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Abstract
Side-channel attacks exploiting (EC)DSA nonce leakage eas-
ily lead to full key recovery. Although (EC)DSA implementa-
tions have already been hardened against side-channel leakage
using the constant-time paradigm, the long-standing cat-and-
mouse-game of attacks and patches continues. In particular,
current code review is prone to miss less obvious side chan-
nels hidden deeply in the call stack. To solve this problem, a
systematic study of nonce leakage is necessary.

We present a systematic analysis of nonce leakage in cryp-
tographic implementations. In particular, we expand DATA,
an open-source side-channel analysis framework, to detect
nonce leakage. Our analysis identified multiple unknown
nonce leakage vulnerabilities across all essential computation
steps involving nonces. Among others, we uncover inherent
problems in Bignumber implementations that break claimed
constant-time guarantees of (EC)DSA implementations if
secrets are close to a word boundary. We found that lazy re-
sizing of Bignumbers in OpenSSL and LibreSSL yields a
highly accurate and easily exploitable side channel, which
has been acknowledged with two CVEs. Surprisingly, we also
found a tiny but expressive leakage in the constant-time scalar
multiplication of OpenSSL and BoringSSL. Moreover, in the
process of reporting and patching, we identified newly intro-
duced leakage with the support of our tool, thus preventing
another attack-patch cycle. We open-source our tool, together
with an intuitive graphical user interface we developed.

1 Introduction

Digital signatures are an essential building block for en-
crypted communication channels, e.g., via Transport Layer
Security (TLS) and the underlying public key infrastructures,
SSH, as well as for cryptocurrencies. The extensive and ubiq-
uitous usage of digital signature schemes demands good secu-
rity arguments, not only from a cryptanalytic perspective but
also regarding their implementation, as a single implementa-
tion vulnerability can completely break the scheme [14].

Most digital signature schemes used today are susceptible
to attacks on their so-called nonces [40]. Even partial knowl-
edge of nonces leads to full recovery of private keys, thus al-
lowing an attacker to issue fake signatures, impersonate users,
intercept communication channels, steal money, etc. In light
of these threats, digital signature implementations need exten-
sive hardening against nonce leakage. While biased random
number generation [14] is a common implementation pitfall,
also side channels [15] have been proven a powerful way
of leaking nonce bits. Especially side-channel attacks con-
stantly improve along several axes. This includes advanced
side-channel observation methods, a reduction of required
knowledge, faster key recovery attacks, and most importantly,
the continued discovery of new side-channel leakage.

Modern cryptographic libraries already explicitly address
nonce leakage by relying on constant-time code execution.
Unfortunately, efforts to make implementations side-channel
resistant are not being evaluated thoroughly enough, leading
to a continuous cycle of vulnerability disclosure and patching.
To break this cycle, a more systematic approach for nonce
leakage analysis is required. However, this seems to be a
challenging endeavor for the following reasons:
1. Although side-channel evaluation is actively researched,

complex code bases such as OpenSSL are hard to evaluate.
2. Popular libraries use randomization, e.g., blinding, to

avoid leakage in vulnerable non-constant-time code. How-
ever, analyzing blinded computations for side channels is
non-trivial; and insufficient blinding is exploitable.

3. Cryptographic libraries use non-constant-time code when
computing on public data. Although legitimate, this puts
additional burden on code analysis to avoid false positives.

4. Although tool support for side-channel analysis is grow-
ing, existing tools do not address nonce leakage.

We address these challenges by extending the DATA frame-
work [55]. In particular, we adapt DATA to recognize nonces
as additional secrets in a backward manner and develop leak-
age models tailored for detecting nonce leakage. With our
statistical tests, we filter leakage results with respect to nonce
leakage. We also develop a graphical user interface for vi-



sualizing leakage results. This allows us to systematically
analyze three popular cryptographic libraries for (EC)DSA
nonce leakage, namely OpenSSL, LibreSSL, and BoringSSL.

We systematically analyze the whole lifetime of a nonce,
i.e., from its generation to its final use. Rather than prov-
ing code secure—which would typically require formal mod-
els and static analysis approaches—we focus on finding ac-
tual side-channel vulnerabilities. We uncovered numerous
unknown vulnerabilities leaking nonce bits, and thereby high-
light a fundamental problem in the Bignumber representation
in OpenSSL and LibreSSL. In particular, if the nonce is close
to a machine word boundary, the Bignumber implementations
possibly leak whether the nonce crosses this boundary in
either direction. We found that lazy resize operations involv-
ing the nonce leak several nonce bits via Flush+Reload [61],
as documented under CVE-2018-0734 and CVE-2018-0735.
Surprisingly, this leakage occurs due to a side-channel defense
mechanism. We also found that small nonces can leak nine
nonce bits at once for the secp521r1 curve. The Bignumber im-
plementation of BoringSSL [7] prevents size-related Bignum-
ber issues by design. Yet, we found a tiny but expressive leak
in the constant-time scalar multiplication of BoringSSL and
OpenSSL. During responsible disclosure, we identified a flaw
in the OpenSSL patches that would have downgraded expo-
nentiation to a vulnerable implementation (cf. [24]). We re-
port residual leakage in the patched OpenSSL version, which
we exploit via controlled-channel attacks [59] for full key
recovery. Due to our findings, the OpenSSL team decided to
rework Bignumber arithmetic, similar to BoringSSL [19].

This work provides a snapshot of the current situation of
nonce leakage in popular cryptographic libraries. With the
help of our GUI we analyzed known and unknown vulnerabil-
ities and document their potential damage, exploitability, and
patching state. We open-source both our tool and the GUI to
facilitate reproducibility and future side-channel analysis. 1

Contributions. Our contributions are as follows:
• We expand an analysis framework for automated nonce

leakage detection, and present results in an intuitive GUI.
• We systematically analyze nonce leakage in three popular

crypto libraries: OpenSSL, LibreSSL, and BoringSSL.
• We document several unknown leakage vulnerabilities

resulting from fundamental flaws in the Bignumbers rep-
resentation of OpenSSL and LibreSSL, among others.

• We responsibly disclosed vulnerabilities, proposed fixes,
and document residual leakage that remains unfixed.

Outline. Section 2 gives background information. Section 3
discusses related work on nonce attacks and side-channel
analysis tools. Section 4 presents our automated side-channel
analysis tool. Section 5 outlines analysis results and Section 6
discusses the vulnerabilities in detail. Section 7 evaluates our
leakage models. We discuss the implications of our work in
Section 8 and conclude in Section 9.

1Our tool and the GUI is available under https://github.com/
Fraunhofer-AISEC/DATA and https://github.com/IAIK/data-gui

2 Background

2.1 Digital Signatures
DSA. The Digital Signature Algorithm (DSA) [29] is based
on prime fields. It relies on two primes p and q, where
q divides p− 1. Parameter g serves as generator over p
such that gq ≡ 1 mod p. Keys are generated as follows:

x R← [1,q−1] (1) y← gx mod p (2)
The private key x is sampled uniformly from [1,q−1]. The

public key y is obtained by Equation (2). The signature (r,s)
for message m involves a random value k denoted as nonce:

k R← [1,q−1] (3)

r← gk mod q (4)
kinv← k−1 mod q (5)

s← kinv · (m+ xr) mod q (6)
Other DSA Constructions. Several DSA variants exist.
Schnorr signatures [47] omit the inversion step in Equation (5).
Deterministic schemes [28, 44] derive unique nonces from
the message input instead of using random numbers in Equa-
tion (3). ECDSA [29] is one of the most widely used signature
algorithms nowadays. It computes r in Equation (4) via scalar
multiplication over an elliptic curve generator G as follows:

r = k ·G (7)
Nonce Attacks. DSA-like cryptosystems strongly rely on the
secrecy and the uniformity of the nonce k. It has been shown
that even partial knowledge of the nonce suffices to break the
scheme [40]. This knowledge can be obtained by weak nonce
generation algorithms [5] or side channels [15]. By collecting
enough “leaky” signatures, one can formulate a so-called Hid-
den Number Problem (HNP) [10] and recover the private key
with lattice or Bleichenbacher attacks. Thus, an implementa-
tion needs to properly address both cases and protect nonces
throughout their whole lifetime (cf. Equations (3) to (6)).

2.2 The Hidden Number Problem
Nonce leakage can be encoded as a Hidden Number Prob-
lem (HNP). Solving the HNP via lattice attacks or more
generic Bleichenbacher attacks reveals the private key.
HNP. The HNP [10, 11] denotes the problem of finding a
hidden number given partial information about multiples of
the hidden number. Following [6, 46], we denote b·cq as the
value modulo q and | · |q as reducing the argument modulo q
into the range [−q/2,q/2] and then taking the absolute value.
MSBL,q(k) denotes knowledge about the L most significant
bits of k, i.e., an integer u satisfying |k−u|q < q/2L+1.

