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5 Koster’s Curse 
Major concepts: 

• Stage-structured population models classify individuals by size or other life stages. In 
many populations size is a better predictor of an individual’s demographic contribution 
to population growth than is age. The Life cycle graph is a useful way to understand the 
demographic processes in stage structured populations. 

• The rate at which individuals progress from one stage to the next is captured in the 
demographic transition matrix, which is based on the survival, growth, and fecundity of 
individuals in different stages.    

• The rules of matrix algebra can be used to project the population size over time and 
calculate the asymptotic growth rate of the population (λ). 

• One use of this demographic model is to investigate various future scenarios, by altering 
elements of the transition matrix and seeing how that affects the population growth rate. 

• For example, one possibility to control the spread of Koster’s curse, an invasive shrub in 
Hawaii might be to introduce herbivorous insects that feed on the plant.  The 
demographic model shows that very large reductions in survival would be necessary to 
prevent the spread of this species. 

 
 
In the late 1800s some seeds of the plant Clidemia hirta were accidentally introduced onto the 
island of Fiji, probably with a shipment of coffee plants.  Clidemia is a shrub in the family 
Melastomataceae that is native to Central and South America. Normally it is not a common 
species. It is often found in disturbed sites, but rarely at high density and rarely in the forest 
understory. However on Fiji things changed.  The plant grew prolifically and by the 1920s it 
became a major pest in coffee and coconut plantations, forming dense monospecific stands that 
shaded out all of the other vegetation.  It is now 
known as “Koster’s Curse”, named for the 
unfortunate person whose coffee plantation was 
the site of the original introduction. It has spread 
to most of the Pacific Islands and is listed as one 
of the 100 worst invasive species in the world. 
 
Like most islands, Hawaii is very susceptible to 
invasive species.  Over 1000 plant species have 
been indentified as invasive in the Hawaiian 
Islands.   Koster’s Curse was first observed in 
Hawaii in 1941 and by the 1980s it had spread to 
most of the major islands.  Its growth and spread 
has been prolific. On the island of Oahu it 
covered less than 100 ha in 1950, about 38000 ha in the 1970s and 100,000 ha in 1990s. 
 
Various volunteer groups have attempted to control the plant by pulling it by hand, generally 
without success.   Each fruit produces hundreds of seeds, so even if the aboveground plants are 
removed, there are often plenty of seeds in the soil to reestablish the population. 

Figure 5.1 Koster’s Curse, Clidemia hirta 

 
http://tncweeds.ucdavis.edu/photos/clihi01.jpg 
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5.1 Why has it become invasive?   
Dr. Saara DeWalt, then a graduate student at Louisiana State University, wanted to determine 
why it was so invasive in Hawaii and what could be done about it. She came up with several 
possible hypotheses.  First, perhaps Hawaiian plants are particularly vigorous varieties that grow 
faster than their counterparts on the mainland.  To test that, she grew plants from Costa Rica and 
Hawaii next to each other in experimental gardens and there was no difference in the growth of 
the two types.  So she could discount that hypothesis. 
 
Perhaps it has escaped from specialist herbivores or parasites that reduce the plant’s abundance 
in its native range?  If those herbivores and parasites are not present in Hawaii, then populations 
of Clidemia would grow faster and make the plant “invasive”.  To test that, she planted test plots 
in Hawaii and Costa Rica and then experimentally excluded insects and fungi by spraying 
randomly chosen sets of plants with insecticide, fungicide, or both.  She found that on the 
mainland, there was 5 times more damage to leaves by herbivores than in Hawaii (where less 
than 1% of the leaf area was damaged). Moreover, the sprayed plants had higher survival, at least 
in the understory (Fig 5.2).   These data suggest that escape from herbivores and pathogens may 
be part of the reason that the species has become invasive in Hawaii, and part of the reason why 
it has expanded its ecological range into the forest understory.  In Hawaii, there are no native 
plants from the family Melastomataceae, so the islands have few insects that naturally feed on 
Clidemia. 

 
Figure 5.2.  Fungicides and insecticides increase survival in understory forests on the mainland 
but not on Hawaii where overall damage rates are low. (from DeWalt 2004) 
 

 
From the data in Fig. 5.2, what is the evidence that the survival differences in the 

Understory in Costa Rica are caused by insect and fungal damage?   
 

Why is there no difference among the treatments in Hawaii? 
 

