA in one round trip, thus reducing the latency.
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Our hitchhiked locking is different from 2PL, which locks
all the data before execution. FORD still maintains the opti-
mistic feature of OCC to avoid contentions for the data that
are only read. Specifically, the read-only data (e.g., data C in
Fig. 4c) are not locked in the execution phase, and the locked
read-write data can still be read by other coordinators (but
cannot be locked). There is a validation phase to guarantee
the version correctness for the read-only data. If a dtxn does
not have the read-only data, the validation is eliminated.

Enabling hitchhiked locking requires remote data addresses
for one-sided RDMA. FORD leverages a hash indexing
scheme for the coordinator to compute the remote address
of a bucket and read it (§ 4.1). Due to hash collisions, it is
hard to accurately lock the slot in a remote bucket at the first
read. However, directly locking the entire bucket prevents
other coordinators from locking different slots in the same
bucket, causing unnecessary contentions. Hence, the hitch-
hiked locking is disabled when the data are first read. After
reading, the coordinator obtains the remote data addresses
and buffers them in its local cache. Each time the previous
data are read again, the local cache provides the addresses to
enable hitchhiked locking. If some remote data addresses in
the PM pool are changed by a coordinator (e.g., some data are
deleted and then inserted to different places), another coordi-
nator can easily discover that its buffered addresses become
stale, since the key of the fetched data mismatches the queried
key. In this case, the coordinator re-reads the bucket to obtain
the correct data and updates its buffered addresses.

Our hitchhiked locking is different from: 1) FaRM [18, 19,
44] and DrTM+H [60], that consume a dedicated RTT to lock
data. 2) DrTM+R [9], that exclusively locks all the data in the
read and write sets. 3) FaSST [29], that uses RPC to lock data,
which fails to work on the disaggregated memory. Unlike
FaSST, FORD leverages one-sided RDMA to read and lock
data in one round trip. Hitchhiked locking does not lengthen
the lock duration due to eliminating the locking and validation
phases for the read-write data. In the above systems that sup-
port OCC and primary-backup replication, we summarize the
lock duration: 1) FaRM [18,19,44]. 4 phases = lock + validate
+ commit backup + commit primary&unlock. 2) FaSST [29].
5 phases = lock + validate + log + commit backup + com-
mit primary&unlock. 3) DrTM+R [9]. 4 phases = lock +
validate + update + unlock. 4) DrTM+H [60]. 3 phases =
lock&validate + commit backup + commit primary&unlock.
5) Our FORD. 3 phases (or 4 phases) w/o (or w/) read-only

data = read&lock read-write set (or + validate read-only set)
+ commit all replicas (§ 3.3) + background unlock (§ 3.3.2).

Though our lock duration experiences 4 phases w/ read-
only data, the coordinator can immediately detect lock con-
flicts in the execution phase, and run the next dtxn as early as
possible. Hence, FORD avoids the aforementioned wastes of
the execution (or execution+locking) phases due to the lock
(or validation) failures in prior systems [9, 19, 60]. This trade-
off is beneficial for improving the transaction throughput.

3.3 Coalescent Commit
As analyzed in § 2.3 and shown in Fig. 5a, existing dtxn
systems spend 2 RTTs to separately write redo logs to the
backup and then update the primary to finish commit. Hence,
if the primary crashes, the dtxn can roll forward by using
the redo logs in backups. However, this incurs high network
overheads on the disaggregated PM, since each read-write
dtxn needs 2 RTTs to replicate the updated data.

To reduce latency, FORD proposes a coalescent commit
protocol to update the primaries and backups together in only
one round trip. The coordinator commits the dtxn if the ACKs
from all replicas are received. Otherwise, the dtxn aborts
and rolls back. In fact, there is a trade-off between the replica
commit latency and recovery state (i.e., 2 RTTs + roll forward,
or 1 RTT + roll back). In practice, the commit latency is more
important for the disaggregated PM, since we need to decrease
the number of round trips to accelerate dtxn processing in
common cases, in which no ACK is lost. Hence, we choose
to commit all replicas together to improve the performance,
and support to roll back dtxns in case of failures.

In the disaggregated PM architecture, we need to consider
how to update replicas when using coalescent commit. For
primaries, it is efficient to in-place update data, since the co-
ordinators can directly read and lock the remote data without
address redirections. But for backups, it is inefficient to send
redo logs like FaRM [19, 44] and DrTM+H [60]. Because the
CPUs in the PM pool are not involved in processing dtxns,
the new data in redo logs will not be installed after commit.
As a result, the backup cannot work after the memory is filled
up by logs. Hence, we choose to in-place update the backup.

3.3.1 Parallel Undo Logging
In general, it is challenging to in-place update the backups
and primaries in one round trip. Because in case of a crash, the
remote old data could be partially overwritten, which prevents
the dtxn from being rolled back. To tackle this challenge,
FORD sends undo logs to all the replicas before in-place
updates. Hence, the dtxns can roll back using the old data
in undo logs. Unlike redo logs, the undo logs are simply
discarded by setting the log status to be “committed” after
the dtxn commits, which is completed by coordinators in the
background. Hence, undo logging meets the requirement of
PM pool, i.e., not involving the remote CPU to move data.

The next question is how to send undo logs to remote
replicas. One solution is to spend a dedicated round trip to
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send logs, which however causes extra RTTs. We observe that
undo logs can be immediately generated once the old data
of the read-write set have been read in the execution phase.
Based on this observation, we design a parallel undo logging
scheme to generate and send undo logs in parallel with the
transaction logic execution. Therefore, it is unnecessary to
consume an extra round trip to send undo logs. To ensure
atomicity, the coordinator only needs to check that all the
ACKs of log writes (i.e., RDMA WRITE) are returned before
updating the replicas. Note that the redo logs cannot be sent in
the execution phase, because we have to wait for completing
the transaction execution to obtain the newest data to generate
redo logs, which heavily weakens the parallelism especially
in the transaction that goes through a long-time execution
logic, e.g., the New Order transaction in TPCC [15].

3.3.2 Visibility Control
In order to ensure consistency, our coalescent commit protocol
guarantees that the data that being updated in the replicas are
not partially read. Since our hitchhiked locking scheme does
not block read-only requests, a coordinator possibly reads
some remote data that are being updated, causing inconsis-
tency. To avoid this, FORD proposes a one-sided RDMA-
based visibility control to decide whether the data are visible
to coordinators, as shown in Fig. 5b. The idea is to batch
an invisible request followed by an RDMA WRITE into one
request to update the remote replicas: 1) The invisible request
prevents other coordinators from reading data by setting the
invisible flag to 1. FORD implements the 1-bit invisible flag
and 63-bit lock value in an 8B value, called VLock, which
is atomically modified via an RDMA CAS. 2) The RDMA
WRITE in-place updates the remote replica. After receiving
all ACKs, the coordinator reports “tx_committed" to clients.
Otherwise, e.g., a replica fails, the coordinator rolls back the
dtxn by using undo logs. After commit or rollback, the coor-
dinator unlocks data and makes them visible by writing an
8B zero to VLock in a background release phase.

The release phase does not exist on the critical path of the
dtxn commit. It incurs only 0.5 round trip time (RTT) or can
be fully overlapped: 1) Once the remote RNIC receives the
RDMA CAS request and clears the VLock, other coordinators
can immediately access the remote data. It is unnecessary to
wait for returning the ACK, thus only consuming 0.5 RTT
to make data visible. If some data are currently invisible,
a coordinator can re-read them until visible. After all the
required data become visible, the coordinator continues to

process dtxns to guarantee the atomic visibility. 2) If there
is no coordinator currently reading the invisible data, the
background release phase is completely overlapped with other
in-flight dtxns, thus avoiding re-read operations.

3.4 Backup-enabled Read
As discussed in § 2.3, only leveraging the primary to handle all
the requests decreases the throughput due to the limited write
bandwidth of PM. To tackle this challenge, FORD enables
the backups to serve read requests for the read-only (RO)
data, i.e., the coordinators are allowed to read the RO data
from backups. This frees up the PM in the primary to serve
other requests (e.g., lock and write), thus balancing the load
to improve throughput. Based on our coalescent commit that
in-place updates all replicas, it is easy for a coordinator to
read the RO data from backups due to no address redirection.

FORD guarantees the correctness of the RO data that are
read from backups. If a dtxn (e.g., dtxn1) reads all its RO data
before (or after) another dtxn (e.g., dtxn2) commits the repli-
cas, dtxn1 will obtain the old (or new) data, which guarantees
the correctness since dtxn2 is uncommitted (or committed).
However, if dtxn1 reads multiple RO data and goes through
dtxn2’s execution and commit phases, the data that dtxn1
has read are possibly stale after dtxn2 updates the replicas. To
address this issue, FORD validates the versions of all dtxn1’s
RO data before dtxn1 commits, as guaranteed by our hitch-
hiked locking scheme in Fig. 4c. If the validation fails, the
coordinator aborts dtxn1 to ensure correctness.

Existing systems unfortunately fail to efficiently read data
from backups: 1) For legacy database systems, e.g., Microsoft
Azure [16] and Amazon Aurora [56]. The primary (or backup)
replica handles the write (or read) requests from clients. After
a client writes data to the primary, the backup needs to wait
for receiving and installing the new data that are sent from
the primary. Hence, after updating the primary, the clients
are delayed to read the latest data from backups, thus causing
extra latency. Moreover, in the disaggregated PM, the CPUs in
the primaries and backups are not involved in dtxn processing.
Hence, the data send/receive operations between replicas fail
to work in the PM pool. 2) For prior RDMA-based dtxn
systems [19, 44, 60]. The coordinator writes updated data
to the primaries (i.e., in-place updates) and backups (i.e.,
redo logs) to commit a dtxn. However, other coordinators
cannot read the backups after the dtxn commits, since the
latest data in backups have not been transmitted from the redo
logs to the in-place locations. Moreover, in the disaggregated
PM, the backups fail to extract the updated data in redo logs
and transmit these updates due to involving the CPU in PM
pool during dtxn processing. Unlike the above systems, our
coalescent commit protocol in-place updates the backups and
primaries together without involving the CPU in PM pool.
Hence, the coordinators are allowed to read the latest in-place
data from backups after the dtxn commits, which alleviates
the load on primary’s PM to improve the throughput.
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3.5 Selective Remote Flush
It is important to guarantee the remote persistency when com-
mitting the data updates to the PM pool, which is however
overlooked in prior dtxn systems that use DRAM as the mem-
ory. Recently, the one-sided RDMA FLUSH [23, 48] is being
proposed to persist data from remote RNIC to PM. However,
flushing each data to each remote replica (i.e., full flush) con-
sumes many round trips. As shown in Fig. 6a, updating 2 data
incurs 8 round trips after using remote flushes.

In order to guarantee remote persistency with low network
overhead, we propose a selective remote flush scheme, as
shown in Fig. 6b. The idea is to issue an RDMA FLUSH
after the final RDMA WRITE and only to backups, since: 1)
RDMA FLUSH supports to flush all the previous written data.
Hence, it is sufficient to use one RDMA FLUSH after the final
write to one replica. 2) In the ( f + 1)-way primary-backup
replication, once the data are persisted in all backups, even
if the primary crashes, we can recover the primary by using
backups. Hence, it is sufficient to issue RDMA FLUSH to only
backups. Note that if all the f +1 replicas fail, the data cannot
be recovered [19]. FORD guarantees remote persistency with
at most f replica failures. Thus, by issuing necessary flush
operations, FORD significantly reduces the round trips.

As RDMA FLUSH is currently unavailable in programming
due to the needs of modifying RNIC and PCIe [48], we lever-
age one-sided RDMA READ-after-WRITE to flush the data in
RNIC to memory like [27, 31]. Specifically, the RDMA READ
fetches any size (e.g., 1B) of the data that are written by
RDMA WRITE. Then, the remote RNIC will issue all PCIe
writes before issuing PCIe reads to satisfy the RDMA READ.
In this way, the data in RNIC are written to PM. We further
optimize this procedure by batching the write and read into
one request to eliminate the extra read round trip. This im-
plementation is compatible with the future one-sided RDMA
FLUSH, i.e., replacing RDMA READ with RDMA FLUSH, as
shown in Fig 6c. In essence, our selective remote flush scheme
aims to reduce the round trips when ensuring remote data per-
sistency. Hence, this scheme is not affected by the specific
implementation of remote data flushing, e.g., using the future
RDMA FLUSH primitive or current READ-after-WRITE method.

3.6 Failure Tolerance
The replica fails in PM pool. Due to supporting replication
in dtxn processing, FORD recovers the data in the failed repli-
cas from other replicas that are alive. If any primary or backup
fails: i) Before commit, the coordinator aborts the transac-
tion and unlocks the data. ii) During commit, the coordinator
aborts the transaction, reads the remote undo logs to revoke

data updates and unlocks data. iii) In the release phase, the
transaction has already committed. The coordinator clears
the VLock in the replicas. If some replicas that cannot be re-
covered, we add new replicas to maintain the ( f + 1)-way
replication, and migrate data to the new replicas.
The coordinator fails in compute pool. Due to writing undo
logs to remote replica, FORD handles coordinator failures by
rolling back dtxns. Like FaRM [19] and DrTM [61], FORD
supports to use leases [22] to detect failures. After the leases
expire (e.g., 5 ms [19]), a failure possibly occurs. However,
once a coordinator fails before it reports "tx_committed", it is
unknown whether the remote replicas have been updated. To
address this issue, FORD reads the undo logs in replicas to
revoke all the updates and reports “tx_aborted" to clients.
The network communication fails. Due to network parti-
tions, either availability or consistency is sacrificed based on
the CAP theorem [6, 21]. In this case, FORD only allows the
primary partition [5] to serve requests, which guarantees the
strong consistency of ACID dtxns for OLTP workloads.

3.7 Put It All Together
Fig. 7 illustrates how our designs (§ 3.2–§ 3.5) work together
to process dtxns by using one-sided RDMA primitives. The
requests in one RTT are issued and ACKed in parallel.

1) Execution. A coordinator reads and locks the re-
quired read-write data from primaries using batched RDMA
CAS+READ in one round trip. The read-only data can be
fetched from backups or primaries using RDMA READ. The
undo logs are immediately generated and written to remote
replicas by RDMA WRITE in parallel with the execution. The
concurrent dtxns that have conflicting accesses to the same
remote data are serialized by locks. If any lock operation fails,
the coordinator aborts the dtxn and unlocks the remote data.

2) Validation. After execution, the coordinator reads the
versions of the read-only data (if any) using RDMA READ,
and verifies that the data versions are not modified by other
coordinators. If a version changes, the coordinator aborts the
dtxn and unlocks the remote data.

3) Commit. After validation, the coordinator checks that
all the ACKs of undo logs are received, and then commits
the updated data to all the replicas in one round trip. The
data in primaries are marked to be invisible and updated
with the batched RDMA CAS+WRITE. The data in backups
are updated and further flushed from RNIC to PM using re-
mote data flushing operations. Therefore, the coordinator uses
batched RDMA CAS+WRITE+FLUSH to update backups. Af-
ter receiving all the ACKs from replicas, the coordinator re-
ports “tx_committed" to the client. Afterwards, the coordina-
tor starts processing the next dtxn.

4) Release. After the dtxn commits, the coordinator uses
RDMA CAS to release the remote data by setting them visible
and unlocking them in the background.

FORD efficiently handles different types of dtxns. 1) For
read-only dtxns, FORD reads remote data and validates ver-
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Figure 7: Distributed transaction processing in FORD.

sions before commit. Prior systems [19, 60] adopt similar
operations. However, the difference is that FORD supports
coordinators to read backups to improve the throughput while
prior systems do not support this. 2) For read-write dtxns, only
2 RTTs (i.e., Execution+Commit, w/o read-only data) or 3
RTTs (i.e., Execution+Validation+Commit, w/ read-only data)
are on the critical path. Compared with existing designs that
require 5 RTTs [19,29] or 4 RTTs [60] to process a read-write
dtxn (as analyzed in § 2.3), FORD significantly improves the
performance for the disaggregated PM architecture.

3.8 Correctness and Overhead Analysis
Serializability. FORD leverages locks and validations to guar-
antee serializability. The committed read-write dtxns are seri-
alizable at the point where all the written data are successfully
locked. The committed read-only dtxns are serializable at the
point of their last read. FORD guarantees these serializability
points by ensuring that the data versions at the serialization
point are equal to the versions during execution, i.e., locking
ensures this for the written data since other coordinators can-
not modify the versions of locked data, and validation ensures
this for the read data since a version change will abort the
dtxn. Moreover, to guarantee serializability across failures,
the coordinator waits for all ACKs from all replicas before
commit. Once a replica fails during the coalescent commit,
FORD aborts the dtxn since an ACK is not received.
ACID. FORD ensures the ACID properties for dtxns: (1)
Atomicity. FORD records undo logs, which are used to re-
voke the partial updates if a failure occurs before commit. (2)
Consistency. All the data versions are consistent before the
dtxn starts and after it commits. (3) Isolation. FORD uses
locks and version validations to guarantee the serializability
among the read-write and read-only dtxns. (4) Durability. The
updated data are persistently stored in PM after commit.
The Number of RDMA Operations. Due to fully using
one-sided RDMA to bypass the CPUs in PM pool, FORD in-
evitably increases the number of RDMA operations to commit
a dtxn. It is worth noting that the new RNICs (e.g., ConnectX-
5 [52]) are efficient to handle one-sided RDMA operations
including CAS [60]. Hence, slightly increasing the number of
RDMA operations has negligible impacts on performance. In
fact, FORD focuses on reducing the number of RDMA round
trips, which is more important to improve the performance
since the RDMA round trip still suffers from higher latency
(e.g., 3–8 µs [3]) than local access (e.g., 62–305 ns [67]).

4 Implementations
4.1 Data Store in Memory Pool
FORD supports different indexes to organize database (DB)
tables in PM pool, e.g., hash tables and B+-trees. These index-
ing schemes form the data store of FORD, called FStore. Our
transaction techniques are independent of the specific index
used in FStore, since these techniques aim to reduce net-
work round trips and balance loads, and regard remote data as
general objects. For example, when using B+-trees, our hitch-
hiked locking scheme reads and locks the leaf nodes, and our
coalescent commit scheme writes the updated tree nodes back
to all replicas together. The internal pointer nodes are cached
to reduce remote tree traversing. Moreover, since the hash
table is widely used in fast RDMA operations [18, 54, 61, 72],
we use hash table as an example to present the implementa-
tions of FStore. Each hash table maintains a DB table and
supports read/update/insert/delete operations.

The records in DB tables are persistently stored in FStore.
Existing hashing schemes that support fixed-size and variable-
size records can be used in FORD, e.g., RACE hashing [72].
When supporting fixed-size records, the records are stored in
the hash table for direct access. When supporting variable-
size records, the pointers of records are stored in the hash
table. In this case, our hitchhiked locking scheme reads and
locks the pointer, and then fetches the record. Hence, FORD
is flexibly to adapt different hash schemes to support fixed or
variable record sizes. For simplicity, we show an implementa-
tion of storing fixed-size records. Like FaSST [29], the record
consists of an 8B key and a maximum sized value (e.g., 1KB).
Such record meets many OLTP workloads (e.g., TPCC [15]).
To further support dtxns, FORD packs the record with the
following information into an object, called FObj.

• Occupy (1B): Whether this FObj occupies a slot.
• TableID (8B): DB table that this record belongs to.
• Version (8B): Version number of this record.
• VLock (8B): 1-bit (in)visibility flag and 63-bit lock.
After allocating and registering a memory region (MR)

in PM pool, FStore enables clients to load records into hash
tables before running dtxns. Fig. 8 shows the structure of hash
tables. A hash table contains an array of buckets, and each
bucket contains several slots and one pointer called Next. The
numbers of buckets and slots are configured by clients. Each
FObj occupies a slot. A client initializes a FObj and hashes its
key to obtain the target bucket (e.g., b1) to be inserted. After
inserting the FObj to an empty slot, its Occupy is set to 1. If
b1 is full, the FObj is inserted to a new bucket (e.g., b2) whose
address is recorded in the Next pointer of b1. b2 is stored in a
reserved space (RS) of MR. The size of RS is set by the client,
e.g., 20% of the MR space. The client uses a pointer, called
RS-Ptr, to trace the current bucket address in RS. Moving the
RS-Ptr forward to a bucket size will generate a new bucket in
RS. If the RS is exhausted but the hash collision still occurs,
the client re-allocates memory to load tables.
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Figure 8: The hash table structure in FStore.

To enable coordinators to calculate remote addresses for
one-sided RDMA in dtxn processing, the connection manager
in PM pool sends the metadata (as listed below) of each hash
table to the compute pool during network interconnections.

• TableID (8B): Global unique database table id.
• Addr (8B): Virtual start address of this hash table.
• Off (8B): Offset between Addr and MR’s start address.
• BucketNum (8B): Bucket number of the hash table.
• BucketSize (4B): Size of a bucket (in bytes).
• SlotNum (4B): Number of slots per bucket.
Given the key (e.g., K0) of a record, if its remote address

is buffered in the local cache, the coordinator directly reads
the record using an RDMA READ. Otherwise, the coordinator
reads a remote record as the following Steps:
S1: Calculate the bucket id:

bucket_id= Hash(K0) mod BucketNum
S2: Calculate the bucket offset in the remote MR:

bucket_off= bucket_id×BucketSize+Off
S3: Read the remote bucket (bkt) using bucket_off.
S4: Compare K0 with the SlotNum keys in bkt. If a key = K0,

the record is obtained. Then go to S7. Or else go to S5.
S5: If the next field of bkt is NULL, there is no such remote

record. Then go to S8. Or else go to S6.
S6: Calculate the next bucket offset as below and go to S3.

bucket_off= bkt.next−Addr+Off
S7: Exit if the record is visible. Or else re-read it until visible.
S8: Exit with a KEY_NOT_EXIST hint.

Since the metadata size of a hash table is only 40B and each
remote address is 8B, the local cache in compute pool can
buffer all these metadata and addresses, as shown in Fig. 15a.
Caching metadata is scalable, because the compute blades do
not need to synchronize their metadata with each other: 1) The
metadata of index does not change. 2) If the cached addresses
are stale, FORD enables the coordinator to detect this and
update its own cached addresses, as discussed in § 3.2.

4.2 Transaction Interfaces
FORD provides a runtime library, called FLib, for applications
to process dtxns. Flib exposes the following interfaces:

• TxBegin: Start to execute a dtxn and record its id.
• AddRO: Add an initialized FObj to the read-only set.
• AddRW: Add an initialized FObj to the read-write set.
• TxExecute: The coordinator reads the remote data spec-

ified in read-only and read-write sets, and then exe-
cutes the dtxn logic. Our hitchhiked locking and backup-
enabled read schemes are leveraged.

• TxCommit: After execution, the coordinator commits the
updated data to remote primaries and backups using our
coalescent commit and selective remote flush schemes.

1  bool WriteCheck(uint64_t dtxn_id, DTXN* dtxn) {

2    // The `dtxn` invokes FLib interfaces

3    dtxn->TxBegin(dtxn_id);

4    // Use a random account as the key

5    uint64_t acct_id = RandomAccount();    

6    FObj* sav_obj = new FObj(SavingsTableID, acct_id);

7    FObj* chk_obj = new FObj(CheckingTableID, acct_id);

8    dtxn->AddRO(sav_obj);

9    dtxn->AddRW(chk_obj);

10   if (!dtxn->TxExecute()) return false;

11   // Get record values and run transaction logic

12   sav_val_t* sav = (sav_val_t*) sav_obj->value;

13   chk_val_t* chk = (chk_val_t*) chk_obj->value;

14   if (sav->balance + chk->balance < PredefinedAmount)

15     chk->balance -= (PredefinedAmount + 1);

16   else chk->balance -= PredefinedAmount;

17   bool status = dtxn->TxCommit();

18   delete sav_obj; delete chk_obj;

19   // Report commit (true) or abort (false) to client

20   return status;

21 }

Figure 9: The example of C++ code using FLib interfaces.
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Our transaction interfaces support general transaction pro-
cessing. Specifically, the developers are not required to know
all the read/write sets at the beginning of each transaction. In-
stead, developers call AddRO, AddRW, and TxExecute multiple
times when reading/writing data occurs during a transaction.
Fig. 9 illustrates an example of using our interfaces in the
Write Check transaction of the SmallBank benchmark [50].
This transaction reads the balances from the Savings and
Checking tables, and updates the balance in the Checking
table. It shows that our interfaces are easy-to-use.

4.3 Interleaved Transaction Processing
As shown in Fig. 10a, sequentially processing dtxns in a
thread wastes the CPU cycles due to waiting for RDMA
ACKs, which significantly decreases the throughput. To avoid
CPU idling in the compute pool, FORD leverages an inter-
leaved processing model that enables multiple coordinators in
one thread to process different dtxns in pipeline, as presented
in Fig. 10b. In this way, the network RTTs are efficiently hided
and the CPU cores in the compute pool are fully utilized to
improve the throughput.

We use coroutines [29, 60] to implement the interleaved
processing. Each CPU thread generates several coroutines and
each coroutine acts as a coordinator to execute dtxns. After
issuing the RDMA requests, a coroutine yields its CPU core
to another coroutine to process the next dtxn. A dedicated
coroutine in each thread polls RDMA ACKs. If all ACKs of a
coroutine arrived, FORD schedules this coroutine to occupy
the CPU core to resume execution. The results in Fig. 16
show that using a proper number of coroutines improves the
throughput without heavily increasing the latency.
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5 Performance Evaluation
5.1 Experimental Setup
Testbed. We use three machines, each of which contains a
100Gbps Mellanox ConnectX-5 IB RNIC. They are connected
via a 100Gbps Mellanox SB7890 IB switch. One machine
equipped with the Intel Xeon Gold 6230R CPU and 8GB
DRAM is leveraged as the compute pool to run coordinators.
Other two machines form the PM pool, each of which contains
6 interleaved 128GB Intel Optane DC PM modules. Each
database table is stored in the two PM machines to maintain
a 2-way replication, i.e., one primary and one backup.
Benchmarks. We leverage a key-value store (KVS) as the
micro-benchmark to analyze how different factors affect each
design of FORD. KVS stores 1 million key-value pairs in one
table, in which the key is 8B and value is 40B. The transaction
in KVS accesses a specific number of objects with different
read:write ratios and different access patterns as configured
in § 5.2. KVS supports the skewed and uniform access patterns,
in which the skewed access uses the Zipfian distribution with
the default skewness 0.99 [10]. We further adopt three OLTP
benchmarks, i.e., TATP [49], SmallBank [50], and TPCC [15],
as the macro-benchmarks to examine the end-to-end per-
formance. These benchmarks are widely used in prior stud-
ies [19, 29, 60, 61]. TATP models a telecom application and
contains 4 tables, in which 80% of the transactions are read-
only, and the record size is up to 48B. SmallBank simulates
a banking application that includes 2 tables, in which 85% of
transactions are read-write, and the record size is 16B. TPCC
models a complex ordering system that consists of 9 tables, in
which 92% of transactions are read-write, and the record size
is up to 672B. We generate 8 warehouses in TPCC. We have
implemented all the workloads of each macro-benchmark and
run the standard transaction mix in § 5.3. We run 1 million
dtxns in each benchmark, and report the throughput by count-
ing the number of committed dtxns per second. We report
the processing time of the committed dtxn as the latency,
including the 50th and 99th percentile latencies.
Comparisons. We implement FORD1 using C++ (13.1k
lines of codes) and compare it with two state-of-the-art
RDMA-based dtxn processing systems, i.e., FaRM [19] and
DrTM+H [60] (called DrTMH). We use one-sided RDMA
to re-implement their dtxn processes for the disaggregated
PM. Moreover, our selective remote flush scheme is applied
to FaRM and DrTMH to make them compatible with remote
PM. We do not compare against FaSST [29] that fully uses
two-sided RDMA, which is difficult to work in the disag-
gregated memory architecture due to consuming the remote
CPUs in memory pool throughout the entire dtxn processing.

5.2 Micro-Benchmark Results and Analysis
Lock Duration. Locks are generally used to serialize dtxns.
However, a long lock duration causes frequent aborts and

1Open source code: https://github.com/minghust/ford
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leads to low throughputs. To obtain the lock duration, we con-
figure the coordinator to not abort dtxn but wait for the data to
be unlocked if the locking fails. We compare the lock duration
in FORD, FaRM and DrTMH by using 64 coordinators to
concurrently run dtxns in which each dtxn processes one data.
Fig. 11 shows the average lock duration of each coordinator at
different read:write ratios in the dtxn mix, e.g., 25:75 means
that 25% of the dtxns are read-only while 75% are read-write.
The results show that the reduction of lock duration is larger
in the uniform access when reducing the write ratio, since
the uniform access has lower locality than the skewed access,
which decreases the data hotness. Hence, the total time for
the coordinator to wait for unlocking the hot data significantly
decreases. Compared with DrTMH and FORD, FaRM suffers
from longer lock durations since the data are locked across
4 phases, i.e., locking, validation, commit backup, and com-
mit primary. DrTMH reduces the lock duration by merging
the locking and validation into one phase. Our FORD uses
the hitchhiked locking scheme to lock the read-write data in
the execution phase, but the lock duration does not become
longer, since the read-write data do not need to be locked or
validated again, and the dtxn commits earlier.
Invisibility Duration. FORD leverages the coalescent com-
mit scheme to update the primaries and backups together in
one round trip. To avoid partial reads, the data are temporarily
marked as invisible after commit until the background release
phase. To analyze the overheads of the data invisibility, we
record the total time spent for re-reading the invisible data
until visible (i.e., invisibility duration) in 64 coordinators, and
then calculate the proportion of the invisibility duration in the
entire dtxn running time. As shown in Fig. 12, the proportion
slightly decreases when increasing the read ratio from 0% to
25%, since the invisible data are reduced when decreasing
writes. As the read ratio continues to increase, the proportion
increases, since there are substantial read-only dtxns that wait
for the data to be visible, which increases the total invisibil-
ity durations in all coordinators. When the read:write ratio
is 100:0, all data are visible and the proportion becomes 0.
The results show that the proportion is only less than 8%
in different read:write ratios and access patterns, since the

60    20th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/minghust/ford


Read:Write ratio

Th
ro

ug
hp

ut
 

(M
 d

tx
n/

se
c)

Read:Write ratio
(a) Skewed access (b) Uniform access

La
te

nc
y 

(μ
s)

(c) Skewed access (d) Uniform access
Read:Write ratio Read:Write ratio

0
4
8

12

25:75 50:50 75:25 95:5 100:0

Disable read backups
Enable read backups

0
4
8

12

25:75 50:50 75:25 95:5 100:0

Disable read backups
Enable read backups

0
40
80

120
160

25:75 50:50 75:25 95:5 100:0

50th-Disable read backups 50th-Enable read backups
99th-Disable read backups 99th-Enable read backups

0
40
80

120
160

25:75 50:50 75:25 95:5 100:0

Figure 13: The dtxn throughput and latency when dis-
abling/enabling coordinators to read the backup replicas.

background release phase consumes at most 0.5 RTT to make
data visible. Therefore, the data invisibility in our coalescent
commit design exhibits low performance overheads.
Read from Backups. Due to the limited write bandwidth of
PM, FORD enables the coordinators to read the read-only
data from backups to alleviate the load on the primary’s PM.
To demonstrate the benefits of this design, we run 224 coordi-
nators to increase the load, and examine the dtxn throughput
and latency when disabling/enabling the coordinators to read
backups. Fig. 13 shows that as the read ratio increases, en-
abling coordinators to read the backup replica improves the
throughput by up to 1.5×, and reduces the 50th/99th per-
centile latencies by up to 31.7%/35.3%. The backup absorbs
substantial read requests to prevent all the coordinators from
competing for the primary’s PM, thus improving the through-
put. When increasing the number of backup nodes, FORD will
gain higher performance improvements since all the backups
can be read to balance loads.
Remote Flush. FORD guarantees the remote persistency in
dtxn processing by flushing the data from the RNIC cache to
PM. We compare the dtxn throughput and latency when adopt-
ing the full flush and selective flush schemes discussed in § 3.5.
To show the overheads of remote data flush, we use one coor-
dinator to avoid extra contention overheads. We increase the
number (1–10) of written data per dtxn to add the flush opera-
tions. The results in the skewed and uniform accesses exhibit
similar trends. Fig. 14a and 14b show that our selective flush
scheme improves the throughput by 28.7%/29.5% over the
full flush scheme in skewed/uniform access. Fig. 14c and 14d
show that the selective flush mitigates the 50th/99th percentile
latencies by 22.5%/12.4% (22.8%/14%) in the skewed (uni-
form) access. Our selective flush scheme performs better due
to only issuing flushes to the backups after the final RDMA
WRITE, thus reducing the number of flush operations. More-
over, Fig. 14 shows that the performance of using the selective
flush decreases when the number of accessed data increases.
This is because other operations in the dtxn increase (e.g.,
data reads, validations, and remote writes), thus decreasing
the overall performance.
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Figure 14: The dtxn throughput and latency using full/selec-
tive flush when accessing different numbers of data per dtxn.

Local Cache. The coordinator has a local cache to buffer re-
mote data addresses for efficient one-sided RDMA operations.
To evaluate the overheads (including the size and miss rate) of
the local cache, we change the maximum number of accessible
keys from 1k to 512k to obtain the average sizes of buffered
addresses, and the average miss rates during address lookups.
Fig. 15a shows that the buffered addresses only consume 6.8
MB even if uniformly accessing 512k keys with poor locality.
Hence, a small MB-scale cache is sufficient for a coordina-
tor to buffer remote addresses. Since a GB-scale DRAM is
leveraged in the compute pool to store the metadata [45], it is
unnecessary to limit the size of the coordinator-local cache
in practice. Fig. 15b shows that the miss rate is 18.2%/44.6%
when accessing 512k keys in skewed/uniform access. For
a cache hit, the coordinator uses the buffered address to di-
rectly read the record. However, if a cache miss (or a hash
bucket collision) occurs, the coordinator needs to calculate
the remote bucket address and read a bucket to find the record,
which incurs more latency. In general, the miss rate depends
on the locality of workloads. If some remote addresses are not
buffered, the cache misses are inevitable in dtxn processing.
However, FORD provides a sufficiently large local cache for
each coordinator to avoid evicting the buffered addresses from
the cache, thus reducing the miss rate as much as possible.

5.3 Macro-Benchmark Results and Analysis
Coroutine Execution. To improve the throughput, FORD
leverages coroutines to process dtxns to avoid CPU idling.
A thread generates at least 2 coroutines since a specified
coroutine in each thread is used to poll the RDMA ACKs.
Fig. 16 shows the dtxn throughput and median latency in
macro-benchmarks when changing the number of coroutines
in one thread. The throughputs increase by 3.4×/2.2×/2.5×
on TATP/SmallBank/TPCC until the CPU is saturated. On the
other hand, the latency continues to increase when using more
coroutines, since the execution pipeline becomes deeper, and
the coroutines are scheduled to wait for occupying the CPU
to resume execution. From the experimental results, we learn
that using 6–8 coroutines is helpful to significantly improve
the throughput without heavily increasing the latency.
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Figure 16: The dtxn throughput and 50th percentile latency
in one thread when using different numbers of coroutines.

End-to-End Performance. We use 16 threads and each
thread generates 8 coroutines (1 coroutine polls ACKs), as a
total of 16×(8−1)= 112 coordinators, to evaluate the end-to-
end throughput and latency in FaRM, DrTMH, and FORD us-
ing the macro-benchmarks. In real experiments, due to differ-
ent system scales (e.g., 90 machines [19]), the overall through-
put in our small-scale testbed becomes lower than [19, 60].
However, our testbed can accurately evaluate the performance
in different system configurations. Our selective remote flush
scheme is applied to three systems to ensure remote persis-
tency. As shown in Fig. 17, compared with FaRM/DrTMH,
FORD improves the throughput by 1.4×/1.3×, and reduces
the 50th (99th) latency by 12%/9.1% (54.8%/46.8%) in TATP,
improves the throughput by 1.6×/1.3×, and reduces the 50th
(99th) latency by 34.3%/30.9% (64.6%/32.4%) in SmallBank,
and improves the throughput by 2.3×/1.4×, and reduces the
50th (99th) latency by 74.3%/66.2% (63.8%/28.7%) In TPCC.
DrTMH outperforms FaRM by merging locking and valida-
tion phases. FaRM and DrTMH show high performance in
TATP, since 80% of the dtxns are read-only and the uses of
one-sided RDMA READs accelerate the processing. However,
in SmallBank and TPCC that contain extensive read-write
dtxns, the performance decreases due to their long dtxn pro-
cessing paths. Unlike them, our FORD efficiently mitigates
the round trips to shorten the processing path, and balances
loads on the replicas, thus improving the performance.

6 Related Work
Fast Distributed Transactions. Many systems have been pro-
posed for efficient distributed transaction processing. Some
designs leverage RDMA to handle transactions [9, 18, 19, 29,
31, 41, 44, 60, 61]. Storm [41] proposes a transactional API to
operate remote data based on one-sided reads and write-based
RPCs. HyperLoop [31] offloads some computations to RNIC
and requires remote CPU to operate the metadata. Moreover,
application locality [7, 30, 37] is exploited to convert a dis-
tributed transaction to a local one, which however sacrifices
the generality. New transaction abstractions [63], replication
protocols [70], and concurrency controls [40, 58, 64, 69] are
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Figure 17: The end-to-end performance.

also proposed to improve the performance. The above sys-
tems work on the monolithic architecture, while our FORD
focuses on the new disaggregated PM architecture and fully
leverages one-sided RDMA to process transactions.
Distributed Persistent Memory. PM has been recently ex-
ploited in the distributed environments. These studies em-
ploy PM in a symmetric way, where each server in a cluster
hosts the PM that can be accessed locally or remotely by
other servers. Some designs expose interfaces of file sys-
tem [3, 38, 65, 66] and memory management [46, 71]. Some
studies provide optimization hints on system implementations
when using RDMA and PM [27, 62]. In general, the symmet-
ric deployment supports fast local accesses, but suffers from
poor resource scalability and coarse failure domain due to
using monolithic servers. Unlike these works, FORD provides
transaction interfaces, and deploys PM in the disaggregated
way to improve the scalability and failure isolation.
Disaggregated Memory. The disaggregated memory be-
comes popular in datacenters due to high resource utilization
and elasticity. Existing works explore memory disaggregation
in hardware architectures [35,36], networks [20,47], operating
systems [45], KV stores [54], hash indexes [72], data swap-
ping [2,8,24,43], and memory managements [1,34,39,55,57].
Our proposed FORD is orthogonal to these systems to build a
fast transaction processing system for the disaggregated PM.

7 Conclusion
Our paper proposes FORD, a fast distributed transaction pro-
cessing system that leverage one-sided RDMA for the new
disaggregated persistent memory (PM) architecture. To accel-
erate transaction processing, FORD explores and exploits the
request batching and parallelization to eliminate extra locking
and validations, and commit all remote replicas together in a
single round trip. Moreover, to efficiently utilize the remote
PM, FORD enables the backup replicas to serve read requests
to balance loads, and guarantees the remote persistency with
low network overheads. Experimental results demonstrate that
FORD significantly outperforms the state-of-the-art systems
in terms of transaction throughput and latency.
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Abstract
This paper studies how B+ -tree could take full advantage of
modern storage hardware with built-in transparent compres-
sion. Recent years witnessed significant interest in applying
log-structured merge tree (LSM-tree) as an alternative to B+ -
tree, driven by the widely accepted belief that LSM-tree has
distinct advantages in terms of storage cost and write amplifi-
cation. This paper aims to revisit this belief upon the arrival
of storage hardware with built-in transparent compression.
Advanced storage appliances and emerging computational
storage drives perform hardware-based lossless data compres-
sion, transparent to OS and user applications. Beyond straight-
forwardly reducing the storage cost gap between B+ -tree and
LSM-tree, such storage hardware creates new opportunities to
re-think the implementation of B+ -tree. This paper presents
three simple design techniques that can leverage such modern
storage hardware to significantly reduce the B+ -tree write
amplification. Experiments on a commercial storage drive
with built-in transparent compression show that the proposed
design techniques can reduce the B+ -tree write amplification
by over 10× . Compared with RocksDB (a key-value store
built upon LSM-tree), the enhanced B+ -tree implementation
can achieve similar or even smaller write amplification.

1 Introduction

This paper investigates the implementation of B+ -tree upon a
growing family of data storage hardware that internally carry
out hardware-based lossless data compression, transparent
to the host OS and user applications. Modern all-flash array
products (e.g., Dell EMC PowerMAX [9], HPE Nimble Stor-
age [14], and Pure Storage FlashBlade [28]) always come with
the built-in hardware-based transparent compression capabil-
ity. Commercial solid-state storage drives with built-in trans-
parent compression are emerging (e.g., computational storage
drive from ScaleFlux [31] and Nytro SSD from Seagate [13]).
Moreover, Cloud vendors have started to integrate hardware-
based compression capability into their storage infrastructure,

e.g., Microsoft Corsia [7] and emerging DPU (data processing
unit) [5], leading to imminent arrival of cloud-based storage
hardware with built-in transparent compression. With dedi-
cated hardware compression engines, such storage hardware
support high-throughput data (de)compression at very low
latency and zero host CPU overhead.

As the most widely used indexing data structure, B+ -
tree [12] powers almost all the relational database manage-
ment systems (RDBMs) today. Recently, log-structured merge
tree (LSM-tree) [25] has attracted significant interest as a con-
tender to B+ -tree, mainly because its data structure could
enable better storage space usage efficiency and lower write
amplification. The arrival of storage hardware with built-in
transparent compression could straightforwardly reduce or
even eliminate the storage cost gap between B+ -tree and LSM-
tree. This paper shows that such storage hardware can also be
leveraged to significantly reduce B+ -tree write amplification.
The key is to exploit the fact that in-storage transparent com-
pression allows data management software employ sparse
data structure without sacrificing the true physical storage
cost. When running on such storage hardware, data manage-
ment software could leave 4KB LBA (logical block address)
blocks partially filled or even completely empty, without wast-
ing the physical storage space usage. Intuitively, the feasibility
of employing sparse data structure creates a new spectrum of
design space for innovating data management systems [36].

This paper shows that B+ -tree could employ sparse data
structure enabled by in-storage transparent compression to
largely reduce its write amplification. We note that write am-
plification is measured based on the amount of data being
written to the physical storage media (i.e., after in-storage
compression), other than the amount of data being written by
the host (i.e., before in-storage compression). In particular,
this paper presents three simple yet effective design tech-
niques: (1) deterministic page shadowing that can ensure
B+ -tree page update atomicity without incurring extra write
overhead, (2) localized page modification logging that can
reduce the write amplification caused by the mismatch be-
tween the B+ -tree page size and the size of data modification,
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and (3) sparse redo logging that can reduce the write am-
plification caused by B+ -tree redo logging (or write-ahead
logging). With significantly reduced write amplification, B+ -
tree can support much higher insert/update throughput, and
more readily accommodate low-cost, low-endurance NAND
flash memory (e.g., QLC NAND flash memory).

Accordingly, we implemented a B+ -tree (called B!-tree)
that incorporates the three design techniques. We further com-
pared it with LSM-tree (RocksDB [30]) and normal B+ -tree
(WiredTiger [33]). We carried out experiments on a commer-
cial computational storage drive with built-in transparent com-
pression [31]. The results well demonstrate the effectiveness
of the proposed design techniques on reducing the B+ -tree
write amplification. For example, under random write work-
loads with 128B per record, RocksDB and WiredTiger (with
page size of 8KB) have write amplification of 14 and 64, re-
spectively, while our B!-tree (with 8KB page size) has a write
amplification of only 8, representing 43% and 88% reduc-
tion compared with RocksDB and WiredTiger, respectively.
The smaller write amplification can directly translate into a
higher write throughput. For example, our results show that,
under random write workloads, B!-tree can achieve about 85K
TPS (transactions per second), while the TPS of RocksDB and
WiredTiger is 71K and 28K, respectively. Moreover, we note
that the proposed design techniques mainly confine within
the I/O module of B+ -tree and are largely orthogonal to the
other modules. Hence, it is relatively easy to incorporate these
techniques into existing B+ -tree implementations. For exam-
ple, upon a baseline B+ -tree implementation, we only modi-
fied/added about 1,200 LoC to realize the B+ -tree.

2 Background

2.1 B+ -tree Data Compression
B+ -tree manages its data storage in the unit of page. To re-
duce data storage cost, B+ -tree could apply block compres-
sion algorithms (e.g., lz4 [23], zlib [37], and ZSTD [38]) to
compress each on-storage page (e.g., the page compression
feature in MySQL and MongoDB/WiredTiger). In addition to
the obvious CPU overhead, B+ -tree page compression suffers
from compression ratio loss due to the 4KB-alignment con-
straint, which can be explained as follows: Modern storage
devices serve I/O requests in the unit of 4KB LBA blocks. As
a result, each B+ -tree page (regardless of compressed or un-
compressed) must entirely occupy one or multiple 4kB LBA
blocks on the storage device (i.e., no two pages could share
one LBA block). When B+ -tree applies page compression,
the 4KB-alignment constraint could incur noticeable storage
space waste. This can be illustrated in Fig. 1: Assume one
16KB B+ -tree page is compressed to 5KB; the compressed
page must occupy two LBA blocks (i.e., 8KB) on the stor-
age device, wasting 3KB storage space. Therefore, due to the
CPU overhead and storage space waste caused by the 4KB-

alignment constraint, B+ -tree page compression is not widely
used in production environment. Moreover, it is well-known
that, under workloads with random writes, B+ -tree pages tend
to be only 50%∼ 80% full [12]. Hence, B+ -tree typically has
a low storage space usage efficiency. In contrast, LSM-tree
has a much more compact data structure and is free from
the 4KB-alignment constraint in case of compression, which
leads to a higher storage space usage efficiency than B+ -tree.

5KB

16KB Page5KB
Compression

4kB block 4kB block

Write to storage 3KB space wasted

Figure 1: An example to show the storage space waste caused
by 4KB-alignment constraint for B+ -tree page compression.

2.2 In-Storage Transparent Compression
Fig. 2 illustrates a computational storage drive (CSD) with
built-in transparent compression: Inside the CSD controller
chip, compression and decompression are carried out directly
on the I/O path by the hardware engine, and the FTL (flash
translation layer) manages the mapping of all the variable-
length compressed data blocks. Since the compression is
carried out inside the storage drive, it is not subject to 4KB-
alignment constraint (i.e., all the compressed blocks are
packed tightly in flash memory without any space waste).

Flash
Control

NAND 
Flash

Controller

Compression & 
decompression

HW → ←SW

User Apps 
& OS

Computational Storage Drive (CSD)

Figure 2: Illustration of a CSD with transparent compression.

As illustrated in Fig. 3, storage hardware with built-in trans-
parent compression has the following two properties: (a) The
storage hardware can expose an LBA space that is much larger
than its internal physical storage capacity. This is conceptually
similar to the thin provisioning. (b) Since certain data patterns
(e.g., all-zero or all-one) can be highly compressed, we can
leave one 4KB LBA partially filled with valid data without
wasting the physical storage space. These two properties de-
couple the logical storage space utilization efficiency from
the physical storage space utilization efficiency. This allows
data management software to employ sparse data structure in
the logical storage space without sacrificing the true physical
storage cost, which creates a new spectrum of design space
for data management systems [36].
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FTL with transparent compression

NAND Flash (e.g., 4TB)

Exposed LBA space (e.g., 32TB)

SSD

Valid user data 0’s

4KB

Transparent compression

Compressed data

(a)

(b)

Figure 3: Illustration of the decoupled logical and physical
storage space utilization efficiency enabled by storage hard-
ware with built-in transparent compression.

2.3 B+ -tree vs. LSM-tree
LSM-tree has recently received significant interest (e.g.,
see [3, 15, 21, 22, 29, 35]) because of its advantages in terms
of storage space usage and write amplification. If B+ tree has
a very large cache memory (e.g., enough to hold the entire
dataset) and uses very large redo log files, its write amplifica-
tion could be much smaller than that of LSM-tree. Moreover,
under large record size (e.g., 1KB and above), B+ tree tend
to have smaller write amplification than LSM-tree. Hence,
this work focuses on the scenarios where dataset is far bigger
than the cache memory capacity and meanwhile the record
size tends to be small (e.g., few hundred bytes or less), un-
der which B+ tree tends to suffer from much higher write
amplification than LSM-tree.

For the purpose of demonstration, we use RocksDB and
WiredTiger as representatives of LSM-tree and B+ -tree, and
carried out experiments on a 3.2TB storage drive with built-in
transparent compression from ScaleFlux [31]. We run ran-
dom write-only workloads with 128-byte record size over a
150GB dataset. For WiredTiger, we set its B+ -tree leaf page
size as 8KB. Table 1 lists both the logical storage usage on
the LBA space (i.e., before in-storage compression) and phys-
ical storage usage (i.e., after in-storage compression). Since
LSM-tree has a more compact data structure, RocksDB has
a smaller logical storage space usage than WiredTiger (i.e.,
218GB vs. 280GB). Nevertheless, after in-storage transpar-
ent compression, WiredTiger consumes even less physical
storage space than RocksDB, most likely due to the space am-
plification of LSM-tree. Fig. 4 shows the write amplification
under different number of client threads. We measured the
write amplification as the ratio between the volume of post-
compression data being physically written to NAND flash
memory inside the storage drive and the total amount of data
written into database. The results show that RocksDB consis-
tently has about 4× less write amplification than WiredTiger.

Table 1: Storage space usage comparison.
Storage space usage

Logical Physical
RocksDB 218GB 129GB

WiredTiger 280GB 104GB
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Figure 4: Measured write amplification.

The above results suggest that, with in-storage transparent
compression, we could close the physical storage cost gap be-
tween B+ -tree and LSM-tree, while LSM-tree still maintains
its significant advantage in terms of write amplification. The
goal of this work is to further close the write amplification
gap by appropriately modifying the B+ -tree implementation.

2.4 B+ -tree Write Amplification
Under current I/O interface protocols, storage devices only
guarantee write atomicity over each 4KB LBA block. As a
result, when the page size is larger than 4KB, B+ -tree must
on its own ensure page write atomicity, which can be real-
ized via two different strategies: (i) In-place page update:
Although the convenient in-place update strategy simplifies
the page storage management, B+ -tree must accordingly use
page journaling (e.g., double-write buffer in MySQL) to sur-
vive partial page write failures, leading to about 2× higher
write volume. (ii) Copy-on-write (or shadowing) page update:
Although copy-on-write obviates the use of page journaling
and readily supports snapshot, it complicates the page stor-
age management. Meanwhile B+ -tree must employ certain
mechanisms (e.g., page mapping table) to keep track of the
page location, which still incurs extra storage write traffic.

Accordingly, we could classify B+ -tree storage write traffic
into three categories: (1) logging writes that ensure transaction
atomicity and isolation, (2) page writes that persist in-memory
dirty B+ -tree pages to storage devices, and (3) extra writes
that are induced by ensuring page write atomicity (e.g., page
journaling in the case of in-place updates, or page mapping ta-
ble persist in the case of page shadowing). Let Wlog, Wpg, and
We denote the total data write amount of these three categories,
and Wusr denote the total amount of user data written into the
B+ -tree. We can express the B+ -tree write amplification as

WA =
Wlog

Wusr
+

Wpg

Wusr
+

We

Wusr
=WAlog + WApg + WAe. (1)
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When B+ -tree runs on storage hardware with built-in transpar-
ent compression, let αlog, αpg, and αe denote the average com-
pression ratio of the three categories of writes. Here we calcu-
late the compression ratio by dividing the post-compression
data volume with the before-compression data volume. Hence
the compression ratio always falls into (0,1], and a higher
data compressibility leads to a smaller compression ratio.
Therefore, the overall B+ -tree write amplification becomes

WA = αlog ·WAlog + αpg ·WApg + αe ·WAe. (2)

3 Proposed Design Techniques

According to Eq. (2), we can reduce the B+ -tree write am-
plification by either reducing WAlog, WApg, and/or WAe (i.e.,
reducing the B+ -tree write data volumes), or reducing αlog,
αpg, and/or αe (i.e., improving the write data compressibil-
ity). By applying sparse data structure enabled by in-storage
transparent compression, this section presents three design
techniques to reduce the B+ -tree write amplification: (1) de-
terministic page shadowing that eliminates WAe, (2) localized
page modification logging that reduces both WApg and αpg,
and (3) sparse redo logging that reduces αlog.

3.1 Deterministic Page Shadowing
In order to eliminate WAe, B+ -tree should employ the princi-
ple of page shadowing. Nevertheless, in conventional imple-
mentation of page shadowing, the new on-storage location of
each updated B+ -tree page is dynamically determined during
the runtime and must be recorded/persisted, leading to extra
write overhead and management complexity. To eliminate
the extra write overhead and meanwhile simplify the storage
management, we propose a technique called deterministic
page shadowing as illustrated in Fig. 5: Let lpg denote the

One page

Slot-0
Slot-1

Memory

Storage

Write @ t1 TRIM @ t2 Write @ t3 TRIM @ t4 t1<t2<t3<t4

Figure 5: Illustration of deterministic page shadowing: two
slots at the fixed location on the logical storage LBA space
alternatively serve the memory-to-storage flush of one page.

B+ -tree page size (e.g., 8KB or 16KB). For each page, B+ -
tree allocates 2lpg amount of logical storage area on the LBA
space and partitions it into two size-lpg slots (slot-0 and slot-
1). For each B+ -tree page, the two slots at the fixed location
on the logical storage space serve memory-to-storage page
flush alternatively in the ping-pong manner. Once a page has
been flushed from memory into one slot, B+ -tree will issue a

TRIM command over the other slot. This is conceptually the
same as the conventional page shadowing with the difference
that the location of the shadow page is now fixed. Although
B+ -tree occupies 2× larger logical storage space, only half
of the storage space store valid data and the other half are
trimmed (hence do not consume physical flash memory stor-
age space). As pointed out above in Section 2.2, storage hard-
ware with built-in transparent compression could expose a
logical LBA storage space that is much larger than its internal
physical storage capacity. Hence, such storage hardware can
readily support the deterministic page shadowing. We note
that deterministic page shadowing solely aims at ensuring
page write atomicity without extra write overhead. To support
multi-version concurrency control (MVCC), B+ -tree could
use conventional methods such as undo logging.

With the proposed deterministic page shadowing, B+ -tree
uses an in-memory bitmap to keep track of the valid slot for
each page. Compared with page table being used in conven-
tional page shadowing, bitmap consumes much less mem-
ory resource. Moreover, B+ -tree does not need to persist the
bitmap. In case of system re-start, B+ -tree can gradually re-
build the in-memory bitmap: When B+ -tree loads one page
for the first time, it reads both slots from the storage device.
For the trimmed slot, storage device simply returns an all-
zero block, based on which B+ -tree can easily identify the
valid slot. When B+ -tree reads both slots of a page, the stor-
age device internally only fetches the valid (i.e., untrimmed)
slot from the physical storage media. Hence, compared with
reading one slot, reading both slots will only incur more data
transfer through the PCIe interface, without any extra read
latency inside the storage device. This should not be an issue
as the upcoming PCIe Gen5 will support 16GB/s∼ 32GB/s,
which is significantly larger than the back-end flash memory
access bandwidth inside storage devices and hence can read-
ily accommodate the extra data transfer. In case of system
crash, B+ -tree needs to handle the following two possible
scenarios: (i) A slot is partially written before the system
crash: B+ -tree can easily identify the partially written slot by
verifying the page checksum. (ii) A slot has been successfully
written but the other slot has not been trimmed before the
system crash: B+ -tree can identify the valid slot by compar-
ing the page LSN (logical sequence number) of the pages on
both slots. Since it is not necessary to persist the in-memory
bitmap, deterministic page shadowing eliminates the αe ·WAe
component from the total B+ -tree write amplification.

3.2 Localized Page Modification Logging
The second technique aims at reducing both αpg and WApg
components in Eq. (2). It is motivated by a simple observa-
tion: For a B+ -tree page, let ∆ denote the difference between
its in-memory image and on-storage image. If the difference
is significantly smaller than the page size (i.e., |∆| << lpg),
we can largely reduce the write amplification by logging the
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page modification ∆, instead of writing the entire in-memory
page image, to the storage device. This is conceptually the
same as the similarity-based data deduplication [2] and delta
encoding [24]. Unfortunately, when B+ -tree runs on normal
storage devices without built-in transparent compression, this
approach is not practical due to significant operational over-
head: Given the 4KB block IO interface, we must coalesce
multiple ∆’s from different pages into one 4KB LBA block in
order to materialize the write amplification reduction. To en-
hance the gain, we should apply the page modification logging
multiple times for each page, before resetting this process to
construct the up-to-date on-storage page image. Accordingly,
multiple ∆’s associated with the same page will spread over
multiple 4KB blocks on the storage device, which however
will cause two problems: (1) For each page, B+ -tree must
keep track of all its associated ∆’s and also periodically carry
out garbage collection, leading to a high storage management
complexity. (2) To load a page from storage, B+ -tree has to
read the existing on-storage page image and multiple ∆’s from
multiple non-contiguous 4KB LBA blocks, which leads to
a long page load latency. Therefore, to our best knowledge,
this simple design concept has not been used by real-world
B+ -tree implementations ever reported in the open literature.

Storage hardware with built-in transparent compression for
the first time makes the above simple idea practically viable.
By applying sparse data structure enabled by such storage
hardware, we no longer have to coalesce multiple ∆’s from
different pages into the same 4KB LBA block. Leveraging the
abundant logical storage LBA space, for each B+ -tree page,
we can simply dedicate one 4KB LBA block as its modifi-
cation logging space to store the ∆, which is referred to as
localized page modification logging. Under the 4KB I/O in-
terface, to realize the proposed page modification logging for
each page, B+ -tree writes D = [∆,O] (where O represents an
all-zero vector, and |D| is 4KB) to the 4KB block associated
with the page. Inside the storage device, all the zeros in D
will be compressed away and only the compressed version
of ∆ will be physically stored. Therefore, when serving each
memory-to-storage page flush with page modification log-
ging, we reduce WApg by writing 4KB instead of lpg amount
of data to the logical storage LBA space, and reduce the com-
pression ratio αpg since the written data [∆,O] can be highly
compressed by the storage device. By dedicating one 4KB
modification logging space for each B+ -tree page, we do not
incur extra B+ -tree storage management complexity. The read
amplification is small for two main reasons: (1) B+ -tree al-
ways reads only one additional 4KB LBA block. Moreover,
each page and its associated 4KB logging block contiguously
reside on the LBA space. Hence, in order to read both the page
and its associated 4KB logging block, B+ -tree only issues
a single read request to the storage device. (2) The storage
device internally fetches very small amount of data from flash
memory in order to reconstruct the 4KB LBA block [∆,O].

To practically implement this simple idea, B+ -tree must

carry out two extra operations: (1) To load a page from storage
into memory, B+ -tree must construct the up-to-date page
image based on the on-storage page image and ∆. (2) To
flush a page from memory to storage, B+ -tree must obtain
∆ and accordingly decide whether it should invoke the page
modification logging. To minimize the B+ -tree operational
overhead, we propose the following implementation strategy:
Let Pm and Ps denote the in-memory and on-storage images
of one B+ -tree page. We logically partition Pm and Ps into k
segments, i.e., Pm = [Pm,1, · · · ,Pm,k] and Ps = [Ps,1, · · · ,Ps,k],
and |Pm,i|= |Ps,i| ∀i (i.e., the two segments Pm,i and Ps,i at the
same position have the same size). For each page, B+ -tree
keeps a k-bit vector f = [ f1, · · · , fk], where fi is set to 1 if
Pm,i ̸= Ps,i. Accordingly, we construct ∆ by concatenating all
the in-memory segments Pm,i with fi = 1. During the runtime,
whenever the i-th segment in one in-memory page is modified,
B+ -tree will set its corresponding fi as 1. When B+ -tree
flushes a page from memory to storage, it first calculates the
size of ∆ as

|∆|= ∑
∀i, fi=1

|Pm,i|. (3)

We define a fixed threshold T that is not larger than 4KB.
If |∆| ≤ T , then B+ -tree will invoke the page modification
logging, where ∆ can be obtained through simple memory-
copy operations. We note that the k-bit vector f should be
written together with ∆ into the dedicated 4KB page modifica-
tion logging block. When B+ -tree loads a page from storage
into memory, it fetches lpg + 4KB amount of data from the
storage device, where the size-lpg space contains the current
on-storage page image Ps and the additional 4KB block con-
tains the associated f and ∆. Accordingly, we could easily
construct the up-to-date page image through simple memory-
copy operations. For each B+ -tree page, the size of its ∆ will
monotonically increase as B+ -tree undergoes more write op-
erations. Once |∆| becomes larger than the threshold T , we
will reset the process by flushing the entire up-to-date page
to storage with ∆ = /0 and f being an all-zero vector. We note
that the threshold T configures the trade-off between write
amplification reduction and storage space amplification: As
we increase the value of T , we can less frequently reset the
page modification logging process, leading to a smaller write
amplification. Meanwhile, under a larger value of T , more
page modifications will accumulate in the logging space and
cause a larger storage cost overhead.

Fig. 6 further illustrates this implementation strategy.
Among the all the k segments, the first segment Pm,1 is the
page header and the last segment Pm,k is the page trailer, both
of which can be much smaller than the other segments. Sup-
pose a page update causes modification of the segment Pm,3
and page header/trailer. When B+ -tree evicts this page from
the memory, it constructs the ∆ as [Pm,1,Pm,3,Pm,k], and writes
∆ and the k-bit vector f to the dedicated 4KB block logging
block, which is further compressed inside the storage device.

We note that, if B+ -tree treats in-memory pages as im-
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Figure 6: Illustration of the localized page modification log-
ging, where the to-be-flushed in-memory page Pm contains
three modified segments Pm,1, Pm,3, and Pm,k.

mutable and uses in-memory delta chaining to keep track of
the in-memory page modification (which is used in the Bw-
tree [19, 20] to achieve latch-free operations), we can most
likely further reduce |∆| and hence improve the effectiveness
of the localized page modification logging on reducing the
write amplification. However, such delta-chaining approach
can largely complicate the B+ -tree implementation [32] and
incur noticeable memory usage overhead. Hence, this work
chooses the above simple intra-page segment-based tracking
approach in our implementation and evaluation.

3.3 Sparse Redo Logging
The third design technique aims at reducing the component
αlog in Eq. (2) (i.e., improving the redo log data compress-
ibility). To maximize the reliability, B+ -tree flushes the redo
log with fsync or fdatasync at every transaction commit. In
order to reduce the log-induced storage overhead, conven-
tional practice always tightly packs log records into the redo
log. As a result, multiple consecutive redo log flushes may
write to the same LBA block on the storage device, especially
when transaction records are significantly smaller than 4KB
and/or the workload concurrency is not very high. This can
be illustrated in Fig. 7: Suppose three transactions TRX-1,

L1 0

TRX-1 commit @ t1

In-memory 
log buffer

LBA x0001

fsync @ t1

L1

TRX-2 commit @ t2

L2 L1

TRX-3 commit @ t3

L3

fsync @ t2 fsync @ t3

LBA x0001 LBA x0001

Transparent compression

NAND Flash memory

. . . . . .

L20

L1 0 L1 L2 0 L1 L3L2On-storage 
log

Figure 7: Conventional implementation of redo logging where
log records are tightly packed into redo log and consecutive
transactions commits could flush redo log to the same LBA
(e.g., LBA 0x0001 in this example) multiple times.

TRX-2, and TRX-3 (with log records L1, L2, and L3) commit
at the time t1, t2, and t3, respectively, where t1 < t2 < t3. As
illustrated in Fig. 7, at the time t1, 4KB data [L1,O] is flushed
from the in-memory redo log buffer to the LBA 0x0001 on
the storage device that further internally compresses the data.
Later on, the log record L2 is appended into the redo log
buffer, and at the time t2, the 4KB data [L1,L2,O] is flushed
to the same LBA 0x0001 on the storage device. Similarly,
at the time t3, the 4KB data [L1,L2,L3,O] is flushed to the
same LBA 0x0001 on the storage device. As illustrated in
Fig. 7, the same log record (e.g., L1 and L2) are written to
the storage device multiple times, leading to a higher write
amplification. Equivalently, as more log records are accumu-
lated inside each 4KB redo log buffer block, the redo log data
compression ratio αlog will become worse and worse over the
multiple consecutive redo log flushes.

By applying sparse data structure enabled by storage hard-
ware with built-in transparent compression, we propose a
design technique called sparse redo logging that can enable
the storage hardware most effectively compress the redo log
and hence reduce the logging-induced write amplification. Its
basic idea is very simple: At each transaction commit and
its corresponding redo log memory-to-storage flush, we al-
ways pad zeros into the in-memory redo log buffer to make
its content 4KB-aligned. As a result, the next log record will
be written into a new 4KB space in the redo log buffer. There-
fore, each log record will be written to the storage device only
once, leading to a lower write amplification compared with
the conventional practice. This can be further illustrated in
Fig. 8: Assuming the same scenario as shown above in Fig. 7,
after the transaction TRX-1 commits at the time t1, we pad
zeros into the redo log buffer and flush the 4KB data [L1,O]
to the LBA 0x0001 on the storage device. Subsequently, we
put the next log record L2 in a new 4KB space in the redo
log buffer. At the time t2, the 4KB data [L2,O] is flushed to
a new LBA 0x0002 on the storage device. Similarly, at the
time t3, the 4KB data [L3,O] is flushed to another new LBA
0x0003 on the storage device. Clearly, each redo log record

L1 0

TRX-1 commit @ t1

In-memory 
log buffer

LBA x0001

fsync @ t1

TRX-2 commit @ t2

L2

TRX-3 commit @ t3

L3

fsync @ t2 fsync @ t3

LBA x0002 LBA x0003

Transparent compression

NAND Flash memory

. . . . . .
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Figure 8: Illustration of the proposed sparse logging where
each redo log flush always writes to a new LBA block.
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is written to the storage device only once, and redo log writes
can be (much) better compressed by the storage hardware,
leading to a (much) smaller αlog and hence lower write ampli-
fication. Since each transaction commit always invokes one
4KB write to the storage device in both conventional logging
and proposed sparse logging, the total redo log write volume
Wlog in Eq. (2) will remain the same. Therefore, by reducing
the log compression ratio αlog, the proposed sparse logging
reduces the component αlog ·Wlog in the total B+ -tree write
amplification.

4 Evaluation

For the purpose of demonstration, we implemented a B+ -
tree (referred to as B!-tree) that incorporates our proposed
three simple design techniques. To facilitate the compari-
son, we also implemented a baseline B+ -tree that uses the
conventional page shadowing, where we persist the page ta-
ble after each page flush. Since the proposed three design
techniques mainly confine within the I/O module and are
largely orthogonal to the other modules in B+ -tree imple-
mentation, we obtained the B!-tree by simply integrating the
proposed design techniques into the baseline B+ -tree with
1,200 LoC added/modified. Moreover, we also considered
RocksDB and WiredTiger as representatives of LSM-tree and
normal B+ -tree. For RocksDB, we set its maximum num-
ber of compaction and flush threads as 12 and 4, and set the
Bloomfilter as 10 bits per record. For WiredTiger and our
own baseline B+ -tree and B!-tree, we use 4 background write
threads that flush dirty in-memory pages to the storage device.

4.1 Experimental Setup
We ran all the experiments on a server with 24-core 2.6GHz
Intel CPU, 64GB DDR4 DRAM, and a 3.2TB ScaleFlux com-
putational storage drive with built-in transparent compression.
This 3.2TB drive carries out hardware-based zlib compression
on each 4KB block directly along the internal I/O path, being
transparent to the host. The per-4KB (de)compression la-
tency of the hardware zlib engine is around 5µ s, which is over
10× shorter than the TLC/QLC NAND flash memory read la-
tency (∼ 50µ s and above) and write latency (∼ 1ms and above).
Operating with PCIe Gen3× 4 interface, this computational
storage drive can achieve up to 3.2GB/s sequential through-
put and 650K (520K) random 4KB read (write) IOPS (I/O
per second) over 100% LBA span. In comparison, leading-
edge commodity NVMe SSDs (e.g., Intel P4610) achieve
similar sequential throughput and random 4KB read IOPS,
but have much worse random 4KB write IOPS (e.g., below
300K). This is because built-in transparent compression can
significantly reduce the garbage collection overhead inside
the storage drive. This computational storage drive is already
in volume production and has been deployed in data centers
worldwide.

This computational storage drive can report the amount of
post-compression data being physically written to the NAND
flash memory, which are used in the calculation of write am-
plification. Before measuring the write amplification for each
case, we populate the B+ -tree/LSM-tree data store by insert-
ing all the data records in a fully random order. Once after the
data store has been fully populated, we subsequently run ran-
dom write-only workloads over one hour in order to measure
the write amplification. In all our experiments, we generate
the content of each record by filling its half content as all-zero
and the other half content as random bytes in order to mimic
the runtime data content compressibility.

We note that the effectiveness of the proposed sparse redo
logging strongly depends on the redo log flush policy. As
discussed above Section 3.3, when redo log flushes at every
transaction commit to maximize the system reliability, sparse
redo logging is very effective. However, for applications that
can tolerate the loss of certain amount of most recent data,
one could relax the redo log flush policy (e.g., flush every
one minute) under which the proposed sparse redo logging
will be much less useful. Therefore, we considered two sce-
narios in our evaluation: (1) redo log flush per transaction
commit (denoted as log-flush-per-commit), and (2) redo log
flush per minute (denoted as log-flush-per-minute).

4.2 Experiments with Log-Flush-Per-Minute
We first carried out experiments without taking into account of
the benefit of sparse redo logging by setting the redo log flush
policy as per-minute. We considered two different dataset size:
(1) 150GB dataset with 1GB cache memory, and (2) 500GB
dataset with 15GB cache memory. We also considered three
different record size (including 8B key): 128B, 32B, and 16B.
For B+ -tree implementations, following the popular RDBMs
such as Oracle and MySQL, we considered two different page
size, including 8KB and 16KB. For our B!-tree, the implemen-
tation of the proposed page modification logging involves the
following two parameters: (1) the threshold T that determines
the maximum |∆| per page, and (2) the segment size (denoted
as Ds) when partitioning each page into multiple segments
for tracking page modification, as discussed in Section 3.2.

Fig. 9 and Fig. 10 show the measured write amplification
for 150GB and 500GB datasets, respectively. In each exper-
iment, we use either 1, 2, 4, 8, or 16 client threads to cover
a wide range of runtime workload concurrency. For B!-tree,
we set the threshold T as 2KB, and set the segment size Ds
as either 128B or 256B. Since both WiredTiger and our own
baseline B+ -tree use page shadowing, they have very similar
write amplification as shown in Fig. 9 and Fig. 10. Compared
with RocksDB, normal B+ -tree (i.e., WiredTiger and our own
baseline B+ -tree) has a much larger write amplification, while
our B!-tree can essentially close the B+ -tree vs. LSM-tree
write amplification gap. For example, in the case of 500GB
dataset and 32B record size and 4 client threads, the write am-
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Figure 9: Write amplification under the log-flush-per-minute policy, where the dataset size is 150GB and cache size is 1GB.

plification of RocksDB is 38, while the write amplification of
WiredTiger is 268 under 8KB page size and 530 under 16KB
page size, respectively, which are 7.1× and 13.9× larger than
that of RocksDB. In comparison, the write amplification of
B!-tree with Ds=128B is 28 under 8KB page size (which is
only 73.7% of RocksDB’s write amplification) and 36 under
16KB page size (which is almost the same as RocksDB).

As shown in both Fig. 9 and Fig. 10, the write amplifica-
tion of both normal B+ -tree and B!-tree will increase as we
reduce the record size (e.g., from 128B per record to 16B
per record) and/or increase the B+ -tree page size (i.e., from
8KB to 16KB). Since we use the log-flush-per-minute policy,
the overall write amplification of both normal B+ -tree and
B!-tree tends to be dominated by the αpg ·WApg, as shown in
Eq. (2). In the case of normal B+ -tree, WApg proportionally
increases as we reduce the record size and/or increase the
page size. Therefore, the write amplification of normal B+ -
tree almost linearly scale with the page size and the inverse of
the record size. In the case of B!-tree, its αpg ·WApg not only
depends on the record size and page size, but also depends
on the threshold T and segment size Ds. Hence, the write
amplification of B!-tree tends to sub-linearly scale with the
page size and the inverse of the record size, as shown in both
Fig. 9 and Fig. 10. In contrast, due to the nature of LSM-tree,
the write amplification of RocksDB is weakly dependent on
the record size.

As the number of client threads increases, the write am-
plification of normal B+ -tree noticeably reduces, because of
the larger probability of page flush coalescing under higher
workload concurrency. In comparison, the write amplifica-
tion of B!-tree is much more weakly dependent on the num-
ber of client threads, because the probability that different
client threads modify the same segment inside a page is much

smaller than the probability that different client threads mod-
ify the same page. Moreover, the write amplification of B!-
tree increases as we increase the segment size Ds, simply
because the page modification logging is done in the unit of
segments. The impact of segment size Ds on the write amplifi-
cation is more significant under smaller record size, as shown
in both Fig. 9 and Fig. 10.

The write amplification of LSM-tree may noticeably in-
crease as the dataset size increases, which can be observed by
comparing the results in Fig. 9 and Fig. 10. This is because a
larger dataset size results in more levels in LSM-tree, while
the write amplification of LSM-tree tends to be proportional
to the number of levels. In contrast, the write amplification
of B+ -tree is very weakly dependent on the dataset size. As a
result, the write amplification comparison of RocksDB vs. B!-
tree is noticeably different between the 150GB dataset and
500GB dataset. In the case of 150GB dataset as shown in
Fig. 9, the write amplification of RocksDB can be up to 2×
larger than that of B!-tree (under 128B per record and 8KB
page size), and can be up to 4× smaller than that of B!-tree
(under 16B per record and 16KB page size). In comparison,
in the case of 500GB dataset as shown in Fig. 10, the write
amplification of RocksDB can be up to 3× larger than that
of B!-tree (under 128B per record and 8KB page size), and
can be up to 2× smaller than that of B!-tree (under 16B per
record and 16KB page size). The results clearly show that,
even without taking into account of the effectiveness of sparse
redo logging, the proposed B!-tree can already close the write
amplification gap between B+ -tree and LSM-tree.

4.3 Experiments with Log-Flush-Per-Commit
We carried out further experiments by switching to the log-
flush-per-commit policy, under which the proposed sparse
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Figure 10: Write amplification under the log-flush-per-minute policy, where the dataset size is 500GB and cache size is 15GB.
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Figure 11: Log-induced write amplification when using the log-flush-per-commit policy.

redo logging can noticeably contribute to reducing the write
amplification. First, Fig. 11 shows the measured write amplifi-
cation caused by the log flush, i.e., the αlog ·WAlog component
in Eq. 2. Given the record size, except the case of B!-tree, the
log-induced write amplification significantly reduces as we
increase the number of client threads. This is because, under
higher workload concurrency, more transaction commits can
be coalesced in each log flush. In contrast, the log-induced
write amplification of B!-tree is much more weakly depen-
dent on the number of client threads, because of its use of
the sparse redo logging. As the record size reduces, the log-
induced write amplification almost proportionally increases
when the sparse redo logging is not being used. The results in
Fig. 11 clearly demonstrate the effectiveness of the proposed
sparse redo logging design technique when data management
systems use the log-flush-per-commit policy to improve the
data reliability.

Fig. 12 further shows the total write amplification under the
log-flush-per-commit policy, where the dataset size is 150GB
and cache size is 1GB. Compared with the experiments under
the log-flush-per-minute policy (as shown in Fig. 9), the write
amplification of B!-tree remains almost the same, while the
write amplification of the other three cases (i.e., RocksDB, our
own baseline B+ -tree, and WiredTiger) noticeably increases,
especially when the number of client threads is small, because

of the higher log-induced write amplification. As a result, B!-
tree can more effectively close the B+ -tree vs. LSM-tree write
amplification gap and be able to achieve better-than-RocksDB
write amplification under more scenarios.

4.4 Impact of Threshold T

As discussed earlier in Section 3.2, the proposed page modi-
fication logging design approach is subject to a write ampli-
fication vs. storage usage trade-off that is configured by the
threshold T ∈ (0,4KB]. As we increase the value of T , we
can pack more modification logs into each dedicated 4KB log
space in order to further reduce the total write amplification,
which nevertheless meanwhile induces higher storage usage
overhead. All the experiments above were carried out with T
as 2KB. We carried out further experiments under different
values of threshold T to study its impact on the write amplifi-
cation vs. storage usage trade-off. For each B+ -tree page Pi,
let |∆i| denote the size of its associated modification log. Let
N denote the total number of B+ -tree pages and recall that
lpg denotes the page size, we can express the average storage
usage overhead factor as

β =
∑N

i=1 |∆i|
N · lpg

. (4)
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Figure 12: Write amplification under the log-flush-per-commit policy, where the dataset size is 150GB and cache size is 1GB.

Under a sufficiently large N, the value of β mainly depends
on the page size lpg, the threshold T , and the workload char-
acteristics (in particular the write request distribution over all
the pages). It also weakly depends on the segment size Ds.
Assuming the fully random write request distribution across
all the pages, we carried out experiments to measure the av-
erage value of β, and the results are summarized below in
Table 2. The results clearly show that the storage usage over-
head will reduce as we reduce the threshold T and/or increase
the page size. In comparison, the impact of the segment size
Ds is much more insignificant.

Table 2: Storage usage overhead factor β of B!-tree.

Page size Ds
Threshold T

4KB 2KB 1KB

8KB 128B 27.0% 12.4% 5.6%
256B 26.3% 11.5% 4.8%

16KB 128B 12.7% 6.0% 2.8%
256B 12.3% 5.6% 2.3%

Fig. 13 further compares the total storage usage in terms
of both logical storage usage on the LBA space (i.e., before
in-storage compression) and physical usage of flash mem-
ory (i.e., after in-storage compression). Since LSM-tree has
a more compact data structure than B+ -tree, RocksDB has a
(much) smaller logical storage usage than the others as shown
in Fig. 13. Since B!-tree allocates one 4KB block for each
page in order to implement the localized modification log-
ging, its logical storage usage is much larger than that of nor-
mal B+ -tree. Nevertheless, after the in-storage compression,
WiredTiger and our baseline B+ -tree consume less physical
flash memory capacity than RocksDB (most likely because
of the space amplification of LSM-tree) and B!-tree (because

of the storage overhead caused by page modification logging).
Due to the storage space overhead caused by page modifica-
tion logging, B!-tree has slightly larger physical storage usage
than RocksDB. For example, in the case of 500GB dataset
size, the physical storage usage of RocksDB is 431GB, while
the physical storage usage of B!-tree with T =2KB is 452GB,
only about 5% larger than that of RocksDB.

Figure 13: Comparison of logical and physical storage space
usage where B+ -tree page size is 8KB.

Fig. 14 compares the write amplification of B!-tree under
different value of the threshold T , where we use the log-flush-
per-minute policy in order to better show the impact of T . The
segment size Ds is 128B. The results clearly show that we can
reduce the write amplification by increasing the threshold T .
Moreover, the reduction on the write amplification tends to
become less and less as we continue to increase the threshold
T . This is because, as the page modification log size |∆|
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becomes larger, the write amplification caused by flushing
the modification log will accordingly increase. Combining
the results shown in Fig. 13 and Fig. 14, we can observe
the impact of the threshold T on the trade-off between the
write amplification and storage usage overhead. The setting of
T =2KB appears to achieve a reasonable balance on the trade-
off and hence has been used in all the experiments presented
above in Sections 4.2 and 4.3.

Figure 14: B!-tree write amplification under different T .

4.5 Speed Performance Evaluation
Finally, we studied the speed performance of B!-tree. Com-
pared with normal B+ -tree, B!-tree tends to have lower read
speed performance because of the following two overheads
when fetching each page from the storage: (1) B!-tree has
to fetch an extra 4KB block from the storage, and (2) B!-
tree has to consolidate the modification log with the current
on-storage page image in order to construct the up-to-date
in-memory page image. Using the 150GB dataset with 128B
per record as the test vehicle, we run random read-only work-
loads with either point read or range scan queries. The B+ -tree
page size is 8KB in all the experiments. Fig. 15 shows the
measured TPS performance under random point read queries.
The results show that normal B+ -tree (WiredTiger and our
own baseline B+ -tree) have the best point read through-
put performance. RocksDB and B!-tree achieve almost the
same random point read throughput performance. By using
the Bloomfilter, RocksDB almost completely obviates the
read amplification problem of classical LSM-tree. Never-
theless, when serving read requests, RocksDB still has to
search the memtable and check the Bloomfilter. As shown
in Fig. 15, the point read throughput gap between normal
B+ -tree and RocksDB/B!-tree is not significant. For example,
under 16 client threads, WiredTiger can achieve 71K TPS,
while RocksDB/B!-tree can achieve 57K TPS, about 19.7%
less than that of WiredTiger.

Fig. 16 shows the measured TPS when running random
range scan queries, where each range scan covers 100 consec-
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Figure 15: Random point read speed performance measured
on 150GB dataset with 1GB cache and 128B per record.

utive records. Compared with the case of random point reads,
the normal B+ -tree and B!-tree have noticeably smaller dif-
ference in terms of range scan throughput performance. This
is because the two overheads of B!-tree (i.e., fetching an extra
4KB, and in-memory page reconstruction) can be amortized
among the records covered by each range scan. In comparison,
RocksDB has noticeably worse range scan throughput per-
formance than the others, because range scan invokes reads
over all the levels in LSM-tree, leading to very high read
amplification.
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Figure 16: Random range scan speed performance measured
on 150GB dataset with 1GB cache and 128B per record,
where each range scan covers 100 consecutive records.

We also studied the speed performance under random write-
only workloads. The random write speed performance of
B+ -tree and LSM-tree is fundamentally limited by the write
amplification. Therefore, by significantly reducing the write
amplification, B!-tree should be able to achieve much higher
write speed performance. Fig. 17 shows the measured random
write TPS on 150GB dataset with 128B per record, where the
B+ -tree page size is 8KB. We set the log-flush-per-minute
policy in the experiments. Even without the help of the sparse
redo logging, B!-tree achieves 19% higher write throughput
than RocksDB, and about 2.1× higher write throughput than
WiredTiger and our baseline B+ -tree. Although the workload
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is write-only, the I/O traffic is heavily read/write-mixed be-
cause the cache memory capacity is much smaller than the
total dataset. Because the localized page modification log-
ging invokes read-modify-write operations, our B!-tree incurs
higher read I/O traffic than normal B+ -tree. As a result, the
TPS gain of our B+ -tree is less than the WA reduction of
B+ -tree as shown above in Fig. 9. Nevertheless, the random
write speed results still correlate with the write amplification
results, and our B+ -tree can achieve the highest random write
speed performance.
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Figure 17: Random write speed performance measured on
150GB dataset with 1GB cache and 128B per record.

5 Related Work

Graefe [11] surveyed a variety of design techniques (e.g., I/O
optimization, buffering, and relaxing transaction guarantee)
that can improve the B+ -tree write throughput, some of which
accomplish the goal by reducing the B+ -tree write amplifica-
tion. Nevertheless, I/O optimization techniques that mainly
aim at converting random page writes to sequential page
writes are only useful to HDDs, since modern SSDs achieve
almost the same random vs. sequential write speed perfor-
mance. Many techniques surveyed in [11] (e.g., buffering,
relaxing transaction guarantee) are orthogonal to the solutions
presented in this paper, and hence can be applied altogether
to further reduce the B+ -tree write amplification. Moreover,
copy-on-write or page shadowing [1, 18] is a well-known
technique to achieve B+ -tree data atomicity and durability.
Compared with B+ -tree using in-place update, it can reduce
the write amplification by about 2× .

Levandoski et al. [19, 20] proposed the Bw-tree that can
better adapt to modern multi-core CPU architecture and mean-
while reduce the write amplification. Bw-tree treats each
in-memory page as immutable and uses delta chaining to
keep track of the changes made to each page. This can enable
latch-free operations and hence better utilize multi-core CPUs.
Meanwhile, by only flushing the delta records, Bw-tree can
reduce the write amplification. Bw-tree uses a log-structured
store to persist all the pages and deltas, which however suffers

from read amplification and background garbage collection
overheads. When running Bw-tree on storage hardware with
build-in transparent compression, one could enhance Bw-tree
by replacing the log-structured store with the localized page
modification logging presented in this work.

Bε-tree [4] is another well-known variant of B+ -tree that
can significantly reduce the write amplification through data
buffering at non-leaf nodes. It has been used in the design
of filesystem [10, 16, 17, 34] and key-value store [8, 26]. In
essence, Bε-tree cleverly mixes the key design principles
of B+ -tree and LSM-tree. Similar to LSM-tree, Bε-tree has
worse range scan speed performance than B+ -tree. Percona
TokuDB [27] is one publicly known database product that is
built upon Bε-tree.

Little prior research has been done on studying how data
management systems could take advantage of modern stor-
age hardware with built-in transparent compression. Recently,
Zheng et al. [36] discussed some possible options on leverag-
ing such modern storage hardware to improve data manage-
ment software design. Chen et al. [6] presented a hash-based
key-value store that can leverage such modern storage hard-
ware to obviate the use of costly in-memory hash table.

6 Conclusions

This paper presents three simple yet effective design tech-
niques that enable B+ -tree take better advantages of modern
storage hardware with built-in transparent compression. By
decoupling logical vs. physical storage space utilization effi-
ciency, such modern storage hardware allows data manage-
ment systems employ sparse data structure without sacrific-
ing the true physical data storage cost. This opens a new but
largely unexplored spectrum of opportunities to innovate data
management software design. As one small step towards ex-
ploring this design spectrum, this paper presents three design
techniques that can appropriately embed sparsity into B+ -tree
data structure to largely reduce the B+ -tree write amplifi-
cation. Experimental results show that the proposed design
techniques can reduce the B+ -tree write amplification by over
10× , which essentially closes the B+ -tree vs. LSM-tree gap
in terms of write amplification. This work suggests that the
arrival of such new storage hardware warrants a revisit on the
role and comparison of B+ -tree and LSM-tree in future data
management systems.

Acknowledgments

We would like to thank our shepherd Randal Burns and the
anonymous reviewers for their insight and suggestions that
help us to improve the quality and presentation of this paper.
This work was supported by the National Science Foundation
under Grant No. CNS-2006617.

80    20th USENIX Conference on File and Storage Technologies USENIX Association



References

[1] R. Agrawal and D. J. Dewitt. Integrated concurrency
control and recovery mechanisms: Design and perfor-
mance evaluation. ACM Transactions on Database Sys-
tems (TODS), 10(4):529–564, 1985.

[2] L. Aronovich, R. Asher, E. Bachmat, H. Bitner,
M. Hirsch, and S. T. Klein. The design of a similarity
based deduplication system. In Proceedings of ACM In-
ternational Systems and Storage Conference (SYSTOR),
pages 1–14, 2009.

[3] O. Balmau, D. Didona, R. Guerraoui, W. Zwaenepoel,
H. Yuan, A. Arora, K. Gupta, and P. Konka. TRIAD:
Creating synergies between memory, disk and log in log
structured key-value stores. In Proceedings of USENIX
Annual Technical Conference (ATC), pages 363–375,
2017.

[4] G. S. Brodal and R. Fagerberg. Lower bounds for ex-
ternal memory dictionaries. In SODA, volume 3, pages
546–554. Citeseer, 2003.

[5] I. Burstein. Nvidia Data Center Processing Unit (DPU)
Architecture. In IEEE Hot Chips Symposium (HCS),
pages 1–20, 2021.

[6] X. Chen, N. Zheng, S. Xu, Y. Qiao, Y. Liu, J. Li, and
T. Zhang. KallaxDB: A table-less hash-based key-value
store on storage hardware with built-in transparent com-
pression. In Proceedings of the International Work-
shop on Data Management on New Hardware (DaMoN),
pages 1–10, 2021.

[7] D. Chiou, E. Chung, and S. Carrie. (Cloud) Acceleration
at Microsoft. Tutorial at Hot Chips, 2019.

[8] A. Conway, A. Gupta, V. Chidambaram, M. Farach-
Colton, R. Spillane, A. Tai, and R. Johnson. SplinterDB:
Closing the bandwidth gap for nvme key-value stores.
In USENIX Annual Technical Conference (ATC), pages
49–63, 2020.

[9] Dell EMC PowerMax. https://delltechnologies.com/.

[10] J. Esmet, M. A. Bender, M. Farach-Colton, and B. C.
Kuszmaul. The TokuFS streaming file system. In Hot-
Storage, 2012.

[11] G. Graefe. B-tree indexes for high update rates. ACM
Sigmod Record, 35(1):39–44, 2006.

[12] G. Graefe and H. Kuno. Modern B-tree techniques. In
IEEE International Conference on Data Engineering,
pages 1370–1373. IEEE, 2011.

[13] E. F. Haratsch. SSD with Compression: Implementation,
Interface and Use Case. In Flash Memory Summit, 2019.

[14] HPE Nimble Storage. https://www.hpe.com/.

[15] G. Huang, X. Cheng, J. Wang, Y. Wang, D. He, T. Zhang,
F. Li, S. Wang, W. Cao, and Q. Li. X-Engine: An opti-
mized storage engine for large-scale E-commerce trans-
action processing. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data,
pages 651–665. ACM, 2019.

[16] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet,
Y. Jiao, A. Mittal, P. Pandey, P. Reddy, L. Walsh, et al.
BetrFS: A right-optimized write-optimized file system.
In USENIX Conference on File and Storage Technolo-
gies (FAST), pages 301–315, 2015.

[17] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet,
Y. Jiao, A. Mittal, P. Pandey, P. Reddy, L. Walsh, et al.
BetrFS: Write-optimization in a kernel file system. ACM
Transactions on Storage (TOS), 11(4):1–29, 2015.

[18] J. Kent, H. Garcia-Molina, and J. Chung. An experi-
mental evaluation of crash recovery machanisms. In
Proceedings of the fourth ACM SIGACT-SIGMOD sym-
posium on Principles of database systems, pages 113–
122, 1985.

[19] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The
Bw-tree: A B-tree for new hardware platforms. In IEEE
International Conference on Data Engineering (ICDE),
pages 302–313. IEEE, 2013.

[20] J. J. Levandoski, S. Sengupta, and W. Redmond. The
Bw-tree: A latch-free B-tree for log-structured flash
storage. IEEE Data Eng. Bull., 36(2):56–62, 2013.

[21] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. WiscKey: Separat-
ing keys from values in SSD-conscious storage. ACM
Transactions on Storage (TOS), 13(1):5, 2017.

[22] C. Luo and M. Carey. LSM-based storage techniques: a
survey. The VLDB Journal, 29:393–418, 2020.

[23] LZ4. https://github.com/lz4/.

[24] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishna-
murthy. Potential benefits of delta encoding and data
compression for HTTP. In Proceedings of the ACM
SIGCOMM conference on Applications, technologies,
architectures, and protocols for computer communica-
tion, pages 181–194, 1997.

[25] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informatica,
33(4):351–385, 1996.

[26] A. Papagiannis, G. Saloustros, P. González-Férez, and
A. Bilas. Tucana: Design and implementation of a fast

USENIX Association 20th USENIX Conference on File and Storage Technologies    81



and efficient scale-up key-value store. In Proceedings
of USENIX Annual Technical Conference (ATC), pages
537–550, 2016.

[27] Percona TokuDB. https://www.percona.com/software/mysql-
database/percona-tokudb.

[28] Pure Storage FlashBlade. https://purestorage.com/.

[29] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham.
PebblesDB: Building key-value stores using fragmented
log-structured merge trees. In Proceedings of the Sym-
posium on Operating Systems Principles (SOSP), pages
497–514, 2017.

[30] RocksDB. https://github.com/facebook/rocksdb.

[31] ScaleFlux Computational Storage. http://scaleflux.com.

[32] Z. Wang, A. Pavlo, H. Lim, V. Leis, H. Zhang, M. Kamin-
sky, and D. G. Andersen. Building a Bw-tree takes more
than just buzz words. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages
473–488, 2018.

[33] WiredTiger. https://github.com/wiredtiger/.

[34] J. Yuan, Y. Zhan, W. Jannen, P. Pandey, A. Akshintala,
K. Chandnani, P. Deo, Z. Kasheff, L. Walsh, and M. Ben-
der. Optimizing every operation in a write-optimized
file system. In USENIX Conference on File and Storage
Technologies (FAST), pages 1–14, 2016.

[35] Y. Yue, B. He, Y. Li, and W. Wang. Building an efficient
put-intensive key-value store with skip-tree. IEEE Trans-
actions on Parallel and Distributed Systems, 28(4):961–
973, 2016.

[36] N. Zheng, X. Chen, J. Li, Q. Wu, Y. Liu, Y. Peng, F. Sun,
H. Zhong, and T. Zhang. Re-think data management soft-
ware design upon the arrival of storage hardware with
built-in transparent compression. In USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage),
2020.

[37] zlib. http://zlib.net.

[38] Zstandard (ZSTD). https://github.com/facebook/zstd.

82    20th USENIX Conference on File and Storage Technologies USENIX Association



TVStore: Automatically Bounding Time Series Storage via
Time-Varying Compression

Yanzhe An1, Yue Su2†, Yuqing Zhu�1‡, Jianmin Wang1

1Tsinghua University, 2Huawei Technologies Co., Ltd.

Abstract
A pressing demand emerges for storing extreme-scale time
series data, which are widely generated by industry and
research at an increasing speed. Automatically constraining
data storage can lower expenses and improve performance,
as well as saving storage maintenance efforts at the resource-
constrained conditions. However, two challenges exist: 1)
how to preserve data as much and as long as possible within
the storage bound; and, 2) how to respect the importance of
data that generally changes with data age.

To address the above challenges, we propose time-varying
compression that respects data values by compressing data
to functions with time as input. Based on time-varying
compression, we prove the fundamental design choices
regarding when compression must be initiated to guarantee
bounded storage. We implement a storage-bounded time
series store TVStore based on an open-source time series
database. Extensive evaluation results validate the storage-
boundedness of TVStore and its time-varying pattern of
compression on both synthetic and real-world data, as well as
demonstrating its efficiency in writes and queries.

1 Introduction

Time series databases are becoming the most popular type
of databases in recent years [2]. We are witnessing a grow-
ing demand for time-series-specific storage and processing
from many fields such as cluster monitoring [91], Internet
of Things [6], finances [80], medicine [51], and scientific
research [63]. In fact, the fast increasing volume of time series
data has placed an unprecedented requirement on computing
resources, especially storage space [6, 79].

An effective storage management strategy that can con-
strain the storage space is desirable and important for time
series databases. While large organizations can afford the
storage to hold the ever-growing time series data, small or
medium-sized entities prefer to strike a good balance between
data volume and storage cost [45]. Besides, storage space
is restricted in some specific deployments, e.g., real-time
monitoring at far remote sites [8, 19, 78]. On the other hand,

†Co-first author. Work done at Tsinghua University.
‡The corresponding author (zhuyuqing@tsinghua.edu.cn).

as the significance of time series data is highly correlated with
the age of the data [22,37,89], it is desirable to have a storage
management strategy that takes data ages into account [3, 7].

Significant prior work has addressed the storage-control
problem by compression, which can be lossless or lossy. Loss-
less compression [10, 33, 57, 71, 73] preserves the complete
data, but its achievable upper bound on compression ratio [93]
might not be satisfactory for applications. Hence, time series
databases commonly control storage consumption by directly
discarding data older than a given time [43] or exceeding a
storage threshold [67]. But discarding historical data causes
a loss [94]. For example, historical data are crucial for long-
term observations and enabling new scientific knowledge
creation in the future [63]. Besides, time-based retention
policy might not bound the data volume in case of unevenly
spaced time series with unknown arrival intervals. Another
common approach is to exploit lossy compression [15,41,65],
which preserves partial data and trades off precision for space.
But existent approaches to lossless and lossy compression
are only best-effort about the final size of compressed data
size [13, 24, 99].

In this paper, we take a new approach towards controlled
storage space for time series stores. We consider the problem
of automatically bounding the storage of a time series store
by compression. To enable this, our key insight is that time
series data can be compressed losslessly or lossily according
to its importance, which is in turn related to its age, as users
commonly accept information loss on less important old
data [12, 14, 23, 38, 40]. We control the storage space by time-
varying compression, which compresses data in a sequence
of ratios defined by a time-dependent function. Inspired by
time-decayed windowing of stream processing [9, 22], our
design of time-varying compression takes the chunking-and-
varied-segmentation approach, accepting user-defined time-
dependent functions and fixed-ratio compressors.

To automatically bound time series storage by compression,
three fundamental challenges exist. The first is deciding when
to start the time-varying compression, i.e., the proper moment
when 1) it is not too late that the storage space is exceeded
during compression; and, 2) it is not too early that unnecessary
compression is applied to some recent data, for preserving
as much information as possible. The second challenge is
computing the proper compression ratio r, given which the
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sequence of compression ratios can be deduced using a time-
dependent function. r should not be too large to prevent
discarding information unnecessarily and meantime not be
too small to exceed the storage bound. The third challenge
is finding out how to run the time-varying compression, i.e.,
whether to compress data in an online stream processing
manner or in a batch processing manner. The goal is to reduce
computing resource consumption and improve performance.

To address these challenges, we propose TVStore, a storage-
bounded time series store built upon time-varying compres-
sion. TVStore can automatically and effectively bound the
time series storage even if data keep being ingested. We
implement TVStore by extending the storage engine of an
open-source time series database named Apache IoTDB [96].
Hence, all the database functions and operations remain
supported in TVStore. We evaluate TVStore in extensive
experiments based on synthetic data and real-world data.
Results validate the storage-boundedness of TVStore and
its time-varying pattern of compression. The compression
technique employed TVStore incurs low overhead compared
to its baseline. It is efficient in writes and reads, 3×(25×)
and 35×(8.7×) faster than the state-of-the-art(state-of-the-
practice) related works [3, 67] respectively. Under the same
conditions, TVStore can respond to queries with much lower
error rates in most cases than the related work.

In sum, we make the following contributions in this paper:
• We propose a time-varying compression framework

TVC, which can compress data by varied ratios complied
with a given time-dependent function that corresponds
to the age-varying importance of time series data.

• We design a time series store TVStore that can automati-
cally run the time-varying compression framework TVC
at the proper time, effectively bounding the storage space
to a specific threshold while preserving data according
to the time-varying importance for applications. To the
best of our knowledge, TVStore is the first time series
store that can automatically bound its storage space by
time-varying compression patterns.

• We implement TVStore based on an open-source time
series database1, introducing a three-layer data reduction
scheme and exploiting a line generalization algorithm as
the fixed-ratio compressor for TVC.

• We run extensive experiments using synthetic and real-
world data to demonstrate the efficiency and advantage
of TVStore in comparison to three related time series
stores, as well as to validate its storage-boundedness and
time-varying pattern of compression.

2 Background and Motivation
2.1 Why Constrain Storage
Time series databases are gaining an increasing popularity [1].
Rather than processing time series as streams and analyzing

1https://github.com/thulab/TVStore

Figure 1: Time series predictions by data compressed
in the time-varying (TV) vs. time-invariant (TI) manner.
Predictions lie in the gray area. TV-compressed data have
varied compression ratios for data at different ages, while
TI-compressed data have the same compression ratio at all
times. Both cases have the same overall compression ratio.

only once, mounting demands have emerged for keeping time
series data for future analysis [94]. But time series data are
generated at a growing speed that is outpacing the increase of
computing capabilities [17, 79]. Many application scenarios
cannot afford enough computing resources such as storage and
network bandwidth to accommodate the processing needs for
time series data. Storage-bounding compression can enable
the control of storage cost.

Limited storage expense. Many medium or small entities
have to limit their expense on storage in their daily operations,
even though the public clouds have the capacity to keep all
their data [94]. As value is yet to be extracted from the huge
volume of time series data, it is desirable to automatically
keep as much data as possible within the storage constraint.

Sensors of a connected car can generate about 30 terabytes
(TB) of data per day [62, 77]. Time series data is among the
major components of the generated data. To hold all the data
on such moving vehicles, large disks are installed. Since a
30TB disk can cost around $1200, a month’s worth of data can
fill up a 960TB disk, causing a cost of $30,000. This adds an
unrealistic amount to a vehicle’s price, but keeping as much
data as possible can enable valuable data analytics [77, 83].

Limited computing resources. In the oil and gas industry,
a typical offshore oil platform generates more than 1TB of
data [19] daily. But common data transmission via satellite
connection allows only a speed from 64 Kbps to 2Mbps
for these offshore oil platforms. If all data are transmitted
back for processing, it would take more than 12 days to
move 1 day’s worth of data to the processing backend [8].
Data compression is demanded for reducing data in both
transmission and storage.

Scientific research applications nowadays are producing
too much data to be stored or processed efficiently. For
example, cosmological simulations generate petabytes of data
per simulation run [34] and climate simulations generate
tens of terabytes per second [29]. Such large volumes of
data are imposing an unprecedented burden on storage and
computation. Data reduction is necessary to enable data
processing and analytics within a reasonable amount of
resource and time [92].
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Figure 2: Compression ratio sequences generated by a
function of the data age at time t and t +∆t, for reducing
different data volumes to the same size, i.e., 200 data chunks.
Data volumes increase with time.

2.2 Time-Varying Importance of Data
The importance of time series data changes along with time,
as reflected by applications’ favoring recent data over old
data [5, 18, 31], or favoring some events at certain moments
over others [49,83]. Time-changing importance of data in fact
commonly exists in natural and scientific phenomena [75,
86, 98]. As a result, we have seen a plethora of research
on data series analysis and prediction considering the time-
changing pattern [9,22,36,37,89]. Figure 1 illustrates how the
importance of data varies with time in time series prediction,
which is widely used in applications [39,48,59,76,88]. Recent
data have dominant impact on the result of prediction, making
the time-varying compression outperform the common time-
invariant compression.

Time-changing importance of time series data can be
exploited to form time-varying compression. For important
data, we compress them losslessly or with a low ratio by lossy
compression. For unimportant data, we compress them by a
high compression ratio. As time series data can be identified
by timestamps, we use a time-dependent function to denote
the changing importance of data. Hence, the compression
ratios can also be deduced from the function. Time-varying
compression can suit users’ requirements on data analysis
well and save storage space to the most extent. As shown in
Figure 2, the power-law function tβ with β = 1 is used for
depicting time-changing importance of data and exploited to
define time-varying compression ratios in both graphs. As
data keep arriving, the compression at a later time reduces
more data to the same volume as that at an early time, but by
higher ratios as generated according to function tβ.

2.3 Automatic Compression and Bounding
To meet the above requirements of time series applications,
we propose time-varying compression that respects the time-
varying importance of time series data. Furthermore, we
propose the design of a time series store that automatically
bounds the total storage space to effectively control costs. To
this end, compression must be initiated at proper moments
to cap the overall storage space, as data increase. The
compression ratios must be computed automatically, with
compressions initiated at proper moments. These moments
must be computed carefully such that users can keep data

to its highest precision as long as possible. We must deduce
the proper moments for compression initiation when 1) it
is not too late that the storage space is exceeded during
compression; and, 2) it is not too early that unnecessary
compression is applied to some recent data or that an
improperly high compression ratio is used. Besides, when
lossy compression is used, users would need the overall error
rates for understanding the data analysis results they could
expect. The error bound computation must evolve along with
time-varying compression. And, users are allowed to request
the removal of data with high error rates.

Challenges: As a result, two main challenges exist in
automatically bounding the time series storage by time-
varying compression: 1) how time-varying compression
can be executed on an ever-increasing volume of data and
with error bounds computed, when the compression ratios
keep changing as shown in Figure 2 (§3); and, 2) how to
automatically decide the conditions for running time-varying
compression such that storage space is always bounded but
not too much (§4).

3 Time-Varying Compression
Given a time series, time-varying compression (TVC) com-
presses it to an overall compression ratio no smaller than a
user-specified threshold r. TVC compresses data by the unit
of chunk, which is time series data within a time interval.
The compression ratios vary for different chunks according
to a time-dependent function r(t)’s definition, where the
input t is a data chunk’s age as relative to the most recent
timestamp of the time series. TVC enforces the compliance to
different compression ratios defined by r(t). The benefits
of this compliance is that different r(t) can be used for
various use cases [22]. Provided with properly designed r(t)
and compressor, TVC can even achieve functionally lossless
compression [54] for a long range of data.

The key challenge of time-varying compression is how to
continuously preserve the compliance with any r(t) definition,
when a data chunk’s age increases along with the data volume.
To address this challenge, TVC initiates rounds of compres-
sion on data chunks iteratively. Figure 3 overviews time-
varying compression in rounds. Later rounds of compression
must execute on differently compressed data. Two problems
must be tackled: 1) how to compute the correct sequence of
compression ratios to enforce the compliance to a given r(t)
(§3.1, §3.2); and, 2) what properties a compressor must have
to guarantee a feasible time-varying compression process,
besides the fixed-ratio requirement(§3.3).

3.1 Ratio Sequencing and Data Chunking

For an overall compression ratio r̄, TVC first finds a se-
quence of compression ratios r1,r2, ...,rk defined by the time-
dependent function r(t). The average of the compression
ratio sequence r1,r2, ...,rk should approximate r̄. The time-
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dependent function r(t) produces a compression ratio when
given an integer t. Here, a smaller t is a time interval closer
to the most recent time of a time series. Decay functions [3,
22,75] commonly used in time series analysis can be used for
r(t), e.g., exponential function (eαt ) and polynomial/powerlaw
function (tβ). r(t) can also be a constant function (C), but then
TVC degrades to a common lossless/lossy compressor.

We assume the data for compression is kept in the unit of
chunks, as time series stores commonly keep data in units
like chunk [96] or block [4, 43]. TVC executes compression
by the unit of chunk. To guarantee that data are compressed
to the compression ratio sequence r1,r2, ...,rk, TVC groups
ri data chunks into the ith segment. Each segment is then
compressed to an output chunk. Hence, the ith chunk of the
compression output has a compression ratio ri, complying to
the definition of r(t).

Moreover, the compression ratio sequence must guarantee
that 1) all data chunks to be compressed are actually pro-
cessed; and, 2) the actual compression ratio is no smaller than
r̄ to avoid exceeding the storage bound. Hence, the sum of
compression ratios must be no smaller than the number m
of raw data chunks to be compressed. Besides, the average
of compression ratios must be no smaller than r̄. We then
approximate r̄ by the average of the smallest sequence of
r1,r2, ...,rk that satisfy the following equations:

Σ
k
i ri ≥ m (1)

m/k ≥ r̄ (2)

It is possible that no such sequence complied with r(t) is
found to satisfy both of the two equations, if r1 = r(1). Hence,
TVC allows the compression ratio sequence r1 to be r(i),
with rk = r(k+ i− 1). But TVC requires that the sequence
r1,r2, ...,rk is non-decreasing, which means that r(t) must
be a non-decreasing function. The condition is necessary to
avoid that some data chunks have a lower compression ratio
in later rounds, while they are compressed in a higher ratio
in a previous round. In fact, this condition naturally follows
from the fact that data are aging and must be compressed with
no lower ratios in later compression rounds.

3.2 Virtual Decompression and Compressions
TVC initiates a new round of compression when neces-
sary, e.g., when conditions for constraining storage are met
(discussed in Section 4). In rounds other than the first, the
compression is executed on differently compressed data. It
is difficult to compute the actual compression ratios based
on data chunks compressed to different ratios. But the actual
compression ratios are needed in enforcing the compliance to
the time-dependent function r(t), according to equation (2).

To compute actual compression ratios, TVC adopts the
technique of virtual decompression. For the compression
round n, TVC does not compute the compression ratios
based on the compressed data from the last round. Rather,
given the data chunks to be compressed in round n, TVC

Figure 3: Time-varying compression in rounds. In each round,
data of different ages are compressed to ratios that change
according to a time-dependent function.
virtually decompresses them, by mathematical mapping, to
the original raw data chunks for computing the sequence of
compression ratios. Then, the conditions for ratio sequencing
are considered. Thanks to the chunk-based data unit, virtual
decompression can be supported by recording the number of
original raw data chunks in every compression round.

Virtual decompression enables the generation of a compres-
sion ratio sequence based on the original raw data even after
rounds of compression. Only by virtual decompression could
the compressed data always follow the time-dependent func-
tion r(t)’s definition. Otherwise, data can only be compressed
following the exponentially decaying pattern, as compression
on compressed data leads to the multiplication of compression
ratios. This would limit the applications of TVC, as r(t) can
only be an exponential function.

Algorithm 1 presents the main algorithm of time-varying
compression for a time series. The input to the algorithm
includes the number of actual chunks to be compressed
and the target overall compression ratio r̄. The algorithm
consists of three parts. The first two parts guarantee the two
conditions as specified by Eq. (1) and (2) while approximating
r̄ by r1,r2, ...,rk. The third part actually compresses the data
chunks by the ratio sequence.

In the first part of Algorithm 1, virtual compression is
applied to the actual data chunks such that the corresponding
number m of raw data chunks is obtained (line 2). According
to Eq. (1), an initial sequence of compression ratios is ob-
tained (line 4-8). As discussed above, the condition specified
by Eq. (2) is not necessarily satisfied, even if Eq. (1) is
met; and vice versa. Therefore, we refine the sequence to
satisfy both Eq. (2) (line 9-12) and Eq. (1) (line 13-17) by
approximation.

3.3 Compressor and Error Bounding
In a compression round, TVC compresses ri data chunks
by varied compression ratios into a single data chunk. To
guarantee that data in an output chunk are actually compressed
by the same compression ratio, we can have TVC decompress
all the input chunks and then apply the same compressor by
the same compression ratio. But two problems exist. First,
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Algorithm 1: Time-varying compression.
Input: ma: number of data chunks to be compressed;
r̄: overall compression ratio

1 ratioSeqQueue← /0;
/* To ensure the condition of Eq.(1) */

2 m←virtualDecompress(ma);
3 seqSum←0, j←0,i←0;
4 while seqSum< m do
5 j+=1;
6 seqSum+=r( j);
7 ratioSeqQueue.enqueue(r( j))
8 end
/* To guarantee the condition of Eq.(2) */

9 while j-i+1> m/r̄ do // j− i+1 = k for Eq.(2)
10 j+=1;
11 seqSum+=r( j);
12 ratioSeqQueue.enqueue(r( j));

/* To approach Eq.(1)’s equality condition */
13 while seqSum≥ m do
14 i+=1;
15 seqSum-=r( j);
16 ratioSeqQueue.dequeue();
17 end
18 end

/* To compress chunks by the ratio sequence */
19 while ratioSeqQueue.size> 0 do
20 compressOneChunk(ratioSeqQueue.dequeue());
21 end

as TVC takes iterative compression rounds, decompression
before compression is highly inefficient. Second, if lossy
compression is used, the decompressed data is imprecise.
Rounds of decompression and compression can lead to a high
deviation from the original data. A proper error bound on the
lossily compressed data is desirable to users.

To avoid the above two problems, TVC requires the
compressor to have the following three properties. First,
compression on previously compressed data does not require
decompression. Second, decompression on data compressed
multiple times works the same way as on data compressed
once. Third, the error bounds must be easily computed for
the rounds of compression. While these properties seem to
be restricted, proper approximation or representation models
for time series data [26, 44, 69] are feasible choices, e.g.,
piecewise linear approximation (PLA) [27, 60, 87].

Among the various lossy compressors, PLA-based com-
pressors compress a time series by approximating it using line
segments. According to the related work [68], a line segment
built from two line segments is the same as the line segment
built from the original time series data, if line segments
are properly constructed. Decompression on data at any
round only needs to compute the linear function for a given
time. Moreover, the mean bias error (MBE) of PLA can be
computed easily even after rounds of compression. MBE is a
commonly used metric for evaluating approximations [64, 81,
82]. For the ith compression round, MBEi is the sum of round-
relative error MBE j−1, j in previous rounds, i.e., MBEi =
Σi

j=1MBE j−1, j, where MBE j−1, j =
1
n Σn

k=1x j−1,k− x j,k. Here,
x j,k represents the decompressed value.

TVC accepts the specification of PLA compressors cur-
rently. TVC records the compression ratio and the error rate
for every data chunk. After rounds of compression, there
would be a time when some old data chunk has a high
compression ratio and thus a high error rate. Keeping data
at an extremely high error rate is no better than discarding
it. Therefore, TVC allows users to specify a compression
ratio rmax or an error rate emax. TVC automatically discards
data compressed at a ratio higher than rmax or at an error rate
larger than emax. If the compressor and the compression ratio-
defining function r(t) are properly chosen, TVC can achieve
functionally lossless compression [54] for a long range of data,
as well as supporting advanced analytical workloads [70].

4 TVStore: Automatic Storage Bounding

We propose TVStore that automatically bounds time series
storage to a user-provided size using TVC as data keep being
ingested. It allows users to set a recent data volume Do that
is not to be compressed. After reaching Do, TVStore starts
the compression at a proper time to avoid overrunning the
storage bound or losing too much information. It monitors the
storage consumption and initiates a process of time-varying
compression when needed. Hence, three key design choices
are made here:
How to compress: Shall compression be applied continu-

ously to cold data in a batch-processing manner or hot
data in a stream processing way [3]?

What ratio to compress: Will all compression ratios be
feasible for storage bounding? If not, what is the proper
compression ratio interval?

When to compress: When would be the proper time to start
a TVC process that is neither too early to lose too much
data nor too late to exceed the storage bound?

4.1 Compression on Hot Data or Cold Data?
TVStore exploits time-varying compression to bound the
storage space. Compression can be applied to hot data as
stream processing does [3]. It can also be applied to cold
data in a batch processing mode. As TVStore targets resource
limited environments, it is desirable to reduce the number
of compression times and I/O accesses such that power
consumption, memory utilization, and processor utilization
can be reduced.

Consider the procedure of time-varying compression pre-
sented in Section 3. The compression ratios are equal to the
segment sizes, in terms of data chunk numbers. As data in
the largest segment is compressed the most times, it can be
shown that such a segment after multiple compression rounds
of TVC has a smaller number of compression times by cold-
data compression than by hot-data compression.

In a compression round, a sequence of k segment sizes of
r(t), t = i, ...,k+ i− 1 is generated, as shown in Figure 3. Let
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F(k) be the compression times of the kth segment after this
compression. For the first round of compression on cold data,
k segments are compressed into k chunks, with Fc(k) = 1.

As for hot data, in the compression round with the same
data volume, the kth segment must be compressed from
multiple smaller segment of chunks, since it continuously
compresses smaller chunks into larger chunks whenever
possible. To obtain the kth segment, we need segments with
sizes summarized to rk = r(k+ i−1), i.e.,

rk =
k+i−2

Σ
t= j

atr(t) (3)

Following Eq. (3), the compression times Fh(k) of the kth
segment is represented as follows:

Fh(k) = 1+
k+i−2

Σ
t= j

atFh(t) (4)

As a result, Fc(k) < Fh(k), i.e., F(k) has a smaller value in
cold-data compression than in hot-data compression.

For the latter rounds of cold-data compression, the kth
segment will also be compressed from segments with smaller
sizes. That is, Eq. (4) also applies to the latter rounds of
the cold-data compression case. However, when the nth
compression round is triggered, the largest segment kn will
be compressed from much smaller segments, the largest of
which is kn−1. Segments from kn−1+1 to kn do not exist until
the nth compression.

In comparison, the kn segment of the hot-data compression
method must be compressed from segments having the largest
one equal to kn−1. It can be shown that kn−1 < kn−1 < kn.
Considering Eq. (4), it follows that the cold-data compression
has a smaller number of compression times than the hot-data
compression. Hence, we have the following design principle.

Principle 1. For a given range of time series data and a
sequence of compression ratios, iterative compressions over
cold data can reduce the compression rounds as compared to
the continuous compression method on hot data.

The result of Principle 1 has two indications for the
design of TVStore: 1) TVStore should employ the cold-data
compression rather than the hot-data compression to have a
smaller number of disk I/Os; and, 2) TVStore can have higher
performance using the cold-data compression, as the duration
of and the cost of compression are smaller (§6.2 and §6.4).

4.2 Proper Compression Ratio Interval
A proper compression ratio is required to guarantee that
the storage bound will never be violated. To compute the
overall compression ratio, TVStore monitors the average read
throughput vr from the disk and the average write throughput
vw to the disk, as well as the ingestion throughput vi by
applications. Next, we describe how the proper compression
ratio interval can be deduced as a design choice.

Consider when compression is started for the first time. The
saved storage size ∆D by compression must be larger than the

ingested data volume Di in the whole compression process.
Let Dr be the data volume to be compressed and read from
the disk. Let Dw be the data volume after compression and
written to the disk. ∆D is equal to the difference of Dr and
Dw. Hence, we have the following equations:

∆D = Dr−Dw ≥ Di (5)

Here, Dw is decided by the original data volume Dr and the
relative compression ratio rc, i.e.,:

Dw =
1
rc

Dr (6)

We assume that compression, reads and writes run concur-
rently for different time series. Reads take the most time. As a
result, the time to generate data volume Di is about the same
as that for reading Dr. Thus, we have:

Di

vi
=

Dr

vr
⇒ Di =

vi

vr
Dr (7)

Combining the above three equations, we have the following:

rc ≥
vr

vr− vi
(8)

Eq. (8) points to the following two rules. First, the appli-
cation ingestion throughput must be lower than the disk read
throughput to enable the initiation of compressions. Second,
the difference vr− vi between the disk read throughput and
the application ingestion throughput is the throughput that the
disk allows for filling more data besides vi. The ratio between
vr and vr− vi is the lower bound on the ratio for compressing
the data read from the disk. That is, the following design
principle exists.

Principle 2. To avoid overrunning a storage bound, the
compression ratio rc for each round of compression must
be no smaller than vr

vr−vi
, where vr is the average read

throughput from the disk and vi is the ingestion throughput by
applications.

Hence, we make the design choice in TVStore regarding
the compression ratio rc for each round of the iterative
compression by Principle 2.

The overall compression ratio r̄ can be deduced based on
the round compression ratio rc. Since rc is greater than 1, r̄
increases as compression rounds increase. If the user-specified
max compression ratio rmax is reached and overly-compressed
data began to be deleted, then data will need to be deleted
in every later round. If deletion exists from the first round, it
will greatly reduce the efficacy of TVC. Hence, rc should be
at least smaller than rmax to avoid this case. Thus, we have a
loosely feasible range for rc, i.e., [ vr

vr−vi
,rmax].

When rc = vr
vr−vi

and ∆D = Di, compression will be
initiated consecutively. This will not only reduce the system
performance but also wear out the storage device. If rc = rmax,
TVStore is not storing data with as much information as
possible. As a general rule, TVStore sets r to the average of
the two extremes, i.e., rc =

1
2 (

vr
vr−vi

+ rmax).
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4.3 Compression Initiation Time
TVStore initiates compression based on the monitored data
storage. Compression is initiated when the data volume
reaches a threshold Dc. For a given bound Du on the storage
space, TVStore must guarantee that Du is not exceeded at any
time during any of the compression rounds. The maximum
storage consumption in all compression rounds is the key to
decide the threshold Dc. We first find out when this maximum
storage consumption is reached.

Figure 4 illustrates two compression rounds of TVStore.
Consider the first round of compression. The threshold Dc
is the data volume that triggers the first compression round.
r̄1 is the target compression ratio of this first round. The
meanings of Du, Do, Dr, Dw, and Di are given and illustrated
in Section 4.2 and Figure 4. vi and vr are the ingestion
throughput by applications and the average read throughput
from the disk respectively. The data Dr to be compressed is
the difference between Dc and Do, while Dr and r̄1 decides
the written data Dw after compression, i.e.,:

Dr = Dc−Do (9)
Dw = Dr/r̄1 (10)

A peak of storage consumption occurs at the time right
before a compression round finishes, e.g., before t2 in
Figure 4. At that time, the original data for compression is
not deleted and the compressed data is written to the disk. Let
the first peak storage consumption be D1, we have:

D1 = Do +Di +Dw +Dr (11)

According to Section 4.2, when compression rounds
follow one another consecutively, data is kept with the most
information, i.e., taking up the most storage space. Then,
we can deduce from the first compression round to the kth
compression round. Due to the limit of space, we leave out the
straight-forward deduction process. For the kth compression
round with the target compression ratio r̄k, the peak storage
consumption Dk is:

Dk = Do +(1+
1
r̄k

+
vi

vr
)(Dw +Di)

k−1
Π

x=2
(

1
r̄x

+
vi

vr
) (12)

From Eq.(12), we can deduce two possible cases for the
maximum storage consumption. If 1

r̄x
+ vi

vr
is no greater than

1, the maximum storage consumption is D1; otherwise, it is
Dk. From Section 4.2, we can deduce that 1

r̄x
+ vi

vr
≤ 1. As

a result, the maximum storage consumption occurs at the
first round of compression.

Thereupon, TVStore decides the compression initiation
time based on the maximum space consumption. That is, we
only need to guarantee that D1 ≤ Du. With Eq.(11), we have:

D1 = Do +Di +Dw +Dr ≤ Du (13)

Combining Eq.(7), Eq.(9), and Eq.(10), we deduce that:

Do +(
vi

vr
+

1
r
+1)(Dc−Do)≤ Du (14)

Hence, with Eq.(15) deduced from Eq.(14), the following
design principle stands.

Figure 4: Storage bounding processes of TVStore: 1) at t1,
compression round r1 starts when data volume reaches Dc; 2)
when compression round r1 finishes at t2, storage space ∆D
is saved through compression; and, 3) compression round r2
starts at t3, when data volume reaches Dc again. Data ingested
during compression is Di. Recent data Do is not compressed
lossily. The upper bound Du of data volume is never exceeded
at any time.
Principle 3. Let Du be the bound on the storage space and
Do be the recent data not to be compressed. Let vr be the
average read throughput from the disk and vi the ingestion
throughput by applications. Given the compression ratio r̄ for
a compression round, the threshold Dc of data volume to start
a compression must satisfy the following condition.

Dc ≤ (Du−Do)/(
vi

vr
+

1
r
+1)+Do (15)

TVStore initiates compression rounds based on results
of Principle 3. Storage size and data volume monitoring
is needed in the implementation of TVStore such that
compression rounds can be initiated on time. Besides, the
proper collection of the average metrics vi and vr is equally
important to compute the initiation time.

5 Implementation of TVStore

We implement TVStore by extending an open-source time
series database (TSDB), Apache IoTDB. The system ar-
chitecture for TVStore is presented in Figure 5. TVStore
replaces the TSDB storage engine by the time-varying
compression/decompression storage engine. Ingested data
directly go to the underlying TSDB storage. A monitoring
thread runs in the background to automatically initiate time-
varying compression (§3) on data in the storage when
conditions are met (§4). Data are decompressed before being
returned to the query engine. Hence, all the database functions
originally supported by the TSDB remain supported. This
architecture also allows complex analysis functions, which
might be implemented in the query engine in the future, to be
supported directly.

The TVStore storage engine accepts user-defined com-
pressors for time-varying compression and time-dependent
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Figure 5: The architecture of TVStore: the filled components
are TVStore’s extensions over the time series database.

functions for compression ratios, as long as the corresponding
Java interfaces are complied with. We have implemented
a PLA-based compressor as the default compressor. While
exponential, power-law and constant functions are all sup-
ported as the time-dependent ratio functions, TVStore uses
the power-law function as the default. For time-varying
compression, TVStore allows users to set the upper bound
of storage space and the largest compression ratio permitted.
Data volume monitoring is added to the storage engine to
enable automatic storage bounding and to trigger time-varying
compression rounds. Besides, we collect average metrics vi
and vr by periodical monitoring and synopsis [21].

In the following section, we describe how the time-varying
compression/decompression storage engine of TVStore inte-
grates with the original TSDB. The choices for the compressor
are also discussed as part of the TVStore implementation. The
TVStore extension involves about 3000 lines of Java code.

5.1 Storage Engine Integration
In the implementation, the unit of data chunk is a data page in
Apache IoTDB, each of whose data files consists of multiple
data pages. When TVC compresses pages across multiple
files, the involved files will be merged and restructured. Like
the original IoTDB, TVStore keeps statistics and metadata on
time series, as well as compression ratios of pages.

TVStore adds one layer of lossy compression to the two
data-reduction layers of IoTDB. The resulting layers of data
reduction are illustrated in Figure 6. Data within a data
chunk are first compressed by the user-defined compressor.
Then, the encoding techniques are applied to timestamps and
values respectively. Encoding techniques include run-length
encoding [73], Gorilla encoding [71], and delta encoding [10].
Finally, general compression as LZ4 [20] and snappy [32]
is used to further reduce the overall size of stored data. The
latter two layers of data reduction are lossless compression.

Although TVStore can be implemented with other TSDB,
e.g., BtrDB [4] or InfluxDB [43], we have chosen Apache
IoTDB [96] because its storage format enables the co-location
of timestamps and values respectively within a data unit
such that different encoding methods can be used to reduce
data size. Besides, the structure, as well as the statistics and
metadata kept within each data file, facilitates the support of
TVC’s iterative compression procedures.

Figure 6: Layers of data reduction for one data chunk.

5.2 Fixed-Ratio Compressor/Decompressor
The time-varying compression of TVStore requires a fixed-
ratio compressor to be specified. In the implementation,
TVStore adopts a line generalization algorithm as the com-
pressor and uses linear interpolation for decompression.
Line generalization algorithms [95] commonly simplify one-
dimensional curves by repeated eliminations of visually
unimportant points, removing unnecessary details. They are
inherently PLA-based compressors [87]. The number of
preserved points can be set. Hence, the line generalization
algorithm can be used as a fixed-ratio compressor.

Specifically, TVStore leverages the line generalization
method LTTB (largest triangle three buckets) [85], which
is a variant of the widely accepted and used Visvalingam-
Whyatt (VW) algorithm [95]. As compared to other line
generalization algorithms, LTTB has much lower complexity.
It can compress data in almost a single pass, while preserving
visually important points like its counterparts. Simplicity and
data preservation are two key features that lead to our choice
of LTTB, as many users would naturally prefer storing real
data values [13, 99], instead of approximate values.

Decompression exploits linear interpolation. Then, the
number of interpolated points between preserved points must
be decided. For evenly spaced time series with constant
spacing of observation times, the number of interpolated
points is computed based on time units. For unevenly spaced
time series, we assume important points over a data chunk
have a similar distribution as points between two important
points. Let ρ be the number of preserved points divided by
the number of the original points in a data chunk. As LTTB
mainly preserves significant points during compression, we
interpolate k(1−ρ)

ρ(k−1) points between every two preserved points.

6 Evaluation
To evaluate TVStore, we consider five questions:

1. Can TVStore bound the storage size as expected? (§6.2)
2. How does TVStore’s cold-data compression compare to

the hot-data compression?(§6.2)
3. Can time-varying compression compress data according

to a given time-dependent function? (§6.3)
4. How does compression influence TVStore’s perfor-

mance? (§6.4)
5. Can TVStore answer common queries within reasonable

error bounds? (§6.5)
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Figure 7: Storage bounding on intensive writes. All time series stores are ingested
with 5TB data. TVStore and SummaryStore have the same final overall compression
ratios of 20×/60×/100×. RRDtool has the same storage bounds as TVStore.

Figure 8: CDF of compression/
merging times for cold data (TVS-
tore) and hot data (SummaryStore).

6.1 Evaluation Setup
Compared Time Series Stores: We compare TVStore with
three related time series stores. The first is the closest
state-of-the-art work SummaryStore [3], which continuously
computes predefined summaries on hot data for reducing
data to a target ratio. The second is RRDtool [67], which
bounds storage by deleting data when the storage quota is
reached. Specially designed for monitoring [61], RRDtool has
restrictions on aggregation operations, as well as timestamps
and their spacing. We tried our best to circumvent the restric-
tions to enable comparable evaluations. The last is Apache
IoTDB [96], the baseline for the TVStore implementation.

Datasets:2 We evaluate the time series databases on both
synthetic data and real-world data. We generate synthetic
data with different patterns, including data with even spacing
and that with uneven spacing by the Pareto distribution. We
also exploit two real-world datasets, which contain regularity
patterns and some random noise. One is the public REDD
dataset [50]. The other is a private dataset from one of
our users, denoted as the train-load dataset. REDD dataset
contains several weeks of low-frequency power data for 6
different homes, and high-frequency current/voltage data for
the main power supply of two of these homes. The train-load
dataset consists of the train load metrics for months. The
private dataset is desensitized for the evaluation purpose.

Workloads and configuration settings2: We exploit the
ingestion and the query workloads included in the open-
sourced SummaryStore project when testing synthetic work-
loads. Like SummaryStore’s evaluation, our evaluation uses
time series database as an integrated component in the
testing client, while using python interfaces for RRDtool.
We measure data storage by their final on-disk sizes. We
tune the parameters of both systems so that they achieve the
highest possible performance. The power-law function is used
as the windowing function for SummaryStore and the ratio
generation function for TVStore.

Environmental settings: We evaluate TVStore in two
different settings. The first is simulating the private cloud
environments of medium organizations, while the second is
evaluating cases for edge computing scenarios. Hardware
setup for the first setting includes 2× 12-core 2.2Hz Intel

2Data and workloads – https://github.com/thulab/TVStore-benchmark

Xeon E5-2650 CPUs, and 370GB DDR4 memory. The
operating system is Ubuntu 16.04.6 and the HotSpot Java
runtime version 1.8.0 is used. The second type has 32GB
memory and an 8-core CPU, providing a 5TB storage space
for the time series database.

6.2 Storage Bounding and Compression Cost

We first evaluate whether TVStore can effectively bound
its storage as data keep being ingested at a high speed, in
comparison to SummaryStore and RRDtool. We ingest each
time series store with 5TB data by 10 evenly-spaced synthetic
time series. We have not chosen a larger data volume because
SummaryStore cannot process more than this size under the
environmental settings. We carefully tuned the evaluations on
RRDtool to get the best performance, e.g., using rrdcached.
Besides, as RRDtool performs 20× faster given a row larger
than 4KB blocks than a row with a single column, we write
each time series into one file by putting 1000 consecutive
columns in one row.

In the ingestion process, we monitor storage consumption
by periodically inspecting the on-disk size of database files.
TVStore and SummaryStore are set to finally reduce the data
by ratios of 20×/60×/100×, while RRDtool and TVStore
have the same storage bounds. The changes of database
storage sizes and ingestion times are plotted in Figure 7. A
curve longer in the x-axis direction means a longer runtime
for the corresponding test.

Bounding: TVStore and RRDtool effectively bound their
data storage respectively, keeping storage below different
thresholds in all cases. The folds of the storage size curves
are key to the bounding for TVStore. They occur when
the compression process of TVC ends. SummaryStore has
also folds in its storage size curves, which occur due to the
continuous summarization on hot data for data reduction.

Compression cost: TVStore’s cold-data compression in-
volves fewer disk I/Os than SummaryStore’s iterative summa-
rization process, i.e., hot-data processing (§4.1), as reflected
by the fewer folds in TVStore’s storage size curves than
in SummaryStore’s. This result of Principle 1 is further
corroborated by the CDF of compression/merging times
for TVStore and SummaryStore in the 60×-compressed
case (Figure 8). We record the compression/merging times
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Figure 9: Visualization of data compressed by 100×: TVStore
keeps more information than the other systems.

by an extra counter in each window/chunk. The counter
is incremented by one for each compression/merging. If
multiple windows/chunks with different counter values are
merged/compressed, the largest counter is incremented and as-
signed to the resulting window/chunk. While SummaryStore
has windows merged about 70 times in the end, TVStore has
only data chunks compressed for 4 times. TVStore has much
fewer compression times thanks to its compression based on
cold data, instead of hot data, and to its chunking mechanism,
instead of point-level windowing.

6.3 Visualization of Compressed Data
We visualize the value patterns of compressed data to see
how information is preserved by different systems under the
same compression ratio. We experiment with real-world data,
the low-frequency REDD data by extending the dataset to
7.5TB. The extended REDD data has a time range of multiple
millennia. We visualize data at different ages, i.e., within
months, one century, and two millennia. Figure 9 presents the
visualization of the dataset.

TVStore and SummaryStore demonstrate time-varying
patterns, while RRDtool has the time-invariant curves. Sum-
maryStore and RRDtool keep aggregations only. Thus, only
the average values can be visualized for them. In comparison,
TVStore enables the visualization of the decompressed data
that is compressed by 1×, 11×, and 20× respectively.

TVStore can save storage costs by enabling a high-
fidelity overview of the whole range of data using only a
storage space as large as 1.5 percentage of the data volume
(Figure 9). RRDtool can only support similar visualization
on 1.5 percentage of the data for bounding storage by simple
deletion, or, have aggregated values too sparse to preserve
enough information. SummaryStore has only precise data for
recent times and highly different curves for historical times.

Under the same overall data reduction/compression ratio,
TVStore can restore data to almost the same as the original,
while RRDtool and SummaryStore cannot. The reasons are
twofold. First, the implementation of TVStore has exploited

Figure 10: Ingestion latency: much shorter ingestion times
and lower latencies for TVStore than for other stores.

Figure 11: 95-percentile query latencies : TVStore has lower
average latencies than SummaryStore and RRDtool in most
cases, except for three minute-length cases.
three-layer data reduction, while the other two stores apply
only general-purpose compressions. Hence, TVStore can have
a smaller ratio for and keep more data by its lossy compression
than the other two. Second, TVStore has adopted a line
generalization algorithm as the compressor, which performs
well at curve visualization. This result implies the importance
of choosing a good compressor.

6.4 Ingestion and Query Performance
Ingestion: As shown in Figure 7, TVStore has much higher
ingestion throughput than SummaryStore and RRDtool in all
cases, leading to shorter curves. In the 20×-Compressed case,
TVStore ingests about 3× and 25× faster than SummaryStore
and RRDtool respectively, achieving a throughput of 766MB/s
or 47.8 million time-value points per second. RRDtool has in-
gestion times about the same length because we have achieved
its upper performance bound by writing 4K row blocks in
all cases. Exploiting cold-data compression is an important
reason for TVStore’s advantage over SummaryStore, while
insufficient compression and thus longer I/O time is a key
reason for RRDtool’s disadvantage.

The corresponding average ingestion latencies are demon-
strated in Figure 10, with IoTDB storing raw data and IoTDB
with two data reduction layers as the baselines. TVStore has a
write latency around 10ms per time-value point. Compared to
the baselines, TVStore’s compression process has little impact
on the normal processing of writes. While RRDtool has stable
and long latencies, SummaryStore has fluctuating latencies
because of summarizations on hot data. We can conclude
from the performance results that higher compression ratios
can effectively improve ingestion performance.

Query latencies: We evaluate queries on data at different
ages, i.e., minutes, days and months. Older data are com-
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Figure 12: TVStore on the edge: all 95-percentile query
latencies are within 2s on 365TB data compressed by 100×.

pressed at higher ratios than younger data. Aggregate queries
on different time lengths are issued. For each combination
of age and length, we issue 100 queries within random time
ranges and record the 95-percentile latencies. Our TVStore
implementation can answer queries 35× and 8.7× faster than
SummaryStore and RRDtool respectively for the best case
(5.4s vs. 194s and 47s). Figure 11 presents the results.

TVStore has lower latencies than SummaryStore and
RRDtool in most cases, except for the last three cases of
minute-length queries. TVStore’s implementation co-locates
data for a single query. As compared to SummaryStore,
fewer data units need to be accessed for the same query by
TVStore. SummaryStore has to read data distributed across
on-disk storage for processing one query, leading to costly
random disk I/Os. As for the minute-length queries, while
SummaryStore only needs to retrieve some individual key-
value pair, TVStore still has to access and seek a data file for
results, leading to slightly higher latencies.

Query on the edge: We also evaluate the query per-
formance of TVStore under the edge-computing condition,
which is a typical application scenario for TVStore. The
second experimental setting (§6.1) is exploited. Using the
REDD dataset, we extend it to 365TB with 365 time series
that span century time and then compress it by 100 times.
We issue queries on data aging one year, one decade and
one century. The resulting query latencies are presented in
Figure 12. All queries can be responded within a 95-percentile
cold-cache latency of at most 2.7 seconds, even for the longest
length and on the oldest data.

6.5 Query Precision on Compressed Data

We evaluate whether TVStore can respond queries on the
lossily compressed data within reasonable error bounds,
as compared to the state-of-the-art work SummaryStore.
RRDtool is not evaluated as it does not support queries
approximating any time range that does not align with
intervals with precomputed aggregations. Here, we mainly
consider the commonly used aggregation queries, which are
the basics of many complex analytical operations.

Synthetic data: We first consider the evenly-spaced syn-
thetic data randomly generated at the 1000Hz frequency.
Both TVStore and SummaryStore reduce data by 100 times.
As they process count, max and min queries with almost
zero errors, we present only the 95-percentile error rates

Figure 13: 95-percentile query errors on evenly-spaced
random time series reduced by 20/60/100 times: TVStore
(top two rows) vs. SummaryStore (bottom two rows). Sum-
queries are issued on data at different ages and lengths

Figure 14: 95-percentile query errors on random time series
with Pareto-distributed spacings: TVStore (top two rows) vs.
SummaryStore (bottom two rows). Queries sum/count/max
are issued on data at different ages and lengths.
of sum queries in Figure 13. TVStore answers queries
almost precisely in all cases, except for queries with the
smallest length on the oldest data. The minor error rates for
such queries are mainly due to the high compression ratio
and the high requirements on data details. In comparison,
SummaryStore has non-zero error rates for queries with the
smallest length at all ages due to the summary-based approach
with only two data-reduction layers.

We also experiment on data with timestamps generated
according to the Pareto distribution (α = 1.2) and values
generated uniform randomly. Data are compressed by 100
times before querying. TVStore returns query results almost
precisely, with approximately zero 95-percentile error rates,
while SummaryStore occasionally has extremely high error
rates (e.g., 1e+04 in Figure 14). In comparison to SummaryS-
tore’s incapability in handling unevenly-spaced data, TVStore
properly compresses and decompresses the data by its point-
oriented compressor based on line generalization algorithms.
The results demonstrate the feasibility of error bounding by
TVC, if proper compressors are employed.

Real-world data: We test queries on the real-world dataset
of train load monitoring. The 6.6TB train-load dataset has
100 individual time series, each of which has about 4.5
billion points. We only evaluate TVStore on this dataset, as
SummaryStore cannot support simultaneous ingestions by this
number of time series streams. Data is compressed 100 times
before evaluation. The results are presented in Figure 15. In
most cases, TVStore answers queries with error rates below
2%. The error rates of a few max/min queries are slightly
higher, at about 1, due to the high compression ratios of the
corresponding old data, as well as the irregular patterns of the
real-world data.
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Figure 15: 95-percentile query errors on train-load data
by TVStore: queries sum/count/max are issued on data at
different ages and lengths.
6.6 Discussion
Our evaluations examine multiple commonly-used statistical
operations as supported by the query engine of IoTDB. As
high-level analysis operations are mainly implemented in the
query engine, TVStore can directly support such operations
when the corresponding query engine is used. In comparison,
some time series store requires prior knowledge on users
analysis requirements for each application [3]. Besides, as
TVC can be integrated with different fixed-ratio compressors
and time-dependent ratio functions, better support for learning-
based analysis is possible given carefully chosen compressors
and ratio functions [7,70]. We leave the choice and the design
of compressors and ratio functions for future work.

7 Related Work
Time series data compression. Lossless and lossy compres-
sion methods exist for time series data. Lossless compression
can reconstruct the original data accurately. For lossless
compression, specialized compressors for integer [10, 33,
55, 73] and for floating-point values [57, 71] outperform
general-purpose compressors [20,28,32,58,66]. It is common
practice that general-purpose compression is applied along
with specialized compressors [43, 54, 96] in time series stores.

Lossy compression can achieve a much higher compression
ratio than lossless compression by giving up partial informa-
tion. Compression by linear models or PLA (piecewise-linear
approximation) [13, 60, 87, 99] has been extensively used in
practice for its simplicity. Line generalization algorithms can
be considered as variants of the PLA method and used for
time series compression [25,46,52,74,85,95]. More complex
models based on polynomials [30] or transformations [11,16]
are also considered as compressor alternatives in model-based
time series stores [44,56], which select from a set of models to
compress time series with the least errors. Lossy compression
methods commonly optimize the compression ratio towards
specified error bounds, but it is difficult for users to set the
bounds beforehand for real-world data. Few research work
on compressors exists for optimizing error bounds towards a
given compression ratio.

Our time-varying compression framework TVC is or-
thogonal to the above compression methods. As long as a
compressor can compress data by a given ratio and satisfy
the three properties (§3.3), TVC can take advantage of it to
enable time-varying compression.

Time series stores. To manage the ever-increasing volume
of time series data, most time series stores either have a
native architecture to support a distributed deployment such as
InfluxDB [43], or exploit a distributed storage for scalability,
e.g., KairosDB [47] on Cassandra [53], TimescaleDB [90]
on PostgreSQL database [72], Druid [100] on HDFS [35],
BtrDB [4] on Ceph [97], Chronix [54] on Solr [84], and
Peregreen on an object store [94]. While data distribution
techniques are also applicable to TVStore, TVStore focuses
on data reduction and storage control.

Besides lossless and lossy compression, time series
databases commonly exploit the data retention policy to
reclaim storage space by removing data exceeding a time
period [42] or exceeding a storage quota, e.g., RRDtool [67],
for further storage reduction. ModelarDB [44] reduces
storage and query latency by time series approximation
models with user-defined error bounds. Some models can also
be exploited by TVC of TVStore. Adopting common stream
processing methods [17, 21], SummaryStore [3] can reduce
storage to a specified ratio by keeping only data summaries,
if data analytical requirements are known beforehand for
each application. SummaryStore works only with a limited
set of summaries and cannot support data restoration.

In comparison, TVStore automatically bounds time series
storage by TVC. It requires neither prior knowledge on exact
retention time nor that on query workloads. TVStore enables
users to respect varied data significance by integrating a
chosen compressor and a time-dependent function for their
applications. It can support data restoration given properly
designed compressors/decompressors.

8 Conclusion
The fast increasing volume of time series data is outpacing the
increase of users’ affordable storage space. It is desirable to
have a time series database that can automatically control the
time series data storage, while preserving as much information
as possible and in a manner considering data ages, which
are correlated with data importance. To the best of our
knowledge, TVStore is the first time series store that achieves
this goal. Leveraging the proposed time-varying compression,
TVStore bounds the time series database storage by iterative
compressions that are initiated at rigorously chosen proper
times and ratios. Extensive evaluations based on synthetic and
real-world data validate the storage-boundedness of TVStore
and its time-varying pattern of compression. Besides, The
advantage and efficacy of TVStore are also demonstrated by
its superior performance over three state-of-the-art or state-
of-the-practice related works of time series store.
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Abstract

Storage engine is a crucial component in relational

databases (RDBs). With the emergence of Internet services

and applications, a recent technical trend is to deploy a Log-

structured Merge Tree (LSM-tree) based storage engine. Al-

though such an approach can achieve high performance and

efficient storage space usage, it also brings a critical double-

logging problem—In LSM-tree based RDBs, both the upper

RDB layer and the lower storage engine layer implement re-

dundant logging facilities, which perform synchronous and

costly I/Os for data persistence. Unfortunately, such “double

protection” does not provide extra benefits but only incurs

heavy and unnecessary performance overhead.

In this paper, we propose a novel solution, called Passive

Data Persistence Scheme (PASV), to address the double-

logging problem in LSM-tree based RDBs. By completely

removing Write-ahead Log (WAL) in the storage engine layer,

we develop a set of mechanisms, including a passive mem-

ory buffer flushing policy, an epoch-based data persistence

scheme, and an optimized partial data recovery process, to

achieve reliable and low-cost data persistence during normal

runs and also fast and efficient recovery upon system failures.

We implement a fully functional, open-sourced prototype of

PASV based on Facebook’s MyRocks. Evaluation results

show that our solution can effectively improve system perfor-

mance by increasing throughput by up to 49.9% and reducing

latency by up to 89.3%, and it also saves disk I/Os by up to

42.9% and reduces recovery time by up to 4.8%.

1 Introduction

Since 1970s, relational database (RDB) has been playing a

central role in the heart of enterprise systems. The storage

engine, as a core component in RDBs, typically adopts a

B-tree based structure, which has been heavily tuned and

optimized for traditional database workloads, such as online

transaction processing and online analytical processing.
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Figure 1: Architecture of a typical LSM-tree based RDB.

With the emergence of Internet services and applications,

the classic B-tree based storage engine, after dominating

database systems for decades, is facing several critical chal-

lenges. Unlike conventional database workloads, these new

applications and their supporting systems often generate very

write-intensive workloads [1]. Many of them use relatively

simple and fixed data schema [2]. Some systems adopt expen-

sive flash storage [3–9], and thus they are very sensitive to

storage space usage and demand efficient data compression

for cost saving. Correspondingly, the storage engine design

must meet a set of new requirements—scalability, space effi-

ciency, compressibility, I/O sequentiality, etc.

To address these new challenges and demands, a recent

technical trend is to deploy a Log-structured Merge Tree

(LSM-tree) based storage engine [10–18] in RDBs. A typical

example is Facebook’s MyRocks [7]. Different from the tra-

ditional structure of MySQL, MyRocks replaces the original

B-tree based storage engine, InnoDB [19], with an LSM-tree

based storage engine, RocksDB [12]. Although such an LSM-

tree based storage engine significantly outperforms the B-tree

based engine in terms of both performance and storage space

usage, it brings a critical new issue, which can incur heavy

and unnecessary performance overhead.

As illustrated in Figure 1, integrating an LSM-tree based

storage engine in an RDB essentially creates a two-layer struc-

ture: (1) On the top RDB layer, the RDB logic handles the

database related complexities, such as buffer pool manage-

ment, query optimization, SQL query processing, transaction
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support, data recovery, etc; (2) At the bottom storage engine

layer, the storage engine processes requests from the RDB

layer and is responsible for reliably and efficiently storing data

in persistent storage. Such a design enables great flexibility,

efficiency, and portability, allowing the two layers to be inde-

pendently optimized without affecting each other. However,

as a complete data store itself, the LSM-tree based storage

engine, such as RocksDB [12], has many functions similar

to the RDB atop it. Some of these functions are redundant

and unnecessary, which can cause severe resource waste and

negative performance impact. One such critical component is

log, which is the focus of this paper.

Double-logging problem. In an RDB system, a binlog

records all processed SQL statements. Once system crash

happens, the SQL statements in the binlog are replayed for

data recovery. With an LSM-tree based storage engine, each

SQL statement is translated into a sequence of key-value

items (KVs), which are stored in the underlying LSM-trees

for persistent storage. In an LSM-tree based storage engine,

a Write-ahead Log (WAL) is maintained to record all KV

update operations. Each KV must be first written to the WAL

before being inserted into the tree structure, which is also for

the purpose of data recovery upon system crash. In the whole

stack, any change made to the database is “protected” twice—

one redundant copy is preserved in the database’s binlog and

another one is in storage engine’s WAL. Such redundancy

apparently leads to unnecessary space usage, but even worse,

these log-related I/O operations are synchronous and reside

in the system’s critical path, resulting in significant, needless

I/O overhead and severely affecting system performance.

We call the above-said issue a double-logging problem,

which is a system situation that data is over-protected by pre-

serving database changes multiple times more than necessary.

To the best of our knowledge, this is the first time this problem

is revealed in RDBs with LSM-tree based storage engines.

It is worth noting that the double-logging problem is not

the “log-on-log” problem [20], which typically appears when

running a log-structured file system on a log-structured flash

FTL. In the log-on-log problem, the upper-level log is stored

on another lower-level log structure. In the double-logging

problem, in contrast, the two logs are independent and stored

separately (the binlog is not stored in or relies on the WAL).

Thus, the double-logging problem does not involve issues

known in the log-on-log problem, such as data remapping, un-

aligned segments, and uncoordinated garbage collection, etc.

Rather, it concerns more about the unnecessary redundancy

in I/O operations and storage space usage.

Our solution. In order to address the double-logging prob-

lem, our key idea is to completely remove WAL from the

LSM-tree based storage engine, and solely rely on binlog for

data recovery. A naïve solution is to directly disable WAL

(e.g., RocksDB provides a configurable option). However, the

system integrity cannot be guaranteed due to the uncoordi-

nated SQL and KV operations, which can cause incomplete

or erroneous recovery. Even if we perform data recovery by

replaying the binlog, we have to replay all the records in

the entire binlog, one after another sequentially. This would

incur an excessively time-consuming data recovery process,

causing a long service outage and system downtime.

In this paper, we propose a novel solution, called Passive

Data Persistence Scheme (PASV), to address these challenges.

It includes three major components: (1) To bridge the seman-

tic gap between the RDB layer and the storage engine layer,

we create a special data structure, called Flush Flag, to deliver

the critical RDB-layer semantics, including the critical data

persistence point, each KV item’s logical sequence number,

etc. (2) To avoid intrusive changes to the current modular

system design, we propose a Passive Memory Buffer Flush-

ing Policy to pass a flush flag for each LSM-tree along with

its regular flush operations in the storage engine. Without

requiring to explicitly flush the memory buffers, we can avoid

undesirable performance impact caused by flushes and mini-

mize structural changes to the two layers. (3) We also develop

an Epoch-based Persistence (EBP) policy to determine the

global data persistence point, guaranteeing that we only need

to perform Partial Data Recovery to recover the necessary

data and eliminate redundant KV operations that have already

been persisted before system crash.

We have implemented a fully functional, open-sourced pro-

totype based on Facebook’s MyRocks [8]. Our prototype

involves minor changes (only about 500 lines of C/C++ code)

and is publicly available [21]. Evaluation results based on

LinkBench [1] and TPC-C [22] show that our solution can

effectively increase throughput by up to 49.9% and reduce la-

tency by up to 89.3%, and it also saves disk I/Os and recovery

time by up to 42.9% and 4.8%, respectively.

The rest of the paper is organized as follows. Section 2

introduces the background. Sections 3 and 4 explain the prob-

lem and the challenges. Section 5 describes the design details.

Section 6 gives the evaluation results. Section 7 discusses the

related work. The final section concludes this paper.

2 Background

2.1 Log-structured Merge Tree

LSM-tree structure. LSM-tree adopts a unique append-only

structure [10], which is specially tailored for handling inten-

sive small KVs. In LSM-tree, the incoming small and random

KVs are firstly buffered and sorted within a memory buffer,

called MemTable. Once the MemTable is full, it is transformed

into an immutable buffer and flushed to storage as an SSTable.

SSTable is the basic storage unit in LSM-tree. Each SSTable

stores its KVs in the order of the keys.

SSTables on storage are organized in a multi-level struc-

ture, each level of which, except the first level, maintains a

sequence of SSTables with non-overlapping key ranges. Two

different levels may have overlapping key ranges. A lower

level typically maintains several times more SSTables (wider)

102    20th USENIX Conference on File and Storage Technologies USENIX Association



than its adjacent upper level, forming a structure like a tree. If

the number of SSTables at a level exceeds size limit, selected

SSTables are merged into the lower level through merge sort,

which is called Compaction. Upon a query, a binary search is

performed, level by level from top to the bottom, until finding

the item or returning “Not Found”. Figure 1(a) illustrates the

structure of a typical LSM-tree.

In order to prevent the loss of in-memory data upon system

failures, all updates that are made to the memory buffer (a.k.a.

MemTable) must be first written into an on-disk log structure,

called Write-ahead Log (WAL) [23, 24]. When the system

restarts after a crash, the records in the WAL are replayed to

reconstruct data that are originally in the memory buffer.

Multi-LSM-tree based structure. Modern KV storage

engines often maintain more than one LSM-tree to create

I/O parallelism for high-speed storage devices, such as SSDs,

to achieve better performance. Let us use RocksDB [12] as

an example. In RocksDB, it maintains several so-called Col-

umn Families (CFs). Each column family corresponds to one

LSM-tree 1. Only one WAL is maintained for all LSM-trees,

which is called Group Logging [25] or Group Commit [26].

Although keeping one WAL for all LSM-trees can bring per-

formance advantages in transaction processing, it leads to an

issue, which is that the batched KVs logged in WAL may be

inserted into LSM-trees at different speeds, causing an inef-

ficient recovery process upon failures. We will explain the

problem in more details later in this paper.

2.2 LSM-tree based Storage Engine

A recent technical trend is to deploy LSM-tree based stor-

age engine in RDBs. A typical example is Facebook’s My-

Rocks [8], which adopts RocksDB as the storage engine in

MySQL database. Next, we will first explain the benefits of

using LSM-tree as storage engine for RDBs, and then discuss

its structure and the inherent problem.

Benefits of LSM-tree as storage engine. There are two

major advantages. First, the LSM-tree structure is known

for its high performance under write-intensive workloads. In

new system environments, such as Internet services, which

need to handle huge traffic of constantly incoming data, the

performance benefit of LSM-tree is particularly appealing.

The second advantage is space efficiency. Traditional stor-

age engines typically use a B-tree based structure. Having

been heavily optimized for query performance, such storage

engines typically demand more storage space for complex

indexes and metadata maintenance. Along with inefficient

compression, the disk space usage becomes a concerning is-

sue [4, 6, 8]. In contrast, LSM-tree is a log-structured design,

which persists data in an append-only way and stores data

in a sorted manner. This allows data to be organized in a

1In this paper, we use the two terms, column family and LSM-tree, in-

terchangeably. Unless otherwise specified, they both refer to an LSM-tree

structure in the multi-LSM-tree storage engine.

Table 1: Comparison between MyRocks and MySQL.

Total Execution Time

(Seconds)

Throughput

(KOPS)

Occupied Disk Space

(GB)

MyRocks 10,895.8 40.9 70.7

MySQL 13,584.7 32.8 108.6

more condensed format in storage. Assuming each level is

10 times larger than the upper level, theoretically, the space

amplification of LSM-tree structure can be limited at a low

level (approximately 1.111... times of the original data size).

In Table 1, we show the results of a preliminary test to

illustrate the performance and space efficiency of MyRocks

compared to MySQL (version 5.6) with InnoDB as the stor-

age engine. Both MyRocks and MySQL use the default con-

figurations. We measure their performance using the same

100GB UDB-style workload [2] generated by LinkBench [1]

with one loader. More details about the system setup can be

found in Section 6. We can see that MyRocks saves 34.9%

disk space compared to MySQL and also substantially out-

performs MySQL in both total execution time (19.8%) and

throughput (24.7%). This result well demonstrates the per-

formance and storage advantages of adopting an LSM-tree

based storage engine in RDBs.

RDBs on LSM-tree. More recently, many RDBs begin to

adopt LSM-tree based storage engines. For example, Span-

ner [5] is an LSM-tree based database, which is a full-featured

SQL system for distributing data at global scale and supports

distributed transactions [27]. Facebook’s MyRocks [7] is a

MySQL-based implementation for serving the UDB scenar-

ios [6]. MyRocks replaces the original B-tree based storage

engine with RocksDB. Some other databases also construct

their storage engines based on the LSM-tree structure [28–30].

Below we use MyRocks as a representative example to ex-

plain the basic structure of an LSM-tree based RDB.

Figure 1(b) shows the architecture of MyRocks, which pro-

vides an SQL interface but adopts an LSM-tree based storage

engine. It is a two-layer structure and has three major com-

ponents: (1) a generic MySQL server layer, (2) a pluggable

SQL-to-KV translator, and (3) an LSM-tree based storage en-

gine layer. The MySQL server layer organizes user requests

in SQL transactions, logs SQL statements in the binlog, and

issues the transactions to the SQL-to-KV translator. The trans-

lator converts the SQL statements of each transaction into a

KV batch [31], which consists of a set of KV items. The

KV batch is then sent to the LSM-tree based storage engine,

which issues KV items to the corresponding column families.

In RocksDB, before inserting a KV item into the LSM-tree’s

memory buffer (MemTable), it is first written to the WAL.

Once all the KV items belonging to a transaction are inserted

into the MemTables, the transaction can be safely regarded as

“persistent”, and a commit flag for this transaction is returned.

For data recovery, a two-phase recovery process is per-

formed. The storage engine first retrieves the batched KV

items in the WAL and rewrites them into the MemTables of

the corresponding LSM-trees. Then, the MySQL server layer

replays all the transactions in the binlog after the safe point
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Figure 2: The double-logging problem in MyRocks.

(commit flag). The first phase guarantees that the storage

engine itself is recovered to the state before the crash; The

second phase guarantees the consistency of the SQL logic in

the MySQL server layer.

3 The Double-Logging Problem

An LSM-tree based RDB essentially forms a two-layer struc-

ture. As shown in Figure 1(b), the RDB layer and the storage

engine layer each maintains a set of complete logging mech-

anisms, individually, for data persistence and recovery. The

two sets of mechanisms are independent of each other and

co-exist in the system. Figure 2(a) illustrates the redundant

functions for data persistence in this structure. We can see

that despite the differences in the data persisted in binlog and

WAL, the two logs are for the same purpose.

Interestingly, according to the end-to-end theory [32], such

a “double protection” would not bring extra guarantees for

data safety but only heavy and unnecessary performance

penalties. First, all logging I/Os have to be performed twice.

In the upper RDB layer, a transaction needs to be first written

into the binlog in the form of SQL statements; In the lower

storage engine layer, the KV items translated from the trans-

action need to be first written into the WAL in the form of

KV operations. This is clearly a significant waste of storage

I/O resources. Second, and more importantly, due to the re-

quirement for safely committing a log record, the involved

I/Os must be synchronous and performed in a serial manner

to ensure correctness [33–35]. As a result, these redundant

I/O operations are unfortunately in the critical path, which

further amplifies the negative effect on system performance.

We call it a double-logging problem. To the best of our knowl-

edge, this paper is the first work unveiling this hidden, critical

problem in LSM-tree based RDBs.

To illustrate the overhead, we perform a preliminary test

on MyRocks. We turn off WAL in the RocksDB storage en-

gine and keep the other configurations as default. We use

LinkBench to generate a workload with around 437 million

SQL requests based on Facebook’s UDB distribution. Fig-

ure 2(b) shows the throughput of inserting links with 10 load-

ers. By simply disabling WAL, we can enhance the overall

throughput (KOPS) by 44.6%. This result shows a great po-

tential for performance improvement by solving the double-

logging problem in LSM-tree based RDBs.

Another possible choice is to remove binlog in the upper

RDB layer and rely on WAL for recovery. However, this ap-

proach is unreliable for two reasons. First, unlike binlog, the

storage engine’s WAL persists KVs individually, lacking suf-

ficient semantic information for safe recovery. For example,

a transaction written in the binlog is regarded as containing

complete information at the SQL level. However, if a crash

occurs in the middle, the KVs translated from this transaction

could be partially persisted in the WAL. If we removed the

binlog, the atomicity of such on-the-fly transactions could be

compromised. Second, besides data recovery, the RDB’s bin-

log also serves for other functions, such as instance replication

and synchronization, which cannot be handled by solely keep-

ing WAL. As indicated by the end-to-end philosophy [32], it

is a more sensible choice to keep binlog rather than WAL to

address the double-logging problem.

4 Critical Challenges

Our main idea is to remove WAL while still retaining data

reliability upon failures. However, it is non-trivial to achieve

this goal. We must address three critical challenges.

• Unwarranted data persistence. In an LSM-tree based

RDB, the upper RDB layer translates each transaction into

multiple KV items and submits to the lower storage engine

layer, which receives the KV items and makes them persistent.

It is assumed that the KV items are persisted once the RDB

receives completion. However, if the WAL was eliminated,

such an assumption could not hold anymore. In other words,

the transaction commit flag in the binlog can no longer be

reliably viewed as the safe point for data persistence, since the

upper RDB layer cannot be certain whether the transactions

prior to this point have been truly made persistent or not.

• Partial persistence. In a storage engine with multiple

LSM-trees, an SQL transaction is translated into a batch of

KV items, which are often distributed to multiple LSM-trees,

a.k.a. Column Families (CFs) in RocksDB. Once the mem-

ory buffer (MemTable) of a CF is filled up, it is flushed to

the storage in the form of an SSTable. Since the sizes and

arrival rates of the KV items accommodated in different LSM-

trees may vary, such memory buffer flushes can happen at

distinct frequencies and are completely uncoordinated across

the LSM-trees. This could lead to a situation that at a point of

time when system failure happens, an SQL transaction may

be partially persistent. In other words, some KV items of the

transaction have already been flushed to storage but some

others are not yet (still in the volatile memory buffers).

• Lost track of LSN. LSM-tree based RDBs use a Log

Sequence Number (LSN) [36] for concurrency control and

meeting the ACID requirements [24]. Each KV is allocated

with an LSN, which is essentially a globally unique sequence

number. The items of a KV batch, which corresponds to an

SQL transaction, are guaranteed to receive a sequence of

consecutive LSNs. With WAL, we can guarantee that each

recovered KV item still carries the originally assigned LSN.
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However, if the WAL was eliminated, we would lose track of

these LSNs. Even replaying the binlog cannot regenerate the

lost LSNs, and if we did so, the LSNs of KV items persisted

on storage would become incomplete and out of order.

In the next section, we will present our design to han-

dle these challenging issues. We develop a set of effective

schemes for safely removing WAL while still fully retaining

the guarantees for data persistence.

5 Design

In this paper, we present a highly efficient solution to address

the double-logging problem in LSM-tree based RDBs. We

desire to achieve three important goals in our design.

• Aim #1: Effectiveness and efficiency. Our solution should

effectively and efficiently address the double-logging problem.

We need to achieve not only low performance overhead during

normal runs but also fast data recovery when failure happens.

• Aim #2: Data persistence and correctness. Removing

the redundant logging should not come at the cost of weak-

ening the promise for data persistence and correctness. Data

reliability should remain identical to the existing system.

• Aim #3: Minimal and non-intrusive changes. A merit of

the current LSM-tree based RDB design is its modularity. The

RDB layer and the storage engine layer are relatively inde-

pendent. We should avoid introducing complicated, intrusive

changes and retain the current system’s modular structure.

By following the above-said three design goals, we pro-

pose a Passive Data Persistence Scheme (PASV) to address

the double-logging problem in LSM-tree based RDBs. We

have implemented a full-featured, open-source prototype [21]

based on Facebook’s MyRocks. It is worth noting that the

design rationale presented in this paper can also be applied

to other LSM-tree based RDBs with similar double-logging

problems. Although the detailed implementation may vary,

our prototype provides guidance for eliminating the redun-

dant logging for optimized performance while still achieving

fast and reliable data recovery upon system failures. In the

following, we will first introduce the overall design and then

describe each component one by one.

5.1 Overview

Figure 3(a) illustrates the architecture of PASV for LSM-tree

based RDBs. To minimize changes to the existing system

design, we keep the original two-layer structure to the maxi-

mum, and only remove the Write-Ahead Log (WAL) in the

lower storage engine layer and solely rely on the binlog in the

RDB layer for data recovery.

We introduce three new components for the goal of elimi-

nating redundant logging but still achieving reliable and ef-

ficient data recovery upon failures. In particular, (1) Passive

Logging Manager (PASV-Mgr) coordinates the data logging

and recovery operations between the two layers, and a special

Passive Logging Manager (PASV-Mgr)
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Flush Flag is used to deliver the data recovery-related trans-

action information between the two layers, (2) Epoch-based

Persistence (EBP) module determines the nearest global safe

point for reliably and completely recovering the lost data upon

failures, and (3) Partial Recovery process identifies the min-

imal number of KV items to be recovered for each column

family, which enables fast and efficient data recovery. We

introduce each component in details below.

5.2 Passive Data Persistence

In order to address the double-logging problem, our key idea

is to completely remove the WAL in the lower storage engine

layer and rely on the binlog in the upper RDB layer for data

recovery. This is for two reasons.

First, the binlog contains a complete set of the original

SQL transactions committed to the database, which makes

it possible for us to recover all the database data in their

original format. Second, all the KV items received at the lower

layer can be reconstructed from the original transactions, even

if the underlying storage engine cannot guarantee the data

persistence. However, safely recovering all transaction data

in their original order is non-trivial.

Challenges. The main difficulty stems from the uncoordi-

nated flushes of the memory buffers of the underlying LSM-

trees. As mentioned previously, modern LSM-tree based stor-

age engine, such as RocksDB, maintains multiple LSM-tree

structures for parallelizing I/Os and maximizing the achiev-

able performance. Each LSM-tree, a.k.a. Column Family

(CF), maintains an individual and independent memory buffer

(MemTable) to temporarily hold incoming KV items. When

the memory buffer reaches the size limit, it is flushed to disk

or SSD for persistent storage. Without the WAL, upon a sys-

tem failure, the KV items in the volatile memory buffer would

be lost and unrecoverable. The problem is that the flush opera-

tions of memory buffers of different column families are com-

pletely independent and uncoordinated, meaning that memory

buffer flushes may happen at different frequencies depending

on the sizes and arrival rates of the incoming KV items, which

often vary significantly across column families and dynami-

cally change over time. As a result, the KV items translated

from one SQL transaction may be persisted on storage at

different time points. When a failure happens, we may have a

partially persisted transaction and the transactions may not
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be fully persisted in their original serial order as their commit

flags in the binlog.

Figure 3(b) illustrates such an example, in which we have

two column families, CF1 and CF2, and three transactions, T1,

T2, and T3. If CF2 flushes before CF1, transaction T3 would be

fully persisted on storage, while T1 and T2 still have partial

data, (K12,V12) and (K22,V22), in the volatile memory buffer

of CF1. If a failure happens, the two transactions (T1 and T2)

would become incomplete on storage, and we can find that the

transactions are not fully persisted in their original commit

order in the binlog. In order to ensure complete data recovery,

we would have to replay the entire binlog from the beginning,

since we cannot determine which transactions are safely and

completely persisted on storage.

An active approach. A simple solution to the above-said

issue is to directly insert an Active Flush Point after each or

a number of transactions to explicitly invoke the underlying

storage engine layer to flush the memory buffers of all the

LSM-trees at the same time, arbitrarily creating a synchro-

nization point. Although this “active” approach guarantees

that all transactions before the active flush point are persisted

safely, it has several limitations. (1) The transactions are essen-

tially serialized, which foils the effort of creating parallelism.

(2) Frequent flushes would in effect invalidate the memory

buffers, causing many small and synchronous I/Os to stor-

age. (3) Most importantly, this approach impairs the effort

in the current design for modularity. It forces the RDB layer

to directly control the memory buffer operations at the lower

storage engine layer, which we desire to avoid.

A passive approach. To avoid intrusive changes to the

existing two-layer structure, we develop a “passive” approach

to handle uncoordinated flushes in a more elegant way. Here

is how it works. When the storage engine flushes a memory

buffer, a special KV item, called Flush Flag, is inserted into

the memory buffer and flushed together with other KVs to the

storage. The purpose is to place a “marker” in the persistent

storage to indicate the progress of the latest flush operation.

A flush flag is a special-purpose KV item. Its key is a ran-

domly chosen 128-bit magic number, which indicates that this

KV item contains a flush flag rather than user data. Each col-

umn family has a unique key for its flush flag. The value con-

tains a vector of four metrics <CF,T SN,LSN f irst ,LSNlast >.

CF is the column family (LSM-tree) whose memory buffer

is being flushed; TSN is the Transaction Sequence Number

of the last transaction whose KV items are inserted in the

memory buffer of the column family; LSN f irst and LSNlast

are the LSNs of the first KV and the last persisted KV of

the transaction, respectively. To retrieve the latest flush flag,

we simply query the LSM-tree using the corresponding key,

which is just like retrieving any regular KV item. In this way,

we can use a flush flag to keep track of the latest transaction

and its KV items that are persisted in storage during a flush

operation, from which we can derive the safe point for data

persistence during recovery.

This approach is safe due to the serial property of transac-

tion processing in LSM-tree based RDBs. In LSM-tree based

RDBs, it is guaranteed that the KV items are processed in a

serial manner: (1) During the transaction commit process, all

transaction records are persisted to the binlog in serial; (2)

The SQL transactions are parsed in the RDB layer and trans-

lated into KV batches in the storage engine layer in serial;

(3) The KV items that are translated from a transaction are

inserted into the LSM-trees’ memory buffers in serial. Hence

we can ensure that all KV items logically prior to the last

KV item of the last transaction in a column family would

never be persisted to storage later than it. It is worth noting

that this serial property is not unique to MyRocks. Other

databases also adopt the serial design. For example, Amazon

Aurora [34], a novel OLTP-oriented RDB, is known to “model

the database as a redo log stream” and “exploit the fact that

the log advances as an ordered sequence of changes”.