The HNP attempts to recover a hidden number x∈ [1,q−1],
given knowledge of its multiples t1, ..., td ∈ Fq for a known
prime q as well as knowledge about ui =MSBL,q(btixcq). This
yields a system of d inequalities:

|btixcq−ui|q < q/2Li+1 for all i ∈ {1, ...,d} (8)

https://github.com/Fraunhofer-AISEC/DATA
https://github.com/Fraunhofer-AISEC/DATA
https://github.com/IAIK/data-gui


(EC)DSA can be encoded as an instance of the HNP to
recover the private key x from signatures (r,s) and known
nonce bits u = MSBL,q(k). Using Equation (6) gives:

|k−u|q < q/2L+1 (9)

|b(m+ xr) · s−1cq−u|q < q/2L+1 (10)

|bbs−1rcq · xcq−bu− s−1mcq|q < q/2L+1 (11)

Applying Equation (11) to d signatures (ri,si) and nonce
bits ui yields an HNP. The HNP can also be applied when
leaking inverse nonces, least significant nonce bits, or a block
of contiguous [27] or non-contiguous bits [26].
Lattice. Boneh et al. [10] mapped the HNP to a Closest Vector
Problem (CVP). Let t = (t1, ..., td ,1) and tx = (t1x, ..., tdx,x).
According to the HNP, btxcq will be a close vector to u =
(u1, ...,ud ,0) with a distance smaller than q/2Li+1 for the first
d components, i.e., btxcq−u will be small multiples of q. By
constructing a lattice basis B from t and solving the CVP, the
closest vector tx reveals the private key x. Boneh et al. solved
the CVP by using LLL [33] lattice reduction and Babai’s
nearest plane algorithm [4] to recover Diffie-Hellman keys.

Different representations of the lattice exist [6, 38, 39]. To
ensure that the closest vector reveals the private key x, the first
d components of t and u are scaled by 2Li+1. Following [6],
this gives a d +1-dimensional row-wise lattice basis B:

B =


2L1+1q 0

. . .
...

2Ld+1q 0
2L1+1t1 . . . 2Ld+1td 1

 (12)

Instead of using Babai’s nearest plane algorithm, it is also
possible to embed the CVP into a Shortest Vector Problem
(SVP) and solve it directly via lattice reduction [22, 40, 57].
The idea is to include the scaled vector u′ in the lattice basis:

B′ =
[

B 0
u′ q

]
(13)

Boneh et al. [10] showed that this requires at least L =
log2 log2 q bit leakage. Howegrave-Graham and Smart [27]
recovered the private key for 160-bit DSA given 30 signatures
and knowledge of 8 bits for each nonce. Naccache et al. [37]
only required 27 signatures for the same leakage using the
block Korkin-Zolotarev (BKZ) algorithm. Given 200 signa-
tures and two shared LSBs of the nonce, Faugère et al. [22]
recovered the private key using a lattice attack. Besides, they
recovered the private key with a probability of 90% with just
a single shared LSB and 400 signatures.
Bleichenbacher. Bleichenbacher [9] proposed an FFT-based
attack using exponential sums to detect influences of small bi-
ases. Compared to lattice attacks, this requires more samples
but is noise-tolerant and works with small and even fractional
bit leaks [35, 36]. Aranha et al. [3] exploited a single-bit

nonce bias for 160-bit ECDSA using 233 signatures. De Mul-
der et al. [35] used a BKZ-based method to exploit a 5-bit
leakage of 384-bit ECDSA using 4000 signatures.

2.3 Side-Channel Attacks
Side-channel attacks allow breaking cryptographic implemen-
tations via unintended information leakage. They range from
observing the overall execution time [30] to more fine-grained
microarchitectural effects. Cache attacks target code accesses
on a cache-line granularity via Flush+Reload [61] or data ac-
cesses via the more generic but coarse-grained Prime+Probe
technique [42, 50]. In an SGX setting, powerful controlled-
channel attacks [59] leak page accesses with high accuracy. In
this work we consider address leakage, as a generalization of
above side channels. Physical side channels are out of scope.

3 Related Work

3.1 Side-Channel Attacks
Modular Exponentiation. Square-and-multiply is a com-
mon technique for computing modular exponentiations and
was targeted by Yarom and Falkner [61] in GnuPG. They
extracted 97% of an RSA key from a single sign operation
observed with Flush+Reload. Similarly, Prime+Probe attacks
have been launched against GnuPG [34] and libgcrypt [64].

A faster alternative is the sliding window approach [12].
Percival [42] attacked OpenSSL’s sliding window implemen-
tation by a technique that became known as Prime+Probe [50].
Similarly, the sliding window implementations of libgcrypt
RSA [8] and GnuPG ElGamal [34] have been attacked.

Using fixed windows eradicates leakage due to conditional
code execution in the sliding window approach. However,
an implementation flaw in an earlier version of OpenSSL
allowed bypassing the fixed window implementation [24].

To prevent leakage of the window multipliers, the scatter-
gather technique aligns multipliers in memory such that the
same cache lines are accessed all the time. Yarom et al. [62]
exploited cache-bank conflicts to attack OpenSSL’s scatter-
gather implementation.

In the SGX setting, Prime+Probe attacks have been
launched from malicious operating systems against the fixed-
window exponentiation during the RSA decryption in the
Intel IPP library [13]. Besides, Prime+Probe attacks have also
been launched from one SGX enclave against another SGX
enclave in order to extract an RSA key from mbedTLS [48].
ECDSA Scalar Multiplication. Brumley et al. [16] targeted
constant-time double-and-add in OpenSSL ECDSA by mea-
suring the total number of iterations. Yarom et al. [60]
exploited conditional code during double-and-add via
Flush+Reload, bypassing the constant-time implementation.

Brumley et al. [15] attacked the windowed Non-Adjacent
Form (wNAF) multiplication of OpenSSL on the secp160



curve via Flush+Reload. Similar attacks on the popular
secp256k1 curve leverage better side-channel observations
and better recovery methods [2, 6, 21, 51]. Dall et al. [20]
attacked a fixed-window scatter-gather version of Intel EPID
by exploiting a leak in the number of iterations.
Modular Inversion. García and Brumley [23] attacked the
binary extended Euclidean algorithm (BEEA) of OpenSSL
via Flush+Reload, which was used for the modular inver-
sion of the nonce k during ECDSA signature computations.
Weiser et al. [54] mounted a controlled-channel attack against
RSA key generation in OpenSSL by exploiting conditional
branches in the binary Euclidean algorithm (BEA) used for
checking co-primality of RSA parameters. Concurrently, Al-
daya et al. [1] mounted a Flush+Reload attack on the vulnera-
ble BEA implementation with a success rate of 28%.
Modular Reduction. Ryan [46] discovered an early abort
condition in OpenSSL’s modular reduction and exploited it
with a Flush+Reload attack to recover ECDSA private keys.

3.2 Side-channel Analysis Tools

Due to the significant number of side-channel attacks, side-
channel analysis frameworks have been developed. CacheAu-
dit [31] uses symbolic execution to compute upper bounds
on the possible leakage. However, these upper bounds could
become imprecise, and analyzing large code bases such as
OpenSSL with many potential leaks demands more practical
approaches with high precision and low overhead.

Reparaz et al. [45] identify timing leaks with a black-box
approach, which does not capture fine-grained cache attacks.
ctgrind [32] tracks unsafe usage of secrets with the Valgrind
memory error detector on annotated secrets. CacheD [53]
taint-tracks instructions accessing secret data and evaluates
them symbolically to find potential data leaks. CacheS [52]
improves CacheD by using abstract interpretation and by find-
ing secret-dependent branches. Zankl et al. [63] base their
analysis on concrete instead of symbolic execution, which
gives more precise results and better performance. They use
binary instrumentation to build a histogram of all executed
instructions and correlate it against the Hamming weight of
the private key. Stacco [58] uses binary instrumentation to
record instruction traces rather than histograms only and re-
veals padding oracle vulnerabilities. DATA [55] introduces
the notion of more generic address traces, capturing instruc-
tion and data addresses. By matching address traces, it finds
potential control-flow and data leaks. DATA also provides
methods for distinguishing secret-dependent leaks from unre-
lated ones due to non-determinism (e.g., blinding), and it sup-
ports dedicated leakage models. MicroWalk [56] also records
all accessed addresses but collapses the execution context,
losing, e.g., call stack information in favor of faster analysis.

None of these approaches was designed or used to detect
addresses leakage of (EC)DSA nonces. In this work, we adapt
the idea of leakage models [55, 63] to detect nonce leakage.

3.3 Research Gap

To sum up, nonce leakage can occur in several (EC)DSA steps
and can be exploited via efficient lattice attacks and more
generic Bleichenbacher attacks. Despite extensive research, a
systematic study of nonce leakage is still missing, and side-
channel tools have not been tailored for nonce leakage.

We bridge this gap and provide the first systematic analysis
of nonce leakage in popular crypto libraries. We extended the
automated side-channel analysis tool DATA to also identify
nonce leakage and visualize it in a GUI. By using this tool,
we identify vulnerabilities in several computations involving
the secret nonce, including Equations (3) to (6).

4 Automated Nonce Leakage Detection

Tool support is essential for effective and accurate side-
channel analysis. We first discuss the open-source DATA
framework [55], and introduce our threat model. Next, we dis-
cuss our changes to DATA, define proper leakage models for
nonces and develop an intuitive GUI for visualizing results.
Original DATA Framework. DATA identifies address-based
side-channel vulnerabilities through dynamic analysis in three
phases. In the first phase, DATA collects address traces by in-
strumenting the target binary. By comparing those traces,
it identifies address-based differences at byte granularity
that indicate potential leaks. However, analyzing randomized
(blinded) algorithms yields various address differences that
do not leak secret information. Also, many differences stem
from public input and are also uncritical. To filter these false
positives, DATA employs statistical tests. The second phase
tests if the differences depend on the private key by comparing
traces generated from a fixed key with traces generated from
varying keys. This fixed-vs-random testing requires control
over the secret variable. Since nonces are not controllable
from the outside but generated randomly (internally), this
phase cannot be used for detecting nonce leakage. The third
phase classifies information leakage based on a leakage model
and detects linear and non-linear relations between address
traces and a secret.
Threat Model and Limitations. DATA operates on address
traces at byte granularity. This models a powerful side-
channel attacker probing memory pages [59], cache lines [61],
cache banks [62], or even single byte addresses which are
currently only partially exploitable in specific settings [17].
However, as with any dynamic analysis, DATA cannot guar-
antee absence of leakage (e.g., it cannot prove code secure).
Nevertheless, by increasing the number of traces and tested
configurations, coverage increases (cf. [55]).