These results suggest that one approach to control the spread of this aggressive invader would be 
to introduce insects or pathogens to Hawaii that feed on the plant.  There is an active program to 
identify insects that could be released in Hawaii that feed on Clidemia, but at the same time 
would not threaten native plant species.  Several insects appear promising.  The thrips Liothrips 
urichi was released in 1953 because it had been shown to be effective in Fiji, at least in open 
habitats. More recently, other insect species have been identified as candidates to control the 
spread of Clidemia.   The fungus Colletotrichum gloeosporioides was introduced in 1986 and 
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appears successful at reducing the survival of infected plants.  Here are some of the insects and 
fungi that are promising candidates as biocontrol agents (Table 5.1): 
 
Table 5.1  Some potential biological control agents for Clidemia hirta. 

 Species Feeds on: 
Thrips Liothrips urichi shoots 
Moths Carposina bullata  flowers and fruits 
 Mompha trithalama flowers and fruits 
 Antiblemma acclinalis leaves 
 Ategumia matutinalis leaves 
Beetle Lius Poseidon leaves 
Fungus Colletotrichum gloeosporioides leaves 

 
Of those species, some feed on flowers and fruits and thus reduce the seed production of 
Clidemia. Others feed on leaves and reduce plant growth or survival. We know that both survival 
and reproduction contribute to the population growth rate, but which is more important? Would 
it be more effective to reduce the growth of seedlings to adults? or the survival of adults? or the 
fecundity of adults? In other words, which class of insects is more likely to be an effective 
biological control agent?   
 
One way to answer that question is to develop a model of population growth of Clidemia, and 
use that model to try out different scenarios.  With a model that captures the basic biology of the 
system, we can systematically alter particular factors (such as fecundity or survival) and see how 
much of a change is needed to prevent the growth of the population. 
 
So what should the model look like?  We want a model with just enough detail to capture the 
system, but one that is simple enough that it is easy to understand.   For this invading species, we 
are primarily concerned with whether the population will continue growing exponentially or not, 
so we can initially ignore density dependence.  On the other hand, not all individuals are equal.   
In the previous chapter we used life tables to explore the growth of age-structured populations.  
Here we will use a different technique based on size rather than age, because sometimes size is a 
better predictor of the demographic contribution of an individual. That is particularly true for 
species with indeterminate growth (such as plants). Regardless of their age, the reproductive 
output and survival of large plants is much higher than that of small plants.  So we will need a 
model that keeps track of large, medium and small plants separately. 
 

5.2 Life-cycle graph and stage structured matrices 
 
One of the most useful ways to begin to look at the demography of populations when there are 
several important life stages is to construct a “life cycle graph”.     
 
Imagine that there is a hypothetical plant species that can be divided into several size classes 
(small, medium, large, extra large). We’ll imagine that we census the population once a year, and 
record the fate of each individual.  
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What are the possible fates of individuals in each size class of plants?  Small individuals can 
either survive and grow to become medium plants, survive but stay small, or die.  Thus there is 
an arrow connecting small plants to the medium size class, and a circular arrow connecting small 
plants back to the same size class. We do not need an explicit arrow for the dead plants since 
they are not observed at the next census.   

 

Figure 5.3 An example life cycle graph. 

Similarly medium plants can stay at that size or grow to become large plants or die.  Large and 
Extra large plants can also reproduce to produce new small plants, so there are arrows from those 
sizes back to size 1.  The lack of an arrow from size 2 to size 1 in our hypothetical example 
implies that the medium plants are not yet large enough to reproduce. 

In this simple graph, the “g” terms are the probability of surviving and growing into the next size 
class, the “s” terms are the probability of surviving and staying in the same size class and the “f” 
terms are the fecundities: the number of seedlings that are produced by each size class and 
survive to be counted in the next census.  

This is just one possible life cycle.  Under some conditions, it is possible for a plant to grow so 
fast it traverses two or more size classes in a single year.  In that case there would be additional 
arrows that go directly from size 1 to 3 or from size 2 to 4.  Or, sometimes a plant can be eaten or 
damaged so it loses biomass and shrinks from a larger to a smaller size class.  In that case there 
could be additional arrows pointing backwards from a larger to a smaller size class. 
 
Steps for constructing the life cycle graph: 
s Identify the important life stages.  Each of the life stages becomes a node on the graph 
s Decide on a census interval (commonly 1 yr). 
s Connect the nodes with arrows showing the possible transitions from one stage to another 

that can occur during a single census interval. 
s Label the arrows with either the transition probabilities (for survival and growth arrows) or 

fecundities (for arrows leading back to the first size class). 

