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A B S T R A C T

In this paper, a stoichiometric aquatic tri-trophic level model is proposed and analyzed, which incorporates
the effect of light and phosphorus, as well as the fear effect in predator–prey interactions. The analysis of the
model includes the dissipativity and the existence and stability of equilibria. The influence of environmental
factors and fear effect on the dynamics of the system is particularly investigated. The key findings reveal
that the coexistence of populations is positively influenced by an appropriate level of light intensity and/or
the dissolved phosphorus input concentration; however, excessive levels of phosphorus input can disrupt the
system, leading to chaotic behaviors. Furthermore, it is found that the fear effect can stabilize the system and
promote the chances of population coexistence.
1. Introduction

The composition and balance of some key chemical elements within
an ecosystem are closely tied to the energy flow in a food web and
vital ecological functions [1,2]. Ecological stoichiometry can be simply
defined as the biology of elements from molecules to the biosphere [3],
and can provide a valuable framework for analyzing the impact of
the elemental composition of organisms and their food on production,
nutrient cycling, and food web dynamics [3–5]. As an emerging field of
research, the theory of ecological stoichiometry has a significant role
to play in understanding and managing ecosystems.

Phytoplankton, as the primary producers in aquatic ecosystems, are
reliant on two critical resources for their growth and reproduction: light
and nutrient [6]. Through photosynthesis, phytoplankton convert the
resources into organic carbon, while also absorbing phosphorus from
the surrounding water. Carbon is the fundamental building block of
phytoplankton and is used to measure the biomass of a population.
Phosphorus is the limiting element for population growth, and the
ratio of phosphorus to carbon in phytoplankton directly determines the
quality of phytoplankton as food for upper level species [7]. A low
ratio indicates inferior phytoplankton quality, while a high ratio implies
superior quality. Ecological stoichiometry provides a powerful method
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for characterizing the changes in phytoplankton quality and has been
utilized in mathematical modeling to study aquatic ecosystems [2,8–
18].

Loladze et al. [2] developed the well-known LKE model, which ap-
plies stoichiometric principles to a producer-grazer system, and demon-
strated the critical impact of energy and nutrient enrichment on the sys-
tem. Wang et al. [8] modeled the ecological stoichiometry of bacteria-
algae interactions in the epilimnion and explored the effects of varying
light and phosphorus availability on the system. To account for the
multiple impacts of phytoplankton stoichiometry on higher trophic
levels and their feedback, Peace [17] formulated a three-dimensional
model and demonstrated the interplay of nutrients, light, and food
chain length in determining the ecological transfer efficiency. Chen
et al. [14] proposed a stoichiometric food chain model with two lim-
iting nutrients, which demonstrates that stoichiometry can narrow the
parameter space of chaotic dynamics. They also observed that while the
decrease in producer production efficiency may have minimal effects
on the growth of consumers, it can significantly impact top predators’
growth. Therefore, the models incorporating stoichiometry can play a
crucial role in shaping the structure and diversity of aquatic food webs.
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Within an aquatic ecosystem, a common and typical food web is
composed of phytoplankton, zooplankton, and fish. The phytoplank-
ton is preyed upon by zooplankton, and in turn, the zooplankton
is consumed by some fish. Some fish can feed on both zooplankton
and phytoplankton, and this grants a structure of intraguild predation
among the three populations. Apart from direct predation between
fish and zooplankton, it has been observed that some zooplankton
can detect danger from fish by perceiving the scent of predators or
alarm substances on their injured counterparts. This detection leads
to changes in the predation behavior of the zooplankton, including
immobility (dead-men behavior), aggregation, and deliberate cessation
of feeding and migration to less food-profitable hypolimnetic habi-
tats, where they are safer [19–21]. Such a change inevitably reduces
the zooplankton’s predation on the phytoplankton. This strongly sug-
gests/justifies the importance of considering the fear effect in aquatic
ecosystems.

We point out that the significance of fear effect of the predator
on prey has been demonstrated in experiments with other populations
as well. Pangle et al. [22] investigated the fear effect of spiny water
flea (Bythotrephes longimanus) on zooplankton and found that an
avoidance response of zooplankton to predation emerged. They also
discovered that the fear effect on the plankton’s growth rate was over
seven times greater than the direct predation. Similarly, in a field
experiment on the fear effect on song sparrows by their predators,
Zanette et al. [23] observed a decline of approximately 40% in the
number of offspring of song sparrows throughout the breeding season,
which was attributed to the birds’ perceiving the risk from its predators.
Suraci et al. [24] conducted experiments that showed how the fear
effect triggered a trophic cascade that influenced the evolution of
system diversification and community structure. All these findings,
together with other massive evidence not mentioned here, suggest
that the indirect (non-predating or nonlethal) effects between fish and
zooplankton in aquatic ecosystems should not be underestimated.

The fear effect has been extensively and intensively explored in re-
cent years by dynamic models. For example, Wang et al. [25] developed
a mathematical model that incorporates the reproductive cost of the
fear effect; and by analyzing the model, they found that the fear effect
could stabilize the predator–prey system. In Wang and Zou [26], the
authors used the framework of [25] to model the fear effect for the
scenario of the food chain system reported in [24], and theoretically
explained the mechanisms of trophic cascade there. In the context
of aquatic food chains, [27–29] investigated the impact of the fear
effect on the system. However, to the authors’ knowledge, there is no
modeling work that incorporates both the fear effect and the impact
of multiple chemical elements in aquatic systems. This motivates the
main goal of this study: incorporating both stoichiometric mechanism
and fear effect into a phytoplankton-zooplankton-fish model to enhance
our understanding of the population dynamics of such an aquatic
ecosystem.

The rest of the paper is organized as follows. Section 2 presents a
detailed description of the model formulation process. In Section 3, we
conduct a qualitative analysis that includes examining the dissipativity
of solutions, as well as exploring the existence and stability of equi-
libria. The impact of phosphorus input concentration, light intensity,
fear effect, and fish’s food habits on population density and dynamics
of the model is then explored through numerical simulations in Sec-
tion 4. Finally, in Section 5, we briefly summarize the main results and
interpret their biological implications; we also briefly discuss possible
future work in the line of this paper.

2. Model formulation

In this section, we formulate a stoichiometric model for an aquatic
environment that incorporates inflow and outflow. Specifically, we
consider a well-mixed water area with a fixed water depth of 𝐿, such
s an epilimnion or a shallow lake (see Fig. 1). The model consists of
2

d

five complex nonlinear ordinary differential equations that capture the
rates of change of the biomass of phytoplankton (𝑃 ), phytoplankton
phosphorus cell quota (𝑄), the concentration of dissolved phosphorus
(𝑁), the biomass of zooplankton (𝑍), and the biomass of fish (𝐹 ).

he growth of phytoplankton is dependent on the intensity of light
nd the availability of phosphorus. Additionally, we demonstrate how
toichiometry can introduce ‘food quality’ into the model to influence
he production efficiency of the zooplankton and fish. Furthermore,
he fear effect between zooplankton and fish is incorporated into this
odel. All biologically significant variables and parameters in the
odel and their actual values are listed in Table 1.

Light and phosphorus are essential resources for phytoplankton
rowth. Note that the light intensity in the water column is absorbed
y the water and phytoplankton. Following Lambert–Beer’s law [8,43],
he light intensity at the water column depth of 𝑥 can be expressed as

(𝑥, 𝑃 ) = 𝐼0 exp
[

−(𝐾𝑏𝑔 + 𝑘0𝑃 )𝑥
]

, 0 < 𝑥 < 𝐿,

and accordingly, the growth function of phytoplankton 𝜇(𝑃 ,𝑄) is given
by

𝜇(𝑃 ,𝑄) = 𝑟
(

1 −
𝑄min
𝑄

)

𝐼(𝑃 ).

Here

𝐼(𝑃 ) = 1
𝐿

𝐿

∫
0

𝐼(𝑥, 𝑃 )
𝐼(𝑥, 𝑃 ) + ℎ

𝑑𝑥 = 1
𝐿(𝐾𝑏𝑔 + 𝑘0𝑃 )

ln
(

𝐼0 + ℎ
𝐼(𝐿, 𝑃 ) + ℎ

)

and 𝑄min is the minimum cell quota of phytoplankton at which growth
ceases.

