100% CONSTRUCTION DOCUMENT SUBMISSION

SPECIFICATIONS

Renovate 3W for Surgery Administration

Project No. 581-14-103

Huntington VA Medical Center Huntington, WV

Miller-Remick LLC

1010 Kings Highway South Building Two – 2nd Floor Cherry Hill, New Jersey 08034 (856) 429-4000

March 28, 2014

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

	DIVISION 00 - SPECIAL SECTIONS	DATE
00 01 15	List of Drawing Sheets	09-11
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	10-13
01 33 23	Shop Drawings, Product Data, and Samples	11-08
01 42 19	Reference Standards	09-11
01 57 19	Temporary Environmental Controls	01-11
01 74 19	Construction Waste Management	09-13
	DIVISION 02 - EXISTING CONDITIONS	
02 41 00	Demolition	04-13
	DIVISION 03 - CONCRETE	
03 30 53	(Short-Form) Cast-in-Place Concrete	10-12
	DIVISION 05 - METALS	
05 50 00	Metals Fabrications	09-11
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES	
06 10 00	Rough Carpentry	09-11
06 20 00	Finish Carpentry	06-13
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	
07 60 00	Flashing and Sheet Metal	12-13
07 21 13	Thermal Insulation	03-09
07 84 00	Firestopping	10-11
07 92 00	Joint Sealants	12-11
	DIVISION 08 - OPENINGS	
08 11 13	Hollow Metal Doors and Frames	01-13
08 14 00	Interior Wood Doors	10-12
08 71 00	Door Hardware	09-11
08 80 00	Glazing	10-12
08 90 00	Louvers and Vents	10-12
	DIVISION 09 - FINISHES	
09 06 00	Schedule for Finishes	10-11

09 29 00	Gypsum Board	02-13
09 30 13	Ceramic/Porcelain Tiling	05-12
09 51 00	Acoustical Ceilings	10-10
09 65 13	Resilient Base and Accessories	10-11
09 65 19	Resilient Tile Flooring	03-11
09 68 00	Carpeting	10-11
09 91 00	Painting	07-13
	DIVISION 10 - SPECIALTIES	
10 11 13	Chalkboards and Markerboards	10-11
10 14 00	Signage	11-11
10 28 00	Toilet, Bath, and Laundry Accessories	11-11
	DIVISION 21- FIRE SUPPRESSION	
01 05 11		11.00
21 05 11	Common Work Results for Fire Suppression	11-09
21 13 13	Wet-Pipe Sprinkler Systems	05-08
	DIVISION 22 - PLUMBING	
22 05 11	Common Work Results for Plumbing	04-11
22 05 11	General-Duty Valves for Plumbing Piping	12-09
22 05 23	Facility Water Distribution	07-13
22 11 00	Facility Sanitary and Vent Piping	12-09
22 13 00	Facility Storm Drainage	12-09
22 40 00	Plumbing Fixtures	03-11
	CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	11-10
23 05 12	General Motor Requirements for HVAC	11-10
23 05 41	Noise and Vibration Control for HVAC Piping and Equipment	11-10
23 05 93	Testing, Adjusting, and Balancing for HVAC	05-11
23 07 11	HVAC Insulation	05-11
23 09 23	Direct-Digital Control System for HVAC	09-11
23 21 13	Hydronic Piping	09-12
23 22 13	Steam and Condensate Heating Piping	03-10
23 25 00	HVAC Water Treatment	02-10
23 31 00	HVAC Ducts and Casings	03-13
23 34 00	HVAC Fans	11-09
23 36 00	Air Terminal Units	03-10
23 37 00	Air Outlets and Inlets	11-09
23 40 00	HVAC Air Cleaning Devices	02-12
23 72 00	Air-to-Air Energy Recovery Equipment	05-11
23 73 13	Custom, Indoor, Central-Station Air-Handling Units	04 11
23 82 16	Air Coils	04-11
	DIVISION 26 - ELECTRICAL	
26 05 11	Requirements for Electrical Installations	12-12
26 05 19	Low-Voltage Electrical Power Conductors and Cables	07-13
26 05 26	Grounding and Bonding for Electrical Systems	12-12
	Raceway and Boxes for Electrical Systems	09-10

26 09 23	Lighting Controls	09-10
26 24 16	Panelboards	12-12
26 24 19	Motor Control Centers	12-12
26 27 26	Wiring Devices	12-12
26 29 11	Motor Starters	12-12
26 51 00	Interior Lighting	12-12
	DIVISION 27 - COMMUNICATIONS	
27 05 11	Requirements for Communications Installations	11-09
27 05 26	Grounding and Bonding for Communications Systems	10-06
27 05 33	Raceways and Boxes for Communications Systems	12-05
27 10 00	Structured Cabling	12-05
27 11 00	Communications Equipment Room Fittings	06-13
27 15 00	Communications Horizontal Cabling	06-13
27 51 16	Public Address and Mass Notification Systems	01-10
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
28 05 00	Common Work Results for Electronic Safety and Security	06-13
28 05 13	Conductors and Cables for Electronic Safety and Security	09-11
28 05 26	Grounding and Bonding for Electronic Safety and Security	09-11
28 05 28.33	Conduits and Backboxes for Electronic Safety and Security	09-11
28 13 00	Physical Access Control Systems	10-11
28 23 00	Video Surveillance	09-11
28 31 00	Fire Detection and Alarm	10-11

SECTION 00 01 15 LIST OF DRAWING SHEETS

GENERAL

1.	G0.01	COVER SHEET AND DRAWING INDEX
Arch	itectural	
2.	A0.1	ARCHITECTURAL ABBREVIATETIONS, NOTES, AND SYMBOLS
3.	LS1.0	LIFE SAFETY PLAN - THIRD FLOOR
4.	AD1.0	DEMOLITION PLAN - THIRD FLOOR
5.	A1.0	ENLARGED NEW WORK PLAN - THIRD FLOOR
6.	A1.1	PENTHOUSE DEMOLITION AND NEW WORK PLAN
7.	A2.0	REFLECTED CEILING PLAN - THIRD FLOOR
8.	A6.0	DOOR SCHEDULE, FINISH SCHEDULE, NOTES, AND DETAILS
9.	A8.0	CASEWORK ELEVATIONS AND SECTIONS
10.	AS1.0	ARCHITECTURAL SIGNAGE
Mecha	anical	
11.	M0.01	NOTES, SYMBOLS AND ABBREVIATIONS
12.	M0.02	NOTES
13.	MD1.01	THIRD FLOOR DEMOLITION PLAN
14.	MD1.02	PENTHOUSE DEMOLITION PLAN
15.	M1.01	THIRD FLOOR NEW WORK PLAN
16.	M1.02	PENTHOUSE NEW WORK PLAN
17.	M5.01	DETAILS
18.	M5.02	DETAILS
19.	M5.03	DETAILS
20.	M5.04	DETAILS
21.	M6.01	SCHEDULES
22.	M6.02	SCHEDULES
23.	M7.01	NEW ADMIN AHU-03 AIRFLOW DIAGRAM
24.	M8.00	CONTROLS NOTES AND LEGENDS
25.	M8.01	CONTROLS
26.	M8.02	CONTROLS
Elect	trical	
27.	E0.01	ABBREVIATIONS, SYMBOLS & NOTES
28.	E0.02	DEMOLITION AND GENERAL NOTES AND CONDITIONS
29.	ED1.01	PARTIAL THIRD FLOOR DEMOLITION LIGHTING, POWER AND SYSTEMS
30.	EL1.01	PARTIAL THIRD FLOOR LIGHTING PLAN
31.	EP1.01	PARTIAL THIRD FLOOR POWER PLAN

VA Medical Center, Huntington, WVVA Project No. 581-14-103Renovate 3W for Surgery Administration100% CD: 03/28/14

32.	E5.01	DETAILS
33.	E6.01	PANEL SCHEDULES
34.	FA0.01	FIRE ALARM ABBREVIATIONS, SYMBOLS & NOTES
35.	FA 1.01	FIRE ALARM PARTIAL THIRD FLOOR DEMOLITION AND NEW WORK PLANS
Plumb	ing	
36.	P0.01	SYMBOLS, ABBREVIATIONS, AND GENERAL NOTES
37.	P1.01	PARTIAL THIRD FLOOR DEMOLITION AND NEW WORK PLANS
38.	P3.01	RISER DIAGRAMS, DETAILS AND SCHEDULES
Fire	Protection	
39.	FX0.01	FIRE PROTECTION GENERAL NOTES, LEGEND AND DETAILS

40. FX1.01 FIRE PROTECTION PLAN

SECTION 01 00 00

GENERAL REQUIREMENTS

TABLE OF CONTENTS

1.1 GENERAL INTENTION
1.2 STATEMENT OF BID ITEM(S)2
1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR
1.4 CONSTRUCTION SECURITY REQUIREMENTS
1.5 FIRE SAFETY
1.6 OPERATIONS AND STORAGE AREAS7
1.7 ALTERATIONS11
1.8 INFECTION PREVENTION MEASURES
1.9 DISPOSAL AND RETENTION
1.10 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS
1.11 RESTORATION
1.12 AS-BUILT DRAWINGS
1.13 USE OF ROADWAYS
1.14 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT
1.15 TEMPORARY USE OF EXISTING ELEVATORS
1.16 TEMPORARY TOILETS
1.17 AVAILABILITY AND USE OF UTILITY SERVICES
1.18 NEW TELEPHONE EQUIPMENT
1.19 TESTS
1.20 INSTRUCTIONS
1.21 GOVERNMENT-FURNISHED PROPERTY
1.22 RELOCATED EQUIPMENT25

VA Medical Center, Huntington, WVVA Project No. 581-14-103Renovate 3W for Surgery Administration100% CD: 03/28/14

1.23	CONSTRUCTION	SIGN	26
1.24	HISTORIC PRE	SERVATION	26

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for Project No. 581-14-103, Department of Veterans Affairs Medical Center (VAMC) in Huntington, WV as required by drawings and specifications. Work includes, but is not necessarily limited to, General Construction and Renovation, Mechanical, Electrical and Plumbing work.
- B. Visits to the site by Bidders may be made only by appointment with the Contracting Officer's Representative (COR).
- C. Offices of Miller-Remick LLC, as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- D. Before placement and installation of work subject to tests by testing laboratory retained by DVA (DVA), the Contractor shall notify the Contracting Officer's Representative (COR) in sufficient time to enable testing laboratory personnel to be present at the site in time for proper taking and testing of specimens and field inspection. Such prior notice shall be not less than three work days unless otherwise designated by the COR.
- E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of VA police, be identified by project and employer, and restricted from unauthorized access.
- F. Prior to commencing work, general contractor shall provide proof that a OSHA designated "competent person" (CP) (29 CFR 1926.20(b)(2) will maintain a presence at the work site whenever the general or subcontractors are present.
- G. Training:

- All employees of general contractor or subcontractors shall have the 10-hour or 30-hour OSHA Construction Safety course and other relevant competency training, as determined by COR acting as the Construction Safety Officer with input from the facility Construction Safety Committee.
- 2. Submit training records of all such employees for approval before the start of work.
- H. VHA Directive 2011-36, Safety and Health during Construction, dated 9/22/2011 in its entirety is made a part of this section.
- I. All work that creates noise and/or dust, all work on second floor, and all work that will disrupt normal VA operations (as determined by the Huntington VA Medical Center) should be done after normal site operating hours (as determined by the Huntington VA Medical Center).

1.2 STATEMENT OF BID ITEM(S)

A. ITEM I, GENERAL CONSTRUCTION: All Work as required by drawings and specifications, including general construction, alterations, mechanical, structural and electrical work, relocation of sterilization and hospital equipment, utility systems, necessary removal of existing structures and construction, and certain other items.

1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

- A. AFTER AWARD OF CONTRACT, one set of specifications and drawings will be furnished electronically.
- B. Additional sets of drawings may be made by the Contractor, at Contractor's expense, from electronic files furnished by Issuing Office.

1.4 CONSTRUCTION SECURITY REQUIREMENTS

- A. Security Plan:
 - 1. The security plan defines both physical and administrative security procedures that will remain effective for entire duration of project.
 - 2. The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.
- B. Security Procedures:

- General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
- 2. For working outside the "regular hours" as defined in the contract, The General Contractor shall give 3 days notice to the Contracting Officer so that security arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
- 3. No photography of VA premises is allowed without written permission of the Contracting Officer.
- 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.
- C. Key Control:
 - The General Contractor shall provide duplicate keys and lock combinations to the COR for the purpose of security inspections of every area of project including tool boxes and parked machines and take any emergency action.
 - The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation. See Section 08 71 00, DOOR HARDWARE and coordinate.
- D. Document Control:
 - Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
 - 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
 - 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access

to only those who will need it for the project. Return the information to the Contracting Officer upon request.

- 4. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
- 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
- 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to e-mail, provided all VA encryption procedures are followed.
- E. Motor Vehicle Restrictions
 - Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies.
 - 2. Separate permits shall be issued for General Contractor and its employees for parking in designated areas only.

1.5 FIRE SAFETY

- A. Applicable Publications: Publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
 - 1. American Society for Testing and Materials (ASTM):

E84-2009.....Surface Burning Characteristics of Building Materials

2. National Fire Protection Association (NFPA):

10-2010......Standard for Portable Fire Extinguishers
30-2008......Flammable and Combustible Liquids Code
51B-2009.....Standard for Fire Prevention During Welding,
Cutting and Other Hot Work
70-2011.....National Electrical Code
101-2012....Life Safety Code
241-2009.....Standard for Safeguarding Construction,

Alteration, and Demolition Operations

3. Occupational Safety and Health Administration (OSHA):

29 CFR 1926.....Safety and Health Regulations for Construction

4. VHA Directive 2005-007

- B. Fire Safety Plan: Establish and maintain a fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to COR and Facility Safety Manager for review for compliance with VHA Directive 2005-007, NFPA 101 and NFPA 241. Prior to beginning work, all employees of the contractor and / or any subcontractors shall undergo a safety briefing provided by the general contractor's competent person per OSHA requirements. This briefing shall include information on the construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, etc. Provide documentation to the COR that all construction workers have undergone contractor's safety briefing.
- C. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- D. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 20 feet exposing overall length, separate by 10 feet.
- E. Temporary Construction Partitions:

- Install and maintain temporary construction partitions to provide smoke-tight separations between the areas that are described in phasing requirements and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on both sides of fire retardant treated wood or metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ¾ hour fire/smoke rated doors with self-closing devices.
- Install fire-rated temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures.
- 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.
- F. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- G. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with COR and Facility Safety Manager.
- H. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to the COR and Facility Safety Manager.
- I. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- J. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- K. Sprinklers: Install, test and activate new automatic sprinklers prior to removing existing sprinklers.

- L. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with COR and Facility Safety Manager. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the COR.
- M. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with COR and Facility Safety Manager.
- N. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with COR and Facility Safety Manager. Obtain permits from Facility Safety Manager at least 48 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.
- O. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to COR and Facility Safety Manager.
- P. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- Q. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- R. Perform other construction, alteration and demolition operations in accordance with 29 CFR 1926.
- S. If required, submit documentation to the COR that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.

1.6 OPERATIONS AND STORAGE AREAS

A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the

Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.

- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

(FAR 52.236-10)

- D. Working space and space available for storing materials shall be as shown on the drawings in conjunction with the COR.
- E. Workmen are subject to rules of Medical Center applicable to their conduct.
- F. Execute work in such a manner as to interfere as little as possible with work being done by others. Keep roads clear of construction materials, debris, standing construction equipment and vehicles at all times.
- G. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly

by patients or medical personnel, and Contractor's personnel, except as permitted by COR where required by limited working space.

- 1. Do not store materials and equipment in other than assigned areas.
- Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by DVA in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center areas required to remain in operation.
- 3. Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements.
- H. Building No. 1 will be occupied during performance of work; but immediate areas of alterations will be vacated.
 - 1. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in Medical Centers operations will not be hindered. Contractor shall permit access to DVA personnel and patients through other construction areas which serve as routes of access to such affected areas and equipment. Coordinate alteration work in areas occupied by DVA so that Medical Center operations will continue during the construction period.
 - Immediate areas of alterations not mentioned in preceding Subparagraph 1 will be temporarily vacated while alterations are performed.
- I. When a building is turned over to Contractor, Contractor shall accept entire responsibility therefore.
 - Contractor shall maintain a minimum temperature of 40 degrees F at all times, except as otherwise specified.
 - Contractor shall maintain in operating condition existing fire protection and alarm equipment. In connection with fire alarm equipment, Contractor shall make arrangements for pre-inspection of site with Fire Department or Company (DVA or municipal) whichever

will be required to respond to an alarm from Contractor's employee or watchman.

- J. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR.
 - 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of COR. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without the Medical Center Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and 28 05 11, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS for additional requirements.
 - Contractor shall submit a request to interrupt any such services to COR, in writing, 48 hours in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
 - 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
 - Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the COR.
 - 5. In case of a contract construction emergency, service will be interrupted on approval of COR. Such approval will be confirmed in writing as soon as practical.

- 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- K. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- L. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles.
 - 2. Method and scheduling of required cutting, altering and removal of existing roads, walks and entrances must be approved by the COR.
- M. Coordinate the work for this contract with other construction operations as directed by COR. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

1.7 ALTERATIONS

- A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR and a representative of VA Supply Service, of areas of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by all three, to the Contracting Officer. This report shall list by rooms and spaces:
 - Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas of buildings.
 - Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both.

- 3. Shall note any discrepancies between drawings and existing conditions at site.
- 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and COR.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of COR and/or Supply Representative, to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).
- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and COR together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract.
- D. Protection: Provide the following protective measures:
 - 1. Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.
 - Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
 - 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed,

floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 INFECTION PREVENTION MEASURES

- A. Implement the requirements of VAMC's Infection Control Risk Assessment (ICRA) team. ICRA Group may monitor dust in the vicinity of the construction work and require the Contractor to take corrective action immediately if the safe levels are exceeded.
- B. Establish and maintain a dust control program as part of the contractor's infection preventive measures in accordance with the guidelines provided by ICRA Group as specified here. Prior to start of work, prepare a plan detailing project-specific dust protection measures, including periodic status reports, and submit to COR and Facility ICRA team for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
 - All personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- C. Medical center Infection Control personnel shall monitor for airborne disease (e.g. aspergillosis) as appropriate during construction. A baseline of conditions may be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality. In addition:
 - 1. The COR and VAMC Infection Control personnel shall review pressure differential monitoring documentation to verify that pressure differentials in the construction zone and in the patient-care rooms are appropriate for their settings. The requirement for negative air pressure in the construction zone shall depend on the location and type of activity. Upon notification, the contractor shall implement corrective measures to restore proper pressure differentials as needed.
 - 2. In case of any problem, the medical center, along with assistance from the contractor, shall conduct an environmental assessment to find and eliminate the source.

- D. In general, following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - Dampen debris to keep down dust and provide temporary construction partitions in existing structures where directed by COR. Blank off ducts and diffusers to prevent circulation of dust into occupied areas during construction.
 - 2. Do not perform dust producing tasks within occupied areas without the approval of the COR. For construction in any areas that will remain jointly occupied by the Medical Center and Contractor's workers, the Contractor shall:
 - a. Provide dust proof fire-rated temporary drywall construction barriers to completely separate construction from the operational areas of the hospital in order to contain dirt debris and dust. Barriers shall be sealed and made presentable on hospital occupied side. Install a self-closing rated door in a metal frame, commensurate with the partition, to allow worker access. Maintain negative air at all times. A fire retardant polystyrene, 6-mil thick or greater plastic barrier meeting local fire codes may be used where dust control is the only hazard, and an agreement is reached with the COR and Medical Center.
 - b. HEPA filtration is required where the exhaust dust may reenter the breathing zone. Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents, or building openings. Install HEPA (High Efficiency Particulate Accumulator) filter vacuum system rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. Insure continuous negative air pressures occurring within the work area. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Exhaust hoses shall be heavy duty, flexible steel reinforced and exhausted so that dust is not reintroduced to the medical center.
 - c. Adhesive Walk-off/Carpet Walk-off Mats, minimum 24" x 36", shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times.

- d. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as they are created. Transport these outside the construction area in containers with tightly fitting lids.
- e. The contractor shall not haul debris through patient-care areas without prior approval of the COR and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.
- f. Using a HEPA vacuum, clean inside the barrier and vacuum ceiling tile prior to replacement. Any ceiling access panels opened for investigation beyond sealed areas shall be sealed immediately when unattended.
- g. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours.
- h. At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.

E. Final Cleanup:

- Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
- Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
- 3. All new air ducts shall be cleaned prior to final inspection.

1.9 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - Reserved items which are to remain property of the Government are identified by attached tags or noted on drawings or in specifications as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by COR.
 - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center.
 - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the DVA during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.

1.10 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

- A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.
- B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract

or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

(FAR 52.236-9)

C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements.

1.11 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COR. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are indicated on drawings and which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES"

(FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.12 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the COR's review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings to the COR within 15 calendar days after each completed phase and after the acceptance of the project by the COR.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.13 USE OF ROADWAYS

A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the COR, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.

1.14 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to compliance with the following provisions:
 - Permission to use each unit or system must be given by COR. If the equipment is not installed and maintained in accordance with the following provisions, the COR will withdraw permission for use of the equipment.
 - 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Voltage supplied to each item of equipment shall be verified to be

correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.

- Units shall be properly lubricated, balanced, and aligned. Vibrations must be eliminated.
- Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
- 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
- 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government.
- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.

1.15 TEMPORARY USE OF EXISTING ELEVATORS

- A. Use of existing elevator for handling building materials and Contractor's personnel will be permitted subject to following provisions:
 - Contractor makes all arrangements with the COR for use of elevators. The COR will ascertain that elevators are in proper condition. Contractor may use the service elevators in Building No. 15 for exclusive daily use and for special nonrecurring time intervals when permission is granted. Personnel for operating elevators will not be provided by the DVA.

- 2. Contractor covers and provides maximum protection of following elevator components:
 - a. Entrance jambs, heads soffits and threshold plates.
 - b. Entrance columns, canopy, return panels and inside surfaces of car enclosure walls.
 - c. Finish flooring.
- 3. Government will accept hoisting ropes of elevator and rope of each speed governor if they are worn under normal operation. However, if these ropes are damaged by action of foreign matter such as sand, lime, grit, stones, etc., during temporary use, they shall be removed and replaced by new hoisting ropes.
- If brake lining of elevators are excessively worn or damaged during temporary use, they shall be removed and replaced by new brake lining.
- 5. All parts of main controller, starter, relay panel, selector, etc., worn or damaged during temporary use shall be removed and replaced with new parts, if recommended by elevator inspector after elevator is released by Contractor.
- Place elevator in condition equal, less normal wear, to that existing at time it was placed in service of Contractor as approved by Contracting Officer.

1.16 TEMPORARY TOILETS

A. Contractor may have for use of Contractor's workmen, such toilet accommodations as may be assigned to Contractor by Medical Center. Contractor shall keep such places clean and be responsible for any damage done thereto by Contractor's workmen. Failure to maintain satisfactory condition in toilets will deprive Contractor of the privilege to use such toilets.

1.17 AVAILABILITY AND USE OF UTILITY SERVICES

A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge.

- B. The Contractor, at Contractor's expense and in a workmanlike manner satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia.
- C. Contractor shall install meters at Contractor's expense and furnish the Medical Center a monthly record of the Contractor's usage of electricity as hereinafter specified.
- D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials:
 - 1. Obtain heat by connecting to Medical Center heating distribution system.
 - a. Steam is available at no cost to Contractor.
- E. Electricity (for Construction and Testing): Furnish all temporary electric services.
 - Obtain electricity by connecting to the Medical Center electrical distribution system. The Contractor shall meter and pay for electricity required for electric cranes and hoisting devices, electrical welding devices and any electrical heating devices providing temporary heat. Electricity for all other uses is available at no cost to the Contractor.
- F. Water (for Construction and Testing): Furnish temporary water service.
 - Obtain water by connecting to the Medical Center water distribution system. Provide reduced pressure backflow preventer at each connection. Water is available at no cost to the Contractor.
 - 2. Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes

will be cause for revocation (at COR's discretion) of use of water from Medical Center's system.

- G. Steam: Furnish steam system for testing required in various sections of specifications.
 - 1. Obtain steam for testing by connecting to the Medical Center steam distribution system. Steam is available at no cost to the Contractor.
 - 2. Maintain connections, pipe, fittings and fixtures and conserve steam-use so none is wasted. Failure to stop leakage or other waste will be cause for revocation (at COR's discretion), of use of steam from the Medical Center's system.

1.18 NEW TELEPHONE EQUIPMENT

The contractor shall coordinate with the work of installation of telephone equipment by others. This work shall be completed before the building is turned over to VA.

1.19 TESTS

- A. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- B. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- C. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire complex which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a complex which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.

- D. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably short period of time during which operating and environmental conditions remain reasonably constant.
- E. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.20 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.
- C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed instructions to assigned DVA personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are

component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the COR and shall be considered concluded only when the COR is satisfied in regard to complete and thorough coverage. The DVA reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.21 GOVERNMENT-FURNISHED PROPERTY

- A. The Government shall deliver to the Contractor, the Government-furnished property shown on the drawings.
- B. Equipment furnished by Government to be installed by Contractor will be furnished to Contractor at the Medical Center.
- C. Storage space for equipment will be provided by the Government and the Contractor shall be prepared to unload and store such equipment therein upon its receipt at the Medical Center.
- D. Notify Contracting Officer in writing, 60 days in advance, of date on which Contractor will be prepared to receive equipment furnished by Government. Arrangements will then be made by the Government for delivery of equipment.
 - Immediately upon delivery of equipment, Contractor shall arrange for a joint inspection thereof with a representative of the Government. At such time the Contractor shall acknowledge receipt of equipment described, make notations, and immediately furnish the Government representative with a written statement as to its condition or shortages.
 - 2. Contractor thereafter is responsible for such equipment until such time as acceptance of contract work is made by the Government.
- E. Equipment furnished by the Government will be delivered in a partially assembled (knock down) condition in accordance with existing standard commercial practices, complete with all fittings, fastenings, and appliances necessary for connections to respective services installed

under contract. All fittings and appliances (i.e., couplings, ells, tees, nipples, piping, conduits, cables, and the like) necessary to make the connection between the Government furnished equipment item and the utility stub-up shall be furnished and installed by the contractor at no additional cost to the Government.

- F. Completely assemble and install the Government furnished equipment in place ready for proper operation in accordance with specifications and drawings.
- G. Furnish supervision of installation of equipment at construction site by qualified factory trained technicians regularly employed by the equipment manufacturer.

1.22 RELOCATED EQUIPMENT

- A. Contractor shall disconnect, dismantle as necessary, remove and reinstall in new location, all existing equipment and items indicated by symbol "R" or otherwise shown to be relocated by the Contractor.
- B. Perform relocation of such equipment or items at such times and in such a manner as directed by the COR.
- C. Suitably cap existing service lines, such as steam, condensate return, water, drain, gas, air, vacuum and/or electrical, whenever such lines are disconnected from equipment to be relocated. Remove abandoned lines in finished areas and cap as specified herein before under paragraph "Abandoned Lines".
- D. Provide all mechanical and electrical service connections, fittings, fastenings and any other materials necessary for assembly and installation of relocated equipment; and leave such equipment in proper operating condition.
- E. Contractor shall employ services of an installation engineer, who is an authorized representative of the manufacturer of this equipment to supervise assembly and installation of existing equipment, required to be relocated.
- F. All service lines such as noted above for relocated equipment shall be in place at point of relocation ready for use before any existing equipment is disconnected. Make relocated existing equipment ready for operation or use immediately after reinstallation.

1.23 CONSTRUCTION SIGN

- A. Provide a Construction Sign where directed by the COR. All wood members shall be of framing lumber. Cover sign frame with 24 gage galvanized sheet steel nailed securely around edges and on all bearings. Provide three 4-inch by 4-inch posts (or equivalent round posts) set four feet into ground. Set bottom of sign level at three feet above ground and secure to posts with through bolts. Make posts full height of sign. Brace posts with two by four inch material as directed.
- B. Paint all surfaces of sign and posts two coats of white gloss paint. Border and letters shall be of black gloss paint, except project title which shall be blue gloss paint.
- C. Maintain sign and remove it when directed by the COR.
- D. Detail drawing of construction sign showing required legend and other characteristics of sign is shown on the drawings.

1.24 HISTORIC PRESERVATION

Where the Contractor or any of the Contractor's employees, prior to, or during the construction work, are advised of or discover any possible archeological, historical and/or cultural resources, the Contractor shall immediately notify the COR verbally, and then with a written follow up.

- - - E N D - - -

SECTION 01 33 23

SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

- 1-1. Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- 1-2. For the purposes of this contract, samples, test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS.
- 1-3. Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless:
 - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or;
 - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or;
 - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government.
- 1-4. Forward submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract - required items. Delays attributable to untimely and rejected submittals will not serve as a basis for extending contract time for completion.
- 1-5. Submittals will be reviewed for compliance with contract requirements by Architect-Engineer, and action thereon will be taken by Contracting Officer's Representative (COR) on behalf of the Contracting Officer.
- 1-6. Upon receipt of submittals, Architect-Engineer will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals.
- 1-7. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those required by the contract are furnished pursuant

to request therefor by Contracting Officer, adjustment in contract price and time will be made in accordance with Articles titled CHANGES (FAR 52.243-4) and CHANGES - SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS.

- 1-8. Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect- Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items.
- 1-9. Submittals must be submitted by Contractor only and shipped prepaid. Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals.
 - Submit samples required by Section 09 06 00, SCHEDULE FOR FINISHES, Α. in quadruplicate. Submit other samples in single units unless otherwise specified. Submit shop drawings, schedules, manufacturers' literature/data, and certificates in quadruplicate, except where a greater number is specified.
 - Submittals will receive consideration only when covered by a в. transmittal letter signed by Contractor. Letter shall be sent via first class mail and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval.
 - 1. A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only.
 - 2. Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor, manufacturer, brand, contract number and ASTM or Federal Specification Number as applicable and location(s) on project.

- 3. Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor.
- If submittal samples have been disapproved, resubmit new samples as С. soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter.
- Approved samples will be kept on file by the COR at the site until D. completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical sections of specifications, approved samples in good condition may be used in their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract.
- Submittal drawings (shop, erection or setting drawings) and Ε. schedules, required for work of various trades, shall be checked before submission by technically qualified employees of Contractor accuracy, completeness and compliance with contract for requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check.
 - 1. For each drawing required, submit one legible photographic paper or vellum reproducible, or PDF.
 - 2. Reproducible shall be full size.
 - 3. Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number.
 - 4. A space 4-3/4 by 5 inches shall be reserved on each drawing to accommodate approval or disapproval stamp.
 - 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment.
 - 6. One reproducible print or PDF of approved or disapproved shop drawings will be forwarded to Contractor.
 - 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover.

- 1-10. Samples, shop drawings, test reports, certificates and manufacturers' literature and data, shall be submitted for approval to Miller-Remick LLC Attn: Michael Przybylski, P.E. 1010 Kings Highway South Cherry Hill, NJ 08034
- 1-11. At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the COR.

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS Office of Construction & Facilities Management Facilities Quality Service (00CFM1A) 425 Eye Street N.W, (sixth floor) Washington, DC 20001 Telephone Numbers: (202) 632-5249 or (202) 632-5178 Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

- AA Aluminum Association Inc. http://www.aluminum.org
- AABC Associated Air Balance Council http://www.aabchq.com
- AAMA American Architectural Manufacturer's Association http://www.aamanet.org
- AAN American Nursery and Landscape Association http://www.anla.org
- AASHTO American Association of State Highway and Transportation Officials http://www.aashto.org
- AATCC American Association of Textile Chemists and Colorists http://www.aatcc.org
- ACGIH American Conference of Governmental Industrial Hygienists http://www.acgih.org
- ACI American Concrete Institute http://www.aci-int.net
- ACPA American Concrete Pipe Association http://www.concrete-pipe.org
- ACPPA American Concrete Pressure Pipe Association http://www.acppa.org
- ADC Air Diffusion Council http://flexibleduct.org
- AGA American Gas Association http://www.aga.org
- AGC Associated General Contractors of America http://www.agc.org

AGMA	American Gear Manufacturers Association, Inc. <u>http://www.agma.org</u>			
АНАМ	Association of Home Appliance Manufacturers			
AISC	American Institute of Steel Construction http://www.aisc.org			
AISI	American Iron and Steel Institute http://www.steel.org			
AITC	American Institute of Timber Construction http://www.aitc-glulam.org			
AMCA	Air Movement and Control Association, Inc. http://www.amca.org			
ANLA	American Nursery & Landscape Association			
ANSI	American National Standards Institute, Inc. http://www.ansi.org			
APA	The Engineered Wood Association			
ARI	Air-Conditioning and Refrigeration Institute			
ASAE	American Society of Agricultural Engineers			
ASCE	American Society of Civil Engineers			
ASHRAE	American Society of Heating, Refrigerating, and Air-Conditioning Engineers http://www.ashrae.org			
ASME	American Society of Mechanical Engineers			
ASSE	American Society of Sanitary Engineering http://www.asse-plumbing.org			

- ASTM American Society for Testing and Materials http://www.astm.org
- AWI Architectural Woodwork Institute http://www.awinet.org
- AWS American Welding Society http://www.aws.org
- AWWA American Water Works Association http://www.awwa.org
- BHMA Builders Hardware Manufacturers Association http://www.buildershardware.com
- BIA Brick Institute of America http://www.bia.org
- CAGI Compressed Air and Gas Institute http://www.cagi.org
- CGA Compressed Gas Association, Inc. http://www.cganet.com
- CI The Chlorine Institute, Inc. http://www.chlorineinstitute.org
- CISCA Ceilings and Interior Systems Construction Association http://www.cisca.org
- CISPI Cast Iron Soil Pipe Institute http://www.cispi.org
- CLFMI Chain Link Fence Manufacturers Institute http://www.chainlinkinfo.org
- CPMB Concrete Plant Manufacturers Bureau http://www.cpmb.org
- CRA California Redwood Association http://www.calredwood.org
- CRSI Concrete Reinforcing Steel Institute http://www.crsi.org

- CTI Cooling Technology Institute http://www.cti.org
- DHI Door and Hardware Institute http://www.dhi.org
- EGSA Electrical Generating Systems Association http://www.egsa.org
- EEI Edison Electric Institute http://www.eei.org
- EPA Environmental Protection Agency http://www.epa.gov
- ETL ETL Testing Laboratories, Inc. http://www.etl.com
- FAA Federal Aviation Administration http://www.faa.gov
- FCC Federal Communications Commission http://www.fcc.gov
- FPS The Forest Products Society http://www.forestprod.org
- GANA Glass Association of North America http://www.cssinfo.com/info/gana.html/
- FM Factory Mutual Insurance http://www.fmglobal.com
- GA Gypsum Association http://www.gypsum.org
- GSA General Services Administration http://www.gsa.gov
- HI Hydraulic Institute http://www.pumps.org
- HPVA Hardwood Plywood & Veneer Association http://www.hpva.org

- ICBO International Conference of Building Officials
 http://www.icbo.org
- ICEA Insulated Cable Engineers Association Inc. http://www.icea.net
- \ICAC Institute of Clean Air Companies http://www.icac.com
- IEEE Institute of Electrical and Electronics Engineers
 http://www.ieee.org\
- IMSA International Municipal Signal Association http://www.imsasafety.org
- IPCEA Insulated Power Cable Engineers Association
- NBMA Metal Buildings Manufacturers Association http://www.mbma.com
- MSS Manufacturers Standardization Society of the Valve and Fittings Industry Inc. http://www.mss-hq.com
- NAAMM National Association of Architectural Metal Manufacturers http://www.naamm.org
- NAPHCC Plumbing-Heating-Cooling Contractors Association http://www.phccweb.org.org
- NBS National Bureau of Standards See - NIST
- NBBPVI National Board of Boiler and Pressure Vessel Inspectors http://www.nationboard.org
- NEC National Electric Code See - NFPA National Fire Protection Association
- NEMA National Electrical Manufacturers Association http://www.nema.org
- NFPA National Fire Protection Association http://www.nfpa.org

NHLA	National Hardwood Lumber Association
	http://www.natlhardwood.org
NIH	National Institute of Health
	http://www.nih.gov
NIST	National Institute of Standards and Technology
	http://www.nist.gov
NLMA	Northeastern Lumber Manufacturers Association, Inc.
	http://www.nelma.org
NPA	National Particleboard Association
	18928 Premiere Court
	Gaithersburg, MD 20879
	(301) 670-0604
NSF	National Sanitation Foundation
	http://www.nsf.org
NWWDA	Window and Door Manufacturers Association
	http://www.nwwda.org
OSHA	Occupational Safety and Health Administration
	Department of Labor
	http://www.osha.gov
PCA	Portland Cement Association
	http://www.portcement.org
PCI	Precast Prestressed Concrete Institute
	http://www.pci.org
PPI	The Plastic Pipe Institute
	http://www.plasticpipe.org
PEI	Porcelain Enamel Institute, Inc.
	http://www.porcelainenamel.com
PTI	Post-Tensioning Institute
	http://www.post-tensioning.org
RFCI	The Resilient Floor Covering Institute
	http://www.rfci.com

01 42 19 - 7

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

RIS Redwood Inspection Service See - CRA

RMA Rubber Manufacturers Association, Inc. http://www.rma.org

- SCMA Southern Cypress Manufacturers Association http://www.cypressinfo.org
- SDI Steel Door Institute http://www.steeldoor.org

IGMA Insulating Glass Manufacturers Alliance http://www.igmaonline.org

- SJI Steel Joist Institute http://www.steeljoist.org
- SMACNA Sheet Metal and Air-Conditioning Contractors
 National Association, Inc.
 http://www.smacna.org

SSPC The Society for Protective Coatings http://www.sspc.org

- STI Steel Tank Institute http://www.steeltank.com
- SWI Steel Window Institute http://www.steelwindows.com
- TCA Tile Council of America, Inc. http://www.tileusa.com
- TEMA Tubular Exchange Manufacturers Association http://www.tema.org
- TPI Truss Plate Institute, Inc. 583 D'Onofrio Drive; Suite 200 Madison, WI 53719 (608) 833-5900
- UBC The Uniform Building Code See ICBO

UL Underwriters' Laboratories Incorporated http://www.ul.com

ULC Underwriters' Laboratories of Canada http://www.ulc.ca

- WCLIB West Coast Lumber Inspection Bureau 6980 SW Varns Road, P.O. Box 23145 Portland, OR 97223 (503) 639-0651
- WRCLA Western Red Cedar Lumber Association P.O. Box 120786 New Brighton, MN 55112 (612) 633-4334
- WWPA Western Wood Products Association http://www.wwpa.org

SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely effect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind, or;
 - 4. Degrade the utility of the environment for aesthetic, cultural, and historical purposes.
- C. Definitions of Pollutants:
 - Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
 - Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
 - Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
 - 4. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.
 - 5. Sanitary Wastes:
 - a. Sewage: Domestic sanitary sewage and human and animal waste.
 - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.
- B. U.S. National Archives and Records Administration (NARA):33 CFR 328.....Definitions

1.4 SUBMITTALS

- A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Contracting Officer's Representative (COR) to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the COR for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following:
 - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan.
 - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.
 - c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.
 - d. Description of the Contractor's environmental protection personnel training program.
 - e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits.
 - f. Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses, ground cover, landscape features, air and water quality, fish and wildlife, soil, historical, and archeological and cultural resources.
 - g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural

causes, or failure to follow the procedures as described in the Environmental Protection Plan.

- h. Permits, licenses, and the location of solid waste disposal area.
- i. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- j. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas.
- B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

1.5 PROTECTION OF ENVIRONMENTAL RESOURCES

- A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings.
- B. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract.
 - Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government.
 - 2. Monitor water areas affected by construction.
- D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning construction operations, list species that require specific attention along with measures for their protection.
- E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of West Virginia DEPA and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - 1. Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities, processing, and

preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress. See note on Drawing G0.01

- 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators, or other methods are permitted to control particulates in the work area.
- 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.
- 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring.
- F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the COR. See note on Drawing G0.01. Maintain noise-produced work at or below the decibel levels and within the time periods specified.
 - Perform construction activities involving repetitive, high-level impact noise only between the hours permitted by local ordinance or as directed by the COR. Repetitive impact noise on the property shall not exceed the following dB limitations:

Time Duration of Impact Noise	Sound Level in dB
More than 12 minutes in any hour	70
Less than 30 seconds of any hour	85
Less than three minutes of any hour	80
Less than 12 minutes of any hour	75

- 2. Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:
 - a. Maintain maximum permissible construction equipment noise levels
 at 50 feet (dBA):

EARTHMOVING		MATERIALS HANDLING	
TRUCKS	75	CRANES	75
GENERATORS	75	DERRICKS IMPACT	75
COMPRESSORS	75	JACK HAMMERS	75

ROCK DRILLS	80
PNEUMATIC TOOLS	80
SAWS	75
VIBRATORS	75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.
- d. Use efficient silencers on equipment air intakes.
- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.
- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 50 feet from the noise source, whichever is greater. Measure the sound levels on the <u>A</u> weighing network of a General Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at three to six feet in front of any building face. Submit the recorded information to the COR noting any problems and the alternatives for mitigating actions.
- G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.
- H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the COR. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

SECTION 01 74 19

CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inerts (eg, concrete, masonry and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - Engineered wood products (plywood, particle board and Ijoists, etc).
 - Metal products (eg, steel, wire, beverage containers, copper, etc).
 - 7. Cardboard, paper and packaging.
 - 8. Bitumen roofing materials.
 - 9. Plastics (eg, ABS, PVC).
 - 10. Carpet and/or pad.
 - 11. Gypsum board.
 - 12. Insulation.
 - 13. Paint.
 - 14. Fluorescent lamps.

1.2 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 01 00 00, GENERAL REQUIREMENTS.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org/tools/cwm.php provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects.

- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.
- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.

- I. Mixed Debris: Loads that include commingled recyclable and nonrecyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.
- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.
- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.
 - On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
 - Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, onsite or off-site.
- Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or reuse by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as nonrecyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-

loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the Contracting Officers Representative (COR) a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:
 - a. List of each material and quantity to be salvaged, reused, recycled.
 - b. List of each material and quantity proposed to be taken to a landfill.
 - Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - Description of materials to be site-separated and selfhauled to designated facilities.
 - 2)Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - c. The names and locations of mixed debris reuse and recycling facilities or sites.
 - d. The names and locations of trash disposal landfill facilities or sites.
 - e. Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material.

C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, and invoices. Include the net total costs for each disposal.

SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies demolition and removal of buildings, portions of buildings, utilities, other structures and debris from trash dumps shown.

1.2 RELATED WORK:

- A. Safety Requirements: GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- C. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Environmental Protection: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- E. Construction Waste Management: Section 017419 CONSTRUCTION WASTE MANAGEMENT.
- F. Infectious Control: Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7, INFECTION PREVENTION MEASURES.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS.
- C. Provide enclosed dust chutes with control gates from each floor to carry debris to truck beds and govern flow of material into truck. Provide overhead bridges of tight board or prefabricated metal construction at dust chutes to protect persons and property from falling debris.
- D. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.

- E. In addition to previously listed fire and safety rules to be observed in performance of work, include following:
 - 1. No wall or part of wall shall be permitted to fall outwardly from structures.
 - Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
 - 3. Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 15 feet of fire hydrants.
- F. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center; any damaged items shall be repaired or replaced as approved by the Contracting Officer's Representative (COR). The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have Resident Engineer's approval.
- G. The work shall comply with the requirements of Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- H. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7 INFECTION PREVENTION MEASURES.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

A. Debris, including brick, concrete, stone, metals and similar materials shall become property of Contractor and shall be disposed of by him daily, off the Medical Center to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the COR. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.

- B. Remove and legally dispose of all materials from any trash dumps shown. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state or local permits, rules and/or regulations. Materials that are discovered to be hazardous, shall be handled as unforeseen. The removal of hazardous material shall be referred to Hazardous Materials specifications.
- C. Remove existing utilities as indicated or uncovered by work and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the COR. When Utility lines are encountered that are not indicated on the drawings, the COR shall be notified prior to further work in that area.

3.2 CLEAN-UP:

On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to COR. Clean-up shall include off the Medical Center disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

SECTION 03 30 53

(SHORT-FORM) CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies cast-in-place structural concrete and material and mixes for other concrete.

1.2 TOLERANCES:

- A. ACI 117.
- B. Slab Finishes: ACI 117, F-number method in accordance with ASTM E1155.

REGULATORY REQUIREMENTS: 1.3

- A. ACI SP-66 ACI Detailing Manual
- B. ACI 318 Building Code Requirements for Reinforced Concrete.

SUBMITTALS: 1.4

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Concrete Mix Design.
- C. Shop Drawings: Reinforcing steel: Complete shop drawings.
- D. Manufacturer's Certificates: Air-entraining admixture, chemical admixtures, curing compounds.

1.5 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Concrete Institute (ACI):

117-10Specification for Tolerances for Concrete
Construction, Materials and Commentary
211.1-91(R2009)Standard Practice for Proportions for Normal,
Heavyweight, and Mass Concrete
211.2-98(R2004)Standard Practice for Selecting Proportions for
Structural Lightweight Concrete
301-10Specifications for Structural Concrete
305.1-06Specification for Hot Weather Concreting
306.1-90(R2002)Standard Specification for Cold Weather
Concreting
SP-66-04ACI Detailing Manual
318-11Building Code Requirements for Structural
Concrete and Commentary

347-04.....Guide to Formwork for Concrete

C.	American Society	for Testing And Materials (ASTM):
	A185/A185M-07	Standard Specification for Steel Welded Wire
		Reinforcement, Plain, for Concrete Reinforcement
	A615/A615M-09	Standard Specification for Deformed and Plain
		Carbon Steel Bars for Concrete Reinforcement
	A996/A996M-09	Standard Specification for Rail Steel and Axle
		Steel Deformed Bars for Concrete Reinforcement
	C31/C31M-10	Standard Practice for Making and Curing Concrete
		Test Specimens in the Field
	C33/C33M-11a	Standard Specification for Concrete Aggregates
	C39/C39M-12	Standard Test Method for Compressive Strength of
		Cylindrical Concrete Specimens
	C94/C94M-12	Standard Specification for Ready Mixed Concrete
	C143/C143M-10	Standard Test Method for Slump of Hydraulic Cement
		Concrete
	C150-11	Standard Specification for Portland Cement
	C171-07	Standard Specification for Sheet Material for
		Curing Concrete
	C172-10	Standard Practice for Sampling Freshly Mixed
		Concrete
	C173-10	Standard Test Method for Air Content of Freshly
		Mixed Concrete by the Volumetric Method
	C192/C192M-07	Standard Practice for Making and Curing Concrete
		Test Specimens in the Laboratory
	C231-10	Standard Test Method for Air Content of Freshly
		Mixed Concrete by the Pressure Method
	C260-10	Standard Specification for Air-Entraining
		Admixtures for Concrete
	C330-09	Standard Specification for Lightweight Aggregates
		for Structural Concrete
	C494/C494M-11	Standard Specification for Chemical Admixtures for
		Concrete
	C618-12	Standard Specification for Coal Fly Ash and Raw or
		Calcined Natural Pozzolan for Use in Concrete
	D1751-04(R2008)	Standard Specification for Preformed Expansion
		Joint Fillers for Concrete Paving and Structural
		Construction (Non-extruding and Resilient
		Bituminous Types)

D4397-10.....Standard Specification for Polyethylene Sheeting

for Construction, Industrial and

Agricultural Applications

<code>E1155-96(2008)</code> Standard Test Method for Determining F_{F} Floor

Flatness and ${\rm F}_{\rm L}$ Floor Levelness Numbers

PART 2 - PRODUCTS

2.1 FORMS:

Wood, plywood, metal, or other materials, approved by Contracting Officers Representative (COR), of grade or type suitable to obtain type of finish specified.

2.2 MATERIALS:

- A. Portland Cement: ASTM C150, Type I or II.
- B. Fly Ash: ASTM C618, Class C or F including supplementary optional requirements relating to reactive aggregates and alkalis, and loss on ignition (LOI) not to exceed 5 percent.
- C. Coarse Aggregate: ASTM C33, Size 67. Size 467 may be used for footings and walls over 12 inches thick. Coarse aggregate for applied topping and metal pan stair fill shall be Size 7.
- D. Fine Aggregate: ASTM C33.
- E. Mixing Water: Fresh, clean, and potable.
- F. Air-Entraining Admixture: ASTM C260.
- G. Chemical Admixtures: ASTM C494.
- H. Reinforcing Steel: ASTM A615 or ASTM A996, deformed. See structural drawings for grade.
- I. Welded Wire Fabric: ASTM A185.
- J. Sheet Materials for Curing Concrete: ASTM C171.
- K. Grout, Non-Shrinking: Premixed ferrous or non-ferrous, mixed and applied in accordance with manufacturer's recommendations. Grout shall show no settlement or vertical drying shrinkage at 3 days or thereafter based on initial measurement made at time of placement, and produce a compressive strength of at least 2500 psi at 3 days and 5000 psi at 28 days.

2.3 CONCRETE MIXES:

- A. Design of concrete mixes using materials specified shall be the responsibility of the Contractor as set forth under Option C of ASTM C94.
- B. Compressive strength at 28 days shall be not less than 4000 psi.
- C. Establish strength of concrete by testing prior to beginning concreting operation. Test consists of average of three cylinders

made and cured in accordance with ASTM C192 and tested in accordance with ASTM C39.

- D. Maximum slump for vibrated concrete is 4 inches tested in accordance with ASTM C143.
- E. Cement and water factor (See Table I):

Concrete: Strength	Non-Air-Entrained		Air-Entrained	
Min. 28 Day Comp. Str. MPa (psi)	Min. Cement kg/m ³ (lbs/c. yd)	Max. Water Cement Ratio	Min. Cement kg/m ³ (lbs/c. yd)	Max. Water Cement Ratio
35 (5000) ^{1,3}	375 (630)	0.45	385 (650)	0.40
30 (4000) ^{1,3}	325 (550)	0.55	340 (570)	0.50
25 (3000) ^{1,3}	280 (470)	0.65	290 (490)	0.55
25 (3000) ^{1,2}	300 (500)	*	310 (520)	*

TABLE I - CEMENT AND WATER FACTORS FOR CONCRETE

- If trial mixes are used, proposed mix design shall achieve a compressive strength 1200 psi in excess of f'c. For concrete strengths above 5000 psi, the proposed mix design shall achieve a compressive strength 1400 psi in excess of f'c.
- 2. Lightweight Structural Concrete. Pump mixes may require higher cement values.
- For concrete exposed to high sulfate content soils maximum water cement ratio is 0.44.
- 4. Determined by Laboratory in accordance with ACI 211.1 for normal concrete or ACI 211.2 for lightweight structural concrete.

2.4 BATCHING & MIXING:

- A. Store, batch, and mix materials as specified in ASTM C94.
 - Job-Mixed: Concrete mixed at job site shall be mixed in batch mixer in manner specified for stationary mixers in ASTM C94.
 - 2. Ready-Mixed: Ready-mixed concrete comply with ASTM C94, except use of non-agitating equipment for transporting concrete to site will not be permitted. With each load of concrete delivered to project, ready-mixed concrete producer shall furnish, in duplicate, ASTM C94 certification.

PART 3 - EXECUTION

3.1 FORMWORK:

- A. Installation shall conform to ACI 347. Sufficiently tight to hold concrete without leakage, sufficiently braced to withstand vibration of concrete, and to carry, without appreciable deflection, all dead and live loads to which they may be subjected.
- B. Treating and Wetting: Treat or wet contact forms as follows:
 - Coat plywood and board forms with non-staining form sealer. In hot weather cool forms by wetting with cool water just before concrete is placed.
 - 2. Clean and coat removable metal forms with light form oil before reinforcement is placed. In hot weather cool metal forms by thoroughly wetting with water just before placing concrete.
 - 3. Use sealer on reused plywood forms as specified for new material.
- C. Inserts, sleeves, and similar items: Flashing reglets, masonry ties, anchors, inserts, wires, hangers, sleeves, boxes for floor hinges and other items specified as furnished under this and other sections of specifications and required to be in their final position at time concrete is placed shall be properly located, accurately positioned and built into construction, and maintained securely in place.
- D. Construction Tolerances:
 - Contractor is responsible for setting and maintaining concrete formwork to assure erection of completed work within tolerances specified to accommodate installation or other rough and finish materials. Remedial work necessary for correcting excessive tolerances is the responsibility of the Contractor. Erected work that exceeds specified tolerance limits shall be remedied or removed and replaced, at no additional cost to the Government.
 - Permissible surface irregularities for various classes of materials are defined as "finishes" in specification sections covering individual materials. They are to be distinguished from tolerances specified which are applicable to surface irregularities of structural elements.

3.2 REINFORCEMENT:

A. Details of concrete reinforcement, unless otherwise shown, in accordance with ACI 318 and ACI SP-66. Support and securely tie

reinforcing steel to prevent displacement during placing of concrete.

3.3 PLACING CONCRETE:

- A. Remove water from excavations before concrete is placed. Remove hardened concrete, debris and other foreign materials from interior of forms, and from inside of mixing and conveying equipment. Obtain approval of COR before placing concrete. Provide screeds at required elevations for concrete slabs.
- B. Before placing new concrete on or against concrete which has set, existing surfaces shall be roughened and cleaned free from all laitance, foreign matter, and loose particles.
- C. Convey concrete from mixer to final place of deposit by method which will prevent segregation or loss of ingredients. Do not deposit in work concrete that has attained its initial set or has contained its water or cement more than 1 1/2 hours. Do not allow concrete to drop freely more than 5 feet in unexposed work nor more than 3 feet in exposed work. Place and consolidate concrete in horizontal layers not exceeding 12 inches in thickness. Consolidate concrete by spading, rodding, and mechanical vibrator. Do not secure vibrator to forms or reinforcement. Vibration shall be carried on continuously with placing of concrete.
- D. Hot weather placing of concrete: Follow recommendations of ACI 305R to prevent problems in the manufacturing, placing, and curing of concrete that can adversely affect the properties and serviceability of the hardened concrete.
- E. Cold weather placing of concrete: Follow recommendations of ACI 306R, to prevent freezing of thin sections less than 12 inches and to permit concrete to gain strength properly, except that use of calcium chloride shall not be permitted without written approval from COR.

3.4 PROTECTION AND CURING:

A. Protect exposed surfaces of concrete from premature drying, wash by rain or running water, wind, mechanical injury, and excessively hot or cold temperature. Curing method shall be subject to approval by COR.

3.5 FORM REMOVAL:

A. Forms remain in place until concrete has a sufficient strength to carry its own weight and loads supported. Removal of forms at any time is the Contractor's sole responsibility.

3.6 SURFACE PREPARATION:

A. Immediately after forms have been removed and work has been examined and approved by COR, remove loose materials, patch all stone pockets, surface honeycomb, or similar deficiencies with cement mortar made with 1 part portland cement and 2-3 parts sand.

3.7 FINISHES:

- A. Slab Finishes:
 - Scratch Finish: Slab surfaces to receive a bonded applied cementitious application shall all be thoroughly raked or wire broomed after partial setting (within 2 hours after placing) to roughen surface to insure a permanent bond between base slab and applied cementitious materials.
 - Floating: Allow water brought to surface by float used for rough finishing to evaporate before surface is again floated or troweled. Do not sprinkle dry cement on surface to absorb water.
 - 3. Float Finish: Ramps, stair treads, and platforms, both interior and exterior, equipment pads, and slabs to receive non-cementitious materials, except as specified, shall be screened and floated to a smooth dense finish. After first floating, while surface is still soft, surfaces shall be checked for alignment using a straightedge or template. Correct high spots by cutting down with a trowel or similar tool and correct low spots by filling in with material of same composition as floor finish. Remove any surface projections on floated finish by rubbing or dry grinding. Refloat the slab to a uniform sandy texture.
 - 4. Steel Trowel Finish: Applied toppings, concrete surfaces to receive resilient floor covering or carpet, future floor roof and all monolithic concrete floor slabs exposed in finished work and for which no other finish is shown or specified shall be steel troweled. Final steel troweling to secure a smooth, dense surface shall be delayed as long as possible, generally when the surface can no longer be dented with finger. During final troweling, tilt steel trowel at a slight angle and exert heavy pressure on trowel to compact cement paste and form a dense, smooth surface. Finished surface shall be free of trowel marks, uniform in texture and appearance.

- 5. Broom Finish: Finish all exterior slabs, ramps, and stair treads with a bristle brush moistened with clear water after the surfaces have been floated.
- 6. Finished slab flatness (FF) and levelness (FL) values comply with the following minimum requirements:

Slab on grade & Shored su	Unshored suspended slabs	
Specified overall value	$F_F 25/F_L 20$	Specified overall value ${\tt F}_{\tt F}$ 25
Minimum local value	$F_F 17/F_L 15$	Minimum local value F_F 17

SECTION 05 50 00 METAL FABRICATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies items and assemblies fabricated from structural steel shapes and other materials as shown and specified.
- B. Items specified.
 - 1. Support for Wall and Ceiling Mounted Items.
 - 2. Loose Lintels

1.2 RELATED WORK

- A. Colors, finishes, and textures: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Prime and finish painting: Section 09 91 00, PAINTING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - Each item specified, showing complete detail, location in the project, material and size of components, method of joining various components and assemblies, finish, and location, size and type of anchors.
 - 2. Mark items requiring field assembly for erection identification and furnish erection drawings and instructions.
 - 3. Provide templates and rough-in measurements as required.
- C. Manufacturer's Certificates:
 - 1. Anodized finish as specified.
 - 2. Live load designs as specified.
- D. Design Calculations for specified live loads including dead loads.
- E. Furnish setting drawings and instructions for installation of anchors to be preset into concrete and masonry work, and for the positioning of items having anchors to be built into concrete or masonry construction.

1.4 QUALITY ASSURANCE

- A. Each manufactured product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified.
- B. Each product type shall be the same and be made by the same manufacturer.
- C. Assembled product to the greatest extent possible before delivery to the site.

D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): B18.6.1-97.....Wood Screws B18.2.2-87(R2005).....Square and Hex Nuts
- C. American Society for Testing and Materials (ASTM): A36/A36M-08.....Structural Steel A47-99(R2009)....Malleable Iron Castings A48-03(R2008)....Gray Iron Castings A53-10....Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless A123-09....Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A167-99(R2009)....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip A269-10....Seamless and Welded Austenitic Stainless Steel Tubing for General Service A307-10.....Carbon Steel Bolts and Studs, 60,000 PSI Tensile
 - Strength
 - B221-08.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes
 - F436-10.....Hardened Steel Washers
 - F468-10.....Nonferrous Bolts, Hex Cap Screws, and Studs for General Use
 - F593-02(R2008).....Stainless Steel Bolts, Hex Cap Screws, and Studs F1667-11....Driven Fasteners: Nails, Spikes and Staples
- D. National Association of Architectural Metal Manufacturers (NAAMM) AMP 500-06.....Metal Finishes Manual

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Structural Steel: ASTM A36.
- B. Stainless Steel: ASTM A167, Type 302 or 304.
- C. Aluminum, Extruded: ASTM B221, Alloy 6063-T5 unless otherwise specified. For structural shapes use alloy 6061-T6 and alloy 6061-T4511.
- D. Cast-Iron: ASTM A48, Class 30, commercial pattern.

- E. Malleable Iron Castings: A47.
- F. Primer Paint: As specified in Section 09 91 00, PAINTING.

2.2 HARDWARE

- A. Rough Hardware:
 - Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electro-galvanizing process. Galvanized G-90 where specified.
 - 2. Use G90 galvanized coating on ferrous metal for exterior work unless non-ferrous metal or stainless is used.

B. Fasteners:

- 1. Bolts with Nuts:
 - a. ASME B18.2.2.
 - b. ASTM A307 for 415 MPa (60,000 psi) tensile strength bolts.
 - c. ASTM F468 for nonferrous bolts.
 - d. ASTM F593 for stainless steel.
- 2. Screws: ASME B18.6.1.
- 3. Washers: ASTM F436, type to suit material and anchorage.
- 4. Nails: ASTM F1667, Type I, style 6 or 14 for finish work.

2.3 FABRICATION GENERAL

- A. Material
 - Use material as specified. Use material of commercial quality and suitable for intended purpose for material that is not named or its standard of quality not specified.
 - 2. Use material free of defects which could affect the appearance or service ability of the finished product.
- B. Size:
 - 1. Size and thickness of members as shown.
 - 2. When size and thickness is not specified or shown for an individual part, use size and thickness not less than that used for the same component on similar standard commercial items or in accordance with established shop methods.
- C. Connections
 - Except as otherwise specified, connections may be made by welding, riveting or bolting.
 - 2. Field riveting will not be approved.
 - 3. Design size, number and placement of fasteners, to develop a joint strength of not less than the design value.
 - 4. Holes, for rivets and bolts: Accurately punched or drilled and burrs removed.

- 5. Size and shape welds to develop the full design strength of the parts connected by welds and to transmit imposed stresses without permanent deformation or failure when subject to service loadings.
- Use Rivets and bolts of material selected to prevent corrosion (electrolysis) at bimetallic contacts. Plated or coated material will not be approved.
- 7. Use stainless steel connectors for removable members machine screws or bolts.
- D. Fasteners and Anchors
 - 1. Use methods for fastening or anchoring metal fabrications to building construction as shown or specified.
 - 2. Where fasteners and anchors are not shown, design the type, size, location and spacing to resist the loads imposed without deformation of the members or causing failure of the anchor or fastener, and suit the sequence of installation.
 - Use material and finish of the fasteners compatible with the kinds of materials which are fastened together and their location in the finished work.
 - 5. Fasteners for securing metal fabrication to existing construction or new construction may be expansion bolts, toggle bolts, power actuated drive pins, welding, self-drilling and tapping screws or bolts.
- E. Workmanship
 - 1. General:
 - a. Fabricate items to design shown.
 - b. Furnish members in longest lengths commercially available within the limits shown and specified.
 - c. Fabricate straight, true, free from warp and twist, and where applicable square and in same plane.
 - d. Provide holes, sinkages and reinforcement shown and required for fasteners and anchorage items.
 - e. Provide openings, cutouts, and tapped holes for attachment and clearances required for work of other trades.
 - f. Prepare members for the installation and fitting of hardware.
 - g. Fabricate surfaces and edges free from sharp edges, burrs and projections which may cause injury.
 - 2. Welding:
 - a. Weld in accordance with AWS.
 - b. Welds shall show good fusion, be free from cracks and porosity and accomplish secure and rigid joints in proper alignment.

- c. Where exposed in the finished work, continuous weld for the full length of the members joined and have depressed areas filled and protruding welds finished smooth and flush with adjacent surfaces.
- d. Finish welded joints to match finish of adjacent surface.
- 3. Joining:
 - a. Miter or butt members at corners.
 - b. Where frames members are butted at corners, cut leg of frame member perpendicular to surface, as required for clearance.
- 5. Cutting and Fitting:
 - Accurately cut, machine and fit joints, corners, copes, and miters.
 - b. Fit removable members to be easily removed.
 - c. Design and construct field connections in the most practical place for appearance and ease of installation.
 - d. Fit pieces together as required.
 - e. Fabricate connections for ease of assembly and disassembly without use of special tools.
 - f. Joints firm when assembled.
 - g. Conceal joining, fitting and welding on exposed work as far as practical.
 - h. Do not show rivets and screws prominently on the exposed face.
 - i. The fit of components and the alignment of holes shall eliminate the need to modify component or to use exceptional force in the assembly of item and eliminate the need to use other than common tools.
- F. Finish:
 - 1. Finish exposed surfaces in accordance with NAAMM Metal Finishes Manual.
 - 2. Aluminum: NAAMM AMP 501.
 - a. Mill finish, AA-M10, as fabricated, use unless specified otherwise.
 - 3. Steel and Iron: NAAMM AMP 504.
 - a. Zinc coated (Galvanized): ASTM A123, G90 unless noted otherwise.
 - b. Surfaces exposed in the finished work:
 - 1) Finish smooth rough surfaces and remove projections.
 - 2) Fill holes, dents and similar voids and depressions with epoxy type patching compound.
 - c. Shop Prime Painting:
 - 1) Surfaces of Ferrous metal:
 - a) Items not specified to have other coatings.

- b) Galvanized surfaces specified to have prime paint.
- c) Remove all loose mill scale, rust, and paint, by hand or power tool cleaning as defined in SSPC-SP2 and SP3.
- d) Clean of oil, grease, soil and other detrimental matter by use of solvents or cleaning compounds as defined in SSPC-SP1.
- e) After cleaning and finishing apply one coat of primer as specified in Section 09 91 00, PAINTING.
- 2) Nonferrous metals: Comply with MAAMM-500 series.
- 4. Stainless Steel: NAAMM AMP-504 Finish No. 4.
- G. Protection:
 - Insulate aluminum surfaces that will come in contact with concrete, masonry, plaster, or metals other than stainless steel, zinc or white bronze by giving a coat of heavy-bodied alkali resisting bituminous paint or other approved paint in shop.
 - Spot prime all abraded and damaged areas of zinc coating which expose the bare metal, using zinc rich paint on hot-dip zinc coat items and zinc dust primer on all other zinc coated items.

2.4 SUPPORTS

- A. General:
 - 1. Fabricate ASTM A36 structural steel shapes as shown.
 - 2. Use clip angles or make provisions for welding hangers and braces to overhead construction.
 - 3. Field connections may be welded or bolted.
- B. For Wall Mounted Items:
 - 1. For items supported by metal stud partitions.
 - 2. Steel strip or hat channel minimum of 0.0598 inch thick.
 - 3. Steel strip minimum of 6 inches wide, length extending one stud space beyond end of item supported.
 - 4. Steel hat channels where shown. Flange cut and flatted for anchorage to stud.
 - 5. Structural steel tube or channel for grab bar at water closets floor to structure above with clip angles or end plates formed for

2.5 LOOSE LINTELS

- A. Furnish lintels of sizes shown. Where size of lintels is not shown, provide the sizes specified.
- B. Fabricate lintels with not less than 6 inch bearing at each end for nonbearing masonry walls, and 8 inch bearing at each end for bearing walls.

- C. Provide one angle lintel for each 4 inches of masonry thickness as follows except as otherwise specified or shown.
 - 1. Openings 2-1/2 feet to 6 feet 4 x 3-1/2 x 5/16 inch.
 - 2. Openings 6 feet to 10 feet 6 x 3-1/2 x 3/8 inch.
- D. For 6 inch thick masonry openings 2-1/2 feet to 10 feet use one angle 6 \times 3-1/2 \times 3/8 inch.
- E. Provide bearing plates for lintels where shown.
- F. Weld or bolt upstanding legs of double angle lintels together with 3/4 inch bolts spaced at 12 inches on centers.
- G. Insert spreaders at bolt points to separate the angles for insertion of metal windows, louver, and other anchorage.
- H. Where shown or specified, punch upstanding legs of single lintels to suit size and spacing of anchor bolts.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Set work accurately, in alignment and where shown, plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Items set into concrete or masonry.
 - 1. Provide temporary bracing for such items until concrete or masonry is set.
 - 2. Place in accordance with setting drawings and instructions.
 - 3. Build strap anchors, into masonry as work progresses.
- C. Set frames of gratings, covers, corner guards, trap doors and similar items flush with finish floor or wall surface and, where applicable, flush with side of opening.
- D. Field weld in accordance with AWS.
 - 1. Design and finish as specified for shop welding.
 - 2. Use continuous weld unless specified otherwise.
- E. Install anchoring devices and fasteners as shown and as necessary for securing metal fabrications to building construction as specified. Power actuated drive pins may be used except for removable items and where members would be deformed or substrate damaged by their use.
- F. Spot prime all abraded and damaged areas of zinc coating as specified and all abraded and damaged areas of shop prime coat with same kind of paint used for shop priming.
- G. Isolate aluminum from dissimilar metals and from contact with concrete and masonry materials as required to prevent electrolysis and corrosion.
- H. Secure escutcheon plate with setscrew.

3.2 INSTALLATION OF SUPPORTS

- A. Anchorage to structure.
 - 1. Secure angles or channels and clips to overhead structural steel by continuous welding unless bolting is shown.
 - 2. Secure supports to concrete inserts by bolting or continuous welding as shown.
 - Secure supports to mid height of concrete beams when inserts do not exist with expansion bolts and to slabs, with expansion bolts. unless shown otherwise.
 - 4. Secure steel plate or hat channels to studs as detailed.
- B. Supports for Wall Mounted items:
 - 1. Locate center of support at anchorage point of supported item.
 - 2. Locate support at top and bottom of wall hung cabinets.
 - 3. Locate support at top of floor cabinets and shelving installed against walls.
 - 4. Locate supports where required for items shown.

3.3 STEEL LINTELS

- A. Use lintel sizes and combinations shown or specified.
- B. Install lintels with longest leg upstanding, except for openings in 6 inch masonry walls install lintels with longest leg horizontal.
- C. Install lintels to have not less than 6 inch bearing at each end for nonbearing walls, and 8 inch bearing at each end for bearing walls.

3.4 CLEAN AND ADJUSTING

- A. Adjust movable parts including hardware to operate as designed without binding or deformation of the members centered in the opening or frame and, where applicable, contact surfaces fit tight and even without forcing or warping the components.
- B. Clean after installation exposed prefinished and plated items and items fabricated from stainless steel, aluminum and copper alloys, as recommended by the metal manufacture and protected from damage until completion of the project.

- - - E N D - - -

SECTION 06 10 00 ROUGH CARPENTRY

PART 1 - GENERAL

1.1 DESCRIPTION:

A. Section specifies wood blocking, framing, sheathing, furring, nailers, sub-flooring, rough hardware, and light wood construction.

1.2 RELATED WORK:

- A. Milled woodwork: Section 06 20 00, FINISH CARPENTRY.
- B. Gypsum sheathing: Section 09 29 00, GYPSUM BOARD.

1.3 SUMBITTALS:

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

B. Shop Drawings showing framing connection details, fasteners, connections and dimensions.

1.4 PRODUCT DELIVERY, STORAGE AND HANDLING:

- A. Protect lumber and other products from dampness both during and after delivery at site.
- B. Pile lumber in stacks in such manner as to provide air circulation around surfaces of each piece.
- C. Stack plywood and other board products so as to prevent warping.
- D. Locate stacks on well drained areas, supported at least 150 mm (6 inches) above grade and cover with well ventilated sheds having firmly constructed over hanging roof with sufficient end wall to protect lumber from driving rain.

1.5 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Forest and Paper Association (AFPA): National Design Specification for Wood Construction NDS-05.....Conventional Wood Frame Construction
- C. American Institute of Timber Construction (AITC): A190.1-07.....Structural Glued Laminated Timber
- D. American Society of Mechanical Engineers (ASME): B18.2.1-96(R2005).....Square and Hex Bolts and Screws B18.2.2-87.....Square and Hex Nuts B18.6.1-97.....Wood Screws
- E. American Society for Testing And Materials (ASTM):

VA Project No. 581-14-103 VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration 100% CD: 03/28/14 C954-10.....Steel Drill Screws for the Application of Gypsum Board or Metal Plaster Bases to Steel Studs from 0.033 inch (2.24 mm) to 0.112-inch (2.84 mm) in thickness C1002-07.....Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Metal Studs D1760-01.....Pressure Treatment of Timber Products F. Commercial Item Description (CID): A-A-55615..... Abield, Expansion (Wood Screw and Lag Bolt Self Threading Anchors) G. Military Specification (Mil. Spec.): MIL-L-19140E.....Lumber and Plywood, Fire-Retardant Treated H. Truss Plate Institute (TPI): TPI-85..... Metal Plate Connected Wood Trusses

- I. U.S. Department of Commerce Product Standard (PS)
 PS 1-95.....Construction and Industrial Plywood
 PS 20-05....American Softwood Lumber Standard
- PART 2 PRODUCTS

2.1 LUMBER:

- A. Unless otherwise specified, each piece of lumber bear grade mark, stamp, or other identifying marks indicating grades of material, and rules or standards under which produced.
 - Identifying marks in accordance with rule or standard under which material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification.
 - 2. Inspection agency for lumber approved by the Board of Review, American Lumber Standards Committee, to grade species used.
- B. Structural Members: Species and grade as listed in the AFPA, National Design Specification for Wood Construction having design stresses as shown.
- C. Lumber Other Than Structural:
 - Unless otherwise specified, species graded under the grading rules of an inspection agency approved by Board of Review, American Lumber Standards Committee.
 - 2. Framing lumber: Minimum extreme fiber stress in bending of 1100.
 - Furring, blocking, nailers and similar items 100 mm (4 inches) and narrower Standard Grade; and, members 150 mm (6 inches) and wider, Number 2 Grade.

- D. Sizes:
 - 1. Conforming to Prod. Std., PS20.
 - 2. Size references are nominal sizes, unless otherwise specified, actual sizes within manufacturing tolerances allowed by standard under which produced.
- E. Moisture Content:
 - 1. At time of delivery and maintained at the site.
 - 2. Boards and lumber 50 mm (2 inches) and less in thickness: 19 percent or less.
 - 3. Lumber over 50 mm (2 inches) thick: 25 percent or less.
- F. Fire Retardant Treatment:
 - Mil Spec. MIL-L-19140 with piece of treated material bearing identification of testing agency and showing performance rating.
 - 2. Treatment and performance inspection, by an independent and qualified testing agency that establishes performance ratings.
- G. Preservative Treatment:
 - 1. Do not treat Heart Redwood and Western Red Cedar.
 - 2. Treat wood members and plywood exposed to weather or in contact with plaster, masonry or concrete, including framing of open roofed structures; sills, sole plates, furring, and sleepers that are less than 600 mm (24 inches) from ground; nailers, edge strips, blocking, crickets, curbs, cant, vent strips and other members used in connection with roofing and flashing materials.
 - 3. Treat other members specified as preservative treated (PT).
 - Preservative treat by the pressure method complying with ASTM D1760, except any process involving the use of Chromated Copper arsenate (CCA) for pressure treating wood is not permitted.

2.2 PLYWOOD

- A. Comply with Prod. Std., PS 1.
- B. Bear the mark of a recognized association or independent inspection agency that maintains continuing control over quality of plywood which identifies compliance by veneer grade, group number, span rating where applicable, and glue type.
- C. Sheathing:
 - 1. APA rated Exposure 1 or Exterior; panel grade CD or better.
 - 2. Wall sheathing:
 - a. Minimum 9 mm (11/32 inch) thick with supports 400 mm (16 inches) on center and 12 mm (15/32 inch) thick with supports 600 mm (24 inches) on center unless specified otherwise.

b. Minimum 1200 mm (48 inches) wide at corners without corner bracing of framing.

2.3 ROUGH HARDWARE AND ADHESIVES:

- A. Anchor Bolts:
 - 1. ASME B18.2.1 and ANSI B18.2.2 galvanized, 13 mm (1/2 inch) unless shown otherwise.
 - Extend at least 200 mm (8 inches) into masonry or concrete with ends bent 50 mm (2 inches).
- B. Miscellaneous Bolts: Expansion Bolts: C1D, A-A-55615; lag bolt, long enough to extend at least 65 mm (2-1/2 inches) into masonry or concrete. Use 13 mm (1/2 inch) bolt unless shown otherwise.
- C. Washers
 - 1. ASTM F844.
 - Use zinc or cadmium coated steel or cast iron for washers exposed to weather.
- D. Screws:
 - 1. Wood to Wood: ANSI B18.6.1 or ASTM C1002.
 - 2. Wood to Steel: ASTM C954, or ASTM C1002.

PART 3 - EXECUTION

3.1 INSTALLATION OF FRAMING AND MISCELLANEOUS WOOD MEMBERS:

- A. Conform to applicable requirements of the following:
 - 1. AFPA National Design Specification for Wood Construction for timber connectors.
 - 2. AITC Timber Construction Manual for heavy timber construction.
 - 3. AFPA WCD-number 1, Manual for House Framing for nailing and framing unless specified otherwise.
 - 4. APA for installation of plywood or structural use panels.
 - 5. ASTM F 499 for wood underlayment.
 - 6. TPI for metal plate connected wood trusses.
- B. Fasteners:
 - 1. Bolts:
 - a. Fit bolt heads and nuts bearing on wood with washers.
 - b. Countersink bolt heads flush with the surface of nailers.
 - c. Embed in concrete and solid masonry or use expansion bolts. Special bolts or screws designed for anchor to solid masonry or concrete in drilled holes may be used.
 - d. Use toggle bolts to hollow masonry or sheet metal.
 - e. Use bolts to steel over 2.84 mm (0.112 inch, 11 gage) in thickness. Secure wood nailers to vertical structural steel

members with bolts, placed one at ends of nailer and 600 mm (24 inch) intervals between end bolts. Use clips to beam flanges.

- 2. Drill Screws to steel less than 2.84 mm (0.112 inch) thick.
 - a. ASTM C1002 for steel less than 0.84 mm (0.033 inch) thick.
 - b. ASTM C 954 for steel over 0.84 mm (0.033 inch) thick.
- Power actuated drive pins may be used where practical to anchor to solid masonry, concrete, or steel.
- 4. Do not anchor to wood plugs or nailing blocks in masonry or concrete. Use metal plugs, inserts or similar fastening.
- 5. Screws to Join Wood:
 - a. Where shown or option to nails.
 - b. ASTM C1002, sized to provide not less than 25 mm (1 inch) penetration into anchorage member.
 - c. Spaced same as nails.
- C. Set sills or plates level in full bed of mortar on masonry or concrete walls.
 - Space anchor bolts 1200 mm (4 feet) on centers between ends and within 150 mm (6 inches) of end. Stagger bolts from side to side on plates over 175 mm (7 inches) in width.
 - Use shims of slate, tile or similar approved material to level wood members resting on concrete or masonry. Do not use wood shims or wedges.
 - 3. Closely fit, and set to required lines.
- D. Blocking Nailers, and Furring:
 - 1. Install furring, blocking, nailers, and grounds where shown.
 - 2. Use longest lengths practicable.
 - 3. Use fire retardant treated wood blocking where shown at openings and where shown or specified.
 - 4. Layers of Blocking or Plates:
 - a. Stagger end joints between upper and lower pieces.
 - b. Nail at ends and not over 600 mm (24 inches) between ends.
 - c. Stagger nails from side to side of wood member over 125 mm (5 inches) in width.

