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ABSTRACT Determining instar distributions from field-collected insect samples is a common
problem in insect ecology. We describe a generalized computer program (HeAP) that determines
an optimum separation rule based on the distribution of head capsule widths. The program is initiated
through visual interaction with the user to determine starting points for separation rules. HeAPthen
determines the optimum instar classification rules; estimates of means and standard deviations of
headcapsule widths for each instar; estimated number in each instar; and probabilities of misclas-
sification. Application of the program is illustrated by the analysis of 3 data sets of >10,000
observations of headcapsule widths obtained from field collections of larvae of the mountain pine
beetle, DendroctonU8 ponderosae Hopkins. This analysis resulted in finding significant differences
between larvae collected from different hosts (ponderosa pine, PinU8 ponderosae Lawson, and
lodgepole pine, Pinus contorta Douglas variety latifolia Engelmann) and ecological circumstances
(outbreak phase and geographic location). These results indicate that caution must be taken when
extrapolating published results to new data or from one ecological situation to another.

KEY WORDS DendroctonU8 ponderosae, headcapsule distributions, instar determination, Dyar's
rule

DETERMININGINSTARDESIGNATIONfor field collected in-
sect samples is fundamental to both applied and basic
research. Insect phenology and the resultant life-stage
distribution is important in applied ecology because
pest species are often vulnerable to control methods
for only a restricted period in their life cycle. Control
applications must be timed to coincide with this win-
dow of vulnerability to be effective. Achieving timing
objectives typically requires a reliable method to de-
termine the instar distribution of field collected sam-
ples. Determining instar distributions is required for
life tables analysis, key factor analysis and other im-
portant ecological investigations. Frequently several
instars are present at the same time and their size
distributions overlap to some extent. The problem is,
therefore, determining the appropriate instal' for a
sampled individual.

Growth of insect larvae is discontinuous, with the
most measurable change in size occurring following
molts (Chapman 1982). Heavily sclerotized struc-
tures, such as headcapsules, remain approximately the
same size during a stadium, and can be used to dif-
ferentiate larval instars (Daly 1985). Developing a
frequency distribution of head capsule width measure-
ments in which individual peaks correspond to the

This article reports the results of research only. Mention of a
proprietaryproductdoesnot constitutean endorsementor a recom-
mendationby the USDAForest Servicefor its use.

various instars was first used> 100yr ago (Dyar 1890),
and has been successfully applied many times since. In
this paper we describe an easy to use computer pro-
gram (HCAP)for analysis of larval headcapsule data.
This program is a generalization of techniques de-
scribed by McClellan and Logan (1994) for analysis of
gypsy moth, Lymantria dispar (L.), headcapsule data.
Optimum instar classification rules, estimates of means
and standard deviations of headcapsule widths for
each instar, estimated number in each instar, and
probabilities of misclassification are generated by
HCAP.User interaction is required to visually deter-
mine initial guesses of separation points between in-
stars (low points in the combined frequency distribu-
tion curve). Once this visual determination is made,
the program automatically performs the analysis with
no further user interaction required.

As an example application of this program, and also
because it provides useful information in its own right,
we apply HCAPfor analysis of mountain pine beetle,
DendroctonU8 ponderosae Hopkins, headcapsule dis-
tribution data. In our investigations of mountain pine
beetle population ecology, it has often been necessary
to accurately determine instar distributions from field
collected data. These studies have involved compu-
tation of stage dependent mortality (Cole 1975,1981),
climate and weather synchronization of adult emer-
gence (Bentz et aI. 1991,Logan et aI. 1995,Schmid et
aI. 1993), and field validation of a life-systems model
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(Bentz 1995). As a result, we have amassed large data
sets that total >10,000 individual headcapsule mea-
surements collected from a wide variety of habitats
and climates. Classification rules for determining in-
star of field collected mountain pine beetle larvae, and
the ecological implications of the results from this
classification analysis, are discussed in the remainder
of this article.