Based on this serial property, we can conclude that for a

column family CFi in the LSM-tree storage engine, if the

retrieved flush flag contains transaction T XNp, the KV items

of transaction T XNp−1 and transactions prior to it in CFi must

have already been persisted. Thus, transaction T XNp−1 can

be regarded as the Data Safe Point of column family CFi.

Comparatively, transaction T XNp may be partially persisted

(some KV items of the same batch may not arrive in the

memory buffer yet). Hence we call transaction T XNp the

Data Persistence Point of column family CFi, indicating the

current position of persisting data.

In the example of Figure 3(b), if the memory buffers of

CF1 and CF2 are flushed, their data safe points are transaction

T1 and T2, while their data persistence points are T2 and T3,

respectively. We also see in this example that due to the

different sizes and arrival rates of the involved KV items, the

column families may make unequal “progresses” in terms of

persisting data for transactions (T2 vs. T3 in this example). We

will discuss how to address this problem in the next section.

This passive approach brings several important advantages.

First, we can minimize intrusive changes to the existing mod-

ular design. The RDB layer does not need to explicitly invoke

memory buffer flush operations in the storage engine layer.

Instead, the flush flag is naturally persisted in storage together

with other KV items when the memory buffer is flushed. Sec-

ond, the memory buffer flushes still follow the original logic.

We do not need to prematurely flush a memory buffer that

is not full yet, which maximally retains the benefits of par-

allelism and memory buffering. Third, the memory buffer

management also remains nearly unchanged, not incurring

extra performance overhead. The flush flag is very small,

meaning that the spatial overhead is also minimal.

5.3 Epoch-based Persistence

The storage engine has multiple column families (CFs), each

of which is an individual LSM-tree with a volatile memory
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buffer. As mentioned above, different CFs may make unequal

progresses in terms of persisting KV items of transactions.

Thus, we need to determine the latest transaction whose KV

items have been fully persisted on storage across all CFs.

Inspired by Epoch-based Reclamation [37–40], we propose

an Epoch-based Persistence (EBP) to identify the global safe

point for data persistence. The basic idea is to use Local

Epoch to separately manage each CF’s data safe point, and

use Global Epoch to identify the global data safe point, which

determines where we should start in binlog for recovery.

Local epoch. Flush flag maintains the last transaction and

the last KV item being flushed to persistent storage, which is

the Local Data Persistence Point as described in the previous

section. The passive persistence manager, PASV-Mgr, tracks

the progress of persisting data made by each column family

by maintaining a tuple <CF,T XN > for each column fam-

ily. For a column family CFi, we record the corresponding

local data persistence point T XNp, which is the transaction

recorded in its flush flag. It indicates that all KV items of

transactions prior to T XNp in column family CFi must have

already been persisted safely on storage. Note that a “locally

safe” transaction may not be safe in a “global” viewpoint,

since some KV items of the transaction may not be persisted

yet in another column family. A local epoch is the transactions

between two consecutive persistence points in the binlog.

Global epoch. Based on the local epoch, the data persis-

tence status for each column family (CF) is known by the

system. That is, the system is aware of the local data persis-

tence points for all CFs. Each time when a new local epoch

is created, we can derive the Global Data Persistence Point

by comparing the local data persistence points. The smallest

T XN, or the earliest local data persistence point, is the global

persistence point in the sequence of transactions. For a given

global persistence point, all the transactions committed in

the binlog prior to it must have already been safely and com-

pletely persisted on storage. If system crash happens, only the

transactions starting from this global data persistence point

(including itself) need to be examined and replayed.

Figure 4 illustrates an example, in which we can see that

the local epochs indicate that column family CF1 has made

the most significant progress by flushing the KV items of

all transactions prior to T XNt , while CF2 is the slowest one,

which only flushes until transaction T XNn. In terms of the

global epoch, it is clear that the current global data persistence

point is at transaction T XNn, meaning that all transactions

before T XNn must have been completely persisted. Upon data

recovery, we only need to replay transactions starting from

transaction T XNn and thereafter.

5.4 Partial Recovery

The epoch-based persistence policy enables us to quickly

determine the latest transaction that is made completely per-

sistent on storage. Upon a system failure, we need to recover

data by replaying the transactions after that.
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Figure 4: Partial recovery and LSN allocation.

A simple method is to replay all the KV operations in all

column families. However, as illustrated in Figure 4, since col-

umn families make different progresses, such a conservative

approach would be very inefficient and wasteful. For exam-

ple, there is no need to reinsert the KV items of transaction

T XNn in column family CF1, because the KV items of this

transaction have already been flushed to storage. Thus, we

develop Partial Recovery for column families whose local

data persistence point differs from the global data persistence

point. In other words, we selectively skip the transactions and

KV items that have already been persisted.

Partial recovery consists of two steps. (1) We first retrieve

the latest flush flag from each CF to determine the global data

persistence point and the local data persistence points, using

which we can determine the range of transactions that we need

to replay for each CF. (2) Then we perform the replaying op-

erations by scanning through the binlog and translating each

SQL transaction to KV items and submit to the corresponding

CFs. Due to the partial recovery policy, the KV items are

only dispatched to column families that need to replay the

operations. For example, for CF1, transactions before T XNt

can be skipped.

In this way, we can avoid replaying the entire binlog from

the beginning and only need to perform partial recovery for

each column family as needed. In each column family, the

KV items that have been persisted before the local data per-

sistence point are skipped. This not only ensures that we can

safely recover all the data but also avoid unnecessary replay-

ing operations, which reduces the involved I/O overhead and

accelerates data recovery.

5.5 Reconstructing LSNs

Another challenge in data recovery is how to reconstruct the

original logical sequence number (LSN) for each involved KV

item. As mentioned in Section 4, each KV item is attached

with a unique LSN for version control. After removing the

WAL, unfortunately, the LSN information is lost.

If the LSNs were not reproduced correctly, the data would

not be recovered with correct version information and stale

data could be returned for a query. LSN represents the inter-

nal order for KV items in a KV batch (corresponding to a

transaction in the RDB layer). The loss of LSNs may lead to

erroneous data updates. For example, assuming a KV batch

contains two update operations to the same key. In the origi-
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nal system, the two KV items are attached with two unique

LSNs. Because LSN is a monotonically increasing number,

the KV item with the larger LSN must contain the latest data.

However, if we could not recover the LSNs correctly, stale

data may be returned, which is unacceptable.

In the current LSM-tree based RDB design, the storage

engine layer maintains a global LSN counter, which is incre-

mented by one each time when it is attached to an inserted

KV item. Thus, the KV items of a KV batch must have a se-

quence of consecutive LSNs. As long as we know the original

LSN of the first KV item in the batch, we can recover the

entire sequence of LSNs of all generated KV items due to

the serial property (see Section 5.2). The flush flag contains

the last transaction and the LSNs of the first KV and the last

persisted KV of the transaction. When replaying a transaction,

we simply re-translate the transaction and assign the LSNs

one by one. As we know the range of LSNs that are originally

assigned, we can derive all the related LSNs for the KV items

that need to be recovered.

5.6 Put It All Together

In Figure 4, we show an illustrative example for the replaying

process. As shown in the figure, when performing recovery,

we first retrieve the flush flags of all the column families. Then

we determine the global data persistence point from which

we start replaying the transactions and also the local data

persistence points from which we perform partial recovery.

In this example, the flush flag of CF2 contains the local

data persistence point T XNn, the batch’s first LSN is p+ 1

and the last persisted LSN is p+2. Accordingly, we update

the system’s current TSN for data recovery to T XNn, which

marks the transaction that we should start replaying from, and

set the start LSN to p+ 1. Since the last persisted LSN is

p+ 2, the LSN of the next to-be-replayed KV item’s LSN

should be p+ 3. Then we retrieve the transaction from the

binlog and invoke the translation process to regenerate the

corresponding KV batch. Note that the first KV item’s LSN is

p+1, but the first KV item that needs be recovered is p+3 ,

so we can skip the first two items. During KV replaying, each

time when a KV item is allocated with an LSN, we increment

the LSN by one, and so on so forth.

6 Evaluation

We have implemented a fully functional prototype of PASV

based on Facebook’s MyRocks [8], which is a popular LSM-

tree based RDB. PASV involves light changes to the exist-

ing system (only about 500 lines of C/C++ code), which are

mainly in the components for binlog management, persisting

data in RocksDB, and transaction-to-KV translation, etc.

In this section, we denote the stock MyRocks as “MyRocks”

and our prototype as “PASV”. Both MyRocks and PASV use

the ROW format in the binlog to log the SQL statements in

the MySQL server layer. The WAL of MyRocks is set to the

Table 2: Database schema and mapping to column families.

Table Name Attributes Format Primary Key Secondary Key

LINKTABLE

id1 bigint(20)

(link_type, id1, id2)

comment cf_linkPK;

CF_ID=2;

(id1, link_type,

visibility, time,

id2, version, data)

comment cf_linkSK;

CF_ID=3;

id2 bigint(20)

link_type bigint(20)

visibility tinyint(3)

data varchar(255)

time bigint(20)

version int(11)

COUNTTABLE

id bigint(20)

(id, link_type)

comment cf_countPK;

CF_ID=4;

link_type bigint(20)

count int(10)

time bigint(20)

version bigint(20)

NODETABLE

id bigint(20)

(id)

comment cf_nodePK;

CF_ID=5;

type int(10)

version bigint(20)

time int(10)

data mediumtext

default size. The other parameters for MyRocks and PASV are

configured using the default setting from the stock MyRocks.

Our experiments are conducted on a workstation equipped

with an Intel i7-8700 3.2GHz processor, 32GB memory, and

a 500GB SSD. We use Ubuntu 18.04 LTS with Linux Kernel

4.15 and Ext4 file system.

Our workload simulates a typical application scenario sup-

porting Facebook’s social network engine, i.e., User Data

Base (UDB) [2]. In Facebook, the social graph data includes

many object types, such as graph nodes and links, etc. This

workload creates a model to simulate the critical pattern of

UDB with three major tables, LINKTABLE, NODETABLE

and COUNTTABLE, for nodes, relationships and metadata,

such as counts of link type for a node, etc. The schema of these

three tables are summarized in Table 2. We use LinkBench [1],

an open source benchmark tool that simulates UDB-like re-

quests (e.g., SQL INSERT, UPDATE, SELECT, etc.), to gen-

erate workloads for evaluating MyRocks and PASV.

Since the data mapping to column families may affect per-

formance, we have extended LinkBench to map the translated

KVs into different column families. As shown in Table 2, in

the storage engine layer for both MyRocks and PASV, we

maintain five column families (CF_ID=1–5). We manually

allocate the primary key and secondary key of LINKTABLE,

the primary key of COUNTTABLE, and the primary key of

NODETABLE to CF2-CF5, respectively. The system column

family, cf_system (CF-1), is initialized to store system meta-

data, such as table schema.

6.1 Overall Performance

We evaluate the performance of PASV and MyRocks for both

data loading process and query running process. The data

loading process populates the database and only involves

write operations. During the query running process, the work-

loads are mixed with insert, update, and query operations. We

use three main metrics reported by LinkBench, namely the

total time, throughput, and average latency to compare the

performance of PASV and MyRocks.

Data loading process. We use 10 loaders to initialize

100 million nodes (ids) and their corresponding associations

(links) in the three tables for both PASV and MyRocks. The
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Figure 5: Performance of PASV and MyRocks during (a) data loading process and (b) query running process.

data loading process is write intensive. About 432 million

write operations (insert and update) with 100 GB data are

issued to the database.

Figure 5(a.1) shows the total loading time and overall

throughput. The total loading time of PASV is 4,019.9 sec-

onds, which is 33.3% less than MyRocks (6,027.3 seconds).

The throughput for MyRocks and PASV are 72.6 and 108.8

KOPS, respectively, and PASV outperforms MyRocks by

49.9%. Figure 5(a.3) shows the run-time throughput of differ-

ent phases for PASV and MyRocks. The top sub-figure shows

the run-time throughput for loading links, and the bottom sub-

figure shows that of loading ids. We can see that since the

memory buffers are empty initially, both PASV and MyRocks

achieve a high throughput at the beginning (0–200 seconds)

of the loading process. After that, the throughput has a sharp

decline and finally settles at around 150 and 100 KOPS for

loading links with PASV and MyRocks, respectively. For

loading ids, the throughput for PASV is around 31 KOPS

and 21 KOPS for MyRocks. PASV clearly outperforms My-

Rocks in both total loading time and throughput. For latency,

as shown in Figure 5(a.2), PASV achieves much better per-

formance than MyRocks as well. We divide the system la-

tency into three parts, LOAD_NODE, LOAD_LINKS, and

LOAD_COUNTS, as reported by LinkBench. As we can see

in the figure, the average latencies of PASV are much lower

than MyRocks, which are 34.1%, 30.7%, and 39.5% for the

three parts, respectively.
Figure 5(a.1) also shows the I/O cost incurred in the

MySQL server layer (caused by writing the binlog) and the

LSM-tree based storage engine layer. PASV significantly

reduces the amount of I/Os in the storage engine layer, com-

pared to MyRocks. This is due to the removal of redundant

writes to WAL. Specifically, the total volume of I/Os in the

storage engine layer of PASV is 117.9 GB, which is 42.9%

less than MyRocks. For the I/Os in the MySQL server layer,

both PASV and MyRocks incur 54.4 GB I/Os during the entire

loading process, which indicates that PASV does not cause

extra overhead for maintaining the binlog.

In summary, by removing WAL in RocksDB, which resides

in the critical path, PASV shows strong performance and

storage I/O advantages over the stock MyRocks.

Query running process. During the query running pro-

cess, we invoke 10 clients to perform a mixed set of opera-

tions. Each client issues 1 million read and write requests.

Note that different from the data loading process, which only

involves inserts and updates, the query running process con-

sists of a variety of operations, such as deletes and retrieve

queries (e.g., select from primary/secondary key, range scan,

etc.) The evaluation results are as follows.

As shown in Figure 5(b.1), the total execution times of

the query running process for PASV and MyRocks are 2,614

and 3,371 seconds, respectively, meaning that PASV is 22.5%

faster than MyRocks. Figure 5(b.3) further shows the run-time

throughput comparison between the two schemes. We can

see that during the running process, MyRocks has a small

performance fluctuation at the beginning (0–1,000 seconds),

and it finally achieves a stable throughput around 3 KOPS.

Benefiting from the removal of WAL, PASV significantly

outperforms MyRocks from the beginning to 500s, and its

throughput gradually settles at around 3.7 KOPS. The overall

throughput of PASV is 28.6% higher than MyRocks.

We have also studied the average latencies of different types

of requests. As shown in Figure 5(b.2), for the write-intensive

requests, such as {ADD, UPDATE, DELETE}_NODE and

those for links, PASV outperforms MyRocks across the board.

PASV achieves the highest latency reduction in ADD_NODE

phase, which is 89.3% lower than MyRocks. Compared to

MyRocks, the average latency reduction of PASV for write-

intensive requests ranges from 22% to 89.3%. For read-

intensive requests (GET_NODE), PASV has slight latency

overhead, which is around 0.7% higher than MyRocks. This
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Figure 6: Performance/recovery of PASV and ACTs.

subtle performance difference is mainly due to the relatively

lower read hit-ratio of the L0 SSTables in PASV. Since in

PASV, the storage engine has no WAL, the I/O pressure is

shifted from flush operations to L0 compaction, which makes

PASV tend to have more SSTables in L0 than MyRocks. Be-

cause the key ranges among the SSTables of L0 may have

overlaps, PASV needs to retrieve potentially more SSTables

when searching KVs, which takes more time to complete.

6.2 Comparison with Active Flush

PASV adopts a passive approach to flush memory buffers

when they reach the size limit (64 MB by default). Active

flush, in contrast, synchronizes data persistence by enforcing

all memory buffers to periodically flush at the same time,

which would incur heavy overhead and weaken the effect of

memory buffers. In this section, we compare the two methods.

We implement the active flush method (ACT) based on the

flushAll() interface in RocksDB, which flushes all mem-

ory buffers of the LSM-trees compulsively. We record the

transaction commit time during the running process. Once

the number of committed transactions reaches a predefined

threshold, flushAll() is invoked. Since flushAll() is a

synchronized operation, lock is required during this process

and all the commit threads are blocked.

We evaluate ACT by configuring different thresholds and

compare their performance with PASV. We have implemented

five settings for ACTs. ACT-{100, 200, 500, 1000, 2000} refer

to the configurations that invoke the active buffer flush process

every corresponding number of transactions, respectively. In

order to show the performance during normal runs and data

recovery upon failures, a write-intensive workload is created

by using 10 loaders issuing 100 million node insertions and

corresponding link updates.

Performance. Figure 6(a) shows the overall execution time

and throughput of PASV and ACTs (ACT-100 to ACT-2000).

We can see that PASV outperforms all the others, taking only

4,019.9 seconds of execution time and achieving a throughput

of 108.8 KOPS. Unlike ACTs, which enforce all the LSM-

trees’ memory buffers to flush at a synchronized time point,

PASV does not need to arbitrarily lock and flush the memory

buffers periodically. This not only helps retain the efficacy

of memory buffers (no premature buffer flushes) but also

avoids interfering the foreground requests with unnecessary,

costly I/Os. Figure 6(b) shows the effect on the observed

tail latencies. The 99th to 99.99th percentile tail latencies of

PASV are much lower than the others, meaning that PASV

introduces less interference to foreground requests.

Compaction. Another side effect of active flushes is the

more frequently happening compaction operations in the un-

derlying LSM-trees. Figure 6(a) compares the amount of

compaction I/Os generated by PASV and ACTs. PASV is

much more efficient: The total amount of compaction I/Os is

around 80 GB, which is 10.8%–17.2% lower than the ACTs.

With frequent flushes, the memory buffers, even not being

completely filled up, have to be persisted to storage, which

pushes small SSTables into the underlying LSM-trees. As a

result, the compaction operations tend to be triggered more

often, which in turn amplifies the I/Os.

Data recovery. We have also studied the data recovery

performance. We randomly select ten insertion points in the

selected time window (1,000–2,000 seconds) to artificially

create a simulated “failure”, which triggers the recovery pro-

cess. We collect the time of completing recovery after each

failure and show the aggregated results for each configuration

in Figure 6(c). As we increase the interval of flushing memory

buffers from 100 transactions (ACT-100) to 2,000 transac-

tions (ACT-2000), the recovery time generally increases. This

is because the less frequently active flush happens, the more

data needs to be restored. PASV achieves a recovery time

in the mid-range. Compared to ACTs, PASV shows a much

smaller variance in the data recovery time, since our epoch-

based approach and partial recovery can identify the last data

persistence point and minimize the amount of data for recov-

ery. In contrast, ACTs have to recover data completely since

last flush, and the time taken to complete recovery depends

on when the failure happens between two consecutive flushes

and thus varies significantly.

6.3 Evaluation with TPC-C

In this section, We perform experimental evaluations using

the TPC-C [22] benchmark to compare the performance and

potential recovery time of the stock MyRocks, the naïve ap-

proach, which simply disables WAL, and PASV.

For better understanding the recovery efficiency of PASV

under a more skewed workload, we configure the TPC-C

benchmark with 100 warehouses and 10 tables, which are

allocated to 10 column families with uneven flush speeds.

The data size is around 90 GB in the InnoDB-based MySQL.

Figure 7(a) shows that PASV outperforms MyRocks by

26.4%, 35.9%, and 23.7% in total execution time, throughput

(KQPS), and storage I/O amount, respectively. The naïve ap-

proach simply disables WAL with no other operations, which

represents the possibly achievable performance during nor-

mal runs. PASV achieves nearly identical performance to the
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Figure 7: Performance/recovery under TPC-C workload.

naïve approach. In fact, PASV only adds a very small KV

item (several bytes) during memory buffer flush. The incurred

overhead is minimal.

To compare recovery time, we first perform a 10-minute

data loading phase for both PASV and the naïve approach, and

then simulate a “failure” by artificially turning off the system

at different time points (10-19 minutes after the loading phase

is completed). As shown in Figure 7(b), although the column

families receive KVs at skewed speeds (10x difference), the

recovery time of PASV remains low (25-40 seconds), which

is far less than that of the naïve approach (at least 1,497 sec-

onds). As the test phase runs longer, the recovery time of the

naïve approach increases almost linearly. Compared to PASV,

the naïve approach suffers from a time-consuming recovery

process, since it has to replay all the transactions in the binlog

from the beginning, and the larger the binlog is, the longer it

takes for recovery.

6.4 Data Recovery

In this section, we first perform the correctness analysis of

the data recovery process in PASV and then we study and

compare its recovery performance with MyRocks.

Recovery correctness analysis. By eliminating a redun-

dant logging structure, PASV provides significant perfor-

mance improvement and still guarantees data persistence, just

like the original LSM-tree based RDB. To achieve this goal,

upon a system failure, we must ensure that (1) all volatile

data stored in the memory buffers before the crash should

be recovered completely, and (2) the KVs managed by the

storage engine should be consistent with the RDB’s view.

The original design provides the above-said data persis-

tence guarantees through a two-phase recovery using both

binlog and WAL. In PASV, we must achieve the same goal

with binlog only. When a failure happens, PASV first retrieves

the local data persistence point (DPP) of each LSM-tree and

determines the global DPP from the storage engine layer.

Then, it scans all pending transactions from the binlog to de-

termine the KVs that should be replayed. We only need to

replay the KVs that have been committed at the RDB layer

but not yet been persisted at the storage engine layer.

To analyze the recovery correctness, we divide the data per-

sistence process into three phases based on two key operations

flush(Binlog) and flush(MemTable_x) in Figure 8. The

time period [Ta,Ta+5] includes all the possible crash points

that may happen during the whole process for an LSM-tree.

Figure 8: An illustration of transaction commit process.

• Period #1: Uncommitted to binlog. During time period

[Ta, Ta+2), the incoming transaction T XNn is parsed into SQL

requests and then being persisted to the binlog. Before Ta+2,

T XNn is neither persisted to binlog nor the storage engine. If

system crash happened during this period, PASV would re-

trieve the latest flush flag of the LSM-tree from the system. In

this situation, the DPP must be a transaction whose sequence

number is less than n (T XNn−1 or earlier). Thus, during re-

covery, the partial recovery process would compare current

DPP with the global one and only recover the data after the

local DPP of this LSM-tree. Since T XNn is not committed to

binlog, it will not be recovered, which is consistent with the

status of the RDB layer before the system crash.

• Period #2: Committed to binlog but not flushed. During

time period [Ta+2,Ta+4), the transaction T XNn is persisted to

the binlog, meaning that all KV items from T XNn need to be

recovered if crash happens. Suppose at time Ta+3, the memory

buffer of this LSM-tree reaches the size limit, the flush flag

(FFp) containing the current committed transaction T XNn,

the corresponding LSNs and a magic key, needs to be also

flushed to disk as the last KV item in the buffer. At time Ta+4,

the flush operation ends. If a system crash happened during

Ta+2 to Ta+4, the flush flag FFp could be not completely per-

sisted, meaning that we must retrieve the last flush flag FFp−1,

which has already been written to the storage in the last round

of memory buffer flush. Thus, the last safely persisted transac-

tion should be prior to transaction T XNn, which is T XNn−1 or

earlier. Partial recovery can recover starting from there. Since

T XNn is already committed to binlog, all the KVs translated

from it will be completely replayed, which is also consistent

with the status before system crash.

• Period #3: Committed and flushed. After Ta+4, the FFp,

which records its current DPP T XNn and the related LSNs, is

persisted to the disk, meaning that for this LSM-tree, the cur-

rent data persistence status has been persisted to disk. When

a failure happens during this phase, PASV will retrieve the

latest persisted flush flag, which is FFp containing T XNn and

the corresponding LSNs, and replay uncompleted KV items

from T XNn after the latest DPP. In this case, the DPP is T XNn.

Partial recovery will only recover KV items of T XNn that ap-

pear after Ta+4 for this LSM-tree. Hence, it is also consistent

with the status before system crash.

In general, PASV maintains at least one local DPP for each

LSM-tree indicating the restart point. According to the latest
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Table 3: Recovery performance of PASV and MyRocks.
PASV MyRocks

Average Range Average Range

Recovery Time (Seconds) 7.9 0.11 8.3 0.18

Logging Volumes (GB) 1.3 0.26 3.7 0.48

Recovery I/Os (GB) 0.9 0.04 1.9 0.09

flush flag of each LSM-tree, all possible recovery situations

can be solved based on the time periods of the transaction

commit when crash happens.

Recovery performance analysis. To evaluate the recov-

ery performance, we create a scenario that both PASV and

MyRocks have 0.8 GB data stored in memory buffers. Table 3

shows the evaluation results of repeating the same test for 5

times. For the recovery time, PASV recovers the buffered data

within 7.9 seconds on average, which is 4.8% less than My-

Rocks. Replaying SQL statements incurs more complexities

and time cost than replaying KVs directly. When replaying

SQL statements, more translation and transaction control are

involved, which diminishes the performance gains from less

disk I/Os and explains the relatively small improvement.

For space usage, PASV frees disk space needed for WAL,

and it only needs to maintain the binlog for crash recovery.

The binlog accounts for about 1.3 GB, which allows us to

recover all in-memory data in storage engine’s buffers and

all pending transactions maintained in transaction buffer. In

contrast, MyRocks needs to maintain about 3.7 GB data for

both binlog and WAL, which is 2.8 times of PASV.

Furthermore, benefiting from the efficient partial recovery,

PASV also incurs less disk I/Os (0.9 GB on average) for

data recovery, compared to MyRocks (1.9 GB). MyRocks

with multiple LSM-trees has to retrieve all the KV items in

the WAL to recover each LSM-tree, which leads to severe

I/O amplification. Since MyRocks is unaware of the relation-

ship between KV items in WAL and each LSM-tree, for each

LSM-tree, MyRocks needs to check all KV items in the WAL

and replay the KVs that are related to the LSM-tree. In con-

trast, benefiting from the epoch-based data persistent policy

and partial recovery, PASV can skip the unrelated KV items.

Hence, for replaying 0.8 GB data, PASV only involves 0.9 GB

disk I/Os, which shows its high efficiency.

7 Related Work

In recent years, storage systems have become increasingly

more diverse to meet the new requirements of various emerg-

ing applications. A lot of efforts have been particularly made

on optimizing data storage performance and reliability.

LSM-tree based RDBs. To satisfy the demand for per-

formance and space efficiency, some RDBs (e.g., distributed

RDBs [5], HTAP RDBs [28]) have begun to adopt LSM-

tree-based storage engines [5, 27–30, 41]. Specifically, My-

Rocks [8], Spanner [5, 27], CockroachDB [30] as well as

TiDB [28], are relational database systems that support

MySQL-style protocol and provide full-featured transactional

guarantees. They all adopt LSM-tree-based KV store [12, 42]

as storage engines. Our work particularly focuses on solving

the double-logging problem in LSM-tree based RDBs.

Journaling of journal. The journaling-of-journal (JoJ)

problem is widely existing in modern storage systems, which

often results in write amplification and time-costing syn-

chronous I/Os when persisting data to file systems and

databases [43–47]. A similar problem is the log-on-log prob-

lem [20], which appears when running a log-structured file

system on a log-structured flash FTL. These problems are

different from the double-logging problem addressed in this

paper. For double-logging, the two logs are redundant and

stored separately, thus one unnecessary log can be eliminated

safely. In contrast, the log-on-log problem happens in a dis-

tinct environment where each of the two layers of logs is a

must-have needed for different semantics and functionalities,

meaning that we cannot easily remove one of them in the way

as how we handle the double-logging problem.

NVM-assisted logging. Prior works also propose to adopt

byte-addressable Non-volatile Memory (NVM) devices to op-

timize the logging performance [9, 25, 48–56]. For example,

NoveLSM [54] proposes to replace the LSM-tree’s memory

component with persistent NVM devices. It exploits I/O par-

allelism by searching multiple levels concurrently to reduce

lookup latency. MatrixKV [55] is another hybrid design that

combines NVM with DRAM for better performance, in which

the WAL is implemented in NVM to prevent data loss from

system failures. These prior works cannot handle the double-

logging problem. They either conservatively keep redundant

logging mechanisms or simply attempt to accelerate logging

using a faster device. Our work takes a different strategy and

aims to fundamentally address the problem by completely

removing the redundant WAL in the storage engine layer.

8 Conclusion

LSM-tree based storage engine is becoming increasingly pop-

ular in modern relational databases. A unique and critical

issue is the double-logging problem, which incurs high and

unnecessary overhead. In this paper, we have systematically

studied this challenging problem and proposed a set of mech-

anisms to optimize the system design for achieving high per-

formance and reliability. Experimental results show that our

solution can effectively improve the system performance and

accelerate data recovery at low cost.

Acknowledgments

We thank our shepherd, Amy Tai, and the anonymous review-

ers for their constructive feedback and insightful comments.

This work is supported by the grants from the Research Grants

Council of the Hong Kong Special Administrative Region,

China (GRF 15224918), Direct Grant for Research, The Chi-

nese University of Hong Kong (Project No. 4055151), the

National Science Foundation for Young Scientists of China

(Grant No.61902218), and the National Natural Science Foun-

dation of China (Grant No.92064008).

112    20th USENIX Conference on File and Storage Technologies USENIX Association



References

[1] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba

Borthakur, and Mark Callaghan. LinkBench: A

Database Benchmark based on the Facebook Social

Graph. In ACM International Conference on Manage-

ment of Data (SIGMOD), 2013.

[2] Zhichao Cao, Siying Dong, Sagar Vemuri, and David

H. C. Du. Characterizing, Modeling, and Benchmark-

ing RocksDB Key-Value Workloads at Facebook. In

USENIX Conference on File and Storage Technologies

(FAST), 2020.

[3] MySQL Database Service. https://www.mysql.com.

[4] Chin-Hsien Wu, Tei-Wei Kuo, and Li-Ping Chang.

An Efficient B-tree Layer Implementation for Flash-

memory Storage Systems. ACM Transactions on Em-

bedded Computing Systems, 6(3):19, 2007.

[5] David F. Bacon, Nathan Bales, Nicolas Bruno, Brian F.

Cooper, Adam Dickinson, Andrew Fikes, Campbell

Fraser, Andrey Gubarev, Milind Joshi, Eugene Kogan,

Alexander Lloyd, Sergey Melnik, Rajesh Rao, David

Shue, Christopher Taylor, Marcel van der Holst, and

Dale Woodford. Spanner: Becoming a SQL System. In

ACM International Conference on Management of Data

(SIGMOD), 2017.

[6] Siying Dong, Mark Callaghan, Leonidas Galanis,

Dhruba Borthakur, Tony Savor, and Michael Strum. Op-

timizing Space Amplification in RocksDB. In Interna-

tional Conference on Innovative Data Systems Research

(CIDR), 2017.

[7] Yoshinori Matsunobu, Siying Dong, and Herman Lee.

MyRocks: LSM-Tree Database Storage Engine Serving

Facebook’s Social Graph. Proceedings of the VLDB

Endowment, 13(12):3217–3230, 2020.

[8] Yoshinori Matsunobu. InnoDB to MyRocks Migration

in Main MySQL Database at Facebook. Technical re-

port, USENIX Association, 2017.

[9] Michael Haubenschild, Caetano Sauer, Thomas Neu-

mann, and Viktor Leis. Rethinking Logging, Check-

points, and Recovery for High-Performance Storage En-

gines. In ACM International Conference on Manage-

ment of Data (SIGMOD), 2020.

[10] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and

Elizabeth J. O’Neil. The Log-Structured Merge-Tree

(LSM-Tree). Acta Informatica, 33(4):351–385, 1996.

[11] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,

and Ittai Abraham. PebblesDB: Building Key-Value

Stores using Fragmented Log-Structured Merge Trees.

In ACM Symposium on Operating Systems Principles

(SOSP), 2017.

[12] RocksDB: A Persistent Key-Value Store for Fast Stor-

age Environments. https://github.com/facebook/

rocksdb.

[13] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy

Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan

Gupta, and Pavan Konka. TRIAD: Creating Synergies

Between Memory, Disk and Log in Log Structured Key-

Value Stores. In USENIX Annual Technical Conference

(ATC), 2017.

[14] Lanyue Lu, Thanumalayan Sankaranarayana Pillai,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. WiscKey: Separating Keys from Values in

SSD-conscious Storage. In USENIX Conference on File

and Storage Technologies (FAST), 2016.

[15] Alex X. Liu, Fei Chen, JeeHyun Hwang, and Tao Xie.

Xengine: A Fast and Scalable XACML Policy Evalu-

ation Engine. In ACM International Conference on

Measurement and Modeling of Computer Systems (SIG-

METRICS), 2008.

[16] MongoDB: A General Purpose, Document-based, Dis-

tributed Database. https://www.mongodb.com.

[17] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.

Monkey: Optimal Navigable Key-Value Store. In ACM

Conference on Management of Data (SIGMOD), 2017.

[18] Avinash Lakshman and Prashant Malik. Cassandra:

A Decentralized Structured Storage System. ACM

SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[19] Introduction to InnoDB. https://dev.mysql.com/

doc/refman/8.0/en/innodb-introduction.html.

[20] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala,

and Swaminathan Sundararaman. Don’t Stack Your

Log On My Log. In Interactions of NVM/Flash with

Operating Systems and Workloads (INFLOW), 2014.

[21] PASV-based MyRocks. https://github.com/

ericaloha/MyRocks-PASV.

[22] TPC-C Benchmark for MySQL. https://github.

com/Percona-Lab/sysbench-tpcc.

[23] Yangwook Kang, Rekha Pitchumani, Pratik Mishra,

Yang-Suk Kee, Francisco Londono, Sangyoon Oh,

Jongyeol Lee, and Daniel D. G. Lee. Towards Building

a High-performance, Scale-in Key-value Storage Sys-

tem. In ACM International Conference on Systems and

Storage (SYSTOR), 2019.

USENIX Association 20th USENIX Conference on File and Storage Technologies    113

https://www.mysql.com
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
https://www.mongodb.com
https://dev.mysql.com/doc/refman/8.0/en/innodb-introduction.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-introduction.html
https://github.com/ericaloha/MyRocks-PASV
https://github.com/ericaloha/MyRocks-PASV
https://github.com/Percona-Lab/sysbench-tpcc
https://github.com/Percona-Lab/sysbench-tpcc


[24] C. Mohan, Don Haderle, Bruce G. Lindsay, Hamid Pi-

rahesh, and Peter M. Schwarz. ARIES: A Transaction

Recovery Method Supporting Fine-Granularity Lock-

ing and Partial Rollbacks Using Write-Ahead Logging.

ACM Trans. Database Syst., 17(1):94–162, 1992.

[25] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and

Yinlong Xu. SpanDB: A Fast, Cost-Effective LSM-

tree Based KV Store on Hybrid Storage. In USENIX

Conference on File and Storage Technologies (FAST),

2021.

[26] Group Commit for the Binary Log. https://mariadb.

com/kb/en/group-commit-for-the-binary-log.

[27] James C. Corbett, Jeffrey Dean, Michael Epstein, An-

drew Fikes, Christopher Frost, J. J. Furman, Sanjay

Ghemawat, Andrey Gubarev, Christopher Heiser, Peter

Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eu-

gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-

nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh

Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,

Christopher Taylor, Ruth Wang, and Dale Woodford.

Spanner: Google’s Globally-Distributed Database. In

USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2012.

[28] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu

Ma, Fei Xu, Li Shen, Liu Tang, Yuxing Zhou, Menglong

Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun Li,

Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu,

Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin Tang.

TiDB: A Raft-based HTAP Database. Proceedings of

the VLDB Endowment, 13(12):3072–3084, 2020.

[29] YugabyteDB. https://github.com/yugabyte/

yugabyte-db.

[30] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan Van-

Benschoten, Jordan Lewis, Tobias Grieger, Kai Niemi,

Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,

Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaf-

fray, Lucy Zhang, and Peter Mattis. CockroachDB: The

Resilient Geo-Distributed SQL Database. In ACM In-

ternational Conference on Management of Data (SIG-

MOD), 2020.

[31] KVs Batch in MyRocks. https://github.com/

facebook/rocksdb/wiki/Basic-Operations.

[32] Jerome H. Saltzer, David P. Reed, and David D. Clark.

End-To-End Arguments in System Design. ACM Trans-

actions on Computer Systems, 2(4):277–288, 1984.

[33] Maurice Herlihy and Jeannette M. Wing. Linearizability:

A Correctness Condition for Concurrent Objects. ACM

Transactions on Programming Languages and Systems,

12(3):463–492, 1990.

[34] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Mu-

rali Brahmadesam, Kamal Gupta, Raman Mittal, Sailesh

Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili,

and Xiaofeng Bao. Amazon Aurora: Design Consid-

erations for High Throughput Cloud-Native Relational

Databases. In ACM International Conference on Man-

agement of Data (SIGMOD), 2017.

[35] Theo Haerder and Andreas Reuter. Principles of

Transaction-oriented Database Recovery. ACM com-

puting surveys (CSUR), 15(4):287–317, 1983.

[36] Tianzheng Wang and Ryan Johnson. Scalable Logging

through Emerging Non-volatile Memory. Proceedings

of the VLDB Endowment, 7(10):865–876, 2014.

[37] Keir Fraser. Practical Lock-freedom. PhD thesis, Uni-

versity of Cambridge, UK, 2004.

[38] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan

Beadle, and Michael L. Scott. Interval-based Memory

Reclamation. In ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming (PPoPP),

2018.

[39] Aleksandar Prokopec. Cache-tries: Concurrent Lock-

free Hash Tries with Constant-time Operations. In ACM

SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPoPP), 2018.

[40] Jeehoon Kang and Jaehwang Jung. A Marriage of

Pointer- and Epoch-based Reclamation. In ACM SIG-

PLAN International Conference on Programming Lan-

guage Design and Implementation (PLDI), 2020.

[41] Andrew Pavlo and Matthew Aslett. What’s Really New

with NewSQL? SIGMOD Rec., 45(2):45–55, 2016.

[42] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.

Hsieh, Deborah A. Wallach, Michael Burrows, Tushar

Chandra, Andrew Fikes, and Robert Gruber. Bigtable:

A Distributed Storage System for Structured Data. In

Symposium on Operating Systems Design and Imple-

mentation (OSDI), 2006.

[43] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum

Son, and Youjip Won. I/O Stack Optimization for

Smartphones. In USENIX Annual Technical Confer-

ence (ATC), 2013.

[44] Kai Shen, Stan Park, and Meng Zhu. Journaling of

Journal is (Almost) Free. In USENIX Conference on

File and Storage Technologies (FAST), 2014.

[45] Daejun Park and Dongkun Shin. iJournaling: Fine-

Grained Journaling for Improving the Latency of Fsync

System Call. In USENIX Annual Technical Conference

(ATC), 2017.

114    20th USENIX Conference on File and Storage Technologies USENIX Association

https://mariadb.com/kb/en/group-commit-for-the-binary-log
https://mariadb.com/kb/en/group-commit-for-the-binary-log
https://github.com/yugabyte/yugabyte-db
https://github.com/yugabyte/yugabyte-db
https://github.com/facebook/rocksdb/wiki/Basic-Operations
https://github.com/facebook/rocksdb/wiki/Basic-Operations


[46] Wongun Lee, Keonwoo Lee, Hankeun Son, Wook-Hee

Kim, Beomseok Nam, and Youjip Won. WALDIO: Elim-

inating the Filesystem Journaling in Resolving the Jour-

naling of Journal Anomaly. In USENIX Annual Techni-

cal Conference (ATC), 2015.

[47] Changman Lee, Dongho Sim, Joo Young Hwang, and

Sangyeun Cho. F2FS: A New File System for Flash

Storage. In USENIX Conference on File and Storage

Technologies (FAST), 2015.

[48] Jeremy Condit, Edmund B. Nightingale, Christopher

Frost, Engin Ipek, Benjamin C. Lee, Doug Burger, and

Derrick Coetzee. Better I/O through Byte-addressable,

Persistent Memory. In ACM Symposium on Operating

Systems Principles (SOSP), 2009.

[49] Ru Fang, Hui-I Hsiao, Bin He, C. Mohan, and Yun

Wang. High Performance Database Logging using Stor-

age Class Memory. In IEEE International Conference

on Data Engineering (ICDE), 2011.

[50] Shen Gao, Jianliang Xu, Bingsheng He, Byron Choi,

and Haibo Hu. PCMLogging: Reducing Transaction

Logging Overhead with PCM. In ACM Conference

on Information and Knowledge Management (CIKM),

2011.

[51] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beom-

seok Nam, and Youjip Won. NVWAL: Exploiting

NVRAM in Write-Ahead Logging. In International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2016.

[52] Jian Huang, Karsten Schwan, and Moinuddin K.

Qureshi. NVRAM-aware Logging in Transaction Sys-

tems. Proceedings of the VLDB Endowment, 8(4):389–

400, 2014.

[53] Tianzheng Wang and Ryan Johnson. Scalable Logging

through Emerging Non-Volatile Memory. Proceedings

of the VLDB Endowment, 7(10):865–876, 2014.

[54] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-

drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Redesigning LSMs for Nonvolatile Memory with Nov-

eLSM. In USENIX Annual Technical Conference (ATC),

2018.

[55] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu

Tang, Hong Jiang, Changsheng Xie, and Xubin He. Ma-

trixKV: Reducing Write Stalls and Write Amplification

in LSM-tree Based KV Stores with Matrix Container in

NVM. In USENIX Annual Technical Conference (ATC),

2020.

[56] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh

Gupta, and Steven Swanson. From ARIES to MARS:

Transaction Support for Next-generation, Solid-state

Drives. In ACM Symposium on Operating Systems Prin-

ciples (SOSP), 2013.

USENIX Association 20th USENIX Conference on File and Storage Technologies    115





USENIX Association 20th USENIX Conference on File and Storage Technologies    117



118    20th USENIX Conference on File and Storage Technologies USENIX Association



USENIX Association 20th USENIX Conference on File and Storage Technologies    119



120    20th USENIX Conference on File and Storage Technologies USENIX Association



USENIX Association 20th USENIX Conference on File and Storage Technologies    121



122    20th USENIX Conference on File and Storage Technologies USENIX Association



USENIX Association 20th USENIX Conference on File and Storage Technologies    123



124    20th USENIX Conference on File and Storage Technologies USENIX Association



USENIX Association 20th USENIX Conference on File and Storage Technologies    125



126    20th USENIX Conference on File and Storage Technologies USENIX Association



USENIX Association 20th USENIX Conference on File and Storage Technologies    127



128    20th USENIX Conference on File and Storage Technologies USENIX Association



USENIX Association 20th USENIX Conference on File and Storage Technologies    129



130    20th USENIX Conference on File and Storage Technologies USENIX Association

https://www.techtarget.com/searchstorage/tip/4-QLC-workloads-and\ -why-theyre-a-good-fit-for-QLC-NAND-flash
https://www.techtarget.com/searchstorage/tip/4-QLC-workloads-and\ -why-theyre-a-good-fit-for-QLC-NAND-flash
https://www.techtarget.com/searchstorage/tip/4-QLC-workloads-and\ -why-theyre-a-good-fit-for-QLC-NAND-flash
https://www.architecting.it/blog/qlc-nand/
https://www.architecting.it/blog/qlc-nand/
https://memkor.com/slc-vs-mlc-vs-tlc%2Fqlc
https://memkor.com/slc-vs-mlc-vs-tlc%2Fqlc
https://storagereviews.net/tlc-vs-qlc-ssds/
https://storagereviews.net/tlc-vs-qlc-ssds/
https://blocksandfiles.com/2019/08/07/penta-level-cell-flash/
https://blocksandfiles.com/2019/08/07/penta-level-cell-flash/
https://github.com/ucare-uchicago/FEMU/pull/47
https://github.com/ucare-uchicago/FEMU/pull/47
https://github.com/uoftsystems/womv
https://github.com/uoftsystems/womv


USENIX Association 20th USENIX Conference on File and Storage Technologies    131

http://iotta.snia.org/traces/28568




GuardedErase: Extending SSD Lifetimes by Protecting Weak Wordlines

Duwon Hong∗

Seoul National University
Myungsuk Kim∗

Kyungpook National University
Geonhee Cho

Seoul National University

Dusol Lee
Seoul National University

Jihong Kim
Seoul National University

Abstract
3D NAND flash memory enables the continuous growth

in the flash capacity by vertically stacking wordlines (WLs).
However, as the number of WLs in a flash block increases,
3D NAND flash memory exhibits strong process variability
among different WLs, which makes it difficult for an SSD
to fully utilize the maximum endurance of flash blocks, thus
reducing the SSD lifetime. In this paper, we propose a new
system-level block erase scheme, called GuardedErase, for ex-
tending the lifetime of a 3D flash block. The key feature of
GuardedErase is that when a block is erased, a WL of the
block can be selectively erased by one of two erase modes,
the low-stress erase mode or the normal erase mode. When a
WL is erased by the low-stress erase mode, the lifetime of the
WL can be significantly extended although it may not store
data. By supporting two erase modes at the WL level, Guard-
edErase enables an FTL to exploit the new endurance-capacity
trade-off relationship at the SSD level. We have implemented
the GuardedErase-aware FTL, called longFTL, which extends
the SSD lifetime with a negligible impact on the overall I/O
performance. Experimental results using various workloads
show that longFTL can improve the SSD lifetime on average
by 21% over an existing FTL with little degradation on the
SSD performance.

1 Introduction

3D NAND flash memory has been a key enabling technology
for sustaining a continuous capacity increase in flash storage
systems [1, 2]. Since the capacity of 3D NAND flash memory
depends on the number of vertical wordlines (WLs) in a flash
chip, as the capacity of 3D NAND flash memory increases,
the number of WLs tends to increase as well. Since the size of
a flash block also depends on the number of vertical WLs, one
of the key characteristics of 3D NAND flash memory over
2D NAND flash memory is that the block size gets bigger
as the capacity of a flash chip increases. Table 1 shows how

∗The first two authors contributed equally to this research.

Table 1: Changes in the page size, the number of pages per
block, and the block size over time in 3D flash memory.

Year Total Capacity (Gb) Block size (KB) Page size (KB) No. of pages per block

2014 [3] 128 3072 8 384
2015 [4] 128 6144 16 384
2016 [5] 256 9216 16 576
2017 [6] 512 12288 16 768
2018 [7] 1024 16384 16 1024

the capacity of a single block has been changed in recent 3D
NAND flash chips. For example, the block size has increased
by 5.3 times in 4 years. Since the page size does not change
as fast as the block size, larger blocks typically contain more
WL1.

Another unique characteristic of 3D NAND flash memory
is that there exists strong process variability among different
WLs of a block [8, 9]. Process variability occurs because of
the manufacturing process of 3D NAND flash memory. Since
3D NAND flash memory is manufactured using a vertically
successive etching process from the topmost WL to the bot-
tom WL, the cell structure of WLs may significantly vary
along the z-axis, leading to significant WL-to-WL variations.
As the number of WLs in a block increases, process variability
among different WLs increases as well. Figure 1 illustrates
that there exist significant variations in the maximum number
of P/E cycles among different WLs. For example, the maxi-
mum number of P/E cycles of the weakest WL (i.e., WL w)
is 46.3% smaller than that of the strongest WL (i.e., WL b).

A large reliability variation among different WLs makes
it difficult to fully utilize all WLs, for example, up to the
maximum endurance of each WL. Since the reliability of
weak WLs deteriorates faster than that of strong WLs, the
lifetime of a block is decided by the reliability characteris-
tics of the weakest WL in the block. When the weakest WL
reaches its maximum bit error rate (BER) value, the whole
block becomes a bad block. This type of coarse-grained bad
block management (BBM) is commonly used in SSDs [10].
Although the block is classified as bad under coarse-grained

1Since a single WL can contain multiple pages, the exact number of
pages varies depending on the type of flash memory.
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Figure 1: Per-WL variations on the maximum number of P/E
cycles.

BBM, all the WLs in the block except for the weakest WL are
still usable, thus significantly underutilizing WLs in the block.
For example, in Figure 1, when WL w reaches its maximum
P/E cycles (i.e., about 6,500 P/E cycles), the whole block
becomes bad although WL b can reliably store data at least
for 5,600 more P/E cycles. In order to overcome the short-
comings of coarse-grained BBM, we can manage bad pages
instead of bad blocks so that the good WLs of a bad block
can continue to be used. This type of fine-grained scheme is
called bad page management (BPM) [11]. Although simple
and somewhat effective in extending the SSD lifetime, BPM
techniques, which inevitably reduce the total SSD capacity at
the end of its lifetime, significantly degrade I/O performance.

A more intelligent solution to mitigate a reliability imbal-
ance between the weakest WL and the rest of WLs would be
to protect the weakest WL from degrading its reliability too
early. For example, the program relief technique, which was
proposed for 2D NAND flash memory [12], tries to reduce the
wear stress of weak WLs. When the program relief technique
is used, weak WLs are skipped from program operations or
are programmed using a less-stressful program method (e.g.,
SLC programs instead of MLC/TLC programs). However,
since erase operations, not program operations, are the main
source of NAND flash wear-out [13, 14], the program relief
technique is quite limited in extending SSD lifetimes. In our
3D flash characterization study (see Section 3), we confirmed
that most flash wear-out comes from an erase operation, not
from a program operation in 3D NAND flash memory. In or-
der to effectively erase a large 3D flash block, a higher erase
voltage is used for a longer period of time during an erase
operation, thus significantly increasing the impact of erase op-
erations on 3D flash over 2D flash wear-out. Our experimental
observation strongly suggests a need for a new erase-centric
flash stress-relief technique. In this paper, we propose such a
stress-relief technique that focuses on erase operations.

As an effective stress-relief solution for 3D NAND flash
memory, we propose a new block erase scheme, called Guard-
edErase (or gErase), that delays weak WLs from reaching their
maximum endurance level so that the lifetime of a block can
be extended. In order to extend the lifetime of weak WLs,
GuardedErase employs two erase modes, normal erase mode
and low-stress erase mode, at the WL level. When a WL is

erased by the low-stress erase mode, the WL experiences
reduced wear stress from a block erase operation, thus ef-
fectively increasing its maximum number of P/E cycles. For
example, assume that a WL reaches its endurance limit with
10 normal erase operations. In this case, if the low-stress erase
mode were used for the remaining erase operations, the WL
will take more than 10 P/E cycles before the WL becomes
bad. If the wear stress of the low-stress erase mode is just
50% of that of the normal erase mode, it takes 20 more P/E
cycles before the WL becomes bad.

On the other hand, when the WL is erased by the low-
stress erase mode, the WL is not fully erased so that it cannot
reliably store data. That is, when the WL is erased by the
low-stress erase mode, the effective capacity of the block is
temporarily reduced by the capacity of the WL. Therefore, the
key technical challenge of applying GuardedErase at the SSD
level is how to efficiently extend the block lifetime using the
low-stress erase mode while not degrading I/O performance
from the reduced block capacity. More formally, assume that
the lifetime LS of an SSD S is given by the total amount of
written data in terabytes, T BWS, which can be expressed by
the following equation:

T BWS =
CS ×MAXP/E

WAF
, (1)

where CS is the capacity of the SSD S, MAXP/E is the maxi-
mum number of P/E cycles, and WAF is a total write amplifi-
cation factor of an FTL including garbage collection (GC) and
wear leveling. When GuardedErase is used carelessly, it will in-
crease both MAXP/E and WAF, thus limiting its effectiveness
in increasing T BWS.

The low-stress erase mode of GuardedErase focuses on re-
ducing an erase voltage applied to a WL because the erase
voltage is the dominant factor affecting the flash wear-out sta-
tus. In our prototype implementation, we exploited a custom
flash test command [15] that allows to change various NAND
flash parameters including the erase voltage level of each WL.
Using the low-stress erase mode, we performed an extensive
characterization study for understanding the reliability impact
of the low-stress erase mode. We observed that the wear-stress
of a WL under the low-stress erase mode (as implemented in
the prototype) was about 35% of that under the normal erase
mode. Based on the per-WL low-stress erase mode, we built a
NAND endurance model for gErase-enabled flash blocks. Our
NAND endurance model supports nine different low-stress
block erase modes that differ in their endurance improvement
ratios and block capacity reduction factors.

Exploiting the endurance-capacity trade-off of the proposed
NAND endurance model, we have implemented the gErase-
aware FTL, called longFTL, which dynamically changes the
number of WLs erased by the low-stress erase mode while
minimizing the I/O performance degradation from the SSD
capacity reduction from the low-stress erase mode. LongFTL
includes several gErase-specific FTL modules (such as the
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Figure 2: Differences between 2D NAND flash and 3D NAND
flash [9].

weak WL monitor and the gErase mode selector) to achieve
two conflicting goals, extending SSD lifetimes and main-
taining SSD performance. We evaluated the effectiveness of
longFTL with the MQSim simulation environment [16] with
a custom extension for GuardedErase. Experimental results
using various I/O traces show that longFTL can improve the
SSD lifetime an average by 21% over an existing gErase-
unaware FTL with an average 3% decrease in the overall I/O
performance.

The rest of this paper is organized as follows. We review
an overview of 3D NAND flash memory and explain how
reliability is managed in 3D NAND flash in Section 2. In
Section 3, we present key reliability characteristics of 3D
NAND flash blocks. The proposed GuardedErase scheme is
described in Section 4 and longFTL is covered in Section 5.
Sections 6 and 7 describe our evaluation results and related
work, respectively. We conclude in Section 8 with a summary
and future work.

2 Background

2.1 Overview of 3D NAND Flash Memory

3D NAND flash memory [17] enables the continuous growth
in the flash capacity by vertically stacking the memory cell to
overcome various technical challenges in scaling 2D NAND
flash memory. By exploiting the vertical dimension for higher
capacity (instead of focusing on finer process technologies
in 2D flash memory), 3D NAND flash memory has been
successful in increasing its capacity by 50% annually while
avoiding reliability degradation [18].

Figure 2 shows the organizational difference in a flash
block2 between 2D and 3D NAND flash memory. In this
example, the 2D NAND flash memory has a matrix structure
in which four WLs and three bitlines (BLs) intersect at 90
degrees. On the contrary, the 3D NAND flash memory has a
cube-like structure. The 3D NAND flash block consists of four
vertical layers (v-layers) in the y-axis where each v-layer has
four vertically stacked WLs that are separated by select-line
(SSL) transistors. As shown in Figure 2, when the 2D NAND

2NAND flash memory consists of multiple blocks. Each block has mul-
tiple WLs (e.g., 128 - 256 WLs) and each WL consists of a group of flash
cells (e.g., 8K - 16K cells).

flash block is rotated by 90◦ in a counterclockwise direction
using the x-axis as an axis of rotation (i.e., if the WLs are set
vertically), it corresponds to a single v-layer. Similarly, the 3D
NAND flash block can be described to have four horizontal
layers (h-layers) which are stacked along the z-axis, and each
horizontal layer consists of four WLs.

In order to increase the capacity of a 3D flash chip, the most
effective approach is to increase the number of h-layers in 3D
NAND flash memory (i.e., stacking more h-layers along the
z-axis). As the number of h-layers increases, the block size
increases as well (as summarized in Table 1).

2.2 Reliability Management in NAND Flash
Memory

In order to reliably store data in flash cells, various reliability
requirements should be satisfied. For example, flash blocks
should not be used more than their limited maximum P/E
cycles. This is because the NAND cell characteristics in the
flash block deteriorate as the number of P/E cycles increases.
The main cause of wear-out of a flash block is electrical stress
on the tunnel oxide during the program and erase operations.
As program/erase operations are repeatedly performed on
the block, the amount of charge trapped in the tunnel ox-
ide layer increases. The trapped charges make it difficult for
the threshold voltage level (i.e., state) of the erased NAND
cells to be located within their intended voltage interval, thus
significantly affecting the data retention characteristics of
NAND cells in the block. [19]. Therefore, as the P/E cycle
increases, the BER characteristics of data stored in the flash
block deteriorate.

To prevent the number of error bits from surpassing the
correction capacity of an error correction code (ECC) engine,
NAND manufacturers set the maximum number of P/E cycles
allowed for a block, which is called as NAND endurance. If
the block continues to be used over the maximum number
of P/E cycles, the BER of the block will exceed the ECC
capability, which results in data loss (i.e., a read error). In
addition to errors due to NAND wear-out, various errors (such
as program errors and erase errors) can occur due to process
defects during a NAND flash manufacturing procedure [20].

Although NAND operations can fail for different reasons,
failed operations are managed in the block granularity within
an FTL. For example, if a read operation to a page in a block
B fails, the FTL identifies the block B as a bad block and
replaces B with a reserved block. After the BBM module of
the FTL moves all the valid data from the bad block B to the
reserved block, the bad block B is no longer used.

3 Reliability Characterization of 3D Blocks

In this section, we explain two key observations on 3D NAND
flash characteristics which motivated the proposed Guarded-
Erase scheme.
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Figure 3: Per-WL BER variations in 3D NAND flash and 2D
NAND flash.

3.1 Large Reliability Variations Among WLs

Ideally, we would expect all flash cells in a block (or chip) to
have identical characteristics. However, in practice, signifi-
cant electrical/physical characteristic variations between flash
cells are unavoidable due to many unexpected process fluctu-
ations in a complex NAND flash manufacturing system. For
example, in 2D NAND flash memory, it is known that the re-
liability of WLs varies depending on the physical location of
a WL within a flash block. Furthermore, it is widely accepted
that such process variability would be much stronger in 3D
NAND flash memory because of its unique manufacturing
process. To quantify the reliability variations between WLs,
we examined the inter-WL BER variations using 160 real 3D
TLC NAND flash chips3

Figure 3(a) shows significant inter-WL BER variations ex-
ist within a tested block even when the blocks experience
no program/erase cycles. All BER values were normalized
over that of the most reliable WL. (For simplicity, we show
the evaluation result of the selected 9 WLs.) The BER of the
worst WL (WL h, which is near the top layer) is about 60%
higher than that of the best WL (WL e, which is around the
middle layer). When flash blocks get aged (from a large num-
ber of P/E cycles), as shown in Figure 3(b), the BER of the
worst WL may be twice as large as that of the best WL. We

3Our flash chips are fabricated by 3D charge-trap technology (which is
known as SMArT [21] or TCAT [22]). All the commercial 3D NAND flash
memories have similar structures and cell types, and it is commonly believed
that different 3D TLC flash chips share key device-level characteristics.
Therefore, our characterization results on reliability variability agree with
general trends with other 3D NAND flash chips.

Figure 4: Inter-WL BER variations when the worst WL be-
comes bad.

also examined the inter-WL reliability variations of 1x-nm
2D TLC NAND flash memory. Unlike 3D NAND flash mem-
ory, as shown in Figures 3(c) and 3(d), the BER difference
between the worst WL and best WL is much smaller.

In order to understand the impact of large reliability varia-
tions among WLs on the NAND block lifetime, we examined
per-WL BER variations of different WLs when the number
of bit errors from the worst WL exceeds the maximum ECC
correction capacity. Figure 4 shows that when the number of
bit errors from the worst WL, WL h, exceeds the ECC correc-
tion capacity, 60 bits per 1-KB sector, the rest of the WLs in
the block are still fairly reliable. If we decide that the block is
bad at this time, a significant amount of the block lifetime is
wasted. For example, the BER of the best WL, WL d, is just
about 60% of that of the worst WL, WL h. Therefore, to fully
utilize the lifetime of 3D NAND flash memory, it is important
to manage the reliability of a flash block at the individual WL
level instead of the conventional block level because there
exist large reliability variations among WLs in a flash block.

The root cause of large reliability variations is related to a
unique manufacturing process to form the vertical architecture
of 3D NAND flash memory. Figure 5(a) shows a detailed
organization of a vertical layer in 3D NAND flash memory
using a cross-sectional view along the y-z plane and a top-
down view (of three cross sections along the x-y plane). The
channel holes are formed at the early stage of 3D NAND flash
manufacturing by an etching process [23].

Under an ideal manufacturing process, all the channel holes
would have the same geometrical structure regardless of their
physical locations to achieve the homogeneous reliability
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Figure 5: Inter-WL variations in 3D NAND flash memory.
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characteristics among flash cells. However, the cylindrical
channel hole cannot avoid suffering from severe structural
variations depending on its vertical (z-directional) location.
For example, as shown in Figure 5(b), the diameter of the
channel holes varies significantly over the height of an h-
layer. Furthermore, the shape of channel holes is also affected
depending on vertical positions. Different channel hole di-
ameters as well as their shapes can cause large variations in
the characteristics of flash cells. Therefore, even when the
same program/erase voltage is applied to flash cells, they ex-
perience different electrical stress depending on the diameter
or shape of a channel hole, resulting in different reliability
characteristics along vertical locations.

3.2 Erase Stress on Flash Reliability

Before we design a WL-level stress mitigation technique for
3D NAND flash memory, in order to quantitatively understand
the main source of flash stress, we performed a comprehensive
characterization study using real 160 3D TLC NAND flash
chips with 48 horizontal layers where each layer consists of 4
WLs. Since both a program operation and an erase operation
incur a significant amount of wear stress on flash cells, the
main goal of our study was to measure the relative impact of
these operations on the reliability characteristics of 3D flash
cells. We tested a total of 3,686,400 WLs (11,059,200 pages)
to obtain statistically significant experimental results. Follow-
ing a standard evaluation metric commonly used in NAND
flash reliability studies, we measured changes in RBER (Raw
Bit-Error Rate) after each measurement scenario.

To quantify the impact of the program and erase opera-
tions on the NAND endurance stress, we designed three mea-
surement scenarios. In each scenario, one of three operation
sequences is repeated until the lifetime limit of the block.
Table 2 summarizes three operation sequences with their
member operations. Note that all three sequences include
dummy operations so that unexpected factors do not affect
the accuracy of measurement results.4

Figures 6(a) and 6(b) show how erase and write operations
affect the lifetime of a flash block in 2D and 3D NAND flash
memory, respectively. As expected, the endurance impact of
an erase operation was significantly larger than that of a pro-
gram operation in 3D NAND flash memory. The endurance
stress of erase operations was responsible for almost 80% of
the total stress of flash cells in 3D NAND flash memory. Note

4As explained in Section 2.2, the flash cell’s wear-out is mainly caused
by trapped charges in the tunnel oxide layer during program and erase opera-
tions. If the flash cell is sufficiently erased, there is little charge remaining
that can be transferred from the SiN layer to the substrate. Therefore, for
example, repeating only erase operations in Erase-only Sequence cannot
accurately measure the endurance effect of the erase operation. As shown in
Table 2, dummy program operations are performed before erase operations.
Dummy erase operations were added to the sequence because they were in-
cluded in Modified Base Sequence so that the effect of erase operation
can be effectively measured by comparing BER values of two sequences.

Table 2: A summary of three operation sequences.

Sequence type Operations order
Modified Base Sequence P → dummy P → E → dummy E
Erase-only Sequence dummy P → E → dummy E

Program-only Sequence dummy E → P → dummy P
P : program, E : erase
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Figure 6: Endurance impact of erase and program operations.

that the impact of erase operations on the flash endurance
is about 33% higher in 3D NAND flash memory over 2D
NAND flash memory. The high impact of erase operations
over program operations was observed similarly regardless of
WL locations. Our measurement study clearly indicates that a
low-stress mechanism should be focused on erase operations,
not program operations.

3.3 Erase Stress Reduction

As described in Section 2.2, electrical stress during P/E cycles
could have a detrimental effect on the tunnel oxide layer of
flash cells. As the amount of damage to the tunnel oxide layer
increases, flash cells eventually get worn out. As shown in
Section 3.2, lowering the erase stress is essential in reducing
the amount of damage to the tunnel oxide layer. Since the
amount of damage to the tunnel oxide layer increases expo-
nentially as the erase voltage increases [24], the proposed
GuardedErase scheme offers a low-stress erase mode by low-
ering erase voltage.

4 GuardedErase: Mechanism and Modes

4.1 Basic Idea

Since an erase operation is a major source of flash wear-out, it
is important to reduce the erase stress on flash cells when they
are erased if the flash cells can be used for more P/E cycles. In
order to reduce the erase stress when necessary, GuardedErase
supports the low-stress erase mode as well as the normal erase
mode. The key motivation behind GuardedErase is that when
a WL is erased by a lower erase voltage, the lifetime of the
WL increases [14]. GuardedErase protects weak WLs from
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experiencing high erase stress by lowering their erase voltage,
thus extending the maximum number of block erasures for a
block (i.e., the lifetime of a flash block).

Consider an example 3D flash block with 10 WLs in Fig-
ure 7(a). Reflecting strong process variability among WLs,
there are significant variations on BER values for the same
number of P/E cycles. For example, when the normal block
erase operation is used, WL 0, which is the weakest WL,
reaches its maximum BER value (i.e., the BER threshold
value of the block) after 10 P/E cycles. On the other hand,
after 10 P/E cycles, WL 5, which is the strongest WL, barely
reached 50% of its maximum BER value. However, since WL
0 reached its maximum BER value, the block is no longer us-
able, thus becoming a bad block. If we employ a fine-grained
BPM policy, the block can continue to be used with nine WLs
after 10 P/E cycles. However, since the effective block ca-
pacity is reduced by 10% (which, in turn, may introduce a
severe WAF increase), the BPM policy is rather limited in
increasing the total amount of written data to the block while
incurring no I/O performance degradation. In the example
block in Figure 7(a), even if an SSD can tolerate up to 20% of
the average block capacity reduction (thanks to its OP space),
only 9 more WLs can be written to the block before WL 1
becomes unusable after one more block erasure.

Figure 7(b) illustrates how the lifetime of the example block
can be extended using the proposed GuardedErase scheme.
When BER values of weak WLs (such as WL 0, WL 1 and
WL 9) are higher than those of other WLs, weak WLs are
erased using the low-stress erase mode that reduces wear
by approximately 1/3 as will be shown in Section 4.2. For
example, after the 1st erase cycle, the BER value of WL 0
is more than double that of WL 5. In order to protect WL 0,
the low-stress erase mode, which is indicated by a white box
in Figure 7(b), is used for WL 0 in the 2nd erase cycle. WL
0 is erased six more times using the low-stress erase mode
under similar conditions. Figure 7(b) shows that the lifetime
of WL 1 and WL 9 is extended to the 14-th erase cycle with
five applications of the low-stress erase mode while that of
WL 2 and WL 8 is extended to the 14-th erase cycle with two
applications of the low-stress erase mode.

When weak WLs are erased using the low-stress erase
mode, they cannot store data for the following program cycle
(i.e., it cannot reliably store data). In Figure 7(b), WL 0 is not
used to store data 7 times out of 14 block erasures. (White
boxes indicate the unstable WL state.) Although the total
amount of written data to WL 0 is significantly reduced, the
lower erase voltage prolongs the lifetime of WL 0, which is
the weakest WL of the block. By delaying WL 0 to reach its
BER threshold, we can increase the lifetime of the block to
14 block erasures, thus more data are written to the block. In
Figure 7(b), the total amount of written data (in the number of
WLs) increases from 100 WLs (in Figure 7(a)) to 119 WLs.
That is, by using the lower erase voltage for weak WLs, we
were able to increase the total amount of data written to a
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Figure 7: Per-WL BER changes under the normal block erase
and the gErase block erase.

block by 19%. This, in turn, extends the SSD lifetime in terms
of the total amount of written bytes.

Note that the GuardedErase scheme outperforms the BPM
scheme in the total number of WLs written to the block by
writing 10 more WLs. Furthermore, unlike the BPM scheme
where the effective block capacity is monotonically non-
increasing over P/E cycles, the GuardedErase scheme can
dynamically control the effective block capacity up to the
maximum block capacity depending on which erase mode is
used. If the low-stress erase mode can be adaptively applied
by exploiting the future write demand and intensity charac-
teristics, the GuardedErase scheme can efficiently extend the
SSD lifetime without an I/O performance degradation. In or-
der to achieve the full potential of the GuardedErase scheme,
therefore, we need to design an efficient mechanism for sup-
porting the low-stress erase mode and devise an intelligent
management policy of applying the low-stress erase mode to
proper WLs at the right time.

4.2 Per-WL Low-Stress Erase Mode
4.2.1 Implementation

There are two implementation options for the low-stress erase
mode. One is to reduce the erase time (i.e., erase time scal-
ing [14]) and the other is to reduce the erase voltage (i.e.,
erase voltage scaling [14]). However, since it is not easy to
control the erase time at the WL granularity, we employed a
scheme that lowers the erase voltage. In order to reduce the
erase voltage for a specific WL, we exploited a test-mode com-
mand [15] for 3D NAND flash memory that allows to vary
the driving voltage setting at the WL granularity. Although
we cannot directly apply a lower erase voltage to a specific
WL, this test-mode command can be used to effectively lower
the erase voltage for the target WL5.

Figure 8(a) illustrates how to reduce the erase stress on WL
47 using the proposed method. Since the voltage difference
between the control gate voltage and the voltage applied to

5It has been known that all NAND manufactures have their own hidden
test-mode commands to modify the internal operating voltage.
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the substrate acts as the effective erase voltage, when a higher
voltage is applied to the control gate of a WL, its erase voltage
is effectively reduced, thus reducing the erase stress on the
WL. In Figure 8(a), 3V, not the usual 0V, is applied to the
control gate of WL 47, thus reducing the effective erase volt-
age of WL 47 by 3V. Figure 8(b) shows how various voltages
are driven when the low-stress erase mode is used for WL 47
while the rest of WLs are erased using the normal erase mode.
When the nominal erase voltage Verase is applied to the bit line
(or substrate) from time t1 to t2, the NAND flash cells of WL
47 experience a smaller electrical potential difference by 3V
over the flash cells of the other WLs. Considering that Verase
is approximately 17V and the erase stress is exponentially
proportional to an electrical potential difference, a significant
amount of erase stress is reduced to the NAND flash cells of
WL 47 during an erase operation.6

4.2.2 Stress Mitigation Effect

In order to understand the endurance impact of the low-stress
erase mode on WLs, we performed a comprehensive process
characterization study using state-of-the-art 3D TLC NAND
flash chips. For endurance comparisons, we formed two block
groups whose member blocks were evenly selected from dif-
ferent physical locations using 30 NAND flash chips. Two
block groups were erased using different erase modes, one
group using the normal erase mode only and the other group
using the normal erase mode and the low-stress erase mode
half and half,7 respectively. For each WL of a tested block,

6When the low-stress erase mode is applied to a WL, we increase the
verify voltage setting for the WL so that the erase operation can take the
same number of erase loops as in the normal erase mode.

7We experimented with different combinations of two erase modes (e.g.,
25% : 75%). However, we could not find any difference in the experimental
conclusions.
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we collected the maximum number of P/E cycles that keeps
the BER value of the WL below the BER threshold value.

Based on the measured maximum P/E cycles per WL, we
computed the relative stress coefficient Sk of WLK that indi-
cates how much the erase stress is mitigated when the low-
stress erase mode is used. Sk is a per-WL quantity that indi-
cates how much WLK wears out when it is erased using the
low-stress erase mode over the normal erase mode. For exam-
ple, if the maximum number of P/E cycles of WLP was 10K
when the normal erase mode was used, but it was increased
to 20K when the low-stress erase mode is used, the relative
stress coefficient Sp is 0.5. Figure 9 summarizes our measured
relative stress coefficients for different WLs in a block.

Although there are significant differences in Sk values de-
pending on WLs, we observed that the relative stress coeffi-
cients of weak WLs (for which most of the low-stress erase
mode are applied) are quite similar: all the coefficients belong
to an interval [0.31, 0.34] with the mean of 0.33. Although the
low-stress erase mode may be applied to a few strong WLs
with larger relative stress coefficients in GuardedErase, when
we evaluate the stress mitigation effect of the low-stress erase
mode, we assume that all the WLs have the same relative
stress coefficient, 0.35, for a simple analysis.8

4.3 Per-Block Erase Modes

In order for an FTL to effectively exploit the endurance-
capacity trade-off of the low-stress erase mode, we support
nine block erase modes, gE(1), . . . , gE(9). Table 3 summarizes
the proposed nine block erase modes with varying numbers
of protected WLs and different erase relief ratios9. The higher
n in gE(n), the more WLs are erased using the low-stress erase
mode with a higher erase relief ratio. Therefore, when a block
is erased with a higher gErase mode, the maximum number
of P/E cycles of the block is increased. For example, when a
block is erased with gE(9) only, the maximum number of P/E

8In GuardedErase, a fixed number N of WLs are selected for applying
the low-stress erase mode. Although N is fixed, selected N WLs change
over time because N WLs with the worst BER values are protected when
a block is erased. Since the relative stress coefficient of selected WLs is
mostly less than 0.35 with few stronger WLs, our assumption of 0.35 is rather
conservative in understanding real stress mitigation levels.

9The erase relief ratio of gE(n) is defined as a ratio of applying the gE(n)
block erase mode over the normal block erase operation.
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Table 3: A summary of nine gErase modes.

gErase mode(n) == gE(n)
gE(1) gE(2) gE(3) gE(4) gE(5) gE(6) gE(7) gE(8) gE(9)

No. of protected WLs 8 12 16 20 24 24 24 28 32
Erase relief ratio 25% 33% 38% 40% 42% 50% 50% 50% 50%

Block capacity reduction 1.04% 2.08% 3.13% 4.17% 5.21% 6.25% 7.29% 8.33% 9.38%
Norm. Max P/E cycles 1.19 1.26 1.30 1.33 1.37% 1.39 1.41 1.43 1.45

cycles of the block is increased by 45% whereas when the
block is erased with gE(1), it is increased by 19% only. On the
other hand, as shown in Table 3, the higher the gErase mode,
the more WLs become unusable for the next program cycle,
thus increasing WAF values. As described in Section 5, it is
an important task for an FTL to choose a proper gErase mode
when it erases a block.

In the remainder of Section 4.3, we provide a high-level
description on how we designed nine block erase modes. (For
additional details, see [25].) In Table 3, the percentage of
block capacity reduction in gE(n) is given by (1.04 × n)%.
Since our flash block has 192 WLs, when a block is erased
by gE(n), 2n WLs of the block become unusable for the next
program cycle10. When a target percentage of block capacity
reduction, say 1.04% in gE(1), is given, there can be multi-
ple options to achieve the target block capacity reduction
ratio using the low-stress erase mode. Let nWL and f denote
the number of protected WLs and the erase relief ratio. A
combination (k × nWL, f/k) over any k achieves the same
block capacity reduction ratio as when (nWL × f/100) WLs
are always protected. For example, (4 WLs, 50%), (8 WLs,
25%) and (12 WLs, 16.7%) can achieve the same 1.04%
reduction percentage in a 192-WL blocks. From multiple
candidate combinations, we prefer ones with a lower f be-
cause such a combination can achieve higher I/O efficiency
by allowing more flexible applications of gErase modes by
an FTL [25]. For example, we prefer (8 WLs, 25%) and (12
WLs, 16.7%) over (4 WLs, 50%). On the other hand, if f is
too low (i.e., nWL is too large), weak WLs may not be fully
protected, thus limiting their endurance improvements [25].
For example, (12 WLs, 16.7%) cannot maximally extend the
lifetime of the weakest WL, WL 0, because f should be larger
than 18.3% if WL 0 could fully achieve its maximum ex-
pected endurance [25]. Therefore, as shown in Table 3, (8
WLs, 25%) was selected for gE(1).

5 Design and Implementation of LongFTL

5.1 Overview
Based on the proposed gErase modes of Table 3, we imple-
mented a gErase-enabled FTL, called longFTL, which exploits
the key trade-off relationship of gErase between the block en-
durance extension and the block capacity reduction. The main
goal of longFTL is to significantly extend the block lifetime
with a negligible performance degradation by intelligently

10(2/192) × n ≃ 0.0104 × n.
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Figure 10: An organizational overview of longFTL.

choosing a gErase mode under varying I/O workloads. Fig-
ure 10 shows an overall organization of longFTL. LongFTL,
which is based on a typical page-level mapping FTL, em-
ploys three gErase-specific modules, the weak WL detector,
the WAF monitor, and the gErase mode selector. The weak
WL detector dynamically identifies weak WLs in a block,
the WAF monitor tracks WAF changes, and the gErase mode
selector determines the optimal gErase mode for the current
workload characteristics estimated by the WAF monitor. The
extended flash block manager selectively applies the optimal
gErase mode in producing free blocks during its free-block
allocation step.

5.2 Weak WL Detector
In order to protect weak WLs to extend the endurance of
a block, it is required to identify which WLs are weak. 11

The weak WL detector (WLD) module is responsible for
maintaining WLs according to their BER values so that when
N weakest WLs are requested by the gErase mode selector, the
WLs with the N largest BER values can be quickly identified.
The WLD module employs (Nmax

ecc − 9) linked lists where
Nmax

ecc represents the maximum number of bit errors that can
be corrected by an ECC module. A linked list Lk contains all
the WLs with k bit errors. Figure 11 shows an example of
BER-sorted linked lists used for detecting weak WLs.

The BER-sorted linked list is used temporarily when weak
WLs are identified. (In the current implementation, we iden-
tify weak WLs once in 100 P/E cycles.) We maintain the
identified weak WLs using a separate bitmap data structure.
For each WL, we allocate a 1-bit flag that indicates the WL
is weak or not. Using this bitmap information, longFTL rec-
ognizes which WLs should be erased by the low-stress erase
mode. The memory footprint for supporting the bitmap of
weak WLs is small. For example, if a NAND die consists of
2000 blocks and there are 192 WLs per block, the required
memory is less than 48 KB, which is less than 0.3% of the
memory requirement of a page-level mapping table.

11Since each WL may experience different erase modes (i.e., normal and
9 gErase modes), we maintain a 16-bit relief count for each WL that indicates
the current wear status of the WL. However, for a simpler presentation, we
assume that each WL is managed based on their BER value. The memory
overhead of supporting per-WL relief count can be limited to about 2% of
the logical-to-physical mapping table size.
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Figure 11: BER-sorted linked lists for detecting weak WLs.

To identify weak WLs of a block, we construct the BER-
sorted linked list for the block after every 100 P/E cycles.
Since we use the BER-sorted linked list only when weak
WLs are identified, the BER-sorted linked list for the block is
allocated temporarily from a heap memory and returned after
use. That is, the memory requirement for one BER-sorted
linked list is sufficient for a whole NAND die with 2000
blocks. Assuming that Nmax

ecc is 50, the maximum memory
requirement is less than 2 KB per NAND die when each
block has 192 WLs. For example, assuming 4 bytes for a list
pointer and 2 bytes for WL information, (50 - 8) headers × 4
bytes/header + 192 WLs × (4+2) bytes/WL = 1320 bytes.

Since weak WLs of a block are identified every 100 P/E
cycles of the block, its time overhead is minimal. For the
current implementation, we check the BER value of a WL by
reading its worst page (e.g., MSB page). The total overhead
of checking BER values of WLs is typically less than 0.1%
of total I/O time in our evaluation. Furthermore, we can dis-
tribute the overhead of the BER checking step of each block
to multiple P/E cycles (e.g., 91-st to 100-th P/E cycles) by
overlapping the weak WL identification step among multiple
blocks (e.g., 10 blocks). Since this requires ten BER lists at
the same time, the memory requirement increases to about
13 KB (which is less than 0.1% of the page-level mapping
table size). However, we only need to check BER values from
one-tenth of the total WLs during one P/E cycle interval, thus
further reducing the time overhead. Since the BER value of
a WL changes slowly, the distributed scheme does not affect
the accuracy of identifying weak WLs.

In addition to selecting N weakest WLs from a block, the
WLD module ensures that gErase modes are evenly applied
to all the blocks. If a large number of gErase modes are used
for a few blocks only, the SSD lifetime may not be extended
at all because the rest of blocks are erased using the normal
erase mode only. We maintain a separate linked list of free
blocks by the number of gErase operations. When we select a
free block, we prefer blocks with fewer gErase counts12.

5.3 WAF Monitor

The WAF monitor is responsible for tracking a WAF value
of an SSD. Since a block capacity is reduced when the block

12Since a free block may be selected under a different criterion (such as

is erased using a gErase mode, it is important to understand
if the current effective SSD capacity is adequate to properly
process the current I/O workload. If the effective SSD ca-
pacity were reduced too much from aggressive gErase mode
applications by the gErase mode selector, the SSD may suffer
a significant I/O performance degradation. On the other hand,
if gErase modes were applied too conservatively, the effec-
tiveness of GuardedErase is quite limited. In order to prevent
the I/O performance fluctuations from frequent gErase-mode
changes, we modify gErase modes only when the current I/O
workload has been relatively stable so that transient I/O work-
load variations do not cause an SSD capacity reduction from
mispredicted mode changes.

The main function of the WAF monitor is to observe WAF
fluctuations, which we interpret as I/O workload changes, and
decide if the current WAF value is stable enough for the gErase
mode selector to make a proper mode decision. Although it is
difficult to precisely define what a stable WAF value means,
in the current implementation, we assume that a WAF value is
stable if the last 9 measured WAF, as well as the current WAF,
have been steady in their respective observation intervals.
A WAF value is called steady for an observation interval
(ts, te] if all the WAF values observed in (ts, te] are within
[0.98w,1.02w] where w is the WAF value at ts. Since we
are interested in knowing long-term workload characteristics
instead of fast changing short-term workload characteristics,
a single observation interval is defined as the time it takes
to perform a sufficient number (e.g., 5% of total blocks) of
garbage collections (GC). The WAF monitor also tracks the
change in WAF values (i.e., WAF history) so that the recent
WAF trend can be considered by the gErase mode selector.

5.4 GErase Mode Selector
The gErase mode selector decides which erase mode would
be used for the next block erase. Figure 12 describes the key
steps in selecting the next gErase mode.

In deciding the next erase mode, the gErase mode selector
considers two pieces of information from the WAF monitor:
WAF stability and WAF history. The gErase mode selector
with the current gErase mode gE(cur) invokes the procedure in
Figure 12 whenever a new WAF value w is measured (i.e., ev-
ery observation interval). If the WAF value is stable, we com-
pute the expected TBW values (from Equation 1) for three
neighboring gErase modes, gE(cur-1), gE(cur) and gE(cur+1),
and select the gErase mode with the largest TBW value as
the next gErase mode to be used. If not all three TBW values
are computable (i.e., because of WAF history for gE(cur+1)
is not available), we set the next gErase mode as gE(cur+1),
so that we can explore the potential benefit of using a more
aggressive gErase mode. Note that this explorational step is
tried in a limited fashion only after an I/O workload signif-

low P/E cycles), leveling gErase counts among different blocks is supported
in a combined fashion with other selection criteria.
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Figure 12: A procedure for selecting the next gErase mode.

icantly changes when most previous WAF values become
unstable. Once a WAF value becomes unstable for gE(n), the
TBW value for gE(n) cannot be computed until the WAF value
get re-stabilized again.

Figure 13 illustrates how the gErase mode selector works
over varying I/O workloads. The gErase mode is started with
gE(0). When the WAF is saturated ( 1 ), there is no WAF his-
tory for the adjacent gErase mode, so it is changed to gE(1)
without a TBW comparison. When the WAF is saturated af-
ter the mode change ( 2 , 3 ) a higher mode is used because
TBW gets higher over the previous mode. However, the TBW
of gE(3) is lower than that of gE(2), the mode changes back
to gE(2). Since the newly calculated TBW of gE(2) is lower
than the TBW of gE(1) calculated by WAF history ( 5 ), it is
changed back to gE(1). In the actual gE(1) execution, the TBW
is rather low ( 6 ), so the mode is changed back to gE(2). After
that, the WAF remains stable, and the TBW is maximized at
the mode, gE(2).

5.5 Extended Flash Block Manager

Once the next gErase mode is determined, the extended flash
block manager decides whether to apply the gErase mode
before generating free blocks that can be used for incoming
allocation requests. In order to minimize the negative impact
on the I/O performance from applying gErase modes, we take
a conservative policy in employing gErase modes.

In the current implementation, the extended flash block
manager uses gErased free blocks only for storing hot data
from host requests. The main rational behind this policy is
that the negative performance impact of the SSD capacity
reduction from gErase modes would last longer if cold data
(that are not likely to be updated) are allowed to be stored
to gErased free blocks. Since a gErased block with cold data
is less likely to be selected as a victim block of garbage
collection, the unused WLs from the gErased block will take
longer to be reclaimed for future usage. Therefore, the impact
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Figure 13: An example gErase mode selection.

of the SSD capacity reduction on WAF will last longer. Note
that our current policy prevents gErased free blocks from
storing valid data moved during a garbage collection process
because they are implicitly cold data [26]. Since valid data
moved during the garbage collection process are considered
cold, we do not store them to gErased blocks, thus reducing
I/O performance degradation.

6 Experimental Results

6.1 Experimental Settings

To evaluate the effectiveness of the proposed technique, we
implemented longFTL as an extension on a well-known FTL
simulator, MQSim [16]. For our evaluation, we configured
the FTL simulator to support the 32-GB storage capacity for
faster experiments. Our simulated storage system has four
channels with one NAND flash chip per channel. In setting
the key NAND flash configuration parameters, recent large-
block flash chips [5, 6] were used as references. Each NAND
flash chip has a 2-plane configuration and each plane has
1822 blocks. Each block consists of 192 WLs and each WL
can store three 8-KB pages. The average page program time
and the block erase time were set to 700 µs and 4000 µs,
respectively. The overprovisioning ratio was set to 10% as
commonly done in commercial SSDs. To effectively exploit
the overprovisioned area, GC is invoked when the number of
free blocks is less than 0.2% of the total number of blocks.

We compared longFTL with two existing schemes: Baseline,
and BPM [11]. Baseline represents a standard page-level map-
ping FTL without any special scheme for optimizing large-
block NAND flash chips. BPM is the same FTL as Baseline
with the bad-page management scheme [11]. All evaluation
results were normalized over those from Baseline.

We have carried out our experiments with various I/O traces
with different I/O characteristics from MSR trace workloads
[27] and synthetic I/O traces generated from Sysbench [28]
and Filebench [29]. Table 4 summarizes key I/O characteris-
tics of these workloads. Since longFTL improves its lifetime at
the expense of temporarily reduced SSD capacity, we selected
I/O traces (e.g., prxy0 and src10) with a large amount of writ-
ten data so that we can better understand how longFTL works
under reduced SSD capacity scenarios. When the total amount
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Table 4: I/O characteristics of traces used for evaluations.

proj0 prxy1 prxy0 src10 proj2 OLTP fileserver varmail

Read:Write 6:94 64:36 5:95 46:54 86:14 70:30 40:60 40:60
Total writes (GB) 144 725 54 302 169 639 249 312

WAF (without gErase) 1.08 1.16 1.24 2.66 3.55 1.89 2.49 2.98

Figure 14: Comparisons of lifetime extensions.

of written data from an I/O trace was not sufficient, the same
traces were repeated multiple times so that sufficient write
requests can be generated. In Table 4, prxy0, proj0 and proj2
were such cases. Since the MSR traces were extracted from
slow HDD-based storage systems, we accelerated the I/O in-
tensity from a host machine by scaling down inter-request
intervals by an appropriate factor (e.g., 1

3000 ) so that fast SSD
processing speed can be properly considered.

6.2 Lifetime Improvement
In order to understand how longFTL improves the SSD life-
time, we measured TBW values for eight I/O traces. Figure 14
shows normalized TBW values for the benchmark I/O traces
over Baseline. For the BPM techniques, we used two versions,
BPM(2.1) and BPM(5.2), where BPM(r) allows the block ca-
pacity to be reduced by r% of the block capacity. LongFTL
achieved the highest average improvement ratio, 21%, on the
lifetime extension in all eight traces, followed by BPM(5.2)
and BPM(2.1). As expected, the lifetime improvement of both
BPM(2.1) and BPM(5.2) was insensitive on I/O characteristics of
each trace, achieving 9% and 13% improvement ratios mainly
depending on the upper limit of the block capacity reduction.

Although longFTL outperformed BPM(2.1) and BPM(5.2) on
all the benchmark traces, the efficiency of longFTL signif-
icantly varies over different traces. For example, longFTL
improved the SSD lifetime by 29% in proj0, prxy1 and prxy0.
On the other hand, longFTL can improve the SSD lifetime
only by 11% for proj2. The main reason behind a rather large
efficiency difference is because the impact on the WAF value
of each trace is quite different when gErase modes are applied.

Figure 15 shows how the WAF values change in longFTL.
In Figure 15, we included the most commonly used gErase
mode for each I/O trace (which we call the dominant gErase
mode). In general, the more the number of protected WLs,
the higher the WAF value. However, as shown in Figure 15,
the exact relationship is workload-dependent. For example,
in proj0 and prxy1, where longFTL was the most effective in
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Figure 15: Comparisons of WAF changes under dominant
gErase modes used.

increasing the SSD lifetime, the WAF value is only increased
by 11% even when the dominant gErase mode protects 28
WLs with gE(8). On the contrary, in proj2, its WAF was very
sensitive to the number of protected WLs. Thus we mostly
used gE(1) with 8 protected WLs only. When 1.04% of the
physical capacity was reduced by gE(1), the WAF value was
increased by 7%. Therefore, no higher gE(n) mode was used
for proj2, limiting the effect of longFTL on the SSD lifetime.
This workload dependency is the main motivation for the
WAF Monitor in longFTL. Furthermore, it emphasizes the im-
portance of an FTL for the low-erase modes to be effectively
utilized.

6.3 Performance Overhead
Although longFTL selectively decreases the effective SSD
capacity from gErase modes, its negative impact on the I/O
performance is very small because longFTL applies gErase
operation mostly for hot data (as described in Section 5.5).
Figure 16 compares normalized IOPS values of three tech-
niques over the Baseline scheme. LongFTL experiences the
average 3% IOPS degradation over Baseline. On the contrary,
BPM(5.2) degrades its IOPS on average by 10%. Furthermore,
BPM(2.1) achieves a similar IOPS level as longFTL but it is
ineffective in improving the SSD lifetime. BPM(5.2) may not
be employed in practice because it violates the common SSD
performance requirement specification (such as the 10% up-
per limit on the SSD performance degradation at the end of
the rated product lifetime [30]). BPM(5.2) can experience more
than 20% performance degradation as in proj2.

6.4 Effectiveness of Block Relief Policy
As explained in Section 4.3, longFTL prefers limited applica-
tions of gErase modes. For example, when we build the gErase
modes of Table 3, we selected ones with the lowest erase
relief ratio. Furthermore, longFTL applied gErase modes only
for storing host-requested data as described in Section 5.5.
That is, no gErase mode is used when storing data during
GC. In order to understand the effectiveness of the current
conservative policy of longFTL, we compared this policy with
a more aggressive policy where gErase modes were always
used when erasing blocks.
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Figure 16: Comparisons of performance overhead.

Figure 17 shows how the more aggressive policy works
over the current one. All the values were normalized over
those of longFTL. The evaluation result shows that TBW and
IOPS can degrade up to 3% (as in varmail). In the aggressive
policy, the TBW improvement ratio can be reduced by up to
15.2%13 over the current conservative policy.

7 Related Work

Improving the SSD lifetime has been an active research topic
because the endurance of modern flash memory is continu-
ously reduced. To overcome the limited lifetime problem, sev-
eral system-level techniques have been proposed by exploiting
the physical characteristics of NAND flash memory [11–14].

Jeong et al. conducted a study to improve the NAND en-
durance by adjusting the erase voltage and erase time [13,14].
It is similar to our gErase scheme in that it improves the block
lifetime by reducing the stress voltage during erase opera-
tions. However, unlike the gErase scheme, their technique does
not exploit the intra-block reliability variations (i.e., between
pages within a single block). It only focuses on reducing the
erase-caused stress at the block granularity.

Jimenez et al. focused on the intra-block reliability vari-
ations and conducted a study to improve NAND endurance
through a program stress relief technique [12]. However, this
approach is not effective in modern 3D NAND flash memory
because the main cause of NAND flash wear-out is erase oper-
ations, not program operations. Our gErase scheme focuses on
erase operations as a stress relief target. Furthermore, longFTL
based on gErase handles a stress relief approach in a more
complete fashion, considering the impact of gErase modes on
WAF changes.

Debao et al. proposed a BPM technique that improves the
lifetime by continuously using the remaining pages instead
of classifying the entire block as a bad block when a read
error occurs on one of pages in the block [11]. The BPM
technique may be considered as a valid solution to tackle
large reliability variations among pages in the block. However,
it is difficult to apply the BPM technique without large I/O
performance degradation. Unlike our gErase scheme, the BPM
technique cannot recover bad pages for future write requests.
Therefore, once the SSD capacity is reduced, the SSD capacity

13(1 - (17.8/21.0)) × 100 ≃ 15.2%.
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Figure 17: Performance and lifetime comparisons of an ag-
gressive gErase application policy.

is permanently reduced so that future write-intensive requests
cannot be properly serviced.

8 Conclusions

We have presented the GuardedErase scheme, a new block
erase scheme for modern 3D NAND flash memory, that pro-
tects weak WLs from reaching their maximum endurance too
early so that the lifetime of a block can be extended. The
GuardedErase scheme exploits the trade-off relationship be-
tween the NAND endurance and the block capacity so that
the SSD lifetime can be effectively extended with minimal
impact on I/O performance.

Based on the per-WL low-stress erase mode that was de-
vised from an extensive 3D NAND flash characterization
study, we proposed nine different gErase modes and imple-
mented a gErase-aware FTL, longFTL, which uses appropriate
gErase modes under varying I/O workload characteristics. Our
experimental results show that longFTL can improve the SSD
lifetime by 21% on average with negligible degradation on
the SSD performance.

The current version of longFTL can be further improved
in several directions. For example, in the current version, the
impact of a newly selected gE(n) on the future WAF change
is measured after gE(n) is applied. If it could be predicted in
advance with high accuracy, a better gE(n) could be selected
earlier, thus further improving the SSD lifetime. It may be an
interesting future direction to devise such a predictor using
data-driven machine learning techniques.
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Abstract
Graph neural networks (GNNs) process large-scale graphs
consisting of a hundred billion edges. In contrast to traditional
deep learning, unique behaviors of the emerging GNNs are
engaged with a large set of graphs and embedding data on
storage, which exhibits complex and irregular preprocessing.

We propose a novel deep learning framework on large
graphs, HolisticGNN, that provides an easy-to-use, near-
storage inference infrastructure for fast, energy-efficient GNN
processing. To achieve the best end-to-end latency and high
energy efficiency, HolisticGNN allows users to implement
various GNN algorithms and directly executes them where
the actual data exist in a holistic manner. It also enables RPC
over PCIe such that the users can simply program GNNs
through a graph semantic library without any knowledge of
the underlying hardware or storage configurations.

We fabricate HolisticGNN’s hardware RTL and imple-
ment its software on an FPGA-based computational SSD
(CSSD). Our empirical evaluations show that the inference
time of HolisticGNN outperforms GNN inference services us-
ing high-performance modern GPUs by 7.1× while reducing
energy consumption by 33.2×, on average.

1 Introduction

Graph neural networks (GNNs) have recently emerged as a
representative approach for learning graphs, point clouds, and
manifolds. Compared to traditional graph analytic methods,
GNNs exhibit much higher accuracy in a variety of prediction
tasks [28, 49, 64, 90, 94, 101], and their generality across
different types of graphs and algorithms allows GNNs to
be applied by a broad range of applications such as social
networks, knowledge graphs, molecular structure, and rec-
ommendation systems [8, 21, 29, 52]. The state-of-the-art
GNN models such as GraphSAGE [27] further advance to
infer unseen nodes or entire new graphs by generalizing ge-
ometric deep learning (DL). The modern GNN models in
practice sample a set of subgraphs and DL feature vectors
(called embeddings) from the target graph information, and
aggregate the sampled embeddings for inductive node infer-
ences [27, 95]. This node sampling can significantly reduce

the amount of data to process, which can decrease the compu-
tation complexity to infer the results without an accuracy loss
[9, 27, 96].

While these node sampling and prior model-level efforts
for large graphs make the inference time reasonable, GNNs
yet face system-level challenges to improve their performance.
First, GNNs experience a completely different end-to-end in-
ference scenario compared to conventional DL algorithms.
In contrast to the traditional DLs, GNNs need to deal with
real-world graphs consisting of billions of edges and node em-
beddings [19, 73]. The graph information (graph and node em-
beddings) initially reside in storage and are regularly updated
as raw-format data owing to their large size and persistence re-
quirements. As GNNs need to understand the structural geom-
etry and feature information of given graph(s), the raw-format
data should be loaded into working memory and reformatted
in the form of an adjacency list before the actual inference
services begin. These activities take a significant amount of
time since the graph information often exceeds hundreds of
GBs or even a TB of storage [18, 76]. We observe that the
pure inference latency, that all the previous GNN studies try
to optimize, accounts for only 2% of the end-to-end inference
service time when we execute diverse GNN models in a par-
allel system employing high-performance GPUs [13, 14] and
an SSD [12]. We will analyze this performance bottleneck
issue with detailed information in Section 2.3.

Second, GNNs consist of various computing components,
which are non-trivial to fully accelerate or parallelize over
conventional computing hardware. As GNNs are inspired
by conventional DL algorithms such as convolution neural
networks and representative learning [27, 64, 79], several data
processing parts of GNN computing are associated with dense
matrix computing. While these matrix multiplications can be
accelerated by existing data processing units (DPUs) such as
systolic architectures, the graph-natured operations of GNNs
can neither be optimized with DPU’s multiplication hardware
nor with GPUs’ massive computing power [5].

A promising alternative to address the aforementioned chal-
lenges is employing in-storage processing (ISP) to serve GNN
inferences directly from the underlying storage. While ISP
is very a well-known solution heavily studied in the litera-
ture for the past few decades [25, 34, 43, 46, 58, 65], it has
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unfortunately not been widely adopted in real-world systems
[6]. There are several reasons, but the most critical issue of
ISP is ironically its concept itself, which co-locates flash and
computing unit(s) into the same storage box. As flash is not
a working memory but a block device, it is integrated into
the storage box with complicated firmware and multiple con-
trollers [11, 36, 99]. These built-in firmware and controllers
are not easily usable for the computation that users want to
offload as it raises many serious technical challenges such
as programmability, data protection, and vendor dependency
issues. In this work, we advocate a new concept of computa-
tional SSD (CSSD) architectures that locate reconfigurable
hardware (FPGA) near storage in the same PCIe subsystem
[20, 68, 80]. In contrast to ISP, CSSD can maximize peer-to-
peer acceleration capability and make it independent from
specific storage firmware and controller technologies. How-
ever, it is challenging to configure everything that users want
to program and/or download in the form of completely full
hardware logic into FPGA from scratch.

We propose HolisticGNN, a hardware and software co-
programmable framework that leverages CSSD to accelerate
GNN inference services near storage. HolisticGNN offers
a set of software and hardware infrastructures that execute
GNN tasks where data exist and infer the results from stor-
age in a holistic manner. Generally speaking, the software
part of HolisticGNN enables users to program various GNN
algorithms and infer embedding(s) directly atop the graph
data without the understanding complexities of the underly-
ing hardware and device interfaces. On the other hand, our
hardware framework provides fundamental hardware logic to
make CSSD fully programmable. It also provides an architec-
tural environment that can accelerate various types of GNN
inferences with different hardware configurations.

For fast and energy-efficient GNN processing, our frame-
work is specifically composed of three distinguishable com-
ponents: i) graph-centric archiving system (GraphStore), ii)
programmable inference client and server model (GraphRun-
ner), and iii) accelerator building system (XBuilder). The
main purpose of GraphStore is to bridge the semantic gap
between the graph abstraction and its storage representation
while minimizing the overhead of preprocessing. GraphStore
manages the user data as a graph structure rather than expos-
ing it directly as files without any intervention of host-side
software. This allows diverse node sampling and GNN al-
gorithms to process the input data near storage immediately.
GraphStore also supports efficient mutable graph processing
by reducing the SSD’s write amplification.

To accommodate a wide spectrum of GNN models, it is
necessary to have an easy-to-use, programmer-friendly in-
terface. GraphRunner processes a series of GNN inference
tasks from the beginning to the end by allowing users to pro-
gram the tasks using a computational graph. The users can
then simply transfer the computational graph into the CSSD
and manage its execution through a remote procedure call
(RPC). This does not require cross-compilation or storage
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(a) Preprocessing. (b) GNN processing. (c) Layer’s details.
Figure 1: Overview of basic GNN algorithm.

stack modification to program/run a user-defined GNN model.
We enable RPC by leveraging the traditional PCIe interface
rather than having an extra hardware module for the network
service, which can cover a broad spectrum of emerging GNN
model implementations and executions in CSSD.

On the other hand, XBuilder manages the FPGA hardware
infrastructure and accelerates diverse GNN algorithm execu-
tions near storage. It first divides the FPGA logic die into two
regions, Shell and User, using the dynamic function exchange
(DFX) technique [82]. XBuilder then secures hardware logic
necessary to run GraphStore and GraphRunner at Shell while
placing DL accelerator(s) to User. The Shell and User hard-
ware are programmed to CSSD as two separate bitstreams,
such that we can reprogram the User with a different bitstream
at any time. To this end, XBuilder implements a hardware
engine in Shell by using an internal configuration access port,
which downloads a bitstream and programs it to User.

We implement HolisticGNN on our CSSD prototype that
places a 14nm FPGA chip [87] and 4TB NVMe device [12]
under a same PCIe switch. We also prototype the software
framework of HolisticGNN on the CSSD bare-metal, and
we fabricate/test various GNN accelerator candidates within
CSSD, such as a many-core processor, systolic arrays, and a
heterogeneous (systolic+vector) processor. Our evaluations
show that the inference time of HolisticGNN outperforms
GNN inference services using high-performance GPUs by
7.1× while consuming 33.2× less energy, on average.

2 Background

2.1 Graph Neural Networks

Graph neural networks (GNNs) generalize conventional DL to
understand structural information in the graph data by incorpo-
rating feature vectors (embeddings) in the learning algorithms
[27, 28, 95]. GNNs can capture topological structures of the
local neighborhood (per node) in parallel with a distribution
of the neighborhood’s node embeddings [7, 9, 27, 96].
General concept. As shown in Figure 1, GNNs in general
take three inputs, a graph, the corresponding node embed-
dings (e.g., user profile features), a set of unseen/seen nodes
to infer, called batch. Since the internal memory of GPUs is
insufficient to accommodate all the inputs, it is essential to
reduce the size of the graph and embeddings by preprocessing
them appropriately (Figure 1a), which will be explained in
Section 2.2. GNNs then analyze the preprocessed structural
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Figure 2: Holistic viewpoint of GNN computing (G: Graph
preprocessing, B: Batch preprocessing).

information with node embeddings over multiple computa-
tional layers (Figure 1b). Each layer of GNNs is composed
of two primary execution phases, called neighborhood ag-
gregation and node transformation [79, 90], which are all
performed for neighbors at different hop distances (connected
to a target node in the batch). Specifically, as shown in Fig-
ure 1c, the aggregation is a simple function to accumulate
node embeddings of the target node’s neighbors, whereas
the transformation converts the aggregated results to a new
node embedding using one or more traditional multi-layer
perceptrons (MLPs [31, 32]). Therefore, the aggregation pro-
cesses data relying on graph structures and mainly exhibits
irregular, graph-natured execution patterns. In contrast, the
transformation computing procedure is very similar to that
of conventional neural networks (e.g., CNNs and RNNs), but
it does not require heavy computation. For example, GNNs
mostly use only 2∼3 layers [15, 42, 72, 75, 90], whereas
Google BERT employs more than 24 layers and needs to
perform heavy matrix multiplications [17].

Note that, while the massive parallel computing of GPUs is
very well-optimized for many DL algorithm executions, these
characteristics of GNNs (e.g., irregular execution pattern and
relatively lightweight computation) allow other processing
architectures to be a better fit for GNN acceleration.
Model variations. Based on how to aggregate/transform em-
beddings, there is a set of variant GNNs, but graph convolu-
tion network (GCN [42]), graph isomorphism network (GIN
[90]), and neural graph collaborative filtering (NGCF [75])
are the most popular GNN models used in node/graph classifi-
cation and recommendation systems [21, 29, 49, 94, 96, 101].

Specifically, GCN uses an “average-based aggregation”
that normalizes the embeddings by considering the degree
of neighbor nodes. This prevents cases where a specific em-
bedding has excessively large features, thereby losing other
embeddings that have relatively small amounts of data in the
aggregation phase. In contrast, GIN uses a “summation-based
aggregation” that does not normalize the embeddings of both
the target node (self-loop) and its neighbors. In addition, GIN
gives a learnable self-weight to the target node embedding
to avoid unexpectedly losing its feature information due to
the heavy states and features of the target node’s neighbors.
To precisely capture the structural characteristics of the given
graph, GIN uses a two-layer MLP structure, making the com-
bination more expressively powerful. GCN and GIN suppose
that all the feature vectors of a given graph have the same

level of weight, which are widely used for node and graph
classifications [54, 94, 101]. Instead of using a simple average
or summation for the aggregation, NGCF takes the similarity
among the given graph’s embeddings into account by apply-
ing an element-wise product to neighbors’ embeddings.

Even though there are several variants of GNNs, they all
require the graph’s geometric information to analyze embed-
dings during the aggregation and transformation phases. Thus,
it is necessary for GNNs to have an easy-to-access, efficient
graph and embedding data structures.

2.2 Graph Dataset Preprocessing

The graph data offered by a de-facto graph library such as
SNAP [48] in practice deal with edge information in the form
of a text file. The raw graph file includes an (unsorted) edge ar-
ray, each being represented by a pair of destination and source
vertex identifiers (VIDs). Most GNN frameworks such as deep
graph library (DGL) [74] and pytorch geometric (PyG) [22]
preprocess the graph dataset to secure such easy-to-access
graph and embeddings as a VID-indexed table or tensor. In
this work, we classify these graph dataset preprocessing tasks
into two: i) graph preprocessing and ii) batch preprocessing.
While graph preprocessing is required only for the geomet-
rical data (including the initialization), batch preprocessing
should be performed for each inference service.
Graph preprocessing. Since the majority of emerging GNN
algorithms are developed based on spatial or spectral networks
encoding “undirected” geometric characteristics [15, 42], the
main goal of this graph preprocessing is to obtain a sorted,
undirected graph dataset. As shown in the top of Figure 2,
it first loads the edge array (raw graph) from the underlying
storage to the working memory [ G-1 ]. To convert the array
to an undirected graph, the GNN frameworks (e.g., DGL)
allocate a new array and copy the data from the edge array to
the new array by swapping the destination and source VIDs
for each entry ({dst, src}→{src, dst}) [ G-2 ]. The frameworks
merge and sort the undirected graph, which turns it into a
VID-indexed graph structure [ G-3 ]. As the target node to infer
is also included in the 1-hop neighborhood, the frameworks
inject self-loop information (an edge connecting a vertex to
itself) to the undirected graph as well ({0,0}, {1,1}, · · · {4,4})
[ G-4 ]. If there is no self-loop information, the aggregation of
GNNs cannot reflect a visiting node’s features, which in turn
reduces the inference accuracy significantly.
Batch preprocessing. Large-scale real-world graphs consist
of a hundred billion edges, and each node of the edges is
associated with its own embedding containing thousands of
DL features. The number of nodes and the embedding size
that the current GNN models process are typically an order of
magnitude greater than heavy featured DL applications, such
as natural language processing [18, 76]. Thus, for a given
batch, the frameworks in practice perform node sampling
such as random walk [92] and unique neighbor sampling [27].
The node sampling specifically extracts a set of subgraphs
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and the corresponding embeddings from the original (undi-
rected) graph datasets before aggregating and transforming
the feature vectors, which can significantly reduce data pro-
cessing pressures and decrease the computing complexity
without an accuracy loss [27, 33]. Since the sampled graph
should also be self-contained, the subgraphs and embeddings
should be reindexed and restructured. We refer to this series
of operations as batch preprocessing.

The bottom of Figure 2 shows an example of batch prepro-
cessing. For the sake of brevity, this example assumes that
the batch includes a just single target, V4 (VID=4), the given
sampling size is 2, and GNN is modeled with two layers (two
hops). This example first reads all V4’s neighbors and extracts
two nodes from the undirected graph (in a random manner)
[ B-1 ]. This generates a subgraph including the 1-hop neigh-
bors, which is used for GNN’s layer 2 computation (L2). For
the sampled nodes (V4 and V3), it reads their neighbor nodes
(2-hop) and samples the neighborhood again for GNN’s layer
1 (L1). Since the number of nodes has been significantly re-
duced, the GNN frameworks allocate new VIDs in the order
of sampled nodes (4→ 0*, 3→ 1*, and 0→ 2*) and create L1
and L2 subgraphs for 2-hop and 1-hop neighbors, respectively
[ B-2 ]. It then composes an embedding table whose index
is the VID of each sampled node. To this end, the frame-
works first need to load the embeddings from the underlying
storage to working memory [ B-3 ], called global embeddings,
and lookup the embeddings of L1’s subgraph (V4, V0, and V3)
[ B-4 ]. Lastly, the subgraphs and sampled embedding table are
required to transfer from the working memory to the target
GPU’s internal memory [ B-5 ].

2.3 Challenge Analysis

While there is less system-level attention on the manage-
ment of graph and batch preprocessing, their tasks intro-
duce heavy storage accesses and frequent memory opera-
tions across the boundary of user space and storage stack.
To be precise, we decompose the “end-to-end GCN infer-
ence” times across 14 real-world graph workloads (coming
from [48, 61, 66, 93]) into the latency of graph preprocessing
(GraphPrep), batch preprocessing (BatchPrep), GCN infer-
ence processing (PureInfer), and storage accesses for graph
(GraphI/O) and embeddings (BatchI/O). Since the storage
access latency being overlapped with the latency of prepro-
cessing computation is invisible to users, this breakdown
analysis excludes such latency, and the results are shown in
Figure 3a. The detailed information of the evaluation envi-
ronment is provided by Section 5. One can observe from
this breakdown analysis that PureInfer only takes 2% of
the end-to-end inference latency, on average. Specifically,
BatchI/O accounts for 61% of the most end-to-end latency
for the small graphs having less than 1 million edges. Before
the sorted and undirected graph is ready for batch prepro-
cessing, BatchI/O cannot be processed. Since GraphPrep
includes a set of heavy (general) computing processes such as
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Figure 3: End-to-End GNN execution.

a radix sort, GraphPrep also consumes 28% of the end-to-end
latency for these small graphs. As the graph size increases (>
3 million edges), BatchI/O becomes the dominant contribu-
tor of the end-to-end GNN inference time (94%, on average).
Note that the inference system has unfortunately stopped
the service during the preprocessing due to out-of-memory
(OOM) when it handles large-scale graphs (>3 million edges)
such as road-ca, wikitalk, and ljournal. This OOM issue
can be simply addressed if one services the GNN inference
from where the data exist. In addition, the heavy storage ac-
cesses and relatively lightweight computing associated with
inference (PureInfer) make adoption of the in-storage pro-
cessing concept [39] reasonable to shorten the end-to-end
inference latency.

Figure 3b normalizes the size of the embedding table to that
of the edge array (graph) across all the graphs that we tested.
As shown in this comparison, embedding tables of the small
and large graphs are greater than the edge arrays for those
graphs by 285.7× and 728.1×, on average, respectively. This
is because an embedding has thousands of DL features, each
represented using floating-point values with high precision
[61, 95]. In contrast, an entry of the edge arrays contains
only a simple integer value (VID). This characteristic makes
batching preprocessing I/O intensive while inducing graph
preprocessing to be computation-intensive.

3 Storage as a GNN Accelerator

In-storage processing (ISP) is well-studied in the research
literature [2, 25, 35, 41, 43, 46, 58, 62, 65], but it has been
applied to accelerate limited applications such as compression
and key-value management in real-world systems. There are
several reasons, but the greatest weakness of ISP ironically is
that it needs to process data where data is stored, i.e., at the
flash device. Flash cannot be directly used as block storage
because of its low-level characteristics, such as I/O operation
asymmetry and low reliability [10, 37, 38, 55, 56, 78]. Thus,
flash requires tight integration with multiple firmware and
controller modules [98, 99], which renders ISP difficult to be
implemented within an SSD.

In contrast to ISP, as shown in Figure 4a, the new concept
of computational SSDs (CSSDs) decouples the computing
unit from the storage resources by locating reconfigurable
hardware (FPGA) near SSD in the same PCIe subsystem
(card) [20]. CSSD allows the hardware logic fabricated in
FPGA to access the internal SSD via the internal PCIe switch.

150    20th USENIX Conference on File and Storage Technologies USENIX Association



��������	

�

�

��������

		
 ���

	�����

����

		


���

���

�

�

�

�

����

�����

�	
��

�����

�����

�������

���

���

����������

������

	�������

����

	 


�

�

�

�

�

���������

��	
����

(a) CSSD. (b) Overview of HolisticGNN.
Figure 4: Enabling CSSD for near storage GNN processing.

To this end, the host is responsible for writing/reading data on
the SSD using the I/O region of NVMe protocol while giving
the data’s block address to the FPGA through its own I/O
region, whose address is designated by PCIe’s base address
register [84]. While CSSD is promising to realize near-data
processing [44, 68], it is non-trivial to automate all end-to-end
procedures of GNN inference over hardware-only logic be-
cause of the variety of GNN model executions. For example,
the aggregation and/or combination of GNNs can be accel-
erated with parallel hardware architecture, but GNN’s graph
traversing, dataset preprocessing, and embedding handling
are impractical to be programmed into hardware because of
their graph-natured computing irregularities.

3.1 Overview of HolisticGNN
HolisticGNN is a hardware and software co-programmable
framework that leverages CSSD to accelerate the end-to-end
GNN inference services near storage efficiently. The software
part of our framework offers easy-to-use programming/man-
agement interfaces and performs GNN preprocessing directly
from where the data is stored, thereby minimizing the afore-
mentioned storage access overhead. HolisticGNN can also
eliminate the out-of-memory issue for deep learning on large-
scale graphs. On the other hand, our framework’s hardware
logic and administration module provide a low-overhead bare-
metal computing environment and reconfigurable hardware
to accelerate GNN model executions.

Figure 4b illustrates a high-level view of HolisticGNN,
which is composed of three major modules: i) graph-centric
archiving system (GraphStore), ii) programmable inference
model (GraphRunner), and iii) accelerator builder (XBuilder).
Generally speaking, GraphStore prepares the target graph data
and embeddings in a ready-to-access structure that the tasks of
batch preprocessing can immediately use without preprocess-
ing the datasets. On the other hand, GraphRunner executes a
series of GNN inference tasks from the beginning to the end,
and it processes the graph datasets by directly accessing SSD
through GraphStore. GraphRunner also provides a dataflow
graph (DFG) based program and execution model to support
easy-to-use and flexible implementation of a wide spectrum
of GNN algorithms. This enables the users to simply generate
a DFG and deliver it to HolisticGNN, which can dynami-
cally change the end-to-end GNN inference services without
cross-compilation and/or understanding underlying hardware
configurations. Lastly, XBuilder makes CSSD simply recon-

Service type RPC function Service type RPC function
GraphStore

(Bulk)
UpdateGraph
(EdgeArray, Embeddings)

GraphStore
(Unit, Get)

GetEmbed(VID)

GraphStore
(Unit, Update)

AddVertex(VID,Embed) GetNeighbors(VID)
DeleteVertex(VID) Graph

Runner
Run(DFG, batch)

AddEdge(dstVID,srcVID) Plugin(shared_lib)
DeleteEdge(dstVID,srcVID) XBuilder Program(bitfile)
UpdateEmbed(VID,Embed)

Table 1: RPC services of HolisticGNN.
figurable and has heterogeneous hardware components to
satisfy the diverse needs of GNN inference acceleration ser-
vices. XBuilder also provides several kernel building blocks,
which abstract the heterogeneous hardware components. This
can decouple a specific hardware acceleration from the GNN
algorithm implementation.

Each module of our framework exposes a set of APIs
through remote procedure calls (RPCs) to users. These APIs
are not related to GNN programming or inference services,
but to framework management such as updating graphs, in-
ferring features, and reprogramming hardware logic. Since
CSSD has no network interface for the RPC-based commu-
nication, we also provide an RPC-over-PCIe (RoP) interface
that overrides the conventional PCIe to enable RPC between
a host and CSSD without an interface modification.

3.2 Module Decomposition
Graph-centric archiving system. The main goal of Graph-
Store is to bridge the semantic gap between graph and stor-
age data without having a storage stack. As shown in Ta-
ble 1, GraphStore offers two-way methods for the graph
management, bulk operations and unit operations. The bulk
operations allow users to update the graph and embed-
dings with a text form of edge array and embedding list.
For the bulk operations, GraphStore converts the incom-
ing edge array to an adjacency list in parallel with trans-
ferring the embedding table, and it stores them to the in-
ternal SSD. This makes the conversion and computing la-
tency overlapped with the heavy embedding table updates,
which can deliver the maximum bandwidth of the inter-
nal storage. In contrast, the unit operations of GraphStore
deal with individual insertions (AddVertex()/AddEdge()),
deletions (DeleteVertex()/DeleteEdge()), and queries
(GetEmbed()/GetNeighbors()) for the management of
graph datasets. When GraphStore converts the graph to stor-
age semantic, it uses VID to logical page number (LPN)
mapping information by being aware of a long-tailed distribu-
tion of graph degree as well as flash page access granularity.
The LPNs are used for accessing CSSD’s internal storage
through NVMe, which can minimize the write amplification
caused by I/O access granularity differences when CSSD pro-
cesses GNN services directly on the SSD. The design and
implementation details are explained in Section 4.1.
Programmable inference model. GraphRunner decouples
CSSD task definitions from their actual implementations,
which are called C-operation and C-kernel, respectively. To
program a GNN model and its end-to-end service, the users
can write a DFG and download/execute to CSSD by call-
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API type Function API type Operation format

DFG
Creation

createIn(name)

XBuilder

GEMM(inputs, output)
createOp(name) ElementWise(inputs, output)
createOut(name) Reduce(inputs, output)
save(graph) SpMM(inputs, output)

Plugin RegisterDevice(newDevice)
SDDMM(inputs, output)

RegisterOpDefinition(newOp)

Table 2: Programming interface of HolisticGNN.
ing GraphRunner’s RPC interface (Run()) with a request
batch containing one or more target nodes. Figure 10b shows
a simple example of GCN implementation. The DFG has
a set of input nodes for the target sampled subgraphs, em-
beddings, and weights, which are connected to a series of
C-operations such as averaging features (Mean), matrix multi-
plication (Matmul), a non-linear function (ReLU), and output
feature vector (Out_embedding). This DFG is converted to
a computational structure by sorting the node (C-operation)
and edge (input node information) in topological order. Once
the DFG is downloaded through HolisticGNN’s RoP serial-
ization, GraphRunner’s engine deserializes it and executes
each node with appropriate inputs by checking the registered
C-operations and C-kernels in CSSD. The users may want to
register more C-operations/kernels because of adoption of a
new GNN model or hardware logic. To meet the requirement,
GraphRunner offers a Plugin mechanism registering a pair
of C-operation/C-kernel and a new device configuration as a
shared object. We will explain the details of GraphRunner in
Section 4.2.
Accelerator builder. To make the FPGA of CSSD easy to
use, we configure CSSD’s hardware logic die into two groups,
Shell and User logic, by leveraging a dynamic function ex-
change (DFX) mechanism [82]. DFX allows hardware to
be modified blocks of logic with separate bitfiles that con-
tain the programming information for an FPGA. XBuilder
secures Shell logic associated with irregular tasks of GNN
management, including GraphStore and GraphRunner exe-
cutions, while managing User logic for users to reprogram
the hardware in accelerating GNN algorithms via XBuilder’s
RPC interface (Program()). Program() moves a partial bit-
file into the internal memory and asks an XBuilder engine to
reconfigure User logic hardware using the bitfile via FPGA
internal configuration access port [85, 86].

XBuilder also abstracts the registered device (at User logic)
by providing a set of basic building blocks to the users as
shown in Table 2. The building blocks basically implement
what DL and GNN algorithms mostly use, such as general
matrix multiplication (GEMM) and sparse matrix multipli-
cation (SpMM), across different legacy acceleration hard-
ware such as multi-core, vector processor, systolic architec-
ture. XBuilder’s building blocks operate specific hardware
based on the device priority designated by C-kernel that user
defines. We will discuss this in details in Section 4.3.

3.3 Enabling RPC over PCIe
While the key method to program GNN models (and request
their inference services) is associated with DFG, the under-
pinning of such a device-to-device communication method
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Figure 5: RPC over PCIe (RoP).

is RPC. As the investigation of efficient RPC is not the pur-
pose of this work, we use Google’s gRPC [24] and implement
our RPC-based interfaces themselves (e.g., UpdateGraph(),
Run(), etc.) using interface definition language (IDL) [16].
We also modify the gRPC stack to enable RPC services with-
out changing hardware and storage interfaces.

Figure 5 explains the gRPC stack and how HolisticGNN
enables gRPC over PCIe. The host-side gPRC interfaces are
served by a user-level gRPC core, which manages transport
and HTTP connection. We place two gRPC plugin interfaces
(perform_stream_op() and perform_transport_op()),
each forwarding the requests of gRPC core’s transport layer
and HTTP transport to our PCIe stream and PCIe transport
modules. Specifically, the PCIe stream is responsible for man-
aging stream data structures, which are used for gPRC packet
handling. Similarly, the PCIe transport deals with the host and
CSSD connection by allocating/releasing transport struc-
tures. While the original gPRC core is built upon a kernel-
level network stack including TCP/IP and Ethernet drivers, we
place a PCIe kernel driver connected to the PCIe transport. It
supports gRPC’s send/receive packet services and other chan-
nel establishment operations to the PCIe transport module
via ioctl. The PCIe kernel driver also provides preallocated
buffer memory to the PCIe stream through a memory-mapped
I/O (mmap). This buffer memory contains gPRC packet’s meta-
data and message such that the PCIe driver lets the underlying
CSSD know the buffer’s location and offset. Specifically, the
PCIe drive prepares a PCIe command that includes an op-
code (send/receive), address (of memory-mapped buffer), and
length (of the buffer). When the driver writes the command
to FPGA’s designated PCIe memory address, CSSD parses
the command and copies the data from the memory-mapped
buffer into FPGA-side internal memory for gRPC services.

4 Design Details and Implementation

4.1 Efficient Storage Accesses for Graphs
GraphStore maintains the graph datasets as an adjacency list
and an embedding table to handle the geometric informa-
tion and feature vectors. While the embedding table is stored
in sequential order (and thus it does not require page-level
mapping), the adjacency list is maintained in two different
ways by considering the efficiency of graph searches/updates:
i) high-degree graph mapping (H-type) and ii) low-degree
graph mapping (L-type). As shown in Figure 6a, the power-
law graph’s natures make a few nodes have severely heavy
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(a) Distribution. (b) Two types of mapping.
Figure 6: GraphStore’s mapping structure.

neighbor nodes (high-degree) [59]. These high-degree nodes
account for a small fraction of the entire graph, but they have
a high potential to be frequently accessed and updated (be-
cause of their many neighbors). H-type mapping is therefore
designed towards handling the graph’s long-tailed distribu-
tion well, while L-type mapping is structured to achieve high
efficiency of flash page management.
Mapping structure. As shown in Figure 6b, GraphStore has
a graph bitmap (gmap), which explains what kind of tables
are used for mapping (per VID). Basically, the mapping entry
for both types of mapping tables pairs a VID and an LPN
(VID-to-LPN), but the corresponding page stores different
data with its own page layout. The H-type page maintains
many neighbors’ VID in a page, and its mapping table entry
indicates a linked list in cases where the neighbors of the
target (source) VID cannot be stored in a flash page (4KB).
The L-type page also contains many VIDs, but their source
VIDs vary. To this end, the end of page has meta-information
that indicates how many nodes are stored and where each
node exists on the target page (offset). Thus, L-type mapping
table’s VID is the biggest VID among VIDs stored in the
corresponding page.
Bulk operation. As shown in Figure 7, while the embed-
ding table is stored from the end of LPN (embedding space),
the graph pages are recorded from the beginning of storage
(neighbor space), similar to what the conventional memory
system stack does. Note that, the actual size of graph(s) is
small enough, but it is involved in heavy graph preprocessing,
and the majority of graph datasets are related to their node em-
beddings (cf. Section 2.3). Thus, when an edge array (graph)
arrives, GraphStore performs graph preprocessing and flushes
pages for the graph, but it does not immediately update them
to the target storage. Instead, GraphStore begins to write the
embedding table into the embedding space in a sequential
manner while preprocessing the graph. This can make heavy
storage accesses (associated with the embeddings) entirely
overlap with the computation burst of graph preprocessing
(associated with adjacency list conversions). From the user’s
viewpoint, the latency of bulk operation is the same as that of
data transfers and embedding table writes.
Unit operations. GraphStore’s unit operations support mu-
table graph management corresponding to individual ver-
tex/edge updates or queries. Figure 8 shows how to find out
neighbors of V4 and V5, each being classified as high-degree
and low-degree nodes. In this example, as the gmap indicates
that V4 is managed by the H-type mapping, the neighbors can
be simply retrieved by searching where the target VID is. In
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(a) Procedure. (b) Overlapped execution.
Figure 7: Bulk operations.

contrast, the page managed by L-type contains many neigh-
borhoods each being associated with different VID. Therefore,
when GraphStore searches the mapping table, it considers the
range of VIDs, stored in each entry. For example, V5 is within
the range of V4 and V6, GraphStore first needs to retrieve the
page corresponding V6. It finds out V5’s offset and the next
VID’s offset (V6) by considering the number of node counts in
the page’s meta-information, which indicates the data chunk
containing V5’s neighbors.

Figures 9a and 9b show add operations (AddEdge()
/ AddVertex()) and delete operations (DeleteEdge() /
DeleteVertex()). Let us suppose that V21 is given by
AddVertex() (Figure 9a). GraphStore checks the last en-
try’s page (LPN8) of L-type and tries to insert V21 into the
page. However, as there is no space in LPN8, GraphStore
assigns a new entry ([V21,9]) to the L-type mapping table
by allocating another page, LPN9, and simply appends the
vertex information (V21) to the page. Note that, when adding
a vertex, it only has the self-loop edge, and thus, it starts from
L-type. When V21→V1 is given by AddEdge(), GraphStore
makes it an undirected edge (V21→V1 & V21←V1). As V1 is
H-type, GraphStore checks V1’s linked list and places V21 to
the last page (LPN2). If there is no space in LPN2, it allo-
cates a new page and updates the linked list with the newly
allocated page. In contrast, since V21 is L-type, GraphStore
scans the meta-information of LPN9 and appends V1 to the
page. Note that, in cases where there is no space in an L-type
page, GraphStore evicts a neighbor set (represented in the
page) whose offset of the meta-information is the most signif-
icant value. This eviction allocates a new flash page, copies
the neighbor set, and updates L-type mapping table. Since
each L-type’s destination node has a few source nodes, this
eviction case is very rare in practice (lower than 3% of the
total update requests for all graph workloads we tested).

On the other hand, delete operations (Figure 9b) consist of
search and erase tasks. If DeleteVertex() is called with V5,
GraphStore finds out LPN7 and deletes all the neighbors of
V5, N(V5). During this time, other neighbors having V5 should
also be updated together. For DeleteEdge() with the given
V5→V1, GraphStore checks all the LPNs indicated by the
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(a) H-type. (b) L-type.
Figure 8: Unit operations (Get).
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(a) AddEdge/AddVertex. (b) DeleteEdge/DeleteVertex.
Figure 9: Unit operations (Update).

linked list of V1 and updates the corresponding page (LPN1
in this example) by removing V5. Note that, GraphStore does
not have explicit page compaction for the node/edge deletions
in an L-type page. This is because, when there is a deletion,
GraphStore keeps the deleted VID and reuses it (and the
corresponding neighbor set space) for a new node allocation.

4.2 Reconfiguring Software Framework
HolisticGNN provides a CSSD library package, which in-
cludes the interfaces for C-kernel registration and DFG man-
agement as explained previously (cf. Table 2).
C-kernel registration and management. GraphRunner man-
ages C-kernels by employing a registration mechanism and
an execution engine. GraphRunner has two metadata struc-
tures, Device table and Operation table. As shown in Ta-
ble 3, the device table includes currently registered de-
vice names and the corresponding priority. On the other
hand, the operation table maintains C-operation names
and the address pointers of their C-kernel implementa-
tion. When users implement a C-kernel, it should invoke
two registration interface methods of the Plugin library,
RegisterDevice() and RegisterOpDefinition(), at its
initial time. RegisterDevice() configures the priority value
of the device that users want to execute for any of C-
kernels (e.g., “Vector processor”, 150). On the other hand,
RegisterOpDefinition() registers the device that this C-
kernel. When GraphRunner registers the C-kernel, it places
the registration information as a pair of the device name
and such C-kernel’s pointer. If there are multiple calls of
RegisterOpDefinition() with the same name of a C-
operation (but a different name of device), GraphRunner
places it in addition to the previously registered C-kernels as a
list. In this example, GraphRunner can recognize that GEMM
C-operation defines three C-kernels each using “CPU”, “Vec-
tor processor”, and “Systolic array” by referring to the oper-
ation table. Since the device table indicates “Systolic array”

Device table Operation table
Name Priority Name C-kernel
"CPU" 50

"GEMM"
<"CPU", ptr>

<"Vector processor", ptr>
<"Systolic array", ptr>

"Vector processor" 150
"Systolic array" 300

. . . . . . . . . . . .

Table 3: GraphRunner’s metadata structure.

has the highest priority, GraphRunner takes the C-kernel as-
sociated with “Systolic array” for the execution of GEMM
C-operation.
Handling computational graphs. DFG management inter-
faces of the CSSD library (CreateIn(), CreateOut() and
CreateOp()) are used for explaining how C-operations are
mapped to DFG’s nodes and how their input and output pa-
rameters are connected together (Table 2).

Figure 10a shows how the users can create a DFG to imple-
ment a GCN inference service as an example. The input and
output of this DFG is Batch, Weight, and Result. BatchPre
is the first C-operation that takes Batch as its input ( 1 ), and
the result is forwarded to SpMM_Mean C-operation ( 2 ), which
performs GCN’s average-base aggregation. Then, the result
of SpMM_Mean is fed to GCN’s transformation consisting of
GEMM (having Weight) and ReLU C-operations ( 3 / 4 ). The
final output should be Result in this DFG. Note that, ReLU
is a function of MLPs, which prevents the exponential growth
in the computation and vanishing gradient issue [40]. The user
can write this DFG using our computation graph library as
shown in Figure 10b. It declares Batch and Weight by calling
CreateIn() (lines 2∼3). BatchPre ( 1 ), SpMM_Mean ( 2 ),
GEMM ( 3 ), and ReLU ( 4 ) are defined through CreateOp(),
which are listed in lines 4∼7.

GraphRunner then sorts the calling sequence of CSSD
library interfaces and generates a markup file as shown in
Figure 10c. This DFG final file includes a list of nodes, each
defining its node sequence number, C-operation name, where
the input(s) come from, and what the output(s) are. For exam-
ple, the third node is GEMM (3: "GEMM"), and its inputs come
from the second node’s first output (2_0) as well as input node,
Weight (in={"2_0", "Weight"}). This node generates one
output only (out={"3_0"}).
Execution of DFG. The host can run CSSD with the pro-
grammed GNN by downloading the corresponding DFG and
a given batch through Run() RPC. As shown in Figure 10d,
GraphRunner’s engine visits each node of the DFG and checks
the node’s C-operation name. For each node, the engine finds
the set of C-kernels (matched with the C-operation name)
by checking the operation table. It then refers to the device
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(a) Example of DFG programming. (b) Example of DFG. (c) DFG file generation. (d) Execution.
Figure 10: Overview of reconfigurable software framework (GraphRunner).
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Figure 11: Reconfigurable hardware.
table and selects the appropriate implementation among the
retrieved C-kernels based on the device priority, assigned by
RegisterDevice(). The engine de-refers the C-kernel’s ad-
dress pointer and calls it by passing the C-kernel’s parameters,
which can also be checked up with offloaded DFG’s node in-
formation (e.g., in={...}). Note that, GraphRunner’s engine
performs these dynamic binding and kernel execution for all
the nodes of DFG per GNN inference.

4.3 Managing Reconfigurable Hardware
As shown in Figure 11, XBuilder provides static logic at Shell
logic that includes an out-of-order core, a DRAM controller,
DMA engines, and a PCIe switch. This static logic is con-
nected to User (dynamic) logic through a co-processor port
such as RoCC [4] and system bus (e.g., TileLink [67]).

XBuilder exposes the boundary position of the FPGA logic
die in the form of a design checkpoint file [81, 89]. The
boundary is wire circuits that separate Shell and User logic,
called partition pin. Since the static logic is fixed at the de-
sign time, we place the maximum number of co-processor
ports and system bus lanes to the partition pin, which can
be united with the hardware components fabricated in Shell
logic. In addition, we locate an XBuilder hardware engine
in Shell, which includes the internal configuration access
port (ICAP [85, 86]). Note that, FPGA logic blocks are con-
nected by many wires of routing switches and input/output
connection switches. Since the switches maintain the status
of connection in built-in FPGA memory, called configuration
memory, we can reconfigure the FPGA hardware by repro-
gramming the connection states on the configuration memory.
As the configuration memory should be protected from anony-
mous accesses, FPGA only allows the users to reprogram the
configuration memory only through the primitive hardware
port, ICAP. The users can simply call HolisticGNN’s RPC
interface, Program with their own hardware (partial) bitfile

to reconfigure User logic. XBuilder copies the bitfile into
CSSD’s FPGA internal DRAM first, and then, it reconfigures
User logic by programming the logic using the bitfile via
ICAP. While User logic is being reconfigured, it would unfor-
tunately be possible to make the static logic of Shell unable to
operate appropriately. Thus, XBuilder ties the partition pin’s
wires (including a system bus) by using DFX decoupler IP
[83, 89] and makes User logic programming separate from
the working logic of Shell. In default, XBuilder implements
Shell by locating an out-of-core processor and PCIe/memory
subsystems that run GraphRunner and GraphStore. Figure 12
shows three example implementation views of our Shell and
User logic. Shell logic locates an out-of-core processor and
PCIe/memory subsystems that run GraphRunner and Graph-
Store. In this example, we program an open-source RISC-V
CPU, vector processor, and systolic array. We will explain
details of example implementations in Section 5.

5 Evaluation

Prototypes. While CSSD is officially released in storage com-
munities [20, 63, 70], there is no commercially available de-
vice yet. We thus prototype a customized CSSD that employs
a 14nm 730MHz FPGA chip [87, 88], 16GB DDR4-2400
DRAM [71], and a 4TB high-performance SSD [12] together
within the same PCIe 3.0×4 subsystem [57] as shown in Fig-
ure 13. We prepare three sets of hardware accelerators for
XBuilder’s User logic; a multi-core processor (Octa-HGNN),
large systolic array processors (Lsap-HGNN), and a hetero-
geneous accelerator having a vector processor and a systolic
array (Hetero-HGNN), as shown in Figure 12. Octa-HGNN
employs eight out-of-order (O3) cores and performs all GNN
processing using multi-threaded software. Each O3 core is
implemented based on open-source RISC-V [3, 100] having
160KB L1 and 1MB L2 caches. For Lsap-HGNN and Hetero-
HGNN, we modify an open-source SIMD (Hwacha [47]) and
systolic architecture (Gemmini [23]). In our evaluation, SIMD
employs four vector units, and the systolic architecture em-
ploys 64 floating-point PEs with 128KB scratchpad memory.
Note that, all these prototypes use the same software part of
HolisticGNN (GraphStore, GraphRunner, and XBuilder) as it
can handle the end-to-end GNN services over DFG.
GPU-acceleration and testbed. For a fair performance com-
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Figure 12: Shell/User prototypes.
Figure 13: Holis-
ticGNN prototype.

Host Setup
AMD Ryzen 3900X

2.2GHz, 12 cores
DDR4-2666 16GB x4

GTX 1060 6GB [13]
1.8GHz, 1024 cores (10 SMs)

RTX 3090 24GB [14]
1.74GHz, 10496 cores (82 SMs)

FPGA Setup
Xilinx Virtex UltraScale+ [87]

DDR4-2400 16GB x2
Storage

Intel SSD DC P4600 [12]
3D TLC NAND, 4TB

Table 4: Host and
FPGA setup.

Legend Original Graph Sampled Graph

Vertices Edges Feature
Size Vertices Edges Feature

Length

Sm
al

l
(<

1M
E

dg
es

)

chmleon [61] 2.3K 65K 20 MB 1,537 7,100 2326
citeseer [93] 2.1K 9K 29 MB 667 1,590 3704
coraml [93] 3.0K 19K 32 MB 1,133 2,722 2880
dblpfull [93] 17.7K 123K 110 MB 2,208 3,784 1639
cs [66] 18.3K 182K 475 MB 3,388 6,236 6805
corafull [93] 19.8K 147K 657 MB 2,357 4,149 8710
physics [66] 34.5K 530K 1,107 MB 4,926 8,662 8415

L
ar

ge
(>

3M
E

dg
es

) road-tx [48] 1.39M 3.84M 23.1 GB 517 904 4353
road-pa [48] 1.09M 3.08M 18.1 GB 580 1,010 4353
youtube [48] 1.16M 2.99M 19.2 GB 1,936 2,193 4353
road-ca [48] 1.97M 5.53M 32.7 GB 575 999 4353
wikitalk [48] 2.39M 5.02M 39.8 GB 1,768 1,826 4353
ljournal [48] 4.85M 68.99M 80.5 GB 5,756 7,423 4353

Table 5: Graph dataset characteristics.
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(a) Normalized End-to-end latency.

Legend GTX 1060
chmleon 140 ms
citeseer 162 ms
coraml 166 ms
dblpfull 323 ms
cs 618 ms
corafull 1233 ms
physics 2335 ms
road-tx 426732 ms
road-pa 332391 ms
youtube 341035 ms

(b) Latency.
Figure 14: End-to-end latency comparison.

parison, we also prepare two high-performance GPUs, GTX
1060 and RTX 3090. While GTX 1060’s 10 streaming multi-
processors (SMs) operate at 1.8GHz with 6GB DRAM, RTX
3090 employs 82 SMs working at 1.7 GHz with 24GB DRAM.
To enable GNN services, we use deep graph library (DGL)
0.6.1 [74] and TensorFlow 2.4.0 [1], which use CUDA 11.2
and cuDNN 8.2 for GPU acceleration. DGL accesses the
underlying SSD via the XFS file system to pre-/processing
graphs. The testbed uses a 2.2GHz 12-core processor with
DDR4-2666 64GB DRAM and a 4TB SSD (same with the
device that we used for CSSD prototype), and connect all
GPUs and our CSSD prototype. The detailed information of
our real evaluation system is shown in Table 4.
GNN models and graph datasets. We implement three pop-
ular GNN models, GCN [42], GIN [90], and NGCF [75], for
both GPUs and CSSD. We also select 14 real-graph datasets
(workloads) from LBC [45], MUSAE [61], and SNAP [48].
Since the workloads coming from SNAP [48] do not provide
the features, we generate the features based on the feature
length that the prior work (pinSAGE [95]) uses (4K). The
important characteristics of our graph datasets and workloads
are described in Table 5. Note that, the workloads that we
listed in Table 4 is sorted in ascending order of their graph
size. For better understanding, we summarize the character-
istics for graph before batch preprocessing (Original Graph)
and after batch preprocessing (Sampled Graph).

5.1 End-to-end Performance Comparisons
Overall latency. Figure 14a compares the end-to-end infer-
ence latency of GTX 1060, RTX 3090, and our HolisticGNN
(HGNN) using the heterogeneous hardware acceleration. For
better understanding, the end-to-end latency of RTX 3090 and
HGNN is normalized to that of GTX 1060. The actual latency
value of GTX 1060 is also listed in Table 14b. We use GCN
as representative of GNN models for the end-to-end perfor-
mance analysis; since we observed that the pure inference
computing latency only accounts for 1.8% of total latency,
the performance difference among the GNN models that we
tested are negligible in this analysis (<1.1%). We will show
the detailed inference latency analysis on the different GNN
models in Section 5.2.

One can observe from the figure that HGNN shows 7.1×
and 7.0× shorter end-to-end latency compared to GTX 1060
and RTX 3090 across all the graph datasets except for
road-ca, wikitalk, and ljournal. Note that both GTX
1060 and RTX 3090 cannot execute such large-scale graphs
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Figure 15: Estimated energy consumption comparison.
due to the out-of-memory issue, and thus, we exclude them
in this comparison. Specifically, for the small graphs (<1M
edges), HGNN outperforms GPUs by 1.69×, on average. This
performance superiority of HGNN becomes higher when
we infer features on large-scale graphs (>3M edges), which
makes HGNN 201.4× faster than GTX 1060 and RTX 3090,
on average. Even though the operating frequency and com-
puting power of GTX 1060 and RTX 3090 are much better
than HGNN, most of data preprocessing for both graphs and
batches are performed by the host, and its computation is in-
volved in storage accesses. This in turn makes the end-to-end
inference latency longer. In contrast, HGNN can preprocess
graphs in parallel with the graph updates and prepare sampled
graphs/embeddings directly from the internal SSD, which can
successfully reduce the overhead imposed by preprocessing
and storage accesses. We will dig deeper into the performance
impact of preprocessing/storage (GraphStore) and hardware
accelerations (XBuilder) shortly.
Energy consumption. Figure 15 analyzes the energy con-
sumption behaviors of all three devices we tested. Even
though GTX 1060 and RTX 3090 show similar end-to-end la-
tency behaviors in the previous analysis, RTX 3090 consumes
energy 2.04×more than what GTX 1060 needs because it has
8.2× and 4× more SMs and DRAM, respectively. In contrast,
HGNN exhibits 33.2× and 16.3× better energy consumption
behaviors compared to RTX 3090 and GTX 1060, on average,
respectively. Note that, HGNN processes large-scale graphs
by consuming as high as 453.2× less energy than the GPUs
we tested. This is because, in addition to the latency reduc-
tion of HGNN, our CSSD consumes only 111 Watts at the
system-level thanks to the low-power computing of FPGA
(16.3 Watts). This makes HGNN much more promising on
GNN computing compared to GPU-based acceleration ap-
proaches. Note that, RTX 3090 and GTX 1060 consume 214
and 447 Watts at the system-level, respectively.

5.2 Pure Inference Acceleration Comparison
Figure 16 shows the pure inference performance of Hetero-
HGNN and Octa-HGNN, normalized to Lsap-HGNN; before
analyzing the end-to-end service performance, we first com-
pare HolisticGNN itself different User logic here.

One can observe from this figure that, even though systolic
arrays are well optimized for conventional DL such as CNN
and RNN, Lsap-HGNN exhibits much worse performance
than software-only approach. For all the graph datasets that
we tested, Octa-HGNN exhibits shorter GNN inference la-
tency compared to Lsap-HGNN by 2.17×, on average. This
is crystal clear evidence that the conventional DL hardware
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Figure 16: Inference latency comparison. Figure 17: Breakdown.

acceleration is not well harmonized with GNN inference ser-
vices. Since the computation of aggregation is involved in
traversing the graph data, the systolic arrays (bigger than any
hardware logic that we tested) cannot unfortunately accelerate
the inference latency. In contrast, Octa-HGNN processes the
aggregation (including transformation) over multi-processing
with many cores in User logic. As shown in Figure 16c, this
phenomenon is more notable on the inference services with
NGCF (4.35× faster than Lsap-HGNN) because NGCF has
more heavier aggregation (similarity-aware and element-wise
product explained in Section 2.1).

However, the performance of Octa-HGNN is also limited
because matrix computation on dense embeddings (GEMM)
is not well accelerated by its general cores. In contrast, Hetero-
HGNN has both SIMD and systolic array units, which are
selectively executed considering the input C-kernel, such that
Hetero-HGNN shortens the inference latency of Octa-HGNN
and Lsap-HGNN by 6.52× and 14.2×, on average, respec-
tively. Figure 17 decomposes the inference latency of three
HGNN that we tested into SIMD and GEMM for a represen-
tative workload, physics. As shown in figure, Lsap-HGNN
mostly exhibits GEMM as its systolic arrays accelerate the
transformation well, but its performance slows down due to
a large portion of SIMD. The latency of Octa-HGNN suf-
fers from GEMM computation, which accounts for 34.8%
of its inference latency, on average. As Hetero-HGNN can
accelerate both SIMD and GEMM, it successfully shortens
the aggregation and transformation for all GNN models that
we tested. This is the reason why we evaluate the end-to-
end GNN latency using Hetero-HGNN as a default hardware
acceleration engine in the previous section.

5.3 Performance Analysis on GraphStore

Bulk operations. Figures 18a and 18b show the bandwidth
and latency of GraphStore’s bulk operations. While the GPU-
enabled host system writes the edge array and corresponding
embeddings to the underlying SSD through its storage stack,
GraphStore directly writes the data to internal storage without
any storage stack involvement. This does not even exhibit data
copies between page caches and user-level buffers, which in
turn makes GraphStore exposes performance closer to what
the target SSD actually provides. As a result, GraphStore
shows 1.3× better bandwidth on graph updates compared to
conventional storage stack (Figure 18a). More importantly,
GraphStore hides the graph preprocessing overhead imposed
by converting the input dataset to the corresponding adjacency

list with the update times of heavy embeddings. We also show
how much the embedding update (Write feature) can hide
the latency of graph preprocessing (Graph pre) in Figure
18b. Since Write feature in the figure only shows the times
longer than Graph pre, we can observe that GraphStore can
make Graph pre completely invisible to users. For better
understanding, we also perform a time series analysis of cs
as an example of other workloads, and the results are shown
Figure 18c. The figure shows the dynamic bandwidth in ad-
dition to the per-task utilization of Shell’s simple core. As
shown in the figure, GraphStore starts the preprocessing as
soon as it begins to write the embeddings to the internal SSD.
Graph pre finishes at 100ms while Write feature ends at
300ms. Thus, Write feature is performed with the best per-
formance of the internal SSD (around 2GB/s). Note that, even
though writing the adjacency list Write graph is performed
right after Write feature (Figure 18b), it is almost invisible
to users (Figure 18c) as the size of graph is much smaller than
the corresponding embeddings (357.1×, on average).
Batch preprocessing (Get). Figure 19 shows batch prepro-
cessing, which is the only task to read (sub)graphs from
the storage in the end-to-end viewpoint; node sampling and
embedding lookup use GetNeighbor() and GetEmbed(),
respectively. In this evaluation, we compare batch prepro-
cessing performance of GPU-enabled host and CSSD using
chmleon and youtube each being representative of small
and large graphs. For the earliest batch preprocessing, Graph-
Store performs batch preprocessing 1.7× (chmleon) and
114.5× (youtube) faster than that of the GPU-enabled host,
respectively. Even though GraphStore is working at a lower
frequency (3× than the host CPU), GetNeighbor() and
GetEmbed() are much faster because the graph data has been
already converted into an adjacency list at the graph update
phase. In contrast, the host needs to process the graph data at
the first batch, such that node sampling and embedding lookup
can find out the appropriate targets. After the first batch, both
cases, mostly accessing the neighbors and the correspond-
ing embeddings are processed in memory thereby showing
sustainable performance. Note that, even though we showed
the batch preprocessing performance for only chmleon and
youtube (due to the page limit), this performance trend is
observed across all the workloads that we tested.
Mutable graph support (Unit operations). Since there is no
publicly available dataset for mutable graph support, we eval-
uate the unit operations (requested by the host to CSSD) by
processing historical DBLP datasets [30]. The top of Figure
20 shows the number of per-day add and delete operations
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Figure 18: Performance analysis of GraphStore bulk operations.

Figure 19: Multiple batches.

for the past 23 years (1995∼2018), and its bottom shows the
corresponding per-day (accumulated) latency of GraphStore.
The workload adds 365 new nodes and 8.8K new edges into
GraphStore, and deletes 16 nodes and 713 edges per day, on
average. As shown in Figure, GraphStore exhibits 970ms for
per-day updates, on average, and the accumulated latency
in the worst case of GraphStore is just 8.4 sec, which takes
reasonably short in the workload execution time (0.01%).

6 Related Work and Discussion

There are many studies for in-storage processing (ISP)
[25, 34, 43, 46, 58, 65], including DL accelerating approaches
such as [51, 53, 76]. All these studies successfully brought
significant performance benefits by removing data transfer-
ring overhead. However, these in-storage, smart storage ap-
proaches require fully integrating their computations into an
SSD, which unfortunately makes the data processing deeply
coupled with flash firmware and limited to a specific com-
puting environment that the storage vendor/device provides.
These approaches also use a thin storage interface to commu-
nicate with the host and the underlying SSD, which require a
significant modification of application interface management.
More importantly, all they are infeasible to accelerate GNN
computing, which contains both graph-natured processing
and DL-like dense computing operations.

On the other hand, architectural research [5, 50, 91] fo-
cuses on accelerating GNN core over a fixed hardware de-
sign such as vector units and systolic processors. While this
simulation-based achieves the great performance benefit on
GNN inference, they are ignorant of performance-critical
components such as graph preprocessing and node sampling.
These simulation-based studies also assume that their accel-
erator can have tens of hundreds of preprocessing elements
(PEs), which may not be feasible to integrate into CSSD be-
cause of the hardware area limit. In contrast, HolisticGNN
accelerates GNN-related tasks from the beginning to the end

30k
0

30k
60k

U
pd

at
e

/ D
ay

# added edges / day

# removed edges / day

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

5

10

U
pd

at
e

La
te

nc
y 

(s
ec

)

Max. 8.4sec

Figure 20: GraphStore update performance.

near storage, and its real system implementation only contains
64 PEs for the GNN inference acceleration.

Lastly, there are FPGA approaches to deep learning accel-
erations [26, 77, 97]. Angel-Eye [26] quantizes data to com-
press the original network to a fixed-point form and decrease
the bit width of computational parts. A frequency-domain hy-
brid accelerator [97] applies discrete Fourier transformation
methods to reduce the number of multiplications of convolu-
tions. On the other hand, a reconfigurable processing array
design [77] tries to increase the operating frequency of any tar-
get FPGA in order to build a high throughput reconfigurable
processing array. These studies are unfortunately not feasible
to capture the GNN acceleration, and cannot eliminate the
preprocessing overhead imposed by graph-natured complex
computing near storage. Note that, it would be possible to use
cross-platform abstraction platforms, such as OpenCL [69]
or SYCL [60], rather than using RPC. OpenCL/SYCL is ex-
cellent for managing all hardware details at a very low-level,
but they can bump up the complexity of what users need to
control. For example, users should know all heterogeneities of
reconfigurable hardware for the end-to-end GNN acceleration
and handle CSSD’s memory space over OpenCL/SYCL.

7 Conclusion

We propose HolisticGNN that provides an easy-to-use, near-
storage inference infrastructure for fast, energy-efficient GNN
processing. To achieve the best end-to-end latency and high
energy efficiency, HolisticGNN allows users to implement
various GNN algorithms close to the data source and execute
them directly near storage in a holistic manner. Our empirical
evaluations show that the inference time of HolisticGNN
outperforms GNN inference services using high-performance
modern GPUs by 7.1× while reducing energy consumption
by 33.2×, on average.
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Abstract
As we increasingly rely on SSDs for our storage needs, it is
important to understand their operational characteristics in the
field, in particular since they vary from HDDs. This includes
operational aspects, such as the level of write amplification
experienced by SSDs in production systems and how it is
affected by various factors; the effectiveness of wear leveling;
or the rate at which drives in the field use up their program-
erase (PE) cycle limit and what that means for the transition to
future generations of flash with lower endurance. This paper
presents the first large-scale field study of key operational
characteristics of SSDs in production use based on a large
population of enterprise storage systems covering almost 2
million SSDs of a major storage vendor (NetApp).

1 Introduction
Solid state drives (SSDs) have become a popular choice for
storage systems over the past decade, increasingly replacing
hard disk drives (HDDs). The performance and expected
lifespan of an SSD are affected by operational characteris-
tics in ways that are fundamentally different than for HDDs.
For example, the lifespan is affected by write rates, as flash
wears out, while performance is affected by the workload’s
read/write ratio due to the big differences between read and
write latencies. Moreover, SSDs require background work,
such as garbage collection and wear leveling, which gener-
ates write amplification and affects a drive’s performance and
lifespan. Usage characteristics, such as workload intensity
(in particular write rates), the read/write ratio, and how full
a drive is, affect how effectively a drive can manage these
housekeeping tasks. Finally, drive specific details, such as
whether a drive supports multi-stream writes or the amount of
over-provisioned space, are expected to impact lifetime and
performance as well.

As we increasingly rely on SSDs for our storage needs, it is
important to understand what these operational characteristics
look like for drives in the field and how they impact drives.
Unfortunately, there are no large-scale field studies providing
a comprehensive view of these characteristics for SSDs in

the field. While there are a few recent field studies involving
large-scale deployments, these have a different focus studying
failure characteristics [30, 33, 36, 41, 46], fail-slow faults [13,
38], and performance instabilities [16] associated with SSDs
in production.

In this paper, we present the first large-scale field study
of several key operational characteristics of NAND-based
SSDs in the field, based on NetApp’s enterprise storage sys-
tems. Our study is based on telemetry data collected over a
period of 4+ years for a sample of NetApp’s total SSD popu-
lation, which covers more than one billion drive days in total.
Specifically, our study’s SSD population comprises almost
2 million drives, which span 3 manufacturers, 20 different
families (product batches, see detailed definition in §2), 2
interfaces (i.e., SAS and NVMe), and 4 major flash technolo-
gies, i.e., cMLC (consumer-class), eMLC (enterprise-class),
3D-TLC, and 3D-eTLC. Our data set is very rich, and in-
cludes information on usage, such as host reads and writes,
total physical device writes, along with information on each
drive’s wear leveling and write amplification. Furthermore,
our data contains each system’s configuration, including all
its RAID groups and the role of every drive within a RAID
group (i.e., data or parity), among a number of other things.

We use this rich data set to answer questions, such as:
• What are the write rates that drives experience in production
systems, and how close do drives get to reaching wear-out?
What does this mean for future generations of flash with lower
endurance limits?
• What are the write amplification factors that drives experi-
ence in production systems? How do those numbers compare
to those reported in academic work?
• How effective are SSDs in production environments at wear
leveling?
• How is write amplification affected by various factors, in-
cluding FTL-related factors (e.g., drive model, firmware ver-
sions, over-provisioned space, support of multi-stream writes)
and workload factors (e.g., write rates and read/write ratios,
whether the drive is used as a cache or for persistent storage,
whether the drive’s role is data, parity or partitioned)?
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2 Methodology

2.1 System Description
Our study is based on a rich collection of telemetry data from
a large population of enterprise storage systems in produc-
tion, comprising almost 2 million SSDs. The systems employ
the WAFL file system [17] and NetApp’s ONTAP operat-
ing system [37], while they run on custom Fabric-Attached
Storage (FAS) hardware and use drives from multiple manu-
facturers. The systems are general-purpose, multi-tenant, and
multi-protocol (NFS, FCP, iSCSI, NVMe_oF, S3), used by
thousands of customers for very different applications (some-
times on the same node. In contrast to cloud data centers,
which use mostly block- and object-based protocols, the ma-
jority of the systems in our data set use NFS (i.e., a file-based
protocol). Applications running on our systems include file
services, (enterprise) databases, financial technologies (fin-
techs), retail, electronic design automation (EDA) workloads,
media entertainment, data analytics, artificial intelligence,
and machine learning. Note though that storage vendors (e.g.,
NetApp) have no direct insight into what applications a cus-
tomer is running on their systems, or who are the individual
users of each system. Therefore, it is not trivial to break down
our analysis by the type of application a system is running.

The operating system uses software RAID to protect
against drive failures. Table 2 shows the breakdown of RAID
group sizes in our systems, along with the breakdown of
RAID schemes per range of RAID group sizes. As we ob-
serve, SSDs widely adopt RAID schemes protecting beyond
single-device failures, especially with AFFs and larger arrays.

Our data set comprises systems with a wide range of hard-
ware configurations, concerning CPU, memory, and total
SSDs. Each system contains a large dynamic random access
memory (DRAM) cache. Incoming write data is first buffered
into the system’s DRAM and then logged to non-volatile
memory (NVRAM). Once the buffered (dirty) data is stored
into persistent storage, during a consistency point (CP), it is
then cleared from NVRAM and is (safely) retained in DRAM
until it is overwritten by new data. We refer the reader to prior
work for more information on the design and implementation
details of NetApp systems [22, 23, 30, 31].

According to their usage, systems are divided into two
different types: one that uses SSDs as a write-back cache layer
on top of HDDs (referred to as WBC), and another consisting
of flash-only systems, called AFF (All Flash Fabric-Attached-
Storage (FAS)). An AFF system uses either SAS or NVMe
SSDs, and is an enterprise end-to-end all-flash storage array.
In WBC systems, SSDs are used as an additional caching
layer that aims to provide low read latency and increased
system throughput. Still, not all reads and writes are served
from the SSD cache. Depending on the cache replacement
policy, reads and writes can bypass the SSD cache and get
served directly from the underlying HDD layer. For example,
sequential user writes will typically get stored from DRAM

Drive characteristics Usage Characts.
Drive
Family

Cap.
(GB)

Flash
Tech.

DWPD PE
Cycles
Limit

OP First
Deploy-
ment

Drive
Power
Years

I - A

200

eMLC 10 10K 44%

Apr ’14 5.69
400 Apr ’14 5.66
800 Mar ’14 5.01
1600 Mar ’14 5.49

I - B
400

eMLC 10 10K 44%
Dec ’15 4.44

800 Jan ’16 4.15
1600 Jan ’16 4.25

I - C

400

eMLC 3 10K 28%

Jan ’17 3.37
800 Jan ’17 3.06
1600 Mar ’17 3.32
3800 Dec ’16 2.87

I - D 3800 eMLC 1 10K 7% Jul ’17 2.82

I - E

800

3D-
eTLC 1 7K 20%

Dec ’18 1.67
960 Dec ’18 1.45
3800 Dec ’18 1.12
7600 Jan ’19 1.32
15000 Jan ’19 1.26

II - A 3840 3D-TLC 1 10K 7% Jan ’16 4.39
II - B 3800 3D-TLC 1 10K 7% Oct ’16 3.58

II - C 8000 3D-TLC 1 10K 7% Sep ’17 2.89
15300 Sep ’16 2.99

II - D 960 3D-TLC 1 10K 7% Oct ’16 3.37
3800 Oct ’16 3.57

II - E
400

3D-TLC 3 10K
28% Dec ’16 3.81

800 28% Jan ’17 3.45
3800 7% Dec ’16 3.75

II - F 960 3D-TLC 1 10K 7% Dec ’19 0.40
3800 Mar ’20 0.46

II - G
400

3D-TLC 3 10K 28%
Jan ’16 4.17

800 Feb ’16 4.32
1600 Jan ’16 4.58

II - H

800

3D-TLC

3

10K

28% Apr ’18 1.91
960 1 7% Jan ’18 1.77
3800 1 7% Jan ’18 1.69
8000 1 7% May ’18 1.63
15000 1 7% May ’18 1.44
30000 1 7% Jul ’18 1.43

II - I 800 cMLC 3 10K 28% Sep ’13 6.48

II - J
200

eMLC 10 30K 28%
Sep ’13 6.92

400 Sep ’13 6.47
800 Oct ’13 6.74

II - K
400

eMLC 3 30K 28%
May ’15 5.07

800 Jul ’15 4.98
1600 Jun ’15 5.11

III-A
960 3D-

eTLC 1 7K 20%
Oct ’19 0.69

3800 Oct ’19 0.54
7600 Oct ’19 0.57

II - X 3800 TLC 1 10K 7% Aug ’18 1.83
7600 Jul ’18 2.07

II - Y
3800

TLC 1 10K 7%
Jan ’19 0.78

7600 May ’19 1.05
15000 Dec ’18 1.08

II - Z
3800

TLC 1 10K 7%
Jul ’20 0.25

7600 Jun ’20 0.40
15000 Jun ’20 0.35

Table 1: Summary statistics describing the key characteristics
of the different drive families in our data set. The last three
rows involve SSDs with an NVMe storage interface, whereas
all the other rows involve SAS drives. The standard deviation
in the drives’ power-on years ranges from 0.05 to 0.98 for
most drive families.
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Distribution of RAID Group Sizes
Range AFF WBC
[3, 9] 16.21% 56.49%

[10, 19] 36.21% 28.98%
[20, 29] 47.58% 14.53%

Distribution of RAID schemes for AFF systems

Scheme
Range [3, 9] [10, 19] [20, 29]

RAID-4 [39] 11.55% 0.99% 0.95%
RAID-DP [8] 88.43% 98.62 % 98.21%

RAID-TEC [11] 0.02% 0.39% 0.84%
Distribution of RAID schemes for WBC systems

Scheme
Range [3, 9] [10, 19] [20, 29]

RAID-4 [39] 61.65% 21.50% 0.62%
RAID-DP [8] 38.18% 77.45% 97.55%

RAID-TEC [11] 0.17% 1.05% 1.83%

Table 2: The top table shows the breakdown of RAID group
sizes per system type, while the bottom table shows the break-
down of RAID schemes per range of RAID group sizes.

directly to HDDs (as these can be executed efficiently on the
HDDs and are also likely to pollute the SSD cache). Similarly,
reads that result in an SSD cache miss are brought into DRAM
and will be written to the SSD cache as well only if the cache
replacement policy determines that the chance of reuse is high
and it is worth evicting another block from the SSD cache.

In the remainder of the paper, we make use of the following
terms (adapted from [3]):
• Drive family: A particular drive product, which may be
shipped in various capacities, from one manufacturer, using a
specific generation of SSD controller and NAND. Our data
set contains 20 different families (denoted by a capital letter
A–Z) from three different manufacturers (denoted as I, II, and
III). We prepend the manufacturer’s symbol to each drive
family in order to explicitly associate each family with its
manufacturer (e.g., I-A, II-C).
• Drive model: The combination of a drive family and a
particular capacity. For instance, the I-B drive family comes in
three models whose capacity is equal to 400, 800 or 1600GB.
• Drive age: The amount of time a drive has been in produc-
tion since its ship date, rather than its manufacturing date.

The first six columns in Table 1 describe the key charac-
teristics associated with the different drive families in our
data set. Specifically, for each drive family, Table 1 includes
all the corresponding drive models (in an anonymized form),
along with the capacity, flash technology, endurance (speci-
fied in Drive Writes Per Day (DWPD) and the program-erase
(PE) cycles limit), and over-provisioning (OP) associated with
each model. As shown in Table 1, the SSD population in our
study spans a large number of configurations that have been
common in production settings over the last several years.

2.2 Data Collection and Description
Most systems in the field send telemetry data in the form of
NetApp Active IQ® (previously called AutoSupport) bundles,
which track a large set of system and device parameters (with-
out containing copies of the customers’ actual data). These

Device and System Metrics Sections
Host Write Rates/Read Rates §3.1.1, §5
Annualized NAND Usage Rate §3.1.2
Write Amplification Factor (WAF) §3.2, §4
Avg/Max Erase Operations §3.3
System Fullness §3.4

Table 3: The list of metrics analyzed in this study.

bundles are collected and used for detecting potential issues.
Our study is based on mining and analyzing this rich col-

lection of messages. Specifically, our data set is organized
into 21 snapshots, each of which is generated after parsing the
corresponding support messages collected at the following 21
points in time: Jan/Jun ’17, Jan/May/Aug/Dec ’18, Feb–Dec
’19, Jan/Jul/Nov ’20, and Mar ’21. Each snapshot contains
monitoring data for every system (and its drives). Table 3
shows all the metrics that are analyzed in this study.

3 What does SSD overall usage look like?
The performance and endurance of an SSD depend signif-
icantly on a number of operational characteristics. In this
section, we use our field data to study four of the most im-
portant characteristics (described below). To the best of our
knowledge, our work is the first to present details on these
characteristics for a large-scale population of flash-based pro-
duction systems.
• We begin by studying write rates (§3.1), as experienced by
enterprise drives in the field (including both host and physical
writes), as they significantly impact the lifetime of an SSD.
• We then examine the write amplification factors (WAF) ob-
served by the SSDs in our study (§3.2), as write amplification
is another major factor that can reduce a drive’s endurance.
• Next, we look at how efficient drives are at wear leveling
(§3.3), as it is a key mechanism that prolongs a drive’s lifetime
by preventing heavily used blocks from premature wear-out.
• Finally, we look at the fullness of systems (§3.4), i.e., what
fraction of a system’s total storage capacity is actually used.
Fullness can significantly affect SSD operations, as a full
system will trigger garbage collection more frequently and
also has less free space to facilitate wear leveling and other
housekeeping tasks.

3.1 Host Write Rates and NAND Usage Rates
A major concern when deploying SSDs are the write rates
these devices will experience in the field, as erase operations
wear out flash cells; therefore, the write intensity of a work-
load significantly affects the lifetime of flash-based SSDs.
This is a particular concern looking forward since future gen-
erations of flash are expected to have an order of magnitude
lower endurance than today’s drives.

The goal of this section is to study a number of important
aspects associated with write rates, as experienced by drives
in enterprise systems, including how close drives get to their
point of wear-out, how write rates vary across systems, dif-
ferences between host and physical writes seen by a drive,
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Figure 1: Distribution of the drives’ (normalized) host writes broken down by system type (1a), drive capacity (1b), and drive
family (1c). In Figure 1c only, each line type corresponds to a different manufacturer.

and an analysis of how feasible it would be to migrate work-
loads observed on today’s systems to future generations of
flash with lower program-erase (PE) cycle limits (i.e., the
maximum number of PE cycles each SSD is rated for by its
manufacturer).

3.1.1 Host Write Rates
We first look at write rates from the angle of host writes, i.e.,
the writes as they are generated by the applications and the
storage stack running on top of the SSDs and measured and
collected by the operating system (in contrast to physical
NAND writes, which we examine in §3.1.2).

Because of the significance of write rates in the context of
SSD endurance, drive manufacturers specify for each model
its Drive Writes Per Day (DWPD), which is defined as the
average number of times a drive’s entire capacity can be writ-
ten per day over its lifetime without wearing out prematurely.
Typical DWPD numbers in drive datasheets are 1 and 3, and
our population also includes some models with a DWPD of
10 (see Table 1 for all drive models in our study). However,
trends associated with recent technologies suggest DWPD
will drop below 1 in the future [34].

Understanding host writes is also important in other con-
texts. For example, when setting up workload generators or
benchmarks for experimental system research, it is important
to understand what realistic workloads one wants to emulate
look like, and write rates are an important aspect of that.

Despite the significance of host writes and the fact that
flash-drives have been routinely deployed at large scale for the
past decade, we are not aware of any study reporting on host
write rates in such systems. The goal of our measurements is
to close this gap.

We present our results in Figure 1a. The black solid line in
Figure 1a (left) shows the Cumulative Distribution Function
(CDF) of the DWPD experienced by the drives across our
entire population. In addition, the graph also breaks the results
down into AFF (all flash) systems and WBC systems (where
the flash is used as a write-back cache).

We make a number of high-order observations:
• The DWPD varies widely across drives: the median DWPD
of the population is only 0.36, well below the limit that today’s
drives can sustain. However, there is a significant fraction
of drives that experiences much higher DWPD. More than
7% of drives see DWPD above 3, higher than what many of
today’s drive models guarantee to support. Finally, 2% of
drives see DWPD above 10, pushing the limits even of today’s
drive models with the highest endurance.
• When separating the data into AFF and WBC systems,
we observe (probably not surprisingly) that WBC systems
experience significantly higher DWPD. Only 1.8% of AFF
drives see DWPD above 3 compared to a quarter of all WBC
drives. The median DWPD is 3.4× higher for WBC than
AFF, while the the 99th percentile is 10.6× higher.
• We note vast differences in DWPD across the WBC systems,
including a long tail in the distribution. While the median
is equal to 1, the drives in the 99th and the 99.9th %-ile
experience DWPD of 40 and 79, respectively. What that
means is that designers and operators of WBC systems need to
be prepared for their systems to handle a vast range of DWPD
values, including very high ones. It also means that optimally
provisioning the drive endurance for a WBC system is much
harder due to the huge range of DWPD in such systems.

