
w Datasheet: Mini-ITX and Pico-ITX SBCs w Embedded Software Tool Security |

Food Delivery Notifier Uses Bluetooth | Intro to Ardupilot and PX4 (Part 2) |

Creative Mechanical Ideas for Embedded | Modernizing Antique Clocks |

Pest Control System w Broad Market Secure MCUs | Weather Tree Upgrade |

Build a SoundFont MIDI Synthesizer (Part 1) w The Future of Linux Security

SOLUTIONS FOR SMART AGRICULTURE

MAY 2020

ISSUE 358C
IR

C
U

IT
 C

E
L
L
A

R
 | IS

S
U

E
 3

5
8

 | M
A

Y
 2

0
2

0
c
irc

u
itc

e
lla

r.c
o

m

circuitcellar.com

IOT TECHNOLOGIES FEED
SMART AGRICULTURE

Inspiring the Evolution of Embedded Design

PCB ASSEMBLY

DESIGN-FOR-ASSEMBLY
FUNDAMENTALS

for getting your PCBs back fast

NEW
!

$29
value

eBOOK
eBOOK

bit.ly/fastPCBs | (800) 838-5650

CIRCUIT CELLAR • MAY 2020 #3582

OUR NETWORK

SUPPORTING COMPANIES

NOT A SUPPORTING COMPANY YET?
Contact Hugh Heinsohn

(hugh@circuitcellar.com, Phone: 757-525-3677, Fax: 888-980-1303)
to reserve space in the next issue of Circuit Cellar.

Advanced Assembly 1

All Electronics Corp. 77

CCS, Inc. 77

easyOEM 49

HuMANDATA, Ltd. 13

IAR Systems, Inc. C3

Newhaven Display International, Inc. 11

Pico Technology 21

Technologic Systems, Inc. C4, 77

University of Cincinnati 19

Wind River 41

Issue 358 May 2020 | ISSN 1528-0608

CIRCUIT CELLAR® (ISSN 1528-0608) is published monthly by:

KCK Media Corp.

PO Box 417, Chase City, VA 23924

Periodical rates paid at Chase City, VA, and additional offices.

One-year (12 issues) subscription rate US and possessions

$50, Canada $65, Foreign/ ROW $75. All subscription orders

payable in US funds only via Visa, MasterCard, international

postal money order, or check drawn on US bank.

SUBSCRIPTION MANAGEMENT

Online Account Management: circuitcellar.com/account

Renew | Change Address/E-mail | Check Status

CUSTOMER SERVICE

E-mail: customerservice@circuitcellar.com

Phone: 434.533.0246

Mail: Circuit Cellar, PO Box 417, Chase City, VA 23924

Postmaster: Send address changes to

Circuit Cellar, PO Box 417, Chase City, VA 23924

NEW SUBSCRIPTIONS

circuitcellar.com/subscription

ADVERTISING

Contact: Hugh Heinsohn

Phone: 757-525-3677

Fax: 888-980-1303

E-mail: hheinsohn@circuitcellar.com

Advertising rates and terms available on request.

NEW PRODUCTS

E-mail: editor@circuitcellar.com

HEAD OFFICE

KCK Media Corp.

PO Box 417

Chase City, VA 23924

Phone: 434-533-0246

COPYRIGHT NOTICE

Entire contents copyright © 2020 by KCK Media Corp.

All rights reserved. Circuit Cellar is a registered trademark

of KCK Media Corp. Reproduction of this publication in

whole or in part without written consent from

KCK Media Corp. is prohibited.

DISCLAIMER

KCK Media Corp. makes no warranties and assumes no

responsibility or liability of any kind for errors in these

programs or schematics or for the consequences of any such

errors printed in Circuit Cellar®. Furthermore, because of

possible variation in the quality and condition of materials and

workmanship of reader-assembled projects, KCK Media Corp.

disclaims any responsibility for the safe and proper function

of reader-assembled projects based upon or from plans,

descriptions, or information published in Circuit Cellar®.

The information provided in Circuit Cellar® by KCK Media

Corp. is for educational purposes. KCK Media Corp. makes

no claims or warrants that readers have a right to build

things based upon these ideas under patent or other

relevant intellectual property law in their jurisdiction, or

that readers have a right to construct or operate any of

the devices described herein under the relevant patent or

other intellectual property law of the reader’s jurisdiction.

The reader assumes any risk of infringement liability for

constructing or operating such devices.

© KCK Media Corp. 2020 Printed in the United States

THE TEAM

PRESIDENT

KC Prescott

CONTROLLER

Chuck Fellows

FOUNDER

Steve Ciarcia

COLUMNISTS

Jeff Bachiochi (From the Bench), Bob Japenga (Embedded in Thin Slices),

Robert Lacoste (The Darker Side), Brian Millier (Picking Up Mixed Signals),

and Colin O’Flynn (Embedded Systems Essentials)

EDITOR-IN-CHIEF

Jeff Child

SENIOR ASSOCIATE EDITOR

Shannon Becker

TECHNICAL COPY EDITOR

Carol Bower

GRAPHICS

Grace Chen

ADVERTISING COORDINATOR

Nathaniel Black

ADVERTISING SALES REP.

Hugh Heinsohn

PROJECT EDITORS

Chris Coulston
Ken Davidson
David Tweed

circuitcellar.com 3

INPUT
VVoltageoltage

Jeff Child

O n behalf of the Circuit Cellar staff, we
hope that you and your loved ones
remain safe and healthy during this
challenging time. Our team all work

remotely and we're committed to keep assembling the
quality magazine you've come to expect each month.
Hopefully we can keep inspiring you, provide some
distraction and share some interesting project stories
during this uncertain time.

Shifting gears, I've been incredibly inspired by the roles
the embedded community—from technology companies
to individuals—have played as they've stepped up in their
own unique ways to battle the COVID-19 pandemic. These
roles include large, generous efforts in resources and
equipment, but also intriguing cases where embedded
technologies have been crucial in enabling solutions for
dealing with COVID-19 at many levels.

As I write this (in early April), Intel has just
announced it's pledging $50 million in a pandemic
technology initiative to combat the coronavirus through
accelerating access to technology at the point of patient
care, speeding scientific research and ensuring access to
online learning for students. Around $40 million will fund
the Intel COVID-19 Response and Readiness and Online
Learning initiative. Intel says that initiative will provide
funding to accelerate customer and partner advances
in diagnosis, treatment and vaccine development,
leveraging technologies such as artificial intelligence
(AI), high-performance computing and edge-to-cloud
service delivery. Through the initiative, Intel will help
healthcare and life sciences manufacturers increase
the availability of technology and solutions used by
hospitals to diagnose and treat COVID-19.

You may have heard of Kinsa Health in the news
recently. Kinsa makes smart thermometers that
connect via Bluetooth to the Kinsa App. The app can not
only keep a log of readings, but also provide users with
a range of benefits including guidance on when to seek
further medical advice, provide medication reminders
and so on. For several years, anonymous data from
the Kinsa App has enabled Kinsa Health to produce a
temperature heat map of the US (that Kinsa calls its
US Health Weather Map) that could be used to identify
potential COVID-19 hotspots much more quickly and
help government agencies and healthcare organizations
in their on-going battle against the virus.

Kinsa's thermometers are based on Nordic
Semiconductor's nRF52810 SoC. Because Kinsa’s smart
devices are battery-powered, they require an ultra low-
power Bluetooth Low Energy solution, but one that also
has enough on-board processing power and memory
to essentially run the entire smart medical application
from a single chip.

The DIY community has also been engaging in ways
to contribute their expertise to the COVID-19 battle.
Embedded processor vendor Espressif Systems reports
a story of an Indian engineer, Abhijit Mukherjee, that
has come up with an Espressif ESP8266-based solution
for safe measurements of body temperature during
the COVID-19 crisis. Abhijit says he “felt the urge to do
something which could help” during the current global
pandemic. By posting his project on hackster.io, he also
wants to invite suggestions from other makers on how
to improve his solution.

Baffled by the lack of reasonably-priced contactless
thermometers on the market, and prompted by the
necessity to safely check from a distance the temperature
of people he had to deal with in his personal and
professional, daily life, Abhijit says he built a completely
autonomous and contactless, IR temperature-measuring
device which can be mounted anywhere—an office
door, an apartment entrance, or the on front gate of
an apartment block. Abhijit’s gadget can track people’s
temperature and post the results to any cloud or incoming
webhooks (a simple way to post messages from apps into
the Slack messaging app). We'll post a link to Abhijit's
ESP8266-based, contactless, IR thermometer on Circuit

Cellar's article materials webpage.
All of you please stay healthy and safe, but also as

connected and engaged as you can.

Tech Community Steps Up to Battle COVID-19

CIRCUIT CELLAR • MAY 2020 #3584

COLUMNS

TECHNOLOGY SPOTLIGHT

 50 Embedded Software Tools

Bulk Up on Security
Connected System Concerns

By Jeff Child

DATASHEET

 54 Mini-ITX and Pico-ITX SBCs
Performance Platforms

By Jeff Child

58 Picking Up Mixed Signals
Build a SoundFont MIDI
Synthesizer
(Part 1) Using Teensy 4

By Brian Millier

 64 Embedded System Essentials
Broad Market Secure MCUs
Spotlight on the MAX32520

By Colin O’Flynn

 68 From the Bench

Upgrading the Weather Tree
With I2C Interfacing

By Jeff Bachiochi

TECH THE FUTURE

 79 The Future of Linux Security

Securing Linux-Based Systems

in 4 Steps
By Glenn Seiler

76 : PRODUCT NEWS

78 : TEST YOUR EQ

PG. 58

PG. 64

PG. 68

circuitcellar.com 5

@editor_cc

@circuitcellar circuitcellar

 6 Proximity Food Delivery

Notifier
Bluetooth-Based Design

By Kenichi Kato

14 Intro to Ardupilot and PX4
(Part 2) Building the Drone

By Raul Alvarez-Torrico

22 Build an Automated Pest

Deterrent System
Using Raspberry Pi

By Cole Gamborski, Cameron Phillips and Simon Fowler

28 Creative Mechanical Ideas

for Embedded Systems
Professional Style Projects

By Wolfgang Matthes

36 Modernizing the Accuracy of

an Antique Clock
Using a PSoC4 MCU

By Aubrey Kagan

SPECIAL FEATURE

 42 Smart Agriculture Designs

Tap IoT Technologies
The Internet of Growing Things

By Jeff Child

FEATURES

PG. 6

PG. 14

PG. 22

CIRCUIT CELLAR • MAY 2020 #3586
F
E
A

T
U

R
E
S

I t's well known that Singapore is a food
paradise. I couldn’t agree more. But, it's
really not healthy to go out to eat every
day. Homecooked food is always the best,

but it can be extremely time consuming and not
so economical for a household of two like ours.
With that in mind, so, we order "Tingkat"—
home delivered food services—for our dinner

during the weekdays. It's very economical and
convenient and best of all, you can get food
made for health-conscious customers.

For us, the delivery time varies between
3 PM and 7 PM. The problem is that delivery
guy—due to his tight delivery schedule—often
forgets to press the doorbell to alert us that the
food is delivered. Sometimes, the food would
be at the gate for more than a few hours. If
not kept at a certain temperature, some foods
can spoil easily—or a mischievous neighbor
might just take it and have a free meal. I'm
not saying that from our experience. We have
nice neighbors! So, as any engineer would do,
all this inspired me to create a solution. This
article describes my Proximity Food Delivery
Notifier system for solving this problem.

FOOD ALERT
The basic idea is to have a system to alert

us that our food has been delivered at our
doorstep. The overall design (Figure 1) shows
a fixed location with a hook for placing the
food where a sensor will also be planted, a
controller that will read and wirelessly relay
that information to a receiver. In this case,
a smartphone would work just fine. So, for
the specific location, a sensor detects the
existence of the food based on the proximity
of an object. In this project, I have chosen
an ultrasonic sensor as the proximity sensor
because it provides some accuracy on the

Home delivery of meals is very popular

these days, and technology is only fueling

that trend. But nobody wants food that’s

gone cold because the delivery guy

forgot to ring the doorbell. Like any good

engineer, Kenichi built a sensor-based

solution designed to wirelessly alert him

via Bluetooth that the food has arrived

on his doorstep.

Bluetooth-Based Design

By

Kenichi Kato

Proximity Food
Delivery Notifier

FIGURE 1

This shows the overall design with the major sub-systems.

circuitcellar.com 7
F
E
A

T
U

R
E
S

distance from the object. I found the Parallax
PING sensor (Figure 2) to be particularly easy
to implement because it provides information
on distance in both centimeters and inches.
Since I am using the Parallax Propeller for
this project, the code that comes with the
PING sensor is particularly helpful—providing
distance readings in centimeters and inches.

I selected Bluetooth as the wireless
protocol for this project. That's mainly
because the Bluetooth module I had on hand
is a Class 2 and the distance between the
delivered food and the receiver is also less
than 10 meters. I used an HC-05 module
(Figure 3) because I have quite a stock of
these modules from my previous projects that
I did back in 2013. Moreover, this module is
very easy to implement because the PCB has
castellation pads. These pads make it easy to
either mount it as a SMT device on a PCB or
insert to breadboard after soldering in the
headers. Besides all that, this module is also
very versatile in that configuration to it are all
via the AT commands in a UART terminal. The
module is also very widely used, so there are
many articles and websites providing useful
information about its configuration. And, the
best part is you can get it for less than $5 (US).

As for the controller, the location for
holding the delivered Tingkat food is very
small and narrow, so I designed a small PCB
that houses all the necessary components and
the Parallax Propeller chip. This is the Propeller
version 1 since the Propeller version 2
was just being released as of this writing.

The Figure 4a schematic shows the basic
components for the microcontroller, which
includes the EEPROM and 5MHz crystal plus
connectors, while the Figure 4b schematic
shows the HC-05 Bluetooth module and an
optional tactile switch for the microcontroller
as user input. Finally, schematic Figure 4c is
the power circuit with LDOs for 5V and 3.3V.
Figure 5 shows the top and bottom image of
the PCB. Figure 6 shows 3D model of the top
and bottom enclosure for the PCB. I used a 3D
printer to print out the enclosures and hold

FIGURE 2

Parallax’s PING ultrasonic sensor.

FIGURE 3

Wavesen’s Bluetooth Class 2 module.

FIGURE 4A

Shown here are the basic components

for the microcontroller which includes

the EEPROM and 5MHz crystal plus

connectors.

5

CIRCUIT CELLAR • MAY 2020 #3588
F
E
A

T
U

R
E
S

them together with 4 bolts and nuts. Figure 7
shows the final working unit that has been in
use since July 2016. It hasn't failed since.

The power requirements are 5V for the
PING sensor and 3.3V for the other onboard
components and peripherals. With that in

mind, there is a simple power circuit to step-
down the input voltage of 9V. Because the
input voltage is rather low, LDOs (low dropout
regulators) will work just fine providing low
inefficiencies. However, you can use any
Propeller-based boards available on the
Parallax website, for example the Propeller
QuickStart or the Propeller Project Board
USB. I personally prefer the latter because
it provides ample prototyping space for
mounting other components.

On the receiver part, I used an Android
phone. Using the MIT App Inventor 2 tool
[1], which is free, I could rapidly develop an
app using the code blocks. Figure 8 shows
the Designer view of the MIT App Inventor 2
and Figure 9 shows the Blocks Editor View. If
you are new to MIT App Inventor, I encourage
you to look at some of the tutorials on their
resource page. This will give you a sense of
what tools will be available for you as you start
coding using their blocks. Coming back to my
app, as I like to keep it simple, I only used less
than 10 components. So, that’s all on the main
building blocks for this system. Now, let me go
deeper into each of the sub-system.

CONTROLLER
The programming language I used for

the controller was SPIN by Parallax for the
Propeller 1 microcontroller. My code for this

FIGURE 4B

Shown here are the HC-05 Bluetooth module and an optional tactile switch for the microcontroller as user

input.

FIGURE 4C

This is the power circuit with LDOs for

5V and 3.3V.

FIGURE 5

This is the top (left) and bottom (right) image of the PCB from my CAD.

FIGURE 6

This is the 3D model of the top (red) and bottom (blue) enclosures for the PCB. I used a 3D printer

to print out the enclosures and hold them with 4 bolts and nuts.

circuitcellar.com 9
F
E
A

T
U

R
E
S

project available on the Circuit Cellar article
code and files download webpage. Even though
the “.spin” files are in a plain-text format, you
will need a compiler to compile into bytecode.
I usually use the Propeller Tools for Windows
by Parallax. You can download and install the
Propeller Tools software for Windows from
Parallax’s website [2]. If you are not using
a Microsoft Windows machine, you can also
download PropellerIDE, which runs on Linux/
Ubuntu, OS X and Windows.

The main file is #TingkatR1v1.spin. In a

normal .spin file, there are five major sections:
CON (Constant blocks), OBJ (Object blocks),
VAR (Variable blocks), PUB (Public method
blocks) and PRI (Private method blocks). For
this project, I don’t need the VAR because I
only needed the local variables within the PUB
Main section. In the CON section, I declared the
required _clkmode which is the application-
defined clock mode and since the board uses
a standard 5MHz crystal, the _xinfreq
which is the application-defined external clock
frequency was declared as 5_000_000.

This is the 3D model of the top (red) and bottom (blue) enclosures for the PCB. I used a 3D printer to print

FIGURE 7

This is the final working unit that has been in use since July

2016. It has not failed since.

FIGURE 8

Designer view of MIT App Inventor 2

FIGURE 9

Blocks Editor view of MIT App Inventor 2

CIRCUIT CELLAR • MAY 2020 #35810
F
E
A

T
U

R
E
S

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

Next, we declare the I/O pin from the ultrasonic sensor’s connection to the Propeller. The connection is on pin 3.

_ping = 3

The final declaration would be for the Bluetooth module’s connection to the Propeller.

BTComm_Tx = 26 ‘’(Transmit from Bluetooth Module)
BTComm_Rx = 25 ‘’(Receive from Bluetooth Module)
BTComm_Baud = 19_200 ‘’Baudrate

The next section, OBJ, we will need two object files. These are also downloadable from Parallax’s OBEX website [3]. Most of
these objects were written by members of the Parallax community. I, myself, have contributed a few of them.

OBJ
 Ultra : “Ping.spin” ‘’Connects to ultrasonic sensor
 BTM : “FullDuplexSerialExt.spin” ‘’Using UART to communicate with HC-05

The PUB will hold the Main section which are the main codes. Notice the “| scannedObj”? That is the local 4-bytes variable
within the Main section.

PUB Main | scannedObj
 BTM.Start(BTComm_Tx, BTComm_Rx, 0, BTComm_Baud) ‘’Initialises the Bluetooth
 Pause(500) ‘’Pause for 500 ms
 Repeat
 scannedObj := Ultra.Centimeters(_ping) ‘’Get the measurement
 BTM.Dec(scannedObj) ‘’Sends out to the Bluetooth module to receiver
 Pause(2200) ‘’Pause for 2.2 secs

Finally, for the PRI section I usually like to add this function to most my projects because it converts the system clock into
milliseconds which becomes very convenient to use throughout the code. It was initially written by a member of the Parallax
community, Jon McPhalen.

Depending on your personal needs, you can make the necessary changes or add additional sensors for other locations. Say
if you have 2 ultrasonic sensors, you will then declare two objects like this:

CON
 _ping1 = 3 ‘’Assigning sensor 1’s I/O pin to pin 3 of MCU
 _ping2 = 4 ‘’Assigning sensor 2’s I/O pin to pin 4 of MCU
OBJ
 Ultra[2] : “Ping.spin”

And in your PUB Main section, use them like this:

 scannedObj1 := Ultra[0].Centimeters(_ping1)
 scannedObj2 := Ultra[1].Centimeters(_ping2)

RECEIVER
Now onto the receiver unit. I used Google Chrome as my default browser.

Navigating to appinventor.mit.edu [1], you will see the home page of MIT App
Inventor 2. Click on the “Create App!” button and it will direct you to the login
and account creation page. For me, I logged in using my Google account. You
will need to create one if you do not have a Google account. Next, it will direct
you to your project listings. If you are new to MIT App Inventor, you won’t see
any project listings yet. So, you could either create a new project or load my
“.aia” project file and modify from there. Just to give you a brief introduction
to MIT App Inventor, I will show you how to add components from the Palette.

In the Designer interface, you will be able to drag and drop the types
of user interface, layout, sensors and so forth onto the main screen called

ABOUT THE AUTHOR
Kenichi (ken@kenichikato.com) currently

work s a s t he Head o f Re sea rch &

Development (Software) in a Singapore

local SME. Previously, he worked as an

educator and engineer in Singapore

Institute of Technology. His passion has

been in software development since the late

80s with designing embedded systems and

robotics (humanoids) from the mid-2000s.

circuitcellar.com 11
F
E
A

T
U

R
E
S

Designing with Passion. Engineering with Precision.

Working together to design

the ideal display for your

application. Let’s get started

on your next project.

nhdisplay.com/cc5m

Screen1 by default. This is what you will see
when you first launch the app on your phone.
You will be able to add multiple screens
depending on your needs. First, I selected
the Bluetooth client component from the

FIGURE 10

Once you launch the app as here, the first thing is to connect

the app to your Bluetooth device. There is a button “Connect

to Tingkat Checker” that allows the app to bring up the list of

Bluetooth devices already paired with your phone.

FIGURE 11

If you already have your device paired,

upon clicking the button, the app will

bring up the list of devices as shown

in Figure 11. Since I was using a

Bluetooth module from my previous

project, it was renamed as "TellMe"

instead of the default HC-05. (Other

devices have been blurred out here for

privacy sake).

CIRCUIT CELLAR • MAY 2020 #35812
F
E
A

T
U

R
E
S

Connectivity Palette and dropped it onto the
Viewer. This is needed to connect to our HC-05
Bluetooth module on the controller.

Next is the Text-to-Speech component.
This will inform us that the “food is here” via
the text-to-speech feature. I have added two
Clock components which are timers. Clock1 is
used to check if there are any data received in
the Bluetooth client in the app. Clock2 is used
to define the duration to announce “Food is
here” when food was placed in the assigned
location. Next, I'll show you some screen
captures as the app is launched and explain
the process flow. Hopefully this will help you

understand the code in the Blocks Editor.

USING THE APP
Once you launch the app as shown in

Figure 10, the first thing is to connect the app
to your Bluetooth device. There is a button
that is labelled “Connect to Tingkat Checker.”
This allows the app to bring up the list of
Bluetooth devices already paired with your

phone. Therefore, you will need
to ensure that the Bluetooth
module (HC-05) is already
paired with your phone before
it can be listed. If you already
have paired, upon clicking the
button, it will bring up the list of
devices as shown in Figure 11.
Since I was using a Bluetooth
module from my previous
project, it was renamed as
TellMe instead of the default
HC-05.

If you are going to use the
HC-05 module, please look
at its datasheet under “Set/
inquire device’s name” section
for this feature. Back to the
list of Bluetooth devices, once I
tapped on my Bluetooth device,
the button will be changed
to “Connected” as shown in
Figure 12. You will notice the
text box at the bottom that
initially showed “Debug Log
Box” has changed to “373.” This
“373” is the reading that was
received from the controller
which means there is 373cm
between the ultrasonic sensor
and the object.

Since the datasheet for
the ultrasonic sensor states
that the non-contact distance
measurements are from about
2cm (0.8") to 3 meters (3.3
yards), that means there is
nothing being placed on the
hook (Figure 13). However,

FIGURE 14

When food is placed on the hook as shown here, the value in the

app shows 5cm (see Figure 15).

FIGURE 13

The “373” reading that was received from the

controller means that there is 373cm. The

datasheet for the ultrasonic sensor states that

the non-contact distance measurements are

from about 2cm (0.8") to 3 meters (3.3 yards).

That means there is nothing being placed on

the hook shown here.

FIGURE 12

When I tap on my Bluetooth device,

the button will be changed to

“Connected” as shown here. Notice the

text box at the bottom that initially

showed “Debug Log Box” has changed

to “373”. This “373” is the reading that

was received from the controller which

is the 373 cm between the ultrasonic

sensor and the object.

circuitcellar.com 13
F
E
A

T
U

R
E
S

the debug textbox was just to show the actual readings
coming from the controller since the retrieval was timed at
every 1,000ms (1 second) by Clock1. Clock2 is assigned to
activate every 10,000 ms (10 seconds). It will first transfer
the value received from the controller and place it into the
TextBox1 then perform a verification to see if it is below
the value 10 (meaning 10cm). However, when food is placed
on the hook as shown in Figure 14, the value shows 5cm
as shown in Figure 15. This will then trigger the Text-to-
Speech component to say “Food is here” every 10 seconds
until someone removes the food from the hook!

On the Circuit Cellar article code and files webpage, I
have provided the code, 3D models for the enclosure in .STL
format and the Gerber files with the bills of materials if you
wish to produce the same PCB as mine. My device has been
in operation since July 2016 and it is still in good working
condition today. By using this simple concept, you can also
create your own proximity sensors around your house as
home surveillance or a door response system to do
something when someone is at your door. The possibilities
are endless. So, create your very own mobile notification
system today!

For detailed article references and additional resources

go to:

www.circuitcellar.com/article-materials

References [1] and [3] as marked in the article can be

found there.

RESOURCES

Parallax Inc. | www.parallax.com

Guangzhou HC Information Technology | www.wavesen.com

FIGURE 15

The "5" appearing on the app means that the food has arrived because it is 5 cm

from the sensor. This triggers the Text-to-Speech component to say “Food is here”

every 10 seconds until someone removes the food from the hook!

5V I/O support

SAVING COST=TIME with readily available FPGA boards

Basic and simple features, single power supply operation

Free download technical documents before purchasing

See all our products, A/D D/A conversion board,

boards with USB chip from FTDI and accessories at :

www2.hdl.co.jp/CC20C

FPGA Boards from JAPAN

ACM-031

XILIN
X

XILIN
X

INTELINTEL

SIZE : 3.386" x 2.126" (86 x 54 mm)

MAX 10 U169 FPGA board

XCM-026

Spartan-7 FGGA484 FPGA board

ACM-031 is an FPGA board with

Intel high-performance FPGA MAX 10.

It's compact and very simple.

5V single power supply operation.

XCM-026 is an FPGA board with

Xilinx high-performance FPGA Spartan-7.

It's compact and very simple.

5V single power supply operation.

SIZE : 3.386" x 2.126" (86 x 54 mm)

5V I/O support

CIRCUIT CELLAR • MAY 2020 #35814
F
E
A

T
U

R
E
S

I n Part 1 of this article series last month,
I discussed the general architecture of
a DIY multirotor drone and its main
hardware and software components.

I also gave a general introduction to the
Ardupilot and PX4 platforms, discussing
some examples of supported flight controller

hardware and vehicle types, as well as

available ground control software from both

platforms. Additionally, I provided a general

introduction to the MAVLink protocol used to

communicate vehicles with ground control

stations in both platforms. In this second

part, I will discuss the main steps involved

in the building and configuration of a DIY

quadrotor with the PX4 platform. It will not

be a complete tutorial, but a review of the

most important steps involved. I will also give

some tips that address potential problematic

situations in the build process that are not

always immediately obvious for beginners.

There are a lot of well documented

tutorials out on the Internet. Consider this

article a summary of steps and important

tips from my own experience, for beginners

who want to build their first quadrotor. At the

end, I will also share additional tips on how to

get started with autonomous flight by using

the MAVSDK library and MAVROS package.

Let’s see if, with this article, I can encourage

you to build your first quadcopter, and begin

to experiment with autonomous flight in the

near future.

Figure 1 shows an amazing wiring chart

made by Jethro Hazelhurst for the Ardupilot

website [1]. To see greater detail, you can

check the original version by using the link

in the figure caption. Analyze the picture in

detail. It will be instructive if you have never

built a quadcopter before.