By [8,30], the phosphorus uptake rate by phytoplankton is 𝜌(𝑄)𝑔(𝑁),
here

(𝑁) = 𝑁
𝑙 +𝑁

, 𝑁 ≥ 0;

(𝑄) = 𝛿
𝑄max −𝑄
𝑄max −𝑄min

, 𝑄min ≤ 𝑄 ≤ 𝑄max.

When the phytoplankton phosphorus cell quota reaches the minimum
value 𝑄min, the phosphorus uptake rate becomes a saturating function
of 𝑁 , while there is no uptake when the cell quotas are at their
maximum value 𝑄max. Additionally, for phytoplankton, the cell quota
dilution rate is proportional to its growth rate [33]. The variation in dis-
solved phosphorus concentration 𝑁 is determined by the consumption
of phytoplankton 𝜌(𝑄)𝑔(𝑁)𝑃 and phosphorus exchange (𝐷∕𝐿)(𝑁0 −𝑁)
at the water column, where the constant dissolved phosphorus input
concentration is denoted by 𝑁0.

Based on the above background preparation, the interactions be-
tween the phytoplankton, phytoplankton phosphorus cell quota, dis-
solved phosphorus concentration, zooplankton, and fish can be de-
scribed by the following ODE system

𝑑𝑃
𝑑𝑡

= 𝑟𝑃
(

1 −
𝑄min
𝑄

)

𝐼(𝑃 ) − 𝑓1(𝑃 )𝑍 − 𝑓2(𝑃 )𝐹 − 𝑑𝑝𝑃 ,

𝑑𝑄
𝑑𝑡

= 𝜌(𝑄)𝑔(𝑁) − 𝑟𝑄
(

1 −
𝑄min
𝑄

)

𝐼(𝑃 ),

𝑑𝑁
𝑑𝑡

= 𝐷
𝐿
(𝑁0 −𝑁) − 𝜌(𝑄)𝑔(𝑁)𝑃 ,

𝑑𝑍
𝑑𝑡

= 𝑒1𝑓1(𝑃 )𝑍 − 𝑞(𝑍)𝐹 − 𝑑𝑧𝑍,

𝑑𝐹
𝑑𝑡

= 𝑒2𝑞(𝑍)𝐹 + 𝑒3𝑓2(𝑃 )𝐹 − 𝑑𝑓𝐹 .

(2.1)

ere 𝑑𝑝, 𝑑𝑧, and 𝑑𝑓 represent the death rates of phytoplankton, zoo-
lankton, and fish, respectively; 𝑓1(𝑃 ) and 𝑓2(𝑃 ) represent the uptake
ates of phytoplankton by zooplankton and fish, respectively; 𝑞(𝑍)
epresents the predation rate of fish on zooplankton; 𝑒1, 𝑒2 and 𝑒3
re the maximum nutrient conversion rates of zooplankton and fish,
espectively. According to the second law of thermodynamics, 𝑒𝑖 <
, 𝑖 = 1, 2, 3. The diagram in Fig. 1 visually illustrates the interactions
escribed in (2.1).
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Fig. 1. Phytoplankton-zooplankton-fish interactions in the well-mixed water column. Here 𝐼0 is light intensity at the water surface, and 𝐿 is the depth of the water column.
Table 1
Variables and parameters of model (2.2) with biological meanings.

Symbol Meaning Values Units Source

𝑡 Time Variables day
𝑥 Depth Variables m
𝑃 Biomass density of phytoplankton Variables mgC/m3

𝑄 Phytoplankton phosphorus cell quota Variables mgP/mgC
𝑁 Concentration of dissolved phosphorus Variables mgP/m3

𝑍 Biomass density of zooplankton Variables mgC/m3

𝐹 Biomass density of fish Variables mgC/m3

𝐼0 Light intensity at the water surface 0–800 μmol(photons)/(m2s) [30,31]
𝐿 Depth of the water column 4.3 (2-10) m [32]
𝑘𝑏𝑔 Background light attenuation coefficient 0.5 (0.3-0.9) m−1 [30,33]
𝑘0 Light attenuation coefficient of phytoplankton 0.0003 m2/mgC [30,33]
ℎ Light-limited half saturation constant of phytoplankton 200 μmol(photons)/(m2s) [34]
𝑟 Maximum production rate of phytoplankton 1 day−1 [34,35]
𝑄min Minimum phosphorus cell quota of phytoplankton 0.004 mgP/mgC [30]
𝑄max Maximum phosphorus cell quota of phytoplankton 0.04 mgP/mgC [30]
𝑑𝑝 Loss rate of phytoplankton 0.1 day−1 [14,35,36]
𝑙 Phosphorus half saturation constant of phytoplankton 1.5 mgP/m3 [37]
𝐷 Water exchange rate 0.02 m/day [33]
𝑁0 Dissolved phosphorus input concentration 0–150 mgP/m3 [33]
𝑄𝑧 Zooplankton phosphorus cell quota 0.03 mgP/mgC [14,38,39]
𝑄𝑓 Fish phosphorus cell quota 0.013 mgP/mgC [14,40,41]
𝛿 Maximum phosphorus uptake rate of phytoplankton 0.6 (0.2-1) mgP/mgC/day [14,30,33]
𝑒1 Maximal production efficiency for zooplankton 0.8 – [14,38,39]
𝑒2 Maximal production efficiency for fish from zooplankton 0.3 – Assumption
𝑒3 Maximal production efficiency for fish from phytoplankton 0.1 – Assumption
𝑑𝑧 Loss rate of zooplankton 0.2 day−1 [14,38,39]
𝑑𝑓 Loss rate of fish 0.003 day−1 [14,40,41]
𝑎1 Consumption rate of zooplankton 0.81 (mgC/m3)−1 day−1 [14,38,39]
ℎ1 Time spent by zooplankton for handling phytoplankton 0.3 day [42]
𝛼 Level of fear effect >0 (mgC/m3)−1 [42]
𝛽 Search efficiency of the fish population 1 – [42]
𝑎2 Rate at which fish attack zooplankton 0.03 day−1 [14,40,41]
𝑎3 Rate at which fish attack phytoplankton 0.01 day−1 Assumption
𝛾 Half-saturation constant when fish consume zooplankton 0.75 mgC/m3 [14,40,41]
𝛾2 Half-saturation constant when fish consume phytoplankton 25 mgC/m3 Assumption
Note that the biological growth is influenced by many factors. In
aquatic ecosystems, the phosphorus-to-carbon ratio is used to char-
acterize the quality of phytoplankton. Since both zooplankton and
3

fish consume the phytoplankton, their production/growths are affected
not only by the abundance (𝑃 ) but also by the quality (𝑄) of the
phytoplankton. In other words, quality variable 𝑄 = 𝑄(𝑡) may affect the
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production efficiency of the zooplankton and fish. In order to incorpo-
rate the impact of 𝑄 on production efficiency through stoichiometry,

e follow [44] to assume that the zooplankton and fish each has
n (approximately) constant phosphorous-carbon ratio, denoted by 𝑄𝑧

and 𝑄𝑓 (mgP/mgC) respectively. Then, as in [45], two scenarios are
considered:

• if 𝑄 > 𝑄𝑧 (resp. 𝑄 > 𝑄𝑓 ), then the phytoplankton is the
optimal/best food for the zooplankton (resp. fish). Here, ‘optimal’
is in the sense that the zooplankton (resp. fish) can maximize
the use of energy (carbon) in the food, while in the meantime,
‘wastes’ the excessive phosphorus (than needed) from what it
intakes. The respective production efficiency of zooplankton and
fish in this scenario should reach the maximal efficiency 𝑒1 (resp.
𝑒3);

• if 𝑄 < 𝑄𝑧 (resp. 𝑄 < 𝑄𝑓 ), then the ingested 𝐶 contained in 𝑃 will
not be fully utilized and the growth efficiency will be reduced to
𝑒1𝑄∕𝑄𝑧 (resp. 𝑒3𝑄∕𝑄𝑓 ).