- - - E N D - - -

SECTION 06 20 00 FINISH CARPENTRY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies interior millwork and casework.
- B. Items specified.
 - 1. Custom cabinets
 - 2. Countertops

1.2 RELATED WORK

- A. Framing, furring and blocking: Section 06 10 00, ROUGH CARPENTRY.
- B. Wood doors: Section 08 14 00, WOOD DOORS.
- C. Color and texture of finish: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - Millwork items Half full size scale for sections and details 1:50 (1/4-inch) for elevations and plans.
 - 2. Show construction and installation.
- C. Samples:
 - 1. Plastic laminate
 - 2. Solid Surface
- D. Manufacturer's literature and data:
 - 1. Finish hardware
 - 2. Sinks with fittings
 - 3. Electrical components

1.4 DELIVERY, STORAGE AND HANDLING

A. Protect casework from dampness, maintaining moisture content specified both during and after delivery at site.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Testing and Materials (ASTM): A167-99 (R2009).....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip B26/B26M-09.....Aluminum-Alloy Sand Castings B221-08....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

- C. Builders Hardware Manufacturers Association (BHMA): A156.11-10.....Cabinet Locks
- D. National Particleboard Association (NPA): A208.1-09.....Wood Particleboard
- E. National Electrical Manufacturers Association (NEMA): LD 3-05......High-Pressure Decorative Laminates
- F. Federal Specifications (Fed. Spec.):

A-A-1922A.....Shield Expansion

A-A-1936.....Contact Adhesive

FF-N-836D.....Nut, Square, Hexagon Cap, Slotted, Castle

FF-S-111D(1).....Screw, Wood

PART 2 - PRODUCTS

2.1 PLYWOOD

- A. Softwood Plywood:
 - 1. Prod. Std.
 - 2. Grading and Marking:
 - a. Each sheet of plywood shall bear the mark of a recognized association or independent inspection agency that maintains continuing control over the quality of the plywood.
 - b. The mark shall identify the plywood by species group or identification index, and shall show glue type, grade, and compliance with PS1.
 - Plywood, 13 mm (1/2 inch) and thicker; not less than five ply construction, except 32 mm (1-1/4 inch) thick plywood not less than seven ply.
 - 4. Plastic Laminate Plywood Cores:
 - a. Exterior Type, and species group.
 - b. Veneer Grade: A-C.
 - 5. Shelving Plywood:
 - a. Interior Type, any species group.
 - b. Veneer Grade: A-B or B-C.
 - 6. Other: As specified for item.

2.2 PARTICLEBOARD

- A. NPA A208.1
- B. Plastic Laminate Particleboard Cores:
 - 1. Use Type 1, Grade 1-M-3, or Type 2, Grade 2-M-2, unless otherwise specified.
- C. General Use: Type 1, Grade 1-M-3 or Type 2, Grade 2-M-2.

2.3 PLASTIC LAMINATE

A. NEMA LD-3.

- B. Exposed decorative surfaces including countertops, both sides of cabinet doors, and for items having plastic laminate finish. General Purpose, Type HGL.
- C. Cabinet Interiors including Shelving: Both of following options to comply with NEMA, CLS as a minimum.
 - 1. Plastic laminate clad plywood or particle board.
 - 2. Resin impregnated decorative paper thermally fused to particle board.
- D. Backing sheet on bottom of plastic laminate covered wood tops: Backer, Type HGP.
- E. Plastic edge banding: Extruded PVC, 3MM, flat shaped; smooth finish; self locking serrated tongue; of width to match component thickness. Color to match laminate.

2.4 SOLID SURFACE

- A. Cast, nonporous, filled polymer, not coated, laminated or of composite construction with through body colors meeting ANSI Z124.3 or ANSI Z124.6, having minimum physical and performance properties specified.
- B. Superficial damage to a depth of 0.010 inch (.25 mm) shall be repairable by sanding and/or polishing.

2.5 SINKS

- A. MOLDED RESIN:
 - Cast or molded in one piece; OD 18-1/8"x14-3/4", ID 161/2"x13-1/4"x5-7/8" deep.
 - 2. Minimum thickness of sides and ends 13 mm (1/2 inch), bottom 16 mm (5/8 inch).
 - 3. Molded rein outlet for drain and standpipe overflow.
 - Provide clamping collar permitting connection to 38 mm (1-1/2 inch) or 50 mm (2 inch) waste outlet and trap, making sealed but not permanent connection.

2.6 ADHESIVE

- A. For Plastic Laminate: Fed. Spec. A-A-1936.
- B. For Interior Millwork: Unextended urea resin, unextended melamine resin, phenol resin, or resorcinol resin.

2.7 STAINLESS STEEL

A..ASTM A167, Type 302 or 304.

2.8 ALUMINUM CAST

- A. ASTM B26
- 2.9 ALUMINUM EXTRUDED
 - A. ASTM B221

2.10 HARDWARE

- A. Rough Hardware:
 - Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electric-galvanizing process. Galvanized where specified.
 - 2. Fasteners:
 - a. Bolts with Nuts: FF-N-836.
 - b. Expansion Bolts: A-A-1922A.
 - c. Screws: Fed. Spec. FF-S-111.

B. Finish Hardware

- 1. Cabinet Hardware: ANSI A156.9.
 - a. Door/Drawer Pulls: B02011.
 - b. Drawer Slides: B05111 for drawers over 150 mm (6 inches) deep,
 B05052 for drawers 75 mm to 150 mm 3 to 6 inches) deep, and B05053 for drawers less than 75 mm (3 inches) deep.
 - c. Adjustable Shelf Standards: B4061 with shelf rest B04083.
 - d. Butt Hinges: B01521 for overlay doors.
 - e. Cabinet Door Catch: B0371 or B03172.
- 2. Cabinet Locks: ANSI A156.11.
 - a. Drawers and Hinged Door: E07262.
- 3. Auxiliary Hardware: ANSI A156.16.
 - a. Shelf Bracket: B04041, japanned or enameled finish.
- Steel Channel Frame and Leg supports for Countertop 18-1/8"x18-1/8" pair to support 400 pounds.

2.10 FABRICATION

- A. Casework shall be of the flush overlay design and, except as otherwise specified, be of premium grade construction and of component thickness in conformance with AWI Quality Standards.
- B. Fabricate casework of plastic laminated covered plywood or particleboard as follows:
 - 1. Where shown, doors, drawers, shelves, all semi-concealed surfaces shall be plastic laminated.
 - 2. Glazed doors shall have 5 mm (3/16 inch) thick glass, set in glazing compound.
- C. Electrical fixtures, receptacles, wiring and junction boxes required for fixtures and receptacles:
 - 1. Factory installed in casework.
 - 2. For electrical lighting fixtures, see drawings.

- For electric receptacles and lighting fixtures installed below or adjacent to wall cabinets or above counter tops, see electrical sections or specifications.
- 4. Install wiring in built-in raceways and terminate at junction box mounted on rear of cabinet and counter.
- 5. For final hook-up at junction box see electrical sections of specifications.
- D. Solid Surface Countertops:
 - 1. Countertops shall be solid surface factory applied to manufacturer's approved substrate.
 - 2. Countertops shall be 32m, 1-1/4'' thick.
 - 3. Provide cut-outs for under mount sinks, extend solid surface to sink.
 - 4. Backsplash and side splash shall be $\frac{3}{4}$ " thick solid surface material.
 - 5. For service lines from service fixtures, see other sections of specifications.

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain work areas and storage areas to a minimum temperature of $21^{\circ}C$ (70°F) for not less than 10 days before and during installation of interior millwork.
- B. Do not install finish lumber or millwork in any room or space where wet process systems such as concrete, masonry, or plaster work is not complete and dry.

3.2 INSTALLATION

- A. Set casework in place; level, plumb and accurately scribe and secure to walls, and/or floors.
- B. The installation shall be complete including all trim and hardware. Leave the casework clean and free from defects.

3.3 FASTENINGS

A. Fastenings for securing casework to adjoining construction shall be as detailed on the drawings or approved shop drawings.

- - - E N D - - -

SECTION 07 21 13 THERMAL INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION:

- A. This section specifies thermal and acoustical insulation for buildings.
- B. Acoustical insulation is identified by thickness and words "Acoustical Insulation".

1.2 RELATED WORK

A. Safing insulation: Section 07 84 00, FIRESTOPPING.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Insulation, each type used
 - 2. Adhesive, each type used.
 - 3. Tape
- C. Certificates: Stating the type, thickness and "R" value (thermal resistance) of the insulation to be installed.

1.4 STORAGE AND HANDLING:

- A. Store insulation materials in weathertight enclosure.
- B. Protect insulation from damage from handling, weather and construction operations before, during, and after installation.

1.5 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

C552-07.....Cellular Glass Thermal Insulation.

C591-09.....Unfaced Preformed Rigid Cellular

Polyisocynurate Thermal Insulation

- C612-10.....Mineral Fiber Block and Board Thermal Insulation
- C665-06......Mineral Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing

C728-05 (R2010).....Perlite Thermal Insulation Board

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

C954-10.....Steel Drill Screws for Application of Gypsum Panel Products or Metal Plaster Base to Steel Studs 0.033 inch to 0.112 inch in thickness C1002-07.....Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs E84-10.....Surface Burning Characteristics of Building Materials

F1667-11.....Driven Fasteners: Nails, Spikes and Staples.

PART 2 - PRODUCTS

2.1 INSULATION - GENERAL:

- A. Where thermal resistance ("R" value) is specified or shown for insulation, the thickness shown on the drawings is nominal. Use only insulation with actual thickness that is not less than that required to provide the thermal resistance specified.
- B. Where "R" value is not specified for insulation, use the thickness shown on the drawings.
- C. Where more than one type of insulation is specified, the type of insulation for each use is optional, except use only one type of insulation in any particular area.
- D. Insulation Products shall comply with following minimum content standards for recovered materials:

Material Type	Percent by Weight
Perlite composite board	23% post consumer recovered paper
Polyisocyanurate/polyurethane	
Rigid foam	9 percent recovered material
Foam-in-place	5 percent recovered material
Glass fiber reinforced	6 percent recovered material
Phenolic rigid foam	5 percent recovered material
Rock wool material	75 percent recovered material

The minimum-content standards are based on the weight (not the volume) of the material in the insulating core only.

2.2 ACOUSTICAL INSULATION:

- A. Mineral Wool Fiber Batt or Blankets: ASTM C665. Maximum flame spread of zero (0) and smoke development of zero (0) when tested in accordance with ASTM E84.
- B. Thickness as shown; of widths and lengths to fit tight against framing.

2.3 RIGID INSULATION:

- A. On the inside face of exterior walls.
- B. Mineral Fiber Board: ASTM C612, Type IB or 2.
- C. Perlite Board: ASTM C728.
- D. Cellular Glass Block: ASTM C552, Type I.

2.4 FASTENERS:

- A. Staples or Nails: ASTM F1667, zinc-coated, size and type best suited for purpose.
- B. Screws: ASTM C954 or C1002, size and length best suited for purpose with washer not less than two inches in diameter.

2.5 ADHESIVE:

A. As recommended by the manufacturer of the insulation.

2.6 TAPE:

- A. Pressure sensitive adhesive on one face.
- B. Perm rating of not more than 0.50.

PART 3 - EXECUTION

3.1 INSTALLATION - GENERAL

- A. Install insulation with the vapor barrier facing the heated side, unless specified otherwise.
- B. Install rigid insulating units with joints close and flush, in regular courses and with cross joints broken.
- C. Install batt or blanket insulation with tight joints and filling framing void completely. Seal cuts, tears, and unlapped joints with tape.
- D. Fit insulation tight against adjoining construction and penetrations, unless specified otherwise.

3.2 RIGID INSULATION ON SURFACE OF EXTERIOR WALLS:

- A. On the interior face of solid masonry and concrete walls, beams, beam soffits, underside of floors, and to the face of studs for interior wall finish where shown.
- B. Bond to solid vertical surfaces with adhesive as recommended by insulation manufacturer. Fill joints with adhesive cement.

C. Fasten board insulation to face of studs with screws, nails or staples. Space fastenings not more than 12 inches apart. Stagger fasteners at joints of boards. Install at each corner.

3.4 ACOUSTICAL INSULATION:

- A. Fasten blanket insulation between metal studs and wall furring with continuous pressure sensitive tape along edges or adhesive.
- B. Pack insulation around door frames and windows and in cracks, expansion joints, control joints, door soffits and other voids. Pack behind outlets, around pipes, ducts, and services encased in wall or partition. Hold insulation in place with pressure sensitive tape or adhesive.
- C. Do not compress insulation below required thickness except where embedded items prevent required thickness.

- - - E N D - - -

SECTION 07 60 00

FLASHING AND SHEET METAL

PART 1 - GENERAL

1.1 DESCRIPTION

A. Formed sheet metal work for sill flashing is specified in this section.

1.2 RELATED WORK

- A. Flashing components of factory finished roofing and wall systems: Division 07 roofing and wall system sections.
- B. Joint Sealants: Section 07 92 00, JOINT SEALANTS.
- C. Color of factory coated exterior architectural metal and anodized aluminum items: Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Integral flashing components of manufactured roof specialties and accessories or equipment: Section 07 41 13 Metal Roof Panel, Division 22, PLUMBING sections and Division 23 HVAC sections.
- E Paint materials and application: Section 09 91 00, PAINTING.
- F. Flashing of Roof Drains: Section 22 14 00, FACILITY STORM DRAINAGE.

1.3 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. Editions of applicable publications current on date of issue of bidding documents apply unless otherwise indicated.
- B. ASTM International (ASTM):
 - B32-08.....Solder Metal

B209-07.....Aluminum and Aluminum-Alloy Sheet and Plate

D412-06.....Vulcanized Rubber and Thermoplastic Elastomers-Tension

D4586-07.....Asphalt Roof Cement, Asbestos Free

- C. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): Architectural Sheet Metal Manual.
- D. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Metal Finishes Manual
- E. Federal Specification (Fed. Spec):

A-A-1925A..... Shield, Expansion; (Nail Anchors)

F. International Code Commission (ICC): International Building Code, Current Edition

1.4 PERFORMANCE REQUIREMENTS

A. Wind Uplift Forces: Resist the following forces per FM Approvals 1-49:

1. Wind Zone 2: 1.48 to 2.15 kPa (31 to 45 lbf/sg. ft.): 4.31-kPa (90-lbf/sq. ft.) perimeter uplift force, 5.74-kPa (120-lbf/sq. ft.) corner uplift force, and 2.15-kPa (45-lbf/sq. ft.) outward force.

1.5 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: For all specified items, including:
 - 1. Flashings

PART 2 - PRODUCTS

2.1 FLASHING AND SHEET METAL MATERIALS

A. Aluminum Sheet: ASTM B209, alloy 3003-H14 except alloy used for color anodized aluminum shall be as required to produce specified color. Alloy required to produce specified color shall have the same structural properties as alloy 3003-H14.

2.2 FLASHING ACCESSORIES

- A. Solder: ASTM B32; flux type and alloy composition as required for use with metals to be soldered.
- B. Rosin Paper: Fed-Spec. UU-B-790, Type I, Grade D, Style 1b, Rosin-sized sheathing paper, weighing approximately 3 Kg/10 m²(6 lbs/100 sf).
- C. Bituminous Paint: ASTM D1187, Type I.
- D. Fasteners:
 - 1. Use copper, copper alloy, bronze, brass, or stainless steel for copper and copper clad stainless steel, and stainless steel for stainless steel and aluminum alloy. Use galvanized steel or stainless steel for galvanized steel.
 - 2. Nails:
 - a. Minimum diameter for copper nails: 3 mm (0.109 inch).
 - b. Minimum diameter for aluminum nails 3 mm (0.105 inch).
 - c. Minimum diameter for stainless steel nails: 2 mm (0.095 inch) and annular threaded.
 - d. Length to provide not less than 22 mm (7/8 inch) penetration into anchorage.
 - 3. Rivets: Not less than 3 mm (1/8 inch) diameter.
 - 4. Expansion Shields: Fed Spec A-A-1925A.
- E. Sealant: As specified in Section 07 92 00, JOINT SEALANTS for exterior locations.
- F. Roof Cement: ASTM D4586.

2.3 SHEET METAL THICKNESS

- A. Except as otherwise shown or specified use thickness or weight of sheet metal as follows:
- B. Thickness of aluminum or galvanized steel is specified with each item.

2.4 FABRICATION, GENERAL

- A. Jointing:
 - 1. Joints shall conform to following requirements:
 - a. Flat-lock joints shall finish not less than 19 mm (3/4 inch) wide.
 - b. Lap joints subject to stress shall finish not less than 25 mm (one inch) wide and shall be soldered and riveted.
 - c. Unsoldered lap joints shall finish not less than 100 mm (4 inches) wide.
 - 2. Flat and lap joints shall be made in direction of flow.
- B. Drips:
 - 1. Form drips at lower edge of sheet metal counter-flashings by folding edge back 13 mm (1/2 inch) and bending out 45 degrees from vertical to carry water away from the wall.
 - Form drip to provide hook to engage cleat or edge strip for fastening for not less than 19 mm (3/4 inch) loose lock where shown.
- C. Edges:
 - Edges of flashings concealed in masonry joints opposite drain side shall be turned up 6 mm (1/4 inch) to form dam, unless otherwise specified or shown otherwise.
 - 2. Finish exposed edges of flashing with a 6 mm (1/4 inch) hem formed by folding edge of flashing back on itself when not hooked to edge strip or cleat. Use 6 mm (1/4 inch) minimum penetration beyond wall face with drip for through-wall flashing exposed edge.

2.5 FINISHES

- A. Use same finish on adjacent metal or components and exposed metal surfaces unless specified or shown otherwise.
- B. In accordance with NAAMM Metal Finishes Manual AMP 500, unless otherwise specified.
- C. Finish exposed metal surfaces as follows, unless specified otherwise:
 - 1. Aluminum:
 - a. Clear Finish: AA-C22A41 medium matte, clear anodic coating, Class1 Architectural, 18 mm (0.7 mils) thick.

2.6 THROUGH-WALL FLASHINGS

- A. Window Sill Flashing:
 - 1. Use aluminum flat sheet.
 - 2. Fabricate flashing at ends with folded corners to turn up to create end dam as indicated on the drawings.
 - 3. Turn up back edge as shown.
 - 4. Form exposed portion with drip as specified or receiver.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Install flashing and sheet metal items as shown in Sheet Metal and Air Conditioning Contractors National Association, Inc., publication, ARCHITECTURAL SHEET METAL MANUAL, except as otherwise shown or specified.
 - 2. Apply Sealant as specified in Section 07 92 00, JOINT SEALANTS.
 - Apply sheet metal and other flashing material to surfaces which are smooth, sound, clean, dry and free from defects that might affect the application.
 - 4. Remove projections which would puncture the materials and fill holes and depressions with material compatible with the substrate. Cover holes or cracks in wood wider than 6 mm (1/4 inch) with sheet metal compatible with the roofing and flashing material used.
 - 5. Confine direct nailing of sheet metal to strips 300 mm (12 inch) or less wide. Nail flashing along one edge only. Space nails not over 100 mm (4 inches) on center unless specified otherwise.
 - 6. Install bolts, rivets, and screws where indicated, specified, or required in accordance with the SMACNA Sheet Metal Manual. Space rivets at 75 mm (3 inch) on centers in two rows in a staggered position. Use neoprene washers under fastener heads when fastener head is exposed.
 - 7. Install flashings in conjunction with other trades so that flashings are inserted in other materials and joined together to provide a watertight installation.
 - 8. Where required to prevent galvanic action between dissimilar metal isolate the contact areas of dissimilar metal with sheet lead, waterproof building paper, or a coat of bituminous paint.

- 9. Isolate aluminum in contact with dissimilar metals others than stainless steel, white bronze or other metal compatible with aluminum by:
 - a. Paint dissimilar metal with a prime coat of zinc-chromate or other suitable primer, followed by two coats of aluminum paint.
 - b. Paint dissimilar metal with a coat of bituminous paint.
 - c. Apply an approved caulking material between aluminum and dissimilar metal.

3.2 THROUGH-WALL FLASHING

- A. Sill Flashing:
 - 1. Install flashing to extend length of opening of sill into vertical joint of masonry or veneer.
 - 2. Turn back edge up to terminate under window frame.
 - 3. Turn ends up 4 inches and fold corners to form dam and extend to face of wall. Provide continuous sealant between end dam and wall surface.

- - - E N D - - -

SECTION 07 84 00 FIRESTOPPING

PART 1 GENERAL

1.1 DESCRIPTION

- A. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Closure of openings in walls against penetration of gases or smoke in smoke partitions.

1.2 RELATED WORK

- A. Sealants and application: Section 07 92 00, JOINT SEALANTS.
- B. Fire and smoke damper assemblies in ductwork: Section 23 31 00, HVAC DUCTS AND CASINGS Section 23 37 00, AIR OUTLETS AND INLETS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- C. List of FM, UL, or WH classification number of systems installed.
- D. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

1.5 WARRANTY

A. Firestopping work subject to the terms of the Article "Warranty of Construction", FAR clause 52.246-21, except extend the warranty period to five years.

1.6 QUALITY ASSURANCE

A. FM, UL, or WH or other approved laboratory tested products will be acceptable.

1.7 APPLICABLE PUBLICATIONS

A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.

 $07 \ 84 \ 00 \ - \ 1$

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

B. American Society for Testing and Materials (ASTM): E84-10.....Surface Burning Characteristics of Building Materials

E814-11.....Fire Tests of Through-Penetration Fire Stops

C. Factory Mutual Engineering and Research Corporation (FM):

Annual Issue Approval Guide Building Materials

D. Underwriters Laboratories, Inc. (UL):

Annual Issue Building Materials Directory

Annual Issue Fire Resistance Directory

1479-10.....Fire Tests of Through-Penetration Firestops

E. Warnock Hersey (WH): Annual Issue Certification Listings

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS

- A. Use either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 100 mm (4 in) nominal pipe or 0.01 m² (16 sq. in.) in overall cross sectional area.
- C. Products requiring heat activation to seal an opening by its intumescence shall exhibit a demonstrated ability to function as designed to maintain the fire barrier.
- D. Firestop sealants used for firestopping or smoke sealing shall have following properties:
 - 1. Contain no flammable or toxic solvents.
 - Have no dangerous or flammable out gassing during the drying or curing of products.
 - Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.
 - 4. When used in exposed areas, shall be capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

- E. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials shall have following properties:
 - 1. Classified for use with the particular type of penetrating material used.
 - Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal.
 - 3. Intumescent products which would expand to seal the opening and act as fire, smoke, toxic fumes, and, water sealant.
- F. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84.
- G. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.
- H. Materials to be asbestos free.

2.2 SMOKE STOPPING IN SMOKE PARTITIONS

- A. Use silicone sealant in smoke partitions as specified in Section 07 92 00, JOINT SEALANTS.
- B. Use mineral fiber filler and bond breaker behind sealant.
- C. Sealants shall have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with E84.
- D. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Submit product data and installation instructions, as required by article, submittals, after an on site examination of areas to receive firestopping.

3.2 PREPARATION

- A. Remove dirt, grease, oil, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials.
- B. Remove insulation on insulated pipe for a distance of 150 mm (six inches) on either side of the fire rated assembly prior to applying the

firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.

3.3 INSTALLATION

- A. Do not begin work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.
- C. Install smoke stopping seals in smoke partitions.

3.4 CLEAN-UP AND ACCEPTANCE OF WORK

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Do not move materials and equipment to the next-scheduled work area until completed work is inspected and accepted by the COR.
- C. Clean up spills of liquid type materials.

- - - E N D - - -

SECTION 07 92 00 JOINT SEALANTS

PART 1 - GENERAL

1.1 DESCRIPTION:

A. Section covers all sealant and caulking materials and their application, wherever required for complete installation of building materials or systems.

1.2 RELATED WORK:

- A. Firestopping penetrations: Section 07 84 00, FIRESTOPPING.
- B. Glazing: Section 08 80 00, GLAZING.
- C. Sound rated gypsum partitions/sound sealants: Section 09 29 00, GYPSUM BOARD.
- D. Mechanical Work: Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.3 QUALITY CONTROL:

- A. Installer Qualifications: An experienced installer who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in jointsealant installations with a record of successful in-service performance.
- B. Source Limitations: Obtain each type of joint sealant through one source from a single manufacturer.
- C. Product Testing: Obtain test results from a qualified testing agency based on testing current sealant formulations within a 12-month period.
 - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021.
 - Test elastomeric joint sealants for compliance with requirements specified by reference to ASTM C920, and where applicable, to other standard test methods.
 - Test elastomeric joint sealants according to SWRI's Sealant Validation Program for compliance with requirements specified by reference to ASTM C920 for adhesion and cohesion under cyclic movement, adhesion-in peel, and indentation hardness.
 - 4. Test other joint sealants for compliance with requirements indicated by referencing standard specifications and test methods.

D. VOC: Acrylic latex and Silicon sealants shall have less than 50g/l VOC content.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's installation instructions for each product used.
- C. Cured samples of exposed sealants for each color where required to match adjacent material.
- D. Manufacturer's Literature and Data:
 - 1. Caulking compound
 - 2. Primers
 - 3. Sealing compound, each type, including compatibility when different sealants are in contact with each other.

1.5 PROJECT CONDITIONS:

- A. Environmental Limitations:
 - 1. Do not proceed with installation of joint sealants under following conditions:
 - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below 4.4 °C (40 °F).
 - b. When joint substrates are wet.
- B. Joint-Width Conditions:
 - 1. Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
 - 1. Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

1.6 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.
- C. Do not subject to sustained temperatures exceeding 32° C (90° F) or less than 5° C (40° F).

1.7 DEFINITIONS:

- A. Definitions of terms in accordance with ASTM C717 and as specified.
- B. Back-up Rod: A type of sealant backing.
- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

1.8 WARRANTY:

- A. Warranty exterior sealing against leaks, adhesion, and cohesive failure, and subject to terms of "Warranty of Construction", FAR clause 52.246-21, except that warranty period shall be extended to two years.
- B. General Warranty: Special warranty specified in this Article shall not deprive Government of other rights Government may have under other provisions of Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of Contract Documents.

1.9 APPLICABLE PUBLICATIONS:

A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.

в.	American Society for Testing and Materials (ASTM):
	C612-10 Mineral Fiber Block and Board Thermal
	Insulation.
	C834-10Latex Sealants.
	C919-08 Applications.
	C920-10Elastomeric Joint Sealants.
	C1021-08 of Building
	Sealants.
	C1193-09Standard Guide for Use of Joint Sealants.
	C1330-02 (R2007)Cylindrical Sealant Backing for Use with Cold
	Liquid Applied Sealants.
	D1056-07Specification for Flexible Cellular Materials-
	Sponge or Expanded Rubber.
	E84-09 of Building
	Materials.
с.	Sealant, Waterproofing and Restoration Institute (SWRI).

The Professionals' Guide

PART 2 - PRODUCTS

2.1 SEALANTS:

- A. S-1:
 - 1. ASTM C920, polyurethane or polysulfide.
 - 2. Type M.
 - 3. Class 25.
 - 4. Grade NS.
 - 5. Shore A hardness of 20-40
- B. S-3:
 - 1. ASTM C920, polyurethane or polysulfide.
 - 2. Type S.
 - 3. Class 25, joint movement range of plus or minus 50 percent.
 - 4. Grade NS.
 - 5. Shore A hardness of 15-25.
 - 6. Minimum elongation of 700 percent.
- C. S-4:
 - 1. ASTM C920 polyurethane or polysulfide.
 - 2. Type S.
 - 3. Class 25.
 - 4. Grade NS.
 - 5. Shore A hardness of 25-40.
- D. S-6:
 - 1. ASTM C920, silicone, neutral cure.
 - 2. Type S.
 - 3. Class: Joint movement range of plus 100 percent to minus 50 percent.
 - 4. Grade NS.
 - 5. Shore A hardness of 15-20.
 - 6. Minimum elongation of 1200 percent.
- E. S-9:
 - 1. ASTM C920 silicone.
 - 2. Type S.
 - 3. Class 25.
 - 4. Grade NS.
 - 5. Shore A hardness of 25-30.
 - 6. Non-yellowing, mildew resistant.

2.2 CAULKING COMPOUND:

A. C-1: ASTM C834, acrylic latex.

B. C-2: One component acoustical caulking, non drying, non hardening, synthetic rubber.

2.3 COLOR:

- A. Sealants used with exposed masonry shall match color of mortar joints.
- B. Sealants used with unpainted concrete shall match color of adjacent concrete.
- C. Color of sealants for other locations shall be light gray or aluminum, unless specified otherwise.
- D. Caulking shall be light gray or white, unless specified otherwise.

2.4 JOINT SEALANT BACKING:

- A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
 - 1. Type C: Closed-cell material with a surface skin.
- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056, nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32° C (minus 26° F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance.
- D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide selfadhesive tape where applicable.

2.5 FILLER:

- A. Mineral fiber board: ASTM C612, Class 1.
- B. Thickness same as joint width.
- C. Depth to fill void completely behind back-up rod.

2.6 PRIMER:

- A. As recommended by manufacturer of caulking or sealant material.
- B. Stain free type.

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

2.7 CLEANERS-NON POUROUS SURFACES:

A. Chemical cleaners acceptable to manufacturer of sealants and sealant backing material, free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

PART 3 - EXECUTION

3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.
- C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer.

3.2 PREPARATIONS:

- A. Prepare joints in accordance with manufacturer's instructions and SWRI.
- B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.
 - Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants.
 - Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
 - 3. Remove laitance and form-release agents from concrete.
 - Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants.
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.
 - d. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.

- D. Apply masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions.
 - 1. Apply primer prior to installation of back-up rod or bond breaker tape.
 - 2. Use brush or other approved means that will reach all parts of joints.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.3 BACKING INSTALLATION:

- A. Install back-up material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backup rod and position the rod at proper depth.
- C. Cut fillers installed by others to proper depth for installation of back-up rod and sealants.
- D. Install back-up rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.
- E. Where space for back-up rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.4 SEALANT DEPTHS AND GEOMETRY:

- A. At widths up to 6 mm (1/4 inch), sealant depth equal to width.
- B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

3.5 INSTALLATION:

- A. General:
 - 1. Apply sealants and caulking only when ambient temperature is between 5° C and 38° C (40° and 100° F).

- Do not use polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present.
- Do not use sealant type listed by manufacture as not suitable for use in locations specified.
- 4. Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
- 5. Avoid dropping or smearing compound on adjacent surfaces.
- 6. Fill joints solidly with compound and finish compound smooth.
- 7. Tool joints to concave surface unless shown or specified otherwise.
- Finish paving or floor joints flush unless joint is otherwise detailed.
- 9. Apply compounds with nozzle size to fit joint width.
- Test sealants for compatibility with each other and substrate. Use only compatible sealant.
- B. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise.
- C. Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise.
 - Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction.
 - 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board.
 - Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing.
 - 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs.
 - 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint.

3.6 FIELD QUALITY CONTROL:

- A. Field-Adhesion Testing: Field-test joint-sealant adhesion to joint substrates as recommended by sealant manufacturer:
 - Extent of Testing: Test completed elastomeric sealant joints as follows:
 - a. Perform 10 tests for first 300 m (1000 feet) of joint length for each type of elastomeric sealant and joint substrate.
 - b. Perform one test for each 300 m (1000 feet) of joint length thereafter or one test per each floor per elevation.
- B. Inspect joints for complete fill, for absence of voids, and for joint configuration complying with specified requirements. Record results in a field adhesion test log.
- C. Inspect tested joints and report on following:
 - Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each type of product and joint substrate.
 - 2. Compare these results to determine if adhesion passes sealant manufacturer's field-adhesion hand-pull test criteria.
 - 3. Whether sealants filled joint cavities and are free from voids.
 - 4. Whether sealant dimensions and configurations comply with specified requirements.
- D. Record test results in a field adhesion test log. Include dates when sealants were installed, names of persons who installed sealants, test dates, test locations, whether joints were primed, adhesion results and percent elongations, sealant fill, sealant configuration, and sealant dimensions.
- E. Repair sealants pulled from test area by applying new sealants following same procedures used to originally seal joints. Ensure that original sealant surfaces are clean and new sealant contacts original sealant.
- F. Evaluation of Field-Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated requirements will be considered satisfactory. Remove sealants that fail to adhere to joint substrates during testing or to comply with other requirements. Retest failed applications until test results prove sealants comply with indicated requirements.

3.7 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by the caulking or sealant manufacturer.
- B. After filling and finishing joints, remove masking tape.
- C. Leave adjacent surfaces in a clean and unstained condition.

3.8 LOCATIONS:

- A. Exterior Building Joints, Horizontal and Vertical:
 - 1. Metal to Metal: Type S-1, S-2
 - 2. Metal to Masonry or Stone: Type S-1
 - 3. Masonry to Masonry or Stone: Type S-1
 - 4. Stone to Stone: Type S-1
 - 5. Cast Stone to Cast Stone: Type S-1
 - 6. Threshold Setting Bed: Type S-1, S-3, S-4
 - 7. Wood to Masonry: Type S-1
- B. Metal Reglets and Flashings:
 - 1. Flashings to Wall: Type S-6
 - 2. Metal to Metal: Type S-6

C. Sanitary Joints:

- 1. Walls to Plumbing Fixtures: Type S-9
- 2. Counter Tops to Walls: Type S-9
- 3. Pipe Penetrations: Type S-9
- D. Interior Caulking:
 - Typical Narrow Joint 6 mm, (1/4 inch) or less at Walls and Adjacent Components: Types C-1 and C-2.
 - 2. Perimeter of Doors, Windows, Access Panels which Adjoin Concrete or Masonry Surfaces: Types C-1 and C-2.
 - 3. Joints at Masonry Walls and Columns, Piers, Concrete Walls or Exterior Walls: Types C-1 and C-2.
 - Perimeter of Lead Faced Control Windows and Plaster or Gypsum Wallboard Walls: Types C-1 and C-2.
 - 5. Exposed Isolation Joints at Top of Full Height Walls: Types C-1 and C-2.
 - 6. Exposed Acoustical Joint at Sound Rated Partitions Type C-2.
 - 7. Concealed Acoustic Sealant Types S-4, C-1 and C-2.

- - - E N D - - -

SECTION 08 11 13 HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies steel frames and related components.
- B. Terms relating to steel doors and frames as defined in ANSI A123.1 and as specified.

1.2 RELATED WORK

- A. Frames fabricated of structural steel: Section 05 50 00, METAL FABRICATIONS.
- B. Door Hardware: Section 08 71 00, DOOR HARDWARE.
- C. Glazing: Section 08 80 00, GLAZING.
- D. Card readers and biometric devices: Section 28 13 00, ACCESS CONTROL.

1.3 TESTING

A. An independent testing laboratory shall perform testing.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturers Literature and Data:
 - Fire rated doors and frames, showing conformance with NFPA 80 and Underwriters Laboratory, Inc., or Intertek Testing Services or Factory Mutual fire rating requirements.
 - 2. Sound rated doors, including test report from Testing Laboratory.

1.5 SHIPMENT

- A. Prior to shipment label each door and frame to show location, size, door swing and other pertinent information.
- B. Fasten temporary steel spreaders across the bottom of each door frame.

1.6 STORAGE AND HANDLING

- A. Store doors and frames at the site under cover.
- B. Protect from rust and damage during storage and erection until completion.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American National Standard Institute:

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

A250.8-2003 (R2008)....Specifications for Standard Steel Doors and Frames

- C. American Society for Testing and Materials (ASTM): B209/209M-10.....Aluminum and Aluminum-Alloy Sheet and Plate B221/221M-12....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles and Tubes
- D. National Fire Protection Association (NFPA): 80-13.....Fire Doors and Fire Windows
- PART 2 PRODUCTS

2.1 MATERIALS

- A. Stainless Steel: ASTM A167, Type 302 or 304; finish, NAAMM Number 4.
- B. Sheet Steel: ASTM A1008, cold-rolled for panels (face sheets) of doors.
- C. Anchors, Fastenings and Accessories: Fastenings anchors, clips connecting members and sleeves from zinc coated steel.
- D. Aluminum Sheet: ASTM B209/209M.
- E. Aluminum, Extruded: ASTM B221/221M.
- F. Prime Paint: Paint that meets or exceeds the requirements of A250.8.

2.2 METAL FRAMES

- A. General:
 - 1. ANSI A250.8, 0.053 inch thick sheet steel, types and styles as shown or scheduled.
 - 2. Frames for labeled fire rated doors and windows.
 - a. Comply with NFPA 80. Test by Underwriters Laboratories, Inc., Inchcape Testing Services, or Factory Mutual.
 - b. Fire rated labels of approving laboratory permanently attached to frames as evidence of conformance with these requirements.
 Provide labels of metal or engraved stamp, with raised or incised markings.
 - Frames for doors specified to have automatic door operators;
 Security doors (Type 36); service window: minimum 0.067 inch thick.
 - 4. Knocked-down frames are not acceptable.
- B. Reinforcement and Covers:
 - ANSI A250.8 for, minimum thickness of steel reinforcement welded to back of frames.
 - Provide mortar guards securely fastened to back of hardware reinforcements except on lead-lined frames.
- C. Terminated Stops: ANSI A250.8.
- D. Glazed Openings:

- 1. Integral stop on secure side of door.
- Design rabbet width and depth to receive glazing material or panel shown or specified.
- E. Frame Anchors:
 - 1. Floor anchors:
 - a. Where floor fills occur, provide extension type floor anchors to compensate for depth of fill.
 - b. At bottom of jamb use 0.053 inch thick steel clip angles welded to jamb and drilled to receive two 1/4 inch floor bolts. Use 2 inch by 2 inch by 3/8 inch clip angle for lead lined frames, drilled for 3/8 inch floor bolts.
 - c. Where mullions occur, provide 0.093 inch thick steel channel anchors, drilled for two 1/4 inch floor bolts and frame anchor screws.
 - d. Where sill sections occur, provide continuous 0.042 inch thick steel rough bucks drilled for 1/4 inch floor bolts and frame anchor screws. Space floor bolts at 24 inches on center.
 - 2. Jamb anchors:
 - a. Locate anchors on jambs near top and bottom of each frame, and at intermediate points not over 24 inches apart, except for fire rated frames space anchors as required by labeling authority.
 - b. Form jamb anchors of not less than 0.042 inch thick steel unless otherwise specified.
 - c. Anchors for stud partitions: Either weld to frame or use lock-in snap-in type. Provide tabs for securing anchor to the sides of the studs.
 - d. Anchors for frames set in prepared openings:
 - Steel pipe spacers with 1/4 inch inside diameter welded to plate reinforcing at jamb stops or hat shaped formed strap spacers, 2 inches wide, welded to jamb near stop.
 - Drill jamb stop and strap spacers for 1/4 inch flat head bolts to pass thru frame and spacers.
 - e. Anchors for observation windows and other continuous frames set in stud partitions.
 - In addition to jamb anchors, weld clip anchors to sills and heads of continuous frames over 4 feet long.
 - 2) Anchors spaced 600 mm (24 inches) on centers maximum.

08 11 13-3

f. Modify frame anchors to fit special frame and wall construction and provide special anchors where shown or required.

2.3 SHOP PAINTING

A. ANSI A250.8.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Plumb, align and brace frames securely until permanent anchors are set.
 - Use triangular bracing near each corner on both sides of frames with temporary wood spreaders at midpoint.
 - 2. Use wood spreaders at bottom of frame if the shipping spreader is removed.
 - 3. Protect frame from accidental abuse.
 - 4. Where construction will permit concealment, leave the shipping spreaders in place after installation, otherwise remove the spreaders after the frames are set and anchored.
 - 5. Remove wood spreaders and braces only after the walls are built and jamb anchors are secured.
- B. Floor Anchors:
 - 1. Anchor the bottom of door frames to floor with two 1/4 inch diameter expansion bolts. Use 3/8 inch bolts on lead lined frames.
 - 2. Power actuated drive pins may be used to secure frame anchors to concrete floors.
- C. Jamb Anchors:
 - Secure anchors to sides of studs with two fasteners through anchor tabs. Use steel drill screws to steel studs.
 - 2. Frames set in prepared openings of masonry or concrete: Expansion bolt to wall with 1/4 inch expansion bolts through spacers. Where subframes or rough bucks are used, 1/4 inch expansion bolts on 24 inch centers or power activated drive pins 24 inches on centers. Secure two piece frames to subframe or rough buck with machine screws on both faces.
- D. Install anchors for labeled fire rated doors to provide rating as required.

3.2 INSTALLATION OF DOORS AND APPLICATION OF HARDWARE

A. Install doors and hardware as specified in Sections Section 08 14 00, WOOD DOORS Section 08 71 00, DOOR HARDWARE.

- - - E N D - - -

$08 \ 11 \ 13-4$

SECTION 08 14 00 INTERIOR WOOD DOORS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies interior flush doors with prefinish, prefit option.
- B. Section includes fire rated doors.

1.2 RELATED WORK

- A. Metal door frames: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES.
- B. Door hardware including hardware location (height): Section 08 71 00, DOOR HARDWARE.
- C. Installation of doors and hardware: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES, Section 08 14 00, WOOD DOORS, or Section 08 71 00, DOOR HARDWARE.
- D. Glazing: Section 08 80 00, GLAZING.
- E. Finish: Section 09 06 00, SCHEDULE FOR FINISHES.
- F. Card readers and biometric devices: Section 28 13 00, ACCESS CONTROL

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples:
 - Veneer sample 200 mm (8 inch) by 275 mm (11 inch) by 6 mm (1/4 inch) showing specified wood species sanded to receive a transparent finish. Factory finish veneer sample where the prefinished option is accepted.
- C. Shop Drawings:
 - 1. Show every door in project and schedule location in building.
 - Indicate type, grade, finish and size; include detail of glazing and pertinent details.
 - 3. Provide information concerning specific requirements not included in the manufacturer's literature and data submittal.
- D. Manufacturer's Literature and Data:
 - 1. Labeled fire rated doors showing conformance with NFPA 80.
- E. Laboratory Test Reports:
 - 1. Screw holding capacity test report in accordance with WDMA T.M.10.
 - 2. Split resistance test report in accordance with WDMA T.M.5.
 - 3. Cycle/Slam test report in accordance with WDMA T.M.7.

4. Hinge-Loading test report in accordance with WDMA T.M.8.

1.4 WARRANTY

- A. Doors are subject to terms of Article titled "Warranty of Construction", FAR clause 52.246-21, except that warranty shall be as follows:
 - For interior doors, manufacturer's warranty for lifetime of original installation.

1.5 DELIVERY AND STORAGE

- A. Factory seal doors and accessories in minimum of 6 mill polyethylene bags or cardboard packages which shall remain unbroken during delivery and storage.
- B. Store in accordance with WDMA I.S.1-A, Job Site Information.
- C. Label package for door opening where used.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. Window and Door Manufacturers Association (WDMA):
- I.S.1A-11.....Architectural Wood Flush Doors T.M.6-08....Adhesive (Glue Bond) Durability Test Method T.M.7-08....Cycle-Slam Test Method T.M.8-08....Hinge Loading Test Method T.M.10-08...Screwholding Test Method C. National Fire Protection Association (NFPA): 80-10....Protection of Buildings from Exterior Fire
 - 252-08.....Assemblies

PART 2 - PRODUCTS

2.1 FLUSH DOORS

- A. General:
 - 1. Meet requirements of WDMA I.S.1-A, Extra Heavy Duty.
 - 2. Adhesive: Type II
 - 3. Thickness: 1-3/4 inches unless otherwise shown or specified.
- B. Face Veneer:
 - 1. In accordance with WDMA I.S.1-A.
 - 2. One species throughout the project unless scheduled or otherwise shown.
 - 3. For transparent finishes: Premium Grade.

- a. A grade face veneer standard optional.
- b. AA grade face veneer
- c. Match face veneers for doors for uniform effect of color and grain at joints.
- d. Door edges shall be same species as door face veneer except maple may be used for stile face veneer on birch doors.
- e. In existing buildings, where doors are required to have transparent finish, use wood species and grade of face veneers to match adjacent existing doors.
- C. Wood for stops, louvers, muntins and moldings of flush doors required to have transparent finish:
 - Solid Wood of same species as face veneer, except maple may be used on birch doors.
 - 2. Glazing:
 - a. On non-labeled doors use applied wood stops nailed tight on room side and attached on opposite side with flathead, countersunk wood screws, spaced approximately 5 inches on centers.

2.2 PREFINISH, PREFIT OPTION

- A. Flush doors may be factory machined to receive hardware, bevels, undercuts, cutouts, accessories and fitting for frame.
- B. Factory fitting to conform to specification for shop and field fitting, including factory application of sealer to edge and routings.
- C. Flush doors to receive transparent finish (in addition to being prefit) shall be factory finished as follows:
 - WDMA I.S.1-A Section F-3 specification for System TR-4, Conversion Varnish or System TR-5, Catalyzed Vinyl.
 - Use stain when required to produce the finish specified in Section
 09 06 00 SHEDULE FOR FINISHES.

2.3 IDENTIFICATION MARK:

A. On top edge of door.

- B. Either a stamp, brand or other indelible mark, giving manufacturer's name, door's trade name, construction of door, code date of manufacture and quality.
- C. Accompanied by either of the following additional requirements:
 - An identification mark or a separate certification including name of inspection organization.
 - 2. Identification of standards for door, including glue type.

08 14 00-3

- 3. Identification of veneer and quality certification.
- 4. Identification of preservative treatment for stile and rail doors.

2.4 SEALING:

A. Give top and bottom edge of doors two coats of catalyzed polyurethane or water resistant sealer before sealing in shipping containers.

PART 3 - EXECUTION

3.1 DOOR PREPARATION

- A. Field, shop or factory preparation: Do not violate the qualified testing and inspection agency label requirements for fire rated doors.
- B. Clearances between Doors and Frames and Floors:
 - 1. Maximum 1/8 inch clearance at the jambs, heads, and meeting stiles, and a 3/4 inch clearance at bottom, except as otherwise specified.
 - 2. Maximum clearance at bottom doors to operating rooms and doors designated to be fitted with mechanical seal: 10 mm (3/8 inch).
- C. Provide cutouts for special details required and specified.
- D. Rout doors for hardware using templates and location heights specified in Section, 08 71 00 DOOR HARDWARE.
- E. Fit doors to frame, bevel lock edge of doors 1/8 inch for each two inches of door thickness undercut where shown.
- F. Immediately after fitting and cutting of doors for hardware, seal cut edges of doors with two coats of water resistant sealer.
- G. Finish surfaces, including both faces, top and bottom and edges of the doors smooth to touch.
- H. Apply a steel astragal on the opposite side of active door on pairs of fire rated doors.
- I. Apply a steel astragal to meeting style of active leaf of pair of doors or double egress smoke doors.

3.2 INSTALLATION OF DOORS APPLICATION OF HARDWARE

A. Install doors and hardware as specified in this Section.

3.3 DOOR PROTECTION

- A. As door installation is completed, place polyethylene bag or cardboard shipping container over door and tape in place.
- B. Provide protective covering over knobs and handles in addition to covering door.
- C. Maintain covering in good condition until removal is approved by COR.

- - - E N D - - -

SECTION 08 71 00 DOOR HARDWARE

PART 1 - GENERAL

1.1 DESCRIPTION

A. Door hardware and related items necessary for complete installation and operation of doors.

1.2 RELATED WORK

- A. Caulking: Section 07 92 00 JOINT SEALANTS.
- B. Application of Hardware: Section 08 14 00, WOOD DOORS Section 08 11 13, HOLLOW METAL DOORS AND FRAMES.
- C. Finishes: Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Painting: Section 09 91 00, PAINTING.
- E. Card Readers: Section 28 13 11, PHYSICAL ACCESS CONTROL SYSTEMS.
- F. Electrical: Division 26, ELECTRICAL.
- G. Fire Detection: Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 GENERAL

- A. All hardware shall comply with UFAS, (Uniform Federal Accessible Standards) unless specified otherwise.
- B. Provide rated door hardware assemblies where required by most current version of the International Building Code (IBC).
- C. Hardware for Labeled Fire Doors and Exit Doors: Conform to requirements of NFPA 80 for labeled fire doors and to NFPA 101 for exit doors, as well as to other requirements specified. Provide hardware listed by UL, except where heavier materials, large size, or better grades are specified herein under paragraph HARDWARE SETS. In lieu of UL labeling and listing, test reports from a nationally recognized testing agency may be submitted showing that hardware has been tested in accordance with UL test methods and that it conforms to NFPA requirements.
- D. Hardware for application on metal and wood doors and frames shall be made to standard templates. Furnish templates to the fabricator of these items in sufficient time so as not to delay the construction.
- E. The following items shall be of the same manufacturer, except as otherwise specified:
 - 1. Mortise locksets.
 - 2. Hinges for hollow metal and wood doors.
 - 3. Surface applied overhead door closers.
 - 4. Exit devices.

1.4 WARRANTY

- A. Automatic door operators shall be subject to the terms of FAR Clause 52.246-21, except that the Warranty period shall be two years in lieu of one year for all items except as noted below:
 - 1. Locks, latchsets, and panic hardware: 5 years.
 - 2. Door closers and continuous hinges: 10 years.

1.5 MAINTENANCE MANUALS

A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on all door hardware. Provide installation instructions with the submittal documentation.

1.6 SUBMITTALS

- A. Submittals shall be in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. Submit 6 copies of the schedule per Section 01 33 23. Submit 2 final copies of the final approved schedules to VAMC Locksmith as record copies (VISN Locksmith if the VAMC does not have a locksmith).
- B. Hardware Schedule: Prepare and submit hardware schedule in the following form:

Hardware Item	Qty	Size	Reference Publication Type No.	Finish	Mfr. Name and Catalog No.	Key Control Symbols	UL Mark (if fire rated and listed)	ANSI/BHMA Finish Designation

- C. Samples and Manufacturers' Literature:
 - Samples: All hardware items (proposed for the project) that have not been previously approved by Builders Hardware Manufacturers Association shall be submitted for approval. Tag and mark all items with manufacturer's name, catalog number and project number.
 - Samples are not required for hardware listed in the specifications by manufacturer's catalog number, if the contractor proposes to use the manufacturer's product specified.
- D. Certificate of Compliance and Test Reports: Submit certificates that hardware conforms to the requirements specified herein. Certificates

shall be accompanied by copies of reports as referenced. The testing shall have been conducted either in the manufacturer's plant and certified by an independent testing laboratory or conducted in an independent laboratory, within four years of submittal of reports for approval.

1.7 DELIVERY AND MARKING

A. Deliver items of hardware to job site in their original containers, complete with necessary appurtenances including screws, keys, and instructions. Tag one of each different item of hardware and deliver to COR for reference purposes. Tag shall identify items by Project Specification number and manufacturer's catalog number. These items shall remain on file in COR's office until all other similar items have been installed in project, at which time the COR will deliver items on file to Contractor for installation in predetermined locations on the project.

1.8 PREINSTALLATION MEETING

- A. Convene a pre-installation meeting not less than 30 days before start of installation of door hardware. Require attendance of parties directly affecting work of this section, including Contractor and Installer, Architect, and VA Locksmith, Hardware Consultant, and Hardware Manufacturer's Representative. Review the following:
 - 1. Inspection of door hardware.
 - 2. Job and surface readiness.
 - 3. Coordination with other work.
 - 4. Protection of hardware surfaces.
 - 5. Substrate surface protection.
 - 6. Installation.
 - 7. Adjusting.
 - 8. Repair.
 - 9. Field quality control.
 - 10. Cleaning.

1.9 INSTRUCTIONS

A. Hardware Set Symbols on Drawings: Except for protective plates, door stops, mutes, thresholds and the like specified herein, hardware requirements for each door are indicated on drawings by symbols. Symbols for hardware sets consist of letters (e.g., "HW") followed by a number. Each number designates a set of hardware items applicable to a door type.

B. Keying: All cylinders shall be keyed into existing system. Provide removable core cylinders that are removable only with a special key or tool without disassembly of knob or lockset. Cylinders shall be 7 pin type. Keying information shall be furnished at a later date by the COR.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. In text, hardware items are referred to by series, types, etc., listed in such specifications and standards, except as otherwise specified.
- B. American Society for Testing and Materials (ASTM): F883-04.....Padlocks E2180-07....Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s)

In Polymeric or Hydrophobic Materials

C. American National Standards Institute/Builders Hardware Manufacturers Association (ANSI/BHMA):

A156.1-06.....Butts and Hinges

A156.2-03.....Bored and Pre-assembled Locks and Latches

A156.4-08.....Door Controls (Closers)

A156.5-01.....Auxiliary Locks and Associated Products

- A156.6-05.....Architectural Door Trim
- A156.8-05.....Door Controls-Overhead Stops and Holders

A156.18-06.....Materials and Finishes

A156.31-07Electric Strikes and Frame Mounted Actuators

D. National Fire Protection Association (NFPA):

80-10.....Fire Doors and Fire Windows

101-09.....Life Safety Code

E. Underwriters Laboratories, Inc. (UL): Building Materials Directory (2008)

PART 2 - PRODUCTS

2.1 BUTT HINGES

A. ANSI A156.1. Provide only three-knuckle hinges, except five-knuckle where the required hinge type is not available in a three-knuckle version (e.g., some types of swing-clear hinges). The following types of butt hinges shall be used for the types of doors listed, except where otherwise specified:

- Interior Doors: Type A8112/A5112 for doors 3 feet wide or less and Type A8111/A5111 for doors over 3 feet wide. Hinges for doors exposed to high humidity areas (shower rooms, toilet rooms, kitchens, janitor rooms, etc.) shall be of stainless steel material.
- B. Provide quantity and size of hinges per door leaf as follows:
 - 1. Doors up to 4 feet high: 2 hinges.
 - 2. Doors 4 feet to 7 feet 5 inches high: 3 hinges minimum.
 - 3. Doors greater than 7 feet 5 inches high: 4 hinges.
 - Doors up to 3 feet wide, standard weight: 4-1/2 inches x 4-1/2 inches hinges.
 - 5. Doors over 3 feet to 3 feet 6 inches wide, standard weight: 5 inches x 4-1/2 inches.
 - 6. Doors over 3 feet 6 inches to 4 feet, heavy weight: 5 inches x 4-1/2 inches.
 - 7. Provide heavy-weight hinges where specified.
 - 8. At doors weighing 150 lbs. or more, furnish 5 inches high hinges.

2.2 DOOR CLOSING DEVICES

A. Closing devices shall be products of one manufacturer for each type specified.

2.3 OVERHEAD CLOSERS

- A. Conform to ANSI A156.4, Grade 1.
- B. Closers shall conform to the following:
 - The closer shall have minimum 50 percent adjustable closing force over minimum value for that closer and have adjustable hydraulic back check effective between 60 degrees and 85 degrees of door opening.
 - 2. Where specified, closer shall have hold-open feature.
 - Size Requirements: Provide multi-size closers, sizes 1 through 6, except where multi-size closer is not available for the required application.
 - 4. Material of closer body shall be forged or cast.
 - 5. Arm and brackets for closers shall be steel, malleable iron or high strength ductile cast iron.

- 6. Where closers are exposed to the exterior or are mounted in rooms that experience high humidity, provide closer body and arm assembly of stainless steel material.
- 7. Closers shall have full size metal cover; plastic covers will not be accepted.
- Closers shall have adjustable hydraulic back-check, separate valves for closing and latching speed, adjustable back-check positioning valve, and adjustable delayed action valve.
- 9. Provide closers with any accessories required for the mounting application, including (but not limited to) drop plates, special soffit plates, spacers for heavy-duty parallel arm fifth screws, bull-nose or other regular arm brackets, longer or shorter arm assemblies, and special factory templating. Provide special arms, drop plates, and templating as needed to allow mounting at doors with overhead stops and/or holders.
- 10. Closer arms or backcheck valve shall not be used to stop the door from overswing, except in applications where a separate wall, floor, or overhead stop cannot be used.
- 11. Provide parallel arm closers with heavy duty rigid arm.
- 12. Where closers are to be installed on the push side of the door, provide parallel arm type except where conditions require use of top jamb arm.
- 13. Provide all surface closers with the same body attachment screw pattern for ease of replacement and maintenance.
- 14. All closers shall have a 1 $\frac{1}{2}$ " (38mm) minimum piston diameter.

2.4 DOOR STOPS

- A. Conform to ANSI A156.16.
- B. Provide door stops wherever an opened door or any item of hardware thereon would strike a wall, column, equipment or other parts of building construction. For concrete, masonry or quarry tile construction, use lead expansion shields for mounting door stops.
- C. Where cylindrical locks with turn pieces or pushbuttons occur, equip wall bumpers Type L02251 (rubber pads having concave face) to receive turn piece or button.
- D. Provide floor stops (Type L02141 or L02161 in office areas; Type L02121 x 3 screws into floor elsewhere. Wall bumpers, where used, must be installed to impact the trim or the door within the leading half of its

width. Floor stops, where used, must be installed within 4-inches of the wall face and impact the door within the leading half of its width.

- E. Where drywall partitions occur, use floor stops, Type L02141 or L02161 in office areas, Type L02121 elsewhere.
- F. Provide appropriate roller bumper for each set of doors (except where closet doors occur) where two doors would interfere with each other in swinging.
- G. Provide appropriate door mounted stop on doors in individual toilets where floor or wall mounted stops cannot be used.
- H. Where the specified wall or floor stop cannot be used, provide concealed overhead stops (surface-mounted where concealed cannot be used).

2.5 OVERHEAD DOOR STOPS AND HOLDERS

A. Conform to ANSI Standard A156.8. Overhead holders shall be of sizes recommended by holder manufacturer for each width of door. Set overhead holders for 110 degree opening, unless limited by building construction or equipment. Provide Grade 1 overhead concealed slide type: stop-only at rated doors and security doors, hold-open type with exposed holdopen on/off control at all other doors requiring overhead door stops.

2.6 LOCKS AND LATCHES

- A. Conform to ANSI A156.2. Locks and latches for doors 1-3/4 inch thick or over shall have beveled fronts. Lock cylinders shall have not less than seven pins. Cylinders for all locksets shall be removable core type. Cylinders shall be furnished with construction removable cores and construction master keys. Cylinder shall be removable by special key or tool. Construct all cores so that they will be interchangeable into the core housings of all mortise locks, rim locks, cylindrical locks, and any other type lock included in the Great Grand Master Key System. Disassembly of lever or lockset shall not be required to remove core from lockset. All locksets or latches on double doors with fire label shall have latch bolt with 3/4 inch throw, unless shorter throw allowed by the door manufacturer's fire label. Provide temporary keying device or construction core of allow opening and closing during construction and prior to the installation of final cores.
- B. In addition to above requirements, locks and latches shall comply with following requirements:

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

- 1. Cylindrical Lock and Latch Sets: levers shall meet ADA (Americans with Disabilities Act) requirements. Cylindrical locksets shall be series 4000 Grade I. All locks and latchsets shall be furnished with 4-7/8-inch curved lip strike and wrought box. At outswing pairs with overlapping astragals, provide flat lip strip with 7/8-inch lip-to-center dimension. Provide lever design to match design selected by Architect or to match existing lever design. Where two turn pieces are specified for lock F76, turn piece on inside knob shall lock and unlock inside knob, and turn piece on outside knob shall unlock outside knob when inside knob is in the locked position. (This function is intended to allow emergency entry into these rooms without an emergency key or any special tool.)
- 2. Auxiliary locks shall be as specified under hardware sets and conform to ANSI A156.5.

2.7 ELECTRIC STRIKES

- A. ANSI/ BHMA A156.31 Grade 1.
- B. General: Use fail-secure electric strikes at fire-rated doors.

2.8 KEYS

A. Stamp all keys with change number and key set symbol. Furnish keys in quantities as follows:

Locks/Keys	Quantity
Cylinder locks	2 keys each
Cylinder lock change key blanks	100 each different key way
Master-keyed sets	6 keys each
Grand Master sets	6 keys each

2.9 ARMOR PLATES, KICK PLATES, MOP PLATES AND DOOR EDGING

- A. Conform to ANSI Standard A156.6.
- B. Provide protective plates as specified below:
 - 1. Kick plates, mop plates and armor plates of metal, Type J100 series.
 - 2. Provide kick plates and mop plates where specified. Kick plates shall be 10 inches12 inches high. Mop plates shall be 6 inches high. Both kick and mop plates shall be minimum 1.27 mm (0.050 inches) thick. Provide kick and mop plates beveled on all 4 edges (B4E). On push side of doors where jamb stop extends to floor, make kick plates 1-1/2 inches less than width of door, except pairs of metal

doors which shall have plates 1 inch less than width of each door. Extend all other kick and mop plates to within 1/4 inch of each edge of doors. Kick and mop plates shall butt astragals. For jamb stop requirements, see specification sections pertaining to door frames.

- 3. Kick plates and/or mop plates are not required on following door sides:
 - a. Armor plate side of doors;
 - b. Closet side of closet doors.

2.10 MISCELLANEOUS HARDWARE

- A. Access Doors (including Sheet Metal, Screen and Woven Wire Mesh Types): Except for fire-rated doors and doors to Temperature Control Cabinets, equip each single or double metal access door with Lock Type E76213, conforming to ANSI A156.5. Key locks as directed. Ship lock prepaid to the door manufacturer. Hinges shall be provided by door manufacturer.
- B. Mutes: Conform to ANSI A156.16. Provide door mutes or door silencers Type L03011 or L03021, depending on frame material, of white or light gray color, on each steel or wood door frame, except at fire-rated frames, lead-lined frames and frames for sound-resistant, lightproof and electromagnetically shielded doors. Furnish 3 mutes for single doors and 2 mutes for each pair of doors, except double-acting doors. Provide 4 mutes or silencers for frames for each Dutch type door. Provide 2 mutes for each edge of sliding door which would contact door frame.

2.11 FINISHES

- A. Exposed surfaces of hardware shall have ANSI A156.18, finishes as specified below. Finishes on all hinges, pivots, closers, thresholds, etc., shall be as specified below under "Miscellaneous Finishes." For field painting (final coat) of ferrous hardware, see Section 09 91 00, PAINTING.
- B. 626 or 630: All surfaces on exterior and interior of buildings, except where other finishes are specified.
- C. Miscellaneous Finishes:
 - 1. Hinges --interior doors: 652 or 630.
 - 2. Door Closers: Factory applied paint finish. Dull or Satin Aluminum color.
 - 3. Cover plates for floor hinges and pivots: 630.
 - 4. Other primed steel hardware: 600.

- D. Hardware Finishes for Existing Buildings: U.S. Standard finishes shall match finishes of hardware in (similar) existing spaces except where otherwise specified.
- E. Anti-microbial Coating: All hand-operated hardware (levers, pulls, push bars, push plates, paddles, and panic bars) shall be provided with an anti-microbial/anti-fungal coating that has passed ASTM E2180 tests. Coating to consist of ionic silver (Ag+). Silver ions surround bacterial cells, inhibiting growth of bacteria, mold, and mildew by blockading food and respiration supplies.

2.12 BASE METALS

A. Apply specified U.S. Standard finishes on different base metals as following:

Finish	Base Metal
652	Steel
626	Brass or bronze
630	Stainless steel

PART 3 - EXECUTION

3.1 HARDWARE HEIGHTS

- A. For existing buildings locate hardware on doors at heights to match existing hardware. The Contractor shall visit the site, verify location of existing hardware and submit locations to VA COR for approval.
- B. Hardware Heights from Finished Floor:
 - Locksets and latch sets centerline of strike 1024 mm (40-5/16 inches).
 - 2. Locate other hardware at standard commercial heights. Locate push and pull plates to prevent conflict with other hardware.

3.2 INSTALLATION

- A. Closer devices, including those with hold-open features, shall be equipped and mounted to provide maximum door opening permitted by building construction or equipment. Closers shall be mounted on side of door inside rooms, inside stairs, and away from corridors. Where closers are mounted on doors they shall be mounted with sex nuts and bolts; foot shall be fastened to frame with machine screws.
- B. Hinge Size Requirements:

Door Thickness	Door Width	Hinge Height
45 mm (1-3/4 inch)	900 mm (3 feet) and less	113 mm (4-1/2 inches)

45 mm (1-3/4 inch)	Over 900 mm (3 feet) but not more than 1200 mm (4 feet)	125 mm (5 inches)
35 mm (1-3/8 inch) (hollow core wood doors)	Not over 1200 mm (4 feet)	113 mm (4-1/2 inches)

- C. Hinge leaves shall be sufficiently wide to allow doors to swing clear of door frame trim and surrounding conditions.
- D. Where new hinges are specified for new doors in existing frames or existing doors in new frames, sizes of new hinges shall match sizes of existing hinges; or, contractor may reuse existing hinges provided hinges are restored to satisfactory operating condition as approved by COR. Existing hinges shall not be reused on door openings having new doors and new frames. Coordinate preparation for hinge cut-outs and screw-hole locations on doors and frames.
- E. Hinges Required Per Door:

Doors 1500 mm (5 ft) or less in height	2 butts
Doors over 1500 mm (5 ft) high and not over 2280 mm (7 ft 6 in) high	3 butts
Doors over 2280 mm (7 feet 6 inches) high	4 butts
Dutch type doors	4 butts
Doors with spring hinges 1370 mm (4 feet 6 inches) high or less	2 butts
Doors with spring hinges over 1370 mm (4 feet 6 inches)	3 butts

- F. Fastenings: Suitable size and type and shall harmonize with hardware as to material and finish. Provide machine screws and lead expansion shields to secure hardware to concrete, ceramic or quarry floor tile, or solid masonry. Fiber or rawl plugs and adhesives are not permitted. All fastenings exposed to weather shall be of nonferrous metal.
- G. After locks have been installed, show in presence of COR that keys operate their respective locks in accordance with keying requirements. (All keys, Master Key level and above shall be sent Registered Mail to the Medical Center Director along with the bitting list. Also a copy of the invoice shall be sent to the COR for his records.) Installation of locks which do not meet specified keying requirements shall be considered sufficient justification for rejection and replacement of all locks installed on project.

3.3 FINAL INSPECTION

- A. Installer to provide letter to VA COR that upon completion, installer has visited the Project and has accomplished the following:
 - 1. Re-adjust hardware.
 - 2. Evaluate maintenance procedures and recommend changes or additions, and instruct VA personnel.
 - 3. Identify items that have deteriorated or failed.
 - 4. Submit written report identifying problems.

3.4 DEMONSTRATION

A. Demonstrate efficacy of mechanical hardware and electrical, and electronic hardware systems, including adjustment and maintenance procedures, to satisfaction of COR and VA Locksmith.

3.5 HARDWARE SETS

- A. Following sets of hardware correspond to hardware symbols shown on drawings. Only those hardware sets that are shown on drawings will be required. Disregard hardware sets listed in specifications but not shown on drawings.
- B. Hardware Consultant working on a project will be responsible for providing additional information regarding these hardware sets. The numbers shown in the following sets come from BHMA standards.

INTERIOR SINGLE DOORS

HW-2C

Ea	ch Door to Have:	NON-RATED
	Hinges	QUANTITY & TYPE AS REQUIRED
1	Privacy Lock	F76
1	Wall Stop	L02101 CONVEX
3	Silencers	L03011

STONE THRESHOLD BY OTHER TRADES.

Renovate 3W for Surgery Administration VA Project No. 581-14-103

HW-3E

Each Door to Have: NON-RATED				
	Hinges	QUANTITY & TYPE AS REQUIRED		
1	Office Lock	F04		
1	Floor Stop	L02121 x 3 FASTENERS		
1	Set Self-Adhesive Seals	R0Y154		
1	Coat Hook	L03121		
OMIT COAT HOOK WHERE GLASS LITE PREVENTS INSTALLATION.				

SECURITY HARDWARE ABBREVIATIONS LEGEND: AC = Access Control Device (Card reader, biometric reader, keypad, etc.) ADO = Automatic Door Operator DEML = Delayed Egress Magnetic Lock DEPH = Delayed Egress Panic Exit Device DPS = Door Position Switch (Door or Alarm Contact) EL = Electric Lock or Electric Lever Exit Device PB = Push-button Combination Lock (stand-alone) RR = Remote Release Button ELR = Electric Latch Retraction Exit Device REX = Request-to-Exit Switch in Latching Device Inside Trim

Renovate 3W for Surgery Administration VA Project No. 581-14-103

100% CD: 03/28/14

INTERIOR SINGLE SECURITY DOORS

HW-SH-3H

Each [AC, EL, REX, DPS] Door to	Have: NON-RATED/RATED			
1 Continuous Transfer Hinge	x 4-THRUWIRE TRANSFER x			
	IN-HINGE ACCESS PANEL			
1 Electrified Lock	F13-MOD x RIGID OUTSIDE LEVER X KEY			
	RETRACTS LATCHBOLT AND DEADBOLT (E01-			
	REX, E06) 24VDC			
1 Power Supply	REGULATED, FILTERED, 24VDC, AMPERAGE			
	AS REQUIRED			
1 Closer	C02011/C02021			
1 Floor Stop	L02121 x 3 FASTENERS			
1 Set Self-Adhesive Seals	R0Y154			
1 Alarm Contact				
120VAC POWER, CONDUIT, AND WIRING BY DIVISION 26.				
CARD READER BY DIVISION 28.				
E N D				

SECTION 08 80 00 GLAZING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies glass, plastic, related glazing materials and accessories. Glazing products specified apply to factory or field glazed items.

1.2 RELATED WORK

- A. Factory glazed by manufacturer in following units:
 - 1. Mirrors: Section 10 28 00, TOILET, BATH, AND LAUNDRY ACCESSORIES.

1.3 LABELS

- A. Temporary labels:
 - Provide temporary label on each light of glass identifying manufacturer or brand and glass type, quality and nominal thickness.
 - Label in accordance with NFRC (National Fenestration Rating Council) label requirements.
 - 3. Temporary labels shall remain intact until glass is approved by COR.
- B. Permanent labels:
 - 1. Locate in corner for each pane.
 - 2. Label in accordance with ANSI Z97.1 and SGCC (Safety Glass Certification Council) label requirements.
 - a. Tempered glass.
 - b. Laminated glass or have certificate for panes without permanent label.
 - c. Organic coated glass.

1.4 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Certificates.
- C. Warranty: Submit written guaranty, conforming to General Condition requirements, and to "Warranty of Construction" Article in this Section.
- D. Manufacturer's Literature and Data:
 - 1. Glass, each kind required.
 - 2. Glazing cushion.
 - 3. Sealing compound.
- E. Samples.

1.5 DELIVERY, STORAGE AND HANDLING

- A. Delivery: Schedule delivery to coincide with glazing schedules so minimum handling of crates is required. Do not open crates except as required for inspection for shipping damage.
- B. Storage: Store cases according to printed instructions on case, in areas least subject to traffic or falling objects. Keep storage area clean and dry.
- C. Handling: Unpack cases following printed instructions on case. Stack individual windows on edge leaned slightly against upright supports with separators between each.

1.6 PROJECT CONDITIONS

A. Field Measurements: Field measure openings before ordering tempered glass products. Be responsible for proper fit of field measured products.

1.7 WARRANTY

A. Warranty: Conform to terms of "Warranty of Construction", FAR clause 52.246-21, except extend warranty period for the following:

1.8 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI): Z97.1-09.....Safety Glazing Material Used in Building -

Safety Performance Specifications and Methods of Test.

C. American Society for Testing and Materials (ASTM):

C542-05..... Gaskets

and Infill Glazing Materials.

C864-05..... Seal Gaskets,

Setting Blocks, and Spacers

- C1048-12.....Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass.
- E119-10.....Standard Test Methods for Fire Test of Building Construction and Material

E2190-10.....Insulating Glass Unit

D. Code of Federal Regulations (CFR):

16 CFR 1201 - Safety Standard for Architectural Glazing Materials; 2010

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

E. National Fire Protection Association (NFPA): 252-12.....Standard Method of Fire Test of Door Assemblies 257-12.....Standard on Fire Test for Window and Glass

Block Assemblies

- F. National Fenestration Rating Council (NFRC)
- G. Safety Glazing Certification Council (SGCC) 2012: Certified Products Directory (Issued Semi-Annually).
- H. Glass Association of North America (GANA): Glazing Manual (Latest Edition) Sealant Manual (2009)

PART 2 - PRODUCT

2.1 HEAT-TREATED GLASS

A. Clear Tempered Glass:

- 1. ASTM C1048, Kind FT, Condition A, Type I, Class 1, Quality q3.
- 2. Thickness, 6 mm (1/4 inch).

2.2 GLAZING ACCESSORIES

- A. As required to supplement the accessories provided with the items to be glazed and to provide a complete installation. Ferrous metal accessories exposed in the finished work shall have a finish that will not corrode or stain while in service.
- B. Setting Blocks: ASTM C864:
 - 1. Channel shape; having 1/4 inch internal depth.
 - 2. Shore a hardness of 80 to 90 Durometer.
 - 3. Block lengths: two inches except 100 to 150 mm (four to six inches) for insulating glass.
 - 4. Block width: Approximately 1/16 inch less than the full width of the rabbet.
 - 5. Block thickness: Minimum 3/16 inch. Thickness sized for rabbet depth as required.
- C. Spacers: ASTM C864:
 - 1. Channel shape having a 1/4 inch internal depth.
 - 2. Flanges not less 3/32 inch thick and web 1/8 inch thick.
 - 3. Lengths: One to one to three inches.
 - 4. Shore a hardness of 40 to 50 Durometer.
- D. Sealing Tapes:

- Semi-solid polymeric based material exhibiting pressure-sensitive adhesion and withstanding exposure to sunlight, moisture, heat, cold, and aging.
- 2. Shape, size and degree of softness and strength suitable for use in glazing application to prevent water infiltration.
- E. Glazing Gaskets: ASTM C864:
 - 1. Firm dense wedge shape for locking in sash.
 - 2. Soft, closed cell with locking key for sash key.
 - Flanges may terminate above the glazing-beads or terminate flush with top of beads.
- F. Neoprene, EPDM, or Vinyl Glazing Gasket: ASTM C864.
 - 1. Channel shape; flanges may terminate above the glazing channel or flush with the top of the channel.
 - 2. Designed for dry glazing.
- G. Color:
 - Color of glazing compounds, gaskets, and sealants used for aluminum color frames shall match color of the finished aluminum and be nonstaining.
 - Color of other glazing compounds, gaskets, and sealants which will be exposed in the finished work and unpainted shall be black, gray, or neutral color.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verification of Conditions:
 - Examine openings for glass and glazing units; determine they are proper size; plumb; square; and level before installation is started.
 - 2. Verify that glazing openings conform with details, dimensions and tolerances indicated on manufacturer's approved shop drawings.
- B. Advise Contractor of conditions which may adversely affect glass and glazing unit installation, prior to commencement of installation: Do not proceed with installation until unsatisfactory conditions have been corrected.
- C. Verify that wash down of adjacent masonry is completed prior to erection of glass and glazing units to prevent damage to glass and glazing units by cleaning materials.

3.2 PREPARATION

- A. For sealant glazing, prepare glazing surfaces in accordance with GANA-02 Sealant Manual.
- B. Determine glazing unit size and edge clearances by measuring the actual unit to receive the glazing.
- C. Shop fabricate and cut glass with smooth, straight edges of full size required by openings to provide GANA recommended edge clearances.
- D. Verify that components used are compatible.
- E. Clean and dry glazing surfaces.
- F. Prime surfaces scheduled to receive sealants, as determined by preconstruction sealant-substrate testing.

3.3 INSTALLATION - GENERAL

- A. Install in accordance with GANA-01 Glazing Manual and GANA-02 Sealant Manual unless specified otherwise.
- B. Glaze in accordance with recommendations of glazing and framing manufacturers, and as required to meet the Performance Test Requirements specified in other applicable sections of specifications.
- C. Set glazing without bending, twisting, or forcing of units.
- D. Do not allow glass to rest on or contact any framing member.
- E. Glaze doors and operable sash, in a securely fixed or closed and locked position, until sealant, glazing compound, or putty has thoroughly set.
- F. Tempered Glass: Install with roller distortions in horizontal position unless otherwise directed.

3.4 INSTALLATION - WET/DRY METHOD (PREFORMED TAPE AND SEALANT)

- A. Cut glazing tape to length and set against permanent stops, 5 mm (3/16 inch) below sight line. Seal corners by butting tape and dabbing with butyl sealant.
- B. Apply heel bead of butyl sealant along intersection of permanent stop with frame ensuring full perimeter seal between glass and frame to complete the continuity of the air and vapor seal.
- C. Place setting blocks at 1/4 points with edge block no more than 150 mm (6 inches) from corners.
- D. Rest glazing on setting blocks and push against tape and heel bead of sealant with sufficient pressure to achieve full contact at perimeter of pane or glass unit.

- E. Install removable stops, with spacer strips inserted between glazing and applied stops, 1/4 inch below sight line. Place glazing tape on glazing pane or unit with tape flush with sight line.
- F. Fill gap between glazing and stop with sealant to depth equal to bite of frame on glazing, but not more than 3/8 inch below sight line.
- G. Apply cap bead of sealant along void between the stop and the glazing, to uniform line, flush with sight line. Tool or wipe sealant surface smooth.

3.5 INSTALLATION - INTERIOR WET/DRY METHOD (TAPE AND SEALANT)

- A. Cut glazing tape to length and install against permanent stops, projecting 1/16 inch above sight line.
- B. Place setting blocks at 1/4 points with edge block no more than 6 inches from corners.
- C. Rest glazing on setting blocks and push against tape to ensure full contact at perimeter of pane or unit.
- D. Install removable stops, spacer shims inserted between glazing and applied stops at 24 inch intervals, 1/4 inch below sight line.
- E. Fill gaps between pane and applied stop with sealant to depth equal to bite on glazing, to uniform and level line.
- F. Trim protruding tape edge.

3.6 REPLACEMENT AND CLEANING

- A. Clean new glass surfaces removing temporary labels, paint spots, and defacement after approval by COR.
- B. Replace cracked, broken, and imperfect glass, or glass which has been installed improperly.
- C. Leave glass, putty, and other setting material in clean, whole, and acceptable condition.

3.7 PROTECTION

A. Protect finished surfaces from damage during erection, and after completion of work. Strippable plastic coatings on colored anodized finish are not acceptable.

3.8 GLAZING SCHEDULE

- A. Fire Resistant Glass:
 - 1. Use Fire Resistant Glass without wire mesh in interior fire rated or labeled doors and windows.
- B. Tempered Glass:
 - 1. Install in full and half glazed doors unless indicated otherwise.

- 2. Install in storefront, windows, and door sidelights adjacent to doors.
- 3. Use clear tempered glass on interior side lights and doors, and on exterior doors and sidelights unless otherwise indicated or specified.