Leakage models correlate the observed leakage (i.e., the
address traces) with the secret. However, a high correlation
does not necessarily imply actual leakage but could also stem
from public values (e.g., the modulus). This is a fundamental
issue of statistical testing and implies that an analyst should



always carefully review potential leakage reported by DATA,
as we do in this work.

Speculative execution attacks are out of scope for this work,
as they leverage data leakage rather than address leakage only.
Detecting Nonce Leakage. To tailor DATA for detecting
nonce leakage, we bypass the second phase and make the third
phase run independently. The third phase correlates leakage
to a secret value via leakage models. However, secret nonces
are generated internally and are not exposed to the outside. To
overcome this limitation, we adapt DATA to recognize nonces
as an additional secret in a backward manner. That is, we
recover the nonce from the private key, the message, and the
signature using Equation (6). Furthermore, we significantly
improve the performance of phase three via multiprocessing.
Finally, we introduce appropriate leakage models.
Leakage Models. Definition of proper leakage models is
essential for finding nonce leaks. This, however, demands
knowledge of potential leaks to search for. Based on initial
manual inspection of OpenSSL’s source code, we developed
leakage models tailored for detecting nonce leakage. This
was no straightforward process but involved extending the
leakage models the more issues we found. In particular, we
searched for Bignumber issues by testing the bit length of the
nonce k and its variants kinv, k+q and k+2q. This leakage
model is denoted as num_bits and finds leakage, e.g., due
to lazy resizing of Bignumbers. Furthermore, we used the
Hamming weight model denoted as hw to search for leaks
in DSA modular exponentiation (square-and-multiply) and
ECDSA scalar multiplication (double-and-add), respectively.
With these models, we were able to greatly reduce the number
of unrelated differences. E.g., the leakage models typically
filter well above 90% of the differences.
Semi-automated Analysis with GUI. While tool support
does not make thorough side-channel analysis obsolete, we
found it to be essential. Especially constant-time code can be
reviewed much easier with tool assistance. Also, side-channel
patches can be easily tested for their efficacy, preventing rein-
troduction of previously known leaks. In particular, a high
degree of automation and a proper representation of results
is imperative for productive analysis. Due to the nature of
statistical testing used in DATA, an analyst should always
carefully review leakage reports of DATA to rule out potential
false positives and assess actual exploitability.

Since analyzing DATA reports is cumbersome, we devel-
oped a graphical user interface called DATA GUI. DATA GUI
allows to quickly navigate leakage reports together with the
source code and disassembly, and rate or comment potential
leaks. For this to work, we extended DATA to generate an
accompanying file archive that contains all necessary object
files, disassemblies and source code files, alongside the reg-
ular leakage report. This also decouples the test phases of
DATA from GUI-aided analysis, which now may be done on
a completely different computer. Since we need to repeatedly
test different cryptographic libraries under different configu-

Table 1: Handling of secret nonces is either secure # or
vulnerable to side channels, according to our analysis.
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rations, the DATA GUI was key to master the amount of data
we collected. We open-source our tool, including the DATA
GUI and provide examples to reproduce our results. Figure 5
in Appendix A depicts the DATA GUI, showing a discovered
control-flow leak in BoringSSL.

5 Vulnerability Analysis Overview

In this work, we analyze OpenSSL, LibreSSL, and BoringSSL
for (EC)DSA nonce leakage. We include the whole life cy-
cle of nonces in the analysis, i.e., nonce generation, modular
exponentiation for DSA or scalar multiplication for ECDSA,
modular inversion, and the final modular multiplication. Our
findings are summarized in Table 1 and outlined in the fol-
lowing. As mentioned in Section 4, our analysis cannot prove
an implementation secure in a mathematical sense.
Nonce representation is based on Bignumbers. OpenSSL
and LibreSSL minimize memory usage, i.e., small numbers
use fewer memory words than larger ones. This minimal rep-
resentation of Bignumbers leaks the length of small nonces
in several subsequent computation steps. BoringSSL, on the
other hand, does not shrink sensitive Bignumbers, avoiding
all Bignumber-related vulnerabilities we found by design.
Generation of nonces is done via rejection sampling in Li-
breSSL and BoringSSL, which gives uniformly distributed
nonces. In contrast, OpenSSL truncates a large random num-
ber to the target nonce, introducing a negligible bias. Only
OpenSSL includes the private key in the nonce generation to
address potential weaknesses in random number generators.
DSA modular exponentiation itself did not reveal any leaks,
as the fixed-window implementations are constant time. How-
ever, for OpenSSL and LibreSSL, we found several critical
leaks due to padding the nonce prior to exponentiation. This
enables easy-to-mount cache attacks, leading to full key re-
covery. Although the patched OpenSSL version closes the
cache-attack vulnerability, it is still vulnerable to more sophis-
ticated attacks, which we demonstrate in Appendix B.
ECDSA scalar multiplication leaks in OpenSSL and Li-
breSSL in the same way as DSA exponentiation, namely when
padding the nonce. On the other hand, the default multiplica-
tion uses blinding to make side-channel leakage independent
of the nonce. Additionally, OpenSSL and BoringSSL provide



Table 2: Discovered vulnerabilities in OpenSSL, LibreSSL, and BoringSSL and whether they are patched 3as of October
2019, currently being patched A, or unpatched 7. Exploiting the side channel can be easy  , medium G# , or hard # .
The number of leaked bits (Nonce Leakage) indicates the complexity of a full key recovery.

Vulnerability OpenSSL LibreSSL BoringSSL Nonce Leakage SC Comments
Generate: (V1) Small k (top) EC7 EC7 – Topmost 0-limbs of k  Leaks in several subsequent steps

(V2) k-padding resize DSA3EC3 DSA7EC7 – Topmost 0-bits of k  CVE-2018-0734 and CVE-2018-0735
(V3) consttime-swap DSA3EC3 DSA7EC7 – same as (V2) G# Already known
(V4) Downgrade DSA3 – – same as (V2) + [24]  Introduced while fixing (V2)

(V5) k-padding (top) DSA7EC7 DSA7EC7 – same as (V2) #
Leaks in BN_add and BN_is_bit_set.
SGX attack shown in Appendix B.

(V6) Buffer conversion EC3 – – Topmost 0-bytes of k #E
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(V7) Point addition ECA – EC3 All 0-windows of k #
(V8) Euclid BN_div DSA3 DSA7 – Topmost bit of k  Leaks via resize, similar to (V2)

In
ve

rt

(V9) Euclid negation DSA3 DSA7 – Topmost 0-bit of kinv  Leaks via conditional negation
Multiply: (V10) Small k−1 (top) – EC3 – Topmost 0-limbs of kinv G#

optimized constant-time windowed multiplication routines
for several NIST curves. We discovered a tiny but severe side-
channel leakage in their constant-time point addition, which
leaks whenever a nonce multiplication window is all zero.
For OpenSSL, we identified additional nonce leakage due to
Bignumber handling, which was partly known before.
Modular inversion in OpenSSL and LibreSSL is done via
a variant of Euclid’s algorithm, claiming some side-channel
security. Nevertheless, we found an easy-to-exploit vulner-
ability leaking the topmost nonce bit during a division step.
Moreover, Euclid’s algorithm inherently leaks the number of
iterations, which correlates to the nonce itself. While we could
not find a way to exploit this non-constant time behavior, our
tool reported another leak in a final negation step that helps an
attacker again to learn the topmost nonce bit. BoringSSL em-
ploys Fermat’s little theorem to invert nonces securely. Due
to our findings, OpenSSL also switched to Fermat inversion.
Modular Multiplication. While OpenSSL uses blinding to
alleviate non-constant time code, LibreSSL removes blinding
too early, leaking the length of the inverse nonce.

6 Detailed Analysis

In the following, we present our analysis methodology and
discuss results and discovered vulnerabilities in detail.
Analysis Methodology. The process of tool-aided side-
channel analysis comprises a proper selection of algorithms
to test, the actual analysis phase and an interpretation of the
results. Since OpenSSL supports over 80 different elliptic
curves and countless compiler options, exhaustive testing of
each combination is impractical. We selected the default con-
figuration as a basis for our analysis, and selectively enabled
different implementations of popular NIST curves. We tested
all three DSA parameter sets and focused on ECDSA curves
operating close to a machine word boundary. For the actual
analysis, we used our tool alongside manual code review to
specifically test relevant portions in the code. While the tool
helps uncover leakage, interpreting the results remains a man-

ual task. In particular, leakage models might not trigger if
they do not match the actual leakage. In this case, leakage
might still show up in the phase one differences reported by
DATA, and an extension of the leakage models is required.
Also, leakage models might show a correlation without cau-
sation, e.g., via public values. Such cases can be eliminated
by tracing the leakage back to its sources in our DATA GUI.