Following McClellan and Logan (1994), parameters
are obtained by simultaneously fitting equation 1 to
the combined data set, where hi is the frequency of
headcapsule width x. for the i-th of n instars, and
parameters ai , bi , and Ci are fitted by nonlinear least
squares. By assuming a normal distribution, estimates
of mean headcapsule width (Xi = Gi), variance in
headcapsule width (s~ = 1/2bi), and estimated num-

Materials and Methods

Description of HcAP. HcAP was developed using
MATLAB (Math Works 1993) numerical computation
and visualization software. MATLAB is an efficient
matrix based language that provides a wide array of
computational and visualization procedures. Program
development is extremely fast and convenient using
these powerful procedures. MATLAB programs are
written as M-files, algorithmic pseudo-code that are
much easier to understand than detailed C or FOR-
TRAN code. It is therefore easy to further extend or
adapt existing programs. M-files are written as Ascn
code, which means they can be transported among
different platforms. The major disadvantage is that an
interested user must have a copy of MATLAB to run
the M-file program, but that is mitigated by the fact
that M-files can be compiled as either FORTRAN or
C code, and distributed as executable files. Math
Works also maintains its own Web site, which further
augments dissemination of the program.

Data Input and Visualization. Data input to the pro-
gram is from a simple flat file containing any number
of headcapsule measurements. The only requirement
is that datum be separated by 1 or more blanks. After
the name of the file containing the data is entered, the
user is provided the opportunity to iteratively deter-
mine an appropriate number of frequency classes used
to represent the distribution of headcapsule widths.
This is accomplished by visual inspection of the plot-
ted histogram constructed by the user choosing the
width of class intervals.

Estimation of Instar Distribution Parameters. Param-
eters required for optimum separation rules are esti-
mated by assuming that the headcapsule distribution
for each instar is normally distributed (Caltagirone et
al.1983, Got 1988,McClellan and Logan 1994,Schmidt
1996), and that the observed distribution is the sum of
these individual nonnal distributions. The total fre-
quency distribution is then

[3]

[4]

ber of individuals in the sample that are in the i-th
instar (ni = a's' (27r)1/2/il, where il is the interval
width of the frequency distribution), can be obtained.
Simultaneously fitting these parameters accounts for
potential overlap between instar distributions.

Classification rules can be obtained from areas of
overlap between the individual instar frequency dis-
tributions. Consider the frequency distributions ob-
tained from substituting the estimated parameters
back into the assumed nonnal distributions, resulting
in,

ilj; = n rn= e_(X-I'-)2/20". [2]
a y27r

A classification rule follows by separating instars at the
points of intersections of the individual instar fre-
quency distributions. These intersections are obtained
by numerically solving for l; = root(f;_l - fJ and Li

= rootU; - /';+1)' where li is the lower limit for the i-th
instar and Li is the upper limit for the i-th instar.

The probability of misclassification of the i-th instar
as the i-th - 1 instar is given by,

The probability of misclassifying the i-th instar as some
other instar is then PI (l;) + PL (Li) and the probability
of misclassifying some other instar as the i-th instar is
PL( Li-1) + PI(li+l)' These probabilities are depen-
dent on both the means and variances for the indi-
vidual instar distributions and the number of individ-
uals in each instar in the sample.

HCAP Program. HcAPis available as either a MATLAB
M-file or as a compiled C-code executable version.
Either version can be obtained by writing to J.A.L.
There are different advantages to both versions. The
M-file is meta-code that can be easily modified or
expanded to meet specific needs. However, to do so,
one needs a copy of MATLAB. The compiled C-ver-
sion, on the other hand, requires no additional soft-
ware link, but it is immutable.