The build process for a typical quadrotor—

like the one I will show as an example in

this article—is practically the same for

both the PX4 and Ardupilot platforms. For

this summary, I will use the PX4 platform

to explain the process. So, what steps are

generally involved in building, configuring

and flying a quadcopter? I divide the process

in four sections: 1) the hardware build; 2)

flight controller firmware programming and

configuration; 3) Electronic Speed Controller

(ESC) calibration and pre-testing; and 4)

flight test(s). Within each of those sections

are several steps. The following development

assumes you are already familiar with the

main parts used to build a multirotor. Please

see Part 1 of this article series (Circuit Cellar

357, April 2019) for more details.

So, here is one of the first tips I would give

to anyone doing their first quadrotor build.

Tip #1: Never rush with any steps involved

in the process, always double-check everything

you do, and when in doubt, it is always better

to do further research or ask anyone who’s

more knowledgeable before proceeding.

In Part 1 of this article series, Raul gave

an overview of a drone design using open-

source autopilot platforms. Here in Part 2,

he goes step by step and describes how to

build, configure and test a DIY quadrotor

drone with the PX4 platform.

Building the Drone

By

Raul Alvarez-Torrico

Intro to Ardupilot and PX4 (Part 2)

circuitcellar.com 15
F
E
A

T
U

R
E
S

THE HARDWARE BUILD
Step 1: The Frame. You’ll generally begin by

building the frame. Frames come with a build
instructions chart, or you can easily find one
on the Internet. Just don’t tighten the screws
hard the first time. I highly recommend that
you build the frame first, just to “present” it.

Tip #2: For the first builds, it is better not

to tighten the screws tightly at first, or to

use threadlocker glue. Leave that for the final

steps, after you are sure everything is correct

and in place.

Step 2: ESCs and brushless motors. For
connecting brushless motors, ESCs and
battery power supply lines, “banana” type
connectors are generally used. Although the
S500 frame I used for my example build
(Figure 2) comes with a power distribution
board “embedded” in the bottom plate of
the frame (which is just a double-sided PCB
used also as part of the frame structure),
for beginners I would recommend using a
separate power distribution board (PDB).

The reason for that is because it’s always
possible to mess up with the soldering needed
in the PDB. If this happens, it is cheaper and
easier to replace the separate PDB than to
replace the frame’s bottom plate. A typical
quadrotor of this size will consume around
15A in total while hovering in soft wind and
without payload. But the total current can
easily peak up to the double (if not more),
when carrying a payload, doing aggressive
maneuvers or flying in severe wind conditions.

Tip #3: All soldering related to the

propulsion system must be done carefully,

tidily and robustly. Those connection points

will carry high currents, so they must have

good electrical continuity. There must also

be the best isolation possible between the

positive and negative terminals.

As a safety measure, always check the

absence of electrical continuity between

every pair of "+" and "-" pads on the PDB. You

want to be sure there isn’t a short circuit in

it, due to the soldering process. Some ESCs,

brushless motors and power distribution

boards come with bullet connectors already

soldered. If not, you must solder them by

yourself. Figure 2 shows the ESCs, motors and

PDB embedded in my S500 frame, with all the

necessary connections. ESCs and cables will

later be secured to the frame by using plastic

zip ties.

Step 3: Flight controller, RC receiver

and GPS module. The spinning motors

and propellers in the quadrotor generate

a certain amount of mechanical vibration

that is detected by the accelerometer and

gyroscope sensors in the flight controller.

This vibration is noise to the sensors, and can

potentially affect the quadcopter’s stability.

To minimize it, the flight controller can be

installed on top of an anti-vibration mount,

as shown in Figure 3. I initially used rubber

bands to fix the flight controller to the anti-

vibration mount. In the final steps, it will be
fixed with double-sided tape. Figure 4 shows
the motor layout for a "Quad X" configuration.
Each motor has a given number, position and
rotation direction, so it is critical to connect
their corresponding ESC signal cables to the
flight controller’s outputs in the given order.

Tip #4: The correct layout of all motors in

the frame and connection of ESC input signal

cables to correct output pins in the flight

controller are of utmost importance. Failing

t 2)

FIGURE 1

Advanced Pixhawk quadcopter wiring chart [1]

CIRCUIT CELLAR • MAY 2020 #35816
F
E
A

T
U

R
E
S

to do this can make the quadcopter behave

erratically and ultimately crash.

For this build, I used a conventional
6-channel remote control (RC) system with
parallel analog PWM outputs. The Pixhawk
controller, however, just accepts serial PPM-
Sum or S.Bus input signals, which provide all
RC channel signals via a single serial digital
output. You can purchase an RC system with a
serial output receiver suitable for connecting
directly to the Pixhawk. Nevertheless, if you
have a system with parallel analog PWM
channels, low-cost parallel analog PWM-to-
digital serial converters, such as the one I
used for this build, are available.

The connection of the GPS and external
compass module is straightforward. The
module has two connectors. The wider one is
for the GPS receiver, and the narrow one for
the digital compass. The digital compass is
highly sensitive to magnetic interference. With
that in mind, a stand for the GPS module is
generally recommended to avoid interference
from the rest of the electronics, especially
the power system. Figure 3 shows the flight

controller, RC receiver and GPS module with

its stand.

Step 4. Power module, battery and alarm.

The power module connected to the flight

controller and the PDB, as well as the LiPo

battery in place with its low voltage alarm, are

shown in Figure 5. The connection between

the flight controller, power module, battery

and propulsion system are illustrated clearly

in Figure 1, so go back to this at any time to

get a more detailed view of other connections.

To fly this quadcopter, I’m using a

5,000mAhour, 3S, 8C battery.

Tip #5: Improper use of LiPo batteries can

be extremely dangerous. Before charging,

connecting and using them, take the time to

thoroughly research their use and care. Many

resources on the Internet cover this topic in

detail.

Step 5. Telemetry module, gimbal and FPV

(first person view) transmitter. The telemetry

module must be connected to the TELEM1 port

in the Pixhawk (Figure 1). The gimbal receives

power from the power distribution board. Mine

can work with LiPo batteries between 2S and

6S. Gimbals generally have a signal input to

manually control the camera pitch angle. This

input can be connected to any unused output in

the RC receiver, preferably one from a channel

associated with a knob in the RC transmitter.

Once the gimbal is powered on, the camera

should be automatically stabilized, and the

pitch angle controlled with the associated

knob in the RC transmitter. Drone cameras

ABOUT THE AUTHOR
Raul Alvarez-Torrico has a BEng in electronics and is the founder of TecBolivia,

a company offering services in physical computing and educational robotics

in Bolivia. In his spare time, he likes to experiment with wireless sensor

networks, robotics and artificial intelligence; he is also committed to publishing

articles and video tutorials about embedded systems and programming in his

native language (Spanish), at their company’s website www.TecBolivia.com .

You may contact him at raul@tecbolivia.com.

FIGURE 2

S500 frame with motors, ESCs and power distribution board

FIGURE 3

Flight controller, RC receiver and GPS module

circuitcellar.com 17
F
E
A

T
U

R
E
S

have a video signal output to be connected to
the FPV video transmitter (powered also from
the PDB). Usually, the FPV system is separated
from the drone system itself (Figure 1).

Step 6. Finishing the hardware build. I
usually connect the battery once at the end
of the hardware build, to be sure everything
is okay and nothing is getting hot due to a
short circuit, especially in the propulsion
system. Then, I proceed to tighten all screws
with threadlocker glue. I take them out one
by one from the frame and motors, apply
threadlocker and tighten them well in place
again. Threadlocker needs at least 24 hours to
properly cure. I use Loctite Threadlocker Blue,
which is recommended for multirotor builds.

Tip #6: After your first flight and before

flying again, always check that the motor and

frame screws are still tight. Sometimes they

can loosen, because parts tend to settle further

with mechanical vibration, and the screws

would need to be tightened again. A loose

motor or frame part can make the quadcopter

vibrate too much and make it crash.

THE FIRMWARE
Although I’m using PX4 firmware for this

build example, the same quadrotor setup can
also be flashed with Ardupilot firmware by
following a similar set of steps, such as the
ones outlined as follows:

Step 1. Firmware flashing. It is really easy
to flash the firmware to the flight controller

by using ground control software. With

QGroundControl, you can do that by going

to the “Firmware” submenu located in the

“Vehicle Setup” menu (Figure 6) and following

the instructions given there. After flashing

the PX4 firmware, the frame type must be
configured in the “Airframe” submenu, under
the “Quadrotor x” option. I chose the "S500"
for this build (Figure 7).

Step 2. Sensor calibration. Next, from
the “Sensors” submenu, we calibrate the
compass, gyroscope and accelerometer,
and also level the horizon (Figure 8). Plenty
of guidelines are given in each step by
QGroundControl, itself.

Step 3. Radio setup. The radio calibration,
done in the “Radio” submenu (Figure 9),
ensures that the minimum and maximum
values for each RC channel are correctly set
in the flight controller. These values generally

vary from one RC transmitter to another.

Step 4. Flight modes configuration. In the

“Flight Modes” submenu (Figure 10), we can

configure up to six different flight modes. With

a 6-channel RC, I generally assign channel 5

for controlling the flight modes and channel 6

for the “Kill switch” function. The three most
FIGURE 5

Power module, battery and low voltage alarm

FIGURE 4

"Quad X" configuration layout

CW

3

CCW

1

2

CCW

4

CW

CIRCUIT CELLAR • MAY 2020 #35818
F
E
A

T
U

R
E
S

useful flight modes I can recommend for

beginners are Altitude, Position and Return.

Altitude automatically stabilizes the

quadcopter’s altitude by using the barometric

pressure sensor (altimeter), but it doesn’t

stabilize position in the horizontal plane. This

is because this flight mode does not use the

GPS receiver. It requires you to stabilize the

quadcopter in the horizontal plane manually,

which can be tricky for beginners, especially

with strong winds. In this mode, the

quadcopter can be armed without the need

for GPS fix (useful for indoor motor testing).

Tip #7: Never fly a quadcopter indoors

if you are a beginner, or if there are people

around. For your flight tests, always use

big, open fields without people, animals or

obstacles around.

Position is the preferred flight mode I

recommend for beginners, especially for

flying in windy conditions, because it uses the

barometric pressure sensor and also the GPS

receiver for stabilizing the drone vertically

and horizontally. But it doesn’t allow arming

the motors and drone take-off without a good

GPS fix, which you won’t get unless the GPS

receiver has good sky visibility.

Return flight mode automatically returns

the drone to the home position, and is useful

if, for some reason, you lose control, and just

want the flight controller to take over and

land the drone by itself at the original take-

off spot.

Finally, it is also important to configure the

“Kill switch” function to turn off the motors,

especially when something goes awfully

wrong. For example, if the drone falls down to

the ground and the motors are still spinning,

even with the throttle stick at zero—or when

the drone is out of control and it is better to

switch it off (and crash it) before anything

worse happens.

Step 5. Power setup. In the “Power” submenu,

the flight controller’s battery power monitoring

function can be configured, so it can accurately

estimate the remaining power and flight time.

I generally just configure the “Number of cells”

parameter (“3S” for a 3S battery), and leave the

rest at their default values. At first, it's better

not to change the remaining parameters, until

you understand well how these parameters

affect the way the flight controller does the

aforementioned estimations.

Step 6. Failsafe actions. A “failsafe

action” is a predefined safety measure the

quadcopter will take when some types of

failures occur. Examples of failures include

when the battery is at its minimum, when

the RC signal is lost, or when the data link

(telemetry) is lost. Available options for safety

measure configuration range from doing

nothing or giving a warning, to landing the

drone, returning it to home or hovering it in

place. Failsafe actions can be configured in

the “Safety” submenu. The default options

are also a good starting point.

ESC CALIBRATION &
PRE-TESTING

One last important step to take before the

first flight is ESC calibration (available from the

“Power” submenu). ESC calibration ensures

that all motors respond equally to the available

throttle range from the RC transmitter. This

is accomplished by teaching the ESCs to

recognize the minimum and maximum PWM

values for zero and full throttle.

Tip #8: Before attempting to take off for

the first time, check the rotation direction

FIGURE 6

Vehicle setup menu and firmware flashing submenu

FIGURE 7

Airframe setup

circuitcellar.com 19
F
E
A

T
U

R
E
S

of all motors according to what’s specified

in the layout for the selected configuration.

Also check the correct propeller mounting.

Motors spinning in the wrong direction, or

propellers incorrectly mounted will cause

erratic behavior, ranging from not being able

to take off at all, to taking off and spinning

uncontrollably in the horizontal plane, or

taking off and turning upside down and

ultimately crash.

If a motor spins in the wrong direction,
swap two of the three motor cables connected
to the ESC (any two of the three available) to
change the rotation direction. Also verify the
proper propeller mounting, with the upper
and lower cambers correctly positioned, and
the leading edge “cutting” right into the air, in
the right rotation direction.

FLIGHT TESTS
Until this point, for safety reasons, always

do all motor pre-tests without propellers, and
put the propellers on the motors just before
the first flight. Pick an open field with no
people, animals or obstacles around. If there
are natural or man-made obstacles (such as
tall trees, hills, buildings or towers), the GPS
receiver will take longer to get a fix, or worse
yet, it will lose it intermittently during flight.

Tip #9: Always try to do your flight tests

in the morning, when the wind is generally

calmer than in the afternoon. Avoid flying

in relatively strong winds until you develop

good piloting skills. You can carry a pocket

anemometer to measure wind speed before

taking off.

The maximum wind speed in which a

quadrotor can be safely flown depends on the

FIGURE 8

Sensor calibration

University of l(_t
CINCINNATI I ONLINE

LOOKING TO

ADVANCE
YOUR
CAREER?
Be a part of one of the
top Electrical Engineering
programs in country
and experience the
Bearcat Promise!

ucengineer .o nli ne

CIRCUIT CELLAR • MAY 2020 #35820
F
E
A

T
U

R
E
S

quadrotor’s maximum speed. A good rule of
thumb is to set the maximum wind speed at
two-thirds or less of the quadrotor’s maximum
speed. For example, if the quadrotor’s top
speed is 80mph, two-thirds of that is about
53mph. This, according to the rule, will be
the maximum recommended wind speed to
fly the quadcopter safely. Last but not least,

don’t forget to comply with all regulations in

place for flying drones in your town, to avoid

legal problems.

From a functional standpoint, PX4

and Ardupilot are not very different.
The processes of flashing firmware and
configuring parameters are almost the same
in both platforms. Besides, both are MAVLink-
compatible and generally work well with the
same quadcopter setup, as long as the flight
controller is compatible with both platforms.

After you have flashed and configured your
quadcopter with, say, PX4, and flown your
drone for some time, you can try Ardupilot
if you wish. Every step described in the
Firmware Flashing and Configuration section
of this article will also apply, with minimum
differences. You can even try to use Mission

Planner or APM Planner this time. These are
two ground-control software applications
from the Ardupilot ecosystem, and are similar
to QGroundControl.

MAVSDK AND MAVROS
MAVSDK is a MAVLink library from the

PX4 ecosystem that’s written in C++ and has
bindings to Python, Swift and Java. It also has
bindings to JavaScript, C# and Rust, though
still in “proof-of-concept” stage. MAVSDK
allows programmatic interaction with any
MAVLink-compatible vehicle, to get general
information from it, get telemetry data, send
action commands like arming, take off, land or
return to home, send commands to calibrate
sensors and send “low level” commands to
directly control vehicle movement [2]. For
instance, you can control position, velocity and
acceleration in three dimensions, to make the
drone change its states in response to decisions
made by some type of navigation algorithm.

In contrast, the MAVROS package (which
is an ROS-to-MAVLink bridge, also from the
PX4 ecosystem), allows the use of MAVLink
communication, to make it possible for any
computer running the Robot Operating
System (ROS) middleware to communicate
with any vehicle or ground-control station
software that uses the MAVLink protocol.

In summary, MAVSDK will allow you to
program a robotic drone, and MAVROS will
allow you to do it straight away in an ROS
environment, for a more modular, distributed,
scalable and professional approach. Ardupilot
has also its own MAVLink library, called
Dronekit, with available Python and Android
APIs. But apparently, not much work has
been done lately to provide support for other
programming languages.

If you want to get started with autonomous
flight application development within the PX4
ecosystem, I suggest you try MAVSDK and/or
MAVROS in three stages.

First, generally the easiest way to try
MAVSDK is to install the Python wrapper and
try some included examples with a "Software-
in-the-Loop" (SITL) simulator. The C++ version
installation can be a little more involved, in
some cases requiring building the library from
source. MAVROS is useful only if you already
know how to use ROS. If you are new to ROS,
perhaps you should first learn ROS, before
trying MAVROS. But you still can make your
drone fly autonomously by using MAVSDK. Both
MAVSDK and MAVROS can connect to vehicles
via serial port, UDP and TCP connections.
When working with a simulation, TCP/UDP
connections will usually be the way to connect
our software application with the simulator.

Second, once your code runs well on
simulation, you can try it on a real drone by

For detailed article references and additional resources go to:

www.circuitcellar.com/article-materials

References [1] through [2] as marked in the article can be found there

RESOURCES

Ardupilot | https://ardupilot.org

Dronecode | www.dronecode.org

mRobotics | https://mrobotics.io

PX4 Autopilot | https://px4.io

FIGURE 9

Radio setup

circuitcellar.com 21
F
E
A

T
U

R
E
S

opening the telemetry module serial port from
the application running on your development
computer or mobile device. In this case,
MAVSDK and MAVROS will communicate with
your drone by using the MAVLink connection
established via the telemetry modules.

Third and last, to make your drone truly
autonomous, you can upgrade your system
by adding a companion computer (Raspberry
Pi, Odroid, Jetson Nano or others) to your
quadcopter setup. The companion computer
can be connected directly to the TELEM2 serial
port of the flight controller to run the MAVSDK/
MAVROS code that controls the vehicle,
along with some other code interfacing with
additional sensors and actuators especially
suited for your application.

CONCLUSION
I hope the information presented in this

two-part article series gave you a general
perspective about the PX4 and Ardupilot
platforms, and what is involved in building
a quadcopter for aerial photography, or
perhaps more interesting, for experimenting
with autonomous flight. If you have never
built a quadcopter before, I really encourage
you to do it and experiment.

I’m not going to lie, you’ll crash many times
while learning to pilot it and experimenting with

it, but that’s the normal learning process for
anyone. Still, it is a lot of fun! Most excitingly,
once you get a good grasp of what’s involved
in building and configuring a quadcopter
properly, you can begin to experiment with
autonomous drone applications.

In a future follow-up to this article, I will
cover in more detail—and with a concrete
example—how to use the MAVSDK library to
develop code for autonomous drones using
SITL simulation. Until the next time!

FIGURE 10

Flight modes configuration

A smarter scope for faster debug

The NEW PicoScope®
6000E Series

The NEW PicoScope®
6000E Series

• 8-bit to 12-bit FlexRes® ADCs

• 8 x 500 MHz analog channels

• Up to 16 x 1 Gb/s digital channels

• Dual 5 GS/s ADCs

• 4 GS capture memory (up to 2 GS per trace)

• 50 MHz 200 MS/s 14-bit AWG

• 300 000 waveforms per second update rate

• Free PicoScope 6 and PicoSDK software

• Serial decoding and mask limit testing

• High-resolution timestamping of waveforms

• Over ten million DeepMeasure™ results per
acquisition

• Advanced triggers: pulse width, runt pulse,
windowed, logic and dropout

Visit www.picotech.com/A540 to discover MORE

The NEW PicoScope®
6000E Series

The NEW PicoScope®
6000E Series

Email: sales@picotech.com. Errors and omissions excepted. Please contact Pico Technology for the latest prices before ordering.

CIRCUIT CELLAR • MAY 2020 #35822
F
E
A

T
U

R
E
S

W hat inspired us to choose
this project? It was a
conversation Simon had with
his father last summer, while

sitting and having lunch. His father told him
how the deer had come again in the night
and eaten the flowers off all 28 of his tomato
plants. His father said, “Son, could you invent
something to keep these pesky deer out of my
garden?” Simon knew that his dad was not
alone with this issue. Being a farmer himself,
he had experienced just how much damage
deer can do.

When considering crop security and pest
deterrence, the current market for the average
homeowner is oversaturated with inefficient,

ineffective products. By combining machine

learning (ML) with high-precision, passive

infrared sensors (PIRs) and Bluetooth Low-

Energy (BLE), we created a more sophisticated

deterrent system that touched on each group

member’s technological area of interest.

Based on our project scope and

requirements, we divided our product into a

four-phase system: Detection, Distinguishing,

Deterrence and Disclosure.

DETECTION
Reliable and continuous scouting of your

property is critical for garden and home

security. Knowing that your target is 40+

feet away and approaching allows the system

plenty of time to exit sleep mode and enact

its security measures. After researching the

passive infrared sensor (PIR) market, we

found the best choice to get this job done

was the Panasonic EKMB1306112K. This

high-precision PIR, made of top-of-the-

line materials from a trusted manufacturer,

boasts one of the densest detection zones

available.

It’s able to achieve a 17-meter detection

range, with as little as a 4°C temperature

difference between the detected target and

ambient temperature. This means that a

single node could cover the average garden

space of a home, or, if used close to the

perimeter of the property, the node could

see and begin deterring the target before it

reaches your garden.

There is one downside to using PIRs—false

triggering. We have gone to great lengths in

the design to eliminate any possibility of false

triggering. To achieve this, we started with

stacked PIRs. These PIRs have a 60-degree

horizontal viewing angle. We used two PIRs

for each angle of approach—one above the

other. To explain how this helps prevent false

triggering, let’s take a common example: An

outdoor security system.

Garden pests are a threat to your

flowers, vegetables and fruit. Learn

how these Camosun College students

designed an automated pest deterrent

system that uses an ML-trained

Raspberry Pi to detect and identify

pests, and Bluetooth to communicate

to its user. Their prototype base unit

displays relevant information gathered

by two field units.

Using Raspberry Pi

By

Cole Gamborski, Cameron Phillips and Simon Fowler

Build an Automated Pest
Deterrent System

circuitcellar.com 23
F
E
A

T
U

R
E
S

You’ve got your motion-triggered sensor
set up outside, and have left it overnight to
watch over things. Then, unbeknownst to you,
a moth or another photoactive bug lands on
your sensor, causing your sensor to trigger
constantly. You wake up the next day to find
a night-long recording of nothing! What a
waste of time and energy! By stacking two
PIRs and requiring both to be triggered at
once, we effectively reduce the likelihood of
false triggering. We wondered if maybe this
proactive design were not enough? This led us
to the next phase of our system.

DISTINGUISHING
Let’s return to the moth example. You now

have moths on both of your PIRs, causing
your alarm to run all night. How do you
prevent false triggering in this situation?
Machine learning comes to the rescue by
enabling the system to detect, recognize and
act judiciously instead of blindly.

Software: We had two initial contenders
for our product’s “brain”: OpenCV and
Tensorflow. We opted to use TensorFlow,
because of its larger documentation base,
its readily available tutorials, and—most
importantly—because it is optimized for IoT
and mobile applications. The latter makes it
great for the Raspberry Pi family, which was
important because we planned on using the
Raspberry Pi 3B. However, TensorFlow had
its own challenges. During install, some of its
dependencies required updating. And since
we were using Raspbian Lite OS, we had to
install these dependencies one at a time—at
times having to revert applications to older
versions.

Training: Once we were able to run the
basic tutorial example, the next step was
to check the trained processor's accuracy.
Unfortunately, Google’s model was too global
for our needs—it identified a raccoon as a
red panda. We completed the next tutorial of
retraining the processor for our own needs.
This meant creating categorized folders
(cougar, deer, raccoon, cat, dog, human,
tractor and tree), and telling the processor
where to locate them.

After our first retraining, we realized that
the Raspberry Pi 3B (Pi) was not ideal for
the processor-intensive task. We decided to
do all future training on a desktop computer,
and then copy the image over to our Pi. After
retraining, we tested our model’s accuracy and
found it to be lacking. Results were between
60% and 76% accurate, using roughly 100
photos per category. We learned that you need
at least 300 photos for consistent accuracy.

In addition to that, you need your photos
to portray different perspectives of the object.
Consider the appearance of your favorite dog.

If you had seen this dog only from the front
at its eye level, is there any way you could say
with confidence what it might look like from
the side? Or from behind? For the AI to be
truly effective at recognition, it needs images
in different resolutions, lighting, perspectives
and views.

On our third training attempt, we used
more than 300 images per category, making
certain to use many different elements to help
flex our AI’s brain muscle. However, gathering
and manipulating 2,500 pictures is not easy,
and it consumes time. We used websites such
as Unsplash and Pexels as sources of free
images. After finishing the retraining, we
resumed testing and saw accuracies greater
than 90% in some categories. It was a good
day at the office.

DETERRENCE
We felt confident at this point to move

forward with the Deterrence phase of the
system. Because we intended to use sound
as a deterrent, we researched how sound is
perceived by different species. The average
human hearing range is 20Hz to 20kHz, and
most middle-aged humans can only hear in
the 15kHz range. While human hearing is
limited to sounds below 20kHz, other species
are capable of hearing in the ultrasonic
range (frequencies greater than 20kHz). For
example, dogs, deer and raccoons can hear
up to 40kHz, and cats can hear up to 80kHz.

This meant that we needed a large, 10kHz
audible range that would not wake you or
your neighbor if an alarm went off at night.
The simplest way to guarantee a sound will
remain at a specified frequency is to use pure
tones—waveforms such as sine or square
waves. If you don’t know what a pure tone is
there are several free pure-tone generators
available on the Internet. Simply put, they are
waveforms such as sine or square waves.

Pure Tones and Man’s Best Friend: While
pure tones make an effective deterrence
option for urban settings, we thought that
rural options could use a more creative touch.
After reading several articles on predatory
vocalizations and how they are used to deter
urban pests, we learned that the pests had one
definitive predator in common: Dogs. Because
there are so few cougars and bears in urban
areas, pests have few, if any, encounters with
them. However, the pests are more than likely
to have several run-ins with dogs.

One of us (Simon) has 50-150 chickens on
his farm at any given time. If they are not
in their coop at night, raccoons will come to
hunt them. Generally, the raccoons aren’t
afraid when he tries to chase them off. But
if his Labrador retriever gets out there and
starts barking, they immediately scatter and

CIRCUIT CELLAR • MAY 2020 #35824
F
E
A

T
U

R
E
S

run for the property line. Based on research,
we decided to incorporate plenty of variety
in the barking sounds used, and we added
some other predator vocalizations for good
measure.

DISCLOSURE
We were moving forward smoothly in all

three of the initial phases for our system. It
was time to discuss the final phase of the
system, Disclosure. In the Disclosure phase,
we convey important information about the
alarm to the user via our mesh BLE network.
BLE is on the same 2.4GHz frequency band
as regular Bluetooth. However, BLE uses
a different modulation system from that
of regular Bluetooth. Here is what this
difference meant to us: BLE has a greater
potential range, but a lower over-the-air
data rate.

While regular Bluetooth is limited to seven
slaves, BLE can have more than seven active
slaves. That means we can have a multitude
of potential field nodes on the same network,
covering a wide area of land (the perimeter
of a farming acreage). Most importantly, BLE
offers a lower power consumption (often half
that of regular Bluetooth), making it ideal,

because we wanted our design to be optionally
battery powered.

We had considered using Long Range
(LoRa), but it was more range than we
needed and had a smaller packet size. We
also considered Wi-Fi, but the power required
was too great to provide a long-term battery-
powered option. Also, it required nodes to be
within range of a Wi-Fi router, which might
not be the case on larger properties.

Bluetooth Low-Energy 4.2: Once we had
landed on BLE, we could begin writing code
to transmit (Figure 1) and receive the desired
data. Unfortunately, writing our own code
based on the BLE protocols was too involved for
our given time frame and required intensive
documentation review. After some failed
attempts, we opted to use a Python-based
program called PyBeacon. This program is
designed to advertise and scan for Eddystone-
URLs. An Eddystone-URL is a 17-byte packet
in the form of an HTTPS URL. Because we are
not trying to send a URL, we needed to alter
the provided code to fit our needs. The process
of testing PyBeacon’s code to discern what
it deemed necessary for a valid packet took
a while. But once we knew what the packet
was expected to look like, we could begin

FIGURE 1

This transmission flow chart begins

as the system powers on. The system

waits for a PIR to sense a target, and

when it has detected something, it

photographs the target using the

appropriate directional camera.