Combining the above two scenarios, the production efficiencies for
zooplankton and fish on consumption of the phytoplankton in (2.1) are
then respectively revised to

𝑒1 min
{

1, 𝑄
𝑄𝑧

}

and 𝑒3 min
{

1, 𝑄
𝑄𝑓

}

.

ikewise, we also follow [14] to introduce a minimum function to
eflect the effect of zooplankton quality on the growth efficiency of fish
n the zooplankton as follows:

2 min
{

1,
𝑄𝑧
𝑄𝑓

}

.

ote that this is just a new constant replacing 𝑒2, but we will use it to
how its dependence on the two threshold values 𝑄𝑧 and 𝑄𝑓 .

Next, we discuss the three functional response functions 𝑓1, 𝑓2, and
𝑞. According to [21,46], zooplanktons can sense the risk of predation
and respond accordingly by moving to safer places and reducing their
own foraging effort. Such a response will lead to a lower predation
rate of zooplankton on phytoplankton. In order to incorporate such a
reduction of zooplankton’s predation rate on phytoplankton due to fear
against fish, we use the classical Holling’s time budget argument as was
done in [42] to obtain the following form for

𝑓1(𝑃 , 𝐹 ) =
𝑎1𝑃

1 + 𝑎1ℎ1𝑃 + 𝛼𝐹
,

here 𝛼 denotes the fear level of fish in the zooplankton population.
or 𝑓2 and 𝑞, we adopt the widely used Holling Type II responses

(𝑍) =
𝛽𝑎2𝑍
𝛾 +𝑍

and 𝑓2(𝑃 ) =
𝑎3𝑃
𝛾2 + 𝑃

.

ere, since the anti-predator behavior of zooplankton will reduce its
wn risk of being predated, we introduce a parameter 𝛽 ∈ (0, 1] to
ccount for such a benefit.

Combining all above discussions and preparations, the model (2.1)
s then modified to

𝑑𝑃
𝑑𝑡

= 𝑟𝑃
(

1 −
𝑄min
𝑄

)

𝐼(𝑃 ) −
𝑎1𝑃

1 + 𝑎1ℎ1𝑃 + 𝛼𝐹
𝑍 −

𝑎3𝑃
𝛾2 + 𝑃

𝐹 − 𝑑𝑝𝑃 ,

𝑑𝑄
𝑑𝑡

= 𝜌(𝑄)𝑔(𝑁) − 𝑟𝑄
(

1 −
𝑄min
𝑄

)

𝐼(𝑃 ),

𝑑𝑁
𝑑𝑡

= 𝐷
𝐿
(𝑁0 −𝑁) − 𝜌(𝑄)𝑔(𝑁)𝑃 ,

𝑑𝑍
𝑑𝑡

= 𝑒1 min
{

1, 𝑄
𝑄𝑧

}

𝑎1𝑃
1 + 𝑎1ℎ1𝑃 + 𝛼𝐹

𝑍 −
𝛽𝑎2𝑍
𝛾 +𝑍

𝐹 − 𝑑𝑧𝑍,

𝑑𝐹
𝑑𝑡

= 𝑒2 min
{

1,
𝑄𝑧
𝑄𝑓

}

𝛽𝑎2𝑍
𝛾 +𝑍

𝐹 + 𝑒3 min
{

1, 𝑄
𝑄𝑓

}

𝑎3𝑃
𝛾2 + 𝑃

𝐹 − 𝑑𝑓𝐹 ,

(2.2)
4

hich is the working model for this paper. Due to the biological
ackground and significance, we study the solutions of the model with
nitial values satisfying

(0) > 0, 𝑁(0) > 0, 𝑍(0) > 0, 𝐹 (0) > 0, 𝑄min ≤ 𝑄(0) ≤ 𝑄max. (2.3)

. Model analyses

.1. Preliminaries

In this section, we investigate the dynamics of system (2.2). First,
he nonlinear term in system (2.2) satisfies local Lipschitz continuity,
hus there exists a 𝑇0 such that the solution of system (2.2) exists locally
nd is unique for 𝑡 ∈ (0, 𝑇0).

Let 𝑆(𝑡) = (𝑃 (𝑡), 𝑄(𝑡), 𝑁(𝑡), 𝑍(𝑡), 𝐹 (𝑡)) be a solution of (2.2), assume
hat there exists a time 𝑡1 > 0 such that 𝑄(𝑡1) = 𝑄min for the first time,
o
𝑑𝑄
𝑑𝑡

|

|

|

|𝑡1
> 0,

which leads to a contradiction. Similarly, 𝑁(𝑡) keeps positive for given
positive initial conditions. To facilitate the subsequent analysis, we will
express system (2.2) into the following simplified form
𝑑𝑃
𝑑𝑡

=∶ 𝑃𝑂1(𝑃 ,𝑍, 𝐹 ),
𝑑𝑍
𝑑𝑡

=∶ 𝑍𝑂2(𝑃 ,𝑍, 𝐹 ),
𝑑𝐹
𝑑𝑡

=∶ 𝐹𝑂3(𝑃 ,𝑍, 𝐹 ).

It follows from (2.2) that

𝑃 (𝑡) = 𝑃 (0) exp
(

∫

𝑡

0
𝑂1(𝑃 (𝑠), 𝑍(𝑠), 𝐹 (𝑠))𝑑𝑠

)

,

(𝑡) = 𝑍(0) exp
(

∫

𝑡

0
𝑂2(𝑃 (𝑠), 𝑍(𝑠), 𝐹 (𝑠))𝑑𝑠

)

,

𝐹 (𝑡) = 𝐹 (0) exp
(

∫

𝑡

0
𝑂3(𝑃 (𝑠), 𝑍(𝑠), 𝐹 (𝑠))𝑑𝑠

)

,

hich implies that solutions with initial conditions in

∶= {(𝑃 ,𝑄,𝑁,𝑍, 𝐹 ) ∈ R5
+
|

|

|

𝑃 ,𝑁,𝑍, 𝐹 ≥ 0, 𝑄min ≤ 𝑄 ≤ 𝑄max}

emain there for all forward times. Then for the system, 𝛺 is the
ositively invariant set.

heorem 3.1. System (2.2) is dissipative, and the set

𝛺 ∶=
{

(𝑃 ,𝑄,𝑁,𝑍, 𝐹 ) ∈ 𝛺|

|

|

𝑃𝑄 +𝑁 +𝑄min(𝑍 + 𝐹 ) ≤
𝐷𝑁0
𝐿𝑑

}

is an invariant and globally attractive region.

Proof. Let 𝑌 = 𝑃𝑄 +𝑁 +𝑄min(𝑍 + 𝐹 ), then
𝑑𝑌
𝑑𝑡

=𝑑𝑃
𝑑𝑡
𝑄 + 𝑑𝑄

𝑑𝑡
𝑃 + 𝑑𝑁

𝑑𝑡
+𝑄min

𝑑(𝑍 + 𝐹 )
𝑑𝑡

=𝜇(𝑃 ,𝑄)𝑃𝑄 − 𝑑𝑝𝑃𝑄 −
𝑎1𝑃𝑍𝑄

1 + 𝑎1ℎ1𝑃 + 𝛼𝐹
−
𝑎3𝑃𝐹𝑄
𝛾2 + 𝑃

+ 𝜌(𝑄)𝑔(𝑁)𝑃 − 𝜇(𝑃 ,𝑄)𝑄𝑃

+ 𝐷
𝐿
(𝑁0 −𝑁) − 𝜌(𝑄)𝑔(𝑁)𝑃 + 𝑒1 min

{

1, 𝑄
𝑄𝑧

}

𝑎1𝑃𝑍𝑄min
1 + 𝑎1ℎ1𝑃 + 𝛼𝐹

− 𝑑𝑧𝑄min𝑍

−
𝛽𝑎2𝑍𝐹𝑄min
𝛾 +𝑍

+ 𝑒2 min
{

1,
𝑄𝑧
𝑄𝑓

}

𝛽𝑎2𝑍𝐹𝑄min
𝛾 +𝑍

+ 𝑒3 min
{

1, 𝑄
𝑄𝑓

}

𝑎3𝑃𝐹𝑄min
𝛾2 + 𝑃

− 𝑑𝑓𝑄min𝐹

≤ − 𝑑𝑝𝑃𝑄 + 𝐷
𝐿
(𝑁0 −𝑁) − 𝑑𝑧𝑄min𝑍 − 𝑑𝑓𝑄min𝐹

≤
𝐷𝑁0
𝐿

− 𝑑𝑌 ,

where 0 < 𝑄min ≤ 𝑄 ≤ 𝑄max and 𝑑 = min{𝑑𝑝, 𝑑𝑧, 𝑑𝑓 , 𝐷∕𝐿}. Then it
implies that

lim sup 𝑌 (𝑡) ≤
𝐷𝑁0 .
𝑡→∞ 𝐿𝑑
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In conclusion, system (2.2) is dissipative and the set 𝛺 is a globally
ttracting region. □

According to Theorem 3.1, the solution of this system is bounded, so
0 = +∞, i.e., the solution of system (2.2) exists uniquely for (0,+∞).