MATLAB programs use 2 windows, the command
window (Fig. 1), and a graphics window (Figs. 2 and
3). Both windows are interactive, and user response is
communicated to the program by switching back-and-
forth between them. The graphics and the command
windows appear simultaneously on the screen.

and that of misclassifying the i-th instar as the i-th +
1 instar is given by

[1 ]
i=l

h. = '" a.e-b,(x-c;)'
I L.J t •
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An appropriate selection of frequency classes is also
important because the least-squares, normal series is
fitted to the midpoints of the frequency classes.
Choice of frequency interval width can, therefore,
influence the final parameter selection and R2 value.

The graphics window serves 3 purposes. First it
provides for visual evaluation of resolution in fre-
quency class representation of the headcapsule dis-
tribution. Second, it provides a way to input the orig-
inal guesses of separation points (Fig. 1). Finally, the
results of curve fitting are displayed in the graphics
window (Fig. 2), along with the capabilities to "zoom"
in on an interesting region of the distribution (Fig. 3).

HeAP Output. Example of HCAP output is listed in
Table 1. Optimum separation rules are computed for
both the 3 parameter function of equation 1, which
includes the number of individuals in each instar and
the standard normal distribution which is a function of
the mean and standard deviation only. Descriptive
statistics are computed from both the estimated nom1a1
distributions and from the c1assi6ed, empirical data sets.
Finally, the probabilities of miss-classification are com-
puted from the summed 3 parameter functions.

Data Sources. Three sources of data were used for
this analysis (Table 2). The headcapsule measure-
ments that comprise data set I were collected between
the years 1970 and 1991 from lodgepole pine, Pinus
contorta Douglas variety latifolia Engelmann. Head-
capsule measurements for these data resulted from
numerous studies, and a subset (before 1983) of these
measurements were published in Amman and Cole
(1983). Larvae were collected from either building,
epidemic or postepidemic populations from 6 national
forests in western states. Collection times were typi-
cally once in the fall, once in the spring, and again in

Fig. 3. Zoom capabilities of HCAP. This figure is an
enlargement of the region separating the 1st and 2nd instars.
"Click-and-drag" with the left mouse button to zoom-in on a
selected area. "Click" with the right mouse button to go back
to the original graph. The lines on this figure are 1 the
individual instar distributions; 2 the curves resulting from the
original guesses; 3 the fitted normal series; 4 indicates the
point of optimal (by McClellan/Logan criteria) separation of
instars.
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1.20.6 0.8 1
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Fig. 2. Fitted curves for the data set II. HCAP graphics
are color coded, so interpretation is easier.
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The primary function of the command window is to
interact with the user to select the appropriate reso-
lution (number offrequency classes) required to de-
scribe the distribution of head capsules. This is accom-
plished by iteration until the user indicates satisfaction
with the results. Selection of an appropriate frequency
class width is important because of the smoothing
effect that results. One extreme is that if frequency
classes are too wide (too few classes selected), then
existing, complex peaks may be smoothed over. Con-
versely, if frequency classes are too narrow (too many
classes selected) resolution in peaks is lost, the ex-
treme being classes are so narrow that each contains
only one observation. In practice, we have found that
10 frequency classes per peak is a good starting point.
A few choices greater and less than this value should
quickly result in an acceptable resolution.

HEADCAPSULE SIZE

Fig. 1. Position and order of "clicking" to indicate the
peaks in headcapsule distribution in data set II. Circled num-
bers were added to HCAP graphics window to indicate order
of peak selection. + Indicates where the user would "click"
to graphically input initial guesses of the optimum separation
of instars.

June 1998

300

250

200

><

i 150

100

50

~.2



558 ENVIRONMENTAL ENTOMOLOGY Vol. 27, no. 3

Table 1. Output produced by HCAP

»

Bold font are user responses to HCAP queries, italicized font are
explanatory comments added to the output.

forests. Data set ill includes measurements of larvae
collected over a 3-yr period from a building mountain
pine beetle population in ponderosae pine, Pinus pon-
derosa Lawson. These data, which came from only 1
national forest, were also collected approximately
once per month throughout the life-cycle.