- - - E N D - - -

SECTION 08 90 00 LOUVERS AND VENTS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies fixed and operable wall louvers, door louvers and wall vents.

1.2 RELATED WORK

- A. Louvers in steel doors: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES.
- B. Color of finish: Section 09 06 00, SCHEDULE FOR FINISHESS.
- C. Louvers in lead lined wood doors: Section 13 49 00, RADIATION PROTECTION.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:

Each type, showing material, finish, size of members, method of assembly, and installation and anchorage details.

C. Manufacturer's Literature and Data: Each type of louver and vent.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. The Master Painters Institute (MPI): Approved Product List - September 2011
- C. American Society for Testing and Materials (ASTM):

A167-99(R2009)..... Stainless and Heat-Resisting Chromium - Nickel Steel Plate, Sheet, and Strip

A1008/A1008M-10.....Steel, Sheet, Carbon, Cold Rolled, Structural, and High Strength Low-Alloy with Improved Formability

 ${\tt B209/B209M-03(R2007)....Aluminum}$ and Aluminum Alloy, Sheet and Plate

B221-08.....Aluminum and Aluminum Alloy Extruded Bars,

Rods, Wire, Shapes, and Tubes

- B221M-07.....Aluminum and Aluminum Alloy Extruded Bars, Rods, Wire Shapes, and Tubes
- D. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Metal Finishes Manual
- E. American Architectural Manufacturers Association (AAMA):

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Aluminum, Extruded: ASTM B221/B221M.
- B. Stainless Steel: ASTM A167, Type 302B.
- C. Carbon Steel: ASTM A1008/A1008M.
- D. Aluminum, Plate and Sheet: ASTM B209/B209M.
- E. Fasteners: Fasteners for securing louvers and wall vents to adjoining construction, except as otherwise specified or shown, shall be toggle or expansion bolts, of size and type as required for each specific type of installation and service condition.
 - Where type, size, or spacing of fasteners is not shown or specified, submit shop drawings showing proposed fasteners, and method of installation.
 - 2. Fasteners for louvers, louver frames, and wire guards shall be of stainless steel or aluminum.
- F. Inorganic Zinc Primer: MPI No. 19.

2.2 EXTERIOR WALL LOUVERS

- A. General:
 - 1. Provide fixed type louvers of size and design shown.
 - Heads, sills and jamb sections shall have formed caulking slots or be designed to retain caulking. Head sections shall have exterior drip lip, and sill sections an integral water stop.
 - 3. Furnish louvers with sill extension or separate sill as shown.
 - 4. Frame shall be mechanically fastened or welded construction with welds dressed smooth and flush.
- B. Performance Characteristics:
 - 1. Weather louvers shall have a minimum of 50 percent free area.
 - 2. Louvers shall bear AMCA certified rating seals for air performance and water penetration ratings.
- C. Aluminum Louvers:
 - General: Frames, blades, sills and mullions (sliding interlocking type); 2 mm (0.081-inch) thick extruded aluminum. Blades shall be drainable type and have reinforcing bosses.
 - Louvers, fixed: Make frame sizes 13 mm (1/2-inch) smaller than openings. Single louvers frames shall not exceed 1700 mm (66 inches) wide. When openings exceed 1700 mm (66 inches), provide twin louvers separated by mullion members.

2.3 CLOSURE ANGLES AND CLOSURE PLATES

- A. Fabricate from 2 mm (0.074-inch) thick stainless steel or aluminum.
- B. Provide continuous closure angles and closure plates on inside head, jambs and sill of exterior wall louvers.
- C. Secure angles and plates to louver frames with screws, and to masonry or concrete with fasteners as specified.

2.4 WIRE GUARDS

- A. Provide wire guards on outside of all exterior louvers, except on exhaust air louvers.
- B. Fabricate frames from 2 mm (0.081-inch) thick extruded or sheet aluminum designed to retain wire mesh.
- C. Wire mesh shall be woven from not less than 1.6 mm (0.063-inch) diameter aluminum wire in 13 mm (1/2-inch) square mesh.
- D. Miter corners and join by concealed corner clips or locks extending about 57 mm (2-1/4 inches) into rails and stiles. Equip wire guards over four feet in height with a mid-rail constructed as specified for frame components.
- E. Fasten frames to outside of louvers with aluminum or stainless steel devices designed to allow removal and replacement without damage to the wire guard or the louver.

2.5 INTERIOR DOOR LOUVERS

- A. Fabricate louvers for interior doors 1.2 mm (0.0478-inch) thick steel.
- B. Make louvers sight-proof type with stationary blades.

2.10 FINISH

A. In accordance with NAAMM Metal Finishes Manual: AMP 500-5051. Organic Finish: AAMA 2605 (Fluorocarbon coating).

2.11 PROTECTION

- A. Provide protection for aluminum against galvanic action wherever dissimilar materials are in contact, by painting the contact surfaces of the dissimilar material with a heavy coat of bituminous paint (complete coverage), or by separating the contact surfaces with a performed synthetic rubber tape having pressure sensitive adhesive coating on one side.
- B. Isolate the aluminum from plaster, concrete and masonry by coating aluminum with zinc-chromate primer.
- C. Protect finished surfaces from damage during fabrication, erection, and after completion of the work.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Set work accurately, in alignment and where shown. Items shall be plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Furnish setting drawings and instructions for installation of anchors and for the positioning of items having anchors to be built into masonry construction. Provide temporary bracing for such items until masonry is set.
- C. Provide anchoring devices and fasteners as shown and as necessary for securing louvers to building construction as specified. Power actuated drive pins may be used, except for removal items and where members would be deformed or substrate damaged by their use.

3.2 CLEANING AND ADJUSTING

- A. After installation, all exposed prefinished and plated items and all items fabricated from stainless steel and aluminum shall be cleaned as recommended by the manufacturer and protected from damage until completion of the project.
- B. All movable parts, including hardware, shall be cleaned and adjusted to operate as designed without binding or deformation of the members, so as to be centered in the opening of frame, and where applicable, to have all contact surfaces fit tight and even without forcing or warping the components

- - - E N D - - -

SECTION 09 06 00 SCHEDULE FOR FINISHES

PART I - GENERAL

1.1 DESCRIPTION

A. This section contains a coordinated system in which requirements for materials specified in other sections shown are identified by abbreviated material names and finish codes in the room finish schedule or shown for other locations.

1.2 MANUFACTURERS

A. Manufacturer's trade names and numbers used herein are only to identify colors, finishes, textures and patterns. Products of other manufacturer's equivalent to colors, finishes, textures and patterns of manufacturers listed that meet requirements of technical specifications will be acceptable upon approval in writing by contracting officer for finish requirements.

1.3 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. MASTER PAINTING INSTITUTE: (MPI)
 - 2001..... Architectural Painting Specification Manual

PART 2- PRODUCTS

2.1 DIVISION 03 - CONCRETE

A. SECTION 03 30 00, CAST IN PLACE CONCRETE

Surface	Finish Description
Floor	Natural - Exposed

2.2 DIVISION 06 WOOD, PLASTICS,

A. SECTION 06 20 00, FINISH CARPENTRY

1.	1. RECEPTION COUNTER PUBLIC OR PATIENT SIDE					
Room No. and Name	Component	Material	Mark	Mfg.	Color	
3C-170 PSA	Transaction	Solid Surface	SS#4	Avonite	Antique Glass #3- 8455	

Renovate 3W for Surgery Administration VA Project No. 581-14-103 100% CD: 03/20/14

Vertical Surface(s)	Plastic Laminate	PLAM#2	Pionite	Looks like Tre Suede #WP-110
Trim	Solid Surface	SS#1	Himacs	Essence #R536
Countertop	Solid Surface	SS#1	Himacs	Essence #R536

2. CONFERENCE/RESIDENTS					
Room No.and Name	Component	Material	Mark	Mfg.	Color
3C-164 Conference	Countertop	Solid Surface	SS#3	Avonite	Moon Crystal #F1-7051
3C-161	Trim	Plastic Laminate	PLAM#1	Formica	Folkstone #927-SD
Residents	Drawers	Plastic Laminate	PLAM#1	Formica	Folkstone #927-SD

3. BATHROOM SINKS AND VANITIES					
Room No.and Name	Component	Material	Mark	Mfg.	Color
3C-158	Countertop	Solid surface	SS#2	Avonite	Pearl #K3-8343
3C-160	Sink	Molded Resin		Avonite	White #VB-1815

2.3 DIVISION 08 - OPENINGS

A. SECTION 08 11 13, HOLLOW FRAMES

Paint both sides of door and frames same color including ferrous metal louvers, and hardware attached to door Component Color of Paint Type and Gloss PNT#2 Semi-Gloss Frame Window frame PNT#2 Semi-Gloss

B. SECTION 08 14 00, WOOD DOORS

Component	Finish/Color
Doors	To match existing

٦

Frames	PNT #2 Semi-Gloss
--------	-------------------

C. WINDOW SILLS

All Windows	Material	Finish
	SECTION 06 20 00 FINISH CARPENTRY, COUNTERTOPS	SS#3 - Moon Crystal #F1-7501

D. SECTION 08 71 00, BUILDERS HARDWARE

Item	Material	Finish
Hinges	Stainless Steel	Matte
Door Closers	Stainless Steel	Matte
Closer/ Holder	Stainless Steel	Matte
Floor Stops	Stainless Steel	Matte
Door Holders	Stainless Steel	Matte
Lock/ Latches	Stainless Steel	Matte

2.4 DIVISION 09 - FINISHES

A. SECTION 09 30 13, CERAMIC TILING

1	1. SECTION 09 30 13, GLASS TILE (GT)					
Color	Size	Shape	Manufacturer	Mfg. Color Name/No.		
GT#1	4"x4"	Square	Mosaic Tile Co.: Pietra Naturale	Crystal Glass Icelandic Blue		
GT#2	1″x1″	Mosaic	Mosaic tile: Glass Blox	Moonbeam/Clear Sky/Aqua Gleam #GB05		

2. SECTION 09 30 13, PORCELAIN TILE (PT)				
Finish Code	Manufacturer	Mfg. Color Name/No		
PT#1	Mosaic Tile Co.	Altas Concorde: Focus:Cenere		
PT#2	Mosaic Tile Co.	12x24 Fabric Ash		
PT#3	Mosaic Tile Co.	Crossville - Laminam Filo Gisha #L2095.10207		

VA Medical Center, Huntington, WVVA Project No. 581-14-103Renovate 3W for Surgery Administration100% CD: 03/28/14

3. SECTION 09 30 13, GROUT (GRT)				
Finish Code	Manufacturer	Mfg. Color Name/No.		
GRT#1	Laticrete	Natural Grey #24		
GRT#2	Laticrete	Light Pewter #90		

B. SECTION 09 51 00, ACOUSTICAL CEILINGS (ACT)

Finish Code	Component	Color Pattern	Manufacturer	Mfg Name/No.
ACT#1	Type III		Armstrong	Optima Health Zone
ACT#2	Concealed Suspension System	Wood	Armstrong	Wood Works "Maple"

C. SECTION 09 65 19, Luxury Vinyl Tile (LVT)

Finish Code	Size	Material/Comp onent	Manufacturer	Mfg Name/No.
LVT#1	4″x36″	LVT	Halo	W212
LVT#2	24"x24"	LVT	Halo	PZ06
LVT#3	24"x24"	LVT	Halo	PZ07

D. SECTION 09 65 13, RESILIENT BASE STAIR TREADS AND ACCESSORIES

Finish Code	Item	Height	Manufacturer	Mfg Name/No.
RB#1	Rubber Base (RB)	5.25″	Mannington Regal Edge Effects	#918 Flax
TR#1	Trim Piece	Cut to Size at Reception Wall	Schluter Systems	"Jolly" in Brushed Chrome
TR#2	Trim Piece	Cut to Size at Floor	Schluter Systems	"Reno U" in Brushed Chrome

E. SECTION 09 68 00, CARPET MODULES (CPT)

Finish Code	Pattern	Manufacture	Mfg. Color Name/No.
CPT#1	UR101	Interface	Granite/Lichen #103504

CPT#2	UR103	Interface	Lichen #100638
CPT#3	UR102	Interface	Granite #102994
CPT#4	59331	Shaw Contract Group	Frequency #30556

F. SECTION 09 91 00, PAINT AND COATINGS (PNT)

1. MPI Gloss and Sheen Standards

		Gloss @60
Sheen	@85	
Gloss Level 1	a traditional matte finish-flat	max 5
units, and	max 10 units	
Gloss Level 2	a high side sheen flat-"a velvet-like"	max 10
units, and		
	finish	
10-35	units	
Gloss Level 3	a traditional "egg-shell like" finish	10-25
units, and	10-35 units	
Gloss Level 4	a "satin-like" finish	20-35
units, and	min. 35 units	
Gloss Level 5	a traditional semi-gloss	35-70 units
Gloss Level 6	a traditional gloss	70-85 units
Gloss level 7	a high gloss	more than
85 units		

2. Paint code	Gloss	Manufacturer	Mfg. Color Name/No.
PNT #1		Sherwin Williams	Ceiling Bright White #SW7007
PNT #2		Sherwin Williams	Tony Taupe #S7038
PNT #3		Sherwin Williams	Hazel #SW6471
PNT #4		Sherwin Williams	Naval #6244
PNT #5		Sherwin Williams	Believable Buff #SW61203
PNT #6		MDC	Idea Paint Pro White Dry Erase #IP0050W/4672

2.5 DIVISION 10 - SPECIALTIES

A. SECTION 08 90 00, LOUVERS AND WALL VENTS

Item	Material	Finish	Manufacturer	Mfg. Color Name/No.
	Aluminum	Baked Enamel	CS	White

2.12 DIVISION 12- FURNISHINGS

A. SECTION 12 31 00, METAL CASEWORK

Item/ Type	Finish	Manufacturer	Mfg. Color Name/No.
1. LOCKERS			Standard Colors - To Be Determined

2.15 DIVISION 22 - PLUMBING

A. SECTION 22 40 00, PLUMBING FIXTURES AND TRIM

Item	Color
Water Closet	White
Lavatories	White

PART III EXECUTION

3.1 FINISH SCHEDULES & MISCELLANEOUS ABBREVIATIONS

FINISH SCHEDULE & MISCELLANEOUS ABBREVIATIONS		
Term	Abbreviation	
Acoustical	ACT	
Ceiling		
Anodized Aluminum	АА	
Natural Finish		
Brick Face	BR	
Brick Paving	BP	
Carpet Module	CPT	
Tile		
Concrete	С	
Concrete Masonry	CMU	
Unit		
Existing	E or EXIST	
Exterior	EXT	

Grout	GRT
Glass tile	GT
Gypsum Wallboard	GWB
Luxury Vinyl Tile	LVT
Material	MAT
Mortar	М
Paint	PNT
Plastic Laminate	PLAM
Porcelain Tile	PT
Resilient Tile	LVT
Flooring	
Rubber Base	RB
Solid Surface	SS
Sheet Vinyl	SV
Terrazzo Tile	ТТ
Terrazzo, Thin	
Set	
Wood	WD

3.2 FINSIH SCHEDULE SYMBOLS

Symbol Definition ** Same finish as adjoining walls _ No color required E Existing XX To match existing EFTR Existing finish to remain RM Remove

3.3 ROOM FINISH SCHEDULE

A. See drawings.

--- E N D---

SECTION 09 22 16 NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies steel studs wall systems, shaft wall systems, ceiling or soffit suspended or furred framing, wall furring, fasteners, and accessories for the screw attachment of gypsum board, plaster bases or other building boards.

1.2 RELATED WORK

- A. Support for wall mounted items: Section 05 50 00, METAL FABRICATIONS.
- B. Ceiling suspension systems for acoustical tile or panels and lay in gypsum board panels: Section 09 51 00, ACOUSTICAL CEILINGS Section 09 29 00, GYPSUM BOARD.

1.3 TERMINOLOGY

- A. Description of terms shall be in accordance with ASTM C754, ASTM C11, ASTM C841 and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by beams, trusses, or bar joists. In interstitial spaces with walk-on floors the underside of the walk-on floor is the underside of structure overhead.
- C. Thickness of steel specified is the minimum bare (uncoated) steel thickness.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Studs, runners and accessories.
 - 2. Hanger inserts.
 - 3. Channels (Rolled steel).
 - 4. Furring channels.
 - 5. Screws, clips and other fasteners.
- C. Shop Drawings:
 - 1. Typical ceiling suspension system.
 - 2. Typical metal stud and furring construction system including details around openings and corner details.
 - 3. Typical shaft wall assembly
 - 4. Typical fire rated assembly and column fireproofing showing details of construction same as that used in fire rating test.

D. Test Results: Fire rating test designation, each fire rating required for each assembly.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

A. In accordance with the requirements of ASTM C754.

1.6 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

B. American Society For Testing And Materials (ASTM)
123Hotdip Galvanized on Steel
A641-09Sinc-Coated (Galvanized) Carbon Steel Wire
C11-10 and Related Relating to Gypsum and Related
Building Materials and Systems
C635-07 Manufacture, Performance, and Testing of Metal
Suspension System for Acoustical Tile and
Lay-in Panel Ceilings
C636-08Suspension Installation of Metal Ceiling Suspension
Systems for Acoustical Tile and Lay-in Panels
C645-09Non-Structural Steel Framing Members
C754-11 Members to
Receive Screw-Attached Gypsum Panel Products
C841-03(R2008)Installation of Interior Lathing and Furring
C954-10Steel Drill Screws for the Application of
Gypsum Panel Products or Metal Plaster Bases to
Steel Studs from 0.033 in. (0.84 mm) to 0.112
in. (2.84 mm) in Thickness
E580-11Syplication of Ceiling Suspension Systems for
Acoustical Tile and Lay-in Panels in Areas
Requiring Moderate Seismic Restraint.

PART 2 - PRODUCTS

2.1 PROTECTIVE COATING

A. Galvanize steel studs, runners (track), rigid (hat section) furring channels, "Z" shaped furring channels, and resilient furring channels, with coating designation of G-60 minimum, per ASTM 123.

2.2 STEEL STUDS AND RUNNERS (TRACK)

- A. ASTM C645, modified for thickness specified and sizes as shown.
 - 1. Use ASTM A525 steel minimum 22 gauge.
 - 2. "C" shaped with knurled edges.
 - 3. Runners same thickness as studs.

- B. Provide not less than two cutouts in web of each stud, approximately 12 inches from each end, and intermediate cutouts on approximately 24-inch centers.
- C. Doubled studs for openings and studs for supporting concrete backer-board.
- D. Studs 12 feet or less in length shall be in one piece.

2.3 FURRING CHANNELS

- A. Rigid furring channels (hat shape): ASTM C645.
- B. Resilient furring channels:
 - 1. Not less than 0.0179 inch thick bare metal.
 - Semi-hat shape, only one flange for anchorage with channel web leg slotted on anchorage side, channel web leg on other side stiffens fastener surface but shall not contact anchorage surface other channel leg is attached to.
- C. Rolled Steel Channels: ASTM C754, cold rolled; or, ASTM C841, cold rolled.

2.4 FASTENERS, CLIPS, AND OTHER METAL ACCESSORIES

- A. ASTM C754, except as otherwise specified.
- B. For fire rated construction: Type and size same as used in fire rating test.
- C. Fasteners for steel studs thicker than 0.84 mm (0.033-inch) thick. Use ASTM C954 steel drill screws of size and type recommended by the manufacturer of the material being fastened.
- D. Clips: ASTM C841 (paragraph 6.11), manufacturer's standard items. Clips used in lieu of tie wire shall have holding power equivalent to that provided by the tie wire for the specific application.
- E. Concrete ceiling hanger inserts (anchorage for hanger wire and hanger straps): Steel, zinc-coated (galvanized), manufacturers standard items, designed to support twice the hanger loads imposed and the type of hanger used.
- F. Tie Wire and Hanger Wire:
 - 1. ASTM A641, soft temper, Class 1 coating.
 - 2. Gage (diameter) as specified in ASTM C754 or ASTM C841.
- G. Attachments for Wall Furring:
 - Manufacturers standard items fabricated from zinc-coated (galvanized) steel sheet.
 - For concrete or masonry walls: Metal slots with adjustable inserts or adjustable wall furring brackets. Spacers may be fabricated from 0.0396 inch thick galvanized steel with corrugated edges.

H. Power Actuated Fasteners: Type and size as recommended by the manufacturer of the material being fastened.

2.5 SUSPENDED CEILING SYSTEM FOR GYPSUM BOARD (OPTION)

- A. Conform to ASTM C635, heavy duty, with not less than 1-3/8 inch wide knurled capped flange face designed for screw attachment of gypsum board.
- B. Wall track channel with 1-3/8 inch wide flange.

PART 3 - EXECUTION

3.1 INSTALLATION CRITERIA

- A. Where fire rated construction is required for walls, partitions, columns, beams and floor-ceiling assemblies, the construction shall be same as that used in fire rating test.
- B. Construction requirements for fire rated assemblies and materials shall be as shown and specified, the provisions of the Scope paragraph (1.2) of ASTM C754 and ASTM C841 regarding details of construction shall not apply.

3.2 INSTALLING STUDS

- A. Install studs in accordance with ASTM C754, except as otherwise shown or specified.
- B. Space studs not more than 16 inches on center.
- C. Cut studs 1/4 to 3/8-inch less than floor to underside of structure overhead when extended to underside of structure overhead.
- D. Where studs are shown to terminate above suspended ceilings, provide bracing or extend studs to underside of structure overhead.
- E. Extend studs to underside of structure overhead for fire, rated partitions, smoke partitions, shafts, and sound rated partitions.
- F. Openings:
 - 1. Frame jambs of openings in stud partitions and furring with two studs placed back-to-back or as shown.
 - Fasten back to back studs together with 3/8-inch long Type S pan head screws at not less than two feet on center, staggered along webs.
 - 3. Studs fastened flange to flange shall have splice plates on both sides approximately 2 by 3 inches screwed to each stud with two screws in each stud. Locate splice plates at 24 inches on center between runner tracks.
- G. Fastening Studs:
 - Fasten studs located adjacent to partition intersections, corners and studs at jambs of openings to flange of runner tracks with two screws through each end of each stud and flange of runner.

- 2. Do not fasten studs to top runner track when studs extend to underside of structure overhead.
- H. Chase Wall Partitions:
 - 1. Locate cross braces for chase wall partitions to permit the installation of pipes, conduits, carriers and similar items.
 - 2. Studs or runners as cross bracing not less than 2-1/2 inches wide.
- I. Form control joint, with double studs spaced 1/2-inch apart.

3.3 INSTALLING WALL FURRING FOR FINISH APPLIED TO ONE SIDE ONLY

- A. In accordance with ASTM C754, or ASTM C841 except as otherwise specified or shown.
- B. Wall furring-Stud System:
 - 1. Framed with 2-1/2 inch or narrower studs, 24 inches on center.
 - Brace as specified in ASTM C754 for Wall Furring-Stud System or brace with sections or runners or studs placed horizontally at not less than three-foot vertical intervals on side without finish.
 - 3. Securely fasten braces to each stud with two Type S pan head screws at each bearing.
- C. Direct attachment to masonry or concrete; rigid:
 - Install rigid (hat section) furring channels at 16 inches on center, horizontally or vertically.
 - 2. At corners where rigid furring channels are positioned horizontally, provide mitered joints in furring channels.
 - 3. Ends of spliced furring channels shall be nested not less than 8 inches.
 - Fasten furring channels to walls with power-actuated drive pins or hardened steel concrete nails. Where channels are spliced, provide two fasteners in each flange.
 - Locate furring channels at interior and exterior corners in accordance with wall finish material manufacturers printed erection instructions.
- D. Installing Wall Furring-Bracket System: Space furring channels not more than 16 inches on center.

3.4 INSTALLING SUPPORTS REQUIRED BY OTHER TRADES

A. Provide for attachment and support of electrical outlets, plumbing, laboratory or heating fixtures, recessed type plumbing fixture accessories, access panel frames, wall bumpers, wood seats, toilet stall partitions, dressing booth partitions, urinal screens, chalkboards, tackboards, wall-hung casework, handrail brackets, recessed fire extinguisher cabinets and other items like auto door buttons and auto door operators supported by stud construction. B. Provide additional studs where required. Install metal backing plates, or special metal shapes as required, securely fastened to metal studs.

3.5 INSTALLING FURRED AND SUSPENDED CEILINGS OR SOFFITS

- A. Install furred and suspended ceilings or soffits in accordance with ASTM C754 or ASTM C841 except as otherwise specified or shown for screw attached gypsum board ceilings and for plaster ceilings or soffits.
 - 1. Space framing at 16-inch centers for metal lath anchorage.
 - 2. Space framing at 24-inch centers for gypsum board anchorage.
- B. Existing concrete construction exposed or concrete on steel decking:
 - 1. Use power actuated fasteners either eye pin, threaded studs or drive pins for type of hanger attachment required.
 - Install fasteners at approximate mid height of concrete beams or joists. Do not install in bottom of beams or joists.
- C. Installing suspended ceiling system for gypsum board (ASTM C635 Option):
 - 1. Install only for ceilings to receive screw attached gypsum board.
 - 2. Install in accordance with ASTM C636.
 - a. Install main runners spaced 48 inches on center.
 - b. Install four foot tees not over 24 inches on center; locate for edge support of gypsum board.
 - c. Install wall track channel at perimeter.
- D. Installing Ceiling Bracing System:
 - Construct bracing of 1-1/2 inch channels for lengths up to 8 feet and 2 inch channels for lengths over 8 feet with ends bent to form surfaces for anchorage to carrying channels and over head construction. Lap channels not less than 2 feet at midpoint back to back. Screw or bolt lap together with two fasteners.
 - 2. Install bracing at an approximate 45 degree angle to carrying channels and structure overhead; secure as specified to structure overhead with two fasteners and to carrying channels with two fasteners or wire ties.

3.7 TOLERANCES

- A. Fastening surface for application of subsequent materials shall not vary more than 1/8-inch from the layout line.
- B. Plumb and align vertical members within 1/8-inch.
- C. Level or align ceilings within 1/8-inch.

- - - E N D - - -

SECTION 09 29 00 GYPSUM BOARD

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies installation and finishing of gypsum board.

1.2 RELATED WORK

- A. Installation of steel framing members for walls, partitions, furring, soffits, and ceilings: Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- B. Sound deadening board: Section 07 21 13, THERMAL INSULATION.
- C. Acoustical Sealants: Section 07 92 00, JOINT SEALANTS.

1.3 TERMINOLOGY

- A. Definitions and description of terms shall be in accordance with ASTM C11, C840, and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, underside of structure overhead shall be the underside of the floor or roof construction supported by trusses or bar joists.
- C. "Yoked": Gypsum board cut out for opening with no joint at the opening (along door jamb or above the door).

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Cornerbead and edge trim.
 - 2. Finishing materials.
 - 3. Laminating adhesive.
 - 4. Gypsum board, each type.
- C. Shop Drawings:
 - Typical gypsum board installation, showing corner details, edge trim details and the like.
 - 2. Typical sound rated assembly, showing treatment at perimeter of partitions and penetrations at gypsum board.
 - 3. Typical shaft wall assembly.
 - 4. Typical fire rated assembly and column fireproofing, indicating details of construction same as that used in fire rating test.
- D. Test Results:
 - 1. Fire rating test, each fire rating required for each assembly.
 - 2. Sound rating test.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

A. In accordance with the requirements of ASTM C840.

1.6 ENVIRONMENTAL CONDITIONS

A. In accordance with the requirements of ASTM C840.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing And Materials (ASTM): C11-08.....Terminology Relating to Gypsum and Related Building Materials and Systems C475-02.....Joint Compound and Joint Tape for Finishing Gypsum Board C840-08..... Application and Finishing of Gypsum Board C919-08.....Sealants in Acoustical Applications C954-07.....Steel Drill Screws for the Application of Gypsum Board or Metal Plaster Bases to Steel Stud from 0.033 in. to 0.112 in. in thickness C1002-07.....Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs C1047-05.....Accessories for Gypsum Wallboard and Gypsum Veneer Base C1178/C1178M-11.....Standard Specification for Coated Glass Mat

Water-Resistant gypsum Backing Panel

C1658-06.....Glass Mat Gypsum Panels

C1396-06.....Gypsum Board

E84-08.....Surface Burning Characteristics of Building Materials

- C. Underwriters Laboratories Inc. (UL): Latest Edition.....Fire Resistance Directory
- D. Inchcape Testing Services (ITS): Latest Editions.....Certification Listings

PART 2 - PRODUCTS

2.1 GYPSUM BOARD

- A. Gypsum Board: ASTM C1396, Type X, 5/8 inch thick unless shown otherwise. Shall contain a minimum of 20 percent recycled gypsum.
- B. Glass Mat Water Resistant Gypsum Backing Board: ASTM C1178, Type X, 5/8 inch thick.
- C. Gypsum cores shall contain maximum percentage of post industrial recycled gypsum content available in the area (a minimum of 95 percent

post industrial recycled gypsum content). Paper facings shall contain 100 percent post-consumer recycled paper content.

2.2 ACCESSORIES

- A. ASTM C1047, except form of 0.015 inch thick zinc coated steel sheet or rigid PVC plastic.
- B. Flanges not less than 7/8 inch wide with punchouts or deformations as required to provide compound bond.

2.3 FASTENERS

- A. ASTM C1002 and ASTM C840, except as otherwise specified.
- B. ASTM C954, for steel studs thicker than 0.33 inch.
- C. Select screws of size and type recommended by the manufacturer of the material being fastened.
- D. For fire rated construction, type and size as used in fire rating test.
- E. Clips: Zinc-coated (galvanized) steel; gypsum board manufacturer's standard items.

2.4 FINISHING MATERIALS AND LAMINATING ADHESIVE

A. ASTM C475 and ASTM C840. Free of antifreeze, vinyl adhesives, preservatives, biocides and other VOC. Adhesive shall contain a maximum VOC content of 50 g/l.

PART 3 - EXECUTION

3.1 GYPSUM BOARD HEIGHTS

- A. Extend all layers of gypsum board from floor to underside of structure overhead on following partitions and furring:
 - 1. Two sides of partitions:
 - a. Fire rated partitions.
 - b. Smoke partitions.
 - c. Sound rated partitions.
 - d. Full height partitions shown (FHP).
 - e. Corridor partitions.
 - 2. One side of partitions or furring:
 - a. Inside of exterior wall furring or stud construction.
 - b. Room side of room without suspended ceilings.
 - c. Furring for pipes and duct shafts, except where fire rated shaft wall construction is shown.
 - Extend all layers of gypsum board construction used for fireproofing of columns from floor to underside of structure overhead, unless shown otherwise.
- B. In locations other than those specified, extend gypsum board from floor to heights as follows:
 - 1. Not less than 4 inches above suspended acoustical ceilings.

- 2. At ceiling of suspended gypsum board ceilings.
- 3. At existing ceilings.

3.2 INSTALLING GYPSUM BOARD

- A. Coordinate installation of gypsum board with other trades and related work.
- B. Install gypsum board in accordance with ASTM C840, except as otherwise specified.
- C. Moisture and Mold-Resistant Assemblies: Provide and install moisture and mold-resistant glass mat gypsum wallboard products with moistureresistant surfaces complying with ASTM C1658 at all bathrooms, exterior walls, and in locations which might be subject to moisture exposure during construction.
- D. Use gypsum boards in maximum practical lengths to minimize number of end joints.
- E. Bring gypsum board into contact, but do not force into place.
- F. Ceilings:
 - 1. For single-ply construction, use perpendicular application.
 - 2. For two-ply assembles:
 - a. Use perpendicular application.
 - b. Apply face ply of gypsum board so that joints of face ply do not occur at joints of base ply with joints over framing members.
- G. Walls (Except Shaft Walls):
 - When gypsum board is installed parallel to framing members, space fasteners 12 inches on center in field of the board, and 8 inches on center along edges.
 - 2. When gypsum board is installed perpendicular to framing members, space fasteners 12 inches on center in field and along edges.
 - 3. Stagger screws on abutting edges or ends.
 - 4. For single-ply construction, apply gypsum board with long dimension either parallel or perpendicular to framing members as required to minimize number of joints except gypsum board shall be applied vertically over "Z" furring channels.
 - 5. For two-ply gypsum board assemblies, apply base ply of gypsum board to assure minimum number of joints in face layer. Apply face ply of wallboard to base ply so that joints of face ply do not occur at joints of base ply with joints over framing members.
 - 6. No offset in exposed face of walls and partitions will be permitted because of single-ply and two-ply or three-ply application requirements.
 - 7. Control Joints ASTM C840 and as follows:

- a. Locate at both side jambs of openings if gypsum board is not "yoked". Use one system throughout.
- b. Not required for wall lengths less than 30 feet.
- c. Extend control joints the full height of the wall or length of soffit/ceiling membrane.
- H. Acoustical or Sound Rated Partitions, Fire and Smoke Partitions:
 - 1. Cut gypsum board for a space approximately 1/8 to 1/4 inch wide around partition perimeter.
 - 2. Coordinate for application of caulking or sealants to space prior to taping and finishing.
 - 3. For sound rated partitions, use sealing compound (ASTM C919) to fill the annular spaces between all receptacle boxes and the partition finish material through which the boxes protrude to seal all holes and/or openings on the back and sides of the boxes. STC minimum values as shown.
- I. Electrical and Telecommunications Boxes:
 - 1. Seal annular spaces between electrical and telecommunications receptacle boxes and gypsum board partitions.
- J. Accessories:
 - 1. Set accessories plumb, level and true to line, neatly mitered at corners and intersections, and securely attach to supporting surfaces as specified.
 - 2. Install in one piece, without the limits of the longest commercially available lengths.
 - 3. Corner Beads:
 - a. Install at all vertical and horizontal external corners and where shown.
 - b. Use screws only. Do not use crimping tool.
 - 4. Edge Trim (casings Beads):
 - a. At both sides of expansion and control joints unless shown otherwise.
 - b. Where gypsum board terminates against dissimilar materials and at perimeter of openings, except where covered by flanges, casings or permanently built-in equipment.
 - c. Where gypsum board surfaces of non-load bearing assemblies abut load bearing members.
 - d. Where shown.

3.3 FINISHING OF GYPSUM BOARD

- A. Finish joints, edges, corners, and fastener heads in accordance with ASTM C840. Use Level 4 finish for all finished areas unless otherwise indicated.
- B. High Build Drywall Surfacer: Vinyl acrylic latex-based coating for spray application, designed to take the place of skim coating and separate paint primer in achieving a Level 5 finish. Use Level 5 finish in all areas to receive epoxy or semi-gloss paint finish.
- C. Before proceeding with installation of finishing materials, assure the following:
 - 1. Gypsum board is fastened and held close to framing or furring.
 - 2. Fastening heads in gypsum board are slightly below surface in dimple formed by driving tool.
- D. Finish joints, fasteners, and all openings, including openings around penetrations, on that part of the gypsum board extending above suspended ceilings to seal surface of non decorated smoke barrier, fire rated and sound rated gypsum board construction. After the installation of hanger rods, hanger wires, supports, equipment, conduits, piping and similar work, seal remaining openings and maintain the integrity of the smoke barrier, fire rated and sound rated construction. Sanding is not required of non decorated surfaces.

3.6 REPAIRS

- A. After taping and finishing has been completed, and before decoration, repair all damaged and defective work, including nondecorated surfaces.
- B. Patch holes or openings 1/2 inch or less in diameter, or equivalent size, with a setting type finishing compound or patching plaster.
- C. Repair holes or openings over 1/2 inch diameter, or equivalent size, with 5/8 inch thick gypsum board secured in such a manner as to provide solid substrate equivalent to undamaged surface.
- D. Tape and refinish scratched, abraded or damaged finish surfaces including cracks and joints in non decorated surface to provide smoke tight construction fire protection equivalent to the fire rated construction and STC equivalent to the sound rated construction.

- - - E N D - - -

SECTION 09 30 13 CERAMIC/PORCELAIN TILING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies ceramic, glass, and porcelain for thin-set applications, tile backer board.

1.2 RELATED WORK

- A. Sealing of joints where specified: Section 07 92 00, JOINT SEALANTS.
- B. Color, texture and pattern of field tile and trim shapes, size of field tile, trim shapes, and color of grout specified: Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Metal and resilient edge strips at joints with new resilient flooring, and carpeting: Section 09 65 19, RESILIENT TILE FLOORING Section 09 68 00, CARPETING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples:
 - 1. Porcelain tile, each type, color, patterns and size.
 - 2. Glass tile, each color, size and pattern.
 - Trim shapes, bullnose cap and cove including bullnose cap and base pieces at internal and external corners of vertical surfaces, each type, color, and size.
- C. Product Data:
 - 1. Ceramic and porcelain tile, marked to show each type, size, and shape required.
 - 2. Chemical resistant mortar and grout (Epoxy).
 - 3. Dry-set Portland cement mortar and grout.
 - 4. Divider strip.
 - 5. Elastomeric membrane and bond coat.
 - 6. Reinforcing tape.
 - 7. Leveling compound.
 - 8. Latex-Portland cement mortar and grout.
 - 9. Commercial Portland cement grout.
 - 10. Organic adhesive.
 - 11. Slip resistant tile.
 - 12. Waterproofing isolation membrane.
 - 13. Fasteners.
- D. Certification:

- 1. Master grade, ANSI A137.1.
- 2. Manufacturer's certificates indicating that the following materials comply with specification requirements:
 - a. Chemical resistant mortar and grout (epoxy).
 - b. Modified epoxy emulsion.
 - c. Commercial Portland cement grout.
 - d. Dry-set Portland cement mortar and grout.
 - e. Elastomeric membrane and bond coat.
 - f. Reinforcing tape.
 - g. Latex-Portland cement mortar and grout.
 - h. Leveling compound.
 - i. Organic adhesive.
 - j. Waterproof isolation membrane.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in containers with labels legible and intact and grade-seals unbroken.
- B. Store material to prevent damage or contamination.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI):

A10.20.....Safe Operating Practices for Tile, Terrazzo, and Marble Work

A108.1A-11.....Installation of Ceramic Tile in the Wet-Set Method with Portland Cement Mortar

A108.1B-11.....Installation of Ceramic Tile on a Cured Portland Cement Mortar Setting Bed with dry-Set or latex-Portland Cement Mortar

A108.1C-11.....Contractors Option; Installation of Ceramic Tile in the Wet-Set method with Portland Cement Mortar or Installation of Ceramic Tile on a Cured Portland Cement Mortar Setting Bed with Dry-Set or Latex-Portland Cement Mortar

- A108.4.....Specifications for Installation of Ceramic Tile with Organic Adhesives or Water Cleanable Tile Setting Epoxy Adhesive
- A118.3.....Chemical Resistant, Water Cleanable Tile Setting & Grouting Epoxy

Installation

A137.1-08.....Ceramic Tile

C. American Society For Testing And Materials (ASTM):

C979-10.....Pigments for Integrally Colored Concrete

C1027-09.....Determining "Visible Abrasion Resistance on Glazed Ceramic Tile"

- C1028-07.....Determining the Static Coefficient of Friction of Ceramic Tile and Other Like Surfaces by the Horizontal Dynamometer Pull Meter Method
- C1178/C1178M-11.....Standard Specification for Coated Glass Mat Water-Resistant Gypsum Backing Panel
- D4397-10.....Standard Specification for Polyethylene Sheeting for Construction, Industrial and Agricultural Applications
- D. Tile Council of America, Inc. (TCA):

2007.....Handbook for Ceramic Tile Installation

PART 2 - PRODUCTS

2.1 TILE

- A. Comply with ANSI A137.1, Standard Grade, except as modified:
 - 1. Inspection procedures listed under the Appendix of ANSI A137.1.
 - 2. Abrasion Resistance Classification:
 - a. Tested in accordance with values listed in Table 1, ASTM C 1027.
 - b. Class V, 12000 revolutions for floors in Corridors, Kitchens, Storage including Refrigerated Rooms
 - c. Class IV, 6000 revolutions for remaining areas.
 - 3. Slip Resistant Tile for Floors:
 - a. Coefficient of friction, when tested in accordance with ASTM C1028, required for level of performance:
 - Not less than 0.6 for wet and dry conditions for other areas.
 Porcelain Paver Tile: Matte surface finish.
 - 4. Factory Blending: For tile with color variations, within the ranges selected during sample submittals blend tile in the factory and package so tile units taken from one package show the same range in
 - colors as those taken from other packages and match approved samples.
 - 5. Factory-Applied Temporary Protective Coating:
 - a. Protect exposed face surfaces (top surface) of tile against adherence of mortar and grout by pre-coating with a continuous film of petroleum paraffin wax, applied hot.

- b. Do not coat unexposed tile surfaces.
- c. Pre-wax tiles set or grouted with epoxy or latex modified mortars.
- B. Thin-body porcelain panel with fiberglass mesh permanently adhered to back side of panel.
 - 1. Size as indicated on drawings.
 - 2. As specified in Section 09 06 00 SCHEDULE FOR FINISHES.
- C. Glass Wall Tile: Cushion edges, glazing, as specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Porcelain Paver Tile: Nominal 5/16 inch thick, with cushion edges. Porcelain tile produced by the dust pressed method shall be made of approximately 50% feldspar; the remaining 50% shall be made up of various high-quality light firing ball clays yielding a tile with a water absorption rate of 0.5% or less and a breaking strength of between 390 to 400 pounds.
- E. Trim Shapes:
 - 1. Conform to applicable requirements of adjoining floor and wall tile.
 - Use slip resistant trim shapes for horizontal surfaces of showers overflow ledges, recessed steps, shower curbs, and drying area curbs.
 - Use trim shapes sizes conforming to size of adjoining field wall tile unless detailed or specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.
 - 4. Internal and External Corners:
 - a. External corners including edges: Use metal trim as detailed.
 - b. Internal corners: Use Metal trim as detailed.

2.2 GLASS MAT WATER RESISTANT GYPSUM BACKER BOARD

A. Confirm to ASTM C1178/C1178M.

2.3 SETTING MATERIALS OR BOND COATS

- A. Conform to TCA Handbook for Ceramic Tile Installation.
- B. Portland Cement Mortar: ANSI A108.1.
- C. Latex-Portland Cement Mortar: ANSI A108.1.
 - 1. For wall applications, provide non-sagging, latex-Portland cement mortar complying with ANSI A108.1.
 - 2. Prepackaged Dry-Mortar Mix: Factory-prepared mixture of Portland cement; dry, redispersible, ethylene vinyl acetate additive; and other ingredients to which only water needs to be added onsite.
- D. Dry-Set Portland Cement Mortar: ANSI A108.1 For wall applications, provide no-sag, latex-Portland cement mortar, ANSI A108.4 compliant.
- E. Organic Adhesives: ANSI A108.1, Type 1.
- F. Chemical-Resistant Bond Coat:

1. Epoxy Resin Type: ANSI A108.1.

2.4 GROUTING MATERIALS

- A. Coloring Pigments:
 - 1. Pure mineral pigments, limeproof and nonfading, complying with ASTM C979.
 - 2. Add coloring pigments to grout by the manufacturer.
 - 3. Job colored grout is not acceptable.
 - 4. Use is required in Commercial Portland Cement Grout, Dry-Set Grout, and Latex-Portland Cement Grout.
- B. White Portland Cement Grout:
 - 1. ANSI A108.1.
 - 2. Use one part white Portland cement to one part white sand passing a number 30 screen.
 - 3. Color additive not permitted.
- C. Commercial Portland Cement Grout: ANSI A108.1 color as specified.
- D. Dry-Set Grout: ANSI A108.1 color as specified.
- E. Latex-Portland Cement Grout: ANSI A108.1 color as specified.
 - 1. Unsanded grout mixture for joints 1/8 inch and narrower.
 - 2. Sanded grout mixture for joints 1/8 inch and wider.
- F. Chemical-Resistant Grout:
 - 1. Epoxy grout, ANSI A108.1.

2.5 PATCHING AND LEVELING COMPOUND

- A. Portland cement base, polymer-modified, self-leveling compound, manufactured specifically for resurfacing and leveling concrete floors. Products containing gypsum are not acceptable.
- B. Shall have minimum following physical properties:
 - 1. Compressive strength 3500 psig per ASTM C109/C109M.
 - 2. Flexural strength 1000 psig per ASTM C348 (28 day value).
 - 3. Tensile strength 600 psi per ANSI 118.7.
 - 4. Density 1.9.
- C. Capable of being applied in layers up to 1-1/2 inches thick without fillers and up to four inches thick with fillers, being brought to a feather edge, and being trowelled to a smooth finish.
- D. Primers, fillers, and reinforcement as required by manufacturer for application and substrate condition.
- E. Ready for use in 48 hours after application.

2.6 METAL DIVIDER STRIPS

- A. Terrazzo type divider strips.
- B. Heavy top type strip with 3/16 inch wide top and 1-1/2 inch long leg.

- C. Embedded leg perforated and deformed for keying to mortar.
- D. Aluminum or brass as specified in Section 09 06 00, SCHEDULE FOR FINISHES.

2.7 WATER

A. Clean, potable and free from salts and other injurious elements to mortar and grout materials.

2.8 CLEANING COMPOUNDS

- A. Specifically designed for cleaning masonry and concrete and which will not prevent bond of subsequent tile setting materials including patching and leveling compounds and elastomeric waterproofing membrane and coat.
- B. Materials containing acid or caustic material not acceptable.

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient temperature of work areas at not less than 60 degrees F, without interruption, for not less than 24 hours before installation and not less than three days after installation.
- B. Maintain higher temperatures for a longer period of time where required by manufacturer's recommendation and ANSI Specifications for installation.
- C. Do not install tile when the temperature is above 100 degrees F.
- D. Do not install materials when the temperature of the substrate is below 60 degrees F.
- E. Do not allow temperature to fall below 50 degrees F after fourth day of completion of tile work.

3.2 ALLOWABLE TOLERANCE

- A. Variation in plane of sub-floor, including concrete fills leveling compounds and mortar beds:
 - 1. Not more than 1 in 500 (1/4 inch in 10 feet) from required elevation where Portland cement mortar setting bed is used.
 - 2. Not more than 1 in 1000 (1/8 inch in 10 feet) where dry-set Portland cement, and latex-Portland cement mortar setting beds and chemicalresistant bond coats are used.
- B. Variation in Plane of Wall Surfaces:
 - 1. Not more than 1 in 400 (1/4 inch in eight feet) from required plane where Portland cement mortar setting bed is used.
 - 2. Not more than 1 in 800 (1/8 inch in eight feet) where dry-set or latex-Portland cement mortar or organic adhesive setting materials is used.

3.3 SURFACE PREPARATION

- A. Patching and Leveling:
 - 1. Mix and apply patching and leveling compound in accordance with manufacturer's instructions.
 - 2. Fill holes and cracks and align concrete floors that are out of required plane with patching and leveling compound.
 - a. Thickness of compound as required to bring finish tile system to elevation shown.
 - b. Float finish except finish smooth for elastomeric waterproofing.
 - c. At substrate expansion, isolation, and other moving joints, allow joint of same width to continue through underlayment.
 - 3. Apply patching and leveling compound to concrete and masonry wall surfaces that are out of required plane.
 - 4. Apply leveling coats of material compatible with wall surface and tile setting material to wall surfaces, other than concrete and masonry that are out of required plane.
- B. Additional preparation of concrete floors for tile set with epoxy shall be in accordance with the manufacturer's printed instructions.
- C. Walls:
 - 1. Apply patching and leveling compound to concrete and masonry surfaces that are out of required plane.
 - 2. Apply leveling coats of material compatible with wall surface and tile setting material to wall surfaces, other than concrete and masonry that are out of required plane.
- D. Existing Floors and Walls:
 - Remove existing composition floor finishes and adhesive. Prepare surface by grinding, chipping, self-contained power blast cleaning or other suitable mechanical methods to completely expose uncontaminated concrete or masonry surfaces. Follow ANSI A10.20 safety requirements.
 - Remove existing concrete fill or topping to structural slab. Clean and level the substrate for new setting bed and waterproof membrane or cleavage membrane.

3.4 GLASS MAT WATER-RESISTANT GYPSUM BACKER BOARD

- A. Install in accordance with manufacturer's instructions. TCA Systems W245-13.
- B. Treat joints with tape and latex-Portland cement mortar or adhesive.

3.5 METAL DIVIDER STRIPS AND TRIM

- A. Install metal divider strips in floor joints between tile floors and adjacent flooring of other materials where the finish floors are flush unless shown otherwise.
- B. Set divider strip in mortar bed to line and level centered under doors or in openings.
- C. Install external and interior metal trim per manufacturer's instructions.

3.6 CERAMIC TILE - GENERAL

- A. Comply with ANSI A108 series of tile installation standards in "Specifications for Installation of Ceramic Tile" applicable to methods of installation.
- B. Comply with TCA Installation Guidelines:
- C. Installing Mortar Beds for Floors:
 - 1. For thin set systems cure mortar bed not less than seven days. Do not use curing compounds or coatings.
- D. Setting Beds or Bond Coats:
 - 1. Set floor tile in elastomeric bond coat ANSI 108.13, TCA System F131.
 - 2. Set wall tile installed over glass mat water resistant gypsum backer board in latex-Portland cement mortar, ANSI A118.3, TCA System W244F.
 - 3. Set trim shapes in same material specified for setting adjoining tile.
- E. Workmanship:
 - 1. Lay out tile work so that no tile less than one-half full size is used. Make all cuts on the outer edge of the field.
 - 2. Set tile firmly in place with finish surfaces in true planes. Align tile flush with adjacent tile unless shown otherwise.
 - 3. Form intersections and returns accurately.
 - 4. Cut and drill tile neatly without marring surface.
 - 5. Cut edges of tile abutting penetrations, finish, or built-in items:
 - a. Fit tile closely around electrical outlets, piping, fixtures and fittings, so that plates, escutcheons, collars and flanges will overlap cut edge of tile.
 - b. Seal tile joints water tight as specified in Section 07 92 00, JOINT SEALANTS, around electrical outlets, piping fixtures and fittings before cover plates and escutcheons are set in place.
 - 6. Completed work shall be free from hollow sounding areas and loose, cracked or defective tile.
 - 7. Remove and reset tiles that are out of plane or misaligned.

- 8. Floors:
 - a. Extend floor tile beneath casework and equipment.
 - b. Align finish surface of new tile work flush with other and existing adjoining floor finish where shown.
 - c. Shove and vibrate tiles over 8 inches square to achieve full support of bond coat.
- 9. Walls:
 - a. Cover walls and partitions, including pilasters, furred areas, and freestanding columns as shown.
 - b. Finish reveals of openings with tile, except where other finish materials are shown or specified.
 - c. Finish wall surfaces behind and at sides of casework and equipment, except those units mounted in wall recesses, with same tile as scheduled for room proper.
- 10. Joints:
 - a. Keep all joints in line, straight, level, perpendicular and of even width unless shown otherwise.
 - b. Make joints 1/16 inch wide for glazed wall tile and mosaic tile work.
 - c. Make joints in Paver tile, porcelain type; maximum 1/8 inch wide.
- 11. Back Buttering: For installations indicated below, obtain 100 percent mortar coverage by complying with applicable special requirements for back buttering of tile in referenced ANSI A108 series of tile installation standards:
 - a. Tile wall installations in wet areas, including showers, tub enclosures, laundries and swimming pools.
 - b. Tile installed with chemical-resistant mortars and grouts.
 - c. Tile wall installations composed of tiles 8 by 8 inches or larger.

3.7 PORCELAIN TILE INSTALLED WITH LATEX PORTLAND CEMENT BONDONG MORTAR

A. Due to the denseness of porcelain tile use latex Portland cement bonding mortar that meets the requirements of ANSI A108.1. Bonding mortars shall be mixed in accordance with manufacturer's instructions. Improper liquid ratios and dwell time before placement of bonding mortar and tile shall affect bond.

3.8 GROUTING

- A. Grout Type and Location:
 - 1. Grout for glazed wall and base tile and unglazed mosaic tile epoxy grout.
- B. Workmanship:

- 1. Install and cure grout in accordance with the applicable standard.
- 2. Epoxy Grout: ANSI A108.1.

3.9 CLEANING

- A. Thoroughly sponge and wash tile. Polish glazed surfaces with clean dry cloths.
- B. Methods and materials used shall not damage or impair appearance of tile surfaces.
- C. The use of acid or acid cleaners on glazed tile surfaces is prohibited.
- D. Clean tile grouted with epoxy, furan and commercial Portland cement grout and tile set in elastomeric bond coat as recommended by the manufacturer of the grout and bond coat.

3.10 PROTECTION

- A. Keep traffic off tile floor, until grout and setting material is firmly set and cured.
- B. Where traffic occurs over tile floor, cover tile floor with not less than 3/8 inch thick plywood, wood particle board, or hardboard securely taped in place. Do not remove protective cover until time for final inspection. Clean tile of any tape, adhesive and stains.

3.11 TESTING FINISH FLOOR

A. Test floors in accordance with ASTM C627 to show compliance with codes 1 through 10.

- - - E N D - - -

SECTION 09 51 00 ACOUSTICAL CEILINGS

PART 1- GENERAL

1.1 DESCRIPTION

- A. Metal ceiling suspension system for acoustical ceilings.
- B. Acoustical units.
- C. Wood units.

1.2 RELATED WORK

A. Color, pattern, and location of each type of acoustical unit: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTAL

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples:
 - 1. Acoustical units, each type, with label indicating conformance to specification requirements.
 - 2. Colored markers for units providing access.
- C. Manufacturer's Literature and Data:
 - 1. Ceiling suspension system, each type, showing complete details of installation.
 - 2. Acoustical units, each type
- D. Manufacturer's Certificates: Acoustical units, each type, in accordance with specification requirements.

1.4 DEFINITIONS

- A. Standard definitions as defined in ASTM C634.
- B. Terminology as defined in ASTM E1264.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

A641/A641M-03.....Zinc-coated (Galvanized) Carbon Steel Wire C423-07.....Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method C634-02 (E2007).....Standard Terminology Relating to Environmental

Acoustics

C635-04.....Metal Suspension Systems for Acoustical Tile and Lay-in Panel Ceilings C636-06.....Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels E84-07.....Surface Burning Characteristics of Building Materials E413-04..... Classification for Rating Sound Insulation.

E1264-(R2005).....Classification for Acoustical Ceiling Products

PART 2- PRODUCTS

2.1 METAL SUSPENSION SYSTEM

- A. ASTM C635, heavy-duty system, except as otherwise specified.
 - 1. Ceiling suspension system members may be fabricated from either of the following unless specified otherwise.
 - a. Galvanized cold-rolled steel, bonderized.
 - b. Extruded aluminum.
 - 2. Use same construction for cross runners as main runners. Use of lighter-duty sections for cross runners is not acceptable.
- B. Exposed grid suspension system for support of lay-in panels:
 - 1. Exposed grid width not less than 7/8 inch with not less than 5/16 inch panel bearing surface.
 - 2. Fabricate wall molding and other special molding from the same material with same exposed width and finish as the exposed grid members.
 - 3. On exposed metal surfaces apply baked-on enamel flat texture finish in color to match adjacent acoustical units unless specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Concealed Grid Suspension system for support of Wood Panels: Concealed grid type having main beams and 2" runners. Color shall be black.

2.2 PERIMETER SEAL

- A. Vinyl, polyethylene or polyurethane open cell sponge material having density of 1.3 plus or minus 10 percent, compression set less than 10 percent with pressure sensitive adhesive coating on one side.
- B. Thickness as required to fill voids between back of wall molding and finish wall.
- C. Not less than 3/8 inch wide strip.

2.3 WIRE

- A. ASTM A641.
- B. For wire hangers: Minimum diameter 0.1055 inch.
- C. For bracing wires: Minimum diameter 0.1350 inch.

2.4 ANCHORS AND INSERTS

A. Use anchors or inserts to support twice the loads imposed by hangers attached thereto.

- B. Hanger Inserts:
 - Fabricate inserts from steel, zinc-coated (galvanized after fabrication).
- C. Clips:
 - 1. Galvanized steel.
 - Designed to clamp to steel beam or bar joists, or secure framing member together.
 - 3. Designed to rigidly secure framing members together.
 - Designed to sustain twice the loads imposed by hangers or items supported.
- D. Tile Splines: ASTM C635.

2.5 CARRYING CHANNELS FOR SECONDARY FRAMING

- A. Fabricate from cold-rolled or hot-rolled steel, black asphaltic paint finish, free of rust.
- B. Weighing not less than the following, per 300 m (per thousand linear feet):

Size mm Size		Cold-rolled		Hot-rolled	
Inche	Inches	Kg	Pound	Kg	Pound
38	1 1/2	215.4	475	508	1120
50	2	267.6	590	571.5	1260

2.6 ACOUSTICAL UNITS

- A. General:
 - Ceiling Tile shall meet minimum 37% bio-based content in accordance with USDA Bio-Preferred Product requirements.
 - 2. ASTM E1264, weighing 3/4 psf minimum for mineral fiber panels or tile.
 - 3. Class A Flame Spread: ASTM 84
 - Minimum NRC (Noise Reduction Coefficient): 0.95 unless specified otherwise: ASTM C423.
 - 5. Surface Texture: Fine.
 - 6. Composition: Fiberglass.
 - 7. Antimicrobial Protection: Inherent.
 - 8. Manufacturers standard finish, minimum Light Reflectance (LR) coefficient of 0.86 on the exposed surfaces, except as specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.
 - 9. Lay-in panels: Sizes as shown x 1" thick with reveal edges as scheduled.

- B. Wood Plank 24"x72"x3/4" Wood Planks, walnut finish non-perforated, for use with concealed suspension system.
 - 1. Class A flame Spread

2.7 ACCESS IDENTIFICATION

- A. Markers:
 - 1. Use colored markers with pressure sensitive adhesive on one side.
 - Make colored markers of paper of plastic, 6 to 9 mm (1/4 to 3/8 inch) in diameter.
- B. Use markers of the same diameter throughout building.
- C. Color Code: Use following color markers for service identification: Color.....Service

Red.....Sprinkler System: Valves and Controls Green.....Domestic Water: Valves and Controls Yellow.....Chilled Water and Heating Water Orange.....Ductwork: Fire Dampers Blue....Ductwork: Dampers and Controls Black.....Gas: Laboratory, Medical, Air and Vacuum

2.8 PERIMETER TRIM

- A. Edge Trim: Shape as indicated on drawings.
 - 1. Color shall be platinum.
 - 2. Provide in largest length possible.
 - 3. Provide factory bonded 90 degree corners.

PART 3 EXECUTION

3.1 CEILING TREATMENT

- A. Treatment of ceilings shall include sides and soffits of ceiling beams, furred work 600 mm (24 inches) wide and over, and vertical surfaces at changes in ceiling heights unless otherwise shown. Install acoustic tiles after wet finishes have been installed and solvents have cured.
- B. Lay out acoustical units symmetrically about centerlines of each room or space unless shown otherwise on reflected ceiling plan.
- C. Moldings:
 - Install metal wall molding at perimeter of room, column, or edge at vertical surfaces.
 - Install special shaped molding at changes in ceiling heights and at other breaks in ceiling construction to support acoustical units and to conceal their edges.
- D. Perimeter Seal:
 - 1. Install perimeter seal between vertical leg of wall molding and finish wall, partition, and other vertical surfaces.

- 2. Install perimeter seal to finish flush with exposed faces of horizontal legs of wall molding.
- E. Existing ceiling:
 - 1. Where extension of existing ceilings occur, match existing.
 - Where acoustical units are salvaged and reinstalled or joined, use salvaged units within a space. Do not mix new and salvaged units within a space that results in contrast between old and new acoustic units.
 - 3. Comply with specifications for new acoustical units for new units required to match appearance of existing units.

3.2 CEILING SUSPENSION SYSTEM INSTALLATION

- A. General:
 - Install metal suspension system for acoustical tile and lay-in panels in accordance with ASTM C636, except as specified otherwise.
 - 2. Use direct or indirect hung suspension system or combination thereof as defined in ASTM C635.
 - 3. Support a maximum area of 16 sf of ceiling per hanger.
 - Prevent deflection in excess of 1/360 of span of cross runner and main runner.
 - 5. Provide extra hangers, minimum of one hanger at each corner of each item of mechanical, electrical and miscellaneous equipment supported by ceiling suspension system not having separate support or hangers.
 - 6. Provide not less than 4-inch clearance from the exposed face of the acoustical units to the underside of ducts, pipe, conduit, secondary suspension channels, concrete beams or joists; and steel beam or bar joist unless furred system is shown,
 - 7. Use main runners not less than 48 inches in length.
 - Install hanger wires vertically. Angled wires are not acceptable except for seismic restraint bracing wires.
- B. Anchorage to Structure:
 - 1. Concrete:
 - a. Use eye pins or threaded studs with screw-on eyes in existing or already placed concrete structures to support hanger and bracing wire. Install in sides of concrete beams or joists at mid height.
 - 2. Steel:
 - a. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels for attachment of hanger wires.
 - (1) Size and space carrying channels to insure that the maximum deflection specified will not be exceeded.

- (2) Attach hangers to steel carrying channels, spaced four feet on center, unless area supported or deflection exceeds the amount specified.
- b. Attach carrying channels to the bottom flange of steel beams spaced not 4 feet on center before fireproofing is installed. Weld or use steel clips to attach to beam to develop full strength of carrying channel.
- c. Attach hangers to bottom chord of bar joists or to carrying channels installed between the bar joists when hanger spacing prevents anchorage to joist. Rest carrying channels on top of the bottom chord of the bar joists and securely wire tie or clip to joist.
- C. Direct Hung Suspension System:
 - 1. As illustrated in ASTM C635.
 - 2. Support main runners by hanger wires attached directly to the structure overhead.
 - Maximum spacing of hangers, 4 feet on centers unless interference occurs by mechanical systems. Use indirect hung suspension system where not possible to maintain hanger spacing.
- D. Indirect Hung Suspension System:
 - 1. As illustrated in ASTM C635.
 - Space carrying channels for indirect hung suspension system not more than 4 feet on center. Space hangers for carrying channels not more than 8 feet on center or for carrying channels less than 4 feet or center so as to insure that specified requirements are not exceeded.
 - 3. Support main runners by specially designed clips attached to carrying channels.

3.3 ACOUSTICAL UNIT INSTALLATION

- A. Cut acoustic units for perimeter borders and penetrations to fit tight against penetration for joint not concealed by molding.
- B. Install lay-in acoustic panels in exposed grid with not less than 1/4 inch bearing at edges on supports.
 - 1. Install tile to lay level and in full contact with exposed grid.
 - 2. Replace cracked, broken, stained, dirty, or tile not cut for minimum bearing.
- C. Wood Planks:
 - Install on concealed suspension system per manufacturer's instructions.
- D. Markers:

- 1. Install markers of color code specified to identify the various concealed piping, mechanical, and plumbing systems.
- 2. Attach colored markers to exposed grid on opposite sides of the units providing access.
- 3. Attach marker on exposed ceiling surface of upward access acoustical unit.

3.4 CLEAN-UP AND COMPLETION

- A. Replace damaged, discolored, dirty, cracked and broken acoustical units.
- B. Leave finished work free from defects.

- - - E N D - - -

SECTION 09 65 13 RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the installation of vinyl or rubber base.

1.2 RELATED WORK

A. Color and texture: Section 09 06 00, SCHEDULE FOR FINISHESS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - Base and stair material manufacturer's recommendations for adhesives.
 - 3. Application and installation instructions.

C. Samples:

- 1. Base: 150 mm (6 inches) long, each type and color.
- 2. Resilient Stair Treads: 150 mm (6 inches) long.
- 3. Sheet Rubber Flooring: 300 mm (12 inches) square.
- 4. Adhesive: Literature indicating each type.

1.4 DELIVERY

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.
- B. Materials from containers which have been distorted, damaged or opened prior to installation will be rejected.

1.5 STORAGE

- A. Store materials in weather tight and dry storage facility.
- B. Protect material from damage by handling and construction operations before, during, and after installation.

1.6 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): F1344-10.....Rubber Floor Tile F1859-10....Rubber Sheet Floor Covering without Backing F1860-10....Rubber Sheet Floor Covering with Backing F1861-08....Resilient Wall Base
- C. Federal Specifications (Fed. Spec.):

RR-T-650E.....Treads, Metallic and Non-Metallic, Nonskid

PART 2 - PRODUCTS

2.1 GENERAL

A. Use only products by the same manufacturer and from the same production run.

2.2 RESILIENT BASE

- A. ASTM F1861, Type TP, 5/8 inch thick, 5-1/4 inches high, Rubber, Group 2 with sculpted top, 25 foot coiled lengths.
- B. Use only one type of base throughout.

2.3 RESILIENT TREADS

- A. Fed. Spec. RR-T-650, Composition A, Type 2, 3/16 inch thick on wear surface tapering to 1/8 inch thick at riser end.
- B. Nosing shape to conform to sub-tread nosing shape.

2.4 PRIMER (FOR CONCRETE FLOORS)

A. As recommended by the adhesive and tile manufacturer.

2.5 LEVELING COMPOUND (FOR CONCRETE FLOORS)

A. Provide products with latex or polyvinyl acetate resins in the mix.

2.6 ADHESIVES

- A. Use products recommended by the material manufacturer for the conditions of use.
- B. Use low-VOC adhesive during installation. Water based adhesive with low VOC is preferred over solvent based adhesive.

PART 3 - EXECUTION

3.1 PROJECT CONDITIONS

- A. Maintain temperature of materials above 70 °F, for 48 hours before installation.
- B. Maintain temperature of rooms where work occurs, between 70 °F and 80 °F for at least 48 hours, before, during, and after installation.
- C. Do not install materials until building is permanently enclosed and wet construction is complete, dry, and cured.

3.2 INSTALLATION REQUIREMENTS

- A. The respective manufacturer's instructions for application and installation will be considered for use when approved by the COR.
- B. Submit proposed installation deviation from this specification to the COR indicating the differences in the method of installation.
- C. The COR reserves the right to have test portions of material installation removed to check for non-uniform adhesion and spotty adhesive coverage.

3.3 PREPARATION

- A. Examine surfaces on which material is to be installed.
- B. Fill cracks, pits, and dents with leveling compound.
- C. Level to 1/8 inch maximum variations.
- D. Do not use adhesive for leveling or filling.
- E. Grind, sand, or cut away protrusions; grind high spots.
- F. Clean substrate area of oil, grease, dust, paint, and deleterious substances.
- G. Substrate area dry and cured. Perform manufacturer's recommended bond and moisture test.
- H. Preparation of existing installation:
 - 1. Remove existing base.
 - 2. Do not use solvents to remove adhesives.
 - 3. Prepare substrate as specified.

3.4 BASE INSTALLATION

- A. Location:
 - 1. Unless otherwise specified or shown, where base is scheduled, install base over toe space of base of casework, lockers, laboratory, pharmacy furniture island cabinets and where other equipment occurs.
 - 2. Extend base scheduled for room into adjacent closet, alcoves, and around columns.
- B. Application:
 - 1. Apply adhesive uniformly with no bare spots.
 - 2. Set base with joints aligned and butted to touch for entire height.
 - 3. Before starting installation, layout base material to provide the minimum number of joints with no strip less than 600 mm (24 inches) length.
 - a. Short pieces to save material will not be permitted.
 - b. Locate joints as remote from corners as the material lengths or the wall configuration will permit.
- C. Form corners and end stops as follows:
 - 1. Score back of outside corner.
 - 2. Score face of inside corner and notch cove.
- D. Roll base for complete adhesion.

3.5 CLEANING AND PROTECTION

- A. Clean all exposed surfaces of base and adjoining areas of adhesive spatter before it sets.
- B. Keep traffic off resilient material for at least 72 hours after installation.

- C. Clean and polish materials in the following order:
 - After two weeks, scrub resilient base, sheet rubber and treads materials with a minimum amount of water and a mild detergent. Leave surfaces clean and free of detergent residue. Polish resilient base to a gloss finish.
 - 2. Do not polish tread and sheet rubber materials.
- D. When construction traffic is anticipated, cover tread materials with reinforced kraft paper and plywood or hardboard properly secured and maintained until removal is directed by the COR.
- E. Where protective materials are removed and immediately prior to acceptance, replace damaged materials and re-clean resilient materials. Damaged materials are defined as having cuts, gouges, scrapes or tears and not fully adhered.

- - - E N D - - -

SECTION 09 65 19 RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the installation of solid vinyl tile flooring, vinyl composition tile flooring, rubber tile flooring, and accessories.

1.2 RELATED WORK

- A. Color and pattern and location in room finish schedule: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Resilient Base: Section 09 65 13, RESILIENT BASE AND ACCESSORIES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Resilient material manufacturers recommendations for adhesives, underlayment, primers and polish.
 - 3. Application and installation instructions.
- C. Samples:
 - 1. Tile: 12 inches by 12 inches for each type, pattern and color.
 - 2. Edge Strips: 6 inches long, each type.
 - 3. Feature Strips: 6 inches long.
- D. Shop Drawings:
 - 1. Layout of patterns shown on the drawings and in Section 09 06 00, SCHEDULE FOR FINISHES.
 - 2. Edge strip locations showing types and detail cross sections.
- E. Test Reports:
 - 1. Abrasion resistance: Depth of wear for each tile type and color and volume loss of tile, certified by independent laboratory.
 - 2. Tested per ASTM F510.

1.4 DELIVERY

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.
- B. Materials from containers which have been distorted, damaged or opened prior to installation will be rejected.

1.5 STORAGE

- A. Store materials in weathertight and dry storage facility.
- B. Protect from damage from handling, water, and temperature.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): D4078-02 (2008).....Water Emulsion Floor Finish E648-10.....Critical Radiant Flux of Floor Covering Systems Using a Radiant Energy Source E662-09.....Specific Optical Density of Smoke Generated by Solid Materials E1155-96 (R2008).....Determining Floor Flatness and Floor Levelness Numbers F510-93 (R 2008).....Resistance to Abrasion of Resilient Floor Coverings Using an Abrader with a Grit Feed Method F710-08.....Preparing Concrete Floors to Receive Resilient Flooring F1066-04 (R2010).....Vinyl Composition Floor Tile F1344-10.....Rubber Floor Tile F1700-04 (R2010).....Solid Vinyl Floor Tile
- C. Resilient Floor Covering Institute (RFCI): IP #2.....Installation Practice for Vinyl Composition Tile (VCT)
- D. Federal Specifications (Fed. Spec.): SS-T-312.....Tile Floor: Asphalt, Rubber, Vinyl and Vinyl Composition

PART 2 - PRODUCTS

2.1 GENERAL

- A. Furnish product type, materials of the same production run and meeting following criteria.
- B. Use adhesives, underlayment, primers and polish recommended by the floor resilient material manufacturer.
- C. Critical Radiant Flux: 0.45 watts per sq. cm or more, Class I, per ASTM E 648.
- D. Smoke density: Less than 450 per ASTM E662.

2.2 LUXURY VINYL TILE

- A. Class III solid luxury vinyl tile made from polyvinyl esters and inorganic fillers formed under pressure, printed with a pattern, and cut to create resilient plank or tile flooring.
- B. ASTM F1700

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

- C. Surface type B embossed or Type A smooth.
- D. Thickness: 0.120 inch.
- E. Size:
 - 1. LVT #1: 3z26z0.12 inches
 - 2. LVT #2: 18x18x0.12 inches
 - 3. LVT #3: 24x24x0.20 inches

2.3 SOLID VINYL-TILE

- A. ASTM F1700, 12 by 12 inches square, 1/8 inch thick, homogenous throughout.
- B. Color and Pattern uniformly distributed throughout thickness.
- C. Where solid vinyl tiles are specified, seek products with recycled content.

2.4 ADHESIVES

- A. Comply with applicable regulations regarding toxic and hazardous materials Green Seal (GS-36) for commercial adhesive.
- B. Use low-VOC adhesive during installation. Water based is preferred over solvent based adhesives.

2.5 PRIMER (FOR CONCRETE SUBFLOORS)

A. As recommended by the adhesive and tile manufacturer.

2.6 LEVELING COMPOUND (FOR CONCRETE FLOORS)

- A. Provide cementitious products with latex or polyvinyl acetate resins in the mix.
- B. Determine the type of underlayment selected for use by the condition to be corrected.

2.7 POLISH AND CLEANERS

- A. Cleaners RFCI CL-1.
- B. Polish: ASTM D4078.

2.8 EDGE STRIPS

- A. 1-1/8 inch wide unless shown otherwise.
- B. Bevel from maximum thickness to minimum thickness for flush joint unless shown otherwise.
- C. Extruded aluminum, mill finish, mechanically cleaned:
 - 1. Drill and counter sink edge strip for flat head screws.
 - 2. Space holes near ends and approximately 9 inches on center between.
- D. Resilient Edge Strip or Reducer Strip: Fed. Specs. SS-T-312, Solid vinyl.

2.9 SCREWS

A. Stainless steel flat head screw.

2.10 FEATURE STRIPS

- A. Use same material as floor tile.
- B. Sizes and shapes as shown.

PART 3 - EXECUTION

3.1 PROJECT CONDITIONS

- A. Maintain temperature of materials a minimum of 70 $^{\circ}$ F, for 48 hours before installation.
- B. Maintain temperature of rooms where work occurs between 70 $^{\circ}$ F and 80 $^{\circ}$ F, for at least 48 hours, before, during and after installation.
- C. Do not install flooring until building is permanently enclosed and wet construction in or near areas to receive tile materials is complete, dry and cured.

3.2 SUBFLOOR PREPARATION

- A. Verify that concrete slabs comply with ASTM F710. At existing slabs, determine levelness by F-number method in accordance with ASTM E1155. Overall value shall not exceed as follows: FF30/FL20
- B. Correct conditions which will impair proper installation.
- C. Fill cracks, joints and other irregularities in concrete with leveling compound:
 - 1. Do not use adhesive for filling or leveling purposes.
 - 2. Do not use leveling compound to correct imperfections which can be corrected by spot grinding.
 - Trowel to smooth surface free of trowel marks, pits, dents, protrusions, cracks or joints.
- D. Clean floor of oil, paint, dust, and deleterious substances: Leave floor dry and cured free of residue from existing curing or cleaning agents.
- E. Concrete Subfloor Testing: Determine Adhesion and dryness of the floor by bond and moisture tests as recommended by RFCI manual MRP.
- F. Perform additional subfloor preparation to obtain satisfactory adherence of flooring if subfloor test patches allows easy removal of tile.
- G. Prime the concrete subfloor if the primer will seal slab conditions that would inhibit bonding, or if priming is recommended by the tile or adhesive manufacturers.
- H. Preparation of existing installation shall include the removal of existing resilient floor and existing adhesive. Do not use solvents to remove adhesives.

3.3 INSTALLATION

- A. Install in accordance with manufacturer's instructions for application and installation unless specified otherwise.
- B. Mix tile from at least two containers. An apparent line either of shades or pattern variance will not be accepted.
- C. Tile Layout:
 - 1. If layout is not shown on drawings, lay tile symmetrically about center of room or space with joints aligned.
 - 2. No tile shall be less than 6 inches and of equal width at walls.
 - 3. Place tile pattern in the same direction; do not alternate tiles.
- D. Trim tiles to touch for the length of intersections at pipes and vertical projections, seal joints at pipes with waterproof cement.
- E. Application:
 - 1. Apply adhesive uniformly with no bare spots.
 - a. Conform to RFC1-TM-6 for joint tightness and for corner intersection unless layout pattern shows random corner intersection.
 - b. More than 5 percent of the joints not touching will not be accepted.
 - 2. Roll tile floor with a minimum 100 pound roller. No exceptions.
 - 3. The COR may have test tiles removed to check for non-uniform adhesion, spotty adhesive coverage, and ease of removal. Install new tile for broken removed tile.
- F. Installation of Edge Strips:
 - Locate edge strips under center line of doors unless otherwise shown.
 - 2. Set resilient edge strips in adhesive. Anchor metal edge strips with anchors and screws specified.
 - 3. Where tile edge is exposed, butt edge strip to touch along tile edge.
 - 4. Where thin set ceramic tile abuts resilient tile, set edge strip against floor file and against the ceramic tile edge.

3.4 CLEANING AND PROTECTION

- A. Clean adhesive marks on exposed surfaces during the application of resilient materials before the adhesive sets. Exposed adhesive is not acceptable.
- B. Keep traffic off resilient material for a minimum 72 hours after installation.
- C. Clean and polish materials in the following order:
 - 1. For the first two weeks sweep and damp mopped only.

- 2. After two weeks, scrub resilient materials with a minimum amount of water and a mild detergent. Leave surface clean and free of detergent residue.
- 3. Apply polish to the floors in accordance with the polish manufacturer's instructions.
- D. When construction traffic occurs over tile, cover resilient materials with reinforced kraft paper properly secured and maintained until removal is directed by COR. At entrances and where wheeled vehicles or carts are used, cover tile with plywood, hardboard, or particle board over paper, secured and maintained until removal is directed by COR.
- E. When protective materials are removed and immediately prior to acceptance, replace any damage tile, re-clean resilient materials, lightly re-apply polish and buff floors.

3.5 LOCATION

- A. Unless otherwise specified or shown, install tile flooring, on floor under areas where casework, laboratory and pharmacy furniture and other equipment occurs, except where mounted in wall recesses.
- B. Extend tile flooring for room into adjacent closets and alcoves.

- - - E N D - - -

SECTION 09 68 00 CARPETING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Section specifies carpet, edge strips, adhesives, and other items required for complete installation.

1.2 RELATED WORK

- A. Color and texture of carpet and edge strip: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Resilient wall base: Section 09 65 13, RESILIENT BASE AND ACCESSORIES.

1.3 QUALITY ASSURANCE

- A. Carpet installed by mechanics certified by the Floor Covering Installation Board.
- B. Certify and label the carpet that it has been tested and meets criteria of CRI IAQ Carpet Testing Program for indoor air quality.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Product Data:
 - Manufacturer's catalog data and printed documentation stating physical characteristics, durability, resistance to fading and flame resistance characteristics for each type of carpet material and installation accessory.
 - Manufacturer's printed installation instructions for the carpet, including preparation of installation substrate, seaming techniques and recommended adhesives and tapes.
 - 3. Manufacturer's certificate verifying carpet containing recycled materials include percentage of recycled materials as specified.

C. Samples:

- Carpet: "Production Quality" samples 12 x 12 inches of carpets, showing quality, pattern and color specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- Floor Edge Strip (Molding): 6 inches long of each color and type specified.
- 3. Base Edge Strip (Molding): 6 inches long of each color specified.
- D. Shop Drawings: Installers layout plan showing seams and cuts for sheet carpet and carpet module.
- E. Maintenance Data: Carpet manufacturer's maintenance instructions describing recommended type of cleaning equipment and material, spotting and cleaning methods and cleaning cycles.