Next, we perform a more fine-grained analysis of the
DWPD experienced by different SSDs, by grouping drives
based on their capacity (Figure 1b) and by drive family (Fig-
ure 1c). The reasoning is that different customers will pur-
chase drives of different capacities depending on their ap-
plications’ needs, so drives of different capacities likely see
different types of workloads. Similarly, different drive fami-
lies might be deployed in different types of systems that differ
in the workloads that run on them.
• Turning to Figure 1b, we were surprised to see how signifi-
cantly DWPDs vary depending on drive capacity. In partic-
ular, there is a very clear trend that smaller capacity drives
see larger DWPD. While this trend is consistent for both
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Figure 2: Distribution of the drives’ Annualized NAND Usage
Rates broken down by drive family and system type. Each line
type corresponds to a different manufacturer.

AFF and WBC systems, the effect is particularly pronounced
for WBC systems: here, the median DWPD for the smallest
capacity drives is more than 100× higher than for the largest
capacity drives (DWPD of 0.05 compared to 6). We note that
this trend also holds when comparing the DWPD of different
capacity drives within the same drive family, so the effect can
be clearly attributed to drive capacity rather than family.
• Interestingly, we also observe significant differences in
DWPD across drive families (Figure 1c). For example, for
WBC systems, the median DWPD ranges from 0.04 to 3.75
across drive families. We also observe that for both AFF and
WBC systems, it is the same drive families that experience
higher DWPD than the average population.

3.1.2 NAND Usage Rates
The second metric associated with write operations focuses
on physical NAND device writes. Physical device writes are
typically higher than the raw host writes due to the device’s
background operations (e.g., garbage collection, wear level-
ing). For each drive model, manufacturers specify a limit
on the number of physical writes it can tolerate before wear-
ing out, in terms of the program-erase (PE) cycle limit (see
Table 1 for the PE cycle limit of the drives in our population).

We are interested in studying the rate at which drives in
the field approach their PE cycle limit, a question that is of
particular concern as future generations of flash are expected
to have significantly lower PE cycle limits [32]. Towards this
end, for each drive, we determine the percentage of its PE
cycle limit that it uses up per year, on average, a metric that
we refer to as Annualized NAND Usage Rate:

Ann. NAND Usage Rate =
% o f PE Cycle Limit Used So Far

Power-On Years
(1)

Figure 2 shows the NAND usage rates for AFF and WBC
systems. The black solid line in each graph shows the CDF
of the NAND usage rates across all the drives, irrespective
of drive family. Since physical writes depend heavily on a
drive’s FTL (unlike host writes which are mostly driven by

the applications), the figure also shows the CDF of NAND
usage rates separately for each drive family.

We make the following key observations:
• Annualized NAND Usage Rates are generally low. The
majority of drives (60% across the entire population) report
a NAND usage rate of zero1, indicating that they use less
than 1% of their PE cycle limit per year. At this rate, these
SSDs will last for more than 100 years in production without
wearing out.
• There is a huge difference in NAND Usage Rates across
drive families. In particular, drive families I-C, I-D, and
I-E experience much higher NAND usage rates compared
to the remaining population. These drive families do not
report higher numbers of host writes (recall Figure 1c), so
the difference in NAND usage rates cannot be explained by
higher application write rates for those models.

We therefore attribute the extremely high NAND usage
rates reported by I-C/I-D drives to other housekeeping op-
erations which take place within the device (e.g., garbage
collection, wear leveling, and data rewrite mechanisms to
prevent retention errors [6]). We study this aspect in more
detail in Section 3.2 and in Section 4, where we consider
Write Amplification Factors (WAF).
• There is little difference in NAND usage rates of AFF sys-
tems and WBC systems. This is surprising given that we have
seen significantly higher host write rates for WBC systems
than for AFF systems. At first, we hypothesized that WBC
systems more commonly use drives with higher PE cycle
limits, so higher DWPD could still correspond to a smaller
fraction of the PE cycle limit. However, we observe similar
NAND usage rates for WBC systems and AFF systems, even
when comparing specific drive families and models with the
same PE cycle limit. Interestingly, as we will see in Sec-
tion 3.2, the reason is that WBC systems experience lower
WAF, which compensates for the higher host write rates.

Projections for next generation drives: We can use NAND
usage rates to make projections for next generation QLC
drives. Considering that endurance is estimated to be reduced
for QLC drives [32], we are interested in determining how
many SSDs in our data set could be replaced by a QLC SSD
without wearing out within a typical drive lifetime of 5 years.
• If we assume that the PE cycle limit of QLC drives drops
to 1K, then we find that the vast majority of our population
(~95% of drives when excluding the two outlier models I-C
and I-D) could have used QLC drives without wearing them
out prematurely.

3.2 Write Amplification Factor (WAF)
The write amplification factor (WAF) plays a critical role, as
the added writes due to garbage collection, wear leveling, and
other SSD-internal housekeeping tasks, can negatively impact

1Unfortunately, the % of PE cycle limit used per SSD is reported as a
truncated integer.

USENIX Association 20th USENIX Conference on File and Storage Technologies    169



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 10 20 30 40
Write Amplification Factor (WAF)

C
u
m

u
la

tiv
e
 P

ro
b
a
b
ili

ty

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 10 20 30 40
Write Amplification Factor (WAF)

C
u
m

u
la

tiv
e
 P

ro
b
a
b
ili

ty

AFF Systems

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 10 20 30 40
Write Amplification Factor (WAF)

WBC Systems

I−A

I−B

I−C

I−D

I−E

II−A

II−B

II−C

II−D

II−E

II−F

II−G

II−H

II−I

II−J

II−K

II−X

II−Y

II−Z

III−A

ALL

Figure 3: Distribution of the drives’ WAF broken down by drive family (left), along with both drive family and system type
(middle and right). Each line type corresponds to a different manufacturer.

both the endurance and performance of an SSD. It is therefore
not surprising that a large body of work has been dedicated
to reducing WAF and its impact, for example by optimizing
FTLs in different ways [7, 14, 15, 18, 20, 25, 44, 47–49] or by
making use of Multi-stream SSDs [4, 21, 40].

Unfortunately, despite the large body of work in industry
and academia on WAF, we do not have a good understand-
ing of how effective real drives in production systems are in
controlling WAF. To the best of our knowledge, there is no
large-scale field study reporting and analyzing WAF in pro-
duction systems. The existing field studies that mention WAF
for production systems are either limited to one particular
type of application (financial services) [29] or are based on a
small population of one flash technology (3D-TLC) [28]; both
studies simply report an average WAF across their systems of
1.3 and 1.5, respectively (without any further analysis).

One goal of this paper is to improve our understanding of
WAF in production systems. We begin in this section with
some high-level statistics on WAF and then later in Section 4
study in more detail the impact of various factors on WAF.

The black solid line in Figure 3 (left) shows the distribution
of WAF across all the drives in our population. In the same
graph, we also show WAF broken down by drive family, as a
drive’s FTL affects WAF.

We make a number of high-level observations:
• For the vast majority of our SSDs, the WAF they experience
is higher than the WAF of 1.3 observed in [29] (a field study
reporting WAF numbers, but only in the context of financial
services applications) and the WAF of 1.5 observed in [28]
(based on a sample of 3D-TLC SSDs from Huawei’s storage
systems). Specifically, 98.8% and 96% of our SSDs observe
a WAF larger than 1.3 and 1.5, respectively. This observation
underlines the importance of field studies spanning a large
range of systems with different applications and devices.
• The drives in our population span a huge range of WAF
values. While the 10th percentile is only 2, the 99th percentile
is 480. This motivates us to study the effect of several different
factors on WAF. We start below with a high-level study of
the role of the FTL and workloads, and continue with a more

detailed study of factors impacting WAF in Section 4.

WAF and the FTL: As different drive families vary in their
firmware, comparing the WAF across drive families provides
insights into the relationship between the FTL and WAF.
• Figure 3 (left) shows that some drive families have drasti-
cally higher WAF than others. In particular, the I-C, I-D, and
I-E families experience WAF that is an order of magnitude
higher than that for most of the other drive families, with me-
dian WAF values of around 100 (!) in the case of I-C and I-D.
Note that these drive families do not experience a different
host write rate and we have no indication that they are being
deployed in systems that tend to run different types of appli-
cations, so there is no obvious explanation due to workload
characteristics. Also, differences in WAF persist even when
we compare with drive families of the same age and capacity.

Upon closer inspection, we found that these particular mod-
els perform background work every time the SSD has idle
cycles to spare, thereby consuming their PE cycles as a side
effect. Interestingly, it seems that this background work is
not due to garbage collection or wear leveling (the best stud-
ied contributors to WAF), but due to aggressive rewriting
of blocks to avoid retention problems, where stored data is
(periodically) remapped before the corresponding flash cells
accumulate more retention errors than what can be corrected
by error correction codes (ECC) [6].

We note that this unexpected effect drives up WAF not
only for drives with extremely low utilization, but also for the
busiest drives (e.g., top 5%) of the two outlier families.

In summary, the FTL has a huge impact on WAF.

WAF and workload: Our data also provides evidence of the
impact of workload characteristics on WAF:
• First, we observe that there is significant variation in WAF
even when comparing only drives within the same drive fam-
ily (rather than across families). The 95th percentile of a
drive family’s WAF is often 9× larger than the corresponding
median. These differences are likely due to different drives
within a family being exposed to different workloads.
• Second, when we compare the WAF for AFF and WBC
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Figure 4: Distribution of metrics associated with wear level-
ing, calculated based on the number of erase operations per
block. Each line type corresponds to a different manufacturer.

systems in Figure 3 (two right-most figures), we observe
that for the same drive families, WBC systems experience
significantly lower WAF than AFF systems, indicating that
WBC workloads are more flash friendly. This results in an
another interesting observation:
• Thanks to their lower WAF, WBC drives in our systems
do not see a higher NAND usage rate than AFF systems, de-
spite their higher DWPD (recall Figure 1c). This observation
is significant, because the application of SSDs in caches is
considered the most demanding, in terms of endurance re-
quirements, and widely accepted best practices recommend
to use only drives with the highest endurance for these appli-
cations. Our observations indicate that this might not always
be necessary.

Comparison with simulation studies: Due to the dearth of
field data on WAF, a number of authors have resorted to
trace-driven simulation studies to explore WAF and how it
is affected by various factors; therefore, it is interesting to
compare the numbers we observe against those studies.
• The values reported for WAF in trace-driven simulation
studies [5, 9, 10, 19, 42, 45] are at the low end of the WAF
range we observe for AFF production systems, and even
the maximum values reported in these studies fall only into
the mid range (often below median) of the WAF values we
observe. For example, the highest WAF in [45] is 2, in [42]
it is 7, and in [5, 9, 10, 19] it is 12, which correspond to the
9th, 49th, and 62th percentile respectively, of the WAFs in
our AFF population.

We draw two possible conclusions from this differences:
• A significant challenge that researchers in our community
face is the lack of publicly available I/O traces from SSD-
based storage systems. As a result, existing experimental
work, including the simulation studies cited above, is based
on traces that are i) based on HDD systems and ii) mostly
relatively old (more than a decade for some popular traces).
These traces might not be representative of today’s workloads
running on SSD-based systems and also do not cover aspects
relevant to SSD-based systems (e.g., the TRIM command).

As a community, it is important that we find more relevant
traces to use as base to our work.
• The differences in WAF between our production systems
and existing simulation studies also indicate that it is very dif-
ficult to reproduce all complexities and subtleties of modern
FTLs in simulation.

3.3 Wear Leveling
A critical job of an SSD controllers is wear leveling, which
aims to spread the erase operations evenly over all blocks on
the device. This is important for multiple reasons. First of
all, it serves to increase the device’s lifetime by preventing
frequently used blocks from wearing out prematurely. Sec-
ond, it can help avoid performance problems, since blocks
with higher erasure cycles are associated with higher error
rates [12], and retries and other error-correction efforts can
significantly add to latency.

Wear leveling is a difficult problem because real-world
workloads are rarely uniform and commonly exhibit strong
skew in per-block update frequencies. An ideal wear leveling
mechanism distributes write operations in such a way so that
all blocks within an SSD wear out at the same rate. At the
same time, there is a delicate trade-off, as aggressive wear
leveling will increase the number of write operations, thereby
increasing WAF and overall drive wear-out.

In this section, we explore how effective modern FTLs are
at wear leveling. Specifically, our data set contains the average
number of times the blocks in a drive have been erased, along
with the corresponding maximum value. Based on these
values, we calculate two different metrics that characterize
how evenly erase operations are distributed across all blocks:

The Erase Ratio is the ratio between the maximum and
average number of erase operations per SSD:

Erase Ratio =
Max. Erase Ops
Avg. Erase Ops

(2)

The Erase Difference is the absolute difference between
maximum and the average number of erase operations nor-
malized by the PE cycle limit:

Erase Di f f erence =
Max. Erase Ops−Avg. Erase Ops

PE Cycle Limit
(%) (3)

Figure 4 shows the Erase Difference and Erase Ratio across
our entire population (black solid line) and broken down by
drive family. The ideal value of the Erase Ratio is 1, whereas
the ideal value of the Erase Difference is 0. We make the
following observations:
• Not surprisingly, wear leveling is not perfect. The median
Erase Ratio is 1.55, indicating that the maximum block under-
goes 55% more erase operations than the average block. 5%
of the drives have an erase ratio larger than 6 meaning their
maximum block wears out 6× faster than the average - that
means when the maximum block has reached end of life the
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Figure 5: Distribution of AFF systems’ fullness.

average block has only used 16% of its PE cycle limit.2.
• There is a striking difference in the wear leveling metrics
across drive families. The fact that I-C and I-D drives, for
example, report significantly higher wear leveling metrics
(despite having similar age, capacity, and DWPD to some
other families) indicates that different firmware implementa-
tions take vastly different approaches to wear leveling. More
generally, it seems that different manufacturers follow very
different philosophies with respect to wear leveling: when
looking at the Erase Difference metric, we see that the four
families with the largest Erase Difference all belong to the
same manufacturer (i.e., I).
• It is surprising that drive models I-C and I-D do a signif-
icantly worse job at wear leveling than other drive models,
despite the fact that these two models experience higher WAF
(recall §3.2). This means that the additional background work
that these drives are performing is not contributing towards
better wear leveling. Instead, we believe that the additional
background work of those two drive families is because they
rewrite data more aggressively than others in order to avoid
retention errors. This is a very interesting observation, since
data rewrite for retention errors has received much less at-
tention than other sources of WAF (e.g., garbage collection,
wear leveling). In fact, current SSD simulators and emulators
(e.g., FEMU [26]) do not implement data rewrite for retention
errors, and therefore do not capture this source of WAF.

3.4 Fullness
Another critical factor in the operation of an SSD-based stor-
age is the system’s fullness. We define fullness as the fraction
of the drives’ nominal capacity that is filled with valid data,
i.e., the fraction of the Logical Block Address (LBA) space
currently allocated. Fullness can affect the overall perfor-
mance of a system, as it can impact the frequency of garbage
collections, and also determines how much free room there is
for operations like wear leveling. Also, fullness is of practical
importance for capacity planning, as systems that run out of
available space before the end of their lifetime need to be
expanded with additional storage.

On the other hand, from the garbage collection’s point

2We do not have data on the minimum number of erase operations of a
drive’s blocks – naturally the difference between the minimum and maximum
block would be even more pronounced.

of view, fullness denotes what fraction of blocks inside the
drive are currently not programmable. This includes blocks
containing valid data, but also blocks containing invalidated
data which have not been erased yet. In our analysis, we focus
only on the (allocated) LBA space.

In this section, we are interested in exploring what fullness
looks like for enterprise storage systems, how it changes over
a drive’s lifetime, and how it varies as a function of factors
such as drive capacity. Our study is the first to characterize
this important system aspect for flash-based storage systems.

We begin with a high-level view of fullness by consider-
ing the CDF of fullness across the entire population of AFF
systems, as shown in Figure 5 (left); we consider only AFF
systems in our study of fullness, as the concept of fullness
does not apply in the same way to WBC systems, which use
SSDs only as a cache on top of HDDs.
• We observe that the average system is around 45% full, and
the median is also around 45%, i.e., more than half of the
storage capacity is free.
• The distribution of fullness across systems is roughly uni-
form. The CDF flattens only above 80%, i.e., values below
80% are all roughly equally likely, while values above 80%
are relatively less common.

Next, in Figure 5 (middle), we look at how fullness changes
over a system’s lifetime. Understanding this aspect of fullness
is relevant, for example, in the context of capacity planning.
• Maybe not surprisingly, system fullness increases with age.
(Consider for example the median over time, as indicated by
the dark link in the center of each box plot). However, the
rate of increase is not uniform: fullness grows relatively fast
over the first two years and stabilizes after that.
• Interestingly, despite the fact that generally fullness in-
creases over time, there are some very young systems that are
quite full and some old systems that are quite empty: slightly
more than 5% of young systems (less than 1 year old) are
more than 80% full, whereas 19% of old systems (more than
4 years old) are less than 25% full.
• An interesting observation from a capacity planning point
of view is that systems who end up being full at the end of
their life are also among the fullest systems early in their
life. In other words, if a system has not used a significant
amount of its physical space after its first couple of years in
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Figure 6: WAF comparison between two firmware versions
within the same drive family.

production, its fullness will most probably remain (relatively)
low in the future.

Given that systems vary hugely in their total capacity, rang-
ing from tens of TBs to a couple of PBs, another interesting
question is whether users of larger capacity systems actually
make use of the additional capacity of their systems. Towards
this end, Figure 5 (right) presents boxplots of system fullness,
broken down by system capacity.
• Interestingly, we observe that system with larger total ca-
pacity tend to be more full: the largest systems are 1.7× fuller
(in terms of median) than the other systems. This seems to
indicate that customers who purchase larger capacity systems
do indeed have larger capacity needs and are also better at
predicting how much storage capacity they need.

Comparison with fullness reported for other types of sys-
tems: A seminal work by Agrawal et al. [1], published more
than a decade ago, studied file system characteristics, includ-
ing fullness, for personal desktop computers at Microsoft.
They observed average fullness values ranging from 45–49%
and a uniform distribution. This is quite similar to our ob-
servations – which is surprising given that their study looks
at completely different types of systems (personal desktop
computers using HDDs).

The only other work we found that reports on fullness in
production systems is by Stokely et al. [43], which studies
the usage characteristics of an HDD-based distributed file
systems within a private cloud environment. Their results
indicate that the fraction of the quota used by an average
user of those systems is significantly larger than the levels
of fullness we observe: on average users use 55% of their
purchased quota; for the largest quota requests this number
increases to 69%. The reason might be that it is easier for a
user to increase their individual quota in a distributed storage
system when running out of space, compared to increasing the
physical capacity of an enterprise storage system. Therefore
capacity planning for an enterprise storage system has to be
more conservative.

4 Which factors impact WAF?
There are a number of factors that are commonly assumed to
impact a drive’s WAF, including the design of a drive’s FTL,
usage characteristics, how full the system is, along with the

size of the drive’s over-provisioned space. In this section, we
try to shed more light on the impact of each of these factors
on WAF, as experienced in production systems.

4.1 Flash Translation Layer (FTL)
This points to the importance of different design choices made
by different FTL implementations. In Section 3.2, we have
observed huge differences in WAFs across different drive
families, even when controlling for other factors, such as
drive capacity and DWPD.

In this section, we attempt a more fine-grained look at the
impact of FTLs on WAF. Instead of comparing WAF across
different drive families, we now look at different firmware
versions within a given drive family.

Firmware version and WAF: We performed this study for
several drive families, and discuss the results for drive family
III-A, as a representative sample. The most common firmware
versions for this drive family are versions FV2 and FV3. We
see consistently across all capacities of this drive model that
the more recent firmware version FV3 is associated with lower
WAF than the earlier FV2 version.

For illustration, we present the CDF of WAFs for firmware
versions FV2 and FV3 for the 7.6TB capacity model of drive
family III-A in Figure 6. We chose this particular capacity
because it offers the cleanest comparison, as the population of
FV2 drives and the population of FV3 drives are quite similar
with respect to other factors, such as DWPD, deployment
time, and system type.

We observe a clear difference between the WAF of drives
on firmware version FV2 versus version FV3. For example,
both the median and the 90th percentile of WAF are around
2× larger for FV2 than the more recent FV3 version.

4.2 Workload Characteristics
Many aspects of workload characteristics can impact a drive’s
WAF. Unfortunately, the analysis of many of these aspects
(e.g., sequentiality of writes and deletes, skewness of updates
across blocks) would require block-level IO-traces, whose
collection for production systems at large scale is infeasible.

Instead, we focus on the following five aspects of workload
characteristics for which we were able to collect data: the first
is write intensity as measured by drive writes per day (DWPD)
seen by a drive. The second is the role of a drive within a
RAID group3; we distinguish among data and partitioned
drives, where each partition of the drive is part of a different
RAID group and different partitions can play different roles
in their RAID groups. We exclude parity drives due to insuffi-
cient data. The third and fourth factors are the drive capacity
and drive interface (SAS vs. NVMe), respectively, as drives
of different capacities and different interfaces will be used in
different types of systems, which might be used for different
types of workloads. The fifth factor is the read/write ratio of

3In our data set’s RAID systems, parity blocks are not rotated.
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Figure 7: Impact of different factors on WAF, while focusing
on different roles within a single drive family.

the workload.
Figure 7 shows WAF broken down by the first three aspects

described above. We describe our observations below.
Drive Writes Per Day (DWPD) and WAF: We observe that
consistently across different capacities and drive roles, WAF
decreases as the number of DWPD increases. Median WAF
is up to 4.4× higher for the drive populations with the lowest
DWPD (left-most group of bars in Figure 7) than the group
with the highest DWPD (right-most group of bars). This
could suggest that SSDs operate more efficiently (in terms of
background tasks and WAF) under higher write rates. It could
also mean that some FTL background work is constant, i.e.,
not strongly dependent on DWPD; therefore, higher DWPD
will reduce the effect of this constant work on the WAF ratio.
Drive role and WAF: We observe a significant difference
in WAF depending on the drive role. In particular, the me-
dian WAF associated with partitioned SSDs is significantly
higher (by up to 3X) than that for data SSDs. One possible
explanation for the higher WAF of partitioned SSDs might
be that they are forced to handle requests coming from differ-
ent workloads with potentially different characteristics, thus
experiencing a mixture of write patterns.

We do note that the difference across roles decreases as the
number of (normalized) total host writes increases, suggesting
that write rates have a stronger impact on WAF than its role.
Drive capacity and WAF: When we explore the impact of
capacity, we observe that higher-capacity SSDs (i.e., 8TB and
15TB) experience lower WAF compared to the two smaller-
capacities, for the same range of total host writes and the
same drive role. In particular, their median WAF can be up
to 2–3× smaller, with the difference being more pronounced
when the amount of total host writes is low. Still, 3.8TB
SSDs experience slightly higher WAF compared to 960GB
SSDs, suggesting that smaller-capacity SSDs do not necessar-
ily experience higher WAF (i.e., other factors have a stronger
impact on WAF).
Drive interface and WAF: The workloads that customers
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Figure 8: WAF comparison between SAS and NVMe SSDs for
different drive capacities.

choose to run on NVMe drives tend to experience slightly
smaller WAF than those on SAS drives. Results are shown in
Figure 8, which compares the distribution of WAF as experi-
enced by SAS and NVMe drives respectively, broken down
by three different drive capacities. The populations of SAS
and NVMe drives were chosen in such a way as to control for
other factors, such as DWPD, total time in production, drive
role, and system fullness. We removed the outlier drive fami-
lies, for which we observed earlier an extremely high WAF,
from the SAS population, so they do not bias our results.

Considering that NVMe SSDs make use of a similar FTL
compared to SAS drives, we expect differences in WAF to
come mostly from them being used differently. For instance,
the NVMe technology is still relatively new and as a result,
in our data set, the population of NVMe-based systems is
smaller than the SAS-based population. The NVMe systems
are mostly used by (a small set of) customers who are early
adopters of this new technology. These customers, and their
workloads, might be different from the average customers
across the whole population. Therefore, the workloads expe-
rienced by NVMe and SAS drives can be quite different (for
now); the difference will likely become less pronounced over
time, as more customers move to NVMe-based systems.
Read/write ratios and WAF: We observe a positive cor-
relation between a workload’s R/W ratio and WAF. More
precisely, we used the buckets of drives we created for Fig-
ure 7 (so that we control for capacity, write rates and drive
role), and computed for each bucket the Spearman correlation
coefficient between the R/W ratio and WAF for the drives in
the bucket. The correlation coefficient is between 0.2 and 0.4
for most buckets, indicating a positive correlation.

4.3 Fullness
The fullness of a drive can affect how effectively it can man-
age its internal housekeeping tasks, such as garbage collec-
tion and wear leveling, especially when its total free space
becomes (too) low.

We study the effect of fullness on WAF by dividing our
population into drives that are more than 80% full and those
that are less than 80% full, and comparing their WAF.

Interestingly, we observe no significant differences in the
WAF experienced by the two sub-populations; in fact, SSDs
which are more full experience (slightly) smaller WAF overall,
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Figure 9: Distribution of the drives’ R/W ratios per system
type. Each line type corresponds to a different manufacturer.

suggesting that the drives’ WAF is dominated by other factors
than fullness, such as their firmware.

4.4 Over-provisioning (OP)
Another interesting question is whether WAF varies depend-
ing on the drives’ amount of over-provisioning (OP). OP
refers to the fraction of a drive’s capacity that is reserved as
spare capacity to improve a drive’s wear leveling, garbage
collection, and random write performance; thus, it is expected
to help reduce WAF. In fact, prior work uses simulations to
demonstrate the positive effect of higher OP on WAF [10,19].

Common OP percentages for real drives are 7% and 28%
and our SSD population includes drives with both OP percent-
ages, allowing us to compare their effect on WAF.

Surprisingly, we observe that the drives with the higher
OP (i.e., 28%) actually experience higher, rather than lower
WAF. One possible explanation could be that many of the
drives in our population are not very full (§3.4), and therefore
the extra capacity in the OP space does not make much of a
difference. We therefore look at the effect of OP for only those
drives that are full (more than 80% of capacity in use) and
still observe slightly higher WAF for SSDs with higher OP.
This suggests that there are likely other factors (e.g., workload
characteristics and firmware) that are more dominant than OP.
For example, the drives with 7% OP have support for multi-
stream writes, which might help lower their WAF. Finally,
7% OP is a younger technology and thus, the corresponding
systems can be (potentially) adopted by a different set of
customers, whose workload characteristics might be different
from the average customers across the 28% OP population.

4.5 Multi-stream Writes
Several drive models in our data set support multi-stream
writes (MSW) [21], which can help reduce WAF by allowing
the host to dictate the data placement on the SSD’s physical
blocks. In fact, our analysis of OP showed that drives with
7% OP, all of which have MSW support, report lower WAF.
Therefore, we perform a detailed analysis on the impact of
MSW, while controlling for other factors (e.g., DWPD, role).

We observe relatively clear trends for data drives, where
populations with MSW have 30-40% lower WAF than com-
parable populations without MSW.

However, the trend is not clear, and in fact sometimes
reversed for partitioned drives. It’s possible that workload
factors (which we previously saw are strong for partitioned
drives) dominate those populations. It’s also possible that for
partitioned drives the streams are mostly used for performance
isolation of different partitions, rather than for reducing WAF.

5 Read/Write (R/W) Ratios
In this section, we characterize the read/write (R/W) ratios
exhibited by the workloads in our systems. R/W ratios are an
interesting aspect of SSD-based systems for multiple reasons:

First, the combination of reads and writes can significantly
impact the observed performance of reads in SSDs, as read
operations compete internally with (slower) write operations.
Second, newer generation of SSDs, such as QLC SSDs, are
targeted for read-intensive workloads, as their PE cycle lim-
its are much smaller than previous generations (up to 10×
compared to TLC [32]). Therefore, exploring the trends in
existing workloads is interesting. Third, providing data on
R/W ratios in production systems helps researchers and prac-
titioners to set up more realistic testbeds, as a workload’s R/W
ratio is a key configuration parameter of existing benchmark
tools, such as FIO [2]. The results of our study can be used to
parameterize simulation and experimental testbeds with R/W
ratios that are representative of production workloads. Fi-
nally, in WBC systems, where the SSDs are used as a caching
layer on top of HDDs, the read/write ratio can be viewed as a
measure of the cache’s effectiveness in caching reads.

In this section, we perform the analysis of read/write ratios
separately for WBC systems and AFF systems, as read/write
ratios have a different interpretation for these two systems.
We distinguish between the two system types, as customers
who buy HDD-based systems tend to use them differently
from those who buy SSD-based systems; in our analysis, we
characterize the differences.

5.1 R/W ratios and AFF systems
Figure 9 (left) shows the distribution of R/W ratios associated
with the SSDs in AFF systems, computed based on host reads
and host writes reported by our systems. We begin with a few
high-level observations based on this figure:
• We observe that the vast majority of drives, around 94%,
experience more reads than writes. The median R/W ratio is
3.6:1 and the 95th percentile is 61:1.
• These R/W ratios are in stark contrast to trace analysis
results from HDD-based storage systems, which generally
have more writes than reads. For example, the FIU traces [24],
the majority of volumes in the Microsoft traces [35], and the
recent block I/O traces from Alibaba data centers [27], all
experience more writes than reads.
• The significant difference between the R/W rates of SSD-
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Figure 10: Evolution of the drives’ R/W ratios over time, for
WBC (top) and AFF (bottom) systems.

and HDD-based systems underlines the importance of our
earlier observation that replaying traces from HDD systems
for experiments or simulations of SSD systems is problematic.
Our community needs to find a way to collect and make
publicly available block traces from SSD-based systems.

R/W ratios over time: The next question we look at is
whether R/W ratios remain stable over time. Towards this end,
we group SSDs into cohorts based on their age and monitor
each cohort of drives over time. Each cohort spans a 6-month
time frame (e.g., months 12–18, representing the first six
months of the 2nd year in production). Note that there is no
overlap between cohorts; for instance, if an SSD is placed into
the cohort corresponding to total deployment time up to 18
months, it is not placed into any other cohort before that, even
though at some point in its lifetime it had been deployed for
that amount of time. For each cohort, we report its (median)
R/W ratio at different points in time.

The results for R/W ratios over time are shown in Figure 10
(bottom). Each line segment in the graph corresponds to one
of the cohorts described above. We make two observations:
• R/W ratios in AFF systems remain rather stable over time,
suggesting that the characteristics of the corresponding work-
loads do not drastically change over time.
• The only time in a drive’s lifetime when R/W ratios tend to
change is towards their end of life. In particular, we see ratios
increasing after around 4.5 years in production. This might
likely be due to systems being drained before being retired.

R/W ratios and system capacity and fullness: Next, we
explore whether R/W ratios look different based on system
capacity and system fullness.

We find that systems with smaller capacities are associated
with higher R/W ratios; the 50th and 90th percentiles of the
R/W rates associated with smaller systems are up to 2× higher
than those for larger systems.

When we examine how R/W ratios look like for different
levels of fullness, we interestingly observe no significant
differences in the R/W ratios among systems which use more
than 25% of their total space, suggesting that systems which
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Figure 11: Comparison of the daily workload experienced by
SSDs in data centers versus enterprise storage systems. The
dotted line represents equal amount of daily data reads and
writes; read-dominant workloads are above the line.

are more full do not necessarily experience read-dominant
workloads only.

Comparison with data center drives: Three recent field
studies on data center drives at Facebook, Microsoft, and
Alibaba, which mainly focus on failure characteristics, also
report some aggregate statistics on the read and write rates
associated with these drives [33, 36, 46].

Figure 11 plots the physical NAND read and write rates
for those data center drives (except for Alibaba drives which
involve host reads/writes), as well as the (host) read and write
rates of the SSDs in our enterprise storage systems (which
do not involve any requests served from the DRAM cache);
we have selected only those SSDs from our data set with a
capacity comparable to the data center drives.

We make two observations:
• First, the workloads associated with the SSDs in our data set
are significantly more intensive: the corresponding read and
write rates are at least one order of magnitude higher than the
ones in the other two studies (note the log scale on both axes).
Keeping in mind that our rates involve host reads and writes,
while those of the two data center studies report physical reads
and writes, the actual differences are even larger.
• Second, in contrast to the drives at Facebook [33] and
Alibaba [46], which report a comparable number of reads and
writes, our systems see a larger number of reads than writes.
Still, concerning drives at Facebook, the difference might
be due to the fact the we report host writes while that study
reports physical writes (which include WAF writes).

The R/W rates of Microsoft drives [36] look comparable
to ours in Figure 11, however given that their write rates are
physical NAND writes, while our write rates are host writes
(not accounting for WAF), the R/W ratios of their applications
are likely much higher than the average across our systems.

In summary, the read and write rates and the read/write
ratios experienced by SSDs in enterprise storage systems vary
significantly from those reported for data center drives, high-
lighting the differences (in terms of workload characteristics)
between enterprise storage systems and data centers.
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5.2 R/W ratios and Write-back cache systems
R/W ratios in WBC systems have a different significance than
for AFF systems (where they mostly characterize the differ-
ence in reads and writes generated by applications running
on the systems). SSDs in WBC systems are used as a cache
layer that aims to increase performance, while persistent stor-
age is provided by another layer consisting of HDDs. The
R/W ratio of accesses to the SSDs can therefore be viewed as
one measure of the effectiveness of the cache: the R/W ratio
provides some indication of how many cache reads (hits) we
get for one write to the cache4.

As we observe in Figure 9, WBC systems experience higher
R/W ratios than AFF systems. Specifically, the median R/W
ratio across the entire population is 4.1:1 and the 95th per-
centile is 150:1 (4.4× higher than for AFF). The high R/W
ratios associated with WBC systems suggest that the cache
layer is used effectively.

We make some interesting observations regarding R/W
ratios of WBC systems over time. Figure 10 (top) again fixes
cohorts of drives of similar age and monitors them over time.
• When following an individual cohort of drives over time
(i.e., one specific line segment in the graph), we observe a
clear drop in R/W ratio over time, particularly in the first
half of a drive’s life. This indicates the cache is becoming
less effective as a read cache over time, likely because the
total amount of data stored on the system increases over time
and as a result, the (fixed-size) cache can cache increasingly
smaller fractions of the total data. In particular, towards the
end of a drive’s life R/W ratios are quite low, with only two
reads for every write.
• We make another interesting observation when comparing
the R/W ratios for different line segments against each other,
in particular in areas of the x-axis where they overlap. More
recently deployed systems tend to have higher R/W ratios,
even when comparing them with older systems at the same
age. This might either indicate a trend of workloads changing
over time towards higher R/W ratios, or customers configuring
their storage systems differently (with a larger cache size
relative to the amount of data stored for more recent systems).

6 Conclusions
We briefly summarize the key findings of our study in Table 4.
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Most Important Findings
§3.1.2: The majority of SSDs in our data set consume PE cycles
at a very slow rate. Our projections indicate that the vast major-
ity of the population (~95%) could move toward QLC without
wearing out prematurely.
§3.1, 3.2: The host write rates for SSDs used as caches are signif-
icantly higher than for SSDs used as persistent storage. Yet, they
do not see higher NAND write rates as they also experience lower
WAF. It is thus not necessarily required to use higher endurance
drives for cache workloads (which is a common practice).
§3.2: WAF varies significantly (orders of magnitude) across
drive families and manufacturers. We conclude that the degree
to which a drive’s firmware affects its WAF can be surprisingly
high, compared to other factors also known to affect WAF.
§3.2: We identify as the main contributor to WAF, for those drive
families with the highest WAF, the aggressive rewriting of blocks
to avoid retention issues. This is surprising, as other maintenance
tasks (e.g., garbage collection, wear-leveling) generally receive
more attention; common flash simulators and emulators (e.g.,
FEMU) do not even model rewriting to avoid retention issues.
§3.2: The WAF of our drives is higher than values reported in
various academic studies based on trace-driven simulation. This
demonstrates that it is challenging to recreate the real-world
complexities of SSD internals and workloads in simulation.
§3.3: Wear leveling is not perfect. For instance, 5% of all SSDs
report an erase ratio above 6, i.e., there are blocks in the drive
which will wear out six times as fast as the average block. This
is a concern not only because of early wear-out, but also be-
cause those blocks are more likely to experience errors and error
correction contributes to tail latencies.
§3.4: AFF systems are on average 43% full. System fullness
increases faster during the first couple of years in production,
and after that increases only slowly. Systems with the largest
capacity are fuller than smaller systems.
§4.3, §4.4: We find that over-provisioning and fullness have little
impact on WAF in practice, unlike commonly assumed.
§5: The vast majority of workloads (94%) associated with SSDs
in our systems are read-dominant, with a median R/W ratio of
3.62:1, highlighting the differences in usage between SSD-based
and HDD-based systems. Many widely-used traces from HDD-
based systems see more writes than reads, raising concerns when
using these traces for SSD research, as is common in practice.
§5: The read and write rates for the drives in our enterprise
storage systems are an order of magnitude higher than those
reported for data center drives (comparing same-capacity drives).
§5: The read/write ratio reported by SSDs that act as caches
decreases significantly over their lifetime. This might indicate a
decreasing effectiveness of the SSD cache over time.
§3.2, §5: The differences between some of our results and those
reported based on the analysis of widely used HDD-based storage
traces emphasize the importance for us as a community to bring
some representative SSD-based traces into the public domain.

Table 4: The most important findings per section.
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Abstract
We present Hydra, a low-latency, low-overhead, and highly

available resilience mechanism for remote memory. Hy-
dra can access erasure-coded remote memory within a
single-digit µs read/write latency, significantly improving the
performance-efficiency tradeoff over the state-of-the-art – it
performs similar to in-memory replication with 1.6× lower
memory overhead. We also propose CodingSets, a novel cod-
ing group placement algorithm for erasure-coded data, that
provides load balancing while reducing the probability of data
loss under correlated failures by an order of magnitude. With
Hydra, even when only 50% memory is local, unmodified
memory-intensive applications achieve performance close to
that of the fully in-memory case in the presence of remote
failures and outperforms the state-of-the-art remote-memory
solutions by up to 4.35×.

1 Introduction
Modern datacenters are embracing a paradigm shift toward
disaggregation, where each resource is decoupled and con-
nected through a high-speed network fabric [4, 9, 13, 35–
37, 58, 61, 62, 81]. In such disaggregated datacenters, each
server node is specialized for specific purposes – some are
specialized for computing, while others for memory, stor-
age, and so on. Memory, being the prime resource for high-
performance services, is becoming an attractive target for
disaggregation [18, 19, 22, 32, 39, 47, 50, 58, 61].

Recent remote-memory frameworks allow an unmodified
application to access remote memory in an implicit man-
ner via well-known abstractions such as distributed virtual
file system (VFS) and distributed virtual memory manager
(VMM) [18, 47,50, 58, 65,81, 87]. With the advent of RDMA,
remote-memory solutions are now close to meeting the single-
digit µs latency required to support acceptable application-
level performance [47, 58]. However, realizing remote mem-
ory for heterogeneous workloads running in a large-scale
cluster faces considerable challenges [19, 24] stemming from
two root causes:
1. Expanded failure domains: As applications rely on mem-

ory across multiple machines in a remote-memory clus-
ter, they become susceptible to a wide variety of failure

*These authors contributed equally to this work

scenarios. Potential failures include independent and cor-
related failures of remote machines, evictions from and
corruptions of remote memory, and network partitions.

2. Tail at scale: Applications also suffer from stragglers or
late-arriving remote responses. Stragglers can arise from
many sources including latency variabilities in a large
network due to congestion and background traffic [41].

While one leads to catastrophic failures and the other mani-
fests as service-level objective (SLO) violations, both are un-
acceptable in production [58,68]. Existing solutions take three
primary approaches to address them: (i) local disk backup
[50, 81], (ii) remote in-memory replication [30, 42, 46, 64],
and (iii) remote in-memory erasure coding [76, 80, 84, 86]
and compression [58]. Unfortunately, they suffer from some
combinations of the following problems.

High latency: Disk backup has no additional memory over-
head, but the access latency is intolerably high under any
correlated failures. Systems that take the third approach do
not meet the single-digit µs latency requirement of remote
memory even when paired with RDMA (Figure 1).

High cost: Replication has low latency, but it doubles mem-
ory consumption and network bandwidth requirements. Disk
backup and replication represent the two extreme points in
the performance-vs-efficiency tradeoff space (Figure 1).

Low availability: All three approaches lose availability
to low latency memory when even a very small number of
servers become unavailable. With the first approach, if a sin-
gle server fails its data needs to be reconstituted from disk,
which is a slow process. In the second and third approach,
when even a small number of servers (e.g., three) fail simulta-
neously, some users will lose access to data. This is due to the
fact that replication and erasure coding assign replicas and
coding groups to random servers. Random data placement is
susceptible to data loss when a small number of servers fail
at the same time [27, 28] (Figure 2).

In this paper, we consider how to mitigate these problems
and present Hydra, a low-latency, low-overhead, and highly
available resilience mechanism for remote memory. While
erasure codes are known for reducing storage overhead and
for better load balancing, it is challenging for remote memory
with µs-scale access requirements (preferably, 3-5µs) [47]. We
demonstrate how to achieve resilient erasure-coded cluster
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Figure 1: Performance-vs-efficiency tradeoff in the resilient clus-
ter memory design space. Here, the Y-axis is in log scale.

memory with single-digit µs latency even under simultaneous
failures at a reduced data amplification overhead.

We explore the challenges and tradeoffs for resilient remote
memory without sacrificing application-level performance or
incurring high overhead in the presence of correlated failures
(§2). We also explore the trade-off between load balancing
and high availability in the presence of simultaneous server
failures. Our solution, Hydra, is a configurable resilience
mechanism that applies online erasure coding to individual
remote memory pages while maintaining high availability
(§3). Hydra’s carefully designed data path enables it to access
remote memory pages within a single-digit µs median and tail
latency (§4). Furthermore, we develop CodingSets, a novel
coding group placement algorithm for erasure codes that pro-
vides load balancing while reducing the probability of data
loss under correlated failures (§5).

We develop Hydra as a drop-in resilience mechanism that
can be applied to existing remote memory frameworks [18,
22,50,65,81]. We integrate Hydra with the two major remote
memory approaches widely embraced today: disaggregated
VMM (used by Infiniswap [50], and Leap [65]) and disaggre-
gated VFS (used by Remote Regions [18]) (§6). Our evalua-
tion using production workloads shows that Hydra achieves
the best of both worlds (§7). Hydra closely matches the perfor-
mance of replication-based resilience with 1.6× lower mem-
ory overhead with or without the presence of failures. At the
same time, it improves latency and throughput of the bench-
mark applications by up to 64.78× and 20.61×, respectively,
over SSD backup-based resilience with only 1.25× higher
memory overhead. While providing resiliency, Hydra also
improves the application-level performance by up to 4.35×
over its counterparts. CodingSets reduces the probability of
data loss under simultaneous server failures by about 10×.
Hydra is available at https://github.com/SymbioticLab/hydra.

In this paper, we make the following contributions:

• Hydra is the first in-memory erasure coding scheme that
achieves single-digit µs tail memory access latency.

• Novel analysis of load balancing and availability trade-off
for distributed erasure codes.
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Figure 2: Availability-vs-efficiency tradeoff considering 1% simul-
taneous server failures in a 1000-machine cluster.

• CodingSets is a new data placement scheme that balances
availability and load balancing, while reducing probability
of data loss by an order of magnitude during failures.

2 Background and Motivation
2.1 Remote Memory

Remote memory exposes memory available in remote ma-
chines as a pool of memory shared by many machines. It is
often implemented logically by leveraging stranded memory
in remote machines via well-known abstractions, such as the
file abstraction [18], remote memory paging [22,47,50,59,65],
and virtual memory management for distributed OS [81]. In
the past, specialized memory appliances for physical memory
disaggregation were proposed as well [61, 63].

All existing remote-memory solutions use the 4KB page
granularity. While some applications use huge pages for per-
formance enhancement [57], the Linux kernel still performs
paging at the basic 4KB level by splitting individual huge
pages because huge pages can result in high amplification
for dirty data tracking [23]. Existing remote-memory systems
use disk backup [50, 81] and in-memory replication [46, 64]
to provide availability during failures.

2.2 Failures in Remote Memory

The probability of failure or temporary unavailability is higher
in a large remote-memory cluster, since memory is being
accessed remotely. To illustrate possible performance penal-
ties in the presence of such unpredictable events, we con-
sider a resilience solution from the existing literature [50],
where each page is asynchronously backed up to a local SSD.
We run transaction processing benchmark TPC-C [16] on an
in-memory database system, VoltDB [17]. We set VoltDB’s
available memory to 50% of its peak memory to force remote
paging for up to 50% of its working set.

1. Remote Failures and Evictions Machine failures are
the norm in large-scale clusters where thousands of machines
crash over a year due to a variety of reasons, including soft-
ware and hardware failures [31,33,38,88]. Concurrent failures
within a rack or network segments are quite common and typ-
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Figure 3: TPC-C throughput over time on VoltDB when 50% of the working set fits in memory. Arrows point to uncertainty injection time.

ically occur dozens of times a year. Even cluster-wide power
outage is not uncommon – occurs once or twice per year in a
given data center. For example, during a recent cluster-wide
power outage in Google Cloud, around 23% of the machines
were unavailable for hours [6].

Without redundancy, applications relying on remote mem-
ory may fail when a remote machine fails or remote memory
pages are evicted. As disk operations are significantly slower
than the latency requirement of remote memory, disk-based
fault-tolerance is far from being practical. In the presence of
a remote failure, VoltDB experiences almost 90% throughput
loss (Figure 3a); throughput recovery takes a long time after
the failure happens.

2. Background Network Load Network load throughout
a large cluster can experience significant fluctuations [41, 53],
which can inflate RDMA latency and application-level strag-
glers, causing unpredictable performance issues [40, 89]. In
the presence of an induced bandwidth-intensive background
load, VoltDB throughput drops by about 50% (Figure 3b).

3. Request Bursts Applications can have bursty memory
access patterns. Existing solutions maintain an in-memory
buffer to absorb temporary bursts [18, 50, 74]. However, as
the buffer ties remote access latency to disk latency when it is
full, the buffer can become the bottleneck when a workload
experiences a prolonged burst. While a page read from remote
memory is still fast, backup page writes to the local disk
become the bottleneck after the 100th second in Figure 3c. As
a result, throughput drops by about 60%.

4. Memory Corruption During remote memory access, if
any one of the remote servers experiences a corruption, or
if the memory gets corrupted over the network a memory
corruption event will occur. In such case, disk access causes
failure-like performance loss (Figure 3d).

Performance vs. Efficiency Tradeoff for Resilience In
all of these scenarios, the obvious alternative – in-memory
2× or 3× replication [46, 64] – is effective in mitigating a
small-scale failure, such as the loss of a single server (Fig-
ure 3a). When an in-memory copy becomes unavailable, we
can switch to an alternative. Unfortunately, replication in-
curs high memory overhead in proportion to the number of
replicas. This defeats the purpose of remote memory. Hedg-
ing requests to avoid stragglers [41] in a replicated system
doubles its bandwidth requirement as well.

This leads to an impasse: one has to either settle for high
latency in the presence of a failure or incur high memory

overhead. Figure 1 depicts this performance-vs-efficiency
tradeoff under failures and memory usage overhead to provide
resilience. Beyond the two extremes in the tradeoff space,
there are two primary alternatives to achieve high resilience
with low overhead. The first is replicating pages to remote
memory after compressing them (e.g., using zswap) [58],
which improves the tradeoff in both dimensions. However,
its latency can be more than 10µs when data is in remote
memory. Especially, during resource scarcity, the presence of
a prolonged burst in accessing remote compressed pages can
even lead to orders of magnitude higher latency due to the
demand spike in both CPU and local DRAM consumption for
decompression. Besides, this approach faces similar issues as
replication such as latency inflation due to stragglers.

The alternative is erasure coding, which has recently made
its way from disk-based storage to in-memory cluster caching
to reduce storage overhead and improve load balancing [20,25,
76,83,84,86]. Typically, an object is divided into k data splits
and encoded to create r equal-sized parity splits (k > r), which
are then distributed across (k+ r) failure domains. Existing
erasure-coded memory solutions deal with large objects (e.g.,
larger than 1 MB [76]), where hundreds-of-µs latency of the
TCP/IP stack can be ignored. Simply replacing TCP with
RDMA is not enough either. For example, the EC-Cache with
RDMA (Figure 1) provides a lower storage overhead than
compression but with a latency around 20µs.

Last but not least, all of these approaches experience high
unavailability in the presence of correlated failures [28].

2.3 Challenges in Erasure-Coded Memory

High Latency Individually erasure coding 4 KB pages that
are already small lead to even smaller data chunks ( 4

k KB),
which contributes to the higher latency of erasure-coded re-
mote memory over RDMA due to following primary reasons:

1. Non-negligible coding overhead: When using erasure
codes with on-disk data or over slower networks that have
hundreds-of-µs latency, its 0.7µs encoding and 1.5µs de-
coding overheads can be ignored. However, they become
non-negligible when dealing with DRAM and RDMA.

2. Stragglers and errors: As erasure codes require k splits
before the original data can be constructed, any straggler
can slow down a remote read. To detect and correct an
error, erasure codes require additional splits; an extra read
adds another round-trip to double the overall read latency.

3. Interruption overhead: Splitting data also increases the
total number of RDMA operations for each request. Any

USENIX Association 20th USENIX Conference on File and Storage Technologies    183



HYDRA Resilience Manager

Remote
Machines

M1
Resource 
Monitor

k split Encode
r parities

Decode
first k arrivals

Remote Write Remote Read

sync async
M2

Resource 
Monitor

M3
Resource 
Monitor

M1
Resource 
Monitor

M2
Resource 
Monitor

M3
Resource 
Monitor

Unmodified Application

Virtual File System
(Remote Regions - ATC’18)

Paging
(Infiniswap - NSDI’17)

Distributed VMM
(LegoOS – OSDI’18)

Page Access Request

Figure 4: Resilience Manager provides with resilient, erasure-
coded remote memory abstraction. Resource Monitor manages
the remote memory pool. Both can be present in a machine.

context switch in between can further add to the latency.
4. Data copy overhead: In a latency-sensitive system, addi-

tional data movement can limit the lowest possible latency.
During erasure coding, additional data copy into different
buffers for data and parity splits can quickly add up.

Availability Under Simultaneous Failures Existing era-
sure coding schemes can handle a small-scale failure without
interruptions. However, when a relatively modest number of
servers fail or become unavailable at the same time (e.g., due
to a network partition or a correlated failure event), they are
highly susceptible to losing availability to some of the data.

This is due to the fact that existing erasure coding schemes
generate coding groups on random sets of servers [76]. In a
coding scheme with k data and r parity splits, an individual
coding group, will fail to decode the data if r+1 servers fail
simultaneously. Now in a large cluster with r+1 failures, the
probability that those r+1 servers will fail for a specific cod-
ing group is low. However, when coding groups are generated
randomly (i.e., each one of them compromises a random set of
k+ r servers), and there are a large number of coding groups
per server, then the probability that those r+1 servers will af-
fect any coding group in the cluster is much higher. Therefore,
state-of-the-art erasure coding schemes, such as EC-Cache,
will experience a very high probability of unavailability even
when a very small number of servers fail simultaneously.

3 Hydra Architecture

Hydra is an erasure-coded resilience mechanism for existing
remote-memory techniques to provide better performance-
efficiency tradeoff under remote failures while ensuring high
availability under simultaneous failures. It has two main com-
ponents (Figure 4): (i) Resilience Manager coordinates
erasure-coded resilience operations during remote read/write;
(ii) Resource Monitor handles the memory management in
a remote machine. Both can be present in every machine and
work together without central coordination.

k-slab address ranges

(k+r) remote slabs
for each 

address range

HYDRA Resilience Manager Address Space

1 2 3 2 3 1

Data/Parity Slab

# Slab Mapped to 
Machine#

Figure 5: Hydra’s address space is divided into fixed-size address
ranges, each of which spans (k+ r) memory slabs in remote ma-
chines; i.e., k for data and r for parity (k=2 and r=1 in this figure).

3.1 Resilience Manager

Hydra Resilience Manager provides remote memory abstrac-
tion to a client machine. When an unmodified application
accesses remote memory through different state-of-the-art
remote-memory solutions (e.g., via VFS or VMM), the Re-
silience Manager transparently handles all aspects of RDMA
communication and erasure coding. Each client has its own
Resilience Manager that handles slab placement through Cod-
ingSets, maintains remote slab-address mapping, performs
erasure-coded RDMA read/write. Resilience Manager com-
municates to Resource Monitor(s) running on remote memory
host machines, performs remote data placement, and ensures
resilience. As a client’s Resilience Manager is responsible for
the resiliency of its remote data, the Resilience Managers do
not need to coordinate with each other.

Following the typical (k,r) erasure coding construction,
the Resilience Manager divides its remote address space
into fixed-size address ranges. Each address range resides
in (k + r) remote slabs: k slabs for page data and r slabs
for parity (Figure 5). Each of the (k+ r) slabs of an address
range are distributed across (k+ r) independent failure do-
mains using CodingSets (§5). Page accesses are directed to
the designated (k + r) machines according to the address–
slab mapping. Although remote I/O happens at the page level,
the Resilience Manager coordinates with remote Resource
Monitors to manage coarse-grained memory slabs to reduce
metadata overhead and connection management complexity.

3.2 Resource Monitor

Resource Monitor manages a machine’s local memory and
exposes them to the remote Resilience Manager in terms of
fixed-size (SlabSize) memory slabs. Different slabs can be-
long to different machines’ Resilience Manager. During each
control period (ControlPeriod), the Resource Monitor tracks
the available memory in its local machine and proactively
allocates (reclaims) slabs to (from) remote mapping when
memory usage is low (high). It also performs slab regenera-
tion during remote failures or corruptions.

Fragmentation in Remote Memory During the registra-
tion of Resource Monitor(s), Resilience Manager registers the
RDMA memory regions and allocates slabs on the remote
machines based on its memory demand. Memory regions are
usually large (by default, 1GB) and the whole address space is
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homogeneously splitted. Moreover, RDMA drivers guarantee
the memory regions are generated in a contiguous physical
address space to ensure faster remote-memory access. Hydra
introduces no additional fragmentation in remote machines.

3.3 Failure Model

Assumptions In a large remote-memory cluster, (a) remote
servers may crash or networks may become partitioned; (b)
remote servers may experience memory corruption; (c) the
network may become congested due to background traffic;
and (d) workloads may have bursty access patterns. These
events can lead to catastrophic application-failures, high tail
latencies, or unpredictable performance. Hydra addresses all
of these uncertainties in its failure domain. Although Hydra
withstands a remote-network partition, as there is no local-
disk backup, it cannot handle local-network failure. In such
cases, the application is anyways inaccessible.

Single vs. Simultaneous Failure A single node failure
means the unavailability of slabs in a remote machine. In
such an event, all the data or parity allocated on the slab(s)
become unavailable. As we spread the data and parity splits
for a page across multiple remote machines (§5), during a
single node failure, we assume that only a single data or parity
split for that page is being affected.

Simultaneous host failures typically occur due to large-
scale failures, such as power or network outage that cause
multiple machines to become unreachable. In such a case, we
assume multiple data and/or parity splits for a page become
unavailable. Note that in both cases, the data is unavailable,
but not compromised. Resilience Manager can detect the un-
reachability and communicate to other available Resource
Monitor(s) on to regenerate specific slab(s).

4 Resilient Data Path
Hydra can operate on different resilient modes based on a
client’s need – (a) Failure Recovery: provides resiliency in
the presence of any remote failure or eviction; (b) Corruption
Detection: only detects the presence of corruption in remote
memory; (c) Corruption Correction: detects and corrects re-
mote memory corruption; and (d) EC-only mode: provides
erasure-coded faster remote-memory data path without any
resiliency guarantee. Note that both of the corruption modes
by default inherit the Failure Recovery mode.

Before initiating the Resilience Manager, one needs to con-
figure Hydra to a specific mode according to the resilience
requirements and memory overhead concerns (Table 1). Multi-
ple resilience modes cannot act simultaneously, and the modes
do not switch dynamically during runtime. In this section, we
present Hydra’s data path design to address the resilience
challenges mentioned in §2.3.

4.1 Hydra Remote Memory Data Path

To minimize erasure coding’s latency overheads, Resilience
Manager’s data path incorporate following design principles.

Data 
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Manager

End IO

Parity
Slab 1

(a) Remote Write

Decoding

Resilience
Manager
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Data 
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Data 
Slab 1

Parity
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(b) Remote Read
Figure 6: To handle failures, Hydra (a) first writes data splits,
then encodes/writes parities to hide encoding latency; (b) reads
from k+∆ slabs to avoid stragglers, finishes with first k arrivals.

4.1.1 Asynchronously Encoded Write

To hide the erasure coding latency, existing systems usually
perform batch coding where multiple pages are encoded to-
gether. The encoder waits until a certain number of pages are
available. This idle waiting time can be insignificant com-
pared to disk or slow network (e.g., TCP) access. However, to
maintain the tail latency of a remote I/O within the single-digit
µs range, this “batch waiting” time needs to be avoided.

During a remote write, Resilience Manager applies erasure
coding within each individual page by dividing it into k splits
(for a 4 KB page, each split size is 4

k KB), encodes these splits
using Reed-Solomon (RS) codes [77] to generate r parity
splits. Then, it writes these (k+ r) splits to different (k+ r)
slabs that have already been mapped to unique remote ma-
chines. Each Resilience Manager can have their own choice
of k and r. This individual page-based coding decreases la-
tency by avoiding the “batch waiting” time. Moreover, the
Resilience Manager does not have to read unnecessary pages
within the same batch during remote reads, which reduces
bandwidth overhead. Distributing remote I/O across many
remote machines increases I/O parallelism too.

Resilience Manager sends the data splits first, then it en-
codes and sends the parity splits asynchronously. Decoupling
the two hides encoding latency and subsequent write latency
for the parities without affecting the resilience guarantee. In
the absence of failure, any k successful writes of the (k+ r)
allow the page to be recovered. However, to ensure resilience
guarantee for r failures, all (k+ r) must be written. In the
failure recovery mode, a write is considered complete after
all (k+ r) have been written. In the corruption correction (de-
tection) mode, to correct (detect) ∆ corruptions, a write waits
for k+2∆+1 (k+∆) to be written. If the acknowledgement
fails to reach the Resilience Manager due to a failure in the
remote machine, the write for that split is considered failed.
Resilience Manager tries to write that specific split(s) after a
timeout period to another remote machine. Figure 6a depicts
the timeline of a page write in the failure recovery mode.

4.1.2 Late-Binding Resilient Read

During read, any k out of the k+ r splits suffice to reconstruct
a page. However, in failure recovery mode, to be resilient
in the presence of ∆ failures, during a remote read, Hydra
Resilience Manager reads from k+∆ randomly chosen splits
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Resilience Mode
# of
Errors

Minimum
# of Splits

Memory
Overhead

Failure Recovery r k 1+ r
k

Corruption Detection ∆ k+∆ 1+ ∆

k
Corruption Correction ∆ k+2∆+1 1+ 2∆+1

k
EC-only – k 1+ r

k
Table 1: Minimum number of splits needs to be written to/read
from remote machines for resilience during a remote I/O.

in parallel. A page can be decoded as soon as any k splits
arrive out of k+∆. The additional ∆ reads mitigate the impact
of stragglers on tail latency as well. Figure 6b provides an
example of a read operation in the failure recovery mode with
k = 2 and ∆ = 1, where one of the data slabs (Data Slab 2) is
a straggler. ∆ = 1 is often enough in practice.

If simply “detect and discard corrupted memory" is enough
for any application, one can configure Hydra with corruption
detection mode and avoid the extra memory overhead of cor-
ruption correction mode. In corruption detection mode, be-
fore decoding a page, the Resilience Manager waits for k+∆

splits to arrive to detect ∆ corruptions. After the detection of
a certain amount of corruptions, Resilience Manager marks
the machine(s) with corrupted splits as probable erroneous
machines, initiates a background slab recovery operation, and
avoids them during future remote I/O.

To correct the error, in corruption correction mode, when
an error is detected, it requests additional ∆+ 1 reads from
the rest of the k + r machines. Otherwise, the read com-
pletes just after the arrival of the k +∆ splits. If the error
rate for a remote machine exceeds a user-defined threshold
(ErrorCorrectionLimit), subsequent read requests involved
with that machine initiates with k+2∆+1 split requests as
there is a high probability to reach an erroneous machine.
This will reduce the wait time for additional ∆ + 1 reads.
This continues until the error rate for the involved machine
gets lower than the ErrorCorrectionLimit. If this continues
for long and/or the error rate goes beyond another threshold
(SlabRegenerationLimit), Resilience Manager initiates a slab
regeneration request for that machine.

One can configure Hydra with EC-only mode to access
erasure-coded remote memory and benefit from the fast data
path without any resiliency guarantee. In this mode, a remote
I/O completes just after writing/reading any k splits. Table 1
summarizes the minimum number of splits the Resilience
Manager requires to write/read during a remote I/O operation
to provide resiliency in different modes.

Overhead of Replication To remain operational after r fail-
ures, in-memory replication requires at least r+1 copies of an
entire 4 KB page, and hence the memory overhead is (r+1)×.
However, a remote I/O operation can complete just after the
confirmation from one of the r+1 machines. To detect and fix
∆ corruptions, replication needs ∆+1 and 2∆+1 copies of
the entire page, respectively. Thus, to provide the correctness
guarantee over ∆ corruptions, replication needs to wait until

k In-Page Data Splits r Parities in Buffer

Data Split Parity Split Page

k Data Splits in Page r Parity Splits in Buffer

Data Split

Parity SplitPage

In-place Decoding

(a) Remote Write

k In-Page Data Splits r Parities in Buffer

Data Split Parity Split Page

k Data Splits in Page r Parity Splits in Buffer

Data Split

Parity SplitPage

In-place Decoding

(b) Remote Read
Figure 7: Hydra performs in-place coding with an extra buffer of
r splits to reduce the data-copy latency.

it writes to or reads from at least 2∆+1 of the replicas along
with a memory overhead of (2∆+1)×.

4.1.3 Run-to-Completion

As Resilience Manager divides a 4 KB page into k smaller
pieces, RDMA messages become smaller. In fact, their net-
work latency decrease to the point that run-to-completion
becomes more beneficial than a context switch. Hence, to
avoid interruption-related overheads, the remote I/O request
thread waits until the RDMA operations are done.

4.1.4 In-Place Coding

To reduce the number of data copies, Hydra Resilience Man-
ager uses in-place coding with an extra buffer of r splits.
During a write, the data splits are always kept in-page while
the encoded r parities are put into the buffer (Figure 7a). Like-
wise, during a read, the data splits arrive at the page address,
and the parity splits find their way into the buffer (Figure 7b).

In the failure recovery mode, a read can complete as soon
as any k valid splits arrive. Corrupted/straggler data split(s)
can arrive late and overwrite valid page data. To address
this, as soon as Hydra detects the arrival of k valid splits, it
deregisters relevant RDMA memory regions. It then performs
decoding and directly places the decoded data in the page
destination. Because the memory region has already been
deregistered, any late data split cannot access the page. During
all remote I/O, requests are forwarded directly to RDMA
dispatch queues without additional copying.

4.2 Handling Uncertainties

Remote Failure Hydra uses reliable connections (RC) for
all RDMA communication. Hence, we consider unreachabil-
ity due to machine failures/reboots or network partition as the
primary cause of failure. When a remote machine becomes
unreachable, the Resilience Manager is notified by the RDMA
connection manager. Upon disconnection, it processes all the
in-flight requests in order first. For ongoing I/O operations,
it resends the I/O request to other available machines. Since
RDMA guarantees strict ordering, in the read-after-write case,
read requests will arrive at the same RDMA dispatch queue af-
ter write requests; hence, read requests will not be served with
stale data. Finally, Hydra marks the failed slabs and future
requests are directed to the available ones. If the Resource
Monitor in the failed machine revives and communicates later,
Hydra reconsiders the machine for further remote I/O.

Adaptive Slab Allocation/Eviction Resource Monitor al-
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locates memory slabs for Resilience Managers as well as
proactively frees/evicts them to avoid local performance im-
pacts (Figure 8). It periodically monitors local memory usage
and maintains a headroom to provide enough memory for
local applications. When the amount of free memory shrinks
below the headroom (Figure 8a), the Resource Monitor first
proactively frees/evicts slabs to ensure local applications are
unaffected. To find the eviction candidates, we avoid ran-
dom selection as it has a higher likelihood of evicting a busy
slab. Rather, we uses the decentralized batch eviction algo-
rithm [50] to select the least active slabs. To evict E slabs,
we contact (E +E ′) slabs (where E ′ ≤ E) and find the least-
frequently-accessed slabs among them. This doesn’t require
to maintain a global knowledge or search across all the slabs.

When the amount of free memory grows above the head-
room (Figure 8b), the Resource Monitor first attempts to make
the local Resilience Manager to reclaim its pages from remote
memory and unmap corresponding remote slabs. Furthermore,
it proactively allocates new, unmapped slabs that can be read-
ily mapped and used by remote Resilience Managers.

Background Slab Regeneration The Resource Monitor
also regenerates unavailable slabs – marked by the Resilience
Manager – in the background. During regeneration, writes to
the slab are disabled to prevent overwriting new pages with
stale ones; reads can still be served without interruption.

Hydra Resilience Manager uses the placement algorithm
to find a new regeneration slab in a remote Resource Monitor
with a lower memory usage. It then hands over the task of
slab regeneration to that Resource Monitor. The selected
Resource Monitor decodes the unavailable slab by directly
reading the k randomly-selected remaining valid slab for that
address region. Once regeneration completes, it contacts the
Resilience Manager to mark the slab as available. Requests
thereafter go to the regenerated slab.

5 CodingSets for High Availability
Hydra uses CodingSets, a novel coding group placement
scheme to perform load-balancing while reducing the prob-
ability of data loss. Prior works show orders-of-magnitude
more frequent data loss due to events causing multiple nodes
to fail simultaneously than data loss due to independent node
failures [27, 31]. Several scenarios can cause multiple servers
to fail or become unavailable simultaneously, such as network
partitions, partial power outages, and software bugs. For ex-
ample, a power outage can cause 0.5%-1% machines to fail or
go offline concurrently [28]. In case of Hydra, data loss will
happen if a concurrent failure kills more than r+1 of (k+ r)
machines for a particular coding group.

We are inspired by copysets, a scheme for preventing data
loss under correlated failures in replication [27, 28], which
constraints the number of replication groups, in order to re-
duce the frequency of data loss events. Using the same ter-
minology as prior work, we define each unique set of (k+ r)
servers within a coding group as a copyset. The number of
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Figure 8: Resource Monitor proactively allocates memory for re-
mote machines and frees local memory pressure.

copysets in a single coding group will be:
(k+r

r+1

)
. For exam-

ple, in an (8+2) configuration, where nodes are numbered
1,2, . . . ,10, the 3 nodes that will cause failure if they fail at
the same time (i.e., copysets) will be every 3 combinations of
10 nodes: (1,2,3),(1,2,4), . . . ,(8,9,10), and the total num-
ber of copysets will be

(10
3

)
= 120.

For a data loss event impacting exactly r+1 random nodes
simultaneously, the probability of losing data of a single spe-
cific coding group: P[Group] = Num. of Copysets in Coding Group

Total Copysets =
(k+r

r+1)
( N

r+1)
, where N is the total number of servers.

In a cluster with more than (k+ r) servers, we need to use
more than one coding group. However, if each server is a
member of a single coding group, hot spots can occur if one
or more members of that group are overloaded. Therefore, for
load-balancing purposes, a simple solution is to allow each
server to be a member of multiple coding groups, in case some
members of a particular coding group are over-loaded at the
time of online coding.

Assuming we have G disjoint coding groups, and the cor-
related failure rate is f %, the total probability of data loss is:
1− (1−P[Group] ·G)(

N· f
r+1). We define disjoint coding groups

where the groups do not share any copysets; or in other words,
they do not overlap by more than r nodes.

Strawman: Multiple Coding Groups per Server In order
to equalize load, we consider a scheme where each slab forms
a coding group with the least-loaded nodes in the cluster at
coding time. We assume the nodes that are least loaded at a
given time are distributed randomly, and the number of slabs
per server is S. When S · (r+ k)� N, the coding groups are
highly likely to be disjoint [28], and the number of groups is

equal to: G =
N ·S
k+ r

.

We call this placement strategy the EC-Cache scheme, as
it produces a random coding group placement used by the
prior state-of-the-art in-memory erasure coding system, EC-
Cache [76]. In this scheme, with even a modest number of
slabs per server, a high number of combinations of r+1 ma-
chines will be a copyset. In other words, even a small number
of simultaneous node failures in the cluster will result in data
loss. When the number of slabs per server is high, almost
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every combination of only r + 1 failures across the cluster
will cause data loss. Therefore, to reduce the probability of
data loss, we need to minimize the number of copysets, while
achieving sufficient load balancing.

CodingSets: Reducing Copysets for Erasure Coding To
this end, we propose CodingSets, a novel load-balancing
scheme, which reduces the number of copysets for distributed
erasure coding. Instead of having each node participate in
several coding groups like in EC-Cache, in our scheme, each
server belongs to a single, extended coding group. At time of
coding, (k+ r) slabs will still be considered together, but the
nodes participating in the coding group are chosen from a set
of (k+ r+ l) nodes, where l is the load-balancing factor. The
nodes chosen within the extended group are the least loaded
ones. While extending the coding group increases the number
of copysets (instead of

(k+r
r+1

)
copysets, now each extended

coding group creates
(k+r+l

r+1

)
copysets, while the number of

groups is G =
N

k+ r+ l
), it still has a significantly lower prob-

ability of data loss than having each node belong to multiple
coding groups. Hydra uses CodingSets as its load balancing
and slab placement policy. We evaluate it in Section 7.2.

Tradeoff Note that while CodingSets reduces the probabil-
ity of data loss, it does not reduce the expected amount of data
lost over time. In other words, it reduces the number of data
loss events, but each one of these events will have a propor-
tionally higher magnitude of data loss (i.e., more slabs will be
affected) [28]. Given that our goal with Hydra is high avail-
ability, we believe this is a favorable trade off. For example,
providers often provide an availability SLA, that is measured
by the service available time (e.g., the service is available
99.9999% of the time). CodingSets would optimize for such
an SLA, by minimizing the frequency of unavailability events.

6 Implementation

Resilience Manager is implemented as a loadable kernel mod-
ule for Linux kernel 4.11 or later. Kernel-level implementa-
tion facilitates its deployment as an underlying block device
for different remote-memory systems [18, 50, 81]. We inte-
grated Hydra with two remote-memory systems: Infiniswap,
a disaggregated VMM and Remote Regions, a disaggregated
VFS. All I/O operations (e.g., slab mapping, memory regis-
tration, RDMA posting/polling, erasure coding) are indepen-
dent across threads and processed without synchronization.
All RDMA operations use RC and one-sided RDMA verbs
(RDMA WRITE/READ). Each Resilience Manager main-
tains one connection for each active remote machine. For
erasure coding, we use x86 AVX instructions and the ISA
library [8] that achieves over 4 GB/s encoding throughput per
core for (8+2) configuration in our evaluation platform.

Resource Monitor is implemented as a user-space program.
It uses RDMA SEND/RECV for all control messages.

7 Evaluation

We evaluate Hydra on a 50-machine 56 Gbps InfiniBand
CloudLab cluster against Infiniswap [50], Leap [65] (disag-
gregated VMM) and Remote Regions [18] (disaggregated
VFS). Our evaluation addresses the following questions:

• Does it improve the resilience of cluster memory? (§7.1)
• Does it improve the availability? (§7.2)
• What is its overhead and sensitivity to parameters? (§7.3)
• How much TCO savings can we expect? (§7.4)
• What is its benefit over a persistent memory setup? (§7.5)

Methodology Unless otherwise specified, we use k=8, r=2,
and ∆=1, targeting 1.25× memory and bandwidth overhead.
We select r=2 because late binding is still possible even
when one of the remote slab fails. The additional read ∆=1
incurs 1.125× bandwidth overhead during reads. We use
1GB SlabSize, The additional number of choices for eviction
E ′ = 2. Free memory headroom is set to 25%, and the control
period is set to 1 second. Each machine has 64 GB of DRAM
and 2× Intel Xeon E5-2650v2 with 32 virtual cores.

We compare Hydra against the following alternatives:

• SSD Backup: Each page is backed up in a local SSD for
the minimum 1× remote memory overhead. We consider
both disaggregated VMM and VFS systems.

• Replication: We directly write each page over RDMA to
two remote machines’ memory for a 2× overhead.

• EC-Cache w/ RDMA: Implementation of the erasure cod-
ing scheme in EC-Cache [76], but implemented on RDMA.

Workload Characterization Our evaluation consists of
both micro-benchmarks and cluster-scale evaluations with
real-world applications and workload combinations.

• We use TPC-C [16] on VoltDB [17]. We perform 5 different
types of transactions to simulate an order-entry environ-
ment. We set 256 warehouses and 8 sites and run 2 million
transactions. Here, the peak memory usage is 11.5 GB.

• We use Facebook’s ETC, SYS workloads [21] on Mem-
cached [12]. First, we use 10 million SETs to populate the
Memcached server. Then we perform another 10 million
operations (for ETC: 5% SETs, 95% GETs, for SYS: 25%
SETs, 75% GETs). The key size is 16 bytes and 90% of the
values are evenly distributed between 16–512 bytes. Peak
memory usages are 9 GB for ETC and 15 GB for SYS.

• We use PageRank on PowerGraph [48] and Apache
Spark/GraphX [49] to measure the influence of Twitter
users on followers on a graph with 11 million vertices [56].
Peak memory usages are 9.5 GB and 14 GB, respectively.

7.1 Resilience Evaluation

We evaluate Hydra both in the presence and absence of fail-
ures with microbenchmarks and real-world applications.
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Figure 9: Hydra provides better latency characteristics during
both disaggregated VMM and VFS operations.
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Figure 10: Hydra latency breakdown through CCDF.

7.1.1 Latency Characteristics

First, we measure Hydra’s latency characteristics with micro-
benchmarks in the absence of failures. Then we analyze the
impact of its design components.

Disaggregated VMM Latency We use a simple applica-
tion with its working set size set to 2GB. It is provided 1GB
memory to ensure that 50% of its memory accesses cause
paging. While using disaggregated memory for remote page-
in, Hydra improves page-in latency over Infiniswap with SSD
backup by 1.79× at median and 1.93× at the 99th percentile.
Page-out latency is improved by 1.9× and 2.2× over Infin-
iswap at median and 99th percentile, respectively. Replication
provides at most 1.1× improved latency over Hydra, while
incurring 2× memory and bandwidth overhead (Figure 9a).

Disaggregated VFS Latency We use fio [5] to generate
one million random read/write requests of 4 KB block I/O.
During reads, Hydra provides improved latency over Remote
Regions by 2.13× at median and 2.04× at the 99th percentile.
During writes, Hydra also improves the latency over Remote
Regions by 2.22× at median and 1.74× at the 99th percentile.
Replication has a minor latency gain over Hydra, improving
latency by at most 1.18× (Figure 9b).

Benefit of Data Path Components Erasure coding over
RDMA (i.e., EC-Cache with RDMA) performs worse than
disk backup due to its coding overhead. Figure 10 shows the
benefit of Hydra’s data path components to reduce the latency.
1. Run-to-completion avoids interruptions during remote

I/O, reducing the median read and write latency by 51%.
2. In-place coding saves additional time for data copying,

which substantially adds up in remote-memory systems,
reducing 28% of the read and write latency.
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Figure 12: Latency in the presence of uncertainty events.

3. Late binding specifically improves the tail latency during
remote read by 61% by avoiding stragglers. The additional
read request increases the median latency only by 6%.

4. Asynchronous encoding hides erasure coding overhead
during writes, reducing the median write latency by 38%.

Tail Latency Breakdown The latency of Hydra consists of
the time for (i) RDMA Memory Registration (MR), (ii) ac-
tual RDMA read/write, and (iii) erasure coding. Even though
decoding a page takes about 1.5µs, late binding effectively im-
proves the tail latency by 1.55× (Figure 11a). During writes,
asynchronous encoding hides encoding latency and latency
impacts of straggling splits, improving tail latency by 1.34×
w.r.t. synchronous encoding (Figure 11b). At the presence
of corruption (r = 3), accessing extra splits increases the tail
latency by 1.51× and 1.09× for reads and writes, respectively.

7.1.2 Latency Under Failures

Background Flows We generate RDMA flows on the re-
mote machine constantly sending 1 GB messages. Unlike
SSD backup and replication, Hydra ensures consistent latency
due to late binding (Figure 12a). Hydra’s latency improve-
ment over SSD backup is 1.97–2.56×. It even outperforms
replication at the tail read (write) latency by 1.33× (1.50×).

Remote Failures Both read and write latency are disk-
bound when it’s necessary to access the backup SSD (Fig-
ure 12b). Hydra reduces latency over SSD backup by 8.37–
13.6× and 4.79–7.30× during remote read and write, respec-
tively. Furthermore, it matches the performance of replication.

7.1.3 Application-Level Performance

We now focus on Hydra’s benefits for real-world memory-
intensive applications and compare it with that of SSD backup
and replication. We consider container-based application de-
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TPS/OPS
(thousands) Latency (ms)

50th 99th
HYD REP HYD REP HYD REP

VoltDB
100% 39.4 39.4 52.8 52.8 134.0 134.0
75% 36.1 35.3 56.3 56.1 142.0 143.0
50% 32.3 34.0 57.8 59.0 161.0 168.0

ETC
100% 123.0 123.0 123.0 123.0 257.0 257.0
75% 119.0 125.0 120.0 121.0 255.0 257.0
50% 119.0 119.0 118.0 122.0 254.0 264.0

SYS
100% 108.0 108.0 125.0 125.0 267.0 267.0
75% 100.0 104.0 120.0 125.0 262.0 305.0
50% 101.0 102.0 117.0 123.0 257.5 430.0

Table 2: Hydra (HYD) provides similar performance to replica-
tion (REP) for VoltDB and Memcached workloads (ETC and
SYS). Higher is better for throughput; Lower is better for latency.

Apache Spark/GraphX
Completion Time (s)

PowerGraph
Completion Time (s)

100% 75% 50% 100% 75% 50%
Hydra 77.91 105.41 191.93 73.10 66.90 68.00

Replication 77.91 91.89 195.54 73.10 73.30 73.70
Table 3: Hydra also provides similar completion time to replica-
tion for graph analytic applications.

ployment [82] and run each application in an lxc container
with a memory limit to fit 100%, 75%, 50% of the peak mem-
ory usage for each application. For 100%, applications run
completely in memory. For 75% and 50%, applications hit
their memory limits and performs remote I/O via Hydra.

We present Hydra’s application-level performance against
replication (Table 2 and Table 3) to show that it can achieve
similar performance with a lower memory overhead even in
the absence of any failures. For brevity, we omit the results for
SSD backup, which performs much worse than both Hydra
and replication – albeit with no memory overhead.

For VoltDB, when half of its data is in remote memory, Hy-
dra achieves 0.82× throughput and almost transparent latency
characteristics compared to the fully in-memory case.

For Memcached, at 50% case, Hydra achieves 0.97×
throughput with read-dominant ETC workloads and 0.93×
throughput with write-intensive SYS workloads compared to
the 100% scenario. Here, latency overhead is almost zero.

For graph analytics, Hydra could achieve almost transparent
application performance for PowerGraph; thanks to its opti-
mized heap management. However, it suffers from increased
job completion time for GraphX due to massive thrashing of
in-memory and remote memory data – the 14 GB working
set oscillates between paging-in and paging-out. This causes
bursts of RDMA reads and writes. Even then, Hydra outper-
forms Infiniswap with SSD backup by 8.1×. Replication does
not have significant gains over Hydra.

Performance with Leap Hydra’s drop-in resilience mech-
anism is orthogonal to the functionalities of remote-memory
frameworks. To observe Hydra’s benefit even with faster in-
kernel lightweight remote-memory data path, we integrate
it to Leap [65] and run VoltDB and PowerGraph with 50%
remote-memory configurations.

Leap waits for an interrupt during a 4KB remote I/O,
whereas Hydra splits a 4KB page into smaller chunks and
performs asynchronous remote I/O. Note that RDMA read
for 4KB-vs-512B is 4µs-vs-1.5µs. With self-coding and run-
to-completion, Hydra provides competitive performance guar-
antees as Leap for both VoltDB (0.99× throughput) and Pow-
erGraph (1.02× completion time) in the absence of failures.

7.1.4 Application Performance Under Failures

Now we analyze Hydra’s performance in the presence of fail-
ures and compare against the alternatives. In terms of impact
on applications, we first go back to the scenarios discussed in
Section 2.2 regarding to VoltDB running with 50% memory
constraint. Except for the corruption scenario where we set
r=3, we use Hydra’s default parameters. At a high level, we
observe that Hydra performs similar to replication with 1.6×
lower memory overhead (Figure 13).

Next, we start each benchmark application in 50% settings
and introduce one remote failure while it is running. We select
a Resource Monitor with highest slab activities and kill it. We
measure the application’s performance while the Resilience
Manager initiates the regeneration of affected slabs.

Hydra’s application-level performance is transparent to the
presence of remote failure. Figure 14 shows Hydra provides
almost similar completion times to that of replication at a
lower memory overhead in the presence of remote failure. In
comparison to SSD backup, workloads experience 1.3–5.75×
lower completion times using Hydra. Hydra provides similar
performance at the presence of memory corruption. Comple-
tion time gets improved by 1.2–4.9× w.r.t. SSD backup.

7.2 Availability Evaluation

In this section, we evaluate Hydra’s availability and load bal-
ancing characteristics in large clusters.

7.2.1 Analysis of CodingSets

We compare the availability and load balancing of Hydra with
EC-Cache and power-of-two-choices [67]. In CodingSets,
each server is attached to a disjoint coding group. During en-
coded write, the (k+ r) least loaded nodes are chosen from a
subset of the (k+r+ l) coding group at the time of replication.
EC-Cache simply assigns slabs to coding groups comprising
of random nodes. Power-of-two-choices finds two candidate
nodes at random for each slab, and picks the less loaded one.

Probability of Data Loss Under Simultaneous Failures
To evaluate the probability of data loss of Hydra under dif-
ferent scenarios in a large cluster setting, we compute the
probability of data loss under the three schemes. Note that,
in terms of data loss probability, we assume EC-Cache and
power of two choices select random servers, and are therefore
equivalent. Figure 15 compares the probabilities of loss for
different parameters on a 1000-machine cluster. Our baseline
comparison is against the best case scenario for EC-Cache
and power-of-two-choices, where the number of slabs per
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Figure 13: Hydra throughput with the same setup in Figure 3.
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Figure 14: Hydra provides transparent completions in the pres-
ence of failure. Note that the Y-axis is in log scale.
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Figure 15: Probability of data loss at different scenarios (base pa-
rameters k=8, r=2, l=2, S=16, f =1%) on a 1000-machine cluster.

server is low (1 GB slabs, with 16 GB of memory per server).
Even for a small number of slabs per server, Hydra reduces

the probability of data loss by an order of magnitude. With
a large number of slabs per server (e.g., 100) the probability
of failure for EC-Cache becomes very high during correlated
failure. Figure 15 shows that there is an inherent trade-off
between the load-balancing factor (l) and the probability of
data loss under correlated failures.

Load Balancing of CodingSets Figure 16 compares the
load balancing of the three policies. EC-Cache’s random se-
lection of (k+ r) nodes causes a higher load imbalance, since
some nodes will randomly be overloaded more than others.
As a result, CodingSets improves load balancing over EC-
Cache scheme by 1.1× even when l = 0, since CodingSets’
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Figure 16: CodingSets enhances Hydra with better load balanc-
ing across the cluster (base parameters k=8, r=2).

Latency (ms) 50th 99th
SSD HYD REP SSD HYD REP

VoltDB
100% 55 60 48 179 173 177

75% 60 57 48 217 185 225
50% 78 61 48 305 243 225

ETC
100% 138 119 118 260 245 247

75% 148 113 120 9912 240 263
50% 167 117 111 10175 244 259

SYS
100% 145 127 125 249 269 267

75% 154 119 113 17557 271 321
50% 124 111 117 22828 452 356

Table 4: VoltDB and Memcached (ETC, SYS) latencies for SSD
backup, Hydra (HYD) and replication (REP) in cluster setup.

coding groups are non-overlapping. For l = 4, CodingSets
provides with 1.5× better load balancing over EC-Cache at
1M machines. The power of two choices improves load bal-
ancing by 0%-20% compared CodingSets with l = 2, because
it has more degrees of freedom in choosing nodes, but suffers
from an order of magnitude higher failure rate (Figure 15).

7.2.2 Cluster Deployment

We run 250 containerized applications across 50 machines.
For each application and workload, we create a container and
randomly distribute it across the cluster. Here, total memory
footprint is 2.76 TB; our cluster has 3.20 TB of total memory.
Half of the containers use 100% configuration; about 30% use
the 75% configuration; and the rest use the 50% configuration.
There are at most two simultaneous failures.

Application Performance We compare application perfor-
mance in terms of completion time (Figure 17) and latency
(Table 4) that demonstrate Hydra’s performance benefits in
the presence of cluster dynamics. Hydra’s improvements in-
crease with decreasing local memory ratio. Its throughput
improvements w.r.t. SSD backup were up to 4.87× for 75%
and up to 20.61× for 50%. Its latency improvements were
up to 64.78× for 75% and up to 51.47× for 50%. Hydra’s
performance benefits are similar to replication (Figure 17c),
but with lower memory overhead.
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Figure 17: Median completion times (i.e., throughput) of 250 containers on a 50-machine cluster.
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Figure 19: Impact of page splits (k), additional reads (∆) on read
latency, and parity splits (r) on write latency.

Impact on Memory Imbalance and Stranding Figure 18
shows that Hydra reduces memory usage imbalance w.r.t.
coarser-grained memory management systems: in compari-
son to SSD backup-based (replication-based) systems, mem-
ory usage variation decreased from 18.5% (12.9%) to 5.9%
and the maximum-to-minimum utilization ratio decreased
from 6.92× (2.77×) to 1.74×. Hydra better exploits unused
memory in under-utilized machines, increasing the minimum
memory utilization of any individual machine by 46%. Hydra
incurs about 5% additional total memory usage compared to
disk backup, whereas replication incurs 20% overhead.

7.3 Sensitivity Evaluation

Impact of (k, r, ∆) Choices Figure 19a shows read latency
characteristics for varying k. Increasing from k=1 to k=2
reduces median latency by parallelizing data transfers. Further
increasing k improves space efficiency (measured as r

k+r ) and
load balancing, but latency deteriorates as well.

Figure 19b shows read latency for varying values of ∆. Al-
though just one additional read (from ∆=0 to ∆=1) helps tail
latency, more additional reads have diminishing returns; in-
stead, it hurts latency due to proportionally increasing commu-
nication overheads. Figure 19c shows write latency variations
for different r values. Increasing r does not affect the median
write latency. However, the tail latency increases from r = 3
due to the increase in overall communication overheads.

Monthly Pricing Google Amazon Microsoft
Standard machine $1,553 $2,304 $1,572
1% memory $5.18 $9.21 $5.92
Hydra 6.3% 8.4% 7.3%
Replication 3.3% 4.8% 3.9%
PM Backup 3.5% 7.6% 4.9%

Table 5: Revenue model and TCO savings over three years for
each machine with 30% unused memory on average.

Resource Overhead We measure average CPU utilization
of Hydra components during remote I/O. Resilience Manager
uses event-driven I/O and consumes only 0.001% CPU cycles
in each core. Erasure coding causes 0.09% extra CPU usage
per core. As Hydra uses one-sided RDMA, remote Resource
Monitors do not have CPU overhead in the data path.

In cluster deployment, Hydra increases CPU utilization
by 2.2% on average and generates 291 Mbps RDMA traffic
per machine, which is only 0.5% of its 56 Gbps bandwidth.
Replication has negligible CPU usage but generates more
than 1 Gbps traffic per machine.

Background Slab Regeneration To observe the overall
latency to regenerate a slab, we manually evict one of the
remote slabs. When it is evicted, Resilience Manager places
a new slab and provides the evicted slab information to the
corresponding Resource Monitor, which takes 54 ms. Then
the Resource Monitor randomly selects k out of remaining
remote slabs and read the page data, which takes 170 ms for
a 1 GB slab. Finally, it decodes the page data to the local
memory slab within 50 ms. Therefore, the total regeneration
time for a 1 GB size slab is 274 ms, as opposed to taking
several minutes to restart a server after failure.

To observe the impact of slab regeneration on disaggregated
VMM, we run the micro-benchmark mentioned in §7.1. At
the half-way of the application’s runtime, we evict one of the
remote slabs. Background slab regeneration has a minimal
impact on the remote read – remote read latency increases
by 1.09×. However, as remote writes to the victim slab halts
until it gets regenerated, write latency increases by 1.31×.

7.4 TCO Savings

We limit our TCO analysis only to memory provisioning. The
TCO savings of Hydra is the revenue from leveraged unused
memory after deducting the TCO of RDMA hardware. We
consider capital expenditure (CAPEX) of acquiring RDMA
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System Year Deployability Fault Tolerance Load Balancing Latency Tolerance

Memory Blade [61] ’09 HW Change Reprovision None None
RamCloud [73] ’10 App. Change Remote Disks Power of Choices None

FaRM [42] ’14 App. Change Replication Central Coordinator None
EC-Cache [76] ’16 App. Change Erasure Coding Multiple Coding Groups Late Binding
Infiniswap [50] ’17 Unmodified Local Disk Power of Choices None

Remote Regions [18] ’18 App. Change None Central Manager None
LegoOS [81] ’18 OS Change Remote Disk None None

Compressed Far Memory [58] ’19 OS Change None None None
Leap [65] ’20 OS Change None None None
Kona [22] ’21 HW Change Replication None None

Hydra Unmodified Erasure Coding CodingSets Late Binding
Table 6: Selected proposals on remote memory in recent years.

hardware and operational expenditure (OPEX) including their
power usage over 3 years. An RDMA adapter costs $600 [10],
RDMA switch costs $318 [11] per machine, and the operating
cost is $52 over 3 years [50] – overall, the 3-year TCO is
$970 for each machine. We consider the standard machine
configuration and pricing from Google Cloud Compute [7],
Amazon EC2 [2], and Microsoft Azure [2] to build revenue
models and calculate the TCO savings for 30% of leveraged
memory for each machine (Table 5). For example, in Google,
the savings of disaggregation over 3 years using Hydra is
(($5.18*30*36)/1.25-$970)/($1553*36)*100% = 6.3%.

7.5 Disaggregation with Persistent Memory Backup

To observe the impact of persistent memory (PM), we run all
the micro-benchmarks and real-world applications mentioned
earlier over Infiniswap with local PM backup. Unfortunately,
at the time of writing, we cannot get hold of a real Intel Op-
tane DC. We emulate PM using DRAM with the latency
characteristics mentioned in prior work [34].

Replacing SSD with local PM can significantly improve
Infiniswap’s performance in a disaggregated cluster. However,
for the micro-benchmark mentioned in §7.1, Hydra still pro-
vides 1.06× and 1.09× better 99th percentile latency over
Infiniswap with PM backup during page-in and page-out,
respectively. Even for real-world applications mentioned in
§7.1.3, Hydra almost matches the performance of local PM
backup – application-level performance varies within 0.94–
1.09× of that with PM backup. Note that replacing SSD with
PM throughout the cluster does not improve the availability
guarantee in the presence of cluster-wide uncertainties. More-
over, while resiliency through unused remote DRAM is free,
PM backup costs $11.13/GB [14]. In case of Google, the addi-
tional cost of $2671.2 per machine for PM reduces the savings
of disaggregation over 3 years from 6.3% to (($5.18*30*36)-
$970-$2671.2)/($1553*36)*100% = 3.5% (Table 5).

8 Related Work
Remote-Memory Systems Many software systems tried
leveraging remote machines’ memory for paging [1,22,26,43,
45,50,58,59,64,65,71,79], global virtual memory abstraction
[15, 44, 55], and to create distributed data stores [3, 29, 30,

42, 54, 60, 73, 78]. Hardware-based remote access to memory
using PCIe interconnects [61] and extended NUMA fabric
[72] are also proposed. Table 6 compares a selected few.

Cluster Memory Solutions With the advent of RDMA,
there has been a renewed interest in cluster memory solutions.
The primary way of leveraging cluster memory is through
key-value interfaces [42, 52, 66, 73], distributed shared mem-
ory [70,75], or distributed lock [85]. However, these solutions
are either limited by their interface or replication overheads.
Hydra, on the contrary, is a transparent, memory-efficient, and
load-balanced mechanism for resilient remote memory.

Erasure Coding in Storage Erasure coding has been
widely employed in RAID systems to achieve space-efficient
fault tolerance [80, 90]. Recent large-scale clusters leverage
erasure coding for storing cold data in a space-efficient man-
ner to achieve fault-tolerance [51,69,83]. EC-Cache [76] is an
erasure-coded in-memory cache for 1MB or larger objects, but
it is highly susceptible to data loss under correlated failures,
and its scalability is limited due to communication overhead.
In contrast, Hydra achieves resilient erasure-coded remote
memory with single-digit µs page access latency.

9 Conclusion
Hydra leverages online erasure coding to achieve single-digit
µs latency under failures, while judiciously placing erasure-
coded data using CodingSets to improve availability and load
balancing. It matches the resilience of replication with 1.6×
lower memory overhead and significantly improves latency
and throughput of real-world memory-intensive applications
over SSD backup-based resilience. Furthermore, CodingSets
allows Hydra to reduce the probability of data loss under
simultaneous failures by about 10×. Overall, Hydra makes
resilient remote memory practical.
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Abstract
Non-volatile memory (NVM) has emerged as a new mem-

ory media, resulting in a hybrid NVM/DRAM configuration in
typical servers. Memory-intensive applications competing for
the scant memory bandwidth can yield degraded performance.
Identifying the noisy neighbors and regulating the memory
bandwidth usage of them can alleviate the contention and
achieve better performance. This paper finds that bandwidth
competition is more severe on hybrid platforms and can even
significantly degrade the total system bandwidth. Besides the
absolute bandwidth, the competition is also highly correlated
with the bandwidth type. Unfortunately, NVM and DRAM
share the same memory bus, and their traffic is mixed together
and interferes with each other, making memory bandwidth
regulation a challenge on hybrid NVM/DRAM platforms.

This paper first presents an analysis of memory traffic in-
terference and then introduces MT2 to regulate memory band-
width among concurrent applications on hybrid NVM/DRAM
platforms. Specifically, MT2 first detects memory traffic inter-
ference and monitors different types of memory bandwidth of
applications from the mixed traffic through hardware monitors
and software reports. MT2 then leverages a dynamic band-
width throttling algorithm to regulate memory bandwidth
with multiple mechanisms. To expose such a facility to ap-
plications, we integrate MT2 into the cgroup mechanism by
adding a new subsystem for memory bandwidth regulation.
The evaluation shows that MT2 can accurately identify the
noisy neighbors, and the regulation on them allows other ap-
plications to improve performance by up to 2.6× compared
to running with unrestricted noisy neighbors.

1 Introduction
Emerging fast, byte-addressable NVM, such as phase-change
memory (PCM) [41, 52], STT-MRAM [25, 37], Memris-
tor [56], and Intel’s 3D-XPoint [55], are promising to be
employed to build fast cloud data centers. Intel Optane DC
Persistent Memory, the first commercially available NVM
product, has been released in 2019 [28, 33] and deployed in
cloud environments, such as Google Cloud [13].

NVM has attracted many research efforts on exploring
its usage scenarios. Consequently, an increasing number of
NVM-aware file systems [19–21, 38, 53, 54, 60, 62, 63], NVM
programming libraries [9, 70], NVM data structures [26, 42,
46,64,73] and NVM-based databases [5,10,45] have been pro-
posed and studied, which in turns accelerates the widespread
deployment of NVM. NVM is being deployed in data cen-
ters as fast byte-addressable storage or large-volume runtime
memory that lies side-by-side with the volatile DRAM, result-
ing in hybrid NVM/DRAM platforms.

However, the hybrid NVM/DRAM platforms exacerbate
the noisy neighbor problem. In cloud environments, a physical
platform may be shared by many users. Applications, con-
tainers, or VMs of different users inevitably share the same
memory bus on the platform. Some applications may over-
utilize memory bandwidth, either accidentally or intentionally,
and become the noisy neighbors that significantly affect the
performance of other applications. On hybrid NVM/DRAM
platforms, both NVM and DRAM are attached to the memory
bus. As a result, different applications compete for the limited
memory bandwidth, and different kinds of memory traffic
interfere with each other, reducing the overall performance of
all applications on the hybrid NVM/DRAM platform.

Memory bandwidth regulation is one common approach
that reduces the interference of memory bandwidth usage
to mitigate the noisy neighbor problem. With the commer-
cial use of NVM in cloud data centers, the need for memory
bandwidth regulation on hybrid platforms is imminent. How-
ever, several significant challenges hinder memory bandwidth
regulation on NVM/DRAM hybrid platforms.

The first challenge is memory bandwidth asymmetry. On
NVM/DRAM hybrid platforms, different memory accesses
(i.e., DRAM reads, DRAM writes, NVM reads and NVM
writes) yield different maximal memory bandwidth. The ac-
tual available memory bandwidth heavily depends on the
proportions of different kinds of memory accesses in the
workload. Thus, it is no longer appropriate to assume a static
maximal memory bandwidth and disregard the difference be-
tween different memory accesses like in prior work [67–69].
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Especially, the maximal NVM bandwidth is usually relatively
smaller than DRAM bandwidth. Besides, we find that dif-
ferent types of memory accesses interfere with each other
differently, making it even more difficult to estimate the avail-
able memory bandwidth under various workloads. Thus, the
assumption that all memory accesses are equal (as in prior
work [67–69]) does not hold anymore.

The second challenge stems from the fact that NVM shares
the memory bus with DRAM on existing NVM/DRAM hy-
brid platforms [3]. On existing hybrid platforms, NVM traffic
and DRAM traffic are inevitably mixed and difficult to sep-
arate. With the mixed memory traffic, monitoring different
kinds of memory bandwidth on a per-process basis become
almost impossible [49], which invalidates existing hardware
and software regulation approaches designed for DRAM.

The third challenge is inadequate hardware and software
mechanisms for memory regulation. As both NVM and
DRAM are directly accessible by CPU load/store instructions,
counting and throttling each memory access is impractical
for the sake of performance. CPU vendors, such as Intel, pro-
vide hardware mechanisms to regulate the memory bandwidth.
However, the bandwidth restriction is coarse-grained and qual-
itative, which is insufficient for precise memory bandwidth
regulation. Some other approaches, such as frequency scaling
and CPU scheduling, may provide relatively finer-grained
bandwidth adjustment. However, they are also qualitative and
slow down both computation and memory accesses, thus inef-
ficient for the overall platform performance.

In this paper, we reveal severe bandwidth interference prob-
lems in hybrid memory platforms and propose MT2 (short
for Memory Traffic Throttle) to address the above challenges.
MT2 collaboratively leverages several hardware and software
techniques to monitor real-time bandwidth of different types
of memory accesses. To regulate memory bandwidth with
non-static maximal memory bandwidth, MT2 proposes a dy-
namic memory bandwidth throttling framework, combining
both hardware and software techniques to provide efficient
memory bandwidth regulation.

We have implemented MT2 as a new subsystem in the ex-
isting Linux control groups (cgroups) and applied MT2 to
mitigate the noisy neighbor problem and demonstrate MT2’s
effectiveness in two more scenarios: memory bandwidth al-
location and cloud SLO guarantee. Performance evaluation
shows that MT2 can effectively regulate memory bandwidth
on hybrid platforms with nearly zero performance overhead.

In summary, the contributions of this paper include:
• A survey uncovering the problem of memory bandwidth

interference that leads to notable performance churn for
memory-intensive applications on hybrid NVM/DRAM
platforms (§2);

• The first study on existing hardware and software mem-
ory bandwidth regulation mechanisms on hybrid NVM/-
DRAM platforms (§3.3.1);

• The design and implementation of MT2, the first compre-

hensive system that efficiently and effectively regulates
memory bandwidth on hybrid NVM/DRAM platforms
with thread-level granularity (§3 and §4);

• Detailed evaluation of MT2 in noisy neighbor suppres-
sion and other two scenarios (§5) on Intel Optane PM to
illustrate MT2’s effectiveness and overhead (§6).

2 Background
2.1 Noisy Neighbors
In complex modern multi-tenant cloud environments, mem-
ory bandwidth can significantly impact applications’ overall
performance. In a cloud data center, some applications may
over-utilize memory bandwidth, which will affect the perfor-
mance of other applications. These applications that over-
utilize memory bandwidth are usually called noisy neighbors,
and the affected applications are the victims.

Two strategies can mitigate the noisy neighbor problem.
The prevention strategy proactively sets bandwidth limits for
applications to keep anyone from being a potential noisy
neighbor. The remedy strategy monitors the system for the
presence of noisy neighbors and identifies then limits the
bandwidth usage of appeared noisy neighbors. Both strategies
require a system to monitor applications’ bandwidth usage
and/or the system-wide traffic interference level and provide
effective mechanisms to limit applications’ memory traffic.

2.2 NVM
The release of Intel Optane DC Persistent Memory (Op-
tane PM) marks the widespread commercial deployment of
NVM [28, 33]. With Intel’s proprietary DDR-T protocol [33],
Optane PM can be directly accessed via CPU load/store in-
structions. However, the actual bandwidth of NVM is still far
below DRAM [34].

Before the public release of Optane PM, NVM has been
widely studied in academia and industry. Some NVM-aware
file systems, such as PMFS [53], NOVA [62,63], SoupFS [21],
Strata [38], SplitFS [35] and ZoFS [20], are proposed to pro-
vide file abstraction over NVM. Applications can create files
on these file systems and map the files using mmap to ac-
cess NVM directly. For example, Marathe et al. [45] modify
Memcached [7], a popular high-performance memory object
caching system, to run upon NVM using files and mmap.

However, managing persistent files by hand can be labo-
rious. Intel develops Persistent Memory Development Kit
(PMDK) [9], which is a suite of open-source libraries to sim-
plify the programming model of NVM. With PMDK, pro-
grammers do not need to manage persistent files by them-
selves. Instead, they can utilize PMDK abstractions, such
as objects, transactions and simple persistent data structures,
to develop NVM-aware applications more easily. Many in-
memory or storage systems are ported to NVM using PMDK,
such as PmemKV [5] and Pmem-RocksDB [10].

NVM is increasingly deployed in data centers. For exam-
ple, SAP HANA has deployed Optane PM in its data plat-
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Figure 1: The impact of memory interference of two tasks. The first
column is the bandwidth of Task A when it runs alone (in GB/s) and
the last 4 columns are the bandwidth of Task A as a percentage of the
first column when two tasks run simultaneously and compete for the
bandwidth. Task B decrease Task A’ throughput by 21 to 64%. The
darkest block at the top row shows that NVM write bandwidth affect
NVM read bandwidth significantly. Different types of bandwidth
affect others differently.

forms [14]. Google Cloud has deployed Optane PM on its
virtual machines in public clouds [13].

2.3 Memory Bandwidth Interference
Despite the advantages NVM has brought to the data center,
the use of NVM on the hybrid NVM/DRAM platforms in-
creases the complexity of the memory bandwidth interference
due to the fact that NVM and DRAM share the memory bus.

To illustrate the impact between different types of band-
width, we conducted an experiment in which two tasks run
different kinds of workloads simultaneously. In the experi-
ment, we run two Flexible I/O tester [2] (fio) workloads for
the tasks to compete for the memory bandwidth. We test four
workloads, namely NVM Read, NVM Write, DRAM Read, and
DRAM Write, and use the mmap engine for the DRAM work-
loads and libpmem for the NVM workloads. The experiment
setup is described in §6. To fully utilize the memory band-
width, we use fourteen cores to run each workload, except for
NVM Write. We use six cores to run NVM Write workload
because its bandwidth drops significantly with more cores
due to its own bandwidth competition.

We first run Task A alone and then run two tasks together
with different workload combinations to illustrate the impact.
To avoid the contention of CPU cache, we also leverage Intel
CAT [4] to make each task run on different cache partitions
in the experiment. Thus, the performance degradation in the
figure is simply caused by memory bandwidth interference.

Figure 1 shows the results. For Task A (i.e., each row in
the figure), the throughput (GB/s) of running alone is used as
the baseline, as listed in the first column, and the throughput
running simultaneously with Task B is normalized to the base-
line. Thus, smaller numbers (i.e., the darker blocks) indicate
a more significant impact of Task B.

We make two observations from the results.
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Figure 2: Relationship between bandwidth and latency of Task A
(one-job NVM-Write fio) when running simultaneously with differ-
ent number of Task B (NVM-Write fio). The bandwidth and latency
of task A are negatively correlated. Notice that the Y-axis does not
start from zero.)

1. The impact of memory interference is closely related to the
type of memory access. Tasks that occupy a smaller band-
width may have a more significant impact on other tasks
than those with a larger bandwidth. A 102GB/s DRAM-
read Task B can only reduce the bandwidth of an NVM-
read Task A to 73% of the original, while an NVM-write
Task B with only 10.3GB/s can bring it down to 36%. This
observation indicates that the ability to distinguish between
different bandwidth types is vital on hybrid platforms.

2. NVM accesses affect other tasks more severely than DRAM
accesses. When Task B runs a 35.5GB/s NVM read work-
load, it drops the bandwidth of different Task A to 40%-
72% (the second column in the figure) of what it would
have been running alone. However, when Task B runs a
102GB/s DRAM read workload, Task A’s bandwidth drops
to only 50%-79% (the fourth column in the figure) of the
original bandwidth. In particular, a 10.3GB/s NVM write
task B can severely degrade the performance of other tasks.
NVM writes can lead to severe interference with minimal
absolute bandwidth, followed by NVM reads and finally
DRAM accesses. In other words, applications that write
NVM a lot are more likely to become the noisy neighbors
and affect others.

While investigating the memory bandwidth interference,
we also check the relationship between a task’s throughput
and latency. Figure 2 shows the throughput and latency of a
one-job fio with the NVM-Write workload (Task A) when
running simultaneously with Task B (NVM-Write fio with
variable numjobs). As the numjobs of Task B grows, the
bandwidth of Task A gradually decreases (due to the growth
of bandwidth interference), while the latency of Task A in-
creases. Together with the evaluation of other memory access
type combinations, the results lead to another observation
that the memory access latency is negatively correlated to
the bandwidth usage, which indicates that we can detect the
memory bandwidth interference by measuring the latency of
different types of memory accesses.

2.4 Memory Bandwidth Monitoring (MBM)
Intel Memory Bandwidth Monitoring (MBM) [48] is a feature
that allows monitoring bandwidth from the L3 cache to the
next level of the memory hierarchy system, which can be
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DRAM or NVM. It provides a hardware-level measurement
of memory bandwidth on each logical core.

Each logical core can be assigned with a resource moni-
toring ID (RMID), and a group of logical cores can be as-
signed with the same RMID. The underlying hardware tracks
memory bandwidth with the RMID and groups the memory
bandwidth of processors with the same RMID. On a platform
with the non-uniform memory access (NUMA) architecture,
the MBM hardware on each NUMA node tracks two types
of memory bandwidth for each RMID: the local external
bandwidth and the total external bandwidth, indicating the
memory traffic to the local NUMA node and all NUMA nodes
respectively. System programmers can access model-specific
registers (MSRs) to get the tracked bandwidth. To get the
system-wide memory bandwidth of an RMID, programmers
need to read the tracked total bandwidth from all NUMA
nodes and add them together.

2.5 Memory Bandwidth Allocation (MBA)
Intel Memory Bandwidth Allocation (MBA) [29] is a hard-
ware feature that provides indirect and approximate control
over memory bandwidth with negligible overhead. MBA in-
troduces a programmable request rate controller between each
physical core and the shared L3 cache. The controller throt-
tles the memory bandwidth usage by inserting delays to the
memory requests. MBA defines throttling values to indicate
how much delay is imposed. Due to the delay mechanism,
the same throttling value might behave differently on applica-
tions with different memory access patterns [29]. The specific
throttling values vary on different platforms. On our platform,
the throttling values range from 10 to 100, with a precision
of 10. For MBA, Intel also exposes a set of Classes of Ser-
vice (CLOS) [29] into which threads can be assigned. To use
MBA, administrators need to set a throttling value to a CLOS,
after which all threads in the CLOS will be throttled.

3 MT2 Design
3.1 Overview
To regulate bandwidth efficiently on a hybrid NVM/DRAM
platform, we design a hybrid bandwidth regulation system
called MT2. Figure 3 shows the architecture of MT2, which is
designed to work in the kernel space. Though some function-
alities of MT2 can be implemented in user space, the kernel
space environment makes it much easier and more efficient
for MT2 to access hardware features, cooperate with other
kernel components, and put constraints on user-space threads.

System administrators communicate with MT2 via exposed
pseudo-filesystem interfaces in user space. Administrators can
classify threads into different groups (same as cgroups) and
specify a policy to regulate each group’s bandwidth. We call
these groups TGroups (i.e., Throttling Groups), which are the
target of bandwidth monitoring and restriction in MT2.

MT2 consists of two parts: the monitor and the regulator.
With data collected from VFS, PMU (Performance Monitor-

MT2

Regulator

User space

Kernel space

Monitor

MBM

FS interface

PMU MBA

Hardware

VFS

Admin

Monitored
BW

Threads

TGroups

Set MBA throttling value
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Figure 3: The overview architecture of MT2. Threads are classified
into TGroups (the unit of NVM bandwidth monitoring and restric-
tion). The monitor computes NVM bandwidth with the data from
VFS, MBM and PMU, and then pass the result to the regulator, who
is responsible for restricting a TGroup’s bandwidth with different
mechanisms.

ing Unit), and MBM, the monitor divides it into four types and
forwards them and the interference information to the regula-
tor. According to the monitored data and the regulation policy,
the regulator makes decisions to limit the bandwidth with two
mechanisms: adjusting the MBA throttling values and chang-
ing CPU quotas. MT2 adopts a dynamic bandwidth throttling
algorithm that constantly monitors and adjusts restrictions
based on the real-time bandwidth and the interference level.

MT2 provides two strategies to mitigate the noisy neigh-
bor problem (prevention and remedy in § 2.1) to cope with
different scenarios. For prevention, administrators are asked
to set bandwidth caps for each TGroup. MT2 monitors the
precise real-time bandwidth and enforces all groups not to
use more bandwidth than the caps. However, several TGroups
that do not exceed the caps together may still cause strong
bandwidth interference, which can be identified and restricted
by the remedy strategy. The two strategies are orthogonal;
thus, when and how to use the two strategies depends on the
specific scenarios.

3.2 The Monitor
The monitor distinguishes different types of bandwidth with
process granularity and detects the current memory interfer-
ence level of the system. Unfortunately, existing hardware
technology cannot achieve this directly [49]. For example,
Intel MBM cannot distinguish between NVM bandwidth and
DRAM bandwidth. The IMC performance counter [22] can
help get different types of real-time bandwidth, but only with
memory channel granularity rather than process granularity.
Thus, the MT2 monitor leverages various hardware and soft-
ware techniques jointly.

3.2.1 Bandwidth Estimation

The monitor needs to get accurate or estimated bandwidth
of each access type (i.e., BWDR for DRAM reads, BWNR for
NVM reads, BWDW for DRAM writes and BWNW for NVM
writes), so that the regulator can use these information to
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decide whether and how to restrict each TGroup’s memory
bandwidth usage to avoid or suppress noisy neighbors.

MT2 calculates the precise BWNR of each process by retriev-
ing the number of local NVM reads via the ocr.all_data_-
rd.pmm_hit_local_pmm.any_snoop PMU event counter
and multiplying the value by the cache line size (64B). MT2

calculates BWDR similarly via the ocr.all_data_rd.l3_-
miss_local_dram.any_snoop PMU counter for DRAM
reads of each process [30].

However, MT2 cannot get BWDW and BWNW via PMU,
since no similar performance events exist for write instruc-
tions. Fortunately, we can leverage MBM to monitor each
TGroup’s total memory access bandwidth, which is the sum
of BWDR, BWNR, BWDW and BWNW . Given that we can calcu-
late the precise value of BWDR and BWNR via PMU, we only
need to know one of BWDW and BWNW or the ratio between
them to calculate the two values via simple arithmetic.

We choose to calculate BWNW of a TGroup by collecting
the amount of NVM writes periodically since user-space ap-
plications can write to NVM in only two ways: the file APIs
(such as write) and the CPU store instructions after mem-
ory mapping the file. For file APIs, MT2 hooks the VFS in
the kernel and tracks the amount of NVM writes for each
TGroup. For memory-mapped accesses, we propose two dif-
ferent approaches according to whether the applications on
the platform are trusted.

Trusted applications. Many cloud applications (such as
those in private clouds) are from trusted users or cooperations;
thus, we can rely on these trusted applications to collect and
report to MT2 its amount of writes to memory-mapped NVM.
To facilitate the process, we provide a modified PMDK [9],
which is the official and most popular library for NVM pro-
gramming on Intel’s NVM. Specifically, we hook the PMDK
APIs that explicitly flush cache lines to NVM or perform
non-temporal memory writes (e.g., movnt), by calculating
and adding the amount of NVM writes to per-thread counters.
To report the counters to MT2, each process sets up a shared
page with the kernel, and each thread in the process writes its
per-thread counter value to a different slot in the page. MT2

in the kernel checks the counters periodically and calculates
the bandwidth of each TGroup.

To collaborate with MT2, applications built on PMDK can
directly link to our modified PMDK without source code
modification; other applications are required to collect and
report NVM writes by themselves, which should be a simple
task since our modification to PMDK is merely 43 lines.

With the reported writes to mapped NVM and the NVM
writes via file APIs, MT2 calculates BWNW for each TGroup.
With the BWNW , MT2 further calculates the BWDW by
BWDW = BWTotal−BWDR−BWNR−BWNW .

Untrusted applications. Untrusted applications may not re-
port their NVM write bandwidth faithfully. Thus, we provide
another approach to roughly distinguish NVM writes and

DRAM writes without the collaboration of applications.
We leverage Processor Event Based Sampling (PEBS) [31],

an efficient sampling feature in modern Intel processors,
to sample each TGroup’s memory writes (mem_inst_re-
tired.all_stores) with the target addresses. By comparing
the sampled addresses to the address ranges of NVM, we can
figure out the ratio of sampled writes to NVM and DRAM,
with which we calculate BWNW and BWDW roughly.

Note that the BWNW and BWDW we calculated via PEBS
are not precise due to the shadow effect [65]. But it would be
sufficient for MT2 to identify which TGroup is more likely to
be the noisy neighbors.

3.2.2 Interference Detection

Even given the accurate bandwidth usage of four types of
memory accesses, it is difficult to determine whether the band-
width interference occurs and its severity, since both the de-
crease of memory access demand and the presence of noisy
neighbors can cause an application to utilize less bandwidth.

Instead of detecting memory interference via memory band-
width, MT2 proposes to detect the interference level by mea-
suring the latency of different kinds of memory accesses,
which is supported by the observation that the memory access
latency is negatively correlated to the bandwidth (§2.3).

We measure four types of memory accesses separately.
For reads, we derive the latency from four performance
events, unc_m_pmm_rpq_occupancy.all (RPQO), unc_-
m_pmm_rpq_inserts (RPQI), unc_m_rpq_occupancy, and
unc_m_rpq_inserts. The latency of NVM reads can be cal-
culated by RPQO/RPQI . The DRAM read latency can be
obtained similarly. For writes, MT2 periodically issues a few
NVM and DRAM write requests and measures their comple-
tion time to obtain the latency of both types of write requests.

We set a threshold to determine whether bandwidth in-
terference occurs. When the latency of a certain access re-
quest exceeds the corresponding threshold, relatively severe
interference occurs on the platform and affects this type of
memory access (as shown in Listing 1). The threshold can be
tuned across different platforms by measuring the relationship
between bandwidth and latency under different interference
levels. On our platform, we use the latency at a 10% reduction
in throughput as the threshold (THRESHOLD in Listing 1).

Listing 1: Interference detection
def detect_interference():

for bt in bandwidth_type:
if latency[bt] > THRESHOLD[bt]:

return true
return false

3.3 The Regulator
Monitoring the bandwidth information is the first step towards
bandwidth regulation. The following step is to restrict the
bandwidth a TGroup can occupy, which is handled by the
regulator. The regulator takes the interference level and the
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Table 1: Performance events

Performance Event Name Description Where we use (if not, why)

ocr.all_data_rd.pmm_hit_local_pmm.any_snoop per-core: local NVM read Bandwidth Estimation (§3.2.1)

mem_load_retired.local_pmm
per-core: memory load instructions retired
that hit local NVM

No, the results are not precise without
disabling the hardware prefetcher

ocr.all_data_rd.l3_miss_local_dram.any_snoop per-core: local dram read Bandwidth Estimation (§3.2.1)
mem_inst_retired.all_stores per-core: all memory store instruction retired Bandwidth Estimation (§3.2.1)
unc_m_pmm_rpq_occupancy.all per-socket: NVM read pending queue occupancy Interference Detection (§3.2.2)
unc_m_pmm_rpq_inserts per-socket: NVM read pending queue inserts Interference Detection (§3.2.2)

unc_m_pmm_wpq_occupancy.all
per-socket: NVM write pending queue
occupancy time

No, wpq_occupancy/wpq_inserts
is not inversely proportional to bandwidth

unc_m_pmm_wpq_inserts
per-socket: NVM write pending queue
insert count

No, wpq_occupancy/wpq_inserts
is not inversely proportional to bandwidth

monitored bandwidth as the input and decides what actions
to take to adjust the bandwidth of the TGroup according to
the regulation policy from system administrators.

3.3.1 Memory Regulation Mechanisms

MBA. To illustrate the effect of MBA, we use fio to generate
different workloads under different MBA throttling values.
Throttling value 100 means that there are no restrictions, while
10 represents the maximum MBA limit. The configuration of
fio is the same as in §2.3.

The red lines in Figure 4 show the following phenomena.
1) MBA only supports limited throttling values, and not all
throttling values are effective to workloads. This means that
we cannot precisely control the bandwidth of threads with
MBA. 2) MBA can restrict DRAM-intensive workloads better
than NVM-intensive workloads. MBA is almost completely
ineffective for NVM writes. Therefore, MBA alone is insuf-
ficient for controlling memory bandwidth. We must employ
other techniques to restrict the NVM bandwidth.

CPU scheduling. An effective mechanism to control mem-
ory bandwidth is to reduce the number of cores allocated
to an application [43]. We take a finer-grained approach by
changing the CPU time (or CPU quota) of a thread with the
help of the existing Linux CPU cgroup [6] controls. CPU
quota in MT2 defines an upper bound on CPU time allocated
to the threads of a TGroup within a given period. TGroups
with lower CPU quota take less CPU time, so it consumes
less memory bandwidth. Since CPU quota leverages the CPU
scheduler, it can provide a more fine-grained adjustment of
memory bandwidth.

Effectiveness and comparison. CPU scheduling is a mech-
anism that supplements MBA. We repeat the same experiment
with CPU scheduling as we do with MBA to compare these
two mechanisms to decide how to cooperate better. Figure 4
shows the results. Take reading DRAM in figure 4(a) as an
example (Read MBA and Read CPU two lines in the figure).
When we don’t enforce any limits on the workload (i.e., when
the horizontal coordinate is 100), the throughput of 14 DRAM
read fio workloads reachs 102GB/s on our platform. When
the MBA throttling value keeps decreasing to 60, the through-

Table 2: Execution time and max bandwidth of pagerank under
different restrictions

No limit 50% CPU 10% MBA

Execution Time(s) 56.459 118.179 78.662
Max BWread(GB/s) 3.61 1.89 1.45
Max BWwrite(GB/s) 4.84 2.53 1.87

put of the DRAM read does not change much. When this
value decreases to 30, there is a significant drop in throughput.
After we enforce the maximum limit via MBA, the throughput
drops to about 28GB/s. For CPU scheduling, the throughput is
proportional to the available CPU time. Thus, CPU scheduling
can restrict memory bandwidth better than MBA.

The previous experiment is only for the effectiveness of
bandwidth restriction. Table 2 gives some data when we run
a real-world application, pagerank. We run the same task in
three different situations. When this task runs without any
limits, it takes 56 seconds to complete, of which the maxi-
mum read and write bandwidth is 3.61GB/s and 4.84GB/s,
respectively. When we only allow it to use 50% of the CPU
time, the task consumes 118 seconds, with the read and write
bandwidth dropping to 1.89GB/s and 2.53GB/s. It seems that
bandwidth usage is indeed changed to half while spending
almost twice the original time. After we apply the maximum
limit with MBA (10% MBA), its peak bandwidth is lower
than that in 50% CPU, but it performs faster. This is because
CPU scheduling will reduce the amount of CPU time the
program can use. In contrast, MBA slows down the mem-
ory access operations and does not affect other operations,
such as computation operations. We can conclude that the
MBA mechanism is more efficient than CPU scheduling in
restricting memory bandwidth.

Table 3 summarizes the characteristics of these two mem-
ory restriction mechanisms. As MBA has limited throttling
values, it can only provide discrete restrictions on memory
bandwidth. CPU scheduling can adjust memory bandwidth
continuously, which could restrict the bandwidth finer. How-
ever, CPU scheduling is not as efficient as MBA since it is
not friendly to the overall performance. At last, these mecha-
nisms have different favor in memory access types. According
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Figure 4: The effect of MBA and CPU scheduling on limiting
DRAM (a) and NVM (b) bandwidth. Compared with MBA, CPU
scheduling is more effective on restricting NVM bandwidth.

Table 3: Comparison of different memory restriction mechanisms

Mechanism Granularity Efficiency Favor

MBA Discrete High DRAM
CPU scheduling Continuous Low Both

to Figure 4, MBA is good at restricting DRAM bandwidth,
while CPU scheduling can cope with both DRAM and NVM
bandwidth because it treats DRAM and NVM equally.

3.3.2 Dynamic Bandwidth Throttling

To ensure a relatively stable bandwidth for TGroups, we adopt
an algorithm called dynamic bandwidth throttling that com-
bines all mechanisms above. The algorithm first identifies
noisy neighbors according to the information provided by the
monitor and then takes actions to restrict the noisy neighbors’
memory bandwidth.

Identifying the noisy neighbors. The algorithm will iden-
tify the noisy neighbors according to the enabled strategies.
In the prevention strategy, the algorithm treats all TGroups
that exceed their administrator-configured bandwidth limits
as noisy neighbors. In the remedy strategy, the algorithm
first checks whether there is severe memory interference on
the platform according to the memory interference informa-
tion provided by the monitor. If severe memory interference
presents, the algorithm identifies noisy neighbors by each
TGroup’s current bandwidth use. According to the observa-
tions in the previous analysis (§2.3), a small amount of NVM
writes can lead to severe bandwidth interference and NVM
accesses affect others more severely than DRAM accesses.
Thus, TGroups with the most NVM writes are more likely
to become the noisy neighbors, followed by TGroups with
most NVM reads, and finally the TGroups with more DRAM
accesses. The algorithm picks the TGroup that is the most
likely to be a noisy neighbor in the above order.

Regulating the memory bandwidth. The algorithm then
chooses the memory regulation mechanism according to the
types of memory bandwidth to restrict. To restrict NVM
access bandwidth, the algorithm takes the CPU scheduling
mechanism since MBA is almost ineffective for NVM. To
restrict only DRAM access bandwidth, the algorithm chooses
to decreases the MBA value of the target TGroups. If the
MBA is already set to the lowest value, the algorithm uses
CPU scheduling for further restriction.

Relaxing the memory regulation. Once the memory inter-
ference disappears, the algorithm attempts to relax the en-
forced bandwidth restrictions. The procedure is opposite to
the way we add and enforce the restriction.

After the regulator finishes a single step of the algorithm
(i.e., identifying then regulating/relaxing), it continues to wait
for the next period in which another step will be taken ac-
cording to the new information provided by the monitor. The
step-by-step approach reduces the uncertainty of platform
memory bandwidth changes and prevents unnecessary perfor-
mance jitters for applications.

4 Implementation
As control groups (cgroups) [6] is an existing Linux kernel
feature that manages resource usage of a collection of threads,
we modify the Linux kernel 5.3.11 to add TGroup as a sub-
system of cgroups. MT2 is implemented as a kernel module
that cooperates closely with the TGroup subsystem.

Cgroup interface. Cgroups exposes its interfaces via files in
a pseudo-filesystem called cgroupfs. MT2 follows the same
approach as other cgroups subsystems. Specifically, an admin-
istrator first mounts the subsystem and creates a new directory
in the subsystem mount point (i.e., creating a new TGroup).
Then the administrator writes the pid of the process to the
cgroup.procs file (i.e., adding the process to the TGroup).
Three more files in this directory can be read/written to man-
age the TGroup:

1. The priority file is used to get and set the priority of a
TGroup. Two priorities are currently supported. TGroups
with high priority will not be restricted by the regulator,
while the low-priority TGroups will be limited when in-
terferences occur in the system.

2. The bandwidth file is read-only and returns the bandwidth
of a TGroup for the last second.

3. The limit file is used to get and set the absolute bandwidth
limit of a TGroup. Four comma-separated numbers can
be written to this file as upper bandwidth limits of four
types of memory accesses. When any one of the limits
is exceeded, the TGroup will be throttled. A zero value
indicates no limit, and the values take effect immediately.

When the write bandwidth cannot be separated accurately,
only the first interface is valid. When the measured bandwidth
is accurate, the last two can be used for prevention (§ 2.1).
In this case, MT2 allows the administrator to set four caps
for four types of bandwidth for each TGroup. Once the real-
time bandwidth used by one TGroup exceeds its limit, MT2

enforces restrictions on that group, ensuring that each group
does not use more bandwidth than the preset cap.

Thread creation. All the child processes are put in the same
TGroup as their parent when created unless the administrator
puts them manually into another TGroup. To achieve this, we
also add a hook to the process/thread creation routine, which
is the fork routine in the Linux kernel.
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MBA. The MBA hardware supports ten MBA throttling val-
ues. However, there are only eight CLOS available on our
platform. To support as many TGroups as possible, we do
not assign a dedicated CLOS for each TGroup. Instead, we
assign eight MBA throttling values to eight CLOS, respec-
tively. We omit MBA throttling values 70 and 80 because the
effect of the MBA throttling values 70, 80, and 90 are very
similar across all workloads in Figure 4. As a result, each
CLOS presents a different MBA throttling value. To restrict
the bandwidth of a TGroup to an MBA throttling value, we
assign all threads of the TGroup to the corresponding CLOS.
Thus, by changing the CLOS of a TGroup, we can change
its MBA throttling value. Since the MBA limits the memory
bandwidth by adjusting the request rate between the physical
core and the shared LLC, TGroups with the same CLOS get
the same request rate without interference.
Context switches. To set up the MT2 context for each thread,
including setting the PMU related context, writing the MSR
registers related to MBA and setting CPU quota, we add a
hook to the scheduler. Each time a context switch happens,
we set up the corresponding MT2 context for the new thread
that is going to run on this CPU core.
PMU. PMU is used to count read instructions that miss all
caches and access the NVM and DRAM respectively. Using
these data we are able to accurately calculate the DRAM
and NVM read bandwidth. The latency of both types of read
operations is also obtained through the PMU.
PEBS. We set the PEBS sample frequency to 10,007; thus,
PEBS will record one linear address for every 10,007 events.
As later evaluated in §6.2.2, this sample frequency is large
enough to avoid noticeable overhead.

During context switches or PEBS interrupts occur, MT2

reads all the samples in the PEBS buffer and filters out ad-
dresses in the kernel and the user stacks to mitigate the inter-
ference of irrelevant accesses and the CPU cache. MT2 then
translates the addresses to physical addresses and counts the
number of NVM accesses and DRAM accesses, respectively.
Finally, MT2 stores the numbers in per-thread data structures,
which will be used to estimate NVM bandwidth usage in the
untrusted environment.

Listing 2: Kernel thread main loop
def kthread_main():

start = current_time()
interference = detect_interference()
for group in TGroups:

group.aggregate_bandwidths()
group.adjust_bandwidths(interference)

sleep(INTERVAL - (current_time() - start))

The dedicated kernel thread. A kernel thread is created at
the initialization phase of MT2 kernel module to periodically
detect the interference, track the bandwidth and take actions
generated by the dynamic bandwidth throttling algorithm.
When interference is detected, the kernel thread calculates
all types of bandwidth of all TGroups via information from

MBM, VFS, and PMU. It then invokes the dynamic bandwidth
throttling algorithm to adjust the bandwidth. The kernel thread
runs at a configurable frequency (INTERVAL in Listing 2),
which is once per 100ms in our implementation.

5 Other Use Cases
In addition to being used to prevent severe bandwidth inter-
ference caused by the noisy neighbors, MT2 can also be used
in more scenarios, such as memory bandwidth allocation, and
cloud SLO guarantee.

5.1 Memory Bandwidth Allocation
For prevention, choosing and setting the maximum bandwidth
for each application is a practical problem. A more reasonable
solution in practice is the bandwidth guarantee, which assigns
a minimum guarantee bandwidth to each task. As long as
there is such a guarantee, a task will be able to use more
bandwidth than this minimum guarantee when a task needs
to use bandwidth, regardless of how much bandwidth other
tasks are using at the same time.

Bandwidth allocation is essentially the same as band-
width limiting since bandwidth resources are finite. The only
method to reserve a minimum bandwidth for a program is to
ensure that no other programs can consume excessive band-
width resources. However, since the bandwidth resources in
a hybrid system are not fixed, it is very difficult to give such
a guarantee. We build an empirical model of four kinds of
bandwidths on our platform to help us solve this problem.
The input is the four bandwidths without interference, while
the output is the actual bandwidths running simultaneously.

In this use case, each group of programs needs to pre-
declare their demand for each kind of bandwidth. Then we
add up the demanded bandwidths of all the programs and pass
to the empirical model to calculate the intensity of bandwidth
competition. If the bandwidth competition is sufficiently in-
tense, the minimum bandwidth for these programs cannot be
guaranteed at the same time, and MT2 will report an incident.
If the bandwidth competition is low, we look for a point in the
model where the system’s bandwidth resources can be more
fully utilized without excessive bandwidth competition (in
our implementation, 90% of the desired value is considered to
be no excessive bandwidth competition). Then MT2 allocates
the extra bandwidth resources proportionally to all programs,
in such a way that each group of programs is guaranteed to
use more than 90% of its own declared bandwidth.

5.2 Cloud SLO Guarantee
Service Level Objective (SLO) assurance is important for
cloud users [18, 51]. For example, for users deploying KV-
store applications, which primarily use memory bandwidth
resources, the latency and the throughput of GET and PUT re-
quests are what they value most. However, the request pattern
of latency-critical (LC) tasks may not be fixed. There may
not be any requests for a while, but at the next moment, the
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requests become very intensive.
Cloud service providers want to make their devices as

highly utilized as possible. When KV-store requests are not
frequent, we can run some other best-effort (BE) background
tasks simultaneously to make full use of the physical ma-
chine’s bandwidth resources. When the foreground requests
are dense, we can dynamically reduce the background tasks’
bandwidth to ensure the SLO of the foreground tasks.

For trusted environment, we can use the bandwidth limiting
(prevention) to prevent the BE applications from becoming
noisy neighbors. We can divide the tasks into two TGroups:
a high-priority TGroup for tasks that require a guaranteed
SLO and a low-priority TGroup for other tasks. MT2 first
gives the foreground tasks a relatively smaller bandwidth
guarantee. When the foreground tasks are about to run out of
the allocated bandwidth, MT2 allocates more bandwidth for
them while reclaiming the bandwidth resources owned by the
background BE tasks.

For untrusted environment, the two types of write band-
width cannot be precisely separated. We can assign high prior-
ity to LC applications and low priority to the BE applications
to mitigate the interference when the BE applications overuse
memory bandwidth. This case is then transformed into rem-
edy in noisy neighbor suppression.

6 Evaluation
In this section, we comprehensively evaluate MT2 from mul-
tiple dimensions, including effectiveness for all use cases,the
performance overhead, and the accuracy when the environ-
ment is trusted.
Experiment setup. Experiments are conducted on a server
with two 28-core Intel® Xeon® Gold 6238R CPUs with hyper-
threading disabled. The server has two NUMA nodes, and
each is equipped with 6*32GB DDR4 DRAM and 6*128GB
Optane™ PM configured in interleaved app-direct mode. All
experiments are conducted on a single NUMA node.

6.1 Effectiveness
In this part, we evaluate the effectiveness of our three use
cases: noisy neighbor suppression, memory bandwidth allo-
cation and cloud SLO guarantee.

6.1.1 Noisy Neighbor Suppression

Effect of restrictions on noisy neighbors. We first re-
conduct the experiment in §2 (results are shown in Figure 1)
with and without MT2 respectively to show the effect of MT2

in micro-benchmarks. In this experiment, we run two fio
simultaneously, one is marked as the noisy neighbor and the
other as the victim. The throughputs when the victim runs
alone are used as the baselines.

The results are shown in Figure 5. Generally, the columns
with MT2 have a much lighter color than the columns with-
out MT2, which indicates that MT2 can effectively reduce
noisy neighbors’ interference by restricting their bandwidth
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Figure 5: The normalized throughput of fio with/without MT2.
Noisy neighbors decrease the victim’s throughput heavily while MT2

can benefit the victim by restricting noisy neighbors’ bandwidth.

usage. NVM Read noisy neighbor is abbreviated to NR in the
following figures, and the others are similar. Take the NVM-
Read workload as an example, four kinds of noisy neighbors
decrease fio’s throughput to 50%, 39%, 65%, and 44% of
the baseline. By restricting noisy neighbors’ bandwidth with
MT2, fio’s throughput recovers to 98%, 92%, 99%, and 98%
of the baseline. The other workloads present similar phenom-
ena. The victim can run with a nearly maximal throughput
with the help of MT2.

Applications We evaluate three real-world applications,
Hadoop [1], Graphchi [39] and Pmem-RocksDB [10], to
check the effectiveness of MT2. The computing tasks of these
applications are conducted on DRAM, while the data is stored
on NVM. Consequently, these applications will access both
NVM and DRAM at the same time. The number of the fio
noisy neighbors are the same as the configuration in §2.

On Hadoop 2.10.0 and Graphchi, we run a page-rank job
on Twitter [11] social graph with 81,306 nodes and 1,768,149
edges. The iteration count of the page-rank is set to 3. Figure 6
gives the results. We treat the execution time when the victim
application runs alone as the baseline. For both applications,
MT2 can mitigate the victim’s performance slowdown well
by restricting the noisy neighbors’ bandwidth.

YCSB [12] is used to evaluate the throughput of
RocksDB [8]. Before running the benchmark, we load
500,000 records, each with the size of 1KB, into RocksDB.
Besides fio, we also use the aforementioned Graphchi with
eight long jobs as the noisy neighbors (denoted by Graph in
the figure). Figure 7 shows the results. Generally, the through-
put of RocksDB with noisy neighbors is 61% to 77% of that
without any noisy neighbors. When the noisy neighbors are
restricted, RocksDB’s throughput rises to about 94% to 100%
of the original throughput. This indicates that MT2 effectively
reduces or even eliminates the impact of noisy neighbors to
improve the high-priority application’s bandwidth.

Response of limit update. A fast and accurate bandwidth
limiting is the foundation of prevention. Figure 8 shows the
applications’ response to the update of the bandwidth limit in
MT2 at runtime. In this experiment, we run a six-job NVM
Write fio and a fourteen-job NVM Read fio simultaneously.
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Figure 6: The normalized execution time of Hadoop and Graphchi
when running page rank on Twitter social graph. Noisy neighbors
slow down the execution and MT2 mitigates the impact by restricting
noisy neighbors’ NVM bandwidth.
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Figure 7: The throughput of YCSB’s different workloads on
RocksDB when running with/without MT2 against eight noisy neigh-
bors. Noisy neighbors decrease the throughput and MT2 mitigates
the impact by restricting noisy neighbors’ bandwidth.

The concepts of victims and noisy neighbors are relative.
We assume the former as the neighbor and the other as the
victim. At first, the victim and neighbor run together without
any restrictions. They can reach the throughput of 12.5GB/s
and 7.2GB/s, respectively. After 5 seconds, we set the noisy
neighbor’s NVM write bandwidth limit to 5GB/s. It takes no
more than one second that the noisy neighbor’s throughput
drops to 5GB/s, and the victim’s throughput rises to 20GB/s
due to less bandwidth interference. Similar results appear
when noisy neighbors’ NVM bandwidth limit is changed to
1GB/s after 15 seconds, 3GB/s after 25 seconds and unlimited
after 35 seconds. The evaluation result shows that MT2 can
adjust a TGroup’s throughput accurately and timely.

This also illustrates that it is not just applications that use
plenty of bandwidth that can become noisy neighbors. An
application that uses relatively small amounts of NVM band-
width can have a significant impact on other applications. So
the ability to distinguish between different types of bandwidth
is critical in the hybrid NVM/DRAM platforms.

6.1.2 Memory Bandwidth Allocation

We run four fio tasks with different memory access patterns
individually and record their throughputs. Then we run all
four tasks simultaneously without MT2 and with different
guarantees with MT2. As shown in Table 4, DRAM Write
and NVM Read suffer the most severe bandwidth degradation
when run together. DRAM Write has a whopping 66% drop
in throughput (from 7.4GB/s to 2.5GB/s). We then assign
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Figure 8: Response of the victim’s and noisy neighbors’ throughput
when NVM-write intensive noisy neighbors’ NVM write bandwidth
limit is updated at run time. The limit is changed at 5s, 15s, 25s and
35s. When a lower limit is put on noisy neighbors, its throughput
decreases and the victim’s throughput increases and vice versa. The
adjustment takes no more than 1 second and is very accurate.

Table 4: The throughput of fio tasks under BW allocation

Thput(GB/s) Alone w/o MT2 Config 1 Config 2
DRAM Read 100 69.8 28.8(20) 11.5(10)
DRAM Write 7.4 2.5 5.3(5) 4.2(4)
NVM Read 7.2 3.4 4.2(4) 5.3(5)
NVM Write 5.0 3.8 4.5(4) 3.3(3)

different bandwidth guarantees (as indicated by the numbers
in parentheses in the table) to these tasks, which are satisfied
under the regulation of MT2.

6.1.3 Cloud SLO Guarantee

We conduct three experiments to verify the effectiveness of
the SLO guarantee. The first is a micro-benchmark that shows
a breakdown of DRAM/NVM read/write bandwidth changes
of both foreground tasks and background tasks. The second
is a macro-benchmark which evaluates the 95th percentile
latency of several LC tasks when running simultaneously with
Graphchi [39] as the BE task. These two correspond to the
first method in § 5.2 (similar to prevention). For the other
method (like remedy), the third experiment is conducted. We
run YCSB as the LC task with different types of memory
accesses generated by fio to simulate different BE tasks.
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Figure 9: The throughput of the foreground and background (dashed
lines) tasks. As foreground tasks use more and more bandwidth re-
sources, if there are no sufficient bandwidth resources in the system,
MT2 will reduce the bandwidth for background tasks. When the
foreground task reduce its memory usage, MT2 will restore the band-
width resources of the background tasks.
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Table 5: The 95th percentile latency of several LC tasks

Workloads w/o BEs w/o MT2 w/ MT2

img-dnn (ms) 5.719 99.656 5.661
masstree (ms) 0.991 1.956 1.056
YCSB-A-read (us) 39 81 42
YCSB-A-update (us) 57 103 59

Breakdown of bandwidth changes. Figure 9 shows the re-
sult of dynamic bandwidth changes of foreground and back-
ground tasks. We use fio that read DRAM and NVM to act
as the foreground workloads. For the background tasks, we
choose all kinds of fio to show the impact to the hybrid
bandwidth. The solid lines represent the bandwidth of fore-
ground tasks, while the dashed lines represent background
tasks. Before the beginning, MT2 reserves 1GB/s bandwidth
for each of the four types of memory accesses for the fore-
ground tasks and allocate all the remaining bandwidth to the
background tasks. After excluding the bandwidth reserved
for foreground tasks, MT2 lookups the empirical model and
selects an appropriate bandwidth cap for background tasks
to ensure that foreground tasks will not be affected until they
use more bandwidth than reserved.

At first, the background tasks normally run with 4GB/s
DRAM read, 2.7GB/s DRAM write, 2.5GB/s NVM read, and
1.2GB/s NVM write bandwidth consumption. After 5 sec-
onds, a foreground task starts to read DRAM and takes 5GB/s
DRAM read bandwidth. MT2 increases the DRAM read band-
width reservation for the foreground tasks to 6GB/s. As the
existing four kinds of bandwidths do not exceed the limitation,
MT2 does not restrict the background tasks. Then the fore-
ground tasks start to read NVM after 10 seconds. MT2 finds
that the foreground tasks occupy 1GB/s NVM read bandwidth,
which exceeds 90% of the reservation, and assumes they may
need extra NVM read bandwidth. So MT2 lowers the NVM
read bandwidth cap for the background tasks by 1GB/s, and
then the NVM read bandwidth of background tasks exceeds
the limit. As a result, MT2 decides to tighten the restriction
on background tasks. After 16 seconds, foreground tasks read
NVM at 1.7GB/s, which is less than 90% of 2GB/s. Hence no
additional NVM read bandwidth needs to be added to meet
the SLO guarantee, i.e., MT2 will not put more restrictions
on background tasks.

The following bandwidth changes are all caused by the
same reasons. With more bandwidth being taken by fore-
ground tasks, the background tasks can use less bandwidth,
and MT2 puts more restrictions on them to ensure the fore-
ground tasks’ performance. After 32 seconds, the foreground
tasks start to sleep one by one. Finally, all foreground tasks
sleep, and background tasks occupy their original bandwidth.

Impact on latency. YCSB on RocksDB and two workloads
from TailBench [36] (img-dnn [66] and masstree [44]) are
selected as the latency-critical (LC) applications. First, we
measure the 95th percentile latency of these LC tasks when

Table 6: Tail latency of the LC task and throughput of the BEs

Workloads alone w/o MT2 w/ MT2

95th YCSB-A-read (us) 39 61 41
95th YCSB-A-update (us) 58 86 64
99.9th YCSB-A-read (us) 69 110 76
99.9th YCSB-A-update (us) 419 545 449

FIO(DR) (GB/s) 17.3 14.9 16.7
FIO(DW) (GB/s) 10.8 10.4 10.8
FIO(NR) (GB/s) 13.2 4.8 8.8
FIO(NW) (GB/s) 10.3 7.8 1.2

running alone without any interference. Then we run the
LC tasks together with 25 Graphchi (as the BE tasks) and
measure their latency. We then group the LC tasks into one
high-priority TGroup and the Graphchi into another (the BE
TGroup) and repeat the same experiments. The results are
shown in Table 5. Since YCSB’s results are similar for all
workloads, only the results for workload A are given.

Without MT2, the 95th percentile latency of img-dnn in-
creases to 17.4x. MT2 can restore all LC tasks’ latency almost
to the level when there is no interference at all. At the same
time, the bandwidth of the BE tasks is limited to about 25% of
the original. The performance of the BE tasks can be rapidly
restored after the LC tasks are completed.

MT2 in an untrusted environment. For this case, we use
the hardware method (PEBS) to separate the two types of
write bandwidth. We run YCSB as the LC application along
with four fio tasks as the BE tasks. The four BE tasks perform
read or write operations on NVM or DRAM respectively. MT2

can optimize the latency of the LC application and improve
the throughput of some BE applications by only restricting the
bandwidth of the noisiest BE application as shown in Table 6.
This thanks to the ability of distinguishing different types of
memory bandwidth.

6.2 Performance Overhead
The performance overhead derives from three aspects: in-
terference detection, bandwidth monitoring and restriction.
The interference detection and monitoring overhead stems
from setting and reading the PMU registers reading MBM
data, and issuing write requests, while the restriction overhead
comes from setting MT2 context for threads, including MBA
throttling value and CPU scheduling.

6.2.1 Trusted Environment

We measure the throughput or the execution time of some
aforementioned test programs (fio, graphchi, hadoop, and
RocksDB) with/without MT2 to evaluate the performance
overhead. As shown in Table 7, all overheads are less than
0.01%. The slight performance improvement in graphchi
and hadoop is caused by noise. The overhead is negligible be-
cause most operations in MT2 are performed by the dedicated
kernel thread. For the interference detection, no overhead or
additional bandwidth contention is introduced as only 400KB
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Table 7: The performance overhead of MT2

Thput/Time w/o MT2 w/ MT2 Overhead
fio 31505 MB/s 31507 MB/s < 0.01%
graphchi 321.64 s 321.55 s < 0.01%
hadoop 54.93 s 54.93 s < 0.01%
RocksDB 37770 ops/s 37767 ops/s < 0.01%
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Figure 10: The throughput of fio under different sample frequen-
cies. Frequencies no less than 103 introduce nearly no overhead. The
Y-axis starts at 3.8GB/s to show the difference clearly.

data is written by the dedicated kernel thread for each period
in our implementation, Others access the MSRs to use the
hardware, which introduces little performance overhead.

We also run two applications on the same core to mea-
sure the overhead introduced in context switches. MT2 in-
creases an average of 900 cycles (less than 1 microsecond) in
each context switch, which is insignificant compared to the
millisecond-level scheduling period.

6.2.2 PEBS in the Untrusted Environment

In an untrusted environment, PEBS sampling is one of the
main sources of performance overhead and is closely related
to the sample frequency. We use fio to test the throughput
under different sample frequencies and present the result in
Figure 10. The overhead is negligible when the sample fre-
quency is no less than 103.

6.3 Efficiency

We then split the regulation mechanisms to show the necessity
of the two-stage algorithm design. First we run YCSB (as the
victims) along with graphchi (as the noisy neighbors), and try
using different techniques separately to restore the throughput
of YCSB to 80% of the throughput it runs alone. We can not
achieve the desired goal (restoring the throughput of YCSB
to 80% of the initial) with MBA only. As shown in table 8,
when we throttle the memory bandwidth only via CPU quota
to restore the throughput of YCSB to 80%, the execution time
of graphchi is 10m40s. The corresponding time is 9m56s
when MT2 is used. This indicates that MT2 can control the
bandwidth efficiently, consistent with our analysis in § 3.3.1.

Table 8: The efficiency of MT2

Time MT2 CPU Scheduling
graphchi 9m56s 10m40s

Table 9: The deviation (in %) of monitored bandwidth in MT2

Bandwidth(GB/s) DR DW NR NW
MT2 10.51 4.19 3.84 2.79
PCM 10.69 4.22 3.89 2.81
Deviation 1.68% 0.71% 0.13% 0.71%

6.4 Accuracy
When the environment is trusted, applications faithfully re-
port their NVM write bandwidth using the interface we pro-
vide. Although other bandwidths are obtained using reliable
techniques, we still need to verify whether the results are
accurate. PCM [58] is a software that can monitor different
types of bandwidth of the whole system. When there is only
one memory-intensive program in the system, the system-
wide bandwidth reported by PCM is almost equal to the only
program’s bandwidth. So we run four fio simultaneously to
generate different kinds of workloads and compare the band-
widths monitored by MT2 with those of PCM since Intel also
uses PCM’s bandwidth as the baseline [32]. The results are
shown in Table 9, where the results reported by MT2 are very
close to the ground-truth bandwidths.

7 Discussions
7.1 Limitations and Possible Mitigations
MT2 brings the hybrid memory bandwidth regulation with
several limitations. MT2 relies on hardware mechanisms such
as MBA, MBM, and PMU, which may conflict with applica-
tions that also depend on these techniques. The problem stems
from the limited hardware resources. For example, there are
only 79 RMIDs on our platform. It is possible to mitigate
these limitations via virtualization or by more powerful hard-
ware in the future.

Besides, the granularity of our empirical model is coarse,
which may result in some bandwidth waste. Machine learn-
ing may be used to build more accurate models with a finer
granularity in the future.

Currently, MT2 is only able to accurately track the band-
width of applications accessing the NVM via the file system
and NVM programming libraries like PMDK. On trusted en-
vironments, MT2 relies on applications to report their NVM
write bandwidth honestly. Since many applications (such
as PmemKV [5], Pmem-RocksDB [10], and Pangolin [71])
choose to use NVM programming libraries to manage the
NVM, this can be easily achieved by slightly modifying the
libraries. For untrusted environments, MT2 can only monitor
the write bandwidth roughly because of the hardware limi-
tation, which can be addressed correctly by an update to the
hardware mechanism.

7.2 NUMA
Currently, MT2 does not support cross-NUMA bandwidth
monitoring/regulation. MT2 assumes that applications are
bound to the same NUMA node where its NVM resides so
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that it can monitor and regulate without cross-NUMA NVM
accesses. The binding can be done manually (by the admins)
or by the system’s scheduler (e.g., in cloud environments).
This assumption is reasonable and commonly stands in prac-
tice since applications and FS tend to access the local NUMA
node to avoid degraded cross-NUMA accesses. For multi-
socket machines, MT2 can separate the monitoring and re-
striction policies for different sockets so that MT2 will not
regulate the TGroup in socket 1 when the bandwidth con-
tention level is high in socket 0.

7.3 Future work
In some scenarios, cross-NUMA accesses are inevitable. A
NUMA-and-NVM-aware scheduler can mitigate the memory
bandwidth interference via more advanced scheduling poli-
cies, e.g., isolating DRAM-only applications and the NVM-
intensive applications to different NUMA nodes. We leave
the memory throttling in such scenarios as future work.

MT2 prefers to limit TGroups with massive write NVM
writes. However, these TGroups are not always the culprits
of memory bandwidth contention. Accurately identifying the
noisy neighbors remains a challenge and might require more
hardware assistance. We leave the exploration of accurate
bandwidth monitoring and regulation with hardware modifi-
cations as future work.

8 Related Work
DRAM bandwidth monitoring and regulation. Mem-
Guard [67–69] is a DRAM bandwidth reservation system
designed for real-time multi-core systems. It provides guaran-
teed and best-effort DRAM bandwidth for different applica-
tions. MemGuard monitors the DRAM traffic by accounting
for the cache misses and suspends a task when it has exhausted
its budgets in a given period.

Although both MemGuard and MT2 aim to throttle memory
bandwidth to avoid interference, MT2 differs from MemGuard
in several aspects. First, MemGuard is designed for DRAM
in real-time systems, but MT2 is proposed for hybrid NVM/-
DRAM platforms. Second, MemGuard throttles DRAM band-
width via a software budget-based throttling mechanism. MT2

leverages both hardware and software mechanisms and pro-
poses a dynamic bandwidth throttling algorithm to better
regulate bandwidth for various applications.

LIKWID [59], Larysch [40], and Merlin [57] estimate mem-
ory bandwidth with L3 cache miss information collected from
hardware performance counters. LibDistGen [17] estimates
the memory bandwidth of applications based on stack reuse
histograms. Mmbwmon [16] estimates the memory band-
width consumption of applications by running benchmarks
on other CPU cores of the system simultaneously. These tech-
niques are proposed for DRAM and cannot be simply adopted
to a system with both DRAM and NVM.

EMBA [61] models the relationship between performance
and LLC occupancy and memory bandwidth and then pro-

poses an algorithm with Intel MBA to restrict the memory
bandwidth to improve the overall system performance in data
centers. However, EMBA cannot control the memory band-
width of a group of threads, and it cannot be used on hybrid
NVM/DRAM platforms.

HyPart [50] consists of thread packing, clock modulation
and Intel’s MBA. MT2 utilizes the CPU scheduler, thus pro-
viding finer-grained and precise control. Caladan [24] is a
CPU scheduler that supports task monitoring and scheduling
at the microsecond level. Some other studies [15, 23, 47, 72]
also reduce resource contention with a modified scheduler.

None of these works can be used directly on hybrid memory
NVM/DRAM platforms because the interference model is
completely different from the DRAM-only platforms. They
can only be used on hybrid platforms if they can separate the
DRAM and NVM traffic at thread granularity as MT2 does.
Hybrid NVM/DRAM bandwidth interference regulation.
FairHym [27] will limit the frequencies of cores that per-
form NVM writes when the NVM write bandwidth exceeds a
threshold to improve the inter-process fairness. It only con-
cerns the bandwidth interference between NVM writes and
DRAM accesses. It requires an impractical setup (installing
DRAM and NVM on different NUMA nodes) to estimate the
number of NVM writes. MT2 has more flexible monitoring
and allocation method that takes all types of bandwidth in-
terference into account and can be used to meet the need of
different user scenarios. Dicio [49] can control the bandwidth
interference in a single LC and a single BE job situation. It
blames and throttles the only BE job. In real-world scenar-
ios, it cannot figure out which one to blame. In comparison,
MT2 targets a more practical setup (each NUMA node has
both DRAM and NVM) and a more common scenario where
multiple applications can run together.

9 Conclusions
This paper presents MT2, the first comprehensive system to
regulate memory bandwidth on the hybrid NVM/DRAM plat-
forms. MT2 first detects the bandwidth interference, monitors
four types of memory bandwidth through various mechanisms
and adjusts the bandwidth with a dynamic bandwidth throt-
tling algorithm. Evaluation shows that MT2 can effectively
regulate the bandwidth among applications with nearly zero
performance overhead and can be used in multiple use cases.
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Aurogon: Taming Aborts in All Phases for Distributed In-Memory Transactions

Tianyang Jiang, Guangyan Zhang∗, Zhiyue Li, Weimin Zheng
Department of Computer Science and Technology, BNRist, Tsinghua University

Abstract
Flourishing OLTP applications promote transaction sys-

tems to scale out to datacenter-level clusters. Benefiting from
high scalability, timestamp ordering (T/O) approaches tend
to win out from a number of concurrency control protocols.
However, under workloads with skewed access patterns, trans-
action systems based on T/O approaches still suffer severe
performance degradation due to frequent transaction aborts.

We present Aurogon, a distributed in-memory transaction
system that pursues taming aborts in all execution phases
of a T/O protocol. The key idea of Aurogon is to mitigate
request reordering, the major cause of transaction aborts in
T/O-based systems, in all phases: in the timestamp alloca-
tion phase, Aurogon uses a clock synchronization mechanism
called 2LClock to provide accurate distributed clocks; in the
request transfer phase, Aurogon adopts an adaptive request
deferral mechanism to alleviate the impact of nonuniform
data access latency; in the request execution phase, Aurogon
pre-attaches certain requests to target data in order to prevent
these requests from being issued late. Our evaluation shows
that Aurogon increases throughput by up to 4.1× and cuts
transaction abort rate by up to 73%, compared with three
state-of-the-art distributed transaction systems.

1 Introduction

Many online transaction processing (OLTP) applications such
as Web service and e-commerce scale out to massive servers
with the growing computational and storage demands. Dis-
tributed transaction systems pursue high throughput and low
latency to meet the requirements of OLTP applications. OLTP
applications have two characteristics. First, OLTP workloads
feature severe skew in data access frequency, making data
hotspots common [4,6,18,35,39,51,56]. Second, requests in
transactions usually contain data dependency [3, 11, 12] such
as read-modify-write (RMW) operations, which are more
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Figure 1: (a) Throughput of distributed transaction system
with varying clock accuracy. (b) Relationship between request
failure rate and access frequency (hotspots are in red box).

complex to handle than overwrite operations due to the de-
pendency of write on read. Multiple RMWs accessing data
hotspots concurrently will bring about high contention, which
triggers numerous transaction aborts. Aborts will decrease
the throughput of distributed transaction systems and increase
transaction latency due to retrying aborted transactions.

Different concurrency control protocols are used in plenty
of transaction systems. These protocols are mainly catego-
rized into two-phase locking (2PL) [10, 49], optimistic con-
currency control (OCC) [8, 13, 44], and timestamp ordering
(T/O) [2, 26]. Under OLTP workloads with the aforemen-
tioned characteristics, 2PL systems suffer performance degra-
dation due to low concurrency levels of locks on data hotspots,
while OCC systems encounter frequent aborts since numerous
RMWs interrupt the execution of read requests. Compared
with them, T/O systems show better performance [19] since
they can support flexible concurrency so long as multiple
requests are served in the timestamp order.

Transaction execution in T/O systems undergoes four
phases: allocating timestamps, transferring requests, exe-
cuting requests and committing transactions. Existing T/O
systems can be categorized into clock-driven approach
[7, 15, 29, 40, 47, 55] and data-driven approach [53, 54], both
of them still have deficiencies in addressing the problem of
transaction aborts. The former only optimizes one of the first
three phases. The latter seeks opportunities in the commit
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phase to save transactions that will be aborted, but aborts are
often already inevitable at that time. To this end, this paper
explores how to tame aborts in all phases of a T/O protocol
when designing a distributed transaction system.

A transaction will abort once the execution of any request
in this transaction fails. The key reason for request execution
failures in T/O systems is that requests are not executed in
the order of their timestamps. We call this phenomenon re-
quest reordering. We examine the aforementioned four phases
of T/O systems and find that request reordering only occurs
in the first three execution phases. Here we introduce three
reasons for request reordering in different phases briefly.
1) Inaccurate distributed clocks in the timestamp allocation
phase. The inaccurate timestamps allocated for transactions
degrade the performance of T/O systems [33, 54]. To verify
this, we adjust the clock offset among servers from 1µs to
10ms manually in a T/O system and see a throughput reduc-
tion of up to 94% (Figure 1(a)) under the YCSB workload [9].
2) Nonuniform data access latency in the request transfer
phase. The nonuniformity of data access latency aggravates
request reordering. The latency of accessing remote servers
via the network (≈2µs) [22] is at least one order of magnitude
larger than that of accessing local memory (≈100ns) [50]. This
perhaps makes the order of request arrivals at the destination
mismatch the order of request timestamps.
3) Requests with data dependency in the request execution
phase. Requests that depend on the previous requests’ results
in the same transaction are called dependent requests in the
rest of this paper. In the request execution phase, dependent
requests will be issued late due to dependency wait, leading
to an execution failure with high probability.

We present Aurogon1, an all-phase reordering-resistant
distributed in-memory transaction system ensuring serializ-
ability. To avoid request reordering, we devise three key tech-
niques to address the three issues, respectively.

To design the clock synchronization for transaction sys-
tems, one key challenge is how to achieve high accuracy of
distributed clocks under serious CPU interference from fore-
ground transaction processing. With the growing capability of
high-speed networks (e.g., RDMA [13, 43]), CPU resources
nowadays are becoming the bottleneck in distributed sys-
tems [17, 52]. Both foreground transaction processing and
background clock synchronization share and even contend for
CPU resources. We have observed that CPU-NIC clock syn-
chronization and NIC-NIC clock synchronization are hetero-
geneous. Inspired by this observation, we propose a two-layer
clock synchronization mechanism called 2LClock. 2LClock
provides a distributed clock with an average accuracy of 41ns
under foreground interference.

To mitigate the impact of nonuniform data access latency,
one challenge is how to trade off between transaction process-
ing latency and abort rate. Performing requests in a first-come-

1Aurogon is a god who controls day and night in Chinese mythology.

first-serve (FCFS) order violates the original timestamp order
of requests [7], leading to potential transaction aborts. Thus,
we have an opportunity to buffer those requests with larger
timestamps and defer their execution to tolerate late arrivals
of requests. But request deferral will increase the latency of
the deferred requests. We further examine the request failure
rate of individual data records (Figure 1(b)) and find that trans-
action aborts mostly arise from failures of requests on data
hotspots. In other words, deferrals of requests performed on
cold data hardly reduce aborts. So, Aurogon adopts an adap-
tive request deferral mechanism that detects data hotspots
dynamically and only defers those requests performed on
hotspots.

Finally, to prevent dependent requests from being issued
late, we pre-attach dependent requests to data when trans-
actions including these requests access the target data for
the first time. Specifically, within a transaction, the metadata
of dependent requests will be transferred to target servers to-
gether with the requests they depend on, and then the metadata
will be attached to the corresponding data. Thus dependency
wait will not lead to the late arrivals at the destination of these
dependent requests.

We implement Aurogon on an RDMA-capable cluster. We
compare Aurogon with three state-of-the-art distributed trans-
action systems (i.e., Sundial-CC2 [54], DrTM+H [48], and
DST [47]) by evaluating them under two typical OLTP work-
loads with different degrees of contention. Our experiments
show that Aurogon achieves up to 4.1× higher throughput
and up to 86% lower average latency than prior systems. Our
further experiments also show that Aurogon decreases the
abort rate by up to 73%.

2 Background and Motivation

In this section, we first show the characteristics of workloads
we target (§2.1). Then we profile prior T/O systems and point
out their deficiencies (§2.2). A main disadvantage is that exist-
ing timestamp allocation schemes are inaccurate, so we need
to introduce clock synchronization approaches to solve this
issue. One common concern is why existing clock synchro-
nization approaches cannot work well in transaction systems,
which is analyzed in §2.3.

2.1 Working Scenario
We conduct detailed profiling on typical OLTP workloads and
characterize two important features below.
Dependent requests. There are two kinds of dependent re-
quests in transactions: 1) key-dependent requests, determining
which key to read or write with the indexing information from
previous read requests, 2) value-dependent requests, determin-
ing the value that they update the records with using the return

2We denote the work [54] as Sundial-CC and the work [28] as Sundial-
Clock in this paper for distinction.
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Figure 2: (a-c) Transaction aborts resulting from request reordering, which is caused by inaccurate distributed clocks (a), by
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each transaction. (d) Per-thread throughput and latency when different numbers of threads query the clock of one NIC.

smallbank TPC-C TPC-E
Ratio of transactions with RMWs 90% 92% 25%
Avg. RMW count per transaction 1.41 7.22 3.49

Table 1: Statistics of RMWs in typical OLTP workloads.

results of previous read requests. For instance, in “a[i]+=5”,
WRITE(a[i]) depends on the result of READ(i) so it is a key-
dependent request, and in “a=b+5”, WRITE(a) depends on
the result of READ(b) so it is a value-dependent request.

With dependent requests, developers can implement com-
plex business logic. For instance, RMWs, the most typical
value-dependent requests, are widely used in OLTP applica-
tions (Table 1). However, it is complicated to execute depen-
dent requests efficiently in a serializable transaction system.
Taking a RMW as an example, any other write performed
between the executions of the read and write in the RMW
will make the whole RMW fail.
Skew in data access frequency. Data hotspots exist widely
in real-world database workloads [4, 6, 18, 35, 39, 51, 56]. A
small fraction of data is accessed frequently in a burst with
the occurrence of hot events while other data remains cold.
For instance, the analysis [5] shows that the top Twitter users
had a disproportionate amount of influence indicated by a
power-law distribution, so their tweets become hotspots.

2.2 Limitations of T/O Transaction Systems
There is a great deal of prior work [2, 7, 15, 29, 40, 47, 53–55]
studying T/O transaction systems. The core idea of T/O sys-
tems is to take the partial order relation revealed by times-
tamps as the serializable order in transaction systems. All
transactions in the system reach a consensus on the order that
timestamps reveal. A transaction attaches its timestamp to all
requests it issues, and requests are performed in the timestamp
order on each data record. According to the sources of their
timestamps, existing T/O systems lie in two categories:
1) Clock-driven approach. In these systems [7, 15, 29, 40, 47,
55], timestamps allocated for transactions are obtained from
local clocks. Those timestamp allocation approaches pur-
sue scalability but relax the requirement for timestamp
accuracy. We study three typical systems [7, 29, 47] and con-

clude that they utilize a kind of loosely synchronized clocks,
called chasing clocks.

Specifically, requests record their timestamps on data dur-
ing execution and return the largest timestamp recorded on
data. These returned timestamps help servers to update their
lagging clocks if servers find their clock values are smaller
than the returned timestamp. The process makes it seem that
all clocks chase the fastest one in the system. Although all
clocks will catch up with the fastest one eventually, clocks
are not accurate instantaneously. Therefore, chasing clocks
decrease the performance of transaction systems although
they do not violate the correctness.
2) Data-driven approach. Transactions’ timestamps are de-
termined by their read or write dependency of committed
transactions in these systems [53, 54]. A transaction first ob-
tains the dependencies when accessing data and uses them
to determine its timestamp in the commit phase. Data-driven
approach seeks opportunities in the commit phase to save
transactions that will be aborted by reordering their commit
timestamps without violating the known dependency. How-
ever, a majority of aborts have been inevitable at that time
due to request reordering during execution.
Implications. Existing T/O systems hardly alleviate aborts
due to either inaccurate timestamps caused by chasing clocks
or inevitable request reordering during execution. So our de-
sign adopts high-accuracy clock synchronization to allocate
timestamps and prevent request reordering in each phase of
execution.
Request reordering in each phase. T/O systems execute a
transaction via four phases: 1) allocating a timestamp for each
transaction, 2) transferring requests to the servers containing
required data, 3) executing requests in their timestamp order
and returning execution results, and 4) committing the trans-
action after receiving all acknowledgements successfully.

After analyzing request reordering phase by phase, we
list three key reasons: inaccurate distributed clock, nonuni-
form latency of data accesses, and requests with data depen-
dency. Figure 2(a-c) shows three cases of the reasons, respec-
tively. There are two transactions (Tx0, Tx1), which issue
read/write/RMW requests to one record (X). [wts, rts] repre-
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sents the live period of a certain record version (more details
in §4.1). For a version, a write will fail if its timestamp ts
satisfies wts ≤ ts < rts, and a successful read may increase rts.

In Figure 2(a), inaccurate distributed clocks cause the order
of two transaction timestamps to not be consistent with the
physical time order in which they get timestamps. If it takes
the same time for Tx0 and Tx1 to access X, Tx0 starting later
will abort due to its smaller timestamp.

Figure 2(b) illustrates that nonuniform latency of data ac-
cesses incurs request reordering though clocks are accurate.
Tx1 starting later accesses X earlier than Tx0 since X and
Tx1’s execution reside on the same server. So Tx0 aborts due
to the late arrival of its request. The case occurs frequently in
a large heterogeneous cluster because the latency of access-
ing data from different servers is usually nonuniform due to
different network hop counts and uneven traffic distribution.

Figure 2(c) shows that dependent requests also lead to
reordering. In this case, “X=6” in Tx0 is such a request since
it depends on the result of the previous read. The event “X=6”
arrives at X later than Tx1’s read results in Tx0’s abort because
“X=6” must wait for the return of Tx0’s read to calculate the
value to be written.

2.3 Clock Synchronization Approaches
Clock synchronization dedicated to transaction systems
should meet three requirements: 1) high accuracy, 2) low
calling overhead, and 3) resistant to CPU interference. To
achieve the three requirements, clock synchronization should
adopt differentiated methods on CPU-NIC synchronization
(CPU-NIC sync) and NIC-NIC synchronization (NIC-NIC
sync). Prior work [16, 28, 32, 40] ignore the heterogeneity
between CPU-NIC sync and NIC-NIC sync, so they cannot
be applied to transaction systems directly.
Observation. CPU-NIC sync probes show a larger latency
fluctuation than NIC-NIC sync ones in transaction systems.

The large fluctuation of probe latency will impair the accu-
racy of synchronization [16]. A longer execution time of
a probe suggests the readings of two probed clocks can
differ, leading to inaccurate clock synchronization. Prior
work [16, 28] believes network traffic is the main reason
for inaccurate probes so they focus on eliminating the ef-
fect of link noise. However, that does not cover all cases
especially when foreground applications are CPU-intensive
instead of network-intensive. Table 2 illustrates the laten-
cies of both CPU-NIC sync and NIC-NIC sync probes un-
der DrTM+H [48], a CPU-intensive distributed transaction
system which saturates RDMA networks to accelerate trans-
action processing. The P999/median ratio of network probe
latency only rises by 37% when adding the DrTM+H load.
It suggests that peak network traffic from this advanced dis-
tributed transaction system does not affect the stability of net-
work probes seriously. On the other hand, this ratio reaches
6.75 for CPU-NIC sync probes. This happens because getting

CPU-NIC sync NIC-NIC sync
w/o load w/ load w/o load w/ load

median (µs) 1.26 1.86 0.95 1.05
P999 (µs) 1.33 12.56 0.97 1.47

P999/median ratio 1.06 6.75 1.02 1.40

Table 2: Execution time of two kinds of probes without load
or under the DrTM+H load.