We can then use the information in this life cycle graph to predict the numbers of individuals in a 
particular size class at the next census time.  For example, what will be the number of medium 
individuals next year?  There are two possible sources. Some individuals that are small plants 
this year will grow to become medium plants next year, and some individuals that are medium 
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this year will remain medium plants next year.  For this particular life cycle graph there are no 
other ways to produce medium individuals. Therefore, the number of medium plants next year 
will be the current number of small plants times the probability that they survive and grow to 
become medium plants, plus the current number of medium plants times the probability that they 
survive and stay medium plants. 

N2,t+1 = N1,t g21 + N2,t s22  

What will be the number of small plants next year? There are three possible ways to produce 
small plants: small plants can stay small, or they can be new recruits that were produced by 
either large or extra large plants.  Thus, N1,t+1 = N1,t s11 + N3,t f13 + N4,t f14 . 

We can do the same for each of the size classes and end up with this set of equations: 
eqs. 5.1 

N1, t+1=  s11N1,t +  + f13N3,t + f14N4,t 
N2, t+1=  g21N1,t + s22N2,t  
N3, t+1=      g32N2,t + s33N3,t 
N4, t+1=       g43N3,t + s44N4,t 

 
Filling in zeros for all of  the possible transition arrows that are not on the life cycle graph, you 
get 
 

N1, t+1=  s11N1,t + 0  N2,t + f13N3,t + f14N4,t 
N2, t+1=  g21N1,t + s22N2,t + 0  N3,t + 0  N4,t 
N3, t+1=  0  N1,t + g32N2,t + s33N3,t + 0  N4,t 
N4, t+1=  0 N1,t + 0  N2,t + g43N3,t + s44N4,t 

 
You may notice that there is a consistent structure to this system of equations. Each of the 
equations has set of transition probabilities multiplied by exactly the same set of N’s. We can 
collect all of the transition probabilities into a single matrix (A) and collect all of the numbers of 
individuals into a vector of population size, which we will call N.  The boldface symbols are 
used to indicate that A and N are matrices.   

A=

s11 0 f13 f14
g21 s22 0 0

0 g32 s33 0

0 0 g43 s44

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

         N =

N1
N2
N3
N4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

    5.2 

 
Using the rules of matrix algebra, we can rewrite that system of equations as the product of two 
matrices: 
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N1,t+1
N2,t+1
N3,t+1
N4,t+1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

s11 0 f13 f14
g21 s22 0 0

0 g32 s33 0

0 0 g43 s44

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

N1,t
N2,t
N3,t
N4,t

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

    eq. 5.3 

 
 
so this whole set of equations can be written as simply:  

Nt+1 = ANt      eq. 5.4 
 
 
Why do we bother putting this into a matrix form?  There are several advantages.   First, it 
clearly separates the demographic and life history information that is contained in matrix A from 
the population numbers, contained in N.  Regardless of the starting conditions or the particular 
population size, the eventual dynamics depends only on the transition probabilities in matrix A.   
Second, it is easy to change the elements of A to reflect changes in the biology, but the basic 
formulae and analytical procedures stay exactly the same.  The matrix formulation is applicable 
to any system simply by changing the values and or dimensions of the matrices.  Finally, if you 
know matrix algebra you can take advantage of those well-developed analytical tools to solve the 
system of equations and analyze the population dynamics. 
 

5.3 The data 
In order to estimate the transition probabilities between size classes, it is necessary to mark 
individuals and monitor them for several years.  DeWalt chose two study sites, Waiakea and 
Laupahoehoe, both on the big island of Hawaii.   At each site she marked and measured 300 
plants in June of 1998 in a small rectangular plot.  Then she returned each summer for three 
consecutive years to follow the fate of those plants.  Each year she revisited each of the marked 
plants and determined the size of each surviving plant by measuring its height and stem diameter.  
She also counted and marked all of the new seedlings that appeared.   
 
For analysis, she divided the plants into five size classes based on their biomass.  Her life cycle 
graph for Clidemia looked like this: 
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Figure 5.4  DeWalt’s life cycle graph for Clidemia hirta. 
 