All larvae were removed from phloem tissue in the
field, and stored in 95% ETOH until measurement in
the laboratory. Larval headcapsule width (to the near-
est 0.02 mm) was measured using a 50x power mi-
croscope and ocular grid-micrometer for data set I.
Measurements (recorded to the nearest 0.01 mm) for
data set II and data set ill were made using a 25X
microscope with a Boeckeler digital eyepiece and
scaler.

Results

Means and Standard Deviations. Larval headcap-
sule widths for all 3 data sets ranged from 0.31 to 1.60
mm. The frequency distribution of widths indicate
four distinct peaks, representing 4 instars (Figs. 4-6).
Two previous studies also resulted in identification of
4 instars (Reid 1962, Amman and Cole 1983). Esti-
mated means, standard deviations, and number of in-
dividuals in each instar are listed in Tables 3-5.

There is a statistically significant difference in head-
capsule size due to instar, the different data sets, and
the interaction between them (PROC GLM, SAS In-
stitute 1989;Table 6). Using results from this analysis,
a least significant difference ranking indicates that all
means are- significantly different from one another
with the exception of the 1st instar where the data set
I and data set illmeans were not statistically different
(Fig. 7). These differences could result from a variety
of causes (see Discussion section).

Our estimation of means and variances assumes that
the basic underlying distributions are normal. This
assumption is in keeping with previous instar separa-
tion techniques that take into account the problem of
overlapping distributions (Got 1988,Schmidt 1996). A
Kolmogorov-Smirnov test (Conover 1980) for nor-
mality resulted in inconsistent results. Data sets I and
ill significantly deviated from the normal assumption
(Kolmogorov-Smirnov test statistic = 0.019,0.043, re-
spectively; P <0.05with critical values computed from
a large sample approximation using n = 7,270 and
1,126, respectively), and normality was satisfied for
data set II (Kolmogorov-Smirnov test statistic = 0.02;
P > 0.2 with critical value computed from a large
sample approximation using n = 2,040). Lack of meet-
ing the normal assumption for data set I could result
from the broad temporal! spatial variability repre-
sented in this data. Regardless, the deviation from
normality is not a serious consideration for the analysis
of variance because of the innate robustness of the
technique and the high levels of significance obtained.
However, substantial deviation from normality would
effect the location of points separating instars.

Both means and standard deviations are an increas-
ing function of instar (Tables 3-5). The standard de-
viation is also an increasing function of the mean, a

Instar4
1.157059
0.073458

132.427271

Instar3
0.842890
0.055988

390.662076

4.7441e-001
6.0825e-001
8.428ge-001
1.1571e+ 000

Instar2
0.608250
0.035354

661.479508

9.6573e+002
4.0003e+002
1.5951e+002
9.265ge+001

Instar ias i-I ias i+l total
1 0.000000 0.006647 0.006647
2 0.014176 0.002553 0.016728
3 0.007704 0.003084 0.010788
4 0.014281 0.000000 0.014281

the middle of summer. Data set II also contains larval
head capsule measurements collected from lodgepole
pine. However, these larvae were collected approxi-
mately once each month, with each consecutive sam-
ple taken from the same tree, thereby representing the
complete mountain pine beetle life-cycle for a specific
population. Larvae were collected from endemic pop-
ulations over a 2-yr period, in 3 different national

Descriptive statistics estimated from empirical data classified by
the 3 parameter Normal distribution

Instar 1 Instar2 Instar3 Instar4
Mean 0.472016 0.613165 0.839845 1.157926
Std. Dev 0.026429 0.034644 0.056358 0.076080
Number 863.000000 654.000000 388.000000 135.000000
Probabilities of missclassification based on the 3-parameter normal

distribution

Classification rules based on the 2 parameter normal distribution
3.506000e-001 < instarl < 5.241438e-001
5.241438e-00l < instar2 < 6.951585e-ool
6.951585e-001 < instar3 < 9.752071e-001
9.752071e-00l < instar4 < 1.359400e+Ooo