If, through image processing, the

subject is determined to be a pest

(with a certainty greater than 70%),

the system triggers its alarm and

communicates the event to the user.

Otherwise, the system returns to

waiting for the next PIR event.

Power on

Wait
PIR event

Take picture
left

Sets
1 and 2

Sets
2 and 3

Which
PIR Set

Take picture
right

Image
processing

Is subject
a pest?

No

Yes

Yes

Certainty
> 70%

Trigger alarm

Communicate
alarm

No

FIGURE 2

This receive flow chart begins

as the system powers on. The

system constantly listens for other

broadcasting sources. When the

system receives a broadcasted

message, the codec determines if

the packet is valid, and compares

the message to ensure it is new and

relevant data. If the data is new, the

system decodes and relays the packet,

and stores the data. After the data

is stored, or if the packet is invalid,

the system returns to listening for

broadcasts.

Listen
BLE

Valid
packet

Relay
packet

Decode
packet

New
data

NoNo

Yes

Yes

Store
data

Power on

circuitcellar.com 25
F
E
A

T
U

R
E
S

modifying the code. We were able to remove
the unwanted packet data, and now had nearly
17 bytes of data length to pack as much useful
information as possible into our message.

It's important to note that we originally
planned on sending images taken by the field
node to the base node, but it was clear that
this would not be possible with only 17 bytes.
Because we were no longer concerned with
sending large amounts of data, we decided on
four important details to send.

WHAT, WHEN, WHERE?
First is the opcode, or operation code,

which tells our program what type of signal is
received: Alarm, status, time sync or settings
update. Second is the node of origin—where
the alarm was triggered. This is important
because we are using a mesh network
topology. In this arrangement, all nodes must
be in constant communication with all other
nodes within range, and the program can
identify which of the nodes on the property
is detecting pests. Third is the date of the
event. This information is paramount to relay,
because it lets the user know what time of
day the pests are coming to feed, and if
any patterns emerge. Finally, we send the
machine learning outcomes. The outcomes
include which category rated highest, and
what percentage of accuracy the AI found for
category certainty.

After in-house testing, we had reliable
transmission and receiving (Figure 2) on
our two field nodes and base node. We then
tested the connection at the required 40', and
could both transmit and receive without issue.
However, to encode and decode this packet, an
appropriate codec was required. We designed
the codec to take all necessary information
from the transmitting field node and encode it
into our 17-byte packet. While on the receiving
end, the codec would neatly decode the packet,
interpret the string of characters and display
the four aforementioned pieces of data.

DESIGN DECISIONS
PCB Design: With the network up and

running, it was time to design our PCB.
Because we are using a Pi as the center
for our design, we already had most of our
functionality covered. All the PIRs could be
connected via the Pi’s GPIOs, and the two
cameras would be connected via USB and
the 15-pin FFC header. The purpose of the
PCB (Figure 3) was to allow us to accept a
variety of input voltages and supply types.
To accomplish this task, a power rectification
and distribution system was needed.

We used an LM2596 DC buck regulator
module by Lanpu to do this job. Based on
Texas Instruments' (TI's) LM2596 chip, the

regulator module met all our requirements
for power distribution: a 3A current output
to power the board in its awake state, the
PIRs and the camera modules with current
to spare. It also provides a 3V to 40V input
voltage range, allowing us to accept a wide
variety of battery compositions (lead-acid or
lithium-ion) and setups (large series battery
banks). Finally, the module can be powered by
a common AC adapter.

Enclosure Design: Once we had chosen and
designed all our components, we had a good
understanding of the dimensions we needed
to work with for the field and base node
enclosures. The requirements for the field
node enclosure design (Figure 4) included
a small overhang from the lid to cover the

FIGURE 4

A top-down 3D rendering of our node enclosure. Custom holes for both the cameras and PIRs were placed

with the intention for maximum coverage and consistency. To the right of our stand-off mounted Pi is a DC

barrel jack that connects the battery back. At the back is the mounting bracket for the enclosure.

FIGURE 3

A 3D rendering of our custom-designed Pi-hat PCB (green). On the board is one Lanpu LM2596 Buck Power

Supply Module (blue), one P-channel MOSFET, 4 Bulk Capacitors, 7 Jumpers (3-pin) and access for the 40-

pin Pi header.

CIRCUIT CELLAR • MAY 2020 #35826
F
E
A

T
U

R
E
S

camera lenses from direct rainfall and evenly
spaced mounting holes for the cameras and
PIRs to achieve 180 degrees of horizontal
view coverage. Also needed was an optional
battery compartment (Figure 5) for off-grid
applications, and the ability to be mounted
a variety of ways for a simple installation
process.

To achieve these requirements, we decided
to 3D print our enclosures out of polylactic
acid (PLA) using an Ultimaker 3. This allowed
us to paint, shape and design our enclosures
with relative ease, and helped to create a
professional representation that portrayed
our desired final product (Figure 6). Another
benefit of 3D printing the enclosures was our
ability to reprint an entirely new enclosure in
less than 24 hours. If we didn’t like the look,
or if we found there wasn’t enough space for
the Raspberry Pi inside, we could make the
necessary adjustments and be ready by the
next day. The mounting bracket on the back
of the enclosure allows it to be placed on a
stake in the ground, or tied with a strap to a
fence or house.

We designed the base node (Figure 7) to
be placed on a countertop, take up minimal
space and display useful information to the
user. With those objectives in mind—and
because we used a 7" LCD Raspberry Pi
touchscreen—we designed the enclosure
to frame the screen and slant it backward
slightly for good readability and a stylish,
welcoming appearance.

GUI Design: Once we had finished the
enclosures, we began creating the GUI for the
base node. The program we used to design
the GUI was Node-RED, a web browser-
based development tool for wiring hardware,
APIs and other IoT devices. We chose Node-
RED (Figure 8) because it is designed for
Raspberry Pi applications and offers a simple
and familiar flowchart-style IDE. We achieved
an easy-to-use GUI that offers the user
relevant data such as field node battery life
(Figure 9) and alarm status (Figure 10) when
interacted with, and otherwise displays the
current time and date.

DISCUSSION
We originally set out to design an

automated pest deterrent solution for use in
gardens and on farms. In the end, we created
a powerful and sophisticated deterrent system
with the potential for growth and adaptation
to the circumstances of any property owner.
We believe this achievement gives our design
great value and merit, particularly if we
decide to produce it commercially.

In future iterations of the design,
however, we would make hardware changes
and quality-of-life improvements. First,

For detailed article references and additional resources go to:

www.circuitcellar.com/article-materials

RESOURCES

Panasonic Electronic Components | na.industrial.panasonic.com

PyBeacon | www.pypi.org

Node-RED | www.nodered.org

TensorFlow | www.Tensorflow.org

Texas Instruments | www.ti.com

FIGURE 5

A 3D rendering of our battery pack. This pack is attached to the bottom of the node enclosure. We designed

this feature to add versatility to our design, making it optional to expand to off-grid solutions.

FIGURE 6

Our 3D-printed node enclosure fully assembled with the battery pack. We opted for a classic camouflage

paint job for the field node, since it seemed appropriate for the market. Using stencils, it took several days

to paint it.

circuitcellar.com 27
F
E
A

T
U

R
E
S

we would use a metal enclosure rated
IP64 (dust-tight and protected from water
splashes from all directions), to allow the
field nodes to operate in a farmer’s field.
Second, we would replace the Raspberry
Pi 3B and all its excess features with a
processor with a lower power consumption.
This processor would be embedded into a
custom PCB design encompassing only the
necessary functionality. And finally, we
would switch from BLE to Bluetooth 5.0,
to achieve a larger packet size. This would
allow images to be sent from the field node
to the base node.

We owe much of our success to proper
project management. We took the time early
in the development process to address the
faults and failures of the market for pest
deterrence. As a result, we were able to
overcome them by using new technologies
and our current knowledge base, developed
through Camosun College’s Electronics &
Computer Engineering Technology –
Renewable Energy program.

Author's Note: Cole, Cameron, and Simon are

graduates of Camosun College’s Electronics

& Computer Engineering Technology –

Renewable Energy program, and they plan

on continuing part-time development of their

project to manufacture an affordable and

effective pest deterrent product.

ABOUT THE AUTHORS

Cole Gamborski is a Camosun College

graduate with many years of experience

in the field of property security. He has an

aptitude for programming and is continuing

at Camosun in its Engineering Bridge

program in order to earn an Electrical

Engineering degree from UVIC.

Cameron Phillips is a Camosun College

graduate with many years of mechanical

experience. He is well versed in machine

learning and 3D design, and he will be

taking on a co-op with FTS Forest Tech before

continuing his education.

Simon Fowler i s a Camosun Co l lege

graduate with experiences designing solar

PV installations. He hopes to find work in the

Solar PV field before continuing his education

in the Camosun Engineering Bridge program.

FIGURE 7

The 3D design for our base node.

We had two thoughts in mind when

designing this node—sleek and

simple. The base node will sit tilted

back, and will only require power to

operate.

FIGURE 8

Node-RED flow chart, showing the operating functions of our base node. The operations are battery life for

nodes 1 and 2, node alarm status, or date and time. The flow lines starting with a “timestamp” begin with

received data from the field nodes.

FIGURE 9

Screen capture of our base node's display. The node is displaying the battery life of field node 1 in percentage,

and the most recent check time. This information is under the “Node 1” tab.

FIGURE 10

Screen capture of our base node's display of the most recent alarm status. The information we considered

most important to the user includes the sending node, the detected animal, and the time of alarm. This

information is under the “Warning” tab.

CIRCUIT CELLAR • MAY 2020 #35828
F
E
A

T
U

R
E
S

E very now and then you hear
someone decry the decay of
electronics as a hobby ([1] to [5]).
But the reality is that there is a

plethora of microcontroller (MCU) platforms,
shields, HATs and the like available these
days. Everywhere you look, there are Internet
forums and vendors serving the community of
the so-called makers. There's also a multitude
of fairs catering to makers—most postponed
now during the COVID-19 pandemic of course,
but sure to return to full strength in the
future.

When you compare the today's projects
shown at fairs or on the Internet to what
ambitious hobbyists of the past have been
accomplished, you see a conspicuous
difference. More often than not, the maker̀ s
work manifests only in a contraption of
modules, breadboards and jumper wires, but

not in a piece of impressive equipment like in
Figure 1c, for example.

In some of my previous Circuit Cellar
articles ([12] to [15]), I've already dealt with
projects aimed at sturdy and perhaps even
presentable devices. Here, we will concentrate
on mechanical design, depicting some ideas
that are not that common in today's realm
of tinkering, experimenting and prototyping.
References [6] to [11] are a small selection of
relevant articles and web content.

We want to stay within affordable limits.
With that in mind, the proposals here are
centered around small- to medium-sized PCBs
and ubiquitous 19" hardware—especially 3U
front panels and subracks. These PCBs and
front panels are not overly complicated or
large. They could be developed using free
design automation software and manufactured
by any appropriate service provider. With

If anyone doubts that electronics tinkering as a hobby is on the decline,

Wolfgang reminds us that there’s never been more rich resources available

for such pursuits. With that in mind, in this article Wolfgang presents several

mechanical ideas for embedded systems using small- to medium-sized PCBs

and common 19" hardware such as 3U front panels and subracks.

Professional Style Projects

By

Wolfgang Matthes

Creative Mechanical Ideas for
Embedded Systems

FIGURE 1

A display module is to be attached to an MCU module. (a) shows a hi-tech solution that the vendor recommends. Now, try to imagine

implementing a dual-screen display. (b) is an improvised wire-wrapped module, quick and dirty, but rock-solid. A purpose-designed

PCB (c) is more presentable. Free design software and affordable manufacturing services allow even the hobbyist to do it this way.

circuitcellar.com 29
F
E
A

T
U

R
E
S

modest equipment and effort, they could be
turned into presentable showpieces—even at
the proverbial kitchen table.

The basic ideas in this article occurred
over my years of project work. Instead of
relying on the ubiquitous small modules,
I preferred medium-sized PCBs with interface
connectors located somewhat thoughtfully, so
as to ease assembling more complex devices.
To build them sturdy and presentable, I make
good use of 19" hardware, above all of the
subracks, chassis and front panels.

Becoming familiar with the 19" system,
I revived the venerable technology of
small PCBs to be plugged into a backplane.
Occasionally, it turned out that PCBs make
sufficiently rigid 3U front panels, at least for
educational modules with small connectors.
The concluding idea to be discussed here is
to employ ZIF sockets as general-purpose
component adapters, being a somewhat
expensive, but much more reliable alternative
to the white breadboards.

MORE THAN ONE PCB
A PCB typically carries one module—a

functional unit. Typical hobbyist or educational
modules should be neither too expensive nor
too complicated. But most projects won't
get by with only one module. As a result,
problems arise on how to arrange and fasten
the modules and how to interconnect them.

It is important to select the principal
mechanical design early because each one
has its particular requirements concerning

the selection, placement and pinout of the
connectors. Figure 2 introduces some of the
well-proven approaches to how machines
could be built from more than one module or
PCB. Our preferred solutions will be illustrated
in some photos. Additional photos can be
found on Circuit Cellar’s article materials web
page. Still more photos and drawings are
available on my own webpages (see "About
the Author" box for links). On those webpages,
the different approaches shown in Figure 2
will be illustrated and discussed more closely.

Figure 3 shows a generic block diagram
of a typical project. Imagine, for example,
a programmable logic controller (PLC) built
for educational purposes and experimenting.
In this respect, it makes sense not to strive
for compactness and miniaturization, but to
make all functional units easily accessible.
The machine is centered around an MCU
module as its central processing unit,
connected to human-machine interface (HMI)
modules, input/output modules and upstream
and downstream interfaces. Furthermore,
Figure 3 hints to additional modules to
emulate or substitute the real-world process
environment, here dubbed the diagnostic
front-end.

Trying to implement such a project by
selecting suitable modules in an ecosystem
like Arduino or Raspberry Pi is an instructive
exercise. Appropriate shields, HATs and the
like are easy to find. But what's the best way
to arrange, fasten and interconnect them to
implement the complete machine? Usually,

FIGURE 2

Shown here are some well-proven

mechanical design principles to build

machines from more than one module

or PCB. (a) stack one upon another,

(b) plug them into a baseboard, (c)

plug them into a backplane, (d) plug

them against each other, (e) set them

up individually and connect them by

cables. 1 - upstream interface; 2 -

module-to-module connections; 3 -

I/O connectors.

CIRCUIT CELLAR • MAY 2020 #35830
F
E
A

T
U

R
E
S

only one peripheral module can be stacked
on top of the MCU module—remember, it
is not an industrial-grade form factor, like
PC/104. Three, four or more modules could
be connected as shown in Figure 1a. That
approach, however, is not very inviting.

An obvious solution is to arrange all
the modules or PCBs next to each other,
for example, by plugging them onto a
baseboard. The modules, shields, HATs and
the like must be equipped with appropriate
pin headers, as shown in Figure 4. A quick-
and-dirty approach could be wire-wrapping
with a sufficiently large prototyping board
or perfboard as the baseboard [14]. The
ultimate solution would be, of course,
the purpose-designed PCB. By the way, a
baseboard with thoughtfully placed wire-
wrapping sockets can be altered and even
re-used multiple times, provided you employ
an appropriate unwrapping tool and work
somewhat cautiously. In principle, however,
the shields, HATs and so on are not marketed
to be used in projects outside their particular
ecosystem. They are deliberately not meant
as OEM components.

MORE COMPLEXITY
Alternatively, you can base your projects

on modules of medium size and complexity
[12], or even on industrial-grade hardware.
Figure 5 shows how the block diagram of
Figure 3 can be implemented with such
modules.

The modules are expressly designed for
building systems of two or more modules.

FIGURE 3

A typical project depicted as a generic block diagram.

FIGURE 4

The header (a) is the type of connector to be soldered into the modules. The baseboard is to be populated

with strip-line sockets (b). Modules with headers (c) are inserted into the sockets (b).

FIGURE 5

Here, the project of the Figure 3 block

diagram is implemented with medium-

sized educational modules.

circuitcellar.com 31
F
E
A

T
U

R
E
S

That intention drove the selection of the form
factor as well as the type and arrangement
of the I/O connectors. Connections should be
inexpensive and reliable. Besides, they should
allow for maximum flexibility. Therefore,
we prefer shrouded pin headers, ribbon
cables and terminal strips. The modules can
be mounted on top of separate enclosures
(Figure 6), inserted into housings to be
clipped onto DIN rails (Figure 7) or fastened
on a chassis (Figure 8).

In most of the applications, the modules
will be placed next to each other in order to
make all components and interfaces easily
accessible. Figure 9 shows a preferred
arrangement. It serves as a good template
to place the components on the boards,
especially the connectors.

If the MCU board is in front of the user,
the upstream devices are on the left and
the downstream devices are on the right.
An upstream device can be, for example, a
personal computer (PC) or an MCU module
acting as a master or hub. Downstream
devices are MCU modules acting as I/O or
slave processors, display modules, modules
with power stages and so on.

The MCUs aboard the modules are
connected via serial interfaces. The upstream
device is the master. A downstream device is
a slave. This results in a star topology with a
hub in the center. It's the same principle as
USB, just a lot more straightforward.

Figure 10 depicts how the connectors
are to be placed. The connectors to the left
and to the right are preferably shrouded pin
headers. Serial and programmer interfaces
have 6 pins, I/O ports 10 pins. Some modules
support serial communication via an RS-232
interface or the USB. Accordingly, they carry
D-sub or USB connectors. The connectors at
the rear edge are terminal blocks or shrouded
pin headers.

At the front edge, some modules have
a so-called multi-purpose connector to
attach additional PCBs. Figure 11 shows an

FIGURE 6

Here, two of our modules are shown, as described in [12].

FIGURE 7

Modules clipped on a DIN rail. (a) illustrates the mounting principle, (b) shows an educational PLC consisting

of three modules. The human interface module 1 is stacked atop the MCU module 2. All modules are

connected by ribbon cables.

FIGURE 8

Four modules mounted on a chassis

FIGURE 9

An MCU module in a programming

and application environment

CIRCUIT CELLAR • MAY 2020 #35832
F
E
A

T
U

R
E
S

ABOUT THE AUTHOR
Wolfgang Matthes has developed peripheral subsystems for mainframe computers and conducted research related to special-purpose

and universal computer architectures for more than 20 years. He has also taught MCU Design, Computer Architecture and Electronics

(both digital and analog) at the University of Applied Sciences in Dortmund, Germany, since 1992. Wolfgang’s research interests

include advanced computer architecture and embedded systems design. He has filed more than 50 patent applications and written

seven books. (www.realcomputerprojects.dev and www.controllersandpcs.de/projects).

FIGURE 10

Connectors are placed according to

the principle depicted here.

FIGURE 11

(a) One of the more advanced modules

connected to a historical joystick. The

operating and display panel on top of

the module is attached via the multi-

purpose connector. (b) shows the 40-

pole pin header.

FIGURE 12

Some examples of ubiquitous 19"

hardware components

FIGURE 13

Two historical examples of how devices

are built from modules plugged into a

backplane (Digital Equipment Corp.).

circuitcellar.com 33
F
E
A

T
U

R
E
S

example. The ribbon-cable connection can
be opened like a book, thus allowing access
to all components on both boards. The PCB
layout of the multi-purpose connector can be
thought of as some kind of standard, providing
a maximum of 64 holes (in two rows of 32) to
be populated with different pin headers.

SOME MORE
HARDWARE OPTIONS

Using 19" hardware: 19" hardware has its
origins in the realms of telecom and measuring
equipment. Figure 12 shows a few examples
of ubiquitous 19" hardware components.
Chiefly, we will rely on 3U subracks (Figure

12a) and the chassis (Figure 12b). Humble

educational and hobbyist projects allow for

a simplified mechanical design. Frame-type
plug-in units (Figure 12c) will not be required.
The front panel alone yields a sufficient
mechanical platform.

Small pluggable modules: Decades ago,
electronic devices were built from small
modules plugged into a backplane (Figure 13).
Why not revive this well-proven principle?
Inspired by the small boards of IBM's SMS
and SLT technologies, of DEC's modules, of the
Control Data (CDC) computers and the like,
we have chosen half a Euro-board (100mm ×
80mm) with a DIN 41612 connector as the basic
form factor. The boards shown in Figure 14
carry CPLDs, MCUs (AVR, Arm and 8051), SRAMs
and dual-port RAMs.

The modules are plugged into a backplane
that is to be wire-wrapped. The mechanical
platform could be provided by a 3U subrack
including card guides and ejector handles
(Figure 15a). A straightforward solution
could be based on a perfboard with soldered-
in connectors (Figure 15b). If the device is
not mechanically stressed, card guides and
handles are not necessary, because the cards
will be held firmly in place by the connector's
friction alone.

Front panels as chassis: Industrial-grade
19" modules are typically designed as a front
panel with an attached PCB or as a frame-
type plug-in unit. The mechanical design of

FIGURE 14

Examples of today's modules thought of for experimental, educational and ambitious hobbyist projects.

(a) CPLD Xilinx 95108, (b) two ATmegas 1284, (c) three SRAMs 128kx8, (d) two dual-port RAMs, (e) MCU

80C51RD2, (f) CPLD Xilinx CoolRunner XC2C384, (g) MCU ARM NXP LPC2220.

FIGURE 15

Modules in a 3U subrack and on a jerry-built experimental platform

FIGURE 16

The modules in this rack are built this way. The front

panels have been manufactured by a service provider, the

mechanical design and wiring are homemade.

FIGURE 17

Two examples of modules. (a) shows a temperature trainer

containing different temperature sensors that can be heated

up or cooled down. (b) is a switchable load resistor, providing

four different resistance values.

CIRCUIT CELLAR • MAY 2020 #35834
F
E
A

T
U

R
E
S

small, humble modules, however, may be
centered around the front panel alone. All
components are attached to the front panel.
Figure 16 shows a 3U rack with modules built
this way. The modules presented in Figure 17
are examples of mechanical designs that are
somewhat more demanding.

PCBs as front panels: Epoxy PBCs (FR4,
1.6mm thick) make sufficiently rigid 3U front
panels—at least for educational modules
with small connectors. The modules shown
in Figure 18 and Figure 19 have 2mm
jacks, so insertion and withdrawal forces
are not that high. All modules carry an AVR
MCU. They are intended to be programmed
as digital or analog simulators. In this
respect, the modules are quite similar to the
modules shown in the left picture of Figure
13. In the example of Figure 18, the modules
are programmed to simulate an up/down
counter. The jacks may be labeled by a strip
of paper or by an LCD display (the luxury
variant).

ZIF sockets as component adapters:
ZIF (zero insertion force) sockets can
accommodate arbitrary components,
provided they are to be attached via pins or
wire. This fact has led to devices intended
as an alternative to the ubiquitous white
breadboards. The devices are essentially PCBs
with ZIF sockets and jacks.

The IC trainer shown in Figure 20a
provides five ZIF sockets with 16 pins each.
The DIL-40 baseboard (Figure 20b) has a
ZIF dual-in-line (DIL) socket with 40 pins,
chiefly to accommodate an MCU or a CPLD.

It provides somewhat like an infrastructure,

comprising a crystal oscillator, RS-232 and

USB attachments, and pin headers to connect

it to other modules. SMD components are

inserted via interposer boards. The general-

purpose adapter shown in Figure 20c carries

a 16-pin ZIF socket connected to different

jacks and terminals. Up to two 8-bit ports

from other modules or starter kits can be

attached and forwarded to 2mm or 4mm

banana plugs, stripped wire and arbitrary

components fitting into the ZIF socket.

For detailed article references and additional resources go to: www.circuitcellar.com/article-materials

References [1] through [15] as marked in the article can be found there.

RESOURCES

BusBoard Prototype Systems | www.busboard.com

Fischer Elektronik | www.fischerelektronik.de

Hammond Manufacturing | www.hammondmfg.com

NVent/Schroff | www.nvent.com

SchmartBoard | www.schmartboard.com

Rittal | www.rittal.us

Vector Electronics & Technology | www.vectorelect.com

Vero Technologies | www.verotl.com

FIGURE 19

Some of our modules, accompanied by a 7" Windows tablet

FIGURE 18

These MCU modules can be mounted in 3U subracks like front panels. The modules (a) and (b) have an AVR

Xmega MCU. They are just different enough in their width, that one is 14 HP and one is 7 HP. Module (a)

is that wide to allow for mounting a frame to insert a strip of paper. All the jacks are connected to freely

programmable I/Os. Module (c) is a graphic LCD display of 32 x 180 pixels, controlled by an ATmega MCU.

FIGURE 20

ZIF sockets as component adapters. (a) IC trainer, (b) DIL-40 baseboard and (c) general-purpose adapter

circuitcellar.com 35
F
E
A

T
U

R
E
S

Figure 21 and Figure 22 illustrate how these
devices are used in the lab.

SUMMARY AND SUGGESTIONS
Even today it is still possible to pursue

projects that are sturdy, somewhat more
ambitious and sometimes even presentable.
The preeminent approach is to seek
components showing an appropriate level of
handiness. They should not cost too much.
You should be able to handle them in your
workshop or even at your kitchen table. It
all depends on your inventiveness. Some
technological challenges can be met by taking
advantage of the vast range of accessories
the market offers. Typical examples are
interposer boards to accommodate SMT
components.

Furthermore, you should not hesitate to
make good use of components or modules
outside their native ecosystem. In that
respect, even complete tablet PCs could

be employed as components, for example,
to serve as HMI devices, thus substituting
homemade front panels carrying LEDs, keys
and switches [15]. A basic tenet is to reduce
complexity by building somewhat larger.

For example, it may be tempting to build
your own computer from scratch. It goes
without saying that FPGAs are around that
could easily accommodate the complete
project. But by pursuing such an endeavor,
you will depend on a development
environment that will cost months alone to
become familiar with. Therefore, maybe a
more adequate hobbyist or educational
computer should be built from small
modules, each containing a functional unit
implemented in a tiny FPGA or even CPLD.
This way, you will obtain not just a virtual,
but rather a real testbed and playground—a
machine you can bring up and troubleshoot
hands-on with the oscilloscope or the logic
analyzer.

FIGURE 21

A somewhat more sophisticated

analog circuitry on three IC trainers

FIGURE 22

Two general-purpose adapters and a

DIL-40 baseboard used intensively

CIRCUIT CELLAR • MAY 2020 #35836
F
E
A

T
U

R
E
S

M y friend Nigel is a clock collector.
Amongst his collection are
two types of antique electric
clocks (from the turn of the

20th century), which appear to have different
mechanisms but work on a similar principle.
One is an American-designed Eureka clock
(Figure 1) and the other is a French designed
Bulle clock (Figure 2).

The Eureka “pendulum” consists of a
balanced disk that rotates in one direction—
tensioning a coil spring—and then returns in
a mesmerizing display. A video of this [1] is
included on the Circuit Cellar article materials
webpage. An electromagnetic coil is mounted
in the center of the disk, and a voltage
is connected to the coil via a momentary
mechanical contact. Two fixed magnets are
on the circumference of the frame around
the pendulum. When the coil and the magnets
align (as determined by an electrical contact),
a current is passed through the electromagnet,
creating repulsion against the magnets, and
energy is imparted to the pendulum.

The Bulle mechanism may boggle your
mind [2]. Although the electromagnet is visible
at the end of the pendulum, the arc at the
bottom is a 3-pole bar magnet, north at the
ends and south in the middle. Apparently, this
creates a strong magnetic field in the center,

but is also an unstable configuration. So, the
magnet sometimes needs reconditioning—
something not for the faint of heart [3].

As with the Eureka clock, a voltage is
presented to the electromagnetic coil with a
switching contact when the electromagnet is
at the midpoint, creating repulsion, and the
pendulum gains energy. The pendulum on
each unit drives an escapement mechanism
that is geared to drive the clock hands.