CPU timestamps suffers from latency spikes when the CPU
is preempted by foreground transaction processing.

Based on the heterogeneity we observed, existing clock
synchronization approaches have four limitations. First, they
consume precious CPU resources in transaction systems when
using a dedicated core [40] to poll requests via user-level net-
work interfaces, decreasing transaction throughput. Second,
without separating CPU-NIC sync and NIC-NIC sync [32,40],
high accuracy cannot be achieved due to highly variable
software stack latencies [16]. Third, the synchronized NIC
clocks (e.g., PTP [21], HUYGENS [16]) cannot serve in-
tensive queries from transaction systems. Figure 2(d) illus-
trates that as the number of threads querying the clock of
one NIC increases, the average query latency rises sharply
and the per-thread throughput also decreases. Finally, some
of them [27, 28] rely on customized modification to NICs,
making their extensive deployment in datacenters difficult.

3 System Overview

We propose Aurogon, an all-phase reordering-resistant dis-
tributed in-memory transaction system, with solutions target-
ing the three issues discussed in §2.2.
Design rationale. The key idea of alleviating request re-
ordering is to maintain the timestamp order for requests in all
phases of transaction execution.

First, in the timestamp allocation phase, we propose a clock
synchronization mechanism to improve the accuracy of times-
tamps obtained by transactions. The clock exploits a two-layer
architecture, divided into CPU-NIC sync and NIC-NIC sync.
The high accuracy achieved by 2LClock resists the CPU in-
terference from foreground transaction processing.

Second, in the request transfer phase, Aurogon buffers re-
ceived requests and defers the execution to mitigate the im-
pact of nonuniform data access latency. To cut the latency rise
caused by request deferrals, Aurogon only defers the requests
performed on hotspots and shortens the request deferral time
heuristically.

Third, in the request execution phase, to prevent dependent
requests from being issued late, Aurogon pre-attaches the
metadata of dependent requests to data when their transac-
tions issue requests to the same data at the first time. This
mechanism not only diminishes execution failures of depen-
dent requests, but also saves one network communication for
dependent requests.
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Aurogon Architecture. Figure 3 illustrates the Aurogon ar-
chitecture. Servers are connected with a fast network. Data
is partitioned into multiple shards and each server maintains
one of data shards in its memory. All servers are homoge-
neous and transactions can start to execute in any server. Each
server has four modules: a coordinator, a primary participant,
a backup participant and a clock.
• The coordinator is responsible for coordinating transac-

tions. It sends read/write/commit requests to primary par-
ticipants and it decides to commit or abort transactions
based on the replies. The coordinator also pre-attaches the
metadata of dependent requests to data (§4.3).
• The primary participant processes requests in their times-

tamp order by accessing local in-memory storage, and fi-
nally sends their execution results to coordinators. Mean-
while, the primary participant conducts the method of adap-
tive request deferral to cut aborts.
• The backup participant replicates the commit messages

from a coordinator before transactions are committed to
the primary participant to tolerate a server failure.
• Clocks provide accurate timestamps for transactions and

are synchronized via 2LClock (§5).

4 Concurrency Control Protocol Design

4.1 Protocol Specifications
We first introduce the data management in Aurogon. Auro-
gon leverages a multi-version mechanism to store historical
versions of data records and distinguishes data versions with
timestamps obtained from 2LClock. Each data version has
an active range of timestamps bounded by the write times-
tamp (wts) and the read timestamp (rts). Specifically, wts is
the timestamp of the transaction that has created this version
and rts indicates the maximum timestamp of transactions that
read this version. The versions of a record are organized by a
linked list sorted by their wts in descending order. Each ver-
sion also contains a status that indicates whether this version
is committed.

We now describe the rules for handling requests in Auro-
gon. Read requests always succeed while write requests may
fail during the execution if they conflict with the committed
reads. Reads are regarded as COMMITTED upon finishing exe-
cution so they do not demand an extra commit message, but

writes require an extra communication with participants to
ensure that all writes of the transaction are performed success-
fully.

Algorithm 1 shows the protocol of transaction processing in
Aurogon. The coordinator performs a transaction T beginning
with getting a timestamp (line 3) from local 2LClock (§5).
The timestamp indicates the serial order of the transaction and
is attached to all requests issued by T. Aurogon encodes the
acquired timestamp together with the server and thread IDs
of the coordinator into a 64-bit timestamp to make it globally
unique.

In the request transfer phase, the coordinator traverses T’s
read and write sets dynamically, and sends its read requests
to the participants3 maintaining the required data (line 5-7).
If a write depends on the return of the read accessing the
same data record (e.g., the write in a RMW), the read will pig-
gyback the metadata of these dependent writes. Meanwhile,
independent writes, which do not contain data dependencies,
are issued to corresponding participants directly (line 8-9). It
should be noted that transactions in Aurogon do not require
knowing read and write sets before their executions. Specifi-
cally, transactions can add a key-dependent request into the
read or write set while running, and then the coordinator will
issue such a key-dependent request.

The coordinator receives return messages of T’s requests
from participants and aborts T once it obtains the failure
return of any request (line 10-13). If T is aborted, the coordi-
nator will notify the participants which have performed T’s
requests successfully to rollback the changes brought by T’s
requests. When T’s all requests are returned successfully, the
coordinator will start the commit phase, issuing commit mes-
sages to the participants containing the records in T’s write
set (line 17-20). Finally T can be committed to users.
Tx_read shows the execution of read requests in partic-

ipants. If a read request R is issued together with a depen-
dent write Wd, the participant will first install Wd into the
data list (line 24-26). The installation process is illustrated in
Tx_write later. Then the participant determines whether the
execution of R will be deferred according to the hotness of
data R accesses (line 27-28).

After a possible deferral, R starts to read by searching for
the correct version based on its timestamp: it traverses the data
list in the descending timestamp order (line 29) and chooses
the first version v which satisfies v.wts < R.ts. In other words,
v has the largest wts among versions whose wts are smaller
than R.ts (line 31). The participant will extend v.rts to R.ts if
v.rts < R.ts to show the existence of R (line 32). If v.status is
PENDING, which indicates that v is not yet committed, R will
wait until v.status turns to COMMITTED (line 33-34). Aurogon
chooses to block R instead of reading uncommitted data [26]
to prevent the high overhead caused by cascading aborts. Fi-
nally, R returns the correct data version to the coordinator.

3Participants refer to primary participants in the rest of this paper unless
explicitly stated otherwise.
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Algorithm 1: Pseudo code of Aurogon’s concurrency
control protocol.

1 Function Coordinate(txn)
2 // timestamp allocation phase
3 ts = get_local_clock_ts()
4 // request transfer phase
5 for read,record in txn do
6 send(read.dest_node, Tx_read, read, record)
7 //piggyback the metadata of dependent writes
8 for independent_write,record in txn do
9 send(write.dest_node, Tx_write, write, record)

10 while receiving an ACK do
11 if ACK.status == failure then
12 abort txn
13 return
14 if key-dependent requests exist then
15 update read and write sets and issue requests
16 // commit phase
17 if all ACKs are received then
18 replicate updates to backup participants
19 for write,record in txn do
20 send(write.dest_node, Tx_commit, write, record)
21 commit txn // notify upper users
22 // request execution phase
23 Function Tx_read(record, req)
24 if req.dependent_write exists then
25 if install(record, req.dependent_write) fails then
26 return dependent_write failure // reply to coordinator
27 if record.is_hot == True then
28 wait for deferred_interval
29 for version in record.list do
30 // in descending order of version timestamp
31 if version.wts < req.ts then
32 version.rts = max(version.rts, req.ts)
33 if version.status == PENDING then
34 wait until version.status == COMMITTED
35 reply version’s data to coordinator
36 return success
37 Function Tx_write(record, req)
38 if install(record, req) fails then
39 return failure
40 else
41 return success
42 Function Tx_commit(record, req)
43 find req’s version in record.list
44 version.status = COMMITTED

Tx_write shows the execution of write requests in partic-
ipants. Before a write request W is processed to update the
record r, the participant needs to ensure that no version v of r
satisfies v.wts ≤W.ts < v.rts. If such v exists, W will conflict
with requests which read v and each have a timestamp larger
than W.ts. It is because these reads should return the updates
of W but they have already returned v. W has to fail if such a
conflict occurs as it is expensive or even impossible to change
these reads’ return and abort relevant transactions.

The participant validates W and searches for the correct
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Figure 4: An example of request deferral.

installation position in this way: it traverses the version list
and chooses the first version v f which satisfies v f .wts ≤ W.ts,
followed by validating whether v f .rts ≤ W.ts. The conflict
would only occur on v f since all versions are sorted in the
descending order of wts. If W passes the validation, the par-
ticipant installs a new version v’ in front of v f , setting the
status of v’ to PENDING and v’.wts = v’.rts = W.ts. Now the
installation of W succeeds. The same process is also used to
install a dependent write in Tx_read. Finally the participant
returns the success of W to the coordinator.
Tx_commit shows the commit process of writes in par-

ticipants. If the coordinator commits the transaction T, the
participant finds the versions of all pending writes issued from
T and turns the status of these writes to COMMITTED. Then the
participant returns the pending reads blocked by these writes.

4.2 Adaptive Request Deferral

To decrease the number of transaction aborts, we focus on
reducing the failures of write requests since reads never fail in
Aurogon. As depicted in Figure 2(a) and 2(b), writes will fail
if they conflict with committed reads. If a read R is committed
and returns the version v to the coordinator, an incoming write
W with v.wts ≤ W.ts < R.ts has to fail in order to ensure serial-
izability. Besides inaccurate distributed clocks, nonuniform
data access latency causes that W with a smaller timestamp ar-
rives later than R. The issue results from both the data location
and the network queuing on transmitting links.

To solve this problem, we propose an adaptive request
deferral mechanism to defer the execution of reads until the
straggling writes arrive and finish. Figure 4 shows such a
deferral case. Compared to Figure 2(b), Aurogon buffers Tx1’s
read and defers its execution. “X=5” in Tx0 benefits from the
deferral and can be installed successfully when it arrives at X.
Then the deferral ends, and Tx1’s read is performed, returning
the latest value 5.

However, a raised challenge is that a read’s deferral will
increase the transaction latency inevitably. We tackle the diffi-
culty by two methods: reducing the number of unnecessary
deferred reads and shortening the request deferral time.
Cutting the deferred read count. We examine the failure
rate of individual data records and observe that transaction
aborts usually arise from request reordering on hotspots. The
hotspots account for a small portion of user data but encounter
enormous request failures. Figure 1(b) illustrates that the
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failure rate rises sharply when data is hot. So the request
deferral on hotspots can be much more effective.

To this end, we propose a lightweight hotspot detection
scheme. The scheme counts the number of receiving requests
for each record individually in last 10 milliseconds using
accurate timestamps allocated for requests. If the throughput
of a particular record exceeds a preset threshold, we consider
that the record is being accessed frequently and at great risk of
request failures. Then the request deferral mechanism starts
to defer the execution of reads on high-contention records.
The space overhead of the detection scheme is quite modest
(only an 8-byte counter for each data record). Moreover, the
detection scheme can discover the change of hotspots easily
so that we will conduct deferrals on the new hotspots.
Shortening request deferral time. Aurogon exploits a
heuristic method to increase the deferral time instead of set-
ting an overlong deferral time in advance. The deferral time
of each record is determined individually. Aurogon calculates
the request failure rate of each record dynamically based on
the hotspot detection scheme. The deferral time will be in-
creased heuristically to tolerate late arrivals of more writes
if the failure rate exceeds a preset threshold. If the request
failure rate of the hotspot remains low, Aurogon could cut
the deferral time conservatively to avoid the waste of deferral
time. Our evaluation shows that a 20-microsecond deferral
for reads on hotspots cuts 50% write failures in most cases.

Note that the request deferral mechanism is a best-effort
method which cannot eliminate the write failures completely.
However, we could trade a moderate latency rise of a handful
of transactions for reducing aborts.

4.3 Pre-attaching Dependent Requests to
Data

A dependent request may fail during execution since it has to
wait for the results of requests it depends on within the same
transaction (Figure 2(c)). Dependent requests are classified
into key-dependent requests and value-dependent requests
(§2.1) and we first target value-dependent requests.

Value-dependent requests are writes depending on the pre-
vious reads’ results and the write set of value-dependent re-
quests are deterministic. We first consider the situation that
writes are issued to the same records with previous reads. such
as an auto-increment counter. Taking RMW as an example,
Figure 5 illustrates that three network communications are
consumed in T/O systems [2, 19] without pre-attaching be-
tween the coordinator and the participant: 1) a read R is issued
to the record X and obtains the correct data, 2) a preparing
write request “X=8”, PW, is sent to the record carrying the
updated data, and 3) a commit or abort message C notifies
the participant to commit or rollback the updates from PW. It
leaves a vulnerable interval from the time point R finishes to
the time point PW arrives, in which any arriving write W with
W.ts > PW.ts will break the integrity of RMW’s execution and
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Figure 5: Dependent request handling with or without pre-
attaching.

cause PW’s failure.
To this end, Aurogon piggybacks the metadata of depen-

dent requests to target data while transferring requests they
depend on, and pre-attaches these dependent requests to data
records for the purpose of eliminating the vulnerable interval
(Figure 5). Specifically, the metadata of PW is issued to the
participant together with R in the first communication, and
the participant first tries to install PW to the data list before
performing R (line 25 in Algorithm 1). If the installation fails,
there is no need to perform R and the participant can return a
failure message to the coordinator, resulting in an early abort
of the transaction which saves CPU resources (line 26).

After installing the version of PW, the participant sets the
version’s status to PENDING and leaves its value NULL since
the coordinator has not obtained R’s return and could not
have calculated PW’s new value. Note that leaving the ver-
sion’s value NULL does not violate the correctness as the
PENDING versions will block incoming reads. The participant
performs R and returns the result immediately after installing
PW, which eliminates the vulnerable interval. In the commit
phase, the participants will receive the message C and com-
mit the version of PW with new data if it is determined the
transaction will commit.

Besides eliminating the vulnerable interval, pre-attaching
dependent requests brings two extra advantages. First, it saves
one network communication compared to prior T/O systems.
Second, it assists the transaction in finding early aborts if the
installation fails in the first network communication, which
cuts unnecessary network bandwidth usage compared to en-
countering PW’s failure after sending PW’s data to the partici-
pant in Figure 5. Meanwhile, since the metadata piggybacked
is just a boolean variable to show the existence of a dependent
write, the latency of transferring requests are not affected.

We now discuss other situations of dependent requests.
For other value-dependent requests (e.g., PW accesses the
records different from R), Aurogon supports issuing R fol-
lowed by transferring the metadata of PW to its corresponding
record for pre-attaching, which shortens the vulnerable inter-
val greatly as well. For key-dependent requests, it is inevitable
to wait for previous reads’ results to determine which data
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to access. Aurogon introduces the modification of adaptive
request deferral mechanism to benefit these requests. Previous
reads’ executions are accelerated by disabling their possible
deferral in participants selectively. Furthermore, for perform-
ing key-dependent requests, a key-dependent read can be per-
formed directly since its dependency wait in the coordinator is
regarded as an implicit deferral, while a key-dependent write
may benefit from read deferrals on hotspots.

4.4 Aurogon’s Isolation Level

Aurogon ensures serializability and here we only give a simple
proof sketch. Each transaction has a globally unique times-
tamp. Requests are executed in the order of their transactions’
timestamps. So each transaction can achieve a view of the
system and update the system’s status consistently with its
globally unique timestamp. Therefore, transactions in Au-
rogon are serializable, and the timestamp order is the serial
order of transactions.

Aurogon also ensures strong partition serializability (SPS)
[1, 7, 41] as an extension. SPS is an isolation level slightly
weaker than strict serializability [20,38]. In a SPS system, for
any two transactions T1 and T2, T1 must precede T2 in the
serial order if two conditions are satisfied: 1) T2 starts after
T1 finishes, 2) T1 and T2 access the same record. One can
achieve strict serializability easily in SPS systems by adding
explicit out-of-band dependencies with a cross-record read,
solving the anomaly usually called “causal reverse”.

Two main anomalies which can happen in serializable Au-
rogon are “stale reads” and “immortal writes” [1] compared
to SPS. The key reason for both anomalies is that timestamps
2LClock allocates cannot match the physical time completely
in a distributed system. A transaction could obtain a smaller
timestamp so it cannot see the newest updates.

We solve the two anomalies by adding some modifications
to request processing in participants. To prevent stale reads,
reads cannot return a version v if there exists a COMMITTED
version v

′

that v
′

.wts > v.wts. To prevent immortal writes,
a write W cannot be inserted if there exists a COMMITTED
version v that v.wts > W.ts. Besides, coordinators should not
commit a transaction T to users until receiving all of its com-
mit acknowledgement messages. An early commit of T may
cause that transactions starting later will find the status of T ’s
updates is PENDING, which should have been COMMITTED,
leading to the incorrect execution of two aforementioned
modifications.

4.5 Fault Tolerance

To tolerate the server-level crash, Aurogon leverages the
widely-used primary-backup replication similar to prior work
[14,24,48]. Aurogon does not require to replicate coordinators
since their commit decisions and states can be recovered from
the states of primary participants and backup participants. If
a transaction T is determined to be committed, its coordinator

first replicates T’s updates to backup participants. Backup
participants perform transactions’ updates asynchronously
to survive primary participant failures. After receiving all
ACKs from backup participants, T’s updates can be commit-
ted to primary participants and T can be returned to users
simultaneously.
Failures of coordinators. The approach for handling the co-
ordinator failure is to finish transactions having been commit-
ted to users and abort running ones it coordinates. If primary
participants detect the failure of a coordinator with periodic
heartbeats, they need to judge whether the transactions coor-
dinated by this coordinator has been committed to users. They
first check if updates of the transaction exist in correspond-
ing backup participants. If all backup participants retain the
updates, it means the transaction is allowed to return to users
so that primary participants will search for the transaction’s
updates in memory and commit them. Otherwise, primary
participants will discard these PENDING updates and inform
backup participants to roll back the possible changes.
Failures of participants. The updates of a transaction will
first be replicated to backup participants followed by primary
participants, so coordinators can select a new primary partici-
pant from backups with a lightweight consensus [25,37] after
detecting a primary participant failure. The correctness is guar-
anteed since backup participants have retained all transactions’
updates that corresponding primary participants received. The
failure of a backup participant can also be recovered by the
consensus protocol.

5 2LClock Design and Implementation
Inspired by the observation in §2.3, we propose 2LClock, a
clock synchronization mechanism using a two-layer mapping
scheme to provide a global clock for each server. We further
implement 2LClock with the help of an emerging network
technique, RDMA [23, 31, 34, 43, 46]. 2LClock meets three
requirements of clock synchronization proposed in §2.3.
• To achieve high accuracy, 2LClock separates CPU-NIC

sync and NIC-NIC sync to alleviate the latency fluctuation
from the software stack, and issues synchronization probes
frequently to resist clock drift.
• To reduce the overhead of querying timestamps for trans-

actions, 2LClock implements CPU-NIC sync to enable
transactions to avoid querying NIC clocks directly.
• To resist the CPU interference from transaction processing,

2LClock filters inaccurate synchronization probes and cuts
the CPU usage of synchronization with the help of RDMA.

5.1 Clock Mapping Functions
In 2LClock, all CPU clocks in the cluster synchronize with
one preset “reference” NIC clock. Specifically, for a server,
its CPU clock is synchronized with its local NIC clock, using
the mapping function F1. Then the local NIC clock uses the
mapping function F2 to synchronize with the reference NIC
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Figure 6: Mapping and probing in clock synchronization.

clock. The principle of constructing a mapping function Fi
(F1 or F2) is to ensure their increasing monotonicity since dis-
tributed transaction systems cannot tolerate individual clocks
going backwards. We now present how to construct Fi.

The synchronization accuracy of Fi will be influenced by
the fluctuation of individual probes if we update the Fi upon
receiving a new probe. So 2LClock divides the time into
multiple successive timeslices with a fixed-length Td and
filters out “bad” probes collected in each timeslice to achieve
high accuracy. As shown in Figure 6(a), 2LClock derives Fi
in four steps. First, 2LClock generates a linear function for
each timeslice (¶), which is different between F1 and F2 and
is elaborated in §5.2. Second, for each timeslice [i ·Td, (i+1) ·
Td), 2LClock gets the middle point Mi of the line segment (·).
The third step is to get the set of anticipated points (¸).
By drawing a line across two middle points Mi and Mi+1,
2LClock gets an anticipated point Ai. Finally, by connecting
each two successive anticipated points (¹), 2LClock gets a
mapping clock function (red lines with diamond symbols in
Figure 6(a)).

One may wonder why 2LClock exploits an extension
method to obtain a piecewise mapping function. It is because
the linear function generated in the first step may not be suc-
cessive at the junction of two timeslices, which may violate
the monotonicity of allocated timestamps.

5.2 Synchronization in a Timeslice
As depicted in the first step in §5.1, to construct either F1 or
F2, 2LClock first needs to generate a linear function for a
timeslice. Here we introduce the ways to generate such linear
functions for F1 and F2 via synchronization.

5.2.1 CPU-NIC Synchronization
In a timeslice, 2LClock first produces a set of mapping pairs
between a server’s CPU clock and its local NIC clock by
probing and measurement. Then, it fits those mapping pairs
with linear regression, generating a linear function for F1.

To produce a mapping pair dataset, a CPU-NIC sync thread
periodically queries its local NIC to get mapping pairs <
tc, tn >, which gives an estimation that the time in local NIC
is tn when time in CPU is tc. Each NIC query generates three
timestamps: a NIC timestamp (Tn) from the query reply, and

two CPU timestamps (Tc1 and Tc2) that the host CPU records
when CPU begins and finishes the NIC query request. So we
get the mapping pair < tc,Tn >, where tc = α ·Tc1 +(1−α) ·Tc2.
α is a parameter in [0,1] and we set it offline4.

After collecting enough mapping pairs within one timeslice,
we discard those outlier pairs whose execution duration, Tc2−

Tc1, deviates far from the normal value. Resource contention
between clock synchronization and transaction processing can
occasionally make the execution duration of some mapping
pairs to millisecond level. So filtering out outlier pairs can
effectively enhance the accuracy of CPU-NIC mapping.

5.2.2 NIC-NIC Synchronization

For NIC-NIC sync, 2LClock uses three steps to generate a lin-
ear function in each timeslice for F2. First, 2LClock produces
a set of mapping pairs between local NIC and the reference
NIC. The reference NIC is on a randomly picked server in the
cluster. 2LClock first gets a quadruple <TAS , TBR, TBS , TAR>

by issuing probes from local NIC to the target NIC, and then
obtains a mapping pair <tn, tg> from such a quadruple. Here
we adopt the link symmetric assumption, widely used in prior
work [16, 27, 28, 32]. Second, 2LClock uses supported vector
machine to filter the mapping pairs deduced from those outlier
probes as prior work [16] does. This is because a probe with
a finishing time beyond the normal range of measurement
encounters network fluctuation with high probability [16],
which will violate the link symmetric assumption. Finally,
2LClock generates a linear function for F2 by fitting mapping
pairs with linear regression.
Tree structure of NIC-NIC sync. 2LClock builds a K-ary
tree to organize the synchronization links, whose root is the
reference NIC. Each NIC issues probes to its parent NIC, so
that each NIC can ultimately get a mapping pair synchronized
with the reference NIC clock. Each tier of the tree will in-
troduce an additional synchronization error [28]. Thus we
set K to 10 intuitively to limit the synchronization error. For
example, only a four-tier tree is required to enable 2LClock
to work in a 1000-server cluster (1+10+102+103=1111).
RDMA characteristics. To reduce CPU usage, 2LClock ex-
ploits two characteristics of RDMA when obtaining the clock
mapping pair between a local NIC and its parent NIC with
probes. First, RDMA ibv_cq_ex can automatically record ac-
curate times when a network request leaves and arrives at an
RDMA NIC (RNIC). This interface allows buffering these
NIC timestamps in both sides’ host memory via direct mem-
ory access without CPU involvement. Second, RDMA has
multiple transport modes [24, 43] including Reliable Con-
nected (RC) and Unreliable Datagram (UD). Specifically, RC
mode uses acknowledgment packets to ensure reliable trans-
mission, while UD mode removes these packets. We have

4Theoretically, α is the ratio between NIC query uplink latency and the
sum of uplink and downlink latencies. In a homogeneous cluster, α’s values
on different servers are the same so the relative time of CPU clocks is not
affected by α’s values.
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found an interesting feature of ibv_cq_ex in RC mode and
used it to probe target RNIC: ibv_cq_ex records the leaving
and arriving times of RC request’s ACK instead of RC request
itself. Next we show how to generate a probe and calculate a
mapping pair.
Using a combination of RDMA modes. Figure 6(b) plots
how a probe gets a quadruple when local RNIC A synchro-
nizes with its parent RNIC B. 2LClock first sends a UD re-
quest from A to B with ibv_cq_ex and records two timestamps,
TAS and TBR, indicating when the UD request leaves A and
arrives at B, respectively. Then 2LClock sends an RC request
from A to B with ibv_cq_ex as well and two timestamps,
TBS and TAR, are recorded, indicating when the RC’s ACK
leaves B and arrives at A. If UD requests suffer packet loss,
we discard the probes directly though it seldom happens [24].
Transferring timestamps asynchronously. Finally, the
server that B resides on obtains existing timestamps TBS
and TBR in a batch by polling local ibv_cq_ex [30, 36] pe-
riodically, and transfers them to A’s server. The clock off-
set between B and A can be calculated as: offsetB−A =

((TBR − TAS ) − (TAR − TBS ))/2, and the mapping pair is
(TAS ,TAS +offsetB−A). We also measure the difference of
one-way delay between RC and UD requests offline, and then
subtract this part when calculating the offset to avoid violating
the link symmetric assumption.

The design of probing in 2LClock reduces the CPU uti-
lization of the parent nodes in the tree since we connect a
parent node with K (10 by default) child nodes to alleviate
additional errors. Specifically, it brings two advantages. First,
using RDMA ibv_cq_ex to obtain accurate timestamps lowers
CPU utilization compared with polling network interfaces fre-
quently with a dedicated core [40]. Second, the combination
of RC and UD requests offloads tasks of issuing probes from
parent servers to child servers.

5.3 Fault Tolerance

2LClock uses a two-phase mechanism to tolerate a server
failure. If a server detects a failure of its parent server with the
heartbeat mechanism, it will turn to a new parent to synchro-
nize with it. The selection of the new parent cannot violate
the requirements in the child count and the height of the K-
ary tree. Such new parent and child servers will perform a
two-phase recovery since it will take a while for them to build
new connections and warm up their clock mapping functions.

Figure 7 depicts how a child server A safely switches from
parent server B to a new parent server C, without breaking
its increasing monotonicity guarantee. For brevity, here we
consider F1 and F2 as a whole, and denote their composite
mapping function as F. When A detects that B fails at t1, A
will immediately connect to a new parent C and probe it to
construct a new mapping function FC synchronized with the
clock in C (green line in Figure 7).

Given that 2LClock finishes warming up the new mapping

Reference
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Clock
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t1 t2 t3

vacant phase smoothing phase

mapping w/ C (FC)
mapping w/ B (FB) virtual mapping w/ B (VB)

smoothed mapping w/ C (SC)

warm-up is
done

correction value

Figure 7: Server failure handling in 2LClock.

FC at t2, a new problem is that no mapping is available in A
during the vacant phase from t1 to t2. So 2LClock provides a
temporary clock by extrapolating the old mapping function
synchronized with failed server B during the vacant phase.
We call this mapping as virtual mapping VB, as it may be
inaccurate after a while.

To prevent the time from going backwards, a correction
value is added when switching from VB to FC . However,
different servers add different correction values, leading to
inaccuracy of 2LClock. To eliminate the impact of correc-
tion value, we further add a smoothing phase from t2 to t3
(corresponding to the mapping S C), during which the correc-
tion value decreases gradually till it becomes zero. After t3,
2LClock comes back to the normal state again.

6 Performance Evaluation

6.1 Experiment Setup
Transaction system setup. We compare Aurogon with five
distributed transaction systems. First, we pick the state-of-
the-art T/O systems from clock-driven approach and data-
driven approach, respectively. For clock-driven approach, we
integrate DST [47] into our system and build a compared
system called DST-TO. In DST-TO, we replace 2LClock
with DST and turn off Aurogon’s reordering-resistant tech-
niques. For data-driven approach, we choose Sundial-CC
and replace the original TCP network with RDMA for a fair
comparison based on an open-sourced implementation [45],
called RSundial-CC. Second, we compare with DrTM+H [48],
which saturates RDMA networks to accelerate distributed
transactions. Third, we compare with systems based on tradi-
tional concurrency control protocols. We use the implemen-
tation [45] to evaluate an RDMA version of 2PL and OCC,
called R2PL and ROCC, respectively.
Workloads. We use two workloads, TPC-C and YCSB.

TPC-C [11] is the industry standard benchmark for evaluat-
ing OLTP transaction systems, which simulates a warehouse-
centric order processing application and partitions all data
based on their warehouse IDs. The warehouse count deter-
mines the contention degree of TPC-C. We adopt two con-
tention configurations: one warehouse per server to model
high contention and one warehouse per thread to model
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Figure 8: Throughput and average latency of TPC-C/N.

medium contention. We implement two kinds of TPC-C,
named TPC-C/NP and TPC-C/N. TPC-C/NP contains two rep-
resentative transactions, NewOrder and Payment, comprising
88% of the default TPC-C mix. TPC-C/N only includes the
most complicated transaction NewOrder since some com-
pared systems do not implement Payment.

YCSB is a benchmark commonly used for key-value store
evaluation as well as transaction system evaluation [29, 42].
We list two main configurable parameters in YCSB: the RMW
request ratio RMW_ratio and the skew factor θ. Each transac-
tion contains multiple requests (8 in our evaluation) and each
request is either read or RMW determined by RMW_ratio.
Each request accesses a random record based on the Zipf dis-
tribution and the θ shows the degree of skew in data access (a
larger value means more skew). The YCSB benchmark uses
2 M records in total, uniformly partitioned among servers.
Testbed. All experiments were conducted on a cluster with 5
servers. Each server has two 10-core Intel Xeon Silver 4210R
processors and 64GB DRAM, running CentOS 7.6. Each
server is equipped with a ConnectX-5 MCX556A 100Gbps
Infiniband NIC connected to a Mellanox SB7890 Infiniband
Switch.

6.2 TPC-C Results
Figure 8 and Figure 9 illustrate the aggregated throughput and
average latency of evaluated distributed transaction systems
under TPC-C/N and TPC-C/NP, respectively. We vary the
local_item_ratio from 0% to 99% to adjust the ratio of
records that NewOrder transactions access in remote servers.
Under high contention. Figure 8(a) reveals the performance
results in a high contention scenario using TPC-C/N with one
warehouse per server. When local_item_ratio is small,
most of accessed records reside on remote servers, result-
ing in more network communications. Aurogon improves
throughput by 1.55×-3.16× compared with other systems
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Figure 9: Throughput and average latency of TPC-C/NP.

when local_item_ratio is 0%, which is attributed to Au-
rogon’s capability to reduce aborts caused by accesses from
different servers.

The runner-up of performance is DrTM+H. Although it
enumerates the RDMA primitive combinations to accelerate
network accesses, it suffers throughput degradation as RMWs
on hotspots lead to many transaction aborts. Each NewOrder
contains 11 RMWs on average and the accessed records are
nonuniform. Concurrent RMW operations result in a high
possibility of transaction aborts in the validation phase.

Besides, DST-TO is a clock-driven transaction system uti-
lizing DST to achieve high scalability. Trading accuracy for
scalability in DST decreases the throughput under high con-
tention as inaccurate distributed clocks trigger request reorder-
ing. Two reasons lead to the inaccuracy of DST. First, the
timestamps that DST uses to update lagging clocks are inac-
curate since DST does not consider one-way network delay
when obtaining these timestamps. Second, the frequency drift
among distributed clocks cannot be corrected in DST.

With increasing local_item_ratio, the throughput of
Aurogon rises due to the growing local accesses. Note that
DST-TO improves the throughput a lot since local accesses
use the same clock to get timestamps, easing the reordering.
However, Aurogon still outperforms the runner-up (DrTM+H)
in throughput by 11% when all transactions are local.

Consequently, Aurogon increases throughput by 1.11×-
4.12× compared with other systems, reaching 1.27M transac-
tions per second (0% local_item_ratio) and 2.58M (99%
local_item_ratio, default configuration in standard TPC-
C). Meanwhile, Aurogon cuts average latency by up to 86%.

When mixing NewOrder and Payment5, the aggregated
throughput of Aurogon further expands since Payment ac-
cesses less records. Figure 9(a) shows that Aurogon outper-
forms DST-TO by 70%-99% in throughput and reduces aver-
age latency by 62%-67%.
Under medium contention. Figure 8(b) plots the systems’
performance using TPC-C/N with one warehouse per thread.
When each warehouse is bound to a dedicated thread, the
contention is alleviated since some variables in NewOrder
(e.g., next_o_id) are never shared among threads.

When local_item_ratio is 50%, Aurogon improves
throughput by 28%-82% compared to peer systems. The
throughput of all systems rises gradually with the growing

5We only compare Aurogon with DST-TO under TPC-C/NP and YCSB
because other peer systems do not implement these workloads.
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Figure 11: Incremental impact of proposed techniques.

local_item_ratio because the contention shrinks. Auro-
gon shows a moderate slowdown by 1.14× compared to
DrTM+H when local_item_ratio is 99%. This is because
recycling stale versions in Aurogon consumes extra CPU re-
sources when memory consumption rises due to the increase
of warehouse count.

Moreover, Figure 9(b) shows that Aurogon outperforms
DST-TO by 19%-42% in throughput and reduces average
latency by 24%-34% under TPC-C/NP.

6.3 YCSB Results

Figure 10 shows the performance comparison of Aurogon
and DST-TO under YCSB with skew factor θ varying from
0.5 to 0.99. When all requests are RMWs, Aurogon increases
throughput by 19%-33% compared to DST-TO.

When RMW_ratio decreases to 50%, the throughput of
both systems rises under low contention (θ is 0.5). Read re-
quests are executed faster than RMWs since reads only require
one network communication and never fail. Unfortunately,
DST-TO suffers a 4× throughput slowdown when θ rises from
0.5 to 0.99. It is because the throughput improvement in-
creases the running request count in the system. Although
conflicts never occur between reads, more reads will make
incoming RMWs’ execution fail since reads may extend old
data version’s rts larger than RMW’s timestamp. So the abort
rate of DST-TO reaches up to 76%. On the contrary, Aurogon
still maintains a low abort rate (16%) when θ is 0.99, since
adaptive request deferral tolerates late arrivals of RMWs. If
RMW_ratio further decreases, the performance improvement
of Aurogon will shrink because Aurogon does not target read-
dominant workloads.
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Figure 12: (a) CDF of accuracy under CPU interference from
foreground transaction system. (b) Aurogon’s performance
with different clocks.

6.4 Impact of Individual Techniques
To isolate the improvement brought by Aurogon’s key tech-
niques, we implement a vanilla version of Aurogon and add
three techniques into Aurogon in turn. Here we take the per-
formance under YCSB as an example, setting θ to 0.99 and
RMW_ratio to 50%.

Figure 11 illustrates that pre-attaching increases the
throughput by 7.01× and cuts the abort rate by 16% com-
pared to vanilla Aurogon. Pre-attaching is significant in high
contention workload as it not only saves one network commu-
nication but also avoids RMW’s execution being interrupted.

2LClock further brings a 87% throughput improvement
and reduces the average latency by 33%. The decrease of
average latency mainly comes from reducing the P99 latency.
Specifically, the overhead of retrying transactions after aborts
incurs long tail latency since the high contention extends
the transaction’s execution time and increases the abort rate.
Aurogon benefits from 2LClock’s high accuracy (41ns) and
boosts performance.

Finally, Aurogon improves the throughput by 70% after
adding adaptive request deferral. One may wonder whether
request deferral is compatible with 2LClock. In fact, 2LClock
helps to shorten the required deferral time. To achieve the
same abort rate, our test shows that 2LClock requires a defer-
ral time of 24.1µs while DST requires 38.4µs.

6.5 Performance and Impact of 2LClock
We first evaluate the accuracy of 2LClock under foreground
CPU interference. Here we compare 2LClock with two state-
of-the-art clock synchronization approaches: HUYGENS [16]
and FaRMv2-clock [40]. HUYGENS synchronizes the NIC
clock of distributed servers with limited CPU involvement.
FaRMv2-clock obtains timestamps directly from CPU to syn-
chronize clocks. We remove FaRMv2-clock’s guarantee of
global increasing monotonicity by skipping its uncertainty
wait and support it to provide timestamps directly.

We adopt a common way [16] to test the clock accuracy:
two clocks (C1, C2) are started on the same NUMA node of
one server, and synchronized with the clock C3 on another
server, respectively. The discrepancy of C1 and C2 would be
0 since they use the same clock. We take the absolute value of
measured discrepancy between C1 and C2 as the clock error.
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Figure 12(a) shows error CDFs of three clocks under fore-
ground transaction load. The average clock error of 2LClock
is 41ns, achieving a cut of 51% and 87% compared to
HUYGENS and FaRMv2-clock, respectively. Furthermore,
2LClock reduces the P99 errors by 2.3× and 31× compared
to HUYGENS and FaRMv2-clock. Note that FaRMv2-clock
encounters a large accuracy fluctuation since CPU timestamps
are inaccurate under foreground interference.

We further replace 2LClock with HUYGENS and FaRMv2-
clock in Aurogon followed by evaluating these systems under
YCSB to show 2LClock’s advantage. Figure 12(b) illustrates
that 2LClock helps Aurogon to improve the throughput by
up to 31% and 14% compared to HUYGENS and FaRMv2-
clock, respectively. Aurogon with HUYGENS shows the low-
est throughput since obtaining timestamps from HUYGENS
takes a longer time (3.3µs) than 2LClock (200ns).

6.6 2LClock Failure Handling
We evaluate how 2LClock handles a server failure of the root
clock. Figure 13 plots the clock accuracy in this process. We
use the same configuration in §6.5 and simulate the situation
where C1 and C2 turn to synchronize with a new reference
clock C4 after the crash of C3.

As illustrated in Figure 13, 2LClock detects the crash of C3
at time 6s. Then, C1 and C2 start their virtual phase (V1 and
V2), in which they build connections with C4 and warm up
the new clock. Note that they still use the previous measured
value of C3 although C3 crashes in this phase.

C1 finishes virtual phase first, taking 2.1s and starts to use
the new clock C4. To smooth the correction value, C1 begins
the smoothing phase S1, which generates a rising error up
to 3.5µs. Then C2 starts S2 as well and the error becomes
stable since two clocks smooth the correction value at the
same speed. As C1 finished S1, we can see an error curve
plunge before S2 ends, after which 2LClock turns to normal
state. This total process takes 6.4s in our experiment.

6.7 Discussion of Scalability
Here we discuss how Aurogon performs in a large cluster.
The rising server count results in more network hops when
accessing data. Meanwhile, the network heterogeneity leads
to more nonuniform data access latency in the cluster.

Let us examine the three techniques in Aurogon when scal-
ing to a large cluster. First, if distributed clocks aim at achiev-

ing high accuracy in a large cluster, the problem is the high
CPU usage of parent servers in synchronization topological
tree. 2LClock utilizes asynchronous transfers and a combi-
nation of two RDMA modes to solve this problem. Second,
the more nonuniform data access latency makes the adaptive
deferral more effective to tolerate straggling requests. Third,
pre-attaching method, saving one RTT for RMWs, is more
effective when the network delay rises.

7 Related Work

T/O transaction systems. T/O systems [2,7,15,29,40,47,53–
55] lie in two categories. 1) Clock-driven approach: DAST [7]
determines timestamps of transactions with a two-phase pro-
tocol to anticipate the best execution timing. Cicada [29]
separates read and write timestamps during allocation to ac-
celerate read-only transactions. 2) Data-driven approach: Tic-
Toc [53] first obtains the data dependencies and determine the
transactions’ timestamps in commit phase.
Clock synchronization. HUYGENS [16] exploits the
network effect to synchronize NIC clocks. Spanner [10],
FaRMv2 [40] and Sundial-Clock [28] utilize uncertainty
wait to ensure increasing monotonicity of global clocks. The
monotonic guarantee is orthogonal to 2LClock since 2LClock
can provide it with moderate modifications. Furthermore,
2LClock increases the accuracy of distributed clocks.
RDMA-enabled transaction systems. FaRM [13],
DrTM [49], FaSST [24], and DrTM+H [48] exploit RDMA
networks to accelerate distributed transaction processing.
Their core target is to fully utilize CPU resources to saturate
RDMA’s high bandwidth. Aurogon proposes a new idea that
RDMA can help to reduce transaction aborts.

8 Conclusion

In this work, we propose, implement and evaluate Aurogon,
an all-phase reordering-resistant distributed in-memory trans-
action system. We alleviate request reordering in all phases
by three techniques: high-accuracy clock synchronization
2LClock, adaptive request deferral, and pre-attaching depen-
dent requests to data. Aurogon reduces distributed transac-
tion aborts significantly and boosts the performance. The
source code of Aurogon is available at https://github.
com/THU-jty/Aurogon.git.
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Abstract
Deduplication is widely used to effectively increase the logical
capacity of large-scale storage systems, by replacing redundant
chunks of data with references to their unique copies. As a
result, the logical size of a storage system may be many multi-
ples of the physical data size. The many-to-one relationship
between logical references and physical chunks complicates
many functionalities supported by traditional storage systems,
but, at the same time, presents an opportunity to rethink and
optimize others. We focus on the offline task of searching for
one or more byte strings (keywords) in a large data repository.

The traditional, naïve, search mechanism traverses the di-
rectory tree and reads the data chunks in the order in which
they are referenced, fetching them from the underlying stor-
age devices repeatedly if they are referenced multiple times.
We propose the DedupSearch algorithm that operates in two
phases: a physical phase that first scans the storage sequentially
and processes each data chunk only once, recording keyword
matches in a temporary result database, and a logical phase
that then traverses the system’s metadata in its logical order,
attributing matches within chunks to the files that contain them.
The main challenge is to identify keywords that are split be-
tween logically adjacent chunks. To do that, the physical phase
records keyword prefixes and suffixes at chunk boundaries, and
the logical phase matches these substrings when processing
the file’s metadata. We limit the memory usage of the result
database by offloading records of tiny (one-character) partial
matches to the SSD/HDD, and ensure that it is rarely accessed.

We compare DedupSearch to the naïve algorithm on datasets
of different data types (text, code, and binaries), and show that
it can reduce the overall search time by orders of magnitude.

1 Introduction
Deduplication first appeared with backup storage systems hold-
ing weeks of highly redundant content [32, 43, 48], with the
purpose of reducing the physical capacity required to store the
growing amounts of logical backup data. This is achieved by
replacing redundant chunks of data with references to their
unique copies, and can reduce the total physical storage to
2% of the logical data, or even less [43]. Deduplication has
recently become a standard feature of many storage systems,
including primary storage systems that support high IOPS and
low latency accesses [18, 41]. Even with the lower redundancy
levels in such systems, deduplication may reduce the required
physical capacity to 12%-50% of the original data’s size [18].

Most storage architectures distinguish between the logical
view of files and objects and the physical layout of blocks of
data on the storage media. In deduplicated storage, this distinc-
tion further creates multiple logical pointers, often from dif-
ferent files and even users, to each physical chunk. This many-
to-one relationship complicates many functionalities that are
supported by traditional storage systems, such as caching, ca-
pacity planning, and support for quality of service [25, 33, 40].
At the same time, it presents an opportunity to rethink other
functionalities to be deduplication-aware and more efficient.

Keyword search is one such functionality, which is sup-
ported by some storage systems and is a necessary opera-
tion for numerous tasks. For example, an organization may
need to find a document containing particular terms, and if the
search is mandated by legal discovery [37], it has to be applied
to backup systems [45] and document repositories that may
include petabytes of content. Virus scans and inappropriate
content searches may also include a phase of scanning for
specified byte strings corresponding to a virus signature or
a pirated software image [29, 44]. Finally, data analysis and
machine learning tools often rely on preprocessing stages to
identify relevant documents with a string search. Our focus
is on offline search of large, deduplicated storage systems for
legal or analytics purposes.

Logging and data analytics systems support fast keyword
searches by constructing an index of strings during data inges-
tion [2, 8]. While they provide very fast lookup times, such
indexes carry non-negligible overheads: their size is propor-
tional to the logical size of the data, and thus they may consume
a large fraction of the physical storage capacity [6,31]. In addi-
tion, their data structures must be continually updated as new
data is received. Thus, an index is typically not maintained in
systems where search is a rare operation, such as backups. An-
other limitation of index structures is that they often assume a
delimiter set such as whitespace, which is not useful for binary
strings or more complex keyword patterns.

When an index is unavailable or cannot support the search
query, an exhaustive scan of the data is required. A naïve
search algorithm would process a file system by progressing
through the files, opening each file, and scanning its content
for the specified keywords. Even without the effects of dedu-
plication, traversing the file system in its logical ‘tree’ order
is inefficient due to fragmentation and resulting random ac-
cesses. With deduplication, a given chunk of data may be read
repeatedly from storage, once for every file that references it.

USENIX Association 20th USENIX Conference on File and Storage Technologies    233



We propose an alternative algorithm, DedupSearch, that
progresses in two main phases. We begin with a physical
phase that performs a physical scan of the storage system and
scans each chunk of data for the keywords. This has the twin
benefits of reading the data sequentially with large I/Os as well
as reading each chunk of data only once. For each chunk of
data, we record the exact matches of the keyword, if it is found,
as well as prefixes or suffixes of the keyword (partial matches)
found at chunk boundaries. We use a widely-used [11] string-
matching algorithm to efficiently identify multiple keywords
in a single scan, as well as their prefixes and suffixes.

We then continue with a logical phase that performs a logi-
cal scan of the filesystem by traversing the chunk pointers that
make up the files. Instead of reading the actual data chunks, we
check our records of exact and partial matches in those chunks,
and whether partial matches in logically adjacent chunks com-
plete the requested keyword. This mechanism lends itself to
also supporting standard search parameters such as file types,
modification times, paths, owners, etc.

The database of chunk-level matches generated during the
physical scan can become excessively large when a keyword
begins or ends with common byte patterns or characters, such
as ‘e’. Our experiments show that very short prefix and suffix
matches can become a sizable fraction of the database even
though they are rarely part of a completed query. We separate
records of “tiny” partial matches into a dedicated database
which is written to SSD/HDD and is accessed only when the
tiny prefix/suffix is needed to complete the keyword match.

We implemented DedupSearch in the Destor open-source
deduplication system [21], and evaluated it with three real-
world datasets containing Linux kernel versions, Wikipedia
archives, and virtual machine backups. DedupSearch is faster
than the naïve search by orders of magnitude: its search time is
proportionate to the physical size of the data, while the naïve
search time increases with its logical size. Despite its potential
overheads, the logical phase becomes dominant only when
the number of files is very large compared to the size of the
physical data, as is the case in the archives of the Linux kernel
versions. Even in these use cases, DedupSearch outperforms
the naïve search thanks to its efficient organization of the
partial results, combined with reading each data chunk only
once. These advantages are maintained when searching for
multiple keywords at once and when varying the average chunk
size and number of duplicate chunks in the system.

2 Background and Challenges
Data in deduplicated systems is split into chunks, which are
typically 4KB-8KB in average size. Duplicate chunks are iden-
tified by their fingerprint—the result of hashing the chunk’s
content using a hash function with very low collision probabil-
ity. These fingerprints are also used as the chunks’ keys in the
fingerprint-index, which contains the location of the chunk on
the disk. When a new chunk is identified, it is written into a
container that is several MBs in size to optimize disk writes.

A container is written to the disk when it is full, possibly after
its content is compressed. A file is represented by a recipe that
lists the fingerprints of the file’s chunks. Reading a file entails
looking up the chunk locations in the fingerprint index, reading
their containers (or container sub-regions) from the disk, and
possibly decompressing them in memory.

Consider, for example, the four files in Figure 1(a). Each
file contains two chunks of 5 bytes each, where some of the
chunks have the same content. The total logical size of these
files is eight chunks, and this is also their size in a traditional
storage system, without deduplication. Figure 1(b) illustrates
how these files will be stored in a storage system with dedupli-
cation. We assume, for simplicity, that the files were written in
order of their IDs, and that the chunks are all of size 5 bytes.1

When deduplication is applied, only four unique chunks are
stored in the system, in two 10-Byte containers.

A keyword search in a traditional storage system would
scan each files’ chunks in order, with a total of eight se-
quential chunk reads. The same naïve search algorithm can
also be applied to the deduplicated storage: following the
file recipes it would scan the chunks in the following order:
C0,C1,C1,C2,C1,C3,C2,C3—a total of eight chunk reads. If
this access pattern spans a large number of containers (larger
than the cache size), entire containers might be fetched from
the disk several times. Moreover, the data in each chunk will
be processed by the underlying keyword-search algorithm mul-
tiple times—once for each occurrence in a file.

Our key idea is to read and process each chunk in the system
only once. Our algorithm begins with a physical phase, which
reads all the containers in order of their physical addresses,
and processes each of their chunks. In our example, we will
perform two sequential container reads, and process a total
of four chunks. The challenges in searching for keywords in
the physical level result from the fact that most deduplication
systems do not maintain “back pointers” from chunks to the
files that contain them. Thus, we cannot directly associate
keyword matches in a chunk with the corresponding file or
files. Furthermore, keywords might be split between adjacent
chunks in a file, preventing the identification of the keyword
when searching the individual chunks.

Consider, for example, searching for the keyword DEDUP
in the files in Figure 1. The naïve search will easily identify
the matches in files F1 and F4, even though the word is split
between chunks C2 and C3. The physical search will only
identify the exact match of the word in chunk C0 but will not
be able to correlate it with file F1 or identify F4 as a match.

To address these challenges, we add a logical phase fol-
lowing the completion of the physical phase, that collects the
matches within the chunks and identifies the files that contain
them. To identify keywords split between chunks, we must also
record partial matches—prefixes of the keyword that appear at
the end of a chunk and suffixes that appear at the beginning of

1At the host level, files are split into blocks. We assume, for this example,
that each host-level block corresponds to a deduplication-level chunk.
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(c) Chunk results

Figure 1: Four files containing four unique chunks in a traditional storage system (a) and in a deduplicated system (b), with their corresponding
chunk-result records (c).

a chunk. For example, in addition to recording the full match
in chunk C0, the physical phase will also record the prefix of
length 3 in the end of chunk C2, and the suffix of size 2 in
the beginning of chunk C3. We must also record the suffix of
length 1 in chunk C1, to potentially match it with the prefix
DEDU, even though this prefix does not appear in any chunk.

This introduces an additional challenge: some prefixes and
suffixes might be very frequent in the searched text. Consider,
for example, a keyword that begins with the letter ‘e’, whose
frequency in English text is 12% [23]. Recording all prefix
matches means we might have to record partial matches for
12% of the chunks in the system. In other words, the number
of partial matches we must store during the physical phase is
not proportionate to the number of keyword matches in the
physical (or logical) data. This problem is aggravated if we
search for multiple keywords during the same physical scan.
In the worst case, we might have to store intermediate results
for all or almost all the chunks in the system. In the following,
we describe how our design addresses these challenges.

3 The Design of DedupSearch
We begin by describing the underlying keyword-search algo-
rithm and how it is used to efficiently identify partial matches
during the physical search phase. We then describe the data
structures used to store the exact and partial matches between
the two phases. Finally, we describe how the in-memory and
on-disk databases are accessed efficiently for the generation
of the full matches during the logical phase.

3.1 String-matching algorithm

To identify keyword matches within chunks, we use the Aho-
Corasick string-matching algorithm [11]. This is a trie-based
algorithm for matching multiple strings in a single scan of
the input. We explain here the details relevant for our context,
and refer the reader to the theoretical literature for a complete
description of the algorithm and its complexity.

The dictionary—set of keywords to match—is inserted into
a trie, which represents a finite-state deterministic automaton.
The root of the trie is an empty node (state), and the edges
between consecutive nodes within a keyword are called child
links. Each child link represents a state transition that occurs
when the next character in the input matches the next character
in the keyword. Thus, each node in the trie represents the
occurrence in the input of the substring represented by the path

PUDED

U P

(a) Search trie

DEDUP

(b) Reverse trie

Figure 2: The Aho-Corasick trie (a) and reverse trie (b) for the
dictionary {DEDUP,UP}

to that node. Specifically, each leaf represents an exact match
of its keyword in the dictionary and is thus an accepting state
in the automaton.

In addition to the child links, a special link is created be-
tween node u and node v whenever v is the longest strict suffix
of u in the trie. These links are mainly used when the matching
of an entire keyword fails, and are thus referred to in the liter-
ature as failure links. For example, Figure 2(a) illustrates the
trie created for the dictionary {DEDUP,UP}, where the dashed
arrows represent the failure links.

The characters in the input are used to traverse the automa-
ton. If an accepting state is reached, the algorithm emits the
corresponding keyword and its location in the input. If the
search fails in an internal node (i.e., when the next character in
the input does not correspond to any child link) with a failure
link, this means that the substring at the end of the link occurs
in the input, and the search continues from there. For example,
if the input is DEDE, then after reading the first three characters
we will reach the node corresponding to DED. After the next
character, E, we will backtrack to the node corresponding to D,
continuing the search from the same input location, immedi-
ately transitioning to the next node by traversing the child link
E. There is an implicit failure link to the root from every node
that does not have an explicit failure link to another node.

The failure links guarantee the linear complexity of the al-
gorithm: they prevent it from having to backtrack to earlier
positions in the input whenever one keyword is found, or when
the search fails. For example, when the string DEDUP is identi-
fied in the input, the failure link to the node representing UP
allows the algorithm to emit all the keywords that occur in the
input so far, continuing the search from the current location.
The overall complexity of the Aho-Corasick search is linear in
the total length of the dictionary plus the length of the input
plus the number of keyword matches.

We use the Aho-Corasick algorithm with minimal modifi-
cation to identify keyword prefixes. When the end of a chunk
is reached and the current state is an internal node, then this
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node’s corresponding substring is the longest substring of at
least one keyword. We can traverse the path of failures links
starting from this node and emit all the longest prefixes found.
For example, if the chunk ends with the string DEDU, then the
current state corresponds to this prefix of DEDUP. The failure
link points to U, which is the longest prefix of UP.

To identify suffixes at the beginning of a chunk, we construct
a trie for the reverse dictionary—the set of strings which are
each a reverse of a string in the original dictionary. We use
it to search, in reverse order, the first n bytes of the chunk,
where n is the length of the longest string in the dictionary. For
example, Figure 2(b) shows the trie for the reverse dictionary of
{DEDUP,UP}. To find the suffixes in chunk C3 from Figure 1(b),
we use this trie on the (reverse) input string “XXXPU”.

Partial matches. As demonstrated in Figure 1, keywords
might be split between adjacent chunks. Let n denote the length
of the keyword, and pi and si denote a prefix and a suffix of
length i, respectively. pi and si are considered prefix or suffix
matches if they constitute the last or first i characters in the
chunk, respectively. A full match occurs if the jth chunk in the
file contains a prefix match of length i and the ( j+1)th chunk
(likely not stored consecutively with the jth chunk) contains a
suffix match of length n− i.

In some cases, a chunk may contain several prefix or suf-
fix matches. For example, chunk C2 in Figure 1(b) contains
p3=DED as well as p1=D. Thus, this prefix can be part of two
possible full matches if the following chunk contains either
s2=UP or s4=EDUP. To minimize the size of the partial results
generated by the physical phase, we record only the longest
prefix and longest suffix in each chunk, if a partial match is
found. Note that if a chunk contains a prefix match of length i
(e.g., DED) and some suffix of this prefix is itself a prefix of
size j < i of the keyword (e.g., D), then the partial match of p j
is implied by the record of the match pi.

To facilitate the identification of all possible full matches,
we construct, for each keyword, the set of all prefix and
suffix matches. For example, for the word DEDUP, a full
match can be generated by combining the following pairs
of longest partial matches: D+EDUP, DE+DUP, DED+UP,
DEDU+P, and DED+EDUP. The pairs can be represented by
a set of integer pairs corresponding to the substring lengths:
{(1,4),(2,3),(3,2),(4,1),(3,4)}. This set is constructed of-
fline, before the start of the logical phase. We store it in the
partial-match table, which is kept in memory for the duration
of the logical phase. It is implemented as a two dimensional
array such that cell (i, j) holds a list of all match offsets found
in pi + p j. For example, Table 1 is the partial-match table for
keyword DEDUP, where the offsets are calculated with respect
to the beginning of the prefix. For example, the entry (3,4)
indicates that a match begins two characters after the begin-
ning of the partial match DED. During the logical phase, when
adjacent chunks contain a prefix pi and a suffix s j, we check
the table for the pair (i, j) to determine if and where a full
match is found.

j = 1 2 3 4
i = 1 0 [D+EDUP]

2 0 [DE+DUP]
3 0 [DED+UP] 2 [DED+EDUP]
4 0 [DEDU+P]

Table 1: Partial-match table for DEDUP

3.2 Match result database

Exact matches. Exact matches are identified within individual
chunks during the physical phase. We record the existence of
an exact match by the offset of its first character.A chunk may
contain several exact matches, which would require recording
an arbitrarily large number of offsets. In practice, however, the
vast majority of the chunks contain at most one exact match.
This led us to define our basic data structures as follows.

Chunk-result record: this is the basic record of search results
in a single chunk. It contains five fields: fingerprint (20
bytes), longest prefix length (1 byte), longest suffix
length (1 byte), number of exact matches (1 byte), and
offset of the first exact match (2 bytes). The total (fixed)
size of this object is 26 bytes, although it might vary with the
system’s fingerprint and maximum chunk sizes. Figure 1(c)
shows the content of the chunk-result records for the chunks
in Figure 1(b), when searching for the keyword DEDUP.

Location-list record: this is a variable-sized list of the loca-
tions which is allocated (and read) only if the chunk contains
more than one exact match. The first field is the fingerprint
(20 bytes), and the remaining fields contain one offset (within
the chunk), each. The number of offset fields is recorded in
the number of exact matches field in the corresponding
chunk-result record. The value 255 is reserved to indicate that
there are more than 254 exact matches in the chunk. In that
case, we use the following alternative record.

Long location-list record: this object is identical to the
location-list record, except for one additional field. Follow-
ing the chunk fingerprint, we store the precise number of exact
matches, whose value determines the number of offset fields
in the record.

Tiny substrings. Keywords that begin or end with frequent
letters in the alphabet might result in the allocation of numer-
ous chunk-result records whose partial matches never gen-
erate a full match. To prevent these objects from unneces-
sarily inflating the output of the physical phase, we record
them in a different record type and store them in a sepa-
rate database (described below). Each tiny-result record con-
tains three fields: fingerprint (20 bytes) and two Booleans,
prefix and suffix, indicating whether the chunk contains a
prefix match or a suffix match, respectively.

The tiny-result records are allocated only if this is the only
match in the chunk, i.e., the chunk does not contain any ex-
act match nor a partial match longer than one character. For
example, the chunk-result record for chunk C1 in Figure 1(c)
will be replaced by a tiny-result record. Tiny-result records are
accessed during the logical phase only if the adjacent chunk
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contains a prefix or suffix of length n−1.2

We use tiny-result records for substrings of a single charac-
ter: our results show that this captures the vast majority of tiny
substrings, as we expected from text in a natural language [23].
However, when searching for non-ASCII keywords, we might
encounter different patterns of tiny frequent substrings. The
tiny-result records could then be used for variable-length sub-
strings which are considered short. In this case, the record
would contain an additional field indicating the length of the
substring. To improve space utilization, several Boolean fields
can be implemented within a single byte.

Multiple keywords. When the dictionary includes multiple
keywords, we list them and assign each keyword its serial
number as its ID. We then replace the individual per-chunk
records with lists of <keyword-ID,result-fields> pairs. The
structure of the records (chunk-result, locations-list, and
tiny-result) is modified as follows. It includes one copy of the
chunk fingerprint, followed by a list of <keyword-ID,result-
fields> pairs. The result fields correspond to the fields in
each of the three original records, and a pair is allocated for
every keyword with non-empty fields. For example, if we
were searching for two keywords, DEDUP and UP, then the
chunk-result object for chunk C3 in Figure 1(b) would include
the following fields:

FP ID |Pre| |Suf| #Exact Off ID |Pre| |Suf| #Exact Off
FP3 0 0 2 0 0 1 0 0 1 0

Database organization. We store the output of the physical
search phase in three separate databases, where the chunk
fingerprint is used as the lookup key. The chunk-result index,
location-list index, and tiny-result index store the chunk-result
records, location-list records, and tiny records, respectively.
The first two databases are managed as in-memory hash tables.
The tiny-result index is stored in a disk-based hash table. In
a large-scale deduplicated system, chunks can be processed
(and their results recorded) in parallel to take advantage of the
parallelism in the underlying physical storage layout.

3.3 Generation of full search results
After all the chunks in the system have been processed, the
logical phase begins. For each file in the system, the file recipe
is read, and the fingerprints of its chunks are used to lookup
result records in the database. The fingerprints are traversed
in order of their chunk’s appearance in the file. The process
of collecting exact matches and combining partial matches for
each fingerprint is described in detail in Algorithm 1, which is
performed separately for every keyword.

This process starts by emitting the exact match in the chunk-
result record, if a match is found (lines 4-5). If the chunk
contains more than one match, it fetches the relevant location-
list record and emits the additional matches (lines 6-9). If the
chunk contains a suffix, it attempts to combine it with a prefix

2This optimization is not effective for keywords of length 2. We do not
include specific optimizations for this use case in our current design.

Algorithm 1 DedupSearch Logical Phase: handling FPi in File F
Input: FPi, FPi−1, FPi+1, resi−1

1: resi← chunk_result[FPi]
2: if resi = NULL then
3: return
4: if resi.exact_matches > 0 then
5: add f ile name, match o f f set to output
6: if resi.exact_matches > 1 then
7: locations← list_locations[FPi]
8: for all offsets in locations do
9: add f ile name, o f f set to output

10: if resi.longest_su f f ix > 0 then
11: if resi−1 ̸= NULL then
12: if resi−1.longest_pre f ix > 0 then
13: for all matches in partial-match_table

[resi−1.longest_pre f ix, resi.longest_su f f ix]
do

14: add f ile name, match o f f set to output
15: else if resi.longest_su f f ix = n−1 then
16: tiny← tiny_result[FPi−1]
17: if tiny ̸= NULL & tiny = prefix then
18: add f ile name, match o f f set to output
19: if resi.longest_pre f ix = n−1 then
20: tiny← tiny_result[FPi+1]
21: if tiny ̸= NULL & tiny = suffix then
22: add f ile name, match o f f set to output

in the previous chunk (lines 10-14). If the chunk contains a
prefix or a suffix of length n−1, then the tiny-result index is
queried for the corresponding one-character suffix or prefix
(lines 15-22). Thus, regular prefixes and suffixes (or tiny suf-
fixes recorded in a regular chunk-result record) are matched
when the suffix is found, while tiny substrings are matched
when the respective (n−1)-length substring is found.

The logical phase can also be parallelized to some extent:
while each file’s fingerprints must be processed sequentially,
separate backups or files within them can be processed in
parallel by multiple threads. Even for a large file, it is possible
to process sub-portions of the file recipe in parallel. Both
physical and logical phases can be further distributed between
servers, requiring appropriate distributed result databases. This
extension is outside the scope of this paper.

4 Implementation
We used the open-source deduplication system, Destor [21], for
implementing DedupSearch (DSearch). The physical phase of
DedupSearch is composed of two threads operating in parallel:
one thread sequentially reads entire containers and inserts their
chunks into the chunk queue. The second thread pops the
chunks from the queue and processes them, as described in
Sections 3.1 and 3.2: it identifies exact and partial matches
of all the keywords, creates the respective result records, and
stores them in their respective databases.
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We used Destor’s restore mechanism for implementing the
logical phase. Destor’s existing restore operates in three paral-
lel threads: one thread reads the file recipes and inserts them
into the recipe queue. Another thread pops the recipes from
their queue, fetches the corresponding chunks by reading their
containers, and inserts the chunks in order of their appearance
in the file to the chunk queue. The last thread pops the chunks
from their queue and writes them into the restored file.

The logical phase uses the second thread of the restore mech-
anism. It uses the fingerprints to fetch chunk-result records,
rather than the chunks themselves, and inserts them into the
result queue with the required metadata. An additional thread
pops the result records from the queue, processes them accord-
ing to Algorithm 1, and emits the respective full matches.

The implementation of the chunk-result index and location-
list index is similar to Destor’s fingerprint index. This is an in-
memory hash table, whose content is staged to disk if the mem-
ory becomes full. The tiny-result index is implemented as an
on-disk hash table using BerkeleyDB [5, 39]. We used Berke-
leyDB’s default setup with transactions disabled, because, in
our current implementation, accesses to the tiny-result index
are performed from a single thread in each phase.

We modified a publicly available implementation of the
Aho-Corasick algorithm in C++ [22] to improve its data struc-
tures, memory locality, and suffix matching, and to support
non-ASCII strings. For best integration of this implementation
into Destor, we refactored the Destor code to use C++ instead
of C. Our entire implementation of DedupSearch consists of
approximately 1600 lines of code added to Destor, which is
available online [1].

5 Evaluation Setup
For comparison with DedupSearch, we implemented the tra-
ditional (Naïve) search within the same framework, Destor.
Naïve uses Destor’s restore mechanism by modifying its last
thread: instead of writing the chunk’s data, it is processed with
the Aho-Corasick trie of the input keywords. To identify key-
words that are split between chunks, the last n−1 characters
(where n is the length of the longest keyword) of the previous
chunk are concatenated to the beginning of the current chunk.

We ran our experiments on a server running Ubuntu 16.04.7,
equipped with 128GB DDR4 RAM and an Intel® Xeon®

Silver 4210 CPU running at 2.40GHz. The backing store for
Destor was a DellR 8DN1Y 1TB 2.5" SATA HDD, and the
tiny-result index was stored on another identical HDD. We
remounted Destor’s partition before each experiment, to ensure
it begins with a clean page cache.

5.1 Datasets

Our goal was to generate datasets that differ in their deduplica-
tion ratio and content type. To that end, we used data from three
different sources—Wikipedia backups [9, 10], Linux kernel
versions [4], and web server VM backups—and used Destor
to create several distinct datasets from each source. Destor

Logical Physical size + metadata size (GB)
Dataset size (GB) 2KB 4KB 8KB 16KB
Wiki-26 1692 667+16 861+9
(skip) 40.4% 51.4%

Wiki-41 2593 616+22 838+12
(consecutive) 24.6% 32.8%

Linux-197 58 10+1 10+1 11+1 13+1
(Minor versions) 19% 19% 20.7% 24.1%

Linux-408 204 10+4 10+4 15+2 16+2
(every 10th patch) 6.9% 6.9% 7.4% 8.8%

Linux-662 377 10+7 11+5 13+4 17+3
(every 5th patch) 4.5% 4.2% 4.5% 5.3%

Linux-1431 902 10+18 11+13 10+13 17+8
(every 2nd patch) 3.1% 2.7% 2.5% 2.8%

Linux-2703 1796 10+34 10+26 13+20 17+17
(every patch) 2.5% 2.0% 1.9% 1.9%

VM-37 2469 145+33 129+18 156+10 192+5
(1-2 days skips) 7.2% 6.0% 6.7% 8.0%

VM-20 1349 143+19 125+10 150+6 181+3
(3-4 days skips) 12.0% 10.0% 11.6% 13.6%

Table 2: The datasets used in our experiments. 2KB-16KB represent
the average chunk size in each version. The value below the physical
size is its percentage of the logical size.

ingests all the data in a specified target directory, creating one
backup file. This file includes the data chunks and the metadata
required for reconstructing the individual files and directory
tree of the original target directory. We created two or four
versions of each of our datasets, each with a different average
chunk size: 2KB, 4KB, 8KB, and 16KB.

The Linux version archive includes tarred backups of all
the Linux kernel history, ordered by version, major revision,
minor revision, and patch. The size of the kernel increased over
time, from 32 MB in version 2.0 to 1128 MB in version 5.9.14
(the latest in our datasets). Naturally, versions with only a few
patches between them are similar in content. Thus, by varying
the number of versions included, we created five datasets that
vary greatly in their logical size, but whose physical size is very
similar, so the effective space savings increases with number
of versions. All our Linux datasets span the same timeframe,
but vary in the “backup frequency”, i.e., the number of patches
between each version. They are listed in Table 2.

The English Wikipedia is archived twice a month since
2017 [9,10]. We used the archived versions that exclude media
files, and consist of a single archive file, each. We created
two datasets from these versions. Our first dataset includes 41
versions, covering three consecutive periods of 4, 5, and 15
months between 2017 and 2020 (chosen based on bandwidth
considerations). To create the second dataset, we skipped every
one or two versions, resulting in roughly half the logical size
and almost the same physical size as the first dataset. The list
of backups in each dataset appears in [19].

For experimenting with binary (non-ASCII) keywords, we
created a dataset of 37 VM backups (.vbk files) of two Word-
Press servers in the Technion CS department over two periods
of roughly two weeks each. The backups were generated every
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one or two days, so as not to coincide with the existing, regular
backup schedule of these servers. The first dataset consists
of all 37 backups. The second consists of 20 of these back-
ups, with longer intervals (three to four days) between them.
Table 2 summarizes the sizes and content of our datasets.

5.2 Keywords

We created dictionaries of keywords with well-defined char-
acteristics to evaluate the various aspects of DedupSearch.
Specifically, we strived to include keywords that appear suf-
ficiently often in the data, and to avoid outliers within the
dictionaries, i.e., words that are considerably more common
than others. We also wanted to distinguish between keywords
with different probabilities of prefix or suffix matches, and
different suffix and prefix length. Our dictionaries consist of
multiple keywords, to evaluate the efficiency of DedupSearch
in scenarios such as virus scans or offline legal searches.

We sampled 1% of a single Wikipedia backup (~1GB), and
counted the occurrences of all the words in this sample, us-
ing white spaces as delimiters. As we expected, the frequency
distribution of the keywords was highly skewed. We chose
approximately 1000 words whose number of occurrences was
similar (between 500 and 1000), and whose length is at least 4.
We counted the number of occurrences of each keyword’s pre-
fixes and suffixes in the sample. We also calculated the average
prefix and suffix length, which were less than 1.2 for all key-
words, confirming that the vast majority of substring matches
are of a single character. We then constructed the following
three dictionaries of 128 keywords each: Wiki-high, Wiki-low,
and Wiki-med contain keywords with the highest, lowest, and
median number of prefixes and suffixes, respectively.

We repeated the process separately for Linux using an entire
(single) Linux version, resulting in the corresponding dictio-
naries Linux-high, Linux-low, and Linux-med. We created an
additional dictionary, Linux-line, that constitutes entire lines
as search strings, separating strings by EOL instead of white
spaces. We chose 1000 lines with a similar number of occur-
rences, sorted them by their prefix and suffix occurrences, and
chose the lines that make up the middle of the list.

For the binary keyword dictionary, we sampled 1GB from
both of the VM backups, and counted the number of occur-
rences of all the binary strings of length 16, 64, 256 and 1024
bytes. We chose strings with similar number of occurrences
and the median number of prefix and suffix matches. The re-
sulting dictionaries for the four keyword lengths are VM-16,
VM-64, VM-256, and VM-1024. The statistics of all our dictio-
naries are summarized in Table 3.

6 Experimental Results
The goal of our experimental evaluation was to understand how
DedupSearch (DSearch) compares to the Naïve search (Naïve),
and how the performance of both algorithms is affected by
the system parameters (dedup ratio, chunk size, number of
files) and search parameters (dictionary size, frequency of sub-

Avg. pre/suf Avg. Avg. Avg. keyword
Dictionary length # pre/suf # occurrences length
Wiki-high 1.09 85.3 M 722 8.4
Wiki-med 1.10 42.2 M 699 7.8
Wiki-low 1.08 5.7 M 677 6.0

Linux-high 1.09 64.8 M 653 10.5
Linux-med 1.20 32.8 M 599 10.4
Linux-low 1.13 5.7 M 583 10.4
Linux-line 1.22 31.4 M 63 25.9

VM-16 1.00 8.7 M 31 16
VM-64 1.00 8.6 M 29 64
VM-256 1.00 8.6 M 27 256

VM-1024 1.00 8.6 M 27 1024

Table 3: Characteristics of our keyword dictionaries.

strings). We also wanted to evaluate the overheads of substring
matching in DedupSearch, and how it varies with these system
and search parameters.

6.1 DedupSearch performance
Effect of deduplication ratio. In our first set of experiments,
we performed a search of a single keyword from the ‘med’ dic-
tionaries, i.e., with a median number of substring occurrences.
We repeated this search on all the datasets and chunk sizes de-
tailed in Table 2. Figure 3 shows, for each experiment, the total
search time and the time of the physical and logical phases of
DedupSearch as compared to Naïve. The result of each experi-
ment is an average of four independent experiments, each with
a different keyword. The standard deviation was at most 6%
of the average in all our measurements except one.3

We first observe that DedupSearch consistently outperforms
Naïve, and that the difference between them increases as the
deduplication ratio (the ratio between the physical size and
the logical size) decreases. For example, with 8KB chunks,
DedupSearch is 2.5× faster than Naïve on Linux-197 and
7.5× faster on Linux-2703. The total time of Naïve increases
linearly with the logical size of the dataset, as the number of
times chunks are read and processed increases. The total time
of DedupSearch also increases with the number of versions.
However, the increase occurs only in the logical phase, due to
the increase in the number of file recipes that are processed.
The time of the physical phase remains roughly the same, as it
depends only on the physical size of the dataset.

Effect of chunk size. Chunk sizes present an inherent trade-
off in deduplicated storage: smaller chunks result in better
deduplication, but increase the size of the fingerprint index.
This tradeoff is also evident in the performance of both search
algorithms. The search time of Naïve on the Linux datasets
and most of the VM datasets decreases as the average chunk
size increases. While this increases the physical data size, it
reduces the number of times each container is read on aver-
age, as well as the number of times each chunk is processed.
On the Wikipedia datasets and on the VM-37 dataset with

3The standard deviation of time of the logical phase in the Linux datasets
was as high as 15%, due to the variation in the number of prefix and suffix
matches for the different keywords.
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16KB chunks, however, the increase in chunk size increases
the search time of Naïve. The reason is their physical size,
which is much larger than the page cache: although fewer con-
tainers are fetched by Destor, more of their pages miss in the
cache and incur additional disk accesses.

The time of the physical phase in DedupSearch increases
with the chunk size due to the corresponding increase in
the data’s physical size. This increase is most visible in our
Wikipedia datasets, which are our largest datasets. In contrast,
the logical phase is faster with larger chunks. The main reason
is the reduction in the size of the file recipes and the number
of chunk fingerprints they contain. Larger chunks also mean
fewer chunk boundaries, which reduce the overall number of
partial results that are stored and processed. These results were
similar in all our datasets.

Figure 4 shows the amount of data read by both search algo-
rithms on representative datasets. It confirms our observations
that the main benefit of DedupSearch comes from reducing
the amount of data read and processed by orders of magnitude,
compared to Naïve. For Naïve, the amount of data read in-
creases with the logical size and decreases with the chunk size.
For DedupSearch, the amount of data read is proportionate to
the physical size of the dataset, regardless of its logical size.

Effect of dictionary size. To evaluate the effect of the dic-
tionary size on the efficiency of DedupSearch, we used subsets
of different sizes from the ‘med’ dictionary. Figure 5 shows the

results for the Linux-408 and Wikipedia-41 workloads with
8KB chunks (the results for the other datasets are similar). We
repeated this experiment with two underlying keyword-search
algorithms: Aho-Corasick, as explained in Section 3.1, and
the native C++ find, described below. Both implementations
use the result records, data structures, and matching algorithm
described in Sections 3.2- 3.3, but differ in the way they handle
multiple keywords and partial matches.

When the Aho-Corasick algorithm is used, the chunks’ pro-
cessing time (denoted as ‘search chunks’ in the figure) in-
creases sub-linearly with the number of keywords in the search
query. Nevertheless, the processing time is lower than the time
required for reading the chunks from physical storage, which
means that the time spent in the physical phase does not depend
on the dictionary size. The logical phase, however, requires
more time as the number of keywords increases: more key-
words result in more exact and partial matches generated in the
physical phase. As a result, more time is required to process
the result records and to combine potential partial matches. We
observe this increase only when the dictionary size increases
beyond eight keywords. For smaller dictionaries (e.g., when
comparing two keywords to one) increasing the number of key-
words means that each thread of the logical phase processes
more records per chunk. This reduces the frequency of ac-
cesses to the shared queues, thus reducing context switching
and synchronization overheads. For example, the logical phase
of Linux-408 with two keywords is five seconds faster than
that with one keyword.

C++ find [3] scans the data until the first character in the
keyword is encountered. When this happens, the scan halts
and the following characters are compared to the keyword. If
the string comparison succeeds, the match is emitted to the
output. Regardless of whether a match was found or not, the
scan then resumes from where it left off, which means the
search backtracks whenever a keyword prefix is found in the
data. This process is more efficient than Aho-Corasick when
the number of keywords is small (see the difference in the
‘search chunks’ component): it’s overhead is lower and its
implementation is likely more efficient than our Aho-Corasick
implementation. However, its search time increases linearly
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Figure 5: DedupSearch times of different number of keywords from the ‘med’ dictionary with Aho-Corasick vs. C++ find and 8KB chunks.

with the number of keywords: it exceeds the time used by
Aho-Corasick when the dictionary size is 8 or higher, and its
processing time exceeds the time required to read the physical
chunks when the dictionary size exceeds 16 and 64, in Linux-
408 and Wikipedia-41, respectively. The difference between
the datasets stems from their different content: the prefixes in
the Linux dictionaries are longer, which causes find to spend
more time on string comparison.

Effect of keywords in the dictionary. To evaluate the ef-
fect of the type of keywords, we compared the search times of
DedupSearch and Naïve (Figure 6) when using the full (128-
word) dictionaries from Table 3 on four representative datasets:
Linux-408, Linux-2703, Wikipedia-41, and VM-20, all with
8KB chunks. The results for all four binary (VM-*) dictionar-
ies were identical, and so we present only results with 64-byte
keywords. Our results show that in the physical phase, the time
spent searching for keywords within the chunks increases with
the number of substring occurrences: it is shortest for the ‘low’
dictionary and longest for the ‘high’ dictionary, where all the
keywords start and end with popular characters (e, t, a, i, o, and
‘_’). The duration of the logical phase increases slightly with
the number of substrings in the database, because more partial
results are fetched and processed.

Surprisingly, as the chunk processing time increases, the
time spent waiting for disk reads decreases. This reduction
is a result of the operating system’s readahead mechanism:
the next container is being read in the background while the
chunks in the current one are being processed. The page cache
also explains the results of Naïve: it processes each chunk sev-
eral times, but the processing time, which is higher with more
prefixes and suffixes, is not masked by the reading time: many
chunks already reside in the cache. Thus, Naïve is more sensi-
tive to the dictionary type when searching the Linux datasets
because they are small enough to fit almost entirely in memory.

6.2 DedupSearch data structures
Index sizes. Figure 7(top) shows the number of chunk-result,
list-locations and tiny-result records that are generated by the
physical phase when searching for a single keyword. Com-
paring the datasets to one another shows that the number of
search results (rightmost, white bar) increases with the logical

size, while the number of result records (i.e., objects stored in
the database) depends only on the physical size. The results
of each dataset are an average of four experiments, with four
different words from the ‘med’ and ‘64’ dictionaries. Unlike
the performance results, the standard deviation here is larger
because the results are highly sensitive to the number of sub-
string matches of each keyword. However, the trend for each
keyword is similar to the trend of the average in all the datasets.

This figure also shows that, in all the datasets, a large per-
centage of the records are tiny-result records (note the log scale
of the y-axis). Figure 7(bottom) shows the size of each of the
databases: the memory-resident chunk results and list locations,
and the on-disk tiny results. The tiny results constitute 62%,
84% and 98% of the space occupied by the result databases
in Linux-408, Wiki-41 and VM-20, respectively. Storing them
on the disk successfully reduces the memory footprint of both
logical and physical phases. The location lists occupy a small
portion of the overall database size: 3%, 4% and 0% of the
database size of Linux-408, Wiki-41 and VM-20, respectively.
There are, on average, 3.3 offsets in each location list. Separat-
ing these offsets into dedicated records allows us to minimize
the size of the more dominant chunk-result records.

Figure 8 shows the number of result records for a represen-
tative dataset, Linux-408 (the trend for the other datasets is
similar), when varying the chunk size and the keyword type.
When the number of chunks increases (chunk size decreases),
more keyword matches are split between chunks. As a result,
there are fewer exact matches and fewer list locations, but
more chunk-result records with prefixes and suffixes, and more
tiny-result records. The overall database size increases with
the number of records, from 0.82 MB for 16KB chunks to 2.28
MB with 2KB chunks.

The results of the different dictionaries show the sensitivity
of DedupSearch to the keyword type. Although the number
of search results for the entire high, med, and low dictionar-
ies is similar, the number of result records generated during
the search varies drastically. For example, there are 4% more
keyword matches when searching for the Linux-high dictio-
nary than for Linux-med, but 55% [120%] more records [tiny
records] in the database. Thanks to the compact representation
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of the tiny records (and their location on the disk), the database
for Linux-high is only 16% larger than that of Linux-med, and
its memory usage is also only 15% higher.

All the tiny-result databases in our experiments were small
enough to fit in our server’s memory. The largest tiny-result
database, 3.6GBs, was created when searching for the Wiki-
high dictionary on the Wikipedia-41 dataset with 4KB chunks.
Nevertheless, we designed and implemented DedupSearch to
avoid memory contention in much larger datasets.

Database accesses. Table 4 presents additional statistics of
database usage and access during the search of keywords from
the ‘med’ and ‘64’ dictionaries (on the 8KB-chunk datasets).
The top line for each dataset presents an average of four ex-
periments, each with a different word from the dictionary. The
bottom line presents results for searching the entire dictionary.
Less than 0.2% of the keyword matches were split between
chunks in the textual (Linux and Wikipedia) datasets. The
percentage of split results was higher in the binary datasets be-
cause the keywords in the dictionary were considerably longer.

The number of accesses to the tiny-result index increases
with the dataset’s logical size and with the number of keywords.

However, it is still several orders of magnitude lower than the
number of records in the database: the tiny-result index is ac-
cessed only when the rest of the keyword is found in the chunk.
The probability that the missing character is found in the adja-
cent chunk (‘tiny hit’) depends on the choice of keywords. For
comparison, the percentage of successful substring matches
out of all attempts is approximately 5% in the Linux datasets
and 30% in the Wikipedia datasets. These differences are due
to the different text types in the two datasets, and to some short
(4-letter) keywords in the Wikipedia dataset.

Although the number of accesses to the tiny-result index
can be as high as hundreds of thousands when searching large
dictionaries, these numbers are orders of magnitude smaller
than the random accesses that Naïve performs when fetching
the data chunks in their logical order. Furthermore, repeated
accesses to the index result in page-cache hits, as the operating
system caches frequently accessed portions of the index. Thus,
even though our on-disk index represents the worst-case perfor-
mance of DedupSearch, we expect that moving it to memory
would not add significant performance gains.
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6.3 DedupSearch overheads
Physical phase. To measure the time of the extra processing
per chunk, we created five mini-backups with no duplicates
of container-sized (4 MB) samples from Wikipedia. We read
the data in advance and kept it in memory for the duration
of the experiment to eliminate I/O delays. We measured the
time of the processing thread of the physical phase (containing
the keyword search algorithm and storing the records) and
compared it to the processing time of Naïve. We performed
a search with one and 128 keywords from the ‘high’ dictio-
nary. With one word, DedupSearch and Naïve spent the same
time processing the data. However, with 128 keywords, the
processing thread of DedupSearch ran 32% longer than that
of Naïve. The reason is that the number of records stored by
DedupSearch is not proportional to the number of full matches,
especially in the ‘high’ dictionary. With 128 keywords, there
are hundreds of records, compared to dozens with one keyword.
This experiment represents the worst-case for DedupSearch,
with the highest number of partial matches and zero I/O cost.
In practice, we expect such situations to be rare.

Logical phase. In addition to the datasets described in Ta-
ble 2, we created three small datasets, each consisting of a
single archived Linux/Wikipedia version. Table 5 shows the
characteristics of these datasets. They exhibit the least amount
of deduplication, allowing us to evaluate the overheads of
DedupSearch in use-cases where its benefits are minimal. The
table also shows the time spent by Naïve and by DedupSearch
when searching a single keyword from the ‘med’ dictionary.

In the Wikipedia dataset, which exhibits minimal deduplica-
tion, DedupSearch is slower than Naïve by 0.8%. The reason
is that Naïve emits its search results as soon as the chunks are
processed, while DedupSearch requires the additional logical

Dataset # results % matches # tiny # tiny tiny
(M) split records (M) accesses hit rate

Wiki-26 1.52 0.05 3.90 1167 0.10
208.50 0.10 490.31 44,719 0.94

Wiki-41 2.34 0.05 3.67 1780 0.10
321.07 0.09 459.96 69,094 0.94

Linux-197 0.03 0.19 0.03 59 0.08
5.08 0.12 4.19 1,665 0.73

Linux-408 0.12 0.19 0.04 197 0.15
16.08 0.11 4.57 5,986 0.71

Linux-662 0.23 0.19 0.04 360 0.16
29.16 0.11 4.63 11,101 0.70

Linux-1431 0.55 0.18 0.04 855 0.16
68.96 0.11 4.67 26,682 0.70

Linux-2703 1.08 0.18 0.04 1673 0.17
134.65 0.11 4.68 52,391 0.69

VM-20 0.03 0.00 0.11 0 N/A
4.02 1.61 14.62 0 N/A

VM-37 0.06 0.00 0.12 0 N/A
7.24 1.61 14.96 0 N/A

Table 4: Percentage of keywords split between chunks and usage of
the tiny-result index. The numbers are from searching one (top) and
128 (bottom) keywords from the ‘med’ and ‘64’ dictionaries.

Logical Physical Dedup Naïve DSearch time
Dataset size size ratio time (logical)
Wiki-1 76 76 99.8% 616 620 (11)
LNX-1 1 0.80 80% 7.4 6.7 (0.6)

LNX-1-merge 0.82 0.78 95% 6.2 6.1 (0.1)
LNX-408 204 17 7.4% 926 231 (121)

LNX-408-merge 169 19 11.2% 768 203 (28)

Table 5: The size (in GB) and dedup ratio of the datasets created
from a single archived version with 8KB chunks, and the time (in
seconds) to search a single keyword from the ‘med’ dictionary.

phase. DedupSearch reads and processes 20% and 0.02% less
data, respectively (recall that data is read and processed in the
granularity of containers and chunks, respectively).

In the Linux dataset, the physical size is 20% smaller than
the logical size, and thus the physical phase of DedupSearch
is shorter than Naïve’s total time. The logical phase on this
dataset, however, is 600 msecs, which are 9% of the total time
of DedupSearch. The reason is the large number of files (64K)
in the single Linux version. The logical phase parallelizes
reading the file recipes from disk, fetching chunk results from
their database, and collecting the full matches for the files. As
the number of files increases, the overhead of context switching
and synchronization between the threads increases.

To illustrate this effect, we include a merged dataset of the
same Linux version, where the content of the entire archived
version is concatenated into a single file. The physical size of
Linux-1 and Linux-1-merge is similar and so is the time of
the physical phase when searching them. The logical phase,
however, is six times shorter, because it has to process only a
single file recipe. We repeated this experiment with a larger
number of versions: we created the Linux-408-merge dataset
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by concatenating each of the versions in the Linux-408 dataset
into a single file. This dataset contains 408 files, compared
to a total of 15M files in Linux-408. The logical phase when
searching the merged dataset is 4.3× faster. This effect also
explains the long times of the logical phase when searching
the Linux datasets (see Figure 3). The number of files in each
Linux dataset increases from 4.3M in Linux-197 to 133M in
Linux-2703. We conclude that the overheads of DedupSearch
are low, even when the deduplication is very low. When dedu-
plication ratios are high, these overheads become negligible as
DedupSearch is faster than Naive by orders of magnitude.

7 Discussion
Extended search options. DedupSearch lends itself to several
extensions that can enhance the functionality of the search. The
first is the use of “wildcards”—special characters that represent
entire character groups, such as numbers, punctuation marks,
etc. Grep-style ‘*’ wildcards can be supported by creating a
dictionary that includes all the precise (non-*) substrings in
the query. The logical phase would have to ensure that they all
appear in the file in the correct order.

It would be more challenging to support keywords that span
more than two chunks, since our prefix/suffix approach is in-
sufficient. We would have to also identify chunks whose entire
content constitutes a substring of the keyword, which means
attempting to match the chunk content starting at all possible
offsets within the keyword. Supporting regular expressions is
similarly challenging, because the matched expression might
span more than two chunks.

Approximate search. Some applications of keyword search
only require the list of files containing the keyword, without
the offset of all occurrences within the file, so the logical phase
can stop processing a file’s recipe as soon as a keyword is
found. This eliminates the need for the location-list records.
Alternatively, a best-effort search could focus on exact matches
within a chunk for a faster, though imperfect search.

Additional applications. Dividing the search into physical
and logical phases can potentially accelerate keyword search
in highly fragmented or log-structured file systems as well as
copy-on-write snapshots where logically adjacent data blocks
are not necessarily physically adjacent.

The benefit of DedupSearch might be smaller when a large
portion of the chunks can be marked irrelevant a priori by
Naïve. Examples include binary data in textual search, file-
system metadata, or chunks belonging to files that are excluded
from the search for various reasons. Additional aspects that
may affect the performance of DedupSearch and its advantage
over Naïve include the underlying storage media (i.e., faster
SSD), and parallel processing of chunks and file recipes. We
leave these for future work.

8 Related Work
Deduplication is a maturing field, and we direct readers to
survey papers for general background material [35, 46]. Our

search technique follows on previous work that processed
post-deduplication data sequentially along with an analysis
phase on the file recipes, which has been applied to garbage
collection and data migration [16, 17, 33]. We leverage this
basic concept by processing the post-deduplication data with
large, sequential I/Os instead of a logical scan of the file system
with random I/O. Thus far, we have not found previous research
that optimized string search for deduplicated storage.

String matching. String matching is a classical problem
with a rich family of solutions that are used in a variety of
areas. The longstanding character-based exact string matching
algorithms are still at the heart of modern search tools. These
include the Boyer-Moore algorithms [14], hashing-based al-
gorithms such as Rabin-Karp [27], and suffix-automata based
methods such as Knuth-Morris-Pratt [28] and Aho-Corasick
[11]. ACCH [15] accelerates Aho-Corasick on Compressed
HTTP Traffic by recording partial matches in referenced sub-
strings. GPU-based string matching is used in network intru-
sion detection systems [42, 47].

Indexing. Offline algorithms use indexing to achieve sub-
linear search time. Indexing methods include suffix-trees [24],
metric trees [12] and n-gram methods [34], and the rank and se-
lect structure for compressed indexing [20]. Indeed, many sys-
tems scan the data in advance to map terms to their locations.
Examples include Elasticsearch [2], Splunk [8], and CLP [38]
for log searches and Apache Solr [7] for full-text search. An
index is useful when queries are frequent and latency must
be low. Its downside is that it precludes searching keywords
that are not indexed, such as full sentences or arbitrary binary
strings. Moreover, its size might become a substantial fraction
of the dataset size: 5-10% in practice [6, 31]. Our approach is
thus more appropriate when queries are infrequent and moder-
ate latency is acceptable such as in legal discovery [37, 45].

DedupSearch can be viewed as a form of near-storage
processing, where the storage system supports certain com-
putations to reduce I/O traffic and memory usage. For exam-
ple, YourSQL [26] and REGISTOR [36] offload functions
to the SSD. BAD-FS [13] and Quiver [30] coordinate batch
workloads or jobs to minimize I/O in large-scale systems.
DedupSearch shares their underlying principle of fetching
and/or processing data once for use in several contexts.

9 Conclusions
String search is a widely-used storage function and can be
redesigned to leverage the properties of deduplicated storage.
We present a two-phase search algorithm. The physical phase
scans the storage space and stores matches per chunk. Most
of the results are stored on the disk while only the popular are
in memory. The logical phase goes over all file recipes and
uses the chunk results to collect matches, including matches
that span logically consecutive chunks. Our evaluation demon-
strates significant savings of time and reads in DedupSearch
in comparison to the Naïve search, thanks to the physical scan
that reads duplicated chunks only once.
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Abstract
Data reduction in storage systems is becoming increasingly
important as an effective solution to minimize the manage-
ment cost of a data center. To maximize data-reduction effi-
ciency, existing post-deduplication delta-compression tech-
niques perform delta compression along with traditional data
deduplication and lossless compression. Unfortunately, we
observe that existing techniques achieve significantly lower
data-reduction ratios than the optimal due to their limited
accuracy in identifying similar data blocks.

In this paper, we propose DeepSketch, a new reference
search technique for post-deduplication delta compression
that leverages the learning-to-hash method to achieve higher
accuracy in reference search for delta compression, thereby
improving data-reduction efficiency. DeepSketch uses a deep
neural network to extract a data block’s sketch, i.e., to create
an approximate data signature of the block that can preserve
similarity with other blocks. Our evaluation using eleven real-
world workloads shows that DeepSketch improves the data-
reduction ratio by up to 33% (21% on average) over a state-
of-the-art post-deduplication delta-compression technique.

1 Introduction
As modern data centers generate a tremendous volume of new
data every day, it becomes critical for sustainability to store
such large amounts of data in an economical way. Employing
a data-reduction technique is one of the effective solutions
to cut down the management cost of a data center. A data-
reduction technique reduces the amount of data physically
stored in storage media by reducing data redundancy, which
allows a data center to handle the same amount of data with
fewer or smaller resources (e.g., storage devices and servers).

Many prior works have proposed various data-reduction
techniques based on data compression [9,30,46,51,52,58] and
data deduplication [12,21,22,26,36,49,59,62,67,76,88]. Data
compression encodes a data block using lossless-compression
algorithms so that a smaller number of bits can represent the
data block. Data deduplication prevents a data block from
being written if there already exists an identical data block
(i.e., a block that contains exactly the same data) in the stor-
age system. To achieve a high data-reduction ratio (i.e., Orig-
inal Data Size / Reduced Data Size), some studies [45, 55]
integrate the two techniques in a manner that first applies data
deduplication for incoming (i.e., to-be-stored) blocks and
performs lossless compression on non-deduplicated blocks.

Delta compression [3, 8, 64, 75, 81, 82, 86] has recently
received increasing attention as a complementary method
to overcome the limitations of data compression and data

∗J. Park and J. Kim are co-primary authors.

deduplication. It compares the data block to compress with a
reference data block and extracts only different bit patterns
between the two blocks, which are then encoded using loss-
less compression. The more similar the data block and the
reference (i.e., the smaller the delta between the data and the
reference), the higher the data-reduction ratio. By leverag-
ing the similarity between two blocks, delta compression can
achieve a high data-reduction ratio even for non-duplicate
data (which cannot benefit from data deduplication) and high-
entropy data (which lossless compression cannot efficiently
handle). Several prior works [64, 75, 82, 86] demonstrate that
post-deduplication delta compression, which performs dedu-
plication, delta compression, and lossless compression in or-
der, can significantly improve the data-reduction ratio over
simple integration of deduplication and lossless compression.

A key challenge for post-deduplication delta-compression
techniques is how to find a good reference block that provides
a high data-reduction ratio. The most intuitive approach is
to scan all the data blocks stored in the storage system and
use the one that provides the highest data-reduction ratio as
the reference for the incoming block. Unfortunately, doing
so is practically infeasible due to its prohibitive performance
overhead. To address this, prior works [64, 75, 82, 86] use
locality-sensitive hash (LSH) functions [7, 34] to generate
similar data signatures for data blocks with similar bit pat-
terns, which is called data sketching. Data sketching enables
quick reference search across a large-scale storage system by
comparing only the signatures (i.e., sketches) of data blocks.

In this work, we observe that existing post-deduplication
delta-compression techniques [75, 86] achieve significantly
lower data-reduction ratios than the optimal due to the high
false-negative rate (FNR) of LSH-based reference search. Our
analysis using six real-world workloads shows that, although
a state-of-the-art reference search technique [86] is effective
at identifying a very similar reference block (which thus pro-
vides a very high data-reduction ratio) for an incoming block,
it also fails to find any reference block for a large number of
incoming blocks (up to 75.5%) that actually have at least one
good reference block within the storage system. Tuning the
used LSH function may be able to reduce the high FNR in
reference search, but it would require significant human effort
to identify the best settings for each workload.

Our goal is to improve the space efficiency of a stor-
age system by increasing the accuracy of reference search
in post-deduplcation delta compression, thereby reducing
the gap between existing data-reduction techniques and
the optimal.1 To this end, we propose DeepSketch, a

1In this work, we focus on data reduction rather than other optimizations
(e.g., mitigation of performance/memory overheads), targeting systems where
space efficiency is the highest priority (e.g., archival or backup systems).
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new machine learning (ML)-based data sketching mecha-
nism specialized for reference search in delta compression.
Our key idea is to use the learning-to-hash method [43, 80]
to automatically generate similar data signatures for any two
data blocks that would provide a high data-reduction ratio
when delta-compressed relative to each other.

For each incoming data block, DeepSketch generates the
block’s sketch using a deep neural network (DNN) model.
It performs DNN inference with the target data block as an
input of the DNN and uses the resulting activation values
in the DNN’s last hidden layer as the data block’s sketch.
We envision that DeepSketch’s DNN is pre-trained before
building or updating a DeepSketch-enabled system, using data
sets collected from other existing systems that store similar
(or the same) types of data.

While many prior works [10, 11, 48, 50, 70, 89] demon-
strate the high effectiveness of the learning-to-hash method
in various nearest-neighbor search applications (e.g., image
recognition and classification), applying the learning-to-hash
method to the reference search problem in post-deduplication
delta compression is not straightforward. A key problem is
that, unlike existing ML-based applications that deal with spe-
cific known data types (e.g., images and voices), DeepSketch
needs to process general binary data, which introduces two
key challenges. First, there is no well-defined labeled data or
semantic information (e.g., cats, dogs, and monkeys in image
classification) within our target data sets. Second, possible
bit patterns of a data block have an extremely high dimen-
sional space (e.g., 24,096×8 unique bit patterns for a 4-KiB
data block). Due to the high dimensionality of the target data
set, it is difficult to collect large enough data to train the DNN
with high inference accuracy using known training methods.

To address the above challenges, we develop a new method
to train the DNN of DeepSketch, which generates hash val-
ues suitable for reference search in post-deduplication delta
compression. We extend the traditional unsupervised learn-
ing approach [29] in three ways. First, based on the k-means
clustering algorithm [53], we design a new clustering method,
called dynamic k-means clustering (DK-Clustering), which ef-
fectively classifies high-dimensional data without any knowl-
edge of the number of clusters. Second, after clustering, we
ensure each cluster to have a sufficient number of data blocks
by adding data blocks slightly and randomly modified from
each cluster’s representative block. Doing so prevents DNN
training from being biased towards some specific data pat-
terns that occur frequently. Third, we perform two-stage DNN
training to enable DeepSketch to generate a data block’s hash
value. We first train a DNN to classify data blocks into the
clusters formed by DK-Clustering and then transfer the knowl-
edge of the trained DNN to build the learning-to-hash network
that generates the hash values (i.e., sketches) of data blocks.

We integrate our DeepSketch engine into a state-of-the-art
post-deduplication delta-compression technique [86]. Unlike
existing techniques that aim to find a reference block whose
sketch exactly matches that of the incoming block, we ex-
ploit a state-of-the-art approximate nearest-neighbor search

algorithm [16]. Doing so allows DeepSketch to tolerate small
differences within data sketches (i.e., it can identify similar
blocks even when the blocks’ sketches are different), thereby
increasing the chance of delta compression for an incoming
data block. Our evaluation using eleven real-world workloads
shows that DeepSketch improves the data-reduction ratio by
up to 33% (21% on average) over the state-of-the-art baseline.

This paper makes the following key contributions:
• We propose DeepSketch, the first machine learning-based

reference search technique for post-deduplication delta
compression. We demonstrate that the learning-to-hash
method can be an effective solution to generate delta-
compression-aware data signatures for general binary data.

• We introduce a new training method that allows DeepSketch
to learn delta-compression-aware data representation for an
extremely high-dimensional data set.

• We integrate DeepSketch into the state-of-the-art post-
deduplication delta-compression technique [86]. Evaluation
results using eleven real-world workloads show that DeepS-
ketch improves the data-reduction ratio by up to 33% (21%
on average) compared to the state-of-the-art baseline.

2 Background
We provide brief background on data-reduction techniques in
storage systems necessary to understand the rest of the paper.

2.1 Data Reduction in Storage Systems
There are three major data-reduction approaches: 1) data dedu-
plication, 2) lossless compression, and 3) delta compression.
Data Deduplication. Data deduplication [12, 21, 22, 26, 36,
49, 59, 62, 67, 76, 88] reduces the amount of data physically
written to storage devices by eliminating duplicate data in the
storage system. In data deduplication, an incoming data block
is not physically written if it has the same data content as a
data block previously stored in the storage system. Instead,
the storage system maintains a table that stores mapping infor-
mation between such a deduplicated block and the previously-
stored block with the same content (called reference), so that
future reads to any deduplicated blocks can be serviced from
their reference. This mechanism allows data deduplication to
store only a single copy of any block-granularity unique data
content in the storage system.

To quickly identify an incoming block’s reference, dedu-
plication uses a strong hash function (e.g., SHA1 [78] or
MD5 [69]) to generate a data block’s unique signature, com-
monly called a fingerprint. Given two blocks, deduplication
determines whether or not they have the same content, by
comparing only the two blocks’ fingerprints. To avoid any
data loss due to hash collision, it is common practice for
deduplication to use a strong hash function to generate fin-
gerprints whose collision rate is lower than the uncorrectable
bit-error rate (UBER) requirement of a disk (e.g., < 10−15 to
10−16 [17, 25, 26, 67]).
Lossless Compression. Data compression [31, 74, 90] is a
fundamental method to reduce the size of data in computing
systems. Given a data block, it encodes the block’s content to
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be represented by a smaller number of bits in a manner that
replaces repetitive bit patterns with smaller metadata or sym-
bols. Doing so results in an increase in the entropy [74] of the
compressed data. For a data block with low entropy (i.e., the
block contains many repeated bit patterns), lossless compres-
sion can achieve a high data-reduction ratio (i.e., Original
Data Size / Compressed Data Size).
Delta Compression. Delta compression [3,8,64,75,81,82,86]
eliminates redundant bit patterns that coexist in two different
blocks. It stores only either of the two blocks and the differ-
ence (i.e., delta) between the two blocks. Leveraging the sim-
ilarity of two different data blocks enables delta compression
to achieve higher data reduction over 1) deduplication, which
removes only identical data blocks, and 2) lossless compres-
sion, which eliminates redundancy only within a block and
does not work well with high-entropy data. For this reason,
delta compression has gained increasing attention in recent
studies [64, 75, 82, 86] as a complementary method bridging
deduplication and lossless compression.

A key challenge for delta compression in large-capacity
storage systems is how to find a good reference block that
provides a high data-reduction ratio for each incoming block.
Designing a reference search technique for delta compression
is similar to solving a nearest-neighbor search problem, as its
goal is to find the most similar data block (which does not
have to be an exact match) within a large data set for a given
incoming block. The most widely-used approach is to use
locality sensitive hashing (LSH) [7,34] to generate a sketch of
a block [64,75,82,86], which is a more approximate signature
than the block’s fingerprint (used in deduplication for exact-
match searching). An LSH function L(di) is designed to hash
data di, such that the more similar the given data d1 and d2,
the lower the bit-pattern difference between L(d1) and L(d2).
LSH-based data sketching enables quick reference search by
comparing only the sketches of data blocks.

2.2 Combined Data-Reduction Technique
For systems where storage efficiency is the paramount re-
quirement, prior works propose to combine the three major
data-reduction techniques, called post-deduplication delta
compression. Figure 1 depicts the overall architecture of a
storage system that adopts post-deduplication delta compres-
sion [75, 86] to perform deduplication ( 1 – 3 ), delta com-
pression ( 4 – 7 ), and lossless compression ( 8 ) in order. A
data-reduction module (DRM), which can be implemented
as an intermediate layer between a file system and storage
devices, performs post-deduplication delta compression for a
write request to reduce its size. For a read request, it looks for
the location of the corresponding compressed data in storage
devices and returns the decompressed data. To this end, the
DRM maintains a fingerprint (FP) store and a sketch (SK)
store for quick reference search for deduplication and delta
compression, respectively, along with a reference (Ref.) table
to store the mapping information between each deduplicated
or delta-compressed block and its reference block.

For each incoming data block, the DRM 1 first checks
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Figure 1: Overview of post-deduplication delta compression.
if the storage system already contains a data block with the
same content by referring to the FP store. If the incoming
block’s fingerprint matches one in the FP store (e.g., block X
matching block A in Figure 1), the DRM skips writing the
block to the storage device and 2 just updates its mapping
information in the reference table in order to redirect future
reads for the incoming block to the matching reference block.
To use non-deduplicated blocks (e.g., blocks Y and Z) as
potential reference data for deduplication in the future, the
DRM 3 writes their fingerprints into the FP store.

If there is no matching fingerprint in the FP store, the DRM
4 searches for matching sketches in the SK store to find a ref-
erence block for delta compression. When it finds a reference
block (e.g., block B for block Y), the DRM 5 performs delta
compression with the reference and stores the compressed
data. There is a possibility of having multiple matching ref-
erences in the SK store (see Section 3.1). In such a case, the
DRM usually selects the first-found candidate (called first-fit
selection) [75, 86]. The DRM then 6 updates the reference
table to map the incoming block to the reference block so
that it can decompress the delta-compressed data using the
reference block for future read requests. If no matching sketch
is found in the SK store (e.g., block Z), the DRM 7 adds the
incoming block’s sketch into the SK store to use the incoming
block as a potential reference block for delta compression in
the future. Finally, the DRM 8 compresses the block with a
lossless compression algorithm and stores the result.

3 Motivation
In this section, we discuss 1) the limitations of existing LSH-
based post-deduplication delta-compression techniques [75,
86] and 2) the potential of the learning-to-hash method [43,80]
for more accurate reference search in delta compression.

3.1 Limitations of LSH-Based Sketching
As explained in Section 2.1, LSH-based data sketching en-
ables quick search for a reference block (i.e., reference search)
in post-deduplication delta compression. Figure 2 describes
the high-level idea of state-of-the-art LSH-based sketching
schemes [75, 86], which we call super-feature data sketching
(SFSketch). SFSketch generates a data block’s sketch using m
features extracted from the block (e.g., m= 12 in Figure 2). To
extract a feature Fi(A) of block A (0 ≤ i ≤ m−1), as shown in
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Figure 2: An example of LSH-based sketching.

Figure 2 (right), SFSketch calculates the hash value Hi(W j) of
each sliding window W j, where j is the starting byte position
of the window in the block. Given a block size of L and a win-
dow size of w, (L−w+1) hash values are calculated in total,
and the maximum hash value Max(Hi(Wj)) is selected as fea-
ture Fi(A). SFSketch repeats this process to extract m features
using a different hash function for each feature (i.e., Hi for Fi)
and then builds N super-features (SFs) by transposing the m
features (e.g., given m = 12 and N = 3, SFk(A) = T (F4k(A),
F4k+1(A), F4k+2(A), F4k+3(A)), where 0≤k≤2).

Using multiple SFs as the sketch of a data block enables
SFSketch to tune the accuracy of reference search by chang-
ing the matching criteria (i.e., criteria for judging the similar-
ity of given two blocks). Consider the example of Figure 2
where block A’s data content is almost the same as block
B, except for the red regions marked as Delta. Suppose that,
due to the small differences between blocks A and B, every
hash function Hi other than H1 has the same maximum value
Max(Hi(Wj)) for blocks A and B, i.e., every feature Fi except
F1 is identical between blocks A and B. In such a case, SF0(A)
does not match SF0(B) (∵ F1(A) ̸= F1(B)), while all the other
SFs are identical between blocks A and B. The two blocks can
be considered either similar or not depending on the matching
criteria; SFSketch may either decide that the two blocks are
dissimilar because there exists a different SF or judge that
block A resembles block B since their other two SFs (i.e., SF1
and SF2) match each other. There are many possible matching
criteria, but to maximize the data-reduction ratio, existing
SFSketch-based techniques [75, 86] consider that two blocks
are similar if there exists at least one matching SF.

While existing SFSketch-based delta-compression tech-
niques provide significant improvement in data reduction
compared to a simple combination of deduplication and loss-
less compression [75, 86], we observe that SFSketch-based
reference search often fails to identify a good reference block
that can provide a high data-reduction ratio for an incoming
block. To show this, we compare a state-of-the-art SFSketch-
based reference search technique [86] to brute-force search
that performs delta compression of an incoming block with
every stored block and selects the stored block that provides
the highest data-reduction ratio as the incoming block’s refer-
ence.2 For our evaluation, we use 4,090,975 4-KiB data blocks
collected from six different workloads in real systems (see
Section 5.1 for our evaluation methodology and workloads).

2While brute-force search guarantees the highest data-reduction ratio for
a workload, it is infeasible to use due to its prohibitively high performance
overhead. For example, in our evaluation environments (see Section 5.1 for
more detail), brute-force search takes more than 300 hours for the Install
trace that writes a total of 8.83-GB data to the storage system.

We use two major metrics to evaluate the accuracy of SFS-
ketch compared to brute-force search: 1) false-negative rate
(FNR), the probability of identifying no reference block for
an incoming data block even though brute-force search can
find one, and 2) false-positive rate (FPR), the probability
of identifying a reference block different from what brute-
force search finds. For FN cases, SFSketch compresses the
data block using the LZ4 algorithm [15] because there is no
reference block. For FP cases, SFSketch uses the Xdelta al-
gorithm [56, 57] to perform delta compression of the block
with the reference block that it identifies. For both cases, we
measure the average data-reduction ratio (DRR) and compare
it with that of brute-force search. Table 1 shows FNR, FPR,
and DRR for FN/FP cases of the SFSketch-based reference
search. DRR is normalized to that of brute-force search.

Table 1: Accuracy of LSH-based reference search [86].
Workload PC Install Update Synth Sensor Web Avg.

FNR 35.3% 51.8% 56.3% 75.5% 48.1% 5.5% 35.7%
FPR 21.1% 15.8% 11.3% 14.1% 47.3% 60.6% 23.1%

DRR FN cases 0.474 0.488 0.578 0.639 0.567 0.539 0.562
FP cases 0.621 0.608 0.644 0.683 0.798 0.674 0.669

We make three observations from Table 1. First, the exist-
ing SFSketch-based technique suffers from high FNR (up to
75.5% and 35.7% on average), failing to find any reference
block for many incoming blocks that actually have one or
more reference blocks. Except for Web, SFSketch’s FNR is
higher than 35% for every workload. For FN cases, each data
block is compressed by the LZ4 algorithm, and thus its DRR
is considerably lower compared to when the block is delta-
compressed with the reference block identified by brute-force
search. As shown in Table 1, the normalized DRR in FN cases
is 0.562 on average, showing that SFSketch provides 43.8%
lower data reduction compared to the optimal for the FN cases
(i.e., for 35.7% of the entire data blocks on average).

Second, the SFSketch-based reference search frequently
chooses a sub-optimal reference in some workloads, e.g., Sen-
sor and Web, which have a FPR of 47.3% and 60.6%, respec-
tively. The sub-optimal selection of reference blocks results in
lower data-reduction ratios over brute-force search. As shown
in the last row in Table 1, the normalized DRR in FP cases is
0.669 on average, which means that SFSketch provides 33.1%
lower data reduction compared to the optimal for the FP cases
(i.e., for 23.1% of the entire data blocks).

Third, FN cases are more common and have more negative
impact on the DRR than FP cases. On average, FN cases occur
for 35.7% of the incoming blocks, whereas FP cases occur
for 23.1%. When a FN case happens, the data-reduction ratio
using LZ4 is lower than when an FP case happens, which still
uses delta compression albeit with a sub-optimal reference
block; on average, the normalized DRR in FP cases (0.669)
is 19% higher than that in FN cases (0.562).

The limited accuracy of SFSketch mainly stems from its
inherent property; SFSketch is highly optimized to identify
only very similar data. Considering the SF-based sketching
process explained in Figure 2, it is highly unlikely that two
blocks have at least one matching SF, unless they are very
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similar. This property enables SFSketch to provide a high data-
reduction ratio even when it selects a sub-optimal reference
block for an incoming block (i.e., for FP cases). However, it
also causes SFSketch to frequently fail to find a sufficiently
good reference block that is not very similar to the incoming
block but is still beneficial for improving the data-reduction
ratio.

It is challenging to optimize existing SF-based sketch algo-
rithms to increase both FPR and FNR at the same time. The
accuracy of SFSketch highly depends on its settings such as
the number of features (m), the number of super features (N),
the sliding window size (w), and the matching criteria. For
example, under a matching criterion where two blocks are
considered similar if they have at least one common SF, in-
creasing the number of SFs (i.e., N) for each data block would
reduce overall FNR. However, at the same time, it might in-
crease FPR and reduce data-reduction ratios in FP cases be-
cause more dissimilar blocks could be chosen as reference
blocks. Moreover, as shown in Table 1, the FNR/FPR trend
of SFSketch-based search greatly varies across workloads,
which makes it even more difficult to find the best configura-
tion on average as well as on a per-workload basis. Instead, we
investigate applicability of deep-learning algorithms for data
sketching in delta compression, which can reduce the human
effort for developing a new sketching scheme or fine-tuning
existing techniques for different workloads.

3.2 Learning-to-Hash Method
The learning-to-hash method [43, 80] is a promising machine
learning (ML)-based approach for the nearest-neighbor search
problem. It trains a neural network (NN) to generate a hash
value for a given input data block such that any two similar
data blocks have similar hash values. Many prior works [10,
11,23,47,48,50,89] demonstrate the high effectiveness of the
learning-to-hash method at nearest-neighbor search in various
applications, such as image recognition and classification.

Figure 3 depicts how a representative learning-to-hash
scheme [50] generates a binary hash value of an image for
content-based image retrieval. It extracts the hash value of an
input image from the last hidden layer (e.g., HLN in Figure 3)
of a NN that is trained to classify the input image to one of C
possible classes. During inference, the activations in the last
hidden layer of two similar images are likely to be largely the
same if the two images belong to the same class. Therefore,
their hash values should also be similar because they are di-
rectly extracted from the last layer by translating the output
of each activation into a binary (‘1’ or ‘0’).

The learning-to-hash method has potential to be used for
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Figure 3: Learning-to-hash for image retrieval.

reference block search in post-deduplication delta compres-
sion, another nearest-neighbor search problem. In particular,
rapid advances in machine learning have enabled learning-
based algorithms to outperform a human or human-made
heuristics in various problems, such as facial recognition [65],
speech recognition [83, 84], image classification [50], and
system optimizations (e.g., branch prediction [37, 38], mem-
ory scheduling [35], and prefetching [4]). These successful
examples motivate us to develop a learning-based sketching
scheme that could be more effective than existing LSH-based
sketching schemes relying on human-designed heuristics and
metrics.

4 DeepSketch
The key idea of DeepSketch is to use the learning-to-hash
method to generate similar data signatures (i.e., sketches) for
any two data blocks that would provide a high data-reduction
ratio when delta-compressed relative to each other. The main
difference of DeepSketch over the existing post-deduplication
delta-compression approach [75, 86] (described in Figure 1)
is that DeepSketch generates a data block’s sketch by using a
deep neural network (DNN) model, instead of using an LSH
function (e.g., sk(X) in Figure 1). For each incoming data
block, DeepSketch performs DNN inference with the block
as input and uses the resulting activation values in the DNN’s
last hidden layer as the block’s sketch.

We envision that DeepSketch’s DNN is pre-trained offline
in other machines with more powerful computation resources
before building or updating a storage machine. For example,
to adopt DeepSketch in a new storage server of a data center,
one can train DeepSketch’s DNN using randomly-selected
data blocks from existing storage servers that contain specific
types of data (e.g., databases, images, web caching, etc.) ex-
pected to be stored in the new storage server. Similarly, to
further enhance the accuracy of DeepSketch, one can retrain
DeepSketch’s DNN and use the enhanced DNN to build new
storage servers or reorganize existing ones.

While the high-level idea may sound simple, applying
the learning-to-hash method for reference search in post-
deduplication delta compression is not straightforward. This
is because DeepSketch needs to deal with general binary
data, which introduces the following two technical challenges:
Challenge 1. Lack of Semantic Information. The target data
set of DeepSketch can contain any data from various applica-
tions, such as text, images, binary executable files, and so on.
Compared to existing learning-to-hash approaches focusing
on pre-categorized data (e.g., Imagenet [20], CIFAR [42], and
MNIST [44]), DeepSketch needs to process a much wider
range of data without any well-defined semantic information
about the delta-compressibility of data blocks.
Challenge 2. High Dimensional Space. The lack of seman-
tic information in DeepSketch’s target data sets leads us to
perform unsupervised learning that is used for drawing infer-
ences from a data set without labeled information. The most
common unsupervised learning approach is to use a clustering
algorithm that groups the target data set according to a certain
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measure, e.g., similarity of bit patterns in our case. However,
possible bit patterns of a data block for DeepSketch have
extremely high dimensional space (e.g., 24,096×8 assuming a
4-KiB data block), which makes it difficult to 1) set a proper
number of final clusters and 2) collect a data set large enough
to cover all possible data patterns for a clustering algorithm.

To address the above challenges, we develop a new clus-
tering algorithm, called dynamic k-means clustering (DK-
Clustering), which groups data blocks that would provide
high delta-compression ratios when delta-compressed relative
to each other (Section 4.1). To cope with potential groups
of data blocks that are missing in the collected data sets,
after clustering, we generate new data blocks by randomly
and slightly modifying existing blocks. We then generalize
the understanding of the similarity relationship between data
blocks using the learning-to-hash method, so that DeepS-
ketch can generate a learning-based data sketch for any given
block (Section 4.2). With the sketch values computed by the
learning-to-hash model, DeepSketch identifies the most sim-
ilar reference block to each incoming block based on an ap-
proximate nearest-neighbor search technique (Section 4.3).
We also perform hyper-parameter exploration for our DNN
model to find the appropriate sketch size (Section 4.4).

4.1 Dynamic K-Means Clustering
DK-Clustering is based on the existing k-means clustering
algorithm [53] that partitions a data set into a given number
(i.e., k) of clusters such that each data element belongs to
the cluster with the nearest mean value. Unfortunately, in our
case, the value of k is initially unknown. Figuring out the
most suitable value for k by exploring a given data set is time-
consuming, considering the extremely high dimensionality of
the data set that DeepSketch deals with.

The hierarchical clustering algorithm [39] is known to be
suitable for such data sets, but it introduces prohibitive com-
putation and memory overheads for a large-size data set. To
be specific, the computation and space complexities of hierar-
chical clustering are O(N3) and O(N2), respectively, where
N is the number of data blocks to cluster. This means that, for
example, hierarchical clustering of a 4-GB data set requires
TB-scale memory space assuming a data block size of 4 KiB.

There exist a number of adaptive clustering algorithms
(e.g., [5, 28, 63, 72, 87]) that aim to cluster a data set with lim-
ited knowledge of the number of final clusters. Unfortunately,
using them for DNN training in DeepSketch is not straightfor-
ward either, because their efficiency also highly depends on
the initial parameters that are set either randomly or manually,
such as the initial number of clusters [28, 63, 72, 87] or the
distance threshold to determine the similarity of given two
objects [5]. Since the target data set of DeepSketch has an
extremely high dimensional space while there is no available
hint for good initial parameters, using existing techniques
could either require significant effort to find appropriate ini-
tial parameters or lead to limited accuracy and/or prohibitive
performance overhead due to the use of inappropriate initial
parameters.

To overcome the above challenges, we develop DK-
Clustering by extending the existing k-means clustering al-
gorithm with specialized initialization steps to dynamically
refine the value of k while clustering data without any hints for
initial parameters. Figure 4 describes the overall process of
DK-Clustering composed of two steps that are performed
iteratively: Step 1. coarse-grained clustering and Step 2.
fine-grained clustering. Coarse-grained clustering first cre-
ates rough clusters within an unlabeled data set, and then
fine-grained clustering adjusts the assignment of data blocks
by running a modified k-means clustering algorithm. Fine-
grained clustering returns a data block to be unlabeled if the
block is an outlier in the cluster, so that coarse-grained clus-
tering can re-categorize the block at the next iteration. After
Steps 1 and 2 converge, DK-Clustering repeats the above
steps for each cluster in a recursive manner, which enables
us to form fine-grained clusters that only contain data blocks
sufficiently similar to each other.

Step	1:	Coarse-grained	Clustering

Unlabeled	Data	Set	

Unlabeled
Clustered
Mean

δ

❹ Next	iteration:	Repeat	steps	1	and	2	for	the	same	data	set

❺ Recursive	clustering:
Repeat	DK-Clustering for	each	cluster	with	δ’	= δ +	ɑ

❶ Assign	unlabeled	blks ❷ Remove	outliers

Step	2:	Fine-grained	Clustering

❸ k-means	clustering

Figure 4: Overall procedure of dynamic k-means clustering.

Step 1: Coarse-Grained Clustering. Coarse-grained cluster-
ing takes a set of unlabeled blocks and clusters as the input,
and aims to categorize all the unlabeled blocks. Initially, there
exist only unlabeled blocks but no cluster, so DK-Clustering
creates a new cluster and assigns the first block as the repre-
sentative block (i.e., mean) of the cluster. After that, for each
unlabeled block, DK-Clustering measures the data-reduction
ratio when the block is delta-compressed with the mean of
each cluster through the target delta-compression algorithm
(e.g., Xdelta [56,57]). DK-Clustering selects the cluster whose
mean provides the highest data-reduction ratio for the unla-
beled data block. If the data-reduction ratio is higher than a
threshold δ, DK-Clustering adds the unlabeled block to the
selected cluster. Otherwise, it creates a new cluster, and the
unlabeled block becomes the new cluster’s mean ( 1 in Fig-
ure 4). After categorizing all unlabeled blocks, coarse-grained
clustering removes clusters that contain only a single data
block from the data set as there are likely no other blocks
sufficiently similar to that block ( 2 ).
Step 2: Fine-Grained Clustering. Since coarse-grained clus-
tering roughly assigns unlabeled blocks to clusters, it cannot
guarantee that all the data blocks belonging to the same clus-
ter are sufficiently similar to each other. To address this, DK-
Clustering performs fine-grained clustering for the resulting
clusters from coarse-grained clustering. Fine-grained cluster-
ing performs a variant of k-means clustering, adjusting the
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mean of each cluster and re-assigning each data block to the
cluster containing the nearest mean ( 3 ). Fine-grained cluster-
ing operates differently from the typical k-means clustering in
three aspects. First, instead of Euclidean distance [19], it uses
the delta-compression ratio of two data blocks as the distance
function. Second, it derives a cluster’s mean by selecting
the block that provides the highest average data-reduction
ratio when delta-compressed relative to each of the other
blocks in the cluster. Third, if there is a data block whose
delta-compression ratio when delta-compressed relative to the
cluster’s mean is lower than the threshold δ, DK-Clustering
excludes the block from the cluster and considers it as an
unlabeled block. After finishing fine-grained clustering on all
the clusters, DK-Clustering repeats Steps 1 and 2 over all the
clusters until no unlabeled data blocks exist ( 4 ).
Step 3: Recursive Clustering. Fine-grained clustering guar-
antees that every resulting data block belongs to an appro-
priate cluster where the data block provides a data-reduction
ratio higher than the given threshold δ when delta-compressed
relative to the cluster’s mean. Even though a sufficiently high
value for δ would allow DK-Clustering to group only simi-
lar data blocks into the same cluster, other values for δ can
provide better clustering results. In order to automatically
find the best δ for a data set, once DK-Clustering reaches
the convergence with a given threshold δ, it performs Steps 1
and 2 for each cluster using a new threshold δ′ = δ+α in a
recursive manner ( 5 ). Data blocks assigned to each cluster
are considered unlabelled again for the next recursion with the
new threshold δ′. The recursion terminates when splitting a
cluster shows no more benefit in improving the data-reduction
ratio. More specifically, DK-Clustering stops the recursion
for a cluster if the average data-reduction ratio of data blocks
in the cluster is similar or lower than the average ratio of
sub-clusters spawned from the cluster.
DK-Clustering Complexity. The space complexity of DK-
Clustering is O(N) since it only requires storing per-block
information about which cluster the block belongs to. The
computation complexity of DK-Clustering is O(N ×KF)+
O(N2/KC) < O(N2), where KC and KF are the number of
total clusters after coarse-grained and fine-grained clustering
steps, respectively. Although the number of iterations for DK-
Clustering can vary depending on workload, DK-Clustering
finishes within up to eight iterations for our training data sets.
Note that, even for an extreme case where DK-Clustering
requires a large number of iterations, we can easily limit
the maximum number of iterations at minimal degradation
in clustering quality. For example, one can set a threshold
distance to finish DK-Clustering once it groups all data blocks
such that any data block’s distance from the corresponding
cluster’s mean is lower than the threshold distance.

4.2 Neural-Network Training
Figure 5 shows our method to train a DNN model for DeepS-
ketch to generate a data block’s sketch, which consists of two
steps. In the first step, we train a classification model ( 1 )
using the CTRN clusters formed by DK-Clustering as differ-
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Figure 5: NN models of DeepSketch.

ent target classes. The first part consists of three standard
1D convolutional layers applying the max pooling and batch
normalization techniques, which capture spatial locality of
neighbor bytes within the data block. The network is then
connected to dense layers to learn the relationship between
the extracted spatial features and the target class.3

After training the classification model, in the second step,
we transfer the learned knowledge of the classification model
to a hash network model ( 2 ). We employ a state-of-the-art
learning-to-hash technique called GreedyHash [79]. We first
initialize the hash network with the weights of the classifica-
tion model. Instead of using the last layer of the classification
model, we train the hash network with two different layers, a
hash layer and a head layer, each of which learns the binary
hash and class likelihood, respectively.

A key challenge in NN training for DeepSketch is that data
blocks are not uniformly distributed over CTRN clusters. In
our data set, the largest 10% clusters contain 47.93% of the
total data blocks. It would render training of the NN to be
significantly biased towards specific bit patterns. To address
this, we resize each of CTRN clusters to have the same number
of NBLK blocks by 1) randomly selecting NBLK blocks within
a cluster containing more blocks than other clusters and 2)
adding data blocks randomly and slightly modified from ones
in a cluster containing fewer blocks.

Once training the hash network, the hash layer yields the
B-bit representation for an input block, i.e., the input block’s
sketch, allowing any two similar data blocks to have similar
sketches with low Hamming distance. Note that, even if two
data blocks do not belong to any of CTRN clusters, we can
infer their binary hash values based on the likelihood that each
block belongs to the clusters, which dramatically improves
the adaptability of our NN model over various data sets.

3We explore multiple NN structures and choose the one that provides
the best classification accuracy and data-reduction ratio (shown in Figure 5).
For example, when using a much simpler multi-layer perceptron (MLP)
networks [24], DeepSketch hardly provides data-reduction benefits (less than
1%) over existing SF-based techniques. Adding the number of dense layers
in the classification model in Figure 5 does not improve classification quality,
either. We discuss detailed results for hyper-parameter search in Section 4.4.
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4.3 Reference Selection
DeepSketch identifies whether or not any two given data
blocks are similar by comparing the two blocks’ sketches
generated from the hash network model. A key challenge here
is that the traditional exact-matching-based search method
(which uses a hash table for the SK store) is not effective for
the learning-to-hash model. For example, the hash network
model may generate similar but few-bit different sketches for
some blocks beneficial to be delta-compressed, which causes
an exact-matching-based search method to misjudge those
blocks to be dissimilar.

To address this issue, we use the approximate nearest-
neighbor search (ANN) technique. Unlike the standard exact
nearest-neighbor search, ANN techniques provide a scalable
and performance-efficient way to find the most similar values
by relaxing search conditions. In particular, we use the NGT
library [16] that supports searching with high-dimensional
binary data using neighborhood graphs and tree indexing.

Figure 6 illustrates the reference selection procedure of
DeepSketch. For each incoming block, DeepSketch first com-
putes its sketch, H, using the hash network model. It then
searches for the similar block from two SK stores. The first
SK store utilizes the ANN technique, and DeepSketch queries
it with H to get the data block with the most similar sketch, Ĥ,
in the ANN model. The other SK store buffers the sketches of
R most-recently-written blocks. Let ∆(H,Ĥ) be the Hamming
distance between the two hash values. For each recent block
in the buffer store, DeepSketch checks if there is a block with
a Hamming distance smaller than ∆(H,Ĥ). If there exists,
DeepSketch chooses the block from the buffer store as the
reference for the incoming block. Otherwise, it uses the block
from the ANN-based SK store (i.e., the block whose sketch
is Ĥ) as the reference.
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Figure 6: Overview of the reference selection procedure.

The underlying reason for using the two SK stores is that,
under the current implementation using the NGT library, up-
dating the ANN model takes a non-negligible amount of time.
To avoid frequent updates of the data structure that would hurt
the performance of DeepSketch, we design DeepSketch to
update the ANN model in a batch by buffering the sketches of
recently-written data blocks. When the number of sketches in
the buffer exceeds a threshold TBLK (e.g., 128 in our default
settings), DeepSketch flushes the buffered sketches to the
ANN-based SK store. Note that it is important to check the
sketch buffer in order to maximize the data-reduction ratio of
DeepSketch. In our evaluation, 13.8% of the reference blocks
are found in the sketch buffer on average (up to 33.8%).

4.4 Hyper-Parameter Exploration
This section presents our hyper-parameter exploration for
DeepSketch to achieve high accuracy in reference search with
a convolutional hash network.
Classification Model. As discussed in Section 4.2, the DNN
training procedure of DeepSketch has two steps to train the
classification model and the hash network model, respec-
tively. To generate accurate sketches of data blocks, the
classification model should predict the correct target classes
(i.e., the clusters formed by DK-Clustering). We identify
the best hyper-parameters for the proposed classification
model using the standard machine learning practice of the
grid search along with nested cross-validation. We choose
the number of the convolutional and dense layers from the
grid ⟨1,2,3⟩, the number of the convolution channels size
from ⟨8,16,32,64⟩, the number of neurons for each dense
layer from ⟨512,1,024,2,048,4,096⟩, the dropout rate for
the dense layers from ⟨0.0,0.1,0.2,0.5⟩, and the learning rate
from ⟨0.01,0.02,0.005,0.1,0.5⟩. We utilize ReLU for the ac-
tivation function for each layer and train the model with the
Adam optimizer [41]. We use 10% of samples in our data sets
for training and the remaining 90% for testing. Finally, we
select the proposed classification model structure that shows
the best testing accuracy in the cross-validation.

Figure 7 shows the loss and testing accuracy changes over
training epochs for the classification model. The proposed
classification model accurately predicts the target cluster iden-
tified in DK-Clustering even though the data sets used in
our evaluation has a relatively large number of the clusters,
CTRN = 34,025. After training with 350 epochs, the model
training procedure sufficiently converges, achieving 93.42%
for Top-1 and 96.02% for Top-5 accuracy. It implies that the
deep learning method itself can accurately identify similar
blocks for an incoming block without any other information.
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Figure 7: Loss and accuracy of classification model.

Hash Network Model. Next, we train the hash network model
while changing the sketch size B. With the smaller B, similar
data blocks would have a higher chance to have the same hash
value, but it also increases the false-positive rate, i.e., dissimi-
lar blocks belonging to different clusters would have the same
hash value. One may set the number of bits with a sufficiently
large number, but doing so increases the memory overhead
for the SK store and the computation time for ANN search
and update processes.

To determine the best sketch size, we verify when the hash
network model could achieve the classification model’s origi-
nal accuracy. Recall that the hash network model learns both
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the hash coding and classification at the same time. Thus,
we can verify whether it correctly classifies the target class
by checking the last head layer’s activations. Figure 8 sum-
marizes our evaluation results. We evaluate three candidate
values for B, 32, 64, and 128, over different learning rates
λ. Note that the model does not converge when B = 128
and λ = 0.005, so we omit the results. The results show that
the hash network model does not recover the accuracy of
the classification model with the small hash bits, 32 and 64,
since the representation capability of the hash coding is in-
sufficient. When B = 128, we observe that the hash network
model also predicts the target clusters with a high accuracy,
e.g., it achieves the Top-5 accuracy of 96.92% with λ = 0.002,
exceeding the original target accuracy of the classification
model. Thus, we decide to use B = 128 for our implementa-
tion of DeepSketch.
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Figure 8: Accuracy of hash network model.

5 Evaluation
In this section, we evaluate the data-reduction benefits and
performance/memory overheads compared to the state-of-the-
art super feature (SF)-based sketching technique [86].

5.1 Methodology
Evaluation Platform. We develop a post-deduplication delta-
compression platform that is used as a general workbench to
implement and evaluate various reference search techniques.4

Our platform runs on a server machine that employs Intel’s
Xeon 4110 CPU with 8 cores running at 2.1 GHz, 128-GB
DDR4 DRAM, and 8 Samsung 860PRO 1-TB SSDs, while
using GeForce RTX 2080 for DNN inference in DeepSketch.

Our platform operates as described in Figure 1; for ev-
ery host write, it performs deduplication, delta compression,
and lossless compression in order. It maintains three main
data structures: 1) a fingerprint store for deduplication, 2)
a sketch store for delta compression, and 3) a reference ta-
ble for serving future read requests. The data block size is 4
KiB, which is identical to the default block size of widely-
used file systems [18, 60]. We use the MD5 cryptographic
hash algorithm [69] to generate a 128-bit fingerprint of an
incoming data block and the Xdelta delta-compression algo-
rithm [56,57] to compress a non-deduplicated data block with
its reference block. If there are multiple reference blocks simi-
lar to an incoming data block, our platform uses the first-found

4We open source our platform along with the data sets used in our
evaluation [1].

one as a reference by default. When the platform cannot find
a reference block, it compresses the incoming block using the
LZ4 algorithm [15]. We set the threshold for the number of
buffered sketches to invoke ANN updates to 128, which we
empirically determine to minimize the performance overhead
of exhaustive search and prevent too frequent ANN updates.
Baseline Technique.We compare DeepSketch against Fi-
nesse [86], the state-of-the-art SF-based technique that pro-
vides much higher throughput while retaining almost the
same data-reduction ratio compared to the representative post-
deduplication delta-compression technique [75]. We config-
ure Finesse using the default settings presented in [86], which
are already optimized and have been shown to provide the
best data-reduction efficiency with low overhead for a wide
range of workloads. Finesse generates three 192-bit SFs, each
of which can be obtained by transposing four features from
different hash functions (i.e., twelve (= 3 × 4) Rabin finger-
print functions [68] with a window size of 48 bytes are used in
total). It considers that two data blocks are similar if they have
one or more matching SFs, and selects the data block that has
the largest number of matching SFs with the incoming block
as the reference block for delta compression.
Workloads. We use eleven block I/O traces that we collect by
running different applications on real systems and capturing
write requests (including the requested data) to the storage
devices. There is no backup process during trace collection.
Table 2 summarizes the characteristics of the traces in terms
of the size, deduplication ratio (i.e., Orignial Data-Set Size /
Data-Set Size after Deduplication), and average compression
ratio (i.e., Original Data-Set Size / Compressed Data-Set
Size). We collect the I/O traces including contents written in
the storage system from real desktop machines and servers
while running different applications.

Table 2: Summary of the evaluated workloads.

Workload Description Size Dedup. Comp.
ratio ratio

PC General Ubuntu PC usage 1.57 GB 1.381 2.209
Install Installing & executing programs 8.83 GB 1.309 2.45
Update Updating & downloading SW packages 3.73 GB 1.249 2.116
Synth Synthesizing hardware modules 653 MB 1.898 2.083

Sensor Sensor data in semiconductor fabrication 91.2 MB 1.269 12.38
Web Web page caching 959 MB 1.9 6.84
SOF0 8.98 GB 1.007 2.088
SOF1 Storing Stack Overflow database [33] 13.6 GB 1.01 1.997
SOF2 as of 2010 (SOF0) and 2013 (SOF1–4) 13.6 GB 1.01 1.996
SOF3 13.6 GB 1.01 1.997
SOF4 13.6 GB 1.01 1.996

For DeepSketch, we use different sets of data for training
and testing. In order to evaluate the adaptability of DeepS-
ketch (i.e., how well DeepSketch operates under a workload
totally different from ones used in its DNN training), we
do not use the five traces collected from Stack Overflow
database [33] (SOF0–4) for training the DNN of DeepSketch.
By default, we train DeepSketch’s DNN model using a single
data set that contains 10% of all the remaining six traces and
evaluate DeepSketch with the remaining 90% of the six traces
and entire SOF traces.
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5.2 Overall Data Reduction
Figure 9 shows the data-reduction ratio after post-dedup-
lication delta compression with the two reference search tech-
niques, Finesse and DeepSketch, under the eleven workloads.
We only present SOF1 as a representative result of SOF1-4 as
they show little variations lower than 0.01%. All values are
normalized to the data-reduction ratios of a baseline system
that performs only deduplication and lossless compression in
order, which we call no delta compression (noDC).
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Figure 9: Comparison of overall data-reduction ratio.

We make two main observations from Figure 9. First,
DeepSketch significantly outperforms Finesse in most work-
loads. Except for PC in which DeepSketch provides the sim-
ilar data-reduction ratio with Finesse, DeepSketch exhibits
up to 33% (on average 21%) higher data-reduction ratios
than Finesse. In particular, DeepSketch greatly improves the
data-reduction ratio by at least 24% over Finesse under SOF
workloads. This suggests that 1) DeepSketch can improve
the data-reduction efficiency for workloads that the state-of-
the-art SF-based search technique cannot effectively cope
with, and 2) DeepSketch has high adaptability (i.e., it can
work efficiently for data sets that are not used for the DNN
training). Second, DeepSketch provides higher data-reduction
ratios even for highly compressible workloads. Under Web,
Finesse significantly reduces the write traffic by about 80%
over noDC, but DeepSketch increases the data-reduction ratio
even further by 33% compared to Finesse. From our observa-
tions, we conclude that DeepSketch is an effective solution to
maximize the data-reduction ratio for various workloads.

5.3 Reference Search Pattern Analysis
To better understand how DeepSketch can outperform the
state-of-the-art technique, we analyze the reference-search
efficiency of DeepSketch and Finesse. Given a data block B,
we measure SFS(B) and SDS(B), the number of saved bytes by
Finesse and DeepSketch, respectively. SFS(B) (or SDS(B)) is
obtained by subtracting the size of B when delta-compressed
with the reference block found by Finesse (or DeepSketch)
from the original size of B (i.e., 4 KiB). The larger the SFS(B)
(or SDS(B)) value, the higher the reference-search efficiency.
If a reference search technique fails to find a reference block
for B, we compress it using the LZ4 algorithm and then use
the compressed size to calculate data saving.

Figure 10 plots coordinates of x = SFS(Bi) and y = SDS(Bi)
for a block Bi in each workload. If x = y, Finesse and DeepS-
ketch exhibit the same delta-compression ratio (highlighted
with a red line in Figure 10), which implies that they select the
same reference block. A coordinate (SFS(Bi), SDS(Bi)) above
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Figure 10: Comparison of the reference-search pattern.

(or below) the line means that DeepSketch provides higher
(or lower) data-reduction ratio for block Bi than Finesse.

From Figure 10, we make three observations. First, as ex-
pected, DeepSketch provides higher data savings compared
to Finesse for a large number of blocks under every workload.
Second, despite the higher data savings of DeepSketch over Fi-
nesse in general, there are also a non-trivial number of blocks
for which Finesse selects better references, achieving higher
data savings than DeepSketch. Excluding the SOF work-
loads, Finesse selects higher-quality references compared to
DeepSketch for up to 11.8% of the total blocks. Third, DeepS-
ketch and Finesse show quite different patterns in reference
search. As shown in Figure 10, the coordinates in y > x region
(i.e., where DeepSketch outperforms Finesse) are close to the
line y = x, and at the same time, many of them are scattered
across a wide range of the region compared to the coordi-
nates in y < x region. On the other hand, a majority of the
coordinates in y < x region (i.e., where Finesse outperforms
DeepSketch) tend to have a very large y value (e.g., > 3,072).
These imply that, while Finesse is effective to find a refer-
ence highly similar to an input block, it also misses a number
of blocks that DeepSketch can find and use to improve the
data-reduction efficiency.

5.4 Combination with Existing Techniques
Our second and third observations in Section 5.3 motivate us
to combine DeepSketch with existing techniques to maximize
the data-reduction ratio. We design a storage system that em-
ploys both Finesse and DeepSketch. When the two techniques
find different reference blocks for an incoming block, the sys-
tem chooses the one that provides a higher data-reduction
ratio. Such an approach increases the memory and compu-
tation overheads for data sketching but would be desirable
for a system where data reduction is paramount (e.g., backup
systems). We leave the study of efficiently combining DeepS-
ketch with existing techniques as future work.
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Figure 11 shows the combined approach’s data-reduction
benefits compared to when using either Finesse or DeepS-
ketch alone.5 We also measure the optimal data-reduction
ratio (i.e., when every data block is delta-compressed with
the best reference block found by brute-force search) for each
workload to understand room for improvement after applying
the combined approach. To emphasize the benefits of the com-
bined approach over the standalone techniques, we normalize
all the results in Figure 11 to Finesse.
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Figure 11: Data-reduction improvement of a combination of
DeepSketch and Finesse.

We observe that, as expected, the combined approach fur-
ther improves the data-reduction ratio compared to the two
standalone techniques under most workloads. The combined
approach achieves up to 38% and 6.6% (15% and 4.8% on av-
erage) data-reduction improvements over Finesse and DeepS-
ketch, respectively. We also observe that the combined ap-
proach can reduce the gap in data-reduction ratios between
the existing reference search techniques and the optimal. Al-
though there is still large room for improvement (i.e., up to
35% and 26% on average) even after applying the combined
approach, the combined approach reduces the gap by up to
81% (i.e., 62% → 9.6% under Web) and by 42% on average.
From our observations, we conclude that DeepSketch can also
be used as a useful method to complement the weakness of
existing post-deduplication delta-compression techniques.

5.5 Impact of Training Data-Set Quality
We evaluate the impact of the training data-set quality on
the data-reduction ratio of DeepSketch. Figure 12 shows
the average data-reduction ratio of DeepSketch for the en-
tire workloads listed in Table 2 when we use two different
types of training data sets. First, we evaluate how DeepS-
ketch’s benefit changes when we train its DNN model using
1%/2%/3%/5%/10% of the entire data sets (the blue line in
Figure 12). Second, we measure DeepSketch’s benefit when
we use 10% of requests only from Sensor for DNN training
(the dashed red line in Figure 12). When we use x% (< 10%)
of each trace for training, we use the remaining (100−x)% to
evaluate the data-reduction ratio of DeepSketch. All values in
Figure 12 are normalized to the data-reduction ratio obtained
when using 10% of the entire data sets for DNN training.

We make two observations from Figure 12. First, while a
larger training data set increases DeepSketch’s benefit, DeepS-
ketch can provide a fairly good data-reduction ratio even with

5We omit the results of the SOF workloads in Figure 11 because there is
no motivation to combine DeepSketch with Finesse under such workloads
for which Finesse provides negligible data reduction.
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Figure 12: Effect of training data set on data-reduction ratio.
a very small training data set. Using only 1% of the traces
for DNN training provides 98.9% of the data-reduction ratio
obtained when using 10% of the traces. Second, DeepSketch
can provide a high data-reduction ratio even when we use
a training data set collected from a single trace. Compared
to when we use 10% of all traces for DNN training, using
10% of only Sensor decreases the data-reduction ratio by less
than 1%. Based on our observations, we conclude that it is
possible to train an effective DNN model for DeepSketch
with a limited data set, while providing high adaptability for
diverse input data sets.

To study the detailed impact of the training data-set quality,
we analyze how the sketches generated by DeepSketch change
with different training data sets. To this end, we measure
the average data-saving ratio (i.e., 1− Delta-Compressed
Data Size / Original Data Size) of delta-compressed blocks
depending on the Hamming distance between the sketches of
the input and reference blocks (i.e., ∆(H,Ĥ) in Section 4.3.)
Figure 13 shows the relationship between the data-saving ratio
and sketch Hamming distance for three different DNN models
trained with 10% of Sensor (10%-Sensor) and 1%/10% of
all traces (1%-All and 10%-All). In general, the higher the
data-saving ratio at a low sketch Hamming distance, the more
accurate the sketches generated by DeepSketch.
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Figure 13: Effect of training data set on sketch accuracy.

We identify the following two findings from Figure 13.
First, for all DNN models, DeepSketch provides extremely
high data saving (close to 1) when ∆(H,Ĥ) ≤ 2. The result
shows that all the three DNN models enable DeepSketch
to identify highly similar data blocks by generating almost
identical sketches. It is due to the nature of the DNN-based
learning-to-hash method: a DNN can be easily trained to
yield the same hash values for the data with negligible differ-
ences. Second, in 1%-All and 10%-Sensor, the data-reduction
ratio degrades more significantly as the Hamming distance
increases, compared to 10%-All. It suggests that we can fur-
ther improve the benefit of DeepSketch by increasing the
accuracy of the sketch generation with a better DNN model,
e.g., using high-quality data sets and/or advanced model ar-
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chitectures. In the current version of DeepSketch, the ANN
model compensates for such potential accuracy loss by finding
sufficiently-good reference blocks with best efforts.

5.6 Overhead Analysis
Performance Overhead. Figure 14 shows the average
throughput of DeepSketch and the combined approach of
DeepSketch and Finesse under different workloads, normal-
ized to Finesse.6 DeepSketch and combined approach provide
up to 73.7% and 44.9% (44.6% and 28.4% on average across
all workloads) of the average throughput of Finesse. This
non-trivial performance overhead is due to the inherent trade-
off between the data-reduction ratio and throughput in post-
deduplication delta compression; performing delta compres-
sion for more data blocks would increase the data-reduction
ratio, but it comes at the cost of performance degradation
since delta compression takes more time compared to lossless
compression (e.g., in our current implementation, LZ4 takes
6.9 µs per block on average, which is less than 10% of the
average execution time of Xdelta).
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Figure 14: Performance overhead of DeepSketch.
To better understand the performance overheads of DeepS-

ketch, we measure the average latency of each step per input
data block during the post-deduplication delta-compression
process. DeepSketch requires two modifications on existing
techniques, 1) replacing the SF-based sketching engine with
the DNN-based one and 2) using the ANN engine described
in Section 4.3 as the SK store. For fair comparison, we im-
plement the SK store of Finesse using the unordered-map
data structure that provides O(1) time complexity for lookup.
Figure 15 visualizes the fraction of the average time spent for
each step in the entire data-reduction process.
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Figure 15: Average latency for each data-reduction step in
(a) DeepSketch and (b) Finesse.

As shown in Figure 15, DeepSketch and Finesse operate
differently in only three steps of the entire data-reduction pro-
cess: 1) sketch generation for an incoming block, 2) sketch
retrieval from the SK store, and 3) sketch update to the SK

6Note that DNN training does not affect DeepSketch’s throughput be-
cause it can be performed offline as explained in Section 4. In our system
described in Section 5.1, DNN training (including DK-Clustering) takes less
than 4 hours with 300 epochs for our 1.6-GB training data set.

store. The other steps, including deduplication, Xdelta com-
pression, and LZ4 compression, are performed in the same
ways. Due to the simplicity of the hash network model net-
work and GPU acceleration, DeepSketch reduces the latency
of sketch generation from 88.73 µs to 36.47 µs (by 58.9%)
over Finesse. However, using the ANN engine significantly
increases the latencies for sketch retrieval and update, leading
to 55.1% increase in the total average latency over Finesse.

The performance overhead of DeepSketch over Finesse
is non-trivial, but it would not be a serious obstacle for its
wide adoption due to two reasons. First, we target a system
where data reduction is critically important so that DeepS-
ketch’s benefits outweigh its performance overheads. Second,
the performance overhead of DeepSketch can be mitigated
in several ways. For example, if the data-reduction process
is performed in background, its negative performance impact
could be relatively small. We can also leverage the paral-
lelism of multi-core CPUs to optimize software modules. For
example, the sketch update procedure can be performed in
parallel with other modules. This hides the cost of updating
sketches during the compression steps, thereby reducing the
performance overhead by 45.8% (i.e., 103.98 µs → 56.27 µs).
Memory Overhead. Like existing post-deduplication delta-
compression techniques [75, 86], DeepSketch inevitably re-
quires additional memory space for the sketch store. Despite
the smaller sketch size of DeepSketch compared to exist-
ing techniques [75, 86] (128 bits vs. 192 bits), DeepSketch’s
memory overhead might be unacceptable if it keeps track of
the sketches of all non-deduplicated data blocks. For exam-
ple, suppose that the data block size is 4 KiB, and 80% of
the stored data is unique (i.e., non-deduplicated). Then, the
required memory space for the sketch store is about 0.3%
(0.8×16/4,096) of the size of the stored data (e.g., around
100-GB memory space to work with 32-TB data).

However, the memory overhead would not be a signif-
icant obstacle to use DeepSketch in practice for two rea-
sons. First, the memory overhead for the sketch store is a
common problem in all the sketch-based techniques. Sec-
ond, prior works demonstrate that a small fraction of data
blocks are frequently used as the reference block for many
input blocks [26, 64]. Thus, keeping only most-frequently-
used sketches in a limited-size sketch store (i.e., a with least-
frequently-used (LFU) eviction policy) would provide suffi-
ciently high compression efficiency. We leave such further
optimizations to mitigate DeepSketch’s memory overhead for
future work.

6 Discussion
Scalability to Larger Data Sets. As shown in our evalua-
tion, DeepSketch provides high data-reduction ratios even
for workloads that are not used in DNN training (e.g., SOF
workloads), which implies the high generalizability of DeepS-
ketch. Nevertheless, due to the limited amount of data sets
publicly accessible, it is difficult to say whether DeepSketch
would be effective under any given workload. For example,
DeepSketch may require a larger DNN model to provide suf-
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ficient benefits for large data sets (that we do not observe in
this work), which would significantly increase the training
overheads of DeepSketch. However, we believe that DeepS-
ketch would be able to work for larger data sets due to three
reasons. First, DeepSketch ’s DNN model has much smaller
computation complexity than state-of-the-art DNN models,
so there is significant room for DeepSketch to use the larger
DNN models. Second, the memory space required for training
depends more on the size of the DNN model rather than the
size of the training data set. Our current model is only a few
hundreds of megabytes in size, which can be run on a single
commonly-used GPU. Third, as explained in Section 4, DNN
training can be performed offline in different machines with
more computing/memory resources.
Cost-Effectiveness of DeepSketch. The current version
of DeepSketch requires a powerful GPU for DNN infer-
ence/training and thus introduces non-trivial performance
and power overheads. However, we believe that such over-
heads would not be a significant obstacle for the wide adop-
tion of DeepSketch due to two reasons. First, as explained in
Section 4, DNN training can be done in different machines
(e.g., in cloud servers) without requiring frequent retrain-
ing, and multiple storage servers (that store similar types
of data) can use the same DNN model, amortizing the train-
ing cost. Second, there has been significant effort to develop
high-performance and energy-efficient accelerators for both
light-weight DNN inference (e.g., [6, 27, 66, 73]) and ANN
search (e.g., [32, 40, 71]), which would greatly reduce the
performance, power, and resource overheads of DeepSketch.

7 Related Work
To our knowledge, this work is the first to propose a learning-
based data-sketching technique for accurate reference search
in storage-level delta compression. As we have already dis-
cussed state-of-the-art techniques closely related to DeepS-
ketch in Sections 2 and 3, in this section, we briefly discuss
other recent works on 1) storage-level data reduction and
2) machine learning-based video/image compression.
Storage-level Data Reduction. The fundamental ideas of
data-reduction techniques were proposed several decades ago.
Hence, their theoretical properties and limitations, in terms
of data reduction, have been studied intensively. Recent stud-
ies focus more on how to efficiently deploy them to various
platforms to achieve space savings with faster compression
speeds, lower computation costs, and less energy consump-
tion [12, 26, 46, 64, 85, 86]. For example, SmartDedup [85]
proposes a low-cost deduplication technique for resource-
constrained devices where computing resources as well as
energy budget are seriously limited. Finesse [86] is a represen-
tative example of enhancing delta-compression speed without
loss in data-reduction ratio by relaxing the complexity of
sketch generation. Some prior works [12, 26, 46] present that
deduplication and compression could be integrated in an SSD
controller to improve storage lifetime as well as performance.

The key difference of this study from the above recent
works is that this work presents a new direction to improve

data-reduction ratio, the fundamental goal of a data-reduction
technique. Our work analyzes the limitations of probabilis-
tic and statistical approaches and shows that emerging deep-
learning methods can be promising alternatives to and/or
complements the traditional methods.
Machine Learning for Video and Image Compression. Sev-
eral works attempt to improve video/image compression ef-
ficiency using machine learning [2, 13, 14, 54, 61, 77, 77]. To
enhance existing video compression algorithms, some lever-
age CNNs [13, 14, 77] and others employ Long Short-Term
Memory (LSTM) networks to learn video representations [77]
and predict future frames [54]. Their common idea is to accu-
rately predict pixel values of next video frames and store only
deltas for reconstruction. More recent studies use Generative
Adversarial Networks (GAN) to generate part or all of the im-
age content from a semantic label map [2, 61]. They achieve
space savings by storing only a smaller amount of preserved
data and the label map in storage devices.

DeepSketch is different from these studies in two aspects.
First, unlike existing ML-based compression methods that tar-
get images and videos, DeepSketch aims to compress binary
data, which requires handling extremely high-dimensional
data sets without any semantic information. Second, ML-
based compression methods are basically lossy compression
algorithms, but our system is a lossless compression system
that enables us to reconstruct original data without any data
loss.

8 Conclusion
We introduce DeepSketch, the first learning-based reference
search technique to improve the data-reduction efficiency
of post-deduplication delta compression. DeepSketch uses
the learning-to-hash method to overcome the limitations of
existing techniques that miss a number of good reference
candidates for delta compression of incoming data blocks.
We present a new deep neural network training method that
enables DeepSketch to efficiently learn delta-compression-
aware data representation for unlabeled data sets with an
extremely high dimensional space. Using various real-world
data sets, we experimentally demonstrate that DeepSketch is
an efficient solution not only as a replacement for but also as
a complement to existing reference search techniques, signifi-
cantly reducing the data-reduction gap from the optimal.
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Abstract
Deduplication reduces the size of the data stored in large-

scale storage systems by replacing duplicate data blocks with
references to their unique copies. This creates dependencies
between files that contain similar content, and complicates the
management of data in the system. In this paper, we address
the problem of data migration, where files are remapped be-
tween different volumes as a result of system expansion or
maintenance. The challenge of determining which files and
blocks to migrate has been studied extensively for systems
without deduplication. In the context of deduplicated storage,
however, only simplified migration scenarios were considered.

In this paper, we formulate the general migration problem
for deduplicated systems as an optimization problem whose
objective is to minimize the system’s size while ensuring that
the storage load is evenly distributed between the system’s
volumes, and that the network traffic required for the migration
does not exceed its allocation.

We then present three algorithms for generating effective
migration plans, each based on a different approach and rep-
resenting a different tradeoff between computation time and
migration efficiency. Our greedy algorithm provides modest
space savings, but is appealing thanks to its exceptionally short
runtime. Its results can be improved by using larger system rep-
resentations. Our theoretically optimal algorithm formulates
the migration problem as an ILP (integer linear programming)
instance. Its migration plans consistently result in smaller and
more balanced systems than those of the greedy approach,
although its runtime is long and, as a result, the theoretical
optimum is not always found. Our clustering algorithm enjoys
the best of both worlds: its migration plans are comparable to
those generated by the ILP-based algorithm, but its runtime is
shorter, sometimes by an order of magnitude. It can be further
accelerated at a modest cost in the quality of its results.

1 Introduction
Many large-scale storage systems employ data deduplication
to reduce the size of the data that they store. The deduplication
process identifies duplicate data blocks in different files and re-
places them with pointers to a unique copy of the block stored
in the system. This reduction in the system’s size comes at the

cost of increased system complexity. While the complexity
of reading, writing, and deleting data in deduplicated storage
systems has been addressed by many academic studies and
commercial systems, the high-level management aspects of
large-scale systems, such as capacity planning, caching, and
quality and cost of service, still need to be adapted to dedupli-
cated storage [44].

This paper focuses on the aspect of data migration, where
files are remapped between separate deduplication domains,
or volumes. A volume may represent a single server within a
large-scale system, or an independent set of servers dedicated
to a customer or dataset. Files might be remapped as a result
of volumes reaching their capacity limitation or of other bot-
tlenecks forming in the system. Deduplication introduces new
considerations when choosing which files to migrate, due to
the data dependencies between files: when a file is migrated,
some of its blocks may be deleted from its original volume,
while others might still belong to files that remain on that
volume. Similarly, some blocks need to be transferred to the
target volume, while others may already be stored there. An
efficient migration plan must optimize several, possibly con-
flicting objectives: the physical size of the stored data after
migration, the load balancing between the system’s volumes,
i.e., the physical size of the data stored on each volume, and
the network bandwidth generated by the migration itself.

Several recent studies address specific (simplified) cases
of data migration in deduplicated systems. Harnik et al. [28]
address capacity estimation and propose a greedy algorithm
for reducing the system’s size. Rangoli [41] is a greedy algo-
rithm for space reclamation, where a set of files is deleted to
reclaim some of the system’s capacity. GoSeed [40] is an ILP
(integer linear programming)-based algorithm for the seeding
problem, in which files are remapped into an initially empty
target volume. While even the seeding problem is shown to
be NP-hard [40], none of these studies address the conflicting
objectives involved in the full data migration problem. Namely,
the tradeoff between minimizing the system size, minimizing
the network traffic consumed during migration, and maximiz-
ing the load balance between the volumes in the system.

In this paper, we address, for the first time, the general case
of data migration. We begin by formulating the data migration
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problem in its most general form, as an optimization problem
whose main goal is to minimize the overall size of the sys-
tem. We add the traffic and load balancing considerations as
constraints on the migration plan. The degree in which these
constraints are enforced directly affects the solution space,
allowing the system administrator to prioritize different costs.
Thus, the problem of data migration in deduplication systems
maps to finding what to migrate, where to migrate from, and
where to migrate to within the traffic and load balancing con-
straints specified by the administrator.

We then introduce three novel algorithms for generating
an efficient migration plan. The first is a greedy algorithm
that is inspired by the greedy iterative process in [28]. Our ex-
tended algorithm distributes the data evenly between volumes
while ensuring that the migration traffic does not exceed the
maximum allocation. By breaking this process into several
phases, we ensure that the allocated traffic is used for both
load balancing and capacity reduction, balancing between the
two (possibly conflicting) goals.

Our second algorithm is inspired by the ILP-based approach
of GoSeed. GoSeed solves the seeding problem, whose single
natural minimization objective is the system size. In contrast,
our new algorithm addresses the inherently competing objec-
tives (size, balance, traffic) of general migration. We refor-
mulate the ILP problem with variables and constraints that
express the traffic used during migration and the choice of
volumes from which to remap files or to remap files onto. Our
formulation for the general migration problem is naturally
much more complex than the one required for seeding. Never-
theless, we successfully applied it to data migration in systems
with hundreds of millions of blocks.

Our third algorithm is based on hierarchical clustering,
which, to the best of our knowledge, has not been applied to
data deduplication before. We group similar files into clusters,
where the target number of clusters is the number of volumes
in the system. We incorporate the physical location of the files
into the clustering process, such that the similarity between
files expresses the blocks that they share as well as their initial
locations. Clusters are assigned to volumes according to the
blocks already stored on them, and the migration plan remaps
each file to the volume assigned to its cluster.

We implemented our three algorithms and evaluated them
on six system snapshots created from three public datasets [6,
10,38]. Our results demonstrate that all algorithms can success-
fully reduce the system’s size while complying with the traffic
and load balancing constraints. Each algorithm has different
advantages: the greedy algorithm produces a migration plan
in the shortest runtime (often several seconds), although its re-
duction in system size is typically lower than that of the other
algorithms. The ILP-based approach can efficiently utilize the
allowed traffic consumption, and improve as the load balanc-
ing constraints are relaxed. However, its execution must be
timed out on the large problem instances, which often prevents
it from yielding an optimal migration plan. The clustering

algorithm empirically achieves comparable results to those of
the ILP-based approach, and sometimes even exceeds them. It
does so in much shorter runtimes.

We summarize our main contributions as follows. We formu-
late the general migration with deduplication as an optimiza-
tion problem (§ 3), and design and implement three algorithms
for generating general migration plans: the greedy (§ 4) and
ILP-based (§ 5) approaches are inspired by previous studies,
while the clustering-based (§ 6) approach is entirely novel.
We methodologically compare our algorithms to analyze the
advantages and limitations of each approach (§ 7).

2 Background and related work
Data deduplication. In a nutshell, the deduplication process
splits incoming data into fixed or variable-sized chunks, which
we refer to as blocks. The content of each block is hashed to
create a fingerprint, which is used to identify duplicate blocks
and to retrieve their unique copy from storage. Several aspects
of this process must be optimized so as not to interfere with
storage system performance. These include chunking and fin-
gerprinting [11,36,39,50,51], indexing and lookups [12,45,54],
efficient storage of blocks [17, 19, 31, 33, 34, 45, 52], and fast
file reconstruction [24, 30, 32, 53]. Although the first commer-
cial systems used deduplication for backup and archival data,
deduplication is now commonly used in high-end primary
storage.

Data migration in distributed deduplication systems. Nu-
merous distributed deduplication designs were introduced in
commercial and academic studies [18,22,27]. We focus on de-
signs that employ a separate fingerprint index in each physical
server [15,16,20,21,28]. This design choice maintains a small
index size and a low lookup cost, facilitates garbage collec-
tion at the server level, and simplifies the client-side logic. In
this design, each server (volume) is a separate deduplication
domain, i.e., duplicate blocks are identified only within the
same volume. Recipes of files mapped to a specific volume
thus point to blocks that are physically stored in that volume.

Deduplicated systems are different from traditional dis-
tributed systems in that striping files across volumes might
reduce deduplication, even if it is done using a content-based
chunking algorithm. Splitting files across a cluster also com-
plicates garbage collection. Moreover, many storage systems
(e.g., in DataDomain [23] and IBM [28]) are organized as a
collection of independent clusters or “islands” of storage in
the data center or across data centers. Deduplication is per-
formed within each independent subsystem, but files might
be migrated between the different appliances or clusters as a
means to re-balance the entire system’s utilization.

For example, if a subsystem becomes full while another sub-
system has available capacity, migration is quicker and cheaper
than adding capacity to the full subsystem. Existing mecha-
nisms migrate files efficiently by transferring only the files’
metadata and the chunks that are not already present in the
target subsystem [23]. Monthly migration aligns with average
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(a) Initial system: balance = 1/5 (b) Alternative 1: deletion=0, traffic=2, balance=1

(c) Alternative 2: deletion=1/9, traffic=0, balance=0 (d) Alternative 3: deletion=3/9, traffic=1, balance=0
Figure 1: Initial system (a) and alternative migration plans: with optimal balance (b), optimal traffic (c), and optimal deletion (d). All the
blocks in the system are of size 1.

retention period which is seen for typical backup customers.
The coupling of the logical file’s location and the physical

location of its blocks implies that when a file is remapped
from its volume, we must ensure that all its blocks are stored
in the new volume. At the same time, the file’s blocks cannot
necessarily be removed from its original volume, because they
might also belong to other files. For example, consider the
initial system depicted in Figure 1(a), and assume we remap
file F2 from volume V2 to volume V1, resulting in the alternative
system in Figure 1(b). Block B1 is deleted from V2 because it
is already stored in V1. Block B2 is deleted from V2, but must
be copied to V1, because it wasn’t there in the initial system.
Block B3 must also be copied to V1, but is not deleted from
V2 because it also belongs to F3. The total sizes of the initial
system and of this alternative are the same: nine blocks.

Existing approaches. Harnik et al. [28] presented a greedy
iterative algorithm for reducing the total capacity of data in
a system with multiple volumes. In each iteration, one file is
remapped to a new volume, and the process continues until
the total capacity is reduced by a predetermined deletion goal.

GoSeed [40] addresses a simplified case of data migration
called seeding, where the initial system consists of many files
mapped to a single volume. The migration goal is to delete a
portion of this volume’s blocks by remapping files to an empty
target volume [23]. GoSeed formulates the seeding problem
as an ILP (integer linear programming) instance whose solu-
tion determines which files are remapped, which blocks are
moved from the source volume to the target, and which are
replicated to create copies on both volumes. This approach
is made possible by the existence of open-source [4, 5, 9] and
commercial [2, 3] ILP-solvers—heuristic-based software tools
for solving this NP-hard problem efficiently. GoSeed is applied
to instances with millions of blocks with several acceleration
heuristics, some of which we adapt to the generalized problem.

Rangoli [41] is a greedy algorithm for space reclamation—
another specific case of data migration where a set of files is
chosen for deletion in order to delete a portion of the system’s
physical size. Unlike the greedy and ILP-based approaches

that inspire our own algorithms, the problem solved by Rangoli
is too simplified for it to be extended for general migration.
Shilane et al. [44] discuss additional data migration scenarios
and their resulting complexities in deduplicated systems.

3 Motivation and problem statement
Minimizing migration traffic. High-performance storage sys-
tems typically limit the portion of their network bandwidth
that can be used for maintenance tasks such as reconstruction
of data from failed storage nodes [29, 43]. Data migration nat-
urally involves significant network bandwidth consumption,
and traditional data migration plans and mechanisms strive to
minimize their network requirements as one of their optimiza-
tion goals [13, 14, 23, 35, 37, 48]. In this work, we focus on
the amount of data that is moved between nodes. The physical
layout of the nodes and the precise scheduling of the migration
are outside the scope of our current work.

In deduplicated storage, we distinguish between two costs
associated with data migration. The migration traffic is the
amount of data that is transferred between volumes during mi-
gration. The replication cost is the total size of duplicate blocks
that are created as a result of remapping files to new volumes.
Previous studies of data migration in deduplicated systems did
not consider bandwidth explicitly. Harnik et al. [28] did not
address this aspect at all. In the seeding problem addressed
by GoSeed [40], the migration traffic is implicitly minimized
as a result of minimizing the replication cost. In the general
case, however, migration traffic is potentially independent of
the amount of data replication.

For example, Alternative 1 in Figure 1(b) results in trans-
ferring two blocks, B2 and B3, between volumes, even though
B2 is eventually deleted from its source volume. In contrast,
the alternative migration plan in Figure 1(c) does not consume
traffic at all: file F1 is remapped to V2 which already stores
its only block, and thus B1 can simply be deleted from V1.
This alternative also reduces the system’s size to eight blocks,
making it superior to the first alternative in terms of both ob-
jectives. We note, however, that this is not always the case, and
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that minimizing the overall system size and minimizing the
amount of data transferred might be conflicting objectives.

Load Balancing. Load balancing is a major objective in
distributed storage systems, where it often conflicts with
other objectives such as utilization and management over-
head [14, 42, 49]. Distributed deduplication introduces an in-
herent tradeoff between minimizing the total physical data
size and maximizing load balancing: the system’s size is mini-
mized when all the files are mapped to a single volume, which
clearly gives the worst possible load balancing. Thus, dis-
tributed deduplication systems weigh the benefit of mapping a
file to the volume that contains similar files, against the need
to distribute the load evenly between the volumes. Load bal-
ancing can refer to various measures of load, such as IOPS,
bandwidth requirements, or the number of files mapped to each
volume.