Descriptive statistics estimated from the 3-parameter Normal
Distribution

Instarl
0.474406
0.022754

824.994435

» HCAP M-file name executed from MATLAR

Enter data file name <= 93&95.dat
How many frequency classes ("bars") for data plot? 50
Are you happy with the plot? y
using the number of frequency classes you have selected (50), the

frequency cell width is: 0.019400
Click on the places that separate instar distributions! see Fig 1, this

requires interactive input.
Remember to click on BOTH the beginning and end of the

distributions!
Press the [ENTER] key when you are done
The starting Sum-of-Squares = 73.766307
The elapsed time for curve fitting was 17.900000 seconds
The final Sum-of-Squares = 37.927493

The Crude R-square based on 50 frequency classes is = 0.920005
The Adjusted R-square based on 50 frequency classes is = 0.894743
Current plot held

Classification rules based on the 3 parameter normal distribution
3.506000e-001 < instarl < 5.307405e-001
5.307405e-OOl < instar2 < 7.072525e-OOI
7.072525e-001 < instar3 < 9.962242e-001
9.962242e-001 < instar4 < 1.359400e+000

Mean
Std. Dev
Number

ans = This is tl1e ••answer" matrix of fitted parameters pmduced by
MATLAB

2.8061e+002
1.4481e+002
5.4003e+00l
1.3952e+00l
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Table 2. Larval datil set descriptions

Data set name

Data set I

Data set II

Data set ill

Host

Lodgepole pine

Lodgepole pine

Ponderosa pine

National
forest(s), state

Cache, UT
Wasatch, WY
Bridger, WY
Targhee, WY
Sawtooth, ill
Teton, WY
Cache. UT
Targhee, WY
Sawtooth, ill
Dixie, UT

Yr

1970-1975
1970-1975
1973-1974
1973-1975
1974
1980-1991
1993-1994
1993-1995
1993-1995
1993-1994

No. collections Iyr

3

10

10

result consistent with the general morphometric lit-
erature. This relationship can also be expressed by
plotting the standard deviation as a function of the
mean (Fig. 8). The linear relationship between stan-
dard deviation and the mean was highly significant
(F = 60.27, df = 1,10; P < 0.01).
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Fig. 4. Plot of fitted normal series function to data set 1.
Histograms are frequency classes for observed headcapsule
widths; light lines are individual instar distributions; heavy
line is the fitted normal series.
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Fig. 5. Plot of fitted nomlal series function to data set II.
Histograms are frequency classes for observed headcapsule
widths; light lines are individual instar distributions; heavy
line is the fitted normal series.

Dyar (1890) hypothesized a geometric progression
of headcapsule size with instar. This relationship re-
sults in y = abX, or following logarithmic transforma-
tion, In y = In a + (In b)x, where y is measured
headcapsule size, x is instar, and a and b are estimated
constants (Klingenberg and Zimmermann 1992).
There has been a sustained interest in Dyar's rule over
the past century because it has been interpreted as a
simple way to determine the number of instars for an
insect species from field collected data (e.g., repre-
sentation of all instars results in a linear relationship

DATAsETm
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HEADCAPSULE WIDTH

Fig. 6. Plot of fitted normal series function to data set m.
Histograms are frequency classes for observed headcapsule
widths; light lines are individual instar distributions; heavy
line is the fitted normal series.