This graph includes all possible transitions between size classes.  Determining the growth and 
survival transition probabilities was straightforward.  Because she knew the size of each 
individual each year, she could simply count the number of individuals that grew from one size 
class to the next. Thus g21 is simply the number of plants that survived and grew from size 1 to 
size 2, divided by the total number of plants that were in size class 1 at the previous census.  
Similarly, s11 is simply the proportion of size 1 plants that were still alive and in size 1 the next 
year. 
 
Determining fecundity was slightly more complicated.  From other plants at nearby sites, she 
developed a prediction equation that she could use to predict the biomass and number of seeds 
produced as a function of plant size.  She then allocated the total number of new seedlings to the 
proportional contribution of each size plant.  Therefore the fecundity arrows incorporate both the 
total seed production and the fraction of seeds that survive to be counted as seedlings in the next 
census. 
 
 
 

5.4 Model parameters for Clidemia 
From her censuses of the Clidemia population at Laupahoehoe, DeWalt was able to determine 
the transition probabilities form each stage class to all others.    For this population some of the 
transition probabilities were zero, because they were never observed.  Most of the growth 
transitions were increases from one size class to the next larger class.  Occasional plants grew 
very quickly and were able to skip a stage.  A few other plants lost size and moved to a smaller 
size class (growth transitions above the diagonal). 
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Table 5.2. Transition matrix for the Laupahoehoe population of Clidemia.  Reproductive 
transitions are shown in green, survival and stasis in bright blue, and growth transitions are 
shown in dark blue. 
 This year 

Seedling 
<10 g 

Small 
10-50 g 

Medium 
50-100 g 

Large 
100-200g 

Extra-
large 

>200 g 
Next 
year 

Seedling 0.56 0.47 2.71 5.48 14.75 
Small 0.24 0.22 0.02 0.00 0.00 

Medium 0.05 0.26 0.18 0.02 0.01 
Large 0.02 0.35 0.52 0.36 0.04 
Extra-
large 0.00 0.05 0.27 0.62 0.95 

 
 
 
In normal mathematical form, the transition matrix for Laupahoehoe is 

A =

0.56 0.47 2.71 5.48 14.75
0.24 0.22 0.02 0.00 0.00
0.05 0.26 0.18 0.02 0.01
0.02 0.35 0.52 0.36 0.04
0.00 0.05 0.27 0.62 0.95

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 

 
 

What is the meaning, in words, for the fourth element in row 1 (it has the value 5.48)?  
 
 
 
 

 
Use the numbers from that transition matrix to label the magnitude of each arrow in the life cycle 

graph for Clidemia (Fig 5.4). 
 

 
In order to predict the number of plants in future years, we need to specify the starting 
conditions. Let N0 be: 

N0 =

223
37
23
13
12

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 

 
How many extra-large plants are present at time zero? _________ 
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Now, using equation 5.4 and the rules for multiplying matrices (Appendix 5A), we can compute 
the number of plants in each size class in the next generation: 

N1 = AN0  
 

452.8
62.1
25.2
34.5
???

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

0.56 0.47 2.71 5.48 14.75
0.24 0.22 0.02 0.00 0.00
0.05 0.26 0.18 0.02 0.01
0.02 0.35 0.52 0.36 0.04
0.00 0.05 0.27 0.62 0.95

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

223
37
23
13
12

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

   eqs. 5.5 

 
As a check on your understanding of eqs. 5.5, how did we get the number of size 2 individuals 
next year (62.1)?  Those plants can be seedlings that grew from size 1 to size 2, plants that 
remained size 2, or a few plants that shrunk from size 3 to size 2.  62.1 = 0.24*223 + 0.22*37 +  
0.02*23. 
 

Using the same rules for multiplying matrices, fill in the last element of N.  How many extra 
large plants are predicted at the next time step? _____________ 

 
To project the population size at time 2, we simply need to use the population size at time 1 as 
input and multiply it by the same transition matrix:  N2 = AN1 .  We can project the population 
size for as many generations into the future as we want using the relationship: Nt = ANt−1 .  Here 
are the first 10 generations: 
 
Table 5.3.  Population projection for Laupahoehoe: 
Time Seedlings Small Medium Large Extra-Large  Total Nt+1/ Nt 