.2. Existence and stability of equilibria

System (2.2) has four types of possible boundary equilibria: 𝐸1 =
0, 𝑄1, 𝑁0, 0, 0), 𝐸2 = (𝑃2, 𝑄2, 𝑁2, 0, 0), 𝐸3 = (𝑃3, 𝑄3, 𝑁3, 𝑍3, 0), 𝐸4 =
𝑃4, 𝑄4, 𝑁4, 0, 𝐹4), and an internal equilibrium 𝐸∗ = (𝑃 ∗, 𝑄∗, 𝑁∗, 𝑍∗, 𝐹 ∗).

Theorem 3.2. The equilibrium 𝐸1 = (0, 𝑄1, 𝑁0, 0, 0) always exist. If
𝑑𝑝 > 𝑅1, then 𝐸1 is locally asymptotically stable and is unstable if the
inequality does not hold, where

𝑅1 = 𝑟
(

1 −
𝑄min
𝑄1

)

𝐼(0), 𝑄1 =
𝑟𝑄min𝐼(0)(𝑄max −𝑄min) + 𝛿𝑔(𝑁0)
𝑟𝐼(0)(𝑄max −𝑄min) + 𝛿𝑔(𝑁0)

.

Proof. A direct calculation confirms the existence of 𝐸1. At 𝐸1, the
Jacobian matrix takes the form

𝐽 (𝐸1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑟
(

1 −
𝑄min

𝑄1

)

𝐼(0) − 𝑑𝑝 0 0 0 0

𝑟(𝑄min −𝑄1)𝐼 ′(0) 𝜌′(𝑄1)𝑔(𝑁0) − 𝑟𝐼(0) 𝜌(𝑄1)𝑔′(𝑁0) 0 0

−𝜌(𝑄1)𝑔(𝑁0) 0 −𝐷
𝐿

0 0

0 0 0 −𝑑𝑧 0
0 0 0 0 −𝑑𝑓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

t is not difficult to see that all characteristic roots of 𝐽 (𝐸1) have
egative real parts if and only if when 𝑑𝑝 > 𝑅1, proving the conclusion
f the theorem. □

heorem 3.3. If 𝑑𝑝 < 𝑅1, then 𝐸2 = (𝑃2, 𝑄2, 𝑁2, 0, 0) exists and it is
nique.

roof. The equilibrium 𝐸2 is found by solving

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟
(

1 −
𝑄min
𝑄

)

𝐼(𝑃 ) − 𝑑𝑝 = 0,

𝜌(𝑄)𝑔(𝑁) − 𝑟
(

1 −
𝑄min
𝑄

)

𝐼(𝑃 )𝑄 = 0,

𝐷
𝐿
(𝑁0 −𝑁) − 𝜌(𝑄)𝑔(𝑁)𝑃 = 0.

(3.4)

By a simple calculation, we obtain

𝑁2 = 𝑁0 −
𝑑𝑝𝐿
𝐷

𝑃2𝑄2, 𝑃2 =
𝑙 +𝑁0 − 𝜌(𝑄2)𝑁0∕𝑑𝑝𝑄2

𝑙∕𝐷(𝑑𝑝𝑄2 − 𝜌(𝑄2))
=∶ 𝜓(𝑄2). (3.5)

Substitute (3.5) into Eq. (3.4), we have

𝜒(𝑄2) ∶= 𝑟
(

1 −
𝑄min
𝑄2

)

𝐼(𝜓(𝑄2)) − 𝑑𝑝 = 0.

According to [8], (2.2) exists a unique equilibrium 𝐸2 = (𝑃2, 𝑄2, 𝑁2, 0, 0)
if and only if when 𝑑𝑝 < 𝑅1. □

Next, we address the stability of 𝐸2 when it exits.

Theorem 3.4. Assume 𝑑𝑝 < 𝑅1 so that 𝐸2 exists. If

𝑑𝑧 > 𝑒1 min
{

1,
𝑄2
𝑄𝑧

}

𝑎1𝑃2
1 + 𝑎1ℎ1𝑃2

, 𝑑𝑓 > 𝑒3 min
{

1,
𝑄2
𝑄𝑓

}

𝑎3𝑃2
𝛾2 + 𝑃2

,

𝑏1𝑏2 > 𝑏3 > 0, (3.6)

then 𝐸 is locally asymptotically stable.
5

2

Proof. The Jacobian matrix at 𝐸2 can be written as

𝐽 (𝐸2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑎11 𝑎12 0 𝑎14 𝑎15
𝑎21 𝑎22 𝑎23 0 0
𝑎31 𝑎32 𝑎33 0 0
0 0 0 𝑎44 0
0 0 0 0 𝑎55

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where

𝑎11 = 𝑟
(

1 −
𝑄min
𝑄2

)

(𝐼(𝑃2) + 𝐼 ′(𝑃2)𝑃2) − 𝑑𝑝, 𝑎12 =
𝑟𝑄min𝑃2𝐼(𝑃2)

𝑄2
2

,

𝑎14 = −
𝑎1𝑃2

1 + 𝑎1ℎ1𝑃2
, 𝑎15 = −

𝑎3𝑃2
𝛾2 + 𝑃2

, 𝑎21 = 𝑟(𝑄min −𝑄2)𝐼 ′(𝑃2),

𝑎22 = 𝜌′(𝑄2)𝑔(𝑁2) − 𝑟𝐼(𝑃2), 𝑎23 = 𝜌(𝑄2)𝑔′(𝑁2),

𝑎31 = −𝜌(𝑄2)𝑔(𝑁2), 𝑎32 = −𝜌′(𝑄2)𝑔(𝑁2)𝑃2,

𝑎33 = −𝐷
𝐿

− 𝜌(𝑄2)𝑔′(𝑁2)𝑃2,

𝑎44 = 𝑒1 min
{

1,
𝑄2
𝑄𝑧

}

𝑎1𝑃2
1 + 𝑎1ℎ1𝑃2

− 𝑑𝑧,

𝑎55 = 𝑒3 min
{

1,
𝑄2
𝑄𝑓

}

𝑎3𝑃2
𝛾2 + 𝑃2

− 𝑑𝑓 .

Therefore, the corresponding characteristic equation is

(𝜆 − 𝑎44)(𝜆 − 𝑎55)(𝜆3 + 𝑏1𝜆2 + 𝑏2𝜆 + 𝑏3) = 0,

where
𝑏1 = −(𝑎11 + 𝑎22 + 𝑎33) > 0,

𝑏2 = 𝑎11(𝑎22 + 𝑎33) − 𝑎12𝑎21 + 𝑎22𝑎33 − 𝑎23𝑎32,

𝑏3 = −𝑎11(𝑎22𝑎33 + 𝑎23𝑎32) + 𝑎12(𝑎21𝑎33 − 𝑎23𝑎31).

By Routh–Hurwitz criterion and (3.6), 𝐸2 is locally asymptotically
stable. □

Theorem 3.5. If 𝑑𝑧 < min{𝑒1∕ℎ1, 𝑒1𝑄3∕ℎ1𝑄𝑧}, then 𝐸3 = (𝑃3, 𝑄3, 𝑁3,
𝑍3, 0) exists and it is unique.