Table 3. Estullaled statistics for headcllPBule distributions for
data set I

Parameter Instar 1 Instar 2 Instar 3 Instar 4

n (estimated)" 723 2152 2804 1577
n (classifeid /' 707 2169 2845 1549
Mean 0.493 0.638 0.866 J.l89
Standard deviation 0.0355 0.0503 0.0785 0.105
Lower limit 0.543 0.730 1.03
Upper limit 0.543 0.730 1.03
P(i as i-I) 0.0302 0.0415 0.0599
P(i as i + 1) 0.077 0.0332 0.0209
P(miss clasify) 0.077 0.0634 0.0624 0.0599

aThe value for n is estimated from the parameter a of equation 1.
h The value for n is the sum of the classified data using the 3-pa-

rameter, normal series of equation 1.
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Table 4. Estimated statistics for head capsule distributions for
data set II

Parameter Instar 1 Instar 2 Instar 3 Instar 4

n (estimated)" 825 661 391 132
n(classified)l, 863 654 388 135
Mean 0.474 0.608 0.843 1.157
Standard deviation 0.0227 0.0354 0.056 0.0735
Lower limit 0.531 0.707 0.996
Upper limit 0.531 0.707 0.996
P(i as i-I) 0.0142 0.0077 0.0143
P(i as i + 1) 0.0066 0.0025 0.0031
P (miss clasify) 0.0066 0.0167 0.0108 0.0143

" The value for n is estimated from the parameter a of equation 1.
b The value for n is the sum of the classified data using the 3-pa-

rameter, normal series of equation 1.

between the In of headcapsule size and instar)
(Hutchinson and Tongring 1984). Plots of the In re-
lationship and fitted linear regression lines are given in
Fig. 9. All 3 fitted relationships are highly significant
(F = 936.57, 579.86, 731.40 for data sets I, II, and III,
respectively; df = 1, 2; P < 0.01). An analysis of co-
variance indicated that the adjusted means were sig-
nificantly different (F = 15.10;df = 2, 8; P < 0.01), as
were the regression coefficients (F = 8.57; df = 2, 6;
P < 0.05). From visual examination, the slope of the
fitted linear regressions (Dyar's constant) is similar for
data sets I and II (0.29 and 0.30,respectively), whereas
that for data set III (0.33) is greater.

Classification Rules. HeAPproduces 2 classification
rules, one derived from the 3-parameter function
equation 1, and the other based on means and vari-
ances only. Both classifications are also listed in Tables

Table 5. Estimated statistics for headcapsule distributions for
data set III
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Fig. 7. Estimated mean headcapsule widths for the 3
Mountainpine beetle data sets:D, data set I; 0, data set II;
~, data set Ill.

3-5. As long as the survival schedule (l.) is realistic (a
monotonic decreasing function of age), and the vari-
ance is an increasing function of instar, the optimal
separation between instars will always be shifted to
the left of the apparent separation point (the low point
in the headcapsule distribution). How far it is shifted
will depend on the severity of mortality and the steep-
ness of the increasing variance function.

St. Dev. vs Means

Mean Headcapsule Width

Fig. 8. Estimated standard deviations of headcapsule
widthsas a functionof mean:D, data set I;0, data set II; ~,
data set Ill.

Parameter Instar 1 Instar 2 Instar 3 Instar 4

n (estimated)" 409 283 270 107
n(classified)I' 446 309 267 104
Mean 0.510 0.677 0.955 1.37
Standard deviation 0.0270 0.0331 0.0979 0.113
Lower limit 0.588 0.760 1.175
Upper limit 0.588 0.760 1.175
P(i as i-I) 0.0036 0.0227 0.0443
P(i as i + 1) 0.0019 0.0062 0.0124
P(miss classify) 0.0019 0.0098 0.0351 0.0443

" The value for n is estimated from the parameter a of equation 1.
b The value for n is the sum of the classified data using the

3-parameter, normal series of equation 1.

Table 6. Statistical analysis for headcapsule widths

Source df Sum Mean F PrF>square square

Data set 2 5.75 2.87 721.52 <0.0001
Instar 3 286.36 95.45 23,958 <0.0001
Data set. instar 6 2.87 0.49 120 <0.0001
Error 10.424 41.43 0.063
Total 10,435 636.48

Instars determined by classification rule derived from the 3 param-
eter, instar specific normal distribution. Sum squares are type III from
SAS (SAS Institute 1989) procedure GLM.
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0.10
co
"".~ 0.08
~
'E
~ 0.06

~
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Discussion

Fig. 9. Plots of fitted regression line to In (headcapsule
size) by instal'. A linear relationship satisfies Dyar's rule, and
indicates full representation of instal'Sin the sample: D, data
set I; 0, data set II; T, data set m.