Following this methodology helped us uncover numerous
vulnerabilities, as summarized in Table 2. To give an intuition
about their exploitability, we rank them as easy to exploit
 if a Flush+Reload attack suffices for extracting nonce bits,
medium G# for more elaborate attacks requiring performance
degradation or Prime+Probe, or hard # for tiny leakage (e.g.,
few assembler instructions on a single cache line) which might
be only exploitable in an SGX setting [17].

6.1 Nonce Representation

OpenSSL and LibreSSL represent cryptographic values
such as nonces via Bignumbers. Each Bignumber is stored
in a BIGNUM struct that contains a lazily allocated array of
limbs (e.g., 64-bit words). The number of allocated limbs is
tracked via the field dmax. Bignumbers are represented in
their minimal form, i.e., each BIGNUM tracks the actually used
limbs in a separate top field. As seen in Figure 1, top can be
smaller than dmax. Whenever space is exhausted, a BIGNUM
is dynamically resized via a call to bn_wexpand.

To maintain the minimal representation, OpenSSL and Li-
breSSL constantly realign top via a call to bn_fix_top by ex-
cluding leading zero limbs. This has two advantages: First, it
avoids unnecessary computations and increases performance.
Second, the programmer does not need to know the maximum
size of Bignumbers in advance. However, it is also a source
for side-channel leakage, leading to various vulnerabilities.

BoringSSL, in contrast, has hardened their implementa-
tion against such leaks by abandoning the minimal representa-
tion invariant of Bignumbers. They introduced a width field,
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Figure 1: OpenSSL/LibreSSL (V1): some nonces (k2) are
smaller than the average (k1) and the modulus q.

Table 3: OpenSSL/LibreSSL curves leaking L bits of
small (inverse) nonces (V1),(V10) on 32/64-bit systems.

Curve L32 L64 Curve L32 Curve L32
secp112r1 15.8 – sect163r1 2.0 c2tnb359v1 0.8
secp112r2 13.8 – sect163r2 2.0 c2tnb431r1 1.7
secp521r1 9.0 9.0 sect233k1 7.0 wap-wtls1 16.0
prime239v1 15.0 – sect233r1 8.0 wap-wtls3 2.0
prime239v2 15.0 – sect239k1 13.0 wap-wtls4 16.0
prime239v3 15.0 – c2pnb163v1 2.0 wap-wtls5 2.0
sect113r1 16.0 – c2pnb163v2 2.0 wap-wtls6 15.8
sect113r2 16.0 – c2pnb163v3 2.0 wap-wtls8 16.0
sect131r1 2.0 2.0 c2tnb239v1 13.0 wap-wtls10 7.0
sect131r2 2.0 2.0 c2tnb239v2 12.4 wap-wtls11 8.0
sect163k1 2.0 – c2tnb239v3 11.7

which fixes top to the maximum width in advance.2 Hence,
it is immune to the Bignumber-related leaks we found.
Small Nonce Vulnerability (V1). Nonces are generated in
the range [1,q−1]. If the length of the modulus q is slightly
above a word boundary, it may happen that the generated
nonce uses fewer limbs than q. In Figure 1, the first nonce k1
uses two limbs, whereas the second nonce k2 is represented
in one limb, as indicated by top. A side-channel attacker
learning the value of top can distinguish small nonces from
large ones and mount a key recovery attack.

In this example, q uses only four bits (0xF) of the topmost
limb. Thus, an attacker learns whether the four topmost bits
of k are zero. Consider w as the word size, i.e., the size of
one limb. For i386, w=32 and for x86_64, w=64. Thus, a
small nonce leaks L = log2(q) mod w bits, which occurs
every 2Lth signature on average. By collecting enough leaky
signatures, an attacker can recover the private key via lattice
or Bleichenbacher attacks (see Section 2.2).

In general, both DSA and ECDSA are affected by small
nonces. However, if L is too large, leaky signatures occur too
rarely to be practically exploitable. Since DSA moduli are
always (half)word-aligned, L = 32 or L = 64 and attacks are
impractical. On the other hand, for ECDSA, several curves
have a modulus (group order) that is slightly above a word
boundary. Table 3 lists all affected curves with L < 20, and
curves affected on 64-bit systems are marked bold. For exam-
ple, the sect131 curves leak 2 bits approximately every 4th
signature, while secp521r1 leaks 9 bits every 512th signature.

In order to exploit the small nonce vulnerability, an attacker
needs to learn the nonce length (i.e., the value of top). Since
the nonce is involved in many different computation steps,
there are plenty of opportunities for an attacker to observe its

2https://github.com/openssl/openssl/issues/6640

length. We found leakage in the nonce generation, scalar mul-
tiplication, and nonce inversion (Equations (3), (5) and (7)).
Details for OpenSSL and LibreSSL can be looked up in Ap-
pendix C. In the following, we focus on the most critical leak-
age present in the OpenSSL version patched against (V8). The
leaky code in Listing 1 converts the nonce stored in BIGNUM
a into its Montgomery representation. BIGNUM b holds a
Montgomery conversion factor. If both, a and b have the
full word length of q, denoted as num, the if branch will ex-
ecute an assembler-optimized multiplication (bn_mul_mont
in line 4) and terminate in line 5. If, however, the nonce a
is one limb smaller, OpenSSL falls back to the functions
bn_mul_fixed_top and bn_from_montgomery_word. By
probing any of those functions, e.g., with Flush+Reload, an
attacker can distinguish small nonces from larger ones.

Unfortunately, this vulnerability is not only easy to exploit,
but patching is hard as small nonces leak in several places.
On June 25, 2019, we reported this issue to OpenSSL, who
decided to target a fix in OpenSSL version 3.0, as it requires
a major redesign of OpenSSL’s Bignumber implementation.

6.2 Nonce Generation
In the following, we analyze nonce generation for different
libraries under the default configuration. DSA and ECDSA
nonces are generated both in the same way.
Rejection Sampling. To generate a nonce k uniformly at
random in the interval [1,q− 1], LibreSSL and BoringSSL
implement rejection sampling. They sample k in the interval
[1,2qbits−1], where qbits = blog2 qc+1. If k exceeds q−1,
it is rejected, and the procedure is repeated. The final k is
uniformly distributed, assuming an unbiased random number
generator. Although rejection sampling is inherently non-
constant time, it only leaks information about rejected nonces.
While we did not find issues for BoringSSL, small nonces
leak for LibreSSL, as detailed in Appendix C.
Truncation. OpenSSL first generates a large number k′ in
the interval [0,2qbits+64−1], as seen in Algorithm 1 lines 2–
6. To compute the final nonce, k′ is truncated to the target
interval [0,q− 1] via modular reduction (line 8). As with
LibreSSL, small nonces leak during truncation, as detailed in

1 if (a->top == num && b->top == num) {
2 if (bn_wexpand(r, num) == NULL)
3 return 0;
4 if (bn_mul_mont(...))
5 return 1;
6 }
7 ...
8 if (!bn_mul_fixed_top(tmp, a, b, ctx))
9 goto err;

10 if (!bn_from_montgomery_word(r, tmp, mont))
11 goto err;

Listing 1: Simplified OpenSSL Little Fermat inversion
leaking small nonces (V1) via conditional branching.

https://github.com/openssl/openssl/issues/6640


Algorithm 1: OpenSSL nonce generation by truncation
input :x,q // Private key and modulus

input :m // Message digest

output :k // Nonce

1 k′← []
2 while num_bits(k′)< num_bits(q)+64 do
3 rnd R← [0,2512−1]
4 digest← SHA512(x|m|rnd)
5 k′.append(digest)// Up to num_bits(q)+64 bits

6 end
7 k′′← BN_bin2bn(k′) // Convert to BIGNUM

8 k← k′′ mod q // Reduce via BN_div

Appendix C. Moreover, truncation introduces a tiny bias in k
since q does not exactly divide 2qbits+64. However, since k′ is
64 bits larger than q, this bias is impractical to exploit.

Before reducing k′, OpenSSL converts it to a Bignumber
representation via BN_bin2bn in line 7, which introduces
a tiny side-channel leakage on k′. In particular, BN_bin2bn
removes leading zeros, leaking the byte length of k′ to a side-
channel attacker. Our tool revealed another leakage in BN_div
called in line 8, leaking the length of k′. Luckily, both issues
are impractical to exploit due to the 64-bit margin of k′.
Private Key Inclusion. Biases in the nonce generation are
fatal. For that reason, some variants of (EC)DSA [28,44] com-
pute the nonce deterministically from the message via hash
functions rather than using randomness. Similarly, OpenSSL
uses the private key as additional input for nonce generation.3

By applying a cryptographic hash function to the random num-
ber, the message m and the private key x (Algorithm 1 line 4),
the resulting nonce is unpredictable to an attacker, even for
biased random numbers. Moreover, this approach also pro-
tects against side-channel leaks. We found that OpenSSL uses
a leaky AES4 during random number generation when com-
piled with the no-asm flag. The hash in line 4 decorrelates
these leaks from the nonce. BoringSSL and LibreSSL do
not include the private key in the nonce computation, which
makes them susceptible to biased random number generators.
However, we did not analyze the uniformity or unpredictabil-
ity of the random number generators themselves.

6.3 DSA Exponentiation

K-padding Vulnerabilities (V2)-(V5). Bignumber compu-
tation has been a source for nonce leakage in the past. For
example, the fixed window exponentiation of OpenSSL leaks
the bit length of the secret exponent k (Algorithm 2 line 5).
This leakage was fixed by padding nonce k with q until it
has a fixed length num_bits(q)+1, as shown in Algorithm 2

3This change was introduced in OpenSSL commit 8a99cb2 in 2013.
4It leaks several intermediate values via lookup tables Te0 - Te3.