There are several explanations of both
clocks on that impeccable source: The Internet.
Both devices are intended to be operated from
a 1.5V battery, and, surprisingly, the coils
of each one measure about 1,200Ω, despite

some claims to the contrary. See the Circuit

Cellar article materials webpage for links to

descriptions of the Eureka [4] and Bulle [5].

There are several other sources out

there—including an article that describes some

electronics to regulate the timing of the Eureka.

That article is not included in my References

because it is no longer available. It is suggested

in several places to parallel two batteries to

extend battery life. I trust that Circuit Cellar

readers will understand why that is a bad idea.

I can find no discussion why the Bulle needs

a 3-pole magnet, and the picture [3] clearly

shows only half an arc for the bar magnet. Any

suggestions from readers will be welcomed.

Antique electric clocks are both beautiful

and elegant, but they really can’t provide

accurate timekeeping. In this project

article, Aubrey makes use of modern

Cypress PSoC4 MCU technology to convert

an antique clock into a device that can

continuously keep accurate time.

Using a PSoC4 MCU

By

Aubrey Kagan

Modernizing the Accuracy
of an Antique Clock

FIGURE 1

Eureka clock. The rotating pendulum is blurred, but you can see

the balancing weights on its circumference.

circuitcellar.com 37
F
E
A

T
U

R
E
S

Neither clock is great at timekeeping, though the Eureka is
worse. The primary cause is thought to be the decaying battery
voltage over time, but there are many other possibilities.
Temperature, humidity and the cleanliness of the switching
contact (affecting the current through the electromagnet)
are some of the suspects. Nigel had read the description
of the aforementioned electronic regulator, and thought
that together, we might come up with a suitable means of
regulating the time. These clocks have value as antiques, so
we needed to control the timing by external means only.

SOME PHYSICS
According to the sages (Galileo included), the frequency

of operation of harmonic oscillators is independent of the
range of motion in the first approximation—so we will have
to operate beyond that approximation. Our experiments will
change the amount of energy imparted to a pendulum, in
the hope that it controls the time. We think the further the
travel, the more likely it becomes that we will exceed the first
approximations of the mathematical analyses.

The energy imparted to the electromagnet can be
controlled by the applied voltage. In the video in Reference
[2], the contact is just visible behind the hour hand. It's also
clearly visible at around 56 seconds in the video in Reference
[3]. That contact closed for several tens of milliseconds, and
ordinarily the energy is supplied for the full period of the
contact. If we can control the period of the voltage for less
time than that of the contact, this could create a second
method of controlling the energy imparted to the pendulum.

The initial thought was simply to use a voltage regulator
to ensure a constant voltage. That quickly evolved into
switching that voltage through a relay. We then headed
toward some forms of control that would measure the period
of the pendulum and adjust the energy supplied. And, though
this pointed in the direction of PID (proportional, integral,
differential) control, there was clearly an awful lot we did not
know.

We decided to use a microcontroller (MCU) and some
electronics to allow us to check different modes of operation.
At this point, we were reluctant to commit to a dedicated PCB,
so the best choice was a development board. We also put the
battery-operated requirement on hold, pending the results of
the development.

It is no secret that I am a Cypress Semiconductor PSoC
aficionado, and so I opted for the CY8CKIT-042 PSoC4 Pioneer
kit (Figure 3). The PSoC4 is extremely versatile in configuring
its internal peripherals, and the kit is compatible with the
Arduino Uno. I invested in an OSEPP PROTO-01 prototype
shield for the custom electronics, and an OSEPP 16X2SHD-01
16×2 LCD Display and Keypad Shield. Nigel has always accused
me of overkill, and this kind of proves his point.

To test each stage, we created a series of “modes”—some
of which had associated parameters. These could be selected
using the keyboard and LCD display (Figure 4). I am ashamed
to admit that despite several of my Circuit Cellar articles on
creating menu hierarchies (Circuit Cellar 160, November 2003
[6] and Circuit Cellar 342, January 2019 [7]) I approached this
with brute force. For the sake of brevity, though, I will not
spend any time describing its operation.

The schematic in Figure 5 shows the internal configuration
of the PSoC4 MCU. This should be read with the schematic
in Figure 6, which shows the external electronics. Different

portions of both pertain to the different modes, and so I will
need to refer to different subsets as we go through the modes.

TEST MODES
Test Mode M0: The first mode (M0) is only a vague

improvement on the original operation of the clocks. It
merely provides a regulated power supply through the Texas

FIGURE 3

Pioneer Kit (red board) with prototype shield mounted on top.

FIGURE 2

Bulle clock. The pendulum here is stationary, and you can see the arc of the 3-pole

magnet.

CIRCUIT CELLAR • MAY 2020 #35838
F
E
A

T
U

R
E
S

Instruments (TI) step-down regulator LM317
(Figure 6, U1). The voltage can be adjusted
using the R2 trimpot. The electromagnet coil
is connected between the terminals Z and
SCL. Do not confuse this with an I2C signal—
it is merely the silk-screen name given to a
screw terminal.

M1: If we are to control the clock by means
of voltage, then we need a controlled voltage
output. I called this mode 1 (M1), but with
two sub-modes. The PSoC4 only has a current
output DAC. I configured this as an 8-bit
device, and passed it out through an analog
multiplexer (DAC and AMuxHw, Figure 5). The
multiplexer will be used later to generate a
voltage pulse, but let’s ignore that for the
moment. Initially it is configured to pass the
current.

On the protoboard (Figure 6) the current
is converted to a voltage using R4, and is
buffered by a LM358 configured as a voltage
follower. The LM358 op amp from TI is capable

FIGURE 4

The full assembly of three boards, with the display on top showing one of the modes.

FIGURE 5

Schematic of the internal configuration of the peripherals of the PSoC4. Different functions are enabled/disabled by changing the bits on the CONTROL_SELECT output register.

circuitcellar.com 39
F
E
A

T
U

R
E
S

of supplying up to 20mA, and since the coil is
said to be 1,200Ω at 1.5V, it should be capable

of supplying the nominal 1.25mA. The coil is

connected across terminals X and SCL. The

voltage can be set as a parameter using the

LCD-based user interface, and the value is

stored in EEPROM. This is the first sub-mode

useful in proving that the DAC voltage driver

works.

Now for the second sub-mode of M1.

In later modes we will need to measure

the current flow as the contact to the
electromagnet closes. We will need to know
the time the contact is closed (let’s call that
PW) as well as the period of a single cycle of
operation (which we will call PD). To measure
these two parameters (which we will also
need to do later), I added a series resistor to
the current path. In other words, the coil is
connected between X and SDA.

Although this would reduce the overall
current, it can be compensated by elevating
the source voltage. I chose a low value for R5
(Figure 6), and then amplified the voltage so
that it drives an LED, D2 and also a comparator
(U3, LM393). The LED indicates when current
is flowing. The comparator is used as a signal
to the PSoC4 that the current is flowing. This
signal has been wired to the COMP_IN terminal
(Figure 5). The MCU can then measure PW and
PD, which it shows on the display, and can be
noted down. With the addition of this piece of
software, no oscilloscope is necessary to take
the reading.

M2: In the timing regulator article
(mentioned earlier) the principle of
operation was that the controller would

generate a regular voltage pulse, and the
oscillations of the pendulum would gradually
synchronize with them. To try this mode in
all its simplicity, I added a reed relay to the
design (K1, Figure 6). The regulated supply is
connected to one terminal of the relay contact
(Y to Z), and the coil across terminals W and
SCL. Through the parameters, it is possible to
adjust the period the relay is on, as well as
the cycle time. But for the experiment, I just
wanted the selected period to be greater than
PW and less than PD. Of course, the LM317
voltage may be adjusted independently using
the pot. There is an LED on the Pioneer Kit
board, and I used this to indicate when the
relay was energized.

Although this is driving a relay (with
activation/deactivation and bounce times),
I opted to use a hardware timer to drive the
relay. The RELAY_MUX multiplexer (Figure 5) is
configured via bit CONTROL_2 on the CONTROL_
SELECT register to feed the output from the
PWM_LED counter to the output. The two
parameters are programmed onto the counter.

M3: Mode 3 (M3) is essentially the same
as M2, except that it uses the DAC-controlled
voltage source, so the DAC output is a third
parameter. The relay is fed from the DAC
(connect X to Y, Figure 6), and then we can
go in one of the two sub-modes, as in M1,
for energizing the coil. D2 will flash when the
relay is active AND there is current flowing
through the coil.

MORE TEST MODES
Before I move on to the next modes,

I have to explain why we need to know PD

FIGURE 6

Schematic of the external hardware

mounted on the prototype shield.

The symbols X, Y, W, Z, SCK and

SDA correspond to the silk screen on

the prototype board associated with

some screw terminals. You will notice

some connections, such as P30(D11).

The first three digits refer to the I/O

pin on the PSoC4, and the digits in

parentheses refer to the pin name

used for the Arduino system.

CIRCUIT CELLAR • MAY 2020 #35840
F
E
A

T
U

R
E
S

and PW when we are measuring the current
flow through R5. Refer to the timing
interrelationship shown in Figure 7.

Current can only flow through the clock’s
contact when the contact is closed and there
is voltage. If we are switching the voltage off
and on, we need to think about the relative
timing. The pulse voltage must be high before
the contact closes, or the current through the
coil will not reflect the initial closure of the
contact. By definition, the pulse turns on and
off. If the pulse width (coincident with the
start of the current flow) is longer than PW, it
will be limited to PW. If it is shorter than PW
then it can only be re-energized after PW, but
before PD, to ensure synchronization with the
contact closure.

The same timing concept as in M2 is set
up on the PWM_LED timer, but the PWM_
LED output is channeled to the AMuxHw by
the setting on the DAC_SEL control register
(Figure 5), thereby toggling the output current
on and off.

M4: This mode (Mode 4) is an extension
of M2, along with the current detection
connection. The relay pulse is synchronized
with the contact closure. The energy imparted
to the pendulum is related to the regulated
voltage and the pulse time (≤PW). The pulse

time and the voltage restoration time (>PW,

but <PD) are configurable variables.
The program waits for the COMP_IN signal,

which it reads through the status_0 pin READ_
COMP input register (Figure 5). It then initiates
the counter sequence, as described in M2.

M5: Mode 5 (M5) mimics M4, except it

drives the coil with the DAC voltage. This adds
an additional parameter. The output current
is toggled when the COMP_IN signal is seen.

M6: This is the ultimate goal—PID control.
We would like to maintain the clock time using
a PID technique that modifies the pulse width
or voltage. To begin, I just wrote the software
for pulse width control. After our initial tests,
I think the voltage would be the better control
variable. I have not opted to implement a
version of this using the on-board relay. I am
just switching the output DAC voltage on and
off.

SOME CONTROL THEORY
Reiterating some control theory, the

calculated output is based on the measured
error, as in Equation (1). The overall control
function can be expressed mathematically as:

u(t) = K e(t) + K e(t')dt' + K
de(t)

dt'
P I D

0

t

∫
 (1)

where KP, KI, and KD are all non-negative and
denote the coefficients for the proportional,
integral, and derivative terms, respectively.
In this case, the parameters are 1,024 times
greater than the resulting coefficient. For
example, if KI is 0.046, the parameter would
be 0.046 × 1,024 = I 47. The binary number
will make the division much quicker. There
are six parameters to this approach. The
additional three are scaled coefficients of the
PID equation.

The period time is measured on the PW_
MEASURE timer (Figure 5), and the time of the
output pulse is generated on the PID_COUNTER
timer. The timers are controlled in hardware
from the COMP_IN signal. Unfortunately, there
were not enough resources on the PSoC4 to
implement the full PID loop and all the other
settings, so the activation of the current
output is implemented in software.

NEXT STEPS
From early measurements, I think future

development of the PID loop would have to
use the output voltage as the control instead

FIGURE 7

Timing interrelationship

Contact closure

PulsePulse

PeriodPeriodPeriod

PwPwPw

PdPdPd

Power must be applied before contact closure
in order to detect contact closure

Current flows

Power applied

For detailed article references and additional resources go to:

www.circuitcellar.com/article-materials

References [1] through [7] as marked in the article can be found there

RESOURCES

Cypress Semiconductor | www.cypress.com

Texas Instruments | www.ti.com

circuitcellar.com 41
F
E
A

T
U

R
E
S

of the pulse time, but a lot more development
is needed before getting to that.

In addition, we have presumed that
in all the modes, the period time would be
approximated, and nudged close to the
correct period. In truth though, if the gearing
ratio from the escapement to the hands were
known, this would be a fixed number. The
gearing ratio may also vary from Eureka to
Bulle, and even different Bulle models. To my
knowledge, the ratio has not been published,
so the only options left are to count the teeth
or, more tediously, to count the number of
oscillations for a given time period.

When creating a PCB, we would like to
include a boost converter from 1.5V, so that the
unit will operate from a battery but maintain
a regulated voltage. In turn, that poses a
problem choosing the user interface, since the
LCD display does draw current. We thought that
we could sell a few of these, but didn't know
the level of expertise that would be required,
so the simplest possible setup was desirable.
Some of the literature, however, suggests that
temperature and humidity affect the output. It
would be possible to monitor these variables
over time, and create an historical record
with a more sophisticated user interface.
Finally, the MCU would be crystal controlled,
making the time measurements and pulse

generation much more accurate and tolerant
of temperature variation.

Unfortunately for this project, Nigel lives
in England and I live in Canada, so this report
is inconclusive to date. As an impoverished
engineer, I don’t have the wherewithal to buy
an $800+ Bulle, much less the $3,000+ for a
Eureka. And then we have to service the unit.
Although we have done some preliminary
testing, it is clear that this project is going to
take a long time to complete, especially
because time gains or losses for a particular
setting must be measured over several days,
at the very least. I hope to check back with
you when I have more conclusive results.

ABOUT THE AUTHOR
Aubrey Kagan has worked in electronics for more years than he cares to

remember. He is currently Engineering Manager at Emphatec, an industrial

electronics design house in Markham, Ontario. He has written many articles

for Circuit Cellar over the past 25 years as well as a book Excel by Example

based on three of those articles. Aubrey was one of the “notable contributors”

interviewed in Circuit Cellar’s 25th Anniversary issue. He has also published

several design ideas as well as numerous blogs covering many aspects of

electronic design. You can find a list and links to more of his publications

on the Circuit Cellar article materials webpage. He can be contacted at

akagan@emphatec.com.

WIND RIVER SUPPORTS THE
BATTLE AGAINST COVID-19
Wind River is donating software and services to those

making a difference during the pandemic to accelerate

their innovation of mission-critical systems.

JOIN THE BATTLE

windriver.com/covid19

CIRCUIT CELLAR • MAY 2020 #35842

Smart Agriculture Designs
Tap IoT Technologies
The Internet of Growing ThingsThe Internet of Growing Things

I f you look at today’s Smart Agriculture

landscape, many of the challenges in that

space beg for Internet-of-Thing (IoT)

solutions. Advanced communication

and sensing technologies are being married

to advanced, cloud-based data analytics in

order to ensure agricultural production that

is both sustainable and resource-efficient.

Like most segments of today’s embedded

market, Smart Agriculture system developers

are leveraging technologies like IoT-centric

wireless comms, artificial intelligence (AI),

machine learning and computer vision.

While some of these solutions are coming

from specialist agriculture technology

companies, included in the mix are vendors of

microcontrollers (MCUs), sensors and wireless

interfaces that are feeding the needs of the

Smart Agriculture market. Over the past 12

months, a diverse array of products have

been rolled out, including solutions at the

system, board and chip level.

MCU + IOT SOLUTIONS
Several MCU vendors are seeing their

products and technologies meet the needs

of Smart Agriculture applications. Not

surprisingly, many of those MCU-based

solutions are IoT focused. An example

is Microchip Technologies’ PIC-IoT WG

development board (Figure 1). It combines

PIC24FJ128GA705 MCU, an ATECC608A

CryptoAuthentication secure element IC and

the fully-certified ATWINC1510 Wi-Fi network

controller. The controller provides a simple

and effective way to connect an embedded

application to the Google Cloud IoT Core,

FIGURE 1

The PIC-IoT WG development board combines a PIC24FJ128GA705 MCU, an ATECC608A CryptoAuthentication

secure element IC and the fully-certified ATWINC1510 Wi-Fi network controller.

By Jeff Child,

Editor-in-Chief

S
P

E
C

IA
L
 F

E
A

T
U

R
E

Hungry to get the most productivity out of their operations, farmers large

and small are turning to Smart Agriculture solutions. The technologies

critical to such systems turn out to intersect sharply with those developed

for the Internet-of-Things.

circuitcellar.com 43
S

P
E
C

IA
L
 F

E
A

T
U

R
E

says Microchip. The board also includes an

on-board debugger, and requires no external

hardware to program and debug the MCU.

Microchip recently produced a video

discussing how IoT technologies are

transforming agriculture and vertical farming

[1]. The video also includes a discussion of

tools—like the PIC-IoT WG—and techniques for

successfully implementing a cloud-connected

sensor network in your own designs. The

video is available on Circuit Cellar’s article

materials webpage. Microchip also penned an

article for AgriTech Tomorrow about using the

PIC-IoT WG boards for Smart Agriculture [2].

On the low power side, Microchip says

its SAM IoT board, based on its low power

SAM MCUs, is suited for applications like farm

sprinkler systems. Microchip’s new SAM-

IoT WG board connects the Google Cloud IoT

Core with Microchip’s 32-bit SAM-D21 Arm

Cortex M0+ range of MCUs. A requirement

in sprinkler systems is to have a low power

MCU that can be used to control water flow,
manage timings, direction of water flow and
so forth. Such systems not only need an MCU
to manage the system, but also components
like analog sensors and power regulators.
And the data from these sprinklers can then
be collated and transferred to the cloud using
Wi-Fi to provide the required information to
manage water efficiently for a given area or

farm land.

SMART FLOOD IRRIGATION
In another example of combining the

connectivity and sensor input themes of IoT,

Prescott Farm Innovations makes a product

called WET Stake. WET Stake is a device

that notifies flood irrigation farmers when
the water reaches the end of the section
that they’re watering (Figure 2). As one
of oldest methods of crop irrigation, flood
irrigation is on the low end of the irrigation
technology spectrum. Among the issues with
flood irrigation is the man-hours needed.
The farmer typically sends water to a main
ditch at the top of the field, he opens gates or
starts siphon tubes in one section of the field.
He then waits for the water to get down to the
bottom of the field and then stops that section
and starts the next one.

Most of the man-hours wasted is because
of the need to keep checking to see if the
watering is done in each section—times
can vary from between 20 minutes to up to
5 hours. Addressing this problem, a farmer
can simply place WET Stake at the end of the

section he is watering and when the water
reaches the right level, WET Stake notifies the
farmer by phone call or text. Over watering
can reduce the efficiency of fertilizer. WET

Stake saves water, prevents over watering

crop damage and saves the farmer's time.

According to the company, the IoT

technology revolution was perfectly suited

to facilitate the development of WET Stake.

The design combines an IoT chip along with

GPS, and simple sensors inside a custom-built

housing. The mechanical design is a simple,

durable and familiar shape for farmers—

almost like a shovel. It is also solar powered

to eliminate any charging downtime.

The WET Stake interface is also very simple,

and requires no extra “Smart” technology

overhead or processing. The user simply texts

the device code to a phone number which gets

paired their WET Stake device. All settings can

be changed through texting as well. When the

WET Stake detects water, the user is notified
via call or text and a map link is sent if they
want to see the location on a smart device

FIGURE 2

WET Stake is a device that notifies flood irrigation farmers when the water reaches the end of the section

that they’re watering. The design combines an IoT chip along with GPS. The mechanical design is a simple,

durable, and familiar shape for farmers—almost like a shovel. It is also solar powered to eliminate any

charging downtime.

CIRCUIT CELLAR • MAY 2020 #35844
S

P
E
C

IA
L
 F

E
A

T
U

R
E

map. Other features include a supervisor

option for larger operations. This lets one

person monitor the watering progress of

fields by their hired hands.

ENERGY-HARVESTING SOLUTION
At several conferences over the past 12

months, Renesas Electronics has demonstrated

its Silicon-on-Thin-Buried-Oxide (SOTB)

technology using a Smart Agriculture example.

The demo showed a SOTB agriculture soil

monitoring proof of concept that showcases

Renesas’ SOTB technology at the MCU level

by leveraging ambient energy sources such

as wind, light, thermal, vibration and flow.

Featuring the ultra-low power SOTB R7F0E

embedded controller product, the solution

allows energy-harvesting technologies to

drive sensor networks in environments that

require battery-free sensors or sensors that

function for long periods without battery

replacements.

Last November, Renesas introduced its

RE Family that encompassed the company’s

current and future lineup of energy harvesting

embedded controllers. Following the mass

production of the RE01 Group (formerly

known as the R7F0E embedded controllers),

the first of the RE Family, the new RE01 Group

Evaluation Kit was launched. The kit enables

users working with the RE01 Group of devices

to jump start system evaluations for energy

harvesting applications (Figure 3).

The RE01 Evaluation Kit includes an

evaluation board that features an RE01

embedded controller, an interface for the

energy-harvesting device and a rechargeable

battery interface. The kit also includes

an Arduino-compatible interface for easy

expansion and evaluation of sensor boards

and a Pmod connector to expand and evaluate

wireless functionality. In addition, there is an

ultra-low power MIP LCD expansion board

so that users can evaluate display functions

faster.

The kit also contains sample code and

application notes that serve as references for

power management designs which eliminate

the need for battery maintenance, and

driver software that supports CMSIS, Arm’s

Cortex Microcontroller Software Interface

Standard. Sample code for ultra-low power

A/D converters, digital filter and FFT (fast

Fourier transform) routines, 2D graphics MIP

LCD displays, and secure boot and secure

firmware update functions for improved

security are all available.

The SOTB process technology allows users

to simultaneously achieve low active current,

low standby current and high-speed operation

at low voltage. The RE01’s 32-bit CPU core

enables users to implement intelligent

functions in equipment powered by low levels

of harvested energy through ambient energy

such as light, vibration or fluid flow.

AI IN SMART AGRICULTURE
Just as they are in most all embedded

applications these days, AI and machine

learning are having an impact in Smart

Agriculture. An example is IntelinAir, an

analytics company that provides crop

intelligence to farmers through aerial imagery,

computer vision, machine learning, agronomic

science and intelligent user interfaces. In 2020,

IntelinAir plans to document images from close

to 5 million acres of farmland across nearly

50,000 fields, collecting over 1 petabyte of raw

data. Using computer vision and deep learning

approaches, IntelinAir analyzes data to deliver

near real-time Smart Alerts to farmers through

its flagship product AGMRI.

AGMRI is a field health monitoring and

early-warning system that enables farmers

to proactively manage their operations

(Figure 4). AGMRI uses proprietary, patented

technology to collect and analyze data

from numerous sources. IntelinAir uses

AGMRI to gather high-resolution aerial

images, temperature readings, humidity

measurements, rainfall, soil samples, terrain

type, equipment utilized, planting rates,

applications and more. They then harness the

FIGURE 3

The RE01 Group Evaluation Kit includes an evaluation board that features an RE01 embedded controller, an

interface for the energy harvesting device and a rechargeable battery interface. The kit also includes an

Arduino-compatible interface.

circuitcellar.com 45
S

P
E
C

IA
L
 F

E
A

T
U

R
E

power of hyperspectral analysis, computer

vision and deep learning in order to identify

patterns and build a complete and precise

situational representation of every monitored

field for the entire growing season.

Information is continuously aggregated,

correlated and strengthened by remembering,

relating and connecting past and present

situations. As the system trains on new

data, it becomes stronger, smarter and

more effective every day. AGMRI identifies

abnormal crop conditions long before the

human eye can detect them and tracks their

progress from week to week.

The system's AI cognitive decision-

making engine has already processed

hundreds of terabytes of crop images across

multiple seasons. The company uses Big

Data and AI to enable what it is says is a

previously unattainable class of computation

for agriculture. AGMRI uses self-learning

algorithms to perform precise predictive

analytics, which remove the sampling errors

typically associated with relying on scouting

efforts alone. Computer vision processes the

imagery captured via the aerial sensors to

extract meaningful environmental features

such as bare ground, biomass, reflection,

chlorophyll content and plant heights while

removing the noise and clutter.

ANDROID-BASED SYSTEM
System level solutions for Smart

Agriculture are rapidly evolving and, like

component solutions, are leveraging the latest

communications technology. Exemplifying

these trends, in November, Trible Agriculture

introduced its GFX-350 display and NAV-500

guidance controller (Figure 5). The solutions

were designed to provide a cost-effective

option for farmers seeking to adopt the latest

precision agriculture technology for their

daily operations.

Continuing a tradition of Android-based

high-definition touchscreen displays, the GFX-

350 display is a cost-effective way to introduce

auto-steering and application control to the

farm. The 7" (18cm) screen is easy to read and

can be used to control most field operations

with just a few taps. The display is compatible

with both the new NAV-500 and the NAV-900

guidance controllers, satisfying different user

accuracy needs. The simple and intuitive

Precision-IQ operating system speeds up field

work and makes equipment configuration

easy, says Trimble. Once vehicles, fields,

implements and materials are set up during

the first use, they are saved and can be re-

used with a couple of clicks.

In addition, the GFX-350 display is fully

ISOBUS compatible, offering plug-and-play

capability for ISO-enabled implements with

native task controller and universal terminal

functionality. The display also features

onboard Wi-Fi and Bluetooth connectivity,

allowing seamless sharing of data between

the office and the field via optional Trimble

Connected Farm solutions.

The NAV-500 guidance controller features

a low-profile rugged housing capable of

receiving signals from five different GNSS

satellite constellations—GPS, Galileo,

GLONASS, BeiDou and QZSS. This precision

solution offers sub-meter repeatable accuracy

and full-farm coverage ideal for tillage,

broad-acre seeding, spraying and harvest

FIGURE 4

AGMRI is a field health monitoring and

early-warning system that enables

farmers to proactively manage

their operations. It uses patented

technology to collect and analyze data

and sources including high-resolution

aerial images, temperature readings,

humidity measurements, rainfall, soil

samples, terrain type, equipment

utilized, planting rates and more.

FIGURE 5

The GFX-350 display and NAV-500 guidance controller were designed to provide a cost-effective option for

farmers seeking to adopt the latest precision agriculture technology for their daily operations.

CIRCUIT CELLAR • MAY 2020 #35846
S

P
E
C

IA
L
 F

E
A

T
U

R
E

operations. By using Trimble's ViewPoint RTX

satellite-delivered correction service with the

NAV-500, operators can consistently achieve

15cm pass-to-pass accuracy. Paired with

either the new GFX-350 display or larger

10" (25.4cm) GFX-750 display, the NAV-500

can provide roll-corrected manual guidance

or can automatically control steering with

the EZ Steer assisted steering system and

EZ Pilot Pro steering system.

SMART EAR TAG EXAMPLE
In another example of IoT technology

being used for Smart Agriculture, Nordic

Semiconductor says its nRF9160 System-in-

Package (SiP) LTE-M/NB-IoT cellular IoT module

is being employed in an IoT-enabled herding

livestock management solution developed by

Finnish startup, Anicare, called the Anicare

Healtag. The Healtag became commercially

available in September last year. Healtag is

designed to ensure farmers of commercially

bred reindeer and other herding animals

against the financial loss and livestock welfare

issues associated with undetected illness or

injury of herding animals that spend most of

the year roaming in the wild.

Anicare says Healtag is a significant

improvement over existing herding animal

trackers that are so large they have to be

hung from the animal’s neck, and consume

so much power that their batteries have to

be replaced every year, which is not only

expensive and time consuming for the farmer,

but also highly stressful for the animal.