We follow previous work and aim to evenly distribute the
capacity load between volumes [16, 20]. Balancing capacity
is especially important in deduplicated systems that route in-
coming files to volumes that already contain similar files. In
such designs, volumes whose storage occupancy is slightly
higher than others might quickly become overloaded due to
their larger amount of data ‘attracting’ even more new files,
and so on. Capacity load balancing can be expected to lead to
better network utilization and prevent specific volumes from
becoming a bottleneck or exhausting their capacity. While
performance load balancing is not our main objective, we ex-
pect it to improve as a result of distributing capacity. All our
approaches can be extended to address it explicitly.

In this work, we capture the load balancing in the system
with the balance metric, which is similar to a commonly used
fairness metric [25]—the ratio between the size of the small-
est volume in the system and that of the largest volume. For
example, the balance of the initial system in Figure 1(a) is
|V1|/|V2| = 1/5. Alternative 1 (Figure 1(b)) is perfectly bal-
anced, with balance = 1, while Alternative 2 (Figure 1(c)) has
the worst balance: |V1|/|V2|= 0.

Problem statement. There are various approaches for han-
dling conflicting objectives in complex optimization systems.
These include searching for the Pareto frontier [55], or defining
a composite objective function of weighted individual objec-
tives. We chose to keep the system’s size as our main objective,
and to address the migration traffic and load balancing as con-
straints on the migration plan. We define the general migration
problem by extending the seeding problem from [40], and thus
we reuse some of their notations for compatibility.

For a storage system S with a set of volumes V , let B =
{b0,b1, . . .} be the set of unique blocks stored in the system,
and let size(b) be the size of block b. Let F = { f0, f1, . . .} be
the set of files in S, and let IS ⊆ B×F ×V be an inclusion
relation, where (b, f ,v) ∈ IS means that file f mapped to vol-
ume v contains block b which stored in this volume. We use
b ∈ v to denote that (b, f ,v) ∈ IS for some file f . The size
of a volume is the total size of the blocks stored in it, i.e.,

size(v) = Σb∈vsize(b). The size of the system is the total size
of its volumes, i.e., size(S) = size(V ) = Σv∈V size(v).

The general migration problem is to find a set of files FM ⊆
F to migrate, the volume each file is migrated to, the blocks
that can be deleted from each volume, and the blocks that
should be copied to each volume. Applying the migration plan
results in a new system, S′. The migration goal is to minimize
the size of S′. This is equivalent to maximizing the size of all
the blocks that can be deleted during the migration, minus the
size of all the blocks that must be replicated.

The traffic constraint specifies Tmax—the maximum traffic
allowed during migration. It requires that the total size of
blocks that are added to volumes they were not stored in is
no larger than Tmax. The load balancing constraint determines
how evenly the capacity is distributed between the volumes.
It specifies a margin 0 ≤ µ < 1 and requires that the size of
each volume in the new system is within µ of the average
volume size. For a system with |V | volumes, this is equivalent
to requiring that balance ≤ [size(S′)/|V |×(1−µ)]/[size(S′)/|V |×(1+µ)].

For example, for the initial system in Figure 1(a), Alterna-
tive 1 (Figure 1(b)) is the only migration plan that satisfies the
load balancing constraint (for any µ). For Tmax lower than 2/9,
no migration is feasible. On the other hand, if we remove the
load balancing constraint, the optimal migration plan depends
on the traffic constraint alone: Alternative 2 (Figure 1(c)) is
optimal for, e.g., Tmax = 0, and Alternative 3 (Figure 1(d)) is
optimal for Tmax = 3.

Refinements. This generalized problem can be refined in
several straightforward ways. For example, we can restrict the
set of files that may be included in FM , the set of volumes
from which files may be removed, or the set of volumes to
which files can be remapped. Similarly, we can require that a
specific volume be removed from the system (enforcing all its
files to be remapped), or that an empty volume be added. We
demonstrate some of these cases in our evaluation.

4 Greedy
The basic greedy algorithm by Harnik et al. [28] iterates over
all the files in each volume, and calculates the space-saving
ratio from remapping a single file to each of the other volumes:
the ratio between the total size of the blocks that would be
replicated and the blocks that would be deleted from the file’s
original volume. In each iteration, the file with the lowest
ratio is remapped. For example, if this basic greedy algorithm
was applied to the initial system in Figure 1(a), it would first
remap file F1 to volume V2, with a space-saving ratio of 0,
resulting in Alternative 2 (Figure 1(c)). The process halts
when the total capacity is reduced by a predetermined deletion
goal. This algorithm is not directly applicable to the general
migration problem because it does not consider traffic and load
balancing.

Addressing the traffic constraint is relatively straightfor-
ward. In our extended greedy algorithm we make it the halting
condition: the iterations stop when there is no file that can be
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Figure 2: Overview of our extended greedy algorithm.

remapped without exceeding the maximum allocated traffic. A
small challenge is that a file might be remapped in several iter-
ations of the algorithm, while, in the resulting migration plan,
it will only be remapped from its original volume to its final
destination. As a result, the sum of traffic of all the individual
iterations can be (and is, in practice) higher than the traffic
required when executing migration plan. This will not violate
the traffic constraint, but will cause the algorithm to halt before
taking advantage of the maximum allowed traffic. Thus, we
heuristically allow the algorithm to use 20% more traffic than
the original traffic constraint, to prevent it from halting prema-
turely. The required traffic for the resulting migration plan is
calculated before its execution. Thus, if it violates the original
traffic constraint, a new plan can be generated by the algo-
rithm without this heuristic. We include this simple extension,
without a load-balancing constraint, in our evaluation.

Complying with the load-balancing constraint is more chal-
lenging. For example, if the basic greedy algorithm reached
Alternative 2 (Figure 1(c)), it could no longer remap any single
file to volume V1 without increasing the system’s capacity, and
thus the system will remain unbalanced with at least one empty
volume. A naive extension to this algorithm could enforce
the load-balancing constraint by preventing files from being
remapped if this increases the system’s imbalance. However,
such a strict requirement might preclude too many opportu-
nities for optimization. For example, for the initial system in
Figure 1(a), it would only allow to remap file F2 to volume V1,
resulting in Alternative 1 (Figure 1(b)). The system would be
perfectly balanced, but the basic algorithm would then termi-
nate without reducing its size at all.

We address this challenge with two main techniques. The
first is defining two iteration types: one whose goal is to bal-
ance the system’s load, and another whose goal is to reduce
its size. We perform these iterations interchangeably, to avoid
the entire allocated traffic from being spent on only one goal.
The second technique is to relax the load-balancing margin for
the early iterations and continuously tighten it until the end of
the execution. The idea is to let the early iterations remap files
more freely, and to ensure that the iterations at the end of the
algorithm result in a balanced system.

Figure 2 illustrates the process of our extended greedy algo-
rithm. We divide the algorithm’s process into phases. 1 Each
phase is allocated an even portion of the traffic allocated for
migration, and is limited by a local load-balancing constraint.
Each phase is composed of two steps. 2 The load-balancing
step iteratively remaps files from large volumes to small ones,

until the volume sizes are within the margin defined for this
phase, or its traffic is exhausted. 3 The capacity-reduction
step uses the remaining traffic to reduce the system’s size by
remapping files between volumes, ensuring that volume sizes
remain within the margin.

Each phase is limited by local traffic and load-balancing
constraints, calculated at the beginning of the phase. The
phase traffic determines the maximum traffic that can be used
in each phase, and is roughly even for all the phases. The
local phase margin determines the minimum and maximum
allowed volume sizes in each phase. It is larger than the global
margin, µ, in the first phase, and gradually decreases before
each phase, until reaching µ in the last phase. By default, our
greedy algorithm consists of p = 5 phases. The phase traffic
for phase i, 0 ≤ i < p, is 1/(p−i) of the unused traffic, and the
phase margin for the first phase is µ×1.5.

The load balancing step is the first step in each phase. In
each of its iterations, the volumes are sorted according to their
sizes, and we attempt to remap files from the largest volumes
to the small ones. A file can be remapped only if some blocks
will be deleted from its source volume as a result. Namely,
we look for a file to remap between a ⟨source, target⟩ pair of
volumes, where source is the largest volume and the target
is the smallest volume for which such a file exists. In each
iteration, the amount of traffic required to remap the chosen
file is calculated, and the iterations halt when the maximum
allowed traffic or allowed volume sizes are reached.

The capacity-reduction step uses the remaining traffic
allocation of the phase. It is similar to the original greedy
algorithm, but it ensures that each file remap does not cause the
volumes to become unbalanced. In other words, we can remap
a file only if this does not cause its source volume to become
too small, or its target volume to become too large. Note that
the amount of traffic that remains for the capacity-reduction
step depends on the degree of imbalance in the initial system.
In the most extreme case of a highly unbalanced system, it is
possible for the load balancing step to consume all the traffic
allocated for the phase. In this case, the capacity-reduction step
halts in the first iteration. For cases other than this extreme, a
higher number of phases can divert more traffic for capacity-
reduction, at the cost of longer computation time due to the
increased number of iterations.

5 ILP
Our ILP-based approach is inspired by GoSeed [40], designed
for the seeding problem, where files can only be remapped
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from the source volume to the empty target volume. GoSeed
thus defined three types of variables whose assignment spec-
ified (1) whether a file is remapped, (2) whether a block is
replicated on both volumes, and (3) whether a block is deleted
from the source and moved to the target. These limited options
resulted in a fairly simple set of constraints, which cannot be
directly applied to the general migration problem. The major
difference is that the decision of whether or not we can delete
a block from its source volume depends not only on the files
initially mapped to this volume, but also on the files that will
be remapped to it as a result of the migration. Thus, in our ILP-
based approach, every block transfer is modeled as creating a
copy of this block, and a separate decision is made whether or
not to delete the block from its source volume.

The problem’s constraints are defined over the set of vol-
umes, files, and blocks from the problem statement in Sec-
tion 2, the maximum traffic Tmax, and the load-balancing mar-
gin µ. We define the target size of each volume v as wv, given
as percentage of the system size after migration. By default,
wv =1/|V |. For each pair of volumes, v,u, we define their inter-
section as the set of blocks that are stored on both volumes:
Intersectvu = {b|b ∈ u∧ b ∈ v}. The intersections are calcu-
lated before the constraints are assigned, and are used in the
formulation below for better readability.

The constraints are expressed in terms of three types of
variables that denote the actions performed in the migration:
x f st denotes whether file f is remapped from its source volume
s to another (target) volume t. cbst denotes whether block b is
copied from its source volume s to another (target) volume t.
Finally, dbv denotes whether block b is deleted from volume v.
The solution to the ILP instance is an assignment of 0 or 1 to
these variables. The resulting migration plan remaps the set
of files for which x f st = 1 (for some volume t), transfers the
blocks for which cbst = 1 to their target volume, and deletes
the blocks for which dbv = 1 from their respective volumes.

Constraints and objective. The ILP formulation for migra-
tion with load balancing consists of 13 constraint types.

1. All Variables are Boolean.
2. A file can be remapped to at most one volume.
3. A block can only be deleted or copied from a volume it

was originally stored in.
4. A block can be deleted from a volume only if all the files

containing it are remapped to other volumes.
5. A block can be deleted from a volume only if no file

containing it is remapped to this volume.
6. View all the blocks in the volume intersections as having

been copied.
7. When a file is remapped, all its blocks are either copied

to the target volume, or are initially there (as part of the
intersection).

8. A block can be copied to a target volume only from one
source volume.and volume t, Σs such that b/∈Intersectst cbst ≤
1.

9. A block must be deleted if there are no files containing it
on the volume.

10. A block cannot be copied to a target volume if no file will
contain it there.

11. A file cannot be migrated to its initial volume.
12. Traffic constraint: the size of all the copied blocks is not

larger than the maximum allowed traffic.
13. Load balancing constraint: for each volume v,

(wv − µ) × Size(S′) ≤ Size(v′) ≤ (wv + µ) × Size(S′),
where Size(v′) is the volume size after migration, i.e.,
the sum of its non-deleted blocks and blocks copied to i.

▶ Objective: maximize the sum of sizes of all blocks that
are deleted minus all blocks that are copied. This is equiv-
alent to minimizing the overall system size.

Constraints 12 and 13 formulate the traffic and load-
balancing goals, and constraints 8, 9, and 10 ensure that the
solver does not create redundant copies of blocks to artificially
comply with the load balancing constraint. This is similar
to the constraint that prevents orphan blocks in the seeding
problem [40]. For evaluation purposes, we will also refer to a
relaxed formulation of the problem without the load-balancing
constraint. In that version, constraints 8, 9, 10, and 13 are
removed, considerably reducing the problem complexity.

The ILP formulation given in this paper is designed for the
most general case of data migration, where any file can be
remapped to any volume. In reality, the migration goal might
restrict some of the remapping options, potentially simplifying
the ILP instance. For example, we can limit the set of volumes
that files can be migrated to by eliminating the x f st and cbst
variables where t is not in this set. We can similarly restrict
the set of volumes files may be migrated from, or require that
a set of specific files are (or are not) remapped.

Complexity and run time. The complexity of the ILP in-
stance depends on |B|, |F |, and |V |—the number of blocks,
files, and volumes, respectively. The number of variables is
|V |2|F |+ |V |2|B|+ |V |× |B|, corresponding to variable types
x f st , cbst , and dbv. Each of the constraints defined on these vari-
ables contributes a similar order of magnitude. An exception
is constraint 13, which reformulates the system size, twice, to
ensure that each individual volume’s size is within the required
margin. Indeed, the relaxed formulation without this constraint
is significantly simpler than the full formulation.

We use two of the acceleration methods suggested by
GoSeed to address the high complexity of the ILP problem.
The first is fingerprint sampling, where the problem is solved
for a subset of the original system’s blocks. This subset (sam-
ple) is generated by preprocessing the block fingerprints and
including only those that match a predefined pattern. Specifi-
cally, as suggested in [28], a sample generated with sampling
degree k includes only blocks whose fingerprints consist of k
leading zeroes, reducing the number of blocks in the problem
formulation by 1/2k on average.

The second acceleration method is solver timeout, which
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halts the ILP solver’s execution after a predetermined runtime.
As a result, the server returns a feasible solution that is not
necessarily optimal. A feasible solution to the ILP problem
can be directly translated into a migration plan, i.e., a list of
files to migrate and their destination volumes. Thus, even if
the solution is not optimal (due to sampling or timeout), the
process still produces a valid plan for the original system.

We do not repeat the detailed analysis of the effectiveness
of these heuristics, which were shown to be effective in earlier
studies. Namely, the analysis of GoSeed showed that most of
the solver’s progress happens in the beginning of its execution
(hence, timing out does not degrade its quality too much), and
that it is more effective to reduce the sample size than to run
the solver longer on a larger sample, as long as the sampling
degree is not higher than k = 13. Our experiments with the
extended ILP formulation, omitted due to space considerations,
confirmed these findings.

6 Clustering
Overview. Clustering is a well-known technique for grouping
objects based on their similarity [1]. It is fast and effective,
and is directly applicable to our domain: files are similar if
they share a large portion of their blocks. Our approach is thus
to create clusters of similar files and to assign each cluster to a
volume, remapping those files that were assigned to a volume
different from their original location. Despite its simplicity,
three main challenges (Ch1−Ch3) are involved in applying
this idea to the general migration problem.

(Ch1) Unpredictable traffic The traffic required for a migra-
tion plan can only be calculated after the clusters have been
assigned to volumes. When the clustering decisions are be-
ing made, their implications on the overall traffic are un-
known and thus cannot be taken into consideration.

(Ch2) Unpredictable system size The load-balancing con-
straint is given in terms of the system’s size after migration.
However, this size is required to ensure, during the cluster-
ing process, that the created clusters are within the allowed
sizes.

(Ch3) High sensitivity The file similarity metric is based on
the precise set of blocks in each file. When this metric is
applied to a sample of the storage system’s fingerprints, it is
highly sensitive to the sampling degree and rule.

We address these challenges with several heuristics (H1−
H4):

(H1) Traffic weight We define a new similarity metric for
files. This metric is a weighted sum of the files’ content
similarity and a new distance metric that indicates how many
source volumes contain files within a cluster. Our algorithm
considers files as similar if they contain the same blocks and
are mapped to the same source volume. Assigning a higher
weight (WT ) to the content similarity will result in a smaller
system but higher migration traffic.

(H2a) Estimated system size We further use the weight to
estimate the size of the system after migration. We calculate
the size of a hypothetical system without duplicates, and
predict that higher migration traffic will bring the system
closer to this hypothetical optimum.

(H2b) Clustering retries We use the estimated final system
size to determine the maximum allowed cluster size. During
the clustering process, we stop adding files to clusters that
reach this size. If the process halts due to this limitation, we
increase the maximum size by a small margin, and restart it.

(H3) Randomization Instead of deterministic clustering de-
cisions, we choose a random option from the set of best
options. Different random seeds potentially result in differ-
ent systems.

(H4) Multiple executions Our heuristics introduce several
parameters which we would be loath to overfit. We use the
same initial state to perform repeated executions of the clus-
tering process with multiple sets of parameter combinations
(180 in our case), and choose the best migration plan from
those executions as our final output.

In the following, we give the required background on the
clustering process and describe each of our optimizations in
detail.

Hierarchical clustering. Hierarchical clustering [26] is
an iterative clustering process that, in each iteration, merges
the most similar pair of clusters into a new cluster. The input
is an initial set of objects, which are viewed as clusters of
size 1. The process creates a tree whose leaves are the initial
objects, and internal nodes are the clusters they are merged
into. For example, Figure 3 shows the clustering hierarchy
created from the set of initial objects {F1, ...,F5}, where the
clusters {C1, ...,C4} were created in order of their indices.

Hierarchical clustering naturally lends itself to grouping
of files. Intuitively, files that share a large portion of their
blocks are similar and should thus belong to the same cluster
and eventually to the same volume. For example, the initial
objects in Figure 3 represent the files in Figure 1(a): F4 and
F5 share two blocks and are thus merged into the first cluster,
C1. Our clustering-based approach is simple: we group the
files into a number of clusters equal to the number of volumes
in the system and assign one cluster to each volume. This
assignment implies which files should be remapped and which
blocks should be transferred and/or deleted in the migration.
For example, for a system with three volumes, we could halt
the clustering process in Figure 3, resulting in a final set of
three clusters: {C1,C2,F3}. We develop this basic approach to
the general migration problem, i.e., to maximize the deletion
and to comply with the traffic and load-balancing constraints.

File similarity. The hierarchical clustering process relies
on a similarity function that indicates which pair of clusters to
merge in each iteration. We use the commonly used Jaccard
index [26] for this purpose. For two sets A and B, their index
is defined as J(A,B) = |A∩B|/|A∪B|. We view each file as a set
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Figure 3: Hierarchical clustering with the files from Figure 1 (left) and the distance matrices created in the process (right).

of blocks, and thus, the Jaccard index for a pair of files is
the portion of their shared blocks. From hereon, we refer to
the complement of the index: the Jaccard distance which is
defined as distJ = J(A,B) = 1− J(A,B). This is to comply
with the standard terminology in which the two clusters with
the smallest distance are merged in each iteration. For example,
the leftmost table in Figure 3 depicts the distance matrix for
the files in Figure 1. Indeed, the distance is smallest for the
pair F4 and F5 which are the first to be merged.

The Jaccard distance could easily be applied to entire clus-
ters, which can themselves be viewed as sets of blocks. How-
ever, calculating the distance between each new cluster and
all existing clusters would require repeated traversals of the
original file recipes in each iteration. This complexity is ad-
dressed in hierarchical clustering by defining a linkage func-
tion, which determines the distance between the merged clus-
ter and existing clusters based on the distances before the
merge. Specifically, we use complete linkage, defined as fol-
lows: distJ(A∪B,C) = max{distJ(A,C),distJ(B,C)}. For ex-
ample, the row for C1 in the second distance matrix in Figure 3
lists the distances between C1 and each of the remaining files.

Traffic considerations (H1). We limit the traffic required
by our migration plan in two ways. The first is by assigning
each of the final clusters to the volume that contains the largest
number of its blocks. We calculate the size of the intersection
(in terms of the size of the shared blocks) between each cluster
and each volume in the initial system. We then iterativly pick
the ⟨cluster,volume⟩ pair with the largest intersection from
the clusters and volumes that have not yet been assigned.

This assignment alone might still result in excessive traffic,
especially if highly similar files are initially scattered across
many different volumes. To avoid such situations, we incorpo-
rate the traffic considerations into the clustering process itself.
Namely, we define the volume distance, distV (C), of a cluster
as the portion of the system’s volumes whose files are included
in the cluster. For example, in Figure 3, distV (C1) = 1/3 and
distV (C2) = 2/3.

We then define a new weighted distance metric that
combines the Jaccard distance and the volume distance:
distW (A,B) = WT × distJ(A,B) + (1 −WT )× distV (A ∪ B),
where 0 ≤WT ≤ 1 is the traffic weight. Intuitively, increasing
WT increases the amount of traffic allocated for the migration,
which increases the priority of deduplication efficiency over
the network transfer cost. Nevertheless, it does not guarantee
compliance with a specific traffic constraint. We address this
limitation by multiple executions, described below.

Load-balancing considerations (H2). We enforce the load
balancing constraint by preventing merges that result in clus-
ters that exceed the maximal volume size. We determine the
maximal cluster size by estimating the system’s size after
migration. Intuitively, we expect that increasing the traffic allo-
cated for migration will increase the reduction in system size,
and we estimate this traffic with the WT weight described
above. Formally, we estimate the size of the final system
as Size(WT ) = WT × Sizeuniq +(1−WT )× size(Sinit), where
Sizeuniq is the size of all the unique blocks in the system. The
maximal cluster size is thus Cmax = Size(WT )/|V |

In each clustering iteration, we ensure that the merged clus-
ter is not larger than Cmax. This requirement might result in
the algorithm halting before the target number of clusters is
reached, due to merging decisions made earlier in the process.
If this happens, we increase the value of Cmax by a small ε and
retry the clustering process. We continue retrying until the al-
gorithm creates the required number of clusters. A small ε can
potentially yield the most balanced system, but might require
excessively many retries. We use ε = 5% as our default.

Sensitivity to sample (H3). As in the ILP-based approach,
we apply the hierarchical clustering process to a sample of
the system, rather than to the complete set of blocks which
can be excessively large. However, it turns out that the Jaccard
distance is highly sensitive to the precise set of blocks that
represent each file in the sample. We found, in our initial ex-
periments, that different sampling degrees as well as different
sampling rules (e.g., k leading ones instead of k leading zeroes
in the fingerprint) result in small differences in the Jaccard
distance of the file pairs.

Such small differences might change the entire clustering
hierarchy, even if the practical difference between the pairs of
files is very small. Thus, rather than merging the pair of clusters
with the smallest distance, we merge a random pair from the set
of pairs with the smallest distances. We include in this set only
pairs whose distance is within a certain percentage of the min-
imum distance. Thus, for a maximum distance difference gap,
we choose a random pair⟨Ci,C j⟩ from the 10 (or less) pairs for
which DistW (Ci,C j)≤ minimum distance× (1+gap).

Constructing the final migration plan (H4). The main
advantage of our clustering-based approach is its relatively
fast runtime. Constructing the initial distance matrix for the
individual files is time consuming, but the same initial matrix
can be reused for all the consecutive clustering processes on
the same initial system. We exploit this advantage to eliminate
the sensitivity of our clustering process to the many parame-
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ters introduced in this section. For the same given system and
migration constraints, we execute the clustering process with
six traffic weights (WT ∈ {0,0.2,0.4,0.6,0.8,1}), three gaps
(gap ∈ {0.5%,1%,3%}), and ten random seeds. This results
in a total of 180 executions, some of which are performed in
parallel (depending on the resources of the evaluation plat-
form). We calculate the deletion, traffic, and balance of each
migration plan (on the sample used as the input for clustering),
and as our final result, use the plan with the best deletion that
satisfies the load-balancing and traffic constraints.

We also include in our evaluation a relaxed scheme without
the load-balancing constraint (i.e., Cmax = ∞). In this scheme,
the final migration plan must only satisfy the traffic constraint.

7 Evaluation
We wish to answer two main questions: (1) how do the al-
gorithms compare in terms of the final system size, load bal-
ancing, and runtime? and (2) how is the performance of the
different algorithms affected by the various system and prob-
lem parameters? In the following, we describe our evaluation
setup and the experiments executed to answer those questions.

7.1 Experimental Setup

We ran our experiments on a server running Ubuntu 18.04.3,
equipped with 128GB DDR4 RAM (with 2666 MHz bus
speed), Intel® Xeon® Silver 4114 CPU (with hyper-threading
functionality) running at 2.20GHz, one Dell®T1WH8 240GB
TLC SATA SSD, and one Micron 5200 Series 960GB 3D TLC
NAND Flash SSD.

File system snapshots. We used two static file system snap-
shots from datasets used to evaluate the seeding problem [40]:
The UBC dataset [7, 38] includes file systems of 857 Mi-
crosoft employees, of which we used the first 500 file systems
(UBC-500). The FSL dataset [10] consists of snapshots of
students’ home directories at the FSL Lab at Stony Brook Uni-
versity [46, 47]. We used nine weekly snapshots of nine users
between August 28 and October 23, 2014 (Homes). These
snapshots include, for each file, the fingerprints of its chunks
and their sizes. Each snapshot file represents one entire file
system, which is the migration unit in our model, and is repre-
sented as one file in our migration problem instances.

We created two additional sets of snapshots from the Linux
version archive [6]. Our Linux-all dataset includes snapshots
of all the versions from 2.0 to 5.9.14. We also created a smaller
dataset, Linux-skip, which consists of every 5th snapshot. The
latter dataset is logically (approximately) 5× smaller than the
former, although their physical size is almost the same.

The UBC-500 and Homes snapshots were created with
variable-sized chunks with Rabin fingerprints, whose specified
average chunk size is 64KB. We created the Linux snapshots
with an average chunk size of 8KB, because they are much
smaller to begin with. We used these sets of snapshots to create
six initial systems, with varying numbers of volumes. They are
listed in Table 1. We emulate the ingestion of each snapshot

System Files |V | Chunks Dedupe Logical
UBC-500 500 5 382M 0.39 19.5 TB

Homes-week 81 3 19M 0.38 8.9 TB
Homes-user 81 3 19M 0.16 8.9 TB
Linux-skip 662 5 / 10 1.76M 0.12 / 0.19 377 GB
Linux-all 2703 5 1.78M 0.03 1.8 TB

Table 1: System snapshots in our evaluation. |V | is the number of
volumes, Chunks is the number of unique chunks, and Dedupe is the
deduplication ratio—the ratio between the physical and logical size
of each system. Logical is the logical size.

into a simplified deduplication system which detects dupli-
cates only within the same volume. In the UBC and Linux
systems we assigned the same number of arbitrary snapshots
to each volume. In the Homes-week system, we assigned snap-
shots from the same week to the same volume, such that each
volume contains all the users’ snapshots from a set of three
weeks. In the Homes-user system, we assign each user to a ded-
icated volume such that each volume contains all the weekly
snapshots of a set of three users.

Implementation. All our algorithms are executed on a sam-
ple of the system’s fingerprints, to reduce their memory con-
sumption and runtime. We use a sampling degree of k = 13
unless stated otherwise. The final system size after migration,
as well as the resulting balance and consumed traffic are cal-
culated on the original system’s snapshot. We use a calculator
similar to the one used in [40]: we traverse the initial system’s
volumes and sum the sizes of blocks that remain in each vol-
ume after migration and those that are added to the volume as
a result of it. We experimented with three Tmax values, 20%,
40%, and 100% of each system’s initial size, and three µ values,
2%, 5%, and 10% of the system size after migration.

For our greedy algorithm (Greedy), we maintain a matrix
where we record, for each block, the number of files pointing
to it in each volume. We update this array to reflect the file
remap performed in each iteration. To determine the space-
saving ratio of each file, we reread its original snapshot file
and lookup the counters of its blocks in the array. This is more
efficient than keeping the list of each file’s blocks in memory.
Our Greedy implementation consists of 680 lines of C++ code.

For our ILP-based algorithm (ILP), we use the commer-
cial Gurobi optimizer [3] as our ILP solver, and use its C++
interface to define our problem instances. We use a two-
dimentional array similar to the one used for Greedy to cal-
culate the set of blocks shared by each pair of volumes. We
then create the variables and constraints as we process each
snapshot file, freeing the original array from the memory be-
fore invoking the optimization by Gurobi. Our program for
converting the input files into an ILP instance and retrieving
the solution from Gurobi consists of 1860 lines of C++ code.
We solve each ILP instance three times, each with a different
random seed. The results in this section are the average of the
three executions.

For our clustering algorithm (Cluster), we create a |F |× |B|
bit matrix to indicate whether each file contains each block,
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Figure 4: Reduction in system size of all systems and all algorithms (with and without load balancing constraints. k = 13 and µ = 2%).

Figure 5: Resulting balance of all systems and all algorithms (with and without load balancing constraints. k = 13 and µ = 2%).

and use it to create the distance matrix (see Figure 3). The
clustering process uses and updates only the lower triangular
of this matrix. We use the upper triangular to record the initial
distances, and to reset the lower triangular when the clustering
process is repeated for the same system and different input
parameters (WT , gap, or random seed). When the clustering
process completes, we use the file-block bit matrix to deter-
mine the assignment of clusters to volumes. Our program
consists of approximately 1000 lines of C++ code. Each clus-
tering process is performed on a private copy of the distance
matrix within a single thread, and our evaluation platform is
sufficient for executing six processes in parallel.

Each algorithm has different resource requirements. Greedy
is single threaded and requires a simple representation of the
system’s snapshot in memory. The ILP solver uses as much
memory and as many threads as possible (38 in our case). The
clustering algorithm ran in six processes, and used approxi-
mately 50% of our server’s memory. We did not measure CPU
utilization directly, although the runtime of the algorithms
gives another indication of their compute overheads. Our im-
plementation is open-source and available online [8]

7.2 Basic comparison between algorithms
Figure 4 shows the deletion—percentage of the initial system’s
physical size that was deleted by each algorithm. The deletion
is higher for systems that were initially more balanced, i.e., the
Linux and Homes-weeks systems. For all the systems except
UBC-500, Greedy achieved the smallest deletion. For Homes-
users, Greedy increased the system’s size in attempt to comply
with the load balancing constraint. In UBC-500, there is less

similarity and therefore less dependency between files, which
eliminates some of the advantage that Cluster and ILP have
over Greedy, which outperforms them when Tmax = 100%.

ILP and Cluster achieve comparable deletions to one an-
other, even though the ILP solver attempts to find the theo-
retically optimal migration plan. We distinguish between two
cases when explaining this similarity. In the first case (Linux-
skip and Homes), the ILP-solver produces an optimal solution
on the system’s sample, but it is not optimal when applied to
the full (unsampled) system. The deletion of Cluster is up to
1% higher than that of ILP in those cases. In the second case,
marked by a red ‘x’ in the figures, ILP times out (after six hours
in our experiments) and returns a suboptimal solution. Specifi-
cally, the complexity of the UBC-500 system demonstrates an
interesting limitation of ILP: its deletion with Tmax = 20% is
higher than with Tmax = 100%. The reason is that the solution
space grows with Tmax, and thus the best solution found when
the solver times out is farther from the optimum.

The ‘relaxed’ (R) version of the algorithms, without the load
balancing constraint, usually achieves a higher deletion than
their full version. The largest difference is 558%, although the
difference is typically smaller, and can be as low as 1.3%. In
the case of Greedy in the Homes-users system, the relaxed
version does not identify any file that can be remapped, and
does not return any solution.

Figure 5 shows the balance achieved by each algorithm.
With a margin of µ = 2% and five volumes, the balance should
be at least 18/22 = 0.82. In practice, however, the balance might
be lower, for two main reasons. Greedy might fail to bring the
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Figure 6: Algorithm runtime for all systems and all algorithms (with and without load balancing constraints. k = 13 and µ = 2%).

Figure 7: Linux-skip system with 5 volumes, µ = 2%, and two sampling degrees: k = 8,13.

system to a balanced state if it exhausts (or thinks it exhausts)
the maximum traffic allowed for migration. In contrast, Cluster
and ILP generate a migration plan that complies with the load
balancing constraint on the sample, but violates it when applied
to the full (unsampled) system. The violation is highest in the
Linux systems, where some files (i.e., entire Linux versions)
consist of only one or two blocks. Nevertheless, specifying
the load balancing constraint successfully improves the load
balancing of the system. Without it, the relaxed Cluster and
ILP versions create highly unbalanced systems, with some
volumes storing no files at all, or very few small files. Greedy
typically avoids such extremes, because it is unable to identify
and group similar files in the same volume.

Figure 6 shows the runtime of each of the algorithms (note
the log scale of the y-axis). Greedy generates a migration
plan in the shortest runtime: 20 seconds or less in all our
experiments. ILP requires the longest time, because it attempts
to solve an NP-hard problem. Indeed, except for the Homes
systems that have the fewest files, ILP requires more than an
hour, and often halts at the six-hour timeout. The runtime of
Cluster is longer than that of Greedy, and usually shorter than
that of ILP. It is still relatively long, as a result of performing
180 executions of the clustering process. We note, however,
that this runtime can be shortened by reducing the number
of executions, e.g., by reducing the number of random seeds
or gaps. We evaluate the effect of these parameters in the
following subsection.

Removing the load balancing constraint reduces the runtime
of ILP and Cluster by one or two orders of magnitude. In ILP,
this happens because the problem complexity is significantly
reduced. In Cluster, the clustering is completed in a single

attempt, without having to restart it due to illegal cluster sizes.
Surprisingly, removing this constraint from Greedy increases
its run time. The reason is that each iteration in the capacity-
reduction step is much longer than those in the load-balancing
step, as it examines all possible file remaps between all volume
pairs in the system. In the relaxed Greedy version, all the traffic
is allocated to capacity savings and thus its runtime increases.

Implications. Our basic comparison leads to several no-
table observations. (1) Cluster and ILP have a clear advantage
over Greedy. This was not the case in previous studies that
examined simple cases of migration, i.e., seeding [40] and
space reclamation [41]. However, the increased complexity
of the general migration problem increases the gap between
the greedy and the optimal solutions. (2) Cluster is compa-
rable and might even outperform ILP, despite the premise of
optimality of the ILP-based approach. This is a combination
of the high complexity of the ILP problem with the ability to
execute multiple clustering processes quickly and in parallel.
We conclude that hierarchical clustering is highly efficient for
grouping similar files, and that our heuristics for addressing
the traffic and load balancing constraints are highly effective.
(3) In most systems, adding the load balancing constraint lim-
its the potential capacity reduction, but this limit is usually
modest, i.e., several percents of the system’s size. The extent
of this limitation depends on the degree of similarity between
files and the balance of the initial system.

7.3 Sensitivity to problem parameters
Effect of sampling degree. Figure 7 shows the deletion, load
balancing, and runtime of all the algorithms on two samples of
the Linux-skip system. The small and large samples were gen-
erated with sampling degrees of k = 13 and k = 8, respectively.
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Figure 8: UBC-500 system with k = 13 and different load balancing margins.

The sample size affects each algorithm differently. Greedy
achieves a higher deletion on the larger sample (by up to
238%), as it identifies more opportunities for capacity reduc-
tion. In contrast, ILP suffers from the increase in the problem
size: it spends more time on finding a feasible solution and
has less time for optimization, and thus its deletion on the
larger sample is smaller. We repeated the execution of ILP on
the large (k = 8) sample with a longer timeout—twelve hours
instead of size—but the increase in deletion was minor. This
confirmed the observation made for GoSeed [40], that it is
more effective to reduce the sample size than to increase the
runtime of the ILP solver. The relaxed ILP instance is much
simpler, and thus relaxed ILP does not suffer such degrada-
tion. Cluster returns similar results for both sample sizes. The
differences in the accuracy of the sample are masked by its
randomized process.

All the algorithms return a more balanced system for the
larger sample (k = 8), because the load-balancing constraint
is enforced on more blocks, and thus more accurately. At the
same time, as we expected, their runtime was higher by several
orders of magnitude, as the large sample included 25× more
blocks than the small one. We note that Greedy is so much
faster than ILP and cluster, that its runtime on the large sample
is considerably shorter than their runtime on the small one.
Thus, if the sample is generated on-the-fly for the purpose
of constructing the migration plan, it is possible to execute
Greedy on a larger sample for a better migration plan.

Effect of load balancing and traffic constraints. Figure 8
shows the deletion, balance, and traffic consumption of all the
algorithms on the UBC-500 system with different values of
Tmax and µ. The results on this system shows the highest sensi-
tivity to these constraints due to the lower similarity between
the files. The deletion achieved by all the algorithms increases
as Tmax increases, and their traffic consumption increases ac-
cordingly. Removing the load-balancing constraint also allows
for more deletion, as we observed in Figure 4. At the same
time, the precise value of the load balancing margin, µ, has a
much smaller effect on the achieved deletion, although in most
cases, a lower margin does guarantee a more balanced system.
Increasing the margin increases the runtime (not shown) of
Greedy, as a result of more space-reduction iterations, as dis-
cussed above. The runtime of ILP and Cluster is not affected

Figure 9: The distribution of migration traffic (top) and reduction
in system size (bottom) in the set of plans returned by Cluster for
Linux-all with k = 13.

by the precise value of µ.
Effect of randomization on Cluster. Figure 9 shows the

range of deletion values and traffic usage of the migration plans
generated by Cluster for Linux-all with k = 13. Each bar shows
the 25th, 50th, and 75th percentiles, and the whiskers show
the minimum and maximum values achieved with different
random seeds for each combination of gap and WT . Recall that
Cluster picks the plan with the highest deletion that complies
with the traffic and load-balancing constraints.

Our results show that different random seeds can result in
large differences in the deletion and traffic: up to 84% and
400%, respectively, when WT and gap are fixed. At the same
time, WT cannot predict the actual traffic used by the migration
plan, which is why we repeat the clustering process for a range
of values. Indeed, different WT values result in very different
deletions. For a given WT , the range of deletion and traffic
values generated by different gaps are similar. Thus, as no gap
consistently outperforms the others, executing the clustering
with one or two gaps instead of three will likely have a limited
effect on the results while significantly reducing the runtime.
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Figure 10: Linux-skip with different numbers of target volumes with
Tmax = 100,k = 13,µ = 2%.

We compared these results to final plans generated from 5
and 15 seeds (90 and 270 runs, respectively). The comparison,
omitted due to space considerations, showed that using more
than 5 random seeds carries diminishing returns. Thus, in
practice, it is possible to halt the algorithm when additional
runs do not improve the best solution so far.

Effect of the number of volumes. Figure 10 shows the
deletion and runtime of our algorithms on the Linux-skip sys-
tem when the number of volumes is reduced (‘4’), increased
(‘6’), or is larger overall (‘10’). Due to the high similarity
between the Linux versions, the same deletion is achieved
when the number of volumes remains five, or when a volume
is added or removed (the reduced performance of Cluster is
an outlier for µ = 2%). When the initial number of volumes
is 10, there are more duplicates in the system. This provides
more opportunities for deletion, which is indeed higher.

The number of volumes affects the problem’s complexity,
affecting each algorithm differently. Greedy requires less time
when a volume is added or removed (compared to a problem
where the number of volumes remains the same), because
most of its traffic is spent on the faster load-balancing step.
The runtime for a system with 10 volumes is much longer than
for a system with only five volumes because there are more
volume pairs and thus more file remap options to consider in
each iteration. The ILP problem complexity increases with
every additional volume and thus its runtime increases until it
reaches the timeout. The clustering process could, potentially,
stop at an earlier stage when more clusters are needed. How-
ever, as the number of clusters increases the load balancing
constraint is encountered at an earlier stage, causing the clus-
tering to restart more often when the number of volumes is
higher. Nevertheless, all our algorithms successfully generated

migration plans for a varying number of volumes, most of
them within less then an hour.

8 Conclusions and Future Challenges
We formulated the general migration problem for storage sys-
tems with deduplication, and presented three algorithms for
generating an efficient migration plan. Our evaluation showed
that the greedy approach is the fastest but least effective, and
that the clustering-based approach is comparable to the one
based on ILP, despite ILP’s premise of optimality. While the
ILP-based approach guarantees a near-optimal solution (given
sufficient runtime), clustering lends itself to a range of opti-
mizations that enable it to produce such a solution faster.

All our approaches can be applied to more specific cases
of migration, presenting additional opportunities for further
optimizations in the future. For example, thanks to its short
runtime, we can use Greedy to generate multiple plans with dif-
ferent traffic constraints. These plans are points on the Pareto
frontier [55], i.e., they represent different tradeoffs between
the conflicting objectives of maximizing deletion and minimiz-
ing traffic. The multiple executions in the clustering algorithm
provide a similar set of options.

Applying our approach in a live deduplicated system intro-
duces several challenges, such as collecting and generating
the system’s snapshot as input to the algorithms, efficiently
updating the metadata, determining the migration schedule,
and adjusting it if new files are added to the system during this
process. We leave these challenges for future work.
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Appendix
Formal formulation of constraints and objective. The ILP
formulation for migration with load balancing consists of 13
constraint types.

1. All Variables are Boolean: x f st ,cbst ,dbv ∈ {0,1}
2. A file can be remapped to at most one volume: for every

file f in volume s, ∑t∈V x f st ≤ 1.
3. A block can only be deleted or copied from a volume

it was originally stored in: for every two volumes s, t; if
b /∈ s then cbst = dbs = 0.

4. A block can be deleted from a volume only if all the files
containing it are remapped to other volumes: for every
volume s and for every file f such that f ∈ s, dbs ≤ ∑t x f st .

5. A block can be deleted from a volume only if no file
containing it is remapped to this volume: for every two
volumes s, t, every file f such that f ∈ s and f /∈ t, and
every block b such that (b, f ,s) ∈ IS, dbt ≤ 1− x f st .

6. View all the blocks in the volume intersections as having
been copied: for every two volumes s, t and for every
block b ∈ Intersectst , cist = 1.

7. When a file is remapped, all its blocks are either copied
to the target volume, or are initially there (as part of the
intersection): for every two volumes s, t and every block
b and file f such as (b, f ,s) ∈ IS, x f st ≤ Σv∈V cbvt .

8. A block can be copied to a target volume only from
one source volume: for every block b and volume t,
Σs such that b/∈Intersectst cbst ≤ 1.

9. A block must be deleted if there are no files containing
it on the volume: for every two volumes s,v and all files
fs ∈ s, fv ∈ v and all blocks b where b ∈ fs and b ∈ fv,
dbs ≥ 1−{Σ fs(1−Σvx fssv)+Σ f v(x fvvs)}.

10. A block cannot be copied to a target volume if no file will
contain it there: For every volume t and every block b /∈ t,
Σscbst ≤ ΣsΣ f∈s∧b∈ f x f st

11. A file cannot be migrated to its initial volume: for every
file f and volume v, x f vv = 0

12. Traffic constraint: the size of all the copied blocks
is not larger than the maximum allowed traffic:
∑s∈V ∑t∈V ∑b/∈Intersectst cbst × size(b)≤ Tmax.

13. Load balancing constraint: for each volume v,
(wv − µ) × Size(S′) ≤ Size(v′) ≤ (wv + µ) × Size(S′),
where Size(v′) is the volume size after migration,
i.e., the sum of its non-deleted blocks and blocks
copied to it: Size(v′) = ∑b∈v(1 − dbv) × Size(b) +
∑s∈V,∑b /∈Intersectsv cbsv×Size(b). Size(S′) is the size of the
system after migration: Size(S′) = ∑v∈V Size(v′).

▶ Objective: maximize the sum of sizes of all blocks
that are deleted minus all blocks that are copied. This
is equivalent to minimizing the overall system size:
Max

(
∑b∈B Size(b)×∑s∈V

[
dbs −∑t∈V,b/∈Intersectst cbst

])
.
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Abstract
To reduce the storage footprint with increasing data vol-

umes, modern filesystems internally use deduplication to store
a single copy of a data deduplication record, even if it is used
by multiple files. Unfortunately, its implementation in today’s
advanced filesystems such as ZFS and Btrfs yields timing
side channels that can reveal whether a chunk of data has
been deduplicated. In this paper, we present the DUPEFS
class of attacks to show that such side channels pose an unex-
pected security threat. In contrast to memory deduplication
attacks, filesystem accesses are performed asynchronously to
improve performance, which masks any potential signal due
to deduplication. To complicate matters further, filesystem
deduplication is often performed at large granularities, com-
plicating high-entropy information leakage. To address these
challenges, DUPEFS relies on carefully-crafted read/write
operations that show exploitation is not only feasible, but that
the signal can be amplified to mount byte-granular attacks
over the network. We show attackers can leak sensitive data at
the rate of ∼1.5 bytes per hour in a end-to-end remote attack,
to leak a long-lived (critical) OAuth access token from the
access log file of the nginx web server running on ZFS/HDD.
Finally, we propose mitigations where read/write operations
exhibit the same time-domain behavior, irrespective of the
pre-existence of the data handled during the operation.

1 Introduction

Modern filesystems such as ZFS [9] and Btrfs [47] rely on
deduplication to reduce the storage footprint for achieving
scalable storage systems [17, 38, 59]. The idea is both simple
and attractive: if two files both contain some data that is ex-
actly the same, we can save storage space by storing the corre-
sponding data once and maintaining shared references for the
two files. Superficially, such functionality resembles its mem-
ory deduplication counterpart, where operating systems and
hypervisors reduce the memory footprint by merging pages
with the same content into a single shared copy-on-write

(COW) page. Unfortunately, memory deduplication presents
security risks as researchers have shown that it is possible to
leak even high-entropy data by detecting when memory is
shared [7, 10, 22]. In response, cloud providers and operating
system vendors have simply disabled memory deduplication
to stop these attacks [10, 29]. In contrast, filesystem dedupli-
cation is still commonly deployed everywhere [39, 55]. The
question we ask in this paper is whether similar or even more
significant security risks exist for filesystem deduplication.

At first sight, the answer appears to be an easy no. After
all, memory and filesystem deduplication may have the same
high-level objective and modus operandi, but their behavior is
fundamentally different. In particular, filesystem operations
tend to be asynchronous for efficiency. As an example, a write
to a file, regardless of deduplication, is first absorbed in mem-
ory and will not prompt a write to the disk until much later.
Asynchronous operations, achieved through many layers of
caching, invariably blind any deduplication-related signals.
Besides such fundamental differences, filesystem dedupli-
cation also differs in other important practical aspects. For
instance, to reduce overhead, the granularity of filesystem
deduplication (often as large as 128 KB) vastly exceeds that
of memory deduplication (typically 4 KB). For an attacker,
large deduplication granularity requires non-trivial massag-
ing when leaking data at a desired byte granularity. Due to
these complexities, state-of-the-art storage-based deduplica-
tion attacks are limited to exploiting cloud application-level
deduplication for cross-user file fingerprinting [25, 40].

In this paper, we present DUPEFS, a class of attacks show-
ing that, despite these challenges, exploiting inline filesystem
deduplication is feasible. To this end, we describe novel prim-
itives to leak data via filesystem deduplication and analyze
their properties. Using these primitives, we build a number
of DUPEFS attacks, including one leaking arbitrary data at
byte granularity. Moreover, we show that we can expand the
threat model of such fine-grained attacks from local-only (as
done by memory deduplication) to fully remote attacks. This
is possible since, in production systems, filesystems are often
shared between multiple remote parties, either directly (e.g.,
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a shared file server), or indirectly (e.g., when multiple clients
cause a web server to log accesses). In addition, access times
to filesystem storage are generally higher than accesses to
memory, and, as we will show, even amenable to further am-
plification by an attacker aware of filesystem internals. This
enables remote attacks, where a malicious client leaks secret
data from another remote victim client across the network.

To craft DUPEFS primitives and obtain secret file data
of other users, the attacker generates a carefully-chosen se-
quence of file operations, specifically tailored to the target
filesystem’s low-level implementation. The attacks rely solely
on timing and storage information available to unprivileged
users. We demonstrate the practicality of the side channel with
concrete attacks against two popular filesystems, ZFS [9] and
Btrfs [47], from different vantage points: local (attacker’s
code on the victim machine), LAN (attacker across the local-
area network), and WAN (attacker across the Internet). For
instance, we present an end-to-end DUPEFS attack against
an nginx web server running on ZFS/HDD during off-hours.
In this scenario, we can leak a (critical) long-lived OAuth ac-
cess token from the server’s access log file over LAN or even
WAN at a rate of around 1.5 and 1 byte per hour, respectively.

Finally, we discuss possible mitigations. In particular, we
propose to drastically reduce the timing side channel by mak-
ing filesystem operations that interact with the deduplication
subsystem pseudo-constant-time. The goal is to eliminate
remote exploitability in a practical way, preserving space sav-
ings and avoiding a complete filesystem redesign.

Contributions. We make the following contributions:

• We analyze filesystem deduplication side channels and
show that despite the asynchronous disk accesses and
large deduplication granularities, attackers can mount
byte-level data leak attacks across the network.

• We introduce DUPEFS’s novel attack primitives and
demonstrate their feasibility in end-to-end attacks to leak
data even across the Internet.

• We describe and analyze mitigations for such attacks.

2 Background

A filesystem is the operating system component that controls
the storage and retrieval of data to and from storage devices.
Compared to DRAM, accessing storage devices is slow. To
hide the latency, modern filesystems use a number of opti-
mizations. In particular, deduplication finds identical copies
of data and stores them as a single shared data record of pre-
determined size. The duplicates are replaced by references
to the single record and thus the filesystem reduces the data
footprint. More broadly, deduplication is a generic optimiza-
tion that is used at different levels of the storage hierarchy,
including caches [35, 54], cloud services [5, 33], and most
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Figure 1: Write path with deduplication.

importantly, directly in the filesystems themselves [30, 45].
In this paper, we are concerned with the latter.

Basic write workflow. Figure 1 presents a high-level
overview of the steps performed by a deduplicating filesystem
for an application-issued write operation. Upon receiving data
from a client application, the filesystem calculates a unique
identifier for the data (e.g., by calculating a hash over the
content), which it checks against a database of existing identi-
fiers. If none of the existing identifiers match, the new data is
written to storage and the identifier added to the deduplication
database. If the data exists, the filesystem updates its metadata
with a new reference to the existing data and returns control to
the application without writing the data to the storage device.

Deduplication mode. In this paper, we are interested in inline
deduplication, where the filesystem automatically checks for
duplicates during the I/O operation—e.g., when data is writ-
ten. In contrast, offline (or out of band) deduplication is typi-
cally a manual process whereby a user runs a deduplication
utility explicitly. While inline deduplication introduces some
overhead with the identifier lookup, it is the deduplication
commonly used in production since, in case of duplication,
only a reference is immediately written to storage instead of
the duplicate data, leading to space and time savings.

Data identifiers. To identify the content of a deduplication
record, the filesystem uses a hash function. Some implementa-
tions use collision-resistant cryptographic hash functions such
as SHA-256, while others rely on faster hash functions that are
not collision-resistant, such as fletcher4 [19]. The same func-
tion used for data identification is also used to detect dupli-
cates by computing hashes of candidate data to write and com-
paring it with the existing deduplication records [16, 31, 45].
Since hashing may incur collisions, some implementations
include an additional step to verify that the data inside the
matching deduplication records is identical [9].

Deduplication tables. A deduplicating filesystem keeps a
history of previously written deduplication records to identify
future duplicates. To this end, the filesystem stores the hash
values of existing deduplication records as unique identifiers
in a data structure called the deduplication table which can
be kept in memory, on disk, or both. For inline deduplication,
the filesystem accesses the table for every write operation.
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Deduplication granularity. Filesystems store a large amount
of data. Since the size of the deduplication table is propor-
tional to the total amount of data, filesystems perform dedupli-
cation at a granularity (i.e., record size) that is a multiple of the
data block size. As a result, a sufficient number of data blocks
must be written to the filesystem to reach the deduplication
record size before the deduplication checks happen.

3 Threat Model

We assume an attacker who has direct or indirect (possibly re-
mote) access to the same filesystem as a victim, and the filesys-
tem performs inline deduplication. We assume the filesystem
to be free of bugs and that the configuration as well as the
access control settings are all correct.

We consider different local/remote attack scenarios, with
the attacker colocated with the victim on a given machine
(local), across a local-area network (LAN), or across the In-
ternet (WAN). The attacker wants to obtain secret data from
the victim’s files, even though the file permissions prevent
direct access. In the local scenario, the attacker interacts with
the filesystem through attacker-controlled (unprivileged) pro-
grams that write to and read from the underlying storage using
low-level system calls such as write(), read(), sync(), fsync().
In the remote scenario, the attacker interacts with the filesys-
tem through a program that is not under the attacker control.
For example, in the case of a server program, this is possible
through valid requests that lead to data being written to stor-
age on the attacker’s or victim’s behalf. We assume there is no
limit to the number of I/O operations that can be performed
by running programs or by sending requests to a server pro-
gram. Remote attacks, unlike local ones, require control over
the victim’s actions to perform successful attacks, e.g., the
attacker forcing a victim web server to write a secret into a
log file on the remote filesystem. We will discuss additional
attack-specific assumptions in the corresponding sections.

4 Exploiting Filesystem Deduplication

In this section, we discuss two general primitives and the
challenges to build attacks over deduplicating filesystems. In
Section 7, we will discuss how to craft such primitives for
modern file systems such as Btrfs and ZFS.

4.1 Primitives

The timed write primitive. Figure 1 shows that inline dedu-
plication handles the writing of unique data differently from
existing data on the write path. The common path consists of
computing the data identifier and checking whether it is new.
If so, the filesystem inserts both the new identifier and the data
itself. In contrast, if the data existed already, it is sufficient
to update the metadata with a new reference to existing data,

which is considerably cheaper. This timing difference forms
the basis for our timed write primitive. Similar to the COW
timing primitive on memory deduplication [7, 10], this primi-
tive allows attackers to leak whether certain data is present on
the filesystem during a write operation. Unlike prior memory
deduplication attacks, building filesystem-based timed write
primitives is complicated, as we soon discuss.

The timed read primitive. Prior memory deduplication at-
tacks [10, 42] show one can detect whether a memory page is
deduplicated via a read-based cache timing attacks. However,
this approach is not generally applicable to filesystem dedu-
plication. Deduplicated data from different files end up in
distinct physical memory pages as the page cache in popular
operating systems such as Linux operates at the file level. To
craft a filesystem-based timed read primitive, we observe that
if a block of a file becomes deduplicated, its physical location
on the disk differs from its surrounding blocks. We use this
observation as a basis for our timed read primitive. Building
it faces certain challenges which we discuss next.

4.2 Challenges

Modern filesystems perform many optimizations to improve
performance and reliability, resulting in a number of chal-
lenges to craft our timing-based deduplication primitives.

C1. Performance. In filesystems, the I/O operations are
mostly asynchronous to hide the latency of the underlying
storage and other internal filesystem operations from client
applications. For this reason, filesystems cache data which
complicates the construction of a timing attack significantly.
As we shall see, asynchronous operations may necessitate
additional attack preparation steps that massage the cache
before measuring time or attempting synchronous I/O.

C2. Reliability. To ensure that the system is in a sane state
when it crashes, filesystems typically write metadata along
with the user data to ensure the filesystem can be restored to
a consistent state when catastrophe strikes. Even if data is
deduplicated, the metadata still needs to be written to disk,
which interferes with our timing channel. This makes building
reliable timed write primitives particularly challenging.

C3. Capacity. To perform deduplication efficiently, filesys-
tems need to maintain an in-memory digest of existing stored
data. Given that a large number of digests may introduce unac-
ceptable overhead, modern filesystems perform deduplication
only across many blocks that are either temporally or spa-
tially close to each other, clustered together in a deduplication
record. This complicates building our primitives in two ways.
First, detecting a deduplication event across many blocks is
not trivial, especially for the timed write primitive. Second,
the large deduplication granularity significantly increases the
entropy of any target secret deduplication record.
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Figure 2: Leaking secret data using deduplication.

5 DUPEFS Overview

To mount DUPEFS attacks, we develop our general primi-
tives into exploitation techniques for three classes of attacks:
(i) data fingerprinting, (ii) data exfiltration, (iii) data leak.

5.1 Data fingerprinting
In a data fingerprinting attack, DUPEFS relies on the general
timed read/write primitives to reveal the presence of existing
known but inaccessible data, such as an inaccessible file of
another user. Attackers may use fingerprinting to discover
known but embarrassing/compromising content on the server,
for instance for extortion purposes. Prior work has shown that
timing the writes of a client application may be used for data
fingerprinting, but always under the assumption that the client
application plays an active role in the deduplication. That
is, the client sends data to a cloud application server only if
the server does not already have a copy of the data, yielding
a timing side channel on write operations [25, 40, 57]. Of
course, this is not the case with deduplicating filesystems
such as ZFS and BtrFS. DUPEFS shows that similar attacks
are still possible, without relying on client applications and
application-level deduplication in any way. DUPEFS exploits
deduplication performed entirely in the filesystem and is com-
pletely agnostic to the applications running on top of the
storage stack.

5.2 Data exfiltration
In a data exfiltration attack, DUPEFS relies on the general
timed read/write primitives to exfiltrate secret data from a
system (or sandbox). The idea is to allow two colluding parties
with direct/indirect access to the same system to communicate
over a stealthy covert channel. For instance, the parties can
use a small number of data blocks with predetermined values
to encode messages of a communication protocol [25]. The
parties can then exploit timing side channels to find which
message was written by the other party. DUPEFS’s covert
channel can be used to exfiltrate data over LAN or WAN.

5.3 Data leak
In a data leak attack, DUPEFS can leak secret data from a
remote system by relying on two exploitation techniques:

alignment probing and secret spraying. The former reduces
the entropy of a target secret and enables byte-granular attacks.
The latter amplifies the signal and enables remote attacks over
LAN/WAN. We first introduce such techniques, then present
our example end-to-end data leak attack scenario.

Alignment probing. Figure 2 shows how to exploit alignment
probing to leak secret data by carefully aligning known data
and then probing for parts of the secret spilled next to it in
the same deduplication record (Figure 2-a). By controlling
how the data is written to storage, the attacker can stretch
controlled data to fill the deduplication record minus one or
more bytes of secret data (Figure 2-b). Next, the attacker is-
sues multiple writes with possible guesses for the secret (now
low-entropy) record to probe for the unknown byte values
until she triggers deduplication (Figure 2-c). At that point, the
attacker uses the timed read/write primitive to detect dedu-
plication and hence the correct guess for the unknown byte
values. Finally, the attacker repeats the process with multiple
alignments until the entire secret is leaked. The attacker relies
on the ability to make many instances of the secret appear at
various offsets within chunks of otherwise known data. Com-
pared to alignment probing techniques used in prior work in
the context of memory deduplication [10], DUPEFS enables
such techniques within the filesystem, which is more chal-
lenging given the difficulty of enforcing controlled alignment
in the storage stack and the coarser block-level interface.

Secret spraying. With basic alignment probing, an attacker
can leak part of a secret by timing an I/O operation on a sin-
gle duplicated or non-deduplicated record. While this may be
sufficient for local attacks, remote attacks over LAN/WAN
require a stronger signal. To this end, DUPEFS relies on se-
cret spraying, a novel deduplication-based exploitation tech-
nique for signal amplification. The key idea is to spray candi-
date secret values over many deduplication records and issue
many writes for the corresponding guesses to exploit multiple
deduplication events at once. In particular, N/2 secret dedu-
plication records and N/2 probe deduplication records are
carefully crafted with targeted mutations to ensure an attacker
can time an I/O operation on N/2 deduplicated records (if the
guessed probe values are correct) or N non-deduplicated dedu-
plication records (otherwise). Using this technique, DUPEFS
can amplify the original number of target deduplication events
and thus the signal by a factor of N/2.

End-to-end attack. For our example end-to-end remote data
leak attack, we target secret data stored in the access log file
of a remote (nginx) web server running on top of ZFS/HDD.
We specifically target a Single Sign-on (SSO) scenario based
on the OAuth protocol [3], where a victim browser accesses
an attacker-controlled website with a hidden iframe that re-
peatedly triggers security-sensitive HTTP requests from the
victim’s browser to an SSO-based service running the ng-
inx web server. In particular, each request URL includes a
22-character OAuth access token, which is the target secret
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stored in the web server’s access log file. DUPEFS relies on
the primitives and exploitation techniques introduced earlier
to repeatedly interact with the web server and leak the token.
Section 8 shows how we address all the aforementioned chal-
lenges to mount the attack over LAN or WAN. Before that, we
provide necessary internal information about ZFS and Btrfs
(Section 6), which we use to build the filesystem-specific
timed read/write primitives (Section 7).

6 Deduplication in Modern File Systems

In this section, we discuss how modern filesystems such as
ZFS and Btrfs perform basic I/O operations, with a focus
on deduplication. In practice, deduplication operates at the
granularity of multiple disk blocks, a unit that we generally
refer to as deduplication record, but that Btrfs calls a dedupe
block and ZFS calls record. To identify deduplication records,
these filesystems use a hash function, typically SHA-256,
and keep the metadata in hash tables, which, borrowing ZFS
terminology, we will refer to as deduplication table (DDT).

ZFS. The Zettabyte File System (ZFS) [9] is a mature transac-
tional copy-on-write filesystem that implements features such
as volume management, deduplication, data compression, and
snapshots. To support transactions, changes to on-disk data
are first inserted in a transaction queue and processed later.
Upon transaction completion, ZFS updates the metadata to re-
flect the changes and finalize the operation. ZFS implements
inline deduplication, hence checks for data uniqueness are on
the write path, as part of a transaction. ZFS keeps the dedu-
plication table in memory (for ease of access) and on the disk
(for reliability). A file in ZFS consists of aligned records of
128 KB in size and deduplication records are also 128 KB by
default. It may take multiple transactions to fill a record, but
when filled with data, the record becomes deduplicatable—
prompting ZFS to look up its hash in the DDT.

Btrfs. The B-tree filesystem (Btrfs) [1, 47] is a modern Linux
copy-on-write (COW) filesystem that implements features
similar to ZFS and uses B-trees along with COW semantics
to update the data on the disk. The B-trees are optimized
for COW semantics and contain both data and bookkeep-
ing information. The data in Btrfs are stored in extents. An
extent consists of contiguous, aligned, on-disk data blocks,
checksummed for integrity. Like ZFS, Btrfs is transactional.
It collects data block changes in memory until the number of
collected changes exceeds a threshold or a timeout occurs, at
which point it flushes the changes to a new location on the
disk. The filesystem state is kept in checkpoints that update
the superblock, while extents store metadata such as the file
creation checkpoint, the disk area corresponding to a file, the
logical offset, and the number of data blocks in the extent.
Deduplication in Btrfs works at the level of extents, which be-
come candidate deduplication records when their size reaches
the deduplication record size of 128 KB (default).
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6.1 Writes in Deduplicating Filesystems

Write operations in modern filesystems can be either syn-
chronous or asynchronous. An asynchronous write operation
does not block the application, which can resume its execu-
tion as soon as the data reaches the kernel. Meanwhile, the
filesystem dispatches the operation through multiple layers of
buffering and writes the data to storage later. In contrast, syn-
chronous writes block and while the data still passes through
intermediary buffers, the control returns to the application
only after the data is written. When an application calls the
write syscall, the data is moved from the application’s buffers
to kernel space, in the page cache of the Virtual File System
(VFS), with its pages marked dirty. Next, the kernel dispatches
the operation to the specific filsystem (e.g., ZFS or Btrfs).

Writes in ZFS. The left-side of Figure 3 describes the data
path for such writes in ZFS. After placing the write in the
ZFS Intent Log (ZIL) on disk, the kernel returns from the
syscall. The write remains there until, at a later time, ZFS
processes the ZIL by passing the data to the ZFS I/O (ZIO)
layer and updating the deduplication table. In particular, ZFS
uses an on-disk ZIL for reliability and an in-memory ZIL for
efficiency. Write requests are committed to the on-disk ZIL in
the following cases: the write is synchronous, the application
calls the fsync syscall, or five seconds have elapsed. Finally,
to prevent applications from overwhelming the filesystem,
ZFS implements write throttling, which temporarily blocks
aggressive writers to process outstanding writes.

With respect to the challenges in Section 4.2, challenge
C1 stems from the ZIL introducing asynchronous behavior
even for synchronous writes as a performance optimization,
challenge C2 stems from metadata management in the ZIL
and deduplication table for reliability reasons, and challenge
C3 stems from the large 128 KB deduplication records that
ZFS uses for capacity reasons. Finally, write throttling and
ZIL flushing both introduce additional noise.

Writes in Btrfs. Figure 4 describes the equivalent data paths
in Btrfs, with the write operation passing through the dedupli-
cation checks when the filesystem writes the data to disk [13].

USENIX Association 20th USENIX Conference on File and Storage Technologies    285



In the default filesystem settings [14], Btrfs deduplicates data
using the inline deduplication record size of 128 KB. After
looking up the identifier in the deduplication table, it writes
both data and metadata to disk if the data is new, or only the
metadata if the data already exists.

The extents in Btrfs are contiguous on-disk data blocks and
each file consists of one or more extents. In case of a large
write, only the full extents are candidates for deduplication,
while any remaining bytes become an extent with a smaller
size. If the application subsequently appends data to the file,
the new data is not merged with the small extent, but placed
in a new extent. Btrfs does not support modifying or splitting
extents and a write in an existing extent will trigger the cre-
ation of a new extent with the new data and an update of the
file indexing information. For instance, when an application
overwrites the first 100 bytes of a file, the copy-on-write be-
havior creates a new extent of one disk block which contains
the new 100 bytes plus the rest of the first disk block of the
original extent. When the file is read, Btrfs returns the first
disk block of the new extent while taking the remainder of
the data from the original extent.

With respect to the challenges identified in Section 4.2,
we see again that the asynchronous transaction introduces
challenge C1, the metadata handling for reliability introduces
challenge C2, and the large deduplication records introduce
challenge C3. Furthermore, partially filled extents, if any, and
alignment issues complicate the attack.

6.2 Reads in Deduplicating Filesystems

When the kernel handles a read syscall, it retrieves the data
either from the filesystem cache or from the disk.

Reads in ZFS. After the read syscall has passed through the
VFS layer and the ZFS Posix Layer, ZFS checks if the data
exists in the Adaptive Replacement Cache(ARC) and, if so
(right-hand side of Fig. 3), returns the data to the application.
Otherwise, it transfers control to the ZFS I/O (ZIO) layer
which retrieves the data from the disk.

Reads in Btrfs. In Btrfs, after the read syscall has passed
through the VFS layer, Btrfs performs a search in the “block
group cache”. In case of a miss, Btrfs retrieves the data from
the disk. As mentioned, Btrfs may create new, partially-filled
extents in case of file modifications and, in that case, the read
may access more extents than one would expect.

For both filesystems the COW behavior creates an on-disk
layout that is non-sequential for deduplicated data and typ-
ically sequential otherwise. Reading the contents of a file
with deduplicated data involves random accesses on the disk
which is usually measurably slower than sequential accesses.
However the partially filled extents that result from file modifi-
cations also incur non-sequential accesses and generate noise.

7 Attack Primitives

This section introduces the general timed write/read prim-
itives for ZFS and Btrfs to perform DUPEFS attacks. To
exploit the timing side channel, an attacker writes data to
the filesystem using carefully crafted patterns that massage
the filesystem into an exploitation-friendly state. In partic-
ular, to handle transactional behavior potentially delaying
write operations, the attacker performs multiple writes to flush
each transaction. To handle copy-on-write behavior and the
coarse deduplication granularity, the attacker writes a suf-
ficient amount of data to trigger deduplication checks. To
handle caching behavior, the attacker uses sync operations
to force a cache flush where possible (locally on Btrfs) or
massages the cache with enough I/O operations otherwise.
Finally, to handle concurrent operations from other applica-
tions, the attacker repeatedly measures filesystem operations
to confirm deduplication.
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Figure 5: DUPEFS attack primitives

Overview. Figure 5 details our attack primitives in pseu-
docode. Each primitive describes I/O operations on multiple
deduplication records to trigger deduplication checks. The
test deduplication record is the record of 128 KB (by default)
an attacker writes to the filesystem and then measures the im-
pact of the operation in the time domain (by timing the write
itself or subsequent operations). In the write operation, the test
deduplication record can be padded with other deduplication
records that help with filesystem massaging (e.g., flushing
caches), alignment probing, and secret spraying. Depending
on the attack, the content of the test deduplication record is
known (e.g., data fingerprinting) or mostly known except for,
say, 1 byte the attacker needs to guess (e.g., data leak).

In details, Figure 5-a presents a timed write primitive (avail-
able on ZFS). First, the attacker writes multiple controlled
deduplication records to the filesystem in a prepare phase.
This is to cause a transaction cache flush (absent sync support
in ZFS) and prepare alignment. Next, the attacker issues (and
times) a write of the test deduplication record.

Figure 5-b presents a timed synchronous write primitive
(available on Btrfs). First, the attacker issues a sync operation
to flush the caches. Next, the attacker issues (and times) a
write of the test deduplication record. This primitive is avail-
able only in exploitation scenarios where the attacker can
trigger sync operations. This is nontrivial in remote data leak
attacks, where the only (unlikely) option is to lure a victim
server program into issuing an explicit sync operation.

Figure 5-c presents a timed read primitive (available on
Btrfs), which can probe for deduplication events after the
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fact. First, the attacker writes a test deduplication record (plus
padding) to the filesystem, which may trigger deduplication.
Next, the attacker reads back the same data. If deduplication
did happen, the (random-access) read will take longer than
the (sequential-access) read for the nondeduplicated case.

In the next section, we analyze the timing side channel for
the different primitives on an SSD (Corsair Force LS SSD
S9FM02.6) and a magnetic HDD (model ST1000). The latter
is obviously slower, but still a popular type of storage medium,
especially in server environments [6]. Unless otherwise noted,
we consider default configurations of ZFS and Btrfs, with a
deduplication record size of 128 KB. We repeat experiments
several times and find marginal deviations in results.

Timing differences on Btrfs. To verify the existence of the
timing side channel on Btrfs, we evaluate Btrfs running on
Linux (v4.20). In our experiments, we issue 500 synchronous
write operations (thanks to the Btrfs-supported sync) of iden-
tical (deduplicated) deduplication records and 500 write oper-
ations of unique deduplication records. We obtain an average
timing difference between deduplicated and unique write op-
erations of 0.57 ms for the SSD and 24.5 ms for the HDD.
Repeating the same experiment with asynchronous write oper-
ations leads to no statistically meaningful difference. As such,
we do not further consider this configuration in our analysis.
Nonetheless, this experiment confirms a realistic signal for
our (synchronous) Btrfs write primitive on Linux.

On the same setup, we issue 500 read operations for dedu-
plicated records and 500 read operations for nondeduplicated
records. We obtain an average timing difference between
deduplicated and nondeduplicated read operations of 0.7 ms
for the SSD and 17.22 ms for the HDD. This experiment con-
firms a realistic signal for our Btrfs read primitive on Linux.

Timing differences on ZFS. To verify the existence of the
timing side channel on ZFS, we first consider ZFS running
in its natural FreeBSD (10.4) habitat. In our experiments, we
perform asynchronous write operations using both identical
(i.e., deduplicatable) and unique records. We write enough
data in the 5 second time interval before the in-memory ZIL
is flushed to disk and measure the time to complete the indi-
vidual write operations.

We issue 500 write operations of identical (deduplicated)
records and 500 write operations of unique records. We ob-
tain an average timing difference between deduplicated and
unique write operations of 0.04 ms for the SSD and 2.6 ms
for the HDD. This experiment confirms a realistic signal for
our ZFS write primitive on FreeBSD. While the SSD signal
seems weak at first glance, this is just due to the larger default
transaction cache size on ZFS. This simply means we need a
larger number of writes for a strong signal. We confirm this
by repeating the SSD experiment with a smaller transaction
cache of 10 deduplication records and measuring a timing
difference of 1.23 ms.

Due to different licensing models (CDDL vs. GPL), ZFS

is not directly included in the Linux kernel. As a result, the
Linux implementation contains more software layers that col-
lectively dampen the signal for our timing side channel. To
confirm this intuition, we re-run our last experiment on Linux
(v4.20)-based ZFS and report an average timing difference be-
tween deduplicated and unique writes of 0.16 ms on HDD and
no statistically meaningful difference on SSD. Similarly, ZFS’
efficient read implementation does not yield a meaningful
signal on HDD or SSD. As such, we do not further consider
Linux/ZFS or ZFS-based read primitives in our analysis.

8 DUPEFS Exploitation

To illustrate the severity of DUPEFS, we exemplify attacks
for data fingerprinting, data exfiltration, and data leakage.

8.1 Data fingerprinting
We exemplify a data fingerprinting attack using our Btrfs-
based synchronous write primitive in a local exploitation
scenario1. A local unprivileged attacker seeks to detect the ex-
istence of an inaccessible file (or deduplication record within
a file) with known content. This is useful to detect specific
system binaries or configuration files and fingerprint vulner-
able programs running on the victim system. The attacker
first prepares an oracle of target files with a size matching or
larger than the deduplication record size. Next, the attacker
runs an unprivileged program on the target system to repeat-
edly effect the timed write primitive for each file. Using the
syncfs and write syscalls, the attacker synchronously writes
each file to the victim filesystem and times the operation to
detect deduplication indicating the presence of the file.

8.2 Data exfiltration / covert channel
We exemplify a data exfiltration attack using our Btrfs-based
synchronous write primitive in a local exploitation scenario2.
A local unprivileged attacker (or “sender”) seeks to exfiltrate
data from a sandbox over a covert channel. The receiver is an
unprivileged colluding party running on the same system. For
simplicity, the two communicating parties run a basic covert
channel protocol and synchronize using the system clock.

First, the sender writes N deduplication records for each
bit of data to a file. Each record is filled with a predeter-
mined deduplication record prefix, a [0...N−1] deduplication
record ID, and the [0− 1] bit value. Next, the receiver uses
the timed write primitive on another file in order to test for
each unknown bit value across the same number of (N) dedu-
plication records. The receiver uses the same record format as
the sender and tests for 0-bit deduplication records. A signal
(or its absence) determines the transfer of a 0-bit (1-bit) value.

1We have also reproduced the attack on the ZFS write primitive
2We have also reproduced the attack on the ZFS write primitive
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After the receiver has stored the leaked bits, the protocol
repeats with the sender writing new data-encoding deduplica-
tion records. For example, to exchange 1 byte of information
using N = 10, the sender writes 10∗8 deduplication records
to a file. The receiver then uses the timed write primitive with
10∗8 0-bit test deduplication records on a separate file. Fast
(deduplicating) writes on the first 10 deduplication records
signal a 0 value for the first bit, slow (nondeduplicating) writes
signal a 1 value for the second bit, and so on. We use multiple
(N) records to transfer a single bit to amplify the signal and
thus reduce the error rate of the covert channel. We use dif-
ferent deduplication record IDs to prevent the deduplication
records written by the sender (or receiver) from deduplicating
against themselves.

8.3 Remote data leak
We exemplify a data leak attack using our ZFS-based write
primitive in a remote exploitation scenario3. The attacker
seeks to leak an OAuth access token [3] from the access log
of a remote nginx web server running on ZFS/HDD 4. The ng-
inx web server hosts a website (e.g., https://someapp.com)
which the victim has granted access to an authenticated
third-party service (e.g., https://github.com) via long-
lived OAuth access tokens. At a high level, to implement
the attack, the attacker lures a victim browser into an attacker-
controlled website, which repeatedly (but transparently to
the user) forces the browser to access the nginx web server
with the secret OAuth access token encoded in the URL. As
such, the secret is repeatedly spilled on the nginx access log
stored on ZFS, enabling alignment probing and secret spray-
ing. Meanwhile, the attacker concurrently and independently
probes the nginx web server to leak the secret OAuth token
one byte at the time. With the token, the attacker can gain
access to the third-party service with the victim’s credentials.

Attack scenario. The end-to-end attack scenario in our ex-
ample has the following actors: the victim browser, a Single
Sign On (SSO) server, an SSO client running nginx on top
of ZFS, a third-party service the SSO client has been granted
access to on the victim’s behalf via SSO access tokens, and
a malicious website under the control of the attacker (say
https://attacker.com). Specifically, we target SSO access
tokens from the OAuth 2.0 implicit grant access scheme [3]
and assume such access tokens do not expire for the entire
duration of the attack. This is a sensible assumption, as many
third-party services use long-lived access tokens that never ex-
pire [2]. To mount the attack, the attacker-controlled website
includes a hidden iframe which repeatedly forces the browser
to connect to the SSO client with the secret OAuth token. This
is legal behavior, but defenses against clickjacking, X-Frame-
Options (XFO) in particular, may prevent such accesses from

3This primitive provided the best signal for remote attacks
4In our experiments, the HDD setup was necessary for a realistic signal
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an iframe. In our example attack scenario, we assume the
victim server does not offer XFO (which is very common
even in modern websites [26]), or the victim browser’s XFO
implementation is bypassable (e.g., Microsoft Edge [15]).

Attack workflow. Figure 6 presents all the requests ex-
changed between the victim browser, the attacker-controlled
website, the SSO client, and the SSO server before and during
the attack. Before the attack, the victim has already obtained
an OAuth access token for the third-party service by authenti-
cating with the SSO server. In the first stage of the attack, the
victim browser is lured to the attacker-controlled website. The
website serves the victim browser some attacker-controlled
JavaScript and a hidden iframe. The latter issues an HTTP
request to the SSO client using an incorrect access token.

Upon receiving the incorrect access token, the SSO client
redirects the iframe of the victim browser to the SSO server
to obtain a new valid access token. When the SSO server
receives the request, it simply acknowledges that the victim
browser is already authenticated and redirects the iframe again
to the original SSO client. The redirect causes the iframe to
issue an HTTP GET request with the correct (and secret)
OAuth access token to the SSO client. Since the access token
is encoded in the URL and the URL is logged in the access log
of the SSO client’s nginx web server by default, the request
ultimately spills the target secret on the victim ZFS filesystem.
At that point, the attacker can independently issue multiple
GET requests to the SSO client in order to probe for the secret
byte values of the access token. Meanwhile, the malicious
JavaScript from the victim browser can reload the iframe
and the entire sequence repeats, until the attacker obtains the
secret access token using the timed write primitive for ZFS
across the network.

Inside the SSO client. We now focus on the SSO client,
which runs the nginx web server and stores its access log
on the target ZFS filesystem. The requests that the attacker
directly or indirectly sends to the SSO client reach nginx,
which, in turn, uses system calls to write each HTTP request
to the access log. The data flows for the attacker and victim
inside the SSO client are shown as (1)-(3) and (4)-(6) in
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Figure 7. The sequence of events above results in different
classes of attacker-controlled entries being spilled into the
access log: initial GET requests issued by the browser with
an incorrect access token, second-stage GET requests issued
by the browser with the correct access token, GET requests
issued and timed by the attacker to probe for the secret bytes.

The attacker carefully massages the workflow above to in-
terleave the different classes of GET requests and implement
the required primitives. In particular, the attacker first issues
a number of wrong-access-token requests causing nginx to
carefully align the access log entries. By massaging the align-
ment (starting from a baseline of known access log alignment
leaked with timed write primitive), the attacker can ensure the
next GET request with the correct access token fills an entire
access log deduplication record and spills the last byte of the
access token into the next deduplication record. The attacker
then performs additional GET requests to nginx to fill the
rest of the deduplication record. At that point, the attacker
can time specially-crafted GET requests to probe for each of
the possible byte values. Figure 9 presents the access log file
layout of nginx induced by the proposed attack patterns. Since
OAuth uses 22-character access tokens, the entire process is
repeated 22 times [3], leaking 1 byte value (from the base64
alphabet) of the access token per iteration.

Since we control both the browser- and the attacker-issued
requests to nginx (using controlled iframe refreshes or inde-
pendent client requests from an attacker-controlled machine),
we can repeat the individual steps many times. This enables
secret spraying for amplification (simply mutating the origi-
nal wrong-access-token requests to cause the browser to send
different variations of the correct-access-token requests to ng-
inx) and repeated alignment probing (shifting the alignment
by 1 byte every time) to leak all the bytes of the secret.

For every byte value of the secret access token probed, the
attacker runs a number of P probes per byte using the pattern
described in Figure 9 and measures the time to complete
the individual network requests. Whenever the in-memory
ZIL is flushed to disk a peak can be observed in the timing
measurements of the attacker as feedback directly from the
VFS layer. The attacker can analyze the real-time duration
of the ZIL flush by observing the peaks in real time. The
duration of the peak is larger when nondeduplicated data
is flushed than when there is deduplicated data. To amplify
the difference the attacker uses the secret spraying technique
to submit large amounts of data to ZIL. Figure 8 shows an
example of the width (duration) difference for 2 consecutive
peaks, for both the deduplicated and nondeduplicted case,
separated by a 5-second interval. The attacker picks the byte
value that produces the peak with a duration that is below a
threshold as the correct byte value of the secret access token.
The threshold is discovered empirically by the attacker (e.g.,
a peak duration of at least 0.5s to signal the correct byte value
for the data in Fig. 8) and depends on the network bandwidth.

To improve performance of the logging feature, nginx uses
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an intermediary buffer which collects I/O operations before
sending them to ZFS. The buffer is limited to 5 requests
irrespective of their size and works as a FIFO queue: once a
new request comes in, the oldest request is pushed out and
submitted to the VFS layer to be written to disk. To deal
with buffering, the attacker floods the intermediary buffer and
controls when the write operation (including deduplication
checks) is performed. In fact, nginx’ use of the intermediary
buffer helps the attacker, as it is easier to control alignment
(within the buffer) and generate single large writes.

Note that the attacker controls most of the data that is writ-
ten to the log, namely: the url of the requested resource, the
user agent field, the request body, etc., which allows the at-
tacker to reduce the entropy of probing to that of the secret.
Some data, such as the timestamp, is not directly controlled
by the attacker. However, the attacker learns it, at second gran-
ularity, from the Date header field in the HTTP reply—which
is mandatory according to RFC2616. Based on the acquired
timestamps, the attacker can synchronize the requests with
the server, eliminating entropy.

9 Evaluation

We evaluate our DUPEFS attacks on a system equipped with
an Intel Core i5-8250U CPU (4 CPU cores), 16 GB of RAM,
an SSD (Corsair Force LS SSD S9FM02.6), and a magnetic
HDD (Seagate ST1000). We run our target filesystem im-
plementations in their default settings (with a deduplication
record size of 128 KB) and on their natural operating sys-
tem platforms, namely FreeBSD (10.4) for ZFS and Linux
(v4.20) for Btrfs. ZFS, in particular, uses the default amount
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Table 1: File fingerprinting

File Type Size Success
config-4.11.3-200.fc25.x86_64 text 181 KB 70%
lena_color.gif binary 223 KB 55%
libz3.so binary 22 MB 99%
x86_64-redhat-linux-c++ binary 1 MB 99%

Table 2: Covert channel

N Bit errors Time BR BER I/O
20 13 375s 0.320 bps 10.83% 76.8MB
40 14 746s 0.160 bps 11.66% 153.6MB
60 12 1591s 0.075 bps 10.00% 230.4MB

100 6 1873s 0.064 bps 5.00% 384.0MB
120 3 2387s 0.050 bps 2.50% 460.8MB

of memory for dirty data (10% of the RAM size) and its reli-
ability configuration using sync=always, which ensures that
the in-memory ZIL is also saved to disk—enabling recovery
after a crash. We repeat all experiments multiple times on a
quiescent server and report the mean values.

9.1 Data Fingerprinting
We evaluate our data fingerprinting attack using the Btrfs-
based write primitive over HDD. We have reproduced these
experiments on SSDs and using the ZFS write primitive, ob-
serving similar results, which we omit for space reasons. For
our experiments, we consider an unprivileged attacker inter-
ested in probing for a number of sensitive files (larger than the
deduplication record size of 128KB) on the running sytem.

Table 1 presents our results. We consider 3 different binary
files (a picture, a shared library, and a binary executable) and
one text file (the kernel configuration file) for our analysis.
Note that, most of the contents of the kernel configuration
file is predictable, given that each line normally refers to a
configuration OPTION in one of the following 4 variants:

1. #CONFIG_OPTION is not set
2. CONFIG_OPTION=y
3. CONFIG_OPTION=m
4. CONFIG_OPTION=n

DUPEFS reliably figerprints individual (128 KB) fragments
of the target files. The table presents success rates for finger-
printing the entire file. DUPEFS can reliably fingerprint the
target data except the last sub-128 KB chunk of a file. Thus
the small (181 KB and 223 KB) files have lower success rates.

9.2 Data Exfiltration
We now evaluate our data exfiltration attack, again using the
Btrfs-based write primitive over HDD. As we shall see, other
configurations again yield comparable results. For our ex-
periments, we consider two unprivileged colluding parties
running on the same machine. Both parties exchange infor-
mation using the covert channel protocol introduced earlier.

Table 3: LAN 1 byte data leak

Success Attack time/byte Probes/byte val I/O
50% 19.2 min 200 4.9 GB
80% 25.6 min 300 7.3 GB
92% 42.6 min 400 9.8 GB
96% 78.9 min 800 19.6 GB

Table 4: WAN 1 byte data leak

Success Attack time/byte Probes/byte val I/O
64% 24.5 min 200 4.9 GB
87% 38.4 min 300 7.3 GB
94% 59.7 min 400 9.8 GB
94% 110.9 min 800 19.6 GB

To evaluate the channel, we transfer chunks of 15 bytes from
the sender to the receiver, measuring the bit rate and bit error
rate. We repeat the measurements for different numbers of
deduplication records (N, determining the number of probes
per bit) to investigate the throughput/reliability tradeoff.

Table 2 presents our findings, including the amount of I/O
involved in the transfer. Our results show that the bit rate starts
from 0.32 bit/s for 20 probes per bit with a bit error rate of
10.83% and drops to 0.05 bit/s for 120 probes per bit with a bit
error rate of 2.5%. We also reproduced these results on SSDs
and using the ZFS write primitive, with a proportional signal,
matching the trend detailed in Section 7. Our results confirm
the covert channel can be used for realistic data exfiltration
attacks. Note that the bit errors in the covert channel can be
compensated by running a simple error correction protocol.

9.3 Data leak
We now evaluate our remote data leak attack, using the ZFS-
based write primitive. In many environments, this would be
the most worrying attack. The goal of the attacker is to leak
the access token, as used commonly on the web, from an SSO
client across the network. The SSO client runs nginx version
1.14.0_12,2 with the default settings, logging HTTP requests
to the access log, over ZFS/HDD. We consider 2 locations for
the attacker: one where the attacker is on a wide area network
(WAN), far from the server, and one where the attacker is
in the same local network (LAN). In the WAN attack, the
attacker is located 12 hops away from the victim with an RTT
of 2 ms, measured using traceroute with TCP SYN probes. In
the LAN scenario, the attacker is located 1 hop away from the
victim with an RTT of 0.1ms. The attacker probes for OAuth
secrets of 22 bytes encoded in base64.

To evaluate the attack success rate and attack time, we vary
the number of probes per byte value from 200 to 800. Tables 3
and 4 present the success rate (out of 50 attempts) and the
total attack time for 1 byte in a LAN and WAN setting.

LAN attack. Table 3 presents the success rate to discover 1
byte over a LAN, the time needed to leak 1 byte given the
number of probes/byte value used, and the amount of I/O
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(in GB) used in this attack scenario. The attacker can tune
the attack to obtain a desired attack performance-reliability
tradeoff. Given a success rate of 92%, the attacker, using the
configuration of 400 probes/byte value, leaks 1 byte over the
network in roughly 42 min and the full 22-character OAuth
access token in around 15 hours.While high success rates
require substantial amounts of I/O, such attacks are already
within reach of attackers today and will be even more so as
the speed of file systems and networks increases.

WAN attack. Table 4 presents the success rate and time
needed to guess 1 byte over a WAN, given the number of
probes per byte value used, and the corresponding amount of
I/O. As shown, the attacker has different options to select the
reliability-performance tradeoff for a desired success rate. For
example, for a success rate of 94%, the attacker can use 400
probes/byte value, resulting in approx 1h to leak 1 byte and
around 21h to leak the full 22-character OAuth access token.

Noise. As well-established in literature [18, 20, 21, 42], the
signal progressively degrades in the presence of noise (i.e.,
concurrent I/O workloads). As a result, in noisy environments,
the attack, when not conducted during off-peak/idle times,
would require more repetitions and hence more time [20]. For
example, in a LAN setting, we generated concurrent load by
continuosly reading data from /dev/random and writing it to
disk. The attack used 800 probes per byte value. The attack
duration was ≈91 min (up from 78.9 min), the success rate
dropped to 90% (down from 96%), and the I/O performed
was 19.6 GB by the attacker and 6 GB by the script.

10 Mitigation

Similar to prior side-channel attacks, DUPEFS attacks are not
very stealthy and could be detected by an intrusion detection
system (IDS) monitoring I/O activity. Nonetheless, as ob-
served in literature [50], it is difficult to design such an IDS to
guarantee no false negatives and no false positives in practice.
As such, we now consider more principled mitigations that
can provide security-by-design guarantees.

An ideal implementation of filesystem deduplication would
save space and have constant-time behavior. In other words,
all the deduplication-aware I/O operations need to imple-
ment a same-behavior policy [42]. This essentially translates
to each operation traversing the storage stack in the same
amount of time regardless of whether data handled by the
operation has been deduplicated or not. In practice, a strict
same-behavior policy is neither desirable—as it would hurt
space savings—nor practical—as it would not only require
a redesign of the filesystem, but also of the physical storage
devices. Our goal here is instead to discuss a practical, pseudo-
same-behavior, mitigation strategy that drastically reduces
the (I/O-based) signal and deters remote attacks.

A mitigation for the write path would change the behavior
described in Figure 1 for the case when the deduplication

checks conclude that the data exist to update the reference and
then still perform the write operation to the disk. The duplicate
data is simply overwritten. To investigate the practicality of
this strategy, we have experimented with Btrfs implemented
in the Linux kernel (v4.20) [12].

Write path. In Btrfs, the submit_compressed_extents func-
tion contains the program point where the write code path
diverges in a deduplication-dependent way and induces dif-
ferent behavior in the time domain. Inside this function the
block allocation is followed by the dedupe_hash_hit check
which determines whether to finalize deduplication or else
write a nondeduplicated block to disk. To bring the implemen-
tation as close to the same-behavior policy as possible with
few code changes, we propose a patch to also perform the
write operation on the else branch of dedupe_hash_hit, simply
overwriting existing on-disk data. With a 5 LOC change, we
preserve space savings, only slow down deduplicated write
paths (mirroring the execution time of non-deduplicated write
paths), and eliminate the classic deduplicated write path side
channel. We have verified the proposed strategy is sufficient
to cripple the SSD/HDD signal for remote attacks.

To verify the performance impact of our proposed miti-
gation we ran microbenchmarks on a system with an SSD,
using 5,000 synchronous write operations with deduplicated
data (worst-case scenario)—with and without our mitigation
enabled. When the mitigation is enabled, the median perfor-
mance overhead is as low as 6.7% compared to the mitigation
disabled case. Note that performing redundant I/O reduces de-
vice longevity compared to the deduplication=on baseline
(but is equivalent to the deduplication=off baseline).

Read path. For this path, the mitigation has to enforce pseudo-
same-behavior for disk access patterns. For this purpose, we
need to patch the btrfs_readpages function, which reads the
extents of a file. Since a strict same-behavior policy would
require random access for each read operation (with possible
performance loss), our strategy here is to introduce time jitter
on the read path. We implemented this strategy with a 2 LOC
change. We have verified (by running similar microbench-
marks as done for the write path) that even low jitter values
are sufficient to cripple the SSD/HDD signal for remote at-
tacks, while introducing no observable performance impact.
Note that applying the same jitter-based mitigation on the
write path is, in contrast, ineffective (as we have experimen-
tally confirmed), since the write-path signal is too strong to
be efficiently eliminated using jitter.

Limitations. With less than 10 LOC changed in the large
Btrfs codebase, we believe our mitigation proposal is practi-
cal and has a chance at mainline inclusion. Nevertheless, we
emphasize these changes only seek to deter remote attacks
but cannot completely eradicate the signal for local attacks.
For instance, the write path mitigation only enforces a same-
behavior policy from the disk perspective. It does not eradi-
cate all the code differences on the write path. We believe this
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limitation still offers a good compromise, since, on a local
setting, there are already more powerful side channels (e.g.,
cache side channels) to mount practical end-to-end attacks.

Another limitation is the mitigation operating only in the
time domain (similar to prior secure memory deduplication
systems [42]). There may be other side channels that escape
our same-behavior policy in other domains. For instance, tools
reporting free disk space information to unprivileged users
may re-enable very reliable (local) attacks. Free disk space or
similar leaky filesystem information should be restricted to
privileged users to deter practical side-channel attacks.

11 Related Work

Deduplication is used to efficiently store data in different
types of memory, ranging from desktop computers [4, 39] to
caches [35, 54] and cloud services [5, 33].

Deduplication Attacks. Many recent efforts investigate the
security of deduplication from both an offensive and defensive
perspective [27, 28, 34, 40, 44, 46]. Existing storage-based
attacks exploit deduplication in the cloud application layer,
mostly to detect the presence of particular files. Harnik et
al. [25] describe deduplication-based attacks to identify files
on the cloud side by observing the amount of data transferred
by the client. Mulazzani et al. [40] exploit the hashing mech-
anism of the Dropbox storage provider to obtain information
about the existence of a file. Access to it can be obtained
by providing the hash to the service. The attacks exploit the
application-level cross-user deduplication performed by Drop-
box. In contrast, DUPEFS targets low-level deduplication in
modern filesystems, enabling application- and cloud-agnostic
attacks leaking arbitrary byte-granular data.

Memory deduplication is a technique used by modern hy-
pervisors or operating systems to reduce main memory usage.
Memory deduplication attacks can locally fingerprint appli-
cations [22, 52], operating systems [43], or defeat ASLR [7].
Dedup Est Machina is a more advanced memory deduplica-
tion attack [10], which can read arbitrary data from the local
system’s memory using alignment probing and other memory-
specific exploitation techniques. In contrast, DUPEFS repur-
poses alignment probing to exploit filesystem deduplication
and combines it with secret spraying to enable byte-granular
data leak attacks across the network for the first time.

Deduplication Defenses. Rabotka [46] identifies 4 classes
of countermeasures against traditional storage-based dedupli-
cation attacks: encryption enforced by the client [37, 51]
or by a third party [56], noise added by probabilistic up-
loads [24, 25, 60], proof of ownership [24, 58], and obfusca-
tion enforced by an intermediate gateway in the network [27].
All these mitigations are only applicable to cloud application
scenarios where the client plays an active role in the dedupli-
cation. As such, they are ineffective against DUPEFS’ attacks
based on filesystem deduplication. VUSion [42] proposes a

memory deduplication redesign based on same-behavior (i.e.,
constant-time sensitive operations) and other principles to
cripple both side-channel and Rowhammer attacks. In con-
trast, we show enforcing a pseudo-same-behavior policy—
sufficient to deter remote attacks—is feasible with small
changes rather than a complete filesystem redesign.

Network Side-channel Attacks. Many prior efforts propose
remote network side-channel attacks. Early attacks leak sen-
sitive (cryptographic) data but only target vulnerable server
applications [8, 11, 41]. More recently, NetSpectre [48] and
NetCAT [32] exploit cache side channels over the network.
The former targets a vulnerable (or cooperative) server appli-
cation containing specific gadgets, while the latter assumes
specialized hardware (Intel DDIO and RDMA)—similar to
state-of-the-art network-based Rowhammer attacks [36, 53].
Page cache attacks [23] can exploit the operating system’s
page cache to implement a covert channel between cooperat-
ing parties over the network. In contrast to all these attacks,
DUPEFS can target arbitrary noncooperative applications run-
ning on top of a commodity hardware/software stack and can
leak sensitive byte-granular data over LAN/WAN. In con-
current work, Schwarzl et al. [49] showcase similar remote
attacks exploiting memory (rather than) storage deduplication
and operate byte-by-byte disclosure at comparable speeds.

12 Conclusion

In this paper, we showed that deduplication in commodity
filesystem implementations poses a nontrivial security threat.
Specifically, we presented evidence that such implementations
yield timing side channels that can be abused to remotely leak
arbitrary data at byte granularity. To substantiate our claims,
we presented DUPEFS, a class of filesystem deduplication-
based attacks for remote data fingerprinting, exfiltration, and
disclosure. Our end-to-end data leak attack demonstrates
DUPEFS can disclose sensitive data from a remote server
program even across the Internet. Finally, we investigated
mitigations and showed that implementing a pseudo-same-
behavior policy for all the I/O operations in the time domain
is practical without a full filesystem redesign.
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Abstract
We present FusionFS, a direct-access firmware-level in-
storage filesystem that exploits near-storage computational
capability for fast I/O and data processing, consequently re-
ducing I/O bottlenecks. In FusionFS, we introduce a new
abstraction, CISCOps, which combines multiple I/O and data
processing operations into one fused operation and offloads
them for near-storage processing. By offloading, CISCOps
significantly reduces dominant I/O overheads such as system
calls, data movement, communication, and other software
overheads. Further, to enhance the use of CISCOps, we intro-
duce MicroTx, a fine-grained crash consistency and fast (auto-
matic) recovery mechanism for both I/O and data processing
operations. Finally, we explore efficient and fair use of in-
storage compute resources by proposing a novel Completely
Fair Scheduler (CFS) for in-storage compute and memory
resources across tenants. Evaluation of FusionFS against the
state-of-the-art user-level, kernel-level, and firmware-level
file systems using microbenchmarks, macrobenchmarks, and
real-world applications shows up to 6.12X, 5.09X, and 2.07X
performance gains, and 2.65X faster recovery.

1 Introduction
Modern high bandwidth and low-latency storage technolo-

gies such as NVMe SSDs [50] and 3D-Xpoint [6] have sig-
nificantly accelerated I/O performance leading to better ap-
plication performance. Yet, the combination of software and
hardware I/O overheads that include system calls, data move-
ment, and communication cost in the application and the
OS, and the storage hardware latency (e.g., PCIe) continue
to be an Achilles heel in fully exploiting storage hardware
capabilities.

A recent focus is to reduce software indirections by moving
filesystems to userspace and avoiding system calls and kernel
traps for data and metadata updates [22, 60, 49, 27, 35]. Al-
though effective, the dominating I/O overheads such as data
and metadata movement cost, host and device communication
cost (e.g., PCIe latency), and indirect costs like polling or

∗The authors contribute equally to this paper.

interrupts remain. Henceforth, we refer to the combination of
above overheads, which includes system calls, as dominating
I/O overheads.

Another design point to reduce I/O overheads is the rein-
carnation of near-storage processing [46]. Vendors are in-
troducing computational storage devices (CSD) that embed
in-storage processors that range from ARM cores [11], FP-
GAs [49, 52, 30, 44, 47, 14] to RISC-V processors [51].
To reduce I/O cost and offload computations to CSD, re-
cent research has explored application customization tech-
niques [14], software runtimes [47], system software [49],
and databases [46].

More broadly, these techniques can be classified into sys-
tems that focus on (1) in-storage compute offloading and
(2) in-storage filesystems and key-value stores designed to
accelerate I/O and storage management. First, in-storage
compute offloading systems (which includes a majority of
current CSD solutions) such as the seminal ActiveStore [46]
for databases and recent approaches like PolarDB [14] focus
on data processing by rewriting application logic to offload
computation. While beneficial, these systems either lack stor-
age management or delegate management to the host file
system [14]. The former leads to a lack of data and metadata
integrity, crash consistency, durability, or managing in-storage
resources across tenants. In contrast, the latter incurs high
I/O overheads for basic I/O operations and fails to utilize
the full potential of CSDs. For example, in key-value stores
like LevelDB [5], one could offload data compression to a
CSD, but basic I/O operations would still incur system calls,
data, metadata (e.g., inode, extents), and journal movement
between key-value store, file system, and storage.

In contrast, in-storage management designs like
CrossFS [44], DevFS [30], and Insider [47] offload filesys-
tems and key-value stores [49] inside the storage firmware for
direct-I/O, bypassing the OS. Unfortunately, these designs
lack near-storage processing capability leading to substantial
data movement and failing to manage in-storage resources
such as device compute and memory or handle multi-tenancy.

We envision an ideal near-storage design that co-designs
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and combines storage management and data processing by
rethinking I/O abstractions to reduce dominant I/O overheads,
such as system calls, data and metadata movement, and host
to device communication latency. Importantly, the design
must ensure (storage) correctness, handle crash consistency,
and achieve fairness across tenants.

We propose FusionFS, an near-storage file system design
to exploit device compute and memory resources for reducing
dominant I/O overheads and improving application perfor-
mance. FusionFS provides fine-grained crash consistency,
fast data recovery, and improves system efficiency by provid-
ing in-storage compute and memory fairness across tenants.

Towards the above goals, in FusionFS, we revisit I/O ab-
stractions and take inspiration from seminal RISC (reduced
instruction set computers) and CISC (complex instruction
set computers) architectures. In FusionFS, a RISC operation
is a simple POSIX file system operation (e.g., read, write,
open) that can be directly offloaded to an in-storage filesys-
tem (StorageFS), bypassing the OS. In contrast, our proposed
CISC operations (hereafter referred to as CISCOps) are ag-
gregated I/O and data processing operations offloaded as one
operation to StorageFS for processing.

For generating CISCOps, we capture frequent I/O (e.g., file-
open-write-close) and I/O + data processing sequences on
a file (e.g., append-checksum-write) and combine them to
one CISC operation. Intuitively, aggregating I/O and data
processing sequences and offloading them for near-storage
processing significantly reduces dominant overheads (system
calls, data movement, and device and host communication
costs). Note that CISCOps support a combination of I/O and
data processing operations and differ from traditional POSIX
I/O vectors that are homogeneous (e.g., readv, writev).

Supporting in-storage RISC and CISCOps introduces new
challenges in terms of (1) applications changes, (2) crash
consistency, and (3) resource management.
Application Support. FusionFS strives to reduce applica-
tion changes by requiring minimal changes. First, a user-
level library file system (UserLib) enables applications to
use POSIX-like extensions for data processing or pack their
custom command vectors supported by an in-storage file sys-
tem (StorageFS). Optionally, FusionFS also provides mecha-
nisms to transparently combine multiple I/O operations (with-
out data processing) into a CISCOps and offload them for
in-storage processing, when feasible.
Fine-grained Crash-Consistency and Fast Recovery. In
FusionFS, for traditional filesystem operations, we support
journaling inside StorageFS. However, questions arise when
packing multiple I/O and data processing operations in a
CISCOps: (1) in what granularity should FusionFS sup-
port crash consistency? (2) how to exploit in-storage com-
pute to accelerate recovery? For answering these ques-
tions, in FusionFS, we explore macro-transactions (MacroTx)
and micro-transactions (MicroTx). MacroTx uses an all-or-
nothing approach that only commits and recovers an entire

CISCOp including the data processing state, whereas MicroTx
supports crash consistency of partially committed CISCOps.
Further, to reap the benefits of MicroTx, we go a step beyond
current filesystems and use in-storage compute to support
operational logging and automatic recovery by finishing par-
tially completed CISCOps.
In-storage Resource Fairness. Next, offloading simple I/O
operations and CISCOps across tenants could exceed the in-
storage compute (device-CPUs) and memory (device-RAM)
resources. Therefore, there is a need for efficient and fair
allocation of resources in ways that do not starve operations
or tenants. Hence, in FusionFS, we borrow ideas from the
Linux CPU scheduler, Completely Fair Scheduler (CFS) [1],
to design a device-CPU and device-RAM CFS scheduler for
enabling resource fairness and to reduce starvation.
End-to-end Evaluation. We evaluate FusionFS on
a wide range of microbenchmarks, macrobenchmarks
(Filebench [56]), and applications like LevelDB [5], Snappy
compression [19], and Linux file encryption [2]. FusionFS,
by using CISCOps reduces dominant I/O overheads leading to
6.12X gains over the NOVA kernel file system [61], 6.12X
over the user-level SplitFS, and 1.65X over the firmware-level
CrossFS design. Application workloads like LevelDB [5]
and Snappy compression [19] show gains up to 6.12X and
2.43X over user-level SplitFS. To highlight the benefits of
CISCOps as a general principle for kernel file systems, we ex-
tend ext4-DAX with CISCOps and showcase the gains. Next,
the proposed fine-grained crash consistency (MicroTx) com-
bined with automatic recovery accelerates filesystem recovery
by 2.65X. Further, CISCOps support for LevelDB’s restart-
after-failure code accelerates recovery by 3.58X. Finally,
the CFS-based device-CPU and RAM management reduce
unfairness and improve storage efficiency.

The source code of FusionFS is available at https://
github.com/RutgersCSSystems/FusionFS

2 Background and Related Work
Hardware Near-storage Processing Advancements.

Although modern solid-state and nonvolatile memory stor-
age devices have significantly accelerated I/O performance,
software and hardware data access cost continues to be ex-
pensive. This has motivated hardware vendors to move away
from legacy storage controllers with wimpy device cores for
handling firmware functionalities (e.g., FTLs [33]) and sup-
port powerful in-storage compute. For example, ARM is
introducing CSDs with Cortex-R82 64-bit 16-core processors
(yet to be commercially available) [11] . In contrast, prod-
ucts like Newport CSDs with 16GB device-RAM, 1.5GHz
16 core processors, and TCP/IP stack support run Linux OS
inside the CSD [20]. Finally, FPGA-based CSDs, such as
SmartSSD [21], LSM-FPGA [14], ScaleFlux’s CSD [52],
implement fixed functions (e.g., filtering, compression, and
encryption) and continue to evolve.

Software Innovation and Limitations. Software inno-
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Properties KernFS UserFS DeviceFS Computing
Offload FusionFS

Direct-I/O 7 Partial 3 7 3

Reduce data copy 7 Partial Partial Partial 3

Reduce PCIe cost 7 7 7 Partial 3

In-storage Mgmt. 7 7 3 7 3

In-storage process 7 7 7 3 3

Durability Data Data Data Data
Data and
compute

Resource
Mgmt. 3 7 7 7 3

Security 3 Partial 3 Partial
Same as
KernFS

Table 1: Capabilities and Limitations of State-of-the-art Storage Ap-
proaches. The last column shows our proposed FusionFS.

vations for modern storage can be broadly categorized as
(a) kernel file system (KernFS) and user-level file system
(UserFS), (b) in-storage firmware file systems (DeviceFS)
and key-value stores (DeviceKV), and (c) computational of-
floading (comp. offload) solutions mainly for processing. In
Table 1(b), we qualitatively compare these designs.
Host-level KernFS and UserFS: Modern KernFS designs
for fast storage devices reduce software indirections (e.g.,
page cache) and guarantee fundamental properties like crash
consistency, security, and data sharing [58, 61]. Yet, the I/O
overheads such as system calls, data movement, communi-
cation latency, and concurrency bottleneck continue to be a
problem. An alternative trend is the re-introduction of UserFS
designs aimed to bypass the OS (e.g., Strata [35], SplitFS [28],
and others [42, 57, 37, 38]). While effective for applications
that execute in isolation, a lack of a trusted computing base
(e.g., OS) makes it challenging to handle security, data shar-
ing, or multitenancy [30, 37, 38]. In contrast, hybrid designs
like SplitFS [28], depend on the OS for metadata manage-
ment, which could increase I/O overheads. Importantly, most
UserFS designs fail to reduce data movement between the
host and the storage and do not utilize in-storage compute.
Device-level File Systems (DeviceFS): As an alternative de-
sign point, prior work explored offloading file systems [30, 44,
45] and key-value stores [29, 49] inside CSDs and providing
applications with direct-I/O. However, these designs gener-
ally lack data processing capability. DevFS [30] offloads file
system into the firmware, whereas CrossFS [44] exploits par-
allel I/O queues for I/O scaling. CrossFS and DevFS reduce
system calls, but data movement and communication costs
remain. Prior solutions have also explored offloading key-
value stores inside CSDs [49, 29, 13], which could benefit
a specific class of applications that do not require file sys-
tems. Unfortunately, issues like high I/O overheads (e.g., data
movement) and lack of near-storage processing and resources
fairness remain in these designs.
In-storage Computation: In-storage computation systems
primarily offload specific functions to the CSD. For example,
seminal systems such as CASSM [54], RARES [36], and
Active-Storage [46] offloaded database search and scan oper-
ations on slow hard drives. Recently, to benefit from fast stor-
age, runtimes like LSM-FPGA [62], PINK [25], KEVIN [34]
and others [11, 30, 44, 48] redesign and offload database com-
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Figure 1: Analysis.Y-axis shows cumulative throughput when using 16
applicaiton threads.

paction to FPGA-based CSD, whereas Newport OS deploys a
specialized OS for offloading functions [20]. However, these
systems lack storage management, do not handle critical stor-
age properties like data durability, security, and sharing, and
depend on the host-level file system.

Batching Operations. To reduce I/O cost, several I/O
batching strategies have been proposed. Traditional file sys-
tems support vectored I/O, but it is restrictive and only sup-
ports data plane operations (e.g., writev, readv). Notably,
all operations packed in a vector must be the same. Fur-
ther, vectored I/O only provides coarse-grained all-or-nothing
durability. Next, Chen et al. propose NFSv batch remote
NFS I/O operations of the same type to reduce network la-
tency [15], whereas TC-NFS [55] extended NSFv to sup-
port compound transactions. In contrast, FusionFS designs
CISCOps to reduce dominating I/O overheads by organically
aggregating non-similar I/O sequences that could contain data-
plane, control-plane, and processing operations. FusionFS
also provides fine-grained durability and recovery without
compromising in-storage resource fairness. We also showcase
the benefits of CISCOps for traditional file systems (§ 5).

3 Motivation
To motivate the need for reducing dominating I/O over-

heads like kernel/userspace crossing, data movement cost,
and communication cost between host and device, we study
the performance of state-of-the-art designs: KernFS ext4-
DAX [58] and NOVA [61] (a log-structured design) de-
signed for fast NVMs; hybrid UserFS SplitFS [27]; DeviceFS
CrossFS [44]; our proposed FusionFS.

We use two workloads modeled after real-world applica-
tions: (1) an I/O-intensive read-modify-write that opens a
12GB file, continuously reads 4K blocks, updates, and writes
them back depicting databases, key-value stores, and oth-
ers; (2) an I/O + processing-intensive append-checksum-write
(hereafter referred to as append-CRC-write) workload that
appends data, computes checksum, and writes the data, repli-
cating the behavior of several applications like key-value
stores (LevelDB [7]), web-servers [56]. For brevity, we show
results for 16 thread configuration of the benchmarks and
show thread sensitivity in § 5. Because state-of-the-art sys-
tems use NVM as storage, we use a machine with 512 GB DC
Optane NVM for storage, 64 CPUs, and 32 GB DRAM [6].

In Figure 1, the y-axis shows the throughput. First, kernel-
level ext4-DAX provides direct access without data copies
to page cache but incurs significant system call and data
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copy cost for read-modify-write workload leading to substan-
tially lower throughput. With its multicore-friendly and log-
structured design, NOVA reduces some I/O overheads (e.g.,
avoiding double writes for a journal), but other overheads
remain. Next, hybrid user-level SplitFS memory-maps stor-
age to userspace and replaces reads/writes with loads/store
operations. SplitFS reduces system calls, but metadata up-
dates require frequent OS interaction. We also observe high
OS locking and pre-paging costs for supporting user-level
memory-map for 16 threads, leading to poor performance
in both workloads. CrossFS, an emulated firmware-level
file system design, reduces system calls and only metadata
movement between filesystem and storage, resulting in higher
performance. In contrast, FusionFS eliminates data move-
ment significantly as well as host and device interaction by
offloading both I/O and data processing. In § 5, we show the
breakdown of FusionFS benefits for these workloads.

4 FusionFS Design
We next discuss FusionFS’s design principles, followed by

system architecture, mechanics for supporting CISCOps, sup-
port for fine-grained durability and fast recovery, permission
management, and in-storage resource management.

4.1 Principles
1. Co-design in-storage management and data process-

ing to eliminate dominating I/O overheads. We design a
near-storage file system that combines storage management
and data processing to reduce dominating I/O overheads such
as system calls, data movement, and communication costs.

2. Design abstractions to reduce host and device in-
teractions. We design CISCOps, a novel approach to fuse
identical and nonidentical I/O and data processing opera-
tions. CISCOps aggregate a sequence of I/O and processing
operations and utilize device-CPUs to reduce data movement
and communication between the host and the storage. We
also explore an application-explicit and transparent approach
(without data processing).

3. Exploit in-storage compute for fine-grained crash
consistency and faster recovery. We design fine-grained
crash consistency, micro-transactions (MicroTx), which per-
sist all operations (including intermediate processing state)
and reduce data loss in case after a failure. MicroTx uses an
operational log and device-CPUs for automatic recovery by
completing unfinished CISCOps for faster recovery.

4. Manage in-storage resources for fairness and perfor-
mance efficiency across tenants. We design a completely
fair device-CPU and device-RAM scheduler (CFS) for fair-
ness and for avoiding starvation across tenants.

4.2 System Architecture
To support direct-I/O design, FusionFS designs a user-level

library (UserLib) and in-storage (StorageFS) components that
work in tandem to offload I/O and computation without com-
promising correctness, crash consistency, recovery, security,

Thread 2                               (File2 -> fd2) 
Op3 write(fd2, buf, size=1K) 
Op4 close(fd2)

Thread 1                               (File1 -> fd1) 
Op1* append-checksum-write(fd1, buf, size=4K)
Op2+   read-modify-write(fd1, buf, offset=30, size=4K) Application

OS Component

- Allocate DMA’able I/O 
command queue

- Generate Credential info 

UserLib

Converting POSIX I/O 
syscalls to CISC I/O opsPer-inode

I/O command 
queues

File1

Op1*

Op2+

Op3

Op4

File2

I/O op AutoMerge}

StorageFSFine-grained Journaling and Auto Recovery Compute Engine

I/O queue schedulerCredential Table

Figure 2: FusionFS High-level Design. Figure shows the high-level design
of FusionFS with the UserLib, the StorageFS, and the OS components. For
thread1, Op1 and Op2 show a CISCOp with data processing, whereas Op3
and Op4 show simple I/O. StorageFS shows the in-device structure with
durability, permission, and scheduling components.

and resource fairness. Figure 2 shows the high-level design
of FusionFS. Applications issue traditional POSIX I/O re-
quests or CISCOps adding them to an inode-queue. StorageFS
checks permission for each I/O request, dequeues, and sched-
ules for processing, but importantly also provides fine-grained
durability and recovery.
4.2.1 User and Device Components

We next discuss the details of user-level UserLib and in-
storage StorageFS layers.
UserLib. This is an untrusted per-process user library to
interface applications to the in-storage file system using host-
CPUs. Beyond supporting POSIX I/O through interception
and CISCOps, UserLib also sets up I/O queues, prepares re-
quests, and handles errors.

I/O Commands. For regular POSIX I/O, application
changes are not required, whereas CISCOps require some
changes to either use pre-defined UserLib CISCOps or con-
struct one. Table 2 shows select pre-defined Compute + I/O
and I/O-only CISCOps. In § 4.3, we discuss principles and
mechanics of constructing CISCOps and the limited support
for application-transparent I/O-only CISCOps.

inode-queue. To exploit modern NVMe’s 64K hard-
ware I/O queues and increase parallelism across files, we
use a dedicated per-file I/O queue, referred to as inode-queue.
The inode-queues buffer requests and intermediate data to
be processed by StorageFS. The queues are created using
a DMA’able memory region when opening a file [30, 44].
The OS maps the DMA regions, which can be accessed by
the host and the device layers. By default, each inode-queue
has 32 entries for inserting I/O commands and 2MB of data
buffers, but the number of entries is configurable depending
on host DRAM availability.
StorageFS. It is the heart of FusionFS design responsible
for traditional file system functionalities like metadata and
data management and permission control (§ 4.5). StorageFS
houses compute engine ( § 4.3), supports traditional and
fine-grained data and metadata journaling (§ 4.4) and re-
covery (4.4.1), and implements resource schedulers (§ 4.6).
StorageFS is designed for general-purpose device-CPUs (e.g.,
ARM CSD) [11] and implements simple in-memory and
on-disk filesystem structures such as a super-block, bitmap
blocks, inode blocks, and data blocks (see Figure 2). For in-

300    20th USENIX Conference on File and Storage Technologies USENIX Association



Type Ops. Sequence Overheads

Data move Syscall Comm. Resource

I/O-only open, read, write Hi Hi Med Lo
I/O-only open, read, close Med Hi Hi Lo
I/O-only write, fsync Med Hi Med Lo
I/O-only read, update, write Med Hi Hi Lo
Compute+I/O write, CRC, write Med Hi Hi Med
Compute+I/O read, CRC Med Med Med Med
Compute+I/O read, compress, write Hi Med Hi Hi
Compute+I/O read, encrypt, write Hi Med Med Hi

Table 2: Frequently used select I/O-only and I/O+Compute operation
sequences and their overheads. High, Medium, and Low indicate the
relative magnitude of overheads. The columns, Data move, Syscall, Comm.,
and Resource denote data movement, system call, communication between
host and device, and compute and memory usage, respectively.

storage computation, StorageFS parses through all operations
in a CISCOp vector, executes, and returns operation-specific
return codes. Internally, the StorageFS compute component
currently supports several data processing operations like
checksum, compression, encryption, and decryption, beyond
just parsing and sorting operations. To address the lack of
programmable hardware, StorageFS prototype is currently im-
plemented as a device driver with separate CPUs, memory re-
gions, and disk with carefully emulated hardware parameters.
We next discuss the details of each StorageFS component.

4.3 Operation Types and CISCOps Mechanics
We first discuss operation types to offload, followed by the

mechanics for offloading.
4.3.1 Operation Types

Applications generally access storage using (1) simple I/O
operations to store or read state, (2) issue a sequence of I/O
operations, or (3) access, process, and store data. The process-
ing could vary from operations like compression, encryption,
checksumming, or complex transformations that search, sort,
or even execute ML operations (e.g., add, multiply, XOR).
Reducing I/O overheads across all such operation types is
critical.
Offloading Simple I/O Operations. For basic POSIX
I/O, UserLib intercepts system calls and adds them to
inode-queues. We extend the NVMe commands to add new
operation codes for representing filesystem operations (e.g.,
read, write, open, close). After adding a request (command),
UserLib sets a doorbell for the StorageFS to start processing,
which sets the request’s commit flag after completion. All
blocking (e.g., read) and non-blocking (write) data plane oper-
ations are added to inode-queues, whereas metadata-intensive
operations (e.g., mkdir) use a separate global metadata I/O
queue. For error-prone operations like file and directory re-
name [12], FusionFS uses global file system locks.
CISCOp Operations. We next discuss UserLib support to
identify and aggregate identical and non-identical I/O and
data processing operations.
Identical and Non-identical I/O Operations. We observe
that in several applications, I/O operations are executed in
sequence or pairs. For example, Figure 3(a) shows a widely-
used NoSQL database and webserver sequence that opens,
writes, syncs, and closes the file when inserting values (i.e.,

open()->write()->sync()->close()) or when reading data [5].
The figure also shows overheads for each operation, which
includes system calls between application and the OS (S),
data movement (D), metadata movement (M) such as inode,
and host-storage communication (PCIe or memory bus) cost
(C). Note that the direct-access (DAX) filesystems for NVM
incur one less data copy compared to the block-level file sys-
tem. We observe several such sequences contributing to I/O
overheads as listed in Table 2. In contrast, CISCOps aggre-
gates and offloads such sequences to StorageFS reducing I/O
overheads (see Figure 3(b)).

I/O and Data Processing Operations. For supporting data
processing + I/O operations, as opposed to full application
redesign [14] for CSDs, we aim to reduce application changes
for organically supporting I/O and their related pre and post-
processing to reduce I/O overheads. Specifically, as shown
in Table 2, we observe that applications frequently fetch I/O
data to perform operations like checksum generation (CRC),
compression/decompression, encryption, search, sort, and
ML operation pairs (e.g., XOR, multiplication). For exam-
ple, as shown in the code snippet in Figure 3(c), NoSQL
persistent stores like LevelDB avoid expensive file commits
or propagation of corrupted data by adding CRC for integrity
check. After each file system append() system call, the CRC
is computed and appended to the actual data. This sequence
incurs 2 system calls, 4 data and metadata copies (2 for DAX
file systems) , and 2 PCIe operations in OS file systems (see
Figure 3(a)). The above sequence repeats for all data reads or
replication to other nodes to check data integrity. In contrast,
an append-CRC-write CISCOps offloaded to StorageFS signif-
icantly reduces I/O overheads to 1 data movement and a PCIe
operation without incurring system calls (see Figure 3(b)).
4.3.2 Mechanics for Application-explicit Support

With the explicit approach, applications can use CISCOps
pre-constructed by UserLib or construct custom CISCOps.
CISCOp Command Structure: Each CISCOp is a vector of
commands in an extended NVMe format [59] for supporting
multiple operations and added to inode-queue for processing.
For example, Figure 3(d) shows the code snippet for packing a
append-CRC-write CISCOp in LevelDB. Each CISCOp vector
element contains an operation code (opc), input and output
address to specify DMA’able address from which data must
be fetched or stored (in), I/O offset (slba), block count (nlb),
and return code (retcode), and a journal commit flag (commit).
The number of elements in the CISCOp is configurable, and
by default, can pack 32 operations to fit in a DMA-able page.
Furthermore, FusionFS could also combine multiple CISCOps
to batch operations.
Specifying Dependency. Applications or UserLib developers
can specify inter-dependencies across operations in a CISCOp.
For example, as shown in Figure 3(e), for the append-CRC-
write, the CRC depends on the input of previous append and
the bytes actually written to storage, which is unknown until
append completes. The input dependencies can be specified
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(a).  Sequence using Block-based and NVM filesystem

WriteRawBlock(data):

status = file->Append(data)

crc = crc32c::Value(data, size);

crc = crc32c::Extend(crc, trailer, 1);

EncodeFixed32(…crc32c::Mask(crc))

status = file->Append(Slice(trailer, size)

WriteRawBlock(data):

status = file->Append-CRC-Write(data)

nvme_cmd req

req.num_op = 3

req.iov[0].opc = nvme-cmd-append

req.iov[0].in = (uint64_t)p

req.iov[0].slba = 0

req.iov[0].nlb = count - chksm-size

req.iov[0].retcode = 0

req.iov[1].opc = nvme-cmd-chksm

req.iov[1].in = (uint64_t)p

req.iov[1].slba = 0

req.iov[1].nlb = desc.iov[0].retcode

req.iov[1].retcode = 0

req.iov[1].commit = 0

req.iov[2].opc = nvme_cmd_write

req.iov[2].in = MACRO_VEC_PREV

req.iov[2].slba = count - chksm_size

req.iov[2].nlb = desc.iov[1].retcode

req.iov[2].retcode = 0

(c) LevelDB CRC with OS FS

(d) With CISCops

(e) CISCops Request
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Figure 3: Comparison of I/O Overheads. (a) and (b) compare data movement (D), communication cost (C), and system call (S) using traditional storage (top)
and envisioned CISCOps design that bypasses OS (bottom); (c) and (d) show CRC (checksum) code sequence in vanilla LevelDB (top) and proposed (CISCOps);
(e) shows packing a CISCOps request. For NVM direct-access filesystems, the data copies are reduced to one per operation. Metadata caching could reduce I/O.

using the DMA address (e.g., req.iov[1].in = (uint64_t)p for
checksum input) and the bytes to process (req.iov[1].nlb =
desc.iov[0].retcode).
Concurrency and Ordering. FusionFS supports out-of-order
processing for concurrency by default (e.g., vectored writes
or combination of reads and writes without conflicts) as well
as in-order processing (e.g., append-CRC-write). To pre-
vent out-of-ordering, the CISCOp structure allows specifying
an "order" field to execute the operation sequentially (e.g.,
req.iov[1].order = MACRO_VEC_PREV), which are other-
wise parallelized in the presence of free device cores.
4.3.3 StorageFS Compute Engine

Inside the storage, StorageFS implements a generic parser
to disassemble CISCOps and either execute them with file
system logic for basic I/O or use the compute engine for data
processing. We have currently added new data processing
functionalities to the compute engine, which would require
firmware upgrade [53]. However, we will explore alternative
dynamic code injection techniques (e.g., eBPF [4]).
4.3.4 Partial Support for Automatic Offloading

FusionFS enables a partial support for transparently gen-
erating, merging, and offloading CISCOps for a group of I/O-
only operations without data processing, referred to as Au-
toMerge. This is useful when application changes are not
feasible. AutoMerge primarily reduces system calls, host-to-
device interaction, and overheads such as command gener-
ation, I/O queuing, and scheduling but not necessarily data
movement. AutoMerge can either merge non-dependent oper-
ations on the same file by different threads or asynchronous
operations. UserLib parses all pending operations in a file’s
inode-queue to generate CISCOps. For example, consider
multiple append-CRC-write to different blocks of the same
log file across threads or a sequence of asynchronous writes.
AutoMerge can aggregate two non-dependent operations – ap-
pend in a append-CRC-write with write in previous append-
CRC-write – to generate CISCOps. We study the benefits and
implications of AutoMerge in § 5.
Limitations. While our AutoMerge provides simple batch-
ing, it currently lacks support for offloading data processing
operations (a harder problem). Similarly, it is ineffective for

single-threaded applications with blocking I/O. We plan to
explore automatic data processing offloading (a harder chal-
lenge) and other limitations in our future work.

4.4 Supporting Durability and Fast Recovery
We next discuss the support for basic journaling and fine-

grained crash-consistency support for offloaded POSIX I/O
and CISCOps, respectively, followed by the support for auto-
matic recovery after failure by utilizing in-storage compute.
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Op1: (e.g.,) Append data 
Op2: (e.g.,) Checksum 
Op3: (e.g.,) Write checksum 

Figure 4: Micro-transaction (MicroTx) Design. Figure shows an example
of append-CRC-write.

4.4.1 Traditional Journaling
For POSIX I/O, StorageFS supports traditional REDO jour-

naling. The journal log-entry headers contain a unique trans-
action ID followed by the metadata log (with a pointer to
actual data) and a transaction commit bit. Before a transac-
tion commits, first the data is updated in place, followed by
metadata logging.

To support crash consistency for CISCOps, FusionFS first
provides an "all-or-nothing" macro-transaction (MacroTx),
which wraps an entire CISCOp into one transaction and re-
covers only if the entire CISCOp is committed (to the log)
before the failure. This simple approach resembles crash-
consistency support in today’s vectorized I/O. However, this
approach risks losing I/O data and computation state when
CISCOps do not complete.
4.4.2 Durability & Automatic Recovery with MicroTx

We overcome the limitations of MacroTx by designing
MicroTx that provides fine-grained durability of all I/O and
processing operations of a CISCOp, which we refer to as
micro-ops. Each micro-op can be independently committed
and recovered after a system failure. Figure 4 illustrates a
MicroTx structure with append-CRC-write, where a log-entry
for append, checksum, and write micro-ops are independently
committed. Each CISCOp log entry uses a bitmap in TxB to
represent the number of micro-ops (micro-op bitmaps) and
the address offset of log entries for each micro-op. TxB also
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contains a commit bitmap to mark and track committed micro-
ops, and TxE represents a bit to indicate the completion of
an entire CISCOp. Because some compute operations (e.g.,
compression) could have a state larger than the available log
entry size (e.g., 48 bytes by default), users can configure log-
entry size during filesystem mount. We will explore dynamic
log entry sizes in our future work.

Next, we utilize MicroTx and device-CPUs to design an
automatic recovery mechanism and redo incomplete CISCOps.
This is in contrast to current OS file systems that rely on
applications to redo failed operations, which increases recov-
ery time and developer efforts. For auto-recovery (optionally
enabled during filesystem mount), MicroTx additionally uses
operational log (shown in Figure 4) to write CISCOps and
the input data similar to data logging before processing a
request. After logging, a "commit" flag is set and used as
a receipt by an application. In case of a failure, MicroTx’s
recovery first recovers all committed micro-ops, followed
by recovering CISCOp and input data using the operational
log and then executes all incomplete micro-ops in CISCOps.
In Table 10c, we show the benefits of automatic recovery
in reducing recovery and restart time after a system crash
or failure by reducing I/O costs. Importantly, MicroTx and
automatic recovery could reduce application/developer effort
to check and redo incomplete I/O operations.
4.4.3 Error Handling

To handle errors (e.g., insufficient disk space), for
application-explicit CISCOps, when using an all-or-nothing
MacroTx, FusionFS aborts the entire sequence and also up-
dates the return code for the operation that caused the failure.
In contrast, when using MicroTx, all operations starting from
the erroneous micro-op are aborted with an error return code.
However, FusionFS could potentially execute all subsequent
non-dependent operations in the sequence. For example, in
a CISCOp with 10 writes, a large write (say, the 6th write)
could fail due to the lack of disk space, but subsequent smaller
writes (7 to 10) could succeed. For the transparent AutoMerge,
because applications expect independent execution of micro-
ops, we allow execution of all I/O operations.

Potential (infrequent) errors could occur during automatic
recovery (say after a system crash and restart). With MicroTx
and operational log enabled, we retain the journaled micro-
ops, abort the erroneous operation, and use operational log
to report the failure with file name, operation type, and error
type, which is later checked by UserLib to identify errors.
Beyond our current design, a careful exploration of opportu-
nities to reduce CISCOp aborts and failures, and correctness
issues is critical.

4.5 Permission Checking and Data Sharing
We aim to match the security guarantees of OS file systems

for both POSIX I/O and CISCOps by satisfying the following
assertions: (1) only processes with the right permission can
access a file or directory; (2) the file system metadata is

updated only by a trusted entity; (3) for inter-processes file
sharing, only legal writers can update the data.

FusionFS achieves these goals by utilizing trusted OS but
without compromising direct I/O. First, the OS shares creden-
tial information of a process with StorageFS during process
initialization, and StorageFS maintains a per-process creden-
tial table similar to prior designs [44]. Second, inode-queues
and their DMA’able memory regions (e.g., when opening
files) are created by the OS only when requested by a process
with the right credentials. Third, access to inode-queues (i.e.,
DMA’able memory pages) is protected by virtual memory
protection, preventing illegal access by a malicious process.
Finally, the OS shares credentials with StorageFS. For all
requests in the inode-queue, StorageFS checks permission
for operations packed in a CISCOp by comparing against the
credential list before processing, thereby avoiding partial exe-
cution. For example, in a read-compress-write CISCOp issued
to a read-only file, FusionFS’ permission manager does not
allow partial CISCOps execution.

Data Sharing. Supporting direct-I/O via user-level library
and inode-queues complicates secure inter-processes file shar-
ing. When a file is shared and accessed across readers and
writers, the inode-queues used for dispatching requests are
also shared. Unfortunately, a reader process (with read-only
permission) could accidentally or maliciously corrupt I/O or
data processing requests issued by writers. To overcome these
complexities, we employ the following design. First, all legal
writers (without readers) can concurrently access and update
a file, similar to OS file systems. Second, similar to KernFS
and UserFS designs, applications are responsible for ordering
updates to an inode-queue (e.g., using lease-based locks [35]).
However, in the presence of readers (a file opened with read-
only permission), to prevent corruption of writer requests in
the inode-queue, FusionFS detects file opened with read-only
permission and delegates the trusted OS to add I/O commands
from both writers and readers after permission checks.

4.6 Resource Management
We introduce in-storage compute and memory-centric

scheduling to enable in-storage resource fairness across ten-
ants, avoid starvation, and improve performance efficiency.

RB-Tree: inode-queues
sorted by virtime

OpA
1

OpB

Pick left-most node

...Dispatch IO
request

2

3
Update virtime and
rebalance RB-Tree

Figure 5: FusionFS scheduler high-level overview

4.6.1 FusionFS Compute-Centric Scheduling
The number of application threads that issue POSIX I/O

and CISCOps could exceed available CSD compute cores.
Specifically, compute-intensive data processing (e.g., check-
sum, compression) will increase in-storage compute use, lead-
ing to workload imbalance, starvation, and impacting the
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performance of POSIX I/O across tenants. Unfortunately,
conventional I/O schedulers and prior in-storage schedulers
are I/O centric (e.g., Linux blk-queue) and fail to consider
device-CPU usage.
In-storage CFS Compute Scheduler. In FusionFS, we take
inspiration from the OS CFS CPU scheduler and explore its
use for device-CPU scheduling [1]. We account for I/O and
data processing operations that use device-CPUs. Figure 5
provides a high-level overview. At a high level, for CPU
fairness, StorageFS scheduler selects and dispatches requests
from inode-queues (of processes) with the least CPU usage
(i.e., virtual CPU runtime). However, unlike OS schedulers,
in-storage StorageFS lacks process state, which makes book-
keeping challenging, specifically for keeping track of virtual
runtime (virtime) usage of device-CPUs by each process. We
overcome this by using the inode-queues of an application
that buffers I/O requests to track and bookkeep device-CPU
usage. For each I/O or data processing request dispatched
from an inode-queue, FusionFS increments the virtime, and
selecting a request from an inode-queue with the least virtime.

Internally the scheduler maintains a global red-black tree
(RB-tree) that stores reference to inode-queues, sorted by
their virtime (see Figure 5). Initially (after mount), the sched-
uler uses a round-robin approach to pick an inode-queue, but
once requests are dispatched, their virtime are updated, and
the tree is rebalanced. Note that the scheduler always dis-
patches requests from the left-most RB-tree node that points
to inode-queue with the least virtime. While we currently im-
plement a simple RB-tree, we will explore alternative device-
optimized (i.e., firmware) data structures [47].
Fairness Across Tenants. We employ a two-pronged ap-
proach to prevent a greedy process (tenant) from increas-
ing compute share by increasing inode-queues and starving
other tenants. First, the trusted OS tags each inode-queue
with a process ID, and StorageFS maintains the overall vir-
time of each process using the sum of all its inode-queue’s
virtime. The scheduler always selects a request from an
inode-queue with the smallest process-level and inode-queue-
level virtime. Second, an administrator can limit the number
of inode-queues per process.
Request Termination and Preemption. To handle misbe-
having or long-running requests with large inputs, StorageFS
first terminates the request for avoiding starvation, then sets er-
ror codes for the request, finally clearing the transaction states
(logs). Our ongoing work is exploring request preemption,
which requires committing intermediate state of CISCOps us-
ing MicroTx and switching to other operations. However,
preemption introduces correctness challenges. For example,
preempting an append-compress-write after the compress op-
eration could lead to incorrect read operations on the same
file other threads.
4.6.2 Memory-Centric Scheduling

Beyond device-CPUs, efficient management of device-
RAM is critical for fairness. Although modern CSDs are

equipped with 4-16GB of memory, a combination of in-
storage data processing, filesystem operations, and FTL’s
logical to physical block translations could increase memory
contention and starvation across clients [16, 43]. For example,
offloading memory-hungry file compression with large inputs
could starve or block other CISCOps (e.g., append-CRC-write)
or POSIX I/O from other tenants even when free compute
cores are available.

We overcome the above challenges by extending the CFS to
share device memory capacity efficiently. First, we implement
a simple slab allocator for allocation and deallocation. Next,
we enhance the CFS scheduler with memory usage (memuse)
accounting for each process and inode-queues and maintain-
ing a memory-specific RB-tree with per-inode memuse. When
device CPUs are not a bottleneck, the scheduler selects a
process and inode-queue with the least memuse; this avoids
blocking or failing other requests. Finally, in § 5, we evaluate
the benefits of FusionFS’ memory-centric scheduling with
the multitenant workload. An ideal scheduler must provide
multi-resource fairness across compute, memory, and other re-
sources (e.g., using Dominant Resource Fairness [23]), which
we will explore in our future work.

4.7 Emulation and Application Changes.
Due to a lack of a programmable storage device, FusionFS

is implemented as a device driver. We us Intel Optane Mem-
ory [6] for storage similar to prior work [30, 44, 26]. We
emulate device-CPU and device-RAM by using dedicated
CPUs and memory managed by StorageFS. To emulate PCIe
latency, we add 900-1000ns delays [40] for all interactions
between the host and the device. Finally, the storage and the
device-RAM bandwidth could vary across vendors. To un-
derstand the implications, we use DRAM thermal throttling
and study the impact [32, 24]. Note that bandwidth throttling
works only for DRAM technology and in older Intel Haswell
architectures. Therefore, we use a multi-socket DRAM-based
system to emulate and vary memory and storage bandwidths.

We built FusionFS by extending CrossFS’ direct-I/O sup-
port and adding CISCOps, fine-grained journaling, fast and
automatic recovery, efficient and fair in-storage resource man-
agement, and optimizations to improve device-compute scal-
ability. UserLib and StorageFS components add 3K and 11K
LOC, and the data processing operations like compression,
checksum, and decryption functions add 2.4K lines of code.
Finally, to use CISCOps, LevelDB requires < 38 LOC changes
replacing the CRC logic, whereas file encryption and snappy
compression require < 21 LOC changes.

5 Evaluation
Our evaluation answers the following questions:
• How effective is FusionFS and its CISCOps abstraction

in reducing I/O overheads across microbenchmarks and
macrobenchmarks?
• How sensitive are FusionFS gains towards device-CPU

frequency and memory and storage bandwidth?

304    20th USENIX Conference on File and Storage Technologies USENIX Association



CPU Intel Xeon(R) Gold 3.1GHz, dual-socket, 64-core
DRAM 96GB DDR4 2666 MT/s
NVM 256GB Intel Optane DC PMM (2*128GB)

Device-CPU 4-cores, Fast (2.7GHz) and Slow (1.2GHz) CPUs
Device-RAM 2GB dedicated for device operations
PCIe Latency 900us

Table 3: Experiment Platform and Setup.The device-CPUs and device-
RAM are emulated through DVFS and thermal throttling.

CISCOps ext4-DAX ext4-DAX-CISCOps FusionFS
append-CRC-write 0.85 GB/s 1.18 GB/s 2.81 GB/s
read-modify-write 0.75 GB/s 0.84 GB/s 3.43 GB/s

Table 4: CISCOps under traditional ext4 file systems.

• Is CISCOps effective for traditional OS filesystems?
• Can MicroTx and auto-recovery improve durability and

accelerate recovery?
• How effective is the CFS-based compute and memory

scheduler in improving resource fairness across tenants?
• What is the overall impact of FusionFS on real-world

applications?

5.1 Experimental Setup and Methodology
Due to the lack of programmable CSD, we carefully em-

ulate our FusionFS with the parameters shown in Table 3.
Our Optane NVM storage provides 8 GB/sec read and 3.8
GB/sec write bandwidth. We compare. For StorageFS pro-
cessing, we reserve 4 CPUs [50]. We also study the impact
of varying CPU speeds using fast (2.7GHz and default) and
slow (1.2GHz) CPUs resembling ARM-based CSDs [11].
For device-RAM, we reserve 2 GB memory managed by
StorageFS. We study the impact of device-RAM bandwidth
using a 64-core CloudLab machine. For PCIe latency, we add
900ns [40] delay before a request is processed.
Methodology. We compare FusionFS against the state-of-
the-art KernFS – ext4-DAX [58] and NOVA [61], hybrid
UserFS – SplitFS [28], and DeviceFS – CrossFS [44]. Note
that some file systems do not support macro-benchmarks and
applications evaluated in this paper. The throughput shown
for workloads (in GB/s) combines data (payload) I/O and
processing times.

5.2 Benchmark Analysis
We evaluate microbenchmarks and Filebench macrobench-

mark [56] to understand CISCOps benefits and implications.
5.2.1 Microbenchmark

We evaluate I/O data and metadata intensive file-open-
write-close in Figure 6a, I/O and data processing intensive
append-CRC-write in Figure 6b, and data plane heavy read-
modify-write benchmark in Figure 6c. The file-open-write-
close is modeled after NoSQL databases, file-servers, and
web-servers that operate on several files. The workload opens
a file, performs a 2MB write, and closes the file, repeating
this for 10K files. Next, the append-CRC-write benchmark
(as discussed extensively in this paper) is used for providing
integrity in NoSQL databases [5, 3], key-value stores [10],
and others. Each thread appends a 4KB block, computes
the checksum, and writes the checksum on a 12GB file. The
data plane-intensive read-modify-write mimics several widely-

Workload Syscall I/O Direct-I/O Direct-I/O +
CISCOps

Direct-I/O +
CISCOps +
CFS-sched

append-CRC-write 1.15 GB/s 2.23 GB/s 2.74 GB/s 2.81 GB/s
read-modify-write 0.75 GB/s 1.91 GB/s 2.85 GB/s 2.98 GB/s

Table 5: Breakdown of FusionFS incremental gains.
# of threads 1 2 8 16
ext4-DAX 0.26 GB/s 0.66 GB/s 0.99 GB/s 0.85 GB/s

FusionFS-AutoMerge 0.26 GB/s 0.93 GB/s 1.66 GB/s 2.70 GB/s
FusionFS 0.27 GB/s 0.95 GB/s 1.94 GB/s 2.81 GB/s

FusionFS-Batch 0.29 GB/s 1.05 GB/s 2.06 GB/s 2.98 GB/s

Table 6: FusionFS Optimizations. (append-CRC-write).

used applications [5, 3, 10, 56] by reading a random 4KB
block, modifying with random text, and writing back data
blocks on a 12GB file.
Methodology. We vary the number of benchmark threads
in the x-axis, and the y-axis shows the throughput (GB/sec),
and the threads use separate files. We compare ext4-DAX,
NOVA, SplitFS, CrossFS, and FusionFS. Additionally, to un-
derstand the impact of slower device-CPUs, we also evaluate
in-storage StorageFS to use 1.2GHz device-CPUs (CrossFS-
slow-device-cpu and FusionFS-slow-device-cpu).
Observation. As shown in Figure 6a, in KernFS designs
ext4-DAX and NOVA, each I/O operation incurs system call,
data copy, and the device communication latencies, resulting
in high I/O overheads. However, NOVA performs better
than ext4-DAX due to its log-structured design and per-CPU
(multicore-friendly) block management. Next, SplitFS, a
hybrid UserFS, memory-maps staging files to userspace and
performs load and store operations. However, SplitFS uses
the OS for metadata operations. Specifically, we observe
increased kernel overheads that increase with workload size
and thread count from metadata operations, internal data
copies, and block lookup and pre-paging (MAP_POPULATE)
cost for the userspace mmap’ed files that stage I/O.

In contrast, in-storage CrossFS bypasses the OS and avoids
system calls but suffers from data copies between the host
and the device (for read and write I/O), PCIe latency (hard-
ware), and the software cost to allocate, enqueue, and dequeue
requests. The blocking reads() also stall the host CPUs.

Finally, FusionFS merges the open->write->close into a
file-open-write-close CISCOps, avoids system calls, reduces a
data copy between the application and the OS, and the PCIe
latency, all leading to up to 4.58X gains over ext4-DAX,
6.12X over SplitFS, and 1.65X over CrossFS. Table 5 shows
the incremental benefits of FusionFS’ design optimizations.

Next, as shown in Figure 6b, for append-CRC-write, simi-
lar to file-open-write-close, prior approaches lack in-storage
compute capability for CRC, resulting in two system calls
(except CrossFS) and a data copy. In contrast, FusionFS im-
proves performance over ext4-DAX, SplitFS, and CrossFS
by up to 3.3X, 6.1X, and 1.3X, respectively. Finally, for
read-modify-write, FusionFS outperforms all other systems.
Device Compute Speed. In Figure 6, we show FusionFS-
slow-device-cpu and CrossFS-slow-device-cpu configura-
tions using slower device compute by throttling them to
1.2GHz. FusionFS outperforms CrossFS and, importantly,
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Figure 6: Microbenchmarks. Shows aggregated throughput. Threads operate on separate files. CrossFS and FusionFS use 4 device cores.
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Figure 7: Sensitivity to Device Bandwidth. The x-axis shows the device
storage bandwidth. For CrossFS and FusionFS, we show results when using
slow device memory throttled to same bandwidth as storage.
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Figure 8: Macrobenchmark. (a) shows the Filebench performance with
three workloads. (b) varies the number of threads when encrypting target files

other filesystems that use 2.5× faster host CPUs, highlighting
the importance and benefits of reducing I/O overheads.
Impact of Memory and Storage Bandwidth. The band-
width of device storage and device-RAM could vary across
vendors. To understand the sensitivity, in Figure 7, we use
DRAM thermal throttling to study the impact. As discussed
earlier, we use a 64-core dual-socket CloudLab machine [17]
that uses DRAM as storage. In Figure 7, we vary the storage
bandwidth from 1GB to 30GB (maximum without throttling)
along the x-axis. The bars CrossFS-slow-device-memory and
FusionFS-slow-device-memory represent the case where both
CrossFS and FusionFS use slower but the same device-RAM
and storage bandwidth by pinning them to a slower NUMA
socket.

Observation. FusionFS consistently delivers higher gains.
For example, when varying the storage bandwidth without
slower device-RAM results in 1.35X and 3.09X gains over
CrossFS and ext4-DAX. Next, when the device-RAM band-
width is also reduced, FusionFS’ throughput reduces but is
still higher than other systems. The results show that dominat-
ing I/O overheads add more constraints for storage-intensive
workloads, and reducing them is critical.
Effectiveness of CISCOps for ext4-DAX. To understand the
effectiveness of CISCOps as a general principle for all file
systems, we extend ext4-DAX to support append-CRC-write
and read-modify-write CISCOps and compare the throughput
against vanilla ext4-DAX and FusionFS in Table 4. The
vanilla ext4-DAX incur two system calls and two data moves
(see Figure 3a) for both workloads. Next, ext4-DAX-CISCOps
reduces system calls by half with one data copy leading to
better throughput. In contrast, FusionFS eliminates all system
calls and one data copy leading to 4.08X higher throughput.
Optimizations: Application Explicit Batching and Trans-
parent CISCOps. First, FusionFS can batch multiple, non-
dependent CISCOps as a vector to eliminate data copy, system
call, and other software overheads, such as enqueuing and de-
queueing requests. The number of requests to batch depends

on the available DMA memory used as a data buffer for each
inode-queue (a configurable parameter in FusionFS). Table 6
shows the performance for explicitly batching 10 CISCOps
(FusionFS-Batch) and varying the number of threads. As
shown, FusionFS with batching shows 5.02X and 1.45X
gains, respectively, compared to not batching.

Next, as discussed in §4.3.4, FusionFS provides partial
support for transparently generating and offloading CISCOps
by aggregating non-dependent and pending I/O requests in
an inode-queue, mainly for asynchronous I/O or requests
across multiple threads but without offloading data processing.
As shown in Table 6, FusionFS-AutoMerge provides gains
over ext4-DAX for higher thread counts, but as expected, the
application-explicit approach outperforms all cases.
5.2.2 Macrobenchmark - Filebench

To validate the microbenchmark gains, we next evaluate
FusionFS for the widely-used Filebench [56] in Figure 8a.
We use the fileserver, the webserver, and the varmail work-
loads. The fileserver opens a file, randomly appends 16K
bytes, and closes the file. In FusionFS, these operations are
aggregated to one file-open-write-close and offloaded using
a temporary file’s inode-queue. The webserver opens a file,
reads the whole file, and closes it, which is aggregated to
open-read-close. Finally, varmail issues a combination of file
create, write, sync, and close operations and open file, read,
and close file operations, which are aggregated to open-write-
close and open-read-close, respectively. The I/O sequences
are repeated on thousands of files by 16 worker threads. The
workloads are metadata-heavy issuing file create, delete, di-
rectory update operations that contribute to 69%, 63%, and
64% of the overall I/O in the varmail, the fileserver, and the
webserver workloads, respectively. FusionFS and CrossFS
outperform other file systems by eliminating system calls,
reducing data movement, communication, and software costs
such as queuing delays, delivering 36% gains for webserver
workload over ext4-DAX. Furthermore, despite NOVA’s mul-
ticore parallelism friendly design, reducing I/O overheads is
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Figure 9: Scheduler. (a) shows the normalized throughput (THP) for each workload relative to no-sharing of device-CPU resources. (b) shows the throughput
factor relative to the no-sharing of device-memory resources. The device memory budget is set to 2GB. (c) compares CPU scheduling against CrossFS.

critical, as showcased by FusionFS-slow-device-cpu gains.
5.2.3 Macrobenchmark - File Encryption

We next study FusionFS on widely used Linux encryption
and decryption service, Cryptsetup [2]), which is used by sev-
eral applications (e.g., OpenSSL [8]). Cryptsetup uses widely-
used AES-128 [39] symmetric block cipher to encrypt files.
The application threads read data from a 4GB file, encrypt,
and write back the encrypted data. In Figure 8b’s x-axis, we
vary the application’s thread count. For FusionFS, we replace
the read, encrypt, write sequence with read-encrypt-write
CISCOps. FusionFS, by aggregating operations, reduces I/O
cost and outperforms its counterparts achieving up to 2.48X
gains over NOVA.

5.3 Crash Consistency and Recovery
We next study FusionFS’ crash consistency and recovery

capabilities. We use (1) a append-CRC-write workload and
(2) a vector-write (ten writes) benchmark. For both, we in-
ject failures at different points to test durability, as shown in
Table 10a. For the append-CRC-write, we add three failure
states (F1, F2, and F3), whereas for the vectored write, we in-
ject a failure before any writes (F4), a failure between writes
4 and 5 (F5), and a failure after all the writes complete (F6).
In Table 10b, we show crash-consistency correctness of com-
mitted and uncommitted operations for different file systems.
Note that FusionFS offers the basic all-or-nothing (MacroTx),
and an optional (and optimistic) auto-recovery, AutoRec that
uses MicroTx and operational log for fast recovery.

First, as shown in Table 10a, for the append-CRC-write,
for the case when the failure happens before append commits
(F1), ext4-DAX, NOVA, SplitFS, CrossFS, and FusionFS’s
MacroTx provide crash consistency excluding the uncommit-
ted append (C). In contrast, FusionFS’s AutoRec provides
operational logging; hence during restart, it can recover and
re-execute append-CRC-write to completion if a valid op-
erational log entry exists, as indicated by the (C/R) state.
Similarly, for a failure after checksum (F2), AutoRec recov-
ers both append and checksum’s state from MicroTx, and
finishes writing, providing better recoverability after failure.
Next, F4-F6 shows the failure points for the vectored 4KB
write workload. When a failure occurs at F5 (partial writes
of a vector), all file system approaches, excluding FusionFS’
AutoRec, do not recover due to their all-or-nothing approach
restoring the file system to a consistent state. In contrast,
AutoRec uses MicroTx with fine-grained commits, recovers

partially completed writes in a vector (C/R), and finishes the
vectored write.
Recovery Time. To study the impact on recovery time,
in Table 10c, we run the append-CRC-write workload with
16 threads that issue 16MB appends and inject failures at
crash points F1 (before append) and F2 (after checksum).
For ext4-DAX without data atomicity, applications must re-
execute the entire operation sequence and incur system calls
and data movement costs, also increasing recovery time. In
contrast, NOVA and SplitFS provide atomic appends. We
assume applications when using NOVA file system keep a
record of appends and only re-execute checksum and write
operations during the restart. This reduces data movement
and system call costs. Next, MacroTx must re-execute the
entire sequence, but offloading as CISCOps reduces cost. Fi-
nally, AutoRec uses MicroTx to automatically recover state
at F1 and F2 and uses the operational log to re-execute and
complete the CISCOp without application interaction. Conse-
quently, this provides up to 2.65X gains over ext4-DAX.
Latency Impact. To understand the performance impact of
AutoRec, in Table 10d, we compare the average latency of
append-CRC-write and vector-write. First, MacroTx reduces
the average latency of all operations, including a substan-
tial reduction for vectored writes by reducing I/O overheads.
Next, MicroTx provides fine-grained durability (i.e., commit
for each operation of a CISCOp), but the latency increase
over MacroTx is negligible because it reuses the same journal
blocks, reducing the block allocation cost. In contrast, the op-
tional AutoRec’s operational logging with request commands
and input, marginally increases the latency.

5.4 Device Compute and Memory Fairness
We next evaluate the effectiveness of FusionFS CFS-

based scheduling in providing storage compute and mem-
ory fairness across tenants using workloads that are bottle-
necked by (a) device-CPU and (b) device-RAM. We con-
sider I/O intensive random write-only benchmark, compute-
intensive append-CRC-write, and compute + memory-
intensive read-compress-write workloads. We compare
FusionFS CFS schedulers against round-robin I/O scheduler
(RR-scheduler) as proposed in recent studies [44].
Device Compute + I/O Scheduling We first analyze the
effectiveness of FusionFS’s compute-centric CFS by co-
running append-CRC-write with I/O-intensive write-only
workload performing 4KB writes. In Figure 9a, the x-axis
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CISCOps Crash Condition

append-CRC-write Before append completes (F1), after checksum
calculation (F2), after checksum write (F3)

vector-write (10 writes) before first write completes (F4), between writes
4 and 5 (F5), after all writes complete (F6)

(a) CISCOps Failure (F) Condition.

Systems Crash No.
F1 F2 F3 F4 F5 F6

ext4-DAX, NOVA, SplitFS, CrossFS C C C/R C C C/R
FusionFS-MacroTx C C C/R C C C/R
FusionFS-AutoRec C/R C/R C/R C/R C/R C/R

(b) Consistency (C) and Recovery (R) after crash. C and R denotes
successful crash-consistency and recovery after failure.

No. ext4-DAX NOVA SplitFS CrossFS MacroTx AutoRec
F1 75.5 55.6 23.9 43.7 30.4 28.5
F2 74.3 55.1 24.6 41.3 29.4 8.3

(c) Recovery time (ms) append-CRC-write running 16 threads
with 16MB I/O size.

Operation ext4-DAX NOVA SplitFS CrossFS MacroTx AutoRec
append-CRC-write 18.4 17.3 16.5 16.9 15.6 23.4
vector-write 44.6 41.1 35.3 39.1 29.2 46.6

(d) Average latency (µs) for each CISCOp.
Figure 10: Crash consistency and Fast Recovery.
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Figure 11: LevelDB Evaluation. (a) shows YCSB benchmark result, (b) and (c) show db_bench benchmark results, (d) shows LevelDB Recovery benchmark
result. The X-axis is the memtable size, Y-axis is the recovery time in milliseconds.
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(b) Sensitivity to Device Bandwidth
Figure 12: Snappy Compression Throughput. (a) varies file size and use
16 threads and 100K files. (b) varies storage bandwidth and use 16 threads,
100K files and 2MB each file.

varies application thread count for all workloads, the y-axis
shows normalized throughput, and errors lines on the bars
show max and min throughput variation across threads. The
application threads operate on separate files. Further, we also
compare the performance against the state-of-the-art CrossFS
with round-robin scheduling in Figure 9c.
Observations. First, when using the baseline round-robin
RR-scheduler, StorageFS picks a request from either the
inode-queues of the append-CRC-write or the write-only
workloads and dispatches them for processing. When us-
ing RR-scheduler, append-CRC-write-RR with higher com-
pute needs could unfairly delay or starve I/O-intensive write-
only-RR requiring short bursts of CPU for executing the file
system logic, journals, and checkpointing; this impacts the
throughput. In contrast, FusionFS’ CFS scheduler accounts
for both workloads’ virtual device CPU usage time, equally
prioritizes the write-only and the append-CRC-write work-
loads, consequently improving the throughput of write-only-
CFScpu workload by 1.34X. The throughput of append-CRC-
write-CFScpu reduces marginally. Finally, our CFS scheduler
achieves higher gains over CrossFS for 8 and 16 thread con-
figurations.
Memory-based Scheduling To understand the effectiveness
of device memory-centric scheduling, we study capacity-
intensive read-compress-write (shown as Compress-Write)
co-scheduled with append-CRC-write workloads in Figure 9b.

We limit the device-RAM budget for in-storage process-
ing to 2GB. We compare append-CRC-write-CFScpu and
compress-write-CFScpu against append-CRC-write-CFSmm,
and compress-write-CFSmm scheduler that treats memory
capacity as a first-class citizen towards CISCOps scheduling.
Observations. The CFS CPU scheduler lacks memory ca-
pacity awareness. Consequently, the memory-intensive com-
pression workload often stalls append-CRC-write despite the
availability of device-CPUs. Moreover, stalling leads to side-
effects such as frequent polling to check for free device mem-
ory availability. In contrast, FusionFS’s CFS enables fairness
based on each workload’s memory usage, thereby equally pri-
oritizing append-CRC-write and read-compress-write work-
loads. As shown, append-CRC-write-CFSmm’s through-
put improves by 1.76X, whereas compress-write-CFSmm’s
throughput only reduces by 15%.

5.5 Real-World Applications
We next study the benefits of FusionFS for real-world appli-

cations, LevelDB [7] and Snappy Compression [19]. Beyond
performance, we also explore recovery and restart perfor-
mance through simple changes to LevelDB’s recovery and
restart code.

For LevelDB, we modify the append->checksum->write
sequence designed to avoid frequent commits (fsync) for SST
files and WAL and replace them with append-CRC-write
CISCOps. Similarly, we offload read operation using read-
checksum. We evaluate the random write workload in Fig-
ure 11c and the random read workload in Figure 11b using
the widely-used db_bench for 1 million key-value pairs and
16 application threads. The value size is varied from 4KB
to 128KB. Note that recent LevelDB versions use 64K in-
ternal buffer for smaller appends. Further, we also evaluate
YCSB [18] cloud benchmark using workloads A-F with vary-
ing read/write ratios issued with Zipfian distribution [31].
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Observations. First, FusionFS provides considerable gains
for both random write and read workloads. For random writes,
smaller appends in append-CRC-write (e.g., 4K) are buffered,
resulting in one system call instead of two calls for the larger
values (64K). FusionFS gains stem from a combination of re-
duced system call, data movement, and communication costs.
Offloading CRC to the device helps in the better utilization
of host-CPUs for other work across application threads. We
also observe that, in contrast to CrossFS, FusionFS CFS is
more effective in multiplexing 4 device cores compared to
CrossFS, which uses linked lists to schedule requests. For ran-
dom reads, beyond offloading CRC to the device-CPUs and
efficient scheduling, FusionFS reads only data without CRC
bytes. In summary, FusionFS achieves gains between 1.23X-
2.23X and 1.81X- 2.51X, respectively, over ext4-DAX.

Next, YCSB uses Zipfian access pattern, and therefore,
the application-level caching is beneficial for all approaches.
Despite caching, FusionFS provides high gains for write-
intensive C, D, and F workloads. Furthermore, we believe
adding more CISCOps to other parts of the application (e.g.,
SST compaction) [14] would further increase the gains.
Restarts using Application-Customized CISCOps. We
next study the benefits of application-customized CISCOps in
reducing restart cost using LevelDB. We observe that LSMs
such as LevelDB [5], and others (e.g., Redis [10]), persist
in-memory state to a write-ahead log (WAL) before updating
the data file (e.g., SST files). LevelDB reads and checks the
integrity of key-value pairs during restarts using the checksum
and then sorts and writes them to disk files (SST files). All of
these operations consume high I/O costs and data movement.
Notably, the restart cost increases with the memory buffer
(i.e., memtable size) and the WAL size.
Observations. Figure 11d shows the recovery cost for all
prior systems, FusionFS (without application-customized
restart), and FusionFS-app-recover with customized recovery.
FusionFS offloads just the read-checksum achieving up to
1.17X faster restarts. In contrast, for FusionFS-app-recover,
we reduce restart costs by enabling developers to construct
and offload a custom read-checksum-sort-write CISCOps. For
each key-value pair, the offloaded operation validates check-
sum, sorts them using a RB-tree in StorageFS, and writes
them directly to the SST file. This results in up to 2.69X and
3.58X faster recovery over FusionFS and ext4-DAX, respec-
tively.
Snappy Compression. Next, we evaluate FusionFS on the
widely-used snappy file compression [19]. Figure 12a shows
results for compressing 100K files using 16 threads. We
vary the file sizes along the x-axis, and the y-axis shows the
throughput in terms of bytes compressed. For FusionFS, we
add a open-read-compress-write CISCOps.
Observations. First, we observe that NOVA performs well
with its multi-core friendly structures and log-structured file
system. Second, SplitFS avoids system calls but suffers
from high kernel activity and pre-paging cost for staged

mmap() files when opening 100K files. Third, CrossFS lacks
CISCOps and incurs higher overhead from creating file de-
scriptor queues and data movement. In contrast, FusionFS
avoids data copy overheads by aggregating I/O operations and
offloading compression to device-CPUs resulting in 1.63X
and 1.67X gains over ext4DAX and NOVA, respectively.
However, for large 4MB files, the high compression cost dom-
inates I/O costs, thereby reducing throughput for all cases.
Sensitivity to Device-CPU Speeds. We evaluate LevelDB
(in Figure 11) and snappy compression (in Figure 12a) using
FusionFS and CrossFS that use slower device-CPU (slow-
device-cpu). Despite using slower CPUs, FusionFS gains
significantly over other designs, specifically for I/O-intensive
workloads. For example, LevelDB’s FusionFS-slow-device-
cpu provides 1.79X gains over ext4-DAX.
Sensitivity to Storage and Device Memory Bandwidth.
Finally, in Figure 12b, we study the impact of device-RAM
and storage bandwidth for memory and I/O-intensive snappy
compression by throttling memory on a dual-socket Cloud-
Lab machine that uses DRAM for storage. In the x-axis, we
vary the storage bandwidth from 1GB/s to 30GB/s, and the
values 8GB and 16GB emulate the bandwidth of PCIe Gen4
and Gen5 SSDs [9]. Further, for CrossFS and FusionFS, we
also study the impact of memory bandwidth (CrossFS-slow-
device-memory and FusionFS-slow-device-memory) and the
impact of slow CPU and memory bandwidth (FusionFS-slow-
device-memory-and-cpu).
Observations. For all storage bandwidths, FusionFS pro-
vides considerable gains. For extremely low device-memory
bandwidth (say, 1GB), FusionFS throughput is similar to
KernFS and UserFS that use faster host DRAM. However,
real devices are expected to have higher bandwidth (8GB
and above) [11, 41], for which FusionFS shows considerable
gains.

6 Conclusion
We designed and evaluated FusionFS, an in-storage

firmware design that combines file system and data process-
ing capabilities in modern CSDs. To reduce the impact of
system calls, data copy, and other software and hardware over-
heads, we introduced CISCOps, which fuses multiple I/O and
compute operations and offloads them to storage. Evaluation
of FusionFS with several benchmarks and applications show
significant performance benefits.
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Abstract
Modern datacenters prefer one single filesystem instance that
spans the entire datacenter and supports billions of files. The
maintenance of filesystem metadata in such scenarios faces
unique challenges, including load balancing while preserving
locality, long path resolution, and near-root hotspots.

To solve these challenges, we propose INFINIFS, an effi-
cient metadata service for extremely large-scale distributed
filesystems. It includes three key techniques. First, INFINIFS
decouples the access and content metadata of directories,
so that the directory tree can be partitioned with both meta-
data locality and load balancing. Second, INFINIFS designs
the speculative path resolution to traverse the path in par-
allel, which substantially reduces the latency of metadata
operations. Third, INFINIFS introduces the optimistic access
metadata cache on the client-side, to alleviate the near-root
hotspot problem, which effectively improves the throughput
of metadata operations. The extensive evaluation shows that
INFINIFS outperforms state-of-the-art distributed filesystem
metadata services in both latency and throughput, and pro-
vides stable performance for extremely large-scale directory
trees with up to 100 billion files.

1 Introduction

Modern datacenters for fast-expanding businesses often con-
tain huge numbers of files, which can easily exceed the ca-
pacity of one single instance of current distributed filesys-
tems [23, 27, 35, 36, 39, 42]. Currently, a datacenter is of-
ten divided into relatively smaller clusters, each of which
runs a distributed filesystem instance separately. However, it
is more desirable to manage the entire datacenter with one
single filesystem instance, which provides global data shar-
ing, high resource utilization, and low operational complexity.
For example, Facebook introduced the Tectonic distributed
filesystem to consolidate small storage clusters into one single
instance that contains billions of files [28].
∗Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn).

Scalable and efficient metadata service is crucial for dis-
tributed filesystems [14,22,23,25,28,31–33,36,41]. As mod-
ern datacenters often contain tens or even hundreds of billions
of files, using one extremely large-scale filesystem to manage
all the files brings severe challenges to the metadata service.
First, directory tree partitioning is challenging to achieve both
high metadata locality and good load balancing, as the direc-
tory tree expands and the workloads are diverse. Second, the
latency of path resolution could be high, as the file depths are
deep in extremely large-scale filesystems. Third, the overhead
of coherence maintenance for client-side metadata cache be-
comes overwhelming, as extremely large-scale filesystems
usually need to serve a large number of concurrent clients.

This paper presents INFINIFS, an efficient metadata ser-
vice for extremely large-scale distributed filesystems. In order
to address the challenges mentioned above, INFINIFS dis-
tributes the filesystem directory tree and accelerates metadata
operations with the following designs.

First, we propose an access-content decoupled partition-
ing method to achieve both high metadata locality and good
load balancing. The key idea is to decouple the access meta-
data (name, ID, and permissions) and content metadata (entry
list and timestamps) of the directory, and further partition
these metadata objects at a fine-grained level. Specifically,
we first group each directory’s access metadata with its par-
ent, and content metadata with its children, thereby achieving
high metadata locality. Then, we partition these fine-grained
groups to different metadata servers with consistent hashing
on directory IDs, thereby ensuring good load balancing.

Second, we design a speculative path resolution to traverse
the directory tree in parallel, which substantially reduces the
latency of metadata operations. The key idea is to assign a
predictable ID to each directory, so that clients can speculate
on the IDs of all intermediate directories, then send lookups
for multi-component paths in parallel.

Third, we introduce an optimistic access metadata cache to
alleviate the near-root hotspots, which achieves scalable path
resolution. The key idea is to cache directory access metadata
on the client-side to absorb the frequent lookups on near-
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root directories, and to invalidate cache entries lazily on the
metadata servers with low overhead. Specifically, the directory
rename and directory set_permission operations will send
the cache invalidation notification to metadata servers instead
of numerous clients, so that each server can validate the cache
staleness lazily when processing client metadata requests.

In summary, this paper makes the following contributions:
• We identify the challenges that impair the performance of

metadata services in the large-scale scenario (§2).
• We propose a scalable and efficient distributed metadata

service, INFINIFS, featured with access-content decoupled
partitioning (§3.2), speculative pathname resolving (§3.3),
and optimistic access metadata cache (§3.4).

• We implement and evaluate INFINIFS to demonstrate
that INFINIFS outperforms the state-of-the-art distributed
filesystems in both latency and throughput of metadata op-
erations, and provides stable performance for extremely
large-scale directory trees with up to 100 billion files (§5).

2 Background and Motivation

In this section, we first explain why having one single filesys-
tem instance that spans the entire datacenter is desirable
(§ 2.1). Then, we discuss the unique challenges for efficient
metadata services in such scenarios (beyond billions of files)
(§ 2.2). Finally, we analyze the characteristics of metadata
access in real datacenter workloads (§ 2.3).

2.1 Large-Scale Filesystem
The filesystem typically provides users with a hierarchi-
cal namespace (i.e., a directory tree) to manage files. In
the directory tree, each file/directory possesses metadata
information. Metadata operations typically involve two
critical steps, i.e., path resolution and metadata process-
ing. When a user accesses a file with a pathname, e.g.,
/home/Alice/paper.tex, metadata is accessed as follows:
First, the filesystem executes path resolution to locate the tar-
get file and check whether the user has the proper permissions;
then, the filesystem executes metadata processing to update
corresponding metadata objects atomically.

The metadata service is the scalability bottleneck for large-
scale distributed filesystems [22, 32, 36]. The distributed
filesystem is an important infrastructure component of data-
centers [2, 12, 35, 39]. As the number of files inside a datacen-
ter grows rapidly, the metadata service becomes the scalability
bottleneck of the distributed filesystems. Currently, datacen-
ters usually consist of a constellation of filesystem clusters.
For example, the Alibaba Cloud maintains nearly thousands
of Pangu distributed filesystems to collectively support up to
tens of billions of files in the datacenter [2]. Facebook also
needs many HDFS clusters to store datasets in one single
datacenter [28], because each HDFS cluster supports at most
100 million files due to the metadata limitation [36].