Algorithm 2: Exponentiation with k-padding
input :k // Nonce

output :r // Signature part

1 k← k+q // Expand k to fixed num_bits(q)+1
2 if num_bits(k)<= num_bits(q) then
3 k← k+q
4 end
5 r← gk mod q

1 q_bits = BN_num_bits(dsa->q);
2 -if (!BN_set_bit(k, q_bits)
3 - || !BN_set_bit(l, q_bits)
4 - || !BN_set_bit(m, q_bits))
5 + q_words = bn_get_top(dsa->q);
6 +if (!bn_wexpand(k, q_words + 2)
7 + || !bn_wexpand(l, q_words + 2))
8 goto err;
9 ...

10 BN_set_flags(k, BN_FLG_CONSTTIME);
11 +BN_set_flags(l, BN_FLG_CONSTTIME);
12 ...
13 if (!BN_add(l, k, dsa->q)
14 - || !BN_add(m, l, dsa->q)
15 - || !BN_copy(k, BN_num_bits(l) > q_bits ? l : m))
16 + || !BN_add(k, l, dsa->q)
17 goto err;
18 +BN_consttime_swap(BN_is_bit_set(l, q_bits), k, l,...);

Listing 2: Vulnerable k-padding in OpenSSL, with code
added (+) and removed (-) during patching.

lines 1–3. The initial k-padding5 executed the second addition
in line 3 conditionally. To prevent attacking this conditional
execution, it was made constant-time.6 As shown in Listing 2,
lines 13–14 unconditionally compute both additions inside
BIGNUMs l and m, while line 15 copies the correct result to k.

By analyzing OpenSSL, we found that k-padding leaks in
several ways. First, we discovered an easy-to-exploit vulnera-
bility leaking the size of the nonce via dmax inside the second
BN_add (Listing 2 line 14). This leakage denoted as (V2) al-
lows full key recovery. Second, our tool also reported data
leakage in line 15, already known before and denoted (V3).
By distinguishing whether buffer k or l is copied, one learns
the same information as before. Third, we found the same in-
formation leaking via the nonce’s top variable, denoted (V5).
This leakage exists in all patched versions and occurs when k
is processed in lines 16 and 18. Although harder to exploit, we
show an end-to-end attack in an SGX setting in Appendix B.
K-padding Resize Vulnerability (V2). As mentioned before,
OpenSSL lazily resizes Bignumbers whenever their space is
exhausted. E.g., when adding two BIGNUMs with BN_add, the
result BIGNUM is expanded to the largest top value of the
summands plus one limb for a potential carry. Unfortunately,
lazy resizing happens during nonce padding in lines 13 and

5Nonce padding was introduced in OpenSSL commit 0ebfcc8 in 2005.
6Constant-time padding was introduced in OpenSSL commit c0caa94.

https://github.com/openssl/openssl/commit/8a99cb2
https://github.com/openssl/openssl/commit/0ebfcc8
https://github.com/openssl/openssl/commit/c0caa94
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Figure 2: OpenSSL/LibreSSL k-padding causes Bignum-
ber resize, depending on the topmost nonce bits (V2).

14 of Listing 2. Consider the example in Figure 2, where the
BIGNUMs k and q contain one limb each. On the left side, the
first addition k+ q resizes the result buffer to two limbs in
order to hold the additional carry exceeding the first limb. The
second addition k+2q resizes to three limbs, although only
two limbs are actually used since the carry is zero. In contrast,
on the right-hand side, the first addition does not overflow, and
the second addition only requests two limbs. Since the result
BIGNUM already has two limbs, no actual resize happens.

By distinguishing whether one or two resize operations
happen, a side-channel attacker can learn information about k.
The second resize only happens if the first addition over-
flows into the carry limb. In practice, such an overflow
can only happen if q is close to a word boundary, that is,
the topmost bits are set. Again, consider w as word size.
Then, Q = blog2w(q)c+ 1 is the number of words needed
to represent q, and qbound = (2w)Q > q is the upper bound
(exclusive) of q representable with Q words. No resize
happens if k + q < qbound, which occurs with probability
(qbound− q)/q. Thus, for each such situation, an attacker
can learn L nonce bits at once:

L = log2(q)− log2(qbound−q) (14)

Since k is chosen uniformly at random, this happens for ap-
proximately every 2Lth signature. In the previous example,
qbound = 0x100000000 and q = 0xFFDB41C5, hence an
attacker can learn L = 10.8 nonce bits for one out of 1783 sig-
natures on average. By collecting enough leaky signatures, an
attacker can recover the private key, as shown in Section 2.2.

Only DSA moduli close to the word boundary are suscepti-
ble. OpenSSL supports DSA moduli in the ranges 160, 224 or
256 bits, respectively. Since these parameters are all at a 32-
bit boundary, they are all susceptible on a 32-bit system. For
64-bit systems, only DSA with 256-bit is on a word boundary
and, thus, susceptible. The modulus q is a prime generated
randomly for each key with its topmost bit set. Hence, every
2Lth key is susceptible to L+1-bit nonce leakage.

Exploitation of the vulnerability is straight forward. An
attacker needs to monitor Bignumber resize operations dur-
ing k-padding. Each Bignumber resize triggers several nested
allocation routines of OpenSSL, which in turn invoke mal-
loc/realloc from the standard library. Hence, a Flush+Reload
attacker has plenty of opportunities to observe a resize with
little noise. This attack is practical in terms of easy-to-obtain

side-channel observations and low complexity for key recov-
ery, which caused OpenSSL to issue CVE-2018-0734.
Consttime-swap Vulnerability (V3). Our tool showed an-
other k-padding issue, which was already documented in the
source code comments. After the two additions, copying the
correct result to the target Bignumber k accesses different
Bignumbers l or m, as shown in Listing 2 line 15. This leaks
the same information as (V2) and could be exploited via a
Prime+Probe attack on the Bignumber l or m, respectively.
Patching (V2) and (V3). Our reports triggered immediate
discussion and patching7 by the OpenSSL team. To avoid lazy
reallocation, the patch enlarges the preallocation of the nonce
buffers (lines 6–7). To hold the padded nonce, one additional
limb would suffice. Since BN_add allocates an additional carry
limb, this totals two additional limbs to preallocate. To fix
the consttime issue, the patch replaces Bignumber m with k in
line 16 and introduces BN_consttime_swap in line 18.

LibreSSL adopted similar patches for ECDSA, but insuffi-
ciently, as explained in Section 6.4. We contacted LibreSSL
on May 17, 2019, but they did not apply these patches to DSA.
Downgrade Vulnerability (V4). By analyzing the OpenSSL
patches for (V2) and (V3) with our tool, we immediately rec-
ognized a flaw bypassing constant-time exponentiation. While
Bignumber k has the flag BN_FLG_CONSTTIME set, Bignum-
ber l has not. The consttime-swap introduced in Listing 2
line 18 also swaps these flags between l and k, making k lose
its flag. This causes every other subsequent exponentiation
(Equation (4)) to downgrade to the unprotected variant. As
shown in [24], this can be exploited to recover DSA keys
from OpenSSH handshakes. Erroneous flag propagation has
a long history, since manual detection within the complex
code base of OpenSSL is non-trivial. Luckily, our systematic
tool-aided approach uncovered this issue straight away, avoid-
ing another exploit-patch cycle. The final patch8 applies the
BN_FLG_CONSTTIME flag also to the Bignumber l in line 11.
K-padding Top Vulnerability (V5). Fixing the resize vul-
nerability (V2) does not mitigate the Bignumber minimal
representation issue. That is, even if the buffer size (dmax)
is independent of k, the number of used limbs (top) still
depends on the nonce (cf. Figure 2). In particular, the sec-
ond addition BN_add in Listing 2 line 14 leaks the value of
l->top via the number of limb-wise additions carried out.
Also, BN_is_bit_set (line 18) leaks via an early abort, as de-
tailed in Appendix B. This has the same implications as (V2).

Naturally, exploitation is harder than (V2), as the leaky
code is only a few instructions. Nevertheless, we reported
this residual leakage already back in October 2018. Since
we could not observe any progress, we developed an end-
to-end SGX attack, as outlined in Appendix B. Reporting
our attack on May 8, 2019 triggered a pull request with our
proposed patch [19]. However, the pull request was closed,
since the OpenSSL team decided for a long-term mitigation

7See OpenSSL commit a9cfb8c.
8See OpenSSL commit 00496b6.
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Table 4: OpenSSL/LibreSSL curves leaking L nonce bits
via k-padding (V2)–(V5) on 32-bit and 64-bit systems.

Curve L32 L64 Curve L32 L64
brainpoolP160 3.4 – brainpoolP320 2.2 2.2
brainpoolP192 1.7 1.7 brainpoolP384 0.3 0.3
brainpoolP224 2.4 – brainpoolP512 1.0 1.0
brainpoolP256 1.0 1.0

abandoning the minimal representation invariant similar to
BoringSSL [7]. While the decision for a complete fix is en-
couraging, this vulnerability remains unpatched until then.