Proof. The equilibrium 𝐸3 is given by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑟
(

1 −
𝑄min
𝑄

)

𝐼(𝑃 ) −
𝑎1𝑍

1 + 𝑎1ℎ1𝑃
− 𝑑𝑝 = 0,

𝜌(𝑄)𝑔(𝑁) − 𝑟
(

1 −
𝑄min
𝑄

)

𝐼(𝑃 )𝑄 = 0,

𝐷
𝐿
(𝑁0 −𝑁) − 𝜌(𝑄)𝑔(𝑁)𝑃 = 0,

𝑒1 min
{

1, 𝑄
𝑄𝑧

}

𝑎1𝑃
1 + 𝑎1ℎ1𝑃

− 𝑑𝑧 = 0.

(3.7)

e consider the following two cases.
Case 1. 𝑄 > 𝑄𝑧. By calculation, we get

3 =
𝑑𝑧

𝑒1𝑎1 − 𝑎1ℎ1𝑑𝑧
,

3 =
𝛿𝑔(𝑁3)𝑄max + 𝑟(𝑄max −𝑄min)𝐼(𝑃3)𝑄min

𝛿𝑔(𝑁3) + 𝑟(𝑄max −𝑄min)𝐼(𝑃3)
=∶ 𝜏(𝑁3). (3.8)

Substitute (3.8) into Eq. (3.7) produces

𝐻(𝑁3) ∶=(𝛿 + 𝑟(𝑄max −𝑄min)𝐼(𝑃3))𝑁2
3

+
[(

𝛿𝑃3𝐿
𝐷

−𝑁0 − 𝑙
)

(𝑟(𝑄max −𝑄min)𝐼(𝑃3)) − 𝛿𝑁0

]

𝑁3

− 𝑙𝑁0(𝑟(𝑄max −𝑄min)𝐼(𝑃3)) = 0.

t is trivial to see that 𝐻(𝑁3) = 0 always has a positive root. Therefore,
t can be concluded that, when 𝑑𝑧 < 𝑒1∕ℎ1, there exists a unique
quilibrium 𝐸3.
Case 2. 𝑄 < 𝑄𝑧. From a simple calculation, it follows that

3 =
𝑑𝑧𝑄𝑧 =∶ 𝑓 (𝑄3),
𝑒1𝑎1𝑄3 − 𝑎1ℎ1𝑑𝑧𝑄𝑧
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𝑎

𝑎

𝑎

(

then
𝐷
𝐿
𝑁2

3 +
(

𝐷(𝑙 −𝑁0)
𝐿

+ 𝜌(𝑄3)𝑓 (𝑄3)
)

𝑁3 −
𝑙𝐷𝑁0
𝐿

= 0,

nd

3 =

√

𝐵(𝑄3)2𝐿2 + 4𝑙𝐷2𝑁0 − 𝐵(𝑄3)𝐿
2𝐷

=∶ 𝜈(𝑄3),

where 𝐵(𝑄3) =
(

𝐷(𝑙 −𝑁0)
𝐿

− 𝜌(𝑄3)𝑓 (𝑄3)
)

. It calculates that

ℎ(𝑄3) ∶= 𝜌(𝑄3)𝑔(𝜈(𝑄3)) − 𝑟
(

1 −
𝑄min
𝑄3

)

𝐼(𝑓 (𝑄3))𝑄3 = 0.

Note that 𝑓 ′(𝑄), 𝜌′(𝑄) < 0, thus (𝑓 (𝑄)𝜌(𝑄))′ < 0, 𝐵′(𝑄) > 0. Therefore,

𝑑𝜈(𝑄)
𝑑𝑄

=
(𝐵(𝑄)𝐿∕

√

𝐵(𝑄)2𝐿2 + 4𝑙𝐷2𝑁0 − 1)𝐵′𝐿
2𝐷

< 0,

so 𝑔(𝜈(𝑄))′ < 0 and (𝜌(𝑄)𝑔(𝜈(𝑄)))′ < 0, then ℎ(𝑄) < 0 and ℎ(𝑄min)ℎ(𝑄max)
< 0. Then ℎ(𝑄3) = 0 always has a positive root, and it concludes that,
when 𝑑𝑧 < 𝑒1𝑄3∕ℎ1𝑄𝑧, 𝐸3 exists and is unique. □

Theorem 3.6. If

𝑑𝑓 > 𝑒2 min
{

1,
𝑄𝑧
𝑄𝑓

}

𝛽𝑎2𝑍3
𝛾 +𝑍3

+ 𝑒3 min
{

1,
𝑄3
𝑄𝑓

}

𝑎3𝑃3
𝛾2 + 𝑃3

,

2, 𝑏3 > 0, 𝑏0𝑏1𝑏2 > 𝑏
2
2 + 𝑏

2
0𝑏3, (3.9)

then 𝐸3 is locally asymptotically stable.

Proof. At 𝐸3, the Jacobian matrix is given by

𝐽 (𝐸3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑎11 𝑎12 0 𝑎14 𝑎15
𝑎21 𝑎22 𝑎23 0 0
𝑎31 𝑎32 𝑎33 0 0
𝑎41 𝑎42 0 0 𝑎45
0 0 0 0 𝑎55

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

here

11 = 𝑟
(

1 −
𝑄min
𝑄3

)

(𝐼(𝑃3) + 𝐼 ′(𝑃3)𝑃3) −
𝑎1𝑍3

(1 + 𝑎1ℎ1𝑃3)2
− 𝑑𝑝,

𝑎12 =
𝑟𝑄min𝑃3𝐼(𝑃3)

𝑄2
3

, 𝑎14 = −
𝑎1𝑃3

1 + 𝑎1ℎ1𝑃3
,

𝑎15 =
𝛼𝑎1𝑃3𝑍3

(1 + 𝑎1ℎ1𝑃3)2
−

𝑎3𝑃3
𝛾2 + 𝑃3

, 𝑎21 = 𝑟(𝑄min −𝑄3)𝐼 ′(𝑃3),

𝑎22 = 𝜌′(𝑄3)𝑔(𝑁3) − 𝑟𝐼(𝑃3), 𝑎23 = 𝜌(𝑄3)𝑔′(𝑁3), 𝑎31 = −𝜌(𝑄3)𝑔(𝑁3),

𝑎32 = −𝜌′(𝑄3)𝑔(𝑁3)𝑃3, 𝑎33 = −𝐷
𝐿

− 𝜌(𝑄3)𝑔′(𝑁3)𝑃3,

𝑎41 = 𝑒1 min
{

1,
𝑄3
𝑄𝑧

}

𝑎1𝑍3

(1 + 𝑎1ℎ1𝑃3)2
,

𝑎42 =

⎧

⎪

⎨

⎪

⎩

𝑒1𝑎1𝑃3𝑍3
𝑄𝑧(1 + 𝑎1ℎ1𝑃3)

, 𝑄3 < 𝑄𝑧,

0, 𝑄3 > 𝑄𝑧,

𝑎45 = −𝑒1 min
{

1,
𝑄3
𝑄𝑧

}

𝛼𝑎1𝑃3𝑍3

(1 + 𝑎1ℎ1𝑃3)2
−
𝛽𝑎2𝑍3
𝛾 +𝑍3

,

𝑎55 = 𝑒2 min
{

1,
𝑄𝑧
𝑄𝑓

}

𝛽𝑎2𝑍3
𝛾 +𝑍3

+ 𝑒3 min
{

1,
𝑄3
𝑄𝑓

}

𝑎3𝑃3
𝛾2 + 𝑃3

− 𝑑𝑓 .