However, a large-scale filesystem spanning the entire data-
center is more desirable. For example, Facebook introduced
the Tectonic distributed filesystem to consolidate small stor-
age clusters into one single instance [28]. One single large-
scale filesystem per datacenter outperforms a constellation of
small filesystem clusters in the following aspects:
• Global data sharing. One single large-scale filesystem

provides a global namespace, enabling better data sharing
across the datacenter. In contrast, storing different datasets
in separate clusters is inefficient, requiring dedicated data
placement and causing data movement. It also complicates
the logic of computing service, because related data might
be split among separate filesystems.

• High resource utilization. Global data sharing can eliminate
duplicated data among separate clusters, thus improving
disk capacity utilization. Further, one single filesystem al-
lows better resource sharing. In contrast, in the constellation
approach, the idle resources in one filesystem cluster could
not be reallocated to other clusters.

• Low operational complexity. One single large-scale filesys-
tem can significantly reduce the operational complexity, as
there is only one system to maintain. In contrast, maintain-
ing thousands of filesystem clusters in a large datacenter
(such as Alibaba Cloud) is labor-intensive and error-prone.

2.2 Challenges of Scalable Metadata
One single large-scale filesystem spanning the entire datacen-
ter needs to support billions of files and serve a large number
of clients. This brings severe challenges for the metadata
service of distributed filesystems, as discussed below.

Challenge 1: Directory tree partitioning is challenging to
achieve both high metadata locality and good load balancing,
as the directory tree expands and workloads are diverse.

Metadata locality is important for efficient metadata pro-
cessing. A filesystem operation often processes multiple meta-
data objects. For example, a file creation first locks the parent
directory to serialize with directory listing operations [25],
then updates three metadata objects atomically, including the
file metadata, the entry list, and the directory timestamps.
With metadata locality, we can avoid distributed locks and
distributed transactions, thus achieving low-latency and high-
throughput metadata operations.

Load balancing is important to achieve high scalability.
Metadata operations often cause load imbalance in the direc-
tory tree. This is particularly true for real-world datacenter
workloads where related files are grouped into subtrees [4,41].
Files and directories from the continuous subtree may be
heavily accessed in a short period, causing a performance
bottleneck on the metadata server that stores the subtree.

Existing partitioning strategies fail to achieve both high
locality and good load balancing in the extremely large-scale
scenarios. Managing all files in the datacenter causes the direc-
tory tree to expand rapidly in both depth and breadth. Further,
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Figure 1: (a) The depth distribution of accessed files in a
real-world distributed filesystem workload. (b) The latency of
path resolution increases rapidly as the depth of files grows.

the filesystem faces various workloads with different charac-
teristics, since it backs all datacenter services. This is chal-
lenging for the existing directory tree partitioning strategies.
Fine-grained partitioning, such as directly hashing metadata
objects to servers [25, 37], can achieve load balancing. How-
ever, it sacrifices locality and frequently causes distributed
locking, introducing expensive coordination overhead and
leading to high latency and low throughput [8, 20]. Coarse-
grained partitioning, such as grouping a continuous subtree
onto the same server [4, 41], preserves locality and avoids
cross-server operations. However, it is susceptible to skewed
workloads, which lead to the load imbalance.

Challenge 2: The latency of path resolution could be high, as
the file depths are deep in extremely large-scale filesystems.

The file depth becomes increasingly deeper in extremely
large-scale filesystems. Previous filesystems usually assume
that the depth of most files in the directory tree is less than
10 [7, 10]. However, we find that the depth of files rapidly in-
creases when consolidating all services into one single filesys-
tem. Figure 1(a) presents the depth distribution of accessed
files in a real-world workload (§2.3). We can observe that
almost half of the accessed files have a depth of more than 10.

The deep directory hierarchy has a high impact on the
filesystem performance. We implement a naive path resolu-
tion mechanism based on the design of Tectonic [28], and
evaluate the latency of path resolution as the depth grows.
Figure 1(b) shows that the latency of path resolution increases
linearly with the depth of files. Tectonic partitions directories
to different metadata servers based on the directory ID, and
consequently, resolving a path at a depth of N requires resolv-
ing the N −1 intermediate directories, which leads to N −1
sequential network requests.

Challenge 3: The overhead of coherence maintenance for
client-side metadata cache becomes overwhelming, as ex-
tremely large-scale filesystems usually need to serve a large
number of concurrent clients.

The path resolution needs to traverse the directory tree from
the root and check the permissions of all intermediate direc-
tories inside the path sequentially. This causes the near-root
directories to be read heavily, even for a balanced metadata

File Op 95.8% Directory Op 4.2%
open/close 54.9% readdir 93.3%
stat 12.9% statdir 6.6%
create 10.0% mkdir 0.1%
delete 12.4% rmdir 0.1%
rename 9.7% rename 0.0%
set_permission 0.1% set_permission 0.0%

Table 1: Ratios of different operations in the real-world work-
loads from deployed systems. We show the relative ratios of
file operations and directory operations separately.

operation workload. The filesystem throughput will then be
bounded by the server that stores the near-root directories.
We call this near-root hotspot in this paper. Many distributed
filesystems depend on the client-side metadata cache to miti-
gate the near-root hotspot [13, 23, 30, 31].

We observe that previous client-side cache mechanisms do
not work well in large-scale scenarios with numerous clients.
For example, the lease-based mechanism grants a lease to
every cache entry that will expire after a fixed duration. When
the lease expires, corresponding cache entries become invali-
dated automatically. The lease mechanism is widely used by
the NFS v4 [30], PVFS [13], LocoFS [23], and IndexFS [31].
However, the lease mechanism suffers from load imbalance
caused by cache renewals at the near-root directories. This
is because all clients have to repeatedly renew their cache
entries of the near-root directories for path resolution. As
the number of clients increases, such load imbalance at the
near-root directories will eventually become a performance
bottleneck and impair the overall throughput.

2.3 Characteristics of Real-World Workloads

To understand the characteristics of an extremely large-scale
distributed filesystem, we analyze the relative frequency of
metadata operations in a real-world workload. We trace meta-
data operations in production deployments from the Alibaba
Cloud, one of the largest cloud providers. We capture work-
loads from three Pangu filesystem instances that support dif-
ferent services: data processing and analyzing service, object
storage service, and block storage service. We merge the work-
loads from these different services to represent the workload
of a large-scale filesystem that spans the entire datacenter.
The relative frequencies of metadata operations are shown in
Table 1, from which we can observe that:
• File operations account for ∼ 95.8% of all operations.
• The directory readdir is the most frequent directory oper-

ation, accounting for ∼ 93.3% of all directory operations.
• Directory rename and directory set_permission opera-

tions rarely occur, accounting for only ∼ 0.0083% of all
metadata operations.

These insights also refine our design of INFINIFS.
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Figure 2: Architecture of INFINIFS.

3 Design and Implementation

We design INFINIFS with three key ideas as below:
• Decoupling directory metadata. INFINIFS divides direc-

tory metadata into the access state (name, ID, and permis-
sions) of the directory itself, and the content state (entry
list and timestamps) related to the children, so it can be
partitioned on a fine grain for load balancing, while still
retaining good locality for the metadata processing of com-
mon operations such as create, delete, and readdir.

• Speculating directory IDs in path resolution. INFINIFS
uses a predictable ID for each directory based on the cryp-
tographic hash on the parent ID, the name, and a version
number. It enables clients to speculate on directory IDs and
launch lookups for multi-component paths in parallel.

• Invalidating client-side cache lazily. INFINIFS caches di-
rectory access metadata on the client-side to avoid hotspots
near the root, thus achieving scalable path resolution. The
client uses cache entries for path resolution, agnostic about
their staleness. The metadata server lazily validates cache
staleness when processing the client metadata requests.

3.1 Overview
INFINIFS is an efficient metadata service for extremely large-
scale distributed filesystems. Figure 2 presents the architec-
ture of INFINIFS, which contains the following components:
• Clients. INFINIFS provides a global filesystem directory

tree that is shared by clients. Clients contact INFINIFS
through the user-space library or the FUSE user-level
filesystem. They traverse the directory tree via speculative
path resolution (§3.3), which minimizes latency by predict-
ing directory IDs and parallelizing lookups. Clients use the
optimistic metadata cache (§3.4) during path resolution to
mitigate the excessive read load on near-root directories.

• Metadata Servers. The filesystem directory tree is dis-
tributed across metadata servers via the access-content
decoupled partitioning (§3.2), which achieves both high
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Figure 3: (a) Filesystem directory tree consists of the direc-
tory metadata ( ) and the file metadata ( ). (b) Directory
metadata is decoupled into two parts: the access metadata (

) which contains the name, ID, and permissions, and the
content metadata ( ) which contains the timestamps, entry
list (i.e., dirent), etc. (c) Directory access metadata is grouped
with the parent. Directory content metadata is grouped with
the children. These per-directory groups are partitioned to
metadata servers (MSn) by hashing directory IDs.

metadata locality and good load balancing. Each server
manages metadata objects in the local key-value store (i.e.,
KV Store), which typically caches metadata in memory
and logs updates in NVMe SSDs for high performance.
Metadata servers use the invalidation list (i.e., Inv. List) to
validate client metadata requests lazily.

• Rename Coordinator. A central rename coordinator is
used to process the directory rename and directory
set_permission operations. It checks concurrent direc-
tory renames with the renaming graph to prevent orphaned
loops (§4.1), and broadcasts modification information to
invalidation lists of metadata servers.

3.2 Access-Content Decoupled Partitioning

In this section, we first explain why to decouple access and
content metadata. Then, we show how to achieve metadata
locality via grouping and load balancing via partitioning. Fi-
nally, we show how to store metadata in key-value pairs.

Decoupling directory metadata. As discussed in §2.2, pre-
vious fine-grained and coarse-grained partitioning failed to
achieve both high metadata locality and good load balanc-
ing at the same time. Essentially, the root cause is that they
treat the directory metadata as a whole. Therefore, when par-
titioning the directory tree, they have to split the directory
either from its parent or its children to different servers, which
unintentionally breaks the locality of related metadata.

We analyze the composition of directory metadata and find
that directory metadata consists of two independent parts:
access and content. As shown in Figure 3(b), access metadata
contains the directory name, ID, and permissions, which are
used to access the directory tree. Content metadata contains
the entry list, timestamps, etc, which are related to the children.
Therefore, we propose to decouple directory metadata into
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Metadata Objects Key Value Partitioned by
Directory Access Metadata pid, name id, permission pid

Directory Content Metadata id entry list, timestamps, etc. id

File Metadata pid, name file metadata pid

Table 2: INFINIFS stores metadata objects as key-value pairs. pid: ID of the parent directory. id: ID of the directory.

access and content, so as to group and partition two parts
independently for both metadata locality and load balancing.

Grouping for locality. We group related metadata objects
to the same metadata server to achieve high locality for the
metadata processing phase. We first analyze the metadata
requirements of all kinds of metadata operations, to determine
the related metadata objects during metadata processing. We
classify metadata operations into three categories as below:

1. Operations that only process the metadata of the target
file/directory, such as open, close, and stat. For example,
a file stat will only read the metadata of the target file.

2. Operations that process the metadata of the target
file/directory and its parent, such as create, delete, and
readdir. For example, a file creation will first insert the
file metadata, then lock and update the entry list and times-
tamps of the parent directory.

3. Rename operation is special, as it processes the metadata
of two files/directories and their parents.

We observe that most metadata operations (category 1
and 2) require metadata within the target file/directory and
the parent during metadata processing. With decoupled di-
rectory metadata, we group each directory’s content meta-
data with its subdirectories’ access metadata and its files’
metadata, as shown in Figure 3(c). In this way, we split
the directory tree into independent per-directory groups for
later partitioning, while retaining metadata locality for direc-
tory readdir and file create/delete/open/close/stat/
set_permission operations. Based on the relative frequency
of metadata operations (Table 1), these operations account
for ∼ 90% of all operations. Thus, INFINIFS achieves high
locality for most metadata operations.

Partitioning for load balancing. We further partition the
directory tree at a fine-grained level for good load balanc-
ing. Based on the locality-aware metadata grouping, we split
the directory tree into independent per-directory groups, and
then partition these groups to different metadata servers by
hashing the directory ID. Such fine-grained hash partitioning
effectively load-balances metadata operations [28].

We illustrate the partitioning in Figure 3(c). The metadata
group, which contains content metadata of C and metadata
of f1 and f2, is partitioned to the metadata server 1. In this
way, a file create under C only needs a local transaction in
metadata server 1 to insert the new file metadata, then update
the entry list and timestamps of C. And a readdir on C only

involves metadata server 1 to first lock the directory entry list
for isolation, then read the file names from the entry list.

INFINIFS also leverages consistent hashing [29] to map
these fine-grained metadata groups to servers, so as to mini-
mize the migration during cluster expanding or shrinking.

Storing. We implement access-content decoupled partition-
ing with the KV store as the backend storage. The key-value
indexing schema is detailed in Table 2, which consists of three
kinds of key-value pairs, two for directory access and content
metadata, and one for file metadata. To resolve /A/B/file
(let the IDs of /, A, and B be 0, 1, and 2), we first use ⟨0,A⟩ as
the key to get A’s access metadata, and find that A’s ID equals
1. Then, we use ⟨1,B⟩ to get the B’s access metadata, and find
that B’s ID equals 2. Finally, we use ⟨2⟩ to get the B’s content
metadata, and ⟨2, f ile⟩ to get the file’s metadata.

3.3 Speculative Path Resolution

In this section, we first introduce how to generate predictable
directory identifiers (§ 3.3.1). Then, we describe how to par-
allelize path resolution with speculation (§ 3.3.2).

3.3.1 Predictable Directory ID

Here, we present how INFINIFS generates and maintains di-
rectory IDs that can be predicted from pathnames later.

1) Creating. When creating a new directory, we generate the
directory’s ID by hashing its birth triple: ⟨¶ parent ID, ·
directory name, ¸ name version⟩, as shown in Figure 4(a).
The parent where a directory is created is referred to as the
directory’s birth parent. We use the version to guarantee the
universal uniqueness of the birth triple.

2) Renaming. When renaming a directory to another location,
only the key of its access metadata needs to be updated; its
content metadata and ID remain unmodified, thus all descen-
dants’ metadata under the directory remain intact.

When a directory is renamed for the first time since creation,
its birth parent will record a rename-list (RL): ⟨¶ directory
name, · name version⟩, and the directory itself will record
a back-pointer (BP): ⟨¶ birth parent’s ID, · name version⟩.
The RL of a directory records the subdirectories that were
born in that directory but have been moved elsewhere. The
BP of a renamed directory (i.e., a directory that has been
moved elsewhere from its birth parent) points to its birth
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Figure 4: (a) Creating a directory generates its ID by hashing
the parent directory ID, the directory name, and the name
version. (b) Renaming a directory creates a back-pointer (BP)
in itself and an entry in the rename-list (RL) of its birth parent.
BP and RL are used for the uniqueness of the directory ID.
(c) Deleting the renamed directory erases RL and BP.

parent. We determine the name version with the parent’s RL
in directory creation. For example, Figure 4(b) shows the
rename(/A/B,/B) when B is renamed for the first time. The
key to B’s access metadata is updated from 2:B to 1:B, while
the ID of B remains unmodified. A records the RL ⟨B,0⟩ on
the same server as its content metadata. B records the BP
⟨2,0⟩ in its access metadata. At this moment, if creating a
new B under /A, its name version should be 1, as the RL of
/A indicates that there exists a renamed B that was born here.

When a directory is renamed again, only the key of its ac-
cess metadata needs to be updated, while its content metadata,
BP, and birth parent’s RL remain unmodified. When deleting
the birth parent of a renamed directory, the birth parent’s ac-
cess and content metadata are erased, but the birth parent’s
RL is retained. The RL is only removed through the BP when
the renamed directories are deleted.

3) Deleting. When deleting a renamed directory, we use the
BP of that directory to erase the RL of its birth parent, as
shown in Figure 4(c). At this moment, if creating a new B
under /A, its name version returns to the default zero.

ID uniqueness. Here, we first show the predictable directory
ID is universally unique, then show hash collisions are very
rare, and INFINIFS can detect and handle them properly. A
directory ID is generated by hashing the birth triple, so if
each birth triple is universally unique, the ID should be uni-
versally unique as well, unless a hash collision happens. The
filesystem semantic mandates that no two directories inside
the same parent have the same name at any time. Without
directory renames, ⟨birth parent’s ID, directory name⟩ is suf-
ficient to be universally unique. When a directory is renamed
elsewhere, a new directory with the same name is allowed to
be created within the same parent. We use a version number,
as elaborated before, to solve the directory rename problem,
thus guaranteeing that each birth triple is universally unique.
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Figure 5: (a) Speculative path resolution (S-PR) reduces the
latency of path resolution to nearly one network round-trip
time, if correctly predicted. (b) After renaming the directory
/X to be a child of A, resolving /A/X/Y/Z requires two rounds,
taking about two network round-trip times.

We generate IDs using a cryptographic hash (e.g., SHA-
256), so the chance of a collision is very small. As directory
ID is the key of each directory’s content metadata, we can
easily detect a hash collision when inserting the new content
metadata during directory creation. We handle a hash collision
in the same way as a renaming by using the version number,
RL, and BP. In INFINIFS, the collision and rename cases have
the same effect on subsequent directory creations and can be
distinguished through the RL entry format.

3.3.2 Parallel Path Resolution

Based on the predictable directory ID, a client can conduct
path resolution in parallel with the following two steps:

1) Predict directory IDs. The client predicts the IDs of all
intermediate directories by using the root ID of the path
or subpath. It first reconstructs the birth triples with 0 as
the version number, then recalculates the hashing results.
With the speculated directory IDs, the client reconstructs
the keys for all path components.

2) Lookup in parallel. The client sends lookup requests for
all intermediate directories in parallel. Each lookup re-
quest will check the access permissions and compare the
speculated ID with the ID stored in the metadata server.
If the speculated ID does not match the one on the server,
the lookup request returns the true ID to the client.

3) Steps 1) and 2) are repeated until the resolving completes.

Figure 5 shows the speculative path resolution mechanism.
If one of the intermediate directories was once renamed to
here, the speculated ID of the renamed directory will be wrong
(i.e., h(2,X ,0) ≠ 12). However, the lookup request can find
X’s access metadata using the correct key 2:X, and returns the
directory’s true ID to the client. With the true ID of X, the
client then continues to resolve the subpath under X.
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3.4 Optimistic Access Metadata Cache

In this section, we first show how INFINIFS organizes di-
rectory access metadata at the client-side cache. Then, we
introduce how clients use cache entries optimistically, and
how metadata servers invalidate stale cache entries lazily.

Cache organization. INFINIFS caches only directory access
metadata (i.e., directory name, ID, and permissions) on the
client side. Cache hits will eliminate lookup requests to near-
root directories, thereby avoiding hotspots near the root and
ensuring scalable path resolution. As illustrated in Figure 6,
INFINIFS organizes cache entries in a tree structure based on
the filesystem hierarchy, and links the leaf entries as a least-
recently-used (LRU) list. When cache replacement happens,
the least recently used leaf entry will be evicted, ensuring that
the near-root directories remain cached.

Lazy invalidation. A lot of cache entries become stale after
the directory rename or directory set_permission opera-
tion. It is impractical to invalidate stale cache entries on all
associated clients during each directory rename operation.
Because the membership of clients is difficult to manage, and
the number of clients can be huge, substantially outnumbering
the number of metadata servers.

The lazy invalidation addresses this problem by broad-
casting the invalidation information to metadata servers (the
number of which is significantly less than clients), so that
each server can validate cache staleness lazily when pro-
cessing client requests. Specifically, a directory rename will
contact the central rename coordinator to prevent orphaned
loops (§4.1), then broadcast the rename information to meta-
data servers. A single coordination server should be suffi-
cient to handle these infrequent operations, because direc-
tory rename operations rarely occur (accounting only for
∼ 0.0083%) based on the real-world workload studies in §2.3.

As illustrated in Figure 7(a), INFINIFS handles the direc-
tory rename with the following procedures:

¶ INFINIFS sends the directory rename operation to the re-
name coordinator, to detect whether this directory rename
produces orphaned loops with the in-flight ones. Then, the
coordinator assigns each directory rename operation an
incremental version number.
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Figure 7: (a) Directory rename broadcasts the modification
information to all metadata servers (MSn). (b) Metadata server
lazily validates cache staleness when clients issue metadata
requests. ver: version. op: rename operation.

· INFINIFS serializes directory renames with other opera-
tions by locking the target directory, so that new accesses to
the subtree are blocked until the rename completes. Then,
it broadcasts the rename information with its version to
metadata servers in parallel, and waits for acknowledg-
ments. The metadata server maintains the rename informa-
tion in the invalidation list sorted by the version.

¸ INFINIFS moves the directory’s access metadata from the
source server to the destination server, and updates the RL
and BP if the directory is renamed for the first time.

As illustrated in Figure 7(b), INFINIFS validates cache
staleness lazily at the server in the following manner:
¶ INFINIFS clients are agnostic about the staleness and opti-

mistically utilize local cache entries during path resolution.
Each client has a local version, indicating that its cache
has been updated with rename operations before this ver-
sion. When a client contacts a metadata server, it sends the
request along with the pathname and version.

· The metadata server validates staleness by comparing the
pathname against rename operations in the invalidation
list. Only operations between the request’s version and the
latest version in the invalidation list need to be compared.
If the server finds the requested pathname is valid, the
request is processed and returned successfully.

¸ If the server finds the request is invalid, it aborts the re-
quest and returns the information of these new rename
operations. The client then updates the cache and version.

4 Consistency

In this section, we introduce how INFINIFS prevents orphaned
loops caused by directory rename operations (§4.1), and im-
plements transactional metadata operations (§4.2), so as to
guarantee the consistency of the filesystem directory tree.
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Figure 8: The orphaned loop caused by concurrent directory
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of each rename operation is colored in blue.

4.1 Orphaned Loop

Concurrent directory renames may cause orphaned loops,
which lead to server data loss. Figure 8 illustrates such an
orphaned loop caused by two directory renames. As shown in
Figure 8(a), the filesystem directory tree should be connected
and acyclic. In Figure 8(b) and 8(c), Client1 attempts to re-
name E to be the child of C, while Client2 attempts to rename
B to be the child of F. The metadata objects required for two
renames are completely independent of each other, therefore
allowed to execute in parallel. But they lead to an orphaned
loop that breaks the directory tree, as shown in Figure 8(d).
No client can access any files within the orphaned loop.

INFINIFS addresses the orphaned loop problem by using a
central rename coordinator to check each directory rename
operation before its execution. The rename coordinator main-
tains a renaming graph, which tracks the source and des-
tination paths of in-flight directory renames at the present
moment. Before allowing a new directory rename operation
to proceed, the rename coordinator first verifies whether it
leads to an orphaned loop with the in-flight ones. The source
and destination paths of a directory rename operation are kept
in the renaming graph throughout the renaming procedure,
and deleted after the rename operation completes.

Directory rename operations rarely occur (accounting for
less than ∼ 0.0083%) based on the real-world workload stud-
ies in §2.3. Therefore, a single rename coordinator should be
sufficient to handle directory rename operations.

4.2 Transactional Metadata Operations

Operations in INFINIFS can be classified into three types:

1) Single-server operations. These operations include direc-
tory readdir and file create/delete/open/close/stat/
set_permission, which are the most frequent operations.

They process metadata objects within one single metadata
server. Single-server operations leverage the transaction mech-
anism of the key-value storage backend to guarantee atomicity.
When a metadata server restarts after a crash, it recovers the
transactions of metadata operations and consults the rename
coordinator to update its invalidation list.

2) Two-server operations. These operations include directory
mkdir/rmdir/statdir and file rename. They process meta-
data objects across two metadata servers, requiring distributed
transactions to guarantee correct behavior. INFINIFS adopts
the two-phase commit protocol [21, 24, 31] for the atomicity
of updates across servers. Since clients are unreliable and
difficult to track, one of the two metadata servers is chosen to
be the coordinator in the transaction. To recover from failures,
write-ahead logging is used by both the coordinator and the
participant to record the partial state of the transaction.

3) Directory rename operations. Directory rename and direc-
tory set_permission operations rarely occur. These opera-
tions are delegated to the rename coordinator, which detects
orphaned loops, broadcasts the modification to all metadata
servers, and processes the target directory metadata across two
servers. These operations are implemented with distributed
transactions similar to the two-server operations, with the
difference that they choose the rename coordinator as the
coordinator in the transaction, and broadcast modification at
the beginning of the commit phase. If the rename coordinator
crashes during the broadcast, it restarts and recovers the trans-
action by restarting the broadcast to ensure the modification
is delivered to all servers at least once.

5 Evaluation

In this section, we use a number of microbenchmarks to eval-
uate INFINIFS, seeking to answer the following questions:
• How does INFINIFS compare to other distributed filesys-

tems in the metadata performance? (§5.2)
• How do the design features employed in INFINIFS con-

tribute to the overall performance? (§5.3)
• How does INFINIFS perform for extremely large-scale di-

rectory trees (up to 100 billion files)? (§5.4)
• How does INFINIFS compare to the lease mechanism in

cache efficiency? (§5.5)
• What is the performance of directory rename and file
rename in INFINIFS? (§5.6)

• What is the overhead of speculative path resolution in case
of mispredictions? (§5.7)

5.1 Experimental Setup

5.1.1 Hardware Configuration

Experiments are conducted on-premises using 32 client nodes
and 32 server nodes with the same hardware configurations,
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CPU Intel Xeon Platinum 2.50GHz, 96 cores
Memory Micron DDR4 2666MHz 32GB × 16
Storage RAMdisk
Network ConnectX-4 Lx Dual-port 25Gbps

Table 3: Hardware configurations.

as shown in Table 3. Each node has two physical ports bonded
to a single IP address. All nodes are connected in a network
topology with two-level switches. The client nodes can run
up to 2048 client processes in parallel, sufficient to saturate
the metadata services of tested filesystems.

In our experiments, distributed filesystems are deployed
on RAMdisks. Thus, evaluations show the pure performance
of different designs, independent of the disk I/O speed. Ac-
tually, in production deployments (e.g., Pangu and HDFS),
filesystem metadata is typically placed in DRAM and uses a
standalone logger to persist metadata updates in NVMe SSDs
(with tens of microseconds latency), and thus the latency of
metadata operations is mainly affected by the network RPCs
(with hundreds of microseconds latency) rather than the local
storage devices (NVMe SSDs or RAMdisks).

5.1.2 Software Configuration

Each node runs CentOS 7 with Linux kernel version 4.9.151.
Compared Systems. We choose four state-of-the-art dis-
tributed filesystems for comparison, namely, LocoFS [23],
IndexFS [31], CephFS [39], and HopsFS [25]. We use CephFS
at version 12.2.13, deployed with multiple active MDS dae-
mons, coexisting with OSD daemons on 32 server nodes. We
use HopsFS at version 3.2.0.0, deployed with Mysql NDB
cluster (version 7.5.3) in the diskless mode on 12 server nodes.
Tectonic [28] was not compared because it is closed-source.
The throughput of IndexFS is not included, because the meta-
data servers of IndexFS consistently terminate with errors.

INFINIFS is implemented with the Thrift RPC library [3]
for network communication, and RocksDB [5] for the backend
KV store. Thrift uses the Linux TCP/IP network stack, leading
to a round-trip time of about 60 µs. For INFINIFS, LocoFS,
and IndexFS, we set their metadata servers to the Thrift non-
blocking server with 8 worker threads, metadata caches to
8MB, and KV stores in asynchronous write mode.
Benchmark. We use the mdtest [1] benchmark to evaluate
the metadata performance of the aforementioned distributed
filesystems. We use OpenMPI at version 3.0.6 to generate
parallel mdtest processes across the client nodes. We modify
the mdtest benchmark to use the client libraries provided by
each distributed filesystem (e.g., libcephfs of CephFS).

Our experiments create files of zero length, like the pre-
vious works [16, 23, 25, 31, 43, 46], as we focus on insights
into the metadata performance. For full-fledged distributed
filesystems such as HopsFS and CephFS, we guarantee the

InfiniFS LocoFS HopsFS CephFS

Th
ro

ug
hp

ut
 (O

ps
/s

)

Number of Metadata Servers

(a) Mkdir (b) Create

(c) Stat-File (d) Delete

0

2M

4M

0

2M

4M

1 2 4 8 16 32 1 2 4 8 16 32

0

200k

8 16 32
0

200k

8 16 32

0

200k

8 16 32
0

200k

8 16 32

Figure 9: Throughput scalability of metadata operations
(mkdir, create, stat, and delete). 500 million files.

fairness of comparison by ensuring their data paths were not
accessed during experiments.

5.2 Overall Performance
In this section, we compare the overall metadata performance
of the aforementioned distributed filesystems. We use mdtest
to generate a four-phase workload to measure the performance
of directory mkdir, file create, file stat, and file delete
operations, respectively. These clients operate on a shared
directory tree with a depth of 10. Each client handles its own
0.1 million directories and 0.1 million files, which are evenly
distributed in the shared directory tree. Clients are initiated at
the beginning of each phase.

5.2.1 Throughput

In this section, we evaluate the throughput scalability of meta-
data operations in different distributed filesystems. We scale
the number of metadata servers from 1 to 32, and measure the
peak throughput that each filesystem can provide. To obtain
the peak throughput, we gradually increase the number of
clients until the throughput no longer increases. With 2048
client processes, clients process approximately half a billion
files during the experiment.

Figure 9 shows the throughput scalability of directory
mkdir, file create, file stat, and file delete metadata op-
erations in different distributed filesystems. From the figure,
we make the following observations:

1) INFINIFS presents near linear throughput scalability in
mkdir, create, stat, and delete metadata operations, as
the number of metadata servers scales from 1 to 32. INFI-
NIFS achieves high scalability by optimizing the two critical
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steps of metadata operations, i.e., path resolution and meta-
data processing. (a) For the path resolution, INFINIFS caches
near-root access metadata at the client-side to absorb the
read load on near-root directories, thus the near-root hotspot
caused by path resolution will not impair scalability. Besides,
INFINIFS partitions file/directory metadata across metadata
servers by hashing directory IDs. The fine-grained hash parti-
tioning strategy effectively load-balances metadata accesses,
achieving high scalability. (b) For the metadata processing,
INFINIFS decouples the directory metadata, then groups the
directory access metadata with the parent and the directory
content metadata with the children. In this way, metadata pro-
cessing of file create, stat, and delete only accesses one
single server requiring no cross-server coordination, thus, be-
ing scalable. Metadata processing of directory mkdir requires
coordination with only two servers for atomicity, which also
scales well with more servers.

2) According to Figure 9(a) and 9(b), the throughput of
the mkdir operation is much lower than the throughput of the
create operation in INFINIFS. This is because file creation
is implemented using the local transaction protocol with no
cross-server coordination, while directory creation requires
two-phase locking and two-phase commit protocols. These
distributed protocols require expensive coordination between
servers, leading to lower throughput.

3) With one metadata server, the throughput of file create
is 180K ops/sec in INFINIFS, which is slightly lower than
LocoFS (200K ops/sec). This is because LocoFS uses a hash-
based KV store, which provides higher performance than
RocksDB while does not support the scan operation. LocoFS
also decouples file metadata into two finer key-value pairs
for high throughout. INFINIFS outperforms LocoFS as the
number of metadata servers increases. With 32 servers, the
directory mkdir and file stat operations of INFINIFS are
18× and 4× higher than LocoFS. This is because INFINIFS
partitions the directory metadata to multiple servers, while
LocoFS manages all the directory metadata in one single di-
rectory metadata server. When the number of clients increases
and the directory tree expands, the single directory metadata
server in LocoFS becomes the throughput bottleneck.

4) INFINIFS achieves higher metadata operation through-
put than HopsFS and CephFS. For file create operations,
the throughput of INFINIFS is 73× and 23× higher than that
of HopsFS and CephFS, respectively. This is because INFI-
NIFS reduces the latency of metadata operations by resolving
paths speculatively in parallel, thus achieving a higher base
throughput than HopsFS and CephFS.

5.2.2 Latency

In this section, we evaluate the latency of metadata operations
in different distributed filesystems. In the evaluation, we use
32 metadata servers and measure the latency of each metadata
operation issued by the client.
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Figure 10: Latency of metadata operations.

Figure 10 shows the average latency of different metadata
operations in the evaluated distributed filesystems. From the
figure, we make the following observations:

1) For file create, file stat, and file delete operations,
INFINIFS achieves comparable low latency with LocoFS,
This is because the speculative path resolution and the opti-
mistic access metadata cache in INFINIFS reduce the latency
of path resolution, and metadata processing completes within
a single server. INFINIFS has higher latency in mkdir than
LocoFS. This is because INFINIFS partitions directory meta-
data across metadata servers, causing the directory creation
operation to be a distributed transaction. On the contrary, Lo-
coFS manages all directory metadata on one single directory
metadata server. Thus, all directory metadata operations can
complete in nearly one round-trip time (RTT).

2) INFINIFS achieves lower latency than IndexFS, CephFS,
and HopsFS. This is because IndexFS and HopsFS require
recursive RPCs to resolve pathnames in case of cache misses,
which is slower than our parallelized approach. Besides,
CephFS and HopsFS store metadata through external dis-
tributed object storage and MySQL NDB cluster, which in-
creases the software stack and results in high latency.

5.3 Factor Analysis
In this section, we analyze how the design features contribute
to the latency and throughput by breaking down the perfor-
mance gap between the Baseline and INFINIFS. We accu-
mulate design features into the Baseline, and measure the
latency and throughput of file create and directory mkdir
on 32 metadata servers. For the latency breakdown evalua-
tion, we initiate one mdtest client to create empty files at a
depth of 10, and measure the time consumption of path reso-
lution and metadata processing separately. For the throughput
breakdown evaluation, we initiate 1024 mdtest clients. Each
client creates 0.1 million files or directories that are evenly
distributed on a shared directory tree with a depth of 10.
Baseline. We implement the baseline upon the framework
of INFINIFS, which partitions the directory tree at the per-
directory granularity (like IndexFS, HopsFS, and Tectonic),
but without the three design features. As shown in the bars
in Figure 11, the path resolution takes 72% of the overall
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Figure 11: Contributions of design features to the latency (left
Y-axis) and throughput (right Y-axis) of INFINIFS. Different
segments inside the bar represent the decomposed latency.
Design features are accumulated.

metadata operation latency, around 9 RTTs. This is because
the path resolution needs to traverse and check permissions
of all intermediate directories inside the path sequentially.
The metadata processing takes 28% of the latency, around
3 RTTs. This is because both the file and directory creation
need to create the target metadata and modify the parent’s
timestamps and entry list, thus requiring cross-server coordi-
nation. As shown in the lines in Figure 11, the metadata oper-
ation throughput is very low in the Baseline. This is because
all metadata operations will access the near-root directories
during path resolution, causing the overall throughput to be
limited by the server with the near-root directories.
+Speculating. With the speculative path resolution, the la-
tency of the path resolution is reduced down to 26% of the
Baseline. The client leverages asynchronous RPCs to paral-
lelize network requests, but the request processing overhead
inside the Linux TCP/IP network stack keeps accumulating.
This causes the latency of speculative path resolution to be
more than one RTT. The speculative path resolution still faces
the problem of near-root bottlenecks, so the metadata opera-
tion throughput remains nearly the same.
+AM-Cache. With the optimistic access metadata cache, the
heavy read load of path resolution on near-root directories
can be absorbed by the client-side cache. Thus, the near-root
hotpot will not impair the filesystem throughput. This boosts
the overall throughput of file create and directory mkdir
operation to more than 1M ops/sec. Besides, cache hits will
further speed up the path resolution, reducing the latency of
path resolution to less than one RTT.
+Decoupling. The metadata processing of file create and
directory mkdir involves three metadata objects, including the
new file/directory metadata, the entry list, and the timestamps
of the parent directory. Without the directory metadata decou-
pling, these metadata objects are typically located on different
metadata servers after the directory tree partitioning. There-
fore, metadata processing involves expensive cross-server
coordination. With the decoupling, we group the entry list
and the timestamps of each directory with the files underneath.
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Figure 12: Throughput of INFINIFS with 100 billion files.

In this way, file create can process related metadata within
a single server with no cross-server coordination. Decoupling
boosts the file create throughput to 3.3M ops/sec, and re-
duces its latency to nearly one RTT. However, the throughput
and latency of directory mkdir remain the same, as it still
involves metadata objects across two servers.

5.4 Large-Scale Directory Tree

In this section, we demonstrate that INFINIFS can efficiently
support large-scale directory trees. In this experiment, we
deploy INFINIFS on 32 metadata servers and initiate 1024
clients. We increase the size of the directory tree up to 100
billion files. Each time we first insert one billion files into
the directory tree, then generate a three-phase workload to
measure the current performance. Specifically, we measure
the throughput of file create, file stat at the new files, and
file stat at the old files which are created at the beginning.

Evaluation results are shown in Figure 12. From the figure,
we make the following observations:

1) INFINIFS can provide steady performance for file
create and file stat operations (∼ 3.5M ops/sec), even when
the directory tree expands to a huge size (100 billion files).
In real-world datacenters, the Tectonic of Facebook manages
10.7 billion files [28], and the datacenter of Alibaba Cloud
maintains up to tens of billions of files. As a result, we believe
INFINIFS matches real-world scenarios by supporting 100
billion files with stable performance.

2) The throughput of stat old files is lower than that of
stat new files. This is because INFINIFS stores metadata in
RocksDB, which holds key-value pairs in multiple levels of
SSTables. Performance drops slightly as the old key-value
pairs are mitigated to lower levels. The lower the level, the
higher the capacity, and therefore the performance degrada-
tion slows down (only ∼ 20% at 100 billion files.).

5.5 Cache Efficiency

In this section, we evaluate the efficiency of the lazy inval-
idation mechanism. To compare with the lease mechanism,
we implement a lease version of INFINIFS that uses lease
to maintain cache coherence. In the experiments, we deploy
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Figure 13: Comparisons of the lazy invalidation with the lease
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INFINIFS on 32 metadata servers and initiate 2048 clients to
stat files.

Evaluation results are shown in Figure 13. From the figure,
we make the following observations:

1) The lazy invalidation mechanism outperforms the lease
mechanism. This is because, in the lease mechanism, cache
entries expire periodically regardless of the cache size. In-
creasing the lease expiration time can improve the throughput,
but also increases the latency of all modification operations.

2) As the cache size increases, the throughput increment is
more pronounced for the lazy invalidation mechanism than
the lease mechanism. This is because the lease mechanism
suffers from load imbalance caused by cache renewals at the
near-root directories. All clients have to repeatedly renew
their cache entries at the near-root directories for the path res-
olution procedure. As the number of clients is huge, such load
imbalance eventually becomes the performance bottleneck,
impairing the overall throughput.

5.6 Rename

In this section, we evaluate the latency and throughput of
file rename and directory rename operations in INFINIFS. In
the experiments, we scale the number of metadata servers
and measure the peak throughput. We break down rename
operations to measure the time consumption of each phase.

1) We find that the latency of file rename is much lower
than directory rename. Moreover, as the number of servers
increases, the latency of file rename remains steady, while the
latency of directory rename increases slowly. This is because
the directory rename operation is more complex than the
others, involving the following four steps: (1) resolve the
source and the destination path, (2) detect whether it leads
to orphaned loops, (3) broadcast modification information to
metadata servers to maintain cache coherence, and (4) process
related metadata across two servers. The latency of directory
rename grows slowly as the number of servers grows, because
the broadcast messages are sent to servers in parallel.

Evaluation results are shown in Figure 14. From the figure,
we make the following observations:

2) We find that the throughput of file rename scales with the
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number of servers, while the throughput of directory rename
does not scale (stays near 10K ops/sec). This is because file
rename only requires coordination with the source and desti-
nation metadata servers for atomicity, thus scales well. How-
ever, directory rename operations require the central coordi-
nation server for orphaned loop detection and broadcasting,
thus do not scale. However, these operations rarely occur
(accounting for ∼ 0.0083%) based on the read-world work-
load studies in §2.3. Therefore, one single coordination server
should be sufficient to handle these infrequent operations.

5.7 Overhead of Misprediction
In this section, we evaluate the overhead of misprediction,
including latency overhead and network overhead. A mispre-
diction means INFINIFS mispredicts the ID of a directory
during the speculative path resolution. Only the directory
rename and the hash collision will cause the misprediction.
In this experiment, we generate a directory path with a depth
of 24, and increase the counts of mispredictions by adding
more renamed directories within the path. The renamed direc-
tories are evenly distributed inside the pathname. We create
10K files under the path with one client, and measure the
average latency and network packets during path resolution.

Evaluation results are shown in Figure 15. From the figure,
we make the following observations:

1) Mispredictions increase the latency of the speculative
path resolution, but do not affect the naive approach. However,
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speculative path resolution still outperforms naive path reso-
lution unless nearly half of the intermediate directories have
been renamed, which is rare. Besides, with the optimistic ac-
cess metadata cache, clients can cache the true IDs of renamed
directories, thus avoid mispredictions in the future.

2) Mispredictions increase the number of network packets
required for the speculative path resolution. However, trad-
ing excess network bandwidth for lower metadata operation
latency is worthwhile, as the network bandwidth is not the
performance bottleneck. For example, the 25-Gbps CX4 NIC
can process 12.3 million packets per second [19]. Thus, 32
metadata servers can process a total of 393.6 million pack-
ets per second, which is substantially higher than the peak
throughput of metadata operations (∼ 4M ops/sec), Besides,
INFINIFS comes with the optimistic access metadata cache
on the client side, so as to eliminates the extra packets by
avoiding mispredictions in the future.

6 Related Work

Efficient distributed filesystems have always been important
research topics. Due to the rapidly increasing file quantities,
metadata service becomes the performance bottleneck for
large-scale distributed filesystems [22, 32, 33, 36].

Directory tree partitioning. Early distributed filesystems,
such as GFS [12], HDFS [35], Farsite [11], and QFS [27],
distribute file data to multiple data servers while managing
all metadata in a single dedicated metadata server. However,
they fail in the extremely large-scale scenario with billions of
files, because the amount of metadata exceeds the capacity
of a single server, and the throughput of metadata operations
will be bottlenecked due to the limited resources.

Some distributed filesystems partition the directory tree
into subtrees, such as AFS Volumes [15], Sprite Domain [26],
and HDFS Federation [9, 35]. Subtree-based metadata parti-
tioning can achieve high metadata locality, but suffers from
low scalability due to load imbalance and data migration.
Some distributed filesystems partition the directory tree
into user-visible partitions and disallow cross-partition re-
names. As the directory tree expands, organizing and main-
taining the static partitioning scheme becomes impractical.
CephFS [6, 39–41] partitions metadata into subtrees as well,
but when a load imbalance is detected, it migrates hot sub-
trees across metadata servers. Mantle [34] provides a pro-
grammable interface to adjust CephFS’s balancing policy for
various metadata workloads. However, they suffer from the
high overhead of frequent metadata migrations, when work-
loads are diverse and vary frequently.

Some distributed filesystems partition the directory tree
at the per-directory granularity, such as IndexFS [31, 46],
HopsFS [25], and Tectonic [28]. Due to the fine-grained parti-
tioning, they can achieve load balancing and good scalability.
However, they sacrifice the metadata locality, causing fre-

quent distributed locks and distributed transactions. These dis-
tributed protocols impose expensive coordination overhead,
resulting in high latency and low throughput [8, 20].

Path resolution. LocoFS [23] stores all directory metadata
on a single metadata server, in order to reduce the latency of
path resolution, However, it suffers from the single node bot-
tleneck. Some distributed filesystems use the full pathname
or the hashing on the full pathname to index files, such as Be-
trFS [17, 18, 44, 45], Giraffa [37], and CalvinFS [38]. BetrFS
uses the full pathname to index files in the local filesystem.
Giraffa uses the full pathname as the primary key to the file
metadata. CalvinFS locates the file metadata by hashing the
full pathname. However, they make the hierarchy semantic
to be hard to implement. For example, the directory rename
operation becomes prohibitively costly, as it changes the full
pathname of all descendants, causing all descendants’ meta-
data must be migrated to new locations.

Client-side metadata caching. HopsFS caches the metadata
location information on the server side to parallel path reso-
lution. However, it suffers from the near-root hotspot, as all
metadata operations need to read the near-root directories for
path traversing and permission checking. LocoFS [23], In-
dexFS [31], and NFS v4 [30] leverage the lease mechanism to
cache both the directory entries and permissions on the client
side. However, the lease mechanism suffers from load imbal-
ance caused by cache renewals at the near-root directories. As
the number of clients increases, such load imbalance at the
near-root directories will become the performance bottleneck,
impairing the overall throughput.

7 Conclusion

This paper presents INFINIFS, an efficient metadata service
for extremely large-scale distributed filesystems. INFINIFS
decouples the directory’s access and content metadata, so that
the directory tree can be partitioned with both high metadata
locality and good load balancing; then parallelizes path reso-
lution with speculation to substantially reduce the latency of
metadata operations; and finally, cache access metadata on the
client-side optimistically with lazy invalidation. The extensive
evaluation shows that INFINIFS provides high-performance
metadata operations for large-scale filesystem directory trees.
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Abstract
This paper addresses the scalability issue of XFS journaling
in the manycore system. In this paper, we first identify two
primary causes for XFS scalability failure: the contention
between in-memory logging and on-disk logging and the con-
tention among the multiple concurrent in-memory loggings.
We then propose three key techniques to address the scal-
ability issues of XFS; (i) Double Committed Item List, (ii)
Per-core In-memory Logging, and (iii) Strided Space Count-
ing. Contention between the in-memory logging and the
on-disk logging is mitigated using the Double Committed
Item List. Contention among the in-memory logging opera-
tions is addressed with Per-core In-memory Logging. Strided
Space Counting addresses the contention on updating the
global journaling state. We call the newly developed filesys-
tem ScaleXFS. In modified varmail workload, the latency of
metadata operation, unlink(), decreases to 1/6th from 0.59
ms to 0.09 ms under 112 threads against stock XFS. The
throughput of ScaleXFS corresponds to 1.5×, 2.2×, and 2.1×
of the throughput of the stock XFS under varmail, dbench
and mdtest, respectively.

1 Introduction

Modern computing platforms are experiencing two technical
advancements; storage devices are getting quicker and faster
with sub-msec flush latency and the number of CPU cores in
the commodity server is reaching the hundreds [16,29,38,39].
Considering these circumstances, modern filesystem designs
face the new challenges, such as manycore scalability of the
filesystem operation.

The filesystem is responsible for two types of operations;
updating the state of the in-memory filesystem and synchro-
nizing the in-memory filesystem state to the storage. A sub-
stantial effort has been dedicated to improving the throughput
and the latency of synchronizing the filesystem state to the
disk, also known as filesystem journaling [14, 35, 44, 47].
These works aim to hide flush latency: the latency of making
the updated filesystem blocks durable in storage. A number of
techniques have been proposed to make the flush latency invis-
ible to the host, e.g. no_barrier mount operation [20], the
adoption of the power loss protection feature at the flash stor-
age [46], the kernel patch that omits the flush command [1],
etc. Thanks to all these techniques, the latency to synchronize
the filesystem to the storage has become less of a concern.

As the filesystem operation is relieved from the excessive
flush latency, many works have focused on improving the
throughput of filesystem journaling via increasing the con-
currency in filesystem journaling. They include providing
multiple running transactions [27, 40], providing multiple
committing transaction [26,27,34,40,48], using the lock-free
algorithm to manage the log block list in more concurrent
manner [43].

In this work, we revisit the manycore scalability issue in
the modern filesystem. In particular, we focus our effort on
XFS. The XFS filesystem is one of the most widely used
journaling filesystems in the enterprise server as well as in
cloud platforms. XFS is the default filesystem for RHEL [2]
which operates 33% of the enterprise servers [6] and handles
more than 50% of stock transactions in the world [7]. Until
recently, it has also been the default backend filesystem for
distributed storage system, Ceph [13].

Despite the significance of XFS filesystems in modern com-
puting platforms, few works have explored the performance
and scalability aspect of the XFS and/or propose the solution
in a rigorous manner. Existing articles on XFS are introduc-
tory article about the XFS data structures and algorithms [10],
personal comment on the design of the XFS [19], compari-
son of the multiple filesystem performances without detailed
analysis [12, 23, 37]. A few works coined performance and
scalability issue of the XFS filesystem [13,37], whose solution
has yet to be addressed.

Most works regarding filesystem scalability use EXT4 as
their baseline filesystem [26, 27, 34, 40, 43, 48]. While both
XFS [44] and EXT4 [35] use journaling to synchronize the
filesystem state to the disk, few of the scalability techniques
for EXT4 are readily applicable for XFS. This is because the
details of their journaling subsystem designs lie at the other
end of the extreme. XFS uses multiple granularity differential
logging while EXT4 uses page granularity physical logging.
XFS uses the copy of the update for journal commit while
EXT4 uses the original page cache entry for journal com-
mit. XFS allows multi-threaded concurrent journal commit
while EXT4 has single threaded serial commit. As long as
filesystem journaling is concerned, XFS adopts far more so-
phisticated data structure to make filesystem journaling more
efficient and scalable. Most works that deal with EXT4 jour-
naling scalability are about how to migrate the page cache
entries among the running transactions (or committing trans-
actions) when multiple threads update the same page cache
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entry [24,26,27,34,40,48]. XFS is free from the page conflict
since the filesystem operation creates its own copy of the
update.

In this work, we examine the scalability of the XFS filesys-
tem under three different workloads and perform in-depth
analysis to find the prime cause for the observed scalability
failure. Through this analysis, we find that the contention on
the two locks are the root cause for its scalability failure and
is caused by the contention among in-memory logging activ-
ities and the on-disk logging activities to access the global
log data list which is called the committed item list in XFS.
Furthermore, we find that the lock contentions observed in
XFS are caused by two entirely different system behaviors.

The contribution of this work can be summarized as fol-
lows. First, we identify the root cause of the scalability failure
in XFS; the contention on cil_lock and ctx_lock-R (shared
lock of ctx_lock) that protect the committed item list. Sec-
ond, we identify the essential filesystem activity that causes
the contention on these locks: (i) the contention between in-
memory logging and on-disk logging and (ii) the contention
among the multiple concurrent in-memory loggings. Third,
we propose ScaleXFS to address the scalability issue in XFS.
We extend XFS with the techniques proposed below (Linux
kernel v5.8.5). ScaleXFS consists of three key technical in-
gredients as follows.

• Double committed item list XFS provides a single global
committed item list. Unlike stock XFS, ScaleXFS provides
two committed item lists so that in-memory logging and
on-disk logging can work on its own committed item list.
Double Committed item list prohibits the on-disk logging
from blocking the in-memory logging activity.

• Per-core in-memory logging ScaleXFS forms each com-
mitted item list with a set of per-core committed item lists
to mitigate the lock contention on the in-memory loggings.
The application threads must acquire an exclusive lock on
the committed item list when they insert the log data to the
committed item list. Under the manycore system, multiple
applications can perform in-memory logging concurrently
and may compete for acquiring the exclusive lock on the
committed item list. To mitigate the contention among the
multiple concurrent in-memory loggings, ScaleXFS adopts
a per-core committed-item list.

• Strided Space Counting XFS maintains a global state
of the committed item list, which must be updated each
time the log data is added to the committed item list. The
application threads must acquire an exclusive lock on the
global state of the committed item list when it updates the
state. To mitigate the contention on accessing the global
state of the list, we adopt sloppy counter [17] style per-core
distributed counting scheme for maintaining the state of the
committed item list. We call this, Strided Space Counting.

We believe that the beauty of ScaleXFS is its elegant sim-

plicity. We overhaul the XFS journaling behavior, precisely
identify the scalability bottleneck and propose a simple yet
elegant mechanism that addresses the scalability issues in
the XFS filesystem with minimal modifications. Unlike the
other approaches that modify the on-disk layout of the exist-
ing filesystem partition [26, 27, 34, 40], the filesystem layout
remains unchanged. ScaleXFS can mount the existing XFS
partition. In ScaleXFS, the latency of unlink() decreases
to 1/6th under modified varmail workload 1 [45], compared
to stock XFS. In modified varmail and dbench [11] work-
loads, ScaleXFS renders as much as 1.5× and 2.2× perfor-
mance against stock XFS, respectively. In ScaleXFS, the per-
formance scales well till the number of cores reaches sixty
while in stock XFS, the performance saturates beyond twelve
cores under mdtest [33].

2 Background

2.1 XFS
XFS has been introduced to address the scalability issue of
then Unix filesystem [44] (e.g. EFS [42] and FFS [36]). It
supports a full 64-bit filesystem. It partitions a filesystem into
a number of fixed-size partitions, the allocation groups, for
scalable access to the filesystem metadata [44]. It uses B+ tree
to manage the free blocks and the free inodes, respectively,
and it uses hashing and B+ tree to manage a large number of
directory entries within the directory.

(1): Update metadata

Committed Item List

(1)

(2): Create log data

(2)

(3): Insert the log data to the 

committed item list

(3)

(1) (3)

(a) Filesystem Update

(4): Remove the log data (5): Copy the log data (6): Dispatch the data 

Committed Item List

(4)

Log buffers

(5) (6)

Storage

(b) Filesystem Journaling (journal thread)

Figure 1: Updating the filesystem object and logging the
associated updates to the disk.

For journaling, XFS adopts multi-granularity differential
logging [28, 30]. XFS applies different logging granularity
subject to the size of the metadata that is updated. For small
metadata such as inode, it creates a copy of the updated meta-
data for logging. For large metadata, e.g. superblock (4KByte)

1Each thread works on its own separate directory.
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or B+ tree node (4KByte), it partitions the 4 KByte block
into 128 Byte units and creates a copy of the updated region
in 128 Byte granularity [9]. Each metadata object of XFS
maintains the logs for the associated updates. The updates are
synchronized to the disk either through periodic flush (30 sec
by default) or by fsync() call.

For each metadata update, XFS creates the log data for
journaling, which is a copy of the update. XFS maintains
three types of log data lists: (i) log data that needs to be
committed to the disk (committed item list), (ii) log data that
is being committed (committing list) and (iii) log data that
needs to be checkpointed (active item list). The filesystem
thread creates and migrates the log data among these lists.
The application threads and the journaling thread lock these
lists and the associated data structure to avoid race condition.
The contention among these threads leaves the XFS under
potential scalability failure [44].

We can categorize the filesystem operations into two; meta-
data operation, e.g. creat() and unlink() and journaling
operation fsync(). We explain the details of the metadata op-
eration and the journaling operation in the following sections
from the aspect of filesystem journaling.

2.2 Metadata Operation in XFS

For metadata operation, the filesystem acquires the exclusive
lock on the metadata it needs to update. Then, it updates the
metadata and performs in-memory logging. In-memory log-
ging consists of two phases: (i) creating the log data and (ii)
inserting the newly created log data into the committed item
list. In the first phase, the application establishes the shared
lock on the committed item list and creates the log data. When
the application modifies the metadata for which log data is al-
ready in the list, it replaces the existing log data with a newly
created one. In practice, a committed item list is a list of the
keys (Log Item) each of which refers to the associated log
data. Separating the key from the value, the log data can be
replaced with a new one in the committed item list without
deleting and inserting the entry in the committed item list.
When the application updates the metadata whose log data is
already in the committed item list, the associated entry in the
committed item list is updated to refer to the newly created
log. In the first phase of in-memory logging, the application
establishes a shared lock on the committed item list. By using
the shared lock, multiple applications (or threads) can concur-
rently update the log entries in the committed item list. The
shared lock prohibits the journal thread from committing the
committed item list if in-memory logging is in-progress. For
the second phase, the filesystem establishes the exclusive lock
(spinlock) on the committed item list and inserts the newly
created log data. XFS inserts the new log data at the end of
the committed item list. When it updates the existing log data,
the updated log data is moved to the end of the committed
item list.

Fig. 2 illustrates the case when the same inode is updated
twice before the updates are committed to disk. First, the
file attribute of the inode was updated to A’. The associated
log is inserted to the committed item list. Second, the inline
data of the inode is updated to B’. In the second update,
the application creates the new log data which harbors both
updates, [A’,B’], and replaces the existing log [A’] with the
new log data of [A’,B’].
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Figure 2: Differential Logging and the log management: An
inode is updated twice. The first update is for the file attribute.
The second update is for the inline data of the inode.

The filesystem maintains the state of the committed item
list, e.g. the total size of the log data in the list. The filesystem
updates this state when the log data is added to (or deleted
from) the list. After the log data is inserted (or deleted) in the
committed item list and the state is updated, the application
releases the exclusive lock (spinlock) and the shared lock in
the reverse order in which they are acquired.

2.3 Journaling Operation in XFS
Filesystem journaling is triggered through periodic journal
flush (30 sec by default), by fsync() call, or when the size
of the outstanding logs in memory exceeds a certain thresh-
old. We define the filesystem journaling operation as on-disk
logging for short. XFS defines log buffer as a unit of IO in
on-disk logging. The default size of the log buffer is 32 KByte.
XFS organizes the on-disk logging with two separate tasks
and dedicates different threads for each. In this work, we
call these two types of threads as the journal thread and the
commit thread, respectively.

Start 

Record

Tx 

Hdr

Log 

Data 1 
…

Log 

Data N

Commit 

Record

Figure 3: Structure of Transaction in Log Buffer.

XFS creates a new journal thread each time when the on-
disk logging is triggered and can start new on-disk logging
before the preceding one completes. The newly created jour-
nal thread establishes an exclusive lock on the committed item
list and migrates the log data from the committed item list
to the committing list. Then, it populates the log buffer with
the log data in the committing list. If the log buffer becomes
full, the journal thread flushes the log buffer to the disk (with
PREFLUSH and FUA flags [22]). If all log data are copied to
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the log buffer, the journal thread puts the commit record at
the end of the sequence of the log data in the log buffer.

Fig. 3 illustrates the structure of the transaction in the log
buffer. When the journal thread writes the commit record at
the log buffer, the journal thread returns.

In copying the log data to the log buffer, XFS first moves
the log data in the committed item list to the committing list
and then releases the exclusive lock on the committed item
list. After the journal thread migrates the log data from the
committed item list to the committing list, the journal thread
continues on-disk logging such as populating the log buffer
with the log data from the committing list and flushing the
log buffer when it is full. After the journal thread releases
the exclusive lock on the committed item list, the committed
item list becomes available for subsequent in-memory log-
ging or on-disk logging. XFS allocates the non-overlapping
partition of the log buffer to each journal thread. A number of
journal threads can concurrently update the non-overlapping
partitions of the same log buffer.

The committed item list has a unique transaction ID. It is
allocated each time when new on-disk logging starts. When
the journal thread holds the exclusive lock on the committed
item list, it assigns the transaction ID to the committed item
list. The filesystem monotonically increases the transaction
id each time when the new journal thread is created, i.e. when
the new on-disk logging starts. XFS maintains a set of trans-
action IDs that are being committed. When the journal thread
finishes migrating the log data in the committed item list to
the log buffer, it inserts the associated transaction id to the
set of committing transactions. When the transaction is made
durable, the transaction ID is removed from this set. All log
data in the same committed item list are committed to storage
as a single transaction.

Application

Journal thread

Commit thread

fsync()

Start

fsync()

return

Copy the log data

to log buffers

Dispatch 

the data

Storage

Complete 

Interrupt!

Figure 4: fsync() in XFS.

The commit thread is responsible for finishing the jour-
nal commit. When the host receives an interrupt informing
that the log buffer has been made durable, the host creates
the commit thread to handle the rest of the journal com-
mit procedure. The commit thread marks the status of the
log buffer as durable (done_sync). It then checks if all pre-
ceding log buffers have been made durable. If any of the
preceding log buffers have not been made durable yet, the
commit thread returns without finishing the on-disk logging.

If it ensures that all preceding log buffers have been made
durable, it releases the log buffer, removes the transaction
ID from the set of IDs of outstanding transactions, and mi-
grates the log data in the transaction to the checkpoint data list
(Active Item List). If there exist the following log buffers
that have been made durable and which have been waiting
for its preceding log buffer to become durable, the commit
thread also performs the same task for the associated log
buffer, e.g. releases the log buffer and migrates the commit-
ted log data to the active item list. Then, the commit thread
returns, and the caller of fsync() unblocks. Fig. 4 illustrates
the execution of fsync() in XFS.

2.4 Concurrency in XFS journaling
XFS adopts a sophisticated mechanism for the filesystem scal-
ability. The first is differential logging. Differential logging
not only saves log space but also eliminates the conflict be-
tween the metadata operation and the journaling operation.
Each metadata operation creates its own version of the update
and is free from conflict with the other in-memory logging op-
erations [9]. Also, the metadata operation and the journaling
operation can proceed in parallel without interfering with each
other. In EXT4, the application is blocked when it attempts
to modify the page cache entry that is being committed to the
journal region. The second is concurrent journal commit; XFS
allows multiple transaction commits in flight. The third mech-
anism is out-of-order on-disk logging; XFS allows multiple
threads to commit the journal transaction concurrently and
independently. Journal thread places cycle number at each
disk block of the journal region. The cycle number represents
the number of times a given disk block is overwritten. By
placing the cycle number at the beginning of each disk block,
the journal threads can write the log blocks to the storage
in an out-of-order manner and yet the recovery module can
recover the filesystem to the correct state in case of the system
failure.

3 XFS Scalability

3.1 Scalability Analysis
We conducted a experiment to examine the scaling behavior
of the XFS filesystem. In our experiment, two different stor-
age devices and three different workloads were used. Two
storage devices, one with and one without the Power-Loss
Protection feature, were used: Intel Optane 905P (I905) and
the Samsung 970Pro (S970). The three workloads correspond
to varmail per-thread DIR (Wvptd) which is a variant of the
varmail workload of filebench (varmail-ptd) [45], client
workload of dbench (Wd) [11], and mdtest (Wm) [33]. Each
of the three workloads exhibit different frequency of meta-
data operation (creat() and unlink()) and the different
intensity of the filesystem journaling (fsync()). We develop
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Figure 5: Performance Scalability of XFS. Throughput is
normalized against the throughput with the four cores. Server:
HPE ProLiant DL580 Gen10 with 112 cores, 4 socket (28
cores per socket), 512 GB DRAM.

the varmail-ptd to eliminate the contention on the shared
directory in the original varmail workload. In the original
varmail, multiple threads work on a shared directory for
creating and deleting the files. The contention on the shared
directory occurs at the VFS layer and may make the scal-
ing behavior of the underlying filesystem invisible from the
outside. The varmail-ptd allocates the separate directory
for each thread. The varmail-ptd is the most journaling-
intensive workload among the three workloads used here.
In varmail-ptd, fsync() accounts for 15.4% of its sys-
tem calls. In dbench, fsync() accounts for only 1% of the
system calls. There is no fsync() in mdtest. Table 1 sum-
marizes the characteristics of the three workloads.

Workload creat() unlink() rename() read() write() fsync()

varmail-ptd 7.7 % 7.7 % 0 % 15.4 % 15.4 % 15.4 %
dbench 17.3 % 3.5 % 0.7 % 27.2 % 8.6 % 1.2 %
mdtest 50 % 0 % 0 % 0 % 50 % 0 %

Table 1: Characteristics of workloads: Ratio of individual file
system operations.

We use a 112 core machine (HPE ProLiant DL580 Gen10,
28 cores per socket, four sockets) to run all three workloads.
We vary the number of active cores from four to 112. The
number of threads were set to be equal to the number of
cores, and the workload throughput was normalized against
the throughput of four active cores. The results are illustrated
in Fig. 5. All these workloads fail to scale. The performance
of mdtest saturates with sixteen cores, and the performance
of dbench and varmail-ptd saturates beyond thirty cores.

To identify the source of scalability failure, we measure
the latency of the individual system calls in these workloads,
creat(), unlink() and fsync(). Fig. 6 illustrates the re-
sults. The mdtest is omitted since it does not call fsync().

When fsync() becomes quicker, e.g. due to the adoption
of the high performance storage device, SSD with Power-
Loss-Protection, or the filesystem mounted with no-barrier
option, the latency of metadata operation, e.g. unlink be-
comes more dominant compared against fsync() latency. In
varmail-ptd (Fig. 6a), the latency of metadata operation in-
creases as fsync() gets quicker. This is due to the increased
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Figure 6: Average latencies of creat(), unlink() and
fsync().

contention on the shared object in the metadata operation. For
varmail-ptd (Fig. 6a), the fsync() latency decreases from
64 ms to 1 ms and the unlink() latency increases by 6×
from 0.15 ms to 0.904 ms when we compare the performance
of S970 and I905. For dbench (Fig. 6b), the fsync() latency
decreases from 56 ms (S970) to 0.51 ms (I905). In I905, due
to shorter fsync() latency, the unlink() latency is 2.1× of
the fsync() latency.
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Figure 7: Percentage of lock wait time to Tj. (Tm = Wait time
for acquiring lock in in-memory logging, Tj = Wait time for
journaling IO in fsync().

For finer analysis, we examine the wait time for acquir-
ing the lock (lock wait time) in in-memory logging and the
wait time for journaling IO in fsync(). XFS uses two locks;
read-write semaphore (ctx_lock) and spinlock (cil_lock)
to protect the committed item list and the log data from the
race condition. The lock wait time for in-memory logging
denotes the wait time for acquiring these two locks (ctx_lock
and cil_lock). The wait time for journaling I/O in fsync()
denotes the latency to writing the log blocks to the storage.
This corresponds to the length of time interval from when the
journal thread puts the commit record at the log buffer till
when fsync() returns. Fig. 7 illustrates the ratio between the
lock wait time and the wait time for journaling IO in S970 and
I905, respectively. In S970, the lock wait time is less than 1%
of the latency of journal I/O under both workloads. In I905,
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the lock wait time becomes more significant. The ratio of lock
wait time to wait time for journaling IO is 35.4% and 53.0%
under varmail-ptd and dbench, respectively, in I905.

3.2 Component Analysis
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Figure 8: Average latency of creat() and unlink() and the
ratio of the in-memory logging, Lm: the latency of in-memory
logging. Storage Device: I905.

Based on the aforementioned experimental results, we
found that the metadata operations, creat() and unlink(),
are the prime suspect for the scalability failures in all three
workloads. We examine the details of these filesystem op-
erations and identify the main cause of scalability failure.
The metadata operation consists of the metadata update and
in-memory logging. We run three different metadata inten-
sive workloads; varmail-ptd, dbench and mdtest. In each
workload, we measure the latency of the metadata update and
the latency of in-memory logging operations for creat()
and unlink(), respectively. Fig. 8 illustrates the overhead of
in-memory logging in creat() and unlink(), respectively.
To examine performance behavior while varying the number
of cores, we compared the latencies of metadata operations
under four cores and 112 cores. In both workloads, the la-
tency of the in-memory logging increases substantially with
the increase in the number of cores. When there are four cores,
the time for in-memory logging accounts for less than 50%
of the latency of metadata operation in most cases (Fig. 8a).
When there are 112 cores, in-memory logging accounts for
as much as 90% of the latency of metadata operation in Wvptd
workload (Fig. 8b).
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Figure 9: Lock wait time in in-memory logging, Storage De-
vice: I905.

We examine the details of the in-memory logging overhead
with the varying number of cores. We measure the wait time

for acquiring the lock (lock wait time) and the actual time to
update the committed item list and the log data. As in Fig. 9,
the lock wait time increases with the number of cores while
the actual time for inserting the log data to the committed
item list remains unchanged regardless of the number of cores.
When there are 112 cores, the lock wait time accounts for
more than 90% of the total in-memory logging time.

3.3 Lock Contention Analysis
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Figure 10: Percentages of lock overhead for in-memory log-
ging to (a) or (b). Tm = Wait time for in-memory logging,
Tt = Wait time for all locks, Tw = Workload Execution time.
Storage Device: I905.

To precisely identify the scalability failure cause in in-
memory logging, we analyze the lock contention in the filesys-
tem. We use Lockstat [5] to obtain the lock wait times which
are shown in Fig. 10.

Fig. 10a shows the ratio between the lock wait time asso-
ciated with the in-memory logging (ctx_lock and cil_lock)
against the total lock wait time in the filesystem under three
workloads. The total wait time in the file system includes the
wait time for all locks. The lock wait time associated with the
in-memory logging accounts for a dominant fraction of the to-
tal wait time in dbench and mdtest, more than 90% beyond
20 cores. The lock contention overhead in the in-memory
logging is far more severe than the lock contention on the
filesystem metadata.

Fig. 10b shows the result of the ratio of the lock wait time
for in-memory logging examined against the total workload
execution time. When there is a small number of cores, e.g.
ten cores, the lock wait time for in-memory logging accounts
for less than 5 % of the total execution time. When there are
80 cores, the lock wait time accounts for 60% of the total
execution time in dbench. In varmail-ptd with 80 cores,
25% of the total execution time is spent on the lock wait time
for in-memory logging.

Through this in-depth analysis, we found that the lock con-
tention associated with ctx_lock and cil_lock is the main
cause of scalability failure in the three workloads.
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4 ScaleXFS

4.1 Design Overview

XFS employs sophisticated techniques to reduce the time for
committing a journal transaction to the storage. This is to hide
the slow flush latency of the storage device. The techniques
include differential logging, concurrent journal commit, out-
of-order on-disk logging, re-logging [9], etc. These works
are for reducing the amount of logs written to the journal
region or for eliminating the ordering dependency within and
between the journal transactions. On the other hand, the in-
memory logging aspect of the XFS has not received proper
attention. The advancement of the low latency storage devices
[4] combined with the introduction of the manycore machine
that has hundreds of CPU cores introduces another dimension
of the complexity in the XFS journaling design. Due to the
introduction of low latency storage devices loaded with power
loss protection, the importance of efficiently handling the
journal commit is less emphasized. Contrarily, as we observed
so far, in-memory logging has become the major bottleneck
in the performance and scalability of the XFS filesystem. In
this work, we focus on resolving the scalability issue in the
in-memory logging of XFS.

We observe that the lock that are used to protect the global
objects in in-memory logging are the main cause of the scala-
bility failure. There are two main objects in filesystem jour-
naling in XFS: the committed item list and log data. These are
used by both in-memory logging as well as on-disk logging.

The objective of this work is to mitigate the contention
on the committed item list. In XFS journaling, there can be
three types of contention on the committed item list; between
in-memory logging and on-disk logging, among the concur-
rent in-memory loggings, and among the concurrent on-disk
loggings. The first is between the application thread and the
journal thread. The second is among the application threads
that perform the metadata operation. The third is among the
journal threads, which we find to be almost non-existent. We
propose three key techniques to make the in-memory logging
of XFS scalable; (i) To mitigate the contention between the
in-memory logging and on-disk logging, we develop Double
Committed Item List, (ii) To mitigate the contention among
the in-memory loggings, we develop Per-core In-memory Log-
ging and (iii) To mitigate the contention on the global state of
the committed item list, we propose Strided Space Counting.

4.2 Double Committed Item List

We propose Double Committed Item List to eliminate the con-
tention between the on-disk logging of the journal thread and
the in-memory logging of the application thread. In the Dou-
ble Committed Item List, we define two committed item lists.
When the application thread finds that one of the committed
item lists is being exclusively used by the journal thread, the

In-memory loggings On-disk logging
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Figure 11: Double Committed Item List.

application thread inserts the log item to the other committed
item list. In ScaleXFS, a metadata object maintains up to two
versions of the updates, one for each committed item list. The
application may attempt to modify the metadata whose log
data is being committed to the disk. If this happens, ScaleXFS
inserts the newly created log data to the other committed item
list than the one that is subject to (and locked by) on-disk
logging. With a dual committed item list, in-memory logging
and on-disk logging can proceed in parallel each of which
works on its own committed item list. Fig. 11 illustrates an
example of this. Application threads, T1,T2 and T3 are access-
ing the committed item list for in-memory logging. These
threads hold the shared lock on this committed item list. Jour-
nal thread Tjrnl is accessing the other committed item list
for on-disk logging. Tjrnl holds the exclusive lock on this
committed item list.
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Figure 12: Multiple Committed Item Lists for in-memory
logging: Triple Committed Item Lists.

Fig. 12 illustrates how the update log is inserted to the
committed item list when we use three committed item lists.
In practice, ScaleXFS is deliberately designed to use only two
committed item lists in its design. In Fig. 12, there are three
threads, T1, T2 and T3. The three threads share a directory
and update it, e.g. creat(). After they update the shared
directory, each of them invokes fsync(). The first thread, T1,
updates the inode from A to A’. The log data is inserted to
the committed item list 1. Then, T1 calls fsync() to commit
A’ to the disk. While the log data A’ is being committed, The
second thread, T2, updates the inode to A”. Since committed
item list 1 is being locked for on-disk logging, the application
inserts the log data A” to the committed item list 2. Assume
that T2 calls fsync(). The newly arriving fsync() locks
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the committed item list 2 that has log data A” and starts on-
disk logging for the committed item list 2. Assume that third
thread, T3, attempts to update the same inode to A”’. Then, T3
will select one of the committed item lists that are available
for logging, either committed item list 1 or committed item
list 3, and inserts the log for A”’ to the selected committed
item list. In Fig. 12, T3 selects committed item list 3 and
inserts A”’ to selected one.

# cores 4 20 40 60 80 112
Tcreate (us) 42.5 42.5 68.5 91.5 122.4 192.7
Taccess (us) 4.8 9.2 16.9 21.3 28.4 43.3

Tcreate / Taccess 8.9× 4.6× 4.1× 4.3× 4.3× 4.4×

Table 2: Time to create journal thread (Tcreate) and for access-
ing the committed item list (Taccess) under the varmail-ptd.
HPE ProLiant DL580 Gen10, 4 socket (28 cores per socket)
with 512 GB DRAM, Intel Optane 905P.

As we define the larger number of the committed item
lists, the contention between the in-memory logging and the
on-disk logging may be further reduced, but the overhead of
maintaining the multiple lists increases. With detailed physi-
cal experiment and analysis, we find that the optimal number
of the committed item lists in ScaleXFS is two. In Linux OS,
creating a thread is a serial activity. Through physical exper-
iment, we measure the time to create a thread (Tcreate) and
the length of time interval during which the journal thread
holds an exclusive lock on the committed item list (Taccess).
During Taccess, the log data is migrated from committed item
list to committing list. In on-disk logging, the time to create a
journal thread is at least 4× longer than the time during which
the journal thread holds the exclusive lock on the committed
item list (Table 2). Technically, there can be multiple on-disk
logging activities in flight in XFS. In reality, it is unlikely
that two ore more journal threads compete for the exclusive
lock on the committed item list. It is unnecessary to allocate
more than one committed item list to mitigate the contention
among the journal threads.

To prohibit the journal threads from locking both commit-
ted item lists (though it is unlikely to happen) and blocking
of in-memory logging due to the lack of available committed
item list, we allow at most one journal thread to lock the com-
mitted item list. In our physical experiment, we confirm that
the newly arriving journal thread rarely observes any of the
committed item lists being locked by on-disk logging activity.

The committed item list can be in one of the three states:
Standby, Active and Blocked. In the Standby state, the com-
mitted item list is empty. In the Active state, the committed
item list has the log data in it. The committed item list in
the Active state can be free or locked by the shared lock for
in-memory logging. The committed item list changes to the
Blocked state if the journal thread requests for the exclusive
lock on the committed item list. If the committed item list is
available, the exclusive lock request is granted immediately.

If the committed item list has been locked by the shared lock,
the journaling thread waits until the shared lock is released.
In both cases, the state of the committed item list changes to
the Blocked state and the subsequent request for the shared
lock is blocked.

ScaleXFS selects the committed item list for in-memory
logging using a simple flip-flop based algorithm. The jour-
nal thread is assigned a transaction ID. The transaction ID
monotonically increases with an increment of one each time
the journal thread is created. The journal threads alternate
between the two committed item lists for on-disk logging.
The journal threads with an odd transaction ID will be using
the same committed item list, e.g. CIL 1, while the journal
threads with an even transaction ID use the opposite, e.g. CIL
2, for on-disk logging. Based upon the transaction ID of the
current journaling thread, XFS selects the committed item list
for in-memory logging.
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Figure 13: State of Committed item list.

Fig. 13 shows an example of the process of changing the
state of the committed item list in double committed item list.

1 Standby → Active: At the beginning, XFS creates the
two committed item lists. Both of them are in the Standby
state. Based upon the current transaction ID, we select the
committed item list for in-memory logging and establish the
shared lock. Once the shared lock is established, the state of
the committed item list changes from Standby to Active state
and the application thread performs in-memory logging on
the selected committed item list. After the application thread
finishes in-memory logging and releases the shared lock, the
committed item list is still in the Active state. The subsequent
application threads use the same committed item list since the
current transaction ID has not changed yet.

2 Active → Blocked: When the journal commit request
arrives, the filesystem creates the journal thread increasing
the transaction ID by one. Then, the journal thread establishes
the exclusive lock on the committed item list and performs
on-disk logging. The state of the committed item list becomes
Blocked.

3 Standby → Active If the application thread needs to
perform in-memory logging while one of the committed item
lists is in the Blocked state, the application thread chooses
the other committed item list for in-memory logging. This
committed item list goes into the Active state.
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4 Blocked → Standby The journal thread migrates all log
data in the committed item list into the committing list. Once
this is done, the committed item list becomes empty and the
journal thread releases the lock on the committed item list.
The committed item list goes into the Standby state.

We use trylock() [8] in establishing the shared lock
on the committed item list. This is to avoid the situation
where in-memory logging is blocked by the on-disk logging.
If trylock() fails, ScaleXFS establishes the shared lock on
another committed item list.

4.3 Per-core In-memory Logging

To mitigate the contention among the in-memory logging
activities of the application threads, we propose Per-core In-
memory Logging. The committed item list is organized with
multiple lists on a per-core basis. With Per-core In-memory
Logging, the application thread inserts the log data into the
list allocated for the current CPU core on which it is being ex-
ecuted. Per-core in-memory logging mitigates the contention
among the application threads that perform in-memory log-
ging. In on-disk logging, the journal thread scans the per-core
lists and merges them into a single list for on-disk logging.
The rest of the on-disk logging procedure remains the same as
when the committed item list is a single list of log data. Com-
bined with the Double Committed Item List, each committed
item list consists of a set of per-core lists (Fig. 14).

In-memory loggings On-disk logging

Committed item list

T1 T2 T3

Committed item list
Journal thread starts

Tjrnl Journal 

Commit

Figure 14: Per-core In-memory Logging.

There are two issues in organizing the committed item
list with a set of per-core lists. First, we can preserve the
order among the updates only within the per-core list. We
cannot specify the ordering dependency among the logs in
different per-core lists. Second, there can be a conflict among
the per-core lists. Applications running on a different core
may update the same metadata. There can be only one log
data for each metadata object. The log data may need to be
migrated between the per-core lists of different cores if the
log data is updated by the threads running on the different
cores.

We introduce timestamp for each log data to maintain the
global order among the log data across the per-list lists. When
the log data is newly created or updated, we put the timestamp

A

T1

B
D

Time

Per-core 

list #1

Sorted List

t1 A

B

Per-core 

list #2

A

T2

B
C

t1

t2

Bt1

A
C

Dt2

Tjrnl

t1

t2

A
C

Dt2

B

Inode

t1 t2 t3

Figure 15: Ordering mechanism with timestamp: T1 and T2
modify the inodes at times t1 and t2, respectively.

at the associated log data, as illustrated by the example in
Fig. 15. For the conflict, we insert the log data at the original
per-core list where the preceding update exists.

At the beginning, there are two logs; A and B at per-core
list #1. They are updated by thread T1 at t1. At time t2, thread
T2 updates inode1 to C and inode3 to D. The per-core list #1
contains a log A for inode1. When thread T2 updates inode1
to C, the log data in per-core list #1 is updated from A to
A,C and the timestamp is also updated from t1 to t2. Thread
T2 creates the new log data for inode3 and insert it to per-
core list #2 with t2. The updated log data remains at the
original per-core list even though the thread at the different
core updated it, e.g. at t2 on per-core list #1 (Fig. 15). By
pinning the updated log data to its original per-core list, we
avoid modifying the per-core list across the core. In on-disk
logging, the journal thread coalesces multiple per-core lists
into a single list which maintains the global order of update
with respect to the timestamp, e.g. at t3 (Fig. 15).

4.4 Strided Space Counting
XFS maintains the total log data size in the committed item
list. We call it a space counter. The space counter is used to
estimate the size of disk space that is used to accommodate
the logs in the committed item list. If the free space in the
journal region is less than the space counter, XFS checkpoints
the journal logs in the disk to make a room for the incoming
logs. Each in-memory logging updates the space counter. The
space counter is protected by spinlock (cil_lock).

To mitigate the contention on the space counter, we develop
Strided Space Counter. Strided Space Counter is a variant of
the sloppy counter [17] that is tailored to estimate the available
space in the journal region of the disk. Strided space counter
consists of the per-core space counters, the per-core strided
space counter, the global space counter, and the stride length.
The per-core space counter and the per-core strided space
counter are initially set to 0. When the application performs
in-memory logging, it increases the space counter by the size
of the log data. If the local (per-core) space counter exceeds

USENIX Association 20th USENIX Conference on File and Storage Technologies    337



the local strided space counter, the local strided space counter
is folded to the global strided space counter. After it is folded
to the global space counter, the local strided space counter
increases by the length of stride. The thread increases the
local counter when it needs to increase the space requirement.
When the thread needs to check the space availability, it reads
a global counter.

Strided space counter shares much of its behavior with
sloppy counter but is not entirely the same. To avoid con-
fusion, we call our counter Strided Space Counter. Sloppy
counter estimates the minimum value of the sum of the local
counters and is used to check if the reference counter value is
non-zero [17]. Strided Space Counter estimates the maximum
value of the sum of the local counters and is used to check if
sufficient amount of space is reserved at the journal region.
In sloppy counter, if the local counter exceeds the threshold
value, the local counter is folded to the global counter. In
Strided Space Counter, if updating the local counter makes
the sum of the local counters greater than the global counter,
we increase the value of the global counter by the stride length
before we increase the local counter.

Time
Counter (L) / Strided Counter (S)

G
L1 S1 L2 L3 L4

t0 0 0 0 0 0 0 0 0 0

t1 3 5 0 0 0 0 1 5 10

t2 4 5 0 0 6 10 2 5 20

t3 5 5 0 0 7 10 3 5 20

t4 6 10 4 5 8 10 3 5 30

S2 S3 S4

Figure 16: Stride Space Counting, stride length: 5.

Fig. 16 illustrates how strided space counting works. At t1,
the local counter at core 1 is changed to 3. The local strided
counter of core 1 was 0. Now, it is updated to 5 by the stride
length and it is folded to the global strided space counter.
Simultaneously at t1, the local counter at core 4 is change
to 1. The local strided counter of core 4 is updated from 0
to 5 and it is folded to the global strided space counter. The
global space counter G becomes 10 at time t1. At time t2,
the local counter L3 changes from 0 to 6. The local strided
space counter becomes 10 and the global strided space counter
becomes 20.

The stride length should be large enough to reduce the
contention on the global counter. But, if the stride length is too
large, the global space counter exceeds the required disk space
for journaling too far and causes unnecessary checkpoint.

5 Evaluation

We examine the manycore scalability of ScaleXFS using a 112
core server (HPE ProLiant DL580, 28 core/socket, 4 sockets,
Intel Xeon Platinum 8276) with 512 GByte DRAM. The Cen-

tOS 7.4 (kernel is 5.8.5) and Intel Optane 905p NVMe SSD
were used. In the experiment, the number of active cores were
varied and evenly distributed among the sockets. We com-
pare three filesystems; EXT4, original XFS, and ScaleXFS.
For ScaleXFS, we use three different settings; ScaleXFSD,
ScaleXFSDP and ScaleXFSDPS. Each subscript in ScaleXFS
refers to a different feature. D, P and S refers to Double com-
mitted item list, Per-core in-memory logging, and Strided
space counting, respectively.

5.1 Lock Contention

The goal of ScaleXFS is to eliminate the lock contention of
shared journaling structures. We first show that ScaleXFS
significantly reduces the lock contention of the overall system.
Lockstat [5] was used to measure the lock contention to
examine how it is mitigated in our work. For three workloads,
the total lock wait time, the lock wait time for cil_lock and
ctx_lock-R (shared lock of ctx_lock). were examined, and
the results are shown in Fig. 17.
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Figure 17: Total lock wait time of cil_lock, ctx_lock-R and
all of the locks. Each number above each bar is the proportion
of the sum of cil_lock and ctx_lock-R out of the total wait
time of all locks, 112 cores.

Recall that ctx_lock protects the committed item list and
the associated log data from the conflict between in-memory
logging and on-disk logging. cil_lock protects them from
conflicts among the multiple in-memory loggings. In XFS,
cil_lock and ctx_lock-R combined account for as low as
69% (Fig. 17a), as high as 96% (Fig. 17b) of the total lock wait
time. We do not observe any lock wait time for ctx_lock-R in
mdtest. This is because mdtest does not issue any fsync()
and therefore in-memory logging does not wait for the shared
lock (ctx_lock-R).

It is shown that the double committed item list successfully
eliminates the contention between in-memory logging and
on-disk logging. ScaleXFSD does not have any contention on
ctx_lock-R, since in-memory logging and on-disk logging
do not need to compete with each other anymore. By eliminat-
ing the overhead on ctx_lock-R, the total lock wait time also
decreases by 36% and 35% on varmail-ptd and dbench,
respectively. In ScaleXFSDPS, Per-core basis committed item
list enables parallel in-memory logging, leading to the elimi-
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Figure 18: Average hold time of locks protecting metadata
objects. A, B and C refer to xfs_nondir_ilock_class-W,
xfs_dir_ilock_class-W, i_mutex_dir_key each. 112 cores.

nation of the contention on cil_lock. The total wait time of
all locks decreases by 53%, 90%, and 90% for varmail-ptd,
dbench and mdtest, respectively, in ScaleXFSDPS (Fig. 17).

As a result of reducing the in-memory logging latency,
the ScaleXFS reduces the total time to hold the exclu-
sive lock on the metadata object. This is because the
filesystem needs to hold the exclusive lock on the meta-
data object until the metadata operation completes, i.e. un-
til the in-memory logging completes. The lock wait times
of three widely used locks, xfs_nondir_ilock_class-W,
xfs_dir_ilock_class-W and i_mutex_dir_key, were exam-
ined under XFS, ScaleXFSD and ScaleXFSDPS filesystems.
Three benchmark workloads, varmail-ptd, dbench and
mdtest, were examined and their average hold times were
measured at 112 cores. Fig. 18 illustrates the results. In
varmail-ptd, ScaleXFSDPS reduces the hold time of each
lock by 92%, 90%, and 80% against the original XFS. A
similar improvement in the other workloads was also ob-
served. Eliminating the lock contention associated with the
in-memory logging and the on-disk logging, i.e. contention
on cil_lock, ctx_lock-R, the entire lock hold time on the
metadata update decreases to as much as 1/10th.

5.2 Latency of creat(), unlink() and fsync()

To show how the operation latencies are effectively reduced
by eliminating lock contentions, we evaluated the average
latencies of three filesystem operations; creat(), unlink(),
and fsync() on varmail-ptd and dbench under a varying
number of cores. In this experiment, we also include the
performance result from EXT4.

ScaleXFS reduces the latency of metadata operations. The
reduction becomes more pronounced as the number of cores
increases. In varmail-ptd, creat() and unlink() laten-
cies in ScaleXFSDPS are 1/5 and 1/6 of those in XFS at
112 cores, respectively (Fig. 19a and Fig. 19b). In dbench,
creat() and unlink() latencies in ScaleXFSDPS are 1/4
and 1/6 of those in XFS, respectively (Fig. 19d and Fig. 19e).
ScaleXFSDPS renders more scalable behavior than the XFS.
Under varmail-ptd workload, when the number of cores
increases from 4 to 112, in XFS and ScaleXFSDPS, the latency
of unlink() increases by 20× and by 3.5×, respectively.
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Figure 19: Average latencies of creat(), unlink(),
fsync() at varmail-ptd (Wvptd) and dbench (Wd).

Fig. 19 shows that XFS and EXT4 have their own perfor-
mance edges. XFS exhibits better performance in filesystem
journaling than EXT4. EXT4 renders better performance in
metadata operation than XFS. ScaleXFSDPS makes a signif-
icant improvement in the metadata operation against stock
XFS. ScaleXFSDPS exhibits better filesystem journaling per-
formance than XFS (Fig. 19c) and better performance in
metadata operation than EXT4 (Fig. 19a and Fig. 19b).

5.3 Benchmark performance
varmail-ptd. Fig. 20a illustrates the result of
varmail-ptd. ScaleXFSDPS outperforms XFS and EXT4
by 1.5×, 1.9× at 112 cores, respectively. ScaleXFSDPS
scales well while XFS performance saturates beyond 20
cores. The performance difference between ScaleXFSD and
ScaleXFSDPS is not significant in varmail-ptd because the
on-disk logging accounts for a substantial fraction of the
entire workloads, and subsequently contention among the
in-memory loggings is not as severe as in the other workloads.
Therefore, the benefit of using per-core in-memory logging is
not significant.
dbench. Fig. 20b illustrates the result of dbench.
ScaleXFSDPS shows 1.3× and 2.2× performance against
ScaleXFSD and XFS, at 112 cores, respectively. ScaleXFSDPS
also outperforms EXT4 by 4.5× at 112 cores. In dbench,
per-core in-memory logging and Strided Space Counting
becomes more effective than in varmail-ptd. In dbench,
in-memory logging operation accounts for larger fraction of
operation than in varmail-ptd. In varmail-ptd, on-disk
logging (fsync()) accounts for 15.4% of the total number
of system calls. In dbench, on-disk logging (fsync())
accounts for only 1.2% of the total number of system calls.
(Table 1). In dbench, the contention among the in-memory
logging operations becomes more intense than the contention
between the in-memory logging and on-disk logging. The
techniques to mitigate the contention among the in-memory
loggings becomes far more effective in dbench than in
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Figure 20: Throughput of varmail-ptd, dbench, mdtest and exim.

varmail-ptd. The performance gain of ScaleXFSDPS
against ScaleXFSD becomes more substantial under dbench
than under varmail-ptd.

The benefit of double committed item list is substantial
in both varmail-ptd and dbench workload. ScaleXFSD
renders 1.4× performance in varmail-ptd and 1.7× perfor-
mance in dbench than XFS in 112 core server. In original
XFS, on-disk logging (fsync()) blocks the in-memory log-
ging. With double committed item list, in-memory logging
and on-disk logging can proceed in parallel since each of
them can work on its own committed item list. As a result,
ScaleXFSD yields significant performance advantage against
stock XFS in dbench and varmail-ptd.
mdtest. Fig. 20c illustrates the result of mdtest.
ScaleXFSDPS outperforms the original XFS by 2.1×
ScaleXFSDPS scales well till 60 cores while XFS saturates
beyond 10 cores. ScaleXFSDPS adopts scalable in-memory
logging and outperforms EXT4 by 1.5× mdtest is metadata
intensive workload without fsync(). The performance
benefit of adopting per-core in-memory logging is substantial
in mdtest.
exim. Fig. 20c illustrates the result of exim. Exim [3] is a
mail server, creating, renaming, and deleting small files re-
peatedly. We disable per-message fsync() in exim as in Fx-
Mark [37]. Exim does not issue fsync() similar to mdtest
and the on-disk logging does not occur frequently. As a result,
the effect of a double committed item list that is for removing
the contention between the in-memory logging and the on-
disk logging becomes less significant. The performance gap
between ScaleXFSD and XFS is not remarkable. Contrarily,
the contention among the in-memory loggings becomes more
intense and the effect of per-core in-memory logging becomes
significant. ScaleXFSDPS outperforms ScaleXFSD by 1.5×.
ScaleXFSDPS outperforms XFS and EXT4 by as much as
1.9× and 2.2×, respectively. We observe that the throughput
of ScaleXFSDPS slightly drops after 60 cores. This is caused
by the overhead of spinlock in the VFS layer. The number of
spool directories in exim is configured to 62. As ScaleXFS
significantly increases the throughput, the overhead on spool
directories becomes more substantial [31].

FxMark. Fig. 21 shows the result of FxMark. To analyze the
performance improvement of the metadata operation, we ex-
amine the performance of unlink() under different sharing
levels of FxMark [37].
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Figure 21: Throughput of FxMark’s unlink() operation on
low and medium sharing levels.

In the low sharing level, the processes perform the metadata
operations in their private directory. ScaleXFSDPS exhibits
superior performance against ScaleXFSD and XFS (Fig. 21a).
Per-core in-memory logging is effective in eliminating the
contention among the in-memory loggings.

In the medium sharing level, the processes perform the
metadata operations in a shared directory. The contention to
hold the exclusive lock on the shared metadata neutralizes the
effectiveness of per-core in-memory logging, ScaleXFSDPS
does not render any performance improvement against XFS
(Fig. 21b).

5.4 Strided Space Counting
We measure the average latency and tail latency (@95%)
of in-memory logging, and the throughput of mdtest under
varying the stride lengths. We vary the stride length from 0
Byte to 8 KByte. When the stride length is 0 Byte, it repre-
sents the performance of ScaleXFSDP. Stride space counting
reduces the average latency as much as by 7.3% (Fig. 22a).
The tail latency of in-memory logging is unaffected by strided
space counting (Fig. 22b). Strided space counting improves
the throughput by up to 13% compared against ScaleXFSDP
(Fig. 22c). Dominant operations of mdtest workload is in-
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Figure 22: Effect of stride length: In-memory logging latency
and throughput in mdtest, creat(), 112 cores.

memory logging. In manycore environment, large number of
in-memory logging operations can proceed in parallel render-
ing intense contention on the shared variable such as locks
and space counter. Via introducing the per-core space counter,
ScaleXFS effectively mitigates the contention on the global
variable, space counter substantially.

Larger stride length may render overestimating the size
of the required journal region on the disk. We found that 8
KByte stride length yields 14 KByte of space waste for a
2 GByte journal region. We believe that space waste of 14
Kbyte for 8 KByte stride length is negligible. Given this, we
set the default stride length to 8 KByte.

6 Related Work

A few works have examined the performance and scalability
behavior of the XFS [13, 37]; however, they do not provide a
detailed analysis on the observed behavior or offer a solution
to address it. Other works explain the internals of XFS [10]
and compare the performance of multiple filesystems [12,
23]. Few of these works perform an in-depth study on the
performance bottleneck of the XFS filesystem and propose a
solution to address the observed issues.

EXT4 suffers from sub-optimal performance primarily due
to its page granularity physical logging that uses the orig-
inal page cache entry for journal commit [48] and due to
the serial journal commit [37]. A number of works proposed
using multiple running transactions [27, 40] and/or multiple
committing transactions [26, 27, 34, 40, 48] to address the
performance and the scalability of the filesystem journaling.
Son et al. [43] allows multiple processes to insert the log
data to the running transaction concurrently via a lock-free
mechanism. ScaleFS [15] decouples the in-memory filesys-
tem from the on-disk filesystem. The in-memory filesystem
adopts highly concurrent data structures with the per-core
operation log and the on-disk filesystem merges the operation
log and synchronize it to the disk.

Min et al. [37] found that the cache line bounce of the
global lock causes a performance collapse in the manycore
system. A number of works propose a scalable lock primitive.
PRW lock [32] and RPS [31] adopt the per-core indicators to
reduce the contention among readers. To improve the write

lock latency, these works update the global value when the
IPIs are transmitted [32] or when the per-core flags are set [31]
by the writer. RPS efficiently checks the per-core indicators
and flags, by leveraging the CPU scheduler [31]. BRAVO [21]
uses the global hash table to reduce the memory footprint.

A number of works improve the scalability of the read op-
eration. Refcache [18] adopts per-core reference delta caches
and merges the changes between epoch into a single operation.
PayGo [25] adopts the per-core hash technique and anchor
counter for scalable counter. Lodic [41] achieves file block
scalability by implementing a local counter on the page table
entry considering the popularity of a file.

7 Conclusion and Future Work

In this work, we address the XFS filesystem scalability. We
identify the prime cause for scalability failure in XFS jour-
naling: the contention among the application threads and the
journal thread to access the global list of log data. To address
this issue, we propose Dual Committed Item List, Per-Core
In-memory Logging and Strided Space Counting. Our experi-
mental results confirm that ScaleXFS resolves the scalability
bottleneck of XFS under various workloads. ScaleXFS re-
veals two new bottlenecks that were not visible before. The
first one is the host-side overhead of handling on-disk logging.
XFS allows that multiple committing transactions are made
durable at the disk in out-of-order manner. However, to ensure
the filesystem integrity, the XFS filesystem at the host-side
finishes the journal commit in the order in which the trans-
action commit requests are made; XFS finishes the journal
commit of a transaction only when all its preceding journal
commit finishes. We find that this in-order completion for
journal commit mechanism becomes a scalability bottleneck
when we resolve the lock contention in in-memory logging.
The second one is the memory copy overhead of differential
logging. As the journaling becomes efficient, the memory
copy overhead associated with creating the differential copy
of the updated metadata accounts for a relatively larger frac-
tion of journaling overhead. Currently, XFS adopts a crude
coarse grain differential logging and it leaves substantial room
for improvement. We like to address these two issues in our
future effort.
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Abstract
In this work, we present exF2FS, a transactional log-
structured filesystem. The proposed filesystem consists of
three key components: Membership-Oriented Transaction,
Stealing-Enabled Transaction, and Shadow Garbage Collec-
tion. Membership-Oriented Transaction allows the transaction
to span multiple files where the application can explicitly spec-
ify the files associated with a transaction. Stealing-Enabled
Transaction allows the application to execute the transaction
with a small amount of memory and to encapsulate many
updates, e.g., hundreds of files with tens of GBs in total size,
with a single transaction. Shadow Garbage Collection allows
the log-structured filesystem to perform garbage collection
without affecting the failure-atomicity of ongoing transac-
tions. The transaction support in exF2FS is carefully trimmed
to meet the critical needs of the application while minimizing
the code complexity and avoiding any performance side ef-
fects. With exF2FS, SQLite multi-file transaction throughput
increases by 24× against the multi-file transaction of stock
SQLite. RocksDB throughput increases by 87% when it im-
plements the compaction as a filesystem transaction.

1 Introduction

Modern applications strive to protect their data in a crash-
consistent manner which is often split over multiple file
abstractions. In the absence of proper transaction support
from the underlying filesystem, the application employs
complicated protocols to ensure the transactional updates
that span multiple files, yielding long sequence of writes
and fsync()’s. Text editors, such as vim and emacs, use
atomic rename() to save the updated file atomically [1].
For a transaction that updates the multiple database files, the
library-based embedded DBMS, SQLite, maintains the sepa-
rate journal file for each database file [69], yielding excessive
fdatasync() calls and a large write amplification [31]. Com-
paction operation of the modern LSM-based key-value store,
such as RocksDB [22], maintains the state of the merge-sort
at a separate journal file known as the manifest file. For the
failure-atomicity of the compaction operation, the key-value
storage engine flushes the output files separately and also
flushes the global state of the compaction to the manifest file.
With the transaction support from the filesystem, the appli-
cation can replace the multiple fsync()’s for each output

files and the manifest file with a single filesystem transaction,
rendering higher performance by eliminating redundant IO’s.

Despite the clear benefits of supporting transactions, it re-
mains a challenge for the operating system and filesystem.
To successfully deploy the transaction enabled system, the
right balance must be found among the four requirements:
easy to use, code complexity, degree of ACID support and
performance. Unfortunately, achieving one of these is often
at the cost of another. The system level supports for trans-
action can largely be categorized into four: native operating
system support [57, 61, 61, 75], kernel level filesystem [14,
26, 27, 46, 55, 66, 72, 78], user level filesystem [24, 48, 54]
and transactional block device [12, 28, 32, 52, 58, 65]. Sup-
porting transaction as the first-class citizen of the operating
system is ideal; however, it requires substantial change in the
operating system. Transaction support from the user level
filesystem exploits the user level DBMS to provide full ACID
transaction [24, 48, 54]. ACID support comes at the cost of
the performance. The transaction support from the kernel
level filesystem can further be categorized with respect to the
degree of ACID support: full ACID semantics [27, 66], ACD
without isolation support [55, 72] or even AC without isola-
tion and durability support [34]. An F2FS transaction [34]
supports only the atomicity, neither isolation nor durability.
The transaction in F2FS cannot span multiple files. Ironically,
despite its barest minimum support for the transaction, F2FS
is the only filesystem that successfully deploys its transaction
support to the public. F2FS’s transaction support has a specific
target application: SQLite. With atomic write of F2FS, SQLite
can implement the transaction without the rollback journal
file and can eliminate the excessive flush overhead [31, 64].

In this work, we revisit the issue of providing the filesystem-
level transaction support. In particular, we focus the domain of
interests to the log-structured filesystem. Most of the preced-
ing works on the transactional filesystems use the journaling
filesystem as a baseline filesystem [27, 66, 72]. These works
exploit the journaling layer of the filesystem to provide the
transaction capability. F2FS, the log-structured filesystem de-
signed for flash storage, recently gained wide popularity on
smartphone platforms [56] and is beginning to expand into
cloud platforms [6]. Few works have dealt with the transac-
tion support in the log-structured filesystem. Seltzer et al. [62]
is the nearest effort; however, their work is limited in terms
of the transaction support. Their study does not support multi-
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file transaction, stealing in the transaction, nor the conflict
handling between a transaction and the garbage collection.

In this study, we present transaction support in the log-
structured filesystem with three design objectives; (i) the
transaction should be able to span multiple files, including the
directory, (ii) the transaction should be able to handle large
amounts of updates and (iii) the transaction should not be
affected by the execution of garbage collection. Each of these
requirements looks plain and essential from the application’s
point of view. Unfortunately, developing the transactional log-
structured filesystem which satisfies these simple and plain
requirements is a non-trivial exercise which calls for substan-
tial changes in the underlying filesystem from the aspect of
design as well as implementation; developing a new trans-
action model, redesigning the filesystem’s page reclamation
procedure and redesigning the garbage collection procedure.
We find that few modern transactional filesystems address
any of these essential requirements in its transaction manage-
ment with sufficient maturity. To allow the transaction to span
multiple files, we develop Membership-Oriented Transaction
Model. To allow the transaction to handle large size transac-
tions which may consist of hundreds of files with tens of GBs
of data, we develop Stealing for the filesystem transaction.
To prohibit the garbage collection from interfering with the
ongoing transaction, we develop Shadow Garbage Collection.
The main contributions of this work are as follows.

• Membership-Oriented Transaction. In Membership-
Oriented Transaction, the filesystem maintains a kernel
object, Transaction File Group that specifies the set of files,
including directories, associated with the transaction. With
Membership-Oriented Transaction, the application can ex-
plicitly specify the files that are subject to the transaction.

• Stealing. We allow dirty pages of uncommitted transac-
tions to be evicted and yet guarantee the atomicity of the
transaction. We develop Delayed Invalidation and Reloca-
tion Record to realize Stealing in the filesystem transaction.
Delayed Invalidation prohibits the old disk locations of
evicted pages from being garbage-collected until the trans-
action commits. Relocation Record maintains undo and
redo information to abort and commit evicted pages, re-
spectively.

• Shadow Garbage Collection. We develop Shadow
Garbage Collection to prohibit the garbage collection mod-
ule from making the dirty page of the uncommitted transac-
tion prematurely durable and recoverable. Shadow Garbage
Collection allows the filesystem to perform garbage collec-
tion transparently to the ongoing transactions.

We implement these features in F2FS. We call the newly devel-
oped filesystem extended F2FS (exF2FS). exF2FS improves
the SQLite performance by 24× against stock SQLite and
reduces the write volume to 1/6 compared to the PERSIST
journal mode of SQLite. It improves RocksDB performance

by 87% in the YCSB workload-A [13]. Special care has been
taken not to change any on-disk structure of the existing F2FS
so that exF2FS can mount the existing F2FS partition.

2 Background and Motivation
2.1 Multi-file Transaction
Multi-file transaction is an essential part of the modern soft-
ware. The followings are a few examples of multi-file trans-
action method currently being used.

Maintaining the browsing history in the web browser.
The Chrome browser maintains user browsing activity, such
as visited URL’s, the list of downloaded files, an access history
for each URL and the list of the most frequently visited URL’s.
Chrome maintains each of these in a separate file and updates
these files in failure-atomic fashion. For failure-atomicity,
Chrome uses SQLite in updating these files [50] which ren-
ders excessive IO. The inefficiency of SQLite transactions
will be explained later in this study.

Compaction in LSM-based key-value Store. Compaction
is a process of merge-sorting several SSTables with over-
lapping intervals into a sequence of the output files with
non-overlapping intervals [21]. The failure-atomicity of the
compaction operation invokes fsync()’s for each output file
and the parent directory and flushes the global state of the
transaction to a special file called the manifest file [5, 23, 33].
In "load" workload of YCSB [13], a single compaction of
RocksDB can create as many as 198 output files (over 200
fsync()’s) for a total of 13.3 GB.

Software Installation. Updating or installing a new software
involves downloading and modifying hundreds of files and
updating the associated directory in a failure-atomic manner.
The partial completion of installation or update often leads to
an unstable system [15, 42, 45, 73].

Mail client. MAILDIR IMAP format maintains the mailbox
and the message as a directory and a file in the directory, re-
spectively [2, 16, 20]. The email client updates the message
files and the associated directory in transactional fashion. In
the absence of transaction support from the underlying filesys-
tem, mail clients use the expensive atomic rename to manage
the mailbox and the message in transactional fashion [9, 70].

2.2 Multi-file Transaction and SQLite
SQLite is serverless embedded DBMS widely used in various
applications: mobile applications such as Android Mail and
Facebook App, desktop applications such as Gmail and Apple
iWork [25, 27] and distributed filesystems such as Lustre [8]
and Ceph [74]. These applications use SQLite to persistently
manage the updates on the multiple files in failure-atomic
fashion. To understand how the SQLite can benefit from the
transaction support of the underlying filesystem, we instru-
ment the IO behavior of the SQLite’s multi-file transaction.
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Figure 1: A multi-file transaction with three insert()’s in F2FS. Record size = 100 Byte, PERSIST mode. The number in each
mark represents the number of KB written, Device: Samsung 850 PRO, fd: fdatasync(), mj: master journal file, dir: parent
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While the application can become simpler when using
SQLite to persistently manage the data, it suffers from signifi-
cant write amplification and excessive flush due to the page
granularity physical logging and the file-backed journaling
of SQLite [31, 64]. A single insert() of SQLite incurs five
fdatasync()’s with 40 KB of write() [76]. A few studies
have been dedicated to improving the extreme IO inefficiency
of SQLite transaction [27, 31, 34, 36, 40, 53]. All these efforts
are limited to improve the IO overhead in the transaction with
a single database file.

SQLite constructs the multi-file transaction as a collection
of the single file transactions and a few flushes to record the
global state of the multi-file transaction at the master journal
file. SQLite implements the multi-file transaction in the four
steps listed below. Step 1 and Step 3 are for updating the
master journal file. Step 2 and Step 4 are for executing the
series of the single file transactions. Fig 1 shows how each
of these steps is associated with the IO behavior through the
physical experiment. Here, a transaction consists of three
inserts to three different database files.

1. Initializing the master journal file. SQLite records the
name of the journal files in the master journal file. Then, it
flushes the master journal file ( 1 in Fig. 1) and the updated
directory to the disk ( 2 in Fig. 1).

2. Logging and Database Updates. SQLite logs the undo
records at the journal files and updates the database files.
Each file is updated in the same way as in the single
database transaction ( 3 in Fig. 1). There are three 3 ’s
in Fig. 1 each of which corresponds to a single insert().

3. Deleting the master journal file. As a mark of successful
commit, SQLite deletes the master journal file and makes
the associated directory durable ( 4 in Fig. 1).

4. Reset Logs. SQLite resets the journal files and flushes
them ( 5 in Fig. 1).

In the Fig. 1, the X-axis and Y-axis denote the time and
LBA, respectively. Here, we explicitly specify three regions
of F2FS: the metadata area, data region of the main area,
and node region of the main area. When SQLite flushes the
dirty file block through fdatasync(), the underlying F2FS
flushes not only data blocks but also the associated node
block to the data region and the node region, respectively.
In ( 1 ), flushing the master journal file (fd(mj)) renders two
separate 4 KB IO’s to the disk: one for flushing the data block
and the other for flushing the node block. The data block
and the associated node block need to be made durable in
order for guaranteeing the integrity of the filesystem. Each
insert() has three fdatasync()’s ( 3 ); the first and the
second fdatasync() are for flushing the rollback journal file.
The third one is for flushing the database file. In ( 4 ), SQLite
deletes the master journal file and persists the parent directory.
When unlinking the master journal file becomes durable, the
transaction is committed. In ( 5 ), SQLite resets the rollback
journal files of the transaction.

As in Fig. 1, the IO overhead of SQLite multi-file transac-
tion is somewhat disastrous; inserting three 100 Byte records
renders fifteen fdatasync()’s and 180 KBs write to the disk.

2.3 Log-structured Filesystem, F2FS and
Atomic Write

We use F2FS [39] as a baseline log-structured filesystem.
F2FS has a number of key design features that differentiate
itself from the original log-structured filesystem designs [38,
60, 63]. Among them, the two features that we focus on in
this work are block allocation bitmap and dual log partition
layout. To realize Stealing and Shadow Garbage Collection,
the way in which F2FS manipulates and updates the block
allocation bitmap and the two logs must be overhauled.

The first is block allocation bitmap. In the original log-
structured filesystem design [60, 63], there is no explicit data
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structure that specifies whether a given block in the filesystem
partition is allocated or not. The filesystem determines that a
block in the filesystem partition is allocated if it is reachable
through the file mapping. F2FS maintains the block allocation
bitmap to denote whether a given block in the filesystem is
valid or not. The second is dual log partition layout. Legacy
log-structured filesystems treat the filesystem partition as a
single log. They cluster the data block and the associated
filemap1 together and flush them in a single unit. F2FS orga-
nizes the filesystem partition with two separate logs: the data
region and the node region. F2FS places the data block and
the node block at the associated regions, respectively. Unlike
the legacy log-structured filesystems, F2FS writes the data
blocks and node blocks separately. To preserve the filesystem
integrity against a system crash, F2FS ensures that the data
blocks are made durable before the associated node blocks.
Due to this ordering mechanism in F2FS, the block trace for
writing the data block appears before the block trace for writ-
ing the node block in each pair of writes for the data block
and the node block, as shown in Fig. 1.

F2FS provides the atomic write feature [34]; an application
can write multiple blocks for a single file in a failure-atomic
manner. This feature is primarily for addressing the excessive
IO overhead of the SQLite’s single file transaction.

start_atomic_write(fd) ;
write(fd, block1) ;
write(fd, block2) ;
commit_atomic_write(fd) ;

For atomic write, F2FS maintains the list of the dirty pages
in the inode. When the transaction updates a file block, it
inserts the dirty page to the per-inode dirty page list and pins
the dirty page in memory. When the transaction commits,
the filesystem unpins the dirty pages in the per-inode dirty
page list and flushes the dirty pages and the associated node
blocks that hold the updated file mapping to the disk. Since the
atomic write pins the dirty pages in memory until it commits,
F2FS, by design, cannot support Stealing in its atomic write
transaction. When the transaction commits, F2FS sets the
FSYNC_BIT flag at the node block. If more than one node
blocks are flushed, atomic write places FSYNC_BIT flag at the
last node block. F2FS sets the FSYNC_BIT flag at the node
block to mark itself subject to the roll-forward recovery.

The log-structured filesystem periodically checkpoints its
state, e.g. the updated file mapping, the updated bitmap (only
for F2FS), and the disk location of the last block of each log.
When the filesystem crashes, the recovery module recovers
the state of the filesystem with respect to the most recent
checkpoint information. After rollback recovery, the recovery
module scans the logs from the last location, finds the node
block with FSYNC_BIT, i.e. the transaction which has finished
successfully after the most recent checkpoint, and recovers
the associated file.

1F2FS calls blocks holding the file mapping information as a node block.

3 Design
We define three constraints which the transactional log-
structured filesystem should satisfy: (i) Multi-File Transac-
tion, (ii) Stealing and (iii) Transaction-aware Garbage Col-
lection. We develop a transactional log-structured filesystem,
exF2FS, that satisfies these constraints. The key technical
components of exF2FS are Membership-Oriented Transac-
tion, Stealing enabled Transaction, and Shadow Garbage Col-
lection. Each component is summarized below.

Membership-Oriented Transaction (Section 3.1): The
transaction of F2FS cannot span multiple files since it main-
tains the dirty pages of a transaction in a per-inode basis.
In this study, we develop a new transaction model, called
Membership-Oriented Transaction. In Membership-Oriented
Transaction, the filesystem defines Transaction File Group,
a set of files whose updates need to be handled as a transac-
tion and maintains the dirty pages of a transaction for each
transaction file group. In Membership-Oriented Transaction,
a transaction can span multiple files and the application can
explicitly specify the files that are subject to the transaction.

Stealing enabled Transaction (Section 4): For Stealing, the
page reclamation procedure is overhauled so that the result
of the page reclamation can be undone when the filesystem
reclaims the dirty page of the uncommitted transaction. With
Stealing enabled Transaction, the proposed filesystem can
support large size transactions, e.g. hundreds of files with tens
of GBs of data, with a small amount of memory.

Shadow Garbage Collection (Section 5): Garbage collec-
tion can make the dirty page associated with an uncommitted
transaction durable and can checkpoint the updated file map-
ping prematurely before the transaction commits. We develop
Shadow Garbage Collection to isolate the garbage collection
from the uncommitted transaction.

3.1 Membership-Oriented Transaction Model

Transac�on File Group

• Transac�on Membership

dirty data

page list
...

Page cache entry of

Master Commit Block

dirty node

page list
...

Reloca�on

List

: Updated files

file ID

file offset

old disk loca�on

new disk loca�on

...

LBA of

LBA of

LBA of

• TxFG ID

file ID

file offset

old disk loca�on

new disk loca�on

Figure 2: Concept of a Transaction: Transaction File Group,
Dirty Page List, Relocation List and Master Commit block

In this work, we propose a new transaction model called
Membership-Oriented Transaction. In this model, we define
the new kernel entity, Transaction File Group. Transaction
File Group is a set of files whose updates need to be treated
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as a single transaction, and consists of Transaction Member-
ship (a set of inodes), dirty page list, Relocation List, and
Master Commit Block, as in Fig. 2. We use hash table for
the namespace of Transaction File Group objects, which is
widely used to organize the namespace for the kernel objects,
e.g. semaphore and pipe [19].

With Transaction File Group, the application can specify
the files that need to be included in the transaction. The dirty
page list is a set of dirty pages for the transaction member
files. There are two separate dirty page lists: the dirty data
page list and the dirty node page list. A Relocation List is
a set of Relocation Records. Relocation Record contains an
information for the evicted page: file ID, file offset, old disk
location, and new disk location. Master Commit Block holds
the disk locations of the last node blocks for each file in
the transaction membership. Transaction File Group, along
with the Master Commit Block, allows the transaction to span
multiple files. Relocation List is used for Stealing and Shadow
Garbage Collection.

3.2 Transaction API’s

1 id = create_tx_file_group();
2 for (i = 0; i<3; i++)
3     add_tx_file_group(db[i], id);
4 start_tx_file_group(id);
5 write(db[0], buf, 4096);
6 write(db[1], buf, 4096);
7 write(db[2], buf, 4096);
8 commit_tx_file_group(id);
9 delete_file_group(id);

Figure 3: Multi-file transaction in exF2FS

The application creates a Transaction File Group with an
explicit call. When an application creates a Transaction File
Group, and ID of the Transaction File Group is returned to the
application. The application can add or remove a file to and
from the Transaction File Group. To avoid a conflict between
ongoing transactions, we forbid the application to add or to
remove a file to and from the Transaction File Group in an
ongoing transaction. When the transaction creates a file, the
newly created file inherits the membership from the parent
directory, which is called Membership Inheritance. Member-
ship Inheritance saves the file created by the transaction from
the transaction conflict since the newly created file is added
to the Transaction File Group before it becomes externally
visible. When the directory is removed from the Transaction
File Group, child files who inherited the membership are also
removed from the Transaction File Group.

The application specifies the ID of the Transaction File
Group when it starts the transaction. When the transaction
starts, the filesystem sets the flag at the inodes of the transac-
tion member files denoting that the files are associated with
the ongoing transaction. The application specifies the ID of

the Transaction File Group when it calls for the transaction
commit. exF2FS offers the API’s for transaction abort and
transaction delete. When the application calls for deleting
a Transaction File Group, the Transaction File Group and
the associated objects are deallocated if there is no ongoing
transaction for the Transaction File Group, If there is an on-
going transaction when the application calls for deleting the
transaction file group, exF2FS first aborts the transaction and
then deletes the Transaction File Group. Table 1 illustrates
the API’s and pseudo-code of exF2FS, respectively.

In exF2FS, a transaction can include a directory update
such as rename(), unlink(), and create(). The F2FS
transaction does not support the directory update in the trans-
action.

3.3 Commit and Abort
When the transaction updates the file in the transaction file
group, it inserts the updated page cache entry to the dirty data
page list of the Transaction File Group.

In committing a transaction, the filesystem prepares the
dirty data pages, the dirty node pages and the Master Commit
Block for transaction commit. First, the filesystem inserts the
dirty data pages in the dirty page list to the active data segment
and obtains the disk location for each dirty data page. Second,
the filesystem updates the associated node pages with the new
disk location of each data page, inserts the updated node pages
to the dirty node page list and determines the disk location
for each dirty node page. Third, the filesystem allocates the
Master Commit Block and stores the disk location of each
node page in the dirty node page list at the Master Commit
Block. The filesystem then sets FSYNC_BIT flag at the Master
Commit Block.

Once these steps are complete, exF2FS flushes the dirty
data pages, the dirty node pages and Master Commit Block. It
ensures that the Master Commit Block becomes durable only
after the data blocks and the node blocks become durable.
Master Commit Block is the key component to fabricate the
dirty pages of the multiple files into a single multi-file trans-
action. After the Master Commit Block becomes durable, the
filesystem scans the Relocation List and invalidates the old
disk locations of the Relocation Records. The details about
the Relocation Record will be explained in Section 4.3.

If the transaction aborts, all entries in the dirty page list are
discarded and the dirty page list becomes empty. When the
aborted transaction has the evicted pages, the file mapping
information is revoked to its original location based upon the
Relocation Records.

When the system crashes, the recovery module performs
rollback recovery and places the filesystem state to the most
recent checkpoint. Then, exF2FS performs roll-forward re-
covery; it scans the log starting from the last logging offset
recorded at the checkpoint. When it encounters Master Com-
mit Block, the recovery module examines it and identifies the
disk locations of the node blocks of the files in the transac-
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API Arguments Return value Description
create_tx_file_group None int key Create a transaction file group
delete_tx_file_group int key int err Deallocate a transaction file group corresponding to the key

Transaction
add_tx_file_group

int fd
int err Add a file fd to a transaction file group corresponding to the keyFile Group int key

remove_tx_file_group
int fd

int err Remove a file fd from a transaction file group corresponding to the key
int key

start_tx_file_group int key int err Start a transaction corresponding to the key
Transaction commit_tx_file_group int key int err Commit a transaction corresponding to the key

abort_tx_file_group int key int err Abort a transaction corresponding to the key

Table 1: API’s in exF2FS

tion. Then, the recovery module of exF2FS uses roll-forward
recovery routine of stock F2FS to recover the file associated
with each node block. If the system crashes before the Master
Commit Block becomes durable, the transient state of the
transaction that was in-memory is completely lost. Through
this recovery mechanism, exF2FS guarantees the atomicity
and the durability of the transaction.

3.4 Concurrency Control and Isolation
Not being a full-fledged DBMS, we use coarse file-granularity
concurrency control; a file can belong to only one Transaction
File Group at a time. When adding a file to the Transaction
File Group, the application checks if it is already in another
Transaction File Group. If the file is already in another Trans-
action File Group, add_tx_file_group returns an error.

We leave the isolation support to the application as the
other transactional filesystems do [11, 47, 72]. As the general
purpose filesystem, it is difficult to meet all different levels of
isolation requirements from a wide variety of applications at
the same time. We carefully consider that the limited support
of the filesystem for the isolation becomes redundant at best,
unless the isolation level supported by the filesystem is well
aligned with the isolation level required by the application.
Text editor, application installer, git and the compaction of
LSM-based key value store do not require the isolation [10].
SQLite and MySQL implement the multiple levels of isola-
tion by themselves [49, 68]. In these applications, the limited
support of filesystems for the isolation cannot be of much help.
TxFS supports the isolation of "Repeatable Read" [4, 27]. It
is overly strong for Text editor, and is too relaxed for some
applications, such as "Serializable Read" in SQLite. SQLite
must implement isolation of "Serializable Read" in its own
database layer using the shared lock [67] even when using
TxFS as the underlying filesystem. Filesystem support for the
isolation has a cost. According to our experiments, the isola-
tion support of TxFS renders 10% performance overhead due
to the overhead of creating the shadow copies of the updated
pages in the transaction. However, one limitation resulting
from the absence of isolation support is that other processes
cannot concurrently add, delete, or rename files in a directory
that is included in another process’s transaction. Supporting
concurrent directory modifications is left for future work.

4 Stealing in the Filesystem Transaction
Stealing denotes the buffer management policy that allows the
eviction of dirty pages of the uncommitted transaction [59].
The Steal policy in DBMS and the page reclamation of the
Operating System (or the filesystem) [41] are the different
manifestations of the same essential behavior: evicting a dirty
page to the disk and freeing up the physical memory. While
the two share the essential behavior, the two lie at the other end
of extreme. For Stealing in the database transaction, DBMS
prohibits the evicted dirty page from being externally visible
(isolation) and/or undoes the Steal in case of transaction abort
(atomicity). When the OS reclaims the file-backed dirty page,
the result of the page eviction becomes externally visible and
cannot be undone. In the journaling filesystem, the old file
block is overwritten with the evicted page and in the log-
structured filesystem, the old file block of the evicted page
becomes unreachable due to the file mapping update.

4.1 Stealing and the Filesystem

The support for Stealing in the existing transactional filesys-
tems bears substantial room for improvement. None of the
TxFS [27], F2FS [34], Isotope [65], and Libnvmmio [11] sup-
port Stealing in the transaction. TxFS cannot support Stealing
in a transaction due to its fundamental design limit. TxFS’s
support for transaction is built on top of EXT4 journaling.
EXT4 journaling pins the log blocks in memory until the jour-
nal transaction commits. EXT4 limits the size of the journal
transaction (256 MB by default). When the size of a journal
transaction reaches its limit, the EXT4 journaling module
commits the journal transaction. In EXT4, the dirty pages as-
sociated with a single system call can be split into two or more
journal commits. TxFS must prohibit this from happening
since it can make the transient state of the transaction durable
prematurely, compromising the atomicity of the transaction.
For atomicity guarantee, TxFS simply aborts the transaction
when the transaction size exceeds its limit. F2FS pins the
dirty pages of a transaction in memory until it commits. F2FS
aborts all outstanding transactions [35] when the dirty pages
of an uncommitted transaction exceeds a certain threshold
(15% of the total physical page frames by default). CFS sup-
ports stealing [47]. However, CFS relies on a non-existent
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transactional block device [32] for its support for Stealing.
AdvFS [72] supports Stealing with the commodity hardware.
AdvFS uses the writable file clone for the transactional up-
dates. When the transaction commits, the filemap is updated
to refer to the updated file blocks that are written in out-of-
place manner. This nature allows AdvFS to freely support
Stealing. However, a transaction in AdvFS can fragment the
file since the filesystem deletes the old file blocks each time
the transaction commits. The file defragmentation overhead
of AdvFS is yet-to-be known. Our analysis on the AdvFS is
limited since AdvFS is proprietary filesystem and the source
code of its transaction module is not publicly available.

4.2 Delayed Invalidation and Node Page Pin-
ning

In this study, we enable Stealing in the filesystem transaction.
The log-structured filesystems [39,60,63] evict the dirty pages
as follows: the evicted page is written to the new disk location,
the old disk location of the evicted page is invalidated and the
file mapping (node page in F2FS) is updated to refer to the
new location of the associated file block. This page eviction
routine cannot be used with Stealing for two critical reasons.
First is the invalidation of the old disk location. Being invali-
dated, the old file block can be garbage collected and can be
recycled before the transaction commits. If the old file block
is recycled before the transaction commits, the transaction
cannot be revoked when the transaction aborts. Second is the
premature checkpoint of the updated node page. When the
dirty page is evicted, the updated node page which contains
the updated file mapping can be checkpointed if the filesystem
runs the periodic checkpoint operation before the transaction
commits. Then, the updated node page checkpointed to the
disk refers to the new disk location of the evicted page of
the uncommitted transaction. If the filesystem crashes before
the transaction commits, the recovery module can recover the
evicted page of the uncommitted transaction with respect to
the most recent file mapping found on the disk. Subsequently,
the filesystem can be recovered to the incorrect state.

There are two key issues that need to be addressed for sup-
porting Stealing-enabled Transaction in the log-structured
filesystem: (i) prohibit the old disk location from being
garbage collected until the transaction commits and (ii) pro-
hibit evicted pages of uncommitted transactions from being
recovered after the system crash. To address the first issue,
we propose Delayed Invalidation. In Delayed Invalidation, af-
ter evicting the dirty page from the uncommitted transaction,
the filesystem postpones invalidating the old disk location
until the transaction commits. To address the second issue,
we propose Node Page Pinning. In Node Page Pinning, the
filesystem pins the updated node page until the transaction
commits to prohibit the updated node page from being check-
pointed prematurely.

For Delayed Invalidation and Node Page Pinning, we intro-

duce a new in-memory object, Relocation Record. Relocation
Record holds the information associated with the page evic-
tion. Relocation Record contains the file block ID (inode
number and file offset), the old disk location, and the new
disk location of the file block of the evicted page. With Relo-
cation Record, the filesystem invalidates the old disk location
asynchronously, not when it evicts dirty page but when it
commits the transaction. Each transaction file group main-
tains a set of Relocation Records called the Relocation List.
The filesystem creates the Relocation Record and appends
it to the Relocation List when it evicts the dirty page in the
transaction.

LBA 1

A

Reloca on List:

Bitmap:

LBA 1: in-use

LBA 8: free

Memory:

LBA 1

A

Bitmap:

Memory:

LBA 8 LBA 1

A

Bitmap:

Memory:

LBA 8

file block: A
old: 1
new: 8

Reloca on List: Reloca on List:

Node Page: Node Page: Node Page:

Storage: Storage: Storage:

LBA 1: in-use

LBA 8: in-use

LBA 1: free

LBA 8: in-use

Evic on Commit

A → 1 A→ 8 A→ 8

Figure 4: Delayed Invalidation: LBA 1 is invalidated not when
the page is evicted but when the transaction commits.

Fig. 4 illustrates an example of stealing in exF2FS. The
dirty page of the file block A is mapped to LBA 1 at the
beginning. File block A is evicted to LBA 8. The node page
in memory is updated to map file block A to LBA 8. The block
bitmap for LBA 8 is set. The block bitmap for LBA 1 is not
invalidated at the time of eviction due to Delayed Invalidation.
The filesystem creates the Relocation Record and inserts the
newly created record to the Relocation List. The newly created
Relocation Record contains the file block ID (file block A),
the old (LBA 1) and the new location (LBA 8) of the evicted
block. Since LBA 1 is evicted to the disk, it is removed from
the dirty page list of the associated Transaction File Group.
When the transaction commits, LBA is invalidated and the
updated node page is made durable.

4.3 Commit and Abort in Stealing
When the transaction commits, the filesystem makes the old
location of the evicted page no longer reachable. Before it
starts flushing the dirty pages, the filesystem scans the Relo-
cation List in chronological order and invalidates the old disk
locations of the evicted blocks (Delayed Invalidation). Once
this finishes, it flushes the dirty data pages of the transaction.
After the dirty pages become durable, the filesystem unpins
the node page that has been updated in eviction and inserts
it to the dirty node page list. Then, the filesystem flushes the
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Figure 5: Stealing and Transaction Abort

dirty node pages. The transaction commits successfully if and
only if the Master Commit Block becomes durable.

When the filesystem aborts the transaction, the filesystem
scans the Relocation List in reverse chronological order. For
each Relocation Record, the filesystem invalidates the new
disk location and reverts the node page in memory to map
the file block to the old disk location. After the node page is
reverted, it is unpinned. Fig. 5 illustrates an example. At the
time of abort, three pages have been evicted: A, E and F. The
old location and the new location of page A corresponds to 1
and 8, respectively. In abort, the filesystem reverts the node
pages for A, E and F to refer to page 1, 10 and 11, respectively,
based upon the Relocation List. It also, invalidates the bitmap
for the new disk locations, LBA 8, LBA 29 and LBA 32.

When the system crashes, Delayed Invalidation may leave
the allocated but unreachable filesystem block. Delayed In-
validation temporarily leaves both the old and the new disk
locations valid, from when the page is evicted until when the
transaction commits. If the system crashes during this period,
the filesystem can be recovered to the state where both old
and new disk locations are valid but where only the old disk
location is mapped to the file. If this happens, the new disk
location needs to be collected through fsck [44] (offline) or
through its online variant [17].

5 Transaction-aware Garbage Collection
We say that the garbage collection conflicts with the trans-
action if the garbage collection module selects a disk block
which is associated with the dirty page of the uncommitted
transaction as a victim for migration.

In this study, we develope a transaction-aware garbage col-
lection technique called Shadow Garbage Collection. The
Shadow Garbage Collection transparently migrates the victim
block associated with the uncommitted transaction without
any side effect to the transaction. F2FS performs the garbage
collection in a transaction-aware manner but with substantial
room for improvement; F2FS aborts all outstanding transac-
tions when the garbage collection conflicts with any of the
uncommitted transactions in the system [79].

5.1 Garbage Collection and the Transaction

The log-structured filesystem performs the garbage collection
either in the foreground or in the background. Background
garbage collection cannot conflict with the transactions since
it runs only when the filesystem is idle. Here, the garbage
collection implicitly denotes foreground garbage collection
unless noted otherwise. The log-structured filesystem per-
forms the garbage collection as follows. (i) First, the filesys-
tem checkpoints the filesystem state (pre-GC checkpoint).
(ii) The garbage collection module then selects the victim
segment. (iii) Next, the garbage collection module migrates
the valid blocks in the victim segment to the destination seg-
ment. This updates the associated file mapping to refer to the
new disk location of the victim block. (iv) Finally, the filesys-
tem checkpoints the updated state of the filesystem (post-GC
checkpoint). The garbage collection module repeats step (ii)
and step (iii) until it reclaims enough free segments. Pre-GC
and post-GC checkpoints are essential in any log-structured
filesystem to maintain its consistency against an unexpected
filesystem failure.

In F2FS and a few other log-structured filesystems [38, 39,
77], the garbage collection module uses the page cache to mi-
grate the victim disk block to the new location. In migrating
the victim block, the garbage collection module first checks
if the victim block exists in the page cache. There can be only
one page cache entry for a single disk block. It is not possible
to fetch the old data block into the page cache entry if the asso-
ciated disk block already exists in the page cache. If the page
cache entry for the victim block exists, the garbage collection
module blindly writes the existing page cache entry to the
destination without fetching the victim block from the disk.
In this course, the garbage collection module may write the
dirty page cache entry of the uncommitted transaction to the
destination. After the garbage collection module migrates the
victim disk block to the destination, the associated file map-
ping in the memory is updated to refer to the new disk location.
Once the migration finishes, the garbage collection performs
a checkpoint to make the state of the filesystem durable. As
a result, the updated file mapping that refers to the new disk
location of the victim block (dirty pages of the uncommitted
transaction) becomes durable before the transaction commits.
If the system crashes after the garbage collection finishes but
before the transaction commits, the recovery module recovers
the dirty pages of the uncommitted transaction. The atomicity
of the transaction is then compromised.

5.2 Shadow Garbage Collection

In Shadow Garbage Collection, we reserve a set of page cache
entries for garbage collection. We call this region Shadow
Page Cache. When a victim block is associated with the un-
committed transaction, the garbage collection module uses
Shadow Page Cache instead of generic page cache, to migrate
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Figure 6: Shadow Garbage Collection: migrating A1, A2 and
B1. All are modified in memory to A′
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A1 and A2 are associated with an uncommitted transaction.

the victim block and the associated node block to the destina-
tion. Using the Shadow Page Cache in migrating the victim
block to the destination, the filesystem prohibits the garbage
collection from prematurely persisting the dirty pages of the
uncommitted transaction. Fig. 6 illustrates an example of
Shadow Garbage Collection. The disk block A1, A2 and B1
are updated in the page cache to A′

1, A′
2 and B′

1, respectively.
A1 and A2 are being modified by the transaction. The garbage
collection module selects the disk block A1, A2 and B1 as
victims. In Shadow Garbage Collection, for migrating A1 and
A2, the garbage collection module fetches A1 and A2 (the orig-
inal version before the update) to Shadow Page Cache and
flushes them to the destination. For migrating B1, the garbage
collection module uses the generic page cache since it is not
associated with the transaction. Subsequently, it writes B′

1
(the updated version of B1) to the destination segment.

The garbage collection can conflict with the uncommitted
transaction in two ways; (i) the victim block can be associated
with the evicted page by Stealing (type E, Evicted) and (ii) the
victim block can be associated with the cached page (type C,
Cached). When the victim block is associated with the evicted
page, it can correspond to either the original file block before
the update (type EO, Evicted and Old) or the updated file
block (type EN, Evicted and New). When the victim block is
associated with the cached page, the victim block corresponds
to the original file block before the update (type CO, Cached
and Old). Note that the victim block of type CN (Cached,
New) cannot exist.

For each type of victim block, the Shadow Garbage Collec-
tion elaborately applies a different mechanism in migrating
the victim block and the associated node block.

Type CO. When the victim block corresponds to old (O) ver-
sion of the cached block (C) of the uncommitted transaction,
we use the Shadow Page Cache in migrating the victim block
and in storing the updated node block to the new disk location.
In updating and storing the associated node block, the Shadow
Garbage Collection updates the node block read from the disk,
not the node block which has already been in the page cache.
The node block in the page cache may have been updated
since it is read from the disk and may contain transient file

mapping that should not be made durable. After the garbage
collection module finishes migrating both the victim block
and the updated node block, it updates the node page in the
page cache with the new file mapping. When the transaction
aborts or the system crashes, the victim block at the migrated
location can be recovered using the updated node block stored
on the disk. An example of this can be seen in Fig. 7(a). File
block A has been in LBA 1 and is updated in memory to A′.
The disk block LBA 1 is selected as the victim. It is migrated
to LBA 8 with shadow page caching. The associated node
block is read into the Shadow Page Cache and is updated to
map to LBA 8. Then, the updated node page is flushed to
the disk. After both the victim block and the node block are
flushed, the in-memory node block of file block A is updated
to map to LBA 8.

Type EO. When the victim block corresponds to the old
(O) version of the evicted page (E), we use the Shadow Page
Cache in migrating the victim block and in storing the updated
node block to the new disk location. Recall that the evicted
page does not have the associated page cache entry (data
page) and the associated node page is pinned in memory
until the transaction commits due to Node Page Pinning. In
migrating the victim block of type EO, the filesystem migrates
the victim block using the Shadow Page Cache. For the node
block update, we use the on-disk version of the node block as
in the case of migrating the type EO victim block. After the
Shadow Garbage Collection module finishes migrating the
node block to the destination, it updates the node block pinned
in memory with the updated file mapping. An example of this
is illustrated in Fig. 7(b). The dirty page of the uncommitted
transaction was evicted to LBA 4. File block A is migrated
from LBA 1 to LBA 8. Shadow Page Cache is used to migrate
the victim block and the associated node block. The node
block that maps A is updated from "A:1" to "A:8" and flushed
to the disk. The node page that maps the location of the dirty
file block (A′) of the evicted page remains unchanged in the
page cache (A′:4) and is pinned in memory.

Type EN. When the victim block corresponds to the new
(N) version of the evicted page (E), we use the generic page
cache in migrating the victim block to the new disk location.
We can use the generic page cache, not Shadow Page Cache,
in migrating the victim block since the victim block holds
the most recent copy of the file block. The garbage collection
module updates the node page in the page cache with the
new file mapping after it migrates the victim block to the new
location. An example is shown in Fig. 7(c). The updated file
block of the evicted page A′ is migrated from LBA 4 to LBA
8. Here, generic page cache (not Shadow Page Cache) is used
to migrate the victim block. After the migration completes,
the garbage collection module updates the associated node
page in the page cache from "A′:4" to "A′:8".

When the garbage collection migrates the disk block asso-
ciated with the evicted page, the garbage collection updates
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Figure 7: Shadow Garbage Collection, A: original file block, A′: updated file block. A rectangle with light grey background
denotes the Shadow Page Cache.

the Relocation Record after the migration finishes. When the
victim block is associated with the old disk location and the
new disk location of the evicted page, it updates the old disk
location field and new disk location field of the Relocation
Record, respectively.

In implementing the Shadow Garbage Collection, we use
an existing META_MAPPING object in Linux as the Shadow Page
Cache. META_MAPPING is a special purpose address_space ob-
ject, which is dedicated to cache the filesystem metadata [18].
Exploiting the existing META_MAPPING object as Shadow Page
Cache, Shadow Garbage Collection does not require any
new data structure for Shadow Page Cache in the kernel.
Garbage collection of exF2FS (and also F2FS) reclaims the
free blocks in a segment-granularity. Memory overhead for
Shadow Garbage Collection corresponds to the size of a single
segment, 2MB.

6 Applications with exF2FS

In this section, we explain how applications can exploit the
transactional support from the underlying filesystem.

SQLite : Fig. 8(a) illustrates the implementation of the multi-
file transaction in stock SQLite and in modified SQLite ported
for exF2FS. In the stock SQLite’s multidatabase transaction,
the SQLite separately logs the updates to individual journal
files and logs the global state of the transaction at the master
journal file. In exF2FS, SQLite can implement its multi-file
transaction with a single filesystem transaction eliminating the
need for separately logging the individual database updates
to the journal files.

Compaction in RocksDB: Fig. 8(b) illustrates the com-
paction in stock RocksDB and the compaction in RocksDB
ported for exF2FS. In exF2FS, RocksDB can replace the mul-
tiple flushes of a compaction with a single filesystem transac-
tion. In exF2FS, RocksDB can selectively exclude the LOG file
from compaction transaction. It saves RocksDB from flushing
the updates of the LOG file in making the result of compaction
durable. The LOG file contains debugging information which
is not an essential part of the compaction [21].

// with transaction support

while (/d/db[@])

add_tx_file_group(tfg,

/d/db[@]);

start_tx_file_group(tfg);

while (/d/db[@]) {

write(/d/db[@]);

}

commit_tx_file_group(tfg);

// without transaction support

write(/d/mj);

fdatasync(/d/mj);

fdatasync(/d);

while (/d/db[@]) {

write(/d/log[@]);

fdatasync(/d/log[@]);

write(/dir/log[@]);

fdatasync(/dir/log[@]);

write(/dir/db[@]);

fdatasync(/dir/db[@]);

}

unlink(/d/mj);

fdatasync(/d);

(a) Multi-database transaction in SQLite

// with transaction support
write(/d/LOG);
add_tx_file_group(tfg,/d);
start_tx_file_group(tfg);

while (/d/sst[@]) {
create(/d/newsst [@]);
write(/d/newsst[@]);
write(/d/LOG);

}

commit_tx_file_group(tfg);
write(/d/LOG);

// without transaction support
write(/d/LOG);
while (/d/sst[@]) {
open(/d/newsst[@]);
write(/d/newsst[@]);
fsync(/d/newsst[@]);
close(/d/sst [@]);
write(/d/LOG);

}
fsync(/d);
write(/d/MANIFEST);
fsync(/d/MANIFEST);
write(/d/LOG);

(b) Compaction in RocksDB

Figure 8: SQLite and RocksDB: with transaction support
from the filesystem

7 Evaluation

Here, we evaluate the transaction feature of exF2FS. We
implement exF2FS in Linux kernel 4.18. exF2FS is com-
pared to three other filesystems: EXT4, F2FS, and TxFS [27].
TxFS [27] is the most recently published transactional filesys-
tem based upon EXT4. TxFS was developed in Linux 3.18.22
and is not stable. For fair comparison, we re-implement only
the atomicity and durability feature of TxFS on Linux 4.18.

Two storage devices were used in our experiment: Samsung
850 PRO [51] and Intel Optane 900P [29]. The 850 PRO and
the Optane renders 1-2 msec and sub 10 µsec flush latency,
respectively. We used a machine with an Intel CPU i7-9700K
(3.60GHz, 4 core) and 64GB memory.
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7.1 SQLite
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Figure 9: IO trace: A multi-file transaction with three
insert()’s in SQLite: F2FS vs. exF2FS. Record size: 100
Bytes. The number in each mark represents the number of
KB written, Device: Samsung 850 PRO

Block level IO: We examine the raw IO behavior of the
multi-file transaction in vanilla SQLite over F2FS and in
SQLite with a multi-file transaction of exF2FS. Fig. 9(a) is the
IO trace in vanilla SQLite over F2FS. A multi-file transaction
consists of three insert()’s to three different database files.
In vanilla SQLite, fifteen fdatasync() calls, two filesystem
level checkpoints and a total of 32 write requests to the storage
occur, taking 55 msec to complete a transaction. Fig. 9(b)
illustrates the IO trace of SQLite’s multi-file transaction when
built with the multi-file transaction of exF2FS. There are three
writes: one for the data blocks, one for the node blocks, and
one for the master commit block, and takes 1.6 msec for a
transaction. exF2FS resolves the excessive flush call problem.
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Figure 10: Transaction Throughput (Mobibench [3]-SQLite,
insert operation), # of databases in a transaction = 3, 5, 7, 9

Throughput : We test the SQLite performance under the dif-
ferent SQLite journal modes and under different filesystems.
For SQLite journal modes, we use PERSIST mode, and LS-
MVBT [37]. PERSIST mode is the most popular journaling
mode in SQLite. LS-MVBT [37] is the fastest SQLite jour-
naling scheme known to the public. For the filesystem, F2FS,
EXT4, exF2FS and TxFS are used, and Mobibench is used to
generate the workload [3]. We port SQLite to use the transac-
tion of exF2FS and TxFS. The results are shown in Fig. 10.
In insert performance, exF2FS improves the throughput by
as much as 24× against stock SQLite with PERSIST mode
in F2FS (nine database files in a transaction, 850 PRO).

FS Tput # of # of compaction latency (sec)
(KIOPS) fsync() cpt’n Mean 99.9% 99.99%

F2FS 21.8 6135 892 18 153 373
exF2FS 40.8 622 622 7 50 51
EXT4 32.9 5873 862 9 48 88

Table 2: Throughput, total number of fsync()’s, total number
of compactions, and compaction latency. cpt’n: Compaction

Let us compare the transaction performance of exF2FS
against TxFS. As the storage gets faster, the performance ben-
efit of exF2FS becomes more substantial than that of TxFS. In
850 PRO, SQLite exhibits 10% better performance in exF2FS
than TxFS. In Optane, SQLite exhibits 100% better perfor-
mance in exF2FS. The difference between exF2FS and TxFS
are further elaborated in Section 7.4.
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Write Volume: In all six transaction support methods,
exF2FS creates the smallest amount of write (Fig. 11). Com-
pared to F2FS with SQLite with PERSIST mode journaling,
exF2FS with SQLite on the multi-file transaction generates
1/6 of the writes.

7.2 RocksDB Compaction

We found that using the transaction of exF2FS in RocksDB
compaction produces two significant benefits: the perfor-
mance improvement and the ability to handle the large size
transaction. The YCSB benchmark (workload-A) is run for
RocksDB. In this workload, a single compaction of RocksDB
can create up to 13.3 GB of dirty pages with 198 SSTable
files. Filesystems that pin the updated pages of the transaction
in memory cannot perform RocksDB compaction as a trans-
action [27,39,65]. Here, the performance of transaction based
RocksDB over exF2FS is compared with vanilla RocksDB
over stock F2FS. The size of the memtable and the maximum
size of the SSTable are both 64 MB. Key and value size are 23
Bytes and 1KB, respectively. Initially, RocksDB is populated
with 50 M operations (55 GB). Then, YCSB-A is run with 50
M operations.

The performance results are summarized in Table 2.
exF2FS improves YCSB performance by 87% against F2FS:
40.8 KIOPS vs. 21.8 KIOPS. On average, the compaction
latency in exF2FS is 40% of the compaction latency in F2FS:
7 sec vs. 18 sec. The root cause for the performance and the
latency difference is the number of fsync() calls. In F2FS, a
single compaction creates seven fsync()’s on average, while

USENIX Association 20th USENIX Conference on File and Storage Technologies    355



in exF2FS, a single compaction is executed with a single
transaction which is equivalent to one fsync().
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Figure 12: RocksDB Throughput in exF2FS vs. F2FS, YCSB
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We examine the throughput of RocksDB in exF2FS and
F2FS (Fig. 12). The throughput is collected at one second
intervals. Fig. 12 clearly shows that in RocksDB, exF2FS
renders superior throughput behavior to F2FS. In this work-
load, 12% of the compactions are executed with stealing. On
average, each compaction creates 100K dirty pages (400 MB)
and 6K pages (24 MB) are evicted.

7.3 Garbage Collection
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(a) 850 PRO
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(b) Optane

Figure 13: Throughput of multi-file transaction under fore-
ground garbage collection in action (Mobibench [3]-SQLite,
three inserts per transaction, record size = 100Byte)

In F2FS, the transaction aborts when the garbage collec-
tion module selects one of its blocks as a victim block. In
exF2FS, the transaction does not abort. However, the transac-
tion is suspended until the garbage collection finishes when
it encounters foreground garbage collection. Here, we exam-
ine how the garbage collection of exF2FS interferes with the
throughput and latency of the foreground application. We also
examine the throughput of the multi-file transaction (three
inserts). The results are presented in Fig. 13. First, we mark
the time when the foreground garbage collection is triggered.
From then, the foreground garbage collection is triggered
once every hundred transactions on average. With foreground
garbage collection, the performance decreases by about 5%.
Each foreground garbage collection reclaims a single free seg-
ment. With the foreground garbage collection, the tail latency
(@99.9%) of the multi-file transaction has increased from
300 µsec to 470 µsec in Optane.

7.4 exF2FS vs. TxFS
We examine the detailed behavior of the transaction in exF2FS
and TxFS. We use Mobibench [3] and generate the multi-file
transaction in SQLite (insert()’s to three databases per
transaction, record size: 100 Byte). While far from being
complete, the analysis here provides a useful clue on how the
log-structured filesystem and the journaling filesystem can
fundamentally differ in supporting the transaction.

7.4.1 Convoy and Context Switch Overhead

In this section, we examine the latency of committing a trans-
action in exF2FS and TxFS. In 850 PRO and Optane, the
commit latencies in exF2FS are 80% and 40% of those in
TxFS, respectively. The latency difference between exF2FS
and TxFS becomes more significant as the storage speed in-
creases.
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Figure 14: Latency of multi-file transaction: exF2FS vs. TxFS
(Tconvoy: prepare for the commit, Tdma: time to transfer the
blocks in the transaction, Tf lush: time to make the blocks
durable, Tend : wrap up the commit)

The latency to commit a transaction is partitioned into
four components for detailed analysis: (i) prepare for commit
(Tconvoy), (ii) DMA transfer (TDMA), (iii) flush (Tf lush) and (iv)
wrap up (Tend). The details of these are illustrated in Fig. 14.
In exF2FS, the time for preparing a commit (Tconvoy) includes
preparing the Master Commit Block, constructing the IO com-
mands and dispatching them to the storage. In TxFS, the time
for preparing a commit (Tconvoy) includes not only the time
for preparing the journal descriptor block, constructing the IO
commands and dispatching them to the storage, but also the
time for writing the unrelated data blocks to the disk, the con-
voy [7]. Tconvoy overhead is substantial in TxFS accounting for
as much as 50% of the total commit latency (Optane). On the
other hand, it is almost non-existent in exF2FS. This is due
to the compound journaling of EXT4 [71]. EXT4 merges the
updated metadata from multiple file operations into a single
running transaction to increase the throughput of the filesys-
tem journaling. Due to compound journaling, EXT4 can flush
a large amount of unrelated dirty pages in an fsync() [30].

When the transaction is executed with the other metadata
intensive applications, the convoy overhead of compound
journaling becomes far more severe. Here, we examine the
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Figure 15: SQLite: Latency of transaction with three inserts in
SQLite, ten varmail threads [43] in the background, Optane,
µ: average latency

Filesystems Write Size 4KB 8KB 16KB 32KB
TxFS Write 12GB 6GB 2.5GB 2.5GB

exF2FS Volume 3GB 2GB 1.5GB 1.1GB

Table 3: Write Amplification of Transactional Write: Total
Write Volume in writing 1 GB to a file (allocating write)

transaction latency of exF2FS and TxFS with a metadata
intensive application, varmail benchmark [43], running in the
background. Fig. 15 shows the result. The average transaction
latency of TxFS is 34× that of exF2FS: 5.7 msec vs. 169µsec.

In exF2FS (or in F2FS), the filesystem commits the transac-
tion in its own context. In TxFS (or in EXT4), the filesystem
delegates the journal commit to the JBD thread, and the over-
head of registering the committed blocks for the checkpoint
and the context switch overhead, Tend , is non-negligible. Tend
accounts for as much as 10% of the commit latency in TxFS
while it does not exist in exF2FS. Due to the overhead of con-
voy and the context switch inherent in EXT4, exF2FS renders
better transaction performance than TxFS.

7.4.2 Double Write and journal metadata overhead

We examine the write amplification of exF2FS and TxFS. The
transactional write size varies from 4 KB to 32 KB and the
total write volume is examined. Table 3 summarizes the result.
In writing 1 GB with 4 KB atomic write, exF2FS writes 3
GB to the storage while TxFS creates 12 GB. In exF2FS,
a 4 KB transactional write accompanies a 4 KB write for
the node block and a 4 KB write for the Master Commit
Block. In TxFS, a 4 KB transactional write (allocating write)
journals four log blocks (superblock, inode table, data block,
block bitmap), all of which are later checkpointed to their
original locations. A double write overhead compound by the
overhead of page granularity journaling renders a 12× write
amplification in a 4 KB allocating write of TxFS. In exF2FS,
the write amplification is 3× under the same workload. When
the transaction size is 32 KB, exF2FS and TxFS render 1.1×
and 2.5× write amplification, respectively. In this experiment,
exF2FS does not perform any garbage collection. If it were
included, it may render a larger write amplification. Unless
the garbage collection amplifies the write volume by more
than 2×, exF2FS renders less write volume than TxFS.

8 Related Work

Transaction support can be implemented in different layers
of the software stack. TxOS [57] and QuickSilver [61] imple-
ment transaction support as a native kernel service. A trans-
actional filesystem can readily be built using the interface
offered by TxOS [26]. There are several kernel level filesys-
tems that support transaction, such as AdvFS [72], TxFS [27],
Valor [66], Transactional NTFS from Microsoft (TxF) [46],
Failure-atomic msync() [55], and BTRFS [14]. OdeFS [24]
and Inversion [54] are built as a user level filesystem and they
rely on existing DBMS to realize an ACID property of the
filesystem operation. CFS [47]’s crash consistency support
is built on top of the transactional block device, X-FTL [32].
BVSSD [28], MARS [12], TxFlash [58], and Isotope [65]
offer block device level transaction support. Libnvmmio [11]
uses a user level log for its transaction support.

The degree of ACID support comes at the cost of the imple-
mentation complexity. Some works support full ACID (Atom-
icity, Consistency, Isolation and Durability) property [14, 27,
46, 66]. Some filesystems drop isolation support and support
only ACD [47,55,72]. F2FS drops the durability and supports
only AC in its atomic write [34]. By leaving the isolation
support to the application, exF2FS limits the code changes
to the local filesystem. TxOS requires a few 100K LOC [57].
Limiting the transaction support to the filesystem, TxFS re-
duces the required code changes to one tenth, 5K LOC. By
exploiting the atomic write feature of F2FS and excluding
the isolation support, exF2FS achieves its transaction support
with 1.5K LOC.

9 Conclusion

In this work, we successfully address the three major issues
of transaction support in log-structured filesystems: multi-file
support, stealing and garbage collection. With the transac-
tional log-structured filesystem proposed in this work, we
can greatly simplify the application programming and can
substantially improve the application performance in many
popular applications including SQLite, RocksDB, and appli-
cation installation.
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Abstract
Persistent key-value stores (KVSs) are fundamental building
blocks of modern software products. A KVS stores persis-
tent states for the products in the form of objects associated
with their keys. Confidential computing (e.g., Intel Software
Guard Extensions (SGX)) can help KVS protect data from
unwanted leaks or manipulation if the KVS is adapted to use
the protected memory efficiently. The characteristics of KVSs
accommodating a large volume of data amplify one of the
well-known performance bottlenecks of SGX, the limited size
of the protected memory. An existing mechanism, Speicher,
applied common techniques to overcome this. However, its
design decision does not scale because the required protected
memory size increases rapidly as the KVS receives additional
data, resulting from the design choice to hide the long latency
of Merkle tree-based freshness verification. We find that the
unique characteristics of the log-structured merge (LSM) tree,
a data structure that most popular persistent KVSs have, help
reduce the high cost of protected memory consumption. We
design TWEEZER on top of this observation by extending
RocksDB, one of the most popular open-source persistent
KVSs. We compare the performance of TWEEZER with the
reproduced version of Speicher. Our evaluation using the stan-
dard db_bench reveals that TWEEZER outperforms Speicher
by 1.94∼6.23× resulting in a reduction of slowdown due to
confidential computing from 16∼30× to 4∼9×.

1 Introduction

Persistent key-value stores (KVSs) are a cornerstone of mod-
ern software products. Many cloud services, such as Net-
flix [41], Facebook [58] and Uber [18], use these as a storage
engine for large-scale data processing [17, 50] or database
management systems [34, 36, 59]. Accordingly, KVSs are
responsible for securely maintaining service data, including
user credentials and private information. Thus, cloud-based

*Work done mostly as an undergraduate student at UNIST.
†Corresponding Author

services are motivated to protect their KVSs with the strongest
mechanism available. This paper presents a KVS protected
through hardware-based confidential computing (e.g., Intel
SGX (Software Guard Extensions) [26]). While our work is
not the first such work, our study is unique in that our so-
lution is 1) tailored to the log-structured merge (LSM) tree,
2) general in that our solution is not tied to any particular
hardware support, and 3) superior in performance (by up to
6.23×) compared to the state-of-the-art.

Hardware-based confidential computing offers strong secu-
rity guarantees to such KVSs. Most KVSs run on public cloud
services, leaving their content potentially open to anyone with
control of the cloud platform’s privileged software or physical
machines. Confidential computing allows the KVSs to ex-
clude these complex software layers and any hardware but the
processor chip itself from the trusted computing base and rely
only on the correctness of the processor implementation. The
execution context within the processor chip is protected with
access control mechanisms and those on external memory
are protected cryptographically by encryption and the mes-
sage authentication code (MAC). Such a protected execution
environment is commonly called an enclave.

This appealing security guarantee comes at the cost of
performance. Among others, the cryptographic protection of
external memory content introduces limitations in external
memory usage. The confidentiality guarantee requires the
in-memory data to be encrypted, while the integrity guaran-
tee requires MAC computation and verification. As the cost
of MAC increases with the total amount of memory that is
available to an enclave, providing processors with large mem-
ory to an enclave becomes prohibitive. Thus, such memory,
which is called the enclave page cache (EPC), typically is
available only in 128 MB or 256 MB [25] capacity depend-
ing on the choice of design and implementation. An enclave
may use memory beyond EPC capacity, but the pages that do
not fit in the EPC must be paged out of the EPC with simi-
lar cryptographic protection. Also, applications may access
these memory pages only if the pages are loaded back into the
EPC. Therefore, applications must be carefully redesigned to
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minimize such EPC paging and may have to store large data
chunks with manual protection. This requirement has moti-
vated many popular applications to be tailored to the enclave
protection model [6, 9, 12, 16, 23, 31, 47, 54, 56].

For a persistent KVS to be protected through hardware-
based confidential computing, it must be tailored considering
the EPC limitations, as it is a memory-heavy application deal-
ing with a large (e.g., more than tens of gigabytes) amount
of data. Many persistent KVSs use the LSM tree for data in
storage, accompanied by in-memory caches (e.g., MemTable)
and write-ahead logs (WAL). The LSM tree and WAL must
be manually protected with encryption and MAC, and the
MemTable must also be tailored to efficiently employ EPC
because it is relatively large by default (e.g., 64 MB). Spe-
icher is the first work in this direction where it presents a
design to efficiently protect the three large data structures
that persistent KVSs commonly have [6]. The design divides
the MemTable into two and places only the smaller one with
more frequent access in EPC. The other two data structures
are also protected with encryption and MAC with the Merkle
tree [19]. However, this design choice slows down the KVS
by up to 32.5× as the large Merkle tree induces longer latency
for data retrieval from the LSM tree and increases the use of
EPC pages by other caches as our analysis will show (§7.2).

This paper presents TWEEZER, which shares the same goal
as Speicher. Similar to Speicher, TWEEZER is an extension of
RocksDB [58], a popular LSM tree-based persistent KVS, that
uses the MAC scheme tailored for LSM trees to run efficiently
in an SGX enclave. However, TWEEZER is different from
Speicher in that we make three critical design decisions on
top of these invariants.

First, TWEEZER ensures the freshness of an LSM tree with-
out constructing a Merkle tree spanning across its sorted
string tables (SSTables). This is possible by leveraging the
principle that an LSM tree-based KVS comprises many SSTa-
bles, each containing many key-value pairs and remains im-
mutable once built until it is compacted. Thus, if an SSTable
is authenticated with a unique key and the key is never reused,
an attacker cannot find other pieces of data anywhere other
than the SSTable to perform the replay attack (§5.2).

Second, the uniqueness and invariant ordering of keys in
each data block enable TWEEZER to encrypt and authenticate
each key-value pair separately without losing the capability of
detecting replays within an SSTable. We find that the invariant
ordering among and within the data blocks enables TWEEZER
to detect any attack on freshness without the Merkle tree
generated for each SSTable (see §5.3).

Third, we find the classic hash chain [51] to be a good fit
for authenticating the two logs: the WAL and MANIFEST
logs. Hash chains allow TWEEZER to authenticate the logs
without the trusted counters, which Speicher relies on, as well
as to create as many new log entries as needed (§5.4).

We implement TWEEZER by extending RocksDB 6.14 [58]
and using Scone [4], a library operating system designed to

run unmodified applications in an SGX enclave. Besides the
LSM tree-tailored message authentication scheme, we adopt
the design choices for Speicher [6] for MemTable. We also
reproduce Speicher for a comparison study due to the lack of
an open-source version and demonstrate that the reproduced
version provides similar performance.

Our experimental study using db_bench, the standard
benchmark used for RocksDB, indicates that TWEEZER
achieves the expected performance gain and EPC efficiency.
When tested with extensive data, TWEEZER outperforms Spe-
icher by 1.94∼6.23× depending on the workload and the data
size. Evaluations using the same benchmark configuration
that Speicher was evaluated with also exhibit similar perfor-
mance benefits (1.91∼3.94×). Our analysis reveals that this
improvement is primarily due to the 5.24∼7.57× reduction
in EPC paging frequency.

2 Background

2.1 Intel SGX
Intel SGX [26] provides an execution environment called
an enclave that has a protected memory region called the
EPC [14] for programs that need protection. Only the program
running in the enclave can access its EPC content that is
cached in the CPU cache. When the data must be evicted to
external memory, data are encrypted and authenticated using
MAC by the memory encryption engine [27]. Thus, even
strong attackers, who can replace external memory, cannot
obtain or corrupt the EPC content and leave it undetected.

This memory protection mechanism is a well-known per-
formance bottleneck [4,12,31]. The SGX computes the keyed
hash MAC (HMAC) for each cache line, composes a modified
version of the Merkle tree [22], and keeps its root within the
CPU hardware to ensure the freshness of EPC content stored
on external memory. Each cache replacement operation is
accompanied by MAC verification using the Merkle tree to
ensure that the EPC as a whole remains as written by the
enclave. Partially for this reason, the size of the hardware-
protected EPC is limited (e.g., 128 MB in general, 256 MB
in recent releases [24]). For real-world applications that need
larger memory, SGX provides paging of EPC, but the encryp-
tion and MAC verification make this paging expensive as well.
Consequently, an application as-is that is not tailored to this
policy suffers from significant performance overhead [6, 31].

Another source of performance penalty is the increased
system call overhead. An enclave runs as part of a user process
as a separated execution context from which an additional
context switch is required to invoke system calls. Therefore,
most applications running on an enclave adopt asynchronous
system calls as a performance optimization [4, 6, 38, 43, 62,
63, 68], where an application creates a thread that stays in the
user’s context with the role to mediate system calls from the
enclave. TWEEZER adopts this by running on SCONE [4].
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2.2 LSM-based Key-Value Stores

RocksDB [58] is an open-source persistent KVS that is widely
used in production and that uses the LSM tree [42] as its data
structure for the key-value pairs in storage. The four critical
components of RocksDB are the MemTable, SSTable, WAL,
and MANIFEST log.

The MemTable is designed to reside in memory and stores
recently added key-value pairs using a skip list for fast lookup.
Every put operation fills the MemTable before the data are
flushed to a persistent medium. If the size of the MemTable
becomes larger than a configurable threshold, it is marked
as immutable, and another MemTable is created to serve the
following writes. At the same time, RocksDB triggers a back-
ground flush thread to move the immutable MemTable to a
persistent medium in the form of an SSTable.

The new SSTables generated from a series of MemTables
constitute Level 0 of the LSM tree. Any new read request
must look up all of the SSTables in Level 0 because any
SSTable could contain the key. Thus, RocksDB needs to keep
retained the number of SSTables in Level 0, and thus, triggers
an operation called compaction when the number of SSTables
at Level 0 exceeds a configurable threshold. A compaction
thread running in the background selects several SSTables,
deletes duplicated keys, and compacts them to create a new
SSTable stored at the lower level, Level 1 here, of the LSM
tree in storage. The resulting levels satisfy an additional prop-
erty of ordering. The compaction procedure ensures that one
key appears at each level at most once (except for Level 0),
and every SSTable is sorted, allowing the KVS to look up, at
most, one SSTable per level to find a key-value pair.

One SSTable comprises several sub-blocks including index
blocks and data blocks. The index block contains a sorted
sequence of index keys. The ith index key is larger than or
equal to the keys in ith data block and smaller than the keys in
i+1th data block. At the end of an SSTable is a footer block
containing padding to align the SSTables and a magic number
marking the end of an SSTable. Speicher stores the MACs of
the SSTable’s key-value pairs in this footer block, resulting in
increased EPC usage when the KVS becomes large.

2.3 Speicher

Bailleu et al. [6] were the first to study the problem of running
RocksDB efficiently on an enclave and designed Speicher by
adapting RocksDB. Speicher uses the Merkle tree to authenti-
cate LSM tree by computing a MAC for each data block and
building the Merkle tree on top. They propose three design
changes to an LSM tree-based KVS considering the charac-
teristics of the enclave and its protected memory, EPC. First,
the MemTable must be adapted to reduce the EPC usage. Spe-
icher redesigned MemTable so that a large portion of it, the
values on leaves, are stored explicitly outside the EPC with
cryptographic protection. This design change improves KVS

throughput by reducing the number of EPC paging that Spe-
icher causes. Second, the I/O calls must be handled at the user
level by another thread to avoid leaving the enclave context
on every call. Speicher runs with its own direct I/O library
based on Intel SPDK [1], which reduces the cost of additional
context switches. Third, the KVS should be properly times-
tamped to defeat the rollback and forking attacks. Speicher
uses its own asynchronous monotonic counter that wraps the
synchronous SGX monotonic counter because they could not
use the SGX counter directly.

3 Threat Model

We assume a strong attacker could acquire complete con-
trol of a system running TWEEZER, except for the enclave’s
context that is protected by SGX. They may have obtained
such control by exploiting a known vulnerability in the cloud
provider’s system or as an insider responsible for maintain-
ing them. In particular, such attackers can read or modify
the contents of memory or storage that the user’s KVS uses,
except for those in EPC that the SGX protects. However, the
attacker cannot directly query the KVS because the KVS does
not accept the attacker as an allowed client. The design and
implementation of such an authentication protocol is a well-
studied problem and orthogonal to the design of TWEEZER.
We also do not aim to propose a new remedy to address imple-
mentation bugs that the current implementation of Intel SGX
is known to have, potentially nullifying its security guarantee
completely [11, 13, 60, 65, 67] as these are not fundamental
flaws in its security model and will be fixed in future releases.
This aligns with the assumptions made by most existing mech-
anisms built on Intel SGX [6, 9, 12, 16, 23, 31, 47, 54, 56].

4 Overview

TWEEZER is a persistent KVS running on an SGX enclave. To
users, TWEEZER provides all operations that persistent KVSs
usually implement as an extension of RocksDB [58]. The only
additional requirement for users is to retrieve and keep a pair
of cryptographic keys (§5.5) and place heartbeat transactions
(§6). The key pair is required for TWEEZER to recover its
data in case of a crash and the heartbeat transactions provide
rollback resilience.

TWEEZER is built on top of the advances made by an earlier
work, Speicher [6] (see §2.3), with three additional design
decisions (D1∼D3 below).
D1. TWEEZER creates and associates one unique MAC key
with each SSTable as shown in Figure 1 ( 1 ). Whenever
TWEEZER stores data outside the SGX-protected memory,
it computes the MAC to store along with the data to later ver-
ify the freshness. Among these data are the LSM tree, which
comprises many SSTables in storage. The large size of this
LSM tree, which contains almost all key-value pairs, could
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Figure 1: An overview of design choices made for TWEEZER.

make the MAC computation expensive. The best-known way
to ensure the freshness of this large chunk of data is to build
a Merkle tree [22], as Speicher does, at the cost of potentially
long latency. TWEEZER avoids composing the Merkle tree
spanning the entire LSM tree by associating a unique MAC
key to each SSTable by taking advantage of the three prop-
erties of LSM trees: the immutability of each SSTable, the
uniqueness of a key in each level, and the sorted keys in each
data block. We elaborate on these design details in §5.2 and
provide an in-depth security analysis in §6.

D2. We associate a MAC with each key-value pair rather than
with each data block in an SSTable, as shown in Figure 1 ( 2 ).
For encrypting and computing the MAC, the data block could
be a natural unit. The SSTables are supposed to reside in stor-
age optimized for block-level access, and RocksDB fetches
and caches the key-value pairs at this granularity. What ren-
ders this design choice potentially inefficient is the limited
size of EPC. For the desired security guarantee, the data block
must reside in the EPC while being accessed, consuming valu-
able EPC space. This setup does not incur a significant perfor-
mance cost when the KVS serves a relatively small data set
and is configured to have only a small block cache. However,
the blocks in EPC quickly become a performance bottleneck
when the KVS requires a larger block cache to accommodate
more data [69], which could quickly exhaust the small EPC.
TWEEZER reduces this read amplification in EPC usage by
encrypting and authenticating each key-value pair separately.
This design choice enables TWEEZER to save EPC space and
use non-EPC memory more effectively as a cache for SSTa-
bles. One drawback of this design choice is the increased use
of storage space because the fine-grained encryption makes
the subsequent per-block compression unproductive and in-
creases the number of MACs stored in SSTables. We evaluate
and discuss this in §8 (Figure 12).

D3. We overcome the absence of trusted counters [28] in
the latest Intel SGX using hash chains ( 3 in Figure 1). An-
other performance-critical piece of data in persistent KVSs
is the WAL that a KVS builds in storage to recover recently

updated key-value pairs after a crash. The logs must be pro-
tected with encryption and MAC because they are supposed
to reside in storage for persistence. Appropriate encryption
and MAC computation provide confidentiality and integrity
guarantees, but freshness requires each log entry to be associ-
ated with additional data. Speicher proposed to use the trusted
counter [28] that an earlier version of the SGX SDK had,
but which has been discontinued [21, 28]. Hence, TWEEZER
constructs a hash chain to protect the content and the order
of the logs. The hash chain alone is not enough to prevent
the rollback attack, so TWEEZER requires the user to place a
heartbeat transaction to timestamp the KVS version and use
it later to verify that a snapshot of TWEEZER is the latest one.
We elaborate on this aspect in §5.4.