0 223 37 23 13 12  308.0 -- 
1 452.8 62.1 25.3 34.5 27.5  602.3 1.96 
2 946.4 122.9 44.3 57.5 57.5  1228.5 2.04 
3 1870.5 255.1 89.0 108.0 108.3  2430.9 1.98 
4 3597.9 506.8 179.1 216.1 206.6  4706.5 1.94 
5 6969.9 978.6 350.3 428.5 403.9  9131.2 1.94 
6 13618.2 1895.1 678.6 834.5 792.8  17819.1 1.95 
7 26622.2 3698.8 1320.4 1620.6 1548.2  34810.2 1.95 
8 51942.4 7229.5 2578.4 3159.0 3016.5  67925.8 1.95 
9 101278.2 14108.2 5034.2 6167.8 5880.9  132469.4 1.95 

10 197532.6 27511.3 9820.4 12036.9 11473.6  258374.8 1.95 
 
Notice that this is an exponential growth model, so the population will continue to grow without 
bounds. The population growth rate, λ  (= Nt+1/ Nt ) fluctuates a little bit for the first few 
generations, but eventually stabilizes at λ =1.95.  That is the asymptotic growth rate for this 
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population.1 Lambda is a property of the transition matrix, A.  Any population with a particular 
transition matrix will eventually grow at the same rate, regardless of the starting conditions.  
 
The population obviously cannot keep growing at that rate forever. So, what our model is doing 
is making a “projection” of what would happen to the population if all of the demographic rates 
stay the same. (That is different from a “forecast” of the actual population size some time in the 
future.)  Nevertheless λ is a useful way to describe the growth potential of the population under 
the current transition probabilities. 
 
The change in numbers of plants in each size class is shown in Figure 5.5. The rate of increase is 
linear on the graph of log(N) vs. time, which is typical of exponential growth.  You can also see 
that the growth trajectories for plants in each size class are parallel.  Just as an age-structured 
model will eventually settle into a stable age distribution, this stage-structured model eventually 
achieves a stable stage distribution.  After several generations the proportion of seedlings, small, 
medium, and large plants is consistently 76%, 11%, 4%, 5% and 4% of the population. 
 
Figure 5.5.  Population trajectory for each size class of Clidemia hirta at Laupahoehoe. 

 
 

5.5 Does this model capture the observed changes in density at Laupahoehoe? 
Our demographic model predicts an asymptotic growth rate of lambda=1.95.  How does that 
match the observed population dynamics at Laupahoehoe?  Here are her results of the observed 
population size and the predicted size given a growth rate of 1.95.  As you can see, this is a 
population that appears to be growing approximately exponentially, as predicted by our simple 
model.  
 
Given the predicted asymptotic growth rate of λ=1.95 and a starting density of 1655 plants per 
hectare, predict the number of plants in the next three years.  How does that match the observed 
density? 
Table 5.4  Observed and predicted plant density for Clidemia at Laupahoehoe. 

                                                
1 If you know matrix algebra, λ is the dominant eigenvalue of the transition matrix A. 
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Year 
Observed 
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Predicted, 

λ=1.95 
1998 1655 1655 
1999 3154  
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(Disclaimer: this is a circular test, because the demographic rates were in part determined by the 
observed changes in population size.  But the dynamics based on the transition probabilities are 
at least consistent with the observed changes in abundance)  
 

5.6 Use the model to investigate various scenarios 
Now we are finally ready to actually use our model to answer our original questions!  Remember 
that our initial motivation was to assess whether herbivorous insects could control the growth of 
Clidemia populations.    Now that we have a model that captures the current population 
dynamics of Clidemia at Laupahoehoe, we can use it to ask “what if” questions about possible 
ways to control the spread of Clidemia.  In particular, we want to evaluate whether biological 
control insects that feed on flowers and fruits (and thus reduce fecundity) will be more or less 
effective than leaf-feeding insects or fungi that reduce survival.  Under current conditions, the 
population is projected to almost double each year (λ=1.95).  However, if the biological control 
insects could reduce λ to less than 1.0, the population would be predicted to eventually go 
extinct.  
 

Scenario 1: reduce fecundity 
If flower-feeding insects are introduced to control Clidemia, we expect the fecundities to be 
reduced. From eq. 5.2, those are the quantities in the top row of matrix A, (except for A11 
because we assume that seedlings are too small to reproduce).  How much of a reduction in 
fecundity would be required to produce λ<1.0? 
To test that scenario, we can imagine that all of the fecundity elements are reduced by x% and 
determine what the asymptotic population growth rate would be. We can then vary the level of 
fecundity reduction to see how large a reduction is necessary to produce λ<1.0. 
 
Table 5.5  Potential effect of biocontrol insects that reduce fecundity. 