The characteristic equation of 𝐽 (𝐸3) is

(𝜆 − 𝑎55)(𝜆4 + 𝑏0𝜆3 + 𝑏1𝜆2 + 𝑏2𝜆 + 𝑏3) = 0,

where
𝑏0 = − (𝑎11 + 𝑎22 + 𝑎33) > 0,

𝑏1 =𝑎11(𝑎22 + 𝑎33 − 𝑎21) − 𝑎14𝑎41 + 𝑎22𝑎33 − 𝑎23𝑎32,

𝑏2 =𝑎11(𝑎23𝑎32 − 𝑎22𝑎33) + 𝑎12(𝑎21𝑎33 − 𝑎23𝑎31)

+ 𝑎14(𝑎22𝑎41 + 𝑎33𝑎41 − 𝑎21𝑎42),
6

𝑏3 =𝑎14(𝑎23𝑎32𝑎41 − 𝑎23𝑎31𝑎42 − 𝑎22𝑎33𝑎41 + 𝑎21𝑎33𝑎42).
By using the Routh–Hurwitz criterion, from (3.9), it follows that 𝐽 (𝐸3)
has characteristic roots with negative real parts. Therefore, the theorem
is proved. □

The equilibrium 𝐸4 = (𝑃4, 𝑄4, 𝑁4, 0, 𝐹4), where 𝑃4, 𝑄4, 𝑁4, and 𝐹4
are given by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑟
(

1 −
𝑄min
𝑄

)

𝐼(𝑃 ) −
𝑎3𝐹
𝛾2 + 𝑃

− 𝑑𝑝 = 0,

𝜌(𝑄)𝑔(𝑁) − 𝑟
(

1 −
𝑄min
𝑄

)

𝐼(𝑃 )𝑄 = 0,

𝐷
𝐿
(𝑁0 −𝑁) − 𝜌(𝑄)𝑔(𝑁)𝑃 = 0,

𝑒3 min
{

1, 𝑄
𝑄𝑓

}

𝑎3𝑃
𝛾2 + 𝑃

− 𝑑𝑓 = 0.

Following a similar proof approach as (3.9), we can derive the subse-
quent theorem.

Theorem 3.7. If 𝑑𝑓 < min{𝑒3𝑎3, 𝑒3𝑎3𝑄4∕𝑄𝑓 }, then 𝐸4 = (𝑃4, 𝑄4, 𝑁4,
0, 𝐹4) exists and it is unique.

Theorem 3.8. If

𝑑𝑧 > 𝑒1 min
{

1,
𝑄4
𝑄𝑧

}

𝑎1𝑃4
1 + 𝑎1ℎ1𝑃4 + 𝛼𝐹4

−
𝛽𝛾𝑎2𝐹4
(𝛾 +𝑍)2

, 𝑏2, 𝑏3 > 0,

𝑏0𝑏1𝑏2 > 𝑏
2
2 + 𝑏

2
0𝑏3, (3.10)

then 𝐸4 is locally asymptotically stable.

Proof. At 𝐸4, the Jacobian matrix is given by

𝐽 (𝐸4) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑎11 𝑎12 0 𝑎14 𝑎15
𝑎21 𝑎22 𝑎23 0 0
𝑎31 𝑎32 𝑎33 0 0
0 0 0 𝑎44 0
𝑎51 𝑎52 0 𝑎54 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where

𝑎11 = 𝑟
(

1 −
𝑄min
𝑄4

)

(𝐼(𝑃4) + 𝐼 ′(𝑃4)𝑃4) −
𝑎3𝛾2𝐹4

(𝛾2 + 𝑃4)2
− 𝑑𝑝,

𝑎12 =
𝑟𝑄min𝑃4𝐼(𝑃4)

𝑄2
4

, 𝑎14 = −
𝑎1𝑃4

1 + 𝑎1ℎ1𝑃4 + 𝛼𝐹4
,

𝑎15 = −
𝑎3𝑃4
𝛾2 + 𝑃4

, 𝑎21 = 𝑟(𝑄min −𝑄4)𝐼 ′(𝑃4),

𝑎22 = 𝜌′(𝑄4)𝑔(𝑁4) − 𝑟𝐼(𝑃4), 𝑎23 = 𝜌(𝑄4)𝑔′(𝑁4), 𝑎31 = −𝜌(𝑄4)𝑔(𝑁4),

32 = −𝜌′(𝑄4)𝑔(𝑁4)𝑃4, 𝑎33 = −𝐷
𝐿

− 𝜌(𝑄4)𝑔′(𝑁4)𝑃4,

44 = 𝑒1 min
{

1,
𝑄4
𝑄𝑧

}

𝑎1𝑃4
1 + 𝑎1ℎ1𝑃4 + 𝛼𝐹4

−
𝛽𝛾𝑎2𝐹4
(𝛾 +𝑍)2

− 𝑑𝑧,

51 = 𝑒3 min
{

1,
𝑄4
𝑄𝑓

}

𝑎3𝛾2𝐹4
(𝛾2 + 𝑃4)2

,

52 =

⎧

⎪

⎨

⎪

⎩

𝑒3𝑎3𝑃4𝐹4
𝑄𝑓 (𝛾2 + 𝑃4)

, 𝑄4 < 𝑄𝑓 ,

0, 𝑄4 > 𝑄𝑓 ,
𝑎54 = 𝑒2 min

{

1,
𝑄𝑧
𝑄𝑓

}

𝛽𝑎2𝐹4
𝛾

.

The characteristic equation of 𝐽 (𝐸4) is

𝜆 − 𝑎44)(𝜆4 + 𝑏0𝜆3 + 𝑏1𝜆2 + 𝑏2𝜆 + 𝑏3) = 0,

where

𝑏0 = − (𝑎11 + 𝑎22 + 𝑎33) > 0,

𝑏1 =𝑎33(𝑎11 + 𝑎22) + 𝑎11𝑎22 − 𝑎12𝑎21 − 𝑎15𝑎51 − 𝑎23𝑎32,

𝑏2 =𝑎15(𝑎22𝑎51 − 𝑎21𝑎52) + 𝑎23(𝑎11𝑎32 − 𝑎12𝑎31)

− 𝑎33(𝑎11𝑎22 + 𝑎12𝑎21 − 𝑎15𝑎51),
𝑏3 =𝑎15(𝑎21𝑎33𝑎52 − 𝑎22𝑎33𝑎52 − 𝑎23𝑎31𝑎52 + 𝑎23𝑎32𝑎51).
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Table 2
Existence, uniqueness, and stability of boundary equilibria of (2.2).

Equilibria Existence and uniqueness Local stability Biological significance

𝐸1 Always 𝑑𝑝 > 𝑅1 All the three populations go
extinct.

𝐸2 𝑑𝑝 < 𝑅1 𝑑𝑧 > 𝑒1 min
{

1,
𝑄2

𝑄𝑧

}

𝑎1𝑃2
1 + 𝑎1ℎ1𝑃2

,

𝑑𝑓 > 𝑒3 min
{

1,
𝑄2

𝑄𝑓

}

𝑎3𝑃2
𝛾2 + 𝑃2

,

𝑏1𝑏2 > 𝑏3 > 0 Only phytoplankton survives.

𝐸3 𝑑𝑧 < min
{

𝑒1
ℎ1
,
𝑒1𝑄3

ℎ1𝑄𝑧

}

𝑑𝑓 > 𝑒2 min
{

1,
𝑄𝑧

𝑄𝑓

}

𝛽𝑎2𝑍3

𝛾 +𝑍3

+𝑒3 min
{

1,
𝑄3

𝑄𝑓

}

𝑎3𝑃3
𝛾2 + 𝑃3

,

𝑏2 , 𝑏3 > 0, 𝑏0𝑏1𝑏2 > 𝑏22 + 𝑏
2
0𝑏3 Fish is extinct while zooplankton

and fish stably coexist.

𝐸4 𝑑𝑓 < min
{

𝑒3𝑎3 ,
𝑒3𝑎3𝑄4

𝑄𝑓

}

𝑑𝑧 > 𝑒1 min
{

1,
𝑄4

𝑄𝑧

}

𝑎1𝑃4
1 + 𝑎1ℎ1𝑃4 + 𝛼𝐹4

−
𝛽𝛾𝑎2𝐹4

(𝛾 +𝑍)2
, 𝑏2 , 𝑏3 > 0,

𝑏0𝑏1𝑏2 > 𝑏
2
2 + 𝑏

2
0𝑏3 Zooplankton becomes extinct,

phytoplankton and fish stably
coexist.
t
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According to the Routh–Hurwitz criterion and (3.10), 𝐽 (𝐸4) has char-
acteristic roots with negative real parts. Therefore, 𝐸4 is locally asymp-
totically stable. □

The positive interior equilibrium 𝐸∗ = (𝑃 ∗, 𝑄∗, 𝑁∗, 𝑍∗, 𝐹 ∗), where
𝑃 ∗, 𝑄∗, 𝑁∗, 𝑍∗, and 𝐹 ∗ are solved by the following equation

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑟
(

1 −
𝑄min
𝑄

)

𝐼(𝑃 ) −
𝑎1𝑍

1 + 𝑎1ℎ1𝑃 + 𝛼𝐹
−

𝑎3𝐹
𝛾2 + 𝑃

− 𝑑𝑝 = 0,

𝜌(𝑄)𝑔(𝑁) − 𝑟
(

1 −
𝑄min
𝑄

)

𝐼(𝑃 )𝑄 = 0,

𝐷
𝐿
(𝑁0 −𝑁) − 𝜌(𝑄)𝑔(𝑁)𝑃 = 0,

𝑒1 min
{

1, 𝑄
𝑄𝑧

}

𝑎1𝑃
1 + 𝑎1ℎ1𝑃 + 𝛼𝐹

−
𝛽𝑎2𝐹
𝛾 +𝑍

− 𝑑𝑧 = 0,

𝑒2 min
{

1,
𝑄𝑧
𝑄𝑓

}

𝛽𝑎2𝑍
𝛾 +𝑍

+ 𝑒3 min
{

1, 𝑄
𝑄𝑓

}

𝑎3𝑃
𝛾2 + 𝑃

− 𝑑𝑓 = 0.