Means and Standard Deviations. The significant dif-
ferences in mean headcapsule widths could result
from a variety of sources. Adults reared from pon-
derosa pine are typically larger than those reared from
lodgepole pine (Hay 1956,Wood 1963,Amman 1982),
implying that larvae from ponderosa pine would also
be larger. Size differences between hosts could result
from both environmental and genetic factors. Pon-
derosa pine has thicker bark than lodgepole pine, and
although they are in the same genus, chemical makeup
(particularly defensive chemistry) among Pinus spe-
cies is highly variable (Mirov 1961). These differences
in both quantity and quality of the host food resource
suggest potential significant nutritional differences
that may result in size differences. Size differences
could also simply be the result of geographic variation.
Data set ill was collected from trees at ""'370 45' lat-
itude, whereas both data sets I and II were collected
farther north than 410 56' latitude.

Population phase could also playa role in the ob-
served size difference among larvae from the different
data sets. Data set I is composite data collected over
many years, but measurements were predominantly
from outbreak phase populations. Conversely, data set
II data were collected from endemic populations. At
low population levels, mountain pine beetle typically
attacks smaller, less vigorous trees, whereas larger
populations are able to overcome the defenses of
larger, healthier trees. Following this reasoning, data
set I larvae may have come from more nutritious trees,
resulting in larger larvae. Our results from the data set
I analysis are similar to Amman and Cole (1983, p. 3).
This result is not particularly surprising since their
data is a subset of data set I. However, mean values

reported by Reid (1962) are also similar to those es-
timated from data set I, and are independent data.
Reid also collected larvae from predominantly out-
break phase populations in lodgepole pine.

The observed differences in mean headcapsule
widths indicate that caution must be taken when ex-
trapolating published results to new data or from one
ecological situation to another. An obvious question
arises: Do the observed differences among data sets
have a genetic basis, or are they simply due to local
nutritional environment? We are conducting labora-
tory studies to more clearly elucidate the differences
we observed.

Although the increasing variance with instal' is an
expected result, visual examination of Fig. 8 indicates
that the variance of data set I is consistently greater
than that for data set II with all the standard deviations
for the data set I data lying above the fitted regression
line and all those for data set II lying below. This
difference is most likely a reflection of the larger
geographic variability represented by data set I, and
may also be an indication that greater variation in
population phases that are represented in data set I.
The pattern of variation in data set III exhibits no
obviously consistent pattern.

Dyar's rule was satisfied for all 3 data sets. This is an
indication that all instal'S are represented in the sam-
ples, a result that is consistent with the four observed
peaks in the histogram plots (Figs. 5-7) and previously
published data (Reid 1962,Amman and Cole 1983). In
morphometric analysis, it is always advisable to have
corroborative evidence regarding the number of in-
stars for a particular species (see discussion below
regarding smoothing functions).

Classification Rules. Classification rules used in
HCAPare those described in equations 3 and 4. The
rules minimize the pair-wise combined probability of
misclassifying 2 consecutive instal'S. This is not the
only classification rule that has been used. For exam-
ple, Got (1988) chose to separate instal'S at the point
that equalized the pair-wise probability of misclassi-
fying 2 instal'S.Although HcAPdoes not compute Got's
criteria, it can be easily calculated from information
produced by HcAPand the maximum likelihood equa-
tions in Got (1988, p. 96).