Fecundity 
reduction λ  

10%  1.90 
20% 1.86 
50% 1.69 
75% 1.49 
90% 1.30 
99% 1.06 

For this population, even a 99% reduction in fecundity would not be enough to cause extinction 
of Clidemia, but it may be possible to slow the rate of population growth. 

Scenario 2: reduce growth transitions 
We’ll assume that leaf-feeding insects primarily reduce the growth rate of the plants. 
 

Which elements of the transition matrix show growth from one stage to the next? 
______________ 

2000 5935  
2001 13623  
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Again we can hypothetically reduce the growth transitions by 10, 20, 30% and see what effect 
that has on the projected population growth rate. 
Table 5.6 

Growth 
reduction λ  

10%  1.85 
20% 1.75 
50% 1.42 
75% 1.13 
90% 0.98 
99% 0.95 

The hypothetical reductions in growth are more effective.  It is possible to drive the population 
extinct if the leaf damage is sufficient to reduce growth by 90%, but that would probably require 
a very high density of leaf-feeding insects. 

Scenario 3: reduce survival 
Third, we might assume that pathogenic fungi and or leaf-feeding insects reduce the survival of 
Clidemia.  That would affect all of the non-fecundity transition elements.   How much of a 
decrease in survival would be necessary to control the population? 
Table 5.7 

Survival 
reduction  λ  

10%  1.79 
20% 1.63 
50% 1.14 
60% 0.96 
75% 0.68 

 
Try out some other possible scenarios for controlling Clidemia. One possibility is to hand-pull all 
of the large and extra large plants (so the survival of those largest plants is close to 0).  
 

How would you modify the transition matrix to model the effect of hand 
pulling large and extra large plants? _______________   

 
 

How effective would that strategy be?  _______________ 
 
 

Another possibility might be releasing both flower-feeding and leaf-feeding insects at the same 
time. Would that be more effective in controlling Clidemia? ________________ 

 
We have used the stringent criterion of λ <1.0 as our definition of “control”.  While local 
extinction would be nice, smaller reductions in λ may also be worthwhile. 
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5.7 Other considerations 
The projected growth rate for this model is an asymptotic growth rate. Eventually the rate of 
increase will converge on the asymptotic growth rate, but the first few generations may be quite 
different.  It will only reach the asymptotic λ when the number of plants in each stage is at the 
stable stage distribution.  What use is asymptotic lambda when modeling a rapid invasion, a 
situation that is clearly not at a steady state? 
In addition, there is no density dependence in our matrix model.  The projections show the 
population quickly increasing to extremely large population size, and density dependent 
limitations on growth will almost surely become important before the asymptotic growth rate is 
achieved. So as an explicit prediction about the fate of a particular population and its future size 
this model is probably not very useful.    Instead the model tells us about the current growth 
potential of the population.  We can then use that index of growth potential to compare the 
relative effectiveness of two scenarios, or to determine which life cycle stages have the greatest 
effect on population growth. 
 
 

5.8 Your turn:   
 
DeWalt also collected demographic data for another site on Hawaii, Waiakea, where the 
population was growing less quickly.  Here is her transition matrix for Waiakea.  How effective 
would the biocontrol insects be at stopping the spread of Clidemia at this site? Which type would 
be most effective? 
 
Table 5.8. Transition matrix for Clidemia hirta Waiakea (from DeWalt 2004). 

 This year 

Seedling 
<10 g 

Small 
10-50 g 

Medium 
50-100 g 

Large 
100-200g 

Extra-
large 

>200 g 
Next 
year 

Seedling 0.78 0.26 0.93 1.99 3.12 
Small 0.18 0.61 0.07 0.00 0.00 

Medium 0.00 0.33 0.51 0.03 0.03 
Large 0.00 0.05 0.42 0.67 0.00 
Extra-
large 0.00 0.00 0.00 0.30 0.97 

 
Use the information in this matrix to sketch a life-cycle diagram for Clidemia at Waiakea.   

 
Assume that the population starts with 120 seedlings, 20 small plants, and 5 each of medium, 

large and extra large plants.  What is the projected asymptotic growth rate of this population if it 
continues as is? (project the population size for at least 3 generations). 

 
Try out one scenario for control and see if it will be effective at reversing the population growth 

of Clidemia at this site. 