In contrast, by employing a highly

miniaturized, low-power Nordic nRF9160 SiP,

the 25g, 35mm x 22mm x 23-mm Anicare

Healtag is small and light enough to be attached

to an animal’s earflap like a traditional livestock

ear tag (Figure 6). It offers a maintenance-

free battery lifetime of up to five years, which

means the tag only needs to be attached once

to the animal during its lifetime. The all-in-one

module integration of the nRF9160 SiP means

they don’t have to worry about having separate

application processor, antenna, GPS and NB-IoT

circuits that would require a lot of supporting

components and thus more PCB space.

In operation, the Anicare Healtag

autonomously measures a herding animal’s

activity (using an accelerometer) and heat

(using a thermal sensor) once every hour,

and uses the latest NB-IoT cellular wireless

technology to report of any significant

changes that would tend to indicate either

illness, injury or predator attack. This

includes using the Nordic nRF9160 SiP’s built-

in GPS functionality to immediately send the

exact location of a distressed animal to its

owner, enabling rapid rescue and treatment.

And Anicare says that in terms of coverage,

the latest NB-IoT cellular wireless technology

deployed throughout Northern Europe ensures

cellular data communication remains possible

even in areas with no 2G cellphone coverage.

GNSS AND RF FOR TRACKING
An important component of Smart

Agriculture includes the ability to precisely

track the position of crops and livestock. Here,

access to the GNSS (Global Navigation Satellite

System) provides a powerful solution to meet

such needs. Along those lines, in December

U-blox announced that Taoglas developed a

centimeter-level GNSS positioning solution.

The system comprises a high-precision L1/

For detailed article references and additional resources go to:

www.circuitcellar.com/article-materials

References [1] and [2] as marked in the article can be found there.

RESOURCES

ACEINNA | www.aceinna.com

IntelinAir | www.intelinair.com

Microchip Technology | www.microchip.com

Nordic Semiconductor | www.nordicsemi.com

Prescott Farm Innovations | www.wetstake.com

Renesas Electronics | www.renesas.com

Semtech | www.semtech.com

STMicroelectronics | www.st.com

Trimble Agriculture | https://agriculture.trimble.com

U-blox | www.u-blox.com

FIGURE 6

The Healtag is small and light enough to be attached to an animal’s earflap like a traditional livestock ear

tag. Using the nRF9160 SiP meant they don’t have to worry about having separate application processor,

antenna, GPS and NB-IoT circuits.

circuitcellar.com 47
S

P
E
C

IA
L
 F

E
A

T
U

R
E

FIGURE 7

Taoglas Edge Locate is a positioning module that comprises a high-precision L1/L2/E5 GNSS receiver, the

U-blox ZED-F9P, and all the required RF electronics and antennas in a single package.

L2/E5 GNSS receiver, the U-blox ZED-F9P, all

the required RF electronics and antennas in a

single package (Figure 7). Called Taoglas Edge

Locate, this positioning module simplifies the

development and deployments of IoT solutions

that depend on high-precision positioning

information.

Taoglas Edge Locate addresses the

growing demand for highly accurate

centimeter-level positioning performance,

which, until recently, was reserved for high-

value use cases such as guidance systems for

precision agriculture and heavy machinery,

says U-blox. This changed with the release

of additional satellite signals and the

announcement of U-blox F9 high-precision

positioning platform, which lowered the cost

of ownership of the technology, extending its

benefits to mass market applications for the

first time, according to U-blox.

Featuring the U-blox ZED-F9P high-

precision GNSS module with concurrent

reception of GPS, GLONASS, Galileo and

BeiDou on multiple frequency bands, the

Taoglas Edge Locate module can also use

real-time kinematic (RTK) algorithms to help

achieve even faster convergence times and

reliable performance, even in highly dynamic

applications. The integrated smart antenna

is specifically designed and optimized for

multi-band GNSS applications.

cc-webshop.com

Monte demonstrates how Verilog

hardware description language (HDL)

enables you to depict, simulate, and

synthesize an electronic design so

you can reduce your workload and

increase productivity.

designing a microprocessor

can be easy.

Okay, maybe not easy, but certainly

less complicated. Monte Dalrymple

has taken his years of experience

designing embedded architecture and

microprocessors and compiled his

knowledge into one comprehensive guide

to processor design in the real world.

Verilog HDL
With the right tools

CIRCUIT CELLAR • MAY 2020 #35848
S

P
E
C

IA
L
 F

E
A

T
U

R
E

High-precision positioning enables a range

of use cases like precision agriculture, but also

emergency response, smart infrastructure,

drone delivery and micro-mobility. Edge

Locate’s RTK positioning capabilities let

end users benefit from centimeter-level

positioning without subscribing to GNSS

correction services, relying instead on a

local RTK network that Taoglas can also help

customers design and set up.

3X REDUNDANT SENSORS
In another example of a GNSS solution

suited to precision agriculture, ACEINNA

in January announced the availability of its

OpenRTK330L device, a triple-band RTK/

GNSS receiver with built-in triple redundant

inertial sensors (Figure 8). Designed to

replace the expensive and bulky precision

RTK/INS systems used in today’s autonomous

systems, this compact navigation solution

meets the performance, reliability and cost

requirements of Smart Agriculture systems,

as well automotive, robot, drone and

construction systems.

ACEINNA’s OpenRTK330L includes a

triple-band RTK/GNSS receiver coupled

with redundant inertial sensor arrays to

provide centimeter-level accuracy, enhanced

reliability and superior performance during

GNSS outages. The OpenRTK330L integrates

a very precise 2 degree/hour inertial

measurement unit (IMU) to offer 10 to 30

seconds of high-accuracy localization during

full GNSS denial. This enables autonomous

system developers to safely deliver highly

accurate localization and position capabilities

in their vehicles at prices that meet their

budgets. OpenRTK330L's embedded Ethernet

interface allows easy and direct connection

to GNSS correction networks around the

world. OpenRTK330L's CAN bus interface

allows simple integration into existing vehicle

architectures.

The multi-band GNSS receiver can monitor

all global constellations (GPS, GLONASS,

BeiDou, Galileo, QZSS, NAVIC, SBAS) and

simultaneously track up to 80 channels.

The module has RF and baseband support

for the L1, L2 and L5 GPS bands and their

international constellation signal equivalents.

The IMU and dead reckoning function

contains a total of 9 accelerometer and

9 rate gyro channels based on ACEINNA's

unique triple redundant 6-Axis IMU array.

By integrating a triple-redundant IMU array,

the OpenRTK330L is able to recognize and

utilize only valid sensor data, ensuring high-

accuracy protection limits and certifiability

under ISO26262 standards. The OpenRTK330L

is supported by ACEINNA’s Open Navigation

Platform allowing

CATTLE HEALTH MONITORING
Beyond just position tracking of livestock,

IoT technologies are also being used to

monitor the health of animals. In an example

along those lines, last Fall Semtech announced

that ITK, a French supplier of IoT-based Smart

Agriculture applications, developed a new

cattle health-monitoring solution based on

Semtech’s LoRa devices. The FarmLife Smart

Agriculture service and its LoRa-enabled

FIGURE 9

The FarmLife Smart Agriculture service and its LoRa-enabled sensors detect cattle estrus, drive improved

nutrition and predict the onset of disease to help ranchers better monitor their herds.

FIGURE 8

Well suited for precision agriculture,

the OpenRTK330L device is a triple-

band RTK/GNSS receiver with built-in

triple redundant inertial sensors. It’s

designed to replace the expensive and

bulky precision RTK/INS systems used

in today’s autonomous systems.

circuitcellar.com 49
S

P
E
C

IA
L
 F

E
A

T
U

R
E

www.easyOEM.com

email: sales@easyoem.com

Toll-free: +1(866)66-EZOEM

New Product 50% OFF!
(for first order up to $1,000)

One-stop Electronics Manufacturing Service

-PCB Fabrication
-BOM Kitting
-Assembly
-Testing

We do much more...
-Design Checking -PCB Coating -MCU/CPLD/FLASH/EEPROM Programming
-Wiring Harness Assembly -Injection molding
-Printing -Labeling -Packaging -Certification
-Stocking -Distribution -Shipping -Customs Declaration

“Just focus on your design. We do the rest for you!”

sensors detect cattle estrus, drive improved

nutrition and predict the onset of disease

to help ranchers better monitor their herds

(Figure 9).

According to ITK, LoRa devices’ flexibility

in deployment makes a key difference for

connecting animals and offers the potential

for a significant return on investment

(ROI). ITK’s solution provides ranchers

with tangible, actionable data on the health

of their herds to remove variables from

ranching and create productive, efficient and

profitable ranches.

Offering a flexible solution for the Smart

Agriculture vertical, Semtech’s LoRa devices

create applications that help minimize waste,

maximize yield, reduce expenses and offer

farms and ranches an opportunity to operate

as efficiently as possible. ITK’s LoRa-based

sensors deploy simply through a collar

equipped to each animal. The collar is non-

invasive and immediately begins reporting

data on the cow’s health upon deployment

Ranchers monitor their herds from this

LoRa-based device, which provides the benefits

of four value-added services: Heat’Live for heat

detection, Feed’Live for nutrition optimization,

Time’Live for animal welfare and Vel’Live for

calving detection. These services are available

through ITK’s FarmLife Cloud platform. In

total, deploying ITK’s solution costs less than

30 Euros per animal annually.

In addition to the 300,000 cows already

monitored in Europe, approximately 20

ranches have deployed ITK’s FarmLife platform

in North America, connecting cows to the cloud

through network connectivity from X-TELIA, a

leading Canadian network provider. Following

this initial deployment, farmers claimed they

received an ROI in less than a year through an

increase in ranch productivity and efficiency.

X-TELIA and ITK plan to continue the rollout of

this Smart Agriculture solution in the Canadian

market, adding ITK’s San’Phone cattle health

monitoring service and its Thermo-bolus

sensor to connect up to 2.4 million cows in the

future.

Clearly there’s a lot of interesting activity

happening in the Smart Agriculture space.

And its overlap with IoT will only grow as

system developers seek out highly integrated,

wirelessly connected solutions linked together

with sophisticated cloud-based oversight and

monitoring.

CIRCUIT CELLTTAR • MAY 2020 #35850
T
E
C

H
 S

P
O

T
L
IG

H
T

Embedded Software Tools Embedded Software Tools
Bulk Up on SecurityBulk Up on Security

By Jeff Child,

Editor-in-Chief

Connected System ConcernsConnected System Concerns

The evolution of embedded systems into complex, connected systems continues to provide

new challenges for embedded software tool vendors. But they are rising to the moment,

as security becomes more of a priority than ever.

Gone are the days when most embedded systems
worked in isolation, not linked to any networks.
In order to reap the opportunities of a hyper-
connected IoT era, today’s embedded systems

are routinely linked for purposes of monitoring, data collection,
software updates and more. As a result, security has moved
front and center for embedded software developers.

To keep pace, embedded software tool vendors continue to
bulk up their security capabilities. They’ve been doing this both
organically, and by adding expertise via key acquisitions and
partnerships. Even though all these vendors are addressing
a similar need, the major embedded tool vendors each have
their own approaches when it comes to providing security
capabilities.

SOFTWARE IP IN THE IOT AGE
According to Anders Holmberg, Chief Strategy Officer

at IAR Systems, the need for security in today’s embedded

software goes hand in hand with the emergence of highly

connected systems. In today’s environment, complexity is no

longer the only challenge. “When IoT entered the collective

mind as a key enabler for new opportunities, that led to

increased connectivity and talk about how to protect these

connected devices,” says Holmberg. “In recent years, the trend

we’ve seen is about the importance of protecting software IP.

Today, most of the business value of embedded devices is due

to the software, so better protecting embedded devices and

the software they run is a key activity to stay competitive.”

Holmberg says that security becomes more and more

relevant as more data is collected from both machines and

humans, raising such questions about how to manage and

store sensitive and functional data. The design of automatic

update processes is also an issue.

“A side effect of implementing IP security based on

cryptography and strong hardware-based roots of trust is

that it enables more fine-grained control of what features are
available to a particular user at a given point in time—which
in turn enables new business models,” says Holmberg.

For its part, IAR Systems has made a number of advances
in recent years focused on security. First, it offers C-Trust,
an extension to IAR's development toolchain IAR Embedded
Workbench, which enables developers to add security into the
normal development flow and easily protect the application
and deliver secure, encrypted code. Figure 1 shows how to
enable C-Trust in IAR Embedded Workbench by simply clicking
a checkbox.

IAR Systems also offers its Security from Inception Suite.
It’s aimed at companies looking for a solution to implement
and customize security in their applications and to learn more
about both how to deal with security in the development
teams as well as take advantage of the coming possibilities
on a company level. The suite enables developers to build
a platform, which will extend with evolving security needs
as threats appear, and as legislation impacts the business.
It’s available in different editions and also includes extensive
security training resources, and if needed, custom design
reviews.

IAR’s toolchain is available in editions certified for functional
safety. These editions are certified by the certification
organization TÜV SÜD, according to the requirements put
forth in the industry standards ISO26262 (automotive),
IEC61508 (industrial control), EN50128/ EN50657 (rail
transportation) and IEC62304 (medical devices). Along with
the toolchain, there is special support for these functional
safety editions that allow access to frozen versions of the
toolchain for the longevity of the customer’s contract, as well

circuitcellar.com 51
T
E
C

H
 S

P
O

T
L
IG

H
T

as prioritized technical support and validated
services packs.

OPTIMIZED AGILE DEVELOPMENT
For its latest security-related advancement,

LDRA in February teamed up with Atlassian,
integrating that company’s Jira software to
optimize agile development and verification
of critical embedded applications. Embedded
developers working in safety- and security-
critical organizations must demonstrate
compliance with industry functional safety
and security standards, and to do this
they are making the shift toward agile
development methods, says LDRA. The new
integration gives development organizations
an agile solution that optimizes workflows

with requirements traceability and automates

software quality analysis and verification as
well as documentation production.

The LDRA TBmanager Integration Package
for Jira delivers bidirectional end-to-end
traceability from Jira issues and test cases
to requirements, design, code and testing
activities and artifacts (Figure 2). This
integration supports and enables both Scrum
and Kanban agile workflows to address the

requirements of critical software safety

standards such as DO-178B/C (aerospace

and defense), IEC62304, ISO26262, EN50128,

IEC60880 (nuclear energy) and IEC61508

applications.

Bidirectional interface and exchange of

requirements capabilities, along with test

case and test execution results, enable

users to see the status and verification of
requirements reflected in Jira. Furthermore,

developers can verify traceability through

Jira’s traceability matrix report and thereby

ensure all documented issues in Jira and

imported requirements have been addressed.

The LDRA TBmanager Integration Package for

Jira is available from version 9.8.1 (and newer)

of the LDRA tool suite. Users can download a

free 30-day trial of the LDRA tool suite with

the TBmanager Integration Package for Jira.

SECURITY TESTING
Tools that rigorously test embedded

software for security form an important part

of today’s development tool chains. For its

part, GrammaTech announced the availability

of its CodeSonar version 5.2. in December. The

features in that latest version of CodeSonar

provide software development organizations

the capability to use a single tool to perform

Static Application Security Testing (SAST) to

further increase code security, quality and

safety covering both embedded and enterprise

applications (Figure 3).

CodeSonar now supports AUTOSAR

C++14, the latest C++ coding guidelines

from AUTOSAR. With MISRA compliance

included in previous releases, the addition of

AUTOSAR support now sets CodeSonar at the

forefront of the MISRA/AUTOSAR merging of

standards. The release of CodeSonar 5.2 also

includes improved compiler support and open

standards, with support for new versions

of the IAR, GNU C, and CLANG compilers.

Updates to C, C++-17 and C++-20 standards

have also been incorporated, providing

customers with the confidence that CodeSonar
support spans from old to new language
features. GrammaTech continues its work on
open standards, including contributing to and
supporting SARIF version 2.1. This support
also means that CodeSonar can work with the
latest versions of IDEs such as Microsoft VS
Code.

FIGURE 1

C-Trust is an extension to the development toolchain IAR Embedded Workbench, which enables developers

to add security into the normal development flow and easily protect the application and deliver secure,

encrypted code. As shown, users can enable C-Trust in IAR Embedded Workbench by simply clicking a

checkbox (lower right).

FIGURE 2

The LDRA TBmanager Integration Package for Jira delivers bidirectional end-to-end traceability from Jira

issues and test cases to requirements, design, code and testing activities and artifacts.

CIRCUIT CELLAR • MAY 2020 #35852
T
E
C

H
 S

P
O

T
L
IG

H
T

CodeSonar 5.2 continues its tight
integration with JuliaSoft by supporting
the latest release of the Julia engine, which
provides high recall, high-precision detection
of security vulnerabilities in Java and C#. In
addition, GrammaTech is expanding support
for CodeSonar for Binaries to include support
for the Power architecture (PPC) in addition
to the existing support for x86 and Arm
architectures. The addition of the Power
architecture support for CodeSonar for Binaries
widens the scope of the product to another
key processor family used in embedded and
server-based systems, such as devices from
NXP and IBM. The update is available as a free
upgrade to eligible customers under active
support and maintenance contracts. A 30-day
trial of CodeSonar 5.2 is also available.

AUTOMATED TEST APPROACH
AdaCore has likewise beefed up its

security testing capabilities. In June 2019,
AdaCore announced a partnership with Code
Dx, a provider of an application security
management solution that automates and
accelerates the discovery, prioritization and
risk management of software vulnerabilities.
Through this partnership, Code Dx Enterprise

now supports AdaCore’s CodePeer advanced
static analysis tool, an automatic Ada code
reviewer and validator.

The solution provides developers with
one central location from which to view
the results of multiple application security
testing (AST) tools and allows them to easily
prioritize vulnerabilities for remediation.
Developers can automatically pull results from
AdaCore’s CodePeer into Code Dx Enterprise,
without downloading and then uploading scan
results each time. Users simply open Code Dx
Enterprise and the latest results are there.

Code Dx Enterprise supports and integrates
with more than 70 commercial AST tools and
techniques, including static, dynamic, and
interactive tools; third-party component
analyzers; and manual reviews, to provide
total software application vulnerability
correlation and management. The tool enables
AdaCore users to more easily collaborate on
testing and remediation processes, and to
track findings over time.

For CodePeer users who are developing
multi-language software within the same
application, Code Dx Enterprise provides a
single repository to manage all of their AST
activities. The CWE-Compatible CodePeer
advanced static analysis tool is an automatic
Ada code reviewer and validator that can detect
and eliminate errors both during development
and retrospectively on existing software
(Figure 4). CodePeer can detect a number of
the “Top 25 Most Dangerous Software Errors”
in the MITRE Corp.’s Common Weakness
Enumeration (CWE).

SECURE AUTOMOTIVE SOLUTION
Automotive applications are an area where

security and safety concerns intersect. In
February, Green Hills Software and automotive
technology specialist Tata Elxsi announced
their partnership to develop software-driven,
highly integrated automotive cockpit solutions.
At Embedded World earlier this year, the
companies showcased the first result of their
cooperation: Tata Elxsi’s eCockpit solution
running on Green Hills Software’s safe and
secure INTEGRITY real-time operating system
(RTOS) and INTEGRITY Multivisor secure
virtualization.

The Tata Elxsi eCockpit solution addresses
the requirements of a full feature vehicle
cockpit, supporting infotainment, instrument
cluster, HUD and ADAS functionalities on a
single SoC while maintaining the highest
levels of safety, security and performance
(Figure 5). The demonstration at the show
paired Tata’s eCockpit with the Green Hills
ASIL-certified INTEGRITY RTOS and its
Multivisor secure virtualization architecture
to safely and securely consolidate mixed-

FIGURE 3

Enabling more secure code, CodeSonar

lets you see the path to each flaw and

how it can occur.

RESOURCES

AdaCore | www.adacore.com

GrammaTech | www.grammatech.com

Green Hills Software | www.ghs.com

IAR Systems | www.iar.com

LDRA | www.ldra.com

Wind River | www.windriver.com

circuitcellar.com 53
T
E
C

H
 S

P
O

T
L
IG

H
T

criticality applications on a single, automotive-
grade Renesas R-Car H3 processor.

INTEGRITY Multivisor runs Linux and
Android in independent, secure virtualized
partitions. Tata Elxsi Infotainment is based
on Automotive Android and the instrument
cluster is running on Linux. Infotainment
features are shown through a 2D/3D custom
HMI on Automotive Android. V2X features
are also integrated and displayed on the
instrument cluster as warning messages.
Linux guest OS is partitioned using Linux
Containers to accommodate sub domains like
ADAS. A separate Linux Container runs Tata
Elxsi’s Sensor Fusion ADAS IP over Tata Elxsi’s
own Adaptive AUTOSAR. Complete vehicle
interface functionality is based on Tata Elxsi’s
own classic AUTOSAR 4.3.

The INTEGRITY RTOS microkernel
architecture is designed for critical embedded
systems demanding proven separation,
security and real-time determinism. Its
separation architecture helps software teams
to safely and securely partition software
running at different levels of criticality
on the Renesas R-Car H3 processor while
guaranteeing applications have the system
resources required for their proper execution.
This enables safe and secure execution of
applications running graphics and multimedia
while at the same time ensuring the safe
operation of critical functions, such as the tell-
tale status and warning lights.

CYBER SECURITY EXPERTISE
Another way that embedded software

vendors have been bolstering their security
capabilities over the past several months
has been by integrating capabilities through
acquisitions. In an example along those lines, in
January Wind River announced its acquisition
of Star Lab, a specialist in cybersecurity for
embedded systems. According to Wind River,
the acquisition broadens the Wind River
software portfolio with a system protection
and anti-tamper toolset for Linux, an open
source–based hypervisor and a secure boot
solution. Star Lab is now a wholly owned
subsidiary of Wind River.

With the emergence of ubiquitous
connectivity paradigms such as IoT and
remotely monitored/autonomously controlled
industrial and transportation systems, today’s
cyber threat landscape is rapidly evolving,
says the company. Central to this evolution is
the ease with which a focused and resourced
adversary can acquire and reverse engineer
deployed embedded systems. In addition to
modification or subversion of a single specific
device, hands-on physical access also aids an
attacker in discovery of remotely-triggerable
software vulnerabilities.

Specializing in cyber and anti-tamper
security software for Linux, Star Lab provides
embedded security for the most mission-
critical systems, infrastructure and equipment
in the world. Star Lab’s products are founded
on a secure-by-design engineering philosophy,
leveraging design patterns that reduce attack
surface, isolate critical functionality and
contain or mitigate even successful attacks.

Star Lab's products, which are conformant
with NIST 800-53 technical controls for federal
information systems and consistently pass
independent verification/validation testing,
include the following: Security Suite: The suite
offers robust Linux cybersecurity and anti-
tamper capabilities for operationally deployed
Linux systems and distributions; Embedded
Hypervisor: Designed specifically for use in
open, hostile computing environments, the
Xen-based hypervisor offers a secure open
source virtualization solution for embedded
mission systems; and Secure Boot: A
measured-boot solution ensures that a
device’s firmware and boot code is legitimate
and has not been maliciously modified or
manipulated.

FIGURE 4

The CWE-Compatible CodePeer

advanced static analysis tool is an

automatic Ada code reviewer and

validator that can detect and eliminate

errors both during development and

retrospectively on existing software.

FIGURE 5

Tata Elxsi’s eCockpit solution

runs on Green Hills Software’s

safe and secure INTEGRITY RTOS

and INTEGRITY Multivisor secure

virtualization. The Tata Elxsi

eCockpit solution addresses the

requirements of a full feature

vehicle cockpit, supporting

infotainment, instrument cluster,

HUD and ADAS functionalities on a

single SoC.

CIRCUIT CELLAR • MAY 2020 #35854
D

A
T
A

S
H

E
E
T

Based on the small-sized versions of the ITX motherboard form factor, Mini-ITX and

Pico-ITX keep growing in popularity and in embedded market share. These SBCs

provide system developers with complete PC-functionality and advanced graphics.

Datasheet:

Mini-ITX and Pico-ITX SBCs
Performance Platforms

T here was a time when large slot-card
based form factors were the only
choices for embedded systems. Those
days are gone, now that a complete

computing solution can be designed into a small
form factor embedded motherboard. Among
these so-called bus-less embedded form factors
are the various versions of the ITX. They offer
a more complete SBC approach, integrating
most or all of the typical desktop PC kinds of
functions. Applications where graphics are a
priority are particularly suited to these types of
board-level products.

While the ITX form factor is based on the ATX
PC motherboard standard, what’s more popular in
recent years are its spinoffs Mini-ITX and Pico-ITX.
Mini-ITX is a 170 mm × 170 mm (or 6.7" x 6.7")
low-power motherboard form factor developed
by VIA Technologies in 2001. They are commonly
used in small form factor computer systems. A
more recent variant is the Thin Mini ITX, a version
of Mini-ITX that is only 22mm in height, with a
thinner port cluster and horizontally stacked
SO-DIMM memory slots. Meanwhile, Pico ITX is
a PC motherboard form factor released by VIA

Technologies in January 2007. The form factor
was transferred over to SFF-SIG in 2008. The
Pico-ITX form factor specifications call for the
board to be 100mm × 72mm (3.9" × 2.8”), 75%
smaller than the Mini-ITX form factor.

Pico-ITX technology was embraced by at
least one of the teams in Audi's 2017 annual
Audi Autonomous Driving Cup (AADC), a
competition for engineering students
Participants develop fully automatic driving
capabilities and the necessary software
architectures. These are then put to the test in
1/8th-scale model cars. Specifically built for the
competition by Audi, these serve as hardware
platforms (Figure 1). The team named
“FASzination – Autonom” from Hochschule
Kempten, which was supported by Kontron, built
their model car with 10 ultrasound sensors and
2D/3D cameras (RGB and deep image). A wheel
speed sensor and six axis motion sensors for
angular velocity and acceleration submit their
data to the model car's control unit. For that
control unit, the team chose Kontron's Pico-ITX
pITX-E3845 SBC with 4-core 1.9 GHz Atom, 8GB
RAM and 60GB SSD.

FIGURE 1

Pico-ITX technology was embraced by at least one of the teams in Audi's

2017 annual Audi Autonomous Driving Cup (AADC). Participants develop fully

automatic driving capabilities and the necessary software architectures.

These are then put to the test in 1/8th-scale model cars. (Source: Audi).

By Jeff Child,

Editor-in-Chief

circuitcellar.com 55
D

A
T
A

S
H

E
E
T

Whiskey Lake-U Processor
Rides Mini-ITX

The IMB-1216 from ASRock
Industrial Computer was among early
Thin Mini-ITX boards to sport a Whiskey
Lake processor. The board offers a
170mm × 170mm Mini-ITX footprint
with a low profile. It supports industrial
applications with a semi-extended 0 to
60°C range and offers a choice of 12V
or 19V-28V DC inputs with an AT/ATX
switch.

• Intel 8th Gen (Whiskey lake-U) Core
MCP Processors

• Up to 32GB Channel DDR4
• 1x DisplayPort or VGA, 1x HDMI,

1x LVDS or eDP
• 5xUSB 3.1, 3xUSB 2.0, 2x SATA3,

6x COM
• 1x M.2 Key E, 1x M.2 Key B, 1x M.2

Key M
• 1x Intel LAN, 1x Realtek LAN
• 1x TPM Header (IMB-1216V), 1x TPM

2.0 IC onboard (IMB-1216M/P)
• +12V to 28V DC-in (DC Jack / 4-pin

ATX PWR Con)

ASRock Industrial Computer

www.asrockind.com

Mini-ITX Card with 8/9th-Gen
iCore or Celeron Processors

Avalue Technology's EMX-H310DP is a
Thin Mini ITX board with 8/9th Gen Intel
Core i3/i5/i7 and Celeron SoC Processor.
It is a Triple Gigabit LAN industrial
motherboard suitable application for
network devices, NAS Server, media
center, Industrial control systems and
other embedded applications.