1.5 DELIVERY AND STORAGE

- A. Deliver carpet in manufacturer's original wrappings and packages clearly labeled with manufacturer's name, brand, name, size, dye lot number and related information.
- B. Deliver adhesives in containers clearly labeled with manufacturer's name, brand name, number, installation instructions, safety instructions and flash points.
- C. Store in a clean, dry, well ventilated area, protected from damage and soiling. Maintain storage space at a temperature above 60 degrees F for 2 days prior to installation.

1.6 ENVIRONMENTAL REQUIREMENTS

A. Areas in which carpeting is to be installed shall be maintained at a temperature above 60 degrees F for 2 days before installation, during installation and for 2 days after installation. A minimum temperature of 55 degrees F shall be maintained thereafter for the duration of the contract. Traffic or movement of furniture or equipment in carpeted area shall not be permitted for 24 hours after installation. Other work which would damage the carpet shall be completed prior to installation of carpet.

1.7 WARRANTY

A. Carpet and installation subject to terms of "Warranty of Construction" FAR clause 52.246-21, except that warranty period is extended to two years.

1.8 APPLICABLE PUBLICATIONS

- A. Publication listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI): ANSI/NSF 140-10.....Sustainable Carpet Assessment Standard
- C. American Association of Textile Chemists and Colorists (AATCC): AATCC 16-04.....Colorfastness to Light AATCC 129-10.....Colorfastness to Ozone in the Atmosphere under High Humidities AATCC 134-11.....Electric Static Propensity of Carpets AATCC 165-08.....Colorfastness to Crocking: Textile Floor

Conerings-AATCC Crockmeter Method

D. American Society for Testing and Materials (ASTM): ASTM D1335-05.....Tuft Bind of Pile Yarn Floor Coverings ASTM D3278-96 (R2004)...Flash Point of Liquids by Small Scale Closed-Cup Apparatus

ASTM D5116-10.....Determinations of Organic Emissions from Indoor Materials/Products

ASTM D5252-05..... Operation of the Hexapod Tumble Drum Tester ASTM D5417-05..... Operation of the Vettermann Drum Tester ASTM E648-10.....Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source

E. The Carpet and Rug Institute (CRI):

CRI 104-11.....Installation of Commercial Carpet

PART 2 - PRODUCTS

2.1 CARPET

- A. Physical Characteristics:
 - 1. Carpet free of visual blemishes, streaks, poorly dyed areas, fuzzing of pile yarn, spots or stains and other physical and manufacturing defects.
 - 2. Manufacturers standard construction commercial carpet: a. Modular Tile: 24 inches square tile.
 - 3. Provide static control to permanently control static build upto less than 2.0 kV when tested at 20 percent relative humidity and 21 degrees C (70 degrees F) in accordance with AATCC 134.
 - 4. Pile Height: Maximum 0.10 inch.
 - 5. Pile Fiber: Nylon with recycled content 25 percent minimum branded (federally registered trademark).
 - 6. Pile Type: Level Loop.
 - 7. Backing materials: Manufacturer's unitary backing designed for glue-down installation using recovered materials.
 - 8. Appearance Retention Rating (ARR): Carpet shall be tested and have the minimum 3.5-4.0 Severe ARR when tested in accordance with either the ASTM D 5252 (Hexapod) or ASTM D 5417 (Vettermann) test methods using the number of cycles for short and long term tests as specified.
 - 9. Tuft Bind: Minimum force of 10 lb required to pull a tuft or loop free from carpet backing. Test per ASTM D1335.
 - 10. Colorfastness to Crocking: Dry and wet crocking and water bleed, comply with AATCC 165 Color Transference Chart for colors, minimum class 4 rating.
 - 11. Colorfastness to Ozone: Comply with AATCC 129, minimum rating of 4 on the AATCC color transfer chart.
 - 12. Delamination Strength: Minimum of 2.5 lb/inch between secondary backing.
 - 13. Flammability and Critical Radiant Flux Requirements:

- a. Test Carpet in accordance with ASTM E 648.
- b. Class I: Not less than 0.45 watts per square centimeter.
- c. Class II: Not less than 0.22 watts per square centimeter.
- d. Carpet in corridors, exits and Medical Facilities: Class I.
- 14. Density: Average Pile Yarn Density (APYD):
 - a. Corridors, lobbies, entrances, common areas or multipurpose rooms, open offices, waiting areas and dining areas: Minimum APYD 6000.
 - b. Other areas: Minimum APYD 4000.
- 15. VOC Limits: Use carpet and carpet adhesive that comply with the following limits for VOC content when tested according to ASTM D 5116:
 - a. Carpet, Total VOCs: 0.5 mg/sq.m x hr.
 - b. Carpet, 4-PC (4-Phenylcyclohexene): 0.05 mg/sq.m x hr.
 - c. Carpet, Formaldehyde: 0.05 mg/sq.m x hr.
 - d. Carpet, Styrene: 0.4 mg/sq.m x hr.
 - e. Adhesive, Total VOCs: 10.00 mg/sq.m x hr.
 - f. Adhesive, Formaldehyde: 0.05 mg/sq.m x hr.
 - g. Adhesive, 2-Ethyl-1-Hexanol: 3.00 mg/sq.m x hr.
- B. Shall meet platinum level of ANSI/NSF 140.
- C. Color, Texture, and Pattern: As specified in Section 09 06 00, SCHEDULE FOR FINISHES.

2.2 ADHESIVE AND CONCRETE PRIMER

- A. Waterproof, resistant to cleaning solutions, steam and water, nonflammable, complies with air-quality standards as specified.
 Adhesives flashpoint minimum 140 degrees F, complies with ASTM D 3278.
- B. Seam Adhesives: Waterproof, non-flammable and non-staining.

2.3 EDGE STRIPS (MOLDING)

- A. Vinyl Edge Strip:
 - 1. Beveled floor flange minimum 2 inches wide.
 - 2. Beveled surface to finish flush with carpet for tight joint and other side to floor finish.
 - 3. Color as specified in Section 09 06 00, SCHEDULE FOR FINISHES.

2.4 LEVELING COMPOUND (FOR CONCRETE FLOORS)

- A. Provide Portland cement bases polymer modifier with latex or polyvinyl acetate resin manufactured specifically for resurfacing and leveling concrete floors. Products containing gypsum are not acceptable.
- B. Determine the type of underlayment selected for use by condition to be corrected.

PART 3 - EXECUTION

3.1 SURFACE PREPARATION

- A. Examine surfaces on which carpeting is to be installed.
- B. Clean floor of oil, waxy films, paint, dust and deleterious substances that prevent adhesion, leave floor dry and cured, free of residue from curing or cleaning agents and existing carpet materials.
- C. Correct conditions which will impair proper installation, including trowel marks, pits, dents, protrusions, cracks or joints.
- D. Fill cracks, joints depressions, and other irregularities in concrete with leveling compound.
 - 1. Do not use adhesive for filling or leveling purposes.
 - 2. Do not use leveling compound to correct imperfections which can be corrected by spot grinding.
 - 3. Trowel to smooth surface free of trowel marks, pits, dents, protrusions, cracks or joint lines.
- E. Test new concrete subfloor prior to adhesive application for moisture and surface alkalinity per CRI 104 Section 6.3.1 or per ASTM E1907.

3.2 CARPET INSTALLTION

- A. Do not install carpet until work of other trades including painting is complete and dry.
- B. Install in accordance with CRI 104 direct glue down installation.
 - 1. Relax carpet in accordance with Section 6.4.
 - 2. Comply with indoor air quality recommendations noted in Section 6.5.
 - 3. Maintain temperature in accordance with Section 15.3.
- C. Secure carpet to subfloor of spaces with adhesive applied as recommended by carpet manufacturer.
- D. Follow carpet manufacturer's recommendations for matching pattern and texture directions.
- E. Cut openings in carpet where required for installing equipment, pipes, outlets, and penetrations.
 - 1. Bind or seal cut edge of sheet carpet and replace flanges or plates.
 - 2. Use additional adhesive to secure carpets around pipes and other vertical projections.
- F. Carpet Modules:
 - 1. Install per CRI 104, Section 13, Adhesive Application.
 - 2. Lay carpet modules with pile in same direction unless specified other wise in Section 09 06 00, SCHEDULE FOR FINISHES.

- 3. Install carpet modules so that cleaning methods and solutions do not cause dislocation of modules.
- 4. Lay carpet modules uniformly to provide tight flush joints free from movement when subject to traffic.

3.3 EDGE STRIPS INSTALLATION

- A. Install edge strips over exposed carpet edges adjacent to uncarpeted finish flooring.
- B. Anchor vinyl edge strip to floor with adhesive apply adhesive to edge strip and insert carpet into lip and press lip down over carpet.

3.4 PROTECTION AND CLEANING

- A. Remove waste, fasteners and other cuttings from carpet floors.
- B. Vacuum carpet and provide suitable protection. Do not use polyethylene film.
- C. Do not permit traffic on carpeted surfaces for at least 48 hours after installation. Protect the carpet in accordance with CRI 104.
- D. Do not move furniture or equipment on unprotected carpeted surfaces.
- E. Just before final acceptance of work, remove protection and vacuum carpet clean.

- - - E N D - - -

SECTION 09 91 00 PAINTING

PART 1-GENERAL

1.1 DESCRIPTION

- A. Section specifies field painting.
- B. Section specifies prime coats which may be applied in shop under other sections.
- C. Painting includes shellacs, stains, varnishes, coatings specified, and striping or markers and identity markings.

1.2 RELATED WORK

- A. Shop prime painting of steel and ferrous metals: Division 05 METALS, Division 08 - OPENINGS, Division 10 - SPECIALTIES, Division 11 -EQUIPMENT, Division 12 - FURNISHINGS, Division 13 - SPECIAL CONSTRUCTION, Division 14 - CONVEYING EQUIPMENT, Division 21 - FIRE SUPPRESSION, Division 22 - PLUMBING, Division 23 - HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL, Division 27 -COMMUNICATIONS, and Division 28 - ELECTRONIC SAFETY AND SECURITY sections.
- B. Contractor option: Prefinished flush doors with transparent finishes: Section 08 14 00, WOOD DOORS.
- C. Type of Finish, Color, and Gloss Level of Finish Coat: Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Glazed wall surfacing or tile like coatings: Section 09 96 59, HIGH-BUILD GLAZED COATINGS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:

Before work is started, or sample panels are prepared, submit manufacturer's literature, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.

- C. Sample Panels:
 - After painters' materials have been approved and before work is started submit sample panels showing each type of finish and color specified.
 - 2. Panels to show color: Composition board, 100 by 250 by 3 mm (4 inch by 10 inch by 1/8 inch).
 - 3. Panel to show transparent finishes: Wood of same species and grain pattern as wood approved for use, 100 by 250 by 3 mm (4 inch by 10 inch face by 1/4 inch) thick minimum, and where both flat and edge grain will be exposed, 250 mm (10 inches) long by sufficient size, 50 by 50 mm (2 by 2 inch) minimum or actual wood member to show complete finish.
 - 4. Attach labels to panel stating the following:
 - a. Federal Specification Number or manufacturers name and product number of paints used.
 - b. Specification code number specified in Section 09 06 00, SCHEDULE FOR FINISHES.
 - c. Product type and color.
 - d. Name of project.
 - 5. Strips showing not less than 50 mm (2 inch) wide strips of undercoats and 100 mm (4 inch) wide strip of finish coat.
- D. Sample of identity markers if used.
- E. Manufacturers' Certificates indicating compliance with specified requirements:
 - 1. Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified.
 - 2. Epoxy coating.

1.4 DELIVERY AND STORAGE

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
 - 1. Name of manufacturer.
 - 2. Product type.
 - 3. Batch number.
 - 4. Instructions for use.
 - 5. Safety precautions.
- B. In addition to manufacturer's label, provide a label legibly printed as following:
 - 1. Federal Specification Number, where applicable, and name of material.
 - 2. Surface upon which material is to be applied.

3. If paint or other coating, state coat types; prime, body or finish. C. Maintain space for storage, and handling of painting materials and equipment in a neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items. D. Store materials at site at least 24 hours before using, at a temperature between 18 and 30 degrees C (65 and 85 degrees F). 1.5 APPLICABLE PUBLICATIONS A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only. B. American Conference of Governmental Industrial Hygienists (ACGIH): ACGIH TLV-BKLT-2012.....Threshold Limit Values (TLV) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs) ACGIH TLV-DOC-2012.....Documentation of Threshold Limit Values and Biological Exposure Indices, (Seventh Edition) C. American National Standards Institute (ANSI): A13.1-07.....of Piping Systems D. American Society for Testing and Materials (ASTM): D260-86.....Boiled Linseed Oil E. Commercial Item Description (CID): A-A-1555......Water Paint, Powder (Cementitious, White and Colors) (WPC) (cancelled) A-A-3120.....Paint, For Swimming Pools (RF) (cancelled) F. Federal Specifications (Fed Spec): TT-P-1411A.....Paint, Copolymer-Resin, Cementitious (For Waterproofing Concrete and Masonry Walls) (CEP) G. Master Painters Institute (MPI): No. 1-12..... Aluminum Paint (AP) No. 4-12.....Interior/ Exterior Latex Block Filler No. 5-12..... Exterior Alkyd Wood Primer No. 7-12..... Exterior Oil Wood Primer No. 8-12.....Exterior Alkyd, Flat MPI Gloss Level 1 (EO) No. 9-12.....Exterior Alkyd Enamel MPI Gloss Level 6 (EO) No. 10-12..... Exterior Latex, Flat (AE) No. 11-12..... Exterior Latex, Semi-Gloss (AE) No. 18-12.....Organic Zinc Rich Primer No. 22-12.....Aluminum Paint, High Heat (up to 590% - 1100F) (HR) No. 26-12.....Cementitious Galvanized Metal Primer

No. 27-12..... Exterior / Interior Alkyd Floor Enamel, Gloss (FE) No. 31-12.....Polyurethane, Moisture Cured, Clear Gloss (PV) No. 36-12.....Knot Sealer No. 43-12.....Interior Satin Latex, MPI Gloss Level 4 No. 44-12.....Interior Low Sheen Latex, MPI Gloss Level 2 No. 45-12.....Interior Primer Sealer No. 46-12.....Interior Enamel Undercoat No. 47-12.....Interior Alkyd, Semi-Gloss, MPI Gloss Level 5 (AK) No. 48-12.....Interior Alkyd, Gloss, MPI Gloss Level 6 (AK) No. 49-12.....Interior Alkyd, Flat, MPI Gloss Level 1 (AK) No. 50-12.....Interior Latex Primer Sealer No. 51-12.....Interior Alkyd, Eggshell, MPI Gloss Level 3 No. 52-12.....Interior Latex, MPI Gloss Level 3 (LE) No. 53-12.....Interior Latex, Flat, MPI Gloss Level 1 (LE) No. 54-12.....Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE) No. 59-12.....Interior/Exterior Alkyd Porch & Floor Enamel, Low Gloss (FE) No. 60-12..... Interior/Exterior Latex Porch & Floor Paint, Low Gloss No. 66-12.....Interior Alkyd Fire Retardant, Clear Top-Coat (ULC Approved) (FC) No. 67-12..... Interior Latex Fire Retardant, Top-Coat (ULC Approved) (FR) No. 68-12.....Interior/ Exterior Latex Porch & Floor Paint, Gloss No. 71-12.....Polyurethane, Moisture Cured, Clear, Flat (PV) No. 74-12.....Interior Alkyd Varnish, Semi-Gloss No. 77-12..... Epoxy Cold Cured, Gloss (EC) No. 79-12.....Marine Alkyd Metal Primer No. 90-12.....Interior Wood Stain, Semi-Transparent (WS) No. 91-12.....Wood Filler Paste No. 94-12.....Exterior Alkyd, Semi-Gloss (EO) No. 95-12..... Fast Drying Metal Primer No. 98-12.....High Build Epoxy Coating No. 101-12..... Epoxy Anti-Corrosive Metal Primer No. 114-12.....Interior Latex, Gloss (LE) and (LG)

No. 119-12.....Exterior Latex, High Gloss (acrylic) (AE) No. 135-12....Non-Cementitious Galvanized Primer No. 138-12....Interior High Performance Latex, MPI Gloss Level 2 (LF) No. 139-12....Interior High Performance Latex, MPI Gloss Level 3 (LL) No. 140-12....Interior High Performance Latex, MPI Gloss Level 4 No. 141-12....Interior High Performance Latex (SG) MPI Gloss Level 5 H. Steel Structures Painting Council (SSPC): SSPC SP 1-04 (R2004)....Solvent Cleaning SSPC SP 2.04 (P2004).

SSPC SP 2-04 (R2004)....Hand Tool Cleaning SSPC SP 3-04 (R2004)....Power Tool Cleaning

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Cementitious Paint (CEP): TT-P-1411A [Paint, Copolymer-Resin, Cementitious (CEP)], Type 1 for exterior use, Type II for interior use.
- B. Wood Sealer: MPI 31 (gloss) or MPI 71 (flat) thinned with thinner recommended by manufacturer at rate of about one part of thinner to four parts of varnish.
- C. Plastic Tape:
 - Pigmented vinyl plastic film in colors as specified in Section 09 06 00, SCHEDULE FOR FINISHES or specified.
 - 2. Pressure sensitive adhesive back.
 - 3. Widths as shown.
- D. Identity markers options:
 - 1. Pressure sensitive vinyl markers.
 - 2. Snap-on coil plastic markers.
- E. Aluminum Paint (AP): MPI 1.
- F. Interior/Exterior Latex Block Filler: MPI 4.
- G. Exterior Alkyd Wood Primer: MPI 5.
- H. Exterior Alkyd Enamel (EO): MPI 9.
- I. Exterior Latex, Semi-Gloss (AE): MPI 11.
- J. Organic Zinc rich Coating (HR): MPI 22.
- K. High Heat Resistant Coating (HR): MPI 22.
- L. Cementitious Galvanized Metal Primer: MPI 26.
- M. Exterior/ interior Alkyd Floor Enamel, Gloss (FE): MPI 27.
- N. Knot Sealer: MPI 36.
- O. Interior Satin Latex: MPI 43.

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

- P. Interior Low Sheen Latex: MPI 44.
- Q. Interior Primer Sealer: MPI 45.
- R. Interior Enamel Undercoat: MPI 47.
- S. Interior Alkyd, Semi-Gloss (AK): MPI 47.
- T. Interior Alkyd, Gloss (AK): MPI 49.
- U. Interior Latex Primer Sealer: MPI 50.
- V. Interior Alkyd, Eggshell: MPI 51
- W. Interior Latex, MPI Gloss Level 3 (LE): MPI 52.
- X. Interior Latex, Flat, MPI Gloss Level 1 (LE): MPI 53.
- Y. Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE): MPI 54.
- Z. Interior / Exterior Alkyd Porch & Floor Enamel, Low Gloss (FE): MPI 59.
- AA. Interior/ Exterior Latex Porch & Floor Paint, Low Gloss: MPI 60.
- BB. Interior Alkyd Fire Retardant, Clear Top-Coat (ULC Approved) (FC): MPI 66.
- CC. Interior Latex Fire Retardant, Top-Coat (ULC Approved) (FR): MPI 67.
- DD. Interior/ Exterior Latex Porch & Floor Paint, gloss: MPI 68.
- EE. Epoxy Cold Cured, Gloss (EC): MPI 77.
- FF. Marine Alkyd Metal primer: MPI 79.
- GG. Interior Wood Stain, Semi-Transparent (WS): MPI 90.
- HH. Wood Filler Paste: MPI 91.
- II. Exterior Alkyd, Semi-Gloss (EO): MPI 94.
- JJ. Fast Drying Metal Primer: MPI 95.
- KK. High Build Epoxy Coating: MPI 98.
- LL. Epoxy Anti-Corrosive Metal Primer: MPI 101.
- MM. High Build Epoxy Marine Coating (EC): MPI 108.
- NN. Interior latex, Gloss (LE) and (LG): MPI 114.
- OO. Exterior Latex, High Gloss (acrylic) (AE): MPI 119.
- PP. Waterborne Galvanized Primer: MPI 134.
- QQ. Non-Cementitious Galvanized Primer: MPI 135.
- RR. Interior High Performance Latex, MPI Gloss Level 2(LF): MPI 138.
- SS. Interior High Performance Latex, MPI Gloss Level 3 (LL): MPI 139.
- TT. Interior High Performance Latex, MPI Gloss Level 4: MPI 140.
- UU. Interior High Performance Latex (SG), MPI Gloss Level 5: MPI 141.

2.2 PAINT PROPERTIES

- A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives.
- B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

2.3 REGULATORY REQUIREMENTS/QUALITY ASSURANCE

- A. Paint materials shall conform to the restrictions of the local Environmental and Toxic Control jurisdiction.
 - Volatile Organic Compounds (VOC): VOC content of paint materials shall not exceed 10g/l for interior latex paints/primers and 50g/l for exterior latex paints and primers.
 - 2. Lead-Base Paint:
 - a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.
 - b. Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.
 - c. For lead-paint removal, see Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL.
 - 3. Asbestos: Materials shall not contain asbestos.
 - Chromate, Cadmium, Mercury, and Silica: Materials shall not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.
 - 5. Human Carcinogens: Materials shall not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.
 - 6. Use high performance acrylic paints in place of alkyd paints, where possible.
 - 7. VOC content for solvent-based paints shall not exceed 250g/l and shall not be formulated with more than one percent aromatic hydro carbons by weight.

PART 3 - EXECUTION

3.1 JOB CONDITIONS

- A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.
 - Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
 - 2. Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each days work.
- B. Atmospheric and Surface Conditions:

- 1. Do not apply coating when air or substrate conditions are:
 - a. Less than 3 degrees C (5 degrees F) above dew point.
 - b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations.
- 2. Maintain interior temperatures until paint dries hard.
- 3. Do no exterior painting when it is windy and dusty.
- 4. Do not paint in direct sunlight or on surfaces that the sun will soon warm.
- 5. Apply only on clean, dry and frost free surfaces except as follows:
 - a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces where allowed by manufacturer's printed instructions.
 - b. Dampened with a fine mist of water on hot dry days concrete and masonry surfaces to which water thinned acrylic and cementitious paints are applied to prevent excessive suction and to cool surface.

3.2 SURFACE PREPARATION

- A. Method of surface preparation is optional, provided results of finish painting produce solid even color and texture specified with no overlays.
- B. General:
 - Remove prefinished items not to be painted such as lighting fixtures, escutcheon plates, hardware, trim, and similar items for reinstallation after paint is dried.
 - Remove items for reinstallation and complete painting of such items and adjacent areas when item or adjacent surface is not accessible or finish is different.
 - See other sections of specifications for specified surface conditions and prime coat.
 - 4. Clean surfaces for painting with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry.
- C. Wood:
 - 1. Sand to a smooth even surface and then dust off.
 - 2. Sand surfaces showing raised grain smooth between each coat.
 - 3. Wipe surface with a tack rag prior to applying finish.

- 4. Surface painted with an opaque finish:
 - a. Coat knots, sap and pitch streaks with MPI 36 (Knot Sealer) before applying paint.
 - b. Apply two coats of MPI 36 (Knot Sealer) over large knots.
- 5. After application of prime or first coat of stain, fill cracks, nail and screw holes, depressions and similar defects with wood filler paste. Sand the surface to make smooth and finish flush with adjacent surface.
- Before applying finish coat, reapply wood filler paste if required, and sand surface to remove surface blemishes. Finish flush with adjacent surfaces.
- Fill open grained wood such as oak, walnut, ash and mahogany with MPI 91 (Wood Filler Paste), colored to match wood color.
 - a. Thin filler in accordance with manufacturer's instructions for application.
 - b. Remove excess filler, wipe as clean as possible, dry, and sand as specified.
- D. Ferrous Metals:
 - Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning). Exception: where high temperature aluminum paint is used, prepare surface in accordance with paint manufacturer's instructions.
 - 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.
 - a. This includes flat head countersunk screws used for permanent anchors.
 - b. Do not fill screws of item intended for removal such as glazing beads.
 - 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.

- 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.
- E. Zinc-Coated (Galvanized) Metal, Aluminum, Surfaces Specified Painted:
 - 1. Clean surfaces to remove grease, oil and other deterrents to paint adhesion in accordance with SSPC-SP 1 (Solvent Cleaning).
 - Spot coat abraded and damaged areas of zinc-coating which expose base metal on hot-dip zinc-coated items with MPI 18 (Organic Zinc Rich Coating). Prime or spot prime with MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non- Cementitious Galvanized Primer) depending on finish coat compatibility.
- F. Masonry, Concrete, Cement Board, Cement Plaster and Stucco:
 - 1. Clean and remove dust, dirt, oil, grease efflorescence, form release agents, laitance, and other deterrents to paint adhesion.
 - Use emulsion type cleaning agents to remove oil, grease, paint and similar products. Use of solvents, acid, or steam is not permitted.
 - 3. Remove loose mortar in masonry work.
 - 4. Replace mortar and fill open joints, holes, cracks and depressions with new mortar. Finish to match adjacent surfaces.
- G. Gypsum Plaster and Gypsum Board:
 - Remove efflorescence, loose and chalking plaster or finishing materials.
 - 2. Remove dust, dirt, and other deterrents to paint adhesion.
 - 3. Fill holes, cracks, and other depressions with CID-A-A-1272A [Plaster, Gypsum (Spackling Compound) finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board.

3.3 PAINT PREPARATION

- A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.
- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two component and two part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.

E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.4 APPLICATION

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three coats; prime, body, and finish. When two coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.
- D. Allow not less than 48 hours between applications of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by COR.
- E. Finish surfaces to show solid even color, free from runs, lumps, brushmarks, laps, holidays, or other defects.
- F. Apply by brush, roller or spray, except as otherwise specified.
- G. Do not spray paint in existing occupied spaces unless approved by COR, except in spaces sealed from existing occupied spaces.
 - 1. Apply painting materials specifically required by manufacturer to be applied by spraying.
 - 2. In areas, where paint is applied by spray, mask or enclose with polyethylene, or similar air tight material with edges and seams continuously sealed including items specified in WORK NOT PAINTED, motors, controls, telephone, and electrical equipment, fronts of sterilizes and other recessed equipment and similar prefinished items.
- H. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters.

3.5 PRIME PAINTING

- A. After surface preparation prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Prime rebates for stop and face glazing of wood, and for face glazing of steel.
- E. Wood and Wood Particleboard:

- 1. Use same kind of primer specified for exposed face surface.
 - a. Interior wood except for transparent finish: MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat), thinned if recommended by manufacturer.
- 2. Apply one coat of MPI 5 (Exterior Alkyd Wood Primer) or sealer MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat) as soon as delivered to site to surfaces of unfinished woodwork, except concealed surfaces of shop fabricated or assembled millwork and surfaces specified to have varnish, stain or natural finish.
- 3. Back prime and seal ends of exterior woodwork, and edges of exterior plywood specified to be finished.
- Apply MPI 67 (Interior Latex Fire Retardant, Top-Coat (ULC Approved) (FR) to wood for fire retardant finish.
- F. Metals except boilers, incinerator stacks, and engine exhaust pipes:
 - 1. Steel and iron: MPI 95 (Fast Drying Metal Primer).
 - 2. Zinc-coated steel and iron: MPI 134 (Waterborne Galvanized Primer).
 - 3. Aluminum scheduled to be painted: MPI 95 (Fast Drying Metal Primer).
 - 4. Terne Metal: MPI 95 (Fast Drying Metal Primer).
- G. Gypsum Board:
 - 1. Surfaces scheduled to have MPI 53 (Interior Latex, Flat), MPI Gloss Level 1 (LE)) MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)) MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)) MPI 114 (Interior Latex, Gloss (LE) and (LG)) finish: Use MPI 53 (Interior Latex, MPI Gloss Level 3 (LE)) MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)) MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)) MPI 114 (Interior Latex, Gloss (LE) and (LG)) respectively.
 - Primer: MPI 50(Interior Latex Primer Sealer) except use MPI 45 (Interior Primer Sealer) MPI 46 (Interior Enamel Undercoat) in shower and bathrooms.
 - 4. Use MPI 101 (Cold Curing Epoxy Primer) for surfaces scheduled to receive MPI 77 (Epoxy Cold Cured, Gloss (EC)) finish.
- H. Concrete Masonry Units except glazed or integrally colored and decorative units:
 - 1. MPI 4 (Block Filler) on interior surfaces.
 - 2. Prime exterior surface as specified for exterior finishes.

3.6 EXTERIOR FINISHES

- A. Apply following finish coats where specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Steel and Ferrous Metal:

- Two coats of MPI 9 (Exterior Alkyd Enamel (EO)) on exposed surfaces, except on surfaces over 94 degrees C (200 degrees F).
- C. Concrete Masonry Units, Brick, Concrete:
 - 1. General:
 - a. Where specified in Section 09 06 00, SCHEDULE FOR FINISHES or shown.
 - b. Mix as specified in manufacturer's printed directions.
 - c. Do not mix more paint at one time than can be used within four hours after mixing. Discard paint that has started to set.
 - d. Dampen warm surfaces above 24 degrees C (75 degrees F) with fine mist of water before application of paint. Do not leave free water on surface.
 - e. Cure paint with a fine mist of water as specified in manufacturer's printed instructions.
 - Use two coats of TT-P-1411 (Paint, Co-polymer-Resin, Cementitious (CEP)), unless specified otherwise.

3.7 INTERIOR FINISHES

- A. Apply following finish coats over prime coats in spaces or on surfaces specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Metal Work:
 - 1. Apply to exposed surfaces.
 - 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts.
 - 3. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled:
 - Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) unless specified otherwise.
- C. Gypsum Board:
 - One coat of MPI 45 (Interior Primer Sealer) plus one coat of MPI 54 (Interior Latex, Egg-Shell, MPI Gloss Level 3 (LL)).
 - One coat of Waterborne Epoxy Primer plus one coat of Waterborne Polyamide Epoxy where indicated.
 - 3. One coat interior primer plus one coat markerboard paint.
- D. Masonry and Concrete Walls:
 - 1. Over MPI 4 (Interior/Exterior Latex Block Filler) on CMU surfaces.
 - 2. Two coats of MPI 51 (Interior Latex, Egg-Shell, MPI Gloss Level 3
 (LL))
- E. Concrete Floors: One coat of MPI 60 (Interior/Exterior Latex Porch & Floor Paint, Low Gloss.

3.8 REFINISHING EXISTING PAINTED SURFACES

- A. Clean, patch and repair existing surfaces as specified under surface preparation.
- B. Remove and reinstall items as specified under surface preparation.
- C. Remove existing finishes or apply separation coats to prevent noncompatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner, reveal, or frame.
- F. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- G. Coat knots and pitch streaks showing through old finish with MPI 36 (Knot Sealer) before refinishing.
- H. Sand or dull glossy surfaces prior to painting.
- Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

3.9 PAINT COLOR

- A. Color and gloss of finish coats is specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. For additional requirements regarding color see Articles, REFINISHING EXISTING PAINTED SURFACE and MECHANICAL AND ELECTRICAL FIELD PAINTING SCHEDULE.
- C. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.
 - 2. Color of body coat: Lighter than finish coat.
 - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.
- D. Painting, Caulking, Closures, and Fillers Adjacent to Casework:
 - 1. Paint to match color of casework where casework has a paint finish.
 - 2. Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood.

3.10 MECHANICAL AND ELECTRICAL WORK FIELD PAINTING SCHEDULE

A. Field painting of mechanical and electrical consists of cleaning, touching-up abraded shop prime coats, and applying prime, body and finish coats to materials and equipment if not factory finished in space scheduled to be finished.

- B. In spaces not scheduled to be finish painted in Section 09 06 00, SCHEDULE FOR FINISHES paint as specified under paragraph H, colors.
- C. Paint various systems specified in Division 02 EXISTING CONDITIONS, Division 21 - FIRE SUPPRESSION, Division 22 - PLUMBING, Division 23 -HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL, Division 27 - COMMUNICATIONS, and Division 28 - ELECTRONIC SAFETY AND SECURITY.
- D. Paint after tests have been completed.
- E. Omit prime coat from factory prime-coated items.
- F. Finish painting of mechanical and electrical equipment is not required when located in interstitial spaces, above suspended ceilings, in concealed areas such as pipe and electric closets, pipe basements, pipe tunnels, trenches, attics, roof spaces, shafts and furred spaces except on electrical conduit containing feeders 600 volts or more.
- G. Omit field painting of items specified in paragraph, Building and Structural WORK NOT PAINTED.
- H. Color:
 - 1. Paint items having no color specified in Section 09 06 00, SCHEDULE FOR FINISHES to match surrounding surfaces.
 - 2. Paint colors as specified in Section 09 06 00, SCHEDULE FOR FINISHES except for following:
 - a. White Exterior unfinished surfaces of enameled plumbing fixtures. Insulation coverings on breeching and uptake inside boiler house, drums and drumheads, oil heaters, condensate tanks and condensate piping.
 - b. Gray:Heating, ventilating, air conditioning and refrigeration equipment (except as required to match surrounding surfaces), and water and sewage treatment equipment and sewage ejection equipment.
 - c. Aluminum Color: Ferrous metal on outside of boilers and in connection with boiler settings including supporting doors and door frames and fuel oil burning equipment, and steam generation system (bare piping, fittings, hangers, supports, valves, traps and miscellaneous iron work in contact with pipe).
 - d. Federal Safety Red: Exposed fire protection piping hydrants, post indicators, electrical conducts containing fire alarm control wiring, and fire alarm equipment.
 - e. Federal Safety Orange: Entire lengths of electrical conduits containing feeders 600 volts or more.

- f. Color to match brickwork sheet metal covering on breeching outside of exterior wall of boiler house.
- I. Apply paint systems on properly prepared and primed surface as follows:
 - 1. Exterior Locations:
 - a. Apply two coats of MPI 94 (Exterior Alkyd, Semi-gloss (EO)) to the following ferrous metal items:
 Vent and exhaust pipes with temperatures under 94 degrees C (200 degrees F), roof drains, fire hydrants, post indicators, yard hydrants, exposed piping, and similar items.
 - b. Apply two coats of // MPI 10 (Exterior Latex, Flat (AE)) // MPI 11 (Exterior Latex, Semi Gloss (AE)) // MPI 119 (Exterior Latex, High Gloss (acrylic) (AE)) to the following metal items:
 Galvanized and zinc-copper alloy metal.
 - 2. Interior Locations:
 - a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) to following items:
 - Metal under 94 degrees C (200 degrees F) of items such as bare piping, fittings, hangers and supports.
 - Equipment and systems such as hinged covers and frames for control cabinets and boxes, cast-iron radiators, electric conduits and panel boards.
 - Heating, ventilating, air conditioning, plumbing equipment, and machinery having shop prime coat and not factory finished.
 - b. Paint electrical conduits containing cables rated 600 volts or more using two coats of MPI 9 (Exterior Alkyd Enamel (EO)) in the Federal Safety Orange color in exposed and concealed spaces full length of conduit.
 - 3. Other exposed locations:
 - Metal surfaces, except aluminum, of cooling towers exposed to view, including connected pipes, rails, and ladders: Two coats of MPI 1 (Aluminum Paint (AP)).

3.11 BUILDING AND STRUCTURAL WORK FIELD PAINTING

- A. Painting and finishing of interior and exterior work except as specified under paragraph 3.11 B.
 - Painting and finishing of new and existing work including colors and gloss of finish selected is specified in Finish Schedule, Section 09 06 00, SCHEDULE FOR FINISHES.
 - Painting of disturbed, damaged and repaired or patched surfaces when entire space is not scheduled for complete repainting or refinishing.

- 3. Painting of ferrous metal and galvanized metal.
- 4. Identity painting and safety painting.
- B. Building and Structural Work not Painted:
 - 1. Prefinished items:
 - a. Casework, doors, elevator entrances and cabs, metal panels, wall covering, and similar items specified factory finished under other sections.
 - b. Factory finished equipment and pre-engineered metal building components such as metal roof and wall panels.
 - 2. Finished surfaces:
 - a. Hardware except ferrous metal.
 - b. Anodized aluminum, stainless steel, chromium plating, copper, and brass, except as otherwise specified.
 - c. Signs, fixtures, and other similar items integrally finished.
 - 3. Concealed surfaces:
 - a. Inside dumbwaiter, elevator and duct shafts, interstitial spaces, pipe basements, crawl spaces, pipe tunnels, above ceilings, attics, except as otherwise specified.
 - b. Inside walls or other spaces behind access doors or panels.
 - c. Surfaces concealed behind permanently installed casework and equipment.
 - 4. Moving and operating parts:
 - a. Shafts, chains, gears, mechanical and electrical operators, linkages, and sprinkler heads, and sensing devices.
 - b. Tracks for overhead or coiling doors, shutters, and grilles.
 - 5. Labels:
 - a. Code required label, such as Underwriters Laboratories Inc., Inchcape Testing Services, Inc., or Factory Mutual Research Corporation.
 - b. Identification plates, instruction plates, performance rating, and nomenclature.
 - 6. Galvanized metal:
 - a. Exterior chain link fence and gates, corrugated metal areaways, and gratings.
 - b. Gas Storage Racks.
 - c. Except where specifically specified to be painted.
 - 7. Metal safety treads and nosings.
 - 8. Gaskets.
 - Concrete curbs, gutters, pavements, retaining walls, exterior exposed foundations walls and interior walls in pipe basements.

- 10. Face brick.
- 11. Structural steel encased in concrete, masonry, or other enclosure.
- 12. Structural steel to receive sprayed-on fire proofing.
- 13. Ceilings, walls, columns in interstitial spaces.
- 14. Ceilings, walls, and columns in pipe basements.

3.12 IDENTITY PAINTING SCHEDULE

- A. Identify designated service in accordance with ANSI A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings, piping in accessible pipe spaces, interstitial spaces, and piping behind access panels.
 - 1. Legend may be identified using 2.1 G options or by stencil applications.
 - 2. Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories such as valves, regulators, strainers and cleanouts a minimum of 12 000 mm (40 feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required.
 - 3. Locate Legends clearly visible from operating position.
 - 4. Use arrow to indicate direction of flow.
 - 5. Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert working pressure shown on drawings where asterisk appears for High, Medium, and Low Pressure designations as follows:
 - a. High Pressure 414 kPa (60 psig) and above.
 - b. Medium Pressure 104 to 413 kPa (15 to 59 psig).
 - c. Low Pressure 103 kPa (14 psig) and below.
 - d. Add Fuel oil grade numbers.
 - 6. Legend name in full or in abbreviated form as follows:

	COLOR OF	COLOR OF	COLOR OF	LEGEND
PIPING	EXPOSED PIPING	BACKGROUND	LETTERS	BBREVIATIONS
Blow-off		Yellow	Black	Blow-off
Boiler Feedwater		Yellow	Black	Blr Feed
A/C Condenser Wat	er Supply	Green	White	A/C Cond Wtr Sup
A/C Condenser Wat	er Return	Green	White	A/C Cond Wtr Ret
Chilled Water Sup	ply	Green	White	Ch. Wtr Sup
Chilled Water Return		Green	White	Ch. Wtr Ret
Shop Compressed Air		Yellow	Black	Shop Air
Air-Instrument Controls		Green	White	Air-Inst Cont

VA Medical Center, Huntington, WVVA Project No. 581-14-103Renovate 3W for Surgery Administration100% CD: 03/28/14

Drain Line		Green	White	Drain	
Emergency Shower		Green	White	Emg Shower	
High Pressure Steam		Yellow	Black	H.P*	
High Pressure Condensate	e Return	Yellow	Black	H.P. Ret*	
Medium Pressure Steam		Yellow	Black	M. P. Stm*	
Medium Pressure Condensa	ate Return	Yellow	Black	M.P. Ret*	
Low Pressure Steam		Yellow	Black	L.P. Stm*	
Low Pressure Condensate	Return	Yellow	Black	L.P. Ret*	
High Temperature Water S	Supply	Yellow	Black	H. Temp Wtr Sup	
High Temperature Water Return		Yellow	Black	H. Temp Wtr Ret	
Hot Water Heating Supply		Yellow	Black	H. W. Htg Sup	
Hot Water Heating Return		Yellow	Black	H. W. Htg Ret	
Gravity Condensate Retur	rn	Yellow	Black	Gravity Cond Ret	
Pumped Condensate Return		Yellow	Black	Pumped Cond Ret	
Vacuum Condensate Return		Yellow	Black	Vac Cond Ret	
Fuel Oil - Grade *	Brown	White	Fuel Oil-Grade		
(Diesel Fuel included un	nder Fuel Oil	1)			
Boiler Water Sampling		Yellow	Black	Sample	
Chemical Feed		Yellow	Black	Chem Feed	
Continuous Blow-Down		Yellow	Black	Cont. B D	
Pumped Condensate		Black		Pump Cond	
Pump Recirculating		Yellow	Black	Pump-Recirc.	
Vent Line		Yellow	Black	Vent	
Alkali		Yellow	Black	Alk	
Bleach		Yellow	Black	Bleach	
Detergent		Yellow	Black	Det	
Liquid Supply		Yellow	Black	Liq Sup	
Reuse Water		Yellow	Black	Reuse Wtr	
Cold Water (Domestic)	White	Green	White	C.W. Dom	
Hot Water (Domestic)					
Supply	White	Yellow	Black	H.W. Dom	
Return	White	Yellow	Black	H.W. Dom Ret	
Tempered Water	White	Yellow	Black	Temp. Wtr	
Ice Water					
Supply	White	Green	White	Ice Wtr	
Return	White	Green	White	Ice Wtr Ret	
Reagent Grade Water		Green	White	RG	
Reverse Osmosis		Green	White	RO	

Sanitary Waste	Green	White	San Waste
Sanitary Vent	Green	White	San Vent
Storm Drainage	Green	White	St Drain
Pump Drainage	Green	White	Pump Disch
Chemical Resistant Pipe			
Waste	Yellow	Black	Acid Waste
Vent	Yellow	Black	Acid Vent
Atmospheric Vent	Green	White	ATV
Silver Recovery	Green	White	Silver Rec
Oral Evacuation	Green	White	Oral Evac
Fuel Gas	Yellow	Black	Gas
Fire Protection Water			
Sprinkler	Red	White	Auto Spr
Standpipe	Red	White	Stand
Sprinkler	Red	White	Drain
Hot Water Supply Domestic/Solar Wat Hot Water Return Domestic/Solar Wat		Sup Dom/SW Ret Dom/SW	

- 7. Electrical Conduits containing feeders over 600 volts, paint legends using 50 mm (2 inch) high black numbers and letters, showing the voltage class rating. Provide legends where conduits pass through walls and floors and at maximum 6100 mm (20 foot) intervals in between.
- 8. See Sections for methods of identification, legends, and abbreviations of the following:
 - a. Regular compressed air lines: Section 22 15 00, GENERAL SERVICE COMPRESSED-AIR SYSTEMS.
 - e. Medical Gases and vacuum lines: Section 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES Section 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES.
 - f. Conduits containing high voltage feeders over 600 volts: Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS / Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS / Section 28 05 33, RACEWAYS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY.
- B. Fire and Smoke Partitions:
 - Identify partitions above ceilings on both sides of partitions except within shafts in letters not less than 64 mm (2 1/2 inches) high.
 - 2. Stenciled message: As indicated in Wall Schedule as applicable.

- 3. Locate not more than 6100 mm (20 feet) on center on corridor sides of partitions, and with a least one message per room on room side of partition.
- 4. Use semigloss paint of color that contrasts with color of substrate.

3.13 PROTECTION CLEAN UP, AND TOUCH-UP

- A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.
- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored.

- - - E N D - - -

SECTION 10 11 13 MARKERBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies markerboards and related items.
- B. Boards may be either factory or field assembled.
- C. Where shown, markerboards with tackboards into a single unit.

1.2 RELATED WORK

A. Color of aluminum anodic coating markerboard writing surface: Section 09 06 00, SCHEDULE FOR FINISHES

1.3 QUALITY ASSURANCE

A. Boards shall be the products of one manufacturer.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- B. Shop Drawings: Identifying all parts by name and material and showing design, construction, installation, anchorage and relation to adjacent construction.
- C. Manufacturer's Literature and Data:
 - 1. Markerboard
- D. Samples:
 - Markerboard writing surface, six by six inches, each color, mounted on backing.
 - 2. Integrally colored anodized aluminum, six inch length.
 - 3. Each accessory (after approval, may be used in the work).

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards (ANSI):

Z97.1-09.....Safety Glazing Materials Used in Buildings -Safety Performance Specifications and Methods of Test

- OI IESC
- C. American Society for Testing and Materials (ASTM): B221/B221M-08.....Aluminum and Aluminum Alloy Extruded Bars, Rods, Wire, Shapes and Tubes C1036-06.....Flat Glass C1048-04.....Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass F104-03(R2009).....Nonmetallic Gasket Materials

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

- D. Composite Panel Association (CPA): A208.1-09.....Particleboard A135.4-04.....Basic Hardboard
- E. Porcelain Enamel Institute (PEI) 1001-11.....Architectural Porcelain Enamel

PART 2 - PRODUCTS

2.1 MARKERBOARD

A. Markerboards shall consist of a writing surface, snap on aluminum frame, chalk trough, mullions, display rail and accessories, grounds and other items specified and shown.

2.2 FABRICATION

- A. Materials:
 - 1. Aluminum, extruded: ASTM B221.

Accessory Type

- 2. Backing: Hardboard, AHBA A135.4 or particleboard, CPA A208.1.
- B. Components:
 - Writing Surface: Factory assembly consisting of face sheet of 24 gauge sheet steel with porcelain enamel board texture finish conforming to PEI 1001, laminated to a hardboard or particleboard backing, 3/8 to 1/2-inch thick, and a 0.005-inch thick aluminum foil back sheet laminated to back-face.
 - Frames (Trim): Extruded aluminum, 0.060-inch thick, snap-on type, approximate face width 1-3/4 inch, depth and configuration as required to return to wall and engage clips.
 - 3. Trough: Extruded aluminum, 0.092-inch thick, not less than 3-inch projection from writing surface with grooved top surface, closed ends and return to wall surface at underside. Design to be snap-on type with concealed fasteners.
 - 4. Accessories: Fabricate from aluminum with holders from spring steel. Design to suit display rail. Furnish accessories as follows:

Fee	t	of	rail
per	a	cce	ssory

Combination map hook/paper holder.	
Paper holder.	
Map hook.	
Roller map bracket with thumb screw.	

5. Mullions: Snap-on type, same material and face width as frames, designed to finish flush with frame.

- 6. Grounds: Continuous zinc-coated (galvanized) steel or extruded aluminum members designed to support the board writing surface and clips for snap-on frames, map rail and chalk tray.
- 7. Clips: Manufacturer's standard as required to support frame, mullions, display rail, and trough.
- C. Boards 12 feet or less in length shall be in one piece. Larger units shall have one joint at center
- D. Finish exposed aluminum surfaces as follows:
 - 1. AA 45 chemically etched medium matte, with clear anodic coating Class II Architectural, 0.4 mils thick (AA-M12C22A32).
 - AA 45 chemically etched medium matte, with integrally colored anodic coating, Class II Architectural, 0.4 mils thick (AA-M12C22A32, of color to match approved sample).

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Install units in accordance with the manufacturer's installation instructions, use concealed fasteners.
- B. Inspect surfaces and related construction to receive units. Partitions shall have reinforcing to receive fasteners. Verify type and placement of reinforcement.
- C. Do not proceed with the installation until reinforcement is in place and surfaces are flat.
- D. Assemble units as specified by the manufacturer.

3.2 INSTALLATION OF MARKERBOARD

- A. Mount board with adhesive and blocking pads spaced 16 inches on center each way.
- B. Grounds designed to receive clips for snap-on trim shall be continuous and be secured 12 inches on center. Space clips 12 inches on center.
- C. Miter trim at corners, conceal fasteners. Modify trim as required to conform to surrounding construction details.

- - - E N D - - -

SECTION 10 14 00 SIGNAGE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies interior signage for room numbers, directional signs, code required signs, telephone identification signs and temporary interior signs.
- B. This section also specifies exterior medical center identification signs, building identification signs, parking and traffic signs.
- C. Installation of Government furnished dedication plaque and VA seal.

1.2 RELATED WORK

- A. Electrical: Related Electrical Specification Sections.
- B. Lighted EXIT signs for egress purposes are specified under Division 26, ELECTRICAL.
- C. Section 10 13 00, DIRECTORIES and Section 10 14 00, SIGNAGE.
- D. Color Finish: See drawings.

1.3 MANUFACTURER'S QUALIFICATIONS

A. Sign manufacturer shall provide evidence that they regularly and presently manufactures signs similar to those specified in this section as one of their principal products.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 00, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- B. Samples: Sign panels and frames, with letters and symbols, each type. Submit 2 sets. One set of samples will be retained by COR, other returned to Contractor.
 - 1. Sign Panel, 200 mm x 250 mm (8 inches x 10 inches), with letters.
 - Color samples of each color, 150 mm x 150 mm (6 inches x 6 inches. Show anticipated range of color and texture.
 - 3. Sample of typeface, arrow and symbols in a typical full size layout.
- C. Manufacturer's Literature:
 - 1. Showing the methods and procedures proposed for the concealed anchorage of the signage system to each surface type.
 - Manufacturer's printed specifications, anchorage details, installation and maintenance instructions.
- D. Samples: Sign location plan, showing location, type and total number of signs required.
- E. Shop Drawings: Scaled for manufacture and fabrication of sign types. Identify materials, show joints, welds, anchorage, accessory items, mounting and finishes.

- F. Full size layout patterns for dimensional letters.
- G. Signage Schedules in manufacturer's format for verification of text.

1.5 DELIVERY AND STORAGE

- A. Deliver materials to job in manufacturer's original sealed containers with brand name marked thereon. Protect materials from damage.
- B. Package to prevent damage or deterioration during shipment, handling, storage and installation. Maintain protective covering in place and in good repair until removal is necessary.
- C. Deliver signs only when the site and mounting services are ready for installation work to proceed.
- D. Store products in dry condition inside enclosed facilities.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): B209-07.....Aluminum and Aluminum-Alloy Sheet and Plate B221-08....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and tubes.
- C. Federal Specifications (Fed Spec): MIL-PRF-8184F.....Plastic Sheet, Acrylic, Modified. MIL-P-46144C.....Plastic Sheet, Polycarbonate

1.7 MINIMUM SIGN REQUIREMENTS

- A. Permanent Rooms and Spaces:
 - Tactile and Braille Characters, raised minimum 0.793 mm (1/32 in). Characters shall be accompanied by Grade 2 Braille.
 - 2. Type Styles: Characters shall be uppercase. See drawings.
 - 3. Character Height: Minimum 16 mm (5/8 in) high, Maximum 50 mm (2 in).
 - 4. Symbols (Pictograms): Equivalent written description shall be placed directly below symbol, outside of symbol's background field. Border dimensions of symbol background shall be minimum 150 mm (6 in) high.
 - Finish and Contrast: Characters and background shall be eggshell, matte or other non-glare finish with adequate contrast with background. See drawings.
 - Mounting Location and Height: As shown. Mounted on wall adjacent to the latch side of the door and to avoid door swing and protruding objects. See drawings.

1.8 COLORS AND FINISHES:

A. See drawings.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Signs of type, size and design shown on the drawings and as specified.
- B. Signs complete with lettering, framing and related components for a complete installation.
- C. Provide graphics items as completed units produced by a single manufacturer, including necessary mounting accessories, fittings and fastenings.
- D. Do not scale drawings for dimensions. Contractor to verify and be responsible for all dimensions and conditions shown by these drawings. COR to be notified of any discrepancy in drawing, in field directions or conditions, and/or of any changes required for all such construction details.
- E. The Sign Contractor, by commencing work of this section, assumes overall responsibility, as part of his warranty of work, to assure that assemblies, components and parts shown or required within the work of the section, comply with the Contract Documents. The Contractor shall further warrant: That all components, specified or required to satisfactorily complete the installation are compatible with each other and with conditions of installations.

2.2 PRODUCTS

- A. Aluminum:
 - 1. Sheet and Plate: ASTM B209.
 - 2. Extrusions and Tubing: ASTM B221.
- B. Cast Acrylic Sheet: MIL-PRF-8184F; Type II, class 1, Water white nonglare optically clear. Matt finish water white clear acrylic shall not be acceptable.
- C. Polycarbonate: MIL-P-46144C; Type I, class 1.
- D. Vinyl: 0.1 mm thick machine cut, having a pressure sensitive adhesive and integral colors.
- E. Electrical Signs:
 - 1. General: Furnish and install all lighting, electrical components, fixtures and lamps ready for use in accordance with the sign type drawings, details and specifications.
 - Refer to Electrical Specifications Section, Division 26, ELECTRICAL, to verify line voltages for sign locations that require electrical signs.
 - 3. Quality Control: Installed electrical components and sign installations are to bear the label and certification of Underwriter's Laboratories, Inc., and are to comply with National Electrical Code as well as applicable federal, state and local codes

for installation techniques, fabrication methods and general product safety.

4. Ballast and Lighting Fixtures: See Electrical Specifications.

2.3 SIGN STANDARDS

- A. Topography:
 - 1. Type Style: See drawings.
 - 2. Arrow: See graphic standards in drawings.
 - 3. Letter spacing: See graphic standards on drawings.
 - 4. Letter spacing: See graphic standards on drawings.
 - 5. All text, arrows, and symbols to be provided in size, colors, typefaces and letter spacing shown. Text shall be a true, clean, accurate reproduction of typeface(s) shown. Text shown in drawings are for layout purposes only; final text for signs is listed in Sign Message Schedule.
- B. Project Colors and Finishes: See Section 09 06 00, SCHEDULE FOR FINISHES.

2.4 SIGN TYPES

- A. General:
 - The interior sign system is comprised of sign types families that are identified by a letter and number which identify a particular group of signs. An additional number identifies a specific type of sign within that family.

a. IN indicates a component construction based sign.

- The exterior sign system shall be comprised of sign types families that are identified by a letter and number which identify a particular group of signs. An additional number identifies a specific type of sign within that family.
- 2. EI designation indicates exterior internally illuminated sign.
- 3. EN designation indicates exterior non-illuminated sign.
- B. Interchangeable Component System:
 - Sign Type Families: 03, 04, 05, 06, 07, 08, 09 10, 11 12, 13, 14, 15, 16 and 17.
 - Interior sign system capable of being arranged in a variety of configurations with a minimum of attachments, devices and connectors.
 - a. Interchangeable nature of the system shall allow for changes of graphic components of the installed sign, without changing sign in its entirety.
 - b. Component Sign System is comprised of the following primary components:

- Rail Back utilizing horizontal rails, spaced to allow for uniform, modular sizing of sign types.
- 2) Rail Insert mounted to back of Copy Panels to allow for attachment to Rail Back.
- Copy Panels, made of a variety of materials to allow for different graphic needs.
- 4) End Caps which interlock to Rail Back to enclose and secure changeable Copy Panels.
- 5) Joiners and Accent Joiners connect separate Rail Backs together.
- 6) Top Accent Bars which provide decorative trim cap that encloses the top of sign or can connect the sign to a Type 03 Room Number Sign.
- c. Rail Back, Rail Insert and End Caps in anodized extruded aluminum to allow for tight tolerances and consistent quality of fit and finish.
- d. Signs in system shall be convertible in the field to allow for enlargement from one size to another in height and width through use of Joiners or Accent Joiners, which connect Rail Back panels together blindly, providing a butt joint between Copy Panels. Accent Joiners shall connect Rail Backs together with a visible 3 mm (1/8") horizontal rib, flush to the adjacent copy insert surfaces.
- e. Sign configurations shall vary in width from 225 mm (9 inches) to 2050 mm (80 inches), and have height dimensions of 50 mm (2 inches), 75 mm (3 inches), 150 mm (6 inches), 225 mm (9 inches) and 300 mm (12 inches). Height shall be increased beyond 300 mm (12 inches), by repeating height module in full or in part.
- Rail Back functions as internal structural member of sign using 6063T5 extruded aluminum and anodized black.
 - a. Shall accept an extruded aluminum or plastic insert on one sign or on both sides, depending upon sign type.
 - b. Shall be convertible in field to allow for connection to other Rail Back panels, so that additive changes can be made to sign unit.
 - c. Rail shall allow for a variety of mounting devices including wall mounting for screw-on applications, using pressure sensitive tape, freestanding mount, ceiling mount and other mounting devices as needed.

- 4. Rail Insert functions as a mounting device for Copy Panels on to the Rail Back. The Rail Insert mounts to the back of the Copy Panel with adhesive suitable for use with the particular copy insert material.
 - a. Shall allow Copy Panels to slide or snap into the horizontal Rail Back for ease of changeability.
 - b. Shall mount to the back of the Copy Panel with adhesive suitable for use with particular Copy Panel material.
- 5. Copy Panels shall accept various forms of copy and graphics, and attaches to the Rail Back with the Rail Insert. Copy Panels shall be either ABS plastic with integral color or an acrylic lacquer finish; photo polymer; or, acrylic.
 - a. Interchangeable by sliding horizontally from either side of sign, and to other signs in system of equal or greater width or height.
 - b. Cleanable without use of special chemicals or cleaning solutions.
 - c. Copy Insert Materials.
 - 1) ABS Inserts 2.3 mm (.090 inches) extruded ABS plastic core with .07 mm (.003 inches) acrylic cap bonded during extrusion/texturing process. Pressure bonded to extruded Rail Insert using adhesive. Background color is either integral or painted in acrylic lacquer. ABS inserts finished in a chromium industries #HM335RA texture pattern to prevent glare.
 - 2) Photo polymer Inserts 3 mm (.125 inches) phenolic photo polymer with raised copy etched to 2.3 mm (.0937 inches), bonded to an ABS plastic or extruded aluminum insert with adhesive. Background color is painted in acrylic enamel.
 - 3) Changeable Paper/ Insert Holder Extruded insert holder with integral Rail Insert for connection with structural back panel in 6063T5 aluminum with a black anodized finish. Inserts into holder are paper with a clear 0.7 mm (.030 inches) textured cover. Background color is painted in acrylic lacquer.
 - 4) Acrylic 2 mm (.080 inches) non-glare acrylic. Pressure bonded to extruded Rail Insert using adhesive. Background color is painted in acrylic lacquer or acrylic enamel.
 - 5) Extruded 6063T5 aluminum with a black anodized finish Insert Holder with integral Rail Insert for connection with Structural Back Panel to hold a 0.7 mm (.030 inches) textured polycarbonate insert and a Sliding Tile which mounts in the Inset Holder and slides horizontally.
 - 6) End Caps Extruded using 6063T5 aluminum with a black anodized. End Caps interlock with Rail Back with clips to form

an integral unit, enclosing and securing the changeable Copy Panels, without requiring tools for assembly.

- a) Shall be interchangeable to either end of sign and to other signs in the system of equal height.
- b) Mechanical fasteners can be added to the End Caps that will secure it to Rail Back to make sign tamper resistant.
- 7) Joiners Extruded using 6063T5 aluminum with a black anodized finish. Rail Joiners connect Rail Backs together blindly, providing a butt joint between Copy Inserts.
- 8) Accent Joiners Extruded using 6063T5 aluminum with a mirror polished finish. Joiner shall connect Rail Backs together with a visible 3 mm (.125 inches) horizontal rib, flush to the adjacent Copy Panel surfaces.
- 9) Top Accent Rail Extruded using 6063T5 aluminum with a mirror polished finish. Rail shall provide 3 mm (.125 inches) high decorative trim cap, which butts flush to adjacent Copy Panel and encloses top of Rail Back and Copy Panel.
- 10) Typography
 - a) Vinyl First Surface Copy (non-tactile) Applied Vinyl copy.
 - b) Subsurface Copy Inserts Textured 1 mm (.030 inches) clear polycarbonate face with subsurface applied Vinyl copy. Face shall be back sprayed with paint and laminated to an extruded aluminum carrier insert.
 - c) Integral Tactile Copy Inserts phenolic photo polymer etched with 2.3 mm (.0937 inches) raised copy.
 - d) Silk-screened First Surface Copy (non-tactile) Injection molded or extruded ABS plastic or aluminum insert with first surface applied enamel silk-screened copy.
- C. Sign Type Family 01, 02.01 thru 02.05, 08, 09 and 20:
 - 1. All text and graphics are to be first surface silk-screened.
 - 2. IN-01.12 & IN-01.13: Refer to Sign Type 03 specification for tactile and Braille portion of sign.
 - 3. IN-02.4: All text and graphics are to be first surface vinyl letters.
 - 4. IN-01.1: Preparation of artwork for reproduction of "fire and emergency evacuation maps" is by manufacturer.
- D. Sign Type Families 03:
 - Tactile sign is to be made from a material that provides for letters, numbers and Braille to be integral with sign plaque material such as: photosensitive polyamide resin, etched metal, sandblasted phenolic or

embossed material. Do not apply letters, numbers and Braille with adhesive.

- Numbers, letters and Braille to be raised 0.793 mm (.0312 inches) from the background surface. The draft of the letters, numbers and Braille to be tapered, vertical and clean.
- 3. Braille dots are to conform with standard dimensions for literary Braille; (a) Dot base diameter: 1.5 mm (.059 inches) (b) Inter-dot spacing: 2.3 mm (.090 inches) (c) Horizontal separation between cells: 6.0 mm (.241 inches) (d) Vertical separation between cells: 10.0 mm (.395 inches)
- Entire assembly is painted in specified color. After painting, apply white or other specified color to surface of the numbers and letters. Entire sign is to have a protective clear coat sealant applied.
- 5. Complete sign is to have an eggshell finish (11 to 19 degree on a 60 degree glossmeter).
- E. Sign Type Family 04 and 11:
 - 1. All text and graphics are to be first surface applied vinyl letters.
 - IN-04: When a Type IN-04 is to be mounted under a Type IN03, a connecting Accent Joiner is to be used to create a singular integrated sign.
- F. Sign Type 05:
 - 1. Text if added to Copy Insert module to be first surface applied vinyl letters.
- G. Sign Type Family 06 and 07:
 - 1. All text and graphics are to be first surface applied vinyl letters except for under sliding tile.
 - 2. Protect text, which is covered by sliding tile, so tile does not wear away letters.
- H. Sign Type Family 10:
 - 1. Pocket depth is to be 0.3 mm (.0150 inches).
- I. Sign Type Family 12 and 13:
 - 1. All text and graphics are to be first surface applied vinyl letters.
 - 2. IN-12: Provide felt, cork or similar material on bottom of desk mounting bracket to protect counter surfaces.
- J. Sign Type Family 14, 15, and 16:
 - 1. All text and graphics are to be first surface applied vinyl letters.
 - IN-14.06: When added to top of IN-14.01, IN-14.04, or IN-14.05 a connecting Accent Joiner is to be used to create a singular integrated sign.

- Ceiling mounted signs required mounting hardware on the sign that allows for sign disconnection, removal and reinstallation and reconnection.
- K. Sign Type Family 17:
 - 1. All text and graphics are to be first surface applied vinyl letters.
 - 2. IN-17: Directory constructed using elements of the Component System.
- L. Sign Type Family 18:
 - 1. All text and graphics are to be first surface applied stylus cut vinyl letters.
 - 2. Provide in specified typeface, color and spacing, with each message or message group on a single quick release backing sheet.
- M. Sign Type Family 19:
 - 1. Dimensional letters are mill or laser cut acrylic in the size and thickness noted in the drawings.
 - 2. Draft of letters is perpendicular to letters face.
 - 3. All corners such as where a letter stem and bar intersect are to be square so the letter form is accurately reproduced.
 - 4. Paint letters with acrylic polyurethane in specified color and finish.
- N. Sign Type Family (See Specialty Signs Section) 21:
 - IN-21.01: 57 mm (2.25 inches) polished aluminum tube mounted to weighted 356 mm (14 inches) diameter polished aluminum base. Sign bracket to hold a 6 mm (.25 inches) sign plaque.
 - 2. IN-21.02: 57 mm (2.25 inches) polished aluminum tube vertical support mounted to a weighted polished 57 mm (2.25 inches) aluminum tubular base. Rail Back mechanically connected to vertical supports with Copy Panel attached to front and back.
 - 3. IN-21.03 & 21.04: IN-21.02: 57 mm (2.25 inches) polished aluminum tube vertical support mounted to a weighted polished 57 mm (2.25 inches) aluminum tubular base. Rail Back mechanically connected to vertical supports with hinged locking glass door. Black felt covered changeable letter board or tan vinyl impregnated cork tack surface as background within case.
- O. Sign Type Family 22:
 - 1. IN-22.01: Extruded aluminum clip anodized black containing rollers to pinch and release paper. End caps are black plastic.
 - IN-22.02: Patient Information holder constructed of 18 gauge formed sheet metal painted in specified color. Polished aluminum connecting rods and buttons. Button covers for mounting screws are to permanently attach and securely conceal screws.

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

- P. Temporary Interior Signs:
 - 1. Fabricated from 50 kg (110 pound) matte finished white paper cut to 100 mm (4 inch) wide by 300 mm (12 inch) long. Punched 3 mm (.125 inch) hole with edge of hole spaced 13 mm (.5 inch) in from edge and centered on 100 mm (4 inch) side. Reinforce hole on both sides with suitable material that prevents tie form pulling through hole. Ties are steel wire 0.3 mm (0.120 inch) thick attached to tag with twist leaving 150 mm (6 inch) long free ends.
 - 2. Mark architectural room number on sign, with broad felt marker in clearly legible numbers or letters that identify room, corridor or space as shown on floor plans.
 - 3. Install temporary signs to all rooms that have a room, corridor or space number. Attach to door frame, door knob or door pull.
 - a. Doors that do not require signs are: corridor doors in corridor with same number, folding doors or partitions, toilet doors, bathroom doors within and between rooms, closet doors within rooms, communicating doors in partitions between rooms with corridor entrance doors.
 - b. Replace and missing damaged or illegible signs.

2.5 FABRICATION

- A. Design components to allow for expansion and contraction for a minimum material temperature range of 56 °C (100 °F), without causing buckling, excessive opening of joints or over stressing of adhesives, welds and fasteners.
- B. Form work to required shapes and sizes, with true curve lines and angles. Provide necessary rebates, lugs and brackets for assembly of units. Use concealed fasteners whenever and wherever possible.
- C. Shop fabricate so far as practicable. Joints fastened flush to conceal reinforcement, or welded where thickness or section permits.
- D. Contact surfaces of connected members be true. Assembled so joints will be tight and practically unnoticeable, without use of filling compound.
- E. Signs shall have fine, even texture and be flat and sound. Lines and miters sharp, arises unbroken, profiles accurate and ornament true to pattern. Plane surfaces be smooth flat and without oil-canning, free of rack and twist. Maximum variation from plane of surface plus or minus 0.3 mm (0.015 inches). Restore texture to filed or cut areas.
- F. Level or straighten wrought work. Members shall have sharp lines and angles and smooth sulrfaces.
- G. Extruded members to be free from extrusion marks. Square turns and corners sharp, curves true.

- H. Drill holes for bolts and screws. Conceal fastenings where possible. Exposed ends and edges mill smooth, with corners slightly rounded. Form joints exposed to weather to exclude water.
- I. Finish hollow signs with matching material on all faces, tops, bottoms and ends. Edge joints tightly mitered to give appearance of solid material.
- J. All painted surfaces properly primed. Finish coating of paint to have complete coverage with no light or thin applications allowing substrate or primer to show. Finished surface smooth, free of scratches, gouges, drips, bubbles, thickness variations, foreign matter and other imperfections.
- K. Movable parts, including hardware, are be cleaned and adjusted to operate as designed without binding of deformation of members. Doors and covers centered in opening or frame. All contact surfaces fit tight and even without forcing or warping components.
- L. Pre-assemble items in shop to greatest extent possible to minimize field splicing and assembly. Disassemble units only as necessary for shipping and handling limitations. Clearly mark units for re-assembly and coordinated installation.
- M. No signs are to be manufactured until final sign message schedule and location review has been completed by the COR & forwarded to contractor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Protect products against damage during field handling and installation. Protect adjacent existing and newly placed construction, landscaping and finishes as necessary to prevent damage during installation. Paint and touch up any exposed fasteners and connecting hardware to match color and finish of surrounding surface.
- B. Mount signs in proper alignment, level and plumb according to the sign location plan and the dimensions given on elevation and sign location drawings. Where otherwise not dimensioned, signs shall be installed where best suited to provide a consistent appearance throughout the project. When exact position, angle, height or location is in doubt, contact COR for clarification.
- C. Contractor shall be responsible for all signs that are damaged, lost or stolen while materials are on the job site and up until the completion and final acceptance of the job.
- D. Remove or correct signs or installation work COR determines as unsafe or as an unsafe condition.

- E. At completion of sign installation, clean exposed sign surfaces. Clean and repair any adjoining surfaces and landscaping that became soiled or damaged as a result of installation of signs.
- F. Locate signs as shown on the Sign Location Plans.
- G. Certain signs may be installed on glass. A blank glass back up is required to be placed on opposite side of glass exactly behind sign being installed. This blank glass back up is to be the same size as sign being installed.
- H. Contractor will be responsible for verifying that behind each sign location there are no utility lines that will be affected by installation of signs. Any damage during installation of signs to utilities will be the sole responsibility of the Contractor to correct and repair.
- I. Furnish inserts and anchoring devices which must be set in concrete or other material for installation of signs. Provide setting drawings, templates, instructions and directions for installation of anchorage devices which may involve other trades.
- J. Enclose the information on printout.

3.2 SITE VISITS

- A. Site visits: 3 site visits shall be required by the sign contractor.
 - 1. Prior to submission of ID for site assessment and evaluation.
 - 2. Post award for the purpose of meeting with Owner and Project Manager.
 - 3. Final walk-through and punchlist.

- - - END - - -

SECTION 10 28 00 TOILET, BATH, AND LAUNDRY ACCESSORIES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies manufactured items usually used in dressing rooms, toilets, baths, locker rooms and at sinks in related spaces.
- B. Items Specified:
 - 1. Paper towel dispenser.
 - 2. Waste receptacles.
 - 3. Toilet tissue dispenser.
 - 4. Grab Bars.
 - 5. Clothes hooks, robe or coat.
- C. This section also specifies custom fabricated items used in toilets and related spaces.

1.2 RELATED WORK

- A. Color of finishes: Section 09 06 00, SCHEDULE FOR FINISHES
- B. Ceramic toilet and bath accessories: Section 09 30 13, CERAMIC TILING
- C. Custom fabricated accessories: Section 10 28 00, TOILET, BATH, AND LAUNDRY ACCESSORIES.
- D. Color of vinyl fabric: Section 09 06 00, SCHEDULE FOR FINISHES.
- E. Manufactured toilet and bath accessories: Section 10 28 00, TOILET, BATH, AND LAUNDRY ACCESSORIES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - 1. Each product specified.
 - 2. Paper towel dispenser and combination dispenser and disposal units.
 - 3. Metal framed mirrors, showing shelf where required, fillers, and design and installation of units when installed on ceramic tile wainscots and offset surfaces.
 - 4. Shower Curtain rods, showing required length for each location.
 - 5. Grab bars, showing design and each different type of anchorage.
 - 6. Medicine cabinets showing design and installation.
 - 7. Foot operated soap dispenser, showing anchorage and components.
 - 8. Show material and finish, size of members, and details of construction, installation and anchorage of mop racks.
- C. Manufacturer's Literature and Data:
 - 1. All accessories specified.

- 2. Show type of material, gages or metal thickness in inches, finishes, and when required, capacity of accessories.
- 3. Show working operations of spindle for toilet tissue dispensers.
- 4. Mop racks.
- D. Manufacturer's Certificates:
 - Attesting that soap dispensers are fabricated of material that will not be affected by liquid soap or aseptic detergents, Phisohex and solutions containing hexachlorophene.
 - 2. Anodized finish as specified.

1.4 QUALITY ASSURANCE

- A. Each product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified.
- B. Each accessory type shall be the same and be made by the same manufacturer.
- C. Each accessory shall be assembled to the greatest extent possible before delivery to the site.
- D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product.

1.5 PACKAGING AND DELIVERY

- A. Pack accessories individually to protect finish.
- B. Deliver accessories to the project only when installation work in rooms is ready to receive them.
- C. Deliver inserts and rough-in frames to site at appropriate time for building-in.
- D. Deliver products to site in sealed packages of containers; labeled for identification with manufacturer's name, brand, and contents.

1.6 STORAGE

- A. Store products in weathertight and dry storage facility.
- B. Protect from damage from handling, weather and construction operations before, during and after installation in accordance with manufacturer's instructions.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): A167-99(R2009).....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip.

VA Project No. 581-14-103 VA Medical Center, Huntington, WV VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration 100% CD: 03/28/14 A269-10.....Seamless and Welded Austenitic Stainless Steel Tubing for General Service A312/A312M-09.....Seamless and Welded Austenitic Stainless Steel Pipes A653/A653M-10.....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process B221-08.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes B456-03(R2009).....Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium C1036-06.....Flat Glass F446-85(R2009).....Consumer Safety Specification for Grab Bars and Accessories Installed in the Bathing Area. C. The National Association of Architectural Metal Manufacturers (NAAMM): AMP 500 Series.....Metal Finishes Manual D. American Welding Society (AWS): D10.4-86 (R2000).....Welding Austenitic Chromium-Nickel Stainless Steel Piping and Tubing E. Federal Specifications (Fed. Specs.): A-A-3002.....Mirrors, Glass FF-S-107C (2).....Screw, Tapping and Drive FF-S-107C.....Screw, Tapping and Drive. WW-P-541E(1).....Plumbing Fixtures (Accessories, Land Use) Detail Specification PART 2 - PRODUCTS

- 2.1 MATERIALS
 - A. Aluminum: ASTM B221, alloy 6063-T5 and alloy 6463-T5.
 - B. Stainless Steel:
 - Plate or sheet: ASTM A167, Type 302, 304, or 304L, except ASTM A176 where Type 430 is specified, 0.0299-inch thick unless otherwise specified.
 - 2. Tube: ASTM A269, Alloy Type 302, 304, or 304L.
 - C. Stainless Steel Tubing: ASTM A269, Grade 304 or 304L, seamless or welded.
 - D. Stainless Steel Pipe: ASTM A312; Grade TP 304 or TP 304L.
 - E. Steel Sheet: ASTM A653, zinc-coated (galvanized) coating designation G90.
 - F. Glass:
 - 1. ASTM C1036, Type 1, Class 1, Quality q2, for mirrors.

2.2 FASTENERS

- A. Exposed Fasteners: Stainless steel or chromium plated brass, finish to match adjacent surface.
- B. Concealed Fasteners: Steel, hot-dip galvanized (except in high moisture areas such as showers or bath tubs use stainless steel).
- C. Toggle Bolts: For use in hollow masonry or frame construction.
- D. Hex bolts: For through bolting on thin panels.
- E. Expansion Shields: Lead or plastic as recommended by accessory manufacturer for component and substrate for use in solid masonry or concrete.
- F. Screws:
 - 1. ASME B18.6.4.
 - 2. Fed Spec. FF-S-107, Stainless steel Type A.
- G. Adhesive: As recommended by manufacturer for products to be joined.

2.3 FINISH

- A. In accordance with NAAMM AMP 500 series.
- B. Anodized Aluminum:
 - 1. AA-C22A41 Chemically etched medium matte, with clear anodic coating, Class I Architectural, 0.7-mil thick.
- C. AA-M32 Mechanical finish, medium satin.
 - 1. Chromium Plating: ASTM B456, satin or bright as specified, Service Condition No. SC2.
 - 2. Stainless Steel: NAAMM AMP 503, finish number 4.
 - 3. Ferrous Metal:
 - a. Shop Prime: Clean, pretreat and apply one coat of primer and bake.
 - b. Finish: Over primer apply two coats of alkyd or phenolic resin enamel, and bake.
 - 4. Nylon Coated Steel: Nylon coating powder formulated for a fluidized bonding process to steel to provide a hard smooth, medium gloss finish, not less than 0.012-inch thick, rated as self-extinguishing when tested in accordance with ASTM D635.

2.4 FABRICATION - GENERAL

- A. Welding, AWS D10.4.
- B. Grind dress, and finish welded joints to match finish of adjacent surface.
- C. Form exposed surfaces from one sheet of stock, free of joints.
- D. Provide steel anchors and components required for secure installation.
- E. Form flat surfaces without distortion. Keep exposed surfaces free from scratches and dents. Reinforce doors to prevent warp or twist.

- F. Isolate aluminum from dissimilar metals and from contact with building materials as required to prevent electrolysis and corrosion.
- G. Hot-dip galvanized steel, except stainless steel, anchors and fastening devices.
- H. Shop assemble accessories and package with all components, anchors, fittings, fasteners and keys.
- I. Key items alike.
- J. Provide templates and rough-in measurements as required.
- K. Round and deburr edges of sheets to remove sharp edges.

2.5 PAPER TOWEL DISPENSERS

A. Government furnished.

2.6 WASTE RECEPTACLES

- A. Semi-recessed type, without doors. Fed. Spec WW-P-541, Type II.
- B. Fabricate of stainless steel.
- C. Form face frame from one piece.
- D. Provide removable waste receptacle of approximately (12 gallon) capacity, fabricated of stainless steel.
- E. Waste receptacle key locked in place.

2.7 TOILET TISSUE DISPENSERS

- A. Double roll surface mounted type.
- B. Mount on continuous backplate.
- C. Removable spindle ABS plastic or chrome plated plastic.
- D. Wood rollers are not acceptable.

2.8 GRAB BARS

- A. Fed. Spec WW-P-541/8B, Type IV, bars, surface mounted, Class 2, grab bars and ASTM F446.
- B. Fabricate with stainless steel:
 - Stainless steel: Grab bars, flanges, mounting plates, supports, screws, bolts, and exposed nuts and washers.
- C. Concealed mount.
- D. Bars:
 - 1. Fabricate from 1-1/2 inch outside diameter tubing.
 - a. Stainless steel, minimum 0.0478 inch thick.
 - Fabricate in one continuous piece with ends turned toward walls, except swing up and where grab bars are shown continuous around three sides of showers, bars may be fabricated in two sections, with concealed slip joint between.
 - 3. Continuous weld intermediate support to the grab bar.
- E. Flange for Concealed Mounting:

- Minimum of 0.1046 inch thick, approximately 3 inch diameter by 1/2 inch deep, with provisions for not less than three set screws for securing flange to back plate.
- 2. Insert grab bar through center of the flange and continuously weld perimeter of grab bar flush to back side of flange.