6.4 ECDSA Scalar Multiplication
K-padding Resize Vulnerability (V2). Similar to DSA, our
investigations revealed the same Bignumber resize vulnerabil-
ity also in ECDSA, leading to CVE-2018-0735. Only curves
with a word-aligned modulus (i.e., the curve cardinality) are
vulnerable. We found that all Brainpool curves are exploitable
and leak up to 3.4 bits, as listed in Table 4. Luckily, other
curves have a word-aligned modulus but are not practically
exploitable. For example, the curve secp128r1 has cardinality
0xFFFFFFFD FFFFFFFE F80091C8 184ED68C. By using
Equation (14), an attacker could learn L = 31 nonce bits at
once. However, only every 231th signature will be vulnerable,
which renders actual attacks impractical.

Fixing this issue for ECDSA is analogous to DSA.9 Al-
though LibreSSL adopted the patch,10 our tool still reported
leakage. Further analysis revealed that the patched LibreSSL
version uses k-padding twice, once correctly during multi-
plication ec_GFp_simple_mul_ct and a second time inside
ecdsa_sign_setup. The second k-padding was not only un-
patched, leading to another instance of (V2), it even created
additional leakage. In particular, the multiplication routine
performs an additional leaky modular reduction if the nonce
(the scalar) is larger than the group order. This again high-
lights the importance of tool-aided side-analysis during the
patching process. Although we reported this issue to LibreSSL
on May 20, 2019, it is still unpatched.
Issues (V3), (V5). As with DSA, the issues with consttime
swap (V3) and k-paddding top (V5) as well as their patches
equally apply to ECDSA for the curves listed in Table 4. Since
the patched LibreSSL uses k-padding twice for ECDSA, it is
still vulnerable not only to (V2) but also to (V3).
Buffer Conversion (V6). We uncovered distinct vulner-
abilities in some ECDSA scalar multiplication routines
of OpenSSL11 leaking the byte length of the nonce. Be-
fore the actual scalar multiplication, the nonce is converted
from a Bignumber to a byte array with BN_bn2bin and

9See OpenSSL commit 99540ec.
10See LibreSSL commit 34b4fb9.
11This applies to the optimized NIST curve implementations, which are

obtained via the enable-ec_nistp_64_gcc_128 compilation flag.

1 if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
2 point_double(...)

Listing 3: Simplified excerpt from vulnerable point_add
(V7) in OpenSSL/BoringSSL scalar multiplication.

flip_endian. In contrast to Bignumber-related issues sub-
ject to word-granular leakage, those functions operate on
bytes. By stripping leading zero bytes, they leak the byte
length of a nonce. For secp224r1 and secp256k1, L = 8 bits
leak every 256th signature, and L = 16 bits every 65536th
signature. secp521r1 is not byte aligned and leaks L = 1 bit
every 2nd signature, or L = 9 bits every 512th signature, etc.
Since the side channel only comprises a few instructions and
data bytes, we rate it as hard to exploit. Yet, an SGX attack
similar to Appendix B could target the stripped nonce buffer.
This issue was patched on August 3, 2019.12

Point Addition Vulnerability (V7). For ECDSA signatures,
the nonce k is multiplied with the generator G in Equation (7).
Analyzing OpenSSL and BoringSSL showed that the constant-
time scalar multiplication uses a non-constant-time point ad-
dition. This leaks nonce windows consisting of zeros. We
uncovered this leakage with our tool showing 100% correla-
tion on the bit length of k, as shown in Appendix A Figure 5.

For the multiplication, the scalar is split into multiple fixed-
size windows. Each window is used as an index into a pre-
computed table to select the point to be added. If the window
is all-zero, the first point is selected from the table. This first
point represents infinity and has all-zero coordinates. Point
addition has a special doubling case in Listing 3 line 2. Al-
though doubling itself is never performed, the check in line 1
reveals whether the added point is infinity or not. Hence, an
attacker can learn whether the current nonce window is zero.
With a window size of w bits, roughly 2−wth of the nonce is
leaked per sign operation. E.g., for the common window size
of 5, around 3.2% of the nonce is leaked.

The leak occurs due to the order in which the branching
condition is evaluated. The if in line 1 consists of four sep-
arate conditions, which are compiled into multiple compare
and jump instructions (cf. Figure 5 in Appendix A). This cre-
ates a tiny leakage because a different number of instructions
are executed, depending on the secret scalar. When the added
point is not infinity, already the first comparison (x_equal)
fails, since the added points are unequal. If the added point
is infinity, this causes the flags x_equal and y_equal to be
true. This is because infinity is represented with all-zero pro-
jective (x,y,z) coordinates. Only the last flag !z2_is_zero
fails, which results in a few more executed instructions. Ex-
ploiting this leakage with a cache attack seems infeasible due
to the tiny difference in the executed code. However, in an
SGX setting, [17] could be used to single-step instructions.

12See https://github.com/openssl/openssl/pull/9511 as well as
commits 8b44198b and 805315d3
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https://github.com/openssl/openssl/commit/805315d3


Table 5: Curves vulnerable ( ) to ECDSA point addition
leak (V7) in constant-time scalar multiplication for base
point (BP) or arbitrary point (AP).

Curve BP AP Compile configuration

O
pe

nS
SL

secp224r1 #  enable-ec_nistp_64_gcc_128
secp256k1 #  
secp256k1   enable-ec_nistp_64_gcc_128 no-asm
secp521r1   enable-ec_nistp_64_gcc_128

B
or

in
gS

SL secp224r1   OPENSSL_SMALL
secp256k1 #  
secp384r1   
secp521r1   

We systematically analyzed various point multiplication
implementations and list affected ones in Table 5. Base point
multiplication with precomputed lookup tables is used in
ECDSA, whereas arbitrary point multiplication is used in
ECDH. In OpenSSL, only optimized NIST implementations
are affected. Other configurations and curve settings are un-
affected because they use a blinded double-and-add imple-
mentation. In BoringSSL, all curves are vulnerable at least
under one configuration. Since LibreSSL only uses blinded
double-and-add for scalar multiplication, it is also unaffected.

Our report led to an immediate fix13 by BoringSSL, which
replaces the evaluation of the branching condition with bit-
wise operations, such that a short-circuit evaluation is no
longer possible. OpenSSL is currently in the process of patch-
ing14, since our responsible disclosure on May 31, 2019.

6.5 Modular Inversion
Euclid BN_div (V8). OpenSSL and LibreSSL implement
modular inversion via the Extended Euclidean algorithm. In
contrast to the binary extended Euclidean algorithm (BEEA),
which is known to be vulnerable [1, 23, 54], the inversion
used for DSA is denoted as constant-time in the source code.
With our tool, we uncovered a leak hidden deeply in this
constant-time modular inversion of OpenSSL. In particular,
the first Euclidean iteration leaks the topmost nonce bit of
every signature to a side-channel attacker.

Since DATA accumulates leakage not only over the first
but over all Euclidean iterations, our leakage models did not
show high correlation. Instead, we found this leak by carefully
analyzing the differences reported by the first phase of DATA.

Algorithm 3 shows the leaky Extended Euclidean inversion.
The division BN_div in line 3 is not constant time, although
the BN_FLG_CONSTTIME flag is used. Note that BN_div com-
putes both, the integer division D and the remainder M. In the
first iteration, A holds the public modulus q, and B holds the
secret nonce k. Inside BN_div the BIGNUMs are aligned before
the actual division, as follows. The divisor (nonce k) is shifted
to the left such that its highest word is filled, having no leading

13See BoringSSL commit 12d9ed6.
14https://github.com/openssl/openssl/pull/9239

Algorithm 3: OpenSSL/LibreSSL leaky inversion
input :a,n
output : inv // Inverse of a mod n

1 (A,B,X ,Y,sign)← (a,n,1,0,−1)
2 while B > 0 do
3 (D,M)← (A/B,A%B) // Leaky division (V8)

4 (A,B)← (B,M)
5 (X ,Y )← (D ·X +Y,X)
6 sign←−sign
7 end
8 ensure A = 1
9 if sign < 0 then

10 Y ← n−Y// Leaky negation (V9)

11 end
12 inv← Y mod n
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Figure 3: OpenSSL DSA leaks the topmost bit of the
nonce during Euclidean inversion (V8).

zero bits. The numerator (modulus) is shifted left by the same
amount of bits (modulo the word size). Normally, the nonce
has the same bit length as the modulus, and the numerator
also gets word-aligned. If the nonce, however, has fewer bits
than the modulus, this shift operation causes the numerator
BIGNUM to spill over to the next limb, and top is incremented.
This will cause a BIGNUM resize operation. Observing such
resize operations allows an attacker to distinguish nonces
whose most significant bit is cleared.

To evaluate the leakage further, we generated 100 DSA
keys and computed 100 DSA signatures per key. Figure 3
plots the resulting bit length of k for each of the common
DSA settings qbits ∈ {160,224,256}. There is a clear sepa-
ration between nonces with a zero MSB causing a resize, and
“normal” nonces whose topmost bit is set. Since the modu-
lus is chosen randomly per key, the probability of having the
MSB of the nonce set is only around 30%, whereas the prob-
ability of a zero MSB is around 70%. Thus, an attacker can
effectively learn approximately 0.88 bits15 for each signature.

To exploit the vulnerability, an attacker probes for leaky re-
size operations in BN_div during the first Euclidean inversion.
A simple Flush+Reload attack on the corresponding Bignum-

15Computed via the information entropy

https://github.com/google/boringssl/commit/12d9ed6
https://github.com/openssl/openssl/pull/9239
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Figure 4: OpenSSL DSA leaks the topmost bit of the in-
verse nonce after Euclidean inversion (V9).

ber allocation routines suffices, as with (V2). Since L = 1, a
Bleichenbacher attack is needed to recover the private key.