5 Design and Implementation

5.1 Data Encryption
TWEEZER manually encrypts all data that are stored out-
side EPC and decrypts them only within EPC. For example,
TWEEZER ensures the SSTable content remains encrypted in
both storage and memory and decrypts them only within EPC
when it obtains a key-value pair from the SSTable. We use
AES GCM mode with 256-bit key as the encryption scheme.
As such, TWEEZER encrypts all data stored outside EPC to
protect their confidentiality. For the rest of this section, we
focus on how TWEEZER ensures freshness with the authenti-
cation scheme tailored for LSM trees.

5.2 Authentication with Per-SSTable Key
TWEEZER computes the HMAC of SSTables to later verify
their freshness. When TWEEZER creates a new SSTable in
the process of compaction or flush, it generates a new secret
authentication key that is used exclusively for the particular
SSTable (see 1 in Figure 1) and stores it in EPC and the
MANIFEST. TWEEZER then computes a MAC for each piece
of data in the newly created SSTable (§5.3) and stores the
MAC along with the encrypted data in the SSTable file. When
TWEEZER reads the SSTable later to obtain a key-value pair,
it computes the MAC again using the authentication key of
the SSTables kept in EPC and compares it with the MAC
stored along with the key-value pair to determine if the data
has been maliciously corrupted or not.

The use of SSTable-unique keys and a set of invariant
checks enable TWEEZER to guarantee the freshness of key-
value pairs using HMAC. This HMAC is strong enough to pre-
vent an attacker from generating correct MAC for an arbitrary
piece of data because the correct MAC computation requires
the secret key. However, a strong attacker who can obtain all
pairs of data and MAC can replay the collected pairs. For ex-
ample, if a KVS uses a single key to generate MAC for multi-
ple SSTables (SST0, · · · ,SSTn), the attacker can obtain pairs of
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Figure 2: The structure of the original data block (left) and
TWEEZER’s data block (right).

SSTables and their MACs, (SST0,MAC0), · · · ,(SSTn,MACn)
and present one of the pairs to bypass the verification. Such
a KVS using one key for multiple SSTables accepts this re-
played pair because the computed MAC matches the pre-
sented MAC. To defeat this, the KVS must have a means to
detect the replay, such as the Merkle tree.

TWEEZER avoids composing a Merkle tree spanning across
all SSTables leveraging the uniqueness of the key for each
SSTable and the immutability of SSTables. In general, the
use of distinct keys suffices to prevent the replays across the
set of data authenticated with different keys. However, this
still does not prevent the replays within the data sharing one
key because the attacker still has multiple pieces of data that
they can potentially switch or replay. In particular, an attacker
may reuse an older version of the data chunk (temporal re-
play) or the data chunks authenticated with the same key
(spatial replay). TWEEZER prevents temporal replay against
each SSTable by taking advantage of their immutability. By
design, an update to an existing key-value pair in an LSM tree
does not modify the SSTable. Instead, the new pair is stored
in one of the SSTables at a lower level. The new pair is thus
authenticated with a different key and the attacker cannot use
the older pair to simply roll back the update. In other words,
the attacker does not have an older version of key-value pairs
authenticated with the same key because TWEEZER has never
computed such MACs. We further discuss how TWEEZER
prevents spatial replay in §5.3.

The performance improvement of Merkle tree-less authen-
tication comes from the lower EPC usage. The large size of
LSM tree makes MAC caching an essential design choice.
To avoid a series of MAC computations along the Merkle
tree for every SSTable read, the known good MAC for each
data block must be cached within EPC. Speicher implicitly
makes this design choice by storing the MAC in the footer
block of each SSTable that RocksDB keeps within memory,
within the EPC when it runs in an enclave (i.e., on Scone [4]).
The cost of retaining the MACs remains small when a KVS
accommodates a small number of SSTables, but increases
quickly as the number of SSTables increases with the size of
the KVS. The additional EPC usage for each SSTable varies
depending on the configuration, but is roughly about 840 KB
for each 64 MB SSTable, when the data block size is 4 KB and
value size is 128 B. This roughly becomes a total of 840 MB
if the KVS contains about 64 GB of key-value pairs, even
assuming that it has no duplicates. This becomes a significant

overhead considering the size of EPC, which is either 128 MB
or 256 MB. Another option is to compute MACs along the
Merkle tree whenever the KVS obtains a new block from
storage, but this will significantly increase read latency con-
sidering the cost of a typical HMAC computation. The use
of per-SSTable key enables TWEEZER to avoid storing too
much data in EPC when serving a large KVS, as we show
in §7.2 (Figure 10).

5.3 Fine-grained Authentication

TWEEZER authenticates each key-value pair individually to
avoid read amplification. An SSTable is composed of many
data blocks that are typically as large as 4 KB, containing
3∼28 key-value pairs (Figure 2a). This is a design choice
considering the storage devices that are optimized for burst
data transfers. Speicher chose this as the unit of encryption
and authentication. It computes one MAC for each data block
as shown in Figure 2a and stores the result in the SSTable’s
footer block. However, the encryption and authentication cost
makes the inherent read amplification more expensive be-
cause the KVS must compute the MAC for the entire data
block even when it reads only one key-value pair. In addition,
such verified data must reside in EPC to avoid repeating the
expensive verification, consuming invaluable EPC space. The
block-level decryption and authentication limit the potential
location of the block cache to EPC, and this could become a
scalability bottleneck when the KVS is to contain large data.

In TWEEZER, we slightly rearrange the data block structure
as shown in Figure 2b. This is similar to the key-value separa-
tion approach first proposed by Lu et al. [35], but rearranged
for fine-grained encryption and authentication. Specifically,
each data block is composed of one value block and one key
block. The value block contains all values in the data block
along with the corresponding MAC computed from both the
key and value. The key block contains the sequence of keys
along with the offsets of their values in the value block. This
restructuring comes with two benefits. First, TWEEZER does
not need to verify the freshness of the entire data block to
obtain a single key-value pair, reducing read latency. Second,
TWEEZER can place the block cache in untrusted memory,
which is free from size limitations, because it can directly
read a single key-value pair from an encrypted data block.

TWEEZER utilizes the LSM tree’s invariant ordering to
verify the freshness of the key-value pairs. Each data block
in RocksDB’s SSTable is composed of a sequence of ordered
key-value pairs, and so are the keys in TWEEZER’s key block.
TWEEZER reads a data block when it fails to find the key
in the MemTable or the SSTables at higher levels. In this
process, TWEEZER firstly consults the index blocks that it
keeps within EPC in plain text. By RocksDB design, each
data block Bi in the LSM tree is associated with an index
key in the index block, ki. That is, the keys found in a data
block Bi are not smaller than its index key ki and not larger
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Algorithm 1 Key Ordering
Input: i — The index of data block
Output: Returns true if the data block satisfies invariant.

1: procedure CHECKORDERING(i)
2: keyBlock = GetKeyBlock(i)
3: f irstKey = keyBlock.head
4: lastKey = keyBlock.tail
5: keyLowerBd = GetIndexKey(i) ▷ Obtain index key in EPC
6: keyU pperBd = GetIndexKey(i+1)
7: ret = true
8: if f irstKey < keyLowerBound then
9: ret = f alse

10: if lastKey ≥ keyU pperBound then
11: ret = f alse
12: for j in 1 . . .keyBlock.length−2 do
13: ▷ for each key in the key block except the first and last
14: if keyBlock[ j−1]≥ keyBlock[ j] then
15: ret = f alse
16: else if keyBlock[ j]≥ keyBlock[ j+1] then
17: ret = f alse
18: else
19: continue
20: return ret

than the index key ki+1 of the next data block Bi+1. Utilizing
this, TWEEZER performs a binary search on the index keys
to obtain the data block potentially containing the key it is
looking for.

To find the key from the obtained data block, TWEEZER
decrypts and checks the ordering (Algorithm 1) of its key
block, before looking for the key. If found, TWEEZER uses
the offset associated with the key to obtain the encrypted
value with the MAC. TWEEZER then computes MAC using
the SSTable’s authentication key, the queried key, and the
value. By comparing this with the stored MAC, TWEEZER
verifies the freshness of the key-value pair. If TWEEZER fails
to find the key, it determines that the key does not exist in
the level and moves on to the next level. Although TWEEZER
does not perform MAC-based authentication for the key block,
the ordering check (Algorithm 1) effectively mitigates any
fault attack to deceive TWEEZER that a key does not exist in a
data block. As discussed earlier, all keys in a data block must
be larger than its index key and smaller than the next block’s
index key. TWEEZER checks this invariant by comparing the
first and last key of a key block with the index keys (line 3–7).
Subsequently, it compares each key in the key block with the
neighboring keys (line 13–21) to ensure the ordering within
the key block. As a result, any attempt to inject a fault to a key
block will make TWEEZER interpret the key block as a differ-
ent list of keys making the list highly unlikely to satisfy the
ordering invariant. While the probability of a successful attack
is not zero, as data blocks are small and the key space large, its
probability will be very low. In more detail, when TWEEZER
uses b-byte keys and the difference between the two index
keys is D, the chance of a successful attack is roughly as small
as D

28×b . When D is 264 and b is 16, this is about 5.42 ·10−20

(2−64). Thanks to this invariant-based freshness protection,

the cost of reading a key-value pair becomes as small as one
decryption of a key block, one decrypting of a value entry, and
one MAC computation of a key-value pair. This is roughly
10× smaller than the potential cost of a block-level scheme
when a block contains 10 key-value pairs because the MAC
operation dominates read performance.

This fine-grained encryption and authentication make it nat-
ural to place the block cache outside EPC, which TWEEZER
does. This untrusted block cache is expected to be beneficial
when TWEEZER is to accommodate large data in its LSM
tree. By default, the block caches are placed inside EPC and
Speicher left this in EPC as well because the loaded block
is not encrypted. This does not become a performance bot-
tleneck when a KVS accommodates a small amount of data.
However, RocksDB is often configured to have a large block
cache in production to serve a large amount of data, and the
in-EPC block cache will not scale under this condition. The
block caches may still be placed outside EPC, but this will sig-
nificantly increase the block cache hit latency because every
single cache hit triggers a decryption and verification of the
whole data block. In contrast to this approach, the fine-grained
encryption and authentication approach that TWEEZER takes
enables it to take only a small portion of data into EPC from
the block that resides in the untrusted memory outside EPC.

5.4 Protecting Logs with Hash Chains

TWEEZER ensures the integrity and freshness of the WAL
and MANIFEST log using the classic hash chain [51, 52].
This hash chain is a good fit to protect those two data chunks
because both are append-only lists and the freshness verifi-
cation is performed only upon recovery. When TWEEZER
starts to run either from an empty KVS or after recovery, it
generates a nonce, considers the nonce as the first MAC (M0),
and creates a cryptographic key for MAC computation. For
each new log entry (ei), TWEEZER concatenates the encrypted
data entry with the previous log (Mi−1||E(ei)) to compute the
next MAC (Mi) and stores it along with the encrypted data.
The encrypted key-value pair becomes the data entry for the
WAL, and the encrypted new MANIFEST becomes the data
entry for the MANIFEST log. Like it does for each SSTable
(see §5.2), TWEEZER generated a unique key to protect logs
from replay attack. This use of a unique key prevents the
attacks from replaying an entire log chain using an older one.
The replayed log will be verified using a newer key, which
is different from the one used for generating the older chain.
Due to the differences in keys, the replayed MACs are not
considered genuine ones, and TWEEZER recognizes this as
a result of malicious manipulation. This hash chaining suffi-
ciently prevents any attack on the hash chain’s integrity and
freshness as further discussed in §6.

We chose to use this hash chain for log protection rather
than Speicher’s mechanism that relies on the trusted counter
for two reasons. First, the trusted counter that Speicher relies
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on increments only once every 60 ms [6]. This limits the
number of new log entries the KVS can create outside EPC
to one per 60 ms, which is about 23.4 per second [6]. This
is much lower than the expected number of write requests
that a KVS is expected to serve. Speicher inevitably delays
persisting new key-value pairs to overcome this limitation.
In contrast, the hash chain mechanism does not suffer from
this limitation. Second, support for the trusted counter on
server platforms is not yet stable and its availability varies
depending on the system configuration [21]. SGX is designed
to use the trusted counter provided by the accompanying
Trusted Platform Module, but not all server platforms have it.
Furthermore, the SGX SDK for Linux does not provide the
API as well [28]. TWEEZER’s approach using the hash chain
is, therefore, a more portable way to protect the logs.

5.5 Root of Trust

TWEEZER binds the confidentiality and integrity of its data
to a pair of cryptographic keys and MAC computed from
the MANIFEST. TWEEZER users retain these securely (e.g.,
in a physically isolated local machine) for full protection.
TWEEZER uses the cryptographic key and MAC to recover
data from the encrypted backup and to verify the backup’s
freshness. While running, TWEEZER uses these root keys to
encrypt and authenticate the MANIFEST log that contains the
KVS metadata. The other keys (§4) that TWEEZER uses are
kept within the MANIFEST on persistent storage, residing in
EPC during run time. This design choice allows TWEEZER to
use the keys without significant delay and can later obtain a
copy of those keys from the root key pairs and the MANIFEST
file when it loads the data from a snapshot.

5.6 Primitive Operations

This section describes how TWEEZER execute the primitive
operations for handling the requests.
PUT. TWEEZER handles a PUT request by inserting the
key-value pair to WAL for persistence and to MemTable for
efficient lookup. The new key-value pair is first encrypted
with the dedicated log key, and the resulting data is used
for computing a MAC along with the MAC of the previous
entry in WAL (see §5.4). The encrypted pair is stored in
WAL along with the computed MAC. TWEEZER follows a
procedure similar to RocksDB’s when it inserts a key-value
pair to its MemTable, except for the cryptographic operations.
TWEEZER’s MemTable is located in both the EPC and un-
trusted memory, as proposed by Speicher (see §2). TWEEZER
finds out the place in the untrusted memory where the value
from the new pair will be stored using the internal nodes
in EPC and store the encrypted value there. The MAC for
the newly stored value is kept within EPC for verification of
authenticity later.

GET. Upon receiving a GET request that accompanies a key,
TWEEZER first looks up the MemTable within the EPC to
determine if the key exists in the MemTable. If the key is
found, TWEEZER obtains the encrypted value from the un-
trusted memory and MAC from EPC. The obtained MAC is
then compared with the expected one computed using the key
kept in EPC. Only if the stored MAC matches the computed
one does TWEEZER consider the obtained value as a genuine
one and respond to the request with it. If the key is not found
from the MemTable, TWEEZER traverses the LSM tree as
RocksDB does to find the pair with the requested key or deter-
mine that the key does not exist. TWEEZER finds an SSTable
that is likely to contain the requested key like unmodified
RocksDB, from the lowest level of the LSM tree, using the
filter blocks and index blocks cached in EPC, with the sanity
checks described in §5.3. From the data block, TWEEZER
obtains the key block containing all keys, decrypts it in EPC,
and finds the requested key. TWEEZER continues to the next
level of the LSM tree if it fails to find the key from the key
block. Otherwise, if the key is found, TWEEZER speculates
that the key-value pair is stored in the current data block and
obtains the encrypted key-value pair along with its MAC from
the value block. TWEEZER verifies the obtained pair’s authen-
ticity using the authentication key for the SSTable (see §5.2),
and responds to the client with the value if the computed
MAC matches the stored one.
Range. As in RocksDB, TWEEZER handles range queries
by first creating iterators and then traversing the data blocks
in multiple levels. TWEEZER finds the starting key and ini-
tializes the iterators on each level by performing the same
operations for handling GET requests. For each traversal,
TWEEZER determines the latest version of the key-value pair
like RocksDB, by checking the MemTable and then the LSM
tree. If the key exists in MemTable, TWEEZER verifies its
authenticity and decrypts the value as it does to handle a GET
request. The case where TWEEZER finds the key-value pair
from the LSM tree is also handled similarly, and TWEEZER
verifies the absence of a key at a certain level as described
in §5.3.
Recovery. TWEEZER follows the same recovery scheme that
RocksDB implements, with the additional decryption and
verification using the pre-shared credentials (i.e., keys and
MAC). For this, TWEEZER takes the credentials as inputs
in addition to the files constituting the KVS. The first piece
of data that TWEEZER decrypts and verifies are the MANI-
FEST logs as discussed earlier (§5.5). As a result, TWEEZER
obtains the latest MANIFEST that contains the structure of
TWEEZER across the files and cryptographic keys needed to
decrypt and verify the rest of the data chunks. In particular,
TWEEZER obtains these keys from the recovered and veri-
fied MANIFEST update log called version edit. Each version
edit contains the changes made to the KVS structure such
as SSTable creation, SSTable deletion, log entry creation or
log entry deletion. TWEEZER extends these records with the
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additional keys that it uses such as the per-SSTable keys or
log key. Aside from the additional decryption or verification
steps, recovery is done following RocksDB’s scheme. After
recovery, TWEEZER provides the remote user with heartbeat
data that represents the exact version of the snapshot (see §6).

6 Security Analysis

This section discusses in-depth about how TWEEZER ensures
the integrity and freshness of its data against potential attacks.
Replay Attack. Reuse of existing encrypted data-MAC
pairs is a common attack strategy against data integrity. To
TWEEZER, this is the only way for attackers to pass the MAC-
based verification procedure. Under our threat model the at-
tackers can obtain these data-MAC pairs stored outside EPC
because they are assumed to have full access to the mem-
ory content outside the EPC as well as the storage content.
With this strong capability, an attacker may aim to replay
TWEEZER’s data chunks such as MANIFEST log, WAL, a
whole SSTable, or individual key-value pairs.
Log Replay. The first two targets, MANIFEST log and WAL,
are protected by the hash chain. TWEEZER and the remote
user are assumed to have the key pairs for encryption and
MAC computation along with the nonce that TWEEZER uses
as the first hash. When TWEEZER recovers from a snapshot,
TWEEZER correctly determines if each log entry is a replayed
block or not through the MAC verification for the following
reason. To replay the ith block bi from the list of log entries
b0, · · · ,bn and pass the verification procedure, the attacker
must generate or obtain MAC M′

i computed from hi−1||b′i
using the correct MAC key, where b′i is the replayed block
and hi−1 is the correct MAC of the previous (i.e., (i−1)th)
block. However, the attacker cannot obtain such M′

i because
of the uniqueness of the MAC key and the blocks in the log.
The only data chunks with the corresponding MAC computed
using the MAC key are the log entries. Therefore, the attacker
can only choose one from b0, · · · ,bn as the b′i. If the attacker
chooses b j as b′i, the only MAC available to the attacker is
the one computed from h j−1||b j, which does not pass the
verification procedure because h j−1 ̸= hi−1 when j ̸= i.
Key-Value Pair Replay. TWEEZER recognizes any attack
against the latter two (a whole SSTable and an individual key-
value pair) when it verifies their freshness using the MAC. An
attacker’s strategy in this scenario can be classified into three
groups. First, the attacker may try to replace one SSTable as
a whole with another. TWEEZER detects this attempt when it
obtains data blocks from the SSTable and verifies the block
through MAC computation. Similar to the earlier scenario,
the attacker cannot obtain the appropriate MAC because the
key-value pair that the attacker aims to replay has never been
used to compute a MAC with the target SSTable’s key. Each
SSTable is authenticated with its unique key, so the MACs
associated with key-value pairs in another SSTable are con-

sidered incorrect by the verification procedure. Second, an
attacker could try to replay data chunks within one SSTable.
TWEEZER recognizes this using the invariant ordering of
SSTables in an LSM tree as discussed in §5.3. If the replay
is somehow performed within a key block, the attacker in-
evitably breaks the ordering. If the replay switches two keys
k1 and k2 and k1 is to appear earlier than k2, the replay makes
k2 appear earlier than k1, breaking the invariant ordering. Du-
plicating a key is not an option as well because it breaks the
uniqueness principle. The last strategy that the attacker can
choose is to replay across the key blocks within an SSTable,
but it violates the property of the index key, which partitions
the set of keys an SSTable contains into contiguous and mu-
tually disjoint ranges.
Rollback Attack. TWEEZER ensures that the user has the
latest version of its data at the granularity of heartbeat transac-
tions. A strong attacker that we assume may place a rollback
attack where they take a snapshot of TWEEZER’s data at some
point and later present to TWEEZER or its remote user as the
genuine and latest version. The online rollback attack that an
attacker performs while TWEEZER is running is infeasible be-
cause the attacker cannot replace the data stored within EPC.
An offline attack in which the attacker replaces TWEEZER’s
files with an older version could, however, be a realistic threat.
To thwart such attacks, TWEEZER relies on periodic interac-
tion with the user to timestamp the versions by periodically
issuing a write transaction to TWEEZER. Later, these result-
ing key-value pairs are used to determine the TWEEZER snap-
shot version. These additional timestamps provide rollback-
resilience because the other verification mechanisms prevent
the attacker from forging a fake snapshot. When given a
snapshot to recover from, TWEEZER and its user verify its
freshness using the root key pairs, starting from the MAN-
IFEST log. As discussed in §5.6, an attacker who does not
have these key pairs cannot make any modifications to any
older TWEEZER snapshot version. The only remaining option
is to present an exact copy of an older version, but the user cor-
rectly determines the copy’s version from the key-value pairs
from the heartbeat transactions after the verified recovery.
Existence Attack. TWEEZER also detects any attempt to
deceive it into believing that an SSTable does not contain a
particular key when, in fact, the SSTable has it. The LSM tree
design strengthens this attack if successful because TWEEZER
may consider an older version of the key-value pair found
in a lower level. The LSM tree-based KVSs handle update
requests by adding the new key-value pair to the higher level
of the LSM tree and leave the older one in a lower level.
An attacker performing the existence attack must first find
the key block that contains the victim key and forge a valid
key block passing TWEEZER’s check. The confidentiality
that TWEEZER ensures using encryption prevents this first
step, which leaves an attack to an unknown key as the only
remaining option. However, this option is also highly unlikely
because of TWEEZER’s invariant check, as discussed in §5.3.
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Figure 3: The normalized slowdown of TWEEZER and reproduced
Speicher, along with the reported slowdown of Speicher [6], where
the unmodified RocksDB is the baseline. The absolute throughput is
also presented as lines using the y axis on the right.

7 Performance Evaluation

Environment. We evaluate the performance of TWEEZER
on a machine with Intel Xeon E-2288G and 64GB of DRAM.
The CPU has 32 KB instruction and data caches, 256 KB of
L2 caches and a 16 MB shared L3 cache. The CPU also im-
plements Intel SGX for confidential computing and AES-NI
to speed up AES block cipher. The system runs Ubuntu 18.04
with Linux Kernel 4.15. For every cryptographic operation,
we used OpenSSL 1.1.1i. Specifically, we chose AES GCM
256 as the block cipher scheme to protect the confidential-
ity of the data, GHASH to compute MACs for the logs and
MemTable, and HMAC with SHA3-384 to compute MACs
for SSTables. We followed the schemes that Speicher used
to rule out the performance impact of cryptographic schemes
when we compare TWEEZER and Speicher. Note that, unlike
the encryption or GHASH, the HMAC computation does not
benefit from hardware acceleration because the CPU that we
use does not have hardware extensions to accelerate for SHA
computation. We built both TWEEZER and the reproduced
Speicher based on RocksDB version 6.14.
Benchmarks. We evaluate TWEEZER using db_bench with
three workloads, r100, r90w10, r80w20 each of which is com-
posed of 100% reads; 90% reads and 10% writes; and 80%
reads and 20% writes; respectively. The key size is 16 B, the
SSTable size is 64 MB, and 5 million key-value pairs were
used, as done in Speicher [6]. The block size is either 4 KB,
which is the default of RocksDB, or 32 KB, what Speicher
used for its evaluation. In some experiments, we use db_-
bench to create KVSs as large as 16 GB and 64 GB, and use
them to evaluate the performance of TWEEZER on a practical
setup.
Reproducing Speicher. For comparison, we reproduced Spe-
icher by extending RocksDB because Speicher is not open-
sourced. As discussed in §1, TWEEZER adopts some of Spe-
icher’s design decisions to save EPC space and relies on
Scone for asynchronous system calls. As such, the repro-
duced Speicher shares these aspects with TWEEZER in our
implementations. Figure 3 shows the normalized through-
put of TWEEZER, the reproduced Speicher, and the original
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Figure 4: Normalized slowdown (lower is better) relative to the
original RocksDB on SGX of TWEEZER.

Speicher as bars, and the absolute throughput as lines. Here-
after, all normalized results are normalized to the baseline
RocksDB, presented with the absolute throughput. The ex-
perimental results advocate that our reproduction of Speicher
is reasonable in that it exhibits similar or better performance
characteristics compared with the reported number. In this
experiment, we issue 5 million transactions starting from a
KVS filled with 5 million entries, set the value size to 1024 B,
and set the block size to 32 KB to replicate the experiments
as close to those of the original setting [6]. We note that the
difference in experimental setup may have also contributed
to the better performance that replicated Speicher exhibits
compared to the original. Speicher was evaluated with on a
machine with Xeon E3-1270 v5, which has smaller (8 MB)
shared L3 cache and smaller EPC (128 MB), albeit the size
of main memory is the same. Larger EPC and caches poten-
tially reduce the number of cryptographic operations while
Speicher runs, reducing the overhead of storing data within
EPC. Regarding the results, we observe that TWEEZER out-
performs Speicher by 1.91∼3.94× despite the fact that the
KVSs run with smaller amount of data. The 5 million entries
are actually small enough that EPC paging does not occur,
favoring Speicher considerably.

7.1 Throughput

Point Lookups. Figure 4 shows the normalized throughput
of TWEEZER and Speicher on three workloads from db_-
bench with varying initial KVS sizes and 1024B values. The
block size is set to 4 KB, which is the default and the best
for the original RocksDB. Starting from the KVS images
that we created using db_bench, we issue 5 million transac-
tions to measure the throughput. Under the tests using these
large KVSs, TWEEZER consistently outperforms Speicher by
1.94∼6.23×, reducing the slowdown from 16∼30× to 4∼9×.
Our observation (§7.2) suggests that this performance gap
is primarily due to EPC paging. As the KVS size increases,
Speicher’s footer cache in EPC becomes larger and causes
frequent EPC paging. The use of per-SSTable keys reduces
the amount of data that must be kept within EPC, enabling
TWEEZER to avoid the frequent EPC paging.
Range Query. We evaluate the range query performance
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Figure 5: Normalized throughput of TWEEZER and Speicher on
range queries with varying length. Length refers to the number of
key-value pairs being accessed for each range query.
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Figure 6: Normalized performance of TWEEZER and Speicher with
large (32 KB) data blocks.

of TWEEZER and Speicher using seekrandom benchmark in
db_bench, with 1024 B values and 32 KB data blocks. As
Figure 5 shows, TWEEZER exhibits higher throughput than
Speicher for short queries, but the advantage diminishes as the
query length increases. This result is due to the fine-grained
authentication (§5.3) that is optimized only for point lookups.
When obtaining a key-value pair, the cryptographic cost is
smaller in TWEEZER than Speicher that decrypts and authen-
ticates a whole data block even for a single request. However,
this whole-block decryption and authentication become less
costly when handling range queries because Speicher decrypts
and authenticates the block only once for multiple pairs. Un-
like this, TWEEZER has no choice but to handle range queries
like a sequence of point lookups, thus authenticating the key-
value pairs separately.
Block Sizes. The data block size in an SSTable can be con-
figured and may affect throughput. While our experiments on
point lookup performance used the default value of 4 KB as
this setting results in the best performance for the baseline
RocksDB, Speicher, in their experiments, used 32 KB blocks.
Thus, we perform the same experiments obtained for Figure 4
except with the block size set to 32 KB. From the results
in Figure 6, we observe that Speicher performance improves
considerably due to the reduction in EPC usage (see §7.2).
Despite this, we see that TWEEZER still outperforms Speicher
by 1.46∼2.17×.
Value Sizes. Figure 7 shows how the value size affects the
performance of TWEEZER and Speicher. For these experi-
ments, we used the same setup as the comparison study in Fig-
ure 3 except for the value sizes. Overall, we observe that

64 128 256 1024 2048 4096
0

15

30

N
or

m
al

iz
ed

Sl
ow

do
w

n
(L

ow
er

is
B

et
te

r) r90w10

0

15k

30k

O
PS

Value Size (B)

Speicher Tweezer
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when running for different value sizes.
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TWEEZER outperforms Speicher by 1.82∼4.70× in all con-
figurations because TWEEZER also, in part, suffers from read
amplification, which diminishes as the value size increases,
resulting in reduced slowdown.

Number of Threads. Figure 8 shows the normalized
throughput of TWEEZER and Speicher as the number of
threads increases. Speicher scales similarly to RocksDB, but
TWEEZER’s slowdown increases as the number of thread in-
creases. According to our analysis, this is due to the default
heap allocator of Scone, musl [49] that does not scale as the
number of threads increases. TWEEZER’s shows scalability
when we replace musl with mi-malloc [39] but the benefit was
limited because Scone [55] does not support the thread local
storage model that mi-malloc uses. Nevertheless, TWEEZER
outperforms Speicher by 1.78× when running with 4 threads.

Untrusted Block Cache. Fine-grained authentication (§5.3)
enables TWEEZER to place the block cache in untrusted mem-
ory, outside EPC. Having its block cache outside the EPC
is beneficial when TWEEZER starts to serve a large KVS
in which larger block cache could help reduce the average
read latency. Figure 9 presents the normalized throughput of
TWEEZER and Speicher as we change the block cache sizes
from 8 MB (default) to 128 MB and 256 MB using the same
setup as the comparison study in Figure 3. Speicher’s perfor-
mance overhead increases as the block cache size increases
because the additional block caches cause more EPC paging.
Speicher places all block cache content in EPC as it does
not make any adjustment to the block cache management,
increasing EPC usage and resulting in more EPC paging. On
the contrary, TWEEZER does not suffer from the increased
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Figure 10: Cumulative number of EPC paging while running
TWEEZER and Speicher with varying block sizes (4 KB and 32 KB)
and initial KVS sizes (16 GB and 64 GB).

number of EPC paging because it places the block cache
outside the EPC with the same cryptographic protection as
the blocks in the SSTables. TWEEZER still does not benefit
from the block caches as the absolute numbers show, however,
due to the relatively small benefit that the block cache brings
to TWEEZER compared to the unmodified RocksDB. Block
cache miss penalty is high in unmodified RocksDB because it
decompresses the retrieved data block on cache misses. The
cache hit latency is long on TWEEZER, which additionally
decrypts and authenticates the retrieved pairs.

7.2 EPC Usage

EPC Paging. We obtained the number of EPC paging using
sgxtop [32]. Figure 10 shows the cumulative number of EPC
paging observed while running the two configurations of the
benchmarks used for the experiment in §7.1. Specifically, we
accumulated all observed EPC paging from each run after the
recovery because neither TWEEZER nor Speicher is designed
to optimize the recovery phase and both experience a large
number of EPC paging. When the block size is configured to
4 KB (the bottom two in Figure 10), which is the default and
exhibits better performance for TWEEZER, Speicher suffer up
to 430× more EPC paging, due to the cached MACs in the
footer blocks. On the contrary, when we configure the block
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Figure 11: Normalized table cache sizes while running TWEEZER

and Speicher with the r90w10 workload.
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Figure 12: The amount of data stored in file system when we store
the same number of key-value pairs.

size to be 32 KB, we observed that the cumulative number of
EPC paging that TWEEZER experiences approaches that of
Speicher, even though TWEEZER still outperforms Speicher
in terms of throughput (§7.1). According to our analysis, this
additional EPC paging comes from background compaction.
Compared with Speicher, we observe certain periods in time
in which TWEEZER’s cumulative EPC paging suddenly in-
creases. This is due to the additional memory consumption
by the background compaction, which also uses EPC space
to process decrypted blocks. It is worth noting that these EPC
paging numbers were obtained from the runs reported in Fig-
ure 6. That is, TWEEZER still shows much higher performance
albeit the EPC pagings due to the compaction. This is because
the compaction does not usually block the transaction pro-
cessing. TWEEZER’s fine-grained authentication (§5.3) could
enable compaction with encrypted SSTables and reduce these
peaks, but we leave it as future work.
Amount of Data in EPC. The amount of data in EPC is an-
other measure that shows the potential density of EPC paging
over time. Programs using more EPC are likely to experience
more EPC misses and longer EPC access time on average.
To compare the amount of data that TWEEZER and Speicher
store in EPC, we measure the size of the table cache that con-
tains metadata for SSTables and resides in memory. The size
of the table cache is a good estimate of the amount of data
in EPC because the table cache is the largest component in
EPC by design. Figure 11 shows the results for the workload
with 90% reads as we vary the values sizes and block sizes.
We observe that Speicher’s table cache is 3.71∼4.17× larger
compared to that of RocksDB while that of TWEEZER’s is
only 1.08∼1.35× larger. In other words, Speicher uses a table
cache that is 2.84∼3.08× larger compared to TWEEZER. This
shows that our design choice of using per-SSTable key (see
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TWEEZER write to storage as the value size changes, normalized to
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§5.2) helps reduce the amount of data in EPC, contributing to
reduced EPC paging.

7.3 Storage Blowup

Increased Storage Usage. One drawback of fine-grained
authentication is the increase in storage usage due to the
less productive compression after encryption and individual
authentication for each key-value pair. As discussed in §4,
TWEEZER’s fine-grained authentication renders RocksDB’s
block compression less effective because the data is encrypted
before compression, unless TWEEZER employs a specially
crafted encryption and compression scheme [29, 53]. To un-
derstand this drawback quantitatively, we evaluate the corre-
sponding storage cost by measuring the size of aggregated
SSTables, with compression, constituting the KVS in varying
configurations used for the evaluations in §7.1. Figure 12
shows the results, and we see that TWEEZER experiences
1.77∼3.45× storage overhead. This overhead in size increases
as the value size decreases because the MAC size remains the
same for each key-value pair.

Write Amplification. We also measure the amount of data
that Speicher and TWEEZER write to storage and Figure 13
shows the result. We normalized the amount of written data to
the number of key-value pairs that each KVS accommodates
to compare their impact on write amplification. As expected,
write amplification decreases as the value size increases when
running unmodified RocksDB or Speicher because the amount
of metadata is proportional to the number of entries. When
the total size of key-value pairs is fixed, they write less meta-
data because they store fewer entries as the value size in-
creases. The write amplification of TWEEZER also decreases,
but much less than the other two. We presume that this is
primarily due to the entropy of data in data blocks. Unlike
Speicher, TWEEZER encrypts data blocks before compres-
sion, rendering compression less effective. On the evaluation
with 16 GB KVS, write amplification even increases when
the value size increases from 512 B to 1024 B.
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(TWEEZER+) the strong key block authentication.

8 Discussion

Data Obliviousness. TWEEZER is not designed to be data-
oblivious. That is, TWEEZER is not provably immune to side-
channel leakage through data-dependent access patterns. For
example, attackers could learn the following information. By
observing the changes of encrypted values in MemTable
stored outside the EPC, attackers could learn that a write
request was made and handled. However, cryptographic pro-
tection prevents the attacker from revealing or faulting the con-
tent. The relationship between leaves are also under protection
in that the internal nodes are stored within EPC. Only a suc-
cessful side-channel attack against the enclave [10, 33, 48, 66]
could reveal such a relationship. Access patterns within an
SSTable reveals relationships between the queried key and
the index keys. TWEEZER does not shuffle the data blocks in
an SSTable, and an attacker can determine from which data
block TWEEZER found the queried key through the access
pattern. Combining these two, an attacker can infer the likely
range of the queried key, for example, how many keys in the
SSTable would be larger than the queried key. TWEEZER
could mitigate this inference by shuffling the data blocks.

Larger KVS. Our study shows that TWEEZER needs to be
tailored further to have better efficiency in EPC usage when
the KVS size becomes larger. TWEEZER introduces much
smaller amount of additional in-memory data that must be
held in EPC compared with Speicher. However, the amount
of data that TWEEZER holds in EPC still increases as the
KVS size increases because of some data (e.g. index block)
that TWEEZER still caches within EPC, as an extension of
RocksDB. We leave the optimization of RocksDB metadata
to further reduce this EPC usage as future work.

Key Block Freshness. As discussed in §5.3, TWEEZER does
not provably prevent the fault attack against the key block,
although it is highly unlikely for an attacker to successfully
perform the attack. This is due to the lack of MAC-based
verification of the key blocks. As an alternative design choice,
TWEEZER can be strengthened by computing and verifying
MAC for the key blocks as well. Figure 14 is the result of
our experiments showing the performance overhead of this
design choice. As expected, the additional authentication does
incur performance overhead (TWEEZER+). TWEEZER+ is
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11%∼24% slower than TWEEZER depending on workloads
and value sizes. The overhead increases with smaller value
size because the key block size increases as the value size
decreases.

9 Related work
This work is closely related to existing attempts to tailor
various important applications to Intel SGX [3, 6, 12, 16, 23,
31,54,56,61] as well as research on securing database systems
including KVSs [15, 45].
Running Unmodified Applications on SGX. Haven [7, 8],
SCONE [4], Graphene-SGX [64], Panoply [57], SGX-LKL
[46] are systems designed to help unmodified applications to
run on an enclave. As suggested by the authors, these enabled
us to quickly work on tailoring a persistent KVS for Intel SGX.
In particular, TWEEZER has been implemented and tested on
SCONE. However, it is worth noting that TWEEZER can run
on any of the aforementioned systems because TWEEZER
does not make any assumptions on features unique to SCONE.
Persistent KVSs on SGX. As we have repeatedly discussed,
Speicher [6] is the closest to our work in that it is designed
to boost the performance of a persistent KVS on SGX, tak-
ing RocksDB as an example. Speicher contributes three new
design features to achieve this goal, but fails to scale to
large KVSs. While TWEEZER adopts many of the ideas pro-
posed by Speicher, we propose a new message authentica-
tion scheme and restructures the data block to alleviate the
scalability issue. Furthermore, TWEEZER uses a hash chain
mechanism to protect persistent logs allowing for a solution
that is not bound to platforms that support trusted counters.
Enclage [61] is also close to TWEEZER in that it is designed
to be an SGX-based secure storage engine but does not take
integrity protection into account.
In-memory KVSs on SGX. ShieldStore [31] studies the
design options to adapt an in-memory KVS for SGX. Com-
pared with TWEEZER, ShieldStore is designed for in-memory
KVSs and still relies on the Merkle tree for freshness. Similar
to ShieldStore, EnclaveCache [12] and Avocado [5] are also
designed to use SGX to protect in-memory KVSs.
Cryptographic Approaches. CryptDB is one of the pioneer-
ing systems in which unmodified database queries are prox-
ied and handled by encrypted backend [45]. CryptDB adopts
various cryptographic schemes including homomorphic en-
cryption [20] and focuses on confidentiality guarantees. Dory
goes beyond confidentiality guarantees and mitigates access
pattern-based leakage, providing authenticity relying on dis-
tributed trust [15]. TWEEZER tackles the same problem at a
lower level compared with these approaches in that many re-
lational database systems use RocksDB-like persistent KVSs
as storage engines. One weakness of TWEEZER, when com-
pared to Dory, is the lack of data obliviousness. To overcome
this, TWEEZER has to be strengthened with oblivious search
indices [40] or file system operations [2].

Log Protection. Protection of logs from rollback attacks
have long been an important problem. One of the well-known
mechanisms is the hash chain [44, 51, 52] that TWEEZER
adopts to protect the WAL and MANIFEST logs. However,
the hash chain cannot guarantee freshness against potential
rollback attacks across crashes and recoveries as discussed
in Memoir [44]. Memoir overcomes this limitation and re-
lies on local trusted non-volatile memory. Verena [30] also
addresses a similar problem by using a hash server. Com-
pared with these, TWEEZER’s approach is similar to Verena
in that it relies on the user, who sends heartbeat transactions
to timestamp versions. ROTE is designed solely to address
this weakness of requiring a trusted component to defeat the
rollback attack by using multiple enclaves [37]. TWEEZER
can adopt this to provide rollback resilience without relying
on the heartbeat packets.

10 Conclusion
This paper presented TWEEZER, an LSM tree-based persis-
tent key-value store tailored for confidential computing by
taking advantage of the LSM tree design principles. The
unique invariants that the LSM tree introduces, being a data
structure optimized for storage devices, enables TWEEZER to
avoid constructing a large Merkle tree to protect the integrity
and freshness of the key-value pairs. Our experiments with
the implementation of TWEEZER and a reproduction of a pi-
oneering work, Speicher, shows that this new MAC scheme
for the LSM tree brings considerable performance benefits.
Our implementation of TWEEZER outperforms Speicher on
point lookups (e.g., by 1.91∼6.23×) in all evaluation settings,
and in particular, the ones with large (16∼64 GB) KVSs. We
anticipate that our findings and open-sourced implementation
from this work will motivate further improvements in this
direction to secure our data on these key-value stores.

Acknowledgment
We thank the anonymous reviewers and our shepherd, Patrick
P. C. Lee, for their constructive reviews and comments. This
work was partly supported by Institute of Information & com-
munications Technology Planning & Evaluation (IITP) grant
funded by the Korea government(MSIT) (No. 2018-0-00503,
Researches on next generation memory-centric computing
system architecture), Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) grant funded
by the Korea government(MSIT) (No.2021-0-01817, Devel-
opment of Next-Generation Computing Techniques for Hyper-
Composable Datacenters), and the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIT) (No. NRF-2021R1F1A1050311).

Availablity
TWEEZER is available on https://github.com/cssl-
unist/tweezer.

USENIX Association 20th USENIX Conference on File and Storage Technologies    375

https://github.com/cssl-unist/tweezer
https://github.com/cssl-unist/tweezer


References

[1] The storage performance development kit (spdk).
https://spdk.io/.

[2] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq
Sarfaraz, and Byoungyoung Lee. Obliviate: A data
oblivious filesystem for intel sgx. In Proceedings of the
2018 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 2018.

[3] Jinwoo Ahn, Junghee Lee, Yungwoo Ko, Donghyun
Min, Jiyun Park, Sungyong Park, and Youngjae Kim.
Diskshield: A data tamper-resistant storage for intel sgx.
In Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security, pages 799–
812, 2020.

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Dan O’keeffe, Mark L Stillwell,
et al. Scone: Secure linux containers with intel sgx. In
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 689–703, 2016.

[5] Maurice Bailleu, Dimitra Giantsidi, Vasilis Gavrielatos,
Do Le Quoc, Vijay Nagarajan, and Pramod Bhatotia. Av-
ocado: A secure in-memory distributed storage system.
In Proceedings of the 2020 USENIX Annual Technical
Conference (ATC), July 2021.

[6] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia,
Christof Fetzer, Michio Honda, and Kapil Vaswani.
Speicher: Securing lsm-based key-value stores using
shielded execution. In 17th USENIX Conference on File
and Storage Technologies (FAST), February 2019.

[7] Andrew Baumann, Marcus Peinado, and Galen Hunt.
Shielding applications from an untrusted cloud with
haven. ACM Transactions on Computer Systems
(TOCS), 33(3):1–26, 2015.

[8] Andrew Baumann, Marcus Peinado, and Galen Hunt.
Shielding applications from an untrusted cloud with
haven. ACM Trans. Comput. Syst., 33(3), August 2015.

[9] Stefan Brenner, Colin Wulf, David Goltzsche, Nico We-
ichbrodt, Matthias Lorenz, Christof Fetzer, Peter Piet-
zuch, and Rüdiger Kapitza. Securekeeper: confidential
zookeeper using intel sgx. In Proceedings of the 17th In-
ternational Middleware Conference, pages 1–13, 2016.

[10] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel SGX king-
dom with transient out-of-order execution. In Proceed-
ings of the 27th USENIX Security Symposium (Security),
Baltimore, MD, August 2018.

[11] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan
Chen, Yinqian Zhang, XiaoFeng Wang, Ten-Hwang Lai,
and Dongdai Lin. Racing in hyperspace: Closing hyper-
threading side channels on sgx with contrived data races.
In 2018 IEEE Symposium on Security and Privacy (SP),
pages 178–194. IEEE, 2018.

[12] Lixia Chen, Jian Li, Ruhui Ma, Haibing Guan, and Hans-
Arno Jacobsen. Enclavecache: A secure and scalable
key-value cache in multi-tenant clouds using intel sgx.
In Proceedings of the 20th International Middleware
Conference, pages 14–27, 2019.

[13] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter,
and Yinqian Zhang. Detecting privileged side-channel
attacks in shielded execution with déjá vu. In Proceed-
ings of the 2017 ACM on Asia Conference on Computer
and Communications Security, pages 7–18, 2017.

[14] Victor Costan and Srinivas Devadas. Intel sgx explained.
IACR Cryptol. ePrint Arch., 2016(86):1–118, 2016.

[15] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada
Popa, and Ion Stoica. Dory: An encrypted search system
with distributed trust. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 1101–1119, 2020.

[16] Susanne Felsen, Ágnes Kiss, Thomas Schneider, and
Christian Weinert. Secure and private function eval-
uation with intel sgx. In Proceedings of the 2019
ACM SIGSAC Conference on Cloud Computing Security
Workshop, pages 165–181, 2019.

[17] The Apache Software Foundation. Kafka streams.
https://kafka.apache.org/.

[18] Uber San Francisco. Uber. https://www.uber.com/.

[19] Blaise Gassend, E Suh, Dwaine Clarke, Marten Van Dijk,
and Srinivas Devadas. Caches and merkle trees for
efficient memory authentication. In Proceedings of ninth
international symposium on high performance computer
architecture, 2003.

[20] Craig Gentry. Fully homomorphic encryption using
ideal lattices. In Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing, STOC ’09,
pages 169–178, New York, NY, USA, 2009. Association
for Computing Machinery.

[21] Greg. Platform service enclave and me for intel
xeon server. https://community.intel.com/t5/
Intel-Software-Guard-Extensions/Platform-
Service-Enclave-and-ME-for-Intel-Xeon-
Server/td-p/1173098.

376    20th USENIX Conference on File and Storage Technologies USENIX Association

https://spdk.io/
https://kafka.apache.org/
https://www.uber.com/
https://community.intel.com/t5/Intel-Software-Guard-Extensions/Platform-Service-Enclave-and-ME-for-Intel-Xeon-Server/td-p/1173098
https://community.intel.com/t5/Intel-Software-Guard-Extensions/Platform-Service-Enclave-and-ME-for-Intel-Xeon-Server/td-p/1173098
https://community.intel.com/t5/Intel-Software-Guard-Extensions/Platform-Service-Enclave-and-ME-for-Intel-Xeon-Server/td-p/1173098
https://community.intel.com/t5/Intel-Software-Guard-Extensions/Platform-Service-Enclave-and-ME-for-Intel-Xeon-Server/td-p/1173098


[22] Shay Gueron. A memory encryption engine suitable for
general purpose processors. IACR Cryptol. ePrint Arch.,
2016:204, 2016.

[23] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and
Dongsu Han. Sgx-box: Enabling visibility on encrypted
traffic using a secure middlebox module. In Proceed-
ings of the First Asia-Pacific Workshop on Networking,
pages 99–105, 2017.

[24] Intel. 10th generation intel core proces-
sor famillies datasheet volume 1. https:
//www.intel.com/content/dam/www/public/
us/en/documents/datasheets/10th-gen-core-
families-datasheet-vol-1-datasheet.pdf.

[25] Intel. Enclave memory measurement tool for in-
tel software guard extensions (intel sgx) enclaves.
https://software.intel.com/content/dam/
develop/external/us/en/documents/enclave-
measurement-tool-intel-sgx-737361.pdf.

[26] Intel. Intel sgx. https://www.intel.com/content/
www/us/en/architecture-and-technology/
software-guard-extensions.html.

[27] Intel. The intel sgx memory encryption engine.
https://software.intel.com/content/www/
us/en/develop/blogs/memory-encryption-an-
intel-sgx-underpinning-technology.html.

[28] Intel. Unable to find alternatives to monotonic
counter application programming interfaces (apis)
in intel software guard extensions (intel sgx)
for linux* to prevent sealing rollback attacks.
https://www.intel.com/content/www/us/en/
support/articles/000057968/software/intel-
security-products.html.

[29] M. Johnson, P. Ishwar, V. Prabhakaran, D. Schonberg,
and K. Ramchandran. On compressing encrypted data.
IEEE Transactions on Signal Processing, 52(10):2992–
3006, 2004.

[30] Nikolaos Karapanos, Alexandros Filios, Raluca Ada
Popa, and Srdjan Capkun. Verena: End-to-end integrity
protection for web applications. In Proceedings of the
37th IEEE Symposium on Security and Privacy (Oak-
land), San Jose, CA, May 2016.

[31] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun
Jeon, and Jaehyuk Huh. Shieldstore: Shielded in-
memory key-value storage with sgx. In Proceedings
of the Fourteenth EuroSys Conference 2019, pages 1–
15, 2019.

[32] Kevin Lahey. Monitoring intel sgx enclaves.
https://fortanix.com/blog/2020/02/
monitoring-intel-sgx-enclaves/.

[33] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring Fine-
grained Control Flow Inside SGX Enclaves with Branch
Shadowing. In Proceedings of the 26th USENIX Secu-
rity Symposium (Security), Vancouver, Canada, August
2017.

[34] Percona LLC. Mongorocks. https:
//www.percona.com/doc/percona-server-for-
mongodb/3.4/mongorocks.html.

[35] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Wisckey: Separating keys from values in ssd-conscious
storage. In 14th USENIX Conference on File and Stor-
age Technologies (FAST), Santa Clara, CA, February
2016.

[36] MariaDB. Getting started with myrocks.
https://mariadb.com/kb/en/getting-started-
with-myrocks/.

[37] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Ar-
itra Dhar, David Sommer, Arthur Gervais, Ari Juels,
and Srdjan Capkun. {ROTE}: Rollback protection for
trusted execution. In 26th {USENIX} Security Sympo-
sium ({USENIX} Security 17), pages 1289–1306, 2017.

[38] Ines Messadi, Shivananda Neumann, Lennart Almstedt,
and Rüdiger Kapitza. A fast and secure key-value ser-
vice using hardware enclaves. In Proceedings of the
20th International Middleware Conference Demos and
Posters, pages 1–2, 2019.

[39] Microsoft. mi-malloc. https://
microsoft.github.io/mimalloc/.

[40] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessan-
dro Chiesa, and Raluca Ada Popa. Oblix: An efficient
oblivious search index. In Proceedings of the 39th IEEE
Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2018.

[41] Netflix. Netflix. https://www.netflix.com/.

[42] Patrick O’ Neil, Edward Cheng, Dieter Gawlick, and
Elizabeth O’ Neil. The log-structured merge-tree (lsm-
tree). Acta Informatica, 33(4):351–385, 1996.

[43] Meni Orenbach, Pavel Lifshits, Marina Minkin, and
Mark Silberstein. Eleos: Exitless os services for sgx
enclaves. In Proceedings of the 12th European Con-
ference on Computer Systems (EuroSys), Belgrade, RS,
April 2017.

[44] Bryan Parno, Jacob R. Lorch, John R. Douceur, James
Mickens, and Jonathan M. McCune. Memoir: Practical
state continuity for protected modules. In Proceedings

USENIX Association 20th USENIX Conference on File and Storage Technologies    377

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/10th-gen-core-families-datasheet-vol-1-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/10th-gen-core-families-datasheet-vol-1-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/10th-gen-core-families-datasheet-vol-1-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/10th-gen-core-families-datasheet-vol-1-datasheet.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/enclave-measurement-tool-intel-sgx-737361.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/enclave-measurement-tool-intel-sgx-737361.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/enclave-measurement-tool-intel-sgx-737361.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/blogs/memory-encryption-an-intel-sgx-underpinning-technology.html
https://software.intel.com/content/www/us/en/develop/blogs/memory-encryption-an-intel-sgx-underpinning-technology.html
https://software.intel.com/content/www/us/en/develop/blogs/memory-encryption-an-intel-sgx-underpinning-technology.html
https://www.intel.com/content/www/us/en/support/articles/000057968/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000057968/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000057968/software/intel-security-products.html
https://fortanix.com/blog/2020/02/monitoring-intel-sgx-enclaves/
https://fortanix.com/blog/2020/02/monitoring-intel-sgx-enclaves/
https://www.percona.com/doc/percona-server-for-mongodb/3.4/mongorocks.html
https://www.percona.com/doc/percona-server-for-mongodb/3.4/mongorocks.html
https://www.percona.com/doc/percona-server-for-mongodb/3.4/mongorocks.html
https://mariadb.com/kb/en/getting-started-with-myrocks/
https://mariadb.com/kb/en/getting-started-with-myrocks/
https://microsoft.github.io/mimalloc/
https://microsoft.github.io/mimalloc/
https://www.netflix.com/


of the 32nd IEEE Symposium on Security and Privacy
(Oakland), Oakland, CA, May 2011.

[45] Raluca Ada Popa, Catherine MS Redfield, Nickolai Zel-
dovich, and Hari Balakrishnan. Cryptdb: Protecting
confidentiality with encrypted query processing. In Pro-
ceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles, pages 85–100, 2011.

[46] Christian Priebe, Divya Muthukumaran, Joshua Lind,
Huanzhou Zhu, Shujie Cui, Vasily A Sartakov, and Peter
Pietzuch. Sgx-lkl: Securing the host os interface for
trusted execution. arXiv preprint arXiv:1908.11143,
2019.

[47] Christian Priebe, Kapil Vaswani, and Manuel Costa. En-
clavedb: A secure database using sgx. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 264–
278. IEEE, 2018.

[48] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuf-
frida. Crosstalk: Speculative data leaks across cores are
real. In Proceedings of the 42nd IEEE Symposium on
Security and Privacy (Oakland), May 2021.

[49] et al. Rich Felker. musl libc. https://
musl.libc.org/.

[50] Apache Samza. Apache samza. http://
samza.apache.org/.

[51] Bruce Schneier and John Kelsey. Cryptographic support
for secure logs on untrusted machines. In Proceedings
of the 7th USENIX Security Symposium (Security), San
Antonio, TX, January 1998.

[52] Bruce Schneier and John Kelsey. Secure audit logs
to support computer forensics. ACM Transactions on
Information and System Security (TISSEC), 2(2):159–
176, 1999.

[53] Daniel Schonberg, Stark C. Draper, and Kannan Ram-
chandran. On blind compression of encrypted data ap-
proaching the source entropy rate. In 2005 13th Euro-
pean Signal Processing Conference, pages 1–4, 2005.

[54] Felix Schuster, Manuel Costa, Cédric Fournet, Christos
Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and
Mark Russinovich. Vc3: Trustworthy data analytics in
the cloud using sgx. In Proceedings of the 36th IEEE
Symposium on Security and Privacy (Oakland), San
Jose, CA, May 2015.

[55] Scone. Scone sgx toolchain. https:
//sconedocs.github.io/SCONEtoolchain/.

[56] Ming-Wei Shih, Mohan Kumar, Taesoo Kim, and Ada
Gavrilovska. S-NFV: Securing NFV states by using

SGX. In Proceedings of the 1st ACM International
Workshop on Security in SDN and NFV, New Orleans,
LA, March 2016.

[57] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek
Saxena. Panoply: Low-tcb linux applications with sgx
enclaves. In NDSS, 2017.

[58] Facebook Open Source. Rocksdb. https://
rocksdb.org/, n.d.

[59] Facebook Open Source. A rocksdb storage engine with
mysql. http://myrocks.io/, n.d.

[60] François-Xavier Standaert. Introduction to side-channel
attacks. In Secure integrated circuits and systems, pages
27–42. Springer, 2010.

[61] Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei
Li. Building enclave-native storage engines for prac-
tical encrypted databases. Proceedings of the VLDB
Endowment, 14(6):1019–1032, 2021.

[62] Jörg Thalheim, Harshavardhan Unnibhavi, Christian
Priebe, Pramod Bhatotia, and Peter Pietzuch. rkt-io:
a direct i/o stack for shielded execution. In Proceed-
ings of the Sixteenth European Conference on Computer
Systems, pages 490–506, 2021.

[63] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei
Arnautov, Pramod Bhatotia, and Christof Fetzer. Shield-
box: Secure middleboxes using shielded execution. In
Proceedings of the Symposium on SDN Research, SOSR
’18, New York, NY, USA, 2018. Association for Com-
puting Machinery.

[64] Chia-Che Tsai, Donald E Porter, and Mona Vij.
Graphene-sgx: A practical library {OS} for unmod-
ified applications on {SGX}. In 2017 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 17),
pages 645–658, 2017.

[65] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel sgx king-
dom with transient out-of-order execution. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 991–1008, 2018.

[66] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Breaking virtual memory protection and the sgx ecosys-
tem with foreshadow. IEEE Micro, 39(3):66–74, 2019.

[67] Jinwen Wang, Yueqiang Cheng, Qi Li, and Yong Jiang.
Interface-based side channel attack against intel sgx.
arXiv preprint arXiv:1811.05378, 2018.

378    20th USENIX Conference on File and Storage Technologies USENIX Association

https://musl.libc.org/
https://musl.libc.org/
http://samza.apache.org/
http://samza.apache.org/
https://sconedocs.github.io/SCONE_toolchain/
https://sconedocs.github.io/SCONE_toolchain/
https://rocksdb.org/
https://rocksdb.org/
http://myrocks.io/


[68] Ofir Weisse, Valeria Bertacco, and Todd Austin. Re-
gaining lost cycles with hotcalls: A fast interface for sgx
secure enclaves. In Proceedings of the 44th ACM/IEEE
International Symposium on Computer Architecture
(ISCA), 2017.

[69] Fenggang Wu, Ming-Hong Yang, Baoquan Zhang, and
David HC Du. Ac-key: Adaptive caching for lsm-based
key-value stores. In Proceedings of the 2020 USENIX
Annual Technical Conference (ATC), July 2020.

USENIX Association 20th USENIX Conference on File and Storage Technologies    379





Practicably Boosting the Processing Performance of BFS-like Algorithms
on Semi-External Graph System via I/O-Efficient Graph Ordering

Tsun-Yu Yang, Yuhong Liang, and Ming-Chang Yang
The Chinese University of Hong Kong

Abstract
As graphs continue to grow to have billions of vertices and

edges, the attention of graph processing is shifted from in-
memory graph system to external graph system. Of the two the
latter offers a cost-effective option for processing large-scale
graphs on a single machine by holding the enormous graph
data in both memory and storage. Although modern external
graph systems embrace many advanced I/O optimization tech-
niques and can perform well in general, graph algorithms that
build upon Breadth-First Search (BFS) (a.k.a. BFS-like algo-
rithms) still commonly suffer poor processing performance.
The key reason is that the recursive vertex traversal nature of
BFS may lead to poor I/O efficiency in loading the required
graph data from storage for processing.

Thus, this paper presents I/O-Efficient Graph Ordering
(IOE-Order) to pre-process the graph data, while better I/O
efficiency in loading storage-resident graph data can be de-
livered at runtime to boost the processing performance of
BFS-like algorithms. Particularly, IOE-Order comprises two
major pre-processing steps. The first is Breadth-First Degree-
Second (BFDS) Ordering, which exploits both graph traver-
sal pattern and degree information to store the vertices and
edges which are most likely to be accessed together for I/O
efficiency improvement. The second is Out-Degree Binning,
which splits the BFDS-ordered graph into multiple sorted bins
based on out-degrees of vertices so as to 1) further increase
I/O-efficiency for runtime graph processing and 2) deliver
high flexibility in pre-caching vertices based on the memory
availability. In contrast to the state-of-the-art pre-processing
techniques for BFS-like algorithms, IOE-Order demonstrates
better efficiency and practicability: It delivers higher process-
ing performance by achieving higher I/O efficiency but entails
much lower pre-processing overhead.

1 Introduction

Breadth-First Search (BFS) is the foundation of many popular
and important graph algorithms (a.k.a. BFS-like algorithms)
that share a common feature called recursive graph traver-

sal. That is, given a starting set of vertices, their adjacent
vertices (i.e., neighbors) will be explored recursively until all
the connected vertices are visited. Due to this feature of ex-
ploration, BFS-like algorithms are useful in various domains,
such as networking [13], bioinformatics [20, 32], social me-
dia [8, 23, 51], and others [24, 31, 38]. In addition, based on
the survey [42], BFS-like algorithms are popular. Particularly,
among 13 typical graph algorithms, Connected-Component
is most widely used, and Shortest-Path and Betweenness-
Centrality are also within the top five: They are all BFS-like.
Moreover, the BFS-like recursive graph traversal also plays a
critical role in many important graph mining algorithms such
as Subgraph Searching and Pruning [26, 36].

However, BFS-like algorithms generally have poor locality
of access. Specifically, compared with other graph algorithms
such as PageRank [18,39] and Sparse Matrix-Vector Multipli-
cation [29] where all vertices are regularly visited, BFS-like
algorithms only visit a subset of vertices at any given time.
More seriously, it is very challenging to predict how the ver-
tices are going to be visited given the fact that the BFS can
start with any vertex. As a result, even till today, how to effi-
ciently process graphs using BFS-like algorithms continues
drawing a lot of attention in both academia and industry.

On the other hand, as graphs continue to grow and can-
not fit in the memory of a machine, people start to leverage
the massive storage to keep the enormous graph data for
graph processing at low cost. Among several feasible solu-
tions (which will be presented in Section 2.1 in details), the
semi-external graph system is a popular option that demon-
strates its capability of efficiently processing the large-scale
graph in a single machine [53]. Due to the complex relation-
ships (i.e., edges) among entities (i.e., vertices) in real-world
graphs, the number of edges is typically significantly larger
than that of vertices [53]. Thus, semi-external graph systems
propose to keep the large-sized edge data in the massive stor-
age for holding a large-scale graph at low cost, but maintain
the small-sized vertex data in the faster memory for offering
better performance of graph processing (that typically gen-
erates lots of small and random updates to the attributes of
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vertices). Fortunately, since the memory space in commodity
PCs nowadays is generally large enough to hold the vertices
of most of large-scale graphs [2], semi-external graph sys-
tem is regarded as a cost-effective model in graph processing
and several excellent semi-external graph systems have been
developed [25, 29, 44, 53].

To further improve the performance of loading edges from
the slower storage, various effective I/O optimization tech-
niques have been suggested and integrated in modern semi-
external graph systems (which will be introduced in Sec-
tion 2.1 in detail). However, these general techniques could
only bring limited improvement to BFS-like algorithms due
to the lack of consideration of the BFS’s recursive graph
traversal nature. Thus, Lee et al. try to tackle the poor per-
formance issue of BFS-like algorithms via pre-processing
optimizations of ordering and pre-caching. Specifically, or-
dering is a technique to re-order the graph to improve the
locality of access, whereas pre-caching is to pre-load the data
in memory which will not be changed during the entire execu-
tion (see Section 2.2 for details). Nevertheless, based on our
evaluations, their designs for BFS-like algorithms still leave
a substantial room for improvement due to the limited I/O
efficiency; furthermore, they may even suffer the critical issue
of limited practicability for spending considerable time on
pre-processing compared to the improvement that they bring
(see Section 2.3 for details).

To boost the processing performance of BFS while deliver
high practicability, this paper proposes I/O-Efficient Graph
Ordering (IOE-Order), which comprises two steps to pre-
process the graph, while better I/O efficiency in loading edge
data can be achieved during graph processing. The first step is
called Breadth-First Degree-Second (BFDS) Ordering. Specif-
ically, BFDS not only exploits the graph traversal pattern to
capture the global structure of a graph, but also, based on
the global structure, keeps the neighbors of high in-degree
vertices together so that more I/O requests with high I/O effi-
ciency can be issued during graph processing.

The second step is Out-Degree (OutD) Binning. Under
BFDS-ordered graph, OutD Binning further splits the edge
data into multiple bins based on the sizes of edge lists (i.e.,
out-degrees of vertices). Additionally, all the bins are sorted
and stored sequentially on the graph according to their average
out-degrees. In this way, the vertices of small out-degree can
be physically separated and then efficiently pre-cached, while
loading data from the rest of bins could enjoy much higher
I/O efficiency. Furthermore, the design of multiple bins in the
graph provides high flexibility. That is, semi-external graph
systems can easily pre-cache edge data starting from the bin
with the smallest average out-degree based on the different
amounts of memory in various machines.

We implement IOE-Order in C++ and evaluate its effec-
tiveness on Graphene [29], which is an open-sourced, state-
of-the-art semi-external graph system. In particular, we en-
rich Graphene to support pre-caching. Our evaluations based

on billion-scale graphs reveal that, compared with the inte-
grated solution of state-of-the-art pre-processing optimiza-
tions [28], IOE-Order delivers better efficiency and practi-
cability. In terms of efficiency, IOE-Order can improve the
processing time of various BFS-like algorithms by 18.8%
on average and even up to 36.1%, thanks to its efficacy in
increasing/optimizing I/O efficiency from 70.9% to 82.1%
on average and even up to 98.8%. As for the practicability,
IOE-Order entails much lower (i.e., 815.2× lower) online
pre-processing overhead by enabling a flexible and efficient
way to pre-cache edges with a holistic graph ordering.

The rest of this paper is organized as follows: Section 2
presents the background and motivation regarding this work.
Section 3 introduces the main design of I/O-Efficient Graph
Ordering. Next, Section 4 demonstrates the evaluation results.
Finally, Section 5 discusses the related work and Section 6
concludes this work.

2 Background and Motivation
2.1 Semi-External Graph Processing

A graph generally comprises two sets of data: vertex data that
consist of a set of vertices along with vertex attributes and
edge data that describe the set of edges linking two vertices
along with edge properties. That is, an edge describes the
neighboring relationship of two connected vertices, and for
an edge e = (u,v) in a directed graph, v is referred to as the
out-neighbor of u while u is referred to as the in-neighbor
of v. The terms out-degree and in-degree further indicate the
number of out-neighbors and in-neighbors for a given vertex
respectively. In practice, in the vertex data, each vertex is as-
signed with a distinct value, called vertex ID, for identification
purpose. Edge data, on the other hand, represent all the edges
in the form of edge list that enumerates the neighbors’ vertex
IDs for a specific vertex, and all the edge lists are further
sorted by vertex IDs. Thus, the edge list of a given vertex in
the edge data can be easily indexed by the vertex ID.

As depicted in Figure 1(a), the semi-external graph system
is introduced to cost-effectively process the graph data by 1)
keeping the small-sized but frequently-updated vertex data in
the faster memory while 2) storing the large-sized but mostly-
read-only edge data in the cheaper storage. Particularly, in
modern semi-external graph systems [25,29,44,53], a vertex’s
attribute and file offset to its edge list are maintained in mem-
ory, and the entire edge data are stored in storage as file(s).
On the other hand, the modern semi-external graph systems
usually support the push-style, vertex-centric programming
model [33] because of its ability to express a lot of graph
algorithms and its ease for distributed and parallelized execu-
tion [21]. Under such programming model, graph algorithms
are designed to iteratively specify and activate a subset of
vertices (a.k.a. active vertices) that need to be processed in
the following iteration. Thus, the modern semi-external graph
systems typically provide the API to load all the edge lists of
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(a) Typical System Architecture of Semi-External Graph System.

(b) Graph Processing Flow with Ordering and Pre-Caching.

Figure 1: An Overview of Semi-External Graph System.

active vertices from the edge data, so that graph algorithms
can, based on the loaded edge data, efficiently update the
vertex attributes in memory and generate a new set of active
vertices for the next iteration of processing.

As presented in Figure 1(a) as well, to further improve the
efficiency of loading edge data from storage, from bottom
to top, modern semi-external graph systems also introduce
several general I/O optimization techniques as follows:

I/O Merging. Solid-state drives (SSDs), which are adopted
in most state-of-the-art semi-external graph systems, deliver
better I/O throughput under I/O requests of larger sizes [29,
53]. Therefore, when the I/O requests are issued to retrieve
the blocks in SSD, several small requests are typically merged
into a large request for higher I/O throughput [29, 53]. This
technique is called I/O merging. Taking FlashGraph [53] as
an example, it merges 4KB I/O requests to consecutive blocks
if possible, so an I/O request actually issued by FlashGraph
could typically range from 4 KB up to many MBs. By contrast,
Graphene [29] issues 512 B I/Os and aggressively merges
them to close (but not necessary to be consecutive) blocks and
forms a larger I/O request (up to 16 KB) and submits a great
amount of asynchronous I/Os to saturate I/O throughput.

I/O Cache. After the completion of I/O requests, the loaded
edge lists are typically kept in the I/O cache, which is a small
amount of user-space memory managed by the semi-external
graph system, and wait for being processed. Different sys-
tems usually have their strategies to manage the I/O cache.
For instance, FlashGraph [53] adopts traditional page cache
management strategy (i.e., g-clock algorithm) to evict the less-

frequently-accessed data from the I/O cache. On the other
hand, since Graphene [29] issues fine-grained 512 B I/Os,
it directly discards the loaded edge lists, instead of keeping
them for future use, in I/O cache after being processed to
better utilize I/O cache.

Overlapping I/O with Computation. The mainstream
semi-external graph systems typically overlap I/O with
computation to have a significant improvement in perfor-
mance. To realize this functionality, asynchronous I/O is
one key technique since it can allow a thread to do the
computation while there are several ongoing I/Os in the
background [53]. Another key technique is to leverage the
multi-thread programming that enables the separation of
computation jobs and I/O jobs in different threads so that
both type of jobs can be done parallelly [29].

2.2 Pre-processing for BFS-like Algorithms
Although modern semi-external graph systems integrate sev-
eral general I/O optimization techniques, BFS-like algorithms
are still notorious for their poor processing performance [28].
The reason is twofold: First, the I/O optimization techniques
introduced in Section 2.1 are for general graph algorithms.
Therefore, their designs do not particularly favor the recur-
sive graph traversal nature of BFS. Second, real-world graphs
usually have irregular structure and follow power-law distribu-
tion [16]. In other words, the edge lists of a vertex’s neighbors
tend to be scattered across the edge data, and their actual sizes
are much smaller than the block granularity of I/O requests.

To alleviate the poor processing performance of BFS-like
algorithms on semi-external graph system, Lee et al. look
for the opportunity of pre-processing the graph data [28]. As
shown in Figure 1(b), before processing the graph by BFS-
like graph algorithms, they propose to first pre-process the
graph by two stages: ordering and pre-caching.

Ordering. In general, ordering is a common technique to
convert a graph into a new one by re-assigning vertex IDs
and re-ordering the edge lists in the edge data based on the
newly assigned vertex IDs [28]. Due to this nature, typically,
ordering only needs to be applied once per graph and can
be done by using a powerful server. Thus, we refer to the
ordering stage as offline pre-processing.

In contrast to the existing ordering techniques that are
mainly designed for in-memory graph systems [33,37], Lee et
al. introduce Neighborhood Ordering (Norder) [28] to achieve
better access locality for semi-external graph systems. Its
objective is to assign neighboring vertices with close ver-
tices IDs so that the edge lists of neighboring vertices can be
thereby stored closely in the edge data for the reduction of I/O
cost. In practice, Norder minimizes the standard deviation of
the neighboring vertex IDs by performing the BFS with depth
level bound [28] starting from the highest in-degree vertex.
The depth level is bounded to two because they empirically
found it to be effective for overall performance.
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Pre-caching. Static cache is a common technique, which
can be found in many system designs [15, 30, 47], to reduce
the number of issued I/Os. Unlike traditional cache which
replaces data upon cache miss, the data in static cache are
pre-loaded and will not be evicted during the whole execution.

Lee et al. utilize the static cache to selectively pre-cache
some edge data before processing the graph [28]. Since a
graph is usually analyzed many times (i.e., number k in Fig-
ure 1(b)) for obtaining various information [52], the pre-
cached data can benefit the graph processing for multiple
rounds until all the graph workloads are completed. Please
note that, since the edge data must be adaptively pre-cached
based on the static cache size and graph workloads at runtime,
the pre-caching stage needs to be re-performed whenever the
available memory space for static cache changes or a new
set of graph workloads launches. Thus, we refer to the pre-
caching stage as online pre-processing.

As illustrated in Figure 1(b), the pre-caching stage can
be further divided into two steps: vertex selection and edge
loading. Particularly, the step of vertex selection has a direct
impact on how I/Os can be reduced, since this step determines
which edge data concerned with the selected vertices are going
to be pre-cached (from the storage) during the step of edge
loading. Thus, to reduce small and random I/Os during graph
processing, Lee et al. propose Greedy Vertex Selection (GVS)
to pick out the vertices whose edge lists are not stored in the
same I/O block as their siblings (i.e., vertices sharing the same
in-neighbor) [28].

2.3 Motivation: I/O Efficiency of BFS-like Al-
gorithms

Despite the fact that Norder and GVS indeed achieve notice-
able performance improvement for BFS-like algorithms, the
question of how close we are from the optimal processing
performance still remains. Thus, this section will answer this
question, through a series of theoretical modelling and practi-
cal evaluations, from a new perspective: I/O efficiency.

Since BFS-like algorithms generally show higher de-
mands for I/O than computation [29] and modern semi-
external graph systems typically overlap the I/O with compu-
tation [29, 53], the I/O performance basically dominates the
overall processing performance of BFS-like algorithms. Thus,
the processing performance (denoted as Proc. Perf.) of BFS-
like algorithm on a semi-external graph system can be first
expressed as Equation 1: That is, the processing performance
is proportional to the number of bytes actually processed by
the BFS-like algorithm (denoted as Proc. Bytes) but is in
inverse propotation to the total time spent on I/O (denoted
as denotes the number of bytes actually processed by the
BFS-like algorithm and I/O Time).

Proc. Perf. ∝
Proc. Bytes

I/O Time
=

Trans. Bytes
I/O Time

× Proc. Bytes
Trans. Bytes

(1)

Where:
I/O Throughput =

Trans. Bytes
I/O Time

, (2)

I/O Efficiency =
Proc. Bytes
Trans. Bytes

. (3)

If we introduce the total number of transferred bytes (denoted
as Trans. Bytes) into Equation 1, the processing performance
can be further expressed into the product of two critical com-
ponents: I/O throughput and I/O efficiency. As expressed in
Equations 2 and Equation 3, I/O throughput represents the to-
tal number of transferred bytes (Trans. Bytes) within the total
time spent on I/O (I/O Time), while I/O efficiency indicates
the ratio of the total number of processed bytes (Proc. Bytes)
to the total number of transferred bytes (Trans. Bytes).

From Equation 1, we can learn that the key to optimize
processing performance is by simultaneously maintaining
high I/O throughput and high I/O efficiency. However, in
practice, there usually exists a trade-off between them. Taking
Graphene [29] as an example, on one hand, it proposes to
exploit fine-grained I/O granularity to avoid low I/O efficiency,
but on the other hand, leverages I/O merging to achieve high
I/O throughput. Thus, to see how the I/O merging affects the
overall processing performance of BFS-like algorithms in
practice, Figure 2(a) presents the results of performing a BFS
algorithm on Graphene [29] using the large-scale uk2007
graph [48], which comprises nearly four billions of edges.
In this figure, the x-axis indicates whether the I/O merging
is enabled and the ordering algorithm used to re-order the
evaluated graph, while the y-axis demonstrates the overall
processing performance (in terms of the total processing time)
and the I/O efficiency. It can be clearly observed that although
the I/O merging can effectively reduce the total processing
time by 43%, it also degrades the I/O efficiency by 12.4%
when the evaluated graph is randomly re-ordered (denoted as
Rand-Order).

(a) I/O Merging and Ordering. (b) Norder and GVS (with I/O Merging).

Figure 2: A Series of Evaluations of Running BFS Algorithm
on Graphene [29] with uk2007 Graph [48].

Figure 2(a) also reveals how the state-of-the-art Norder
algorithm helps to improve the I/O efficiency with the I/O
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merging enabled. Particularly, we can clearly observe that
Norder indeed shows its efficacy to further reduce the total
processing time by 69.7% against Rand-Order. Nevertheless,
the actual I/O efficiency under Norder is still quite low, which
is only 41.9%; that is, almost 60% of the bytes are loaded but
useless over all the transferred bytes.

To further understand whether the state-of-the-art GVS can
help improving the I/O efficiency, we vary the static cache size
to be 0% (i.e., no static cache), 10%, ..., to 40% of the edge
data size in uk2007 graph [48] and have the graph re-ordered
by Norder. As shown in Figure 2(b), as the static cache size
keeps increasing, GVS can not only keep decreasing the total
processing time but also have the potential to improve the I/O
efficiency. This is because GVS aims to reduce the number
of small and random I/Os during graph processing. In other
words, when more edge data are pre-cached by GVS in a
static cache of larger sizes, more small and random I/Os to
the pre-cached edge data can be completed in the faster static
cache for preventing incurring I/Os with low I/O efficiency.
Nevertheless, such improvement comes at a huge cost and
demand for the static cache size. As shown in Figure 2(b),
only when the static cache size is up to 40% of the evaluated
edge data size, a nearly 75% (specifically, 73.1%) of the I/O
efficiency can be achieved eventually. This not only exposes
the ineffectiveness of GVS in utilizing the static cache, but
even makes semi-external graph system still costly to process
BFS-like algorithms on large-scale graphs.

Table 1: Pre-processing Time of Norder and GVS (seconds).
Static Cache Ordering Vertex Selection Edge Loading

Size (Norder) (GVS) (based on GVS)

10%

51.7

2,914.7 16.3
20% 4,708.3 17.6
30% 6,061.0 18.7
40% 7,053.4 19.6

There is even one more thing that may further limit the
practicability of the existing the pre-processing techniques,
particularly GVS, if the pre-processing overhead is consid-
ered. Table 1 shows the pre-processing time of Norder, GVS,
and the edge loading time based on GVS. It can be clearly
observed that, although the pre-processing time of Norder is
about 51.7 seconds, the ordering stage is actually an offline
preprocessing optimization which only introduces an one-shot
overhead. By contrast, GVS, which is online pre-processing
optimization, requires up to 7,053 seconds (which is almost
67.17× of the total processing time of BFS) when the static
cache size is as large as 40% of the edge data. Given the fact
that GVS needs to be re-performed whenever the size of static
cache changes or a new set of graph workloads launches, such
high time complexity may make GVS fail to reduce the end-
to-end graph processing time especially when the number of
workloads (i.e., number k in Figure 1(b)) is not large enough
to amortize the huge overhead of GVS.

3 I/O-Efficient Graph Ordering

3.1 Overview

Based on the investigations presented in Section 2.3, we re-
alize that optimizing the I/O efficiency of loading storage-
resident edge data is crucial to boost the processing perfor-
mance of BFS-like algorithms on semi-external graph sys-
tem. Thus, this section introduces a new I/O-Efficient Graph
Ordering that not only enables higher I/O efficiency for bet-
ter processing performance by pre-processing the graph but
also demonstrates great practicability by entailing low pre-
processing overhead.

As shown in Figure 3, the proposed IOE-Order consists of
two major steps to re-order the graph. The first step is Breadth-
First Degree Second (BFDS) Ordering (see Section 3.2) that
exploits both graph traversal pattern and in-degrees of vertices
to re-assign the vertex IDs such that the edge lists of vertices,
which are most likely to be together traversed by BFS-like al-
gorithms, can be thereby closely stored in the edge data. This
step can guarantee that higher I/O efficiency in loading the
edge data involved in graph traversals can be achieved, even
when the I/O merging is also enabled for high I/O throughput.

Figure 3: An Overview of I/O-Efficient Graph Ordering.

The second step, Out-Degree (OutD) Binning (see Sec-
tion 3.3), is then introduced to split the BFDS-ordered graph
into multiple bins based on the sizes of edge lists (out-degree),
while edge lists within each bin are still sorted based on the
BFDS-suggested order. Moreover, all these bins are sorted
and stored sequentially on the edge data based on the their
average out-degrees in descending order to form the final
graph ordering. This step ensures that the small edge lists
can be physically separated and then pre-cached, so that the
I/O efficiency of loading those bins of large edge lists can be
thereby improved.

Last but not the least, as illustrated in Figure 3, the final
BFDS-ordered and OutD-binned graph also suggests a flexi-
ble and efficient way to utilize the static cache. Particularly,
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we can easily and sequentially load the edge lists of bin(s) in
the reverse order based on the available size of static cache.
In other words, the final graph is a holistic graph ordering
which cleverly embeds the suggestion of vertex selection to
completely eliminate the online pre-processing overhead of
selecting vertices for pre-caching edges.

3.2 Breadth-First Degree-Second Ordering
3.2.1 Design Concept

The state-of-the-art ordering (i.e., Norder [28]) for BFS-like
algorithms mainly relies on the intuition that the neighboring
vertices will be typically traversed together. This intuition, al-
though it is generally correct, it may overlook the importance
of graph traversal nature of BFS. Particularly, in contrast to
the neighboring information which could only provide the lo-
cal information regarding vertices, the graph traversal pattern
can offer the global and structural view about the whole graph
and imply that which vertices may have higher probabilities
to be traversed earlier/late than others.

To examine how the graph traversal pattern can help with
the improvement in I/O efficiency, let us consider a typical
BFS starting with a given vertex v∗. Suppose that the graph
is “coincidentally” re-ordered according to the BFS traversal
pattern starting with v∗, the I/O efficiency in performing the
BFS (starting with the vertex v∗) can theoretically reach the
optimal (i.e., 100%). In such case, the I/O accesses to the
storage-resident edge data will be like sequentially sliding
over the storage space from the smallest vertex ID to the
largest vertex ID.

However, the optimal ordering might not always be the
case in practice, because BFS can start with any vertex. For-
tunately, we observe that graph traversal pattern, along with
the in-degree information of vertices, can provide us the fol-
lowing probabilistic hints about how vertices are going to be
traversed earlier/late than others. First, high in-degree ver-
tices have higher possibility to be visited earlier than low
in-degree ones. Second, during graph traversal, the vertices
which are recursively connected to high in-degree vertices
are also likely to be traversed earlier. Thus, not only the high
in-degree vertices but also the vertices recusively connected
to high in-degree vertices shall be best stored with their re-
spective neighbors closely in storage for delivering higher I/O
efficiency.

Based on the above insights, we introduce the Breadth-First
Degree-Second (BFDS) Ordering that performs the graph
traversal with the consideration of the in-degree information
of vertices to order a graph. Particularly, BFDS performs
the graph traversal, starting with the highest in-degree vertex
(which demonstrates the highest probability of being traversed
earlier) but iteratively traverses the out-neighbors based on
their in-degrees. In contrast to the conventional BFS, BFDS
further sorts the active vertices in an iteration according to
their in-degrees in descending order so that the out-neighbors

of the “sorted” active vertices are assigned with consecutive
vertex IDs in order. In a nutshell, BFDS not only orders the
vertices based on the graph traversal pattern (i.e., “Breadth-
First”) but further gives higher priority to keep the neighbors
of high in-degree vertices together (i.e., “Degree-Second”).
Consequently, BFDS maximally keeps vertices which are
likely to be traversed together, making the I/Os issued by
BFS-like algorithms enjoy higher I/O efficiency.

3.2.2 Design Details

Algorithm 1 shows the proposed BFDS ordering. Lines 1-3
are for the initialization of BFDS. Specifically, Line 1 finds
out the maximum in-degree vertex, and push it to be starting
vertex in Line 2. Line 3 is the new re-assigned vertex ID.

Algorithm 1 Breadth-First Degree-Second Ordering
Input: Graph G = (V,E);
Output: Mapping function Map

1: Find out vmaxin to be the max in-degree vertex
2: Active←{vmaxin}
3: NewID← 0
4: while Active is not empty do
5: Sort Active based on in-degree in descending order
6: for v ∈ Active do
7: for u ∈ v.neighbors & u is not visited do
8: NextActive← u
9: Map.add(u,NewID)

10: NewID← NewID+1
11: end for
12: end for
13: Active← NextActive
14: end while
15: Assign the rest of unvisited vertices new IDs

Lines 4-14 are the core function of BFDS. To begin with,
Line 5 will sort all the active vertices (denoted as Active) based
on their in-degree in descending order. Line 6 iterates all the
vertices from the highest in-degree one and tries to assign
consecutive IDs to its un-visited neighbors from Lines 7-11.
Particularly, if a neighboring vertex is not assigned to a new
ID yet, it gets a new ID and becomes the active vertex of next
iteration (denoted as NextActive) in Line 8. Finally, the while
loop will end if Active is empty. Nevertheless, several isolated
vertices that cannot be reached by the graph traversal are still
not assigned with new IDs. As a result, Line 15 will assign
the rest of unvisited vertices with new IDs.

As we can see, the time complexity of BFDS ordering is
O(|E|+ |V |) combined with the overhead incurred by Line 5.
Suppose the total iteration is n and there are Vi active vertices
in iteration i, The total number of visited vertices is ∑

n
i=1 Vi ≤

V . The time incurred by Line 5 shows in the following.

n

∑
i=1

Vi logVi <
n

∑
i=1

Vi logV ≤V logV
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Therefore, the time complexity of BFDS is O(|E|+ |V |+
|V | log |V |). On the other hand, the time complexity of
Norder [28] is roughly O(|E|+ |V |), which is slightly faster
than BFDS. Nevertheless, BFDS shows significant improve-
ment in performance against Norder in Section 4. Further-
more, ordering only needs to be done once per graph and can
be completed in offline [50]. We believe BFDS is an effective
ordering overall in practice.

3.3 Out-Degree Binning

3.3.1 Design Concept

Although BFDS improves the I/O efficiency of BFS-like algo-
rithms, it is still hard to reach the optimum due to the irregular
structure of real-world graphs. To further optimize I/O effi-
ciency while offering the efficient pre-caching, we propose a
simple yet effective design, namely Out-Degree (OutD) Bin-
ning, to refine the BFDS-ordered graph. Its key idea is to
isolate those edge lists, which might be harder to be properly
re-ordered by the BFDS Ordering and could be the root cause
of lower I/O efficiency; however, the BFDS-suggested order-
ing is still maximally preserved within each bin to have high
I/O efficiency of loading the rest of edge lists.

Our intuition, in practice, is that the I/O efficiency of load-
ing a vertex’s edge list might relate to its number of out-
neighbors (out-degree), since the out-neighbors of an active
vertex will typically be processed by BFS-like algorithms at a
time, which thereby leads to larger number of processed bytes
(i.e., numerator) in Equation 3. By contrast, as the issued I/O
size is generally large for achieving higher bandwidth, load-
ing smaller number of out-neighbors of an active vertex from
storage may most likely result in lower I/O efficiency.

With such intuition in mind, Figure 4 illustrates why and
how OutD Binning avoids low I/O efficiency. Particularly,
we consider a simple scenario that the BFDS-ordered graph
is split into two bins: Large-OutD bin (for containing larger
edge lists such as EL0 and EL1) and Small-OutD bin (for
containing smaller edge lists such as ES0 and ES1), and the
edge lists of Small-OutD bin are pre-cached in the static
cache. In contrast to the existing GVS which may just simply
pre-cache ES0 and ES1 into the static cache (without binning
them), the potential benefits of OutD Binning are twofold:
First, since ES0 and ES1 are already pre-cached in the static
cache, when loading the block containing EL0 , OutD Binning
effectively avoids the redundancy in loading ES0 ; instead,
EL1 can be actively loaded with EL0 to achieve higher I/O
efficiency, since EL0 and EL1 are supposed to be traversed
together based on the BFDS ordering. Second, OutD Binning
enables a more efficient pre-caching process. That is, rather
than executing time-consuming vertex selection and loading
the edge lists randomly and inefficiently (as the existing GVS
does), OutD Binning suggests that the pre-caching process
can be efficiently performed by sequentially loading the edge

lists from the Small-OutD bin. Moreover, it will be more
beneficial to pre-cache the edge lists from the Small-OutD
bin than that from the Large-OutD bin. This is because a
larger number of vertices can be pre-cached in the same size
of static cache, and each vertex is typically visited the same
number of times by BFS-like algorithms.

Figure 4: The Benefits of OutD-Binning.

3.3.2 Design Details

To make this design concept more practical, this section ex-
tends OutD Binning to split the BFDS-ordered graph into
multiple bins. Furthermore, all bins are sorted and stored se-
quentially on the graph based on their average out-degrees
in descending order. Thus, static cache can simply pre-cache
the edge lists starting from the bin of the smallest average
out-degree based on the available memory, making the pre-
caching stage easy and efficient.

Nevertheless, bin size is important for overall performance.
If the bin size is too small, the structure of BFDS-ordered
graph could be destroyed, making the ordering less effective.
If the bin size is much larger than the size of static cache, we
could fail to pre-cache the critical edge lists, making static
cache less effective. Thus, we propose to configure the bin
sizes following the exponential decay of edge data size (as
illustrated in Figure 5) since they are appropriate for large-
scale graphs and perform well with or without static cache
as shown in Section 4.2. Furthermore, we suggest to set the
smallest bin to a size that is affordable by most of the com-
puters (e.g., less than 2 GB) so that the whole smallest bin
can be entirely pre-cached and the total number of bins could
vary for graphs with different sizes.

Figure 5: Layout of Exponential Decay Bin Sizes.

To order a graph with OutD Binning, we first sort all the
vertices in ascending order based on their out-degrees so as
to easily identify the small vertices. Next, starting from the
smallest size of bin, we create bin by marking the vertices
into the current bin. If the current bin is full, we will re-assign
the vertex IDs based on the ordering of BFDS-optimized
graph. This process keeps doing until all the bins are created.
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Therefore, the time complexity of OutD Binning is O(|V | ·
log|V |+ |V |+N · |V |), where N is the total number of bins.

Besides the good performance, the advantage of utilizing
the OutD Binning is two-fold. First, the graph optimized
by OutD Binning provides high flexibility. That is, by pro-
viding multiple bins which demonstrate different I/O effi-
ciency, OutD Binning embeds the results of vertex selection
in graph; therefore, users can still easily pre-cache again with-
out re-running OutD Binning because selection information
preserves in the graph. On the contrary, GVS requires re-
computation every time if the size of static cache changes or
new set of graph workloads launches [28].

Second, OutD Binning enables efficient pre-caching. Par-
ticularly, OutD Binning stored the small edge lists together
using bins. Thus, users can easily and efficiently pre-cache
the edge lists based on the available memory in static cache.
By contrast, GVS requires high complexity to select vertices
in the pre-caching stage. The time complexity of GVS is
O(|E|+ |V |+

√
K ·M+M · log|V |), where the M is the static

cache size and K is the parameter which is usually set to
be hundreds or thousands [28]. Such time-consuming pre-
processing might fail to reduce the end-to-end graph process-
ing time especially when users do not have many workloads
to amortize the huge overhead of GVS.

4 Evaluations

4.1 Evaluational Setup

This section conducts a series of evaluations to demonstrate
the effectiveness of IOE-Order on Graphene. There are gener-
ally six classic BFS-like algorithms in the field [28], which
are Breadth-First Search (BFS) [35], Single-Source Short-
est Paths (SSSP) [19], All-Pair Shortest Path (APSP) [45],
Weakly Connected Components (WCC) [19], Diameter Mea-
surement (DIAM) [12], and Betweenness Centrality (BC) [7].
Nevertheless, some of them are similar to each others. For
example, SSSP is implemented based on BFS, and DIAM con-
sists of multiple rounds of BFS; besides, both of APSP and
BC require the shortest paths from all vertices. Therefore, in-
stead of evaluating all these six classical BFS-like algorithms,
we only select BFS, APSP, and WCC, which demonstrate
different behaviors of graph traversal. Details of the chosen
algorithms are illustrated in the following:

Breadth-First Search (BFS) [35] is a typical algorithm for
graph traversal. BFS begins with a user-input vertex and visits
its neighbors by marking them to be the active vertices of
next iteration. A visited vertex will not be visited again in the
future. This procedure keeps going recursively until there is
no more active vertex.

All-Pair Shortest Path (APSP) [45] computes the shortest
paths from all the vertices in the graph. Due to the high com-
plexity of computing SSSP from all vertices, an approximate

approach is to randomly sample 32 source vertices, and calcu-
late the distance by performing multi-source traversals from
the sampled vertices.

Weakly Connected Components (WCC) [19] finds out the
subgraphs that the vertices are all connected to each other.
One way to implement WCC is to use BFS to detect the
largest WCC first, and then explore the rest of smaller WCCs
by exploiting label propagation.

We implement IOE-Order in C++ and evaluate its effective-
ness using Graphene [29]. Notably, to the best of our knowl-
edge, although there are several open-sourced, semi-external
systems [25, 29, 53], Graphene [29] is the most state-of-the-
art one that integrates multiple techniques for optimizing the
graph processing on SSD; according to its paper [29], it per-
forms the best against other existing semi-external systems
(and even approaches the performance of in-memory systems
such as Ligra [46] and Galois [37]). However, IOE-Order can
be easily applied to other semi-external systems to further
improve the performance of running BFS-like algorithms.
Moreover, in contrast to the other systems [25, 53], it tackles
the low I/O efficiency problem by leveraging 512-byte fine-
grained I/O to read only the necessary data. Based on their
designs, our method can further boost the processing perfor-
mance of BFS-like algorithms by improving the I/O efficiency.
Nevertheless, since Graphene does not support static cache,
we realize the static cache as shown in Figure 1(a), where the
static cache is implemented to be a separate memory space in
addition to I/O cache.

To have a thorough comparison, we compare IOE-Order
against the other three orderings incorporated with two vertex
selection algorithms. In addition to Norder [28], we also add
Rand-Order to be the baseline and In-degree Order (denoted
as InD-Order), which re-assigns vertex IDs starting from the
highest in-degree vertex. On the other hand, in addition to
GVS [28], the other vertex selection algorithm is Out-Degree
(denoted as OutD), which selects the vertices with small out-
degree to keep as many edge lists in the static cache as possi-
ble. Because of the complexity to show many combinations
of different designs, we use the notation Norder+GVS to rep-
resent the graph is ordered by Norder and the vertices are
selected by GVS. By contrast, since the proposed method is a
holistic optimization, we simply use IOE-Order to represent.

To show the accurate result, we run each graph algorithm
five times and demonstrate the average result. However, BFS,
in contrast to the other two algorithms, requires the user to
input starting vertex. Thus, we randomly sample 32 starting
vertices for BFS and report the average execution time. Ta-
ble 2 lists all the graphs used for evaluation in this work. All of
them are billion-scale, real-world graphs from webgraph [5,6].
Particularly, uk2007 [48] and gsh2015 [10] are web crawler
graphs, while Twitter [11] is social graph. The largest graph in
our experiment is gsh2015 [10], which contains 988 millions
of vertices and 33.88 billions of edges.

All the experiments are conducted on HPE ProLiant DL560
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Table 2: The Evaluated Graph Datasets.
Graph Name Number of Vertices Number of Edges

Twitter 42 M 1.4 B
uk2007 108 M 3.93 B
gsh2015 988 M 33.88 B

Gen10 server with Intel Xeon Platinum 8160 CPU and 1 TB
DDR4-2666 memory on Debian GNU/Linux 9, and the stor-
age device is Samsung SSD 860 EVO 1TB with SATA proto-
col. Please note that the actual memory used by Graphene is
configured to be related to the size of edge data. Particularly,
we fix the size of I/O cache to be 5% of the edge data, and
vary the sizes of static cache to show the different results
under various memory resources.

4.2 Evaluation of IOE-Order
We compare IOE-Order against all state-of-the-art optimiza-
tions. Figure 6 shows the overall comparison. Specifically,
Figures 6(a), 6(c), and 6(b) depict the processing time
of running BFS, APSP, and WCC, respectively, while Fig-
ures 6(d), 6(f), and 6(e) show the I/O efficiency of running the
three algorithms in the same order. In each sub-figure, y-axis
denotes the processing time or I/O efficiency and x-axis de-
notes the size of static cache, which ranges from 0% to 40%
to the edge data size. Please note that 0% static cache means
that there is no static cache but only I/O cache in Graphene.
Since the loaded edge lists in static cache could be used for
many times to amortize the pre-caching overhead, the results
presented in Figure 6 skip the time spending on pre-caching
stage, which will be discussed in detail in Section 4.3.

Overall speaking, ordering (0% static cache) has significant
impact on performance. Not surprisingly, Rand-Order demon-
strates the worst performance, while InD-Order averagely
improves from Rand-Order by 43.6%. Norder, which is the
state-of-the-art ordering optimization for BFS-like algorithms,
performs better than InD-Order by 30.8%. IOE-Order further
outperforms Norder by 16.5% and improve the I/O efficiency
from 59.4% to 72.4% on average. Such improvement is due
to BFDS ordering, which not only exploits high in-degree
information but also traversal pattern to further effectively
optimize the I/O efficiency.

Furthermore, we can generally observe the trend that or-
dering almost dominates the overall performance. That is, for
most cases, given the same size of static cache, a better order-
ing will win no matter GVS or OutD is used. Nevertheless,
GVS still outperforms OutD if the same ordering is adopted.
Take Norder as an example, Norder+GVS averagely improves
Norder+OutD by 10.2% in processing time. On the other hand,
IOE-Order also demonstrates the effectiveness in pre-caching.
Specifically, IOE-Order steadily improves Norder+GVS by
18.4%, 20.7%, 20.0%, and 18.2% regarding processing time
on average as the static cache increases from 10% to 40%.

Since IOE-Order and Norder+GVS are generally the top
two combinations which perform better than the others, we
mainly focus on the comparison of these two in the following.

Details of BFS Evaluation. BFS, which is the foundation for
all BFS-like algorithms, performs well with IOE-Order un-
der all graphs. Averagely, IOE-Order improves 22.3%, 21.7%,
22.0%, 20.7%, and 17.3% against Norder+GVS when the size
of static cache ranges from 0% to 40%. On the other hand,
based on the various sizes of static cache, IOE-Order also
provides the high I/O efficiencies, which averagely improves
from 64.0% to 85.5%. We can see that the performance differ-
ence between IOE-Order and Norder+GVS becomes slightly
smaller as the size of static cache increases. The reason is
that, as more data are pre-cached, the performance gradually
approaches optimum, making the optimization harder.

Details of WCC Evaluation. Generally speaking, in com-
parison with Norder+GVS, the processing time of IOE-Order
improves averagely from 17.8% to 22.8% for various sizes
of static cache. Since WCC can be decoupled into a BFS
starting from a random vertex followed by label propagation,
the results of WCC show a similar trend with BFS. Please
refer to the discussion of BFS for more details.

Details of APSP Evaluation. Different from the other two
algorithms, APSP randomly selects 32 source vertices for
multi-source traversal, which requires more data from stor-
age. Thus, APSP naturally shows higher I/O efficiency than
the other two algorithms. Compared with Norder+GVS, IOE-
Order averagely improves 4.7%, 14.4%, 19.0%, 20.5%, and
19.4% regarding processing time as static cache size ranges
from 0% to 40%. Due to the nature of APSP, the performance
difference between IOE-Order and Norder is small when there
is no static cache. Nevertheless, as the size of static cache in-
creases, GVS brings limited help in improving I/O efficiency
because the I/O block issued by the graph system could con-
tain the data which is already pre-cached in the static cache,
which is likely to happen especially for the application like
APSP requiring more data. Therefore, even if the process-
ing time of Norder+GVS can still improve due to the more
pre-cached data, the improvement of Norder+GVS is smaller
than the improvement of IOE-Order. By contrast, since the
pre-cached data are stored together in IOE-Ordered graph, the
issued I/O blocks during graph processing will not contain
those data, making I/O efficiency higher.

4.3 Overhead of Pre-processing

Table 3 shows the online pre-caching times of all graphs. First
of all, GVS requires extremely long time to select vertices.
For gsh2015 graph, it requires up to 83,131 seconds (which
is around 112.19× of the total processing time of BFS) when
the static cache size is 40% of the edge data. Such high time
complexity might fails to reduce the end-to-end graph pro-
cessing time especially when the number of graph workloads
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(a) Total Processing Time of BFS. (b) Total Processing Time of WCC. (c) Total Processing Time of APSP.

(d) I/O Efficiency of BFS. (e) I/O Efficiency of WCC. (f) I/O Efficiency of APSP.

Figure 6: Overall Comparison among IOE-Order and The Other Methods.

Table 3: Online Pre-processing Time (seconds).
Graph Twitter uk2007 gsh2015

Static Cache Size 10% 20% 30% 40% 10% 20% 30% 40% 10% 20% 30% 40%

Vertex Selection (OutD) 15.6 16.3 16.9 17.3 39.2 41.6 44.8 46.1 355.5 361.7 364.2 366.3
Edge Loading (OutD) 5.6 6.2 6.8 7.0 16.1 17.4 18.7 19.8 169.2 171.4 174.3 179.0

Vertex Selection (GVS) 1,181.5 1,750.3 2,096.9 2,350.3 2,914.7 4,708.3 6,061.0 7,053.4 31,781.2 53,491.6 70,388.6 83,131.4
Edge Loading (GVS) 5.5 5.9 6.4 6.6 16.3 17.6 18.7 19.6 173.2 180.3 185.6 191.4

Vertex Selection (IOE-Order) N/A (embedded in the step of OutD Binning)
Edge Loading (IOE-Order) 1.1 2.1 3.1 4.2 2.8 5.6 8.4 11.2 24.1 47.9 72.0 96.1

is not large enough to amortize the huge overhead of GVS.
On the other hand, OutD demonstrates an efficient way for
pre-caching, which only requires averagely 361.9 seconds
for vertex selection and 173.5 seconds for edge loading for
gsh2015. However, as shown in Section 4.2, OutD is less
effective to benefit the graph processing than GVS. It might
bring limited help when the number of graph workloads is
large. Compared with the other methods, IOE-Order not only
performs the best in graph processing but also enables very
efficient pre-caching by eliminating the need of vertex selec-
tion. As a result, IOE-Order offers a more practical solution
by bringing the greatest benefit regardless of the number of
graph workloads.

Table 4 shows the offline pre-processing times of all graphs.
Since IOE-Order contains two steps to order a graph, the
overhead of IOE-Order is around two to three times larger than
the overhead of Norder. Fortunately, IOE-Order is inexpensive

and brings more benefits than Norder as shown in Section 4.2.
In particular, IOE-Order is not only 16.5% better on average
but also embeds the result of vertex selection. Furthermore,
since ordering is offline pre-processing, we regard IOE-Order
as a more effective design than Norder.

Table 4: Offline Pre-processing Time (seconds).
Graph Twitter uk2007 gsh2015

Norder 24 52 483
IOE-Order 57 130 1,580

(BFDS+OutD Binning) (35+22) (67+62) (877+703)

4.4 Binning versus Vertex Selection

The following section will justify the benefit brought by the
binning. Specifically, we show that the effectiveness of OutD
Binning is better than OutD vertex selection. Although both

390    20th USENIX Conference on File and Storage Technologies USENIX Association



(a) Processing Time of BFS. (b) Processing Time of WCC. (c) Processing Time of APSP.

Figure 7: Comparison among OutD Binning, GVS-VS, and OutD-VS based on BFDS-ordered Graphs.

of designs are based on out-degree, binning can physically
separate the pre-cached data, making the improvement better.
Furthermore, compared with the time-consuming GVS, OutD
Binning is not only much more efficient in pre-processing but
even demonstrates obvious improvements for some specific
cases. Please note that, since GVS needs to know how the
graph is stored in storage to select vertices, it is extremely
difficult to combine GVS with binning since binning will
modify the order of graph all the time.

For better clarity, we denote OutD Binning as OutD-Bin,
while GVS (OutD) vertex selection as GVS-VS (OutD-VS).
Moreover, to have a fair comparison, we compare OutD-Bin
against GVS-VS and OutD-VS based on the same ordering
(BFDS ordering) with the same experiment setting as Sec-
tion 4.2. Figure 7 depicts the processing times of all three
algorithms, where x-axis denotes the static cache size and
y-axis demonstrates the processing time. Because the space
is limited and the trend of processing time and I/O efficiency
is similar, we only show the results of processing time.

In general, OutD-Bin improves OutD-VS by -1.06%,
7.43%, 15.0%, 17.7%, and 17.0% as the size of static cache
ranges from 0% to 40%. Since the binning will slightly dam-
age the BFDS-ordered structure, BFDS with OutD-Bin per-
forms marginally worse than BFDS when there is no static
cache. Nevertheless, due to the effectiveness of physical sepa-
ration, OutD-Bin performs gradually better than OutD-VS as
the size of static cache increases. On the other hand, compared
with GVS-VS, OutD-Bin improves 3.43%, 9.21%, 10.8%, and
10.0% on average as the size of static cache ranges from 10%
to 40%. The major contribution of this improvement is due to
APSP, where GVS-VS only brings limited help but OutD-Bin
is still effective under the application with natural high I/O
efficiency as discussed in Section 4.2. Particularly, the im-
provement can be up to 18.0% when static cache size is 40%.
Furthermore, OutD-Bin performs better on Twitter, which also
naturally shows higher I/O efficiency than the other graphs
(as shown in Figure 6). Thus, we can also observe great im-
provement from GVS-VS to OutD-Bin under Twitter.

4.5 Impact of Bin Layout and Bin Sizes
As illustrated in Section 3.3, bin size for OutD Binning is
crucial for overall performance. The following section shows

the binning strategy of exponential decay (denoted as Exp.
Decay) of the edge data size is generally better than the naïve
binning strategy, which divides the graph into multiple equal-
sized bins. Particularly, for naïve binning strategy, we create
two graphs by setting the bin sizes to be 5% and 10% of edge
data size; thus, there are totally 20 bins (denoted as 20-Bin)
and 10 bins (denoted as 10-Bin) on the graphs. Due to page
limitations, we only show the results of gsh2015, which is the
largest graph evaluated in this paper.

Figure 8: Gsh2015 with Different Binning Strategies.

Figure 8 depicts the processing times based on gsh2015,
where x-axis denotes the static cache size to edge data and
y-axis demonstrates the processing time. In general, since
all binning strategies are able to capture the critical vertices,
we can observe a similar improvement as the size of static
cache increases. Thus, the performance under 0% static cache
dominates the overall effectiveness. Particularly, Exp. Decay
improves 10-Bin (20-Bin) by 5.7% (10.1%) on average. Fur-
thermore, as shown in Section 4.4, Exp. Decay only slightly
degrades by -1.06% compared with non-binning BFDS. As a
result, binning strategy with exponential decay demonstrates
a great way to not only preserve the structure of BFDS but
also capture the critical vertices.

4.6 Evaluation on Non-BFS-like Algorithms

To discuss the impact of IOE-Order on non-BFS-like algo-
rithms, this section further evaluates IOE-Order against other
graph orderings with non-BFS-like algorithms. Due to page
limitations, we only evaluate two popular non-BFS-like al-
gorithms (i.e., PageRank and K-core), which represent two
completely different access patterns, and only show the re-
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sults of gsh2015 [10]. Specifically, PageRank [18, 39] ranks
the importance of a webpage by repeatedly processing all ver-
tices, whereas K-core [34, 43] detects the clustering structure
of a graph by returning a maximal subgraph that consists of
vertices of degree larger than K.

Table 5: Evaluation of Non-BFS-like Algorithms on Gsh2015.

Algo.
Order

Random In-Degree Norder IOE-Order

Pagerank 927.7 257.9 249.7 255.5
K-Core 795.7 534.2 371.1 314.1

Table 5 shows the total processing time (measured in sec-
onds) based on gsh2015 when four different graph orderings
are utilized with no static cache. Particularly, we can observe
that IOE-Order also has the potential to improve (or at least
not degrade) the performance of the two evaluated non-BFS-
like algorithms. For PageRank, IOE-Order delivers similar
processing time as in-degree ordering and Norder as all of
them are designed to increase the locality of access for BFS-
like algorithms instead of optimizing PageRank. As for K-
core, IOE-Order outperforms the other three orderings (e.g.,
15.4% better than Norder). This is because OutD-Binning
of IOE-Order keeps the vertices of similar degrees together,
resulting in good locality of access for K-core in selectively
removing the vertices of less-than-K degrees.

5 Related Work
Fully External Graph Systems. Besides the semi-external
systems presented in Section 2.1, many efforts have also
been devoted to the development of fully external graph sys-
tems [1, 14, 17, 21, 27, 41, 49, 54]. In contrast to semi-external
systems, fully external systems are very low-cost for storing
both vertex and edge data in storage, and only require a small
amount of memory for runtime graph processing. For exam-
ple, GraphChi [27], which is the first fully external graph
system, divides the whole graph into several partitions and
loads them from storage into memory for further processing.
Xstream [41] proposes to exploit edge-centric computation
model to sequentially streams the edge data into memory.
Based on edge-centric computation model, GridGraph [54]
proposes 2D edge partitioning to further improve the per-
formance by selectively accessing based on partition-level
granularity.

Nevertheless, as these systems tend to issue large and se-
quential I/O to eliminate random access, they often suffer
from the low utilization of loaded data when the graph algo-
rithm only requires a small number of bytes. To tackle this
issue, CLIP [1] proposes to increase the utilization of the
loaded data by performing out-of-order execution to com-
pute across future values. Particularly, CLIP re-computes the
loaded partition to squeeze out all potential vertex updates [1].
LUMOS [49], on the other hand, further provides synchronous
processing semantics for supporting synchronous graph al-

gorithms based on the concept of future value computation.
However, these works are proposed to increase the utilization
of the loaded data for the systems leveraging sequential I/O.
By contrast, IOE-Order is proposed to improve the I/O effi-
ciency for semi-external systems that load only the necessary
data on demand, and thus is orthogonal to the optimization of
CLIP and LUMOS.

Graph Ordering. Ordering has been studied for a long
time [3,4,9,22] for in-memory graph systems [33,37], which
keep the whole graph in memory for processing, and is an
important technique to improve the locality of access. For ex-
ample, Pinar et al. leverage hypergraph to represent temporal
or spatial localities so as to improve the performance of Sparse
Matrixvector Multiplication [40]. Gorder optimizes the local-
ity of vertex attribute updates to speed up CPU computation
for general in-memory graph processing [50]. Nevertheless,
they aims to optimize the computation order or vertex order,
which are different from I/O optimization.

On the other hand, as discussed in Section 2.2, Norder [28]
is proposed to optimize the processing performance of BFS-
like graph algorithms on semi-external graph systems for
reducing the I/O cost. IOE-Order has the same goal, but it
further improves the I/O efficiency by exploiting the traversal
pattern; moreover, OutD-Binning facilitates the pre-caching
with lower pre-processing cost and higher flexibility.

6 Conclusion
This paper presents IOE-Order to practicably boost the pro-
cessing performance of running BFS-like algorithms on semi-
external graph systems by presenting a holistic graph ordering
with two major pre-processing optimizations. Specifically,
BFDS is proposed to leverage both graph traversal pattern
and in-degree information to re-order the graph for higher I/O
efficiency. Moreover, OutD-Binning is further introduced to
refine and split the BFDS-ordered graph into multiple bins
with different average out-degrees. Since all bins are further
sorted and stored sequentially to form the edge data, OutD
Binning not only enables high flexibility and efficiency in
pre-caching the small edge lists but further increases the I/O
efficiency in loading data from the rest of bins during graph
processing. The evaluations show that, compared with the
integrated solution of state-of-the-art pre-processing optimiza-
tions, IOE-Order delivers both high efficiency (by improving
the processing time up to 36.1%) and high practicability (by
entailing much lower pre-processing overhead) for various
BFS-like algorithms.
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Abstract

Modern distributed key-value (KV) stores adopt replication
for fault tolerance by distributing replicas of KV pairs across
nodes. However, existing distributed KV stores often manage
all replicas in the same index structure, thereby leading to
significant I/O costs beyond the replication redundancy. We
propose a notion called replica decoupling, which decouples
the storage management of the primary and redundant copies
of replicas, so as to not only mitigate the I/O costs in index-
ing, but also provide tunable performance. In particular, we
design a novel two-layer log that enables tunable ordering
for the redundant copies to achieve balanced read/write per-
formance. We implement a distributed KV store prototype,
DEPART, atop Cassandra. Experiments show that DEPART
outperforms Cassandra in all performance aspects under var-
ious consistency levels and parameter settings. Specifically,
under the eventual consistency setting, DEPART achieves up
to 1.43×, 2.43×, 2.68×, and 1.44× throughput for writes,
reads, scans, and updates, respectively.

1 Introduction
Key-value (KV) stores serve as essential building blocks in
the storage infrastructure of modern data-intensive applica-
tions, such as web search [14, 31], social networking [57],
photo stores [10], and cloud storage [25,37]. To support large-
scale usage, KV stores are often deployed in a distributed
manner by storing the data objects (in the form of KV pairs)
across multiple nodes. Examples of distributed KV stores in-
clude BigTable [14], HBase [3], Dynamo [25], HyperDex [28],
Cassandra [37], TiKV [50], and Riak [54].

Failures become prevalent in any large-scale deployment,
so providing fault tolerance for distributed KV stores is criti-
cal. Replication remains the commonly used fault tolerance
mechanism in modern distributed KV stores (including the ex-
amples listed above [3,14,25,28,37,50,54]). Specifically, for
each KV pair issued by a user write, replication makes multi-
ple exact copies (called replicas) and distributes the replicas
across different nodes, so as to tolerate any node failure.

One subtlety is that each node internally stores all repli-
cas in the same index structure; we call such an approach
uniform indexing. For example, we have examined the code-
bases of various open-source distributed KV stores, including
HBase [3], HyperDex [28], Cassandra [37], TiKV [50], and
ScyllaDB [60], and they all adopt uniform indexing for replica

management. In particular, they keep all replicas originated
from different nodes in a log-structured-merged tree (LSM-
tree) [48], a multi-level tree structure that supports efficient
reads and writes of KV pairs and maintains sorted KV pairs in
each level for efficient scans (or range queries) to consecutive
ranges of KV pairs. They either build on local LSM-tree KV
stores (e.g., HyperDex uses HyperLevelDB [27] and TiKV
uses RocksDB [29]), or implement their own LSM-tree struc-
tures (e.g., in HBase and Cassandra).

Uniform indexing is simple to implement for replica man-
agement, but it also significantly degrades both the write and
read performance. First, the LSM-tree performs frequent com-
paction operations that rewrite the currently stored KV pairs
to maintain their sorted order in each level. Storing all repli-
cas in the same LSM-tree exacerbates the write amplification
beyond the replication redundancy. For example, when repli-
cation is disabled, the write amplifications of Cassandra and
TiKV are 6.5× and 13.8×, respectively; however, under triple
replication, the write amplifications reach 25.7× and 50.9× in
Cassandra and TiKV, respectively, incurring more than three
times in write amplification (§3.1). Also, as reading a KV
pair needs to search multiple levels in the LSM-tree, uniform
indexing amplifies the search space and exacerbates the read
amplification as well. For example, under triple replication,
the read amplification of Cassandra reaches 34.6× (§3.1).

Our insight is that instead of putting all replicas in the same
index structure, if we use different index structures for man-
aging the storage of different types of replicas, we not only
mitigate the read/write amplifications by reducing the size
of the index structure for each type of replicas, but also en-
able flexible storage management to adapt to different design
trade-offs. We make a case by proposing replica decoupling,
which decouples the storage management of the replicas of
each KV pair based on the primary copy (i.e., the main replica
of the KV pair) and the redundant copies (i.e., the remaining
replicas of the KV pair aside the primary copy). We use the
LSM-tree to manage the primary copies only, so as to preserve
the design features of the LSM-tree but in a more lightweight
manner; meanwhile, we use simpler but tunable index struc-
tures for the redundant copies to balance the read and write
performance depending on the performance requirements.

In this paper, we design replica decoupling in DEPART,
a novel distributed KV store that decouples the storage man-
agement of primary and redundant copies for fault tolerance.
DEPART builds on Cassandra [37]. It supports lightweight
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differentiation of the primary and redundant copies of repli-
cas on the critical I/O path, while keeping the existing data
organization and configurable consistency features of Cas-
sandra. While managing the primary copies in the LSM-tree,
DEPART proposes a novel two-layer log to manage the re-
dundant copies with tunable ordering for balanced read and
write performance. Its idea is to issue batched writes for the
redundant copies into an append-only global log for high
write performance. It further splits the global log into multi-
ple local logs. In particular, the ordering of KV pairs in each
local log is tunable by a single parameter to balance the read
and write performance for the redundant copies; for example,
given a high read (or write) consistency level (i.e., the number
of replicas to be read (or written) in a successful operation;
see §2.3), the two-layer log can be tuned to favor for high
read (or write) performance. The two-layer log also improves
failure recovery performance, by organizing the KV pairs
by different key ranges and limiting a recovery operation to
access only the relevant range of KV pairs. Our contributions
are summarized as follows.

• We analyze two state-of-the-art distributed KV stores, Cas-
sandra and TiKV, and reveal their performance limitations
due to uniform indexing for replicas.

• We design DEPART, which realizes replica decoupling and
has several key design features: (i) lightweight differentia-
tion of primary and redundant copies, (ii) a two-layer log
design with tunable ordering of redundant copies, and (iii)
a fast failure recovery implementation via parallelization.

• We implement DEPART atop Cassandra v3.11.4 [2]. Exper-
iments show that DEPART outperforms Cassandra in vari-
ous settings. For example, for the case of eventual consis-
tency, DEPART achieves 1.43×, 2.43×, 2.68×, and 1.44×
throughput gains over Cassandra in writes, reads, scans, and
updates, respectively. DEPART also maintains its read and
write performance gains under various consistency level
configurations.

The source code of our DEPART prototype is available at:
https://github.com/ustcadsl/depart.

2 Background
We use Cassandra [37] (which serves as the baseline for our
DEPART design) as an example to describe the background
of a distributed KV store, including its storage architecture,
I/O workflows, and consistency management.

2.1 Storage Architecture
Data organization. A distributed KV store partitions KV
pairs across a cluster of nodes. In Cassandra, the KV pairs
are partitioned based on consistent hashing [33], which has
also been adopted by other production distributed KV stores
[25, 41, 54, 60]. Consistent hashing associates the locations
of all nodes with a hash ring and maps each KV pair deter-
ministically to a node. Specifically, we consider a distributed
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KV store with n physical nodes, each of which is associated
with v virtual nodes. It divides the hash ring into n×v ranges,
each of which covers one of the virtual nodes. For example,
as shown in Figure 1, there are n = 5 physical nodes (i.e., N0
to N4) with v = 2 virtual nodes each. The hash ring contains
2× 5 = 10 ranges, say (0− 10), (11− 20), · · · , (91− 100).
Each of the ranges is associated with the nearest virtual node
in the clockwise direction in the hash ring and the correspond-
ing physical node; for example, both ranges (0− 10) and
(51− 60) are assigned to N0. For each KV pair, consistent
hashing hashes the key to a location in the hash ring (e.g.,
using MurmurHash [6] in Cassandra). The KV pair is then
stored in the corresponding physical node that is associated
with the range.

Replication is commonly used in modern distributed KV
stores [3, 14, 25, 28, 37, 50] for fault tolerance, by distributing
the replicas of each KV pair across different nodes to pro-
tect against node failures. In Cassandra, replicas are stored
in a sequence of nodes along the clockwise direction in the
hash ring denoted by Ni,N(i+1) mod n, N(i+2) mod n, · · · , where
0≤ i≤ n−1 and Ni (i.e., the first node in the node sequence)
is the node to which the KV pair is hashed based on consistent
hashing. We refer to the replica that is stored in Ni as the pri-
mary copy, while referring to the remaining replicas that are
stored in the successive physical nodes along the clockwise
direction in the hash ring as the redundant copies.

Internal storage with the LSM-tree. Each node internally
manages KV pairs with some index structure. In particular,
the LSM-tree [48] is one of the most commonly used index
structures in distributed KV stores, including Cassandra and
others [3, 20, 28, 41, 50, 60]. An LSM-tree KV store organizes
KV pairs in a multi-level tree and keeps KV pairs sorted by
keys in each level, so as to support efficient reads, writes,
and scans. As shown in Figure 1, the LSM-tree KV store
maintains a tree-based index structure with multiple levels
(denoted by L0,L1, · · · ) with an increasing capacity, in which
each level stores the KV pairs in units of files called SSTa-
bles. It first appends the written KV pairs into an on-disk
write-ahead log (WAL), and inserts them into an in-memory
MemTable. When the MemTable is full, the LSM-tree KV
store turns the MemTable to an immutable MemTable, which
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is flushed to the lowest level L0 as an SSTable. When a lower
level reaches a capacity limit, the LSM-tree KV store merges
the KV pairs at the lower level into the next higher level via
compaction. To keep the KV pairs in each level sorted, a com-
paction operation first reads the KV pairs from both levels,
merges the sorted KV pairs, and writes back the sorted KV
pairs. Thus, compaction incurs extra I/Os during writes, lead-
ing to write amplification. Also, since KV pairs are not sorted
across different levels, reading a KV pair needs to search
from the lowest level L0 to the higher levels, leading to read
amplification. Both write and read amplifications are shown
to cause significant performance degradations in LSM-tree
KV stores [12, 43, 51].

2.2 I/O Workflows

Write workflow. Writing a KV pair in Cassandra works as
follows. A client first randomly selects and connects to one
of the nodes, called the coordinator and sends it the KV pair.
The coordinator determines the nodes in which the primary
and redundant copies are stored, based on consistent hashing.
It then forwards the KV pairs to the nodes.

Read workflow. Reading a KV pair in Cassandra is similar
to writing a KV pair and works as follows. The client first
selects and contacts a coordinator. It issues the read request to
the coordinator, which finds the nodes in which the replicas
(regardless of primary and redundant copies) of the KV pair
are stored. For load balancing, the coordinator prefers to read
the KV pair from the nodes with low latencies, determined by
the dynamic snitching module [5]. It then returns the KV pair
to the client.

2.3 Consistency Management

Cassandra supports different consistency modes, e.g., strong
consistency and eventual consistency. They are configured by
tuning the replication factor (denoted by k), as well as the
read consistency level (RCL) and the write consistency level
(WCL). The replication factor k is defined as the total number
of replicas for fault tolerance. RCL and WCL are defined as
the minimum numbers of replicas (regardless of primary or
redundant copies) to be read and written by the coordinator
to acknowledge the successful read and write operations, re-
spectively. Both RCL and WCL are set as an integer from one
to k. If WCL+RCL> k, then strong consistency is provided;
if WCL+RCL ≤ k, then eventual consistency is provided. By
default, both WCL and RCL are set to one in Cassandra.

3 Replica Decoupling

To motivate replica decoupling, we describe the limitations
of uniform indexing for managing all replicas in internal
storage management (§3.1). We also describe the naı̈ve replica
decoupling designs to motivate our DEPART design (§3.2).
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Figure 2: Write amplifications of no-replication (“No”), double
replication (“double”), and triple replication (“triple”) in Cassandra
and TiKV.

3.1 Uniform Indexing and its Limitations
Recall from §1 that existing distributed KV stores (e.g., [3,28,
37, 50]) mainly adopt uniform indexing, in which all replicas
(including all primary and redundant copies) designated for
each node are managed under the same index structure. We
show that uniform indexing, rather than the extra writes from
replication, is the main cause of significantly exacerbating
both the write and read amplifications of the LSM-tree.

Limitation #1: Write amplification aggravation. With uni-
form indexing, each node treats all replicas as the regular KV
pairs and stores them in the same LSM-tree without distinc-
tion (Figure 1). To show how it exacerbates the write ampli-
fication, we evaluate the write amplifications of two open-
source distributed KV stores, Cassandra (v3.11.4) [2] and
TiKV (release 4.0) [50]. Specifically, we deploy Cassandra
and TiKV on a 5-node cluster with their default settings (de-
tailed in §5). We configure a client machine to issue the writes
of 300 M KV pairs of size 1 KiB each to the cluster that ini-
tially has empty storage. We consider no-replication (k = 1),
double replication (k = 2), and triple replication (k = 3). Fig-
ure 2(a) shows that no-replication incurs a write amplification
of 6.5× for Cassandra, due to the compaction overhead caused
by the LSM-tree. However, for triple replication, the write am-
plification increases to 25.7×, which is around 4× the write
amplification of no-replication. We also observe a similar
trend for TiKV, where the write amplification increases from
13.8× to 50.9× (i.e., 3.7× increase).

Also, as the KV store size increases, the write amplification
increases more significantly and shows a super-linear trend.
The reason is that a larger KV store size increases the number
of levels in the LSM-tree, leading to higher compaction over-
head and a larger write amplification. We configure a client
machine to issue the writes of 100 M, 300 M, and 600 M KV
pairs of size 1 KiB each to the initially empty cluster. Here,
we focus on Cassandra. Figure 2(b) shows the write amplifi-
cations of Cassandra for different KV store sizes. For a larger
data store, the increase of the write amplification under triple
replication compared to no replication also becomes larger.
For example, triple replication has 3.4× write amplification
compared to no replication under 100 M KV pairs, and be-
comes 4.5× under 600 M KV pairs. This super-linear trend
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also implies that a larger KV store size can limit the scalability
of uniform indexing.

Limitation #2: Read amplification aggravation. Uniform
indexing also severely exacerbates the read amplification. The
main reason is that all replicas are stored in the same LSM-
tree, thereby enlarging the search space of KV pairs. We
evaluate the read amplifications of Cassandra and TiKV as in
the above settings, while a client machine issues 30 M reads
to the existing 300 M KV pairs of size 1 KiB each that have
already been stored. Figure 3(a) shows that for Cassandra, the
read amplification increases from 7.8× in no-replication to
34.6× in triple replication (i.e., 4.4× increase). We observe a
similar trend for TiKV.

In addition, we study the impact of the KV store size on
the read amplification. Here, we focus on Cassandra. We first
issue the writes of 100 M, 300 M, and 600 M KV pairs of size
1 KiB each to the initially empty cluster, followed by issuing
30 M reads to the existing KV pairs. Figure 3(b) shows a
super-linear increase for the read amplification as the KV
store size increases for Cassandra.

3.2 Motivation
Our analysis in §3.1 shows that uniform indexing exacerbates
both write and read amplifications, as it is costly to manage
all replicas within a single LSM-tree. This motivates us to
explore the potentials of replica decoupling, which decouples
the primary and redundant copies of replicas and manage
them in separate index structures. We first consider two naı̈ve
replica decoupling approaches, and then motivate our design.

Naı̈ve approaches. A simple replica decoupling approach is
to deploy two LSM-trees, one for primary copies and one for
all redundant copies. However, the LSM-tree for redundant
copies still has a large size (especially for a large replication
factor), while not all redundant copies are accessed in each
I/O operation. For example, to recover a single-node failure
under triple replication, only half of the redundant copies on
average are accessed. Thus, there are extra I/Os for searching
the whole LSM-tree for a subset of redundant copies.

Another simple replica decoupling approach is to manage
k LSM-trees (k is the replication factor) for k replicas derived
from each KV pair. For example, for Cassandra with triple

replication, node Ni receives the redundant copies whose cor-
responding primary copies are stored in nodes N(i−1) mod n
and N(i−2) mod n (where 0≤ i≤ n−1 and n is the number of
physical nodes). Then we use three LSM-trees in node Ni, one
of which stores the primary copies and the other two store the
redundant copies from nodes N(i−1) mod n and N(i−2) mod n,
respectively.

However, maintaining multiple LSM-trees incurs both sig-
nificant memory and I/O overheads. Since each LSM-tree
has its own MemTable and immutable MemTable, the mem-
ory overhead amplifies by k times for the replication factor
k. Specifically, if the MemTable size is m MiB and the clus-
ter size is n, the memory cost of Cassandra is m× n MiB
as each node maintains a single LSM-tree. However, when
using k LSM-trees in each node, the memory cost becomes
k×m×n MiB, which is k times that in Cassandra. Note that
if we reduce the MemTable size for each LSM-tree to limit
the memory overhead, it degrades the efficiency of flushing
the MemTable to disk, thereby degrading the user write per-
formance [7, 8].

Also, each LSM-tree incurs its own compaction overhead
for maintaining the fully-sorted ordering in each level. Thus,
the compaction overhead is still significant and the com-
paction operations of multiple LSM-trees in the same node
compete for the disk bandwidth, and hence the overall I/O
performance is compromised. Our evaluation (Exp#1 in §5.2)
shows that replica decoupling with multiple LSM-trees only
brings limited performance gains over uniform indexing, even
though the replicas are managed by different LSM-trees.

Our approach. Recall that the LSM-tree always maintains
the fully-sorted ordering in each level. Using a single LSM-
tree for all replicas in uniform indexing, or using multiple
LSM-trees for replica decoupling, may favor high read per-
formance, but both of them incur substantial high compaction
overhead that degrades write performance. In particular, dif-
ferent consistency levels imply different performance require-
ments for the reads and writes issued to the replicas, such
that a high read (or write) consistency level requires high read
(or write) performance for the replicas. This motivates us
to design a new storage management solution that supports
tunable ordering for replica decoupling, so as to balance the
read and write performance.

4 DEPART Design
We present DEPART, a distributed KV store that builds on
Cassandra to realize replica decoupling by separating the
storage management of primary and redundant copies. We
introduce its architecture (§4.1) and elaborate its design tech-
niques (§4.2-§4.5).

4.1 Overall Architecture
DEPART decouples the storage management of primary and
redundant copies to achieve high performance. It manages
the primary copies in the LSM-tree, while managing the re-
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dundant copies in a novel two-layer log, whose ordering of
redundant copies is tunable depending on the performance
requirements. Keeping only the primary copies in the LSM-
tree maintains the design features of the LSM-tree for reads,
writes, and scans, but in a more lightweight manner as the
LSM-tree size is now significantly smaller without the re-
dundant copies. Also, the tunable ordering of the two-layer
log allows balanced read and write performance for different
settings of consistency levels.

Figure 4 depicts the architecture of DEPART. Note that
DEPART only modifies the internal storage module of each
Cassandra node, but preserves the inter-node management in
Cassandra (e.g., consistent hashing for data organization and
consistency management). In summary, DEPART addresses
several design challenges via a number of techniques.

• Lightweight replica differentiation. DEPART differenti-
ates the primary and redundant copies in the storage module
of each node for separate management. Its replica differen-
tiation is lightweight based on simple hash computations,
and incurs limited overhead on the critical I/O path (§4.2).

• Two-layer log design. DEPART manages the redundant
copies with a two-layer log, so as to achieve fast writes
and efficient recovery. It first appends redundant copies to
a global log as sequential batched writes. It then splits the
global log into multiple local logs in background (§4.3).

• Tunable ordering. DEPART further provides a tunable
ordering scheme for the two-layer log design to adjust the
degree of ordering of the redundant copies with a single
parameter, so as to balance the read and write performance
for accessing the redundant copies (§4.4).

• Parallel recovery. DEPART uses a parallel recovery
scheme that reads and writes the primary and redundant
copies in parallel during recovery, so as to achieve high
recovery performance (§4.5).

4.2 Replica Differentiation
DEPART differentiates the written KV pairs in the storage
module of each node as primary or redundant copies. Figure 5
depicts the replica differentiation workflow. Recall that the
coordinator forwards k replicas of a KV pair to a sequence
of k nodes along the clockwise direction in the hash ring,
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where the key of the KV pair is hashed to the first node in the
node sequence (§2). When a node, say N, receives one of the
replicas of the KV pair from the coordinator, it performs the
same hash computation (i.e., MurmurHash [6] in Cassandra)
on the key of the replica and determines the node to which
the key is hashed. If the resulting node is the same as N itself,
then N is the first node in the node sequence and we refer
to the replica as a primary copy; otherwise, we refer to the
replica as a redundant copy.

Each node maintains a write-ahead log (WAL) and a
MemTable for the LSM-tree (for primary copies) and the two-
layer log (for redundant copies). After a node differentiates
whether the KV pair is a primary copy or a redundant copy, it
writes the KV pair to the corresponding WAL and MemTable
and acknowledges the coordinator. When the MemTable is
full and becomes immutable, the node flushes the immutable
MemTable to either the LSM-tree or the two-layer log.

The logic of replica differentiation is lightweight, as it
requires one extra hash computation in each storage node
in the critical I/O path (and k extra computations in total
for the replication factor k). Our experiments show that the
differentiation time is less than 0.4% of the total write time
(Exp#5 in §5.2).

4.3 Two-layer Log Design
Each node maintains a two-layer log, which is designed for
the management of redundant copies with the following de-
sign features. First, it supports fast writes for the redundant
copies, even though the number of redundant copies is much
larger than that of primary copies and increases with the repli-
cation factor. Second, it supports tunable ordering to adapt to
different consistency levels (§4.4). Third, it supports efficient
parallel recovery of any failed nodes by allowing fast reads to
the redundant copies in parallel.

Figure 6 shows the architecture of the two-layer log in each
node. Upon receiving the replicas, a node first issues sequen-
tial batched writes for the redundant copies into a global log.
A background thread continuously retrieves the redundant
copies from the global log and splits them into multiple local
logs. We elaborate the global log and local log designs below.

Append-only global log. To enable fast writes, each node
writes all redundant copies of KV pairs (flushed from the
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immutable MemTable) to an append-only global log. All re-
dundant copies are grouped in units of segments and appended
to the head of the global log as sequential batched writes. Note
that the global log only stores all redundant copies without
maintaining any extra index structure. Thus, it achieves high
write performance for the redundant copies.

Keeping all redundant copies in the global log achieves
high write performance, but poses two issues. First, the re-
covery performance degrades. For the redundant copies in
the global log, their corresponding primary copies may re-
side in different nodes. When a node failure happens, only
part of the redundant copies in the global log (i.e., the redun-
dant copies whose corresponding primary copies reside in the
failed node) are needed for recovery. Thus, recovery incurs
only partial access to the global log, thereby incurring lots of
random I/Os. Second, the garbage collection cost increases.
As new KV pairs are appended to the log head, invalid (or
stale) KV pairs cannot be overwritten and hence they occupy
lots of space. This incurs large storage overhead, especially in
update-intensive workloads. Garbage collection can be used
to reduce the storage cost by continuously reclaiming the free
space of invalid KV pairs from the log tail, but it inevitably
introduces large amount of extra I/Os to read segments from
the log tail and write back the valid KV pairs to the log head.

Splitting into local logs. To enable fast recovery, DEPART
maintains a background thread to continuously split the global
log into multiple local logs, each of which keeps only the
redundant copies whose corresponding primary copies are
stored in the same node. This allows the recovery of any failed
node to access only the local log associated with the failed
node. Note that each node only needs to maintain k−1 local
logs (recall that k is the replication factor), since consistent
hashing distributes the replicas in a sequence of nodes along
the clockwise direction in the hash ring and each node only
stores a redundant copy from up to k−1 nodes.

The splitting operation works as follows. It first retrieves a
configurable number of segments, collectively called a split,
from the tail of the global log. It then reorganizes a split of
redundant copies into multiple sub-splits, each of which con-
tains only the redundant copies whose corresponding primary
copies reside in the same node. It finally writes back each
sub-split into a separate local log in an append-only manner,
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Figure 7: Range-based grouping within local logs.

and issues the writes to different local logs in parallel.
During splitting, DEPART also discards any invalid KV

pairs in the selected segments. Thus, it does not trigger
garbage collection explicitly; instead, it realizes garbage col-
lection in the splitting operation to save the extra I/Os.

For each redundant copy, each node needs to determine
the node in which its corresponding primary copy resides. It
can be feasibly done locally within a node based on replica
differentiation (§4.2).

Range-based grouping within local logs. While splitting
the global log into multiple local logs alleviates the recovery
and garbage collection overhead, the benefit remains limited
since the ranges of a hash ring stored in each node are not nec-
essarily contiguous (e.g., in Figure 1, Node N0 stores ranges
[0,10] and [51,60]). Recovering any range of KV pairs only
needs to access the redundant copies for the range, so it still
causes partial accesses to a local log and issues random I/Os.

We enhance each local log by managing KV pairs with
range-based grouping. Figure 7 shows the idea of range-based
grouping. Each local log is further divided into multiple range
groups, each of which corresponds to a range in the hash ring.
Note that different range groups within each local log have no
overlaps in keys, so they can be managed independently. For
example, for Node N2 in Figure 7, the local log LOG0 stores
the redundant copies whose corresponding primary copies
reside in Node N0. As Node N0 has two ranges, [0,10] and
[51,60], LOG0 now contains two range groups, each of which
holds the redundant copies for [0,10] and [51,60], respectively.
Range-based grouping can be realized by comparing the keys
(or their hashes) with the boundary of each range in the hash
ring based on consistent hashing (§2.1). It still ensures that the
writes to each range group in a local log are performed in an
append-only, batched manner. The number of range groups in
a local log, and hence the number of ranges in Cassandra, are
configurable by the parameter num tokens [2]. Range-based
grouping improves the recovery performance by accessing
only the KV pairs in the corresponding range groups without
accessing all KV pairs in the whole local log.

Under range-based grouping, when writing KV pairs from
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the global log to the local logs during a splitting operation,
DEPART further sorts all KV pairs by keys for each range
before storing the KV pairs in a range group in the local
logs; we call the sorted KV pairs for a range in a splitting
operation a sorted run. Thus, each range group may store
multiple sorted runs, while different sorted runs in the same
range group may have overlaps in keys. Managing the range
groups by sorted runs makes tunable ordering feasible (§4.4).

Reads from the two-layer log. To read a KV pair from the
two-layer log, DEPART first checks the segments in the
global log one by one, starting with the latest one. Note that
the internal structure of each segment is similar to that of
SSTables in the LSM-tree, so DEPART first reads the meta-
data from the segment and reads the corresponding KV pair
according to the offset in the metadata. If the KV pair is not
found in the global log, then DEPART searches the corre-
sponding range group, located by comparing the key with the
boundary keys of the range groups. Since each range group
contains multiple sorted runs and KV pairs within the sorted
run are fully sorted, DEPART searches from the latest to the
oldest sorted run, and uses binary search to find the key within
a sorted run.

4.4 Tunable Ordering
Recall that each range group in a local log may contain multi-
ple sorted runs, and the KV pairs across the sorted runs within
a range group are not fully sorted. If a range group contains
too many sorted runs, the read performance for the redundant
copies will degrade, especially for high read consistency lev-
els where both primary and redundant copies are accessed in
a read operation (§2.3). Thus, we extend the two-layer log
with a tunable ordering scheme, in which users can configure
a single parameter to adjust the degree of ordering of each
range group for different consistency requirements.
DEPART adjusts the degree of ordering across multiple

sorted runs with a user-configurable threshold S, which is a
positive integer that controls the maximum number of sorted
runs being allowed to exist in each range group. Figure 8
shows the idea of the tunable ordering scheme. For each new
sorted run generated from a splitting operation, DEPART first
checks if the existing number of sorted runs in a range group
reaches the threshold. If not, it appends the new sorted run
from the splitting operation directly to the range group; other-
wise, it merge-sorts the new sorted run with the existing ones
into a single sorted run. The merge-sort operation is similar
to the compaction operation in the LSM-tree, including three
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steps: (i) it reads all existing sorted runs from the range group;
(ii) it merges all KV pairs in the new sorted run and the exist-
ing sorted runs, and if there exist multiple KV pairs with the
same key in different sorted runs, it keeps only the KV pair
in the latest sorted run and discards the older ones; and (iii)
it writes back all merged KV pairs into the range group. We
consider two special cases for different values of S.

• Case 1: S = 1. In this case, each range group always sorts
the incoming sorted run with the currently stored sorted
run, and hence all KV pairs are sorted. Thus, each local log
resembles a single-level LSM-tree.

• Case 2: S approaches infinity. In this case, DEPART always
appends the new sorted run into a range group without any
merge-sorting with any existing sorted runs.

To set an appropriate value of S, we note that S determines
the trade-off between the read and write performance. A small
S favors the read performance by keeping a small number of
sorted runs in a range group. It also maintains the storage
efficiency by discarding the invalid KV pairs in merge-sort
operations. However, it incurs a large merge-sort overhead
that degrades the write performance. Thus, to support a sys-
tem setting with the high read consistency level under read-
dominant workloads, we should set a high degree of ordering
with a small S to benefit reads; otherwise, we should decrease
the degree of ordering by increasing the value of S to benefit
writes. We also evaluate the impact of different values of S via
experiments, and we recommend a default setting, S= 20, that
can effectively balance the read and write performance under
different consistency configurations (see Exp#8 in §5.2).

4.5 Parallel Recovery
For fast recovery of any failed node, DEPART proposes a par-
allel recovery scheme that exploits the benefit of decoupling
the storage management of primary and redundant copies.
We first review the recovery process in the current Cassandra
implementation. Cassandra currently does not have a central-
ized node to monitor data loss and coordinate data recovery.
Instead, it maintains a Merkle tree [4, 47] in each node to
detect data inconsistency among multiple copies. Note that
Merkle trees are also used by other consistent-hashing-based
distributed KV stores, such as Dynamo [25] and Riak [54].
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A Merkle tree is a binary hash tree, in which each leaf node
stores the hash value of a range of KV pairs, while each non-
leaf node stores the hash value of its child nodes. If a KV
pair is lost, the replicas of the KV pair become inconsistent
as detected by the Merkle trees across the nodes that store
the replicas, so Cassandra triggers a recovery process. Specif-
ically, the recovery process has three steps: (i) building a
Merkle tree for each range of KV pairs in each node; (ii)
comparing the Merkle trees of the same range of KV pairs
in different nodes to identify any inconsistent range of KV
pairs (which implies data loss); and (iii) reconstructing any
inconsistent range by retrieving the range of KV pairs from
a non-failed node and sending the range of KV pairs to the
recovered node.
DEPART parallelizes the read and write processes for re-

covering multiple ranges of KV pairs for fast recovery. Its
parallel recovery process is based on the recovery workflow
in Cassandra, as shown in Figure 9. Suppose that we recover
the lost data of a failed node at node N0. First, each node in
DEPART retrieves the KV pairs from the LSM-tree and the
two-layer log, and builds its own Merkle tree (note that the
Merkle tree in N0 is initially empty) (Step 1). N0 compares the
Merkle trees and identifies the missing KV pairs (Step 2). To
recover the lost KV pairs, each surviving node (e.g., node N1
in Figure 9) issues parallel reads to the primary and redundant
copies with two threads, and similarly the new node (i.e., N0)
retrieves the KV pairs from other surviving nodes and issues
parallel writes for the primary and redundant copies with two
threads. Such multi-threading is feasible as the primary and
redundant copies are stored in different index structures.

5 Evaluation
DEPART builds on the codebase of Cassandra v3.11.4 [2]
by implementing replica decoupling in the storage module
of each node. Our DEPART prototype itself contains 6.9 K
LoC, while the modification to Cassandra contains 1.9 K LoC.
Note that Cassandra v3.11.4 contains about 206.2 K LoC.
To demonstrate the benefits of the two-layer log design in
DEPART, we also implement the naı̈ve replica decoupling
approach that simply stores replicas in multiple LSM-trees,
which we refer to as mLSM (§3.2).

We conduct testbed experiments to demonstrate the effi-
ciency of DEPART. We compare our DEPART prototype
with Cassandra (v3.11.4), which performs uniform indexing
for all replicas, mLSM. We address the following questions.
• How is the overall performance of DEPART compared

with Cassandra and mLSM under different settings, e.g.,
the microbenchmark performance in different types of KV
operations, the performance under different consistency
configurations and different replication factors, as well as
the performance under YCSB core workloads [21, 22]?
(Experiments 1-4)

• What are the performance breakdowns of DEPART and
Cassandra? (Experiment 5)

• What is the performance of DEPART when a node failure
occurs? (Experiments 6-7)

• How does the performance of DEPART vary across param-
eter settings, including the ordering degree S, the store sizes,
and the numbers of storage nodes? (Experiments 8-10)

5.1 Setup
Testbed. We conduct all experiments on a local cluster of
multiple machines, each of which has two 12-core Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20 GHz, 32 GiB RAM, and
a 500 GiB Samsung 860 EVO SATA SSD. All machines are
interconnected via a 10 Gb/s Ethernet switch. Each machine
runs CentOS 7.6.1810, with the 64-bit Linux kernel 3.10.0 and
the Ext4 file system. We use one machine to simulate multiple
clients via a thread pool, while the remaining machines serve
as storage nodes.

Workloads. We generate workloads with YCSB [21, 22], a
general-purpose cloud system benchmark tool. By default,
we focus on 1 KiB KV pairs with 24-byte keys, and generate
requests based on the Zipf distribution with the default Zipfian
constant 0.99. We deploy YCSB on the client machine and set
the number of client threads as 50, while each client thread
issues a workload from YCSB.

Default settings. We configure five storage nodes in the clus-
ter and triple replication to deploy Cassandra and DEPART.
Before each experiment, the cluster has empty storage. By
default, we set (WCL=1, RCL=1) (i.e., the default setting in
Cassandra), which corresponds to eventual consistency. We
also study the impact of different consistency levels (Exper-
iments 1 and 2). Both Cassandra and DEPART use the de-
fault dynamic snitching module [5] to choose the fastest
nodes for serving reads, so as to load-balance reads across
different replicas. For the parameter num tokens [2], which
determines the number of range groups, we use the default
value 256 as in Cassandra.

For DEPART, we set the MemTable size to be the same as
that of Cassandra (160 MiB by default), and the segment size
in the global log to be the same as the MemTable size. Since
DEPART keeps an extra MemTable for the two-layer log, we
increase the row cache size of Cassandra by 160 MiB for
fair comparisons. For the two-layer log, we set the data size
of each split operation as 20 segments (around 3 GiB) and set
S as 20 to achieve balanced read and write performance. We
keep the other parameter settings in Cassandra unchanged.

We plot the average results over five runs, with error bars
showing the standard deviation.

5.2 Results
Experiment 1 (Performance in KV operations). We first
compare the performance of Cassandra, mLSM, and DEPART
in different KV operations, including writes (i.e., writing new
KV pairs), reads (i.e., reading existing KV pairs), scans (i.e.,
reading existing consecutive KV pairs), and updates (i.e.,
updating existing KV pairs). We configure the client machine
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Figure 10: Exp#1 (Performance in KV operations).

to first randomly write 200 M KV pairs. It then issues the
following requests in order: (i) 20 M reads, (ii) 2 M scans
(each scan contains one seek() to locate the first key and
then iterates with 100 next()’s), and (iii) 200 M updates. We
also consider two settings of consistency levels: (i) (WCL=3,
RCL=1) (i.e., strong consistency) and (ii) (WCL=1, RCL=1)
(i.e., eventual consistency).

Figure 10 shows the throughput and latency results. First,
DEPART improves the overall performance over Cassan-
dra in all cases. For (WCL=3, RCL=1), DEPART increases
the throughput of writes, reads, scans, and updates to 1.42×,
2.29×, 2.22×, and 1.45×, respectively; it reduces the aver-
age write latency, average read latency, 99-th percentile write
latency, and 99-th percentile read latency by 29%, 58%, 39%,
and 41%, respectively. For (WCL=1, RCL=1), DEPART im-
proves the throughput of writes, reads, scans, and updates to
1.43×, 2.43×, 2.68×, and 1.44×, respectively; it reduces the
average write latency, average read latency, 99-th percentile
write latency, and 99-th percentile read latency by 30%, 59%,
41%, and 48%, respectively. The latency results for scans and
updates are similar and we omit the results here. The main
reasons of the performance improvements of DEPART are
two-fold. First, for reads, DEPART only searches the LSM-
tree or the specific range group in the two-layer log within
a node, thereby greatly reducing the search space. Second,
for writes, DEPART mitigates the compaction overhead in
the LSM-tree, which now keeps the primary copies only. The
two-layer log also has limited merge-sort overhead by having
a large value of the ordering degree S.

Second, mLSM notably improves the read performance,
but only shows marginal improvements on writes. Specifi-
cally, compared with Cassandra, it increases the throughput of
writes, reads, scans, and updates to 1.18-1.20×, 2.11-2.20×,
1.85-2.0×, and 1.15-1.20×, respectively. It also reduces the
average write latency, average read latency, 99-th percentile
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Figure 11: Exp#1 (Read and write amplifications).

write latency, and 99-th percentile read latency by 15-17%,
53-56%, 16-18%, and 34-41%, respectively. The reason is that
mLSM still triggers frequent compaction operations, which
compete for disk bandwidth and degrade the write perfor-
mance. For example, the total compaction sizes of Cassandra
and mLSM are 3.46 TiB and 2.72 TiB, respectively, and the
total compaction and merge-sort size of DEPART is 1.65 TiB
(i.e., compared with Cassandra, mLSM only reduces the total
compaction size by 21%, but DEPART reduces it by 52%).

We next compare the storage and memory costs of Cassan-
dra, mLSM, and DEPART. After the end of the update phase,
the KV store sizes are 613.5 GiB for Cassandra, 611.3 GiB
for mLSM, and 654.8 GiB for DEPART. DEPART incurs
6.7% additional storage overhead compared with Cassandra,
since each range group allows at most S = 20 sorted runs in
our default setting and contains invalid KV pairs before being
merge-sorted. To measure the memory overhead, we note that
the MemTable size varies over time (up to the 160 MiB limit)
as the KV pairs are continuously inserted into a MemTable
and flushed to disk when the MemTable is full. Thus, we
measure the total memory usage of the MemTables every five
seconds and obtain the average results. The total memory
usage of mLSM is 335.7 MiB, which is 3.7× that of Cas-
sandra (90.4 MiB), as each LSM-tree maintains a MemTable.
However, DEPART only costs 183.9 MiB, which is 2.0×
that of Cassandra, since DEPART only maintains one extra
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Figure 12: Exp#2 (Performance under different consistency config-
urations).

MemTable for the two-layer log. Note that the total memory
usage of mLSM increases with the replication factor, while
that of DEPART remains unaffected.

Finally, we compare the read/write amplifications (i.e., the
ratios between the amounts of system reads/writes and the
amounts of the user reads/writes) of Cassandra, mLSM, and
DEPART. Figure 11 shows the results. Compared with Cas-
sandra, mLSM reduces the read and write amplifications by
up to 40% and 24%, respectively, while DEPART reduces the
read and write amplifications by up to 53% and 52%, respec-
tively. Note that the performance gain of DEPART is simi-
lar under both consistency levels, so we focus on (WCL=1,
RCL=1) in the following experiments (except Exp#2 and 8).

Experiment 2 (Performance under different consistency
configurations). We evaluate the performance under dif-
ferent consistency configurations. In particular, for strong
consistency, we consider additional configurations for WCL
and RCL under triple replication that satisfy the condition
WCL+RCL>3, including (WCL=2, RCL=2) and (WCL=1,
RCL=3).

Figure 12 shows the results. DEPART consistently im-
proves the throughput of writes, reads, scans, and updates over
Cassandra under different consistency configurations. Specifi-
cally, for (WCL=2, RCL=2),DEPART increases the through-
put of writes, reads, scans, and updates to 1.43×, 1.70×,
1.38×, and 1.44×, respectively. For (WCL=1, RCL=3), DE-
PART increases the throughput of writes, reads, scans, and
updates to 1.44×, 1.72×, 1.62×, 1.45×, respectively. DE-
PART also consistently improves the throughput of writes
and updates over mLSM. Note that the write performance
gains of DEPART over Cassandra stay nearly the same under
different consistency configurations, since the index struc-
tures of both Cassandra and DEPART remain unchanged
under triple replication.

However, the read performance gains of DEPART over
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Figure 13: Exp#3 (Performance under different replication factors).

Cassandra become smaller, and DEPART’s read performance
is worse than mLSM for RCL≥2. In this case, each read
request needs to access at least two replicas successfully, so
the redundant copies in the two-layer log must be searched.
As the redundant copies in the two-layer log are not fully
sorted, the performance is slower than reading the primary
copies in the LSM-tree. Nevertheless, DEPART still achieves
faster reads than Cassandra, as it searches for less data than
Cassandra. Also, mLSM keeps redundant copies being fully
sorted in each level, so it achieves higher read performance
than DEPART. On the other hand, for RCL=1, each read
only needs to access one replica for a successful operation.
Most of the reads are routed to their primary copies, whose
read latency is smaller than that of the redundant copies as
determined by the dynamic snitching module (§2.2). Thus,
the read performance gains under RCL=1 are higher than
those under RCL≥2 in general.

Experiment 3 (Performance under different replication
factors). We evaluate the performance of DEPART by vary-
ing the replication factor k from 3 to 5. We configure the
client machine to first randomly write 200 M KV pairs and
then issue 20 M reads.

Figure 13 shows the throughput results of writes and reads
versus the replication factor. Compared with Cassandra, DE-
PART increases the throughput of writes and reads to 1.43-
1.59× and 2.43-3.61×, respectively. Also, DEPART achieves
a higher throughput gain for a larger replication factor. The
main reasons are two-fold. First, for reads, DEPART either
reads primary copies from the LSM-tree or reads redundant
copies from the two-layer log; for the latter, it only searches
the global log and the corresponding range group in the two-
layer log. Thus, the read performance of DEPART is less af-
fected by the number of replicas. However, Cassandra stores
all replicas in a single LSM-tree and its reads need to traverse
the whole LSM-tree. Its read performance drops significantly
as the replication factor increases. Second, for writes, DE-
PART implements replica decoupling and manages the re-
dundant copies in range groups. When the number of replicas
increases, the compaction cost in the LSM-tree remains un-
changed and the merge-sort cost in the two-layer log increases
only slightly. However, Cassandra stores all replicas in the
single LSM-tree and the compaction cost increases signifi-
cantly as the number of replicas increases. Combining both
reasons, the performance gain of DEPART becomes larger
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Figure 14: Exp#4 (YCSB performance).

for a higher replication factor.
Similar to DEPART, mLSM also consistently improves the

throughput of writes and reads over Cassandra under differ-
ent replication factors. When the replication factor increases
to k = 4 and k = 5, its read performance is even better than
DEPART. The main reason is that mLSM only searches the
corresponding LSM-tree that is fully sorted in each level
regardless of the replication factor, but DEPART keeps re-
dundant copies in the two-layer log that is not fully sorted
under the default setting. Note that we can tune the degree
of ordering of the two-layer log to further increase the read
performance. Furthermore, the memory usage of DEPART
remains 2× that of Cassandra, but that of mLSM increases to
5× when the replication factor increases to k = 5.

Experiment 4 (YCSB performance). We compare Cassan-
dra, mLSM, and DEPART using the six YCSB core work-
loads [21, 22], namely A (50% reads, 50% writes), B (95%
reads, 5% writes), C (100% reads), D (95% reads, 5% writes),
E (95% scans, 5% writes), and F (50% reads, 50% read-
modify-writes). The client machine first randomly writes
200 M KV pairs to the cluster before running each of the
six YCSB core workloads. Each workload consists of 100 M
operations, except for Workload E, which contains 10 M op-
erations with each scan involving 100 next()’s.

Figure 14 shows the results. DEPART outperforms Cassan-
dra under all workloads. Specifically, it increases the through-
put to 1.4-2.1× under read-dominant Workloads B-D, 1.6-
2.2× under write-dominant Workloads A and F, and 2.4×
under scan-dominant Workload E. With replica decoupling
and the two-layer log design, DEPART reduces the com-
paction overhead of the LSM-tree during writes and reduces
the search space during reads, so it improves both read and
write performance simultaneously. On the other hand, mLSM
also outperforms Cassandra under all workloads due to replica
decoupling. However, DEPART further improves the perfor-
mance of mLSM, as the latter incurs large compaction over-
head.

Experiment 5 (Time breakdown for reads/writes). We
show the time breakdown for both read and write processes
in Cassandra and DEPART. We configure the client machine
to first load 200 M KV pairs, followed by issuing 20 M reads.
The read process comprises the reads to the MemTable, the
cache (including the row cache and key cache), the index
block of an SSTable (e.g., the Bloom filters and offsets), and
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the data block in the SSTable. Note that each segment in the
two-layer log is treated as an SSTable here. The write process
comprises writes to the WAL, writes to the MemTable, flush-
ing the MemTable, the compaction of the LSM-tree, and the
merge-sorts of the two-layer log (in DEPART only).

Figure 15 shows the time breakdown for reads and writes.
For reads, most of the read time is for reading the index blocks
of SSTables in both Cassandra and DEPART, since reading a
KV pair needs to check the Bloom filter in the index block in
each LSM-tree level to determine if the KV pair exists, and
reads the data block from the SSTable according to the offset
in the index block only if it does. Overall, DEPART reduces
the time costs of reading the index blocks and the data blocks
of SSTables by 56% and 45%, respectively. The reasons are
two-fold. First, DEPART stores only the primary copies in the
LSM-tree, so the number of SSTables in the LSM-tree greatly
decreases. Also, DEPART manages the redundant copies in
range groups, so the number of reads for locating a KV pair
decreases as well.

For writes, DEPART reduces the time costs of writes to
the WAL and writes to the MemTable by 28% and 37%, re-
spectively, as DEPART writes primary and redundant copies
in parallel. DEPART also greatly reduces the compaction
overhead by reducing the LSM-tree size; for example, its
compaction time is only 30.7% of Cassandra’s. Furthermore,
the merge-sort time of the two-layer log in DEPART is only
21.4% of the compaction time in Cassandra. Thus, the to-
tal time of compaction and merge-sorts in DEPART is only
52.1% of the compaction time in Cassandra.

Experiment 6 (Recovery performance). We evaluate the re-
covery performance on recovering a failed node. We consider
different write sizes, by configuring the client machine to ran-
domly write 20 M, 50 M, and 100 M KV pairs to the cluster.
We then crash one node, by killing the KV store process with
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the “kill -s processID” command and removing all its
data with the “rm -r data” command. Finally, we restart the
KV store process on the same node and call the “nodetool
repair -full keyspacename” command for recovery.

Figure 16(a) shows the total recovery time. Cassandra takes
8.9, 26.9, and 72.4 minutes to recover 20 M, 50 M, and 100 M
KV pairs, respectively, while DEPART only takes 4.1, 15.4,
and 45.2 minutes, respectively. Overall, DEPART reduces
the recovery time of Cassandra by 38-54%. The main reason
is that DEPART repairs primary and redundant copies in
parallel, and scans much less data during recovery due to
replica decoupling.

Figure 16(b) also shows the breakdown results of the recov-
ery time for repairing 50 M and 100 M KV pairs. We consider
different steps: Build MTs (i.e., building Merkle trees for
all nodes), Compare MTs (i.e., comparing all Merkle trees),
Receive&Write (i.e., receiving repaired data from other nodes
and writing data to disk), and Others (i.e., other operations
in recovery). DEPART reduces the time costs of Build MTs
and Receive&Write by nearly a half compared to Cassandra
through parallelizing the read/write processes to the primary
and redundant copies.

Experiment 7 (Performance when a node crashes). We
evaluate the read, write and update performance when a node
crashes and before it is repaired. The client machine first ran-
domly writes 100 M KV pairs to the cluster and we manually
crash one node as in Experiment 6. We then issue 20 M reads,
100 M writes, and 100 M updates.

Figure 17(a) shows the throughput under a node failure.
Compared with Cassandra,DEPART increases the throughput
of reads, writes, and updates to 1.69×, 1.59×, and 1.55×, re-
spectively. The main reason is that DEPART always searches
much less data than Cassandra, even though it reads the redun-
dant copies from the two-layer log. Also, DEPART always
improves write performance under both normal and failure
modes.

We also evaluate the degraded read performance in different
cases: (i) the node repair is not yet triggered, (ii) the node
repair is in progress, and (iii) the two-layer log for redundant
copies in each node supports a higher degree of ordering
by decreasing the threshold S (§4.4) from the default value
20 to 5. Figure 17(b) shows the degraded read throughput.
When node repair is not triggered or is in progress, DEPART
improves the throughput of degraded reads to 1.69× and

S Write thpt (KOPS) Read thpt (KOPS)
1 37.2 42.3
10 57.2 31.5
20 64.7 23.1
→ ∞ 78.4 7.6

Cassandra 45.4 15.4

Table 1: Exp#8 (Impact of the ordering degree S).

1.75×, respectively, since DEPART always searches much
less data compared to uniform indexing in Cassandra. Also,
when the two-layer log has a higher degree of ordering (e.g.,
with a smaller threshold S), the degraded read performance
gains of DEPART become larger, because it is more efficient
to read the KV pairs in the two-layer log that with a high
degree of ordering.

Experiment 8 (Impact of the ordering degree S). We eval-
uate the write and read performance under different settings
of the ordering degree S in DEPART, so as to show how
DEPART can balance the read and write performance gains
for the redundant copies by tuning the value of S. The client
machine first randomly writes 200 M KV pairs to the cluster,
followed by issuing 20 M reads. Here, we use the consis-
tency configuration (WCL=2, RCL=2), so that the redundant
copies must be accessed for each successful read.

Table 1 shows the results. For DEPART, if S = 1, the two-
layer log reduces to a two-level LSM-tree, so it achieves the
highest read throughput as the KV pairs are fully sorted, but
the write throughput is the least due to the frequent merge-
sorts for maintaining a single sorted run in each range group in
the local logs. As we increase S (e.g., S is 10 or 20), the order-
ing of the two-layer log is relaxed and hence the merge-sort
overhead becomes smaller, so the write throughput increases.
As we set S to be a sufficiently large value, the two-layer log
reduces to the append-only log, so the write throughput is the
highest, but the read throughput is the least. Note that when
S is 1, 10, or 20, DEPART still maintains higher throughput
in both writes and reads than Cassandra, even though there
exists a performance trade-off between writes and reads in
DEPART.

Experiment 9 (Impact of different KV store sizes). We
now evaluate the impact of different KV store sizes. We vary
the data size written by the client from 200 M to 400 M KV
pairs (i.e., the total amount of primary and redundant copies
increases from 600 GiB to 1200 GiB under triple replication).
Figure 18 shows the throughput of writes and reads under dif-
ferent KV store sizes. Compared with Cassandra, DEPART
improves the write and read throughput by 1.43-1.52× and
2.43-2.95×, respectively. Also, the performance gains of DE-
PART increase as the KV store size increases, as DEPART
alleviates the write and read amplifications via replica decou-
pling, but Cassandra aggravates the write and read amplifica-
tions via uniform indexing.

To better show the scalability of the two-layer log design
under different KV store sizes, we also evaluate the com-
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paction time of the LSM-tree and the merge-sort time of the
two-layer log in DEPART, and compare them with the com-
paction time in Cassandra. When the KV store size increases
from 200 M to 400 M KV pairs, the compaction time in Cas-
sandra increases 2.3×, while the total time of compaction and
merge-sort operations in DEPART only increases 1.9×. In
particular, the ratio of the merge-sort time in DEPART to the
compaction time in Cassandra drops from 21.4% to 18.7%,
and the ratio of the compaction time in DEPART to the com-
paction time in Cassandra drops from 30.7% to 25.2%. Thus,
DEPART scales well as the KV store grows.

Experiment 10 (Impact of different numbers of nodes).
We evaluate the performance of DEPART when the cluster
contains more nodes. We vary the number of nodes as 5, 8,
and 10. We configure the client machine to issue the writes of
200 M, 320 M, and 400 M KV pairs, respectively, so that each
node contains the same amount of data. After the writes, we
configure the client machine to issue 20 M, 32 M, and 40 M
reads, respectively.

Figure 19 shows the throughput results of write and read op-
erations. Compared with Cassandra, DEPART increases the
throughput of writes and reads to 1.35-1.43× and 2.26-2.43×,
respectively. DEPART maintains its performance gains over
Cassandra via replica decoupling, regardless of the cluster
size. Thus, DEPART achieves good scalability as the cluster
size increases.

6 Related Work
Local LSM-tree KV stores. A number of studies optimize
the read and write performance of local LSM-tree KV stores
that run on single machines. Read performance can be im-
proved by Bloom filter optimization [23,38], adaptive caching
[65], and scan optimization with succinct tries [68], while
write performance can be improved by compaction optimiza-
tion [24, 32, 55, 56], the fragmented LSM-tree [51], KV sepa-

ration [12, 36, 43], I/O scheduling optimization [8], memory
structure optimization [9], and a mix of optimization tech-
niques for memory-disk-log components [7]. Our work fo-
cuses on the replica management in distributed KV stores,
and is compatible with the above optimization techniques for
local LSM-tree KV stores in individual nodes.
Distributed KV stores. Distributed KV stores can be classi-
fied into in-memory KV caches [42, 53] and persistent stores
[1–3, 41, 50]. Optimization efforts for in-memory KV stores
include lock-free and cache-friendly designs for high concur-
rency and throughput [13, 30, 40], erasure coding designs for
memory efficiency [66, 67], self-tuning data placement [49],
size-aware sharding for tail latency reduction [26], adaptive
load balancing [16], secondary indexing [34], stretched Reed-
Solomon coding [35], as well as hot spot optimization [15].
For distributed persistent KV stores, prior studies propose of-
fline index construction for bulk loading [57], adaptive replica
selection [52], multi-get scheduling [58], auto-tuning of tail
latency optimization [39], load balancing [11], performance
optimization via cost-benefit analysis with workload predic-
tion [45], and optimizations of data placement and controlled
migration [63, 64]. Persistent KV stores mostly adopt the
LSM-tree in the storage layer to store all KV pairs. In con-
trast, DEPART proposes replica decoupling in distributed
LSM-tree KV stores for efficient replica management.
Replica management. Prior studies improve the replication
of distributed KV stores via efficient replica placement. Early
studies include chain replication [61, 62] and its extension
[44], low-cost wide-area replication [17], and dynamic hierar-
chical replication for data grids [46]. Copyset [19] and tiered
replication [18] focus on maintaining high storage reliability.
Replex [59] supports efficient queries on multiple keys. Our
work focuses on the replica management within each storage
node, while being compatible with the upper-layer replica
placement policies.

7 Conclusion
We propose DEPART, which builds on a novel replica man-
agement scheme, replica decoupling, for distributed KV stores.
DEPART uses a novel two-layer log design with tunable or-
dering to efficiently manage the redundant copies for different
read and write performance requirements. Our DEPART pro-
totype significantly outperforms Cassandra in different types
of KV operations and maintains its performance gains for
different consistency levels and parameter settings.
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Abstract
We present PAIO, a framework that allows developers to im-
plement portable I/O policies and optimizations for different
applications with minor modifications to their original code
base. The chief insight behind PAIO is that if we are able to
intercept and differentiate requests as they flow through dif-
ferent layers of the I/O stack, we can enforce complex storage
policies without significantly changing the layers themselves.
PAIO adopts ideas from the Software-Defined Storage com-
munity, building data plane stages that mediate and optimize
I/O requests across layers and a control plane that coordinates
and fine-tunes stages according to different storage policies.
We demonstrate the performance and applicability of PAIO
with two use cases. The first improves 99th percentile latency
by 4× in industry-standard LSM-based key-value stores. The
second ensures dynamic per-application bandwidth guaran-
tees under shared storage environments.

1 Introduction

Data-centric systems such as databases, key-value stores
(KVS), and machine learning engines have become an integral
part of modern I/O stacks [12, 19, 32, 43, 53, 55]. Good perfor-
mance for these systems often requires storage optimizations
such as I/O scheduling, differentiation, and caching. However,
these optimizations are implemented in a sub-optimal manner,
as these are tightly coupled to the system implementation, and
can interfere with each other due to lack of global context.
For example, optimizations such as differentiating foreground
and background I/O to reduce tail latency are broadly appli-
cable; however, the way they are implemented in KVS today
(e.g., SILK [16]) requires a deep understanding of the system,
and are not portable across other KVS. Similarly, optimiza-
tions from applications deployed at shared infrastructures may
conflict due to not being aware of each other [27, 51, 61, 62].

In this paper, we argue that there is a better way to imple-
ment such storage optimizations. We present PAIO, a user-
level framework that enables building portable and generally
applicable storage optimizations by adopting ideas from the
Software-Defined Storage (SDS) community [38]. The key
idea is to implement the optimizations outside the applica-
tions, as data plane stages, by intercepting and handling the
I/O performed by these. These optimizations are then con-
trolled by a logically centralized manager, the control plane,
that has the global context necessary to prevent interference
among them. PAIO does not require any modifications to the

kernel (critical for deployment). Using PAIO, one can decou-
ple complex storage optimizations from current systems, such
as I/O differentiation and scheduling, while achieving results
similar to or better than tightly coupled optimizations.