F. Back Plates:

- 1. Minimum 0.1046 inch thick metal.
- Fabricate in one piece, approximately 1/4 inch deep, with diameter sized to fit flange. Provide slotted holes to accommodate anchor bolts.
- 3. Furnish spreaders, through bolt fasteners, and cap nuts, where grab bars are mounted on partitions.

2.9 CLOTHES HOOKS-ROBE OR COAT

- A. Fabricate hook units either of chromium plated brass with a satin finish, or stainless steel, using 1/4 inch minimum thick stock, with edges and corners rounded smooth to the thickness of the metal, or 1/8 inch minimum radius.
- B. Fabricate each unit as a double hook on a single shaft, integral with or permanently fastened to the wall flange, provided with concealed fastenings.

2.10 MIRRORS

- A. Mirror Glass:
 - 1. Minimum 1/4 inch thick.
 - 2. Set mirror in a protective vinyl glazing tape.
 - 3. Use tempered glass for mirrors in Mental Health and Behavioral Nursing units.
- B. Back Plate:
 - Fabricate backplate for concealed wall hanging of either zinccoated, or cadmium plated 0.036 inch thick sheet steel, die cut to fit face of mirror frame, and furnish with theft resistant concealed wall fastenings.
 - 2. Use set screw type theft resistant concealed fastening system for mounting mirrors.
- C. Mounting Bracket:
 - 1. Designed to support mirror tight to wall.
 - 2. Designed to retain mirror with concealed set screw fastenings.

PART 3 - EXECUTION

3.1 PREPARATION

A. Before starting work notify COR in writing of any conflicts detrimental to installation or operation of units.

B. Verify with the COR the exact location of accessories.

3.2 INSTALLATION

- A. Set work accurately, in alignment and where shown. Items shall be plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Toggle bolt to steel anchorage plates in frame partitions or hollow masonry. Expansion bolt to concrete or solid masonry.
- C. Install accessories in accordance with the manufacturer's printed instructions and ASTM F446.
- D. Install accessories plumb and level and securely anchor to substrate.
- E. Install accessories in a manner that will permit the accessory to function as designed and allow for servicing as required without hampering or hindering the performance of other devices.
- F. Position and install dispensers, and other devices in countertops, clear of drawers, permitting ample clearance below countertop between devices, and ready access for maintenance as needed.
- G. Align mirrors, dispensers and other accessories even and level, when installed in battery.
- H. Install accessories to prevent striking by other moving, items or interference with accessibility.

3.3 SCHEDULE OF ACCESSORIES

A. As indicated on drawings.

3.4 CLEANING

A. After installation, clean as recommended by the manufacturer and protect from damage until completion of the project.

- - - E N D - - -

SECTION 21 05 11

COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 21.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 07 92 00, JOINT SEALANTS.
- E. Section 09 91 00, PAINTING.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

1.3 QUALITY ASSURANCE

- A. Products Criteria:
 - Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. See other specification sections for any exceptions.
 - Equipment Service: Products shall be supported by a service organization which maintains a complete inventory of repair parts and is located reasonably close to the site.
 - 3. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
 - Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
 - 5. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
 - Asbestos products or equipment or materials containing asbestos shall not be used.

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

- B. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Contracting Officers Representative (COR) prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- C. Guaranty: In GENERAL CONDITIONS.
- D. Supports for sprinkler piping shall be in conformance with NFPA 13.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Equipment and materials identification.
 - 2. Fire-stopping materials.
 - 3. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 4. Wall, floor, and ceiling plates.
- C. Coordination Drawings: Provide details of the following.
 - 1. Mechanical equipment rooms.
 - 2. Hangers, inserts, supports, and bracing.
 - 3. Pipe sleeves.
 - 4. Equipment penetrations of floors, walls, ceilings, or roofs.
- D. Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): A36/A36M-2001....Carbon Structural Steel A575-96....Steel Bars, Carbon, Merchant Quality, M-Grades R (2002)

,

E84-2003..... Standard Test Method for Burning Characteristics of Building Materials

E119-2000.....Standard Test Method for Fire Tests of Building Construction and Materials

C. National Fire Protection Association (NFPA):

90A-12..... Anstallation of Air Conditioning and Ventilating Systems

101-12.....Life Safety Code

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 3/16-inch high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- D. Valve Tags and Lists:
 - Valve tags: Engraved black filled numbers and letters not less than 1/2-inch high for number designation, and not less than 1/4-inch for service designation on 19 gage 1-1/2 inches round brass disc, attached with brass "S" hook or brass chain.
 - Valve lists: Typed or printed plastic coated card(s), sized 8-1/2 inches by 11 inches showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - 3. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.2 FIRESTOPPING

Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping.

2.3 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

2.4 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve one inch above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 1-1/2 inch angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 1-1/2 inch angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from this requirement must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- F. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- G. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- H. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.5 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the COR.

2.6 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 3/32-inch for floor plates. For wall and ceiling plates, not less than 0.025-inch for up to 3-inch pipe, 0.035inch for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Use also where insulation ends on exposed water supply pipe drop from overhead. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Coordinate location of piping, sleeves, inserts, hangers, and equipment. Locate piping, sleeves, inserts, hangers, and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly exposed materials and equipment.
- C. Concrete and Grout: Use concrete and shrink compensating grout 3000 psi minimum, specified in Section 03 30 53, CAST-IN-PLACE CONCRETE.
- D. Install gages, valves, and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- E. Work in Existing Building:

- 1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the COR. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the COR for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After COR's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
- F. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints.
- G. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 STARTUP AND TEMPORARY OPERATION

Startup equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.3 OPERATING AND PERFORMANCE TESTS

A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.

21 05 11 - 6

- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.4 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 SCOPE OF WORK

- A. Design, installation and testing shall be in accordance with NFPA 13 except for specified exceptions.
- B. The design and installation of a hydraulically calculated automatic wet system complete and ready for operation, for all renovated portions of Building, including the mechanical equipment rooms, telephone rooms, offices, and toilet rooms.
- C. Modification of the existing sprinkler system as indicated on the drawings and as further required by these specifications.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 07 84 00, FIRESTOPPING, Treatment of penetrations through rated enclosures.
- C. Section 09 91 00, PAINTING.
- D. Section 28 31 00, FIRE DETECTION AND ALARM, Connection to fire alarm of flow switches, pressure switches and valve supervisory switches.
- E. Section 21 05 11 COMMON WORK RESULTS FOR FIRE SUPPRESSION

1.3 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of West Virginia fire sprinkler contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL and approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA.
- C. Submittals: Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer practicing in the field of Fire Protection Engineering. As Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase

or delivery to the job site. Suitably bind submittals in notebooks or binders and provide index referencing the appropriate specification section. Submittals shall include, but not be limited to, the following: 1. Qualifications:

- a. Provide a copy of the installing contractors State Contractors License.
- b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer practicing in the field of Fire Protection Engineering.
- Drawings: Submit detailed 1/8 inch scale (minimum) working drawings conforming to NFPA 13. Include a site plan showing the piping to the water supply test location.
- 3. Manufacturers Data Sheets:
 - a. Provide for materials and equipment proposed for use on system. Include listing information and installation instructions in data sheets. Where data sheet describes items in addition to that item being submitted, clearly identify proposed item on the sheet.
- 4. Calculation Sheets: Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of NFPA 13.
- 5. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Submittals shall include, but not be limited to, the following:
 - a. One complete set of reproducible as-built drawings showing the installed system with the specific interconnections between the waterflow switch or pressure switch and the fire alarm equipment.
 - b. Complete, simple, understandable, step-by-step, testing instructions giving recommended and required testing frequency of all equipment, methods for testing all equipment, and a complete trouble shooting manual. Provide maintenance instructions on replacing any components of the system including internal parts, periodic cleaning and adjustment of the equipment and components with information as to the address and telephone number of both the manufacturer and the local supplier of each item.
 - c. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13.

- d. Certificates shall document all parts of the installation.
- e. Instruction Manual: Provide one copy of the instruction manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser.
- D. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13. Recommendations in appendices shall be treated as requirements.
 - Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
 - 2. Sprinkler Protection: To determining spacing and sizing, apply the following coverage classifications:
 - Light Hazard Occupancies: offices, conference rooms, toilet rooms, and common areas.
 - b. Request clarification from the Government for any hazard classification not identified.
 - 3. Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.
 - 4. Water Supply: Base sprinkler system hydraulic design on existing fire pump hydraulic flow test data of (see VAMC-Huntington for current pump test data):
 - a. Pump Location: Building 1S basement mechanical room
 - b. Pump Elevation: 572 ft
 - c. Suction pressure: 62 psi
 - d. Discharge pressure: 140 psi
 - e. Rated Pump Capacity: 500 gpm
 - f. Date: September 28, 2013
 - 5. Zoning:
 - a. Each sprinkler zone provided with a control valve, flow switch and a test and drain assembly with pressure gauge.
 - b. Sprinkler zones shall conform to the smoke barrier zones shown on the drawings.
 - c. Provide seismic protection in accordance with NFPA 13.

1.4 APPLICABLE PUIBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): 13-2012.....Installation of Sprinkler Systems 101-12..... Safety to Life from Fire in Buildings and Structures (Life Safety Code) 170-2012.....Fire Safety Symbols
- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory - 2013
- D. Factory Mutual Engineering Corporation (FM): Approval Guide 2013
- E. International Building Code 2012
- F. Foundation for Cross-Connection Control and Hydraulic Research-2005

PART 2 PRODUCTS

2.1 PIPING & FITTINGS

A. Sprinkler systems in accordance with NFPA 13. Use nonferrous piping in MRI Scanning Rooms.

2.2 VALVES

- A. Valves in accordance with NFPA 13.
- B. Do not use quarter turn ball valves for 2 inch or larger drain valves.
- C. The wet system control valve shall be a listed indicating type valve. Control valve shall be UL Listed and FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI. (No Substitutions Allowed).

2.3 SPRINKLERS

- A. All sprinklers except "institutional" type sprinklers shall be FM approved. Provide quick response sprinklers in all areas, except where specifically prohibited by their listing or approval.
- B. Temperature Ratings: In accordance with NFPA 13.

2.4 SPRINKLER CABINET

Provide sprinkler cabinet with the required number of sprinkler heads of all ratings and types installed, and a sprinkler wrench for each system. Locate adjacent to the riser. Sprinkler heads shall be installed in center of tile or center to center.

2.5 IDENTIFICATION SIGNS/HYDRAULIC PLACARDS

Plastic, steel or aluminum signs with white lettering on a red background with holes for easy attachment. Enter pertinent data for each system on the hydraulic placard.

21 13 13 - 4

2.6 SWITCHES:

- A. Contain in a weatherproof die cast/red baked enamel, oil resistant, aluminum housing with tamper resistant screws, 1/2 inch conduit entrance and necessary facilities for attachment to the valves. Provide two SPDT switches rated at 2.5 amps at 24 VDC.
- B. Water flow Alarm Switches: Mechanical, non-coded, non-accumulative retard and adjustable from 0 to 60 seconds minimum. Set flow switches at an initial setting between 20 and 30 seconds.
- D. Valve Supervisory Switches for Ball and Butterfly Valves: May be integral with the valve.

2.7 GAUGES

Provide gauges as required by NFPA 13.

2.8 PIPE HANGERS AND SUPPORTS

Supports, hangers, etc., of an approved pattern placement to conform to NFPA 13. System piping shall be substantially supported to the building structure. The installation of hangers and supports shall adhere to the requirements set forth in NFPA 13, Standard for Installation of Sprinkler Systems. Materials used in the installation or construction of hangers and supports shall be listed and approved for such application. Hangers or supports not specifically listed for service shall be designed and bear the seal of a professional engineer.

2.9 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates for exposed piping passing though walls, floors or ceilings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Install concealed piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, such as in operating and radiology rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. Locate piping in stairways as near to the ceiling as possible to prevent tampering by unauthorized personnel, and to provide

a minimum headroom clearance of 7'6". To prevent an obstruction to egress, provide piping clearances in accordance with NFPA 101.

- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Drains: Pipe drains to discharge at safe points outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 13.
- E. Supervisory Switches: Provide supervisory switches for sprinkler control valves.
- F. Waterflow Alarm Switches: Install waterflow switch and adjacent valves in easily accessible locations.
- G. Inspector's Test Connection: Install and supply in conformance with NFPA 13, locate in a secured area, and discharge to the exterior of the building.
- H. Affix cutout disks, which are created by cutting holes in the walls of pipe for flow switches and non-threaded pipe connections to the respective waterflow switch or pipe connection near to the pipe from where they were cut.
- I. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.
- J. Provide pressure gauge at each water flow alarm switch location and at each main drain connection.
- K. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- L. The drain piping shall not be restricted or reduced and shall be of the same diameter as the drain collector.
- M. Securely attach identification signs to control valves, drain valves, and test valves. Locate hydraulic placard information signs at each sectional control valve where there is a zone water flow switch.
- N. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- O. Interruption of Service: There shall be no interruption of existing sprinkler protection, water, electric, or fire alarm services without prior permission of Contracting Officer. Contractor shall develop

interim fire protection program where interruptions involve occupied spaces. Submit request at least one week prior to planned interruption.

3.2 INSPECTION AND TEST

- A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, including the fire department connections, as specified in NFPA 13, in the presence of the Contracting Officers Technical Representative (COTR) or his designated representative. Test and flush underground water line prior to performing these hydrostatic tests.
- B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise Contracting Officers Representative (COR) to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final acceptance. Include the operation of all features of the systems under normal operations in test.

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COR.

- - - E N D - - -

SECTION 22 05 11

COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - 2. Option or optional: Contractor's choice of an alternate material or method.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations.
- E. Section 07 92 00, JOINT SEALANTS.
- F. Section 09 91 00, PAINTING.
- G. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.

1.3 QUALITY ASSURANCE

A. Products Criteria:

- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years.
- 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 100 miles of the project. These organizations shall come to the site and provide acceptable service to restore operations within four hours of receipt of notification by phone, email or fax in event of an emergency, such as the shut-down of equipment; or within 24 hours in a non-emergency. Names, mail and e-

mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.

- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 22 shall conform to referenced codes and standards as required by the specifications. Local codes and amendments enforced by local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Representative (COR).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 6. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 8. Asbestos products or equipment or materials containing asbestos shall not be used.
- B. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - 1. Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Oualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".

- 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- 4. All welds shall be stamped according to the provisions of the American Welding Society.
- C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- D. Execution (Installation, Construction) Quality:
 - 1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract drawings and specifications shall be referred to the COR for resolution. Written hard copies or computer files of manufacturer's installation instructions shall be provided to the COR at least two weeks prior to commencing installation of any item.
 - 2. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved.
- E. Guaranty: Warranty of Construction, FAR clause 52.246-21.
- F. Plumbing Systems: IPC, International Plumbing Code.

1.4 SUBMITTALS

- A. Submittals shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMNON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and

associated systems, including accessibility, are equivalent to that required by the contract.

- E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Upon request by Government, lists of previous installations for selected items of equipment shall be provided. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references.
- G. Manufacturer's Literature and Data: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - 1. Equipment and materials identification.
 - 2. Fire stopping materials.
 - 3. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 4. Wall, floor, and ceiling plates.
- H. Coordination Drawings: Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show the proposed location and adequate clearance for all equipment, piping, pumps, valves and other items. All valves, trap primer valves, water hammer arrestors, strainers, and equipment requiring service shall be provided with an access door sized for the complete removal of plumbing device, component, or equipment. Equipment foundations shall not be installed until equipment or piping until layout drawings have been approved. Detailed layout drawings shall be provided for all piping systems. In addition, details of the following shall be provided.
 - 1. Mechanical equipment rooms.
 - 2. Hangers, inserts, supports, and bracing.
 - 3. Pipe sleeves.
 - 4. Equipment penetrations of floors, walls, ceilings, or roofs.

- I. Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided.

1.5 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - 2. Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost to the Government.
 - 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
 - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - 1. Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC), latest edition. All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.
 - 4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): A36/A36M-2008.....Standard Specification for Carbon Structural

Steel

A575-96 (R 2007).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades R (2002)

E84-2005.....Standard Test Method for Surface Burning Characteristics of Building Materials

E119-2008a.....Standard Test Methods for Fire Tests of Building Construction and Materials

- C. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc:
 - SP-58-02.....Pipe Hangers and Supports-Materials, Design and Manufacture

SP 69-2003 (R 2004).....Pipe Hangers and Supports-Selection and Application

D..International Code Council, (ICC): IBC-12,International Building Code IPC-12,International Plumbing Code

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. STANDARDIZATION OF COMPONENTS SHALL BE MAXIMIZED TO REDUCE SPARE PART requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - 1. All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.

- 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.3 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 3/16-inch high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, fans, etc. shall be identified.
- C. Valve Tags and Lists:
 - 1. Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
 - 2. Valve tags: Engraved black filled numbers and letters not less than 1/2-inch high for number designation, and not less than 1/4-inch for service designation on 19 gage, 1-1/2 inches round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized 8-1/2 inches by 11 inches shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. A copy of the valve list shall be mounted in picture frames for mounting to a wall.

4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling.

2.4 FIRE STOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for pipe insulation.

2.5 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.6 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC), latest edition. Submittals based on the International Building Code (IBC), latest edition, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in a state where the project is located. The Support system of suspended equipment over 500 pounds shall be submitted for approval of the COR in all cases. See these specifications for lateral force design requirements.
- B. Type Numbers Specified: MSS SP-58. For selection and application refer to MSS SP-69.
- C. For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.
 - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 4 inches thick when approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 4 inches thick when approved by the COR for each job condition.
- D. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 7/8-inch outside diameter.
- E. For Attachment to Wood Construction: Wood screws or lag bolts.

- F. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 1-1/2 inches minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- G. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 1-5/8 inches by 1-5/8 inches, No. 12 gage, designed to accept special spring held, hardened steel nuts. Trapeze hangers are not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 200 pounds.
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 1/4-inch U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 1/2-inch galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- H. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.
 - 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - 1) Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with isolation tape to prevent electrolysis.

- 2) For vertical runs use epoxy painted or plastic coated riser clamps.
- 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
- 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- 2. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.
 - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
 - d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gage) minimum.
- I. Pre-insulated Calcium Silicate Shields:
 - 1. Provide 360 degree water resistant high density 140 psi compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting cold water shall have insulation that extends a minimum of one inch past the sheet metal.
 - b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support load, shields shall have one or more of the following features: structural inserts 600 psi compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
 - 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.7 PIPE PENETRATIONS

A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.

- B. Pipe penetration sleeve materials shall comply with all fire stopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 1 inch above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 1-1/2 inch angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 1-1/2 inch angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- F. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel Sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
- G. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- H. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 1 inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 1 inch in diameter. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- I. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.8 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening

to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.

- B. Thickness: Not less than 3/32-inch for floor plates. For wall and ceiling plates, not less than 0.025-inch for up to 3 inch pipe, 0.035inch for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.9 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review. Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.
- C. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:

- 1. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
- 2. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
- 3. Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
- F. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- G. Protection and Cleaning:
 - 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- H. Concrete and Grout: Concrete and shrink compensating grout 3000 psi minimum shall be used for all pad or floor mounted equipment. Gages, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- I. Work in Existing Building:

- 1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.
- J. Work in bathrooms, restrooms, housekeeping closets: All pipe penetrations behind escutcheons shall be sealed with plumbers putty.
- K. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints.
- L. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Para. 3.1 shall apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to required hanger spacing, and then suspend equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of COR.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 1/2-inch clearance between pipe or piping covering and adjacent work shall be provided.
- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC), latest edition, and these specifications.
- E. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.

3. Tubing and capillary systems shall be supported in channel troughs.

- F. Floor Supports:
 - 1. Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves,

anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.

3.4 PLUMBING SYSTEMS DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating plant, cleanliness and safety shall be maintained. The plant shall be kept in an operating condition. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. All work shall be performed in accordance with recognized fire protection standards. Inspections will be made by personnel of the VA Medical Center, and the Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government

property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.5 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - 1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
 - 2. The following Material And Equipment shall NOT be painted:: a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gages and thermometers.
 - j. Glass.
 - k. Name plates.
 - 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint obtained from manufacturer or computer matched.
 - 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
 - 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.

6. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this.

3.6 IDENTIFICATION SIGNS

A. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.7 STARTUP AND TEMPORARY OPERATION

A. Startup of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.8 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests such systems respectively during first actual seasonal use of respective systems following completion of work.

3.9 OPERATION AND MAINTENANCE MANUALS

- A. Provide four bound copies. The Operations and maintenance manuals shall be delivered to COR not less than 30 days prior to completion of a phase or final inspection.
- B. All new and temporary equipment and all elements of each assembly shall be included.
- C. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- D. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions

and reasons for precautions shall be included in the Operations and Maintenance Manual.

- E. Lubrication instructions, type and quantity of lubricant shall be included.
- F. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- G. Set points of all interlock devices shall be listed.
- H. Trouble-shooting guide for the control system troubleshooting guide shall be inserted into the Operations and Maintenance Manual.
- I. Emergency procedures.

3.10 INSTRUCTIONS TO VA PERSONNEL

Instructions shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section describes the requirements for general-duty valves for domestic water and sewer systems.

1.2 RELATED WORK

A. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Valves.
 - 2. All items listed in Part 2 Products.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): A536-84(R 2004) Standard Specification for Ductile Iron Castings
- C. International Code Council (ICC)

IPC-12 International Plumbing Code

D. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS):

SP-25-98.....Standard Marking System for Valves, Fittings,

Flanges and Unions SP-67-02a (R 2004) Butterfly

Valve of the Single flange Type (Lug Wafer)

- SP-70-06.....Cast Iron Gate Valves, Flanged and Threaded Ends.
- SP-72-99.....Ball Valves With Flanged or Butt Welding For General Purpose
- SP-80-03.....Bronze Gate, Globe, Angle and Check Valves.

SP-110-96.....Ball Valve Threaded, Socket Welding, Solder

Joint, Grooved and Flared Ends

1.5 DELIVERY, STORAGE, AND HANDLING

A. Valves shall be prepared for shipping as follows:

- 1. Protect internal parts against rust and corrosion.
- 2. Protect threads, flange faces, grooves, and weld ends.
- 3. Set angle, gate, and globe valves closed to prevent rattling.
- 4. Set ball and plug valves open to minimize exposure of functional surfaces.
- 5. Set butterfly valves closed or slightly open.
- 6. Block check valves in either closed or open position.
- B. Valves shall be prepared for storage as follows:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature.
- C. A sling shall be used for large valves. The sling shall be rigged to avoid damage to exposed parts. Hand wheels or stems shall not be used as lifting or rigging points.

PART 2 - PRODUCTS

2.1 VALVES

- A. Asbestos packing and gaskets are prohibited.
- B. Bronze valves shall be made with dezincification resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc shall not be permitted.
- C. Valves in insulated piping shall have 2 inch stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied.
- D. Ball valves, pressure regulating valves, gate valves, globe valves, and plug valves used to supply potable water to meet NSF 61 requirements.
- E. Shut-off:
 - 1. Cold, Hot and Re-circulating Hot Water:
 - a. 2 inches and smaller: Ball, MSS SP-72, SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 150 psig and a CWP rating of 600 psig. The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be soldered.

- F. Balancing:
 - 1. Hot Water Re-circulating, 3 inches and smaller manual balancing valve shall be of bronze body, brass ball construction with glass and carbon filled TFE seat rings and designed for positive shutoff. Manual balancing valve shall have differential pressure read-out ports across valve seat area. Read out ports shall be fitting with internal EPT inserts and check valves. Valve body shall have $\frac{1}{4}$ " NPT tapped drain and purge port. Valves shall have memory stops that allow the valve to close for service and then reopened to set point without disturbing the balance position. All valves shall have calibrated nameplates to assure specific valve settings.
- G. Check:
 - 1. Check valves less than 3 inches and smaller) shall be class 125, bronze swing check valves with non metallic Buna-N disc. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B 62, solder joints, and PTFE or TFE disc.
- H. Globe:
 - 1. 80 mm or DN80 (3 inches) or smaller: Class 150, bronze globe valve with non metallic disc. The globe valve shall meet MSS SP-80, Type 2 standard. The globe valve shall have a CWP rating of 2070 kPa (300 psig). The valve material shall be bronze with integral seal and union ring bonnet conforming to ASTM B 62 with solder ends, copper-silicon bronze stem, TPFE or TFE disc, malleable iron hand wheel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and cleanliness.

D. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe
- D. Valves shall be installed in a position to allow full stem movement.
- E. Check valves shall be installed for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.

3.3 ADJUSTING

A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves shall be replaced if persistent leaking occurs.

- - E N D - - -

SECTION 22 11 00 FACILITY WATER DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION

A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING.
- B. Section 09 91 00, PAINTING.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- D. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, PIPE INSULATION.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. All items listed in Part 2 Products.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI):

American Society of Mechanical Engineers (ASME): (Copyrighted Society) A13.1....of Piping Systems B16.15-2006Cast Copper Alloy Threaded Fittings Classes 125 and 250 B16.18-2001 (R2005)....Cast Copper Alloy Solder-Joint Pressure Fittings B16.22-2012.....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings

- B16.51-2011.....Copper and Copper Alloy Press-Connect Fittings
- NSF/ANSI 61-2012.....Drinking Water System Components Health Effects
- C. American Society for Testing and Materials (ASTM): B32-08.....Solder Metal B61-08.....Steam or Valve Bronze Castings

	B62-09 Metal Castings
	B75/B75M-11Seamless Copper Tube
	B88-09Beamless Copper Water Tube
	B584-12aGopper Alloy Sand Castings for General
	Applications
	B687-99(2011)Brass, Copper, and Chromium-Plated Pipe Nipples
	D2000-12 Aubber Products in Automotive Applications
	D4101-11 Propylene Plastic Injection and Extrusion
	Materials
	E1120-08Liquid Chlorine
	E1229-08Calcium Hypochlorite
D.	American Water Works Association (AWWA):
	C651-05Disinfecting Water Mains
Ε.	American Welding Society (AWS):
	A5.8/A5.8M-2011Filler Metals for Brazing
F.	International Plumbing Code
	International Plumbing Code - 2012
G.	American Society of Sanitary Engineers (ASSE):
	ANSI/ASSE 1001-2008Pipe Applied Atmospheric Type Vacuum Breakers
	ANSI/ASSE 1010-2004Water Hammer Arresters
	ANSI/ASSE 1018-2001Trap Seal Primer Valves - Potable Water
	Supplied
	ANSI/ASSE 1020-2004Pressure Vacuum Breaker Assembly
н.	Plumbing and Drainage Institute (PDI):
	PDI WH-201 2010Water Hammer Arrestor
1.5 QUALITY ASSURANCE	
Α.	A certificate of Welder's certification shall be submitted prior to
	welding of steel piping. The certificate shall be current and no more
	than one year old.

- B. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be by the same manufacturer as the groove components.
- C. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.6 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

2.1 ABOVE GROUND (INTERIOR) WATER PIPING

- A. Pipe: Copper tube, ASTM B88, Type K or L, drawn. B. Fittings for Copper Tube:
 - 1. Wrought copper or bronze castings conforming to ANSI B16.18 and B16.22. Unions shall be bronze, MSS SP72 & SP 110, Solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
 - 2. Mechanical press-connect fittings for copper pipe and tube shall conform to the material and sizing requirements of ASME B16.51, NSF/ANSI 61 approved, 2 inch and smaller mechanical press-connect fittings, double pressed type, with EPDM (ethylene propylene diene monomer) non-toxic synthetic rubber sealing elements and un-pressed fitting identification feature.
 - 3. Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. Braze joints.
- B. Adapters: Provide adapters for joining screwed pipe to copper tubing.
- C. Solder: ASTM B32 Composition Sb5 HA or HB. Provide non-corrosive flux.
- D. Brazing alloy: AWS A5.8, Classification BCuP.

2.2 EXPOSED WATER PIPING

- A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. Pipe: Fed. Spec. WW-P-351, standard weight.
 - 2. Fittings: ANSI B16.15 cast bronze threaded fittings with chrome finish, (125 and 250).
 - 3. Nipples: ASTM B 687, Chromium-plated.
 - 4. Unions: Mss SP-72, SP-110, Brass or Bronze with chrome finish. Unions 2-1/2 inches and larger shall be flange type with approved gaskets.

B. Unfinished Rooms, Mechanical Rooms and Kitchens: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

2.3 STRAINERS

- A. Provide on high pressure side of pressure reducing valves, on suction side of pumps, on inlet side of indicating and control instruments and equipment subject to sediment damage and where shown on drawings. Strainer element shall be removable without disconnection of piping.
- B. Water: Basket or "Y" type with easily removable cover and brass strainer basket.
- C. Body: Smaller than 3 inches, brass or bronze; 3 inches and larger, cast iron or semi-steel.

2.4 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between ferrous and non-ferrous pipe.

2.5 STERILIZATION CHEMICALS

- A. Hypochlorite: ASTM E1120-08
- B. Liquid Chlorine ASTM: E1229-08

2.6 WATER HAMMER ARRESTER:

- A. Closed copper tube chamber with permanently sealed 60 psig air charge above a Double O-ring piston. Two high heat Buna-N O-rings pressure packed and lubricated with FDA approved silicone compound. All units shall be designed in accordance with ASSE 1010 for sealed wall installations without an access panel. Size and install in accordance with Plumbing and Drainage Institute requirements (PDI WH 201). Provide water hammer arrestors at:
 - 1. All solenoid valves.
 - 2. All groups of two or more flush valves.
 - 3. All quick opening or closing valves.
 - 4. All medical washing equipment.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the International Plumbing Code and the following:
 - 1. Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.

- 2. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to full size after cutting.
- 3. All pipe runs shall be laid out to avoid interference with other work.
- 4. Install union and shut-off valve on pressure piping at connections to equipment.
- 5. Pipe Hangers, Supports and Accessories:
 - a. All piping shall be supported per the International Plumbing Code.
 - b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with red lead or zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
 - c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1) Solid or split unplated cast iron.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.
 - 5) Concrete Inserts: "Universal" or continuous slotted type.
 - 6) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 7) Riser Clamps: Malleable iron or steel.
 - 8) Rollers: Cast iron.
 - 9) Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
 - 10) Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (min.) metal protection shield Centered on and welded to the hanger and support. The shield shall be 4 inches in length and be 16 gauge steel. The shield shall be sized for the insulation.
 - 11) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 20 feet for cast iron pipe additional support shall be provided

in the center of that span. Provide all necessary auxiliary steel to provide that support.

- 12) With the installation of each flexible expansion joint, provide piping restraints for the upstream and downstream section of the piping at the flexible expansion joint. Provide calculations supporting the restraint length design and type of selected restraints.
- 6. Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- 7. Penetrations:
 - a. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00. Completely fill and seal clearances between raceways and openings with the fire stopping materials.
 - b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- 8. Mechanical press-connect fitting connections shall be made in accordance with the manufacturer's installation instructions. Depth of insertion must be marked on the tube prior to inserting the tube into the fitting. Ensure the tube is completely inserted to the fitting stop (appropriate depth) and squared with the fitting prior to applying the pressing jaws onto the fitting. The joints shall be pressed using the tool(s) approved by the manufacturer. Minimum distance between fittings shall be in accordance with the manufacturer's requirements. When the pressing cycle is complete, visually inspect the joint to ensure the tube has remained fully inserted, as evidenced by the visible insertion mark.
- B. Piping shall conform to the following:
 - 1. Domestic Water:
 - a. Grade all lines to facilitate drainage. Provide drain valves at bottom of risers and all low points in system. Design domestic hot water circulating lines with no traps.

b. Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above.

3.2 TESTS

- A. General: Test system either in its entirety or in sections. Submit testing plan to COR 14 days prior to test date.
- B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 100 psi gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested.
- C. All Other Piping Tests: Test new installed piping under 1 1/2 times actual operating conditions and prove tight.

3.3 STERILIZATION

- A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651.
- B. Use liquid chlorine or hypochlorites for sterilization.

- - - E N D - - -

SECTION 22 13 00

FACILITY SANITARY AND VENT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- B. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- D. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Pipe Insulation.
- E. Section 07 92 00 Joint Sealants: Sealant products.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Piping.
 - 2. Cleanouts.
 - 3. All items listed in Part 2 Products.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): (Copyrighted Society) A13.1-07......Scheme for Identification of Piping Systems B16.3-06.....Malleable Iron Threaded Fittings, Classes 150 and 300. B16.4-06..... Standard for Grey Iron Threaded Fittings Classes 125 and 250 B16.12-98 (R 2006).....Cast Iron Threaded Drainage Fittings
 - B16.15-06.....Cast Bronze Threaded Fittings, Classes 125 and

250

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

C. American Society for Testing and Materials (ASTM): A47/A47M-99 (R 2004)....Standard Specification for Steel Sheet, Aluminum Coated, by the Hot Dip Process A74-06.....Standard Specification for Cast Iron Soil Pipe and Fittings A183-03.....Standard Specification for Carbon Steel Track Bolts and Nuts A536-84(R 2004).....Standard Specification for Ductile Iron Castings B32-08.....Standard Specification for Solder Metal B75-02..... Standard Specification for Seamless Copper Tube B306-02..... Standard Specification for Copper Drainage Tube (DWV) B584-06a.....Standard Specification for Copper Alloy Sand Castings for General Applications C564-03a.....Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings D2000-08.....Standard Classification System for Rubber Products in Automotive Applications D. International Code Council: IPC-12..... International Plumbing Code E. Cast Iron Soil Pipe Institute (CISPI): Sanitary and Storm Drain, Waste, and Vent Piping Applications 310-04..... Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications F. American Society of Sanitary Engineers (ASSE): 1018-01..... Trap Seal Primer Valves - Potable, Water Supplied G. Plumbing and Drainage Institute (PDI): PDI WH-201.....Water Hammer Arrestor PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

A. Cast iron waste, drain, and vent pipe and fittings

1. Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:

a. interior waste and vent piping above grade.

- 2. Cast iron Pipe shall be bell and spigot or hubless (plain end or nohub or hubless).
- 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI Standard 301, ASTM A-888, or ASTM A-74.
- 4. Joints for hubless pipe and fittings shall conform to manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM Standard C-564 or be installed with lead and oakum.
- B. Copper Tube, (DWV):
 - 1. Copper DWV tube sanitary waste, drain and vent pipe may be used for piping above ground, except for urinal drains.
 - 2. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
 - 3. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME 16.29.
 - 4. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.

2.2 EXPOSED WASTE PIPING

- A. Full iron pipe size chrome plated brass piping shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. The Pipe shall meet Fed. Spec. WW-P-351, standard weight.
 - 2. The Fittings shall conform to ANSI B16.15, cast bronze threaded fittings with chrome finish, (125 and 250).
 - 3. Nipples shall conform to ASTM B 687, Chromium-plated.
 - 4. Unions shall be brass or bronze with chrome finish. Unions 2-1/2 inches and larger shall be flange type with approved gaskets.
- B. In unfinished Rooms such as mechanical Rooms and Kitchens, Chrome-plated brass piping is not required. The pipe materials specified under the paragraph "Sanitary Waste, Drain, and Vent Piping"

can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 09 91 00, PAINTING.

2.3 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. Transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
 - 2. For PVC soil pipes, the sleeve material shall be elastomeric seal or PVC, conforming to ASTM F 477 or ASTM D5926.
 - 3. For dissimilar pipes, sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 125 psig at a minimum temperature of 180°F. The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 150 psig. The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F 1545 with a pressure rating of 300 psig at 225°F. The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.4 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 4 inches; and not less than 4 inches for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum clearance of 24 inches shall be provided for clearing a clogged sanitary line.
- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside calk or

spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 2 inches. When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated on drawings and at every building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty type.

- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 24 inches above the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel-bronze square frame and stainless steel cover with minimum opening of 6 by 6 inches shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without disturbing concealed pipe, shall be accepted as a cleanout equivalent providing the opening to be used as a cleanout opening is the size required.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp.

2.6 TRAPS

Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as pipe connected to. Slip joints are not permitted on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture.

2.9 WATERPROOFING

A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 2 inches above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproof caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
- B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.
- G. Unless specifically indicated on the drawings, the minimum slope shall be 2% slope.
- H. The piping shall be installed free of sags and bends.
- I. Seismic restraint shall be installed where required by code.
- J. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of

different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

- K. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- L. Aboveground copper tubing shall be installed according to CDA's "Copper Tube Handbook".

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service
 - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.
- E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead free alloy solder conforming to ASTM B32 shall be used.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES:

A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and

these specifications. Where conflicts arise between these the code and Section 22 05 11, the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.

- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. NPS 1-1/2 inch to NPS 2 inch: 60 inches with 3/8 inch rod.
 - 2. NPS 3 inch: 60 inches with ½ inch rod.
 - 3. NPS 4 to NPS 5: 60 inches with 5/8 inch rod.
 - 4. NPS 6 inch to NPS 8 inch: 60 inches with ¾ inch rod.
- E. The maximum spacing for plastic pipe shall be 4 feet.
- F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 15 feet.
- G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable floor rests and base flanges shall be steel.
 - 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 7. Riser clamps shall be malleable iron or steel.
 - 8. Rollers shall be cast iron.
 - 9. See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- H. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 20

feet for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.

- I. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- J. Penetrations:
 - 1. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - 2. Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- K. Piping shall conform to the following:
 - 1. Waste and Vent Drain to main stacks:

Pipe Size	Minimum Pitch
3 inches and smaller	2%
4 inches and larger	1%

2. Exhaust vents shall be extended separately through roof. Sanitary vents shall not connect to exhaust vents.

3.5 TESTS

- A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.
- B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 10 foot head of water. In testing successive sections, test at least upper

10 feet of next preceding section so that each joint or pipe except upper most 10 feet of system has been submitted to a test of at least a 10 foot head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.

- 2. For an air test, an air pressure of 5 psig gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the air test.
- 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.
- 3. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 1 inch of water with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce (2 ounces) of peppermint into each line or stack.

- - - E N D - - -

SECTION 22 14 00 FACILITY STORM DRAINAGE

PART 1 - GENERAL

1.1 DESCRIPTION

This section describes the requirements for storm drainage systems, including piping and all necessary accessories as designated in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- B. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- D. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Pipe Insulation.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Piping.
 - 2. Cleanouts.
 - 3. All items listed in Part 2 Products.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI).
- C. American Society of Mechanical Engineers (ASME): (Copyrighted Society) A112.21.2m-83.....Roof Drains A13.1-07.....Scheme for Identification of Piping Systems B16.3-06......Malleable Iron Threaded Fittings, Classes 150 and 300.
 - B16.9-07.....Factory-Made Wrought Steel Butt welding Fittings
 - B16.11-05.....Forged Steel Fittings, Socket-Welding and Threaded

B16.12-98 (R 2006).....Cast Iron Threaded Drainage Fittings B16.15-06).....Cast Bronze Threaded Fittings, Class 125 and 250 B16.18-01 (R 2005).....Cast Copper Alloy Solder-Joint Pressure Fittings B16.22-01 (R 2005).....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings D. American Society for Testing and Materials (ASTM): A47-99 (R 2004).....Standard Specification for Steel Sheet, Aluminum Coated, by the Hot-Dip Process A74-06.....Standard Specification for Cast Iron Soil Pipe and Fittings A183-03).....Standard Specification for Carbon Steel Track Bolts and Nuts A536-84(R 2004).....Standard Specification for Ductile Iron Castings A733-03.....Standard Specification for Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples B32-04.....Standard Specification for Solder Metal B61-08..... Standard Specification for Steam or Bronze Castings B62-02.....Standard Specification for Composition Bronze or Ounce Metal Castings B75-02.....Standard Specification for Seamless Copper Tube B88-03.....Standard Specification for Seamless Copper Water Tube B306-02.....Standard Specification for Copper Drainage Tube (DWV) B584-08.....Standard Specification for Copper Alloy Sand Castings for General Applications B687-99.....for Brass, Copper, and Chromium-Plated Pipe Nipples C564-06a.....Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings D2000-08.....Standard Classification System for Rubber Products in Automotive Applications

- E. American Welding Society (AWS): A5.8-04.....Specification for Filler Metals for Brazing and Braze Welding
- F. International Code Council (ICC): IPC-12..... International Plumbing Code

G. Cast Iron Soil Pipe Institute (CISPI):

Sanitary and Storm Drain, Waste, and Vent Piping Applications

310-04.....Couplings for Use in Connection with Hubless Cast Iron Soil and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications

H. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS):

SP-72-99.....Standard for Ball Valves with Flanged or Butt Welding For General Purpose

SP-110-96.....Ball Valve Threaded, Socket Welding, Solder Joint, Grooved and Flared Ends

PART 2 - PRODUCTS

2.1 STORM WATER DRAIN PIPING

- A. Cast Iron Storm Pipe and Fittings:
 - 1. Cast iron storm pipe and fittings shall be used for the following applications:
 - a. Interior storm piping above grade.
 - b. All mechanical equipment rooms or other areas containing mechanical air handling equipment.
 - 2. The cast iron storm Pipe shall be bell and spigot, or hubless (plain end or no-hub) as required by selected jointing method.
 - 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI Standard 301, ASTM A-888, or ASTM A-74.
 - 4. Joints for hubless pipe and fittings shall conform to manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM Standard C-564 or be installed with leak and oakum.

- B. Copper Tube, (DWV): May be used for piping above ground.
 - 1. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
 - 2. The Copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME 16.29.
 - 3. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.

2.2 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or be of different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear erring and corrosion resistant metal tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
 - 2. For PVC soil pipes, the sleeve material shall be elastomeric seal or PVC, conforming to ASTM F 477 or ASTM D5926.
 - 3. For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 125 psig at a minimum temperature of 180°F. The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 150 psig. The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The dielectric nipples shall be electroplated steel nipple comply with ASTM F 1545 with a pressure ratings of 300 psig at 225°F. The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.3 CLEANOUTS

A. Cleanouts shall be the same size as the pipe, up to 4 inches; not less than 4 inches for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. A minimum clearance of 24 inches shall be provided for clearing a clogged storm sewer line.

- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 2 inches. When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts where shall be provided where indicated on the drawings and at each building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty.
- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 24 inches above the floor. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel bronze square frame and stainless steel cover with minimum opening of 6 inch by 6 inch shall be provided at each wall cleanout.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/no hub cast iron ferrule. Plain end (no-hub) piping in interstitial space or above ceiling may use plain end (no-hub) blind plug and clamp.

2.4 WATERPROOFING

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 2 inches above finished floor and galvanized steel pipe extension in the bottom of the fitting that will

extend through the floor slab. A waterproofed caulked joint shall be provided at the top hub.

B. Walls: See detail shown on drawings.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International code and these specifications.
- B. Branch piping shall be installed from the piping system and connect to all drains and outlets.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings to allow for ceiling panel removal.
- F. Unless otherwise stated on the documents, minimum horizontal slope shall be one inch for every 4 feet of pipe length.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.
- I. Changes in direction for storm drainage piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep ¼ bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and 1/8 bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Caste iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- K. Aboveground copper tubing shall be installed according to CDA's "Copper Tube Handbook".

3.2 JOINT CONSTRUCTION

A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.

- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service
 - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.
- E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead free alloy solder conforming to ASTM B32 shall be used.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES:

- A. All piping shall be supported according to the International plumbing code, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications.
- B. Hangers, supports, rods, inserts and accessories used for Pipe supports shall be shop coated with zinc Chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. DN 40 to DN 50: 60 inches with 3/8 inch rod.
 - 2. DN 80: 60 inches with 1/2 inch rod.

- 3. DN 100 to DN 125: 60 inches with 5/8 inch rod.
- 4. DN 150 to DN 200: 60 inches with 3/4 inch rod.
- E. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 15 feet.
- F. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, Wall and Ceiling Plates shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable Floor Rests and Base Flanges shall be steel.
 - 5. Hanger Rods shall be low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser Clamps shall be malleable iron or steel.
 - 7. Roller shall be cast iron.
 - 8. Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (min.) metal protection shield Centered on and welded to the hanger and support. The shield shall be 4 inches in length and be 16 gage steel. The shield shall be sized for the insulation.
- G. Miscellaneous Materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- H. Cast escutcheon with set screw shall be installed at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- I. Penetrations:
 - 1. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.

- 2. Water proofing: At floor penetrations, Clearances around the pipe shall be completely sealed and made watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- J. Piping shall conform to the following:
 - 1. Storm Water Drain and Vent Drain to main stacks:

Pipe Size	Minimum Pitch
80 mm (3 inches) and smaller	2%
100 mm (4 inches) (4 inches) and larger	1%

3.5 TESTS

- A. Storm sewer system shall be tested in its entirety.
- B. Storm Water Drain tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested with water, tightly close all openings in pipes except the highest opening, and fill system with water to point of overflow. If system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 10 foot head of water. In testing successive sections, test at least upper 10 feet of next preceding section so that each joint or pipe except upper most 10 feet of system has been submitted to a test of at least a 10 foot head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
 - 2. For an air test, an air pressure of 5 psi gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the test.
 - 3. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 1 inch of water with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce .06 liters (2 ounces) of peppermint into each line or stack.

- - - E N D - - -

SECTION 22 40 00 PLUMBING FIXTURES

PART 1 - GENERAL

1.1 DESCRIPTION

Plumbing fixtures, associated trim and fittings necessary to make a complete installation from wall or floor connections to rough piping, and certain accessories.

1.2 RELATED WORK

- A. Sealing between fixtures and other finish surfaces: Section 07 92 00, JOINT SEALANTS.
- B. Flush panel access doors: Section 08 31 13, ACCESS DOORS AND FRAMES.
- C. Through bolts: Section 10 21 13, TOILET COMPARTMENTS.
- D. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submit plumbing fixture information in an assembled brochure, showing cuts and full detailed description of each fixture.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standard Institute (ANSI): The American Society of Mechanical Engineers (ASME): A112.6.1M-02(R2008)....Floor Affixed Supports for Off-the-Floor Plumbing Fixtures for Public Use A112.19.1M-08Enameled Cast Iron Plumbing Fixtures A112.19.2M-03.....Vitreous China Plumbing Fixtures A112.19.3-2001(R2008)...Stainless Steel Plumbing Fixtures (Designed for Residential Use)
 C. American Society for Testing and Materials (ASTM): A276-2010Stainless and Heat-Resisting Steel Bars and Shapes
 WW-P-541-E/GENPlumbing Fixtures with Amendment 1
 D. National Association of Architectural Metal Manufacturers (NAAMM): NAAMM AMP 500-505.....Metal Finishes Manual (1988)
- E. American Society of Sanitary Engineers (ASSE): 1016-05......Performance Requirements for Individual

Thermostatic, Pressure Balancing and Combination

Pressure Balancing and Thermostatic Control Valves for Individual Fixture Fittings F. NSF International (NSF) NSF/ANSI 14 (2013).....Plastics Piping System Components and Related Materials NSF/ANSI 61 (2012).....Drinking Water System Components - Health Effects NSF/ANSI 372 (2011) Drinking Water System Components - Lead Content G. American with Disabilities Act (A.D.A) Section 4-19.4 Exposed Pipes and Surfaces H. Environmental Protection Agency EPA PL 93-523 1974; A 1999) Safe Drinking Water Act.

I. International Building Code, ICC IPC 2012.

PART 2 - PRODUCTS

2.1 STOPS

- A. Provide lock-shield loose key or screw driver pattern angle stops, straight stops or stops integral with faucet, with each compression type faucet whether specifically called for or not, including sinks in wood and metal casework. Locate stops centrally above or below fixture in accessible location.
- B. Furnish keys for lock shield stops to Contracting Officers Representative (COR).
- C. Supply from stops not integral with faucet shall be chrome plated copper flexible tubing or flexible stainless steel with inner core of non-toxic polymer.
- D. Supply pipe from wall to valve stop shall be rigid threaded IPS copper alloy pipe, i.e. red brass pipe nipple, chrome plated where exposed.

2.2 ESCUTCHEONS

Heavy type, chrome plated, with set screws. Provide for piping serving plumbing fixtures and at each wall, ceiling and floor penetrations in exposed finished locations and within cabinets and millwork.

2.3 LAMINAR FLOW CONTROL DEVICE

- A. Smooth, bright stainless steel or satin finish, chrome plated metal laminar flow device shall provide non-aeration, clear, coherent laminar flow that will not splash in basin. Device shall also have a flow control restrictor and have vandal resistant housing.
- B. Flow Control Restrictor:
 - 1. Capable of restricting flow from 0.5 gpm to 1.7 gpm for lavatories or as specified.

- 2. Compensates for pressure fluctuation maintaining flow rate specified above within 10 percent between 25 psi and 80 psi.
- 3. Operates by expansion and contraction, eliminates mineral/sediment build-up with self-cleaning action, and is capable of easy manual cleaning.

2.4 CARRIERS

- A. ASME/ANSI A112.6.1M, with adjustable gasket faceplate chair carriers for wall hung closets with auxiliary anchor foot assembly, hanger rod support feet, and rear anchor tie down.
- B. ASME/ANSI A112.6.1M, lavatory, chair carrier for thin wall construction. All lavatory chair carriers shall be capable of supporting the lavatory with a 250-pound vertical load applied at the front of the fixture.
- C. Where water closets, lavatories or sinks are installed back-to-back and carriers are specified, provide one carrier to serve both fixtures in lieu of individual carriers. The drainage fitting of the back to back carrier shall be so constructed that it prevents the discharge from one fixture from flowing into the opposite fixture.

2.5 WATER CLOSETS

- A. (P-103) Water Closet (Wall Hung, ASME/ANSI A112.19.2M, Figure 9) HET (high efficiency toilet) office and industrial, elongated bowl, siphon jet 1.28 gallons per flush, wall outlet. Top of rim shall be between 16 inches and 17 inches above finished floor. Handicapped water closet shall have rim set 17 inches above finished floor.
 - 1. Seat: Institutional/Industrial, extra heavy duty, chemical resistant, solid plastic, open front less cover for elongated bowls, integrally molded bumpers, concealed check hinge with stainless steel post. Seat shall be posture contoured body design. Color shall be white.
 - 2. Fittings and Accessories: Gaskets neoprene; bolts with chromium plated caps nuts and washers.
 - 3. Flush valve: Large chloramines resistant diaphragm, semi-red brass valve body, exposed chrome plated, electronic infra-red sensor for automatic operation with courtesy flush button for manual operation with low voltage wire from transformer, HET water saver design 1.28 gallons per flush with maximum 10 percent variance 1 inch screwdriver back check angle stop with vandal resistant cap, adjustable tailpiece, a high back pressure vacuum breaker, spud coupling for 1-1/2 inches top spud, wall and spud flanges, and sweat solder adapter with cover tube and set screw wall flange. Valve body, cover, tailpiece and control stop shall be in conformance with ASTM alloy

classification for semi-red brass. Seat bumpers shall be integral

part of flush valve. Set centerline of inlet 11-1/2 inches above rim.

2.6 LAVATORIES

- A. Dimensions for lavatories are specified, Length by width (distance from wall) and depth.
- B. Brass components in contact with water shall contain no more than 3 percent lead content by dry weight.
- C. (P-404) Lavatory (Bowl Integral with Countertop):
 - Faucet: Solid cast brass construction, chrome plated, gooseneck spout 4 to 5 inches above the rim, electronic sensor operated, center set mounting, 120/24 volt solenoid, check valves, inline filter, modular wiring box with transformer. Provide laminar flow control device.
 - 2. Mixing Valve: ASSE 1070, Type T/P combination thermostatic and pressure balancing. Valve body shall be copper alloy. Internal parts shall be copper, nickel alloy, CRS or thermostatic material. Valve inlet and outlet shall be 1/2 inch IPS. Provide external screwdriver checkstops and temperature limit stop. Set stops for a maximum temperature of 95 degrees F.
 - 3. Drain: Cast or wrought brass with flat grid strainer and offset tailpiece, chrome plated finish.
 - 4. Stops: Angle type. See paragraph 2.2. Stops
 - 5. Trap: Cast copper alloy, 1-1/2 inches by 1 1/4 inches P-trap. Adjustable with connected elbow and 17 gauge tubing extension to wall. Exposed metal trap surface and connection hardware shall be chrome plated with a smooth bright finish. Set trap parallel to wall.
 - 6. Provide cover for drain, stops and trap per A.D.A 4-19.4.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Fixture Setting: Opening between fixture and floor and wall finish shall be sealed as specified under Section 07 92 00, JOINT SEALANTS.
- B. Supports and Fastening: Secure all fixtures, equipment and trimmings to partitions, walls and related finish surfaces. Exposed heads of bolts and nuts in finished rooms shall be hexagonal, polished chrome plated brass with rounded tops.
- C. Through Bolts: For free standing marble and metal stud partitions refer to Section 10 21 13, TOILET COMPARTMENTS.
- D. Toggle Bolts: For hollow masonry units, finished or unfinished.
- E. Expansion Bolts: For brick or concrete or other solid masonry. Shall be 1/4 inch diameter bolts, and to extend at least 3 inches into masonry

and be fitted with loose tubing or sleeves extending into masonry. Wood plugs, fiber plugs, lead or other soft metal shields are prohibited.

- F. Power Set Fasteners: May be used for concrete walls, shall be 1/4 inch threaded studs, and shall extend at least 1-1/4 inches into wall.
- G. Tightly cover and protect fixtures and equipment against dirt, water and chemical or mechanical injury.
- H. Where water closet waste pipe has to be offset due to beam interference, provide correct and additional piping necessary to eliminate relocation of water closet.
- I. Do not use aerators on lavatories and sinks.

3.2 CLEANING

At completion of all work, fixtures, exposed materials and equipment shall be thoroughly cleaned.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.
 - 3. Contracting Officer's Representative (COR)

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- C. Section 03 30 53, (SHORT-FORM) CAST-IN-PLACE CONCRETE: Concrete and Grout
- D. Section 05 50 00, METAL FABRICATIONS
- E. Section 07 84 00, FIRESTOPPING
- F. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations
- G. Section 07 92 00, JOINT SEALANTS
- H. Section 09 91 00, PAINTING
- I. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS
- J. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC
- K. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- L. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC
- M. Section 23 07 11, HVAC INSULATION
- N. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
- O. Section 23 21 13, HYDRONIC PIPING
- P. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING
- Q. Section 23 25 00, HVAC WATER TREATMENT
- R. Section 23 31 00, HVAC DUCTS and CASINGS
- S. Section 23 34 00, HVAC FANS
- T. Section 23 36 00, AIR TERMINAL UNITS
- U. Section 23 37 00, AIR OUTLETS AND INLETS
- V. Section 23 40 00, HVAC AIR CLEANING DEVICES
- W. Section 23 72 00, AIR-TO-AIR ENERGY RECOVERY EQUIPMENT
- X. Section 23 73 13, CUSTOM INDOOR CENTRAL-STATION AIR-HANDLING UNITS

- Y. Section 23 82 16, AIR COILS
- Z. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- AA. Section 26 29 11, MOTOR-CONTROLLERS

1.3 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutionalclass and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - 2. After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.
- D. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
 - All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
 - 3. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the COR.

- Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 7. Asbestos products or equipment or materials containing asbestos shall not be used.
- E. Equipment Service Organizations:
 - HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- G. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the COR for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the COR at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
 - Provide complete layout drawings required by Paragraph, SUBMITTALS. Do not commence construction work on any system until the layout drawings have been approved.

H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group.
- F. Layout Drawings:
 - 1. Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed layout drawings of all piping and duct systems.
 - 3. Do not install equipment foundations, equipment or piping until layout drawings have been approved.
 - In addition, for HVAC systems, provide details of the following:
 a. Mechanical equipment rooms.
 - b. Rooftop Equipment, Exhaust Fans, Ductwork/Piping Offsets, PEM
 - c. Hangers, inserts, supports, and bracing.
 - d. Pipe sleeves.

- e. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- G. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- H. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- I. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 430-2009.....Central Station Air-Handling Units
- C. American National Standard Institute (ANSI): B31.1-2007.....Power Piping
- D. Rubber Manufacturers Association (ANSI/RMA): IP-20-2007.....Specifications for Drives Using Classical V-Belts and Sheaves IP-21-2009....Specifications for Drives Using Double-V (Hexagonal) Belts

E. Air Movement and Control Association (AMCA): 410-96..... Recommended Safety Practices for Air Moving Devices F. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Code (BPVC): Section I-2007.....Power Boilers Section IX-2007......Welding and Brazing Qualifications Code for Pressure Piping: B31.1-2007.....Power Piping G. American Society for Testing and Materials (ASTM): A36/A36M-08.....Standard Specification for Carbon Structural Steel A575-96(2007).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades E84-10.....Standard Test Method for Surface Burning Characteristics of Building Materials E119-09c.....Standard Test Methods for Fire Tests of Building Construction and Materials H. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-2009.....Pipe Hangers and Supports-Materials, Design and Manufacture, Selection, Application, and Installation SP 69-2003.....Pipe Hangers and Supports-Selection and Application SP 127-2001.....Bracing for Piping Systems, Seismic - Wind -Dynamic, Design, Selection, Application I. National Electrical Manufacturers Association (NEMA): MG-1-2009.....Motors and Generators J. National Fire Protection Association (NFPA): 31-06..... Standard for Installation of Oil-Burning Equipment 54-09.....National Fuel Gas Code 70-08.....National Electrical Code 85-07.....Boiler and Combustion Systems Hazards Code 90A-09.....of Air Conditioning and Ventilating Systems 101-09....Life Safety Code 1.6 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

- Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
- 2. Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost to the Government.
- 3. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
 - 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities, that serve the Medical Center.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the medical center. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least one week advance notice to the COR.

- D. Phasing of Work: Comply with all requirements shown on drawings or specified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.
- F. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.
- G. Temporary Facilities: Refer to Article, TEMPORARY PIPING AND EQUIPMENT in this section.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.

D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 BELT DRIVES

- A. Type: ANSI/RMA standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ANSI/RMA IP-20 and IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ANSI/RMA service factor (not less than 20 percent) in addition to the ANSI/RMA allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 5000 feet per minute.
- E. Adjustment Provisions: For alignment and ANSI/RMA standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ANSI/RMA specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch drive as follows:
 - a. Fan speeds up to 1800 RPM: 10 horsepower and smaller.
 - b. Fan speeds over 1800 RPM: 3 horsepower and smaller.
 - 2. Provide fixed-pitch drives for drives larger than those listed above.
 - 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.

2.4 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 1/4-inch bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gage sheet steel and expanded or perforated metal to permit observation of belts. A oneinch diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, cast iron, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: One inch diameter hole at each shaft center.

2.5 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT; Section 26 29 11, MOTOR CONTROLLERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.7 VARIABLE SPEED MOTOR CONTROLLERS

A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, MOTOR CONTROLLERS for specifications.

- B. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- C. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.
- E. Controller shall be provided with the following operating features and accessories:
 - 1. Suitable for variable torque load.
 - 2. Provide thermal magnetic circuit breaker or fused switch with external operator and incoming line fuses. Unit shall be rated for minimum 30,000 AIC. Provide AC input line reactors (3% impedance) on incoming power line. Provide output line reactors on line between drive and motor where the distance between the breaker and motor exceeds 50 feet.

2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.
- D. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - HVAC: Provide for all valves other than for equipment in Section 23
 82 00, CONVECTION HEATING AND COOLING UNITS.

- 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
- 3. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
- Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.9 FIRESTOPPING

Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.10 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

2.11 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:
 - 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 mm by 100 mm (2 by 4) treated wood nailer, 1.3 mm (18 gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 280 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
 - Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.

- Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (four inches) thick when approved by the COR for each job condition.
- Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the COR for each job condition.
- E. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter.
- F. Attachment to existing structure: Support from existing floor/roof frame.
- G. Attachment to Wood Construction: Wood screws or lag bolts.
- H. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- I. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- J. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):a. Standard clevis hanger: Type 1; provide locknut.

- b. Riser clamps: Type 8.
- c. Wall brackets: Types 31, 32 or 33.
- d. Roller supports: Type 41, 43, 44 and 46.
- e. Saddle support: Type 36, 37 or 38.
- f. Turnbuckle: Types 13 or 15. Preinsulate.
- g. U-bolt clamp: Type 24.
- h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non adhesive isolation tape to prevent electrolysis.
 - 2) For vertical runs use epoxy painted or plastic coated riser clamps.
 - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- 3. High and Medium Pressure Steam (MSS SP-58):
 - a. Provide eye rod or Type 17 eye nut near the upper attachment.
 - b. Piping 50 mm (2 inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.
 - c. Piping with Vertical Expansion and Contraction:
 - Movement up to 20 mm (3/4-inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
 - Movement more than 20 mm (3/4-inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
- 4. Convertor and Expansion Tank Hangers: May be Type 1 sized for the shell diameter. Insulation where required will cover the hangers.
- K. Pre-insulated Calcium Silicate Shields:
 - Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.

- 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 1 inch past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
- 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.
- L. Seismic Restraint of Piping and Ductwork: Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. Comply with MSS SP-127.

2.12 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except

where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.

- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.13 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 18 inches high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.14 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the COR.
- E. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.15 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.16 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill.
 Pneumatic hammer, impact electric, and hand or manual hammer type

drill will not be allowed, except as permitted by COR where working area space is limited.

- 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
- 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Electrical and Pneumatic Interconnection of Controls and Instruments: This is generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70. Use of pneumatic controls shall be avoided except where tie-in with existing installations that must remain active is required either during/in between project phases to upgrade from pneumatic to DDC or to maintain pneumatic control of existing equipment/existing elements outside of the project scope boundary. Project intent is to upgrade all existing pneumatic controls within the project boundary to DDC/electronic control. Review drawings and sequences of operation for additional information.
- I. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- J. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE and/or 03 30 53 (Short-Form) CAST-IN PLACE CONCRETE.

- K. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- L. Install steam piping expansion joints as per manufacturer's recommendations.
- M. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
 - 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the COR. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the COR for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After COR's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
- N. Work in Animal Research Areas: Seal all pipe and duct penetrations with silicone sealant to prevent entrance of insects.
- O. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment of to ceiling structure, whichever is lower (NFPA 70).
- P. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance,

equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.

2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph 3.1 apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.3 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.

G. Restore building to original condition upon completion of rigging work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.
- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Boiler foundations shall have horizontal dimensions that exceed boiler base frame

dimensions by at least 150 mm (6 inches) on all sides. Refer to structural drawings. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.

- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.
- 4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the

other disciplines in the project for additional facilities to be demolished or handled.

D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Name plates.
 - 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
 - Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
 - 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.

- 6. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate and feedwater -- 38 degrees C (100 degrees F) on insulation jacket surface and 120 degrees C (250 degrees F) on metal pipe surface.
 - b. Steam -- 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (375 degrees F) on metal pipe surface.
- Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.7 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.8 MOTOR AND DRIVE ALIGNMENT

- A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

3.9 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation.Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COR in unopened containers that are properly identified as to application.
- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.10 STARTUP AND TEMPORARY OPERATION

Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.11 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.12 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.

1.2 RELATED WORK:

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements common to more than one Section of Division 26.
- B. Section 26 29 11, MOTOR CONTROLLERS: Multiple motor control assemblies, including motor starters, variable speed/variable frequency drives, etc.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 34 00, HVAC FANS.
- E. Section 23 36 00, AIR TERMINAL UNITS.
- F. Section 23 72 00, AIR-TO-AIR ENERGY RECOVERY EQUIPMENT.
- G. Section 23 73 13, CUSTOM, INDOOR, CENTRAL-STATION AIR-HANDLING UNITS.

1.3 SUBMITTALS:

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - 1. Provide documentation to demonstrate compliance with drawings and specifications.
 - 2. Include electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete installation, maintenance and operating manuals, including technical data sheets and application data.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certification to the Contracting Officers Representative (COR):
 - Certification that the motors have been applied, installed, adjusted, lubricated, and tested according to manufacturer published recommendations.

1.4 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA): MG 1-2006 Rev. 1 2009 .. Motors and Generators MG 2-2001 Rev. 1 2007...Safety Standard for Construction and Guide for Selection, Installation and Use of Electric

Motors and Generators

- C. National Fire Protection Association (NFPA):
- D. Institute of Electrical and Electronics Engineers (IEEE): 112-04.....for Polyphase Induction

Motors and Generators

E. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): 90.1-2007.....Energy Standard for Buildings Except Low-Rise Residential Buildings

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors as scheduled. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- C. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
 - 1. -WHERE SCHEDULED Electrically Commutated motor (EC Type): Motor shall be brushless DC type specifically designed for applications with heavy duty ball bearings and electronic commutation. The motor shall be speed controllable down to 20% of full speed and 85% efficient at all speeds.
- D. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.

- Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.
- E. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240 volt or 480 volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 100 HP, connected to 240 volt or 480 volt systems: 208-230/460 volts, dual connection.
 - c. Motors, 100 HP or larger, connected to 240-volt systems: 230 volts.
 - d. Motors, 100 HP or larger, connected to 480-volt systems: 460 volts.
 - e. Motors connected to high voltage systems (Over 600V): Shall conform to NEMA Standards for connection to the nominal system voltage shown on the drawings.
- F. Number of phases shall be as follows:
 - 1. Motors, less than 1/2 HP: Single phase.
 - 2. Motors, 1/2 HP and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than one HP, may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- G. Motors shall be designed for operating the connected loads continuously in a 104°F environment, where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation. If the motors exceed 104°F, the motors shall be rated for the actual ambient temperatures.
- H. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.
- I. Motor Enclosures:
 - 1. Shall be the NEMA types as specified and/or shown on the drawings.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the

environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:

- a. Motors located outdoors, indoors in high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
- b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
- c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
- 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- J. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
 - 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 160 degreesF shall be stranded copper with Teflon FEP insulation with jacket.This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
 - 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
 - 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA Standard, MG1, Part 31.4.4.2. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- K. Additional requirements for specific motors, as indicated in the other sections listed in Article 1.2, shall also apply.
- L. Energy-Efficient Motors (Motor Efficiencies): All permanently wired polyphase motors of 1 HP or more shall meet the minimum full-load

efficiencies as indicated in the following table. Motors of 746 Watts or more with open- drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section. Motors not specified as "premium efficiency" shall comply with the Energy Policy Act of 2005 (EPACT).

Minimum	n Premium	Efficie	ncies	Minimum Premium Efficiencies						
	Open Drip	-Proof		Totally Enclosed Fan-Cooled						
Rating	1200	1800	3600	Rating	1200	1800	3600			
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM			
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%			
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%			
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%			
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%			
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%			
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%			
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%			
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%			
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%			
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%			
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%			
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%			
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%			
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%			
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%			
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%			
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%			
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%			
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%			

M. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM.

PART 3 - EXECUTION

3.1 INSTALLATION:

Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

3.2 FIELD TESTS

- A. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before start-up. All shall test free from grounds.
- B. Perform Load test in accordance with ANSI/IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- C. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.

3.3 STARTUP AND TESTING

A. Perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and Section 23 05 11, COMMON WORK RESULTS FOR HVAC and submit the test reports and records to the COR. The COR shall be provided the opportunity to observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR. Provide a minimum of 7 days prior notice.

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications to COR.

- - - E N D - - -

SECTION 23 05 41

NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

Noise criteria, seismic restraints for equipment, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 03 30 53, (SHORT-FORM) CAST-IN-PLACE CONCRETE: Requirements for concrete inertia bases.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic requirements for non-structural equipment
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- D. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING: Requirements for flexible pipe connectors to reciprocating and rotating mechanical equipment.
- E. Section 23 72 00, AIR-TO-AIR ENERGY RECOVERY EQUIPMENT.
- F. Section 23 73 13, CUSTOM INDOOR CENTRAL-STATION AIR-HANDLING UNIT: Requirements for Air Handling Unit internal vibration isolation.
- G. Section 23 31 00, HVAC DUCTS and CASINGS: requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining.
- H. SECTION 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: requirements for sound and vibration tests.
- I. SECTION 23 37 00, AIR OUTLETS and INLETS: noise requirements for Ggrilles.
- J. SECTION 23 34 00, HVAC FANS: sound and vibration isolation requirements for fans.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Noise Criteria:
 - 1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Bathrooms and Toilet Rooms	40
Conference Rooms	35

Corridors (Admin Suite)	40
Corridors(Public)	40
Lobbies, Waiting Areas	40
Locker Rooms	45
Offices, Large Open	40
Offices, Small Private	35

- 2. For equipment which has no sound power ratings scheduled on the plans, Contractor shall select equipment such that the fore-going noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration.
- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for variation of room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.
- In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- C.Seismic Restraint Requirements:
 - 1. Equipment:
 - a. All mechanical equipment not supported with isolators external to the unit shall be securely anchored to the structure. Such mechanical equipment shall be properly supported to resist a horizontal force of 50 percent of the weight of the equipment furnished.
 - b. All mechanical equipment mounted on vibration isolators shall be provided with seismic restraints capable of resisting a horizontal force of 100 percent weight of equipment furnished.
 - Piping: Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - Ductwork: Refer to specification Section 23 31 00, HVAC DUCTS AND CASINGS.

VA Medical Center, Huntington, WVVA Project No. 581-14-103Renovate 3W for Surgery Administration100% CD: 03/28/14

D. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - d. Thrust restraints
 - 2. Bases.
 - 3. Seismic restraint provisions and bolting.
 - 4. Acoustical enclosures.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.
- D. Seismic Requirements: Submittals are required for all equipment anchors, supports and seismic restraints. Submittals shall include weights, dimensions, standard connections, and manufacturer's certification that all specified equipment will withstand seismic Lateral Force requirements as shown on drawings.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): Vibration
- C. American Society for Testing and Materials (ASTM): A123/A123M-09.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products

VA Medical Center, Huntington, WVVA Project No. 581-14-103Renovate 3W for Surgery Administration100% CD: 03/28/14 A307-07b.....Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength D2240-05(2010).....Standard Test Method for Rubber Property -Durometer Hardness D. Manufacturers Standardization (MSS): SP-58-2009......Pipe Hangers and Supports-Materials, Design and Manufacture E. Occupational Safety and Health Administration (OSHA): 29 CFR 1910.95.....Occupational Noise Exposure F. American Society of Civil Engineers (ASCE): ASCE 7-10Minimum Design Loads for Buildings and Other Structures. G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008..... Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition. H. International Code Council (ICC): 2009 IBC..... International Building Code. I. Department of Veterans Affairs (VA): H-18-8 2010.....Seismic Design Requirements. PART 2 - PRODUCTS 2.1 GENERAL REQUIREMENTS A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings. B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve. C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards.

- galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.

E. Color code isolators by type and size for easy identification of capacity.

2.2 SEISMIC RESTRAINT REQUIREMENTS FOR EQUIPMENTS

- A. Bolt pad mounted equipment, without vibration isolators, to the floor or other support using ASTM A307 standard bolting material.
- B. Floor mounted equipment, with vibration Isolators: Type SS. Where Type N isolators are used provide channel frame base horizontal restraints bolted to the floor, or other support, on all sides of the equipment Size and material required for the base shall be as recommended by the isolator manufacturer.
- C. On all sides of suspended equipment, provide bracing for rigid supports and provide restraints for resiliently supported equipment.

2.3 VIBRATION ISOLATORS

- A. Floor Mountings:
 - 1. Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
 - 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.
 - 3. Captive Spring Mount for Seismic Restraint (Type SS):
 - a. Design mounts to resiliently resist seismic forces in all directions. Snubbing shall take place in all modes with adjustment to limit upward, downward, and horizontal travel to a maximum of 6 mm (1/4-inch) before contacting snubbers. Mountings shall have a minimum rating of one G coefficient of gravity as calculated and certified by a registered structural engineer.
 - b. All mountings shall have leveling bolts that must be rigidly bolted to the equipment. Spring diameters shall be no less than 0.8 of the compressed height of the spring at rated load. Springs shall have a minimum additional travel to solid equal to 50 percent of the rated deflection. Mountings shall have ports for spring inspection. Provide an all directional neoprene cushion collar around the equipment bolt.
 - 4. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop

to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting. Isolators shall have a minimum seismic rating of one G.

- 5. Pads (Type D), Washers (Type W), and Bushings (Type L): Pads shall be natural rubber or neoprene waffle, neoprene and steel waffle, or reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- 6. Seismic Pad (Type DS): Pads shall be natural rubber / neoprene waffle with steel top plate and drilled for an anchor bolt. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - 1. Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit 15 degree angular misalignment without rubbing on hanger box.
 - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.
 - 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
 - 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 5. Hanger supports for piping 2 inches and larger shall have a pointer and scale deflection indicator.

- 6. Hangers used in seismic applications shall be provided with a neoprene and steel rebound washer installed ¼' clear of bottom of hanger housing in operation to prevent spring from excessive upward travel
- C. Snubbers: Each spring mounted base shall have a minimum of four alldirectional or eight two directional (two per side) seismic snubbers that are double acting. Elastomeric materials shall be shock absorbent neoprene bridge quality bearing pads, maximum 60 durometer, replaceable and have a minimum thickness of 1/4 inch. Air gap between hard and resilient material shall be not less than 1/8 inch nor more than 1/4 inch. Restraints shall be capable of withstanding design load without permanent deformation.
- D. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 1/4 inch when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

2.4 BASES

- A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 4 inches. Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.
- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than four inches.
- C. Inertia Base (Type I): Base shall be a reinforced concrete inertia base. Pour concrete into a welded steel channel frame, incorporating prelocated equipment anchor bolts and pipe sleeves. Level the concrete to provide a smooth uniform bearing surface for equipment mounting. Provide grout under uneven supports. Channel depth shall be a minimum of 1/12 of longest dimension of base but not less than six inches. Form shall include 1/2-inch reinforcing bars welded in place on minimum of

eight inch centers running both ways in a layer 1-1/2 inches above bottom. Use height saving brackets in all mounting locations. Weight of inertia base shall be equal to or greater than weight of equipment supported to provide a maximum peak-to-peak displacement of 1/16 inch.

D. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action. Provide resilient snubbers with 1/4 inch clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type weather seals. Integral spring isolators shall comply with Spring Isolator (Type S) requirements.

2.5 SOUND ATTENUATING UNITS

Refer to specification Section 23 31 00, HVAC DUCTS and CASINGS.

2.6 ACOUSTICAL ENCLOSURES IN MECHANICAL ROOMS

Provide where shown on the drawings. Enclosures shall be removable and sectional, of a size and weight that sections can be readily handled with typical lifting and moving equipment available in the equipment room. Enclosures must contain access openings, observation ports, lights, and ventilation where required for normal operation, observation and servicing.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - 1. No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
 - 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
 - 4. Provide heat shields where elastomers are subject to temperatures over 100 degrees F.

- 5. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
- 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of ¼ inch movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's recommendations.
- F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.
- G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

- - - E N D - - -

VA Medical Center, Huntington, WV VA Project No. 581-14-103 Renovate 3W for Surgery Administration

100% CD: 03/28/14

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPMENT	ON GRADE		20FT FLOOR SPAN		30FT FLOOR SPAN			40FT FLOOR SPAN			50FT FLOOR SPAN				
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
ROOF FANS															
ABOVE OCCUPIED AREA	s:														
5 HP & OVER				CB	S	1.0	CB	S	1.0	CB	S	1.0	CB	S	1.0
CENTRIFUGAL FANS															
UP TO 50 HP:	•					1			T		T	1		T	
UP TO 200 RPM	В	Ν	0.3	В	S	2.5	В	S	2.5	В	S	3.5	В	S	3.5
201 - 300 RPM	В	Ν	0.3	В	S	2.0	В	S	2.5	В	S	2.5	В	S	3.5
301 - 500 RPM	в	Ν	0.3	В	S	2.0	В	S	2.0	В	S	2.5	В	S	3.5
501 RPM & OVER	В	Ν	0.3	В	S	2.0	В	S	2.0	В	S	2.0	В	S	2.5
AIR HANDLING UNIT P	ACKAGES	3													
SUSPENDED:															
UP THRU 5 HP					Н	1.0		Н	1.0		Н	1.0		Н	1.0
7-1/2 HP & OVER:						•									
UP TO 500 RPM					H, THR	1.5		H, THR	2.5		H, THR	2.5		H, THR	2.5
501 RPM & OVER					H, THR	0.8		H, THR	0.8		H,TH R	0.8		H,TH R	2.0

EQUIPMENT	ON GRADE			20FT FLOOR SPAN		30FT FLOOR SPAN			40FT FLOOR SPAN			50FT FLOOR SPAN			
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
FLOOR MOUNTED:															
UP THRU 5 HP		D			S	1.0		S	1.0		S	1.0		S	1.0
7-1/2 HP & OVER:	7-1/2 HP & OVER:														
UP TO 500 RPM		D		R	S, THR	1.5	R	S, THR	2.5	R	S, THR	2.5	R	S, THR	2.5
501 RPM & OVER		D			S, THR	0.8		S, THR	0.8	R	S, THR	1.5	R	S, THR	2.0
IN-LINE CENTRIFUGAL	AND VA	NE AXI	AL FAN	S, FLO	OR MOUN	ITED: (APR 9)	•							<u>.</u>
UP THRU 50 HP:															
UP TO 300 RPM		D		R	S	2.5	R	S	2.5	R	S	2.5	R	S	3.5
301 - 500 RPM		D		R	S	2.0	R	S	2.0	R	S	2.5	R	S	2.5
501 - & OVER		D			S	1.0		S	1.0	R	S	2.0	R	S	2.5
60 HP AND OVER:															
301 - 500 RPM	R	S	1.0	R	S	2.0	R	S	2.0	R	S	2.5	R	S	3.5
501 RPM & OVER	R	S	1.0	R	S	2.0	R	S	2.0	R	S	2.0	R	S	2.5

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report (Pre-construction for existing systems).
 - 6. Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.
- B. Definitions:
 - 1. Basic TAB used in this Section: Chapter 37, "Testing, Adjusting and Balancing" of 2007 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. Hydronic Systems: Includes chilled water, heating hot water (Reheat) and glycol-water systems.
 - 6. Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
 - 7. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- B. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise and Vibration Requirements.
- C. Section 23 07 11, HVAC INSULATION: Piping and Equipment Insulation.
- D. Section 23 36 00, AIR TERMINAL UNITS: Terminal Units Performance.