• Intel LGA1151 Socket Supports 8/9th
Gen Xeon, Core i7/ i5/ i3, Pentium
and Celeron Processors

• Up to 64GB in dual DDR4 SO-DIMM
sockets

• Supports Max
• 3x HDMI, 1x dual-channel LVDS
• 2x Intel i210AT & 1x Intel i219LM

Gbit Ethernet
• 3x USB 3.1 Gen 2, 1x USB 3.1 Gen 1,

3x USB 2.0
• 3x RS-232, 1x RS-232/422/485,

16-bit GPIO
• 1x PCI-ex16, 1x M.2 Key B, 1x M.2

Key E
• DC in +12V-28V 4-pin DC-In

Avalue Technology

www.avalue.com.tw

Mini-ITX Motherboard
Features Advanced Graphics

The MANO521 from Axiomtek is a
Thin Mini-ITX motherboard powered by
the LGA1151 socket 9th/8th generation
Intel Core i7/i5/i3 (code name: Coffee
Lake) with Intel H310 chipset or optional
Intel Q370 chipset. This board provides
rapid video acceleration advantage,
multiple expansion interfaces and
triple-view capability.

• LGA1151 9th/8th gen Intel Core i7/
i5/i3 processor

• Intel H310 chipset (Q370 optional)
• 2x DDR4 SO-DIMM up to 32GB of

memory
• 4x USB 3.0 and 4x USB 2.0 ports
• 2x COM ports
• 2x SATA-600, mSATA and M.2 Key M

(NVMe)
• PCIe x4, M.2 Key E, PCI Express

Mini Card slot

Axiomtek

www.axiomtek.com

DATASHEET URLS:

ASRock Industrial Computer https://download.asrock.com/Download/e-catalog/IMB-1216.pdf

Avalue Technology www.avalue.com.tw/products/Industrial-Embedded-Motherboard/Thin-Mini-ITX/Thin-Mini-ITX/EMX-H310DP_2887

Axiomtek https://us.axiomtek.com/Download/Spec/en-US/mano521.pdf

CIRCUIT CELLAR • MAY 2020 #35856
D

A
T
A

S
H

E
E
T Pico-ITX Board Offers DSP

Plus Optional AI

Estone Technology's EMB-2237-AI
is a Pico-ITX (100mm × 72mm) PoE
edge AI embedded board based on NXP
i.MX8M Mini Arm application processor.
The board features a PoE Ethernet
port, on-board dual-core DSP that
runs algorithms for voice control, noise
suppression, and echo cancellation
technology, a full set of I/Os including
RS-232/485, and m.2 PCIe slot for Edge
TPU AI based solutions.

• NXP i.MX8M Mini with up to four
1.8GHz Cortex-A53 processors

• One Cortex-M4 for real time
requirements

• Fast Ethernet with build-in PoE
• Smart codec with dual-core DSP for

digital MICs and voice control
• MIPI DSI, LVDS, RGB, I2C connectors

for LCD and touch panel support
• m.2 PCIe slot supports Google’s Edge

TPU for high-performance ML
• Rich I/O with RS-232/485, I2C,

GPIOs, USB 2.0 ports

Estone Technology

www.estonetech.com

Whiskey Lake Min-ITX Board
Can Drive 3 Displays

The Conga-IC370 from Congatec
supports the Whiskey Lake-U
with capability of driving up to 3x
independent 60Hz UHD displays, each
with up to 4096 × 2304 resolution. It
has up to 64GB DDR4 support, 2x Gbit
Ethernet ports and USB 3.1 Gen.2 host
ports and an operating temperature
range of 0 to 60°C.

• 8th Gen Intel Core SoC processors
with up to 4 cores

• Intel UHD-Graphics 610/620, up to
24 Execution Units

• Up to 64GB dual channel DDR4
2400MT/s

• Flexible internal and external video
interfaces

• 2.5Gbit Ethernet with TSN Support
• Wide Range Power Input 12V to 24V
• Congatec embedded Board

Controller Features

Congatec

www.congatec.com

Mini-ITX and Pico ITX SBCs

DATASHEET URLS:

Congatec www.congatec.com/fileadmin/user_upload/Documents/Datasheets/conga-IC370.pdf

Estone Technology www.estonetech.com/wp-content/uploads/2020/01/EMB-2237-AI_DataSheet.pdf

Inforce Computing www.inforcecomputing.com/public_docs/Inforce_6560_Datasheet_003300_Rev%20A.pdf

Pico-ITX SBC Does Depth
Sensing and Deep Learning

The 6560 in a Pico-ITX SBC from
InForce Computing (now named SMART
Wireless Computing) taps Qualcomm’s
octa-core Snapdragon 660 SoC for
applications including stereoscopic
depth sensing and deep learning. It
supports stereoscopic depth sensing
with the help of dual MIPI-CSI
interfaces.

• Qualcomm Snapdragon 660 (SDA660
SoC) processor

• 3GB on-board LPDDR4 RAM
• 32GB eMMC ROM
• 1x MicroSD card v3.0 interface
• USB-C on USB 3.1/gen1 + USB-HS
• UltraHD (4K) display on USB-C
• H.265 (HEVC)/H.264 (AVC)/VP9

playback & capture at 4K30
• Dual MIPI-CSI cameras up to 16MP
• Dimensions: 100mm × 72mm
• Operating Temp: 0 to +70°C

(Commercial)

Inforce Computing

www.inforcecomputing.com

circuitcellar.com 57
D

A
T
A

S
H

E
E
T

DATASHEET URLS:

Kontron www.kontron.com/downloads/datasheets/p/pitx-apl-v2.0-datasheet-rev.1.0.pdf?product=146603

Win Enterprises www.win-ent.com/images/stories/download/datasheets/MB-65040.pdf

Winsystems https://resources.winsystems.com/datasheets/itx-p-c444_ds-1.3.pdf

Skylake-Based Mini-ITX
Targets IoT Gateways

WIN Enterprises' WIN MB-65040
Mini-ITX is motherboard for IoT
gateways, robotics, industrial control,
and casino gaming applications. MB-
65040 supports the Intel Skylake-S
CPU and Intel H110 chipset. The device
features 6 COM ports and other robust
I/O, making it an especially good fit in
IoT gateways.

• 6th Gen Intel Core Skylake-S
processor

• Intel H110 express chipset
• DDR4 / 2133MHz up to 16GB
• HDMI 1.4b, DP++ and 24-bit LVDS
• 2x Intel GbE LAN, 1x Mini-PCIe
• 6x COM, 4x USB3.0, 4x USB 2.0, LPC,

SMBus
• 4x SATA w/ RAID, HD Audio
• PCIe X16 and optional PCIe X1 slot
• Optional TPM via LPC pin header
• DC 12V input

WIN Enterprises

www.win-ent.com

Compact Pico-ITX Board
Features Low Power
Consumption

Kontron's embedded motherboard
pITX-APL features a small 2.5" form
factor and the latest generation Intel
ATOM processor (formerly codenamed
Apollo Lake). It offers improved
graphics and computing performance
and at the low power consumption of
only 6W to 12W at 12VDC input voltage.

• High performance CPU, graphics,
and media performance supporting
up to 3 independent displays

• TPM2.0 and optional Kontron
Approtect Security Solution

• mPCIe half size, MicroSD/MicroSIM
Card Combo

• SO-DIMM Sockets DDR3L-1866 (up
to 8GB)

• LVDS 24Bits dual channel and
Display Port 1.2

• Extended temp. range of -40°C to
+85°C (non-operating mode)

• -25°C to +75°C (operating mode)

Kontron

www.kontron.com

Pico-ITX SBC Serves Up
NXP i.MX8M

The ITX-P-C444 from Winsystems is
an industrial Pico-ITX SBC based upon
NXP’s i.MX8M application processor
and packed with dual Ethernet,
industrial I/O and expansion options.
The processor supports industry-
leading video processing along with
M4 microcontroller for real-time
subsystems.

• NXP. i.MX8M Industrial Processor at
1.3GHz

• Up to 4GB LPDDR4 RAM
• -40°C to +85°C operating

temperature range
• Pico-ITX form factor (102mm ×

73mm)
• Wide range power input (9V to 36V

DC)
• 2x GbE, 1x USB 3.1 Gen 1, 3x USB

2.0
• 2x RS-232/422/485 serial ports
• 6x GPIO), 1x MIPI-CSI (4-Lanes),

1x SPI bus, 1x I2C
• HD Audio Interface
• HDMI output with 4K UltraHD

Winsystems

www.winsystems.com

CIRCUIT CELLAR • MAY 2020 #35858
C

O
L
U

M
N

S

Picking Up Mixed Signals

Build a SoundFont MIDI
Synthesizer (Part 1)

B ack in Circuit Cellar issue 328 (November
2017), I described a Hammond tonewheel
organ emulator using a Teensy 3.6 module.
The Hammond organs used mechanical

tonewheels to generate 91 sine waves at the required
“musical” frequencies, and the organ mixed these to
produce a wealth of different “voices.” It was based
on the mathematical principle that you can generate
virtually any desired waveform by combining sine
waves consisting of the fundamental tone and various
proportions of higher harmonic frequencies.

Although these organs produced a rich variety
of voices, many sonic subtleties are present in
conventional musical instruments that were not
present in the Hammond organ’s sound—or any
electronic organ, for that matter. The most notable
difference is that when you play a conventional musical
instrument, each note has an amplitude envelope. That
is, its amplitude rises quickly from silence, stays at
some relatively constant value while the note is being
held and then decays (usually exponentially) back to
silence after the musician stops playing that note.

There are actually more “phases” to this amplitude
envelope, but you get the idea. Conversely, the
Hammond organ’s sound goes from complete silence to
some fixed amplitude immediately, and stays constant
until the key is released, at which time it returns
immediately to silence. I am ignoring the “percussive”
voicing on the Hammond organ in this comparison, but
it is a limited form of the envelope concept.

To emulate conventional musical instruments with
an electronic synthesizer, many different approaches
have been taken over the last 70 years. To a large
extent, the forms of emulation that were commercially
developed depended heavily on the available electronic
technology of the time. I won’t delve into the various

approaches taken in the past, but will concentrate
on the modern wavetable synthesis method that
is in common use today. This method requires fast
microcontrollers (MCUs) and lots of cheap RAM
memory—both of which are commonplace today.

WAVETABLE SYNTHESIS
The concept here is to forget about using a complex

algorithm to generate the required waveform, but
instead to “record” a conventional musical instrument
to obtain the actual waveform of the instrument’s
sound. Alternately, a wavetable synthesizer can use
algorithmically-derived waveforms, instead of acoustic
musical instrument samples, to generate waveforms
that are musically pleasing, but not derived from any
actual musical instrument.

These sound “samples” are then stored in some
form of non-volatile storage, such as a memory card
or other high-capacity ROM memory chip(s). When
you play the synthesizer, that waveform is read out at
a fixed sample rate. A method known as Direct Digital
Synthesis (DDS) is used to achieve all the necessary
note frequencies.

The process I just described, while accurate,
only describes a small part of the overall wavetable
synthesizer functionality that is necessary to
produce musically accurate recreations of acoustic
instruments. If you did nothing beyond implementing
the simple procedure described, the results would be
musically boring and quite unrealistic in the emulation
of many acoustic musical instruments. There are three
reasons why this would be the case.

First, the whole concept of the amplitude envelope,
mentioned above, is not captured in the recorded
waveform. You could record the note being played
for several seconds, thus including the amplitude

In this two-part article series, Brian discusses several

ways to emulate musical instruments with an electronic

synthesizer, and the technologies they require. He then

focuses on the SoundFont standard, setting up the

groundwork for Part 2 where he programs and builds

a MIDI wavetable synthesizer using Teensy 4.

Using Teensy 4

By

Brian Millier

circuitcellar.com 59
C

O
L
U

M
N

S

envelope. However, this would take up a lot of
memory. And how would you handle notes of
varying durations?

Second, conventional musical instruments,
being physical objects, have acoustical
properties, such as resonances, that vary as
you go from the lowest note that they can
produce up to the highest note. Therefore, you
can’t assume that a waveform recorded for a
low note will bear any resemblance to that of
higher notes within the instrument’s range.
In practice, you must record several sample
waveforms spread over the instrument’s
range, and store each of them in memory.

Third, most musical instruments do
not produce a perfectly stable frequency
while a note is being played. Often a small
frequency modulation, called "vibrato,"
occurs. Sometimes this vibrato isn’t present
at the very beginning of the note, but gets
introduced slowly as the note is held. This
vibrato may or may not be present for each
note played, and is part of the musician’s style
of playing. Therefore, the synthesizer should
allow for this possible variation, by responding
to “modulation” commands coming from the
attached keyboard.

Those three reasons are not a complete
list of the parameters that must be taken into
consideration to produce a realistic wavetable
synthesizer. However, they are the most
important ones.

LOOPING
Another required concept that's important

in wavetable synthesis is “looping.” The idea
here is that the electronic waveform sample
that has been recorded contains two main
sections. They are: 1) the initial "attack"
section, where the sound goes from silence to
a reasonably stable frequency and maximum
amplitude; and 2) the “loop” section, where
the sound is reasonably stable in terms of
frequency and amplitude.

Therefore, when you are “playing” a
sample, you first read out the initial attack
part of the sample. Then you continuously
repeat the loop section of the waveform, for
as long as the note is being held. Once the
key is released, you can continue reproducing
that loop section of the waveform, but you
use another part of the wavetable routine
that is handling the amplitude envelope to
exponentially reduce the amplitude of the
note down to silence.

You might question why you even need the
initial attack portion of the waveform, when
you have a separate section of the program
handing the amplitude envelope. Conventional
musical instruments often have quite complex
attack waveforms, in terms of both amplitude
and frequency/harmonic content. Therefore,

is would not be sufficiently accurate to depend
solely on the amplitude envelope function in
the program to emulate the attack section of
the sound. The amplitude envelope is handled
by a function called ADSR (from the Attack,
Decay, Sustain and Release phases). An ADSR
envelope is shown in Figure 1. Note that in
acoustic musical instruments, the attack,
decay and release phases are generally
exponential in nature.

SoundFont is a file format and associated
technology that uses sample-based synthesis to
play MIDI files. In short, SoundFont files contain
recorded audio samples of musical instruments.
Looking at SoundFont files, the decay time is
often specified as zero, because this isn’t a
big consideration in the overall replication
of the note. (The Decay section of Figure 1 is
somewhat exaggerated for illustration’s sake.)
Also, due to the relatively short amount of
computing time that is available with a sample
rate of 44,100Hz, the exponential curves found
in the attack/decay/release phases are often
simulated with a simpler linear ramp, instead
of an exponential curve.

When wavetable synthesis was first
developed commercially, the synthesizer
companies basically generated their own
sample waveforms, stored them in ROM
memory devices in the instrument and
developed proprietary methods to handle
the envelope requirement and various
other modulation requirements. These
synthesizers were called “samplers.” There
were ways to extend the available voices
on such instruments using plug-in memory
cartridges, but nothing was standardized
among the various synthesizer companies.
In time, this led to the development of the
SoundFont standard, which, in its own way,
advanced the state of the art in wavetable
synthesizers in much the same way that the
earlier MIDI standard advanced electronic
musical instruments in general.

Attack Decay Sustain Release

A D S R

Key released

Time

Key pressed

Amplitude

FIGURE 1

Any musical instrument’s sound has an amplitude envelope comprising four basic sections: Attack, Decay,

Sustain and Release. The richer the instrument’s sound, the more complex this envelope will be.

CIRCUIT CELLAR • MAY 2020 #35860
C

O
L
U

M
N

S

THE SOUNDFONT STANDARD
You could write a whole book about this

standard. On the Circuit Cellar article materials
webpage, you can find all the references for
this article—including a link [1] to just such
a book that describes in detail the SoundFont
specifications. The initial version 1.0 of the
SoundFont standard was introduced by Creative
Labs for its Sound Blaster AWE32 product. This
wasn’t a conventional synthesizer, but rather a
sound board designed to be mounted in a PC
computer—plugged into the internal ISA bus.
Figure 2 shows the AWE32 sound board for
the PC computer. The SoundFont format is now
also used by some stand-alone synthesizers,
and in instrument plug-ins used by DAW
software on PCs and Macs.

The SoundFont file structure is, by necessity,
somewhat non-rigid. Depending on the acoustic
“richness” of the instrument being emulated,
the size of the waveform sample(s) required
can vary dramatically. As mentioned earlier, to
replicate the sound of any acoustic instrument
accurately, you must provide different samples
over the range of notes that the instrument can
produce. A piano, for example, might require
20 or more individual samples to cover the its
88 keys—one for every group of three or four
keys. Some deluxe piano wavetable voices use
one waveform sample per note!

These individual samples are assigned
to “regions,” and in addition to the region’s
basic waveform, you also have other required
data—such as the ADSR envelope, vibrato
parameters and numerous other parameters
that affect the nuances of the instrument's
voice. I refer to these other parameters in this
article as "metadata," although that isn’t the
term that is used in the SoundFont reference.
Listing 1 shows the data structure used in my
program to define what I call the metadata.
Note that there is one such structure for every
region of the voice.

The SoundFont file structure was adapted
to fit into the pre-existing Microsoft RIFF-wave
file structure. This structure uses various

“chunks” and “sub-chunks” to store data. In
the case of SoundFonts, the various sample
waveforms required for each keyboard region
are stored in one type of chunk, and that
region’s metadata (ADSR envelope settings,
vibrato, sample rate, loop length and so on)
are stored in other chunks. Another chunk
stores identification data, such as the voice
name and who engineered the voice samples.
I provide a link to the RIFF file format [2],
although that is very generic. The SoundFont
reference manual describes the way in which
the RIFF-file format is used for that purpose
in greater detail.

If the SoundFont file structure had been
defined differently—for example, as one in
which there were a certain number of well-
defined data fields with known lengths and
readily-discernable terminators/separators—I
might have been tempted to write a routine in
the C language to parse that file into a form
that this project could use. This could have
been handled by the Teensy 4, itself, since
it is certainly powerful enough, and there is
plenty of program memory space available to
easily handle a complex routine such as this.

However, seeing how complex these
SoundFfonts were in the RIFF format, I
decided that it was more practical to use
the work that had already been done by the
group of students who had written the Teensy
Wavetable library object itself.

CONVERTING A FILE USING PYTHON
I touched upon the complexity of the

SoundFont file format in the last section. The
people who wrote the Wavetable object for
the Teensy Audio library decided to write a
Python program that would allow you to:

1) Browse your filesystem for a desired
SoundFont file.

2) Observe and choose which of the keyboard
regions you wanted to import into the
wavetable object library.

3) Format the SoundFont waveforms and

FIGURE 2

Back in the ‘80s, a good-quality

sound card for the IBM PC computers

looked like this. Creative Labs, which

produced this soundc ard, was the

originator of the SoundFont standard.

circuitcellar.com 61
C

O
L
U

M
N

S

the metadata into several blocks of
information, which are then stored as a
“.cpp” file. A small amount of remaining
data is stored in an associated “.h” file.

4) Choose a primary filename for the “.cpp”
and “.h” files.

The developers call this program “decoder.
py.” I commend them on using Python for this
task. When it comes to handling/parsing out
complex file structures, Python is an excellent
choice. If you look at the original decoder.py
program, you can see that it’s doing a whole
lot of parsing and conversions in a relatively
small program—a tribute to the efficiency of
the Python language.

Python is available for free for Windows
computers, Mac OS X and Linux. Personally,
I had only used Python sporadically several
years ago, as part of some work I did with
the Raspberry Pi (running Linux). I had never
used it in Windows. I was optimistic that I
could remember enough Python to convert
this program to something that would work
the way I needed for this project.

I have been using Microsoft's Visual Studio
for 5 years, and am currently using the latest
version—Visual Studio 2019. In the past, I
had only used Visual Studio with the Visual
Micro plug-in, which allows me to develop
programs on any MCU platform that the
Arduino IDE supports. For me, that includes
AVR, Arm (Teensy 3.x and 4) and the Espressif
ESP8266 and ESP32. However, Visual Studio
also supports Python development. I was
able to add this functionality by running the
Visual Studio Installer (from the Windows Start
Menu) and adding Python support. This puts
the Python executable program into the folder:

Program Files (x86) Microsoft Visual Studio\

Shared\Python37_64

You will have to make a PATH to this
location, so that you can run it from other
folders (where your Python programs will
be located). If you don’t know how to make
a windows PATH, I describe how to do this
in the “Python Resources help file” that is
included with the rest of the source files for
this project.

FOCUS ON FILES
Once you have Python installed, you can

get the SoundFont decoder.py program (and
the associated controller.py program, which
provides a Windows GUI which runs it)
from the GitHub source [3]. There are some
dependencies that need to be installed, and
this is also described on that GitHub site and
summarized in my “Python Resources help
file.” While you will need the other files from

this GitHub repository, you must use the
decoder.py file that I provide with the rest of
the source code, because I modified it to work
for this project. This is available on the Circuit

Cellar code and files webpage.
Why can’t you just use the original

decoder.py program written by the developers
of the AudioSynthWavetable library? They
designed the decoder.py program to decode
the SoundFont file data in such a way that it
could be “#included” into a Teensy C language
program- as “.cpp” and “.h” files. Basically,
this makes the chosen SoundFont voice an
integral part of the synthesizer program—it
is stored in flash memory. Their program only
produces the one voice that you have selected
and embedded in the Teensy program. I
wanted to be able to choose various voices at
will, loaded from an SD card.

The format of the .cpp and .h files from
the original decoder.py program was dictated
by how the compiler could handle the various
data structures. In fact, many of my metadata
parameters were defined in such a way that
certain Audio library constants were imbedded
in the parameter, itself. For example:

uint 32 _ t(431* S A M PLES _ PER _
MSEC/8.0+0.5) , //RELEASE_COUNT

LISTING 1

The part of the SoundFont file structure that contains what I call the “metadata” for the voice, in addition to

the actual wavetables that define the voice.

struct sample_data {
 int16_t* sample;
 bool LOOP;
 int INDEX_BITS;
 float PER_HERTZ_PHASE_INCREMENT;
 uint32_t MAX_PHASE;
 uint32_t LOOP_PHASE_END;
 uint32_t LOOP_PHASE_LENGTH;
 uint16_t INITIAL_ATTENUATION_SCALAR;
 // VOLUME ENVELOPE VALUES
 uint32_t DELAY_COUNT;
 uint32_t ATTACK_COUNT;
 uint32_t HOLD_COUNT;
 uint32_t DECAY_COUNT;
 uint32_t RELEASE_COUNT;
 int32_t SUSTAIN_MULT;
 // VIBRATO VALUES
 uint32_t VIBRATO_DELAY;
 uint32_t VIBRATO_INCREMENT;
 float VIBRATO_PITCH_COEFFICIENT_INITIAL;
 float VIBRATO_PITCH_COEFFICIENT_SECOND;
 // MODULATION VALUES
 uint32_t MODULATION_DELAY;
 uint32_t MODULATION_INCREMENT;
 float MODULATION_PITCH_COEFFICIENT_INITIAL;
 float MODULATION_PITCH_COEFFICIENT_SECOND;
 int32_t MODULATION_AMPLITUDE_INITIAL_GAIN;
 int32_t MODULATION_AMPLITUDE_SECOND_GAIN;
};

CIRCUIT CELLAR • MAY 2020 #35862
C

O
L
U

M
N

S

In equation form, the release count
parameter is defined as:

release count =

 4
samples per millisecond

31
8 0

0 5× +

.
.

 (1)

Expressing it in this way is fine when
the expression evaluator used in the pre-
compile phase will translate this expression
into a number. However, I did not want the
SoundFont data to arrive in my program
in a format that would require a lot of
expression evaluation. Instead, I modified

the original decoder.py program to format
its parameters as actual numbers, with
no system-dependent constants such as
SAMPLES_PER_MILLISECOND embedded in
the parameter.

I made other modifications to simplify
the processing of the SoundFont data by the
Teensy 4 program, and to eliminate some
other lines of code that was originally needed
to allow the ”.cpp” and “.h” files to be directly
included in the Teensy program code.

Figure 3 shows a screen capture of
the controller.py program in action. What
you see here is the controller.py program
running. This is a Windows GUI skin over the
decoder.py program (a Command Line Python
program). In the upper left portion, you can
see a black rectangle, the Python interpreter
(py.exe) running from the command line and
interpreting the controller.py program. When
the controller.py program has all the required
user input, it passes that information to the
decoder.py program to do the actual decoding.
Running an interpreted language like Python
is different from what most of us are used to
with compiled (.exe) applications!

In Figure 3, I’ve loaded a SoundFont
file containing a whole set of General MIDI
programs or voices, and selected the Baritone
Sax voice. All that’s left to do is choose how
many of the samples (regions) you’re going
to select. This will depend upon how many
keyboard regions will fit into the Teensy 4’s
480,000-byte sample waveform memory. The
size of the regions that you have selected
is reflected in the “Sample Stats” window.
Finally, you must pick a filename and select a
folder in which to store the files.

For this project, all voices must be named
in sequence from 1.cpp to 127.cpp—plus the
like-named .h files. You can save these files to
the PC hard disk, itself, or insert an SD card
adapter into your PC and save it to SD card
directly. One way or the other, you need all
the sound files on the SD card. Now that the
SoundFont files have been converted into a
form that this project will accept, let’s look
at the Wavetable Synth object in the Teensy
Audio library.

WAVETABLE SYNTH OBJECT
The Teensy audio library object

AudioSynthWavetable was written by some
Portland University graduate students. It is
documented on the GitHub site [3]. Figure 4
shows an instance of this object placed on the
Teensy Audio System Design Tool workspace.
I've provided a link to this on-line tool [4].
In Figure 4, the Help screen for it is on the
right. The seven available functions are
shown. Basically, you set the instrument
up by passing a string describing it to the

FIGURE 3

The GUI for the Python program that converts standard SoundFont files into a format that can be used by

the C code running on the Teensy MCU.

For detailed article references and additional resources go to:

www.circuitcellar.com/article-materials

References [1] through [4] as marked in the article can be found there.

RESOURCES

Espressif Systems | www.espressif.com

Microsoft | www.microsoft.com

PJRC | www.pjrc.com

circuitcellar.com 63
C

O
L
U

M
N

S

setInstrument() function. That string was defined in
the SoundFont’s “.h” file that has been “#included” in the
program. (after having run the decoder program described in
the last section) You use the playFrequency() function to
start a note playing at a defined frequency and amplitude. You
use the stop() function to end a note, and the isPlaying()
function to know when the final release phase of the note is
over.

The Wavetable synth object is monotonic—it can only
play one note at a time. You must define many instances
of this object to handle many notes at a time. Considering
that a note may linger for up to a few seconds during its
release phase, I chose to include 48 separate Wavetable
objects in my program, to handle many notes being played
simultaneously. Note that you would generally use the Audio
System Design Tool to arrange/wire up your various audio
objects, and let it produce the C code that integrates these
objects into your program. However, in this case, there are
48 discrete AudioSynthWavetable objects needed, along with
17 mixers to combine all the Wavetable objects. In this case,
it was easier just to use the code that was written by the
original developers in their sample program (lines 15-67 in
my program).

I must commend the students who wrote this library
object. Generating sounds based upon the SoundFile template
requires the following considerations:

1) Scan through the waveform table (from the region
corresponding to the given note) using the DDS method,
to provide the basic waveform.

2) Perform the above scan using the initial section of the
waveform table for the attack phase of the note.

3) Scan through the loop portion of the waveform repeatedly,
during the time that the key is being depressed on the
MIDI keyboard controller.

4) Control the amplitude of the signal throughout the loop
duration, using the decay time and then the sustain time
envelope parameters.

5) When the stop() function is called, continue scanning
the waveform, but exponentially decay its amplitude to
silence, according to the release time parameter.

6) Keep track of when the sound has decayed to zero
amplitude, for use by the isPlaying() function.

7) Apply modulation, such as vibrato, the depth of which
will often start at zero and increase while the note is still
sounding.

Those are the main functions. There might be some minor
ones implemented that I am unaware of. While the original
AudioSynthWavetable object was very nicely implemented, in
my opinion, it had two significant shortcomings.

First, you must load a specific SoundFont voice into flash

memory—so it’s a part of the Teensy program. Therefore,

the program can reproduce just that one particular voice. It’s

possible to #include more than one set of .cpp and .h files
into the program. This could give you a several voices, but in
practical terms, there is not enough memory space to handle
more than one reasonably rich voice, even with the Teensy 4.