We proposed to abandon Euclid inversion in favor of a
safer method. One could either use blinding to decorrelate
side-channel leakage from the nonce, or use Fermat’s little the-
orem, as done by BoringSSL. OpenSSL decided to implement
Fermat’s little theorem16 by computing kinv = kq−2 mod q.
Although we reported this vulnerability also to LibreSSL on
May 17, 2019, they did not apply the patch.
Euclid Negation (V9). The Euclidean algorithm is inherently
non-constant-time and leaks the number of iterations. We ini-
tially tried to correlate the number of iterations to the nonce
length. By doing simulations, we found that the iterations
fluctuate significantly, and cannot be used as a reliable side
channel for learning the nonce length. However, when ap-
plying our automated statistical methods, our tool reported a
significant correlation on the bit length of the inverse nonce
kinv. In particular, the Euclidean algorithm keeps track of the
inverse’s sign bit and conditionally negates Y in the end as
shown in Algorithm 3 line 10. We found that negation causes
larger inverses on average, presenting a useful side-channel.

To visualize the leakage, we repeat the experiment
from (V8). Figure 4 plots the bit length of inverse nonces
kinv. In our experiments, negation gives a large kinv; how-
ever, the topmost bit is not necessarily one (num_bits(kinv)≥
qbits−1). In contrast, “normal” inversion without negation
causes the MSB of kinv to be zero, which happens in around
70% of the cases, giving 0.88 bits of leakage per signature.

This vulnerability can be exploited via a Flush+Reload
attack on the leaky BN_sub function and only collecting sig-
natures where no negation happens. A Bleichenbacher attack
can be used to recover the actual private key.

The patch introduced in (V8) also fixes this vulnerability.
LibreSSL remains vulnerable, as they did not apply this patch.

6.6 Modular Multiplication (V10)

As Bignumber primitives are not constant-time in several
places [46], OpenSSL blinds17 the actual computation of the

16The patch was introduced in OpenSSL commit 415c335.
17Blinding was introduced via OpenSSL commit 7f9822a.

signature s in Equation (6) to avoid leaking the private key x.
This works by applying a random blinding value b, as follows:

b R← [1,q−1] (15)
s← (bm+bxr) mod q (16)

s← s · k−1 mod q (17)

s← s ·b−1 mod q (18)

This makes leakage during addition, modular reduction,
and multiplication in Equation (16) independent of the private
key as well as the inverse nonce in Equation (17). Unfor-
tunately, when LibreSSL applied the patch,18 they swapped
Equation (17) and Equation (18), causing the multiplication
with kinv to be unprotected. In particular, the routine BN_mul
leaks the value of kinv->top at various locations.

This vulnerability is conceptually the same as the small
nonce vulnerability (V1), affecting the same curves listed
in Table 3. It leaks whether the inverse nonce is one limb
smaller than the modulus. Since leakage of the inverse nonce
is equally dangerous as leakage of the nonce itself, an at-
tacker can mount the same key recovery attack as for (V1). In
response to our disclosure, LibreSSL fixed this issue.19

7 Evaluation

Having detailed all vulnerabilities, we now evaluate our anal-
ysis methodology as well as the leakage models.
Analysis Methodology. Investigating the leakage reports of
DATA represents a chicken-and-egg problem. The results of
DATA phase one cover all discovered differences (i.e., po-
tential leaks), but are tedious to analyze. Developing precise
leakage models to filter those results requires an intuition
about the nature of leakage, which in turn demands some
manual analysis of phase one results. As described in Sec-
tion 6, we concurrently followed both approaches. By manu-
ally analyzing phase one results, we gained an understanding
of the libraries. Although we found vulnerabilities related to
k-padding as well as (V8) that way, this task is tedious. Thus,
we derived the leakage model num_bits which captures the
bit length of k, k+q and k+2q to detect k-padding leaks au-
tomatically. We used the gained knowledge to search for other
Bignumber-related leaks, and also included inverse nonces
kinv in our models. Our leakage models confirmed initial
results and helped us discover more Bignumber-related vul-
nerabilities such as (V1), (V9) and (V10). Moreover, since
num_bits correlates with the bit length rather than the word
length of the nonce, we also found leakage on a byte granu-
larity (V6) and window granularity (V7).

The choice of library configurations and algorithm parame-
ters is essential. E.g., we realized that (V2) does not show up
for DSA-160 on a 64-bit system, while 32-bit systems leak for
all parameter sets. Also, the choice of the modulus q is essen-
tial in causing leakage to show up. In order to confirm (V2)
also for ECDSA, we analyzed all ECDSA moduli offline and

18See LibreSSL commits 2cd28f9 and 2a937ef.
19See LibreSSL commits 1f6b35b and 159fbd1.

https://github.com/openssl/openssl/commit/415c335
https://github.com/openssl/openssl/commit/7f9822a
https://github.com/libressl-portable/openbsd/commit/2cd28f9
https://github.com/libressl-portable/openbsd/commit/2a937ef
https://github.com/libressl-portable/openbsd/commit/1f6b35b
https://github.com/libressl-portable/openbsd/commit/159fbd1


Table 6: Evaluation of leakage models. Depending on the triggered vulnerabilities, differences (Diffs) found by DATA
are filtered via our leakage models. The overall reduction is computed when filtering almost non-matching leaks (<1%),
somewhat matching leaks (<50%), or all leaks except for perfect correlation (<100%).

Tested configuration Vulnerabilities Diffs
Leakage model (max. correlation) Overall reduction

num_bits hw Diffs vs. Leaks
k k+q k+2q kinv k k+q k+2q kinv <1% <50% <100%

LibreSSL sect131r1 (V1),(V9),(V10) 1450 100.0% 0.0% 0.0% 100.0% 7.4% 18.0% 9.4% 10.0% 90.2% 97.9% 99.0%
OpenSSL DSA-256 (V2),(V5),(V8),(V9) 663 100.0% 100.0% 100.0% 79.8% 0.0% 2.7% 17.8% 0.0% 23.7% 26.4% 27.5%
OpenSSL secp521r1a (V6) 88 100.0% 0.0% 0.0% 1.5% 11.4% 20.3% 0.0% 1.8% 84.1% 94.3% 94.3%
BoringSSL secp521r1 (V7) 26 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 96.2% 96.2% 96.2%
OpenSSL secp521r1 artificial leak 535 32.4% 0.0% 0.0% 8.3% 14.0% 100.0% 13.5% 0.0% 98.1% 99.8% 99.8%

acompiled with enable-ec_nistp_64_gcc_128

found that only Brainpool curves are vulnerable. Similarly,
discovering and analyzing leakage of small nonces (V1) de-
manded careful investigations of (V10). Both issues depend
on ECDSA curve parameters that are slightly above a word
boundary, which led us to specifically testing the sect131r1
curve showing small nonces every fourth signature. Thus, we
were able to find numerous instances of (V1) in the code with
the help of our tool. Also, we could generalize these results to
other curves. E.g., for secp521r1, the (V1) vulnerability only
shows up every 512th signature on average, which cannot be
easily discovered by DATA within a reasonable time.

Leakage Models. We evaluate the leakage models on
OpenSSL 1.1.1, BoringSSL chromium-stable commit
2e0d354, and LibreSSL 3.0.0. We used GCC 6.3.0, tested
DATA phase one with 16 and phase three with 200 traces.

Table 6 summarizes our results. We benchmark different
configurations to trigger all major vulnerabilities and count
all potential leaks (differences, or Diffs) found by the original
DATA phase one. For each implemented leakage model, we
print the maximum correlation, which reveals the strongest
leak found by a leakage model. To capture how often leakage
models match, the last three columns represent the overall
reduction of phase one when filtered by the models. In partic-
ular, we discard leaks with less correlation than the thresholds
1%, 50%, and 100%. For example, the 100% threshold only
preserves leaks that fully match the model.

LibreSSL sect131r1 leaks small nonces via the num_bits
model on k in several places with 100%. Moreover, LibreSSL
uses leaky Euclidean inversion also for ECDSA, resulting
in 100% leakage for num_bits(kinv). Since LibreSSL does
not work with so-called heap tracking of DATA phase one,
it has over 1000 differences, most of which are filtered by
our leakage models. Thus, the overall reduction is over 90%.
Analyzing those leaks by hand would be quite tedious.

For OpenSSL DSA-256, the leaky k-padding addition (List-
ing 2 line 14) is captured by the num_bits models on k+q and
k+2q, showing 100% correlation. The corresponding leaky
resize operation influences the heap layout and causes several
subsequent Bignumber operations to leak via data accesses.
Due to the high number of these actual data leaks, which are
all instantiations of (V2) the reduction is “only” around 25%.

To trigger (V6), we compiled OpenSSL to use the opti-
mized secp521r1 implementation. Indeed, num_bits(k) shows
100% correlation during conversion of the nonce buffer and
during scalar multiplication, as this implementation is also
vulnerable to (V7). We also triggered (V7) for BoringSSL,
showing 100% correlation. Other leakage models remain in-
significant, and the overall reduction is above 96%.

The Hamming weight model hw did not show high cor-
relation. DSA uses fixed window multiplication rather than
square-and-multiply, for which hw is designed. ECDSA uses
a blinded double-and-add by default, for which hw applies.
However, the actual computation does not leak. To test the
correctness of hw, we artificially introduced a conditional
code execution during double-and-add, leaking the current
nonce bit. Indeed, hw shows 100% on the padded nonce k+q.