(3.11)

As can be seen in (3.11), the existence criterion of 𝐸∗ is too complicated
to be given. However, due to the deterministic nature of the system,
we can analyze the system’s dynamics by conducting convenient and
convincing numerical analyses.

To illustrate the relationship between the existence and local sta-
bility of different boundary equilibria, the sufficient criteria for the
existence and uniqueness, and local stability of the boundary equilibria
are summarized in Table 2.

4. Numerical simulations

In this section, we investigate the effect of four different key factors
(i.e., light, phosphorus, fear effect, and fish’s food habits) on the
population size and the dynamical behavior of system (2.2) through
numerical simulations. The parameter values used in the following
numerical simulations and their sources are listed in Table 1.

4.1. Effect of light

Light is a major factor in determining the operation and biological
composition of aquatic ecosystem and serves a crucial function as it
supplies the energy needed for photosynthesis of phytoplankton. In
order to explore the effect of different light intensities on system (2.2)
and to provide deeper insights into how the system responds to changes
of light intensity, the bifurcation diagram of (2.2) with 𝐼0 being the
bifurcation parameter is numerically presented as 𝐼0 increases from 0
to 800 μmol(photons)/(m2s) (see Fig. 2).

From Fig. 2, it observes that all three populations are unable to sur-
vive when light intensity is low (𝐼0 ∈ (0, 60)). There exists a threshold
7

value (𝐼0=60) for light intensity. If the light intensity increases above
the threshold (𝐼0 ∈ (60, 800)), then all three populations can coexist. As
he light intensity continues to increase, the density of phytoplankton
ontinues to increase (Fig. 2(a)). In other words, higher light intensity
romotes the growth of phytoplankton. This phenomenon extensively
xists in nature [47] since higher light intensity in summer months
eads to faster photosynthesis and an increased growth rate of phyto-
lankton, which often results in phytoplankton blooms. However, the
ensity of zooplankton suddenly increases first, then decreases, and
inally remains constant regardless of the variation of light intensity
Fig. 2 (b)). As illustrated in Fig. 2(c), the density of fish consistently
ecreases after a sudden rise with increasing light intensity. It implies
hat the increased light intensity may be detrimental to the fish. In
ummary, both low and high light intensity are unfavorable for the
quatic ecosystem.

.2. Effect of phosphorus

As a limiting factor for the growth of phytoplankton, the importance
f phosphorus should also be explored and documented [8,47,48]. In
ystem (2.2), the input concentration 𝑁0 of the dissolved phosphorus
s an important parameter. The trends of phytoplankton, zooplankton,
nd fish with varying 𝑁0 and the effect of phosphorus on the dynamics
f (2.2) are investigated by plotting the bifurcation diagram with 𝑁0
eing the bifurcation parameter (see Fig. 3) and also the phase portraits
f (2.2) (see Fig. 4(a)–(c)).

Fig. 3 reveals that, when the input concentration of dissolved phos-
horus is very low (𝑁0 ∈ (0, 0.4)), the zooplankton and fish are

unable to survive and the density of phytoplankton increases with the
increase of 𝑁0. As 𝑁0 increases further (𝑁0 ∈ (0.4, 1)), the density
of phytoplankton decreases, the zooplankton recovers from extinction,
and the density of zooplankton increases. When 𝑁0 ∈ (1, 6.2), (2.2)
tabilizes at an internal equilibrium (Fig. 4(a)), where the densities of
hytoplankton and fish increase with increasing 𝑁0, while the density
f zooplankton decreases but the change is small. If 𝑁0 continues to
ncrease above the critical value 𝑁0=6.2, the internal equilibrium 𝐸∗

oses its stability and (2.2) undergoes a supercritical Hopf bifurca-
ion leading to the emergence of a limit cycle (see Fig. 4(b)). As 𝑁0
ontinues to increase and exceeds the threshold 𝑁0=19, the system
ventually admits chaotic behavior and the fish goes to extinction
see Fig. 4(c)). In addition, Fig. 5 also shows the time series (𝑃 ,𝑍, 𝐹 )
nd such irregular oscillating behavior is representative of the chaotic
ynamics.

To conclude, only the moderate level of input concentration of
issolved phosphorus is beneficial to the growth of three populations,
oth too high and too low input concentrations of dissolved phosphorus
re detrimental to the coexistence of populations and the stability of the
ystem.
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Fig. 2. Effect of light intensity 𝐼0. Here 𝑁0 = 10, 𝛼 = 100, other parameter values are listed in Table 1.
Fig. 3. Effect of the input concentration 𝑁0 of dissolved phosphorus. Here 𝐼0 = 400, 𝛼 = 20, other parameter values are listed in Table 1.
Fig. 4. Attractor of (2.2) in phase space with different 𝑁0. (a) 𝑁0 = 5, 𝐸∗ is an attractor; (b) 𝑁0 = 10, the phase trajectories tend to a stable limit circle; (c) 𝑁0 = 25, the system
exhibits chaotic behavior. Here 𝐼0 = 400, 𝛼 = 20, other parameter values are listed in Table 1, and 𝑃 (0) = 0.7, 𝑍(0) = 0.6, and 𝐹 (0) = 0.5.
4.3. Effect of fear

As mentioned above, the fear effect cannot be disregarded and it
is essential to consider the effect of fear on dynamics of the aquatic
ecosystem. The parameter 𝛼 in model (2.2) quantifies the intensity of
the fear effect. The principal aim of this section is twofold: to inves-
tigate how 𝛼 affects the system’s dynamics and to examine its impact
on population density. In order to achieve these aims, the bifurcation
diagram (Fig. 6) and the maximal Lyapunov exponent diagram (Fig. 7)
are presented with 𝛼 being the target parameter, which characterize the
response of the system to the varying fear effect as 𝛼 increases from 0
to 80.
8

From Figs. 6 and 7, it follows that, when the fear level 𝛼 is low
(𝛼 ∈ (0, 15)), system (2.2) exhibits chaotic dynamics (Fig. 8(a)); as the
fear level increases (𝛼 ∈ (15, 45)), the system transits from the chaotic
regime to the periodic regime (Fig. 8(b)), and the mean values of the
cyclic density of phytoplankton tend to rise while the mean values of
the cyclic density of zooplankton and fish show the opposite tendency,
and the amplitude of the system’s cyclic oscillation gradually decreases
and eventually diminishes to zero, leading to a stable state through a
Hopf bifurcation, as 𝛼 increases; when 𝛼 continues to increase and the
fear level is large enough (𝛼 ∈ (45, 80)), the system undergoes a Hopf
bifurcation and converges to a stable internal equilibrium (Fig. 8(c)).
In addition, a high level of fear effect is beneficial to phytoplankton
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Fig. 5. Time series of (2.2) with 𝑁0 = 25. Here 𝐼0 = 400, 𝛼 = 20, other parameter values are listed in Table 1.
Fig. 6. Effect of the fear factor 𝛼. Here 𝐼0 = 300, 𝑁0 = 10, other parameter values are listed in Table 1.
Fig. 7. Maximal Lyapunov exponent for varying 𝛼.
9

growth but is detrimental to the growth of fish. Overall, the fear
effect is important in stabilizing the system, and its impact on the
densities of phytoplankton and fish is greater than that on the density
of zooplankton.