Renovate 3W for Surgery Administration VA Project No. 581-14-103

- E. Section 23 31 00, HVAC DUCTS AND CASINGS: Duct Leakage.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Controls and Instrumentation Settings.
- G. Section 23 82 16, AIR COILS
- H. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS
- I. Section 23 72 00, AIR-TO-AIR ENERGY RECOVERY EQUIPMENT
- J. Section 23 73 13, CUSTOM, INDOOR, CENTRAL-STATION AIR-HANDLING UNITS
- K. Section 23 34 00, HVAC FANS
- L. Section 23 37 00, AIR OUTLETS AND INLETS
- M. Section 23 21 13, HYDRONIC PIPING
- N. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Qualifications:
 - 1. TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Contracting Officers Representative (COR) and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject

certification during this period, the General Contractor shall immediately notify the COR and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the COR. The responsibilities would specifically include:
 - a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. Tab Criteria:
 - 1. One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 36, and

requirements stated herein shall be the basis for planning, procedures, and reports.

- 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow ASHRAE Handbook "HVAC Applications", Chapter 36, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.
 - a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
 - b. Air terminal units (maximum values): Minus 2 percent to plus 10 percent.
 - c. Exhaust hoods/cabinets: 0 percent to plus 10 percent.
 - d. Minimum outside air: 0 percent to plus 10 percent.
 - e. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
 - f. Heating hot water pumps and hot water coils: Minus 5 percent to plus 5 percent.
 - g. Chilled water and condenser water pumps: Minus 0 percent to plus 5 percent.
 - h. Chilled water coils: Minus 0 percent to plus 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the COR for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the COR) and one hydronic system (pumps and three coils) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the COR staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - 1. Design Review Report within 90 days for conventional design projects after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Duct Air Leakage Test Report.
 - 4. Systems Readiness Report (Pre-construction for existing systems).
 - 5. Intermediate, Phased and Final TAB reports covering flow balance and adjustments, room pressurization / transfer offset airflow and differential pressure, performance tests, vibration tests and sound tests.
 - 6. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):
 - 2007HVAC Applications ASHRAE Handbook, Chapter 37, Testing, Adjusting, and Balancing and Chapter 47, Sound and Vibration Control
- C. Associated Air Balance Council (AABC): 2002..... AABC National Standards for Total System Balance
- D. National Environmental Balancing Bureau (NEBB): 7th Edition 2005Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration

3rd Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction

E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition 2002.....HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the COR of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser

and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. Prior to the beginning of construction/demolition efforts, the TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to COR.
- B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to COR in standard format and forms as reviewed with and approved by the COR.
- C. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the COR.

3.6 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the COR if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the COR.

3.7 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate

design operation of variable volume air or water systems for test and balance work.

- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for pre-construction air and water flow rate and for each phase of the project prior to partial final inspections of each phase of the project. Return/maintain existing areas outside the work area to pre constructed conditions.
- D. Allow 30 days in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, fan coil units, room diffusers/outlets/inlets, computer room AC units, laboratory fume hoods and biological safety cabinets.
 - 1. Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.
 - 2. Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other controls function properly.
 - 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Section 23 36 00, AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode. Record and report outdoor air flow rates under all operating conditions (The test shall demonstrate that the minimum outdoor air ventilation rate shall remain constant under al operating conditions).

- c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
- 5. Record final measurements for air handling equipment performance data sheets.
- F. Water Balance and Equipment Test: Include circulating pumps, convertors, coils, coolers and condensers:
 - 1. Coordinate new Custom AHU flow balancing with Section 23 73 13 CUSTOM INDOOR CENTRAL STATION AIR HANDLING UNIT.
 - 2. Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.
 - 3. Primary-secondary (variable volume) systems: Coordinate TAB with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Balance systems at design water flow and then verify that variable flow controls function as designed.
 - 4. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils, convertors and radiant ceiling heating panels, etc. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.8 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide measurements for all rotating HVAC equipment of 1/2 horsepower and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the COR. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the COR.

3.9 SOUND TESTING

A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

- Take readings in rooms, approximately fifteen (15) percent of all rooms. The COR may designate the specific rooms to be tested.
- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC or NEBB.
- C. Sound reference levels, formulas and coefficients shall be according to ASHRAE Handbook, "HVAC Applications", Chapter 46, SOUND AND VIBRATION CONTROL.
- D. Determine compliance with specifications as follows:
 - When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
 - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
 - b. Measure octave band sound pressure levels with specified equipment "off."
 - c. Measure octave band sound pressure levels with specified equipment "on."
 - d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

DIFFERENCE:	0	1	2	3	4	5 to 9	10 or More
FACTOR:	10	7	4	3	2	1	0

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:
 - a. Perform steps 1.a. thru 1.d., as above.
 - b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level. Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.
 - c. For outdoor equipment: Use directivity factor and distance from noise source to determine distance factor, i.e., difference between sound power level and sound pressure level. Measured sound power level will be the sum of sound pressure level due to

equipment plus the distance factor. Use 13 meters (40 feet) for sound level location.

- 3. Where sound pressure levels are specified in terms of dB(A), as in Section 23 65 00, COOLING TOWERS, measure sound levels using the "A" scale of meter. Single value readings will be used instead of octave band analysis.
- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the COR and the necessary sound tests shall be repeated.
- F. Test readings for sound testing could go higher than 15 percent if determination is made by the COR based on the recorded sound data.

3.10 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the COR.

3.11 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.12 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to revise, rebalance, maintain and document system capacity.

- - E N D - - -

SECTION 23 07 11 HVAC INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - 3. Cold: Equipment, ductwork or piping handling media at design temperature of 60 degrees F or below.
 - 4. Concealed: Ductwork and piping above ceilings and in chases, interstitial space, and pipe spaces.
 - 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical, and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - 7. Hot: HVAC Ductwork handling air at design temperature above 60 degrees F; HVAC equipment or piping handling media above 105 degrees F; and piping media and equipment 90 to 450 degrees F.
 - 8. Density: Pcf pounds per cubic foot.
 - 9. Runouts: Branch pipe connections up to one-inch nominal size to fan coil units or reheat coils for terminal units.
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
 - 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).

- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. HPS: High pressure steam 60 psig and above.
- 14. HPR: High pressure steam condensate return.
- 15. MPS: Medium pressure steam 16 psig 59 psig.
- 16. MPR: Medium pressure steam condensate return.
- 17. LPS: Low pressure steam 15 psig and below.
- 18. LPR: Low pressure steam condensate gravity return.
- 19. PC: Pumped condensate.
- 20. HWH: Hot water heating supply.
- 21. HWHR: Hot water heating return.
- 22. GH: Hot glycol-water heating supply.
- 23. GHR: Hot glycol-water heating return.
- 24. FWPD: Feedwater pump discharge.
- 25. FWPS: Feedwater pump suction.
- 26. CTPD: Condensate transfer pump discharge.
- 27. CTPS: Condensate transfer pump suction.
- 28. VR: Vacuum condensate return.
- 29. CPD: Condensate pump discharge.
- 30. R: Pump recirculation.
- 31. FOS: Fuel oil supply.
- 32. FOR: Fuel oil return.
- 33. CW: Cold water.
- 34. SW: Soft water.
- 35. HW: Hot water.
- 36. CH: Chilled water supply.
- 37. CHR: Chilled water return.
- 38. GC: Chilled glycol-water supply.
- 39. GCR: Chilled glycol-water return.
- 40. RS: Refrigerant suction.
- 41. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- D. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING: Heating and Humidification
- E. Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING: Piping and equipment.
- F. Section 23 31 00, HVAC DUCTS AND CASINGS: Ductwork, plenum and fittings.
- G. Section 23 73 13, CUSTOM, INDOOR CENTRAL STATION AIR HANDLING UNIT: Hydronic (Chilled Water, Cooling Coil Condensate) Piping, Steam and Steam Condensate Piping, constructed as part of/within the AHU at the factory.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2.</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings

where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

UL 181A, Standard for Safety Closure Systems for Use with (1)Rigid Air Ducts and Air Connectors

UL 181B, Standard for Safety Closure Systems for Use with (2)Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.3.3.1 In no case shall the test temperature be below 250°F.

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.

4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 5 ft or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 5 ft or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

- (1) Not exceeding a 1 in. average clearance on all sides.
- Filled solid with an approved material capable of (2) preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the timetemperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials.
- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 75 degrees F mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.

e. Make reference to applicable specification paragraph numbers for coordination.

C. Samples:

- 1. Each type of insulation: Minimum size 4 inches square for board / block / blanket; 6 inches long, full diameter for round types.
- 2. Each type of facing and jacket: Minimum size 4 inches square.
- 3. Each accessory material: Minimum 4 ounce liquid container or 4 ounce dry weight for adhesives / cement / mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.): L-P-535E (2)-99.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid.
- C. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-87....Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-C-19565C (1)-88.....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-87.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass D. American Society for Testing and Materials (ASTM): A167-99(2004).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip B209-07..... Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

C411-05	.Standard test method for Hot-Surface
	Performance of High-Temperature Thermal
	Insulation
C449-07	.Standard Specification for Mineral Fiber
	Hydraulic-Setting Thermal Insulating and
	Finishing Cement
C533-09	Standard Specification for Calcium Silicate
	Block and Pipe Thermal Insulation
C534-08	.Standard Specification for Preformed Flexible
	Elastomeric Cellular Thermal Insulation in
	Sheet and Tubular Form
C547-07	.Standard Specification for Mineral Fiber pipe
	Insulation
C552-07	Standard Specification for Cellular Glass.
	Thermal Insulation
C553-08	Standard Specification for Mineral Fiber.
	Blanket Thermal Insulation for Commercial and
	Industrial Applications
C585-09	Standard Practice for Inner and Outer Diameters
	of Rigid Thermal Insulation for Nominal Sizes
	of Pipe and Tubing (NPS System) R (1998)
C612-10	Standard Specification for Mineral Fiber Block.
	and Board Thermal Insulation
C1126-04	Standard Specification for Faced or Unfaced
	Rigid Cellular Phenolic Thermal Insulation
C1136-10	.Standard Specification for Flexible, Low
	Permeance Vapor Retarders for Thermal
	Insulation
D1668-97a (2006)	.Standard Specification for Glass Fabrics (Woven
	and Treated) for Roofing and Waterproofing
E84-10	.Standard Test Method for Surface Burning
	Characteristics of Building
	Materials
E119-09c	.Standard Test Method for Fire Tests of Building
	Construction and Materials

Renovate 3W for Surgery Administration VA Project No. 581-14-103 E136-09b.....of Materials in a Vertical Tube Furnace at 750 degrees C (1380 F) E. National Fire Protection Association (NFPA): 90A-09.....of Air Conditioning and Ventilating Systems 96-08.....Standards for Ventilation Control and Fire Protection of Commercial Cooking Operations 101-09....Life Safety Code 251-06.....Standard methods of Tests of Fire Endurance of Building Construction Materials 255-06.....Standard Method of tests of Surface Burning Characteristics of Building Materials F. Underwriters Laboratories, Inc (UL): 723.....UL Standard for Safety Test for Surface Burning Characteristics of Building Materials with Revision of 09/08 G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2009......Pipe Hangers and Supports Materials, Design,

and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 3 pcf, k = 0.26 at 75 degrees F, external insulation for temperatures up to 400 degrees F with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-5, Density 2 pcf, k = 0.27 at 75 degrees F, for use at temperatures up to 400 degrees F with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.26 at 75 degrees F, for use at temperatures up to 450 degrees F with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 850 degrees F.

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k =0.15 at 50 degrees F, for use at temperatures up to 250 degrees F with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k = 0.15 at 50 degrees F, for use at temperatures up to 250 degrees F with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.4 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density 7.5 pcf nominal, k = 0.29at 75 degrees F.
- B. Pipe insulation for use at temperatures up to 400 degrees F with all service vapor retarder jacket.

2.5 POLYISOCYANURATE CLOSED-CELL RIGID

- A. Preformed (fabricated) pipe insulation, ASTM C591, type IV, K = 0.19 at 75 degrees F, flame spread not over 25, smoke developed not over 50, for use at temperatures up to 300 degree F with factory applied PVDC or all service vapor retarder jacket with polyvinyl chloride premolded fitting covers.
- B. Equipment and duct insulation, ASTM C 591, type IV, K = 0.19 at 75 degrees F, for use at temperatures up to 300 degrees F with PVDC or all service jacket vapor retarder jacket.

2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

ASTM C177, C518, k = 0.27 at 75 degrees F, flame spread not over 25, smoke developed not over 50, for temperatures from 40 degrees F to 200 degrees F. No jacket required.

2.7 DUCT WRAP FOR LABORATORY FUME HOOD EXHAUST DUCTS

- A. Light weight, high temperature mineral fiber or ceramic fiber insulating material with low thermal conductivity K value of 0.417 Btu in/hr ft² degrees F at mean temperature of 500 degrees F).
- B. Material shall be fully encapsulated by UL classified aluminum foil and tested to ASTM E84 standard.
- C. Material shall be UL tested for internal exhaust fire to 2,000 degrees F with zero clearance and for through-penetration firestop.

- D. Material shall be UL classified for 2 hour fire rating for exhaust duct enclosure, and meet NFPA 96 requirements for direct applied insulating material to exhaust ducts with zero clearance.
- E. Material flame spread and smoke developed ratings shall not be higher than 5, as per ASTM E 84/UL 723 Flammability Test.
- F. Material shall serve as extension of two hour slab rating as exhaust duct offsets through third floor. Duct wrap must completely enclose the ductwork and be sealed to provide two hour rated assembly through third floor continuous from slab penetration up from second floor to deck penetration up to fourth floor. See plan drawings for additional information.

2.8 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II
- D. Characteristics:

Insulation Characteristics				
ITEMS	TYPE I	TYPE II		
Temperature, maximum degrees F	1200	1700		
Density (dry), lb/ ft3	14.5	18		
Thermal conductivity:				
Min W/ m K (Btu in/h ft ² degrees F)@	0.41	0.540		
mean temperature of 200 degrees F				
Surface burning characteristics:				
Flame spread Index, Maximum	0	0		
Smoke Density index, Maximum	0	0		

2.9 INSULATION FACINGS AND JACKETS

A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.

- B. ASJ jacket shall be white kraft bonded to 1 mil thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 1-1/2 inch lap on longitudinal joints and minimum 3 inch butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, such as penthouse mechanical equipment rooms, PEM's, etc.) in high humidity areas conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 30 inch-pounds for interior locations and 80 inch-pounds for exterior or exposed locations or where the insulation is subject to damage.
- E. Glass Cloth Jackets: Presized, minimum 7.8 ounces per square yard, 300 psig bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.03 inches. Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems ASTM B209, 3003 alloy, H-14 temper, 0.023 inch minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.024 inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need

not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 0.5 inch wide on 18 inch centers. System shall be weatherproof if utilized for outside service.

Aluminum jacket-Rectangular breeching: ASTM B209, 3003 alloy, H-14 I. temper, 0.020 inches thick with 1-1/4 inch corrugations or 0.032 inches thick with no corrugations. System shall be weatherproof if used for outside service.

2.10 REMOVABLE INSULATION JACKETS

- A. Insulation and Jacket:
 - 1. Non-Asbestos Glass mat, type E needled fiber.
 - 2. Temperature maximum of 450°F, Maximum water vapor transmission of 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
 - 3. Jacket Material: Silicon/fiberglass and LFP 2109 pure PTFE.
 - 4. Construction: One piece jacket body with three-ply braided pure Teflon or Kevlar thread and insulation sewn as part of jacket. Belt fastened.

2.11 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 3.0 pcf.

Nominal Pipe Size and Accessories Material (Insert Blocks)				
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)			
Up through 125 (5)	150 (6) long			
150 (6)	150 (6) long			
200 (8), 250 (10), 300 (12)	225 (9) long			
350 (14), 400 (16)	300 (12) long			
450 through 600 (18 through 24)	350 (14) long			

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree halfshells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 300 degrees F), cellular glass or calcium silicate. Insulation at supports shall have

same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 3.0 pcf.

2.12 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.13 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching monel or galvanized steel.
- C. Wire: 18 gage soft annealed galvanized or 14 gage copper clad steel or nickel copper alloy.
- D. Bands: 0.5 inch nominal width, brass, galvanized steel, aluminum or stainless steel.

2.14 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: one inch mesh, 22 gage galvanized steel.
- E. Corner beads: 2 inch by 2 inch, 26 gage galvanized steel; or, 1 inch by 1 inch, 28 gage aluminum angle adhered to 2 inch by 2 inch Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 40 degrees F to 250 degrees F. Below 40 degrees F and above 250 degrees F.

23 07 11 - 13

Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.15 FIRESTOPPING MATERIAL

Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.16 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Contracting Officers Representative (COR) for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 60 degrees F and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 6 inches.
- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 20

gage galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.

- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- H. Insulate PRVs, flow meters, and steam traps.
- I. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. Relief air ducts (Economizer cycle exhaust air).
 - 3. Exhaust air ducts and exhaust air plenums, and ventilation exhaust air shafts.
 - 4. Equipment: Expansion tanks, flash tanks, hot water pumps.
 - 5. In hot piping: Unions, flexible connectors, control valves, safety valves and discharge vent piping, vacuum breakers, thermostatic vent valves, steam traps 3/4 inch and smaller, exposed piping through floor for convectors and radiators. Insulate piping to within approximately 3 inches of uninsulated items.
- J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- L. Firestop Pipe and Duct insulation:
 - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - 2. Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:

- a. Pipe risers through floors
- b. Pipe or duct chase walls and floors
- c. Smoke partitions
- d. Fire partitions
- M. Freeze protection of above grade outdoor piping (over heat tracing tape): 10 inch thick insulation, for all pipe sizes 3 inches and smaller and 1 inch thick insulation for larger pipes. Provide metal jackets for all pipes. Provide for cold water make-up to cooling towers and condenser water piping and chilled water piping as described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).
- N. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.
 - 2. All interior piping and ducts conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, penthouse mechanical equipment rooms, etc.), below ambient air temperature, in high humidity areas.
- O. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. Piping exposed in building, within 6 feet of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
 - 3. A 2 inch overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - 1. Faced board: Apply board on pins spaced not more than 12 inches on center each way, and not less than 3 inches from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 - 2. Plain board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 9 inches on

center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.

- b. For hot equipment: Stretch 1 inch mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 1/4 inch thick, trowel led to a smooth finish.
- c. For cold equipment: Apply meshed glass fabric in a tack coat 60 to 70 square feet per gallon of vapor mastic and finish with mastic at 12 to 15 square feet per gallon over the entire fabric surface.
- d. Chilled water pumps: Insulate with removable and replaceable 20 gage aluminum or galvanized steel covers lined with insulation. Seal closure joints/flanges of covers with gasket material. Fill void space in enclosure with flexible mineral fiber insulation.
- 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics, interstitial spaces and duct work exposed to outdoor weather:
 - a. 2 inch thick insulation faced with ASJ (white all service jacket): Supply air duct and after filter housing.
 - b. 2 inch thick insulation faced with ASJ: Return air duct, mixed air plenums and prefilter housing.
 - c. Outside air intake ducts: one inch thick insulation faced with ASJ.
 - d. Exposed, unlined supply and return ductwork exposed to outdoor weather: 2 inch thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a maximum water vapor permeability of 0.001 perms.
- 4. Cold equipment: 1-1/2 inch thick insulation faced with ASJ.
 - a. Chilled water pumps, water filter, chemical feeder pot or tank.
 - b. Pneumatic, cold storage water and surge tanks.
- 5. Hot equipment: 1-1/2 inch thick insulation faced with ASJ.
 - a. Convertors, air separators, steam condensate pump receivers.
 - b. Reheat coil casing and separation chambers on steam humidifiers located above ceilings.
 - c. Domestic water heaters and hot water storage tanks (not factory insulated).

- d. Booster water heaters for dietetics dish and pot washers and for washdown grease-extracting hoods.
- 6. Laundry: Hot exhaust ducts from dryers and from ironers, where duct is exposed in the laundry.
- B. Flexible Mineral Fiber Blanket:
 - 1. Adhere insulation to metal with 3 inch wide strips of insulation bonding adhesive at 8 inches on center all around duct. Additionally secure insulation to bottom of ducts exceeding 24 inches in width with pins welded or adhered on 18 inch centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
 - 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
 - 3. Concealed supply air ductwork.
 - a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 2 inch thick insulation faced with FSK.
 - b. Above ceilings for other than roof level: 1-½ inch thick insulation faced with FSK.
 - 4. Concealed return air duct:
 - a. In attics (where not subject to damage) and where exposed to outdoor weather: 2 inch thick insulation faced with FSK.
 - b. Above ceilings at a roof level, unconditioned areas, and in chases with external wall or containing steam piping; 1-1/2 inch thick, insulation faced with FSK.
 - c. In interstitial spaces (where not subject to damage): 1-1/2 inch thick insulation faced with FSK.
 - d. Concealed return air ductwork in other locations need not be insulated.
 - 5. Concealed outside air duct: 1-1/2 inch thick insulation faced with FSK.

- 6. Exhaust air branch duct from autopsy refrigerator to main duct: 1-1/2 inch thick insulation faced with FSK.
- C. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 4 inches operating at surface temperature of 61 degrees F or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 40 degrees F, or above 250 degrees F. Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 60 degrees F or less, vapor seal with a layer of glass fitting tape imbedded between two 1/16 inch coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 2 inches.
 - 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- D. Rigid Cellular Phenolic Foam:
 - 1. Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 250 degrees F.
 - 2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
 - 3. Provide secure attachment facilities such as welding pins.
 - 4. Apply insulation with joints tightly drawn together
 - 5. Apply adhesives, coverings, neatly finished at fittings, and valves.

- 6. Final installation shall be smooth, tight, neatly finished at all edges.
- 7. Minimum thickness in inches specified in the schedule at the end of this section.
- 8. Exposed, unlined supply and return ductwork exposed to outdoor weather: 2 inch thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00 perms.
- 9. Condensation control insulation: Minimum 1.0 inch thick for all pipe sizes.
 - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms.
- E. Cellular Glass Insulation:
 - 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
 - 2. Underground Piping Other than or in lieu of that Specified in Section 23 21 13, HYDRONIC PIPING and Section 33 63 00, STEAM ENERGY DISTRIBUTION: Type II, factory jacketed with a 3 mm laminate jacketing consisting of 10 ft x 10 ft asphalt impregnated glass fabric, bituminous mastic and outside protective plastic film.
 - a. 3 inches thick for hot water piping.
 - b. As scheduled at the end of this section for chilled water piping.
 - c. Underground piping: Apply insulation with joints tightly butted. Seal longitudinal self-sealing lap. Use field fabricated or factory made fittings. Seal butt joints and fitting with jacketing as recommended by the insulation manufacturer. Use 4 inch wide strips to seal butt joints.
 - d. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
 - e. Underground insulation shall be inspected and approved by the COR as follows:
 - 1) Insulation in place before coating.
 - 2) After coating.
 - f. Sand bed and backfill: Minimum 3 inches all around insulated pipe or tank, applied after coating has dried.
 - 3. Cold equipment: 2 inch thick insulation faced with ASJ for chilled water pumps, water filters, chemical feeder pots or tanks, expansion tanks, air separators and air purgers.

- 4. Exposed, unlined supply and return ductwork exposed to outdoor weather: 2 inch thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a water vapor permeability of 0.00 perms.
- F. Polyisocyanurate Closed-Cell Rigid Insulation:
 - Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for exterior piping, equipment and ductwork for temperature up to 300 degrees F.
 - Install insulation, vapor barrier and jacketing per manufacturer's recommendations. Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/contraction joint design and spacing and vapor barrier integrity.
 - Install insulation with all joints tightly butted (except expansion) joints in hot applications).
 - If insulation thickness exceeds 2.5 inches, install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer.
 - 5. For cold applications, vapor barrier shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor barrier shall be used to attach the vapor barrier or jacketing. No wire ties capable of penetrating the vapor barrier shall be used to hold the insulation in place. Banding shall be used to attach PVC or metal jacketing.
 - 6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill PVC elbow jacket is prohibited on cold applications.
 - For cold applications, the vapor barrier on elbows/fittings shall be either mastic-fabric-mastic or 2 mil thick PVDC vapor barrier adhesive tape.
 - 8. All PVC and metal jacketing shall be installed so as to naturally shed water. Joints shall point down and shall be sealed with either adhesive or caulking (except for periodic slip joints).

- 9. Underground piping: Follow instructions for above ground piping but the vapor retarder jacketing shall be 6 mil thick PVDC or minimum 30 mil thick rubberized bituminous membrane. Sand bed and backfill shall be a minimum of 6 inches all around insulated pipe.
- 10. Exposed, unlined supply and return ductwork exposed to outdoor weather: 2 inch thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.
- 11. Note the NFPA 90A burning characteristic requirements of 25/50 in paragraph 1.3B. Refer to paragraph 3.1 for items not to be insulated.
- 12. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section.
- G. Flexible Elastomeric Cellular Thermal Insulation:
 - 1. Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
 - 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
 - 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.

- 5. Minimum 0.75 inch thick insulation for pneumatic control lines for a minimum distance of 20 feet from discharge side of the refrigerated dryer.
- 6. Use Class S (Sheet), 3/4 inch thick for the following:
 - a. Chilled water pumps
 - b. Bottom and sides of metal basins for winterized cooling towers (where basin water is heated).
 - c. Chillers, insulate any cold chiller surfaces subject to condensation which has not been factory insulated.
 - d. Piping inside refrigerators and freezers: Provide heat tape under insulation.
- 7. Exposed, unlined supply and return ductwork exposed to outdoor weather: 2 inch thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.
- H. Duct Wrap for Ducts offsetting through rated floors outside of two-hour chase:
 - 1. The insulation thickness, layers and installation method shall be as per recommendations of the manufacturer to maintain the fire integrity and performance rating.
 - 2. Provide stainless steel jacket for all exterior and exposed interior ductwork.
- I. Calcium Silicate:
 - 1. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section for piping other than in boiler plant.

3.7 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
		Nominal	Pipe Size	Millimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Above
122-177 degrees C (251-350 degrees F) (HPS, MPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)
93-260 degrees C (200-500 degrees F) (HPS, HPR)	Calcium Silicate	100 (4)	125 (5)	150 (6)	150 (6)

		-			
100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Mineral Fiber (Above ground piping only)	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)
100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Rigid Cellular Phenolic Foam	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR,	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
GH and GHR) 38-99 degrees C (100-211 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
39-99 degrees C (100-211 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)		
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)		
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
4-16 degrees C (40-60 degrees F) (CH and CHR within chiller room and pipe chase and underground)	Cellular Glass Closed- Cell	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR	Cellular Glass Closed- Cell	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

VA Medical Center, Huntington, WVVA Project No. 581-14-103Renovate 3W for Surgery Administration100% CD: 03/28/14

and RS for DX refrigeration)					
4-16 degrees C (40-60 degrees F) (CH, CHR, GC and GCR (where underground)	Polyiso- cyanurate Closed-Cell Rigid	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

- - - E N D - - -

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide (a) direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings, sequences of operation, and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, testing/verification and start-up, training, final project documentation and warranty. Project is a phased renovation of existing swing space/tele-health offices to a new surgical administrative suite. Provide new DDC controls and upgrade/expand existing building level DDC controls to ensure new renovation area controls are seamlessly integrated to existing site-wide medical facility DDC control system. Coordinate, integrate and map all control, monitoring, measurement and alarm points from new Custom Air Handling Unit controller to be located within existing Building 1 West Penthouse. Renovations within existing facilities demand the utmost in building automation coordination with all trades, including but not limited to; testing, adjusting and balancing and start-up/verification efforts. Design intent is to remove, replace and upgrade existing pneumatic and DDC controls within project areas. Contractor shall carefully coordinate with all trades and the VAMC in order to minimize the impact to existing pneumatic and DDC controls outside of the renovation project areas and scope.
 - The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, and an Engineering Control Center. Provide a remote user using a standard web browser to access the control system graphics and change adjustable set points with the proper password.
 - 2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways,

unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.

- a. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol.
- b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
- 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and items required for complete and fully functional Controls Systems.
- 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- 5. The control system shall accommodate 1 Engineering Control Center(s) and the control system shall accommodate 20 web-based Users simultaneously, and the access to the system should be limited only by operator password.
- B. Some controls products/hardware/devices/installation protocols are furnished to other manufacturers for placement/mounting/installation/ wiring within/on coordinated custom central station indoor air handling units, but are not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements

in writing prior to providing the required control devices, wiring diagrams, installation protocols, of the products necessary to accomplish the sequences of operation/satisfy the points lists and controls diagrams for the associated equipment/HVAC systems. This equipment/systems include the following:

1. Custom Central Station Indoor Air Handling Unit and the associated controls mounted on/in the unit by air handling unit manufacturer. Controls for this equipment and all equipment/components within the AHU shall be mounted and wired within the factory fabricated and tested air handling unit at the AHU manufacturer's factory. Building automation systems/controls shall be fully coordinated between AHU manufacturer, component manufacturers and project controls contractor. Control devices, hardware, actuators, controllers, etc. shall be coordinated and supplied by controls contractor to AHU manufacturer based upon the design controls diagrams and required controls to achieve the sequences of operation, unless the specific piece of equipment/component within the AHU is specified to include its own controls (e.g. supply/return fan piezometers provided by fan manufacturer, airflow monitoring stations with integral damper assemblies, etc. AHU manufacturer and controls contractor shall work carefully with all AHU component suppliers to ensure that the devices indicated within project schedules, specifications, control diagrams and in sequences of operation are properly installed within the AHU. Controls contractor protocols for installation of all devices and hardware shall be provided by controls contractor to the AHU manufacturer and followed carefully by AHU manufacturer installers. Controls contractor shall provide factory testing and oversight of the completed AHU controls system prior to and during the AHU Factory Acceptance Testing (FAT) as well as during the Site Acceptance Testing (SAT), start-up and verification efforts. See AHU detail drawing and AHU specifications for additional requirements. Controls contractor shall coordinate mapping of all control, monitoring and alarm points from custom AHU (AHU-3/RF-3) with control diagrams and sequences of operation to provide seamless/complete integration of all new third floor surgical admin suite AHU controls to building level and VAMC site level controls. Controls contractor shall coordinate wiring of all site mounted

sensors and control devices that must be wired back to control components mounted on/in AHU.

- C. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal Unit (TUS/VAV) controllers.
- D. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include the following:
 - 1. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- E. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:
 - Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.
 - 2. Terminal units' velocity sensors
 - 3. Unitary HVAC equipment (custom air handling unit with factorymounted/wired controls, rooftop air conditioning units, split systems, packaged pumping stations) controls. These include at a

minimum (refer to Control Diagrams and sequences of operation for all control/measurement/monitor/alarm/integration points):

- a. Discharge temperature control.
- b. Economizer control.
- c. Flowrate control.
- d. Setpoint reset.
- e. Time of day indexing.
- f. Status alarm.
- Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- 5. The following systems have limited control (as individually noted below) from the BAS/ECC:
 - a. Medical gas systems (if not bottled at point of use): low pressure and status alarms.
 - b. Medical vacuum systems: high pressure and status alarms.
 - c. Medical compressed air systems: low pressure and status alarms.
 - d. Emergency generators: status alarms.
 - e. Automatic Transfer switch: status alarms.
 - f. Domestic water heating systems: low temperature, high temperature and status alarms.
 - g. Isolation rooms: pressure outside of acceptable limit alarms.
 - h. Operating rooms: pressure outside of acceptable limit alarms.
 - i. Electric Heat Tracing system malfunctioning.
- F. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Terminal units	23	23	23 09 23	N/A
Controllers for terminal units	23 09 23	23	23 09 23	N/A
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
Power distribution system monitoring interfaces	23 09 23	23 09 23	23 09 23	26
Field/Site Interface with Custom Indoor AHU controls	23 09 23	23 09 23	23 09 23	26
Custom Indoor AHU controls interface with control system	23 09 23	23	23	26
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
Fire/Smoke Dampers	23	23	28 31 00	28 31 00
Smoke Dampers	23	23	28 31 00	28 31 00
Fire Dampers	23	23	N/A	N/A
Water treatment system	23	23	23	26
VFDs	23	23	23	26
Medical gas panels	23	23	26	26
Fire Alarm shutdown relay interlock wiring	28	28	28	26
Control system monitoring of fire alarm smoke control relay	28	28	23 09 23	28
Unit Heater controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Starters, HOA switches	23	23	N/A	26
Control System Monitoring of Electric Heat Tracing for freeze projection of hydronic piping systems	26	26	23 09 23	26

G. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company. This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control system-specific testing / verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its testing/verification work.

- The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract procuring the controls contractor administered by this Section of the technical specifications.
- 2. The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator.
- 3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include one portable operator terminal - laptop, one digital display unit, microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. Contractor is responsible for all device mounting and wiring.

Item/Task	Section	Control	VA
	23 09 23	system	
	contactor	integrator	
ECC expansion		Х	
ECC programming		Х	
Devices, controllers, control panels	Х		
and equipment			
Point addressing: all hardware and	Х		
software points including setpoint,			
calculated point, data point(analog/			
binary), and reset schedule point			
Point mapping		Х	
Network Programming	Х		
ECC Graphics		Х	
Controller programming and sequences	Х		

4. Responsibility Table:

Integrity of LAN communications	Х		
Electrical wiring	Х		
Operator system training		Х	
LAN connections to devices	Х		
LAN connections to ECC		Х	
IP addresses			Х
Overall system verification		Х	
Controller and LAN system verification	X		

- H. Unitary standalone systems including Unit Heaters, Cabinet Unit Heaters, Fan Coil Units, Base Board Heaters, thermal comfort ventilation fans, and similar units for control of room environment conditions may be equipped with integral controls furnished and installed by the equipment manufacturer or field mounted. Refer to equipment specifications and as indicated in project documents. Application of standalone unitary controls is limited to at least those systems wherein remote monitoring, alarm and start-up are not necessary. Examples of such systems include:
 - 1. Light-switch-operated toilet exhaust
 - 2. Vestibule heater
 - 3. Exterior stair heater
 - 4. Attic heating and ventilation
 - 5. Mechanical or electrical room heating and ventilation.
- H. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted by VA.

1.2 RELATED WORK

- A. Section 21 05 11, Common Work Results for Fire Suppression.
- B. Section 21 10 00, Water-Based Fire-Suppression Systems.
- C. Section 22 62 00, Vacuum Systems for Laboratory and Healthcare Facilities.
- D. Section 22 63 00, Gas Systems for Laboratory and Healthcare Facilities.
- E. Section 23 21 13, Hydronic Piping.
- F. Section 23 22 13, Steam and Condensate Heating Piping.
- G. Section 23 31 00, HVAC Ducts and Casings.
- H. Section 23 36 00, Air Terminal Units.
- I. Section 23 73 13, Custom, Indoor, Central-Station Air-Handling Unit.
- J. Section 23 05 11, Common Work Results for HVAC

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

- K. Section 23 05 93, Testing, Adjusting, and Balancing for HVAC
- L. Section 26 05 11, Requirements for Electrical Installations.
- M. Section 26 05 19, Low-Voltage Electrical Power Conductors and Cables.
- N. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- O. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- P. Section 26 09 23, Lighting Controls.
- Q. Section 26 27 26, Wiring Devices.
- R. Section 26 29 11, Motor Controllers.
- S. Section 27 15 00, Communications Horizontal Cabling
- T. Section 28 31 00, Fire Detection and Alarm.

1.2 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. ARCNET: ANSI/ATA 878.1 Attached Resource Computer Network. ARCNET is a deterministic LAN technology; meaning it's possible to determine the maximum delay before a device is able to transmit a message.
- C. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- D. BACnet: A Data Communication Protocol for Building Automation and Control Networks, ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
- E. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- G. BACnet Network: One or more BACnet segments that have same network address and interconnected by bridges at physical and data link layers.
- H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.

- J. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- 0. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 72-78 degrees F, as opposed to a single point change over or overlap).
- R. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number often referred to as device instance.
- T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each

device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.

- U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- AA. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- BB. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.

- DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- FF. GIF: Abbreviation of Graphic interchange format.
- GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- JJ. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- LL. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an acceptable LAN option for VA health-care facilities. It uses twisted-pair wiring for relatively low speed and low cost communication.

- OO. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- TT. Operating system (OS): Software, which controls the execution of computer application programs.
- UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- WW. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- XX. PICS: Protocol Implementation Conformance Statement, describing BACnet capabilities of a device. All BACnet devices have published PICS.
- YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- ZZ. Repeater: A network component that connects two or more physical segments at the physical layer.
- AAA. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.

- BBB. Sensors: Devices measuring state points or flows, which are then transmitted back to the DDC system.
- CCC. Thermostats: Devices measuring temperatures, used in control of standalone or unitary systems and equipment not attached to DDC system.

1.4 QUALITY ASSURANCE

- A. Criteria:
 - 1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, testing and start-up/verification of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
 - Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
 - 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
 - The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
 - 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel

shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.

- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
 - Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
 - Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two (2) seconds. Analog objects shall start to adjust within two (2) seconds.
 - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
 - Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
 - Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The

Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.

- 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
- Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]
Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH
Water flow	±1% of reading
Air flow (terminal)	±10% of reading
Air flow (measuring stations)	±5% of reading
Carbon Monoxide (CO)	±5% of reading
Carbon Dioxide (CO ₂)	±50 ppm
Air pressure (ducts)	±25 Pa [±0.1"w.c.]
Air pressure (space)	±0.3 Pa [±0.001"w.c.]
Water pressure	±2% of full scale *Note 1
Electrical Power	±0.5% of reading

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall be extended to include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with on-line support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported.
- D. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final testing, start-up/verification, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
 - 5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the intended specification or drawings.
 - Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
 - 7. Color prints of proposed graphics with a list of points for display.
 - 8. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.

- 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- Riser diagrams of wiring between central control unit and all control panels.
- 12. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - 2. Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
 - 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:

- a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
- b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
- c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
- d. Complete troubleshooting procedures and guidelines for all systems.
- e. Complete operating instructions for all systems.
- f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
- g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
- h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to Contracting Officers Representative (COR) prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below. Contractor shall also video tape instruction sessions noted below.
 - First Phase: Formal instructions to the VA facilities personnel for a total of 48 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of

the control system, at a time mutually agreeable to the Contractor and the VA.

- 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 48 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.
- 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
- 4. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to $65^{\circ}C$ (-40 to $150^{\circ}F$).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Standard 135-10.....BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME): B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings.

B16.22-01.....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.

- D. American Society of Testing Materials (ASTM): B32-08.....Standard Specification for Solder Metal B88-09....Standard Specifications for Seamless Copper Water Tube B88M-09....Standard Specification for Seamless Copper Water Tube (Metric) B280-08....Standard Specification for Seamless Copper Tube for Air-Conditioning and Refrigeration Field Service D2737-03....Standard Specification for Polyethylene (PE) Plastic Tubing
- E. Federal Communication Commission (FCC): Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.
- F. Institute of Electrical and Electronic Engineers (IEEE): 802.3-11.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications
- G. National Fire Protection Association (NFPA): 70-11.....National Electric Code 90A-09....Standard for Installation of Air-Conditioning and Ventilation Systems
- H. Underwriter Laboratories Inc (UL): 94-10.....Tests for Flammability of Plastic Materials for Parts and Devices and Appliances 294-10....Access Control System Units 486A/486B-10.....Wire Connectors 555S-11....Standard for Smoke Dampers 916-10....Energy Management Equipment

1076-10..... Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

- A. General
 - The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
 - The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
 - 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.
 - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
 - g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
- C. Network Architecture

- The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
- 2. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations. They may also utilize digital wireless technologies as appropriate to the application and if approved by the VA.
- 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.
- D. Third Party Interfaces:
 - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
 - 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.
- E. Servers:
 - Provide data storage server(s) to archive historical data including trends, alarm and event histories and transaction logs.
 - Equip these server(s) with the same software tool set that is located in the BACnet building controllers for system configuration and custom logic definition and color graphic configuration.
 - 3. Access to all information on the data storage server(s) shall be through the same browser functionality used to access individual nodes. When logged onto a server the operator will be able to also interact with any other controller on the control system as required for the functional operation of the controls systems. The contractor administered by this Section of the technical specifications shall provide all necessary digital processor programmable data storage server(s).
 - 4. These server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for

operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar. These server(s) shall utilize IT industry standard data base platforms which utilize a database declarative language designed for managing data in relational database management systems (RDBMS) such as SQL.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
 - The MS/TP data link / physical layer protocol is not acceptable to the VA in any new BACnet network or sub-network in its healthcare or lab facilities.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Project drawings indicate remote buildings or sites to be connected by a nominal 56,000 baud modem over voice-grade telephone lines. In each remote location a modem and field device connection shall allow communication with each controller on the internetwork as specified in Paragraph D.
- D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system

operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.

- E. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- F. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 ENGINEERING CONTROL CENTER (ECC)

- A. The ECC shall reside on a high-speed network with controllers as shown on system drawings. The ECC and each standard browser connected to server shall be able to access all system information.
- B. ECC and controllers shall communicate using BACnet protocol. ECC and control network backbone shall communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing as specified in ASHRAE/ANSI 135-2008, BACnet Annex J.
- C. Hardware: ECC shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device.
 - ECC shall be commercial standard with supporting 32- or 64-bit hardware (as required by the direct-digital control system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 4GB DDR3 SDRAM (minimum 1333 Mhz) memory, 512 MB video card, and 16 speed high density DVD-RW+/- optical drive.
 - a. The hard drive shall be at the minimum 1 TB 7200 rpm SATA hard drive with 16 MB cache, and shall have sufficient memory to store:
 - 1) All required operator workstation software
 - 2) A DDC database at least twice the size of the delivered system database
 - One year of trend data based on the points specified to be trended at their specified trend intervals.

23 09 23 - 26

- b. Real-time clock:
 - 1) Accuracy: Plus or minus 1 minute per month.
 - Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; automatic reset by software.
 - 3) Clock shall function for one year without power.
 - Provide automatic time correction once every 24 hours by synchronizing clock with the Time Service Department of the U.S. Naval Observatory.
- c. Serial ports: Four USB ports and two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
- d. Parallel port: Enhanced.
- e. Sound card: For playback and recording of digital WAV sound files associated with audible warning and alarm functions.
- f. Color monitor: PC compatible, not less than 22 inches, LCD type, with a minimum resolution of 1280 by 1024 pixels, non-interlaced, and a maximum dot pitch of 0.28 mm.
- g. Keyboard: Minimum of 64 characters, standard ASCII character set based on ANSI INCITS 154.
- h. Mouse: Standard, compatible with installed software.
- i. Removable disk storage: Include the following, each with appropriate controller:
 - Minimum 1 TB removable hard disk, maximum average access time of 10 ms.
- j. Network interface card (NIC): integrated 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector.
- Cable modem: 42.88 MBit/s, DOCSIS 2.0 Certified, also backwards compatible with DOCSIS 1.1/1.0 standards. Provide Ethernet or USB connectivity.
- 3. Optical modem: full duplex link, for use on 10 GBase-R single-mode and multi-mode fiber with a XENPAK module.
- 4. Auto-dial modem: 56,600 bps, full duplex for asynchronous communications. With error detection, auto answer/autodial, and call-in-progress detection. Modem shall comply with requirements in ITU-T v.34, ITU-T v.42, ITU-T v.42 Appendix VI for error correction,

and ITU-T v.42 BIS for data compression standards; and shall be suitable for operating on unconditioned voice-grade telephone lines complying with 47 CFR 68.

- 5. Audible Alarm: Manufacturer's standard.
- 6. Printers:
 - a. Provide a dedicated, minimum resolution 600 dpi, color laser printer, connected to the ECC through a USB interface.
 - If a network printer is used instead of this dedicated printer, it shall have a 100Base-T interface with an RJ45 connection and shall have a firmware print spooler compatible with the Operating System print spooler.
 - 2) RAM: 512 MB, minimum.
 - Printing Speed: Minimum twenty six pages per minute (color); minimum 30 pages per minute (black/white).
 - Paper Handling: Automatic sheet feeder with 250-sheet x 8.5 inch x 11 inch paper cassette and with automatic feed.
 - b. Provide a dedicated black/white tractor-feed dot matrix printer for status/alarm message printing, minimum 10 characters per inch, minimum 160 characters per second, connected to the ECC through a USB interface.
 - Paper: One box of 2000 sheets of 8-1/2x11 multi-fold type printer paper.
- 7. RS-232 ASCII Interface
 - a. ASCII interface shall allow RS-232 connections to be made between a meter or circuit monitor operating as the host PC and any equipment that will accept RS-232 ASCII command strings, such as local display panels, dial-up modems, and alarm transmitters.
 - b. Pager System Interface: Alarms shall be able to activate a pager system with customized message for each input alarm.
 - c. Alarm System Interface: RS-232 output shall be capable of transmitting alarms from other monitoring and alarm systems to workstation software.
 - d. RS-232 output shall be capable of connection to a pager interface that can be used to call a paging system or service and send a signal to a portable pager. System shall allow an individual alphanumeric message per alarm input to be sent to paging system.

This interface shall support both numeric and alphanumeric pagers.

- e. Cables: provide Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 1) NFPA 70, Type CMP.
 - 2) Flame Resistance: NFPA 262, Flame Test.
- 8. Self-contained uninterruptible power supply (UPS):
 - a. Size: Provide a minimum of six hours of operation of ECC equipment, including two hours of alarm printer operation.
 - b. Batteries: Sealed, valve regulated, recombinant, lead calcium.
 - c. Accessories:
 - 1) Transient voltage suppression.
 - 2) Input-harmonics reduction.
 - 3) Rectifier/charger.
 - 4) Battery disconnect device.
 - 5) Static bypass transfer switch.
 - 6) Internal maintenance bypass/isolation switch.
 - 7) External maintenance bypass/isolation switch.
 - 8) Output isolation transformer.
 - 9) Remote UPS monitoring.
 - 10) Battery monitoring.
 - 11) Remote battery monitoring.
- D. ECC Software:
 - Provide for automatic system database save and restore on the ECC's hard disk a copy of the current database of each Controller. This database shall be updated whenever a change is made in any system panel. In the event of a database loss in a building management panel, the ECC shall automatically restore the database for that panel. This capability may be disabled by the operator.
 - Provide for manual database save and restore. An operator with proper clearance shall be able to save the database from any system panel. The operator also shall be able to clear a panel database and

manually initiate a download of a specified database to any panel in the system.

- 3. Provide a method of configuring the system. This shall allow for future system changes or additions by users with proper clearance.
- 4. Operating System. Furnish a concurrent multi-tasking operating system. The operating system also shall support the use of other common software applications. Acceptable operating systems are Windows XP, Windows System 7, Linux, and UNIX.
- 5. System Graphics. The operator workstation software shall be graphically oriented. The system shall allow display of up to 10 graphic screens at once for comparison and monitoring of system status. Provide a method for the operator to easily move between graphic displays and change the size and location of graphic displays on the screen. The system graphics shall be able to be modified while on-line. An operator with the proper password level shall be able to add, delete, or change dynamic objects on a graphic. Dynamic objects shall include analog and binary values, dynamic text, static text, and animation files. Graphics shall have the ability to show animation by shifting image files based on the status of the object.
- 6. Custom Graphics. Custom graphic files shall be created with the use of a graphics generation package furnished with the system. The graphics generation package shall be a graphically based system that uses the mouse to create and modify graphics that are saved in industry standard formats such as PCX, TIFF, and GEM. The graphics generation package also shall provide the capability of capturing or converting graphics from other programs such as Designer or AutoCAD.
- 7. Graphics Library. Furnish a complete library of standard HVAC equipment graphics such as chillers, boilers, air handlers, terminals, fan coils, and unit ventilators. This library also shall include standard symbols for other equipment including fans, pumps, coils, valves, piping, dampers, and ductwork. The library shall be furnished in a file format compatible with the graphics generation package program.
- 8. The Controls Systems Operator Interfaces shall be user friendly, readily understood and shall make maximum use of colors, graphics, icons, embedded images, animation, text based information and data

visualization techniques to enhance and simplify the use and understanding of the displays by authorized users at the ECC. The operating system shall be Windows XP or better, and shall support the third party software.

- Provide graphical user software, which shall minimize the use of keyboard through the use of the mouse and "point and click" approach to menu selection.
- 10. The software shall provide a multi-tasking type environment that will allow the user to run several applications simultaneously. The mouse or Alt-Tab keys shall be used to quickly select and switch between multiple applications. The operator shall be able automatically export data to and work in Microsoft Word, Excel, and other Windows based software programs, while concurrently on-line system alarms and monitoring information.
- 11. On-Line Help. Provide a context-sensitive, on-line help system to assist the operator in operating and editing the system. On-line help shall be available for all applications and shall provide the relevant data for that particular screen. Additional help information shall be available through the use of hypertext.
- 12. User access shall be protected by a flexible and Owner re-definable software-based password access protection. Password protection shall be multi-level and partition able to accommodate the varied access requirements of the different user groups to which individual users may be assigned. Provide the means to define unique access privileges for each individual authorized user. Provide the means to on-line manage password access control under the control of a project specific Master Password. Provide an audit trail of all user activity on the Controls Systems including all actions and changes.
- 13. The system shall be completely field-programmable from the common operator's keyboard thus allowing hard disk storage of all data automatically. All programs for the CUs shall be able to be downloaded from the hard disk. The software shall provide the following functionality as a minimum:
 - Point database editing, storage and downloading of controller databases.
 - b. Scheduling and override of building environmental control systems.

- c. Collection and analysis of historical data.
- d. Alarm reporting, routing, messaging, and acknowledgement.
- e. Definition and construction of dynamic color graphic displays.
- f. Real-time graphical viewing and control of environment.
- g. Scheduling trend reports.
- h. Program editing.
- i. Operating activity log and system security.
- j. Transfer data to third party software.
- 14. Provide functionality such that using the least amount of steps to initiate the desired event may perform any of the following simultaneously:
 - a. Dynamic color graphics and graphic control.
 - b. Alarm management.
 - c. Event scheduling.
 - d. Dynamic trend definition and presentation.
 - e. Program and database editing.
 - f. Each operator shall be required to log on to the system with a user name and password to view, edit or delete the data. System security shall be selectable for each operator, and the password shall be able to restrict the operator's access for viewing and changing the system programs. Each operator shall automatically be logged off the system if no keyboard or mouse activity is detected for a selected time.
- 15. Graphic Displays:
 - a. The workstation shall allow the operator to access various system schematics and floor plans via a graphical penetration scheme, menu selection, or text based commands. Graphic software shall permit the importing of AutoCAD or scanned pictures in the industry standard format (such as PCX, BMP, GIF, and JPEG) for use in the system.
 - b. System Graphics shall be project specific and schematically correct for each system. (ie: coils, fans, dampers located per equipment supplied with project.) Standard system graphics that do not match equipment or system configurations are not acceptable. Operator shall have capability to manually operate the entire system from each graphic screen at the ECC. Each

system graphic shall include a button/tab to a display of the applicable sequence of operation.

- c. Dynamic temperature values, humidity values, flow rates, and status indication shall be shown in their locations and shall automatically update to represent current conditions without operator intervention and without pre-defined screen refresh values.
- d. Color shall be used to indicate status and change in status of the equipment. The state colors shall be user definable.
- e. A clipart library of HVAC equipment, such as chillers, boilers, air handling units, fans, terminal units, pumps, coils, standard ductwork, piping, valves and laboratory symbols shall be provided in the system. The operator shall have the ability to add custom symbols to the clipart library.
- f. A dynamic display of the site-specific architecture showing status of the controllers, the ECC and network shall be provided.
- g. The windowing environment of the workstation shall allow the user to simultaneously view several applications at a time to analyze total building operation or to allow the display of graphic associated with an alarm to be viewed without interrupting work in progress. The graphic system software shall also have the capability to split screen, half portion of the screen with graphical representation and the other half with sequence of operation of the same HVAC system.
- 16. Trend reports shall be generated on demand or pre-defined schedule and directed to monitor display, printers or disk. As a minimum, the system shall allow the operator to easily obtain the following types of reports:
 - a. A general list of all selected points in the network.
 - b. List of all points in the alarm.
 - c. List of all points in the override status.
 - d. List of all disabled points.
 - e. List of all points currently locked out.
 - f. List of user accounts and password access levels.
 - g. List of weekly schedules.
 - h. List of holiday programming.
 - i. List of limits and dead bands.

- j. Custom reports.
- k. System diagnostic reports, including, list of digital controllers on the network.
- 1. List of programs.
- 17. ASHRAE Standard 147 Report: Provide a daily report that shows the operating condition of each chiller as recommended by ASHRAE Standard 147. At a minimum, this report shall include:
 - a. Chilled water (or other secondary coolant) inlet and outlet temperature
 - b. Chilled water (or other secondary coolant) flow
 - c. Chilled water (or other secondary coolant) inlet and outlet pressures
 - d. Evaporator refrigerant pressure and temperature
 - e. Condenser refrigerant pressure and liquid temperature
 - f. Condenser water inlet and outlet temperatures
 - g. Condenser water flow
 - h. Refrigerant levels
 - i. Oil pressure and temperature
 - j. Oil level
 - k. Compressor refrigerant discharge temperature
 - 1. Compressor refrigerant suction temperature
 - m. Addition of refrigerant
 - n. Addition of oil
 - o. Vibration levels or observation that vibration is not excessive
 - p. Motor amperes per phase
 - q. Motor volts per phase
 - r. PPM refrigerant monitor level
 - s. Purge exhaust time or discharge count
 - t. Ambient temperature (dry-bulb and wet-bulb)
 - u. Date and time logged
- 18. Electrical, Gas, and Weather Reports
 - a. Electrical Meter Report: Provide a monthly report showing the daily electrical consumption and peak electrical demand with time and date stamp for each building meter.
 - b. Provide an annual (12-month) summary report showing the monthly electrical consumption and peak demand with time and date stamp for each meter.

- c. Gas Meter Report: Provide a monthly report showing the daily natural gas consumption for each meter. Provide an annual (12month) report that shows the monthly consumption for each meter.
- d. Weather Data Report: Provide a monthly report showing the daily minimum, maximum, and average outdoor air temperature, as well as the number of heating and cooling degree-days for each day. Provide an annual (12-month) report showing the minimum, maximum, and average outdoor air temperature for the month, as well as the number of heating and cooling degree-days for the month.
- 19. Scheduling and Override:
 - a. Provide override access through menu selection from the graphical interface and through a function key.
 - b. Provide a calendar type format for time-of-day scheduling and overrides of building control systems. Schedules reside in the ECC. The digital controllers shall ensure equipment time scheduling when the ECC is off-line. The ECC shall not be required to execute time scheduling. Provide the following spreadsheet graphics as a minimum:
 - 1) Weekly schedules.
 - 2) Zone schedules, minimum of 100 zones.
 - 3) Scheduling up to 365 days in advance.
 - 4) Scheduled reports to print at workstation.

20. Collection and Analysis of Historical Data:

- a. Provide trending capabilities that will allow the operator to monitor and store records of system activity over an extended period of time. Points may be trended automatically on time based intervals or change of value, both of which shall be user definable. The trend interval could be five (5) minutes to 120 hours. Trend data may be stored on hard disk for future diagnostic and reporting. Additionally trend data may be archived to network drives or removable disk media for off-site retrieval.
- b. Reports may be customized to include individual points or predefined groups of at least six points. Provide additional functionality to allow pre-defined groups of up to 250 trended points to be easily accessible by other industry standard word processing and spreadsheet packages. The reports shall be time

and date stamped and shall contain a report title and the name of the facility.

- c. System shall have the set up to generate spreadsheet reports to track energy usage and cost based on weekly or monthly interval, equipment run times, equipment efficiency, and/or building environmental conditions.
- d. Provide additional functionality that will allow the operator to view real time trend data on trend graph displays. A minimum of 20 points may be graphed regardless of whether they have been predefined for trending. In addition, the user may pause the graph and take snapshots of the screens to be stored on the workstation disk for future reference and trend analysis. Exact point values may be viewed and the graph may be printed. Operator shall be able to command points directly on the trend plot by double clicking on the point.
- 21. Alarm Management:
 - a. Alarm routing shall allow the operator to send alarm notification to selected printers or operator workstation based on time of day, alarm severity, or point type.
 - b. Alarm notification shall be provided via two alarm icons, to distinguish between routine, maintenance type alarms and critical alarms. The critical alarms shall display on the screen at the time of its occurrence, while others shall display by clicking on their icon.
 - c. Alarm display shall list the alarms with highest priority at the top of the display. The alarm display shall provide selector buttons for display of the associated point graphic and message in English language. The operator shall be able to sort out the alarms.
 - d. Alarm messages shall be customized for each point to display detailed instructions to the operator regarding actions to take in the event of an alarm.
 - e. An operator with proper security level access may acknowledge and clear the alarm. All that have not been cleared shall be archived at workstation disk.
- 22. Remote Communications: The system shall have the ability to dial out in the event of an alarm. Receivers shall include operator

workstations, e-mail addresses, and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself.

- 23. System Configuration:
 - a. Network control strategies shall not be restricted to a single digital controller, but shall be able to include data from all other network devices to allow the development of global control strategies.
 - b. Provide automatic backup and restore of all digital controller databases on the workstation hard disk. In addition to all backup data, all databases shall be performed while the workstation is on-line without disturbing other system operations.

2.5 PORTABLE OPERATOR'S TERMINAL (POT)

- A. Provide a portable operator's terminal (POT) that shall be capable of accessing all system data. POT may be connected to any point on the system network or may be connected directly to any controller for programming, setup, and troubleshooting. POT shall communicate using BACnet protocol. POT may be connected to any point on the system network or it may be connected directly to controllers using the BACnet PTP (Point-To-Point) Data Link/ Physical layer protocol. The terminal shall use the Read (Initiate) and Write (Execute) BACnet Services. POT shall be an IBM-compatible notebook-style PC including all software and hardware required.
- B. Hardware: POT shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device.
 - 1. POT shall be commercial standard with supporting 32- or 64-bit hardware (as limited by the direct-digital control system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 500 GB 7200 rpm SATA hard drive with 16 MB cache, minimum 2GB DDR3 SDRAM (minimum 1333 Mhz) memory, 512 MB video card, minimum 16 inch (diagonal) screen, 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector, 56,600 bps modem, an ASCII RS-232 interface, and a 16 speed high density DVD-RW+/- optical drive.
- C. Software: POT shall include software equal to the software on the ECC.

2.6 BACNET PROTOCOL ANALYZER

A. For ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic.

2.7 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
 - 2. The network numbers are thus formed as follows: "Net #" = "FFFNN"
 where:

a. FFF = Facility code (see below)

b. NN = 00-99 Allows up to 100 networks per facility or building

- B. Device Instances
 - 1. BACnet allows 4194305 unique device instances per BACnet internet work. Using Agency's unique device instances are formed as follows: "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and
 - b. DD = 00-99, this allows up to 100 devices per network.
 - 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
 - 3. Facility code assignments:
 - 4. 000-400 Building/facility number
 - 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names

1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.8 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.
 - BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
 - BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
 - BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
 - 4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.

- 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
- 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.9 CONTROLLERS

- A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - 2. The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
 - 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 - 4. Controllers that perform scheduling shall have a real-time clock.
 - 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and
 - b. generate an alarm notification.
 - 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
 - 7. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.

- b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - 2. Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.

- 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 3 ft.
- Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.
- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
 - All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
 - 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.

- 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
 - e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
 - a. Economizer: An economizer program shall be provided for VAV systems. This program shall control the position of air handler relief, return, and outdoors dampers. If the outdoor air dry bulb temperature and humidity fall below changeover set point the energy control center will modulate the dampers to provide 100 percent outdoor air. The operator shall be able to override the economizer cycle and return to minimum outdoor air operation at any time.
 - b. Night Setback/Morning Warm up Control: The system shall provide the ability to automatically adjust set points for this mode of operation.
 - c. For surgical administration facilities, Occupied/Unoccupied mode: The system shall provide the ability to automatically adjust set points for this mode of operation, while maintaining proper space

pressurization/room airflow offsets as reviewed and confirmed by Testing, Adjusting and Balancing contractor.

- d. Optimum Start/Stop (OSS): Optimum start/stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC.
- e. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:
 - 1) Time, day.
 - 2) Commands such as on, off, auto.
 - 3) Time delays between successive commands.
 - 4) Manual overriding of each schedule.
 - 5) Allow operator intervention.

- f. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- g. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the ECC and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.
- h. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.10 SPECIAL CONTROLLERS

- A. Laboratory rooms and the fume hoods in those rooms shall be controlled to allow for a variable flow of conditioned air into the room, general exhaust from the room, and exhaust through the fume hood while maintaining a safe face velocity at the hood sash opening and proper space pressurization.
- B. Fume Hood Exhaust Air Controller: The air flow through the open face of the hood, regardless of sash position, shall be controlled at a face velocity between 30 to 36 meter per minute (100 fpm and 120 fpm). A velocity sensor controller located in a sampling tube in the side wall of the hood shall control a damper in the hood discharge to maintain the face velocity.

- C. Room Differential Pressure Controller: The differential pressure in laboratory rooms, operating rooms and isolation rooms shall be maintained by controlling the quantity of air exhausted from or supplied to the room. A sensor-controller shall measure and control the velocity of air flowing into or out of the room through a sampling tube installed in the wall separating the room from the adjacent space, and display the value on its monitor. The sensor-controller shall meet the following as a minimum:
 - 1. Operating range: -0.25 to +0.25 inches of water column
 - 2. Resolution: 5 percent of reading
 - 3. Accuracy: +/- 10 percent of reading +/- 0.005 inches of water column
 - 4. Analog output: 0-10 VDC or 4-20 ma
 - 5. Operating temperature range: 32°F-120°F

2.11 SENSORS (AIR, WATER AND STEAM)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.
 - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
 - c. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
 - Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop.
 Do not provide in-space User set-point adjustment. Provide an

opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.

- 2) Psychiatric patient room sensor: sensor shall be flush with wall, shall not include an override switch, numerical temperature display on sensor cover, shall not include a communication port and shall not allow in-space User set-point adjustment. Setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Provide a stainless steel cover plate with an insulated back and security screws.
- d. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
- e. Room security sensors shall have stainless steel cover plate with insulated back and security screws.
- f. Wire: Twisted, shielded-pair cable.
- g. Output Signal: 4-20 ma.
- 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability.
 - b. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - c. 4-20 ma continuous output signal.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 ma output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0 to 0.25 inch wg for Building static pressure range.
- D. Water flow sensors:
 - Type: Insertion vortex type with retractable probe assembly and 2 inch full port gate valve.
 - a. Pipe size: 3 to 24 inches.
 - b. Retractor: ASME threaded, non-rising stem type with hand wheel.
 - c. Mounting connection: 2 inch 150 PSI flange.
 - d. Sensor assembly: Design for expected water flow and pipe size.
 - e. Seal: Teflon (PTFE).
 - 2. Controller:

- a. Integral to unit.
- b. Locally display flow rate and total.
- c. Output flow signal to BMCS: Digital pulse type.
- 3. Performance:
 - a. Turndown: 20:1
 - b. Response time: Adjustable from 1 to 100 seconds.
 - c. Power: 24 volt DC
- Install flow meters according to manufacturer's recommendations. Where recommended by manufacturer because of mounting conditions, provide flow rectifier.
- E. Water Flow Sensors: shall be insertion turbine type with turbine element, retractor and preamplifier/transmitter mounted on a two-inch full port isolation valve; assembly easily removed or installed as a single unit under line pressure through the isolation valve without interference with process flow; calibrated scale shall allow precise positioning of the flow element to the required insertion depth within plus or minute 1 mm (0.05 inch); wetted parts shall be constructed of stainless steel. Operating power shall be nominal 24 VDC. Local instantaneous flow indicator shall be LED type in NEMA 4 enclosure with 3-1/2 digit display, for wall or panel mounting.
 - 1. Performance characteristics:
 - a. Ambient conditions: -40°C to 60°C (-40°F to 140°F), 5 to 100% humidity.
 - b. Operating conditions: 850 kPa (125 psig), 0°C to 120°C (30°F to 250°F), 0.15 to 12 m per second (0.5 to 40 feet per second) velocity.
 - c. Nominal range (turn down ratio): 10 to 1.
 - d. Preamplifier mounted on meter shall provide 4-20 ma divided pulse output or switch closure signal for units of volume or mass per a time base. Signal transmission distance shall be a minimum of 1,800 meters (6,000 feet). Preamplifier for bi-directional flow measurement shall provide a directional contact closure from a relay mounted in the preamplifier.
 - e. Pressure Loss: Maximum 1 percent of the line pressure in line sizes above 100 mm (4 inches).
 - f. Ambient temperature effects, less than 0.005 percent calibrated span per °C (°F) temperature change.

- g. RFI effect flow meter shall not be affected by RFI.
- h. Power supply effect less than 0.02 percent of span for a variation of plus or minus 10 percent power supply.

F. Flow switches:

- 1. Shall be either paddle or differential pressure type.
 - a. Paddle-type switches (liquid service only) shall be UL Listed, SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.
 - b. Differential pressure type switches (air or water service) shall
 be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale
 range and differential suitable for specified application.
- G. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.12 CONTROL CABLES

- A. General:
 - Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
 - Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
 - 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
 - 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
 - 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and

test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.

- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.13 THERMOSTATS AND HUMIDISTATS

- A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or dead band - cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have manufacturer's recommendation finish, setpoint range and temperature display and external adjustment:
 - Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.

- b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display.
- c. Psychiatric Patient Room Sensors: Electronic duct sensor as noted under Article 2.4.
- d. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Freezestats shall have a minimum of one linear foot of sensing element for each square foot of coil area. A freezing condition at any increment of one foot anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freeze stats shall be manually-reset.
- D. Room Humidistats: Provide fully proportioning humidistat with adjustable throttling range for accuracy of settings and conservation. The humidistat shall have set point scales shown in percent of relative humidity located on the instrument. Systems showing moist/dry or high/low are not acceptable.

2.14 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.
 - Leakage: Maximum leakage in closed position shall not exceed 15 CFMs differential pressure for outside air and exhaust dampers and 40 CFM/sq. ft. at 2 inches differential pressure for other dampers.
 - 2. Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
 - 3. Blades shall be galvanized steel or aluminum, 8 inch maximum width, with edges sealed as required.

- 4. Bearing shall be nylon, bronze sleeve or ball type.
- 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
- 6. Maximum air velocity and pressure drop through free area the dampers:
 - a. Smoke damper in air handling unit: 1000 fpm.
 - b. Duct mounted damper: 2000 fpm.
 - c. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).
- D. Smoke Dampers and Combination Fire/Smoke Dampers: Dampers and operators are specified in Section 23 31 00, HVAC DUCTS AND CASINGS. Control of these dampers is specified under this Section.
- E. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 125 psig.
 - 2. Valves 2 inches and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 2 1/2 inches and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 210 degrees F, which shall have stainless steel seats.
 - 5. Flow characteristics:
 - a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
 - b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - c. Two-way 2-position valves shall be ball, gate or butterfly type.
 - 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.
 - b. Modulating Steam Control: 80 percent of inlet gauge pressure (acoustic velocity limitation).
 - c. Modulating water flow control, greater of 10 feet of water or the pressure drop through the apparatus.
 - 7. Two position water valves shall be line size.
- F. Damper and Valve Operators and Relays:

- 1. Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
- 3. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. VAV Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage.
- 4. See drawings for required control operation.

2.15 AIR FLOW CONTROL

- A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.
- B. Air Flow Measuring Station -- Electronic Thermal Type:

- 1. Air Flow Sensor Probe:
 - a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area segment of the duct and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array.
 - b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire, wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut.
- 2. Air Flow Sensor Grid Array:
 - a. Each sensor grid shall consist of a lattice network of temperature sensors and linear integral controllers (ICs) situated inside an aluminum casing suitable for mounting in a duct. Each sensor shall be mounted within a strut facing downstream of the airflow and located so that it is protected on the upstream side. All wiring shall be encased (out of the air stream) to protect against mechanical damage.
 - b. The casing shall be made of welded aluminum of sufficient strength to prevent structural bending and bowing. Steel or iron composite shall not be acceptable in the casing material.
 - c. Pressure drop through the flow station shall not exceed 4 Pascal (0.015" W.G.) at 1,000 meter per minute (3,000 FPM).
- 3. Electronics Panel:
 - a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.

- b. Electronics Panel shall be A/C powered 24 VAC and shall have the capability to transmit signals of 0-5 VDC, 0-10 VCD or 4-20 ma for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.
- c. Electronics Panel shall have the capability to digitally display airflow in CFM and temperature in degrees F. The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output signal may be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.
- d. Electronics Panel shall have the following:
 - 1) Minimum of 12-bit A/D conversion.
 - 2) Field adjustable digital primary output offset and gain.
 - 3) Airflow analog output scaling of 100 to 10,000 FPM.
 - 4) Temperature analog output scaling from $-45^{\circ}C$ to $70^{\circ}C$ ($-50^{\circ}F$ to $160^{\circ}F$).
 - 5) Analog output resolution (full scale output) of 0.025%.
- e. All readings shall be in I.P. units.
- 4. Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The probe sensor density shall be as follows:

Probe Sensor Density		
Area (sq.ft.)	Qty. Sensors	
<=1	2	
>1 to <4	4	
4 to <8	б	
8 to <12	8	
12 to <16	12	
>=16	16	

a. Complete installation shall not exhibit more than ± 2.0% error in airflow measurement output for variations in the angle of flow of

up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within ± 0.25%. C. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 0.1 inch W.G. of the true input pressure:

- Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
- 2. For systems with multiple major trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
- 3. The controller shall receive the static pressure transmitter signal and CU shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.
- 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually-reset.

D. Constant Volume Control Systems shall consist of an air flow measuring station along with such relays and auxiliary devices as required to produce a complete functional system. The transmitter shall receive its air flow signal and static pressure signal from the flow measuring station and shall have a span not exceeding three times the design flow rate. The CU shall receive the transmitter signal and shall provide an output to the fan volume control device to maintain a constant flow rate. The CU shall provide proportional plus integral (PI) (automatic reset) control mode and where required also inverse derivative mode. Overall system accuracy shall be plus or minus the equivalent of 0.008 inch velocity pressure as measured by the flow station.

E. Airflow Synchronization:

- 1. Systems shall consist of an air flow measuring station for each supply and return duct, the CU and such relays, as required to provide a complete functional system that will maintain a constant flow rate difference between supply and return air to an accuracy of ±10%. In systems where there is no suitable location for a flow measuring station that will sense total supply or return flow, provide multiple flow stations with a differential pressure transmitter for each station. Signals from the multiple transmitters shall be added through the CU such that the resultant signal is a true representation of total flow.
- 2. The total flow signals from supply and return air shall be the input signals to the CU. This CU shall track the return air fan capacity in proportion to the supply air flow under all conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to COR for resolution before proceeding for installation.
 - Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
 - Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
 - Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
 - 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
 - Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
 - 7. Install equipment level and plum.
- A. Electrical Wiring Installation:
 - All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33,

RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.

- Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling.
- 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
- 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 12 inches long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.

- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- B. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - Calibrate sensors to accuracy specified, if not factory calibrated.
 - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
 - d. Install room sensors permanently supported on wall frame. They shall be mounted at 5.0 feet above the finished floor.
 - e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
 - f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
 - g. All pipe mounted temperature sensors shall be installed in wells.
 - h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
 - i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
 - 2. Pressure Sensors:
 - a. Install duct static pressure sensor tips facing directly downstream of airflow.

- b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
- c. Install snubbers and isolation valves on steam pressure sensing devices.
- 3. Actuators:
 - a. Mount and link damper and valve actuators according to manufacturer's written instructions.
 - b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
 - c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
- 4. Flow Switches:
 - a. Install flow switch according to manufacturer's written instructions.
 - b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 2 feet whichever is greater, from fittings and other obstructions.
 - c. Assure correct flow direction and alignment.
 - d. Mount in horizontal piping-flow switch on top of the pipe.
- C. Installation of network:
 - 1. Ethernet:
 - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
 - b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity:100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
 - 2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- D. Installation of digital controllers and programming:

- Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc.
 Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
- Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
- 3. System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
- 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
- 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. Provide full coordination; including labor and start-stop/support for testing, adjusting, and balancing services during/throughout the project. Coordinate with all disciplines to verify system operation as required in specifications.
- B. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- C. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days

prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.

- 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.
- D. Demonstration
 - System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper system performance, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
 - 2. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
 - 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
 - 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate

properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.

- g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
- h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
- 5. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - d. Execute digital and analog commands in graphic mode.
 - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
 - f. Demonstrate EMS performance via trend logs and command trace.
 - g. Demonstrate scan, update, and alarm responsiveness.
 - h. Demonstrate spreadsheet/curve plot software, and its integration with database.
 - Demonstrate on-line user guide, and help function and mail facility.
 - j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
 - k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
 - 1. Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

---- END -----

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Chilled water, heating hot water and drain piping.
 - 2. Extension of domestic water make-up piping.
 - 3. Glycol-water piping.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 03 30 53, (SHORT-FORM) CAST-IN-PLACE CONCRETE.
- D. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic restraints for piping.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- F. Section 23 73 13, CUSTOM, INDOOR, CENTRAL STATION AIR HANDLING UNIT.
- G. Section 23 07 11, HVAC INSULATION: Piping insulation.
- H. Section 23 25 00, HVAC WATER TREATMENT: Water treatment for closed systems.
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.

1.3 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one year old.
- C. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be the same manufacturer as the grooved components.
 - 1. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports. Submit calculations for variable spring and constant support hangers.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Grooved joint couplings and fittings.
 - 6. Valves of all types.
 - 7. Strainers.
 - 8. Flexible connectors for water service.
 - 9. Pipe alignment guides.
 - 10. Expansion joints.
 - 11. Expansion compensators.
 - 12. All specified hydronic system components.
 - 13. Water flow measuring devices.
 - 14. Gages.
 - 15. Thermometers and test wells.
 - 16. Electric heat tracing systems.
 - 17. Seismic bracing details for piping.
- C. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Heat Exchangers (Water to Water)
 - 2. Air separators.
 - 3. Expansion tanks.
- D. Submit the welder's qualifications in the form of a current (less than one year old) and formal certificate.
- E. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- F. As-Built Piping Diagrams: Provide drawing as follows for chilled water, condenser water, and heating hot water system and other piping systems and equipment.

- One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
- 2. One complete set of reproducible drawings.
- 3. One complete set of drawings in electronic Autocad and pdf format.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. American National Standards Institute, Inc.B. American Society of Mechanical Engineers/American National Standards
- Institute, Inc. (ASME/ANSI): B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch) B16.4-06.....Gray Iron Threaded Fittings B16.18-01.....Cast Copper Alloy Solder joint Pressure fittings B16.23-02.....Cast Copper Alloy Solder joint Drainage fittings B40.100-05.....Pressure Gauges and Gauge Attachments C. American National Standards Institute, Inc./Fluid Controls Institute (ANSI/FCI): 70-2-2006.....Control Valve Seat Leakage D. American Society of Mechanical Engineers (ASME): B16.1-98.....Cast Iron Pipe Flanges and Flanged Fittings B16.3-2006......Malleable Iron Threaded Fittings: Class 150 and 300 B16.4-2006.....Gray Iron Threaded Fittings: (Class 125 and 250) B16.5-2003.....Pipe Flanges and Flanged Fittings: NPS $\frac{1}{2}$ through NPS 24 Metric/Inch Standard B16.9-07.....Factory Made Wrought Butt Welding Fittings B16.11-05.....Forged Fittings, Socket Welding and Threaded B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings B16.22-01......Wrought Copper and Bronze Solder Joint Pressure Fittings. B16.24-06.....Cast Copper Alloy Pipe Flanges and Flanged Fittings

B16.39-06.....Malleable Iron Threaded Pipe Unions B16.42-06.....Ductile Iron Pipe Flanges and Flanged Fittings B31.1-08.....Power Piping E. American Society for Testing and Materials (ASTM): A47/A47M-99 (2004).....Ferritic Malleable Iron Castings A53/A53M-07.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-08.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service A126-04..... Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A183-03 Standard Specification for Carbon Steel Track Bolts and Nuts A216/A216M-08 Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service A234/A234M-07 Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service A307-07 Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength A536-84 (2004) Standard Specification for Ductile Iron Castings A615/A615M-08 Deformed and Plain Carbon Steel Bars for Concrete Reinforcement A653/A 653M-08 Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy Coated (Galvannealed) By the Hot-Dip Process B32-08 Standard Specification for Solder Metal B62-02 Standard Specification for Composition Bronze or Ounce Metal Castings B88-03 Standard Specification for Seamless Copper Water Tube B209-07 Aluminum and Aluminum Alloy Sheet and Plate C177-04 Standard Test Method for Steady State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded Hot Plate Apparatus

VA Medical Center, Huntington, WVVA Project No. 581-14-103Renovate 3W for Surgery Administration100% CD: 03/28/14

	C478-09	Precast Reinforced Concrete Manhole Sections
	C533-07	Calcium Silicate Block and Pipe Thermal
		Insulation
	C552-07	Cellular Glass Thermal Insulation
	D3350-08	Polyethylene Plastics Pipe and Fittings
		Materials
	C591-08	Unfaced Preformed Rigid Cellular
		Polyisocyanurate Thermal Insulation
	D1784-08	Rigid Poly (Vinyl Chloride) (PVC) Compounds and
		Chlorinated Poly (Vinyl Chloride) (CPVC)
		Compound
	D1785-06	Poly (Vinyl Chloride0 (PVC) Plastic Pipe,
		Schedules 40, 80 and 120
	D2241-05	Poly (Vinyl Chloride) (PVC) Pressure Rated Pipe
		(SDR Series)
	F439-06	Standard Specification for Chlorinated Poly
		(Vinyl Chloride) (CPVC) Plastic Pipe Fittings,
		Schedule 80
	F441/F441M-02	Standard Specification for Chlorinated Poly
		(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules
		40 and 80
	F477-08	Elastomeric Seals Gaskets) for Joining Plastic
		Pipe
F.	. American Water Works Association (AWWA):	
	C110-08	Ductile Iron and Grey Iron Fittings for Water.
	C203-02	.Coal Tar Protective Coatings and Linings for
		Steel Water Pipe Lines Enamel and Tape Hot
		Applied
G.	American Welding Society	Y (AWS):
	B2.1-02	Standard Welding Procedure Specification
н.	Copper Development Assoc	ciation, Inc. (CDA):
	CDA A4015-06	.Copper Tube Handbook
I.	Expansion Joint Manufact	curer's Association, Inc. (EJMA):
	EMJA-2003	Expansion Joint Manufacturer's Association
		Standards, Ninth Edition

Renovate 3W for Surgery Administration VA Project No. 581-14-103 100% CD: 03/28/14

J.	Manufacturers Standardiza	tion Society (MSS) of the Valve and Fitting
	Industry, Inc.:	
	SP-67-02aB	utterfly Valves
	SP-70-06G	ray Iron Gate Valves, Flanged and Threaded
	E	nds
	SP-71-05G	ray Iron Swing Check Valves, Flanged and
	Т	hreaded Ends
	SP-80-08B	ronze Gate, Globe, Angle and Check Valves
	SP-85-02C	ast Iron Globe and Angle Valves, Flanged and
	Т	hreaded Ends
	SP-110-96B	all Valves Threaded, Socket-Welding, Solder
	J	oint, Grooved and Flared Ends
	SP-125-00G	ray Iron and Ductile Iron In-line, Spring
	L	oaded, Center-Guided Check Valves
к.	National Sanitation Found	ation/American National Standards Institute,
	<pre>Inc. (NSF/ANSI):</pre>	
	14-06P	lastic Piping System Components and Related
	М	aterials
	50-2009aE	quipment for Swimming Pools, Spas, Hot Tubs
	a	nd other Recreational Water Facilities -
	E	valuation criteria for materials, components,
	p	roducts, equipment and systems for use at
	r	ecreational water facilities
	61-2008D	rinking Water System Components - Health
	E	ffects

L. Tubular Exchanger Manufacturers Association: TEMA 9th Edition, 2007

1.6 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.2 PIPE AND TUBING

- A. Chilled Water, Heating Hot Water, and Glycol-Water, and Vent Piping:
 - 1. Steel: ASTM A53 Grade B, seamless or ERW, Schedule 40.
 - 2. Copper water tube option: ASTM B88, Type K or L, hard drawn.