Second, although the original library object can handle
vibrato (and in some SoundFonts a delayed vibrato), it cannot
produce vibrato that is triggered by the musician moving the
Modulation controller (the “mod wheel"), or from Channel

Aftertouch messages. This “expressiveness” is commonly
used by keyboard musicians.

When the Teensy 4 became available, it greatly increased
the available amounts of both Flash and SRAM memory,
compared to earlier Teensy modules. Given that the Teensy 4
had 1MB of SRAM, I felt it would be possible to convert the
AudioSynthWavetable object to allow the following activities:

1) Move the waveform/metadata memory from program
memory, where the original object placed it into SRAM.
Note: This was a lot more time consuming than I had
anticipated, mainly because I was using someone else’s
code instead of writing my own.

2) Use an SD card to store up to 127 separate voices, which
could be selected and loaded into SRAM on demand.

3) Allow the “mod wheel" to modulate the vibrato amount in
real time. Also allow MIDI Channel Aftertouch messages
to do the same thing.

In Part 2 of this article (Circuit Cellar 360, July 2020), I’ll
describe the programming I wrote to accomplish this, and
show the circuitry that I built to implement the MIDI wavetable
synthesizer.

FIGURE 4

The Teensy Audio System Design Tool is used to interconnect the various sound

modules that have been written for the Audio library. This shows the Wavetable object

in the Design Tool. I made extensive changes to it, to make it do what I expected

from the project.

ABOUT THE AUTHOR

Brian Millier runs Computer Interface Consultants. He was

an instrumentationengineer in the Department of Chemistry

at Dalhousie University (Halifax, NS, Canada) for 29 years.

CIRCUIT CELLAR • MAY 2020 #35864
C

O
L
U

M
N

S

By

Colin O’Flynn

Embedded System Essentials

Broad Market Secure MCUs
Spotlight on the MAX32520

Previously in this column, I've covered a few new
interesting security products. This article will be
another along those lines. It follows my experience with
a new microcontroller (MCU) from Maxim Integrated

Products. This product has only recently become available, and
seems to come with a rather loaded press releases extolling
how it will create the secure device of your dreams. But, behind
all that is a pretty interesting product that is worth finding out
more about—with the usual caveats that things might not be as
rosy as the marketing department wants you to believe.

SECURITY MARKETS
To understand what makes this device interesting, it’s

also useful to understand how secure products were typically
distributed in the past. There have been many secure MCUs in
existence before this device, and there will continue to be them
afterwards.

These secure devices had datasheets available only under
non-disclosure agreement (NDA). Part of the reason for this
is the method used to assign security levels to devices gives
a certain amount of points to having information not publicly
accessible. The idea being the less an attacker knows about the
target, the more difficult it will be for the attacker to exploit it.

Getting access to the parts under NDA required a certain
amount of interest from the MCU manufacture in your
application. This may mean minimum volumes in the millions or
more units before access to the NDA parts was even considered.

This also meant that many companies had secure devices
and peripherals that were very well tested. So, it’s clear many of
these MCU manufacturers have the expertise and know-how to
produce a secure device. But the design teams producing non-
NDA devices available in the open market—or "broad market"—
did not get to re-use those secure MCU blocks or peripherals.

This has left a soft spot in embedded security: Until relatively
recently, the security of open-market devices you can simply
buy from distributors has been rather poor. This has been
shifting in recent years with the slow introduction of power-
analysis resistance and other types of countermeasures. If you
are developing a product and not building millions of units, you
should be interested in what the most security you can get from
non-NDA parts.

The Maxim MAX32520 appears to be an interesting
experiment by Maxim to step further in that direction. The
device includes many features that are typically found in their
secure (under NDA) parts such as active tamper detection,
internal shields, and fault injection monitors. There is limited
talk of DPA resistance, but it’s something we can explore a little
bit with their development board.

Let’s take a look at the parts and then see how we can
evaluate a few of the claims! I need to warn you: At the time of
writing this article, the SDK and documentation had only just
become available. A full reference manual is not available, for
example. Hopefully, more details will hopefully become available
so you can use all the features of the device.

MAX32520 SUMMARY
On the security front, there are a few interesting features.

The first is what they call “ChipDNA”—which is Maxim’s take
on a Physically Unclonable Function (PUF). The idea of a PUF
is that you have some unique “key” generated as a physical
artifact of the device. The PUF can be designed such that the
characteristics of the circuit will become unstable if certain
invasive attacks are performed on the device. This can be used
to record what are valid devices at manufacture time, or form
part of a secure cryptographic attestation protocol. This is a
good step to prevent against someone who clones your product

The new MAX32520 MCU from Maxim provides a number of security features

that are normally found only in devices without public information available.

Here, Colin explores a few of those features, and performs some hands-on

testing to see how they hold up to the types of attacks they claim to defeat.

circuitcellar.com 65
C

O
L
U

M
N

S

from having access to online resources such as
firmware updates. A remote server can ensure
only known valid devices are given access to
such services.

Another use of the PUF is to encrypt
firmware on the device. If an attacker is able
to read the firmware out of the MCU, it will be
encrypted with a key that is unique per device.
This means the internal flash can be encrypted/

decrypted on-the-fly with AES-256 using the

PUF key. In fact, the datasheet claims this gives

you the “ultimate resistance against reverse-

engineered based attacks.”

This sounds great, but the only guaranteed

protection is against an attacker who is reading

flash memory out by physically opening

the case of the device and reading the flash

memory out. This is shown in Figure 1 at

location A. In reality, probing the die is a fairly

complicated attack vector. But if an attacker

finds a vulnerability that allows them to read
from the flash memory-space the MCU will

already be loaded and using that magic PUF

key. (An example of such a fault attack reading

unintended memory is described in my article

"Attacking USB Gear with EMFI" in Circuit Cellar

346, May 2019.) This means the decryption

block will happily pass the decrypted data to

the MCU, who is then passing it to the attacker,

as in location B in Figure 1.

THERE'S NO MAGIC
The ChipDNA PUF feature alone does not

magically protect against reverse engineering

attacks. While it’s a useful additional defense

against certain attacks, don’t think it will

somehow stop an attacker from easily stealing

your firmware if you accidently leave a door
open! Carefully enabling the decryption only
when needed and ensuring your clear the
decryption key when under attack can be
helpful in making the most of the feature.

ChipDNA does provide a useful method of
ensuring only valid devices having access to
online or value-add services, such that cloned
devices are not competitive in the market.
This requires more effort on your back-end
services—assuming your device connects to
them—to lock out counterfeit devices.

Another feature that is highlighted in the
datasheet is a serial flash emulation. Many MCUs

will boot from SPI flash, and the MAX35250

can emulate those SPI flashes. This feature is

interesting as it allows you to retrofit an existing
unsecure MCU with a secure boot platform. So,
if you already have a design booting from SPI
flash, the MAX35250 can replace that SPI flash,

and now the MAX32520 can first verify that a
given firmware image should be booted.

Of course, this feature still means you’ll
likely be sending unencrypted firmware to
your “dumb” host MCU that doesn’t support

secure boot. So, keep in mind this feature
doesn’t immediately protect someone from
copying your design! Can they simply write the
encrypted firmware into an old dumb SPI flash

in their cloned product?

A much smarter design is to implement

some functionality in the MAX32520, such

that your system would only function if both

the “dumb” MCU alongside the MAX32520 are

copied. It should be much more difficult to

copy the MAX32520 compared to observing the

unencrypted SPI flash data transfers.

The MAX32520 uses entirely internal

oscillators to avoid allowing an attacker the

ability to control an external oscillator. This

makes it impossible to perform attacks such as

clock glitching, and may make power analysis

attacks more difficult, since the device could

internally be adjusting its clock frequency. We’ll

investigate that a little bit later. The MAX32520

also supports several tamper sensors. Let’s

take a look at them and see how well they work

in practice.

TAMPER SENSORS
External Tamper: The external tamper

sensor is fairly straightforward. A random

FIGURE 1

The internal encryption key is useful to

prevent FLASH read-out attacks from

(A), but doesn’t stop those attacks

occurring after the decryption is

already enabled at (B).

FIGURE 2

The pattern on the external tamper signal is a random signal that must be detected being fed back into

the MCU.

CIRCUIT CELLAR • MAY 2020 #35866
C

O
L
U

M
N

S

pattern is sent out on one pin, and must be observed on the
second pin in order for the device to function. I captured a
portion of that waveform in Figure 2, you can see it looks like
a random binary pattern at about 3kHz fundamental rate with
the default SDK example. You can change the frequency via the
register setting.

I didn’t evaluate the random pattern—let’s assume that is
OK! The main issue with the external tamper is going to be
limited to your use case. This sensor is only active when the
device is powered. If an attacker can fully remove the power
supply, open the case and short the two tamper pins to each
other—your device will happily boot. If you plan on using the
external tamper wire, ensure you have sufficient battery power

to keep the MCU running with the tamper system. Of course,

as a low-power MCU this means running off a small battery

for a long period is reasonable. But that does mean you need

to perform a careful low-power design for the external tamper

feature to be useful.

Internal Tamper: The device also claims multiple internal

tamper sensors. Some of them are pretty straightforward,

such as checking the device is running inside valid temperature

ranges and voltages. It also adds more advanced features such

as an active die shield, as well as a various fault detectors. The

provided API lists only the “digital fault detector,” but the security

monitor (SMON) header files and SVD file (SVD provides register
bits for debuggers) tease a lot more interesting information.

The “Digital Fault Detector (DFD)” has an API call in the
provided peripheral library with the SDK, and it becomes
enabled with the MXC_F_SMON_INTSCN_DFD_EN bit. In
addition, there is a low and high voltage detector for the VDD
core, and a voltage glitch detector.

First, I’ll use the provided SDK to enable the DFD. I’ve
implemented a simple double-loop that will help me see if
any faults have affected the program flow, as in Listing 1. I
previously discussed this type of fault attack look in the column.
I’ve also printed the status of the security monitor register to
see if any changes occurred.

To start with, I used electromagnetic fault injection (EMFI)
using the setup of Figure 3 to see if I could affect the loop. This
has the development board mounted onto my UFO target board.
See the ChipWhisperer project (www.newae.com/chipwhisperer)
for more details of that board. The example output in Listing 2
shows that a few loops appeared to have invalid counts without
the security monitor tripping. Unfortunately, I can’t give you a
more definitive result. That's because there are few details on
how this is implemented, and the documentation shows only
functions to enable the DFD feature and read a status. While I
experimented with all settings—as well as some hidden flags
such as a "voltage glitch enable"—it never fully stopped the
glitches from working.

The potential for an effective glitch detector is something
worth keeping the MAX32520 in mind for. But be sure to
help validate how it works in practice in your product. This is
important not only to test the effectiveness of the MAX32520,
but also to confirm you have configured it correctly. As you
can see from my experiments, following the bare minimum
configuration may not be enough.

CRYPTO ACCELERATORS
What would a secure device be without a series of crypto

accelerators? The MAX32520 is no different of course! It lists
features such as AES, SHA, DES, ECC and RSA accelerators.

volatile unsigned int i, j, t, k;
loop_cnt = 0;
while(1){
 t = 0;
 loop_cnt++;
 for(i = 0; i < 1000; i++){
 for(j = 0; j < 1000; j++){
 t++;
 }
 }
 flags = MXC_SMON_GetFlags();
 printf("%d %4d %x\n", t, loop_cnt, flags);

}

LISTING 1

This simple double-loop uses volatile variables to make faults in instruction flow and

memory access cause the final value of "t" to be incorrect.

FIGURE 3

Electromagnetic Fault Injection (EMFI) can be used to test features such as the fault

detector.

1000000 1 0
1000000 2 0
993687 3 0
960420 4 0

LISTING 2

If the loops of Listing 1 execute correctly, "t" will have been incremented 1,000,000 times.

Note: Two outputs with incorrect values showing faults were injected into the flow.

Additional materials from the author are available at:

www.circuitcellar.com/article-materials

RESOURCES

Maxim Integrated | www.maximintegrated.com

NewAE Technology | www.newae.com

circuitcellar.com 67
C

O
L
U

M
N

S

You should note that the RSA “accelerator” is
actually a software-based (presumably ROM
code) accelerator, but, as of yet, there is no
documentation for using the RSA accelerator.

With that in mind, let’s see how we can
measure the power consumption of their
AES implementation. This should help us
see if complicated counter-measures are
implemented in the device, and if we can see
an interesting power signature that is worth
exploring in more detail.

A close-up of their development board
mounting on my CW308 UFO Board is shown in
Figure 4. To help reduce noise, I’m feeding in
1.2V to the VCore supply pin, and have removed
the "regulator output" capacitors. Because I’m
feeding in slightly higher than the specified core
voltage, the internal regulator should turn off
resulting in a clean power trace.

You can see the power traces of an AES
encryption in Figure 5. Unlike many classic
MCUs, there is no strong or obvious signature
of the accelerator block. This is a good sign
that the accelerator may have a harder power
signature to detect, but more effort would
be needed to see if it’s possible to detect the
operation of it, and also to break the accelerator
itself. We can hope this device isn’t vulnerable
to normal attacks such as a classic differential
power analysis attack.

TOWARDS BROAD MARKET MCUS
The MAX32520 appears to be a shift toward

more open secure MCUs. As you can see from
this article, there are still many features with
too little documentation. This hampers the
ability to perform critical external security
evaluations.

In addition, devices like this will always
be vulnerable to the classic problem of the
user misconfiguring it. For example, while the
device has internal flash memory encryption, a
software (logic) bug that issues read requests
to the flash memory will be automatically
decrypted by the security system. To correctly
use these devices, you need to Understand what
the security features are buying you.

All that said, the inclusion of many more
advanced features, without requiring an NDA to
see some details of them, is a strong step in the
direction we need to help design secure
products. I know many people (myself included)
are not designing products in industries that
involve the volumes needed to get classic secure
MCUs under NDA. So, keep an eye out for more
details of the MAX32520 as they become
available. You might find that you can finally get
some real security features in a broad market
MCU. And we can hope that other vendors will
be in hot pursuit of this more open approach to
secure devices, giving us the ability to evaluate
and choose between multiple such devices.

FIGURE 4

A close-up of the development board mounted onto a ChipWhisperer CW308 UFO target board

FIGURE 5

The trigger showing when the AES block should be active is on the upper trace, and the lower trace shows

the power trace.

ABOUT THE AUTHOR

Colin O’Flynn (colin@oflynn.com) has been

building and breaking electronic devices for

many years. He is an assistant professor

at Dalhousie University, and also CTO of

NewAE Technology both based in Halifax, NS,

Canada. Some of his work is posted on his

website at www.colinoflynn.com.

CIRCUIT CELLAR • MAY 2020 #35868
C

O
L
U

M
N

S

From the Bench

Upgrading the Weather Tree

A nyone who delves into a weather project has most
likely run across what I like to call the “weather
“tree”—a pole-mounted sensor system for
collecting wind speed, wind direction and rainfall.

One unit is available from Argent Data Systems for about $70
(Figure 1). Nothing else on the market gives an experimenter
these kinds of weather tools at such a reasonable price. The
interface is simple for each sensor. All the sensors use reed
switches to detect their specific properties.

The wind speed and rain gauge both employ a single reed
switch. Reed switches require a magnetic field to change
state. These particular switches are open until a magnet
comes within range. With a magnet attached to a moving
mechanism, the reed switch closes each time the magnet
and switch come into close proximity. No actual touching
is necessary. The reed switch, itself, is contained within a
glass package and can be easily damaged, so some care
is necessary. Only two wires are required for each sensor.
Connecting each sensor pair between an input pin with a pull-
up resistor and ground, the pin will be at logic high, unless
the magnet is closing the reed switch, in which case the input
is grounded.

The wind direction sensor uses eight reed switches. These
are mounted at equal distances around the direction vane’s
axis of rotation. The vane enables a switch depending on its
position. To differentiate one switch from another, resistors
of different values are placed in series with each switch.
Although this sensor also uses two wires, we are unable
to count contact closures, as with the wind speed and rain
gauges. Instead, we need to measure resistor values. We can
simply connect this sensor as we did the others. Digitally,

we would see the input being pulled up, if the vane’s magnet
were not closing a switch.

When closed, depending on the value resistor in series
with that switch, the input voltage may or may not be pulled
below the threshold for the input to see a logic low. We must
use an analog-to-digital (ADC) to detect direction with this
sensor. In fact, the design is such that one reed switch will
always be closed. It is possible for two switches to be closed
while the vane is between reed switches! All resistors in the
sensor are 1%, so their actual values are dependable enough
that with the values selected, each of the 16 points (N, NNE,
NE, ENE, E, ESE, SE SSE, S, SSW, SW, WSW, W, WNW, NW and
NNW) can be determined from the divider’s voltage.

What could be simpler than counting pulses and measuring
voltages? Not much really. So why fiddle with simplicity? Why
climb a mountain? Cross an ocean in a row boat? Because you
can. It’s not the feat, it’s the journey! In this journey, I want
to create an I2C slave that will do all the sensor work and
present the results in table form that can be accessed with
a simple I2C connection. If you’ve used I2C in the past, you
know how easy it is to use. If not, then you ought to add this
as another tool in your kit of experience.

THE I2C BUS
The interface is simple—four wires, power, ground, clock and

data. Both signal lines are open collector with external pull-ups.
Although I2C was originally designed for use among devices on
the same PCB board, the bus is applicable for wiring together
devices at length from one another. For instance, I have a system
that polls multiple I2C devices using twisted cables of over 120',
using 2.2kΩ resistors on both clock and data lines.

Argent Data Systems makes a pole-mounted sensor

unit for collecting wind speed, wind direction and

rainfall. It’s a great weather measurement system

with which you can do whatever fancy interfacing

you choose. In this project article, Jeff creates an

I2Cslave that does all the sensor work and presents

the results in table form that can be accessed with

a simple I2C connection.

By

Jeff Bachiochi

With I2C Interfacing

FIGURE 1

The sensor tree contains tipping rain gauge, anemometer and wind direction sensors.

Sensors connect to your circuitry via two 4-conductor phone cable connectors.

circuitcellar.com 69
C

O
L
U

M
N

S

The open collector nature of the bus
connections allows multiple Master devices
to take hold of the bus and request data
from multiple Slaves. Bus arbitration is
required when using multiple Masters. In
most situations, you will have a single Master
requesting data from one or more Slave
devices. Each device is given a 7-bit address.
(10-bit addresses are available in extended
addressing, but I’ve never seen one or needed
one.) If you were to purchase an I2C device,

it would already have a fixed address. (Some
devices have alternate addresses, so you
can use multiple devices on the same bus.)
There cannot be more than one device on a
bus using the same address, otherwise they
would both try to answer a request.

The first byte of any I2C transmission
contains the 7-bit address plus a read/write
bit. So, in reality, a 7-bit address is shifted
left 1 bit. The least significant bit becomes 0
(even) to write to the device, and 1 (odd) to
read from the device. The 7-bit address 0x13
(00010011) becomes address 0x26 (00100110
= write) and 0x27 (00100111 = read). This
is probably the most confusing part of the
protocol. I’ll be calling this new address the
“address value,” so as not to be confused with
the 7-bit address.

A Master is responsible for driving the
clock line. The clock line is used to determine
when to interpret the data line. The data is
allowed to change state only while the clock is
low, and are stable when the clock line is high.
Should the data line fall while the clock is low,
this indicates a start bit (communication will
commence). Should the data line rise while
the clock is low, this indicates a stop bit
(communication has ended). These rules are
easily understood by examining Figure 2.

The first data byte is always sent by the
Master and is the address value. The hardware
in all the I2C devices wakes upon seeing a
start bit on the I2C bus. All devices read the
address value clocked by the Master. Each
device has been given a unique 7-bit address.
If an address match occurs, that device
continues to pay attention, while all other
devices disregard further communications.
We’ve already discussed that the LSBit of
the address value indicates the mode of the
transmission—1 for a read and 0 for a write.

At this point, only one device (or none if
there were no device match) is still paying

attention and knows whether the Master will
be sending more data (writing) or will be
expecting data from the Slave (reading). So, a
Slave either continues collecting data, reading
it from the I2C register when it is full after
each 8 clock bits, or places data into the I2C
register before the next 8 clock bits. Where
these received bytes go or from where these
bytes come can be specific to each device.
The standard approach is to read from a table
where they are written. The table pointer is
reset at each start bit and increments for
each new byte. Let’s leave it at that for now.

Since the bus is open collector (pulled high
when no device is driving either line low), any
device can pull a line low. For the data line,
it’s easy to see that if SDA (the data signal) is
left undriven, any device looking at SDA will
interpret this as a 1 (logic high), and if driven
(pulled) low, any device looking at SDA will
interpret this as a 0 (logic low). For the clock
line, the Master will control this, but also pays
attention to it. When it stops driving the clock
line low, it expects it to go high, since Slaves
are not in charge of the clock. However, when
a Master wants to read data from a Slave by
toggling SCL, it must wait until the SCL is high
before clocking in that data from the Slave.
In this way if a Slave isn’t ready to load its
data into the I2C register, it can hold down

the clock line, which causes the Master to wait

while it prepares its data.

If the clock line doesn’t return high when

the Master stops driving it, the Master pauses

until it is released by the Slave. This acts as a

handshake that data is ready!

SETTING THE TABLE
The Slave device we are creating for this

project will do all kinds of data computations,

SDA

SCL

Start bit Data bit 0 Data bit 1 Data bit n Stop bit

FIGURE 2

I2C communication requires two

signals: SCL (clock) and SDA (data).

Except for the start and stop bits

(yellow), you can be assured that the

data won’t change while the clock line

is high (green). After the start bit, an

acknowledge ninth bit is added for

every 8 data bits. This is feedback

that someone is listening to the

communication.

ABOUT THE AUTHOR

Jeff Bachiochi (pronounced BAH-key-AH-key)

has been writing for Circuit Cellar since 1988.

His background includes product design and

manufacturing. You can reach him at:

jeff.bachiochi@imaginethatnow.com or at:

www.imaginethatnow.com.

CIRCUIT CELLAR • MAY 2020 #35870
C

O
L
U

M
N

S

so that a Master can receive weather data without having to
interpret the reed switch functions of each sensor. Here’s where
we decide what that data will be. For the rain gauge, each time
we get a low pulse, the tip bucket has flip-flopped, passing its
magnet past the reed switch that momentarily grounds the
pull-up on the sensor’s input. According to the datasheet [1],
each tip equals 0.011" of liquid. While 1 byte (0-255) could cover
0 × 0.011" (0.000") – 255 × 0.011" (2.800"), this is probably
sufficient for most locations. However, the Master would still
need to do the conversion to inches from the byte of data.
Instead, we’ll use 2 bytes. The high byte is whole inches and
the low byte is hundredths of an inch. This covers up to 256.99"
and requires no external computations, other than placing a
decimal between the upper and lower bytes. In most cases, this
may never exceed an inch if you are resetting the values every

hour or day (writing the values of 0 to the table).
The wind speed sensor works on the same principle: a

magnet passes a reed switch every complete rotation of
the anemometer. The datasheet says that one rotation/s =
1.492mph, so we must include time in our computations for
wind speed. I began thinking that we can use the same 2 table
bytes as those that we used in the rain gauge, and be able
to show wind speeds of up to 255.99mph using this format.
However, I decided that fractions of miles per hour were
unnecessary. Instead, I could show meaningful wind speed
data in a single byte 0-255mph. This led me to realize that
other wind speed data might be useful, so I set aside 3 bytes
in the table for present, average and peak miles per hour.

Wind direction, as we’ve previously seen, is an analog
value that can be boiled down to one of 16 directions. Each
direction can have from one to three characters made up of
the same four characters (N, E, S and W). Alternately, we
might want to show degrees, again three characters—in this
case digits (000-337). Remember, degrees are in increments
of 22.5 degrees, which is the best we can do with this sensor.
I’ll stick to the 16 cardinal directions, thus, three table entries.
Table 1 is the complete table.

READING THE SENSORS
Sensor data for rainfall and wind speed are based on

changes in the reed relay’s state, and each state change has an
opposite edge. The interrupt structure of this microcontroller
(MCU), the Microchip Technology PIC16F18313, is two-fold.
A dedicated interrupt input pin and a COS (change of state)
interrupt can be enabled for any input pin. COS interrupts are
all lumped together, so additional registers are required to
see through the trees. Separate registers—IOCAP (positive
or rising edge) and IOCAN (negative or falling edge)—for
each input pin define what will trigger an interrupt. All inputs
that have one or both edges enabled will affect the IOCAF
register.

The COS interrupt is triggered when the reed switch of
the rain sensor and/or wind sensor changes state, due to
the position of its associated magnet. The input will drop
and rise as the magnet passes the reed switch. We need to
recognize only one of these edges. When the IOC (interrupt on
change) interrupt is set, we must consult the IOCAF register
to determine which input has caused it, and therefore, which
routine to run. When the rain bucket tips, its interrupt will
increment the variable RainBucket (word). When the
wind speed rotates, its interrupt will increment the variable
SpeedTick (word).}

The wind direction is handled in the main loop. Execution
of any routines in the main loop are based on the passage of
time. A separate timer interrupt handles this. It sets a flag once
a set amount of time has passed, in this case 1 second. Back in
the main loop, we wait to see this flag set before proceeding.
An A-D conversion measures the resultant voltage that is
presented to the RA5 analog input. The external 10kΩ 1% pull-

up to VCC on the RA5 input creates a voltage divider with any

resistors that are enabled by the wind direction’s vane magnet.

All vane resistors are connected to the RA5 analog input, but

only those grounded by a reed switch closure become part of

the voltage divider. The resultant measurement is transferred

to the ADCDIR register. A conversion flag can be polled to
determine when it is appropriate to read this value.

TABLE 1

This project requires reading 7 bytes from this table to get real data from all three

binary weather sensors.

TABLE 2

Values taken from datasheet. I added the Cardinal and Conversion columns.

Sensor Table

Offset Register Description

0 Whole inches of Rainfall

1 Fractional inches of Rainfall (hundredths)

2 Present Wind Speed (mph)

3 Average Wind Speed (mph)

4 Peak Wind Speed (mph)

5 Wind Direction (Cardinal Character 1)

6 Wind Direction (Cardinal Character 2)

7 Wind Direction (Cardinal Character 3)

Direction Resistance Voltage Conversion

Degrees Cardinal Ohms V=5V, R=10k 8-bit value

0 N 33k 3.84V 197

22.5 NNE 6.57k 1.98V 101

45 NE 8.2k 2.25V 115

67.5 ENE 891 0.41V 21

90 E 1k 0.45V 23

112.5 ESE 688 0.32V 16

135 SE 2.2k 0.90V 46

157.5 SSE 1.41k 0.62V 32

180 S 3.9k 1.40V 72

202.5 SSW 3.14k 1.19V 61

225 SW 16k 3.08V 158

247.5 WSW 14.12k 2.93V 150

270 W 120k 4.62V 237

292.5 WNW 42.12k 4.04V 207

315 NW 64.9k 4.33V 222

337.5 NNW 21.88k 3.43V 176

circuitcellar.com 71
C

O
L
U

M
N

S

CONVERTING SENSOR READINGS
Rainfall is by far the easiest sensor reading to convert. All conversions

use fixed-point, multiply and divide routines. Each bucket tip is equal to 11
thousandths of an inch, so we multiply the number of counts in RainBucket
by 11. A 16-bit by 8-bit multiply gives a potential 24-bit result, in thousandths.
By dividing this by 1,000 we get both the whole and fractional parts of the
result. The whole part will be transferred to the table offset 0 (as 0-255
inches), and the fractional part/10 will be transferred to the table offset 1 (as
hundredths of an inch).

Converting wind speed is similar. Each anemometer rotation/s is equal
to 1.49mph, so we multiply the number of counts per second in SpeedTick
by 149. A 16-bit by 8-bit multiply gives a potential 24-bit result, which is in
hundredths of mph. By dividing this result by 100, we lob off the fractional
part and can transfer the whole part to the table offset 2 (as present MPH).
Detecting the peak speed is just a matter of comparing the present value
(table offset 2) to the peak value MPH_P (table offset 3), and saving the larger
back into the peak value (table offset 3).