As mentioned previously, 𝛼 represents the cost of the fear while
𝛽 denotes the benefit of the fear. The effect of varying 𝛼 has been
already deliberately investigated. By carrying out similar arguments,
one can explore the effect of varying 𝛽. The approach and the biological
scenarios are very similar. So, the details of the discussion are omitted.

4.4. Effect of fish’s food habits

In the previous discussion, the omnivorous zooplankton is con-
sidered. Additionally, in various aquatic ecosystems, different aquatic
ecosystems host fish with distinct food habits, which can be broadly cat-
egorized as omnivorous, herbivorous, carnivorous, and planktonic [49].
The different food habits of fish may lead to different dynamics of the
system. In the following, we examine how these food habits affect the
dynamic evolution of the system.

In (2.2), 𝑎3 characterizes the degree of omnivory of the fish. In
the following, two different scenarios are investigated: 𝑎 = 0 and
3
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Fig. 8. Attractors of system (2.2) in phase space with different 𝛼. (a) 𝛼 = 0, the system admits chaotic dynamics; (b) 𝛼 = 15, the phase trajectories tend to a stable limit circle;
(c) 𝛼 = 80, 𝐸∗ is an attractor. Here 𝐼0 = 300, 𝑁0 = 10, other parameter values are listed in Table 1, and 𝑃 (0) = 0.7, 𝑍(0) = 0.6, and 𝐹 (0) = 0.5.
Fig. 9. Time-series of system (2.2) with different 𝑎3 in the presence of the fear effect (𝛼 = 50). The system exhibits different dynamics: (a) stable coexistence, (b) cyclic coexistence,
and (c) extinction of all three populations due to too high predation rate of fish on phytoplankton.
𝑎3 ≠ 0. When 𝑎3 = 0, the fish only feeds on zooplankton, while, when
𝑎3 ≠ 0, the fish feeds on both zooplankton and phytoplankton. In the
first situation, fish is considered as a planktivorous population and its
growth is solely dependent on zooplankton [7]. Fig. 9(a) displays the
system’s time series in this scenario. Without the predation of fish on
phytoplankton, the phytoplankton, zooplankton, and fish can coexist at
an interior equilibrium.

The time series with varying attacking rates 𝑎3 of fish on phyto-
plankton is generated. Fig. 9(b) shows that, when the fish start to
attack the phytoplankton (𝑎3=0.01), (2.2) displays periodic oscillations,
a phenomenon known as the enrichment paradox [29,50]. However,
when the predation rate 𝑎3 is sufficiently large (𝑎3=0.8), all three pop-
ulations tend to extinction (see Fig. 9(c)). It is because of the significant
reductions in phytoplankton have made it impossible for zooplankton
and fish to survive as well. Therefore, the above analyses suggest that
10

the presence of fish predation on phytoplankton can destabilize the
system, and increasing the strength of omnivory can completely destroy
it.

In the above, the impact of light (𝐼0), phosphorus (𝑁0), fear (𝛼),
and fish’s food habits (𝑎3) are well explored numerically by single
parameter bifurcation or time series analyses. In order to better un-
derstand the combined effect of varying parameters, two-parameter
bifurcations can be further explored. For example, Figs. 10 and 11
present the two-parameter bifurcations with 𝐼0-𝛼 and 𝑁0-𝛼 being the
bifurcation parameters, respectively, and the bifurcation surfaces are
visualized for phytoplankton, zooplankton, and fish. The numerical
simulations show that, when the fear factor 𝛼 is small, the dynamics
of the three populations are more affected by 𝐼0, while when the fear
factor 𝛼 is large, the fear factor has a stabilizing effect on the system, in
particular, large fear effects may cause zooplankton to become extinct.
In summary, the numerical analyses illustrate that the variation of two

parameters has a significant effect on the dynamics of the system.
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Fig. 10. Bifurcation surfaces for phytoplankton, zooplankton, and fish, respectively, with 𝛼 and 𝐼0 being the bifurcation parameters. Here 𝑁0 = 10, other parameter values are
listed in Table 1 except 𝛼 and 𝐼0.
5. Conclusion and discussion

In aquatic systems, light intensity and phosphorus availability de-
termine the quality of primary producers, which in turn determine the
efficiency of nutrient transfer and thereby affect ecosystem functioning.
This perspective motivates us to design a tri-trophic level stoichiom-
etry model (2.2) to describe the interactions among phytoplankton,
phosphorus cell quota of phytoplankton, dissolved phosphorus, zoo-
plankton, and fish in a well-mixed water column. Different from other
stoichiometric models, the fear effect of fish on zooplankton is also
explicitly taken into account in this model, thus, the zooplankton
ingestion rate depends not only on the producer’s quality but also on
the fish population.

Theoretical analyses are conducted to investigate the dissipativity
of the solution and the existence and stability of equilibria. Analytical
results show that there always exists an extinction equilibrium, and if
the death rate of phytoplankton is large enough, all three populations
eventually tend to extinction, no matter how sensitive the zooplankton
is to potential dangers from fish. The low death rate of phytoplankton
can guarantee the existence of 𝐸2, in this case, the phytoplankton sur-
vive in an aquatic environment. Constraints on 𝑑𝑧 (𝑑𝑓 ) assure that both
phytoplankton and zooplankton (fish) coexist in an aquatic ecosystem.

Numerical simulations are conducted to show the potential roles
of the four factors (light, dissolved phosphorus input, fear effect, and
fish’s food habits) playing in the system dynamics. It can be seen that,
when the light intensity is low, the system tends to the extinction
equilibrium 𝐸 since low light intensity is not sufficient to sustain
11

1

phytoplankton and eventually affects the survival of zooplankton and
fish. Moreover, increasing light intensity leads to an obvious shift in
the status of three populations, from extinction to coexistence of three
populations. Numerical simulations also elaborate that, with increasing
𝐼0, the density of phytoplankton increases and the density of fish
decreases, the zooplankton is less sensitive to the variation of light
intensity.

The dynamical behavior of system (2.2) is strongly influenced by
changes in dissolved phosphorus input concentration. With increasing
𝑁0, the system undergoes a Hopf bifurcation and transitions from a
stable equilibrium to periodic oscillations, and the system exhibits a
chaotic behavior at higher level of dissolved phosphorus input concen-
tration.

Notably, numerical simulations indicate that the fear effect can
transmit the system from chaotic dynamics to periodic oscillations
to stable equilibrium via Hopf bifurcation. This finding confirms the
role of the fear effect in stabilizing the system. In addition, when the
intensity of the fear effect reaches a certain level, the increased level
of fear favors the growth of phytoplankton, but not that of fish.

The time series of the system with different 𝑎3 illustrates that fish’s
food habits play a significant role in the system. Fish grazing on phy-
toplankton causes the system to shift from convergence to an internal
equilibrium to the emergence of cyclic oscillations. Large enough 𝑎3
makes all three populations go extinct. This scenario can be attributed
to the increased predation of fish on phytoplankton, which in turn
affects the survival of zooplankton and fish.
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Fig. 11. Bifurcation surfaces for phytoplankton, zooplankton, and fish, respectively, with 𝛼 and 𝑁0 being the bifurcation parameters. Here 𝐼0 = 400, other parameter values are
listed in Table 1 except 𝛼 and 𝑁0.
In summary, the main findings in this study shed some new light
on the dynamics of the target system and can be applied to some
practical problems in aquatic ecosystems such as controlling algae
bloom and increasing the population size of economically significant
fish, and so on. In fact, there are many important issues that deserve
further exploration. In (2.2), the functional responses of Holling type II
are adopted to characterize the predation of fish on zooplankton and
phytoplankton, and the fish predation on each of them is assumed to
be independent. However, the predation process of fish on phytoplank-
ton and zooplankton occurs simultaneously. So, the predation process
of fish should be formulated in a unified way and a more realistic
functional response should be incorporated.

In addition, according to the key motivation of the current study,
only the stability of the boundary equilibria of model (2.2) are well
explored and expounded. More dynamical properties of the model need
further rigorous exploration such as the existence and stability of the
internal equilibrium, bifurcation analysis, existence and property of
strange attractors in chaotic dynamics, and so forth, which call for new
approaches and new methods.
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