- B. Extension of Domestic Water Make-up Piping: ASTM B88, Type K or L, hard drawn copper tubing.
- C. Cooling Coil Condensate Drain Piping:
 - 1. From air handling units: Copper water tube, ASTM B88, Type M.
 - 2. From fan coil or other terminal units: Copper water tube, ASTM B88, Type L for runouts and Type M for mains.
- D. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 FITTINGS FOR STEEL PIPE

- A. 2 inches and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Water hose connection adapter: Brass, pipe thread to 3/4 inch garden hose thread, with hose cap nut.
- B. 2-1/2 inches and Larger: Welded or flanged joints. Contractor's option: Grooved mechanical couplings and fittings are optional.
 - 1. Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 1/8 inch thick full face neoprene gasket suitable for 220 degrees F.
 - 1) Contractor's option: Convoluted, cold formed 150 pound steel flanges, with teflon gaskets, may be used for water service.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.
- D. Grooved Mechanical Pipe Couplings and Fittings (Contractor's Option): Grooved Mechanical Pipe Couplings and Fittings may be used, with cut or

roll grooved pipe, in water service up to 230 degrees F in lieu of welded, screwed or flanged connections. All joints must be rigid type.

- 1. Grooved mechanical couplings: Malleable iron, ASTM A47 or ductile iron, ASTM A536, fabricated in two or more parts, securely held together by two or more track-head, square, or oval-neck bolts, ASTM A449 and A183.
- 2. Gaskets: Rubber product recommended by the coupling manufacturer for the intended service.
- 3. Grooved end fittings: Malleable iron, ASTM A47; ductile iron, ASTM A536; or steel, ASTM A53 or A106, designed to accept grooved mechanical couplings. Tap-in type branch connections are acceptable.

2.4 FITTINGS FOR COPPER TUBING

- A. Joints:
 - 1. Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
 - 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 FITTINGS FOR PLASTIC PIPING

- A. Schedule 40, socket type for solvent welding.
- B. Schedule 40 PVC drain piping: Drainage pattern.
- C. Chemical feed piping for condenser water treatment: Chlorinated polyvinyl chloride (CPVC), Schedule 80, ASTM F439.

2.6 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 2 inches and Smaller: Threaded dielectric union, ASME B16.39.
- C. 2 1/2 inches and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.

- D. Temperature Rating, 210 degrees F.
- E. Contractor's option: On pipe sizes 2" and smaller, screwed end brass ball valves may be used in lieu of dielectric unions.

2.7 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.8 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 6 inches and larger when the centerline is located 8 feet or more above the floor or operating platform.
- D. Shut-Off Valves
 - 1. Ball Valves (Pipe sizes 2" and smaller): MSS-SP 110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at 600 psig working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
 - 2. Butterfly Valves (Pipe Sizes 2-1/2" and larger): Provide stem extension to allow 2 inches of pipe insulation without interfering with valve operation. MSS-SP 67, flange lug type or grooved end rated 175 psig working pressure at 200 degrees F. Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Not permitted for direct buried pipe applications.
 - a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47 electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.
 - b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely isolate the body from the product. A phosphate coated steel shaft or stem is acceptable, if the stem is completely isolated from the product.

- c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.
 - 1) Valves 6 inches and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
 - 2) Valves 8 inches and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator.
 - 3) 3. Gate Valves (Contractor's Option in lieu of Ball or Butterfly Valves):
 - a) 2 inches and smaller: MSS-SP 80, Bronze, 150 psig, wedge disc, rising stem, union bonnet.
 - b) 2 1/2 inches and larger: Flanged, outside screw and yoke. MSS-SP 70, iron body, bronze mounted, 125 psig wedge disc.
- E. Globe and Angle Valves
 - 1. Globe Valves
 - a. 2 inches and smaller: MSS-SP 80, bronze, 150 lb. Globe valves shall be union bonnet with metal plug type disc.
 - b. 2 1/2 inches and larger: 125 psig, flanged, iron body, bronze trim, MSS-SP-85 for globe valves.
 - 2. Angle Valves:
 - a. 2 inches and smaller: MSS-SP 80, bronze, 150 lb. Angle valves shall be union bonnet with metal plug type disc.
 - b. 2 1/2 inches and larger: 125 psig, flanged, iron body, bronze trim, MSS-SP-85 for angle.
- F. Check Valves
 - 1. Swing Check Valves:
 - a. 2 inches and smaller: MSS-SP 80, bronze, 150 lb., 45 degree swing disc.
 - b. 2 1/2 inches and larger: 125 psig, flanged, iron body, bronze trim, MSS-SP-71 for check valves.
 - 2. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water and hot water piping. Check valves incorporating a balancing feature may be used.
 - a. Body: MSS-SP 125 cast iron, ASTM A126, Class B, or steel, ASTM A216, Class WCB, or ductile iron, ASTM 536, flanged, grooved, or wafer type.

- b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62. Seats may be elastomer material.
- G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 - 1. Characteristic Ball or Globe style valve.
 - 2. A dual purpose flow balancing valve and adjustable flow meter, with bronze or cast iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
 - 3. Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.
- H. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure fluctuations of at least 10 times the minimum required for control. Provide standard pressure taps and four sets of capacity charts. Valves shall be line size and be one of the following designs:
 - 1. Gray iron (ASTM A126) or brass body rated 175 psig at 200 degrees F, with stainless steel piston and spring.
 - 2. Brass or ferrous body designed for 300 psig service at 250 degrees F, with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement.
 - 3. Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable.
 - 4. Provide a readout kit including flow meter, probes, hoses, flow charts and carrying case.
- I. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.9 WATER FLOW MEASURING DEVICES

- A. Minimum overall accuracy plus or minus three percent over a range of 70 to 110 percent of design flow. Select devices for not less than 110 percent of design flow rate.
- B. Venturi Type: Bronze, steel, or cast iron with bronze throat, with valved pressure sensing taps upstream and at the throat.
- C. Wafer Type Circuit Sensor: Cast iron wafer-type flow meter equipped with readout valves to facilitate the connecting of a differential

pressure meter. Each readout valve shall be fitted with an integral check valve designed to minimize system fluid loss during the monitoring process.

- D. Self-Averaging Annular Sensor Type: Brass or stainless steel metering tube, shutoff valves and quick-coupling pressure connections. Metering tube shall be rotatable so all sensing ports may be pointed down-stream when unit is not in use.
- E. Insertion Turbine Type Sensor: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Flow Measuring Device Identification:
 - 1. Metal tag attached by chain to the device.
 - 2. Include meter or equipment number, manufacturer's name, meter model, flow rate factor and design flow rate in 1/m (gpm).
- G. Portable Water Flow Indicating Meters:
 - 1. Minimum 6 inch diameter dial, forged brass body, beryllium-copper bellows, designed for 175 psig working pressure at 250 degrees F.
 - 2. Bleed and equalizing valves.
 - 3. Vent and drain hose and two 10 feet lengths of hose with quick disconnect connections.
 - 4. Factory fabricated carrying case with hose compartment and a bound set of capacity curves showing flow rate versus pressure differential.
 - 5. Provide one portable meter for each range of differential pressure required for the installed flow devices.
- H. Permanently Mounted Water Flow Indicating Meters: Minimum 6 inch diameter, or 18 inch long scale, for 120 percent of design flow rate, direct reading in lps (gpm), with three valve manifold and two shut-off valves.

2.10 STRAINERS

- A. Basket or Y Type.
 - 1. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 0.045inch diameter perforations for 4 inches and larger: 0.125 inch diameter perforations.
- B. Suction Diffusers: Specified in Section 23 21 23, HYDRONIC PUMPS.

2.11 FLEXIBLE CONNECTORS FOR WATER SERVICE

A. Flanged Spool Connector:

- 1. Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.
- 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 2 inches to 4 inches, 165psig at 250 degrees F.
 - b. Connector sizes 5 inches to 12 inches, 140 psig at 250 degrees F.
- 3. Provide ductile iron retaining rings and control units.
- B. Mechanical Pipe Couplings:

See other fittings specified under Part 2, PRODUCTS.

2.12 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association Standards.
- C. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless steel sleeve entire length of bellows.
 - 3. External cast iron equalizing rings for services exceeding 50 psig.
 - 4. Welded ends.
 - 5. Design shall conform to standards of EJMA and ASME B31.1.
 - 6. External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
 - 7. Integral external cover.
- D. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.
 - 5. Conform to the standards of EJMA and ASME B31.1.

- 6. Threaded connection at bottom, one inch minimum, for drain or drip point.
- 7. Integral external cover and internal sleeve.
- E. Expansion Compensators:
 - 1. Corrugated bellows, externally pressurized, stainless steel or bronze.
 - 2. Internal guides and anti-torque devices.
 - 3. Threaded ends.
 - 4. External shroud.
 - 5. Conform to standards of EJMA.
- F. Expansion Joint (Contractor's Option): 350 psig maximum working pressure, steel pipe fitting consisting of telescoping body and slippipe sections, PTFE modified polyphenylene sulfide coated slide section, with grooved ends, suitable for axial end movement to 3 inch.
- G. Expansion Joint Identification: Provide stamped brass or stainless steel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.
- H. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.
- I. Supports: Provide saddle supports and frame or hangers for heat exchanger. Mounting height shall be adjusted to facilitate gravity return of steam condensate. Construct supports from steel, weld joints.

2.13 HYDRONIC SYSTEM COMPONENTS

- A. Heat Exchanger (Water to Water): Shell and tube type, U-bend removable tube bundle, heating fluid in shell, heated fluid in tubes, equipped with support cradles.
 - 1. Maximum tube velocity: 7.5 feet per second.
 - 2. Tube fouling factor: TEMA Standards, but not less than 0.001.
 - 3. Materials:
 - a. Shell: Steel.
 - b. Tube sheet and tube supports: Steel or brass.

- c. Tubes: 3/4 inch OD copper.
- d. Head or bonnet: Cast iron or steel.
- 4. Construction: In accordance with ASME Pressure Vessel Code for 125 psig working pressure for shell and tubes. Provide manufacturer's certified data report, Form No. U-1.
- B. Plate and Frame Heat Exchanger:
 - 1. Fixed frame with bolted removable corrugated channel plate assembly, ASME code stamped for 150 psig working pressure.
 - 2. Corrugated channel plates shall be type 316 or 304 stainless steel.
 - 3. Channel plate ports to be double gasketed to prevent mixing or cross-contamination of hot side and cold side fluids. Gaskets to be EPPM.
 - 4. Channel plate carrying bars to be carbon steel with zinc yellow chromate finish.
 - 5. Fixed frame plates and moveable pressure plates to be corrosion resistant epoxy painted carbon steel.
 - 6. Piping connections 2" and smaller to be carbon steel NPT tappings. Piping connections 4" and larger to be studded port design to accept ANSI flange connections. Connection ports to be integral to the frame or pressure plate.
 - 7. Finished units to be provided with OSHA required, formed aluminum splash guards to enclose exterior channel plate and gasket surfaces.
 - 8. Provide two sets of replacement gaskets and provide one set of wrenches for disassembly of plate type heat exchangers.
 - 9. Performance: As scheduled on drawings.
- C. Optional Heat Transfer Package: In lieu of field erected individual components, the Contractor may provide a factory or shop assembled package of converters, pumps, and other components supported on a welded steel frame. Refer to Section 23 22 13, STEAM and STEAM CONDENSATE HEATING PIPING, for additional requirements.
- D. Air Purger: Cast iron or fabricated steel, 125 psig water working pressure, for in-line installation.
- E. Tangential Air Separator: ASME Pressure Vessel Code construction for 125 psig working pressure, flanged tangential inlet and outlet connection, internal perforated stainless steel air collector tube designed to direct released air into expansion tank, bottom blowdown connection. Provide Form No. U-1. If scheduled on the drawings, provide

a removable stainless steel strainer element having 3/16 inch perforations and free area of not less than five times the cross-sectional area of connecting piping.

- F. Diaphragm Type Pre-Pressurized Expansion Tank: ASME Pressure Vessel Code construction for 125 psig working pressure, welded steel shell, rust-proof coated, with flexible elastomeric diaphragm suitable for maximum operating temperature of 240 degrees F. Provide Form No. U-1. Tank shall be equipped with system connection, drain connection, standard air fill valve and factory pre-charged to minimum of 12 psig.
- G. Pressure Reducing Valve (Water): Diaphragm or bellows operated, spring loaded type, with minimum adjustable range of 4 psig above and below set point. Bronze, brass or iron body and bronze, brass or stainless steel trim, rated 125 psig working pressure at 225 degrees F.
- H. Pressure Relief Valve: Bronze or iron body and bronze or stainless steel trim, with testing lever. Comply with ASME Code for Pressure Vessels, Section 8, and bear ASME stamp.
- I. Automatic Air Vent Valves (where shown): Cast iron or semi-steel body, 150 psig working pressure, stainless steel float, valve, valve seat and mechanism, minimum 1/2 inch water connection and 1/4 inch air outlet. Air outlet shall be piped to the nearest floor drain.

2.14 WATER FILTERS AND POT CHEMICAL FEEDERS

See section 23 25 00, HVAC WATER TREATMENT, Article 2.2, CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS.

2.15 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 4-1/2 inches in diameter, 1/4 inch NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gages in water service.
- C. Range of Gages: Provide range equal to at least 130 percent of normal operating range.
 - 1. For condenser water suction (compound): Minus 30 inches Hg to plus 100 psig.

Renovate 3W for Surgery Administration VA Project No. 581-14-103

2.16 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Pete's Plug: 1/4 inch MPT by 3 inches long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gage test connections shown on the drawings.
- B. Provide one each of the following test items to the Contracting Officers Representative (COR):
 - 1. 1/4 inch FPT by 1/8 inch diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example.
 - 2. 3-1/2 inch diameter, one percent accuracy, compound gage, 30 inches Hg to 100 psig range.
 - 3. 220 degrees F pocket thermometer one-half degree accuracy, one inch dial, 5 inch long stainless steel stem, plastic case.

2.17 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 6 inch brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 9 inches, range as described below, two degree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - 1. Chilled Water and Glycol-Water: 32-100 degrees F.
 - 2. Hot Water and Glycol-Water: 30-240 degrees F.

2.18 FIRESTOPPING MATERIAL

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.19 ELECTRICAL HEAT TRACING SYSTEMS

- A. Systems shall meet requirements of the National Electrical Code (NEC), Section 427.
- B. Provide tracing for outdoor piping subject to freezing temperatures (Below 38 degrees F) as follows:
 - 1. Make-up water.
 - 2. Chilled water, heating hot water piping routed across open rooftops and all other areas potentially exposed to the weather.

- 3. Domestic water lines and cooling coil condensate lines exposed to weather.
- C. Heat tracing shall be provided to the extent shown on the drawings (Floor plans and Elevations). Building Automation system/DDC shall be capable of monitoring status of heat tracing service and alarming within control system when heat tracing malfunctions.
- D. Heating Cable: Flexible, parallel circuit construction consisting of a continuous self-limiting resistance, conductive inner core material between two parallel copper bus wires, designed for cut-to-length at the job site and for wrapping around valves and complex fittings. Selfregulation shall prevent overheating and burnouts even where the cable overlaps itself.
 - 1. Provide end seals at ends of circuits. Wire at the ends of the circuits is not to be tied together.
 - 2. Provide sufficient cable, as recommended by the manufacturer, to keep the pipe surface at 36 degrees F minimum during winter outdoor design temperature, but not less than the following:
 - a. 3 inch pipe and smaller with 1 inch thick insulation: 4 watts per foot of pipe.
 - b. 4 inch pipe and larger 1-1/2 inch thick insulation: 8 watts per feet of pipe.
- E. Electrical Heating Tracing Accessories:
 - 1. Power supply connection fitting and stainless steel mounting brackets. Provide stainless steel worm gear clamp to fasten bracket to pipe.
 - 2. 1/2 inch wide fiberglass reinforced pressure sensitive cloth tape to fasten cable to pipe at 12 inch intervals.
 - 3. Pipe surface temperature control thermostat: Cast aluminum, NEMA 4 (watertight) enclosure, 1/2 inch NPT conduit hub, SPST switch rated 20 amps at 480 volts AC, with capillary and copper bulb sensor. Set thermostat to maintain pipe surface temperature at not less than 34 degrees F.
 - 4. Electric heat trace control and monitoring system with BAS/DDC interconnectivity.
 - 5. Signs: Manufacturer's standard (NEC Code), stamped "ELECTRIC TRACED" located on the insulation jacket at 10 feet intervals along the pipe on alternating sides.

PART 3 - EXECUTION

3.1 GENERAL

- A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide one inch minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than one inch in 40 feet. Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.

- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Water treatment pot feeders and condenser water treatment systems.
 - 2. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Thermometer Wells: In pipes 2-1/2 inches and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- K. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC INSULATION.
- L. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. Mechanical Joint: Pipe grooving shall be in accordance with joint manufacturer's specifications. Lubricate gasket exterior including lips, pipe ends and housing interiors to prevent pinching the gasket during installation. Lubricant shall be as recommended by coupling manufacturer.
- D. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- E. Solvent Welded Joints: As recommended by the manufacturer.

Renovate 3W for Surgery Administration VA Project No. 581-14-103

3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding.

3.4 SEISMIC BRACING ABOVEGROUND PIPING

A. Provide in accordance with Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR. Tests may be either of those below, or a combination, as approved by the COR.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.6 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
 - 1. Initial flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment

23 21 13-21

unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/S (6 feet per second), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the COR.

- 2. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/S (6 feet per second). Circulate each section for not less than four hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.
- 3. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean make-up. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.7 WATER TREATMENT

- A. Install water treatment equipment and provide water treatment system piping.
- B. Close and fill system as soon as possible after final flushing to minimize corrosion.
- C. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.

D. Utilize this activity, by arrangement with the COR, for instructing VA operating personnel.

3.8 ELECTRIC HEAT TRACING

- A. Install tracing as recommended by the manufacturer.
- B. Coordinate electrical connections.

3.9 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Steam, condensate and vent piping inside buildings.

1.2 RELATED WORK

- A. General mechanical requirements and items, common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Piping insulation: Section 23 07 11, HVAC INSULATION.
- C. AHU Steam Heating Coils and Duct-Mounted Steam Humidifiers: Section 23 73 13, CUSTOM, INDOOR, CENTRAL-STATION AIR-HANDLING UNITS and SECTION 23 31 00, HVAC DUCTS AND CASING.
- D. Heating coils: Section 23 82 16, AIR COILS.
- E. Temperature and pressure sensors and valve operators: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 QUALITY ASSURANCE

A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, includes welding qualifications.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Pipe alignment guides.
 - 8. Expansion joints.
 - 9. Expansion compensators.
 - 10. All specified steam system components.
 - 11. Gages.
 - 12. Thermometers and test wells.
 - 13. Electric heat tracing systems.
- C. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other HVAC (heating, ventilating and heating hot water generation) equipment.

- One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.
- 2. One set of reproducible drawings.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers/American National Standards Institute (ASME/ANSI):
 B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch)
 B16.4-2006.....Gray Iron Threaded Fittings
- C. American Society of Mechanical Engineers (ASME):

B16.1-2005.....Gray Iron Pipe Flanges and Flanged Fittings B16.3-2006......Malleable Iron Threaded Fittings B16.9-2007......Factory-Made Wrought Buttwelding Fittings B16.11-2005.....Forged Fittings, Socket-Welding and Threaded B16.14-91......Ferrous Pipe Plugs, Bushings, and Locknuts with Pipe Threads B16.22-2001.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.23-2002.....Cast Copper Alloy Solder Joint Drainage Fittings B16.24-2006.....Cast Copper Alloy Pipe Flanges and Flanged Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 B16.39-98.....Malleable Iron Threaded Pipe Unions, Classes 150, 250, and 300 B31.1-2007.....Power Piping B31.9-2008.....Building Services Piping B40.100-2005.....Pressure Gauges and Gauge Attachments

Boiler and Pressure Vessel Code: SEC VIII D1-2001, Pressure Vessels, Division 1

- D. American Society for Testing and Materials (ASTM):
 - A47-99.....Ferritic Malleable Iron Castings

A53-2007......Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

A106-2008.....Seamless Carbon Steel Pipe for High-Temperature Service A126-2004....Standard Specification for Gray Iron Castings

for Valves, Flanges, and Pipe Fittings

A181-2006.....Carbon Steel Forgings, for General-Purpose Piping A183-2003 Carbon Steel Track Bolts and Nuts A216-2008 Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service A285-01 Pressure Vessel Plates, Carbon Steel, Low-and-Intermediate-Tensile Strength A307-2007 Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength A516-2006 Pressure Vessel Plates, Carbon Steel, for Moderate-and- Lower Temperature Service A536-84(2004)e1 Standard Specification for Ductile Iron Castings B32-2008 Solder Metal B61-2008 Steam or Valve Bronze Castings B62-2009 Composition Bronze or Ounce Metal Castings B88-2003 Seamless Copper Water Tube F439-06 Socket-Type Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80 F441-02(2008) Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80 E. American Welding Society (AWS): A5.8-2004.....Filler Metals for Brazing and Braze Welding F. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-95.....Butterfly Valves SP-70-98.....Cast Iron Gate Valves, Flanged and Threaded Ends SP-71-97.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-72-99.....Ball Valves with Flanged or Butt-Welding Ends for General Service SP-78-98.....Cast Iron Plug Valves, Flanged and Threaded Ends SP-80-97.....Bronze Gate, Globe, Angle and Check Valves SP-85-94.....Cast Iron Globe and Angle Valves, Flanged and Threaded Ends G. Military Specifications (Mil. Spec.): MIL-S-901D-1989.....Shock Tests, H.I. (High Impact) Shipboard Machinery, Equipment, and Systems

- H. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves
- I. Tubular Exchanger Manufacturers Association: TEMA 18th Edition, 2000

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Steam Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40.
- B. Steam Condensate Piping:
 - Concealed above ceiling, in wall or chase: Copper water tube ASTM B88, Type K, hard drawn.
 - All other locations: Copper water tube ASTM B88, Type K, hard drawn; or steel, ASTM A53, Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80.
- C. Vent Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. Two inches and Smaller: Screwed or welded.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron, except for steam and steam condensate piping. Provide 300 pound malleable iron, ASME B16.3 for steam and steam condensate piping. Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 1/2 inch ID hose. No integral shut-off is required.
- B. 2-1/2 inches and Larger: Welded or flanged joints.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:

- a. Steam service: Weld neck or slip-on, raised face, with non-asbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 750 degrees F and 1500 psi.
- b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Solder Joint:
 - 1. Joints shall be made in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 2 inches and Smaller: Threaded dielectric union, ASME B16.39.
- C. 2-1/2 inches and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 250 degrees F for steam condensate and as required for steam service.
- E. Contractor's option: On pipe sizes 2" and smaller, screwed end brass gate valves may be used in lieu of dielectric unions.

2.6 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 6 inches and larger when centerline is located 7 feet or more above the floor or operating platform.
- D. Shut-Off Valves
 - 1. Gate Valves:
 - a. 2 inches and smaller: MSS-SP80, Bronze, 150 lb., wedge disc, rising stem, union bonnet.

- b. 2-1/2 inches and larger: Flanged, outside screw and yoke.
 - High pressure steam 60 psig and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, 150 psig at 500 degrees F, 11-1/2 to 13 percent chrome stainless steel solid disc and seats. Provide 1 inch factory installed bypass with globe valve on valves 4 inches and larger.
 - 2) All other services: MSS-SP 70, iron body, bronze mounted, 125 psig wedge disc.
- E. Globe and Angle Valves:
 - 1. Globe Valves:
 - a. 2 inches and smaller: MSS-SP 80, bronze, 150 lb. Globe valves shall be union bonnet with metal plug type disc.
 - b. 2-1/2 inches and larger:
 - Globe valves for high pressure steam 60 psig and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 150 psig at 500 degrees F, 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - All other services: 125 psig, flanged, iron body, bronze trim, MSS-SP-85 for globe valves.
 - 2. Angle Valves
 - a. 2 inches and smaller: MSS-SP 80, bronze, 150 lb. Angle valves shall be union bonnet with metal plug type disc.
 - b. 2-1/2 inches and larger:
 - Angle valves for high pressure steam 60 psig and above nominal MPS system: Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 150 psig at 500 degrees F, 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - All other services: 125 psig, flanged, iron body, bronze trim, MSS-SP-85 for angle valves.
- F. Swing Check Valves
 - 1. 2 inches and smaller: MSS-SP 80, bronze, 150 psig, 45 degree swing disc.
 - 2. 2-1/2 inches and Larger:
 - a Check valves for high pressure steam 60 psig and above nominal MPS system: Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 150 psig at 500 degrees F, 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - b. All other services: 125 psig, flanged, iron body, bronze trim, MSS-SP-71 for check valves.

2.8 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. All Other Services: Rated 125 psig saturated steam.
 - 1. 2 inches and smaller: Cast iron or bronze.
 - 2. 2-1/2 inches and larger: Flanged, iron body.
- C. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 1. 3 inches and smaller: 20 mesh for steam and 0.045 inch diameter perforations for liquids.
 - 2. 4 inches and larger: 0.045 inch diameter perforations for steam and 0.125 inch diameter perforations for liquids.

2.9 PIPE ALIGNMENT

A. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

2.10 STEAM SYSTEM COMPONENTS

- A. Safety Valves and Accessories: Comply with ASME Boiler and Pressure Vessel Code, Section VIII. Capacities shall be certified by National Board of Boiler and Pressure Vessel Inspectors, maximum accumulation 10 percent. Provide lifting lever. Provide drip pan elbow where shown.
- B. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 200 feet intervals on the horizontal main lines.
 - 1. Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 - a. For equipment with modulating control valve: 1/4 psig, based on a condensate leg of 12 inches at the trap inlet and gravity flow to the receiver.
 - b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
 - 2. Trap bodies: Bronze, cast iron, or semi-steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. For systems without relief valve traps shall be rated for the pressure upstream of the PRV supplying the system.

- 3. Mechanism: Brass, stainless steel or corrosion resistant alloy.
- 4. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or monel metal.
- 5. Valves and seats: Suitable hardened corrosion resistant alloy.
- 6. Floats: Stainless steel.
- 7. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.
- C. Thermostatic Air Vent (Steam): Brass or iron body, balanced pressure bellows, stainless steel (renewable) valve and seat, rated 125 psig working pressure, 3/4 inch screwed connections. Air vents shall be balanced pressure type that responds to steam pressure-temperature curve and vents air at any pressure.
- D. Steam Humidifiers: (JACKETED)
 - 1. Steam separator type that discharges steam into air stream through a steam jacketed distribution manifold or dispersion tube. Humidifiers shall be complete with Y-type steam supply strainer; modulating, normally closed steam control valve; normally closed condensate temperature switch; and manufacturer's standard steam trap.
 - 2. Distribution manifold: Stainless steel, composed of dispersion pipe and surrounding steam jacket, manifold shall span the width of duct or air handler, and shall be multiple manifold type under any of the following conditions:
 - a. Duct section height exceeds 900 mm (36 inches).
 - b. Duct air velocity exceeds 5.1 m/s (1000 feet per minute).
 - b. If within 3 feet upstream of fan, damper or pre-filter.
 - d. If within 10 feet upstream of after-filter.
- E. Steam Humidifiers (Non-Jacketed-Mounted within AHU Casing)
 - 1. Short Absorption Manifold Designed for atmospheric steam humidifiers to directly inject the steam into custom air handling unit for humidification.
 - a. Steam dispersion panel consisting of a horizontal stainless steel header / separator supplying steam to bank of closely spaced vertical tubes as necessary to meet absorption distance requirements, and to reduce condensation losses.
 - b. Single horizontal stainless steel header to provide steam to vertical distributor tubes and to reduce condensation losses. Systems needing to be installed on a partition or requiring blankoff plates are not acceptable.

- c. Header / separator design is primarily round tube to minimize pressure drop.
- d. Steam inlet and condensate return located on the same side and at the bottom of the header to allow single point entry and floor mounting.
- e. Headers are of 304 stainless steel construction.
- f. Vertical stainless steel distribution tubes to promote condensate evacuation. Horizontal distributor tubes are not accepted.
- g. All tubes are available in 304 stainless steel construction.
- h. Stainless steel nozzle inserts ensure condensate free steam is discharged from the center of the distribution tubes. Systems without nozzle inserts, or other than stainless steel, are not acceptable.
- i. Stainless steel nozzle inserts shall have metered orifices, sized to provide even distribution of the discharged steam, spaced for optimum steam absorption.
- j. Tubes and headers shall accommodate factory installation or field retrofit of optional insulation for increased energy efficiency.
- k. 304 Stainless Steel safing panels around humidifier dispersion panel array with the AHU air tunnel to minimize air bypass and ensure proper air velocity and moisture absorption at the dispersion panel array.

2.11 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.1, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 4-1/2 inches in diameter, 1/4 inch NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass, lever handle union cock. Provide brass/bronze pressure snubber for gages in water service. Provide brass pigtail syphon for steam gages.
- C. Range of Gages: For services not listed provide range equal to at least 130 percent of normal operating range:

Low pressure steam and steam condensate to 103 kPa (15 psig)	0 to 207 kPa (30 psig).
Medium pressure steam and steam condensate nominal 413 kPa (60 psig)	0 to 689 kPa (100 psig).
Steam condensate, gravity or vacuum	0 to 415 kPa (60 psig)
(30" HG to 30 psig)	

2.12 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Provide one each of the following test items to the Resident Engineer:
 - 1. 1/4 inch FPT by 1/8 inch diameter stainless steel pressure gage adapter probe for extralong test plug. PETE'S 500 XL is an example.
 - 2. 3-1/2 inch diameter, one percent accuracy, compound gage, 30 inches Hg to 100 psig range.
 - 3. 32-220 degrees F pocket thermometer one-half degree accuracy, one inch dial, 5 inch long stainless steel stem, plastic case.

2.13 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

- A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on drawings. Space piping, including insulation, to provide one inch minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than one inch in 40 feet. Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one

end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.

- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- I. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
- J. Where copper piping is connected to steel piping, provide dielectric connections.
- K. Pipe vents to the exterior. Where a combined vent is provided, the cross sectional area of the combined vent shall be equal to sum of individual vent areas. Slope vent piping one inch in 40 feet (0.25 percent) in direction of flow. Provide a drip trap elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 0.3 M (12 inches) above the roof or through the wall minimum 2.5 M (8 feet) above grade with down turned elbow.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.

3.3 STEAM TRAP PIPING

A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 25 pounds independently of connecting piping.

3.4 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.

3.5 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: No flushing or chemical cleaning required. Accomplish cleaning by pulling all strainer screens and cleaning all scale/dirt legs during start-up operation.

3.6 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.
 - 1. Cleaning compounds.
 - 2. Chemical treatment for closed loop heat transfer systems.

1.2 RELATED WORK

- A. Test requirements and instructions on use of equipment/system: Section 01 00 00, GENERAL REQUIREMENTS.
- B. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Piping and valves: Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period and monitor systems for a period of 12 months after acceptance, including not less than 6 service calls and written status reports. Emergency calls are not included. Minimum service during construction/start-up shall be 6 hours.
- C. Field Quality Control and Certified Laboratory Reports: During the one year guarantee period, the water treatment laboratory shall provide not less than 12 reports based on on-site periodic visits, as stated in paragraph 1.3.B, sample taking and testing, and review with VA personnel, of water treatment control for the previous period. In addition to field tests, the water treatment laboratory shall provide certified laboratory test reports. These monitoring reports shall assess chemical treatment accuracy, scale formation, fouling and

corrosion control, and shall contain instructions for the correction of any out-of-control condition.

- D. Log Forms: Provide one year supply of preprinted water treatment test log forms.
- E. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data including:
 - 1. Cleaning compounds and recommended procedures for their use.
 - 2. Chemical treatment for closed systems, including installation and operating instructions.
- C. Water analysis verification.
- D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
- E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): 70-2008..... National Electric Code (NEC)
- C. American Society for Testing and Materials (ASTM): F441/F441M-02 (2008) ... Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80

PART 2 - PRODUCTS

2.1 CLEANING COMPOUNDS

- A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
- B. All chemicals to be acceptable for discharge to sanitary sewer.

C. Refer to Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING, PART 3, for flushing and cleaning procedures.

2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS

- A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.
- B. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5.
- C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration; ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 250 degrees F and 125 degrees F respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005.
- D. Pot Feeder: By-pass type, complete with necessary shut off valves, drain and air release valves, and system connections, for introducing chemicals into system, cast iron or steel tank with funnel or large opening on top for easy chemical addition. Feeders shall be five gallon minimum capacity at 125 psig minimum working pressure.
- E. Side stream Water Filter for Closed Loop Systems: Stainless steel housing, and polypropylene filter media with stainless steel core. Filter media shall be compatible with antifreeze and water treatment chemicals used in the system. Replaceable filter cartridges for sediment removal service with minimum 20 micrometer particulate at 98 percent efficiency for approximately five (5) percent of system design flow rate. Filter cartridge shall have a maximum pressure drop of 2 psig at design flow rate when clean, and maximum pressure drop of 25 psig when dirty. A constant flow rate valve shall be provided in the

piping to the filter. Inlet and outlet pressure gauges shall be provided to monitor filter condition.

2.3 EQUIPMENT AND MATERIALS IDENTIFICATION

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
- B. Install equipment furnished by the chemical treatment supplier and charge systems according to the manufacturer's instructions and as directed by the Technical Representative.
- C. Refer to Section 23 21 13 HYDRONIC PIPING for chemical treatment piping, installed as follows:
 - 1. Provide a by-pass line around water meters and bleed off piping assembly. Provide ball valves to allow for bypassing, isolation, and servicing of components.
 - 2. Bleed off water piping with bleed off piping assembly shall be piped from pressure side of circulating water piping to a convenient drain. Bleed off connection to main circulating water piping shall be upstream of chemical injection nozzles.
 - 3. Provide piping for the flow assembly piping to the main control panel and accessories.
 - a. The inlet piping shall connect to the discharge side of the circulating water pump.
 - b. The outlet piping shall connect to the water piping serving the cooling tower downstream of the heat source.
 - c. Provide inlet Y-strainer and ball valves to isolate and service main control panel and accessories.
 - 4. Provide installation supervision, start-up and operating instruction by manufacturer's technical representative.
- D. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.
- E. Do not valve in or operate system pumps until after system has been cleaned.

- F. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.
- G. Perform tests and report results in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.
- I. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - 1. Supply air, return air, outside air, exhaust, make-up air, and relief systems.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - 4. Exposed Duct: Exposed to view in a finished room.

1.2 RELATED WORK

- A. Fire Stopping Material: Section 07 84 00, FIRESTOPPING.
- B. Outdoor and Exhaust Louvers: Section 08 90 00, LOUVERS and VENTS.
- C. Seismic Reinforcing: Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Noise Level Requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Duct Insulation: Section 23 07 11, HVAC INSULATION
- G. Plumbing Connections: Section 22 11 00, FACILITY WATER DISTRIBUTION
- H. Air Terminal Units: Section 23 36 00, AIR TERMINAL UNITS.
- I. Duct Mounted Coils: Section 23 82 16, AIR COILS.
- J. Supply Air Fans: Section 23 73 13, CUSTOM INDOOR, CENTRAL-STATION AIR-HANDLING UNITS.
- K. Return/Relief Air and Exhaust Air Fans: Section 23 34 00, HVAC FANS.
- L. Air Filters and Filters' Efficiencies: Section 23 40 00, HVAC AIR CLEANING DEVICES.
- M. Duct Mounted Instrumentation: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- N. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

O. Smoke Detectors: Section 28 31 00, FIRE DETECTION and ALARM.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access sections.
 - e. Installation instructions.
 - 3. Volume dampers, back draft dampers.
 - 4. Upper hanger attachments.
 - 5. Fire dampers, fire doors, and smoke dampers with installation instructions.
 - 6. Sound attenuators, including pressure drop and acoustic performance.
 - 7. Flexible ducts and clamps, with manufacturer's installation instructions.
 - 8. Flexible connections.
 - 9. Instrument test fittings.

- 10. Details and design analysis of alternate or optional duct systems.
- 11. COMMON WORK RESULTS FOR HVAC.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11- Common Work Results for HVAC.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE): ASCE7-05......Minimum Design Loads for Buildings and Other

Structures

C. American Society for Testing and Materials (ASTM): A167-99(2009).....Standard Specification for Stainless and

Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip

- A653-09.....for Steel Sheet,
- Zinc-Coated (Galvanized) or Zinc-Iron Alloy coated (Galvannealed) by the Hot-Dip process A1011-09a.....Standard Specification for Steel, Sheet and
- Strip, Hot rolled, Carbon, structural, High-Strength Low-Alloy, High Strength Low-Alloy with
- Improved Formability, and Ultra-High Strength B209-07......Standard Specification for Aluminum and
 - Aluminum-Alloy Sheet and Plate
- C1071-05e1......Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material)
- E84-09a.....Standard Test Method for Surface Burning Characteristics of Building Materials
- D. National Fire Protection Association (NFPA): 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems
 - 96-08.....Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): 2nd Edition - 2005.....HVAC Duct Construction Standards, Metal and Flexible 1st Edition - 1985.....HVAC Air Duct Leakage Test Manual
 - 6th Edition 2003.....Fibrous Glass Duct Construction Standards

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Optional Duct Materials:
 - Grease Duct: Double wall factory-built grease duct, UL labeled and complying with NFPA 96 may be furnished in lieu of specified materials for kitchen and grill hood exhaust duct. Installation and accessories shall comply with the manufacturers catalog data. Outer jacket of exposed ductwork shall be stainless steel. Square and rectangular duct shown on the drawings will have to be converted to equivalent round size.
- D. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- E. Approved factory made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:

- B. Duct Pressure Classification:
 - 2 inch 2 inch to 3 inch
 - 3 inch to 4 inch

Show pressure classifications on the floor plans.

- C. Seal Class: All ductwork shall receive Class A Seal
- D. Wet Air Exhaust Ducts and Accessories: Ducts for dishwashers, scullery hood, cart washers, manual cart washers, cage washers, steam sterilizer hoods, orthotics hoods and branch ductwork directly exhausting shower room areas shall be 18 gage stainless steel made liquid tight with continuous external weld for all seams and joints. Provide neoprene gaskets at flanged connections. Where ducts are not self draining back to the equipment or shower exhaust inlet/register, provide low point drain pocket with copper drain pipe to sanitary sewer. Provide access door in side of duct at drain pockets.
- E. Provide a welded stainless steel duct section for housing the ductmounted terminal humidifier. Ductwork shall be at least 3 feet long on the upstream side and 6 feet long on the downstream side. Slope ductwork against the direction of airflow and provide drain connections.
- F. Duct for Negative Pressure Up to 3 inch W.G.: Provide for exhaust duct between HEPA filters and exhaust fan inlet including systems for Autopsy Suite exhaust.
 - 1. Round Duct: Galvanized steel, spiral lock seam construction with standard slip joints.
 - Rectangular Duct: Galvanized steel, minimum 20 gage, Pittsburgh lock seam, companion angle joints 1-1/4 by 1/8 inch minimum at not more than 8 feet spacing. Approved pre-manufactured joints are acceptable in lieu of companion angles.
- G. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - Elbows: Diameters 3 through 8 inches shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.

- 2. Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
- Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
- 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Contracting Officers Representative (COR).
- H. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 20 inches wide by 48-54 inches high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
- I. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA Detail Figure 2-12 for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- J. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.

2.3 DUCT LINER (WHERE INDICATED ON DRAWINGS)

- A. Duct sizes shown on drawings for lined duct are clear opening inside lining.
- B. Duct liner is only permitted to be used for return, relief and general exhaust ducts. Duct liner is not permitted for outside air ducts, supply air ducts or any other positive pressure ductwork (provide exterior insulation only).
- C. Rectangular Duct or Casing Liner: ASTM C1071, Type I (flexible), or Type II (board), one inch minimum thickness, applied with mechanical

fasteners and 100 percent coverage of adhesive in conformance with SMACNA, Duct Liner Application Standard.

D. Round and Oval Duct Liner: Factory fabricated double-walled with two inch thick sound insulation and inner perforated galvanized metal liner. Construction shall comply with flame and smoke rating required by NFPA 90A. Metal liner shall be 20 to 24 gage having perforations not exceeding 3/32 inch diameter and approximately 22 percent free area. Metal liner for fittings need not be perforated. Assemblies shall be complete with continuous sheet Mylar liner, 2 mil thickness, between the perforated liner and the insulation to prevent erosion of insulation. Provide liner couplings/spacer for metal liner. At the end of insulated sections, provide insulation end fittings to reduce outer shell to liner size. Provide liner spacing/concentricity leaving airway unobstructed.

2.4 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
 - 1. Each duct mounted coil and humidifier.
 - Each fire damper (for link service), smoke damper and automatic control damper.
 - 3. Each duct mounted smoke detector.
 - For cleaning operating room supply air duct and kitchen hood exhaust duct, locate access doors at 20 ft intervals and at each change in duct direction.
- B. Openings shall be as large as feasible in small ducts, 12 inch by 12 inch minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - 1. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.5 FIRE DAMPERS

- A. Galvanized steel, interlocking blade, dynamic type, UL classified and label, 1-1/2 hour rating, 165 degrees F fusible link, 100 percent free opening with no part of the blade stack or damper frame in the air stream.
- B. Fire dampers in wet air exhaust shall be of stainless steel construction, all others may be galvanized steel.
- C. Minimum requirements for fire dampers:

- The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 14 gage, required to provide installation equivalent to the damper manufacturer's UL test installation.
- 2. Submit manufacturer's installation instructions conforming to UL rating test.

2.6 SMOKE DAMPERS

- A. Maximum air velocity, through free area of open damper, and pressure loss: Low pressure and medium pressure duct (supply, return, exhaust, outside air): 1500 fpm. Maximum static pressure loss: 0.13 inch W.G.
- B. Maximum air leakage, closed damper: 4.0 CFM per square foot at 3 inchW.G. differential pressure.
- C. Minimum requirements for dampers:
 - Shall comply with requirements of Table 6-1 of UL 555S, except for the Fire Endurance and Hose Stream Test.
 - 2. Frame: Galvanized steel channel with side, top and bottom stops or seals.
 - 3. Blades: Galvanized steel, parallel type preferably, 12 inch maximum width, edges sealed with neoprene, rubber or felt, if required to meet minimum leakage. Airfoil (streamlined) type for minimum noise generation and pressure drop are preferred for duct mounted dampers.
 - 4. Shafts: Galvanized steel.
 - 5. Bearings: Nylon, bronze sleeve or ball type.
 - 6. Hardware: Zinc plated.
 - 7. Operation: Automatic open/close. No smoke damper that requires manual reset or link replacement after actuation is acceptable. See drawings for required control operation.
- D. Motor operator (actuator): Provide pneumatic or electric as required by the automatic control system, externally mounted on stand-offs to allow complete insulation coverage.

2.7 COMBINATION FIRE AND SMOKE DAMPERS

Combination fire and smoke dampers: Multi-blade type units meeting all requirements of both fire dampers and smoke dampers shall be used where shown and may be used at the Contractor's option where applicable.

2.8 FIRE DOORS

Galvanized steel, interlocking blade type, UL listing and label, 160 degrees F fusible link, 3 hour rating and approved for openings in Class A fire walls with rating up to 4 hours, 100 percent free opening with no part of the blade stack or damper frame in the air stream.

2.9 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 5 feet. Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 8 inches in diameter shall be Class 1. Ducts 8 inches diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 75 degrees F mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per foot of straight duct, at 500 Hz, based on 6 inch duct, of 2500 fpm.
- D. Application Criteria:
 - 1. Temperature range: 0 to 200 degrees F internal.
 - 2. Maximum working velocity: 4000 feet per minute.
 - 3. Minimum working pressure, inches of water gage: 10 inches positive, 2 inches negative.
- E. Duct Clamps: 100 percent nylon strap, 175 pounds minimum loop tensile strength manufactured for this purpose or stainless steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.10 FLEXIBLE DUCT CONNECTIONS

Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 29 ounce neoprene coated fiberglass fabric approximately 6 inches wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 2 inches on center. Fabric shall not be stressed other than by air pressure. Allow at least one inch slack to insure that no vibration is transmitted.

2.11 SOUND ATTENUATING UNITS

A. Casing, not less than 20 gage galvanized sheet steel, or 18 gage aluminum fitted with suitable flanges to make clean airtight connections

to ductwork. Sound-absorbent material faced with glass fiber cloth and covered with not less than 24 gage or heavier galvanized perforated sheet steel, or 22 gage or heavier perforated aluminum. Perforations shall not exceed 5/32-inch diameter, approximately 25 percent free area. Sound absorbent material shall be long glass fiber acoustic blanket meeting requirements of NFPA 90A. Sound absorbent material within attenuating unit shall be fully encapsulated within a polymer or tedlar lining to prevent direct fiberglass exposure to airstream.

- B. Entire unit shall be completely air tight and free of vibration and buckling at internal static pressures up to 8 inches W.G. at operating velocities.
- C. Pressure drop through each unit: Not to exceed indicated value at design air quantities indicated.
- D. Submit complete independent laboratory test data showing pressure drop and acoustical performance.
- E. Cap open ends of attenuators at factory with plastic, heavy duty paper, cardboard, or other appropriate material to prevent entrance of dirt, water, or any other foreign matter to inside of attenuator. Caps shall not be removed until attenuator is installed in duct system.

2.12 PREFABRICATED ROOF CURBS

Galvanized steel or extruded aluminum 12 inches above finish roof service, continuous welded corner seams, treated wood nailer, 1-1/2 inch thick, 3 pound/cubic feet density rigid mineral fiberboard insulation with metal liner, built-in cant strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.

2.13 FIRESTOPPING MATERIAL

Refer to Section 07 84 00, FIRESTOPPING.

2.14 SEISMIC RESTRAINT FOR DUCTWORK

Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

2.15 DUCT MOUNTED THERMOMETER (AIR)

- A. Stem Type Thermometers: ASTM E1, 7 inch scale, red appearing mercury, lens front tube, cast aluminum case with enamel finish and clear glass or polycarbonate window, brass stem, 2 percent of scale accuracy to ASTM E77 scale calibrated in degrees Fahrenheit.
- B. Thermometer Supports:

- 1. Socket: Brass separable sockets for thermometer stems with or without extensions as required, and with cap and chain.
- 2. Flange: 3 inch outside diameter reversible flange, designed to fasten to sheet metal air ducts, with brass perforated stem.

2.16 DUCT MOUNTED TEMPERATURE SENSOR (AIR)

Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.17 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum two inch length for insulated duct, and a minimum one inch length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
 - Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
 - 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.

- Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers/supports in accordance per SMACNA Standards, Chp 4.
- D. Install fire dampers, smoke dampers and combination fire/smoke dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers, smoke dampers and combination fire/smoke dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and where required by the COR. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers and operation of smoke dampers to the COR.
- E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 5 feet long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hour. Support ducts SMACNA Standards.
- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - 1. Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - 4. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.

- I. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.
- J. Low Pressure Duct Liner: Install in accordance with SMACNA, Duct Liner Application Standard.
- K. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by COR. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections.
- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the COR and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the COR and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the COR.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 DUCTWORK EXPOSED TO WIND VELOCITY

Provide additional support and bracing to exposed ductwork installed on the roof or outside the building to withstand wind velocity of 90 mph.

3.4 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.5 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC.
- F. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- G. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- I. Section 23 73 13, CUSTOM INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- J. Section 23 82 16, AIR COILS.
- K. Section 26 29 11, MOTOR CONTROLLERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:
 - 1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- F. Performance Criteria:
 - 1. The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point

- b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- H. Corrosion Protection:
 - 1. Except for fans in fume hood exhaust service, all steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.
 - 2. Fans for general purpose fume hoods, or chemical hoods, and radioisotope hoods shall be constructed of materials compatible with the chemicals being transported in the air through the fan.
- I. Spark resistant construction: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), the fan construction shall be as recommended by AMCA's Classification for Spark Resistant Construction. Drive set shall be comprised of non-static belts for use in an explosive.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - 2. Centrifugal fans, motors, drives, accessories and coatings.
 - a. In-line centrifugal fans.
 - b. Tubular Centrifugal Fans.
 - 3. Mixed-Flow fans.
 - 4. Prefabricated roof curbs.
 - 5. Power roof and wall ventilators.
 - 6. Propeller fans.
- C. Certified Sound power levels for each fan.
- D. Motor ratings, types, electrical characteristics and accessories.
- E. Roof curbs.
- F. Belt quards.
- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for

design point of operation. Provide performance curves for maximum design airflow/static pressure and minimum design airflow/static pressure (e.g. UNOCC modes for new Administrative Suite AHU).

I. Confirmation that fans powered by Variable Frequency Drives (VFD) include inverter duty motors.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Movement and Control Association International, Inc. (AMCA): 99-86.....Standards Handbook 210-06..... Laboratory Methods of Testing Fans for Aerodynamic Performance Rating 261-09.....Directory of Products Licensed to bear the AMCA Certified Ratings Seal - Published Annually 300-08.....Reverberant Room Method for Sound Testing of Fans C. American Society for Testing and Materials (ASTM): B117-07a.....Standard Practice for Operating Salt Spray (Fog) Apparatus D1735-08.....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus D3359-08..... Standard Test Methods for Measuring Adhesion by Tape Test G152-06.....Standard Practice for Operating Open Flame Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials G153-04.....Standard Practice for Operating Enclosed Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials D. National Fire Protection Association (NFPA): NFPA 96-08..... Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations E. National Sanitation Foundation (NSF): 37-07.....Air Curtains for Entrance Ways in Food and Food Service Establishments F. Underwriters Laboratories, Inc. (UL): 181-2005..... Air Connectory Made Air Ducts and Air Connectors

1.6 EXTRA MATERIALS

A. Provide one additional set of belts for all belt-driven fans.

PART 2 - PRODUCTS

2.1 FAN SECTION (CENTRIFUGAL PLENUM FAN)

Refer to specification Section 23 73 13, CUSTOM INDOOR CENTRAL-STATION AIR-HANDLING UNITS.

2.2 CENTRIFUGAL FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor.
- B. Fan arrangement, unless noted or approved otherwise:
 - 1. DWDl fans: Arrangement 3.
 - 2. SWSl fans: Arrangement 1, 3, 9 or 10
- C. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.
 - 1. Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 12.5 mm (1/2 inches) wire mesh screens for fan inlets without duct connections.
 - 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
 - 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
 - 4. Bearings: Heavy duty ball or roller type sized to produce a Bl0 life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
 - 5. Belts: Oil resistant, non-sparking and non-static.
 - 6. Belt Drives: Factory installed with final alignment belt adjustment made after installation.
 - 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP. Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
 - 8. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for specifications. Provide protective sheet metal enclosure for fans located outdoors.
 - 9. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section, MOTOR STARTERS. Refer to Section 23 05

11, COMMON WORK RESULTS FOR HVAC for controller/motor combination requirements.

- D. In-line Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C3 thru 2.2.C9, provide minimum 18 Gauge galvanized steel housing with inlet and outlet flanges, backward inclined aluminum centrifugal fan wheel, bolted access door and supports as required. Motors shall be factory pre-wired to an external junction box.
- E. Tubular Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C2 thru 2.2.C9 provide;
 - 1. Housings: Hot rolled steel, one-piece design, incorporating integral guide vanes, motor mounts, bolted access hatch and end flanges. Provide spun inlet bell and screen for unducted inlet and screen for unducted outlet. Provide welded steel, flanged inlet and outlet cones for ducted connection. Provide mounting legs or suspension brackets as required for support. Guide vanes shall straighten the discharge air pattern to provide linear flow.
- F. Mixed-Flow Fans:
 - 1. General: Inline, belt-driven centrifugal fans consisting of tubular housing, wheel, outlet guide vanes, fan shaft, bearings, drive assembly, motor, mounting brackets and accessories.
 - 2. Motor Mount: Motor externally mounted with adjustable sheave and base. Lubricating tubes shall be provided from the shaft bearing to the housing for lubrication. All units shall have support brackets standard with the manufacturer for mounting the unit.
 - 3. Wheels: Steel multi-blade, welded to shroud, with backplate and inlet backplate keyed to shaft, and spun wheel inlet shroud operating at close tolerance to deep spun inlet cone. Blades shall be backwardcurved airfoil (AF) or mixed flow type.
 - 4. Scroll: Reinforced, galvanized steel, formed housing with welded seams.
 - 5. Access Door: Furnish gasketed, [bolted on] [hinged with latch-type handles] for inspection and maintenance of fan wheel.
 - 6. Drilled Companion Flanges: Furnish to receive sheet metal duct or flexible connectors. Companion flanges shall be of the same thickness as the fan flanges.
 - 7. Fan Mounting:
 - a. Ceiling Hung Fans: Furnish four (4) suspension clips welded to fan housing. Coordinate and provide mounting with vibration isolation as specified/per details.

- b. Floor or Wall Mounted Fans: Furnish support legs at each end. Coordinate and provide mounting with vibration isolation as specified/per details.
- c. Vertically Mounted Fans: Furnish four (4) vertical brackets welded to either end of the fan housing. Coordinate and provide mounting with vibration isolation as specified/per details.
- 8. Accessories, where indicated on drawings, furnish the following:
 - a. Roof Curb Cap, Roof Curb and Stack Cap: Furnish roof curb cap, roof curb and stack cap with built-in butterfly backdraft damper. Roof curbs as specified elsewhere in this section.
 - b. Corrosion-Resistant Finish (CRF): As specified in Article 2.01. Furnish backdraft dampers and inlet vanes of [Type 304] [Type 316] stainless steel.
 - c. Spark-Resistant Construction (SRC): AMCA construction option A, B or C as indicated. Bearings shall not be placed in the air or gas stream.
 - d. UL Emergency Smoke Evacuation: Surgical return/relief fans for emergency smoke evacuation from operating rooms. Fans tested and rated for design time and temperature associated with emergency heat and smoke exhaust applications.

2.3 POWER ROOF VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades. Provide down-blast or up-blast type as indicated.
- C. Construction: Steel or aluminum, completely weatherproof, for curb mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self-acting back draft damper
- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.
- E. Prefabricated Roof Curb: As specified in paragraph 2.3 of this section.
- F. Up-blast Type: Top discharge exhauster, motor out of air stream.

2.4 POWER WALL VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades.

- C. Construction: Steel or aluminum, completely weatherproof, for wall mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self-acting back draft damper.
- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.

2.5 PROPELLER FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Belt-driven or direct-driven fans as indicated on drawings.
- C. Square steel panel, deep drawn venturi, arc welded to support arms and fan/motor support brackets, baked enamel finish. Provide wall collar for thru-wall installations.
- D. Motor, Motor Base and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Motor shall be totally enclosed type.
- E. Wall Shutter: Fan manufacturer's standard, steel frame, aluminum blades, heavy duty stall type electric damper motor, spring closed.
- F. Wire Safety Guards: Provide on exposed inlet and outlet.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material, construction dirt/dust.

3.3 START-UP AND INSTRUCTIONS

A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications. Include coordination efforts for Phased project fan testing, adjusting and balancing to support project as per specifications. Refer to specification section 23 73 13 for additional

factory and site acceptance testing associated with supply, return/relief fans within new Custom Indoor Station Air Handling Unit.

- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

- - - E N D - - -

SECTION 23 36 00 AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

Air terminal units.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic restraints for equipment.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise requirements.
- D. Section 23 31 00, HVAC DUCTS AND CASINGS: Ducts and flexible connectors.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Valve operators.
- F. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC: Flow rates adjusting and balancing.
- G. Section 23 82 16, AIR COILS: Heating and Cooling Coils pressure ratings.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:

1. Air Terminal Units: Submit test data.

- C. Samples: Provide one typical air terminal for approval by the Contracting Officers Representative (COR). This unit will be returned to the Contractor after all similar units have been shipped and deemed acceptable at the job site.
- D. Certificates:
 - 1. Compliance with paragraph, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.

E. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI): 880-08..... Air Terminals Addendum to ARI 888-98 incorporated into standard posted 15th December

2002

C. National Fire Protection Association (NFPA):

90A-09.......Standard for the Installation of Air

Conditioning and Ventilating Systems

Construction and Manufactured Housing

- D. Underwriters Laboratories, Inc. (UL): 181-08..... Standard for Factory-Made Air Ducts and Air Connectors
- E. American Society for Testing and Materials (ASTM): C 665-06.....Standard Specification for Mineral-Fiber Blanket Thermal Insulation for Light Frame

1.6 GUARANTY

In accordance with the GENERAL CONDITIONS.

PART 2 - PRODUCTS

2.1 GENERAL

A. Coils:

- 1. All Air-Handling Units: Provide aluminum fins and copper coils for all hot water reheat coils.
- 2. Water Heating Coils:
 - a. ARI certified, continuous plate or spiral fin type, leak tested at 2070 kPa (300 PSI).
 - b. Capacity: As indicated, based on scheduled entering water temperature.
 - c. Headers: Copper or Brass.
 - d. Fins: Aluminum, maximum 315 fins per meter (8 fins per inch).
 - e. Tubes: Copper, arrange for counter-flow of heating water.
 - f. Water Flow Rate: Minimum 0.032 Liters/second (0.5 GPM).

- g. Provide vent and drain connection at high and low point, respectively of each coil.
- h. Coils shall be guaranteed to drain.
- B. Labeling: Control box shall be clearly marked with an identification label that lists such information as nominal CFM, maximum and minimum factory-set airflow limits, coil type and coil connection orientation, where applicable.
- C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.
- D. Dampers with internal air volume control: See section 23 31 00 HVAC DUCTS and CASINGS.
- E. Terminal Sound Attenuators: See Section 23 31 00 (HVAC DUCTS AND CASINGS).

2.2 AIR TERMINAL UNITS (BOXES - TUS/TUR/TUE)

- A. General: Factory built, pressure independent units, factory set-field adjustable air flow rate, suitable for single duct applications. Use of dual-duct air terminal units is not permitted. Clearly show on each unit the unit number and factory set air volumes corresponding to the contract drawings. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC work assumes factory set air volumes. Coordinate flow controller sequence and damper operation details with the drawings and Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. All air terminal units shall be brand new products of the same manufacturer.
- B. Capacity and Performance: The Maximum Capacity of a single terminal unit shall not exceed 566 Liters/second (1,200 CFM).
- C. Sound Power Levels:

Acoustic performance of the air terminal units shall be based on the design noise levels for the spaces stipulated in Section 23 05 41 (Noise and Vibration Control for HVAC Piping and Equipment). Submitted equipment schedule shall show the sound power levels in all octave bands. Terminal sound attenuators shall be provided, as required, to meet the intent of the design.

D. Casing: Unit casing shall be constructed of galvanized steel no lighter than 0.85 mm (22 Gauge). Double-wall casing with solid metal internal lining or perforated internal lining with fully encapsulated insulation is preferred. Internal lining for air terminal units shall only be

permitted such that there is no direct fibrous material exposure to the airstream. Foam insulation materials are not acceptable. Proposed lining materials shall be reviewed and approved by VAMC COR and must be completely suitable for health care/patient/administrative area applications as noted herein. No exposed lining materials/methods shall be allowed without approval of VAMC COR and design engineering team. Provide hanger brackets for attachment of supports. Sound attenuators shall be provided where required to meet intent of the acoustic performance design intent.

- 1. Access panels (or doors): Provide panels large enough for inspection, adjustment and maintenance without disconnecting ducts, and for cleaning heating coils attached to unit, even if there are no moving parts. Panels shall be insulated to same standards as the rest of the casing and shall be secured and gasketed airtight. It shall require no tool other than a screwdriver to remove.
- 2. Total leakage from casing: Not to exceed 2 percent of the nominal capacity of the unit when subjected to a static pressure of 750 Pa (3 inch WG), with all outlets sealed shut and inlets fully open.
- E. Construct dampers and other internal devices of corrosion resisting materials which do not require lubrication or other periodic maintenance.
 - 1. Damper Leakage: Not greater than 2 percent of maximum rated capacity, when closed against inlet static pressure of 1 kPa (4 inch WG).
- F. Provide multi-point velocity pressure sensors with external pressure taps.
 - 1. Provide direct reading air flow rate table pasted to box.
- G. Provide static pressure tubes.
- H. Externally powered DDC variable air volume controller and damper actuator to be furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC for factory mounting on air terminal units. The DDC controller shall be electrically actuated.
- I. The location of the controller and the piping connections for the terminal unit reheat coils shall be coordinated for the same side to allow access above the ceiling to controller and reheat coil control valve within the same/minimal area. Contractor shall coordinate the access side/"hand" of the air terminal units to ensure proper

installation and maintenance in a location that allows for access above the ceiling from below the finished ceiling line without removing light fixtures, ceiling diffusers/registers/grilles, etc.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls. See VA Standard Detail.
- E. Coordinate the access side of the terminal unit to ensure clear access is maintained to the terminal unit control enclosure and any associated heating hot water (reheat coil) control valve. Coordinate work of all trades to ensure that control enclosures and access doors are not blocked/preventing the required inspection and maintenance.

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof Curbs
- B. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Outdoor and Exhaust Louvers: Section 08 90 00, LOUVERS AND VENTS.
- B. Seismic Reinforcing: Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- C. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Noise Level Requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- E. Outdoor Air Intake and Relief/Exhaust Air for Custom Indoor Central Station Air Handling Unit: Section 23 73 13, CUSTOM INDOOR CENTRAL STATION AIR HANDLING UNIT.
- F. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air intake/exhaust/relief hoods.
 - 2. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code: 1062 GRD-84.....Certification, Rating, and Test Manual 4th Edition
- C. American Society of Civil Engineers (ASCE):

ASCE7-05......Minimum Design Loads for Buildings and Other Structures D. American Society for Testing and Materials (ASTM): A167-99 (2004).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate E. National Fire Protection Association (NFPA): 90A-09.....of Air Conditioning and Ventilating Systems F. Underwriters Laboratories, Inc. (UL): 181-08.....Made Air Ducts

and Connectors

PART 2 - PRODUCTS

2.1 GRAVITY INTAKE/EXHAUST VENTILATORS (ROOF MOUNTED)

- A. Aluminum, ASTM B209, louvered, spun, or fabricated using panel sections with roll-formed edges, 13 mm (1/2 inch) mesh aluminum welded wire bird screen, with gravity or motorized dampers where shown, accessible interior, designed for wind velocity specified in Paragraph 3.3.
 - 1. Spun Intake/Exhaust Ventilators: Spun aluminum structural components shall be constructed of minimum 1.3 mm (16 Gauge) marine alloy aluminum, bolted to a rigid aluminum support structure. The aluminum base shall have continuously welded curb cap corners for maximum leak protection. The spun aluminum baffle shall have a rolled bead for added strength.
 - 2. Louvered Intake/Exhaust Hoods: Louvered hood constructed from 0.081 Gauge extruded aluminum tiers welded to a minimum 3.3 mm (8 Gauge) aluminum support structure. The aluminum hood shall be constructed of a minimum 0.064 marine alloy aluminum and provided with a layer of anti-condensate coating. The aluminum base shall have continuously welded curb cap corners for maximum leak protection.
 - 3. Low Silhouette Intake/Exhaust Ventilator: The unit shall be of bolted and welded construction utilizing corrosion resistant fasteners. The aluminum hood shall be constructed of minimum 1.60 mm (14 Gauge) marine alloy aluminum, bolted to a minimum 3.25 mm (8 Gauge) aluminum support structure. The aluminum base shall have continuously welded curb cap corners for maximum leak protection. Birdscreen constructed of 13 mm (1/2 inch) mesh shall be mounted across the relief opening.

- B. See ventilator schedule on the drawings. Sizes shown on the drawings designate throat size. Area of ventilator perimeter opening shall be not less than the throat area.
- C. Dampers for Gravity Ventilators without Duct Connection: Construct damper of the same material as the ventilator and of the design to completely close opening or remain wide open. Hold damper in closed position by a brass chain and catch. Extend chains 300 mm (12 inches) below and engage catch when damper is closed.
- D. See paragraph 3.3 for Intake/Exhaust exposed to high wind velocities.
- E. Provide Roof Curb by unit manufacturer. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for additional requirements.

2.2 EQUIPMENT SUPPORTS

Refer to Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 AIR OUTLETS AND INLETS

- A. Materials:
 - Steel or aluminum except that all supply air outlets installed in operating rooms and Cystoscopy rooms (see Article 2.3C.3) shall be stainless steel. Use aluminum air outlets and inlets for facilities located in high-humidity areas. Exhaust air registers located in combination toilets and shower stalls shall be constructed from aluminum.. Provide manufacturer's standard gasket.
 - 2. Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
 - 3. Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT for NC criteria.
- C. Air Supply Outlets:
 - Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.
 - a. Square, louver, fully adjustable pattern: Round neck, surface mounting unless shown otherwise on the drawings. Provide equalizing or control grid and volume control damper.

- b. Louver face type: Square or rectangular, removable core for 1, 2, 3, or 4 way directional pattern. Provide equalizing or control grid and opposed blade damper.
- c. Perforated face type: Manual adjustment for one-, two-, three-, or four-way horizontal air distribution pattern without change of air volume or pressure. Provide equalizing or control grid and opposed blade over overlapping blade damper. Perforated face diffusers for VAV systems shall have the pattern controller on the inner face, rather than in the neck and designed to discharge air horizontally at the ceiling maintaining a Coanda effect.
- d. Slot diffuser/plenum:
 - Diffuser: Frame and support bars shall be constructed of heavy gauge extruded aluminum. Form slots or use adjustable pattern controllers, to provide stable, horizontal air flow pattern over a wide range of operating conditions.
 - Galvanized steel boot lined with 13 mm (1/2 inch) thick fiberglass conforming to NFPA 90A and complying with UL 181 for erosion. The internal lining shall be factory-fabricated, antimicrobial, and non-friable.
 - 3) Provide inlet connection diameter equal to duct diameter shown on drawings or provide transition coupling if necessary. Inlet duct and plenum size shall be as recommended by the manufacturer.
 - 4) Maximum pressure drop at design flow rate: 37 Pa (0.15 inch W.G.)
- 2. Linear Bar Grilles and Diffusers: Extruded aluminum, manufacturer's standard finish, and positive holding concealed fasteners.
 - a. Margin Frame: Flat, 20 mm (3/4 inch) wide.
 - b. Bars: Minimum 5 mm (3/16 inch) wide by 20 mm (3/4 inch) deep, zero deflection unless otherwise shown. Bar spacing shall be a minimum of 3 mm (1/8 inch) on center. Reinforce bars on 450 mm (18 inch) center for sidewall units and on 150 mm (6 inch) center for units installed in floor or sills.
 - c. Provide opposed blade damper and equalizing or control grid where shown.
- 3. Supply Registers: Double deflection type with horizontal face bars and opposed blade damper with removable key operator.
 - a. Margin: Flat, 30 mm (1-1/4 inches) wide.
 - b. Bar spacing: 20 mm (3/4 inch) maximum.

- c. Finish: Off white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded with manufacturer's standard finish.
- 4. Supply Grilles: Same as registers but without opposed blade damper.
- D. Return and Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers.
 - 1. Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish.
 - 2. Standard Type: Fixed horizontal face bars set at 30 to 45 degrees, approximately 1-1/4 inch margin.
 - 3. Perforated Face Type: To match supply units.
 - 4. Grid Core Type: 1/2 inch by 1/2 inch core with 1-1/4 inch margin.
 - 5. Linear Type: To match supply units.
 - 6. Door Grilles: Are furnished with the doors.
 - 7. Egg Crate Grilles: Aluminum or Painted Steel 1/2 by 1/2 by 1/2 inch grid providing 90% free area.
 - a. Heavy extruded aluminum frame shall have countersunk screw mounting. Unless otherwise indicated, register blades and frame shall have factory applied white finish.
 - b. Grille shall be suitable for duct or surface mounting as indicated on drawings. All necessary appurtenances shall be provided to allow for mounting.
- E. Supply Registers in Psychiatric Rooms: Supply air registers shall be security type, steel with perforated faceplate, flat surface margin, extension sleeve, opposed blade damper and back mounting flanges. Faceplate shall be 3/16 inch (minimum) with 3/16 by 3/16 inch holes on 9/32 inch spacing and a minimum free area of 45 percent. Wall sleeve shall be 3/16 inch thick (minimum).
- F. Air Inlet Registers in Psychiatric Rooms: Return, exhaust, transfer and relief air registers shall be security type, steel with perforated faceplate, flat surface margin, wall sleeve, opposed blade damper and back mounting flanges. Faceplate shall be 3/16 inch (minimum) with 3/16 by 3/16 inch holes on 9/32 inch spacing and a minimum free area of 45 percent. Wall sleeve shall be 3/16 inch thick (minimum).
- G. Acoustic Transfer Grille: Aluminum, suitable for partition or wall mounting.

2.4 WIRE MESH GRILLE

A. Fabricate grille with 2 x 2 mesh 13 mm (1/2 inch) galvanized steel or aluminum hardware cloth in a spot welded galvanized steel frame with

approximately 40 mm (1-1/2 inch) margin.

B. Use grilles where shown in unfinished areas such as mechanical rooms.

2.5 FILTER RETURN/EXHAUST GRILLE

- A. Provide grille with in stream 1-inch deep MERV 4 filter and removable face.
 - Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish. Stainless Steel shall be No. 4 finish.
 - 2. Standard Type: Fixed horizontal face bars set at 30 to 45 degrees, approximately 30 mm (1-1/4 inch) margin.
 - 3. Steel, Aluminum, or Stainless steel as scheduled.
 - 4. Standard face connected to a mounting frame with space for a throwaway filter. Hold face closed by a locking screw. Provide retaining clips to hold filter in place. Provide fiberglass throwaway filter.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Contracting Officers Representative (COR). Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 INTAKE/EXHAUST HOODS EXPOSED TO WIND VELOCITY

Provide additional support and bracing to all exposed ductwork installed on the roof or outside the building to withstand wind velocity of 145 km/h (90 mph).

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 40 00 HVAC AIR CLEANING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air filters for heating, ventilating and air conditioning.
- B. Definitions: Refer to ASHRAE Standard 52.2 for definitions of face velocity, net effective filtering area, media velocity, initial resistance (pressure drop), MERV (Minimum Efficiency Reporting Value), PSE (Particle Size Efficiency), particle size ranges for each MERV number, dust holding capacity and explanation of electrostatic media based filtration products versus mechanical filtration products. Refer to ASHRAE Standard 52.2 Appendix J for definition of MERV-A.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 73 13, CUSTOM, INDOOR, CENTRAL-STATION AIR-HANDLING UNITS: Filter housing and racks.

1.3 QUALITY ASSURANCE

- A. Air Filter Performance Report for Extended Surface Filters:
 - 1. Submit a test report for each Grade of filter being offered. The report shall not be more than three (3) years old and prepared by using test equipment, method and duct section as specified by ASHRAE Standard 52.2 for type filter under test and acceptable to Contracting Officers Representative (COR), indicating that filters comply with the requirements of this specification. Filters utilizing partial or complete synthetic media will be tested in compliance with pre-conditioning steps as stated in Appendix J. All testing is to be conducted on filters with a nominal 24 inch by 24 inch face dimension. Test for 150 m/min (500 fpm) will be accepted for lower velocity rated filters provided the test report of an independent testing laboratory complies with all the requirements of this specification.
 - 2. Government Option: The Government at its option may take one of the filters for each different type submitted and run an independent test to determine if the filter meets the requirements of this specification. When the filter meets the requirements, the Government will pay for the test. When the filter does not meet the

specification requirements, the manufacturer will be required to pay for the test and replace the filters with filters that will perform as required by the specifications.

- 3. Guarantee Performance: The manufacturer shall supply ASHRAE 52.2 test reports on each filter type submitted. Any filter supplied will be required to maintain the minimum efficiency shown on the ASHRAE Standard 52.2 report throughout the time the filter is in service. Within the first 6-12 weeks of service a filter may be pulled out of service and sent to an independent laboratory for ASHRAE Standard 52.2 testing for initial efficiency only. If this filter fails to meet the minimum level of efficiency shown in the previously submitted reports, the filter manufacturer/distributor shall take back all filters and refund the owner all monies paid for the filters, cost of installation, cost of freight and cost of testing.
- B. Filter Warranty for Extended Surface Filters: Guarantee the filters against leakage, blow-outs, and other deficiencies during their normal useful life, up to the time that the filter reaches the final pressure drop. Defective filters shall be replaced at no cost to the Government.
- C. Comply with UL Standard 900 for flame test.
- D. Nameplates: Each filter shall bear a label or name plate indicating manufacturer's name, filter size, rated efficiency, UL classification, and file number.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Extended surface filters.
 - 2. Panel filters.
 - 3. Holding frames. Identify locations.
 - 4. Side access housings. Identify locations, verify insulated doors.
 - 5. Magnehelic gages.
- C. Air Filter performance reports.
- D. Suppliers warranty.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration VA Project No. 581-14-103 100% CD: 03/28/14

B. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE): 52.2-2007......Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by

Particle Size, including Appendix J

- C. American Society of Mechanical Engineers (ASME): NQA-1-2008.....Quality Assurance Requirements for Nuclear Facilities Applications
- D. Underwriters Laboratories, Inc. (UL): 900; Revision 15 July 2009 Test Performance of Air Filter Units

PART 2 - PRODUCTS

2.1 REPLACEMENT FILTER ELEMENTS TO BE FURNISHED

- A. To allow temporary use of HVAC systems for testing and in accordance with Paragraph, TEMPORARY USE OF MECHANICAL AND ELECTRICAL SYSTEMS in Section 01 00 00, GENERAL REQUIREMENTS, provide one complete set of additional filters to the COR.
- B. The COR will direct whether these additional filters will either be installed as replacements for dirty units or turned over to VA for future use as replacements.

2.2 EXTENDED SURFACE AIR FILTERS

- A. Use factory assembled air filters of the extended surface type with supported or non-supported cartridges for removal of particulate matter in air conditioning, heating and ventilating systems. Filter units shall be of the extended surface type fabricated for disposal when the contaminant load limit is reached as indicated by maximum (final) pressure drop.
- B. Filter Classification: UL listed/approved conforming to UL Standard 900.
- HVAC Filter Types Table 2.2C MERV Value MERV-A Particle Size Thickness /Type Application ASHRAE Value 52.2 ASHRAE 62.2 Appendix J 8 3 to 10 Microns 2-inch Throwaway 8-A Pre-Filter 11 11-A After-Filter 1 to 3 Microns 6-inch or 12-inch Rigid Cartridge After-Filter 13 0.3 to 1 Microns 13-A 6-inch or 12-inch Rigid Cartridge 14 14-A After-Filter 0.3 to 1 Microns 6-inch or 12-inch Rigid Cartridge
- C. HVAC Filter Types:

HEPA Filters Table 2.2D							
Efficiency at 0.3 Micron	Application	Initial Resistance (inches w.g.)	Rated CFM	Construction			
99.97	Final Filter	1.35	1100	Galvanized Frame X- Body			
99.97	Final Filter	1.00	2000	Aluminum Frame V-Bank			

D. HEPA Filters

2.3 MEDIUM EFFICIENCY PLEATED PANEL PRE-FILTERS (2"; MERV 8; UL 900 CLASS 2):

- A. Construction: Air filters shall be medium efficiency ASHRAE pleated panels consisting of cotton and synthetic or 100% virgin synthetic media, self-supporting media with required media stabilizers, and beverage board enclosing frame. Filter media shall be lofted to a uniform depth and formed into a uniform radial pleat. The media stabilizers shall be bonded to the downstream side of the media to maintain radial pleats and prevent media oscillation. An enclosing frame of no less than 28-point high wet-strength beverage board shall provide a rigid and durable enclosure. The frame shall be bonded to the media on all sides to prevent air bypass. Integral diagonal support members on the air entering and air exiting side shall be bonded to the apex of each pleat to maintain uniform pleat spacing in varying airflows.
- B. Performance: The filter shall have a Minimum Efficiency Reporting Value of MERV 8 when evaluated under the guidelines of ASHRAE Standard 52.2. It shall also have a MERV-A of 8 when tested per Appendix J of the same standard. The media shall maintain or increase in efficiency over the life of the filter. Pertinent tolerances specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-93 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24" x 24" face dimension.

Minimum Efficiency Reporting (MERV)	8	
Dust Holding Capacity (Grams)	105	
Nominal Size (Width x Height x Depth)	24x24x2	
Rated Air Flow Capacity (Cubic Feet per Minute)	2,000	
Rated Air Flow Rate (Feet per Minute)	500	
Final Resistance (Inches w.g.)	1.0	
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.66	
Rated Initial Resistance (Inches w.g.)	0.33	

C. The filters shall be approved and listed by Underwriters' Laboratories, Inc. as Class 2 when tested according to U. L. Standard 900 and CAN 4-5111.