The average speed is another story entirely. Like rainfall, average wind
speed will most likely be reset at some point, on an hourly or daily basis,
so we’ll want to be able to keep samples until this reset occurs. If samples
are taken every second for 86,400 seconds (1 day), then we must be able to
total a possible 255 mph × 86,400 seconds/day. That’s a 32-bit value for the
MPHTotal and a 24-bit value for the seconds count MPHSeconds. These
registers allow the running average MPH_A to be calculated using a 24-bit
divide routine.

Calculating wind direction from the sensor’s voltage divider requires
several comparisons. See Table 2 for what we can expect from the 8 reed
switch-resistor combinations. The voltage presented to the 10-bit ADC
will convert to a 10-bit value. We will be using only the most significant
8-bits of each conversion. Note that the values are not in ascending order.
A quick sorting of the list into Table 3 allows Check values to be calculated
based on the closest neighbor (conversion-wise), which will then be used in
comparisons to determine the Cardinal direction characters to be placed into
the table at offsets 5, 6 and 7 (Table 2).

I2C EVOLUTION
I2C addresses were once assigned by the developer of the I2C bus, Philips

Semiconductor (now NXP Semiconductor), in the 1980s. Little did they realize
how widespread the use of I2C would become outside of its intended local use.
Even with its expanded world, the fact remains that each I2C device on a bus
must have a unique address. In addition, the end user must know how each
I2C Slave device operates, to use it effectively. The data sent to each device
must follow the specific rules for that device.

I’ve discussed the simple transfers in which a Slave can have multiple
registers where data can come from and go to. In this case, an internal
pointer always begins at offset 0 at the beginning of any communications.
This pointer automatically increments for every data byte sent or requested.
The only issue here is that you can’t get or put any arbitrary byte of data,
without first getting or putting all the data up to that arbitrary offset. You can
stop at any point, but you must always begin at offset 0.

Around 1995, Intel wanted to improve some of the shortcomings of the
I2C bus, and the SMBus (System Management Bus) was developed. The SMB
is based mainly on the principles of operation of the I2C bus. The SMBus
protocols expand the usefulness of the bus without interfering with the simple
Read/Write protocols of I2C. I encourage you to investigate more about these
by reading the SMB specifications [2].

One of the improvements adds a “command” byte as the first byte
following any write. This could be used for many things, as you will see in
looking through the specs. I could have explained this without bringing SMB
into the picture, but if you like I2C, SMB is worth checking out.

When a Slave device follows this format, the special use of the first write
data byte in any I2C write, the data can be assigned to the register pointer. This

Direction Conversion Check

Cardinal 8-bit value 8-bit value

ESE 16

18

ENE 21

22

E 23

28

SSE 32

39

SE 46

54

SSW 61

67

S 72

87

NNE 101

108

NE 115

133

WSW 150

154

SW 158

166

NNW 176

187

N 197

202

WNW 207

215

NW 222

230

W 237

TABLE 3

With the Conversion values sorted in ascending order, the Check

column was calculated to find the average value. This value can

be used for comparisons in the code, to determine to which

Cardinal direction the vane’s position refers.

Additional materials from the author are

available at:

www.circuitcellar.com/article-materials

References [1] and [2] as marked in the

article can be found there.

RESOURCES

Argent Data Systems | www.argentdata.com

Microchip Technology | www.microchip.com

CIRCUIT CELLAR • MAY 2020 #35872
C

O
L
U

M
N

S

allows a user to point to any register, prior to
additional data transfers. You can therefore
zero in on the register you want, and not have
to begin with offset 0 every time. Writing to
a specific register would require only a write
function of the format:

I2CWrite
 (7-bit Address*2)+0
 Pointer
 Data

To read from a specific register would
require a write function (to set the pointer)
and a read function of the format:

I2CWrite
 (7-bit Address*2)+0
 Pointer

I2CRead
 (7-bit Address*2)+1
 Data

You may still write or read multiple
bytes, but the total number of bytes can be
significantly less, depending on the offset. I’m
sure you can see the efficiencies of using this

format.

REGISTER READS & WRITES
I implemented registered addressing

(using the first write to set the table pointer)
for this project. This means the MCU’s pointer
is set by the first write data byte, as opposed
to resetting it automatically to zero for each
new read or write. Let’s use an Arduino to
read the data table from this MCU. The
complete application is in Listing 1.

Now we can look at the I2C interrupt routine
for this project (Listing 2 - see p. 74), and
see how it handles the Arduino requests. The
first Arduino routine, checkI2C(), checks to
see if the I2C device is at a specific address by
looking to see if the device acknowledges its
address. This is handled by the I2C hardware
in our project’s MCU when its address (register
SSP1ADD) matches what is sent by the Master.

When the Arduino requests data,
requestData(), this read must be preceded
by a write to set the pointer to a specific
offset. In this case the writePointer()
routine always is zero. I’ve colored various
sections of Listing 2 for reference. Looking
at Listing 2, note that in the MCU’s interrupt
routine, when an address match has been
made, the Flag.Pointer is set (red). The
next time through, when the first data byte is
received, this flag is tested. The branch here
either uses this value as the new pointer, or
on subsequent data it is stored into the table
at the pointer (blue). The second part of the

LISTING 1

The Arduino makes a good “test bed” for interfacing to the project.

// This example code is in the public domain.
String SignOn = "I2C Weather Probe 1/7/2020";
#include <Wire.h>
byte I2CADDRESS = 0x26;
byte BYTECOUNT = 8;
byte rainfall_W;
byte rainfall_F;
byte windspeed;
byte windspeed_A;
byte windspeed_P;
String winddirection = " ";
//
void setup()
{
 Wire.begin();
 // join i2c bus (address optional for master)
 Serial.begin(115200); // start serial for output
 Serial.println(SignOn);
}
//
void loop()
{
 Serial.print("Checking I2C address " + String(I2CADDRESS));
 if(checkI2C()==0)
 {
 Serial.print(" ... reading");
 requestData();
 Serial.println(" ... Got it!");
 displayData();
 }
 else
 {
 Serial.println(" ... No one home at this address!");
 }
 Serial.println("Resetting rainfall!");
 resetrainfall();
 Serial.println("Resetting Average and Peak wind speeds!");
 resetwindspeed();
 Serial.println("Waiting 10 seconds before reading
 data again");
 delay(10000);
 Serial.println();
}
//
boolean checkI2C()
{
 Wire.beginTransmission(I2CADDRESS);
 return Wire.endTransmission();
}
//
void writePointer()
{
 Wire.beginTransmission(I2CADDRESS);
 Wire.write(0); // offset pointer=0
 Wire.endTransmission();
}
//
void resetrainfall()
{
 Wire.beginTransmission(I2CADDRESS);
 Wire.write(0); // offset pointer=0
 Wire.write(0); // rainfall_W=0
 Wire.write(0); // rainfall_F=0
 Wire.endTransmission(); (CONTINUED ON NEXT PAGE)

circuitcellar.com 73
C

O
L
U

M
N

S

LISTING 1: Continued

}
//
void resetwindspeed()
{
 Wire.beginTransmission(I2CADDRESS);
 Wire.write(2); // offset pointer=2
 Wire.write(0); // windspeed_A=0
 Wire.write(0); // windspeed_P=0
 Wire.endTransmission();
}
//
void requestData()
{
 writePointer();
 Wire.requestFrom(I2CADDRESS, BYTECOUNT);
 while(!Wire.available());
 winddirection = "";
 for(byte i=0; i<=BYTECOUNT; i++)
 {
 switch (i)
 {
 case 0:
 rainfall_W = Wire.read();
 break;
 case 1:
 rainfall_F = Wire.read();
 break;
 case 2:
 windspeed = Wire.read();
 break;
 case 3:
 windspeed_A = Wire.read();
 break;
 case 4:
 windspeed_P = Wire.read();
 break;
 default:
 winddirection = winddirection + Wire.readString();
 break;
 }
 }
}
//
void displayData()
{
 Serial.println("Today's rainfall " + String(rainfall_W) + "." +
String(rainfall_F));
 Serial.println("The wind is out of the " + winddirection + " at "
+ String(windspeed) + " MPH");
 Serial.println(" with an average windspeed of " + String(windspeed_A)
+ " MPH and peak of " + String(windspeed_P) + " MPH");
}

request data routine actually retrieves data
from the table. Note that the MCU’s hardware
automatically holds down the SCL line on a
read function, so your routine can have time
to fetch the required data. This is released by
setting CKP in the SSP1CON1 register as the
code exits (orange) for each byte received.
It’s not necessary for writes, but it doesn’t
hurt, either.

To clear data, separate Arduino routines
are used to handle data at different
positions in the table—resetrainfall()
at offset 0 and resetwindspeed() at
offset 2. Your application should keep track
of time and selectively clear registers as
needed to give stats by hour or day. Our
Slave device must recognize when writes
are requested to specific registers (blue).
Any writes to these will call routines that
actually clear the appropriate registers
required. Resetrainfall clears the counter
RainBucket0:1, Resetaveragewind
clears totals MPHTotalU:H:L and
MPHSecondsU:H:L, and Resetpeakwind
clears table register MPH_P. It can be noted
for this example that the actual data values
written are not used. In this case, the location
written to triggers the clearing routines.

AND IN THE END...
As shown in Figure 3, I’ve built the

circuitry on a protoboard that sits inside the
rain gauge (Figure 1). If this were a PCB, I
could spray it with coating like FINE-L-KOTE AR
aerosol conformal coating, to protect it from
moisture. For my hand-wired prototype, I plan
to put a small plastic bag over it, leaving the
bottom open. Note the two threaded standoffs
epoxied to the PCB. This creates a firm
mounting connection to the rain gauge base,
keeping it from interfering with the tipping
bucket. Since I had to debug each function
separately on alternate I/O pins, RA0:1 are
required for debugging/programming. The
jumpers allow the sensors to be temporarily
rerouted until the code is debugged. Figure 4
shows the circuit for debugging compared to
the circuit for a code-ready PCB.

The kind of work that can be done with an
8-pin MCU continues to amaze me. Many
sensor modules available today use one of
the serial protocols—UART, SPI or I2C—for
communications. I hope you can put this
knowledge of I2C into practice in your
projects. Like a physical tool in your
workshop, it never hurts to add a new
protocol to your repertoire. My “weather
tree” is no longer dumb. The “smarts” added
here help distribute the computing power of
your system. This allows you to do more,
because you need to do less. So little time, so
much to do!

FIGURE 3

My “weather tree” outfitted

with this project hand-wired

PCB. I used a 4-wire twisted

cable for the I2C connection

to, in this case, the Arduino

inside my shed.

CIRCUIT CELLAR • MAY 2020 #35874
C

O
L
U

M
N

S

LISTING 2

The I2C interrupt routine that handles communication requests from a Master (in this case the Arduino). Reading and writing are handled by the indirect pointer FSR0H:L. This

pointer is auto-incremented after each data byte.

;***************************************;***************************************
;
; I2C INTERRUPT SERVICE ROUTINE
;
;***************************************;***************************************
;
Interrupt_I2C
 banksel PIR1
 bcf PIR1, SSP1IF ; clear the interrupt
 banksel MyFSR0L_Pointer
 movf MyFSR0L_Pointer, W ; retrieve the stored pointer
 movwf FSR0L ; use Pointer
 clrf FSR0H ; always in Bank 0
 banksel SSP1STAT
 btfsc SSP1STAT, D_NOT_A ; skip next if received byte was our address
 goto Interrupt_I2C_Data ; else it must be a data byte
;
Interrupt_I2C_Address
 movf SSP1BUF, W ; dummy read of address
 bsf Flags, Pointer ; set Pointer flag
;
 btfss SSP1STAT, R_NOT_W ; skip next if Master needs to read data
 goto Interrupt_I2C_Exit ; else I need to read data from Master
;
Interrupt_I2C_AddressRead
 movf INDF0, W ; get table value
 movwf SSP1BUF ; send it to Master
 goto Interrupt_I2C_BumpPointer
;
Interrupt_I2C_Data
 btfsc SSP1STAT, R_NOT_W ; skip next if Master needs to read data
 goto Interrupt_I2C_DataRead ; else I need to read data from Master
;
Interrupt_I2C_DataWrite ; Data from Master
 btfss Flags, Pointer ; skip next if the first byte
 goto Interrupt_I2C_DataWriteContinue
;
Interrupt_I2C_DataWriteSetPointer
 movlw low StartOfI2CData ; bottom of table
 movwf FSR0L ; as new Pointer
 movf SSP1BUF, W ; get received value
 addwf FSR0L, F ; use it as the new Pointer offset
 bcf Flags, Pointer ; clear Pointer flag
 goto Interrupt_I2C_CheckPointer
;
Interrupt_I2C_DataWriteContinue
 movf SSP1BUF, W ; get received value
 movwf INDF0 ; save it to the table @ Pointer
;
 movlw Rain_F
 subwf FSR0L, W ; test for table offset 1
 btfss STATUS, Z ; skip next if no match
 call resetrainfall ; else reset rainfall
;
 movlw Wind_A
 subwf FSR0L, W ; test for table offset 3
 btfss STATUS, Z ; skip next if no match
 call resetaveragewind ; else reset average wind
;
 movlw Wind_P
 subwf FSR0L, W ; test for table offset 4
 btfss STATUS, Z ; skip next if no match
 call resetpeakwind ; else reset peak wind (CONTINUED ON NEXT PAGE)

circuitcellar.com 75
C

O
L
U

M
N

S

;
Interrupt_I2C_BumpPointer
 incf FSR0L, F ; increment the table Pointer
;
Interrupt_I2C_CheckPointer
 movlw low EndOfI2CData ; top of table
 subwf FSR0L, W ; subtract top from Pointer
 btfss STATUS, Z ; skip next if equal
 goto Interrupt_I2C_Exit ; else not a top so we're good to go
;
Interrupt_I2C_PointerRollover
 movlw low StartOfI2CData ; bottom of table
 movwf FSR0L ; as new Pointer
 goto Interrupt_I2C_Exit
;
Interrupt_I2C_DataRead ; data to Master
 banksel SSP1CON2
 btfsc SSP1CON2, ACKSTAT ; skip if ACK
 goto Interrupt_I2C_Exit ; else no more data is wanted
;
 movf INDF0, W ; get value from table @ Pointer
 movwf SSP1BUF ; send it to Master
 goto Interrupt_I2C_BumpPointer
;
Interrupt_I2C_Exit
 banksel SSP1CON1
 bsf SSP1CON1, CKP ; release clock
 movf FSR0L, W ; get the Pointer
 banksel MyFSR0L_Pointer
 movwf MyFSR0L_Pointer ; save it for next byte
 return

LISTING 2: Continued

FIGURE 4

The schematic is drawn twice. The circuit on the left allows each sensor to be routed to a couple of different I/Os on the 8-pin microcontroller, so inputs RA0:1 can be dedicated

for debugging. The circuit on the right has these sensors assigned to their final I/O, once the use of debugging pins can be released.

CIRCUIT CELLAR • MAY 2020 #35876
P

R
O

D
U

C
T
 N

E
W

S

PRODUCT NEWS

5G-Specific Cellular Amplifiers Roll
Wilson Electronics has announced the opening of pre-

orders for the company’s first 5G cellular amplifier, the Pro
710i. The Pro 710i, a single-band, commercial-grade amplifier
by WilsonPro, will boost cellular signals on Band 71 (600MHz)

and will be publicly available for purchase in summer 2020. The
telecommunications industry has been laying the groundwork
for 5G for several years, which includes increased traffic on
the Band 71 (600MHz) cellular frequency, says the company.

The Pro 710i’s single, powerful indoor antenna port boasts
+23dBm of downlink power and provides up to 100,000
square feet of indoor coverage, making it a perfect fit for
large commercial buildings looking to improve their 5G
cellular connectivity. This includes hotels, healthcare facilities,
schools, manufacturing plants, commercial and residential
real estate properties and more.

The Pro 710i cellular amplifier can be used as a standalone
product to support the ongoing 5G rollout on Band 71 for
T-Mobile, U.S. Cellular and other carriers. It can also be easily
installed to run in parallel with any existing WilsonPro amplifier
system without the need to replace existing amplifiers.

Wilson Electronics | www.wilsonelectronics.com

Tiny Dual H-Bridge Control for Brushed DC Motors
Robot Power has announced the availability of the

Scorpion Nano dual H-bridge motor control for brushed DC
motors. The Scorpion Nano is the smallest member of Robot
Power’s Scorpion family. Designed for controlling motors in
small robots, toys and other mechanisms, the Nano features
two independent reversible motor drive circuits. Robot Power
claims that the Scorpion Nano is one of the smallest, if not the
smallest available dual RC motor controls with channel mixing
for skid steer robot control.

The Nano features robust automotive grade motor drive
ICs with full fault protection and a wide operating range.
These motor drivers allow up to 1.2A of continuous current
to each motor. Greater than 2A peak current is supported for
short-term loads. RC wires are pre-installed along with a BEC
function to power the RC receiver or microcontroller (MCU).

Battery and motor wires are also pre-installed for easy
connection without soldering to the Nano PCB. A standard
Scorpion family feature is a calibration button to allow the
Scorpion Nano to adapt to the input signal range from either

an RC radio or MCU. A cut-able jumper allows the Scorpion
Nano to be configured for RC channel mixing or separate
(tank mode) control.

Robot Power | www.robotpower.com

Motor Controller Features Arm Cortex-M0 MCU
Infineon Technologies has released its new IMC300 motor controller series. It

combines the iMOTION Motion Control Engine (MCE) with an additional microcontroller
based on the Arm Cortex-M0 core. IMC300 complements the IMC100 series and aims
at variable speed drives that require very high application flexibility. Both families,
IMC100 and IMC300, share the same implementation of the MCE 2.0 providing ready-
to-use motor and, optional, PFC control. Applying the MCE for controlling the motor,
customers can focus on their system application that runs fully independently on the
embedded Arm microcontroller. Infineon’s field-proven MCE 2.0 implements highly
efficient field-oriented control (FOC) of permanent magnet synchronous motors
(PMSM).

IMC300 derivatives are offered for motor drives with and without PFC control.

Devices in LQFP-64 packages (shown) are in mass production, and LQFP-48 types

will be released in the second quarter 2020. Rapid prototyping of a drive inverter is

enabled via two new control boards for the iMOTION Modular Application Design Kit (MADK). MADK is a modular and flexible
development platform providing a range of control and power board options for motor drive applications up to 1kW.

Infineon Technologies | www.infineon.com

circuitcellar.com 77

TS-7250-V2

Single Board Computer

1GHz ARM Computer with

Customizable FPGA-Driven

PC/104 Connector

and Several Interfaces

at Industrial Temp

www.embeddedARM.com

IDEA BOX
The Directory of
PRODUCTS & SERVICES

AD FORMAT:
Advertisers must furnish digital files that meet our specifications (circuitcellar.com/mediakit).

All text and other elements MUST fit within a 2" x 3" format.
E-mail adcopy@circuitcellar.com with your file.

For current rates, deadlines, and more information contact
Hugh Heinsohn at 757-525-3677 or Hugh@circuitcellar.com.

cc-webshop.com

Circuit Cellar 2019
Digital Archive

With this digital subscription, you have access
to all 12 issues of Circuit Cellar 22001199

from any computer or tablet at
anytime or download the PDF.

Other years also available.

Order yours today

Surplus & New Parts & Supplies
Since 1967

Discount Prices
Fast Shipping

LEDS . CONNECTORS . RELAYS

SOLENOIDS . FANS . ENCLOSURES

MOTORS . WHEELS . MAGNETS

PC BOARDS . POWER SUPPLIES

SWITCHES . LIGHTS . BATTERIES

and many more items...

We have what you need for your next project.

SERVERTEST

sales@ccsinfo.com – 262-522-6500 x 35
PIC® MCU is a registered trademark of Microchip Technology Inc.

www.ccsinfo.com/CC520

Adding TCP/IP..
Start with 3.3V Ethernet

Development Kit

CCS Development kits combine the
powerful CCS optimized C compiler

and ICD-U64 In-Circuit Programmer/
Debugger with prototyping boards

and hardware accessories.

Now
$25 OFF

Example Programs:

Complete Web Server

E-mail Generator

SD Card Read/Write

CIRCUIT CELLAR • MAY 2020 #35878
T
E
S

T
S

 Y
O

U
R

 E
Q

Problem 1— A sequence detector receives serial

binary data, grouped into 4-bit blocks. In any given

4-bit group, it must determine whether there were

exactly two 1s. What is the minimum number of

states required to accomplish this?

Problem 2— A similar sequence detector receives

serial binary data, grouped into 4-bit blocks. But in

any given 4-bit group, it must determine whether

there were two or more 1s. What is the minimum

number of states required to accomplish this?

Problem 3— A very long shift register needs to

have at least one "1" circulating in it at all times.

Obviously, one way to accomplish this is to wire up

an enormous NOR gate to all of the stages (except

the last), whose output drives the first stage. What

is a different way to achieve the same result, while

monitoring only a single point in the loop?

Problem 4— Why does the X-10 power line

communications protocol specify that its tone bursts

should be synchronized to the zero crossings of the

power line voltage?

cc-webshop.com

Circuit Cellar
2019 Archive

Order yours today

TEST YOUR EQ
Contributed by David Tweed

circuitcellar.com 79
T
E
C
H

 T
H

E
 F

U
T
U

R
E

Securing Linux-Based
Systems in 4 Steps

Glenn Seiler,

VP of Linux Solutions,

Wind River

The Future of Linux Security

T he world is increasingly
interconnected and, as a
result of this, the exposure
to security vulnerabilities

has dramatically increased as well.
The intricacies of maintaining today's
Linux-based platforms make it very
challenging for developers to cover
every potential entry point. In 2019
there was an average of more than 45
Common Vulnerabilities and Exposures
(CVEs) logged per day.

How does a development organization
keep up with that? In order to stay on
top of this, developers must increasingly
spend more time and effort integrating
CVE patches into their solutions, at the
cost of spending time developing their
applications.

AUTHORITATIVE CVE SOURCE
Among other efforts, The MITRE

Corporation [1] maintains the CVE
system and is the authoritative source
of CVE content, which is located on the
CVE website [2]. MITRE functions as
the editor and primary CVE Numbering
Authority (CNA). CVE is well known
across the industry for cyber threat
sharing, vulnerability priorities and
exposure names.

Security attacks come in many forms
and use various entry points. Each
attack type comes in several flavors, as

there is usually more than one way that

they can be configured or camouflaged

based on the experience, resources and

determination of the hacker.

While some threats are more

prevalent than others, a developer needs

to protect against all vulnerabilities.

Figure 1 shows the increase in CVEs

over the last 6 years, and how many of

those CVEs actually impact any given

distribution.

MANAGEMENT PROCESS
To reduce threats on Linux-based

systems, it helps to have a management

process and four-step procedure to:

monitor, assess, notify and remediate

CVE threats. Now let's examine the

process in more detail:

1. Active Monitoring: Monitoring is

essential and required due diligence

for staying ahead of threats in this

ever-changing world. Obviously, this

alone doesn't solve any problems, but

does provide critical insight of potential

vulnerabilities and is a differentiator
with a trusted-vendor.

Neglect remains a big risk and
some Linux providers are vulnerable
from the very beginning with inferior
due diligence. A solid security team’s
approach would include active
monitoring, rapid assessment and
prioritization, proactive customer
notification and timely remediation to
achieve a strengthened security posture.

It is important to constantly monitor
the CVE database for potential issues.
In addition, it is advisable to monitor
specific security notifications from US

FIGURE 1

Increase of CVEs and 4-step process

80 CIRCUIT CELLAR • MAY 2020 #358
T
E
C
H

 T
H

E
 F

U
T
U

R
E

For detailed article references and additional resources

go to: www.circuitcellar.com/article-materials

References [1] through [3] as marked in the article

can be found there.

RESOURCES
Wind River | www.windriver.com

Glenn Seiler is Vice President of Linux Solutions for Wind River. In this role

Glenn is responsible for defining and taking to market Linux and Open Source

solutions for customers in embedded markets including Telecom, Industrial and

Aerospace and Defense.

government agencies and organizations like
NIST, U.S.-CERT, as well as public and private
security mailing lists, for alerts from each of
these organizations whenever a new security
threat arises.

2. Rapid Assessment: Awareness is only
the first step. As soon as a potential threat is
uncovered, the level of danger associated with
the threat, as well as which parts of the Linux
version are exposed or vulnerable, must be
determined. The vulnerability is categorized
and prioritized based on impact and ranked in
order of importance based on the CVE priority
level and the severity of impact to a business,
system performance or exposure of data.

As noted in the next steps, mitigation of
the vulnerabilities in this context typically
involves coding changes, but could also
include specification changes or even
specification deprecations—for example,
removal of affected protocols or functionality
in their entirety.

3. Proactive Customer Notification: Once an
assessment is complete, the system reports
back to any affected subsystems or users.
The report provides sufficient detail about

the vulnerability, as well as a plan to thwart

the threat. The harvested information also

synchronizes with the remediation process.

The notification process is more vital than
ever, and may involve employing outside tools
and people. This is a determination that would
be made based on the assessment of the
vulnerability. However, the critical element of
this step is the timely handling of notifications
with customers to keep damage or data loss
to a minimum.

4. Timely Remediation: The remediation
process occurs, triage style. Teams should
gather all the information relevant to the
problem so that it can be analyzed. Based
on the severity, threats are either dealt with
immediately or handled in a timely "bug fix”
manner, which would be deployed in a later
update.

Companies can clearly benefit from using a
commercially supported Linux. Commercially
supported Linux offers low-costs, long
term support and maintenance along
with comprehensive development lifecycle
services. A commercial vendor can supply the
training, services, maintenance and support
needed. This, in turn, increases productivity
and reduces the overhead associated with
maintaining a unique Linux distribution.

Regular maintenance, including the four-
step CVE process, can radically reduce the
hassles, lower the costs and protect customers
from the risks of security vulnerabilities
across their entire lifecycle.

FUTURE PLANS
While the above management process and

steps discussed here won't ensure that all
threats are avoided, they do help mitigate
customer risk and reduce a system's exposure.
Developers may want to apply a critical lens
when deciding to build and support their own
Linux distribution or when choosing a
commercial Linux OS provider. Supporting
security vulnerability needs to be considered
and compared to how they follow the steps
outlined here.

IAR Academy is a technical training program offering a unique opportunity to

boost your skills in embedded development, speed up project efficiency and

meet tight deadlines easier.

IAR Academy On Demand provides you with courses though a self-service online

training portal which allows you to access training at your desk or on the go, in

a pace that fits your learning preferences. The portal also offers opportunities

to register for live seminars, purchase different training modules and request

custom on-site training for your organization.

With IAR Academy On Demand you have a choice in where, when and how to

learn, with the possibility to easily get reference material from previous courses.

START YOUR LEARNING JOURNEY!

SIGN UP NOW TO GET 3 FREE COURSES, 15 MIN EACH:

 S t a r t y o u r
l e a r n i n g j o u r n e y.

www.iar.com/academy

FROM THE OUTBACK

TO OUTER SPACE

Extreme Remote Deployed Assets.

Technologic Systems computers are engineered

to be deployed to some of the most

remote places on, and off, the Earth.

The TS-7800-V2 was designed to provide extreme

performance for applications demanding high

reliability, fast startup, and connectivity

at low cost and low power.

Packed with interfaces such as USB 3.0, SATA

Gigabit Ethernet, CAN, and RS-232, RS-485,

and TTL UART Serial Ports plus a full compliment

of digital and analog I/O. With so many features

integrated into one computer, you will

accomplish more while reducing

your payload weight.

Where does your project need to go?

 Single Board Computer with

Marvell Armada 385

Dual Core 1.3 GHz ARM CPU

TS-7800-V2

Qty 100

$229
Starting at