Building PAIO is not trivial, as it requires addressing multi-
ple challenges that are not supported by current solutions. To
perform complex I/O optimizations outside the application,
PAIO needs to propagate context down the I/O stack, from
high-level APIs down to the lower layers that perform I/O
in smaller granularities.1 It achieves this by combining ideas
from context propagation [36], enabling application-level in-
formation to be propagated to data plane stages with minor
code changes and without modifying existing APIs.

PAIO requires the design of new abstractions that allow dif-
ferentiating and mediating I/O requests between user-space
I/O layers. These abstractions must promote the implementa-
tion and portability of a variety of storage optimizations. PAIO
achieves this with four main abstractions. The enforcement
object is a programmable component that applies a single
user-defined policy, such as rate limiting or scheduling, to
incoming I/O requests. PAIO characterizes and differentiates
requests using context objects, and connects I/O requests, en-
forcement objects and context objects through channels. To
ensure coordination (e.g., fairness, prioritization) across inde-
pendent storage optimizations, the control plane, with global
visibility, fine-tunes the enforcement objects by using rules.

With these new features and abstractions, system designers
can use PAIO to develop custom-made SDS data plane stages.
To demonstrate this, we validate PAIO under two use cases.
First, we implement a stage in RocksDB [9] and demonstrate
how to prevent latency spikes by orchestrating foreground
and background tasks. Results show that a PAIO-enabled
RocksDB improves 99th percentile latency by 4× under dif-
ferent workloads and testing scenarios (e.g., different storage
devices, with and without I/O bandwidth restrictions) when
compared to baseline RocksDB, and achieves similar tail la-
tency performance when compared to SILK [16]. Our ap-
proach demonstrates that complex I/O optimizations, such
as SILK’s I/O scheduler, can be decoupled from the original
layer to a self-contained, easier to maintain, and portable stage.
Second, we apply PAIO to TensorFlow [11] and show how to
achieve dynamic per-application bandwidth guarantees under
a real shared-storage scenario at the ABCI supercomputer [1].
Results show that all PAIO-enabled TensorFlow instances are

1We refer to the term “layer” as a component of a given I/O stack that
handles I/O requests (e.g., application, KVS, file system, device driver).

USENIX Association 20th USENIX Conference on File and Storage Technologies    413



provisioned with their bandwidth goals. This shows that PAIO
enables enforcing storage policies with system-wide visibility
and holistic control.

In summary, the paper makes the following contributions:
• PAIO, a user-level framework for building programmable

and dynamically adaptable data plane stages (§3-§7). PAIO
is publicly available at https://github.com/dsrhaslab/paio.

• Implementation of two stages to (1) reduce latency spikes
in an LSM KVS; and (2) achieve per-application bandwidth
guarantees under shared storage settings (§8).

• Experimental results demonstrating PAIO’s performance
and applicability under synthetic and real scenarios (§9).

2 Motivation and Challenges

We now describe the problems of system-specific I/O opti-
mizations and how these drive the proposal of PAIO.
Problem 1: tightly coupled optimizations. Most I/O opti-
mizations are single-purposed as they are tightly integrated
within the core of each system [16, 29, 50]. Implementing
these optimizations requires deep understanding of the sys-
tem’s internal operation model and profound code refactoring,
limiting their maintainability and portability across systems
that would equally benefit from them. For instance, to re-
duce tail latency spikes at RocksDB, an industry-standard
LSM-based KVS, SILK proposes an I/O scheduler to control
the interference between foreground and background tasks.
However, applying this optimization over RocksDB required
changing several core modules made of thousands of LoC,
including background operation handlers, internal queuing
logic, and thread pools [5, 15]. Further, porting this optimiza-
tion to other KVS (e.g., LevelDB [21], PebblesDB [47]) is not
trivial, as even though they share the same high-level design,
the internal I/O logic differs across implementations (e.g.,
data structures [20, 47], compaction algorithms [34, 47]).
Solution: decouple optimizations. I/O optimizations should
be disaggregated from the system’s internal logic and moved
to a dedicated layer, becoming generally applicable and
portable across different scenarios.
Resulting challenge: rigid interfaces. Decoupling optimiza-
tions comes with a cost, as we lose the granularity and internal
application knowledge present in system-specific optimiza-
tions. Specifically, the operation model of conventional I/O
stacks requires layers to communicate through rigid interfaces
that cannot be easily extended, discarding information that
could be used to classify and differentiate requests at different
levels of granularity [13]. For instance, let us consider the I/O
stack depicted in Fig. 1 made of an Application, a KVS, and a
POSIX-compliant File System. POSIX operations submitted
from the KVS can be originated from different workflows,
including foreground ( a ) and background flows i.e., flushes
( b ) and compactions ( c ). The File System however, can only
observe the request’s size and type (i.e., read and write), mak-

Application

File System

Key-Value Store
foreground flows

flush flowscompaction flows

KVStore operation
Workflow ID: 75476
Operation type: read
Operation size: 4096

KVStore operation
Workflow ID: 75482
Operation type: write
Operation size: 4096

KVStore operation
Workflow ID: 75490
Operation type: read
Operation size: 4096

KVStore operation
Workflow ID: 75476
Operation type: read
Operation size: 4096
Context: foreground task

KVStore operation
Workflow ID: 75482
Operation type: write
Operation size: 4096
Context: flush

KVStore operation
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Figure 1: Operations submitted from different workflows. Exam-
ple of the operation flow of a multi-layered I/O stack. Left side de-
picts the regular information that can be extracted from operations
between the KVS and File System, while the right side propagates
additional request information throughout layers.

ing it impossible to infer its origin. Implementing SILK’s I/O
scheduler at a lower layer (e.g., File System, layer between
the KVS and the File System), would make the optimization
portable to other KVS solutions. However, it would be inef-
fective since it could not differentiate between foreground
and background operations.

Solution: information propagation. Application-level infor-
mation must be propagated throughout layers to ensure that
decoupled optimizations can provide the same level of control
and performance as system-specific ones.

Resulting challenge: kernel-level layers. While implement-
ing SILK’s I/O scheduler at the kernel (e.g., file system, block
layer) would promote its applicability across other KVS so-
lutions, it poses several disadvantages. First, for application-
level information to be propagated to these layers, it requires
breaking user-to-kernel (i.e., POSIX) and kernel-internal inter-
faces (e.g., VFS, block layer, page cache), decreasing portabil-
ity and compatibility [13]. Further, kernel-level development
is more restricted and error prone than in user-level [42, 56].
Finally, these optimizations would be ineffective under kernel-
bypass storage stacks (e.g., SPDK [10], PMDK [8]), since
I/O requests are submitted directly from the application (user-
space) to the storage device.

Solution: actuate at user-level. I/O optimizations should
be implemented at a dedicated user-level layer, promoting
portability across different systems and scenarios, and easing
information propagation throughout layers.

Problem 2: partial visibility. Optimizations implemented in
isolation are oblivious of other systems that compete for the
same storage resources. Under shared infrastructures (e.g.,
cloud, HPC), this lack of coordination can lead to conflict-
ing optimizations [27, 62], I/O contention, and performance
variation for both applications and storage backends [51, 61].

Solution: global control. Optimizations should be aware of
the surrounding environment and operate in coordination to
ensure holistic control of I/O workflows and shared resources.
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3 PAIO in a Nutshell

PAIO is a framework that enables system designers to build
custom-made SDS data plane stages. A data plane stage built
with PAIO targets the workflows of a given user-level layer,
enabling the classification and differentiation of requests and
the enforcement of different storage mechanisms according
to user-defined storage policies. Examples of such policies
can be as simple as rate limiting greedy tenants to achieve
resource fairness, to more complex ones as coordinating work-
flows with different priorities to ensure sustained tail latency.
PAIO’s design is built over five core principles.
General applicability. To ensure applicability across differ-
ent I/O layers, PAIO stages are disaggregated from the internal
system logic, contrary to tightly coupled solutions.
Programmable building blocks. PAIO follows a decoupled
design that separates the I/O mechanisms from the policies
that govern them, and provides the necessary abstractions for
building new storage optimizations to employ over requests.
Fine-grained I/O control. PAIO classifies, differentiates, and
enforces I/O requests with different levels of granularity, en-
abling a broad set of policies to be applied over the I/O stack.
Stage coordination. To ensure stages have coordinated ac-
cess to resources, PAIO exposes a control interface that en-
ables the control plane to dynamically adapt each stage to
new policies and workload variations.
Low intrusiveness. Porting I/O layers to use PAIO requires
none to minor code changes.

3.1 Abstractions in PAIO

PAIO uses four main abstractions, namely enforcement ob-
jects, channels, context, and rules.
Enforcement object. An enforcement object is a self-contai-
ned, single-purposed mechanism that applies custom I/O logic
over incoming I/O requests. Examples of such mechanisms
can range from performance control and resource manage-
ment such as token-buckets and caches, data transformations
as compression and encryption, to data management (e.g.,
data prefetching, tiering). This abstraction provides to system
designers the flexibility and extensibility for developing new
mechanisms tailored for enforcing specific storage policies.
Channel. A channel is a stream-like abstraction through
which requests flow. Each channel contains one or more en-
forcement objects (e.g., to apply different mechanisms over
the same set of requests) and a differentiation rule that maps
requests to the respective enforcement object to be enforced.
Context object. A context object contains metadata that char-
acterizes a request. It includes a set of elements (or classifiers),
such as the workflow id (e.g., thread-ID), request type (e.g.,
read, open, put, get), request size, and the request context,
which is used to express additional information of a given
request, such as determining its origin, context, and more. For
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Figure 2: PAIO overview. PAIO is a user-level framework that al-
lows implementing programmable and adaptable data plane stages.

each request, PAIO generates the corresponding Context ob-
ject that is used for classifying, differentiating, and enforcing
the request over the respective I/O mechanisms.
Rule. In PAIO, a rule represents an action that controls the
state of a data plane stage. Rules are submitted by the control
plane and are organized in three types: housekeeping rules
manage the internal stage organization, differentiation rules
classify and differentiate I/O requests, enforcement rules ad-
just enforcement objects upon workload variations.

3.2 High-level Architecture

Fig. 2 outlines PAIO’s high-level architecture. It follows a
decoupled design that separates policies, implemented at an
external control plane, from the mechanisms that enforce
them, implemented at the data plane stage. PAIO targets I/O
layers at the user-level. Stages are embedded within layers, in-
tercepting all I/O requests and enforcing user-defined policies.
To achieve this, PAIO is organized in four main components.
Stage interface. Applications access stages through a stage
interface (§6.1) that routes all requests to PAIO before being
submitted to the next I/O layer (i.e., App3 →PAIO →File
System). For each request, it generates a Context object with
the corresponding I/O classifiers.
Differentiation module. The differentiation module (§4) clas-
sifies and differentiates requests based on their Context object.
To ensure requests are differentiated with fine-granularity,
we combine ideas from context propagation [36] to enable
application-level information, only accessible to the layer it-
self, to be propagated to PAIO, broadening the set of policies
that can be enforced.
Enforcement module. The enforcement module (§5) is respon-
sible for applying the actual I/O mechanisms over requests.
It is organized with channels and enforcement objects. For
each request, the module selects the channel and enforcement
object that should handle it. After being enforced, requests
are returned to the original data path and submitted to the next
I/O layer (File System).
Control interface. PAIO exposes a control interface (§6.1) that
enables the control plane to (1) orchestrate the stage lifecycle
by creating channels, enforcement objects, and differentiation
rules, and (2) ensure all policies are met by continuously mon-
itoring and fine-tuning the stage. The control plane provides
global visibility, ensuring that stages are controlled holisti-
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cally. Exposing this interface allows stages to be managed by
existing control planes [22, 35, 54].

3.3 A Day in the Life of a Request

Before delving into PAIO’s internal modules, we first illus-
trate how it orchestrates the workflows of a given layer. We
consider the I/O stack depicted on Fig. 3, which is made
of an Application, RocksDB, a PAIO stage, and a POSIX-
compliant File System; and the enforcement of the following
policy: “limit the rate of RocksDB’s flush operations to X
MiB/s”. RocksDB’s background workflows generate flush and
compaction jobs, which are translated in multiple POSIX oper-
ations that are submitted to the File System. Flushes are trans-
lated in writes, while compactions in reads and writes.

At startup time, RocksDB initializes the PAIO stage, which
connects to an already deployed control plane. The control
plane submits housekeeping rules to create a channel and an
enforcement object that rate limits requests at X MiB/s ( 1 ).
It also submits differentiation rules ( 2 ) to determine which
requests should be handled by the stage, namely flush-based
writes. Details on how the differentiation and enforcement
processes work are given in §4 and §5, respectively.

At execution time, RocksDB propagates the context at
which a given operation is created ( 0 ) and redirects all write
operations to PAIO ( 1 ) . Through 1 , we ensure that only
write operations are enforced at PAIO, while with 0 , we
differentiate flush-marked writes from others that can be
triggered by compactions jobs. Upon a flush-based write, a
Context object is created with its request type (write), con-
text (flush), and size, and submitted, along the request, to the
stage ( 1 ). Then, the stage selects the channel ( 2 ) to be used,
enqueues the request ( 3 ), and selects the enforcement object
to service the request ( 4 ), which in turn rate limits the request
at X MiB/s ( 5 ). After enforcing the request ( 6 ), the original
write operation is submitted to the File System .

The control plane continuously monitors and fine-tunes the
data plane stage. Periodically, it collects from the stage the
throughput at which requests are being serviced ( 3 ). Based
on this metric, the control plane may adjust the enforcement
object to ensure flush operations flow at X MiB/s, generating
enforcement rules with new configurations ( 4 ).

Table 1: Examples of the type of requests a channel receives.

Channel Workflow ID Request context Request type

channel1 flow1 — —
channel2 — background tasks read
channel3 flow5 compaction write

4 I/O Differentiation

PAIO’s differentiation module provides the means to classify
and differentiate requests at different levels of granularity,
namely per-workflow, request type, and request context. The
process for differentiating requests is achieved in three phases.
Startup time. At startup time, the user defines how requests
are differentiated and who should handle each request. First,
it defines the granularity of the differentiation, by specifying
which I/O classifiers should be used to differentiate requests.
For example, to provide per-workflow differentiation PAIO
only considers the Context’s workflow id classifier, while
to differentiate requests based on their context and type, it
uses both request context and request type classifiers. Second,
the user attributes specific I/O classifiers to each channel to
determine the set of requests that a given channel receives.
Table 1 provides examples of this specification: channel1 only
receives requests from flow1, while channel2 only handles
read requests originated from background tasks; channel3
receives compaction-based writes from flow5. To generate a
unique identifier that maps requests to channels, the classifiers
can be concatenated into a string or hashed into a fixed-size
token (§7). Further, this process can be set by the control plane
(i.e., differentiation rules) or configured at stage creation.
Execution time. The second phase differentiates the I/O re-
quests submitted to the stage and routes them to the respective
channel to be enforced. This is achieved in two steps.
Channel selection. For each incoming request, which is ac-
companied by its Context object, PAIO selects the channel
that must service it (Fig. 3, 2 ). PAIO verifies the Context’s
I/O classifiers and maps the request to the respective channel
to be enforced. This mapping is done as described in the first
phase of the differentiation process.
Enforcement object selection. As each channel can contain
multiple enforcement objects, analogously to channel selec-
tion, PAIO selects the correct object to service the request
(Fig. 3, 4 ). For each request, the channel verifies the Context’s
classifiers and maps the request to the respective enforcement
object, which will then employ its I/O mechanism (§5).
Context propagation. Several I/O classifiers, such as work-
flow id, request type, and size, are accessible from observing
raw I/O requests. However, application-level information, that
is only accessible to the layer that submits the I/O requests,
could be used to expand the policies to be enforced over the
I/O stack. An example of such information, as depicted in
Fig.1, is the operation context, which allows to determine the
origin or context of a given request, i.e., if it comes from a
foreground or background task, flush or compaction, or other.
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As such, PAIO enables the propagation of additional in-
formation from the targeted layer to the stage. It combines
ideas from context propagation, a commonly used technique
that enables a system to forward context along its execution
path [36, 37, 41, 62], and applies them to ensure fine-grained
control over requests. To achieve this, system designers instru-
ment the data path of the targeted layer where the information
can be accessed, and make it available to the stage through
the process’s address space, shared memory, or thread-local
variables. The information is included at the creation of the
Context object as the request context classifier. Propagating
the context without this method would require changing all
core modules and function signatures between where the in-
formation can be found and its submission to the stage.

As an example, consider the I/O stack of Fig. 3. To deter-
mine the origin of POSIX operations submitted by Rocks-
DB’s background workflows, system designers instrument
the RocksDB’s critical path responsible for managing flush
or compaction jobs ( 0 ) to capture their context. This infor-
mation is then propagated to the stage interface, where the
Context object is created with all I/O classifiers, including the
request context, and submitted to the stage ( 1 ).

Note that this step is optional, as it can be skipped for poli-
cies that do not require additional information to be enforced.

5 I/O Enforcement

The enforcement module provides the building block for de-
veloping the actual I/O mechanisms that will be employed
over requests. It is composed of several channels, each con-
taining one or more enforcement objects.

As depicted in Fig. 3, requests are moved to the selected
channel and placed in a submission queue ( 3 ) . For each
dequeued request, PAIO selects the correct enforcement ob-
ject ( 4 ) and applies its I/O mechanism ( 5 ) . Examples of
these mechanisms include token-buckets, caches, encryption
schemes, and more; we discuss how to build enforcement
objects in §6.3 Since several mechanisms can change the
original request’s state, such as data transformations (e.g., en-
cryption, compression), during this phase, the enforcement
object generates a Result that encapsulates the updated ver-
sion of the request, including its content and size. The Result
object is then returned to the stage interface, that unmarshalls
it, inspects it, and routes it to the original data path ( 6 ). Af-
ter this process, PAIO ensured that the request has met the
objectives of the specified policy.

Optimizations. Depending on the policies and mechanisms
to be employed, PAIO can enforce requests using only their
I/O classifiers. While data transformations are directly appli-
cable over the request’s content, performance-driven mech-
anisms such as token-buckets and schedulers, only require
specific request metadata to be enforced (e.g., type, size, pri-
ority, storage path). As such, to avoid adding overhead to the

Table 2: Interface definitions of PAIO.

1† paio_init() Initialization of PAIO stage
enforce(ctx,r) Enforce context ctx and request r

2?
obj_init(s) Initialize enforcement object with state s
obj_enf(ctx,r) Enforce I/O mechanism over ctx and r
obj_config(s) Configure enforcement object with state s

3∗

stage_info() Get data plane stage information
hsk_rule(t) Housekeeping rule with tuple t
dif_rule(t) Differentiation rule with tuple t
enf_rule(id,s) Enf. rule over enf. object id with state s
collect() Collect statistics from data plane stage

†Stage API; ?Enforcement object API; ∗Control API.

system execution, PAIO allows for the request’s content to be
copied to the stage’s execution path only when necessary.

6 PAIO Interfaces and Usage

We now detail how PAIO interacts with I/O layers and control
planes, how to integrate PAIO in user-level layers, and how to
build enforcement objects.

6.1 Interfaces

Stage interface. PAIO provides an application programming
interface to establish the connection between an I/O layer
and PAIO’s internal mechanisms. As depicted in Table 2, it
presents two functions: paio_init initializes a stage, which
connects to the control plane for internal stage management
and defining how workflows should be handled; enforce in-
tercepts requests from the layer and routes them, along the
associated Context object, to the stage (§6.2 details how re-
quests should be intercepted and submitted to PAIO). After
enforcing the request, the stage outputs the enforcement result
and the layer resumes the original execution path.

Control interface. Communication between stages and the
control plane is achieved through five calls, as depicted in
Table 2. A stage_info call lists information about the stage,
including the stage identifier and process identifier (PID).
Rule-based calls are used for managing and tuning the data
plane stage. Housekeeping rules (hsk_rule) manage the stage
lifecycle (e.g., create channels and enforcement objects), dif-
ferentiation rules (dif_rule) map requests to channels and
enforcement objects, and enforcement rules (enf_rule) dy-
namically adjust the internal state (s) of a given enforcement
object (id) upon workload and policy variations. The con-
trol plane also monitors stages though a collect call, that
gathers key performance metrics of all workflows (e.g., IOPS,
bandwidth) and can be used to tune the data plane stage.

This interface enables the control plane to define how PAIO
stages handle I/O requests. Nonetheless, concerns related to
the dependability of data plane stages, as well as the resolu-
tion of conflicting policies are responsibility of the control
plane [38], and are thus orthogonal to this paper.
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6.2 Integrating PAIO in User-level Layers
Porting I/O layers to use PAIO stages can require a few steps.
Using PAIO with context propagation. To integrate a stage
within a layer, the system designer typically needs to:
1. Create the stage in the targeted layer, using paio_init.
2. Instrument the critical data path, where the layer-level in-

formation is accessible, and propagate it to the stage upon
the Context object creation. This might entail creating
additional data structures.

3. Create the Context object that will be submitted, alongside
the request, to the stage. It can include the workflow id,
request type and size, and the propagated information.

4. Add an enforce call to the I/O operations that need to be
enforced at the stage before being submitted to the next
layer. For example, to enforce the POSIX read operations
of a given layer, all read calls need to be first routed to
PAIO before being submitted to the file system.

5. Verify if the request was successfully enforced by inspect-
ing the Result object, returned from enforce, and resume
the execution path.

Using PAIO transparently. When context propagation is not
required, PAIO stages can be used transparently between I/O
layers, such as applications and file systems. PAIO exposes
layer-oriented interfaces (e.g., POSIX) and uses LD_PRELOAD

to replace the original interface calls at the top layer (e.g., read
and write calls invoked by applications) for ones that are first
submitted to PAIO before being submitted to the bottom layer
(e.g., file system) [7]. Each supported call defines the logic
to create the Context object, submits the request to the stage,
verifies the Result, and invokes the original I/O call. This
enables layers to use PAIO without changing any line of code.

6.3 Building Enforcement Objects
PAIO exposes to system designers a simple API to build
enforcement objects, as depicted in Table 2.
• obj_init. Create an enforcement object with initial state
s, which includes its type and initial configuration.

• obj_config. Provides the tuning knobs to update the en-
forcement object’s internal settings with a new state s. This
enables the control plane to dynamically adapt it to work-
load variations and new policies.

• obj_enf. Implements the actual I/O logic to be applied
over requests. It returns a Result that contains the updated
version of the request (r), after applying its logic. It also re-
ceives a Context object (ctx) that is used to employ different
actions over the I/O request.
By default, PAIO preserves the operation logic of the tar-

geted system (e.g., ordering, error handling), as both enforce-
ment objects and operations submitted to PAIO follow a syn-
chronous model. While developing asynchronous enforce-
ment objects is feasible, one needs to ensure that both correct-
ness and fault tolerance guarantees are preserved.

7 Implementation

We have implemented PAIO prototype with 9K lines of C++
code. It targets layers at the user-level, enabling the construc-
tion of new stage implementations and simple integration,
requiring none or minor code changes.

Enforcement objects. We implemented two enforcement ob-
jects. Noop implements a pass-through mechanism that copies
the request’s content to the Result object, without additional
data processing. Dynamic rate limiter (DRL) implements a
token-bucket to control the rate and burstiness of I/O work-
flows [17]. The bucket is configured with a maximum token
capacity (size) and period to replenish the bucket (refill pe-
riod). The rate at which the bucket serves requests is given in
tokens/s. On obj_init the bucket is created with an initial size
and refill period. On obj_config, a rate(r) routine changes
the size according to a function between r and refill period.
For each request, obj_enf verifies the context’s size classifier
and computes the number of tokens to be consumed. If not
enough tokens are available, the request waits for the bucket
to be refilled. To demonstrate the portability and maintainabil-
ity of PAIO’s I/O mechanisms, we apply the DRL object over
two use cases composed of different layers and objectives.

I/O cost. We consider a constant cost for requests e.g., each
byte of a read or write request represents a token. Although
the cost depends on several factors (e.g., workload, type, cache
hits), we continuously calibrate the token-bucket so its rate
converges to the policies’ goal. Our experiments show that
this approach works well in our scenarios, as the bucket’s
rate converges within few interactions with the control plane.
Nevertheless, determining the I/O cost is complementary to
our work [24,50]. Combining PAIO with these could be useful
under scenarios where policies are sensitive to the I/O cost.

Statistics, communication, and differentiation. PAIO im-
plements per-workflow statistic counters at channels to record
the bandwidth of intercepted requests, number of operations,
and mean throughput between collection periods. Commu-
nication between the control plane and stages is established
through UNIX Domain Sockets. To create unique identifiers
that map requests to channels and enforcement objects, we
used a computationally cheap hashing scheme [14] (i.e., Mur-
murHash3) that hashes classifiers into a fixed-size token.

Context propagation. To propagate information from layers,
we implemented a shared map, indexed by the workflow iden-
tifier (e.g., thread-id), that stores the context of the requests
being submitted, which is similar to those used in [36, 37].

Transparently intercepting I/O calls. PAIO uses LD_PRELO-

AD to intercept POSIX calls and route them either to the stage
or to the kernel. It supports read and write calls, including
different variations (e.g., pread, pwrite64). We found that sup-
porting this set of calls is sufficient to enforce data-oriented
policies, as presented in §8.2. We defer the support of other
calls and interfaces (e.g., KVS, object store) to future work.
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Control plane. We built a simple but fully-functional con-
trol plane with 3.6K lines of C++ code that enforces policies
for the two use cases of this paper (§8). Policies were im-
plemented as control algorithms. To calibrate enforcement
objects, besides stage statistics, it collects I/O metrics gen-
erated by the targeted layer from the /proc file system [44].
Specifically, it inspects the read_bytes and write_bytes I/O
counters, which represent the number of bytes read/written
from/to the block layer, and compares them with the stage
statistics to converge to the targeted performance goal.

8 Use Cases and Control Algorithms

We now present two use cases that showcase the applicability
of PAIO for different applications and performance goals.

8.1 Tail Latency Control in Key-Value Stores

LSM KVSs [34] (e.g., RocksDB) use foreground flows to at-
tend client requests, which are enqueued and served in FIFO
order. Background flows serve internal operations, namely
flushes and compactions. Flushes are sequentially written to
the first level of the tree (L0) and only proceed when there is
enough space. Compactions are held in a FIFO queue, waiting
to be executed by a dedicated thread pool. Except for low level
compactions (L0→L1), these can be made in parallel. A com-
mon problem of these however, is the interference between
I/O workflows, generating latency spikes for client requests.
Latency spikes occur when flushes cannot proceed because
L0→L1 compactions and flushes are slow or on hold [16].
SILK. SILK [16], a RocksDB-based KVS, prevents this
through an I/O scheduler that: allocates bandwidth for internal
operations when client load is low; prioritizes flushes and low
level compactions, as they impact client latency; and preempts
high level compactions with low level ones. It employs these
techniques through the following control algorithm. As these
KVSs are embedded, the KVS I/O bandwidth is bounded
to a given rate (KVSB). It monitors clients’ bandwidth (Fg),
and allocates leftover bandwidth (leftB) to internal operations
(IB), given by IB = KVSB−Fg. To enforce rate IB, SILK uses
RocksDB’s rate limiters [4]. Flushes and L0→L1 compactions
have high priority and are provisioned with minimum I/O
bandwidth (minB). High level compactions have low priority
and can be paused at any time. Because all compactions share
the same thread pool, it is possible that, at some point, all
threads are handling high level compactions. As such, SILK
preempts one of them to execute low level compactions.

Applying these optimizations however, required reorganiz-
ing RocksDB’s internal operation flow, changing core mod-
ules made of thousands of LoC including background op-
eration handlers, internal queuing logic, and thread pools
allocated for internal work [15]. Further, porting these opti-
mizations to other KVS that would equally benefit from them,

Algorithm 1 Tail Latency Control Algorithm
Initialize: KVSB = 200; minB = 10
1: {Fg,Fl,L0,LN}← collect ()
2: leftB←KVSB−Fg
3: leftB← max {leftB | minB}
4: if Fl > 0∧L0 > 0 then
5: {BFl , BL0 , BLN }← {leftB/2, leftB/2, minB}
6: else if Fl > 0∧L0 = 0 then
7: {BFl , BL0 , BLN }← {leftB, minB, minB}
8: else if Fl = 0∧L0 > 0 then
9: {BFl , BL0 , BLN }← { minB, leftB, minB}

10: else
11: {BFl , BL0 , BLN }← { minB, minB, leftB}
12: enf_rule ({BFl , BL0 , BLN })
13: sleep (loop_interval)

such as LevelDB [21] and PebblesDB [47], requires deep
system knowledge and substantial re-implementation efforts.

PAIO. Rather than modifying the RocksDB engine, we found
that several of these optimizations could be achieved by or-
chestrating the I/O workflows. Thus, we applied SILK’s de-
sign principles as follows: a PAIO data plane stage provides
the I/O mechanisms for prioritizing and rate limiting back-
ground flows, while the control plane re-implements the I/O
scheduling algorithm to orchestrate the stage.

The stage intercepts all RocksDB workflows. We consider
each RocksDB thread that interacts with the file system as a
workflow. Channel differentiation is made using the workflow
id. We instrumented RocksDB to propagate the context at
which a given operation is created, namely flush (flush) or
compaction (e.g., compaction_L0_L1). Foreground flows are
monitored for collecting clients’ bandwidth (Fg). Background
flows are routed to channels made of DRL objects. Flushes flow
through a dedicated channel. As compactions with different
priorities can flow through the same channel, each channel
contains two DRL objects configured at different rates. The en-
forcement object differentiation is made through the request
context classifier, and requests are enforced with the optimiza-
tion described in §5. PAIO also collects the bandwidth of
flushes (Fl), and low (L0) and high level compactions (LN).

The control plane implements the control portion of SILK’s
scheduling algorithm (Alg. 1). It uses a feedback control
loop that performs the following steps. First, it collects statis-
tics from the stage (1) and computes leftover disk bandwidth
(leftB) to assign to internal operations (2). To ensure that
background operations keep flowing, it defines a minimum
bandwidth threshold (3), and distributes leftB according to
workflow priorities (4-11). If high priority tasks are executing
it assigns them an equal share of leftB, while ensuring that
high level compactions keep flowing (minB), preventing low
level ones from being blocked in the queue (5). If a single high
priority task is being executed, leftB is allocated to it and minB
to others (6-9). If no high priority task is executing, it reserves
leftB to low priority ones (11). It then generates and submits
enf_rules to adjust the rate of each enforcement object (12).
For low priority compactions, it splits BLN between all DRL
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Table 3: Lines of code added to RocksDB and TensorFlow.

Lines added
RocksDB TensorFlow (LD_PRELOAD)

Targeted code base size ≈335K [5] ≈2.3M [6]
Initialize PAIO stage 10 —
Context propagation 47 —

Create Context object 7 —
Instrument I/O calls 17 —
Verify Result object 4 —

Total 85 0

objects that handle these. Since high priority compactions are
executed sequentially [9, 16], it assigns BL0 to the respective
objects. Rate BFl is assigned to those responsible for flushes.
Integration with RocksDB. Integrating PAIO in RocksDB
only required adding 85 LoC (Table 3). Specifically:
1. Initialize PAIO stage and create additional structures to

identify the task that each workflow is executing (10 LoC).
2. Instrument RocksDB’s internal thread pools for identify-

ing the workflows that run flush and compaction jobs (17
LoC). To differentiate high priority compactions from low
priority ones, we instrumented the code where compaction
jobs are created. For each job, we verify its level and up-
date the structure with the task that the workflow will be
executing (e.g., compaction_L0_L1) (30 LoC).

3. Create a Context object with workflow id, request type,
context, and size I/O classifiers (7 LoC).

4. Submit all read and write calls to the stage (17 LoC).
5. Verify the Result of the enforcement (4 LoC).

8.2 Per-Application Bandwidth Control

The ABCI supercomputer is designed upon the convergence
between AI and HPC workloads. One of the most used AI
frameworks on it is TensorFlow [11]. To execute TensorFlow
jobs users can reserve a full node or a fraction of it (i.e., jobs
execute concurrently). Nodes are partitioned into resource-
isolated instances through Linux’s cgroups [39]. Each in-
stance has exclusive access to CPU cores, memory space, a
GPU, and local storage quota. However, the local disk band-
width is still shared, and because each instance is agnostic of
others, jobs compete for bandwidth leading to I/O interference
and performance variation. Even if the block I/O scheduler is
fair, all instances are provisioned with the same service level,
preventing the assignment of different priorities.

Using cgroups’s block I/O controller (blkio) allows static
rate limiting read and write operations of each instance [2].
However, under ABCI, once the rate is set it cannot be dynam-
ically changed at execution time, as it requires stopping the
jobs, adjust the rate of all groups, and restart the jobs, being
prohibitively expensive in terms of overall execution time.
This creates a second problem where if no other job is execut-
ing in the node, the instance cannot use leftover bandwidth.
PAIO. To address this, we use a PAIO stage that implements
the mechanisms to dynamically rate limit workflows at each

Algorithm 2 Max-min Fair Share Control Algorithm
Initialize: MaxB = 1GiB; Active > 0; demandi > 0
1: {I1, I2, I3, I4}← collect ()
2: leftB←MaxB
3: for i = 0 in [0, Active−1] do
4: if demandi ≤ le f tB

Active−i then
5: ratei← demandi
6: else
7: ratei← le f tB

Active−i

8: leftB← leftB - ratei

9: for i = 0 in [0, Active−1] do
10: ratei← le f tB

Active

11: enf_rule ({rate1, I1},{rate2, I2},{rate3, I3},{rate4, I4})
12: sleep (loop_interval)

instance, while the control plane implements a proportional
sharing algorithm to ensure all instances meet their policies.

Our use case focuses on the model training phase, where
each instance runs a TensorFlow job that uses a single work-
flow to read dataset files from the file system. TensorFlow’s
read requests are intercepted and routed to the stage, which
contains a channel with a DRL enforcement object. Requests
are enforced with the optimization described in §5.

The control plane implements a max-min fair share algo-
rithm to ensure per-application bandwidth guarantees (Alg. 2),
which is typically used for resource fairness policies [35, 54].
The overall disk bandwidth available (MaxB) and bandwidth
demand of each application (demand) are defined a priori by
the system administrator or the mechanism responsible for
managing resources of different job instances [63]. The algo-
rithm uses a feedback control loop that performs the following
steps. First, the control plane collects statistics from each ac-
tive instance’s stage, given by Ii (1), as well as the bandwidth
generated by each TensorFlow job (collected at /proc). Then,
it computes the rate of each active instance (3-10). If an in-
stance’s demand is less than its fair share, the control plane
assigns its demand (4-5), assigning the fair share otherwise
(7). It then distributes leftover bandwidth (leftB) across in-
stances (9-10). Then, it calibrates the rate of each instance
in a function of Ii and ratei, generating the enf_rules to be
submitted to each stage (11). Finally, the control plane sleeps
for loop_interval before beginning a new control cycle (12).
Integration with TensorFlow. Integrating TensorFlow with
PAIO did not required any code changes (Table 3). We used
LD_PRELOAD to intercept, and route to PAIO, TensorFlow’s read
and write calls. All supported calls implement the logic nec-
essary for the request to be enforced, including the creation of
the Context object using the request type and size classifiers;
stage enforcement; verification of the enforcement Result; and
its submission to the original execution path (file system).

9 Evaluation
Our evaluation seeks to demonstrate the performance of PAIO,
and its ability and feasibility of enforcing policies over differ-
ent scenarios. The results show that:
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• Its performance scales with the number of channels, achiev-
ing high throughput and low latency (§9.1).

• It can be used to enforce policies over different I/O layers
with distinct requirements (§9.2 and §9.3).

• By propagating application-level information to the data
plane stage, PAIO outperforms RocksDB by at most 4× in
tail latency, while enabling similar control and performance
as system-specific optimizations (SILK) (§9.2).

• When internal system knowledge is not required, PAIO can
enforce policies without application changes. By having
global visibility, it provisions per-application bandwidth
guarantees at all times, and improves overall execution time
when compared to a static rate limiting approach (§9.3).

Experimental setting. Experiments were conducted under
two hardware configurations. A: a compute node of the ABCI
supercomputer with two 20-core Intel Xeon processors (80
cores), 4 NVidia Tesla V100 GPUs, 384GiB of RAM, and a
1.6TiB Intel SSD DC P4600, running CentOS 7.5 with Linux
kernel 3.10 and the xfs file system. B: a server with two
18-core Intel Xeon processors (72 cores), 192GiB of RAM,
a 1.6TiB Dell Express Flash PM1725b SSD (NVMe) and a
480GiB Intel D3-s4610 SATA SSD, running Ubuntu Server
20.04 LTS with kernel 5.8.9 and the ext4 file system.

9.1 PAIO Performance and Scalability
We developed a benchmark that simulates an application that
submits requests to a PAIO stage. This benchmark aims to
demonstrate the maximum performance achievable with PAIO
by stress-testing it in a loop-back manner. It generates and
submits multi-threaded requests in a closed loop through the
Instance’s enforce call, under a varying number of clients
(e.g., workflows) and request sizes. Request size and number
of client threads range between 0 – 128KiB and 1 – 128,
respectively. Each client thread submits 100M requests. A
PAIO stage is configured with varying number of channels
(matching the number of client threads), each containing a
Noop enforcement object that copies the request’s buffer to
the result object. All reported results are the mean of at least
ten runs and standard deviation is kept below 5%.
IOPS and bandwidth. Fig. 4 depicts the cumulative IOPS
ratio with respect to a single channel. 0B represents a context-
only request, as described in §5. Results marked with ∗ and +
were conducted under configurations A and B, respectively.

For configuration A, under a 0B∗ request size, a single PAIO
channel achieves a mean throughput of 3.05 MOps/s and a
327 ns latency. Since the workload is CPU-bound, the per-
formance does not scale linearly, as client threads compete
for processing time. Under 128 channels, it achieves a cu-
mulative throughput of 97.4 MOps/s, a 31× performance
increase. As the request size increases so does the total bytes
processed by PAIO. When configured with 128 channels, it
processes 128KiB∗ requests at 384 GiB/s. For a single chan-
nel, PAIO processes requests at 2.1 GiB/s and 11.7 GiB/s
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Figure 4: Cumulative IOPS of PAIO under varying number of chan-
nels (1 – 128) and request sizes (0 – 128 KiB). Absolute IOPS value
is shown above the 1 channel bar.

for 1KiB∗ and 128KiB∗ request sizes. For configuration B,
PAIO achieves higher throughput results as it operates under a
later kernel version. Since the machine is configured with 72
cores, PAIO’s performance peaks at 64 client threads. Under
a 0B+ request size, PAIO achieves 3.43 MOps/s (1 channel)
and 102.7 MOps/s (64 channels), representing a 30× perfor-
mance increase. When configured with 64 channels, it is able
to process 128KiB+-sized requests at 489 GiB/s. For a single
channel, PAIO processes requests at 2.5 GiB/s and 14.7 GiB/s
for 1KiB∗ and 128KiB∗ request sizes, respectively.
Profiling. We measured the execution time of each PAIO
operation that appears in the main execution path. Depending
on the hardware configuration, Context object creation takes
between 17 – 19 ns, while the channel and enforcement object
selection take 85 – 89 ns to complete (each). The duration of
obj_enf ranges between 20 ns and 8.45 µs when configured
with 0B and 128KiB request sizes.
Summary. Results show that PAIO has low overhead, as it
is provided as a user-space library, which does not require
costly context-switching operations. We expect that the main
source of overhead will always be dependent on the type of
enforcement object applied over requests. For the enforcement
object used in the use cases of this paper (§9.2 – §9.3), we
have not observed significant performance degradation.

9.2 Tail Latency Control in Key-Value Stores
We now demonstrate how PAIO achieves tail latency control
under several workloads. We compare the performance of
RocksDB [5]; Auto-tuned, a version of RocksDB with auto-
tuned rate limiting of background operations enabled [28];
SILK [16]; and PAIO, i.e., a PAIO-enabled RocksDB.
System configuration. Experiments were conducted under
hardware configuration B using the available NVMe device
(unless stated otherwise). All systems are tuned as follows.
The memtable-size is set to 128MiB. We use 8 threads for
client operations and 8 background threads for flush (1) and
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Figure 5: Mixture workload. Throughput and 99th percentile latency results for RocksDB, Auto-tuned, SILK, and PAIO.
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Figure 6: Read-heavy workload. Throughput and 99th percentile latency results for RocksDB, Auto-tuned, SILK, and PAIO.
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Figure 7: Write-heavy workload. Throughput and 99th percentile latency results for RocksDB, Auto-tuned, SILK, and PAIO.

compactions (7). The minimum bandwidth threshold for in-
ternal operations is set to 10MiB/s. To simplify results com-
pression and commit logging are turned off. All experiments
are conducted using the db_bench benchmark [3]. As used in
the SILK testbed [16], we limit memory usage to 1GiB and
I/O bandwidth to 200MiB/s (unless stated otherwise).
Workloads. We focus on workloads made of bursty clients, to
better simulate existing services in production [16,18]. Client
requests are issued in a closed loop through a combination of
peaks and valleys. An initial valley of 300 seconds submits
operations at 5kops/s, and is used for executing the KVS
internal backlog. Peaks are issued at a rate of 20kops/s for
100 seconds, followed by 10 seconds valleys at 5kops/s. All
datastores were preloaded with 100M key-value pairs, using
a uniform key-distribution, 8B keys and 1024B values.

We use three workloads with different read:write ratios:
mixture (50:50), read-heavy (90:10), and write-heavy (10:90).
Mixture represents a commonly used YCSB workload (work-
load A) and provides a similar ratio as Nutanix production
workloads [16]. Read-heavy provides an operation ratio simi-

lar to those reported at Facebook [18]. To present a compre-
hensive testbed, we include a write-heavy workload. For each
system, workloads were executed three times over 1-hour with
uniform key distribution. For figure clarity, we present the first
20 minutes of a single run. Similar performance curves were
observed for the rest of the execution. Fig. 5–9 depict through-
put and 99th percentile latency of all systems and workloads.
Theoretical client load is presented as a red dashed line. Mean
throughput is shown as an horizontal dashed line.

Mixture workload (Fig. 5). Due to accumulated backlog of
the loading phase, the throughput achieved in all systems
does not match the theoretical client load. RocksDB presents
high tail latency spikes due to constant flushes and low level
compactions. Auto-tuned presents less latency spikes but de-
grades overall throughput. This is due to the rate limiter be-
ing agnostic of background tasks’ priority, and because it
increases its rate when there is more backlog, contending for
disk bandwidth. SILK achieves low tail latency but suffers
periodic drops in throughput due to accumulated backlog.
Compared to RocksDB (11.9 kops/s), PAIO provides simi-
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Figure 8: Mixture workload without rate limiting (SATA SSD). Throughput and 99th percentile latency results for RocksDB, SILK, and PAIO.
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Figure 9: Mixture workload without rate limiting (NVMe). Throughput and 99th percentile latency results for RocksDB, SILK, and PAIO.

lar mean throughput (12.4 kops/s). As for tail latency, while
RocksDB experiences peaks that range between 3–20 ms,
PAIO and SILK observe a 4× decrease in absolute tail latency,
with values ranging between 2–6 ms.

Read-heavy workload (Fig. 6). Throughput-wise all systems
perform identically. At different periods, all systems demon-
strate a temporary throughput degradation due to accumulated
backlog. As for tail latency, the analysis is twofold. RocksDB
and Auto-tuned present high tail latency up to the 400 s mark.
After that mark, RocksDB does not have more pending back-
log and achieves sustained tail latency (1–3 ms), while on
Auto-tuned, some compactions are still being performed due
to rate limiting, increasing latency by 1–2 ms. SILK and PAIO
have similar latency curves. During the initial valley both
systems significantly improve tail latency when compared
to RocksDB. After the 400 s mark, SILK pauses high level
compactions and achieves a tail latency between 1–2 ms. By
preempting high level compactions and serving low level ones
through the same thread pool as flushes, it ensures that high
priority tasks are rarely stalled. SILK achieves this by mod-
ifying the RocksDB’s queuing mechanism. In PAIO, while
sustained, its tail latency is 1 ms higher than SILK’s in the
same observation period. Since PAIO does not modify the
RocksDB engine, it cannot preempt compactions (§8.1).

Write-heavy workload (Fig. 7). Write-intensive workloads
generate a large backlog of background tasks, leading Rocks-
DB to experience high latency spikes. Auto-tuned limits all
background writes, reducing latency spikes but still exceeding
the 5 ms mark over several periods. SILK pauses high level
compactions and only serves high priority tasks, improving
mean throughput and keeping latency spikes below 5 ms. In
PAIO, since flushes occur more frequently, the control plane
slows down high level compactions more aggressively, which
leads to low level ones to be temporary halted at the com-
paction queue, waiting to be executed. Even though mean

throughput is decreased, PAIO significantly reduces tail la-
tency, never exceeding 6 ms. The throughput difference be-
tween PAIO and SILK is justified by the latter preempting high
level compactions, as described in the read-heavy workload.

Mixture workload without rate limiting (Fig. 8–9). We
conducted an additional set of experiments to assess the im-
pact of the tail latency control algorithm under a scenario
where the KVS has access to the full storage device band-
width. We compared the performance of RocksDB, SILK, and
PAIO under both SSD and NVMe devices, without rate lim-
iting, using the mixture workload. The KVSB parameter was
set with a value closer to the device’s limit. For Auto-tuned,
we report similar conclusions to those presented in Fig. 5.

Fig. 8 depicts the results under the SSD device. Due to
accumulated backlog all systems experience poor through-
put performance, averaging at 7.46 kops/s (RocksDB), 7.52
kops/s (SILK), and 8.88 kops/s (PAIO). During the loading
phase, and until finishing the accumulated backlog (0–400 s),
RocksDB experiences long periods of high tail latency, peak-
ing at 111 ms. After that, it observes latency spikes due to
constant flushes and low level compactions, with values rang-
ing between 15–60 ms. SILK and PAIO present a more sus-
tained latency performance, never exceeding the 25 ms mark
throughout the overall observation period. Specifically, while
RocksDB experienced a variability of 21 ms, SILK and PAIO
achieved 4.7 ms and 5.8 ms, respectively.2 Throughput-wise,
both systems observe periodic drops due to accumulated back-
log. However, PAIO is able to recover faster than SILK. Be-
cause it cannot preempt compactions, PAIO reserves more
bandwidth (than SILK) to low priority compactions, ensuring
that high priority tasks do not wait to be executed. As such,
PAIO follows a proactive approach for assigning bandwidth
to compactions, while SILK follows a reactive approach.

2The variability results correspond to the average of the absolute devia-
tions of data points (i.e., each tail latency measurement) from their mean.
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Figure 10: Per-application bandwidth under shared storage for Baseline, Blkio, and PAIO setups. Instances I1 ( ), I2 ( ), I3 ( ), and
I4 ( ) are assigned with minimum bandwidth of 150, 200, 300, and 350 MiB/s, and execute 6, 5, 5, and 4 training epochs, respectively.

Fig. 9 depicts the results under the NVMe device. All
systems experienced higher throughput performance, aver-
aging at 14.39 kops/s (RocksDB), 10.27 kops/s (SILK), and
13.11 kops/s (PAIO). RocksDB follows a similar performance
curve as the theoretical client load. The reason behind this is
twofold. First, it completes all accumulated backlog during
the initial valley (at the cost of high tail latency), which posi-
tively reflects in the remainder execution (i.e, no significant
performance loss is observed). Second, since NVMe devices
have higher throughput performance and parallelism than
SSD devices (Fig. 8), RocksDB achieves a more sustained
performance. After the initial valley, RocksDB observes la-
tency spikes that range between 7–15 ms due to frequent
flushes and low level compactions. SILK and PAIO follow
similar tail latency curves, never exceeding the 6 ms mark. In
detail, throughout the overall observation period, RocksDB
observed a variability of 2.5 ms, while SILK and PAIO only
observed a variability of 0.8 ms. Similarly to previous results,
both system experience periodic throughput drops.
Summary. We demonstrate that through minor code changes,
PAIO outperforms RocksDB by at most 4× in tail latency
and enables similar control and performance as SILK, which
required profound refactoring to the original code base.

9.3 Per-Application Bandwidth Control

We now demonstrate how PAIO ensures per-application band-
width guarantees under a shared storage scenario. Our setup
was driven by the requirements of the ABCI supercomputer.
System configuration. Experiments ran under hardware con-
figuration A using TensorFlow 2.1.0 with the LeNet [30]
training model, configured with a batch size of 64 TFRecords.
We used the ImageNet dataset (≈150GiB) [48]. Each instance
runs with a dedicated GPU and dataset, and its memory is lim-
ited to 32GiB. Overall disk bandwidth is limited to 1GiB/s. At
all times, a node executes at most four instances with equal re-
source shares in terms of CPU, GPU, and RAM. Each instance
executes a TensorFlow job, is assigned with a bandwidth pol-
icy, and executes a given number of training epochs. Namely,

instances 1 to 4 are assigned with minimum bandwidth guar-
antees of 150, 200, 300, and 350 MiB/s, and execute 6, 5, 5,
and 4 training epochs, respectively.

Setups. Experiments were conducted under three setups.
Baseline represents the current setup supported at the ABCI
supercomputer; all instances execute without bandwidth guar-
antees. Blkio enforces bandwidth limits using blkio [2]. In
PAIO, each instance executes with a PAIO stage that enforces
the specified bandwidth goals dynamically. Fig. 10 depicts,
for each setup, the I/O bandwidth of all instances at 1-second
intervals. Experiments include seven phases, each marking
when an instance starts or completes its execution.

Baseline. Experiments were executed over 52 minutes. At
À, I1 reads at 421 MiB/s. Whenever a new instance is added,
the I/O bandwidth is shared evenly (Á). At Â, the aggregated
instance throughput matches the disk limit. At Ã, instance per-
formance converges to ≈256 MiB/s, leading to all instances
experiencing the same service level. However, I3 and I4 can-
not meet their goal, since I1 and I2 have more than their fair
share. After 46 minutes of execution (Ä), I3 terminates, and
leftover bandwidth is shared with the remainder. Again, I4
cannot achieve its targeted goal. At Å and Æ, active instances
have access to leftover bandwidth and finish their execution.
Summary: I3 and I4 were unable to achieve their bandwidth
guarantees, missing their objectives during 31 and 34 minutes.

Blkio. Experiments were executed over 95 minutes. From À
to Æ, whenever a new instance is added, it is provisioned with
its exact bandwidth limit. Because the rate of each instance
is set using blkio, instances cannot use leftover bandwidth to
speed up their execution. For example, while on Baseline I1
executes under the 50-minutes mark, it takes 95 minutes to
complete its execution in Blkio. To overcome this, a possible
solution would require to stop and checkpoint the instance’s
execution, reconfigure blkio with a new rate, and resume from
the latest checkpoint. However, doing this process every time
a new instance joins or leaves the compute node would signif-
icantly delay the execution time of all running instances.
Summary: All instances achieve their bandwidth guarantees
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but cannot be dynamically provisioned with available disk
bandwidth, leading to longer periods of execution.
PAIO. Experiments were executed over 56 minutes. At À and
Á, instances are assigned with their proportional share, as
the control plane first meets each instance demands and then
distributes leftover bandwidth proportionally. At Â, contrary
to Baseline, the control plane bounds the bandwidth of I1
and I2 to a mean throughput of 245 MiB/s and 296 MiB/s,
respectively. At Ã, instances are set with their bandwidth limit.
During this phase, PAIO provides the same properties as blkio.
From Ä to Æ, as instances end their execution, active ones
are provisioned as in À to Â.
Summary: We show that PAIO can enforce per-application
bandwidth guarantees without any code changes to applica-
tions. Contrary to Baseline, PAIO ensures that policies are
met at all times, and whenever leftover bandwidth is available,
PAIO shares it across active instances. Compared to Blkio,
PAIO finishes 39, 15, and 3 minutes faster for I1, I2, and I3.

10 Related Work

SDS systems. PAIO builds on a large body of work on SDS
systems. IOFlow [54], sRoute [52], and PSLO [31] target
the virtualization layer (i.e., hypervisor, storage and network
drivers) to enforce QoS policies. PriorityMeister [65] en-
forces rate limiting services at the Network File System. Mes-
nier et al. [41] employ caching optimizations at the block
layer. Pisces [51] and Libra [50] enforce bandwidth guaran-
tees in multi-tenant KVS. Malacology [49] improves the pro-
grammability of Ceph to build custom applications on top of
it. Retro [35] and Cake [58] implement resource management
services at the Hadoop stack. SafeFS [45] stacks FUSE-based
file systems on top of each other, each providing a different
service. Crystal [22] extends OpenStack Swift to implement
custom services to be enforced over object requests.

All systems are targeted for specific I/O layers, as their
design is tightly coupled to and driven by the architecture
and specificities of the software stacks they are applied to.
In contrast, PAIO is disaggregated from a specific software
stack, enabling developers to build custom-made data plane
stages applicable over different user-level layers, while requir-
ing none to minor code changes — we demonstrate this by
integrating PAIO over two different I/O layers (§8). Previous
works are also unable to enforce the policies demonstrated
in §8.1, as they do not provide context propagation [50, 51],
inhibiting differentiating requests at a finer granularity (i.e.,
foreground vs high-priority vs low-priority background tasks);
or actuate at the kernel-level [41, 54], where the context is
unreachable without significantly changing legacy APIs. Fur-
ther, these are also unfit to achieve the policies demonstrated
in §8.2, as solutions like [31, 52, 54] cannot be used under
scenarios that require bare-metal access to resources, such as
HPC infrastructures and bare-metal cloud servers.
Context propagation. Some works use context propagation

techniques to tag data across kernel layers. Mesnier et al. [41]
classifies and tags requests with classes to be differentiated
at the block layer. IOFlow [54] tags requests to differentiate
tenants that share the same hypervisor. Split-level schedul-
ing [62] identifies the processes that caused a given I/O oper-
ation throughout the VFS, page cache, and block layer.

PAIO acts at the user-level and enables the propagation of
additional information from the targeted I/O layer to the stage
(e.g., propagate the context at which a given request was cre-
ated, as in §8.1), allowing more fine-grained differentiation
and control over requests. Enabling the intended granular-
ity by PAIO at kernel-level approaches would require break-
ing standard user-to-kernel and kernel-internal interfaces, re-
ducing portability and compatibility [13]. Our contributions
are also applicable under kernel-bypass storage stacks (e.g.,
SPDK, PMDK), which is not the case for previous work.
Storage QoS. Many works ensure QoS SLOs at specific stor-
age layers, including the block layer [2, 25, 33, 40, 57, 64], hy-
pervisor [23,24,26,31,54], and distributed storage [46,58–60].
These works are targeted for a specific I/O layer and stor-
age objective. In contrast, PAIO is more general, providing
a framework for building custom data plane stages applica-
ble over different layers. Also, most of these solutions only
differentiate requests based on their type. PAIO provides dif-
ferentiation at workflow, request type, and request context.
Approaches like [26, 33, 40, 64] follow a decoupled design
that separates the QoS algorithm from the mechanism that
applies it. While complementary to our work, these could be
incorporated into our framework as new enforcement objects.

11 Conclusion
We have presented PAIO, a framework that enables system
designers to build custom-made SDS data plane stages appli-
cable over different I/O layers. PAIO provides differentiated
treatment of requests and allows implementing storage mech-
anisms adaptable to different policies. By combining ideas
from SDS and context propagation, we demonstrated that
PAIO decouples system-specific optimizations to a more pro-
grammable environment, while enabling similar I/O control
and performance, and requiring minor to none code changes.
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Abstract

Log-structured storage has been widely deployed in various
domains of storage systems, yet its garbage collection incurs
write amplification (WA) due to the rewrites of live data. We
show that there exists an optimal data placement scheme that
minimizes WA using the future knowledge of block invali-
dation time (BIT) of each written block, yet it is infeasible
to realize in practice. We propose a novel data placement
algorithm for reducing WA, SepBIT, that aims to infer the
BITs of written blocks from storage workloads and separately
place the blocks into groups with similar estimated BITs.
We show via both mathematical and production trace anal-
yses that SepBIT effectively infers the BITs by leveraging
the write skewness property in practical storage workloads.
Trace analysis and prototype experiments show that SepBIT
reduces WA and improves I/O throughput, respectively, com-
pared with state-of-the-art data placement schemes. SepBIT is
currently deployed to support the log-structured block storage
management at Alibaba Cloud.

1 Introduction
Modern storage systems adopt the log-structured design [30]
for high performance. Examples include flash-based solid-
state drives (SSDs) [5,10], file systems [15,21,27,30,32], key-
value stores [25,28], table stores [9], storage management [6],
in-memory storage [31], RAID arrays [18], and cloud block
services [40]. Log-structured storage transforms random write
requests into sequential disk writes in an append-only log,
so as to reduce disk seek overhead and improve write per-
formance. It also brings various advantages in addition to
high write performance, such as improved flash endurance in
SSDs [21], unified abstraction for building distributed appli-
cations [6, 9], efficient memory management in in-memory
storage [31], and load balancing in cloud block storage [40].
Recent advances in zoned storage [4, 7] also advocate the
adoption of log-structured storage based on append-only in-
terfaces for scalable performance.

The log-structured design writes live data blocks to the
append-only log without modifying existing data blocks in-
place, so it regularly performs garbage collection (GC) to
reclaim the free space of stale blocks. GC works by reading
a segment of blocks, removing any stale blocks, and writing
back the remaining live blocks. The repeated writes of live
blocks lead to write amplification (WA). They not only incur

I/O interference to foreground workloads [18], but also lead to
reduced flash lifespans and unnecessary power consumption
in data centers.

Mitigating WA in log-structured storage has been a well-
studied topic in the literature (§5). In particular, a large body
of studies focuses on designing data placement strategies by
properly placing blocks in separate groups. He et al. [16]
point out that a data placement scheme should group blocks
by the block invalidation time (BIT) (i.e., the time when a
block is invalidated by a live block; a.k.a. the death time [16])
to achieve the minimum WA. However, without obtaining
the future knowledge of the BIT pattern, how to design an
optimal data placement scheme with the minimum WA re-
mains an unexplored issue. Existing temperature-based data
placement schemes that group blocks by block temperatures
(e.g., write/update frequencies) [12, 20, 27, 33, 35, 42, 43] are
arguably inaccurate to capture the BIT pattern and fail to
effectively group the blocks with similar BITs [16].

We propose SepBIT, a novel data placement scheme that
aims for the minimum WA in log-structured storage. It in-
fers the BITs of written blocks from the underlying storage
workloads and separately places the written blocks into dif-
ferent groups, each of which stores the blocks with similar
estimated BITs. Specifically, it builds on the skewed write
patterns observed in the real-world cloud block storage work-
loads (e.g., Alibaba Cloud [23] and Tencent Cloud [46]). It
separates the written blocks into user-written blocks and GC-
rewritten blocks (defined in §2.1). It further separates each set
of user-written blocks and GC-rewritten blocks by inferring
the BIT of each block, so as to perform fine-grained separa-
tion of blocks into groups with similar estimated BITs. We
summarize our contributions below:
• We first design an ideal data placement strategy that has

the minimum WA in log-structured storage, based on the
(impractical) assumption of having the future knowledge
of BITs of written blocks. Our analysis not only motivates
how to design a practical data placement scheme that aims
to group the written blocks with similar BITs, but also
provides an oracular baseline for our comparisons.

• We design SepBIT, which performs fine-grained separation
of written blocks by inferring their BITs from the underly-
ing storage workloads. We show via both mathematical and
trace analyses that our BIT inference is effective in skewed
workloads. SepBIT also achieves low memory overhead in
its indexing structure for tracking block statistics.
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• We evaluate SepBIT using real-world cloud block storage
workloads at Alibaba Cloud [23] and Tencent Cloud [46].
Trace analysis on both workloads shows that SepBIT has
the lowest WA compared with eight state-of-the-art data
placement schemes. For example, for the Alibaba Cloud
traces, SepBIT reduces the overall WA by 8.6-15.9% and
9.1-20.2% when the Greedy [30] and Cost-Benefit [30, 31]
algorithms are used for segment selection in GC, respec-
tively. It also reduces the per-volume WA by up to 44.1%,
compared with merely separating user-written and GC-
rewritten blocks in data placement.

• We prototype a log-structured storage system that supports
different data placement schemes and runs on an emulated
zoned storage backend based on ZenFS [3]. Our prototype
experiments show that SepBIT improves I/O throughput
over most volumes due to its efficient WA reduction; for
example, its median throughput is 20% higher than the
second best data placement scheme.

SepBIT is currently deployed at Alibaba Cloud Enhanced
SSDs (ESSDs) [1], which provide cloud block storage ser-
vices for end-users or applications. Each ESSD is a block-
level volume (or virtual disk) backed by flash-based SSD
storage, and aims to support low-latency (e.g., around 100µs)
and high-throughput (e.g., up to 1 M IOPS) I/O access. ESSDs
are deployed atop Pangu [29], a general distributed storage
platform that provides an append-only write interface. To be
compatible with the append-only write interface of Pangu,
ESSDs adopt the log-structured design and are abstracted as
log-structured storage in our paper.

Our trace analysis scripts and prototype are open-sourced at
http://adslab.cse.cuhk.edu.hk/software/sepbit.

2 Background and Motivation
2.1 GC in Log-Structured Storage
We consider a log-structured storage system that comprises
multiple volumes, each of which is assigned to a user. Each
volume is configured with a capacity of tens to hundreds of
GiB and manages data in an append-only manner. It is further
divided into segments that are configured with a maximum
size (e.g., tens to hundreds of MiB). Each segment contains
fixed-size blocks, each of which is identified by a logical block
address (LBA) and has a size (e.g., several KiB) that aligns
with the underlying disk drives. Each block, either from a new
write or from an update to an existing block, is appended to
a segment (called an open segment) that has not yet reached
its maximum size. If a segment reaches its maximum size,
the segment (called a sealed segment) becomes immutable.
Updating an existing block is done in an out-of-place manner,
in which the latest version of the block is appended to an open
segment and becomes a valid block, while the old version of
the block is invalidated and becomes an invalid block.

Log-structured storage needs to regularly reclaim the space
occupied by the invalid blocks via GC. A variety of GC poli-

Data Placement

User-Written Blocks

GC-
Rewritten 

Blocks (Sealed) Segment

Read Valid BlocksGarbage Collection

Log

…
(Open) Segment

(Sealed) Segment

…
(Open) Segment

Figure 1: The workflow of a general data placement scheme.

cies can be realized, yet we can abstract a GC policy as a
three-phase procedure:
• Triggering, which decides when a GC operation should be

activated. In this work, we assume that a GC operation is
triggered for a volume when its garbage proportion (GP)
(i.e., the fraction of invalid blocks among all valid and in-
valid blocks) exceeds a pre-defined threshold (e.g., 15%).

• Selection, which selects one or multiple sealed segments
for GC. In this work, we focus on two selection algorithms:
(i) Greedy [30], which selects the sealed segments with the
highest GPs, and (ii) Cost-Benefit [30,31], which selects the
sealed segments that have the highest values GP∗age

1−GP (where
age refers to the elapsed time of a sealed segment since it
is sealed) for GC.

• Rewriting, which discards all invalid blocks from the se-
lected sealed segments and writes back the remaining valid
blocks into one or multiple open segments. The space of
the selected sealed segments can then be reused.
A log-structured storage system sees two types of written

blocks: each request that writes or updates an LBA in the
workload generates one user-written block (i.e., a new block)
and zero or more GC-rewritten blocks that are due to the
rewrites of the block during GC. Thus, GC incurs write ampli-
fication (WA), defined as the ratio of the total number of both
user-written blocks and GC-rewritten blocks to the number
of user-written blocks. In the deployment at Alibaba Cloud
ESSDs (§1), we observe that the high WA from GC degrades
both the effective I/O bandwidth and the SSD lifespans. It is
thus critical to minimize WA.

In this work, we aim to design a general and lightweight
data placement scheme that mitigates the WA due to GC in
cloud-scale deployment. Figure 1 shows the workflow of a
general data placement scheme, which separates all written
blocks (i.e., user-written blocks and GC-rewritten blocks) into
different groups and writes the blocks to the open segments of
the respective groups. The data placement scheme is compat-
ible with any GC policy (i.e., independent of the triggering,
selection, and rewriting policies).

2.2 Ideal Data Placement
We present an ideal data placement scheme that minimizes
WA (i.e., WA=1). We also elaborate why it is infeasible to
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Figure 2: Example of the ideal data placement scheme.

realize in practice, so as to motivate the design of an effective
practical data placement scheme.

System model. We first define the notations. Consider a
write-only request sequence of blocks that are written to a
log-structured storage system. Let m be the number of user-
written blocks in the request sequence and s be the segment
size (in units of blocks). Let k = dm

s e be the number of sealed
segments in the system, and let S1,S2, · · · ,Sk denote the cor-
responding k sealed segments. Let oi (where oi ≥ 1) be the
invalidation order of the i-th block in the request sequence
based on the BITs of all blocks (where 1≤ i≤ m), meaning
that the i-th block is the oi-th invalidated block among all
invalid blocks.

Placement design. For the ideal placement scheme, we make
the following assumptions. Suppose that the system has the
future knowledge of the BITs of all blocks, and hence the
invalidation order oi of the i-th block in the request sequence
(where 1≤ i≤ m). It also allocates k open segments for stor-
ing incoming blocks, and performs a GC operation whenever
there are s invalid blocks in the system (i.e., one segment size
of invalid blocks).

The system writes the i-th block to the d oi
s e-th open seg-

ment. If the j-th (where 1≤ j ≤ k) open segment is full, it is
sealed into the sealed segment S j. Thus, S j stores the blocks
with the invalidation orders in the range of [( j−1) ·s+1, j ·s].
The first GC operation is triggered when there exist s invalid
blocks; according to the placement, all such blocks must be
stored in S1. Thus, the first GC operation will choose S1 for
GC, and there will be no rewrites as all blocks in S1 must be
invalid. In general, the j-th GC operation (where 1≤ j ≤ k)
will choose S j for GC, and there will be no rewrites as S j
contains only invalid blocks.

Figure 2 depicts an example of the ideal data placement
scheme. Consider a write-only request sequence with m = 8
blocks with three LBAs A, B, and C, and the i-th block is
written at time i (where 1≤ i≤ m). We fix the segment size
as s = 2. We show the status of the volume at time 2 and
time 6 when the second block and the sixth block are written,
respectively. At time 2, we have appended C to S1 and A to
S2, as their invalidation orders are 2 and 3, respectively. Note
that all blocks in S1 become invalid when block C is updated
at time 5, and at this time we can perform a GC operation
to reclaim the free space occupied by S1. Note that the GC

operation does not incur any rewrite. Later, at time 6, the
system appends A to S3 since its invalidation order is 5.

Limitations and lessons learned. While the ideal data place-
ment scheme achieves the minimum WA, there exist two
practical limitations. First, the scheme needs to have future
knowledge of the BIT of every block to assign the blocks
to the corresponding open segments, but having such future
knowledge is infeasible in practice. Second, the scheme needs
to provision k = dm/se open segments to hold all m blocks
in the request sequence in the worst case, as well as k cor-
responding sealed segments for keeping the blocks from the
k open segments. Such provisioning incurring high memory
and storage costs as m increases. Also, having too many open
and sealed segments incurs substantial random writes that
lead to performance slowdown.

A practical data placement scheme should address the
above two limitations. Without the future knowledge of BITs,
it should effectively infer the BIT of each written block. With
only a limited number of available open segments, it should
group written blocks by similar BITs instead of placing them
in strict invalidation order. Our goal is to address the limita-
tions driven by real-world cloud block storage workloads.

2.3 Trace Overview
We consider the public block-level I/O traces from two cloud
block storage systems, Alibaba Cloud [23] and Tencent Cloud
[46]. The Alibaba Cloud traces contain I/O requests (in mul-
tiples of 4 KiB blocks) from 1,000 virtual disks, referred to
as volumes, over a one-month period in January 2020. The
Tencent Cloud traces have 4,995 volumes over a nine-day
period in October 2018. In this paper, we mainly focus on
the Alibaba Cloud traces, while we verified that the Tencent
Cloud traces show similar findings [39].

The Alibaba Cloud traces comprise a variety of workloads
(e.g., virtual desktops, web services, key-value stores, and
relational databases), and hence are representative to drive our
analysis. We treat each volume in the traces as a standalone
volume in the log-structured storage system (§2.1), such that
each volume performs data placement and GC independently.
Our goal is to mitigate the overall WA across all volumes.

We pre-process the traces for our analysis and evaluation
as follows. We only consider write requests as they are the
only contributors of WA. Since some volumes in the traces
have limited write requests to trigger sufficient GC opera-
tions, we remove such volumes to avoid biasing our analysis.
Specifically, we focus on the volumes with sufficient write
requests: each volume has a write working set size (WSS)
(i.e., the number of unique LBAs being written multiplied
by the block size) above 10 GiB and a total write traffic size
(i.e., the number of written bytes) above 2× its write WSS.
To this end, we select 186 volumes from the Alibaba Cloud
traces, which account for a total of over 90% of write traffic
of all 1,000 volumes. The 186 volumes contain 10.9 billion
write requests, 410.2 TiB of written data (with 390.2 TiB of
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updates), 20.3 TiB of write WSS (with 17.2 TiB of update
WSS). Each of the 186 volumes has a write WSS ranging
from 10 GiB to 1 TiB and a write traffic size ranging from
43 GiB to 36.2 TiB. Since the WSS varies across volumes,
we configure the maximum storage space of each volume as

WSS
1−GPT , where GPT denotes the GP threshold to trigger GC.

2.4 Motivation
We show via trace analysis that existing data placement
schemes cannot accurately capture the BIT pattern and group
the blocks with similar BITs for effective WA mitigation. We
consider the 186 selected volumes from the Alibaba Cloud
traces (§2.3). We define the lifespan of a block as the number
of bytes written by the workload from when a block is written
until it is invalidated (or until the end of the trace). A block
is invalidated when the workload updates the same LBA. We
make three key observations.
Observation 1: User-written blocks generally have short
lifespans. We say that a block has a short lifespan if its lifes-
pan is smaller than the write working set size (WSS) (i.e., the
number of unique written LBAs multiplied by the 4 KiB block
size). We examine the percentages of user-written blocks that
fall into different lifespan range groups with short lifespans
that are represented as the fractions of the write WSS for
each volume. Figure 3 shows the cumulative distributions
of the percentages of user-written blocks across all volumes
in different lifespan groups. In a large fraction of volumes,
their user-written blocks tend to have short lifespans. For
example, half of the volumes have more than 79.5% of user-
written blocks with lifespans smaller than 80% of their write
WSSes, and have more than 47.6% of user-written blocks
with lifespans smaller than only 10% write WSS. In con-
trast, GC-rewritten blocks generally have long lifespans. By
definition, GC-rewritten blocks are rewritten as they remain
valid in the GC-reclaimed segments. In both Greedy and Cost-
Benefit selection algorithms, GC tends to select segments that
either show a high GP or exist for a long time, implying that
GC-rewritten blocks tend to have long lifespans.

Our findings suggest that user-written blocks and GC-
rewritten blocks can have vastly different BIT patterns, in
which user-written blocks tend to have short lifespans, while
GC-rewritten blocks tend to have long lifespans. Existing
data placement schemes either mix user writes and GC writes
[12, 20, 27, 35], or focus on user writes [33, 42, 43], in the

data placement decisions. Failing to distinguish between user-
written blocks and GC-rewritten blocks can lead to inefficient
WA mitigation. Instead, it is critical to separately identify the
BIT patterns of user-written blocks and GC-rewritten blocks.

Observation 2: Frequently updated blocks have highly
varying lifespans. We investigate frequently updated blocks,
referred to as the blocks whose update frequencies (i.e., the
number of updates) rank in the top 20% in the write working
set (i.e., the set of LBAs being written) of a volume. Specif-
ically, for each volume, we divide the frequently updated
blocks into four groups based on their ranks of update fre-
quencies, namely top 1%, top 1-5%, top 5-10%, and top 10-
20%, so that the blocks in each group have similar update
frequencies. The medians of the minimum update frequency
in the four groups across all volumes are 37.5, 8.5, 6.0, and
5.0, respectively. To avoid evaluation bias, we exclude the
blocks that have not been invalidated before the end of the
traces. For each group of a volume, we calculate the coeffi-
cient of variation (CV) (i.e., the standard deviation divided
by the mean) of the lifespans of the blocks; a high CV (e.g.,
larger than one) implies a high variance in the lifespans.

Figure 4 shows the cumulative distributions of CVs across
all volumes (note that 6, 6, 20, and 18 volumes in the four
groups have CVs exceeding 8, respectively). We see that
frequently updated blocks with similar update frequencies
have high variance in their lifespans (and hence the BITs); for
example, 25% of the volumes have their CVs exceeding 4.34,
3.20, 2.14, and 1.82 in the four groups top 1%, top 1-5%, top 5-
10%, and top 10-20%, respectively. Our findings also suggest
that existing temperature-based data placement schemes that
group the blocks with similar write/update frequencies [12,
20, 27, 33, 35, 42, 43] cannot effectively group blocks with
similar BITs, and hence the WA cannot be fully mitigated.

Observation 3: Rarely updated blocks dominate and have
highly varying lifespans. We examine the write working
set of each volume and define the rarely updated blocks as
those that are updated no more than four times during the
one-month trace period. We see that rarely updated blocks
occupy a high percentage in the write working sets of a large
fraction of volumes. In half of the volumes, more than 72.4%
of their write working sets contain rarely updated blocks. We
further examine the lifespans of those rarely updated blocks.
For each volume, we divide the rarely updated blocks into
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Figure 6: SepBIT workflow.

five groups that are partitioned by the lifespans of 0.5×, 1×,
1.5×, and 2× of their write WSSes. We then calculate the
percentage of those blocks that fall into each group.

Figure 5 shows the cumulative distributions of the percent-
ages of rarely updated blocks in different lifespan groups
across all volumes. In 25% of the volumes, more than 71.5%
of the rarely updated blocks have their lifespans smaller than
0.5× write WSS. For the remaining four groups, the medians
of the percentages are 24.9%, 8.1%, 3.3%, and 2.2%, respec-
tively. In other words, the lifespans of rarely updated blocks
can span both short and long lifespan ranges, and hence show
high deviations of BITs in a volume. As in Observation 2,
our findings again suggest that existing temperature-based
data placement schemes cannot effectively group the rarely
updated blocks with similar BITs. Rarely updated blocks are
often treated as cold blocks with low write frequencies, so
they tend to be grouped together and separated from the hot
blocks with high write frequencies. However, their vast differ-
ences in BIT patterns make temperature-based data placement
schemes inefficient in mitigating WA.

3 SepBIT Design
3.1 Design Overview
We design SepBIT based on our observations in §2.4. Sep-
BIT first separates blocks into user-written blocks and GC-
rewritten blocks due to their different BIT patterns (Observa-
tion 1). It further separates both user-written blocks and GC-
rewritten blocks by inferring their BITs instead of using block
temperatures as in existing temperature-based approaches
(Observations 2 and 3).

Figure 6 depicts the workflow of SepBIT. Our current
design of SepBIT defines six classes of segments, in which
Classes 1-2 correspond to the segments of user-written blocks,
while Classes 3-6 correspond to the segments of GC-rewritten
blocks. Each class is now configured with one open segment
and has multiple sealed segments. If an open segment reaches
the maximum size, it is sealed and remains in the same class.
SepBIT infers the lifespans of blocks and in turn the cor-

responding BITs of blocks. For user-written blocks (i.e.,
Classes 1-2), SepBIT stores the short-lived blocks (with short
lifespans) in Class 1 and the remaining long-lived blocks
(with long lifespans) in Class 2. For GC-rewritten blocks (i.e.,
Classes 3-6), SepBIT appends the blocks from Class 1 that
are rewritten by GC into Class 3, and groups the remaining
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Figure 7: Ideas of inferring BITs in SepBIT.

GC-rewritten blocks into Classes 4-6 by similar BITs inferred.
The main idea of SepBIT is as follows. For each user-

written block, SepBIT examines its last user write time to
infer its lifespan. Specifically, for the write time, SepBIT uses
a monotonic timer (instead of the real timestamp) that incre-
ments by one for each user-written block. If the user-written
block is issued from a new write, SepBIT assumes that it has
an infinite lifespan. Otherwise, if the user-written block up-
dates an old block, SepBIT uses the lifespan of the old block
(i.e., the number of user-written bytes in the whole workload
since its last user write time until it is now invalidated) to
estimate the lifespan of the user-written block, as shown in
Figure 7(a). Our intuition is that any user-written block that
invalidates a short-lived block is also likely to be a short-
lived block (§3.2). Then if the short-lived blocks are written at
about the same time, their corresponding BITs will be close,
so SepBIT groups them into same class (i.e., Class 1). For
the long-lived blocks (including the user-written blocks from
new writes), SepBIT groups them into Class 2.

For each GC-rewritten block, SepBIT examines its age,
defined as the number of user-written bytes in the whole
workload since its last user write time until it is rewritten by
GC, to infer its residual lifespan, defined as the number of
user-written bytes since it is rewritten by GC until it is invali-
dated (or until the end of the traces), as shown in Figure 7(b).
As a result, the lifespan of a GC-rewritten block is its age plus
its residual lifespan. Our intuition is that any GC-rewritten
block with a smaller age has a higher probability to have
a short residual lifespan (§3.3), implying that GC-rewritten
blocks with different ages are expected to have different resid-
ual lifespans. Thus, SepBIT can distinguish the blocks of
different residual lifespans based on their ages and group the
GC-rewritten blocks with similar ages into the same classes.

Our design builds on the assumption that the access pattern
is skewed for inferring the BITs of blocks. We justify our
assumption via the mathematical analysis for skewed distribu-
tions and the trace analysis for real-world workloads (§3.2 and
§3.3). To adapt to changing workloads and GC policies, Sep-
BIT monitors the workloads to separate user-written blocks
and GC-rewritten blocks into different classes (§3.4).
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3.2 Inferring BITs of User-Written Blocks
We show via both mathematical and trace analyses the ef-
fectiveness of SepBIT in estimating the BITs of user-written
blocks based on the lifespans. Let n be the total number of
unique LBAs in a working set; without loss of generality,
each LBA is denoted by an integer from 1 to n. Let pi (where
1 ≤ i ≤ n) be the probability that LBA i is being written in
each write request. Consider a write-only request sequence
of blocks, each of which is associated with a sequence num-
ber b and the LBA Ab. Let b and b′ (where b′ < b) denote
the sequence numbers of a new user-written block and the
corresponding invalid old block, respectively (i.e., Ab = Ab′ ).

Recall from §3.1 that SepBIT estimates the lifespan (de-
noted by u) of the user-written block b using the lifespan
(denoted by v) of the old block b′, so the estimated BIT of
block b is equal to the current user write time plus the es-
timated lifespan u; note that both u and v are expressed in
units of blocks. We claim that if v is small, u is also likely to
be small. To validate the claim, let u0 and v0 (both in units
of blocks) be two thresholds. We then examine the condi-
tional probability of u ≤ u0 given the condition that v ≤ v0
subject to a workload of different skewness. If the conditional
probability is high for small u0 and v0, then our claim holds.
Mathematical analysis. We examine the following condi-
tional probability (see derivation in our technical report [39]):

Pr(u≤ u0 | v≤ v0) =
Pr(u≤ u0 and v≤ v0)

Pr(v≤ v0)

=
∑

n
i=1(1− (1− pi)

u0) · (1− (1− pi)
v0) · pi

∑
n
i=1(1− (1− pi)v0) · pi

.

We analyze the conditional probability via the Zipf distribu-
tion, given by pi = (1/iα)/∑

n
j=1(1/ jα), where 1≤ i≤ n for

some skewness parameter α ≥ 0. A larger α implies a more
skewed distribution. We fix n = 10×218, which corresponds
to a working set of 10 GiB with 4 KiB blocks. We then study
how the conditional probability Pr(u ≤ u0 | v ≤ v0) varies
across u0, v0, and α .

Figure 8(a) first shows the conditional probability for vary-
ing u0 and v0, where we fix α = 1. We focus on short lifespans
by varying u0 and v0 of up to 4 GiB, which is less than the
write WSS (§2.4). Overall, the conditional probability is high
for different u0 and v0; the lowest one is 77.1% for v0 = 4 GiB
and u0 = 0.25 GiB. This shows that a user-written block is
highly likely to have a short lifespan if its invalidated block
also has a short lifespan. In particular, the conditional prob-
ability is higher if v0 is smaller (i.e., the invalidated blocks
have shorter lifespans), implying a more accurate estimation
of the lifespan of the user-written block.

Figure 8(b) next shows the conditional probability for vary-
ing v0 and α , where we fix u0 = 1 GiB. Note that for α = 0,
the Zipf distribution reduces to a uniform distribution. Over-
all, the conditional probability increases with α (i.e., more
skewed). For example, for α = 1, the conditional probability
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Figure 8: Inferring BITs of user-written blocks: Pr(u≤ u0 | v≤ v0)
versus v0 and α .
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Figure 9: Inferring BITs of user-written blocks: Boxplots of Pr(u≤
u0 | v≤ v0) for different u0 and v0 in real-world workloads.

is at least 87.1%. However, for α = 0, the conditional proba-
bility is only 9.5%. This indicates that the high accuracy of
lifespan estimation only holds under skewed workloads.

Trace analysis. We use the block-level I/O traces from Al-
ibaba Cloud (§2.3) to validate if the conditional probability
remains high in real-world workloads. To compute the condi-
tional probability, we first find the set of user-written blocks
that invalidate old blocks with v≤ v0. Then the conditional
probability is the fraction of blocks with u ≤ u0 in the set.
We vary both v0 and u0 as different percentages of the write
WSS to examine different conditional probabilities. Figure 9
shows the boxplots of the conditional probabilities over all
volumes for different u0 and v0. In general, the conditional
probability remains high in most of the volumes. For example,
for v0 being 40% of write WSS, the medians of the condi-
tional probabilities are in the range of 77.8-90.9%, and the
75th percentiles are in the range of 84.3-97.6%. Also, the
conditional probability tends to be higher for a smaller v0.

3.3 Inferring BITs of GC-Rewritten Blocks
We further show via both mathematical and trace analyses
the effectiveness of SepBIT in estimating the BITs of GC-
rewritten blocks based on the residual lifespans. Recall from
§3.1 that SepBIT estimates the residual lifespan of a GC-
rewritten block using its age, so the estimated BIT of the GC-
rewritten block is equal to the current GC write time plus the
estimated residual lifespan. However, characterizing directly
GC-rewritten blocks is non-trivial, as it depends on the actual
GC policy (e.g., when GC is triggered and which segments
are selected for GC) (§2.1). Instead, we model GC-rewritten
blocks based on user-written blocks. If a user-written block
has a lifespan above a certain threshold, we assume that it
is rewritten by GC and treat it as a GC-rewritten block with
an age equal to the threshold. We can then apply a similar
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analysis for user-written blocks as in §3.2.
We define the following notations. As each GC-rewritten

block is a user-written block before being rewritten by GC,
we identify each GC-rewritten block by its corresponding
user-written block with sequence number b. Let u, g, and r
be its lifespan, age, and residual lifespan, respectively, such
that u = g+ r; each of the variables is measured in units of
blocks. We claim that r has a higher probability to be small
with a smaller g. To validate the claim, let g0 and r0 (both in
units of blocks) be the thresholds for the age and the residual
lifespan, respectively. We examine the conditional probability
of u≤ g0 + r0 given the condition that u≥ g = g0 subject to
a workload of different skewness. The conditional probability
specifies the fraction of GC-rewritten blocks whose residual
lifespans are shorter than r0 among all GC-rewritten blocks
with age g0 (note that the GC-rewritten blocks are modeled as
user-written blocks with lifespans above g0). If the conditional
probability is higher for a smaller g0 subject to a fixed r0, then
our claim holds.
Mathematical analysis. We examine the following condi-
tional probability (see derivation in our technical report [39]):

Pr(u≤ g0 + r0 | u≥ g0) =
Pr(g0 ≤ u≤ g0 + r0)

Pr(u≥ g0)

=
∑

n
i=1 pi · ((1− pi)

g0 − (1− pi)
g0+r0)

∑
n
i=1 pi · (1− pi)g0

.

As in §3.2, we use the Zipf distribution and fix n = 10×
218 unique LBAs. We study how the conditional probability
Pr(u≤ g0 + r0 | u≥ g0) varies across g0, r0, and α .

Figure 10(a) first shows the conditional probability for vary-
ing g0 and r0, where we fix α = 1. We focus on a large value
of g0 of up to 32 GiB since we target long-lived blocks. We
also vary r0 up to 8 GiB. Overall, for a fixed r0, the conditional
probability decreases as g0 increases. For example, given that
r0 = 8 GiB, the probability with g0 = 2 GiB is 41.2%, while
the probability for g0 = 32 GiB drops to 14.9%. This vali-
dates our claim that GC-rewritten blocks with different ages
are expected to have different residual lifespans. Thus, we
can distinguish the GC-rewritten blocks of different residual
lifespans based on their ages.

Figure 10(b) further shows the conditional probability for
varying g0 and α , where we fix r0 = 8 GiB. For a small α , the
conditional probability has a limited difference for varying v,
while the difference becomes more significant as α increases.
For example, for α = 0 (i.e., the uniform distribution), there
is no difference varying g0; for α = 0.2, the difference of the
conditional probability between g0 = 2 GiB and g0 = 32 GiB
is only 3.5%, while the difference for α = 1 is 26.4%. This
indicates that our claim holds under skewed workloads, and
we can better distinguish the GC-rewritten blocks of different
residual lifespans under more skewed workloads.
Trace analysis. We also use block-level I/O traces from Al-
ibaba Cloud (§2.3) to examine the conditional probability in

r0 = 2 4 8 g0 = 2 8 32

0

25

50

75

100

2 4 8 16 32
g0  (GiB)

P
ro

ba
b

li
ty

 (
%

)

0

25

50

75

100

0 0.2 0.4 0.6 0.8 1

α

P
ro

ba
bl

it
y 

(%
)

(a) α = 1; varying r0, g0 (b) r0 = 8 GiB; varying g0, α
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real-world workloads. We first identify the set of blocks with
u ≥ g0 in the workload, and then compute the conditional
probability as a fraction of blocks with u≤ g0 + r0 in the set.
We vary both r0 and g0 as different percentages of the write
WSS. Figure 11 depicts the boxplots of the conditional prob-
abilities over all volumes for different g0 and r0. For a fixed
r0, the conditional probabilities have significant differences
for varying g0. For example, if we fix r0 as 1.6× of write
WSS and g0 increases from 0.8× to 6.4× of write WSS, the
median probabilities drop from 90.0% to 14.5%.

3.4 Implementation Details
Threshold selection. We assign blocks into different classes
by their estimated BITs with multiple thresholds: for user-
written blocks, we define a lifespan threshold for separating
short-lived blocks and long-lived blocks; for GC-rewritten
blocks, we need multiple age thresholds to separate them
by ages (§3.1). We configure the thresholds via the segment
lifespan of a segment, defined as the number of user-written
bytes in the workload since the segment is created (i.e., the
time when the first block is appended to the segment) until
it is reclaimed by GC. Specifically, we monitor the average
segment lifespan, denoted by `, among a fixed number of
recently reclaimed segments in Class 1. For each user-written
block, if it invalidates an old block with a lifespan less than `,
we write it to Class 1; otherwise, we write it to Class 2. For
GC-rewritten blocks, we set the age thresholds as multiples
of ` (see below).

Algorithmic details. Algorithm 1 shows the pseudo-code of
SepBIT, which consists of three functions: GarbageCollect,
UserWrite, and GCWrite. Each class always corresponds to
one open segment. If an open segment is full, it becomes
a sealed segment, and SepBIT creates a new open segment
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Algorithm 1 SepBIT

1: t = 0; `=+∞; `tot = 0; nc = 0, where t is the global timestamp
2: function GarbageCollect( )
3: Select a segment S by selection algorithm
4: if S is from Class 1 then
5: nc = nc +1, `tot = `tot +(t−S.creation time)
6: end if
7: if nc = 16 then
8: `= `tot/nc; nc = 0; `tot = 0
9: end if

10: for each valid block b in S do
11: GCWrite(b)
12: end for
13: end function
14: function UserWrite(b)
15: Find lifespan v of the invalidated block b′ due to b
16: if v < ` then
17: Append b to open segment of Class 1
18: else
19: Append b to open segment of Class 2
20: end if
21: t = t +1
22: end function
23: function GCWrite(b)
24: if b is from Class 1 then
25: Append b to open segment of Class 3
26: else
27: g = t−b.last user write time
28: If g ∈ [0,4`), append b to open segment of Class 4
29: If g ∈ [4`,16`), append b to open segment of Class 5
30: If g ∈ [16`,+∞), append b to open segment of Class 6
31: end if
32: end function

within the same class. SepBIT initializes the average segment
lifespan `=+∞, which is updated on-the-fly. It also tracks
a global timestamp t, which records the sequence number of
the current user-written block.
GarbageCollect is triggered by a GC operation accord-

ing to the GC policy (§2.1). It performs GC and monitors
the runtime information of the reclaimed segments. It selects
a segment S for GC based on the selection algorithm (e.g.,
Greedy or Cost-Benefit (§2.1)). It sums up the lifespans of col-
lected segments from Class 1 as `tot , and computes the average
lifespan `= `tot/nc for every fixed number nc (e.g., nc = 16
in our current implementation) of reclaimed segments.
UserWrite processes each user-written block b. It first

computes the lifespan v of the invalidated old block b′. If v
is less than `, UserWrite appends b (which is treated as a
short-lived block) to the open segment of Class 1; otherwise,
it appends b (which is treated as a long-lived block) to the
open segment of Class 2.
GCWrite processes each GC-rewritten block that corre-

sponds to some user-written block b. If b is originally stored
in Class 1, GCWrite appends b to the open segment of Class 3;
otherwise, GCWrite appends b to one of the open segments

of Classes 4-6 based on the age of b. Currently, we config-
ure the age thresholds as three ranges, [0,4`), [4`,16`), and
[16`,+∞), for Classes 4-6, respectively, based on our eval-
uation findings. Nevertheless, we have also experimented
with different numbers of classes and thresholds [39], and we
observe only marginal differences in WA.
Memory usage. SepBIT only stores the last user write time
of each block as the metadata alongside the block on disk,
without maintaining a mapping from every LBA to its last user
write time in memory. Putting metadata alongside a block is
feasible, as SSDs typically associate a small spare region (e.g.,
of size 64 bytes) with each flash page for storing metadata.
Specifically, for user-written blocks, SepBIT only needs to
know whether the lifespan of an invalidated block is shorter
than a threshold. It thus suffices for SepBIT to track only
the recently written LBAs. In our current implementation
(written in C++), SepBIT maintains a first-in-first-out (FIFO)
queue to record recently written LBAs. It dynamically adjusts
the queue length according to the value `. If the FIFO queue
is full, each insert of an element will dequeue one element
from the queue. If ` increases, the FIFO queue allows more
inserts without dequeueing any element; if ` decreases, the
FIFO queue dequeues two elements for each insert until the
number of elements drops below `. If the LBA exists in the
FIFO queue and its user write time is within the recent ` user
writes, SepBIT writes it into Class 1. To efficiently query
the FIFO queue, SepBIT creates a std::map structure in the
C++ standard template library to record each unique LBA
in the FIFO queue and its latest queue position. When we
enqueue the LBA of a newly written block into the FIFO
queue, we insert or update the LBA with its current queue
position in the std::map structure; when we dequeue an
LBA from the FIFO queue, we remove the LBA from the
std::map structure if its recorded queue position is equal to
the dequeued one.

For GC-rewritten blocks, SepBIT retrieves them during GC
and examines the user write time directly from the metadata,
so as to assign the GC-rewritten block to the corresponding
class without any memory overhead incurred.
Prototype. We prototype a log-structured block storage sys-
tem that realizes SepBIT and existing data placement schemes.
We choose to deploy our prototype on zoned storage [4],
whose append-only interfaces favor log-structured storage
deployment. Specifically, our prototype runs on an emulated
zoned storage backend based on ZenFS [3] (due to the lack of
a real zoned storage device, we currently emulate the zoned
storage backend using Intel Optane Persistent Memory [2]).
Each segment in the prototype is a one-to-one mapping to
a ZoneFile, the basic unit in the zoned storage backend in
ZenFS. Then ZenFS stores ZoneFiles in different zones with-
out incurring device-level GC. For the metadata and the FIFO
queue in SepBIT, the prototype stores them in separate files
and accesses them using mmap for memory efficiency; for
other existing data placement schemes, the prototype stores
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all metadata in memory. When the prototype triggers GC (at
the system level), it reads only valid blocks from storage and
rewrites the blocks into different segments.

The reasons of choosing emulated zoned storage based on
ZenFS in our prototype are three-fold. First, zoned storage has
a similar storage abstraction to Pangu (§1), as both of them
support append-only writes and large-size append-only units
(e.g., up to hundreds of MiB). Second, emulated zoned storage
provides minimal external interference, making the perfor-
mance evaluation reproducible; in contrast, the performance
of traditional SSDs can be easily disturbed by device-level
GC. Finally, ZenFS is a lightweight user-space zone-aware
file system that readily supports zoned storage.

4 Evaluation
4.1 Data Placement Schemes

We compare SepBIT with eight existing temperature-based
data placement schemes, namely Dynamic dAta Clustering
(DAC) [12], SFS [27], MultiLog (ML) [35], extent-based iden-
tification (ETI) [33], MultiQueue (MQ) [42], Sequentiality,
Frequency, and Recency (SFR) [42], Fading Average Data
Classifier (FADaC) [20], and WARCIP [43]. Note that these
existing schemes are mainly designed for mitigating the flash-
level WA in SSDs, yet they are also applicable for general log-
structured storage. Take DAC [12] as an example. DAC asso-
ciates each LBA with a temperature-based counter (quantified
based on the write count) and writes blocks to the segments
of different temperature levels. Each user write promotes
the LBA to a hotter segment while each GC write demotes
the LBA to a colder segment. Other temperature-based data
placement schemes follow the similar idea of DAC. Specif-
ically, the above designs adopt different metrics to measure
block temperatures, such as access frequencies (in ML [35],
MQ [42], and ETI [33]), recency (in FADaC [20]), hotness
(in SFS [27]), access counts (in DAC [12]), sequentiality (in
SFR [42]), and update intervals (in WARCIP [43]).

We also consider three baseline strategies.
• NoSep appends any written blocks (either user-written

blocks or GC-rewritten blocks) to the same open segment.
• SepGC [37] separates written blocks by user-written blocks

and GC-rewritten blocks, and writes them into two different
open segments.

• Future knowledge (FK) assumes that the BIT of each
written block is known in advance. For a written block
(either a user-written block or a GC-rewritten block), if its
invalidation will occur within t bytes since the written time,
we write the block to the d t

se-th open segment, where s is
the segment size (in bytes). Given the limited number of
open segments, FK uses the last open segment to store all
user-written blocks and GC-rewritten blocks if their BITs
do not belong to the prior open segments. We annotate the
lifespan of each block in the traces in advance, so that we
can compute the BITs during evaluation.

Note that FK represents an oracular baseline that leverages
future knowledge for placement decisions. It is identical to
the ideal scheme (§2.2) if there are unlimited memory and
storage budgets. Otherwise, with limited memory and storage
budgets, it applies future knowledge to group a subset of
blocks in a limited number of segments, and applies trivial
data placement for the remaining blocks. Thus, FK represents
both the ideal data placement scheme that has no memory
and storage constraints and the trivial data placement scheme
with the memory and storage constraints; the latter serves the
baseline in our experiments.

By default, we configure six classes (each containing one
open segment) for data placement for all schemes, except
for NoSep, SepGC, and ETI. For NoSep, we configure one
class for all written blocks; for SepGC, we configure two
classes, one for user-written blocks and one for GC-rewritten
blocks; for ETI, we configure two classes for user-written
blocks and one class for GC-rewritten blocks. For MQ, SFR,
and WARCIP, as they focus on separating user-written blocks
only, we configure five classes for user-written blocks and
the remaining class for GC-rewritten blocks. For DAC, SFS,
ML, FADaC, and FK, since they do not differentiate user-
written blocks and GC-rewritten blocks, we let them use all
six classes for all written blocks. We adopt the default settings
as described in the original papers of the existing schemes.

4.2 Results
Summary of findings. Our major findings include:
• SepBIT achieves the lowest WA among all data placement

schemes (except FK) for different segment selection al-
gorithms (Exp#1), different segment sizes (Exp#2), and
different GP thresholds (Exp#3).

• We show that SepBIT provides accurate BIT inference
(Exp#4).

• We provide a breakdown analysis on SepBIT, and show that
it achieves a low WA by separating each set of user-written
blocks and GC-rewritten blocks independently (Exp#5).

• SepBIT achieves the lowest WA in the Tencent Cloud traces
(Exp#6).

• SepBIT shows high WA reduction for highly skewed work-
loads (Exp#7).

• We provide a memory overhead analysis and show that
SepBIT achieves low memory overhead for a majority of
the volumes (Exp#8).

• Our prototype evaluation shows that SepBIT achieves the
highest throughput in a majority of the volumes (Exp#9).

Default configuration. Our default GC policy uses Cost-
Benefit [30, 31] for segment selection and fixes the segment
size and the GP threshold for triggering GC as 512 MiB and
15%, respectively; in Exp#1-Exp#3, we vary each of the con-
figurations for evaluation. For real-world workloads, we use
the Alibaba Cloud traces except for Exp#5.
Exp#1 (Impact of segment selection). We compare SepBIT
with existing data placement schemes using Greedy [30] and
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Figure 12: Exp#1 (Impact of segment selection).

Cost-Benefit [30, 31] for segment selection in GC (§2.1).
Figures 12(a) and 12(b) depict the overall WA across all 186

volumes under Greedy and Cost-Benefit, respectively. With
separation in data placement, SepBIT reduces the overall
WA of NoSep by 28.5% and 39.8% under Greedy and Cost-
Benefit, respectively. More importantly, SepBIT achieves
the lowest WA compared with all existing data placement
schemes (except FK). It reduces the overall WA of SepGC
and the eight state-of-the-art data placement schemes (i.e.,
excluding NoSep and FK) by 8.6-15.9% and 9.1-20.2% under
Greedy and Cost-Benefit, respectively. Compared with FK,
the overall WA of SepBIT is 13.5% and 3.1% higher under
Greedy and Cost-Benefit, respectively. In short, SepBIT is
highly efficient in WA mitigation under real-world workloads.
Note that some data placement schemes even show a higher
WA than SepGC, which performs simple separation of user-
written blocks and GC-rewritten blocks, mainly because they
fail to effectively group blocks with similar BITs (§2.4).

Figures 12(c) and 12(d) show the boxplots of per-volume
WAs over all 186 volumes under Greedy and Cost-Benefit,
respectively (we omit outliers of NoSep with very high WAs).
SepBIT has the lowest 75th percentiles (1.61 and 1.36) among
all existing data placement schemes (except FK) under Greedy
and Cost-Benefit, while the second lowest one is DAC (1.64
and 1.50), respectively. This shows that SepBIT effectively
reduces WAs in individual volumes with diverse workloads. In
particular, Cost-Benefit is more effective in the WA reduction
of SepBIT than Greedy, as the gap of the 75th percentiles
between SepBIT and the second lowest one increases from
1.8% in Greedy to 9.4% in Cost-Benefit. Compared with FK,
for 75th percentiles, SepBIT has 23.6% and 12.9% higher
WA under Greedy and Cost-Benefit, respectively.

Exp#2 (Impact of segment sizes). We vary the segment size
from 64 MiB to 512 MiB. For fair comparisons, we fix the
amount of data (both valid and invalid data) to be retrieved
in each GC operation as 512 MiB, meaning that a GC op-
eration collects eight, four, two, and one segment(s) for the
segment sizes of 64 MiB, 128 MiB, 256 MiB, and 512 MiB,
respectively. We focus on comparing NoSep, SepGC, WAR-

CIP, SepBIT, and FK, as they show the lowest WAs among
existing data placement for various segment sizes. We present
the complete results in our technical report [39].

Figures 13 depicts the overall WA versus the segment size.
Overall, using a smaller segment size yields a lower WA, as
a GC operation can perform more fine-grained selection of
segments for more efficient space reclamation. Again, Sep-
BIT achieves the lowest WA compared with all existing data
placement schemes; for example, its WAs are 5.5%, 8.2%, and
10.0% lower than WARCIP for the segment sizes of 64 MiB,
128 MiB, and 256 MiB, respectively. Interestingly, SepBIT
even has a lower WA (by 3.9-5.7%) than FK when the seg-
ment size is in the range of 64 MiB to 256 MiB. The reason
is that FK currently groups blocks of close BITs in five open
segments, while the last open segment stores all blocks (we
now configure six classes in total) (§4.1). If the segment size
is smaller, FK can only group fewer blocks in the limited num-
ber of open segments, so it becomes less effective of grouping
blocks of close BITs.

Exp#3 (Impact of GP thresholds). We vary the GP thresh-
olds from 10% to 25%. We again focus on comparing the
overall WAs of NoSep, SepGC, WARCIP, SepBIT, and FK
as in Exp#2. Figure 14 shows the overall WA versus the GP
threshold. A larger GP threshold has a lower WA in general,
as it is easier for a GC operation to select segments with high
GPs. SepBIT still shows the lowest WA. It has 5.0-13.8%
lower WAs than WARCIP for different GP thresholds. Com-
pared with FK, SepBIT has comparable WAs with differences
smaller than 1.8%, for different GP thresholds.

Exp#4 (BIT inference analysis). We study the effectiveness
of the BIT inference in SepBIT. Note that SepBIT does not
explicitly compute the estimated BIT of a block, but instead
assigns blocks into classes corresponding to different ranges
of estimated BITs (§3.4). To examine the effectiveness of
BIT inference, our intuition is that each valid block that is
rewritten during GC indicates that we incorrectly infer its BIT
and places it into an incorrect segment. Thus, we can examine
the GP of each collected segment to estimate the inference
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Figure 16: Exp#5 (Breakdown analysis).

accuracy, such that a higher GP implies more accurate infer-
ence. We use the Cost-Benefit selection algorithm and fix
the segment size and GP for triggering GC as 512 MiB and
15%, respectively. We study NoSep, SepGC, WARCIP, and
SepBIT (WARCIP has the second lowest WA). We aggregate
the collected segments during GC for all 186 volumes.

Figure 15 depicts the cumulative distributions of collected
segments across different GPs for different schemes. The
median GPs of the collected segments for NoSep, SepGC,
WARCIP, and SepBIT are 32.3%, 51.6%, 52.9%, and 61.5%,
respectively. SepBIT has the highest GPs, implying that it
also has the highest accuracy in inferring BITs. WARCIP only
shows a slightly higher GP of the collected segments than
SepGC, so its WA reduction over SepGC is marginal.

Exp#5 (Breakdown analysis). We analyze how different
components of SepBIT contribute to WA reduction. Recall
that SepBIT separates written blocks into the user-written
blocks and GC-rewritten blocks, and further separates each set
of user-written blocks and GC-rewritten blocks independently.
In our analysis, we consider NoSep (i.e., without separation),
SepGC (i.e., separating written blocks into the user-written
blocks and GC-rewritten blocks), and two variants:
• UW: It further separates user-written blocks based on

SepGC, but without separating GC-rewritten blocks. It
maintains three classes: Classes 1 and 2 store short-lived
blocks and long-lived blocks as in SepBIT, respectively,
while Class 3 stores all GC-rewritten blocks.

• GW: It further separates GC-rewritten blocks based on
SepGC, but without separating user-written blocks. It main-
tains four classes: Class 1 stores all user-written blocks, and
Classes 2-4 store GC-rewritten blocks as in Classes 4-6 of
SepBIT.
Figure 16(a) shows the overall WAs of different data place-

ment schemes. UW and GW reduce WA by 35.2% and 36.7%
compared with NoSep, respectively; they also reduce WA

by 4.8% and 7.0% compared with SepGC, respectively. The
findings show that more fine-grained separation of each set
of user-written blocks and GC-rewritten blocks brings fur-
ther WA reduction. Also, SepBIT reduces WA by 7.0% and
4.9% compared with UW and GW, respectively, meaning that
SepBIT can combine the benefits of UW and GW.

Figure 16(b) further shows the cumulative distributions of
the WA reductions of UW, GW, and SepBIT compared with
SepGC across all volumes. UW, GW, and SepBIT can reduce
the WA of most of the volumes. The 75th percentiles of reduc-
tions of UW and GW are 11.4% and 6.9%, respectively, and
their highest WA reductions are 43.3% and 24.5%, respec-
tively. By combining UW and GW, the 75th percentile of the
WA reductions of SepBIT compared with SepGC improves
to 19.3% with the highest WA reduction as 44.1%.

Exp#6 (Results on the Tencent Cloud traces). We validate
the effectiveness of SepBIT on the Tencent Cloud traces [46].
We pre-process the traces the same as for the Alibaba Cloud
traces (§2.3) and select 271 out of 4,995 volumes. We run
all the schemes as in Exp#1, using Cost-Benefit for segment
selection and fixing the segment size and the GP threshold as
512 MiB and 15%, respectively.

Figure 17 depicts the overall WA and the per-volume WA
across all 271 volumes. Among all existing data placement
schemes, SepBIT achieves the lowest overall WA. Its over-
all WA is 2.5-21.3% lower than those of the eight existing
schemes and 1.1% higher than that of FK. Compared with
the second lowest scheme DAC, SepBIT has similar 50th
and 75th percentiles of per-volume WA, and reduces the 90th
percentile of per-volume WA from 2.09 to 1.97.

Exp#7 (Impact of workload skewness). We study how Sep-
BIT works in workloads of different skewness. We set the
selection algorithm as Greedy instead of Cost-Benefit, since
Cost-Benefit also leverages the workload skewness to reduce
WA and we want to exclude its impact from our analysis.

We inspect the skewness of each volume in the Alibaba
Cloud traces, and analyze the correlation between the per-
volume skewness and the WA reduction percentage of SepBIT
over NoSep. We also present the results for synthetic work-
loads in our technical report [39]. Since not all real-world
workloads have good fitness to a Zipf distribution [45], we de-
scribe the per-volume skewness according to how write traffic
aggregates in the most frequently updated blocks. Specifically,
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Figure 17: Exp#6 (Results on the Tencent Cloud traces).

Skewness α 0 0.2 0.4 0.6 0.8 1
Pct. (%) 20 27.6 38.1 52.4 71.1 89.5

Table 1: The percentage of write traffic over top-20% blocks in Zipf
workloads of different skewness.

we compute the percentage of aggregated write traffic over the
top 20% frequently written blocks. To show the relationship
between the percentage of aggregated writes and the skewness
factor of the Zipf distribution, Table 1 shows the percentage
of write traffic over the top 20% frequently written blocks and
the corresponding skewness factor α; note that the numbers
are generated using 10 GiB of write WSS.

Figure 18 shows the results. Each point represents one
volume. The x-axis is the percentage of aggregated write
traffic over top 20% frequently written blocks and the y-axis
is the WA reduction of SepBIT over NoSep. We see a positive
correlation between the percentage of aggregated write traffic
and the WA reduction (we also find that the p-value is smaller
than 0.01 for the Pearson correlation coefficient 0.75, meaning
that the positive correlation is statistically significant). For the
volumes with percentages of aggregated write traffic larger
than 80%, SepBIT reduces the WA by at least 38.0% with a
maximum reduction of 76.7%.

Exp#8 (Memory overhead analysis). We analyze the mem-
ory overhead of SepBIT using the Alibaba Cloud traces. Re-
call that SepBIT tracks only the unique LBAs inside the FIFO
queue (§3.4), instead of maintaining the mappings for all
LBAs in the write working set. We report the memory over-
head reduction of SepBIT as one minus the ratio of the num-
ber of unique LBAs in the FIFO queue to the number of
unique LBAs in the write working set. To quantify the reduc-
tion, for each volume, we collect all values of the number of
unique LBAs in the FIFO queue at runtime when ` (§3.4) is
updated. To avoid bias due to the cold start of trace replay,
for each volume, we exclude the beginning 10% of the values.
We also collect the number of unique LBAs at the end of the
traces. We consider two cases, namely (i) the worst case and
(ii) the snapshot case. In the worst case, we use the maximum
number of unique LBAs in the FIFO queue for all volumes;
it assumes that each volume has its peak number of unique
LBAs in the FIFO queue and incurs the most memory. In the
snapshot case, we use the number of unique LBAs at the end
of the traces, representing a snapshot of the system status.

From our analysis, we find that in the worst case, SepBIT
reduces the overall memory overhead by 44.8%, while in the
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snapshot case, SepBIT reduces the overall memory overhead
by 71.8%. To calculate the actual memory overhead, suppose
that the mapping for each LBA has 8 bytes, in which both
the LBA and the FIFO position are of size 4 bytes each (a
4-byte LBA can represent an address space of 232× 212 =
16 TiB for 4-KiB blocks). Since the aggregated write WSS
of the 186 volumes is 20.3 TiB (§2.3), SepBIT reduces the
overall memory overhead from 20.3 · 240

212 · 8 = 41.6 GiB to
41.6 · (1−71.8%) = 11.7 GiB.

Figure 19 further depicts the cumulative distributions of the
memory overhead reductions across volumes under both the
worst case and the snapshot case. In the worst case, SepBIT
reduces the memory overhead by more than 72.3% in half of
the volumes and the highest memory overhead reduction is
99.5%; in the snapshot case, the median reduction is 93.1%
with the highest reduction as 99.7%. In the snapshot case,
the 25th, 50th, and 75th percentiles of the number of unique
LBAs across volumes are 99 K, 1,063 K, and 6,190 K, respec-
tively, while the 25th, 50th, 75th percentiles of the number
of total LBAs in the FIFO queue across volumes are 398 K,
2,242 K, and 8,857 K, respectively. The reason of the differ-
ences among volumes is their different degrees of skewness.
The volumes with higher skewness see more aggregated traf-
fic patterns, and hence the number of recently updated LBAs
is much smaller compared with the write WSS.

Exp#9 (Prototype evaluation). We deploy our log-structured
block storage system prototype (§3.4) on a machine equipped
with an Intel Xeon Silver 4215 CPU, 96 GiB DDR4 RAM,
and 4×128 GiB Intel Optane Persistent Memory modules.
The machine runs Ubuntu 20.04.2 LTS with kernel 5.4.0.

Due to the limited storage capacity in our testbed machine,
we focus on 20 volumes whose write traffic ranks the top
31-50 among the 186 volumes in the Alibaba Cloud traces.
Their write traffic ranges from 0.82 TiB to 2.82 TiB, and their
WAs under NoSep range from 1.00 to 4.96. Specifically, 9
volumes have their WAs less than 1.1, while 7 volumes have
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Figure 20: Exp#9 (Prototype evaluation).

their WAs greater than 3.0.
Also, our evaluation rate-limits user writes while GC is

running due to the capacity constraint. The reason is that a GC
operation removes the invalid blocks only after rewriting all
valid blocks. If we issue user writes at full speed while GC is
running, the storage space may run out. Thus, we limit the rate
of user writes as 40 MiB/s while GC is running; otherwise,
we issue user writes at full speed. We measure the write
throughput (i.e., the number of user-written bytes divided by
the total time for replaying each volume).

We compare SepBIT with NoSep, DAC, and WARCIP,
based on our previous experiments that DAC and WARCIP
perform the best among existing schemes and NoSep serves
as the baseline. We configure the segment selection algo-
rithm, the segment size, and the GP threshold as Cost-Benefit,
512 MiB, and 15%, respectively.

Figures 20(a) and 20(b) show the boxplots of the abso-
lute write throughput and the normalized write throughput
of SepBIT (w.r.t. NoSep, DAC, and WARCIP) in individual
volumes for different schemes, respectively. SepBIT achieves
the highest throughput for the 25th and 50th percentiles, at
556.1 MiB/s and 859.4 MiB/s, which are 28.3% and 20.4%
higher than the second best, respectively.

For the 75th percentile, the absolute throughput of SepBIT
is 6.9%, 5.2%, and 3.0% lower than those of NoSep, DAC,
and WARCIP, respectively (Figure 20(a)). The reason is that
such volumes (with top-25% throughput) have low WAs (less
than 1.1) and hence are less affected by GC. Compared with
other schemes, SepBIT spends extra time to access the FIFO
queue (§3.4) and has slightly degraded throughput.

5 Related Work
GC in SSDs. We evaluated several existing data placement
schemes (§4.1) for mitigating the WA of flash-level GC in
SSDs. Other data placement schemes build on the use of pro-
gram contexts [19] or the prediction of block temperature
based on neural networks [44]. Some empirical studies evalu-
ate the data placement algorithms on an SSD platform [22],
or characterize how real-world I/O workloads affect GC per-
formance [41]. In particular, Yadgar et al. [41] also investi-
gate the impact of the number of separated classes in data
placement based on the temperature-based data scheme Mul-
tiLog [35]. In contrast, SepBIT builds on the BIT for data
placement, backed by the empirical studies from real-world
I/O traces. ML-DT [8] uses neural networks to predict the

block death time. Compared with ML-DT, SepBIT infers
BITs only with the last user write time in a simpler manner.

Besides data placement, existing studies propose segment
selection algorithms to reduce the WA of flash-level GC. In
addition to Greedy and Cost-Benefit (§2.1), Cost-Age-Times
[11] considers the cleaning cost, data age, and flash erasure
counts in segment selection. Windowed Greedy [17], Random-
Greedy [24], and d-choices [36] are variants of Greedy in
segment selection. Desnoyers [14] models the WA of different
segment selection algorithms and hot-cold data separation.
SepBIT can work in conjunction with those algorithms.

GC in file systems. Several studies examine the GC perfor-
mance for log-structured file systems. Matthew et al. [26]
improve the GC performance by adapting GC to the system
and workload behaviors. SFS [27] separates blocks by hotness
(i.e., write frequency divided by age). Some studies reduce
WA using file system semantics in data placement; for exam-
ple, WOLF [38] groups blocks by files or directories, while
hFS [47] and F2FS [21] separate data and metadata. Extend-
ing SepBIT with file system awareness is a future work.

GC for RAID and distributed storage. Some studies ad-
dress the GC performance issues in RAID and distributed
storage, such as reducing the WA of Log-RAID systems [13]
and mitigating the interference between GC and user writes
via GC scheduling in RAID arrays [19, 34]. RAMCloud [31]
targets persistent distributed in-memory storage. It proposes
two-level cleaning to maximize memory utilization by coor-
dinating GC operations in memory and disk backends. It also
corrects the original Cost-Benefit algorithm [30] for accurate
segment selection. Our work focuses on data placement for
WA mitigation and is orthogonal to those studies.

6 Conclusion
We propose SepBIT, a novel data placement scheme that mit-
igates WA caused by GC in log-structured storage by group-
ing blocks with similar estimated BITs. Inspired from the
ideal data placement that minimizes WA (i.e., WA=1) us-
ing future knowledge of BITs, SepBIT leverages the skewed
write patterns of real-world workloads to infer BITs. It sepa-
rates written blocks into user-written blocks and GC-rewritten
blocks and performs fine-grained separation in each set of
user-written blocks and GC-rewritten blocks. To group blocks
with similar BITs, it infers the BITs of user-written blocks and
GC-rewritten blocks by estimating their lifespans and residual
lifespans, respectively. Evaluation on production traces shows
that SepBIT achieves the lowest WA compared with eight
state-of-the-art data placement schemes.
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Abstract
Mobile applications often maintain downloaded data as

cache files in local storage for a better user experience. These
cache files occupy a large portion of writes to mobile flash
storage and have a significant impact on the performance and
lifetime of mobile devices. Different from current practice,
this paper proposes a novel framework, named CacheSifter,
to differentiate cache files and treat cache files based on their
reuse behaviors and main-memory/storage usages. Specifi-
cally, CacheSifter classifies cache files into three categories
online and greatly reduces the number of writebacks on flash
by dropping cache files that most likely will not be reused. We
implement CacheSifter on real Android devices and evaluate
it over representative applications. Experimental results show
that CacheSifter reduces the writebacks of cache files by an
average of 62% and 59.5% depending on the ML models, and
the I/O intensive write performance of mobile devices could
be improved by an average of 18.4% and 25.5%, compared
to treating cache files equally.

1 Introduction
Mobile devices are now dominant in people’s daily lives [23,
39]. Almost all mobile applications need to download files or
data from networks because of the dynamic nature of appli-
cations and overall system optimization. Even with the high
bandwidth of modern communication networks (e.g., WiFi
and 5G), many applications still rely heavily on data cached
on mobile devices to avoid re-downloading data through the
network and meet their execution latency demands. Current
mobile devices store cache files in the main memory first
and then write them back to flash storage. These applications’
cached data are usually managed as cache files and can be re-
accessed quickly [9,41]. However, the number and the size of
applications’ cache files have grown exponentially in recent
years, as applications demand increasing amounts of data. For
example, Facebook can generate 1.2GB of cache files on a

∗Corresponding authors: Changlong Li, Email: clli@cs.ecnu.edu.cn; Xi-
anzhang Chen, Email: xzchen@cqu.edu.cn.

mobile device in two hours [27]. In addition to performance
degradation, most cache files are eventually written to the
flash storage of a mobile device, increasing writes and thus
decreasing the lifetime of flash devices [2, 45].

A number of research studies on mobile systems have been
performed in recent years [11, 12, 16, 18, 20, 23, 26, 27, 32,
37, 38]. These techniques include optimization of memory
management [23, 26], defragmentation [11], storing cache
files in memory [32, 38], re-designing the directory cache of
mobile systems [37], an application-aware swapping mecha-
nism [20], and I/O management [12, 16, 18]. Unfortunately,
little work exists that has differentiated cache files in manage-
ment. Although Liang et al. [27] elucidate differences among
cache files, a solution was not proposed. Since the total size
of cache files has increased dramatically, improper writebacks
of cache files to flash storage will markedly reduce the life-
time of the flash storage of a mobile device. It is also worth
noting that some cache files are used only once throughout
their lifetime while others may be re-accessed multiple times
before deletion. In current practice, however, cache files are
treated equally.

Android operating systems store cache files in local stor-
age in consideration of performance and latency [9]. How-
ever, cached data on a mobile device can significantly re-
duce the lifetime of its flash storage, as the replacement cy-
cle of smartphones increases [40]. Recent works propose to
store cached data in DRAM to reduce writebacks, and thus
can improve both system performance and lifetime [32, 38].
These techniques suffer from two major problems as appli-
cations increase their demand for cached files. First, cached
data vary greatly in frequency of access, lifetime, and size.
Treating them equally leads to inefficiency. Second, the avail-
able memory is insufficient in mobile devices, maintaining
useless cache files could degrade the overall system perfor-
mance because of memory competition. The goal in this work
is to improve both system performance and the lifetime of
flash storage by managing cache files according to their reuse
behaviors.

The proposed novel cache file management framework,
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named CacheSifter, dynamically categorizes cache files into
different categories using a light-weighted machine learn-
ing (ML) algorithm and dynamically places the cache files
of different categories in DRAM or flash storage based on
their data access patterns. Three cache-file categories are
proposed based on their revisiting possibility: Burn-After-
Reading (BAR) files, Transient files, and Long-living files. A
quasi-in-memory file system is proposed for better manage-
ment of Transient files in DRAM and to avoid the operating
system from accidentally evicting them out of DRAM. A
cache-file eviction mechanism is also developed to utilize
DRAM more effectively in keeping cache files.

CacheSifter adheres to the semantics of the Android cache
file management and does not produce new safety vulnera-
bility. Experimental results over popular applications show
that CacheSifter reduces the writebacks of cache files by an
average of 62% and 59.5% depending on the ML models,
and the I/O intensive write performance of mobile devices
could be improved by an average of 18.4% and 25.5%. 1

2 Cache Files in Mobile Systems
Unlike servers’ applications, most mobile applications fre-
quently download fresh data such as news and videos from
networks. Mobile systems generally store the downloaded
data as cache files in local storage temporarily to reduce redun-
dant data downloads. For example, Android systems maintain
temporary cache files in the main memory for a period of time
(30 seconds by default) and then write them back to flash stor-
age [9, 41]. This is similar in spirit to how Linux manages its
files, which treats all files equally. Writing all of the cache
files back into flash storage will significantly degrade sys-
tem performance [8], reduce the lifetime of flash storage [2],
and occupy large storage space, which is markedly limited
in mobile devices. With the exponential growth of mobile
applications’ cache files induced by high-speed networks in
recent years, optimization of their management has become
urgent.

While previous works [32, 38] aim to maintain all cache
files of targeted applications in the main memory to accel-
erate cache files’ accesses, the total size of cache files for
an application can occupy a significant portion of the main
memory, which could substantially degrade the performance
of the other running applications via memory contention. This
paper, however, aims to manage cache files according to their
access patterns and thus only necessary cache files will be
stored in main memory or storage.

2.1 Required Space and Writes of Cache Files
This section aims to quantify cache file usages in current
Android systems via both static and dynamic methods.

1Note that the reduction of writebacks can substantially improve the
lifetime of flash-memory storage and notably benefit I/O-intensive phases in
application execution, application launch, and application installation, which
are crucial to the mobile user experience [3].

Required space for cache files. The storage occupation of
cache files is determined by taking snapshots of cache files
in storage. We survey 60 volunteers2 with real mobile device
usage, including 42 models of 5 vendors, for one week. We
collect the snapshots of cache files for the commonly-used
applications (4-15 applications according to volunteers’ us-
age behaviors) once per day on 50 of the mobile devices. On
the other ten mobile devices, data are collected three times
per day. Table 1 presents the total size of cache files of each
mobile device and different applications. We choose the most-
commonly-used application for each type on each smartphone.
Some smartphones might be missing certain types of applica-
tions due to different user behaviors.

Table 1: Cache files’ sizes of different devices or applications.

Group by Code name No. of devices Average (GB) Max (GB)

Vendors

Huawei 30 0.4 1.79
Oppo 6 4.11 8.82
Vivo 6 1.58 1.85

Xiaomi 17 2.17 4.55
Meizu 1 1.68 1.7

Apps

Social media 60 0.35 2.73
Video 57 0.22 2.23

Website 60 0.26 5.25
Game 11 0.18 1.33

The collected data shows that cached file size varies greatly
between vendors and applications. Based on the data col-
lected from these mobile devices, it is found that some mobile
systems or third-party software delete cache files. Moreover,
some users habitually delete cache files to alleviate the short-
age of storage space. However, even though these cache data
are deleted after writes, their damage to the performance and
lifetime of flash storage has already occurred. As a conse-
quence, it is critical to evaluate the actual writes of cache files
during run-time.
Write behaviors. The writes of cache files are now profiled
from two perspectives: user behaviors and representative ap-
plications. We first collect the write size of cache files under
volunteers’ usage behaviors by instrumenting the source code
of Linux in the experimental mobile devices to collect every
write of cache files to flash storage. Five volunteers used the
experimental mobile devices for three days.

The collected data reveals that the writes of cache files can
reach 500MB per day, even for users that spend less than three
hours per day on their mobile devices. Data from a mobile
device vendor (top-five) shows that the total writes of their
testing users is about 10GB on average and up to 30GB per
day. Cache file writes is approximately 6.4GB on average per
day and up to 19.2GB because cache file writes represent an
average of 64% of total writes to storage for mobile devices
based on experimental results, as shown in Figure 1.

The writes of cache files of the top-20 representative ap-
plications are collected, including social media, map, game,
video, and browser. In this experiment, the volunteers used
each application continuously for two hours. The ratio of

2The volunteers are 18-60 years old.
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cache file writes to total writes for the twenty applications
is presented in Figure 1. The write count ratio is the ratio of
the number of writes of cache files to the number of writes
of total files. It is found that most applications write a large
amount of cache files. For example, the write count ratio of
Facebook is up to 92.6%, and the write size ratio of YouTube
is as high as 95.7%. In contrast, CandyCrush is a stand-alone
game that does not need to download much data from the
network.

Figure 1: Write count/size of representative applications in
two hours.

Existing applications write many cache files into flash stor-
age during run-time. Even though many cache files are deleted
by the system or applications, the cache files still occupy
large storage space. Notably, the write and delete operations
of cache files not only increase I/O contention, which could
degrade I/O performance, but also shorten the lifetime of
flash devices [10, 21]. In addition, the problem will become
increasingly severe with the continual increase of network
speed, growing usage of applications, and use of newer flash
chips (e.g., TLC, QLC, and 3D-NAND flash) with shorter
endurance [13, 17, 44].

2.2 Differences among Cache Files
As mentioned above, existing Android systems treat all cache
files as normal files that always require persistent storage.
Cache files are time-sensitive data, however, and it is often
unnecessary for them to be persistently stored. Based on ob-
servations at the block layer, Liang et al. [27] proposed to
classify all cache files into three categories, i.e., Burn-After-
Reading (BAR), Transient, and Long-living, according to the
distinctly varied access patterns of cache files in flash storage.

After defining the categories of files, numerous questions
arise regarding how files are categorized and how categories
are managed in a practical system, none of which offer
straightforward answers. However, all of these questions are
addressed in this paper. Furthermore, paper [27] demonstrates
differences between cache files at the block layer. This paper
finds that access information at the VFS layer is more suitable
for categorizing cache files because the cache files should be

Timestamp (Sec)

Map

Earth

Youtube
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Firefox
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Twitter

Zombie

Candycrush

Figure 2: Access patterns of the top-10 accessed cache files
of ten representative applications.

handled prior to the block level. Therefore, this paper reuses
the name of three types of files in paper [27] but with different
definitions.

Burn-After-Reading (BAR) represents cache files that
only have tiny re-accesses that take place at the beginning
of their lifetime. For many typical mobile applications, most
cache files are rarely re-accessed, which is similar to the con-
clusion reached in a previous study [4]. In particular, some
cache files in the flash storage were deleted without being
re-accessed at all. Consequently, there is no need to write
such cache files to storage.

Transient refers to cache files that have a large re-access
count as well as a short active period. Figure 2 shows the
access patterns of the top-10 accessed cache files (denoted
by ten colors) of ten representative applications. The size
of a circle indicates the access count of the corresponding
cache file within 100 seconds. The access patterns of the
cache files vary greatly. Moreover, some of these files have a
short active period and a large access count. For example, the
third cache file (labeled in green) of Map is only re-accessed
within a short time after it is created. Accordingly, we deem
such cache files as Transient files, since the applications only
re-access them in the near future.

Long-living represents the rest of cache files, especially
the files that are re-accessed frequently over a long period of
time.

2.3 Challenges in Cache File Management
Even though Liang et al. [27] proposed to manage cache files
following their access patterns, they did not explore classi-
fication or management methods of cache files. Two major
challenges exist in the management of cache files. First, cache
files’ behaviors change over time. For this reason, it is im-
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portant that management should be adaptive to the run-time
behavior of cache files. Second, existing systems store cache
files according to the same routine. It is necessary, however,
to manage dissimilar types of cache files by different poli-
cies. The main goal of this paper is to improve both system
performance and storage lifetime. We will explore the access
patterns of applications’ cache files and consider the character-
istics of DRAM-based main memory and flash-based storage
of mobile devices in terms of performance and endurance.

3 CacheSifter Design
We propose CacheSifter to categorize cache files and manage
them by exploiting their access patterns.

3.1 Overview of CacheSifter
3.1.1 Design Principles
We discuss five design principles for categorizing and manag-
ing cache files in mobile systems.
User application transparency. CacheSifter should have an
insignificant impact on user experience. CacheSifter should
also be compatible with the semantics of existing mobile
systems requiring zero changes in existing user applications.
Online Categorization. While offline profiling simplifies the
categorization process, an offline classifier cannot adapt to the
dynamic system status and the configuration of users during
usage of the mobile device. As a result, CacheSifter needs
to be able to categorize cache files online while avoiding the
extra overhead of storing BAR files and Transient files.
Adaptive memory management. CacheSifter always at-
tempts to maintain the cache files that will be used in the
main memory to achieve high file access performance. How-
ever, using too much memory for the cache files may degrade
system performance. In this case, CacheSifter should adap-
tively adjust its memory usage along with different active
applications.
Adapt to changes in user behavior. CacheSifter should
adapt to changes in user behaviors. A categorized file may
need to be re-categorized. For example, a file is categorized
as a BAR file because it is only used once immediately af-
ter it is downloaded. When user behavior changes, and it is
used many time repeatedly, it should be re-categorized into a
Transient or Long-living file to avoid frequent re-download.
Ensure safety when deleting cache files. CacheSifter should
not produce any new vulnerabilities as compared to existing
mobile systems. Since CacheSifter may discard BAR files
and Transient files during execution of applications, it is crit-
ical that discarding data by CacheSifter will not cause an
application crash or user data loss.

3.1.2 CacheSifter Framework
Following these principles, we design CacheSifter to cate-
gorize cache files and manage them in DRAM/flash stor-
age according to their reuse patterns to avoid unnecessary

writing back. Figure 3 shows the framework of CacheSifter.
CacheSifter lives in the kernel rather than in an intermediate
or less-privileged layer. CacheSifter can directly categorize
cache files on the page cache without additional memory con-
sumption and data copy. CacheSifter also does not require
any changes in existing user applications, i.e., it is transparent
to user applications.

Figure 3: Framework of CacheSifter.

All newly downloaded cache files are first maintained in
the main memory and wait for categorization. 1© CacheSifter
adopts a lightweight machine-learning-based categorization
engine (See Section 3.2.1) to divide the newly downloaded
cache files into three types, i.e., BAR, Transient, and Long-
living in two stages online. 2© To better utilize memory and
storage, CacheSifter discards all BAR files because they are
typically not reused. 3© For Transient files, CacheSifter keeps
them in DRAM by using a quasi-in-memory file system,
which is designed to avoid an accidental swap-out of Tran-
sient files. CacheSifter discards Transient files when there is
insufficient DRAM space using an LRU-like file eviction pol-
icy (See Section 3.2.2). 4© For Long-living files, CacheSifter
writes them to the flash storage by exploiting the default LRU-
based eviction scheme of the Android system. Moreover,
CacheSifter deletes the cache files from their correspond-
ing storage when they are invalidated by applications. 5©
The deleted files will be re-downloaded from the network
when they are accessed in the future, which provides an op-
portunity to change the categorization of cache files accord-
ing to changes in user behavior (See Section 3.3). Finally,
CacheSifter exploits a safe list mechanism to maintain known
potential paths of cache files that are important to users, or in
cases in which their deletion could threaten system stability
(See Section 3.4).

CacheSifter provides three key benefits. First, CacheSifter
avoids pushing-out the BAR and Transient files to flash stor-
age, which reduces write contention, extends the lifetime of
the flash storage, improves overall system performance, and
conserves storage space. Second, Transient files are accessed
directly from DRAM, improving the access latency of this
type of cache files. Third, CacheSifter significantly optimizes
the management of cache files with a lightweight machine-
learning-based engine in the kernel, which not only has negli-
gible overhead but is also transparent to user applications.
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3.2 Feature-based Cache Files Management
The effectiveness of CacheSifter relies highly on the accuracy
of the categorization engine. The overhead of the categoriza-
tion engine and the cache file management mechanism of
cache files should be as small as possible to minimize the
impact on system performance. In this section, we describe
the design of these two key components.

3.2.1 Lightweight Categorization of Cache Files
Machine learning based categorization. According to the
design principles, categorization should be both lightweight
and conducted online. Based on our observations, we know
the categorization of each cache file by observing its reuse
patterns. However, to avoid writebacks of BAR and Transient
files, this method requires storing all cache files and their
access information in main memory for a long time period for
categorization, which imposes a high cost. Heuristic-based
methods, such as suffix based methods [14, 24], can catego-
rize files with a small cost. However, they do not consider
the access patterns of cached files, and thus cannot be used
to recognize BAR, Transient, and Long-living files. For ex-
ample, a video (.exo) file could be any type of cache file
according to user behaviors. Moreover, since the users’ be-
havior and access pattern of cache files are different across
different applications, we expect non-ML approaches to be
less flexible and generalized. Thus, the categorization engine
in CacheSifter utilizes machine-learning-based schemes to
automatically perform categorization based on features within
a short period of time and observation-based labels.

This paper chooses a lightweight neural network method
(MLP [5]) in the experiments because of its performance and
low cost.3 To further reduce cost, categorization is divided into
two phases (BAR/non-BAR and Transient/Long-living) by
exploiting two MLP models because we find that Long-living
cache files cannot be recognized by short-time information.
We train these two MLP models offline and use them for
online categorization, and thus this method needs to retrain the
models after a period of time to adapt to applications’ changes.
Certainly, one can also choose a lightweight reinforcement
learning method [35] to avoid retraining, which is beyond the
scope of this paper.
Metrics for analyzing prediction models. Three metrics are
used to evaluate our categorization models. First, we use
Accuracy to reflect how correctly the model predicts the cate-
gories of files, as shown in Equation 1:

Accuracy = (T P+T N)/Total_Instances (1)

Where TP is an outcome in which the model correctly pre-
dicts the positive class; a true negative TN is an outcome in
which the model correctly predicts the negative class. Con-
sidering the penalty of misclassification, positive class is non-
BAR in the first phase of categorization in which the negative

3We compare the performance of MLP, Random Forest, Linear Regression
and Logistic Regression and find MLP to be the most effective.

class is BAR. In the second phase of categorization, Long-
living is denoted as the positive class, while Transient is the
negative class. Based on our observation, the data of each cat-
egory is highly unbalanced. Therefore, the above Accuracy
cannot represent the accuracy of each type of file. Accord-
ingly, we introduce another metric, Recall, in Equation 2:

Recall = T P/(T P+T N). (2)

In the high-recall model, we care more about the predicted
accuracy of files with high mis-predicted overhead, such as
long-living files. If a long-living file is incorrectly predicted as
a BAR or Transient file, it could induce redownload overhead.
Finally, to visualize the results, we also use the third metric,
PR curve, which is simply a graph with Precision values on
the y-axis and Recall values on the x-axis. A good PR curve
has a large area under curve (AUC).

Based on these three metrics, we train high-recall and
high-accuracy models with a high PR curve. The high-recall
model aims to reduce writebacks of cache files and minimize
re-download overhead; whereas, the high-accuracy model
aims to reduce writebacks of cache files with minimum mis-
categorization.

3.2.2 Cache File Management Mechanism
To better utilize memory/storage to reduce writebacks of
cache files and minimize re-download penalty, cache files
are processed according to their categorization.
BAR file. BAR files are deleted immediately after categoriza-
tion because these files are not likely to be reused.
Transient file. Since the usage of Transient files in mobile ap-
plications exhibits both strong locality and time sensitivity in
a certain period of time, CacheSifter always attempts to main-
tain the Transient files in the main memory during their active
period to achieve higher file access performance. At first, we
try to exploit an existing file system, such as tmpfs or ramfs,
to manage Transient files. However, to avoid writeback opera-
tions prior to the categorization of cache files, each cache file
will have two inodes, i.e., one in F2FS and tmpfs/ramfs each,
which complicates the implementation and brings additional
overhead. As a consequence, a quasi-in-memory file system
(QMFS) is proposed to manage Transient files in the main
memory during their active period.

QMFS is implemented by two LRU-like lists (an active list
and an inactive list), as shown in Figure 4. The active list is
designed to ensure that files will not be deleted within their
active period. The inactive list is used to balance memory
pressure and file performance. Specifically, when memory
is sufficient, files will be maintained in memory for a longer
time to reduce the penalty of mis-classifications. In the default
memory management, the LRU list of page cache is page-
granularity since the pages of files cached in the main memory
will be written back to storage. If a page of a Transient cache
file is deleted, however, this means that the whole cache file
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in QMFS is invalid. Therefore, the LRU-like lists of QMFS
in CacheSifter are maintained in file-granularity.

Figure 4: Eviction scheme of LRU-like lists in QMFS.
In QMFS, a cache file is put into the active list after catego-

rization. Subsequently, the file in the active list may be moved
into the inactive list, depending on the size of free memory
and its existing time in the active list. If the existing time of
a file is longer than its active period (a threshold), it will be
moved to the inactive list to wait for deletion. Insufficient
memory also triggers the movement action. If a file in the
inactive list is referenced before it is deleted, it will be moved
back to the active list. If a file is deleted, it will be deleted
from the corresponding lists. If a file is truncated, CacheSifter
works in the same manner as the default Android system.
Specifically, the file’s pages will be deallocated whereas the
inode number will be still maintained in the LRU-like lists.

When the active period of Transient files ends, the Tran-
sient files generally will not be used again. For this reason,
the longest-lived Transient files should have the highest prior-
ity to be evicted. Furthermore, to improve the performance
of foreground applications, the cache files generated by a
background application should also have a higher priority
for eviction. We use UID to identify the files of background
applications, as previously described [12]. After file eviction,
memory space will be reclaimed. The parameters for reclaim
are established in Section 5.2.
Long-living file management. Unlike the eviction schemes
of BAR and Transient files, Long-living files are managed
by the default page-based eviction scheme of the page cache
in Android systems. Long-living files are maintained in the
default LRU-based lists of the page cache. When a page of a
Long-living file is unused for a long period of time, it will be
evicted from the page cache and written back into the flash
storage if it is dirty. Consequently, Long-living files will be
stored in storage infinitely unless the applications delete them.

3.3 User Behavior Adaptation
Even if the feature-based cache file management worked
well, user behaviors could change. Therefore, CacheSifter
should be able to re-categorize cache files when user behavior
changes to avoid frequent re-downloads. There are four types
of state changes, as listed in Table 2. BR, TR, and LL repre-
sent the BAR category, the Transient category, and the Long-
living category, respectively. Thus, “BR-> TR, LL” means
that a BAR file shifts to a Transient file or a Long-living file.

Table 2 shows actions that trigger state changes of cache
files, and the corresponding benefit or cost. When user behav-
ior changes, CacheSifter only updates the category of cache
files after re-download since CacheSifter performs categoriza-
tion only when a file is newly-downloaded from the network.

Table 2: Actions based on state changes.

Types State changes Action Benefit/Cost
(1) BR-> TR, LL Re-categorize files after re-download None
(2) TR -> BR Do nothing and wait for discard Memory space
(3) TR -> LL Re-categorize files after re-download High performance
(4) LL -> BR, TR Do nothing Flash space

CacheSifter treats and re-categorizes the re-downloaded file
as a new file, and thus CacheSifter can adapt to stage change
types (1) and (3) in Table 2. When type (2) stage change
occurs, CacheSifter does not need to do anything, since Tran-
sient files will be discarded just like BAR files. Compared
with BAR files, Transient files will remain in the main mem-
ory for a longer period of time and consume memory space.
Type (4) is similar to type (2). Therefore, CacheSifter also
does nothing, which consumes flash storage for a short time.

3.4 Safety Mechanism
CacheSifter discards the BAR and Transient files eventually.
To make these operations safe for user data and applications,
CacheSifter exploits a safe_list approach for cache file direc-
tories. It is not difficult to track and manage safe_list paths.
In fact, Android now exploits these paths, which can be seen
through the cache-delete button in the Android setting [6].
CacheSifter uses the same paths of the cache-delete button as
the safe_list paths. Moreover, the safe_list can be managed of-
fline. If vendors wish to optimize certain specific application,
such as YouTube, they can obtain the cache paths of YouTube
in advance and put them into the safe_list.

4 CacheSifter in Android
We implement CacheSifter in the Android system as a case
study for mobile systems. In our implementation, CacheSifter
categorizes cache files by using a dedicated thread. In this
section, we first present the details of MLP-based catego-
rization. We then show how the categorized cache files are
managed by the flash file system, F2FS [24], and the proposed
QMFS. Finally, we discuss implementation considerations of
CacheSifter.

4.1 MLP-based Cache File Categorization
Categorization features and labels. In order to avoid unnec-
essary writes of cache files, categorization should be com-
pleted as rapidly as possible by using as few features as pos-
sible. The challenge here is that the Long-living files cannot
be recognized by short-time features easily. To accurately
categorize cache files, we first perform a fast categorization
to detect BAR files and then dedicate additional time for the
second pass to further separate Transient and Long-living files.
Importantly, the memory space overhead is not large because
there are not many Long-living files. In addition, categoriza-
tion should also adapt to changes in user behaviors. Therefore,
the objective of feature design is to characterize the access
patterns and attributes of each file with a low memory cost.
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To achieve this goal, the access patterns (read, write, and I/O
size) and attributes of files (file size and active period) are
selected as the features for machine-learning methods. The
designed features are shown in Figure 5.

Figure 5: Features for learning.
In general, the system maintains K+6 features for each data

point. The first K dimensions of a data point are sequential
data that correspond to access information within the first K
time units after creating a file, where each value represents the
sum of access I/O size within one time unit. The following 4
features are read amount, read count, write amount, and write
count within K time units, while the last 2 features are file
size and active period. File size is the maximum size of each
file within the K time units. The active period is calculated by
the last access time minus the first access time within the K
time units. If a file is accessed only once within this period,
the last access time is set to be K time units. To achieve
high accuracy and low memory cost, the value of K of the
first phase of categorization (BAR or other) is smaller than
the second phase of categorization (Transient or Long-living).
When a new cache file is created, its access information during
time K (e.g., 30s) will be recorded.

In addition to the features, the labels of cache files can be
used to train the categorization model. Although we cannot
use the observation-based categorization online due to its
high overhead, the labels for the cache files in the training
dataset can be obtained based on the observations of the reuse
patterns throughout their lifetime. Specifically, we label a file
as a BAR file (“1”), or a Transient file (“2”) or a Long-living
file (“3”) according to their active period.
Dataset Collection. We instrument the source code of the
Android kernel and use the Android Debug Bridge (adb)
tool [7] to collect the access information and file size of
cache files at the VFS layer in fs/read_write.c. Based on the
collected data4, the labels and features are obtained to train
our machine learning models.

To make the model as general as possible, many data are
collected. Our collected data includes four parts: (1) infor-
mation from ten representative applications gathered over 20
hours; (2) information of the same applications by different
users, in order to include more user behaviors; (3) information
of the same applications after three months for checking the
retraining period; and (4) information of different applications
in order to assess the prediction accuracy of untrained applica-
tions. This case study aims to optimize these ten applications.
Categorization methods. With sufficient data with features
x and labels y collected, the subsequent step is to find a proper

4Released in https://github.com/yliang323/CacheSifter.

machine learning model that learns the mapping f (·) : x→ y.
In this work, we compare some simple machine learning
methods and choose to use the popular Multi-Layer Percep-
tron (MLP) as it theoretically approximates any function if
given sufficient capacity, according to the universal approx-
imation theorem [5]. We choose to use a lightweight MLP
layer that takes the features as input and outputs the cate-
gorization results. A large network capacity (size) causes
great CPU and memory consumption while reducing the net-
work capacity might decrease the performance. We use a grid
search to find the best network capacity. We start from an over-
parameterized neural network and evaluate its classification
accuracy on the validation set. The network size is gradually
decreased by re-training the network until its performance on
accuracy starts decreasing. The same strategy is applied to
other network hyper-parameters, which will be elaborated in
Section 5.1.

We first train the categorization models and evaluate them
offline (on a PC), which can assist tuning the parameters to
identify the best models for cache file categorization. Then,
the trained models will be used in the Linux kernel for dy-
namic categorization. When the optimized applications are
upgraded, the models could need to be retrained. Based on
our dataset (3), the model can still accurately predict the new
data that are generated after at least three months. Therefore,
the period of retraining could be longer than three months
in our case. In this case, we also provide a fuse mechanism,
CheckStop, to stop CacheSifter once the prediction accuracy
is lower than a threshold. To avoid retraining, one can choose
a lightweight reinforcement learning model for the catego-
rization.

4.2 Management of Categorized Cache files
The management of categorized cache files mainly includes
two parts: handling data pages and managing inodes. All
of these pages and inodes are managed and maintained by
several lists.

There are three lists in CacheSifter for inode management:
temp_list, category_list1, category_list2. The categorization
engine, which is a dedicated thread, wakes up periodically to
scan these lists and control the migration of inodes among
them. prior to categorization, the inodes of all cache files are
maintained in temp_list after creation and their data pages are
managed in the unevictable_list in the page cache layer to
avoid accidental eviction caused by the Android system.

Two-phase Categorization. For categorization, the inodes
in temp_list are moved to category_list1 periodically to im-
prove concurrency. In the first phase, the categorization engine
scans category_list1 and determines whether an inode is BAR.
Then, the BAR inodes are deleted, and the remaining inodes
in category_list1 are migrated to category_list2. After the sec-
ond phase of categorization, the data pages of Transient files
remain in the unevictable_list, while the inodes of Transient
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files are stored in our LRU-like lists of the QMFS. The data
pages and the inodes of Long-living files are moved to the
default LRU lists (inactive file list) of the page cache layer,
and they are set as dirty. They are then written back into flash
storage by the default Android system.

4.3 Implementation Discussions
Adaptation of CacheSifter. Vendors train models by using
the dataset of targeted applications. When CacheSifter is de-
ployed on different mobile devices, the machine learning
model does not need to be retrained because it is based on
the behaviors of applications. A large training dataset can
cover extensive user behavior with a small implementation
overhead under the selected machine learning method.
Stop CacheSifter in unforeseen cases. To handle some rare
cases, we design a lightweight prediction checking mecha-
nism, named CheckStop, to determine if CacheSifter should
be stopped. The main idea here is to calculate the re-download
rate by recording the hash values of downloaded files and
deleted files in a time window. If the rate is larger than a
threshold, CacheSifter is suspended. To minimize overhead,
CheckStop only works when CacheSifter detects abnormal
signals such as a significant change in the number of write-
backs or file creations with the same hash value.
CacheSifter in the future. CacheSifter could be more useful
for future generations of mobile devices for the following
three reasons. First, with a faster network, more data could
be accessed and cached per time unit, and thus the amount
of cache files could be increased. Second, with the usage of
new flash chips(e.g., TLC, QLC), storage lifetime is becom-
ing increasingly crucial since the endurance of many new
flash devices have become smaller. Third, the memory ca-
pacity of mobile devices is growing, which can support more
in-memory cache files and better machine-learning-based cat-
egorization methods. Additionally, CacheSifter can be used in
other Internet of Things (IoT) systems or automotive systems.

5 Evaluation Methodology
We implement and evaluate CacheSifter on real mobile de-
vices with two different categorization models.

5.1 Categorization Models
In current Android systems, cache files are maintained in the
main memory for 30 seconds by default and then written back
to the flash storage. For this reason, in the evaluation, we
label a file as a BAR file (“1”) if its active period is shorter
than 30 seconds to avoid extra memory usage. Rather than
writing BAR files back to flash storage, CacheSifter deletes
them after their categorization. If the active period of a file is
longer than 30 seconds but smaller than 90 seconds, it will be
labeled as a Transient file (“2”). Otherwise, it is labeled as a
Long-living file (“3”). According to the active period of a set
of cache shown in Figure 6, the majority of cache files (93%)

in this dataset are BAR files. Consequently, a large number
of writebacks of cache files can be avoid.

Figure 6: Active period of cache files.

To avoid using too much main memory, CacheSifter cat-
egorizes all of the cache files within 30 seconds. We utilize
MLP as we found the mechanism to be the most accurate out
of all other simple machine learning methods (random forest,
linear regression and logistic regression). We test different
parameters and present the results in Table 3.

Table 3: Categorization results by using different features.

Total time Time unit K High Recall High Accuracy
Recall Accuracy Recall Accuracy

1s 0.01s 100 0.92 0.56 0.45 0.89
1s 0.05s 20 0.82 0.56 0 0.90
5s 0.25s 20 0.89 0.56 0 0.90
10s 0.5s 20 0.88 0.59 0 0.90
20s 1s 20 0.80 0.65 0.56 0.86
40s 1s 40 0.94 0.85 0.94 0.85
60s 1s 60 0.95 0.88 0.95 0.88
80s 1s 80 0.94 0.89 0.94 0.89

Our goal is to achieve enough accuracy or recall with small
memory usage (smaller K). Therefore, we choose 20 and 60 as
K1 and K2 for the first and second phases, respectively. Based
on the feature within 20s, we can only choose high accuracy or
high recall, and thus we use two models for different purposes.
Training models. The collected data are grouped by appli-
cations for training. We divide our datasets (1) and (2) (See
Section 4.1) into 80% training and 20% testing instances. We
use the training dataset to train a MLP network and exploit its
“Accuracy” and “Recall” by evaluating the trained model on
the testing dataset. We gradually decrease the neural network
size by re-training the network until its accuracy performance
starts to decrease. The same strategy is applied to other net-
work hyper-parameters. All of the hyper-parameters are listed
in Table 4.

The trained/re-trained model can be deployed to users’ mo-
bile devices as a system update. It is used for online catego-
rization, which includes three parts: online feature collection,
implementation of the trained MLP models, and the model-
based categorization. First, we collect features of every new
file for 20 seconds and maintain them in the main memory. A
dedicated thread periodically wakes up to check the features
and categorize the files. CacheSifter deletes BAR files after
categorization and continues collecting features for files in
other categories for an additional 40 seconds.
Categorization results of MLP models. We evaluate the
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Table 4: Summary of hyper-parameters.

Hyper-parameters For the first phase For the second phase
number of hidden layers 4 4

hidden layer size [512, 200, 2] [512, 200, 2]
activation function 1 Tanh Tanh
activation function 2 ReLU ReLU

The function of output layer Softmax Softmax
loss_function Focal loss function Focal loss function
learning rate 0.1+MultiStepLR 0.1+MultiStepLR

optimizer SGD + momentum = 0.5 SGD + momentum = 0.5
weight decay 1.00E-04 1.00E-05

sampler WeightedRandomSampler WeightedRandomSampler
batch size 200 200

trained models by ten representative applications and their
random combinations. For the combinations, we use the first
two letters to identify the application’s name, and the results
of which are shown in Figure 7. Some values are missed
because the testing dataset may have just one type of cache
files. For example, there are no non-BAR files in the testing
dataset of Earth, and all of its data are predicted as the BAR
class. Thus, it AUC is N/A, Recall is N/A, and Accuracy is
1. The results show that as long as an application has been
trained, the model can classify its files well, irrespective of
with what applications it is combined.

5.2 Evaluation Setup
We evaluate all of the experiments on two smartphones: (1)
P9 equipped with an ARM Cortex-A72 CPU, 32GB inter-
nal flash memory and 3GB DRAM running Android 7.0
with Linux kernel version 4.1.18, and (2) Mate30 equipped
with an ARM Cortex-A76 CPU, 128GB internal flash mem-
ory and 8GB DRAM running Android 10 with Linux ker-
nel version 4.14.116. Ten representative applications, includ-
ing social media, map, game, video, and browser, are used
to collect features of cache files and evaluate CacheSifter.
Their workload profiles (i.e., cache file ratio and data ac-
cess patterns of their cache files) are presented in Figure 1
and Figure 2. We revise the kernel to print the access in-
formation of each file and the file attribute in functions
new_sync_read() and new_sync_write() in fs/read_write.c.
We filter the cache files by using the specific cache path of
applications (/data/<packagename>/cache/).

We compare CacheSifter with the management scheme of
cache files in default Android systems. The parameters of
CacheSifter applied in the evaluation are listed in Table 5.
To make a fair comparison, both the user and activities are
the same for each comparison. For each testing, we follow
the same sequence of actions: 1) we close all apps and clean
their cache files prior to reboot to eliminate the impact of old
cache files; 2) after reboot, we clean the cache to eliminate
the impact of potentially buffered data; 3) we use the same
application, login with the same user account, and conduct
the same sequence of activities; and 4) We attempt our best to
make each test the same, and we also conduct each test more
than five times to eliminate possible nuances.

The parameters are selected based only on the targeted
applications and independently of the experimental platform.
The two smartphones run the same version of applications
and use the same parameters.

Table 5: Summary of parameters used by CacheSifter.

Symbols Semantics Setting
K1 The time for the first phase of categorization 20 seconds
K2 The time for the second phase of categorization 60 seconds
T1 The period of time for waking up the thread 10 seconds
E1 Period of time to inactive 20 seconds
S1 Size of each background reclaim To W1

T2 The period of time for background reclaim 20 seconds

MS Maximum RAM size for Transient files 20MB
W1 Low watermark for background reclaim 50%*20MB
W2 High watermark for foreground reclaim 90%*20MB
S2 Size of each foreground reclaim 10%*20MB

Parameter configurations. K1 and K2 are the time to collect
features of cache files for corresponding phases of categoriza-
tion. Their values are determined as discussed in Section 5.1.
T1 is relative to CPU and memory consumption. If it is too
small, the dedicated thread would run frequently and thus
consume CPU time. On the other hand, if it is too large, the
cache files will stay in the main memory for a long period
of time to wait for categorization even if they already have
enough features. Since we find the features within 20 sec-
onds to be sufficient for the first phase of categorization, we
choose 10 seconds to make sure the first phase can be finished
within the default 30 seconds to avoid extra memory usage
and frequent wake up. E1 is the time that Transient files can
be deleted. Since the active period of Transient files is 90
seconds in our evaluation, E1 is 20 seconds (90-K2-T 1). S1
is the reclaim space that to prepare for future usage, and it
is related to W1. T2 does not need to be frequent because the
reclaimed memory is enough for the next usage of Transient
file within K2. Therefore, we set it as 20 seconds according
to our experience to reduce the CPU consumption. It is also
not sensitive to the performance. These parameters do not
need to be modified for different models of mobile devices
if they use the same version of applications. If the versions
of targeted applications are updated, the parameters MS, W1,
W2, and S2 may need to be changed due to workload changes.
To show how to select these three parameters, we first present
the cache file’s size that was produced within 60 seconds in
Figure 8.

Based on the data from Figure 8, we find that the maximum
size of cache files of targeted applications is 21MB. Because
not all files are transient, we configure MS, which is the upper
bound of memory usage of the Transient files of targeted ap-
plications within K2, to 20MB. This allows more memory to
be used for other purposes. W1 and W2 are the watermarks of
reclaims. Overall, the larger are their values, the more space
will be used by Transient files; Thus, the re-access perfor-
mance of Transient files is better but the performance of other
applications could be worse because of memory contention.
W1 should be the maximum value of memory usage of the
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(a) High accuracy model for the first phase. (b) High recall model for the first phase. (c) Model for the second phase.

Figure 7: Predict results of two MLP models for different applications and their combinations. For the combinations, the first two
letters are used to identify the application’s name. “ChFaTi” represents the combination of Chrome, Facebook, and TikTok.

Figure 8: Cache files produced by applications within 60s.
Transient files of targeted applications within K2, and 10MB
(50% of MS) is enough for our case. W2 and S2 should be
the minimum value that is just enough for the Transient files
of targeted applications within K2, and 2MB (10% of MS) is
enough for our case. These parameters can be changed later
for different platforms and manufacturers.

6 Evaluations

We evaluate CacheSifter’s performance using two key metrics:
(1) the reduction in writebacks of cache files and extension
in lifetime of mobile flash storage; and (2) the improvement
in read and write performance under intensive I/Os. We show
the writeback reduction on two platforms while only show
the other results on one platform since they are similar on
different platforms and we do not have enough space for them.

6.1 Lifetime Improvement

Reduction in writebacks of cache files. We compare the
writebacks of cache files and the number of block I/Os of
CacheSifter against the default system. Since the results can
vary under different user behaviors, each test is conducted
ten times, the average results of which are shown in Figure 9.
We evaluate both the high-recall model and the high-accuracy
model.

The results reveal that writebacks of cache files vary for dif-
ferent applications. The reduction in writebacks when using
the high-recall model is similar to that of the high-accuracy
model in this experiment. Theoretically, the high-recall model
constitutes a conservative-delete scheme that tends to keep
cache files in the mobile device to reduce the penalty of re-

download. In contrast, the high-accuracy model is a radical-
delete scheme to pursue higher overall predict accuracy.

On P9, the writebacks of cache files are reduced by the
high-recall model and the high-accuracy model by an average
of 62% and 59.5%, respectively. The number of total I/Os is
also significantly decreased by both models, i.e., an average
of 29.7% and 31.2%, respectively. The high-accuracy model
treats all of the three classes with the same priority. The high-
recall model attempts to minimize incorrect predictions in
the two cases (LL->BAR and LL->Transient) to reduce the
re-download penalty. Since the long-living files are a small
part of all cache files (less than 5%), as shown in Figure 6,
the write reduction is similar under these two models.

On Mate30, the writebacks of cache files are reduced even
more by both models, i.e., an average of 88.3% and 85.5%,
respectively. The number of I/Os is also decreased more by
both models, i.e., an average of 47.7% and 46.6%, respec-
tively. The results on Mate30 show that the models trained by
the data collected from P9 also work well on Mate30 because
CacheSifter is platform-independent. There are two main rea-
sons for the difference between the results on P9 and Mate30:
different user behaviors, and the default system management
schemes.

Based on Figure 6, 93% of the cache files are BAR in that
dataset, but writebacks are not reduced as much in this case
primarily because 1) the directory of cache files must be writ-
ten back to flash storage to maintain consistency because there
are some Long-living files that uses the directory information;
2) different user behaviors; and 3) the predict accuracy is not
100%.
Sensitivity Study. To evaluate the sensitivity of CacheSifter,
we use the same parameters and the same models on P9
and Mate 30. The write reduction shown in Figure 9 indi-
cates that both P9 and Mate 30 achieve similar benefits from
CacheSifter. Moreover, we conduct a sensitivity study for the
parameters in Table 5. The write reduction results on Mate30
with different MS are presented in Table 6. The sensitivity
results show that the total writes could be affected by the
value of MS due to different memory usage.
Boosted lifetime of mobile flash storage. Cai et al. [2]
present the following method to compute the lifetime im-
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Figure 9: Normalized reduction ratio of cache files’ writebacks and total I/Os. We evaluate the trained models with ten
representative applications and their combinations. For the combination, we use the first two letters to identify the application’s
name. “ChFaTi” represents the combination of Chrome, Facebook, and TikTok.

Table 6: Sensitivity study with parameter MS.

MS Total count Cache count Total size Cache size
20MB 55% 83% 83% 91%
15MB 53% 77% 76% 94%
10MB 39% 72% 73% 84%
5MB 34% 76% 57% 91%

provement:

li f etime =
n

∑
i=1

PECi× (1+OPi)

365×DWPD×WAi×RCompress
(3)

In Equation 3, WAi and OPi are the write amplification
and over provisioning factor for ECCi, respectively, and PECi
is the number of P/E cycles for which ECCi is used. In our
case, other parameters are constants, and thus the lifetime is
inversely proportional to the number of full disk writes per
day (DWPD) which depends on the amount of data written.
Taking P9 as an example, we can reduce the amount of I/O
by an average of 53.2% and 54.7%, respectively by the two
models. Therefore, the lifetime can be improved by an aver-
age of 113.7% (1/(1-53.2%)-1) and 120.8% (1/(1-54.7%)-1),
respectively.

6.2 Performance Improvement
Read/write performance improvement. Reduction in write-
backs of cache files could improve read and write performance
because of the reduction in I/O contention. To quantify the
impact of writebacks of cache files on read and write perfor-
mance, especially under intensive I/O, we assess the latency
of running read/write micro-benchmarks when using a cache-
intensive application, i.e., Facebook. Since most I/O sizes on

mobile devices are in the size of 4KB [4], we sequentially
write with fsync or read 512MB in size of 4KB by using
the micro benchmarks to evaluate read/write performance.
We scroll news on Facebook for five minutes and collect the
latency of read and write in the default system (Baseline)
and in the system with CacheSifter (Recall and Accuracy).
No_cache represents the latency of read and write without
using Facebook so that there is no interference of cache files
generated by Facebook. We use memtester [34] to occupy
physical memory, so that cache files will be written back
quickly (to general the situation that memory is insufficient).
To reduce bias, we conduct the experiment five times, and the
average latency of the entire 512MB operation is presented
in Figure 10a. To show more breakdown information, the
I/O and writebacks produced by Facebook are presented in
Figure 10b.

(a) Read/write performance. (b) I/O reduction.

Figure 10: The impact of CacheSifter on read and write per-
formance under different memory pressure. The system could
occupy approximately 2GB memory in this device.

In the baseline system, writebacks of cache files generated
by Facebook degrade read and write performance by an aver-
age of 29.6% and 38%, respectively under memory pressure
(with 2GB memory). Compared to baseline, the read and
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write latency are reduced by an average of 13.9% and 18.4%,
respectively by the high-recall model, while the numbers are
14.4% and 25.5%, respectively, when using the high-accuracy
model. When there is sufficient memory (at least 2.5GB),
the impact of cache files is marginal on read and write per-
formance because few cache files will be written back to
flash storage to generate I/O contentions with the read/write
of the micro-benchmark. The performance improvement of
CacheSifter derives from the write reduction of cache files.
The benefit is significant under I/O intensive workloads or
when memory is insufficient. According to paper [26], eight
background applications are common. Memory pressure oc-
curs frequently even in mobile devices with relatively large
memory (8GB) as shown in Table 7.
Table 7: Free memory in mobile devices when running various
numbers of applications.

Devices Total memory 1 App 3 Apps 5 Apps 8 Apps 10 Apps
P9 3G 88M 80MB 90MB 82MB 80MB

Mate30 8G 1.8GB 1GB 680MB 167MB 95MB
Pixel6 8G 1.5GB 177MB 166MB 172MB 106MB

Impact of CacheSifter on framerate. Even though
CacheSifter can improve read and write performance, re-
accessing discarded cache files from networks can negatively
impact user experience. We measure the possible loss in user
experience with Frame Per Second (FPS) by PerfDog, a pop-
ular gaming benchmark [43]. Figure 11 shows the average
FPS of Twitter. We choose Twitter as a foreground applica-
tion, that is denoted as “F” because Twitter is another one of
the most cache-intensive applications that could be relatively
more affected by CacheSifter. There are various numbers
of background applications, and “3B” means that there are
three background applications. Background applications are
randomly selected from the optimized ten applications.

Figure 11: Impact of CacheSifter on application execution.
For the average FPS, the results in Figure 11 show that

neither the high-recall model nor the high-accuracy model
has a noticeable impact on FPS of the application execution.
We also obtain the two important factors that impact FPS:
CPU and peak memory. Table 8 lists the details of CPU usage
and peak memory of Twitter. The results reveal that cache
files being re-accessed by CacheSifter has a minimal impact
on CPU usage and peak memory.

6.3 Overhead Analysis
Network overhead. Similar to the state changes shown in Ta-
ble 2, there are six types of miscalssifications : “BR->TR,LL”,
“TR->BR,LL”, and “LL->BR,TR”. “BR-> TR, LL” means

Table 8: Information of the foreground application.
Factors Methods F F+3B F+5B F+7B

Peak memory
baseline 334MB 323MB 302 304MB
high recall 333MB 337MB 308MB 301MB
high accuracy 343MB 328MB 315MB 323MB

CPU
baseline 9.9% 10% 8.9% 9%
high recall 10% 10.1% 10.3% 10.7%
high accuracy 10.7% 10.9% 10.5% 11.9%

that a BAR file is misclassified as a Transient file or a Long-
living file. Notably, only three misclassifications, “TR->BR”
and “LL->BR,TR”, could induce re-download. Amount of
these three misclassifications, the “LL->TR” case has small a
possibility to be re-downloaded while other two cases have a
large possibility to be re-downloaded. Based on this, we show
the re-download upper bound and lower bound in Figure 12.

Figure 12: Re-download ratios of optimized applications.

The upper bound is equal to the total number (accurate
and misclassified cases) divided by the sum of the number
of these three cases. The lower bound is equal to the total
number divided by the sum of the number of “LL,TR->BR”
cases. The results show that the re-download penalty of high-
recall mode is smaller than high-accuracy mode because of
its goal (reducing re-download). This allows the operating
system to deploy either high-recall or high-accuracy mode
based on the users’ network and data plan.
Memory overhead. Three components of CacheSifter in-
troduce extra memory overhead: categorization, maintain-
ing Transient files, and the ML inference. For categorization,
cache files are maintained in the main memory until they are
categorized. The extra memory usage depends on the size of
Long-living files that are generated within 60 seconds because
they are usually written back to the flash storage in default
systems. The average memory overhead of this part is 492KB
in our evaluations. The Transient files are stored in our QMFS
with a maximum size of 20MB. When more than 10MB is oc-
cupied, a reclaim thread wakes up to free the memory, which
ensures that the overhead stays below 10MB. Memory is used
to run the machine learning method, specifically the inference
step. Ten matrices for each model remain continually in the
main memory for inference, which occupies approximately
2MB (0.89MB for the first model and 1.13MB for the second
model). In summary, memory overhead is usually smaller
than 12.5MB.
CPU time overhead. Training/retraining is conducted offline,
and the overhead on smartphones is only the cost of catego-
rization and eviction. We train a model for 20 applications by
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using the data of 20 hours on a PC, and the training time is
approximately one day. This training cost occurs only once
over three months in our study. A dedicated thread wakes up
periodically to conduct categorization and eviction. Catego-
rization takes an average of 82ms out of 10s in our evaluation,
as the matrices are relatively small. Moreover, the eviction
scheme is used to shrink the in-memory file system. For this
part, only the list move/insert operations are needed, and the
overhead (1.9 ms out of 10s on average) is negligible. In
summary, CPU time overhead is an average of 84ms for each
iteration (10 seconds in our evaluation).

7 Related Works

Cache file optimization. User experience could be degraded
due to too many cache files. Establish guidelines [10,21] indi-
cate that deleting the cache files of browsers can improve the
overall performance of mobile devices. However, the deleted
data must be re-downloaded from the network when users re-
access them. This could degrade the performance, especially
for the frequently-used data. Previous works [32, 38] show
that keeping all of the cache files in the main memory can
improve the performance because of their fast re-accessing.
The benefits only occur when the cached files are accessed
frequently. Otherwise, additional memory consumption may
degrade the overall performance. Currently, the Android sys-
tem and the existing works treat all cache files equally. Liang
et al. [27] show that cache file vary greatly and should be man-
aged differently but do not provide a corresponding solution.
Categorization of cache files. Caching files in memory is
widely used to improve system performance. Korner et al.
[22] firstly studied a knowledge-based remote file caching
model and used multiple LRU lists to manage cache files
on a server platform. Madhyastha et al. [29] employed a
hidden Markov model to automatically classify file access
patterns and tune the policies of the file system to improve
global performance based on the observed patterns. In addi-
tion to a server platform, researchers introduced some cache
file categorization schemes on mobile platforms. For exam-
ple, Immanuel et al. [15] proposed a cache taxonomy that
can decode several Android cache formats and display the
contents in an accessible manner.
Eviction scheme. To our best knowledge, the eviction scheme
used in CacheSifter is the first file-based eviction scheme to
do so from within the kernel. Numerous page-based eviction
schemes exist, which are usually designed based on the access
locality of pages. The Linux firstly began to work on a page
eviction mechanism from Kernel 2.4 [42], also termed page
aging, which attempts to perform background scanning of the
pages and use inactive lists to manage pages which are already
idle. Liang et al. [25,28] proposed a size-tuning scheme which
can reduce pre-fetched pages in order to avoid a high page
cache eviction ratio.
Server caching. The cache not only exists in mobile devices

but also on servers. As the information provider, the caching
mechanism on the servers is different from that on mobile
devices, which are contents consumer for the most of time.
The consistency of the cache [33] on distributed servers is the
main concern. The cache used on the servers is also designed
to reduce latency of responding to clients [1, 36]. Mital et
al. [31] proposed a framework to store files across multiple
SBSs. Jiang et al. [19] introduced a new DRAM caching
techniques based on filter caches, and also presented two
filter caching techniques and specified when they should be
employed. Meng et al. [30] designed a dynamic, self-adaptive
framework, called vCacheShare, which automate server flash
space for the cache in virtual environments.

8 Conclusion

Current mobile systems treat cache files equally, storing them
in the main memory first and then writing them back into
flash storage. Mobile device performance depends heavily on
cache utilization, with the challenges of tackling variable file
patterns and flash durability. This paper proposes a cache file
management scheme, named CacheSifter, to sift cache files by
a lightweight machine-learning-based categorization engine
and manage them by a set of eviction schemes to shield flash
from ephemeral cache data writes. CacheSifter is evaluated on
two Android devices and over a collection of representative
applications. Evaluation results demonstrate that CacheSifter
can reduce writebacks of cache files by an average of 62% and
59.5%, by using different models, and the I/O intensive write
performance of mobile devices is improved by an average of
18.4% and 25.5%. We conclude that CacheSifter provides sig-
nificant benefits to both I/O performance and storage lifetime
with marginal overhead.
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