8 Discussion

Proper tool support significantly improves side-channel anal-
ysis and facilitates discovery of unknown weaknesses. How-
ever, tools do not fully discharge an analyst from thorough
investigations. Knowledge of the nature of expected leakage
is required to leverage tool support and interpret the results.
Yet, we believe this is a valuable path to follow.

The process of vulnerability patching has been tedious
in the past, as evidenced by numerous issues involving the
BN_FLG_CONSTTIME flag [23, 24, 55]. Also, patching of (V2)
introduced new leakage in OpenSSL (V4) and LibreSSL (an-
other instance of (V2) for ECDSA). We believe this is due
to a lack of practical tools for developers to test their patches
thoroughly. Luckily, our tool uncovered both issues with little
effort. Also, regression testing with respect to already discov-
ered leakage is promising in this regard [25].

While most OpenSSL vulnerabilities were patched or are
in the patching process, the issues (V1) and (V5) related to
minimal Bignumbers (top) remain unpatched. The OpenSSL
team decided to target a fix in version 3.0, as it requires a
major redesign of their Bignumber primitives. According
to [19], reworking Bignumber arithmetic in BoringSSL prior
to this work took between one and two months. While Bor-
ingSSL immediately fixed (V7), LibreSSL only fixed (V10),

git://git.openssl.org/openssl.git
https://github.com/google/boringssl/commit/2e0d354
https://github.com/libressl-portable/portable.git


and (V2) partially. We also were in contact with the vendors
of libgcrypt, fixing (V2), and the ring library, fixing (V7) in
their code, without further in-depth analysis.

Due to a change in their security policy in May 2019,
OpenSSL does not consider Flush+Reload attacks in their
threat model anymore, since they are mounted on the same
physical system [41]. We see this downgrading questionable,
as it not only tempers efforts to analyze OpenSSL’s side-
channel security but also undermines software relying on the
previous threat model. For example, Intel SGX SSL [18] faces
adversarial code on the same physical system by design. Also,
vendors notified of (V2) by the CVE system were not notified
of the equally dangerous (V1) due to this policy update.20

In the long term, more compiler support with respect to
side-channels is needed [49]. As of today, compilers might
optimize constant-time code in a way that re-introduces side-
channel leakage. Thus, a notion of side-channel invariants
like constant-time guarantees is needed on a language level.

9 Conclusion

In this work, we showed that nonce leakage is far from be-
ing abandoned and requires attention both from academia
and practitioners. For our systematic study, we extended the
DATA framework to detect nonce leakage and developed
an easy-to-use GUI. We found that having an intuitive GUI
representation of the discovered leakage is imperative for
productive analysis of complex reports. E.g., it helped us to
easily determine whether a leaky function deeply nested in the
call stack is given public or secret input. The visualization of
leakage model results furthermore helped to identify hotspots,
especially if the number of potential leaks is large.

For OpenSSL and LibreSSL, we found numerous side-
channel vulnerabilities leaking secret (EC)DSA nonce bits
that allow full key recovery in many cases. They mostly result
from weaknesses in the underlying Bignumber implementa-
tion. We open-source our tools to help developers embrace
and include them in their development and patching process.
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A DATA GUI

Figure 5 shows the DATA GUI. It consists of several views:
The left side sorts all leaks according to their call stack (top)
and library (middle). Moreover, it shows for each function the
number of data (D) and control-flow (CF) leaks as well as the
maximum correlation with the leakage models in percent. One
can see several other potential (false-positive) leaks which
do not correlate with any of the predefined leakage-models.
The center box gives a list of data and control-flow leaks for

1 int BN_is_bit_set(const BIGNUM *a, int n) {
2 ...
3 if (a->top <= i)
4 return 0;
5 return (int)(((a->d[i]) >> j) & ((BN_ULONG)1));

Listing 4: OpenSSL k-padding leaks k->top (V5).

the selected function. The right side highlights leaks in the
disassembly and the source code, if available, which is crucial
for the analysis. The summary tab on the bottom left gives de-
tails about a particular leak, including correlations for various
leakage models. Also, it allows the analyst to comment and
rate leaks for documentation and communication purposes.
Clickable elements and the synchronization of different views
help to quickly navigate through complex reports.

B SGX Controlled-Channel Attack on (V5)

Fixing some of our reported vulnerabilities demand significant
changes to the code base. For example, k-padding (V2) was
fixed in OpenSSL, while the underlying problem of minimal
Bignumbers still persists until OpenSSL has reworked the
Bignumber implementation. Below, we show how to exploit
residual leakage via the k-padding top vulnerability (V5).

During k-padding, BN_is_bit_set is called with the in-
termediate nonce buffer l, as shown in Listing 2 line 18. If
l->top is smaller than q_bits, this causes an early abort in
Listing 4 line 4. In order to exploit this leakage, an attacker
needs to detect whether or not line 5 is executed.

While Flush+Reload might not work due to the small
amount of leaky code, we demonstrate a controlled-channel
attack [59] on an SGX enclave running the vulnerable DSA
sign operation from the SGX SSL library [18]. Controlled-
channel attacks detect individual memory accesses on a page
granularity, be it code or data. Since the vulnerable function
is likely on a single code page, probing this page does not
suffice. Although more elaborate techniques to single-step
enclave execution exist [17], we distinguish whether line 5
accesses the data page covering buffer a->d.

For the attack, we need to trace execution to the vul-
nerable k-padding. We do this with the SGX-Step frame-
work [17] without using its single-stepping functionality. We
unmap all relevant enclave code pages on which the following
functions reside: dsa_do_sign, BN_generate_dsa_nonce,
BN_MONT_CTX_set_locked, BN_add, and BN_is_bit_set.
As soon as one of those pages is fetched by the enclave,
a page fault is triggered, which we capture in user space via
a custom signal handler. Then, we selectively enable only
the faulted page until we hit the vulnerable BN_is_bit_set
function. Now we also unmap the data page holding the nonce
buffer a->d. If the next step throws a page fault on a->d, we
know that line 5 has been executed. If not, we know that the



Figure 5: DATA GUI showing the point addition vulnerability (V7) in BoringSSL where the ECDSA scalar multiplica-
tion is leaking bits(k) with 100%.

early abort in line 4 has been triggered. In that case the nonce
was not resized in the first addition of k-padding (line 13 of
Listing 2) and, thus, is smaller than the average. We only
collect such signatures and mount a lattice attack.

We build the lattice according to Equation (13) and grad-
ually fill it with leaky signatures until the lattice reduction
reveals the private key. For the actual reduction, we use the
BKZ algorithm with a block size of 30. For a DSA-256 modu-
lus leaking L = 8 bits, recovery succeeded with 36 signatures
within 3.3s. For L = 6 bit leakage, recovery took 47 signatures
and 7.8s. L = 4 required 79 signatures and took 111 hours
with an increased BKZ block size of 50, since it is closer to
the estimated bound in Section 2.2, demanding at least L = 3.

For the attack to work, a->top in line 4 needs to be on a
different page than a->d. This can be easily achieved if the
enclave copies variably-sized attacker-controlled arguments
such as messages to sign to the enclave heap. By changing the
argument’s size, Bignumber a can be shifted appropriately.

C Small Nonce Leakage Details

OpenSSL leaks the word length of small nonces in several
places. Nonce generation in BN_generate_dsa_nonce relies
on BN_div for nonce reduction, which is non-constant time
and leaks the length of small nonces, e.g., via BN_rshift.
Also, the nonce is stripped by skipping leading zero
limbs via bn_correct_top, which leaks the nonce length
in limbs in subsequent steps. OpenSSL’s default scalar

multiplication uses a blinded version of double-and-add
in ec_GF2m_simple_points_mul. Before blinding is ap-
plied, the nonce length leaks when being copied from
scalar to k via BN_copy, when checking its bit length via
BN_num_bits, and during the first addition of the nonce
with the cardinality via BN_add. Also, the NIST-optimized
curves call BN_num_bits with the nonce as input, e.g., in
ec_GFp_nistp521_points_mul, which also leaks (cf. [43]).

During the nonce inversion done via BN_mod_exp_mont,
which is invoked by ec_group_do_inverse_ord and
ec_field_inverse_mod_ord, there is an early abort when
comparing the Bignumbers k and q via BN_ucmp. While their
exploitation might be tricky due to the small amounts of code
or data being accessed conditionally, we also found an easy-
to-exploit leak, which we describe in Section 6.1.

For LibreSSL, the situation is similar. Nonce genera-
tion leaks the nonce length via an early abort condition
when checking for a proper nonce during rejection sam-
pling via BN_ucmp. LibreSSL also leaks the nonce length
during the first addition of the nonce and the group order in
BN_add (k-padding). However, LibreSSL accidentally per-
forms k-padding twice; 1) in ecdsa_sign_setup and 2) in
ec_GFp_simple_mul_ct. Unlike OpenSSL, nonce inversion
still uses the extended Euclid and is subject to vulnerabil-
ity (V8). Also, LibreSSL used an old non-constant-time ver-
sion of BN_num_bits_word which was patched in OpenSSL
already in January 2018 via commit 972c87df. Due to our
reporting, LibreSSL patched this issue in commit 9046ac5.

https://github.com/openssl/openssl/commit/972c87df
https://github.com/libressl-portable/openbsd/commit/9046ac5
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