HCAPproduces 2 classification rules, one based on
the 3 parameter equation 1, and the other on means
and variances only. The probability of misclassifying
individuals from any given sample is a function not
only of the means and the variances, but also depends
on the number of individuals in each instar. The 3
parameter function takes the number in each instar
into consideration. For classification of a new individ-
uallarvae sampled from an unknown population, how-
ever, the situation is somewhat different. In this latter
circumstance, if there is equal likelihood that the sam-
pled individual is from any instar, then the optimum
classification depends only on the appropriate means
and variances. In this case, the 2 parameter rule should
be used. Got (1988) also assumed equal (instar inde-
pendent) sampling likelihood. The "best" decision
rule, therefore, depends on the particular circum-
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stances and applications intended for the classification
rule. In cases where a large sample needs to be divided
into representative instars (e.g., life history studies) it
is probably best to always develop a new 3 (per instar)
parameter classification scheme, particularly consid-
ering the multiple, and probably unknown, factors
that can lead to headcapsule size differences between
sampled populations. In situations where a small sam-
ple of individual needs to be identified to instar (e.g.,
pest management decisions in which the numbers in
each instar are unknown and unestimatable), the 2
parameter rules given in HCAPor Got's criteria are
recommended. An improved criteria could possible be
developed by combining morphometric analysis with
phenology models.

Lx Analysis. From equation 1, and its relationship to
the normal curve, the interpretation of parameters hi
and Ci is straightforward as the inverse of twice the
variance and the mean, respectively. However, there
are 2 equally valid interpretations of the parameter ai'

First, from examination of equation 1, it is apparent
that ai is a parameter that scales the frequency distri-
bution of the i-th instar to its maximum. Second, by
relating ai to the normal curve, ni is an independent
estimate of the number of individuals in the total
sample that belong to the i-th instar corrected for
overlapping distributions with other instars, and is
estimated as

situation. Although the distributions for mountain
pine beetle appear to be straightfOlward, we have
found that HCAPis capable of producing satisfactory
results for complex morphometric distributions as
long as visual examination can provide good initial
estimates of separation of peaks. An approach that
might work well for complex composite curves would
be application of a program like PeakFit to determine
the number of instars represented, and then apply
HcAPto compute the optimum separation rules and
probabilities of misclassification.

PeakFit also applies a smoothing algorithm before
fitting the normal series. HCAPprovides a smoothing
function by iteratively allowing the user to determine
the number of frequency classes used to describe the
data. As an alternative, we also applied a 5-term mov-
ing average smoothing algorithm combined with first
differences of the moving average to determine points
of inflection between instars. The moving average
approach worked well for our 3 data sets, but did not
result in a noticeable improvement over visual inspec-
tion. In our experience, visual separation works well,
and it has required only a few iterations to obtain
satisfactory results. Visual qualitative determination
also effectively addresses the possibility of inadver-
tently ignoring a peak that could be smoothed over by
an automatic algorithm.

If certain conditions are met, the relationship can be
used to develop survival schedules and a decision rule
that is independent of sample size.

HCAP.In our experience, HCAPhas provided an easy
to use, efficient way to determine instars separation
rules from large data samples. Convergence properties
of equation 1 and the least squares criteria appear to
be robust. HCAP,however, does not determine the
number of peaks or instars that compose a complex,
composite distribution. That determination is left to
the user who determines the number of terms to
include in the normal series by selecting the initial
separation points. HeAPthen fits the normal series of
equation 1 that includes the identified number of
terms in the series. Other commercial programs have
been applied to the problem of separating headcap-
sule distributions by assuming a composite normal
distribution. For example, Schmidt (1996) applied
PeakFit (Jandel1990) for morphometric analysis of
spruce budworm headcapsule distributions. PeakFit is
similar to HCAPin that the normal series of equation 1
is fitted by nonlinear least squares, however, a statis-
tical analysis of results is performed to help determine
the number of terms in the series that are required to
adequately describe a composite distribution. The sit-
uation with spruce bud worm is more confusing than
our application with mountain pine beetle, supernu-
merary instars and effects of parasitism adding com-
plexity to the bud worm analysis. Schmidt reported
good results with PeakFit in resolving this complex

a~
nj = a-.1--' [5]
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