Case Studies in Ecology and Evolution  DRAFT 

D. Stratton 2010  14 

  

5.9 Further reading: 
Caswell, H. 1989. Matrix population models: construction, analysis, and interpretation. Sinauer Associates, Sunder- 
land, Massachusetts, USA 
DeWalt, S J.  2004. Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. 
Ecology 85:471-483. 
DeWalt, S. 2006. Population dynamics and potential for biological control of an exotic invasive shrub in Hawaiian 
rainforests.  Biological Invasions 8:1145-1158. 
Shea, K. and D. Kelly.  1998.  Estimating biocontrol agent impact with matrix models: Carduus nutans in New 
Zealand.  Ecological Applications 8: 824-832 
 
 

5.10 Practice Problems  (will add 5-10 questions here) 
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Answers 
 
p. 2   The key inference from Figure 5.2 is that in the Costa Rica understory  plant survival is higher when they are 
sprayed with fungicide or insecticide.  The comparison of the experimental treatments to the control allowed her to 
detect the survival increase when insects and fungi are excluded. 
In Hawaii, survival is high for all plants and there is no difference among treatments.   Presumably that is because 
the damaging insects and fungi are not present. 
 
p 8.  Element A[1,4] gives the 
transition from large plants to 
seedlings. 
It is the expected fertility of large 
plants: the number of seeds that they 
produce that then survive to be 
counted as seedlings in the next 
census.   
 
There are 12 extra large plants at 
time 0. 
 
p 9. After one time step, there will 
be 27.52 extra large plants.  (0*223 
+ 0.05*37 + 0.27*23 + 0.62*13 + 
0.95*12 = 27.52). 
 
p 10 

Year Obs. 
Predicted,  

λ=1.95 
1998 1655 1655 

1999 3154 3227 

2000 5935 6293 

2001 13623 12272 
 
 
p 11. The growth transition elements of A are all of the elements below the diagonal. 
 
p 12. To model hand-pulling of large and extra large plants, you could reduce the transition elements in the fourth 
and fifth columns of A.  If you assume that 100% are pulled up before they reproduce, then all of the elements in 
those columns would become 0.   
In that case the asymptotic growth rate becomes lambda=1.07.    The population would still be growing, but much 
more slowly. 
 
If you want to model the inclusion of both flower and leaf feeding insects (i.e. reduce growth and survival) you 
could reduce all of the transition elements below the first row. 
 
p 13. Your Turn: the Waiakea population. 
Lifecycle graph for Waiakea: 
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After 3 generations, λ=1.3.  The asymptotic estimate is λ =1.33  
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5.11 Appendix A: General rules for multiplying matrices 
 
Assume there is a matrix A with k rows and m columns, and a matrix B with m rows and n 
columns. By convention, boldface symbols are used to indicate that A, B, and Y are matrices. 
 
The product of those two matrices will have dimensions k x n. 
In symbols, we can write that as Ykxm = Akxm Bmxn 
 
To find the element Yij, you sum the products of the elements in row i of A and the 
corresponding elements of column j of B. 

Yij = AikBkjk

m
∑  

 
Here is a numerical example: 

22 28
49 64
76 100
103 136

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

1 2 3
4 5 6
7 8 9
10 11 12

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⋅
1 2
3 4
5 6

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 

The element in the second row and first column of Y (Y21) is the sum of the products of elements 
in the second row of A and the first column of B:  4*1 + 5*3 + 6*5 = 49.  Similarly, the element 
in the third row and second column of Y, will be the sum of the products of elements in the third 
row of A and the second column of B: 7*2 + 8*4 + 9*6 = 100. 
 
Often one of the matrices will have a single row or column, but the general procedure is exactly 
the same.  If matrix B has only a single column then Y will also have only a single column.  But 
just as before, the element in the third row and first column of Y will be the sum of the products 
of the elements in the third row of A and the first column of B. 

.

.
50
.

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

1 2 3
4 5 6
7 8 9
10 11 12

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⋅
1
2
3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 

7*1 + 8*2 + 9*3 = 50. 
 

What are the other three elements of Y in this example? ______________ 
 
Notice that the dimensions must be compatible. To multiply matrices, the number of columns of 
the first matrix must equal the number of rows of the second.  The result will have the same 
number of rows as the first matrix and the same number of columns as the second. 
Therefore A4x3  B3x1 is valid because the number of columns of A and rows of B match.  The 
reverse (B3x1 A4x3) is not allowed. 
 
___________________________________ 
Answer: Y’=[14, 32, 50, 68] 