2.4 HIGH EFFICIENCY EXTENDED SURFACE (INTERMEDIATE/AFTER (FINAL)) CARTRIDGE FILTERS (12"; MERV 14/13/11; UL 900 CLASS 2):

- A. Construction: Air filters shall consist of 8 pleated media packs assembled into 4 V-banks within a totally plastic frame. The filters shall be capable of operating at temperatures up to 80 degrees C (176 degrees F). The filters must either fit without modification or be adaptable to the existing holding frames. The molded end panels are to be made of high impact polystyrene plastic. The center support members shall be made of ABS plastic. No metal components are to be used.
- B. Media: The media shall be made of micro glass fibers with a water repellent binder. The media shall be a dual density construction, with coarser fibers on the air entering side and finer fibers on the air leaving side. The media shall be pleated using separators made of continuous beads of low profile thermoplastic material. The media packs shall be bonded to the structural support members at all points of contact, this improves the rigidity as well as eliminates potential air bypass in the filter
- C. Performance: Filters of the size, air flow capacity and nominal efficiency (MERV) shall meet the following rated performance specifications based on the ASHRAE 52.2-1999 test method. Where applicable, performance tolerance specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-93 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24"x24" header dimension.

Minimum Efficiency Reporting Value (MERV)	14	13	11
Gross Media Area (Sq. Ft.)	197	197	197
Dust Holding Capacity (Grams)	486	430	465
Nominal Size (Width x Height x Depth)	24x24x12	24x24x12	24x24x12
Rated Air Flow Capacity (cubic feet per minute)	2,000	2,000	2,000
Rated Air Flow Rate (feet per minute)	500	500	500
Final Resistance (inches w.g.)	2.0	2.0	2.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.74	0.68	0.54
Rated Initial Resistance (inches w.g.)	0.37	0.34	0.27

2.7 FILTER HOUSINGS/SUPPORT FRAMES

- A. Side Servicing Housings (HVAC Grade)
 - Filter housing shall be two-stage filter system consisting of 16gauge galvanized steel enclosure, aluminum filter mounting track, universal filter holding frame, insulated dual-access doors, static pressure tap, filter gaskets and seals. In-line housing depth shall not exceed 21". Sizes shall be as noted on enclosed drawings or other supporting materials.
 - 2. Construction: The housing shall be constructed of 16-gauge galvanized steel with pre-drilled standing flanges to facilitate attachment to other system components. Corner posts of Z-channel construction shall ensure dimensional adherence. Where installed outdoors, the housing shall be weatherproof and suitable for rooftop/outdoor installation. The housing shall incorporate the capability of two stages of filtration without modification to the housing. A filter track, of aluminum construction shall be an integral component of housing construction. The track shall accommodate a 2" deep prefilter, a 6" or 12" deep rigid final filter, or a pocket filter with header. Insulated dual access doors, swing-open type, shall include highmemory sponge neoprene gasket to facilitate a door-to-filter seal. Each door shall be equipped with adjustable and replaceable positive sealing UV-resistant star-style knobs and replaceable door hinges. A universal holding frame constructed of 18-gauge galvanized steel, equipped with centering dimples, multiple fastener lances, and polyurethane filter sealing gasket, shall be included to facilitate installation of high-efficiency filters. The housing shall include a pneumatic fitting to allow the installation of a static pressure gauge to evaluate pressure drop across a single filter or any combination of installed filters.
 - 3. Performance: Leakage at rated airflow, upstream to downstream of filter, holding frame, and slide mechanism shall be less than 1% at 3.0" w.g. Leakage in to or out of the housing shall be less than one half of 1% at 3.0" w.g. Accuracy of pneumatic pressure fitting, when to evaluate a single-stage, or multiple filter stages, shall be accurate within ± 3% at 0.6" w.g.
 - Manufacturer shall provide evidence of facility certification to ISO 9001: 2000.
- B. Built-up Bank AHU CARTRIDGE FILTER and HEPA Holding Frames
 - Holding frames shall be constructed of 14-guage galvanized steel.
 Frames shall be welded and include centering dimples, pre-drilled

mounting holes, filter sealing flange and swing bolt assemblies. An appropriate number of swing bolts to match air filters shall also be included. Sizes shall be as noted on drawings or other supporting materials.

- 2. Construction: Filter frame shall be all-welded construction of 14guage galvanized steel. The frame shall include pre-drilled mounting holes to align frame-to-frame and ensure built-up bank support. Annular based centering dimples shall be an integral component to assist in proper seating of filter gasket to filter sealing flange. Assembly holes shall be within dimples to recess assembly bolts. Filter securing swing bolt assemblies, of the same construction as the frame, shall be offset to facilitate multiple filter installations. The assembly shall include appropriate swing bolts to match filter depth and equi-bearing clamps to allow uniform filter gasket sealing.
- Performance: The sealing assembly shall be capable of sealing each element with 30 inch/lbs. of torque to 50% filter gasket compression. Manufacturer shall provide evidence of facility certification to ISO 9001:2000.

2.11 INSTRUMENTATION

- A. Magnehelic Differential Pressure Filter Gages: Nominal 100 mm (four inch) diameter, zero to 500 Pa (zero to two inch water gage), three inch for HEPA) range, except for MERV 17 HEPA Final Filters, where the range shall be zero to 750 Pa (zero to three inch water gage). Gauges shall be flush-mounted in aluminum panel board, complete with static tips, copper or aluminum tubing, and accessory items to provide zero adjustment.
- B. DDC static (differential) air pressure measuring station. Refer to Specification Section 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC
- C. Provide one DDC sensor across each extended surface filter. Provide Petcocks for each gauge or sensor.
- D. Provide one common filter gauge for two-stage filter banks with isolation valves to allow differential pressure measurement.

2.12 HVAC EQUIPMENT FACTORY FILTERS

- A. Manufacturer standard filters within fabricated packaged equipment should be specified with equipment and adhere to industry standard.
- B. Cleanable filters are not permitted.
- C. Automatic Roll Type filters are not permitted.

2.13 FILTER RETURN GRILLES

Refer to Section 23 37 00 AIR OUTLETS AND INLETS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install supports, filters and gages in accordance with manufacturer's instructions.
- B. Install gaskets, blank-off plates, safing, etc. to ensure that no air may bypass filter racks within custom air handling unit. Carefully locate and support the filter rack in a manner to prevent collapse, racking, and potential for bypass of unfiltered air.

3.2 START-UP AND TEMPORARY USE

- A. Clean and vacuum air handling units and plenums prior to starting air handling systems.
- B. Replace Pre-filters and install clean filter units prior to final inspection as directed by the COR.

- - - E N D - - -

SECTION 23 72 00 AIR-TO-AIR ENERGY RECOVERY EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

This Section specifies total energy/enthalpy rotary air-to-air heat exchangers be mounted and installed as a component with a Custom Indoor Air Handling unit.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS: Requirements for pre-test of equipment.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic requirements for non-structural equipment.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- D. Section 23 07 11, HVAC INSULATION: Requirements for piping insulation.
- E. Section 23 73 16, CUSTOM, INDOOR, CENTRAL STATION AIR HANDLING UNITS.
- F. Section 23 31 00, HVAC DUCTS and CASINGS: Requirements for sheet metal ducts and fittings.
- G. Section 23 40 00, HVAC AIR CLEANING DEVICES: Requirements for filters used before heat recovery coils.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Requirements for controls and instrumentation.
- I. Section 23 05 93, TESTING, ADJUSTING and BALANCING FOR HVAC: Requirements for testing, adjusting and balancing of HVAC system.
- J. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC.
- K. Section 26 29 11, MOTOR CONTROLLERS.

1.3 QUALITY ASSURANCE

- A. Refer to specification Section 01 00 00, GENERAL REQUIREMENTS for performance tests and instructions to VA personnel.
- B. Refer to paragraph QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Performance Criteria: Heat recovery equipment shall be provided by a manufacturer who has been manufacturing such equipment and the equipment has a good track record for at least 3 years.
- D. Performance Test: In accordance with PART 3.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rotary Heat Exchanger
- C. Certificate: Submit, simultaneously with shop drawings, an evidence of satisfactory service of the equipment on three similar installations.
- D. Submit type, size, arrangement and performance details. Present application ratings in the form of tables, charts or curves.
- E. Provide installation, operating and maintenance instructions, in accordance with Article, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating, and Refrigeration Institute (AHRI) AHRI 1060-2005.....Performance Rating of Air-to-Air Heat Exchangers for Energy Recovery Ventilation Equipment
- C. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE): 15-10.....Safety Standard for Refrigeration Systems (ANSI)
 - 52.1-92..... Gravimetric and Dust-Spot Procedures for Testing Air-Cleaning Devices Used in General Ventilation for Removing Particulate Matter
 - 52.2-07.....Method of Testing General Ventilation Air-
 - Cleaning Devices for Removal Efficiency by Particle Size
 - 84-08..... Method of Testing Air-to-Air Heat/Energy Exchangers
- D. American Society for Testing and materials (ASTM)
 - D635-10.....Standard Test Method for Rate of Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position
 - E84-10.....Standard Test Method for Surface Burning Characteristics of Building Materials
- E. American Society of Civil Engineers (ASCE) ASCE 7-10......Minimum Design Loads for Buildings and Other Structures
- F. Underwriters Laboratories, Inc (UL)

1812-2009.....Standard for Ducted Heat Recovery Ventilators 1815-2009.....Standard for Nonducted Heat Recovery Ventilators

PART 2 - PRODUCTS

2.1 ROTARY AIR-TO-AIR HEAT EXCHANGER:

- A. Exchanger Rotor or Wheel: 3A Molecular-Sieve. Aluminum transfer media with a flame spread rating of 25 and less and smoke developed rating of 50 and less, and independently tested in accordance with ASTM standard E-84. Rotor media shall be independently tested in accordance with ASHRAE Standard 84. It shall allow laminar flow (but not radial) when operating within published operating airflow ranges and prevent leakage, bypassing and cross contamination by cross flow within wheel. Size the transfer media to allow passage of 800 micrometers particles without fouling or clogging. When latent heat transfer is required, treat media with non-migrating water selective desiccant that is bacteriostatic, non-corroding and non-toxic. No asbestos material will be allowed. Wheel shall not condense water directly or require a condensate drain for summer or winter operation. Performance rating shall be in accordance with AHRI Standard 1060. Rated Rated lifetime shall not be less than 87,600 hours and shall be defined by media performance < 90% of original capacity.
- B. Rotor: Solid aluminum center hub with internal 12mm diameter spokes, welded to an outer aluminum band to provide for rigid unitized construction. 3A Molecular-Sieve.

1. Maximum Solid Size for media to pass: 800 micrometers.

- C. Casings shall be sealed on periphery of rotor as well as on duct divider and purge section. Seals shall be adjustable, of extended life materials and effective in limiting air leakage.
- D. Wheel shall be supported by ball or roller bearings and belt driven by a fractional horsepower, totally enclosed, NEMA Standard motor through a close coupled positively lubricated speed reducer, or gear/chain speed reduction. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC.
 - Variable-speed exchanger wheels shall have exchanger wheel speed and leaving-air temperature controlled by means of a variable-speed motor controller. The speed shall be controlled as noted in paragraph G below. Automatic changeover for summer-winter operations shall be controlled by an adjustable thermoswitch. Set point of adjustable proportioning temperature controller and thermoswitch shall be indicated on visible scale. System shall be capable of speed

reduction down to 5 percent of capacity while maintaining adequate torque at any point of operation to rotate wheel.

- E. An automatic, factory-fabricated, field-adjustable purge unit shall limit exhaust air carry-over to less than 1.0 percent of rated volume. Purge shall be effective when static pressure difference between supply and exhaust is 125 Pa (one-half, inch wg) or greater, and it shall have provision for restriction or adjustment to limit purge air volume to not over five percent of rated air flow when a static pressure difference up to 2.5 kPa (10 inch wg) exists.
- F. Unit shall be constructed of heavy gage steel to insure rigidity and stability. Casing side panels shall be removable to insure easy access to internal parts and have integral flanges for flanged duct connection and lifting holes or lugs.
- G. Controls starting relay shall be factory mounted and wired, and include a manual motor starter for field wiring. Variable frequency controller shall be factory mounted and wired, with exhaust and outdoor air sensors, automatic changeover thermostat and set-point adjuster, to vary rotor speed, maintain exhaust temperature above freezing and to maintain air differential temperature above set point. When exhaust-air temperature is less than outdoor-air temperature, the rotor shall be at maximum speed.
 - 1. Pilot-Light Indicator: Display rotor rotation and speed. Speed Settings: Adjustable settings for maximum and minimum rotor speed limits.
 - 2. Rotation Indication sensor: BAS shall be capable of monitoring and alarming wheel rotation/failure. Actual wheel rotation shall be monitored in addition to wheel motor and wheel VFD operation.
- H. Filters: MERV 8, 2-inch throw-away type. Refer to Section 23 40 00 HVAC Air Cleaning Devices.

2.3 AIR FILTERS

Air Filters: Disposable air filters, with a MERV rating of 8, shall be provided standard on all air entering sides of air-to-air heat exchangers and as indicated on the drawings. Comply with requirements in specification Section 23 40 00, HVAC AIR CLEANING DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Follow the equipment manufacturer's instructions for handling and installation, and setting up of ductwork for makeup and exhaust air streams for maximum efficiency.

- B. Coordinate installation of rotary wheel within custom air handling unit. Wheel manufacturer to provide clear instructions and verification of air handling unit manufacturer's proper mounting of wheel, motor, belts, variable frequency drives, controls, control panel, etc.
- C. Rotary Air-to-Air Exchanger: Adjust seals and purge as recommended by the manufacturer. Verify correct installation of controls.
- D. Seal ductwork tightly to avoid air leakage.
- E. Install units with adequate spacing and access for cleaning and maintenance of heat recovery coils as well as filters.
- F. Brace heat recovery equipment installed in projects in the Seismic area according to specification Section 13 05 41, SEISMIC RESTRAINT REOUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.2 FIELD QUALITY CONTROL

- A. Operational Test: Perform tests as per manufacturer's written instructions for proper and safe operation of the heat recovery system.
 - 1. After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Adjust seals and purge.
 - 3. Test and adjust controls and safeties.
- B. Replace damaged and malfunctioning controls and equipment.
- C. Set initial temperature and humidity set points. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- D. Prepare test and inspection reports to the Senior Contracting Officers Representative (COR) in accordance with specification Section 01 00 00, GENERAL REQUIREMENTS.

3.3 INSTRUCTIONS

Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of heat recovery equipment.

3.4 STARTUP AND TESTING

A. Perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS, Section 23 05 11, COMMON WORK RESULTS FOR HVAC, Section 23 73 13, CUSTOM INDOOR CENTRAL STATION AIR HANDLING UNITS and submit the test reports and records to the COR. Components of this section will be tested in the air handling manufacturer factory and at the project site as part of a larger system. The COR shall be provided the opportunity to observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR. Provide a minimum of 7 days prior notice.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications to COR

- - - E N D - - -

SECTION 23 73 13 CUSTOM, INDOOR, CENTRAL-STATION AIR-HANDLING UNIT

PART 1 - GENERAL

1.1 SUMMARY

- A. This Specification defines engineering, design, materials of construction, fabrication, and performance requirements for CUSTOM, INDOOR, CENTRAL-STATION AIR-HANDLING UNITS for new Building 1 West third floor Surgery Administration Suite.
- B. The Air Handling Unit (AHU) manufacturer must receive and review the complete project bid document package. All drawings and specifications shall be made available to the AHU manufacturer for the purposes of bidding and developing the proposal and submittal documents required herein. AHU manufacturer is responsible to request this information should the general contractor(s) and/or VAMC not provide in accordance with these requirements to deliver a complete package to the AHU manufacturer
- C. Definitions: Custom Air Handling Unit (AHU): A factory fabricated assembly consisting of custom indoor central station air-handling unit, with supply and return/relief fans, heating/cooling coils, filters, total energy/enthalpy air-to-air energy recovery, plant steam humidifier and other necessary equipment/components to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air to deliver and return/relieve the new administration suite constructed in phases as part of this project. The new AHU is a piece of equipment designed to be factory fabricated and tested prior to shipment to project site. Design capacities of unit shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic restraints for equipment.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Sound and vibration requirements.
- D. Section 23 07 11, HVAC INSULATION: Piping and duct insulation.
- E. Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING: Heating Hot Water (Reheat), Chilled Water, Cooling Coil Condensate, and Steam/Steam Condensate Heating, Cooling and Humidification Piping, Dispersion type plant steam humidifier, Valves and Specialties.

- F. Section 23 82 16, AIR COILS: Heating coils, cooling coils and pressure requirements.
- G. Section 23 72 00, AIR-TO-AIR ENERGY RECOVERY EQUIPMENT: Total Energy/Enthalpy Recovery device.
- Section 23 31 00, HVAC DUCTS and CASINGS: Requirements for dampers, н. flexible duct connectors, and sound attenuators.
- Section 23 40 00, HVAC AIR CLEANING DEVICES: Air filters and filters' I. efficiency.
- Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: HVAC J. controls.
- Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Testing, Κ. adjusting and balancing of air handling equipment air and water flows.
- Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC: Types of L. motors.
- Division 26 Sections AHU Wiring, Wiring Devices, Receptacles, М. Lighting, etc.
- Ν. Section 26 29 11, MOTOR CONTROLLERS: Types of motor starters, variable speed/variable frequency drives.
- Ο. Section 28 31 00, FIRE DETECTION AND ALARM: AHU Isolation Smoke Damper Duct Detectors and associated wiring.

1.3 SUBMITTALS

Proposal Requirements. Α.

> The vendor shall submit the following data, drawings and information with the proposal:

- List of exceptions to specifications on line-by-line basis. 1. Include proposed materials, methods and cost difference where substitutions are allowed.
- Completed Data sheets. For fans, include curves with plots 2. showing duty points at specified maximum, occupied, unoccupied / minimum operating conditions, efficiency and brake horsepower. AHU is intended to operate initially at lower airflow than max / rated capacity due to shelled condition of two of the three floors that the AHU will serve. All components within the AHU shall be selected and rated for the initial operation range of 1,500 CFM (UNOCC) to 3,000 CFM (OCC). Final capacity range to be coordinated by TAB contractor and BAS contractor based upon final testing, adjusting and balancing efforts.
- Representative outline or general arrangement drawings including 3. overall dimensions and dimensions of field installed or assembled components.
- System schematic drawings showing all components, instruments and 4. control systems (if any) to be furnished with unit.

- List of proposed manufacturers of fans, filters, coils, motors, 5. drives, dampers, and other components within the AHU. Clearly note differences from scheduled basis of design manufacturers/ noting equivalency as per submittal requirements.
- Information on quarantees/warranties specified and on those 6. available.
- 7. Recommended spare parts quotation for one (1) year operation.
- 8. Recommendation as to quantity of vendor supervision necessary for erection, site acceptance testing, start-up and training with the estimated cost of services.
- 9. Calculations indicating that insulation thickness and thermal break will prevent condensation at design operating conditions.
- 10. Number of sections, and shipping, erection and operating weight of each section. Include dimensions and shipping weight of largest section of assembly that will ship as one piece.
- Overall power requirements and electrical data including V/PH/HZ 11. for equipment/components that consume electrical power. Data for motors should also include HP, type, power factor and guaranteed minimum efficiency.
- 12. Schedule (indicated in weeks) for submittal of drawings for approval, start and finish of FAT and shipment of units after receipt of approved drawings.
- After Award Requirements в.

Upon receipt of Purchase Order, prepare and submit shop drawings and product data prepared specifically for equipment being furnished, for use in fabrication and installation. Submittals shall show sufficient data to establish evidence of compliance with Purchase Order documents. After receipt of Purchase Order submit the following information:

- 1. Shop Drawings:
 - Unit: Shop drawings showing all components, dimensions, a. weights, materials, gauges, finishes and module breaks. Include piping and electrical wiring and control diagrams. Indicate access doors, access panels and service clearances around equipment for normal servicing. Include fabrication and installation details. Indicate layout of electrical components such as disconnect switches, motors, light switches and fixtures. Indicate layout of major control components and required clearances for maintenance. Include anchoring information, material, sizes, type, spacing of anchor bolts, recommended neoprene pads between base rail and housekeeping pad, and other information required for coordination.
 - Fans: Show fan layout, housing, materials, gauges, b. dimensions, weights, vibration isolation/bases and installation details.
 - Provide shipping weights of major components such as fans and c. coils which may require removal/replacement. Include weights of removable/replaceable panels.
- Manufacturer's Literature and Product Data: 2.

- General: Submittals for AHU shall include fans, drives, a. motors, coils, humidifiers, mixing outside/return/relief air/smoke dampers, smoke detectors, filters & filter housings, total enthalpy energy recovery wheels and all other related accessories/appurtenances. The contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, flexible connections, vibration isolation, door swings, utility piping/power conduit, controls conduit, electrical disconnects, variable frequency drives, lights, duplex receptacles, switches, wiring, utility connection points, unit support system/base rail, drain pans, airflow and static pressure drops through each component (filters, coils, etc.), shipping splits and rigging points per section. Refer to AHU detail drawing, controls diagrams, schedules and detail sheets for additional requirements.
- b. Fans: Manufacturer's fan performance (data includes cfm, rpm, bhp, motor nameplate data, tip speed, outlet velocity, true critical speeds and static pressure) and sound performance (data includes sound power level ratings by octave bands) as tested in accordance with AMCA Standards 210 and 300. Submit data for Fan airflow measuring devices, piezometers, as scheduled/specified.
- c. Fan Performance Curves (computer selection): Submit curves for all fans with system performance shown. Curves shall include plotted rpm, brake horsepower, horsepower, cfm, static pressure, and fan surge line and operating point.
- d. Coils: Performance data (computer selection printout certified in accordance with ARI 410) and catalog cuts.
- e. Humidifier: Performance data, capacity (pounds moisture per hour), plant steam flow and pressure, airflow, air velocity, dispersion panel dimensions and absorption distance.
- f. Dampers: Damper assemblies, including all damper sections, jackshafts and quantity, model numbers, and location of damper actuators. Show torque calculations to ensure that the actuators close the dampers to the specified leakage rate. Show calculations of the leakage at the actual design pressure. Submit product data and performance characteristics for all combination damper/airflow measuring stations as scheduled/specified.
- g. Filters and Filter Rack Assemblies: Submit product data with performance characteristics.
- h. Sound power levels for housing inlet, outlet and radiation at rated capacity. List discharge and radiated sound power levels for sound attenuators in tabular form in direct comparison of maximum allowable sound levels. (Combine all sources for reporting purposes.)
- i. Submit electrical requirements for power supply wiring including wiring diagrams for interlock and control wiring, clearly indicating factory-installed and field installed wiring. Clearly indicate disconnects/wiring connectors at shipping splits, etc.
- j. Submit AHU DDC control system hardware, products/devices control diagrams, wiring diagrams and sequences of operation as coordinated with, provided by and developed by project controls contractor

- Submit electrical products including disconnect switches, k. variable frequency drives, lighting, switches, receptacles, shipping split connectors, and all other appurtenances/elements specified and required to fully power and control the custom indoor AHU.
- Submit BAS/Controls wiring diagrams and overall control 1. diagram for AHU. Clearly indicate any/all items being shipped loose or that will require wiring in the field back to either the local AHU control panel or back to site/bldg BAS for integration. Clearly note items included in sequence of operation that will be directly controlled within AHU controller versus controlled via site BAS. Confirm BAS remote control capability and integration with AHU controller. Coordinate with site controls contractor as required.
- Catalog cuts of all components manufactured by others m. indicating model, dimensions, weights, performance, materials, and finishes.
- 3. Calculations: submit the following:
 - Air pressure drop and total static pressure calculations. a.
- 4. Certified AMCA Ratings: Submit ratings for air and sound performance (fans), and air leakage and air performance (dampers).
- 5. Submit factory acceptance test and site leak test procedures.
- C. Submission Requirements
 - Submit shop drawings and product data with such promptness and in 1. such sequences to cause no delays. Approval or other appropriate action on such submittals will be taken with such reasonable promptness as to cause no delays, while allowing sufficient time, in Owner's Representative's judgment, to permit adequate review.
 - For initial submission and for resubmissions that are required 2. for approval, submit one (1) electronic copy three (3) hard copy quantities of each drawing to Owner's Representative in accordance with vendor data submittal requirements.
 - Submit one (1) electronic copy and three (3) hard copy quantities 3. to Owner's Representative of each drawing that is being resubmitted for record as a result of the application of "REVIEWED AS NOTED" on previous submissions.
- Resubmission Requirements D.
 - 1. Identification of Changes: Clearly identify changes made from initial submittal other than those requested by the Owner. Owner's Representative will review only those changes requested and those identified by manufacturer.
- Ε. Owner's Representative Review of Submittals
 - Owner's Representative approval of shop drawings and product data 1. submitted by the manufacturer shall not relieve the manufacturer of responsibility for deviations from requirements of Purchase Order documents, unless manufacturer has specifically informed

Owner's Representative in writing of such deviation at time of submittal, and Owner's Representative has given written approval to specific deviation. The manufacturer shall continue to be responsible for deviations from requirements of Purchase Order documents which have not been specifically noted by the manufacturer in writing, and specifically approved by Owner's Representative in writing.

- F. Operating and Maintenance Data
 - Prepare and furnish for Owner's Representative's approval and 1. subsequent use, one (1) electronic copy and three (3) operating and maintenance instruction manuals for each unit. Manuals shall be specific for this project. Include Table of Contents and/or Index and assemble instructions in durable, hardback, 3-ring loose-leaf binders. Details as follows:
 - Manuals shall contain complete written instructions on operation, 2. care and maintenance of each piece of equipment/system and installation as a whole. Operating and maintenance instruction manuals shall be prepared, submitted and accepted by Owner's Representative prior to training specified further herein and acceptance of the Work by Owner's Representative.
 - Operating and maintenance instruction manuals shall be provided 3. including detailed descriptions of equipment/system operation and shall include preventive maintenance procedures specifying requirements for frequency of inspection, cleaning, oiling, greasing, and adjusting and other attention in accordance with air handling unit manufacturer's requirements. O&M manuals shall also include each internal component manufacturer's specific recommended trouble-shooting tasks and detailed preventative maintenance work plans including all necessary steps and frequency.
 - Manuals shall include manufacturer's brochures, catalog cuts, 4. parts lists, spare parts lists, wiring diagrams, and similar pertinent data. Manuals shall also include complete set of approved submittals bound together with operating and maintenance instructions for respective piece of equipment/system.
 - 5. Manufacturer's operating and maintenance data shall be clearly marked to show equipment/system name and abbreviated designation. Data shall be specifically prepared for equipment/system involved and clearly define necessary operating and maintenance requirements.
 - Include manufacturer's phone numbers and other data necessary for 6. VAMC to obtain expedient warranty service.
 - 7. Include copy of factory and site acceptance test reports.
 - Furnish additional operating and maintenance data as may be 8. specified in PART 2.
 - Operating and maintenance instructions shall also include, but 9. not be limited to the following:
 - a. Tools recommended for proper maintenance
 - b. Recommended lubricants
 - c. Hazards
 - d. Cleaning
 - e. Warranties and bonds
 - f. Maintenance agreements and similar continuing commitments

1.4 IDENTIFICATION

- A. Identify each air-handler with a permanently attached, corrosionresistant 2" x 6" (minimum) nameplate. Nameplate shall be minimum 16 gauge stainless steel with at least 3/16" high lettering stamped into nameplate prior to attachment of nameplate to equipment.
- B. Nameplate lettering data shall be as follows:

C. Provide permanently attached directional rotation arrow, painted to contrast with background, on items of rotating equipment.

1.5 QUALITY ASSURANCE

- A. Equipment shall conform to requirements of national, state and local regulating authorities and be furnished in accordance with current applicable sections of following codes and standards: AMCA, ASHRAE, IBC, IMC, SMACNA, ASME, NEC, NFPA, OSHA, UL, ARI, ANSI, NEMA and ASTM. In event of discrepancies between this Specification and codes or standards, manufacturer shall notify Owner's Representative.
- B. All products and composite package shall meet all applicable paragraphs of IEEE, NEC and NEMA Standards, shall be designed for installation in accordance with NEC, and shall be UL or ETL labeled.
- C. Equipment and material shall be new and of first quality and workmanship, free from defects and suitable for the specified use.
- D. Certifications: Manufacturer shall certify in writing compliance with Purchase Order documents, warranties provided, and manufacturer's field service and demonstration requirements specified.

1.6 GUARANTEES/WARRANTIES

- A. Include the following with technical data required with quotation:
 - 1. Terms of manufacturer's standard warranty and costs (if any) associated therewith. A minimum warranty of 12 months from date of final acceptance is required. If final acceptance of unit does not occur within 6 months from date of shipment due to fault of the unit manufacturer, warranty shall be extended to account for delay and maintained at 12 months from date of final acceptance.
 - 2. Complete data on manufacturer's optional extended warranties and service contracts available including costs and details

associated with each option. During warranty period the manufacturer shall provide labor and materials necessary to repair or replace, at his expense and without additional cost to VAMC, materials, equipment or workmanship in which defects may develop.

- Include the following with Purchase Order submittals: в.
 - 1. Details of warranty or warranties purchased.
 - Manufacturer's guarantee on equipment performance that is 2. published in manufacturer's cataloged application and specification data.

1.7 DELIVERY, STORAGE AND HANDLING

- Α. Seal fluid and air openings prior to shipment.
- в. Deliver products to site in protective containers, with factory installed shipping skids and lifting lugs.
- Coordinate maximum shipping split dimensions. C.
- Indicate VAMC Purchase order number and equipment number on the D. outside of each section delivered.

PART 2 - PRODUCTS

2.1 SCOPE OF WORK

Provide custom, factory-fabricated, industrial air handling unit, Α. suitable for indoor / penthouse mechanical equipment room installation and mounting, with components, construction and capacity as specified.

GENERAL REQUIREMENTS 2.2

- handling unit, having capacity, arrangement and other Α. Air characteristics shown on drawing schedules and/or data sheets, shall be provided and shall generally consist of factory-engineered modular sections with casings and components as specified further herein.
- Standard Construction в.
 - The equipment shall be the manufacturer's standard construction 1. wherever possible.
- С. Alternate Construction
 - Consideration will be given to deduct or substitute alternates 1. provided all exceptions to the specifications are clearly stated in the vendor's proposal. The vendor must provide sufficient information to demonstrate that a substitute alternate is equal or superior to the base specification.
- D. All components requiring normal service and maintenance shall be identified and shall be easily accessible for service. The vendor

shall specify clearances required around the equipment for normal service.

- Fans shall be rated in accordance with ASHRAE Standard $51/\mbox{AMCA}$ Е. Standard 210-74 and shall be licensed to bear AMCA Seal. Coils shall be computer-selected based on ASHRAE calculation procedures or be rated in accordance with ARI Standard 410.
- F. Acoustic performance shall be as follows:
 - Casing radiated sound pressure level measured 3 feet from 1. exterior of unit (including beneath the unit base/floor) shall not exceed 80 dBA.
 - Relief Air Discharge sound pressure level measured 3 feet from 2. exterior of unit shall not exceed 80 dBA.
 - Airborne sound pressure level measured at supply duct connection 3. to AHU casing/air tunnel/at smoke damper shall not exceed 95 dBA.
 - Airborne sound pressure level measured at the inlet air section 4. intake shall not exceed 90 dBA.
 - Provide sound power levels in a minimum 7 octave bands for 5. radiated noise at rated capacity.
 - Test methods and facilities used to establish sound transmission 6. loss values shall conform explicitly to the ASTM Designations E90 85 and E413 73.
 - Test methods and facilities used to establish sound absorption 7. values shall conform explicitly to the requirements of the ASTM Standard Test Method for Sound Absorption Coefficients by the Reverberation Method: ASTM C42384A and 795 83.
- Air handling units, accessories, and components shall be designed and G. constructed to meet the following seismic forces:
 - 1. Occupancy Category = II
 - 2. Importance Factor IS = 1.0
 - 3. Design Spectral Response parameters (Short Periods): SDS = 0.293q
 - 4. Design Spectral Response parameters (Long Periods): SDl = 0.098g
 - Seismic Design Category = B 5.
 - 6. Site Class = D
- Include lights, electrical devices and wiring as specified further н. herein.
- I. Unless restricted by shipping and rigging requirements units shall be shipped factory-assembled and ready for mechanical and electrical connections. If units must be shipped in sections or disassembled sections, unit manufacturer shall furnish hardware and gasketing and include complete assembly and installation instructions. Arrange shipping splits to minimize number of sections and include number of sections along with bid. Equipment and materials shall be covered and protected against dirt, water, chemicals and damage during shipment.

2.3 UNIT CONSTRUCTION

A. Base Frame

- 1. Each unit or shipping section shall be mounted on an insulated, one piece welded frame, fabricated from aluminum shapes. Sufficient internal framing and stiffeners shall be provided, along with properly located lifting lugs to allow for the rigging and handling of the unit.
- 2. Aluminum bases do not require painting.
- 3. Minimum base height, steam heating coil mounting height, humidifier mounting height and cooling coil mounting height up off floor of AHU air tunnel shall provide sufficient clearance for steam condensate drip legs, trap assemblies, drain pan trap seals and cooling coil condensate drain trap seal without disturbing the finished penthouse floor (assuming unit is mounted indoors on a 4-inch housekeeping pad - coordinate final height of housekeeping/equipment pad).
- 4. Ship AHU with an aluminum skirt to enclose the base rail after unit has been placed on raised housekeeping pad within the existing penthouse mechanical equipment room. Skirt shall be designed to attach to AHU base rail and allow for the acceptance of insulating material between skirt and AHU base rail. Provide skirt installation and insulating instructions to installing contractor.
- B. Casing
 - 1. The unit casing shall be double-wall, insulated sandwich construction or insulated panels supported by internal channel framing designed to limit panel deflections to 1/200th of any span at the design fan total pressure plus any snow and wind loads possibly experienced during shipment and/or rigging. Floor panels shall have additional internal structural channels for walk-on duty and full support of components.
 - 2. Casing (interior and exterior) shall be 0.04" thick aluminum sheets. Aluminum sheets shall be of aluminum alloy 3003-H14 and conform to ASTM B209. Interior panels shall be solid, smooth aluminum sheets. In all cases, panel sheet thickness shall be increased where necessary to meet the deflection criteria cited above. All dissimilar metals shall be electrically and thermally isolated to prevent galvanic action.
 - 3. The insulation material (between the inner and outer sheets) shall consist of a 2" thickness of 3 lb./CF density fiberglass or polyisocyanurate foam with a minimum R value of 10. Insulation shall conform to ASTM E84, NFPA 255 and UL 723 and shall meet local code requirements. Insulation thickness or density shall be increased as required to prevent condensation as required in paragraph below.
 - 4. Provide manufacturer's standard thermal break throughout entire unit casing between supports and panel sheets. Thermal break shall prevent condensation at design operating conditions and an outdoor condition of 95F dry bulb temperature and 78F wet bulb temperature. Existing penthouse mechanical equipment room is a ventilated space without cooling/dehumidification, therefore summer outdoor air conditions apply.
 - 5. The entire unit enclosure shall be constructed to maintain a maximum air leakage rate not in excess of 1 percent of total air flow or 30 cfm whichever is greater at 125% of design internal negative or positive static pressure. Worst case static pressure shall apply for complete positive or negative section.

- All threaded fasteners and mounting hardware shall be stainless 6. steel. Aluminum closed rivets may be used with units with aluminum framing.
- 7. Extend piping and conduit through unit casing as specified further herein. Provide unions or flanges on extended piping to allow for coil removal. Cap or plug open ends of piping and conduit before shipping. All penetrations through the unit casing shall be fully sealed with silicone sealant appropriate for the casing material.
- 8. Access doors shall be provided where indicated on drawings and as specified herein. Provide removable/replaceable panels where required to remove fans and coils. Panels shall be designed and constructed with suitable framing, gasketing and fastening devices such that removal and replacement may be accomplished without disturbing adjacent panels. Air tight integrity shall be maintained.
- Provide safing between internal components and unit casing to 9. prevent air bypass. Safing shall be of same material as casing of internal component, of suitable gauge and properly braced and reinforced as required. Voids between safing, components and unit casing shall be caulked and sealed airtight. Provide 304 stainless steel safing for cooling coils and humidifiers.
- Provide Vent-Lok instrument test ports before and after sections 10. which have changes in pressure, temperature, or humidity. Ports shall be gasketed threaded sleeves, caulked and sealed, and provided with threaded cap.
- Sheet metal seams shall be caulked watertight. Exterior seams 11. shall receive additional caulking as required. Caulks and sealants shall be FDA-approved, silicon-based, non-drying type suitable for aluminum surfaces. All internal joints and seams shall be caulked.
- C. Floor
 - The floor shall be constructed of 0.125" (minimum) thick smooth 1. aluminum top sheet and 0.04" thick aluminum bottom sheet insulated similar to unit walls and roof. The floor shall be supported by the internal framing of the base. Insulation on top of floor is not acceptable. Floor in cooling coil and humidifier sections shall have stainless steel drain pan mounted on top of floor. Coordinate height of drain pans to allow drain pan piping and traps to be installed above the existing penthouse floor. Route drain pan discharge piping to side of unit as indicated by AHU component diagram/detail (AHU side corresponding to nearest existing penthouse mech equip room floor drain).
 - 2. Provide floor drain in AHU OA intake section. Pipe each floor drain without trap to exterior of unit base. Piping shall be Type DWV hard-drawn seamless copper tubing, ASTM B306 with copper solder fitting joints.
- Access Doors D.
 - Hinged access doors shall be provided for both air tunnels 1. (supply and return)/in sections requiring regular inspection or maintenance (fans, motors, coils, dampers, humidifiers, etc.). Removable hatches or panels shall be provided in addition to

access doors to facilitate removal of coils, fans or other equipment as shown on drawings.

- 2. Doors shall be similar in design and construction to the exterior wall panels. Each door shall be mounted with a continuous stainless steel piano type hinge or approved equal in a heavy duty extruded aluminum frame. Doors shall open against static pressure.
- Inside and outside chrome-plated door handles equipped with 2 or 3. 3 point latching mechanisms and extruded rubber gasketing shall be used to close and seal the doors. Seals shall be replaceable. Doors shall be designed for tight closing to achieve the leak classification specified. Means for locking doors shall be provided.
- 4. Doors shall be of the maximum height that the unit will accommodate (up to 60"). Doors shall be provided with a minimum 12"x12" or 12" diameter view port of double thickness wire reinforced or tempered glass mounted in a gasketed frame.
- For filter sections and other areas requiring regular access by 5. maintenance personnel, the minimum door width shall be 24 inches. The minimum door width for fan access shall be 30 inches. The minimum door width shall be 18" for other areas. Refer to AHU configuration drawing for additional requirements.

OUTDOOR AIR INTAKE, RETURN INLET AND SUPPLY/RELIEF DISCHARGE PLENUM 2.4 SECTIONS

- Sections shall be provided with dampers as indicated by AHU Α. configuration sketch, equipment schedule and/or plan drawing.
- Provide access doors as indicated. в.
- Outdoor air intake and return air intake openings for AHU shall be on C. the top of the respective intake sections of the unit with dampers and integral airflow measuring devices as indicated on the AHU component detail/plan drawings. Provide minimum 8" flanged connection collars extended and coordinated for connection to AHU OA intake and return ductwork routed through existing penthouse. OA ductwork will be routed from new plenum / opening and louver in existing penthouse wall above the existing double access doors into the penthouse. Return ductwork will be routed from existing floor slab penetration/return ductwork from suite on third floor below. AHU openings and collar connections shall be sealed air and water-tight and integrated into casing to prevent moisture and debris from entering the insulation space between inner and outer skin of the AHU walls.
- Supply air discharge opening for AHU shall be on the top of the SA D. discharge section of the unit, the relief/exhaust air discharge opening for the AHU shall be high on the rear/relief discharge section of the unit. Discharge sections shall include dampers and integral airflow measuring devices as indicated on the AHU component detail/plan drawings. Provide minimum 8" flanged connection collars extended and coordinated for connection to supply air ductwork routed through penthouse and relief/exhaust air discharge to new relief plenum / opening and louver in existing penthouse wall above line of existing penthouse CMU wall base. Supply ductwork will be routed to existing floor slab penetration/supply ductwork to suite on third

floor below. AHU openings and collar connections shall be sealed air and water-tight and integrated into casing design to prevent moisture and debris from entering the insulation space between inner and outer skin of the AHU walls.

2.5 AHU SUPPLY AND RETURN/RELIEF AIR FANS

- General Α.
 - Each centrifugal supply air and return/relief air fan shall be 1. plenum style, SWSI, furnished completely assembled and fitted with an electric motor, belt drive, inlet guard and adjustable vibration isolator base. Fans shall be sized to the performance requirements specified and shall be rated and certified in accordance with latest editions of ASHRAE and AMCA test codes and guaranteed by the manufacturer to deliver at the rated level. Fans shall be statically and dynamically balanced at the factory. Fan RPM shall not exceed 90% of the maximum allowable rpm for the class construction selected.
 - 2. Fans shall be capable of automated turndown through the design range from maximum to minimum conditions without stall, surge or increased vibration.
 - First critical speed shall be at least 25 percent higher than 3. anticipated maximum operating rpm.
- в. Base
 - The fan and motor shall be mounted on a structural steel base 1. isolated from the unit base with spring type vibration isolators. Isolators shall be selected in accordance with fan weight distribution such that fan rests level. Unit isolation efficiency: at least 90 percent. Provide thrust restraints as required.
 - 2. Fan discharge shall be connected to casing with a flexible neoprene connector. Duct connection shall be UL-listed and fire rated.
- С. Wheels
 - Blades shall be of the non-overloading, double thickness airfoil 1. type staggered on each side of the center plate. The wheel shall be keyed to the shaft and the key secured with setscrews
- D. Cleaning & Painting
 - The completed assembly (entire fan, base, and wheels) shall be 1. cleaned in accordance with the Steel Structures Painting Council (SSPC) SP-1, SP-2 and SP-3 to produce a rust and scale free surface. The interior and exterior surfaces shall then be primed finished in accordance with manufacturer's standard and specification. Aluminum wheels and components do not require painting.
- Shafts and Hubs Ε.

- The fan shaft shall be fabricated from solid AISI hot rolled 1. steel which is accurately turned, ground, polished and ring gauged for accuracy.
- Hubs shall be cast iron, straight bored, keyed and set screwed 2. for positive attachment.
- F. Bearings and Drive
 - 1. Bearings shall be foot mounted on a structural steel frame integral with the fan base and housing. The bearings shall have a minimum ABMA L-50 life of 1,000,000 hours (equivalent to L-10 life of 200,000 hours) at maximum operating conditions. Copper lubrication lines shall be provided from all bearings (and any other lubrication points) to a common area outside the air handling unit air tunnel casing. All lubrication lines shall be labeled.
 - The fan drive guard and fan inlet guard shall be in accordance 2. with OSHA requirements. The drive quard shall be a two-piece design split along the shaft centerlines such that the top half is easily removed and reinstalled. Designs requiring the use of hand tools to open the guard or resulting in loose fasteners are not acceptable. The guard shall contain tachometer openings for motor and fan sheaves as necessary for fan type.
- Vibration Monitoring G.
 - 1. Each fan shall be provided with vibration monitoring accelerometer assemblies and BAS contacts for general fault/status of fan vibration.
 - Accelerometers for vibration monitoring shall be CVI model 486 as 2. furnished by Controlled Vibrations, Inc. (CVI) and include high frequency filters and shall be installed by CVI at air handling unit manufacturer's factory. Each accelerometer assembly shall consist of monitoring block, accelerometer, cables, connector and connector enclosure.
 - 3. Engage and pay CVI for materials, labor, transportation and lodging to provide vibration monitoring.
 - 4. CVI shall furnish diagrams, details and installation instructions to air handling unit manufacturer for use in preparing layout drawings for location of sensors and for installation of conduit and enclosure, and furnish these drawings to CVI for approval. AHU manufacturer, upon receipt of approved drawings, shall install conduit and enclosure. Sensors and cabling will be installed by CVI.
 - Vibration accelerometers shall be located at the following 5. positions:
 - 1 sensor, outboard motor radial a.
 - b. 1 sensor, inboard motor radial
 - с. 1 sensor, motor axial
 - 1 sensor, inboard fan bearing radial d.
 - 1 sensor, outboard fan bearing radial e.
 - 1 sensor, outboard fan bearing axial f.
 - 6. Vibration accelerometers shall be permanently attached to the machinery by drilling, tapping and stud mounting sensors.

Bearing mounting surfaces and motor mounting surfaces shall be flat to ensure proper contact between sensor and machine.

- 7. Accelerometer cables shall be properly arranged and secured so as not to interfere with operation or maintenance of fan assembly. Sufficient slack shall be provided to allow for removal of accelerometer for equipment or accelerometer servicing.
- 8. Enclosure for cable terminations shall be NEMA 1A construction and be securely mounted to unit exterior on the access door side of the equipment. Cables shall be enclosed in rigid aluminum conduit.
- 9. Fan assembly shall be tested at the factory with vibration monitoring installed and operational. Test criteria shall be the more stringent requirements of MRL, West Point or criteria specified herein.
- 10. Once the AHU is installed, vibration readings shall be taken and corrective action shall be taken if vibration readings do not meet the criteria as specified under Factory Tests. If the fan motor has a variable frequency drive, various readings shall be taken over the expected range of operation.

COIL SECTIONS 2.6

- Δ General
 - Coils shall be removable without disturbing adjacent coils or 1. equipment. Coils shall be rated by the manufacturer in accordance with ARI Standard 410 and shall be tested under water using 325 psig compressed air. Connections shall be copper with union or flanged ends extending through the unit casing. Unions shall be wrought copper with solder joint ends and copper seats. All water coils shall have top return connections to ensure proper venting. Drain and vent (or vacuum breaker for steam coils) connections shall be provided. All casing penetrations shall be sealed airtight. All coil headers shall be fabricated from minimum 0.060" wall seamless copper pipe and shall be brazed to the coil tube connections.
 - Coils shall be a maximum 10 feet wide and 4 feet high. 2.
 - Piping for all coils shall be internally run and piped through 3. AHU air tunnel casing walls by AHU manufacturer. All piping penetrations through AHU casing shall be factory gasketed, sealed air and water tight and pipe shall be capped.
 - Mount steam coils as high as possible within the AHU to ensure 4. the proper height within the existing penthouse equipment room for steam trap assemblies (above finished floor line. Provide supports to mount coil assemblies up and provide safing within AHU as required to allow elevated coil mounting.
- Integral Face and Bypass Steam Coils: в.
 - 1. Provide in accordance with Specification Section 23 82 16, AIR COTLS
 - Extend all coil connections to the outside of the AHU. Label all 2. coil connections on the outside of the AHU.
- C. Chilled Water Coils.

- Provide in accordance with the most stringent of requirements as 1. per Specification Section 23 82 16, AIR COILS and the requirements listed herein.
- 2. Chilled water coils shall be manufactured from 5/8" O.D. x 0.035" wall seamless copper tubing mechanically expanded and bonded to 0.0095" minimum thick aluminum fins with a maximum spacing of 10 fins per inch. Coil air pressure drop shall not exceed 1.2" w.g. when fully wet.
- Coil casings shall be fabricated from 16 gauge type 304 stainless 3. steel and shall incorporate intermediate tube supports for coils over 4'-0" long.
- Coil banks shall have a maximum depth of 10 rows. If more than 4. 10 rows are required, the coil shall be split into two sections with an access door between the sections.
- Condensate pans shall extend the entire length of the coil 5. including the header and return bends, as well as a minimum 12" downstream from the coil and 3" upstream of coil. Pan shall be sloped to promote positive drainage. Pan shall be fabricated from all welded, type 304 stainless steel and shall have a minimum depth of 3". Insulation similar to the unit casing shall be provided under drain pan. Pans shall have one drain connection sized for maximum condensate flow, but no less than 1-1/4" diameter.
- An intermediate type 304 stainless steel drip pan shall be 6. supplied with coils over 48" high and shall be factory piped to the main condensate pan. No insulation is required on intermediate drain pans. Piping shall be Type DWV hard-drawn seamless copper tubing, ASTM B306 with copper solder joint fittings.
- The design coil face area shall be sized to minimize carryover of 7. condensate into the air stream. The maximum design face velocity for coils conditioning all outside air shall be 450 fpm. Systems that generally have 20% or less outside air shall be designed for a maximum 500 fpm face velocity.

2.7 FILTER SECTIONS

- Α. General
 - Each unit shall be supplied with panel style filters installed in 1. frames designed and arranged for servicing through an access door located on the inlet side of the filter. Filter efficiency shall be as specified herein and shall comply with the minimum average efficiency as determined by the appropriate ASHRAE or IEST test method.
 - Filters shall be of fire resistant construction and shall comply 2. with UL Class 2 requirements and shall be suitable for use in airstreams up to 190°F and 100% RH.
 - 3. Filters shall be standard manufacturer's sizes.
 - Provide front face loading type housings. 4.
 - Each filter section shall be provided with factory installed 5. copper differential pressure ports across each filter extended to the outside of the unit housing.
- Pre-filters (both sides of energy recovery wheel) в.

- Pre-filters shall be 2" thick (minimum) throwaway type with a 1. minimum efficiency rating of MERV 8 as measured by the ASHRAE Standard Test Method (equivalent to 30 to 35% dust spot efficiency and greater than 90% Arrestance). The filter media shall be pleated, self-extinguishing non-woven cotton with trace polyester fibers. Maximum design velocity shall be 500 FPM. The media backer shall be 24 gauge, 1 inch square electro-plated, steel wire bonded to the media and secured in a heavy duty beverage board frame.
- Holding Frames for Pre-filters С.
 - Filters shall be installed in holding frames constructed of 1. galvanized steel with minimum ¾ inch sealing flange and polyurethane foam gasket. Spaces between frames, casing, roofing and flooring shall be caulked, gasketed and sealed airtight. The filters shall be secured in the holding frame with gasketing and, where required, stainless steel retaining clips.

2.8 TOTAL ENTHALPY ENERGY RECOVERY WHEEL

Provide and install as a component within the new AHU air tunnel in Α. the location indicated by AHU component detail and in accordance with Specification Section 23 72 00, AIR-TO-AIR ENERGY RECOVERY EQUIPMENT.

2.9 PLANT STEAM HUMIDIFIER

- Provide and install as a component within the new AHU air tunnel in Α. the location indicated by AHU component detail and in accordance with Specification Section 23 22 13, STEAM and CONDENSATE HEATING PIPING. Dispersion tube type, 304 Stainless Steel. Refer to plan drawings and piping details for additional requirements.
- Provide 304 stainless steel drain pan in humidifier section. в. Drain pan shall meet requirements as specified for the cooling coil section.
- C. The humidifier shall be designed to minimize length of moisture plume to permit full vaporization without condensation of moisture on any internal surfaces. The air handling unit manufacturer shall follow the humidifier manufacturer's recommendations for minimum upstream and downstream clearances and mounting of high limit humidity sensor a minimum of 10 feet downstream of the humidifier dispersion tube assembly within the AHU discharge plenum/AHU supply air ductwork.
- The air handling unit/humidifier manufacturer shall guarantee system D. performance including maximum plume length, and submit supporting calculations.
- Mount steam humidifier dispersion panel as high as possible within AHU Ε. air tunnel to allow for proper steam condensate trap height and installation of condensate traps above penthouse floor line. Provide 304 stainless steel safing or aluminum safing matching interior AHU air tunnel panels all around humidifier dispersion panel to ensure air does not bypass humidifier dispersion tube assembly.

2.10 DAMPERS

- Α. General
 - Dampers shall be provided as indicated on the AHU component 1. detail, data sheets and/or schedules.
 - Damper assemblies shall consist of airfoil type blades set in an 2. extruded hat channel frame with mounting flanges on both sides of the frame. Aluminum construction shall be provided for outdoor air dampers. Galvanized construction may be used for other applications.
 - Dampers shall be low leakage design. 3. Leakage through a representative 48" x 48" damper at 4" W.G. pressure differential shall not exceed 7 CFM per square foot.
 - Dampers shall have an extended control shaft for installation of 4. damper operator.
 - 5. Maximum size for single section: 48" wide by 72" high.
 - Final damper sizes, actuator quantities and actuator placement 6. must be coordinated for accessibility and maintenance requirements. Refer to AHU detail drawing and combination damper/airflow measuring station schedule for additional requirements. Coordinate clearance, mounting requirements and proper blade arrangement (in general/unless noted otherwise parallel blade for isolation/smoke dampers, opposed blade for mixing/modulating dampers).
- в. Blades
 - Blades shall be of the airfoil type with integral structural 1. reinforcing running the full length of each blade. Blade edges shall be provided with extruded vinyl seals secured in slots (in both blades and frame) without the use of cement. Blades shall be no more than 6" wide. Opposed blade design shall be used for OA intake and modulating applications.
- C. Smoke Dampers
 - Where dampers are to be used as part of a smoke control system, 1. provide dampers that meet UL 555S Leakage Class I. Smoke dampers to be parallel blade. Refer to AHU detail drawing, control diagrams and sequences of operation for additional requirements. Refer to specifications section 23 31 00 for additional smoke damper requirements and specification section 28 31 00 for smoke detector requirements.

2.11 DAMPER ACTUATORS

- Actuators and operators shall be selected for normally open or Α. normally closed operation as scheduled. Actuators and operators shall be sized to provide minimum of 125 percent of required close off pressure and to properly stroke dampers under loading conditions.
- Actuators shall be electronically operated. в.
- Actuators for smoke dampers shall be provided with the smoke damper to С. maintain the damper assembly UL rating.

- Actuators shall be provided with mechanical stops to permit fine D. adjustment of maximum and minimum settings, with larger magnitude of settings changeable through linkage adjustment. The actuators shall be provided with mounting and connecting hardware arranged for placing the actuator parallel to the plane of the damper. Actuators and operators shall have a visible position indicator.
- Provide a damper/actuator schedule. The schedule shall contain a Ε. unique identifier corresponding to the existing identification scheme, nominal and actual sizes, orientation of axis and frame, direction of blade rotation, spring ranges, location of actuators and damper end switches, arrangement of sections in multi-section dampers and methods of connecting dampers, actuators and linkages for damper/actuator furnished. The schedule shall include the maximum velocity through the damper at intended location and the maximum leakage rate at the operating static pressure differential. The schedule shall contain actuator selection data supported by calculations of the torque required to move and seal the dampers, access and clearance requirements.
- Refer to AHU detail drawing, schedules, control diagrams and sequences F. of operation for more information and requirements.

2.12 BAS/CONTROL REQUIREMENTS

Α. General

- AHU is intended to be a factory-wired piece of equipment with 1. single point power connection and all building automation system controls in place and tested prior to shipment to project site.
- AHU shall include all required fans, motors, variable frequency 2. drives, control dampers, actuators, airflow measuring devices, smoke dampers, smoke detectors, control sensors, switches, transmitters, filters, etc. as indicated by AHU detail drawing, controls diagrams, sequences of operations, points lists and controls specifications.
- Coordinate location and wiring of all controls components to AHU 3. mounted control panel. Ensure complete BACNET integration and mapping of all AHU measuring, monitoring, control and alarm points, allowing for remote control and monitoring of AHU functions via site central BAS controls system.
- Coordinate and plan for all field wiring to site mounted 4. devices/devices not located within/on the new AHU, but rather within the existing Penthouse Mechanical Equipment Room (e.g. penthouse BAS control panel, utility control valve actuators, duct-mounted sensors, etc.).

Β. AHU Manufacturer and Controls Contractor Scope and Coordination

Building automation systems/controls shall be fully coordinated 1. between AHU manufacturer, component manufacturers and project controls contractor. Control devices, hardware, actuators, controllers, etc. shall be coordinated and supplied by controls contractor to AHU manufacturer unless the specific piece of equipment/component within the AHU is specified to include its own controls (e.g. supply/return fan piezometers provided by fan manufacturer, airflow monitoring stations with integral damper assemblies, etc.)

2. AHU manufacturer and controls contractor shall work carefully with all suppliers to ensure that the devices indicated on control diagrams and in sequences of operation are installed within the AHU. Controls contractor protocols for installation of devices and hardware shall be provided by controls contractor to AHU manufacturer and followed carefully by AHU manufacturer installers. Controls contractor shall provide factory testing and oversight of the completed controls system prior to and during the Factory Acceptance Testing (FAT) as well as during the site start-up/commissioning efforts. See controls specifications for additional requirements

ELECTRICAL REQUIREMENTS 2.13

- General Α.
 - The AHU is intended to be a factory-wired piece of equipment with 1. single point power connection (normal power for AHU) and all electrical power equipment, components, devices, light fixtures, switches, receptacles, etc. in place and tested prior to shipment to project site.
 - 2. AHU shall include all required disconnect switches, step-down transformers (for BAS control/lighting/receptacle power), motors, variable frequency drives, smoke dampers, smoke detectors, lighting, GFCI receptacles, switches, etc.
 - Components and wiring methods shall comply with applicable and 3. current standards of NFPA, IEEE, ANSI, NEMA and Underwriters Laboratories, Inc. Coordinate all wiring for the required shipping splits based upon final unit configuration required to ship, rig and install into the penthouse mechanical equipment room.
 - Complete electrical installation shall conform to requirements of 4. current edition of the National Electrical Code, NFPA, OSHA and state codes, local codes or regulations having jurisdiction.
 - 5. Factory wiring shall be enclosed in rigid aluminum conduit or 480-volt wiring shall be type THHN/THWN 600 V insulated EMT. 120-volt wiring shall be a minimum No. 12 AWG, Type wire. THHN/THWN insulated wire. All wiring to be stranded copper. Provide flexible liquid tight connections to fan motors.
 - All wiring shall be run with a green insulated ground wire sized 6. per the NEC. Minimum conduit size shall be 3/4".
 - All materials and installation methods shall be in compliance 7. with the latest edition of NEC and the completed installations shall be factory tested. Components shall be labeled and wires numbered.
 - 8. Junction boxes and covers where used in dry locations shall be galvanized steel. Junction boxes and covers where used in damp or wet locations shall be corrosion resistant, weatherproof, cast metal with threaded hubs and neoprene gasketing.
 - 9. Fan variable speed drives shall be provided by AHU manufacture in accordance with specification section 26 29 11, MOTOR CONTROLLERS and will be mounted within the new AHU-mounted control panel. Coordinate AHU control panel type, configuration, size, mounting

location on AHU and internal cooling as required to ensure proper access and to evacuate heat build-up from electronic components. Required Code clearances must be maintained.

- Service Lighting and Utility Outlets в.
 - Access, fan and filter sections shall each be equipped with 1. marine type light fixtures with a 150 watt equivalent, 120V compact fluorescent fixture. Provide low temperature ballast.
 - All lighting shall be factory wired and controlled by two light 2. switches one at the middle of the unit, one on each accessible side.
 - Provide two, unswitched GFCI type utility outlets. Locate one 3. each at middle of the AHU on each side of the AHU (adjacent to unit light switch). Coordinate location of outlets with AHU piping, access doors, etc. Mount in accessible location.
 - Light switches and receptacles shall be industrial specification 4. grade.
 - 5. For units shipped in sections, light fixtures, switches, receptacles and any other 120V devices shall be factory wired to junction boxes with wiring coiled and tagged to facilitate field connection between sections and to terminal box.
 - Provide weatherproof covers for all receptacles and switches. 6.
 - Provide appropriate weather-tight NEMA enclosures for all 7. electrical and controls devices included with the AHU.
- C. Motors
 - Motor specification, including efficiency shall be in accordance 1. with Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC.
 - Design for operation with AC variable frequency drive controllers 2. (VFD) for speed control application. Motor shall comply with all sections of NEMA MG-1 Part 31 compliant with 1600-volt insulation.
 - 3. Motors rated less than 7-1/2 hp down to and including 1 hp (for which efficiency is not listed in EL-292) shall be of the premium efficiency type and the nominal efficiency percentage shall be the highest available from the acceptable motor manufacturers listed in EL-292.
- Fan Motor Disconnect Switch D.
 - Provide factory-mounted and wired, lockable, fused disconnect 1. switches for fans. Switch shall meet requirements of NFPA, local codes and have components that are UL-listed and labeled (Including an Arc Flash warning label.) Switch shall be mounted on access door side of fan section of the AHU.
 - 2. Procedurally, these switches should not be opened while under load. Disconnect switches local to motors shall include an auxiliary contact that works in coordination with the disconnect switch handle so when the disconnect switch handle operates to open, the auxiliary contact will open and signal the VFD before the operator actually breaks the power.
- E. Safety

- 1. Accessible external surfaces of equipment shall not exceed 60 degrees C (140 degrees F).
- 2. Products containing insulating liquids with polychlorinated biphenols (PCB) shall not be used.
- 3. Live parts shall be incapable of being inadvertently touched or approached nearer than a safe distance by a person.
- Control voltage shall not exceed 120 Volts AC or 24 Volts DC. Where residual voltage may exist after disconnection of power source, provide warning sign.
- 5. Areas of panel where voltages above 120 VAC are present shall be clearly identified using warning labels.
- 6. Grounding and Bonding
 - a. Run insulated grounding conductor in electrical conduits and cables. Exposed noncurrent-carrying metal parts of equipment package shall be bonded and connected to grounding pad or terminal (for connection of Purchaser's ground wire). Bonding of flexible metal conduit over 3 feet using external copper bonding jumper, sized in accordance with NEC Article 250. Include ground wires within cable assemblies and connect at both ends to provide continuous fault current path source quality control.

PART 3 - EXECUTION

3.1 UNIT TESTING AND INSPECTION

- A. General
 - 1. Manufacturer shall be responsible for engineering, design, fabrication, inspection and testing, preparation for shipment, delivery and furnishing necessary documentation.
 - 2. Owner's Representative reserves the right to inspect and witness testing of purchased equipment at any time. Owner's Representative shall have access to manufacturer's facility to inspect work in progress and witness factory testing. Access shall include areas involved in production of equipment and materials and subassemblies designated for that equipment. Access shall also be provided to such areas required for Owner's Representative to determine that proper fabrication and quality control procedures are being adhered to. Inspection and witnessing Factory Acceptance Testing (FAT) by Owner's Representative does not relieve manufacturer of his contractual obligations under terms of the Purchase order.
 - 3. The complete unit shall be factory tested as an assembly to ensure compliance with this specification.
 - 4. The manufacturer shall notify Owner's Representative and Architect two weeks prior to the scheduled Factory Acceptance Testing. Owner's Representative will inform the manufacturer if project design team representative and Owner representative (two individuals) will witness the FAT. Manufacturer shall include costs to transport two representatives to/from AHU factory and provide hotel accommodations for two representatives during the duration of the FAT.

- Equipment shall not be shipped from the factory to the project 5. site until Owner's Representative/VAMC COR has given their written approval.
- Factory Tests and Factory Acceptance Testing (FAT) в.
 - 1. Manufacturer shall submit test procedures to Owner's Representative for approval at least 4 weeks prior to scheduled tests. Manufacturer shall clearly list all tests planned to be carried out prior to the owner-witnessed tests and exactly what tests would be witnessed by owner representatives. Owner reserves the right to request incorporation of any and all tests herein to be witnessed during factory visit. Final list of witnessed tests shall be agreed upon prior to arrangement of FAT and signed off on by Owner/VAMC COR. Tests not witnessed shall be completed prior to FAT and results of testing and any corrective actions taken included in report to Owner's Representative for sign-off prior to AHU shipment to project site.
 - Tests shall display scheduled performance characteristics, using 2. certified testing instruments provided by the manufacturer.
 - Vibration Test: The unit fans shall be operated at the design 3. RPM with the final/actual variable frequency drives associated with each fan. A complete vibration spectrum shall be conducted. Such tests must be performed on a completely assembled unit including all components. Unit manufacturer shall demonstrate compliance with the fan manufacturer's recommended vibration tolerances. Fans designated for variable speed operation shall be tested and balanced for motor speeds from design maximum down to 20% in at least 20 percent increments. Vibration analysis to be performed by CVI.

Parameter (Order of 1x	Units	Vibration Level
RPM)		
Overall*	IPS (Peak)	0.2
Sub. to 1.5X RPM	IPS (Peak)	0.2
1.5 to 4.5X RPM	IPS (Peak)	0.15
4.5 to 20.5X RPM	IPS (Peak)	0.1
20.5 to 40.5x RPM	IPS (Peak)	0.11
40.5 to 70.5X RPM	IPS (Peak)	0.1
1 to 20 kHz	RMS Acceleration	1.5
	(G's)	
Time Wave Form	G's	No Impacting

- 4. Coil Pressure Test: The heating and cooling coils shall be tested per specified requirements. Any other piping included with the air handling units shall be pressure tested in accordance with the requirements of specifications.
- BAS/Controls Function Test: The entire BAS/Controls and all 5. electrical systems shall be functionally checked including AHU BAS control panel function, point-to-point checkout, set-point verification, monitoring/alarm function verification, fan operation/motors start-stop, damper actuators/stroke/end switches, etc., for proper operation.
- Electrical Function Test: The entire electrical system shall be 6. functionally checked including disconnect switches, power

transformers, motors, variable frequency drives, lights, utility outlets, switches, etc., for proper operation.

- 7. Casing Deflection Test: Casing shall be checked for maximum deflection at design operating pressures.
- Leakage Test: The assembled unit(s) shall be factory tested for 8. air leakage, using a calibrated orifice plate or flow tube. This test shall demonstrate that the leakage requirements specified for the casing are met.
- Test fan performance at maximum and 9. Fan Performance Test: minimum design CFM and static pressures in accordance with submitted fan curves. Test per AMCA field test procedure acceptance criteria as per AMCA standard. Test and document temperature rise at fan section inlet and outlet during fan performance testing.
- 10. Acoustical Performance Tests: Confirm performance as specified Measure and document acoustic performance and make herein. necessary adjustments as specified.
- The manufacturer shall, in addition to the above, perform all 11. standard factory tests (including, but not limited to, test of the Energy Recovery Wheel, IFB coil damper operation, drain pan/floor drain leakage test, control and smoke dampers operation test, airflow measuring device test, BAS point-to-point (with controls contractor present), control sequences, shut-down and start-up testing, etc.) and submit the test data to Owner's Representative prior to shipment. All deficiencies must be corrected before the unit is shipped.
- All measurements shall be performed with calibrated instruments 12. and documented.
- 13. Manufacturer shall provide copies of all factory test reports, including vibration and leakage testing.
- Field Supervision and Site Acceptance Testing (SAT) С.
 - Where field assembly of air handling units is required, the 1. manufacturer shall provide on-site assembly supervision by a qualified factory technician.
 - 2. Manufacturer representative shall be present when unit(s) arrive and are unloaded at the project site. Provide erection supervision.
 - 3 Provide start-up services to supervise the initial start-up of the air handler motor controller including variable frequency drives. Minimum 1 day per AHU onsite. Provide written start-up procedures thirty (30) days prior to start-up of unit.
 - 4. Repeat Factory Acceptance Testing as specified herein at the project site (SAT-Site Acceptance Testing). Provide accompanying SAT report similar to FAT report verifying results and comparing to results in factory. All deficiencies must be corrected prior to completion of project/project close-out.
 - Unit shall be furnished with shipping splits. Provide on-site 5. assembly supervision by a qualified factory technician.
 - The assembled unit shall be field tested for air leakage using a 6. calibrated orifice plate or flow tube.
 - Provide field vibration testing equivalent to factory testing 7. procedures once AHU has been set on penthouse housekeeping pad as part of start-up services.
 - Provide field acoustical performance testing equivalent to 8. factory testing procedures once AHU has been fully assembled and

site acceptance testing begins. Perform this testing early to ensure there are no noise concerns at AHU OA intake, relief louver, or beneath AHU at rated penthouse slab, etc.

- 9. Confirm installing contractor installs insulation and aluminum skirt for base rail and note in start-up report.
- 10. All start-up action shall be documented. Start AHU according to manufacturer's instructions. Operate, adjust and verify all controls and safeties.

3.2 CLEANING PRIOR TO SHIPMENT

- Interior and exterior surfaces shall be cleaned to remove dust, dirt, Α. oil, grease, rust inhibitors, metal flakes, chips, residues from manufacturing and assembly processes and other foreign materials.
- Water, oil, or other liquids used for cleaning or testing are to be Β. drained from equipment before shipping. Oils required for proper operation shall be replaced and maintained at proper levels.

3.3 PREPARATION AND SHIPMENT

- Machined surfaces including faces of mild steel flanges shall be Α. protected and coated with suitable rust preventive coating.
- Openings shall be sealed to prevent entrance of foreign materials. в. Flange faces shall be protected with wooden or plastic flange covers, taped to provide waterproof protection. Threaded connections shall be protected with plastic thread protection caps.
- C. Accessories and parts which are shipped loose shall be boxed and properly identified with durable shipping tags that are securely attached to each package and marked with its related equipment name, assembly location, Purchase Order number, assembly series number (if applicable), shop order number and purchaser's name. Separate packages for a single item shall also be marked so as to identify component(s) in each package, and number of packages in each shipment.
- D. Parts shall be adequately braced, protected, and packaged to prevent damage during shipment. Unit section(s) shall be shrink-wrapped to protect the unit during shipment.
- The Purchase Order Number, Equipment Item Number and Vendor Ε. order/tracking number shall be prominently displayed on equipment skids and shipping containers or crates.
- Adequate instruction, labeled "Special Lifting and Handling" shall be F. attached if special handling and unpacking are required.

3.4 DELIVERY

- Manufacturer shall furnish and ship equipment. Α.
- в. Manufacturer shall pack, crate and protect equipment to prevent damage from handling, weather, shock, vibration, water and corrosion during shipment. Wrap packaged or crated assemblies in weatherproof plastic sheeting prior to shipment.

- C. Manufacturer shall include complete handling and installation data with equipment when shipped to the job site.
- Damaged equipment will not be accepted at the job site. D.

DEMONSTRATION (MANUFACTURER) 3.5

- Factory-authorized service representative shall demonstrate AHU and Α. train Owner's maintenance personnel. Minimum 1 day per AHU on site. Submit course agenda three (3) days prior to training session. Provide resume of training instructor and record the training session and turn over DVD, CD or tape to owner.
- в. Operate AHU including accessories and controls, to demonstrate compliance with requirements.
- C. Train Owner's maintenance personnel on procedures and schedules related to startup and shutdown, troubleshooting, servicing, and preventive maintenance.
- Engage a factory-authorized service representative of the supply fan D. manufacturer to train Owner's maintenance personnel to adjust, operate, and maintain centrifugal fans. Refer to Division 1 Section "Demonstration and Training."
- Schedule training with COR with at least forty (40) days advance Е. notice.
- F. All training shall be documented.

EXAMINATION (INSTALLING CONTRACTOR) 3.6

- Examine areas and conditions, with Installer present, for compliance Α. with requirements for installation tolerances and other conditions affecting performance of the Work.
- Examine casing insulation materials and filter media before airв. handling unit installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.
- Examine roughing-in for steam, hydronic, and condensate drainage C. piping systems and electrical services to verify actual locations of connections before installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

INSTALLATION (INSTALLING CONTRACTOR) 3.7

- Install air-handling unit without vibration Equipment Mounting: Α. isolation devices. Comply with requirements for vibration isolation devices specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
- Arrange installation of units to provide access space around airв. handling units for service and maintenance. Coordinate AHU mounting

height with raised housekeeping pad within the existing penthouse mechanical equipment room.

- C. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters.
- D. Install filter-gage, static-pressure taps upstream and downstream of filters. Mount filter gages on outside of filter housing or filter plenum in accessible position. Provide filter gages on filter banks, installed with separate static-pressure taps upstream and downstream of filters.
- Insulate base rail and coordinate enclosing the base rail in aluminum Ε. skirt in accordance with AHU manufacturer recommendations and requirements described herein.

CONNECTIONS (INSTALLING CONTRACTOR) 3.8

- Comply with requirements for piping specified in other Division 23 Α. Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- Install piping to allow service and maintenance. Connect to each coil, в. humidifier, etc. without blocking access into AHU air tunnel via access doors/access door swings, etc. AHU manufacturer shall extend component piping through AHU air tunnel casing for all connection/continuation by installing (mechanical) contractor.
- Connect piping to air-handling units mounted on vibration isolators С. with flexible connectors.
- Connect to condensate drain pans using NPS 1-1/4, ASTM B 88, Type M D. copper tubing. Extend to penthouse floor drains without creating a tripping hazard and to promote proper drainage to adjacent floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.
- Chilled-Water Piping: Comply with applicable requirements in Ε. Division 23 piping specifications and piping/valve data sheets. Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.
- Steam and Condensate Piping: Comply with applicable requirements in F. Division 23 steam and condensate specifications and piping/valve data sheets. Install shutoff valve at steam supply connections, float and thermostatic trap, and union or flange at each coil return connection. Install gate valve and inlet strainer at supply connection of dry steam humidifiers, and inverted bucket steam trap to condensate return connection.
- Connect ductwork to air-handling units mounted on vibration isolators G. with flexible connections.

3.9 ADJUSTING (INSTALLING CONTRACTOR)

- A. Adjust damper linkages for proper damper operation.
- B. Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing" for air-handling system testing, adjusting, and balancing.

3.10 CLEANING (INSTALLING CONTRACTOR)

- A. After completing system installation and testing, adjusting, and balancing air-handling unit and air-distribution systems and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.
- B. Interior and exterior surfaces shall be cleaned to remove dust, dirt, oil, grease, rust inhibitors, metal flakes, chips, residues from rigging and assembly processes and other foreign materials.
- C. Water, oil, or other liquids used for cleaning or testing are to be drained from equipment before shipping. Oils required for proper operation shall be replaced and maintained at proper levels.

3.11 START-UP, FINAL TESTING AND VERIFICATION (INSTALLING CONTRACTOR)

- A. Verify that electrical wiring installation complies with manufacturer's submittal and installation requirements of Division 26 Sections. Do not proceed with AHU startup until wiring installation is acceptable to equipment installer.
- B. COR shall have the opportunity to witness equipment startup and contractor testing of equipment. Notify COR of equipment start-up 7 days prior to allow COR to witness.
- C. Start AHU according to manufacturer's instructions.
- D. Operate and adjust controls and safeties.
- E. All start-up action shall be documented and copies provided to COR.

--- END ---

SECTION 23 82 16 AIR COILS

PART 1 - GENERAL

1.1 DESCRIPTION

Heating and cooling coils for air handling unit and duct applications

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Section 23 31 00, HVAC DUCTS AND CASINGS
- C. Section 23 36 00, AIR TERMINAL UNITS: Reheat coils for VAV/CV terminals.
- D. Section 23 73 13, CUSTOM, INDOOR, CENTRAL-STATION AIR-HANDLING UNIT

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Unless specifically exempted by these specifications, heating and cooling coils shall be tested, rated, and certified in accordance with AHRI Standard 410 and shall bear the AHRI certification label.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data for Heating and Cooling Coils: Submit type, size, arrangements and performance details. Present application ratings in the form of tables, charts or curves.
- C. Provide installation, operating and maintenance instructions.
- D. Certification Compliance: Evidence of listing in current ARI Directory of Certified Applied Air Conditioning Products.
- E. Coils may be submitted with Section 23 73 13, CUSTOM, INDOOR, CENTRAL-STATION AIR-HANDLING UNIT, or Section 23 36 00, AIR TERMINAL UNITS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI): Directory of Certified Applied Air Conditioning Products AHRI 410-01.....Forced-Circulation Air-Cooling and Air-Heating Coils
- C. American Society for Testing and Materials (ASTM): B75/75M-02.....Standard Specifications for Seamless Copper Tube
- D. National Fire Protection Association (NFPA): 70-11.....National Electric Code
- E. National Electric Manufacturers Association (NEMA):

250-11.....Enclosures for Electrical Equipment (1,000 Volts Maximum)

F. Underwriters Laboratories, Inc. (UL):
 1996-09.....Electric Duct Heaters

PART 2 - PRODUCTS

2.1 HEATING AND COOLING COILS

- A. Conform to ASTM B75 and AHRI 410.
- B. Surgical Suites All Locations: All coils installed in the air handling units serving surgical suites, duct-mounted reheat coils, and air terminal unit-mounted reheat coils shall be equipped with copper fins.
- C. High Humidity Locations: For air-handling unit mounted coils provide the following corrosion treatment:
 - 1. Epoxy Immersion Coating Electrically Deposited: The multi-stage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverse-osmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2-mil. Before the coils are subjected to high-temperature oven cure, they are treated to permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UV-resistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty.
 - 2. The coating process shall such that uniform coating thickness is maintained at the fin edges. The quality control shall be maintained by ensuring compliance to the applicable ASTM Standards for the following:
 - a. Salt Spray Resistance (Minimum 6,000 Hours)
 - b. Humidity Resistance (Minimum 1,000 Hours)
 - c. Water Immersion (Minimum 260 Hours)
 - d. Cross-Hatch Adhesion (Minimum 4B-5B Rating)
 - e. Impact Resistance (Up to 160 Inch/Pound)
- D. Tubes: Minimum 16 mm (0.625 inch) tube diameter; Seamless copper tubing.
- E. Fins: 0.1143 mm (0.0045 inch) copper mechanically bonded or soldered or helically wound around tubing.
- F. Headers: Copper, welded steel or cast iron.
- G. "U" Bends, Where Used: Machine die-formed, silver brazed to tube ends.
- H. Coil Casing: Minimum 1.6 mm (16 gage) stainless steel with tube supports at 1200 mm (48 inch) maximum spacing. Construct casing to eliminate air bypass and moisture carry-over. Provide duct connection flanges.

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

I. Pressures kPa (PSIG):

Pressure	Water Coil	Steam Coil	Refrigerant Coil
Test	2070 (300)	1725 (250)	2070 (300)
Working	1380 (200)	520 (75)	1725 (250)

- J. Protection: Unless protected by the coil casing, provide cardboard, plywood, or plastic material at the factory to protect tube and finned surfaces during shipping and construction activities.
- K. Vents and Drain: Coils that are not vented or drainable by the piping system shall have capped vent/drain connections extended through coil casing.
- L. Cooling Coil Condensate Drain Pan: Section 23 73 13, CUSTOM, INDOOR, CENTRAL-STATION AIR-HANDLING UNIT.
- M. Steam Distributing Coils: Conform to ASTM B75 and ARI 410. Minimum 9.5 mm (3/8-inch) steam distributing tubing installed concentrically in 25 mm (one-inch) OD condensing coil tubes.
- N. Integral Face and Bypass Type Steam Coil:
 - 1. Exempt from ARI Test and Certification.
 - 2. Conform to ASTM B75 and ARI 410.
 - 3. Minimum 16 mm (5/8-inch) steam tube installed in concentrically 25 mm (one-inch) OD diameter tube.
 - 4. Fins: Copper
 - 5. Casing: Minimum 1.9 mm (14 gage) stainless steel.
 - 6. Tubes and Bypasses: Vertical or horizontal.
- O. Dampers: Interlocking opposed blades to completely isolate coil from air flow when unit is in bypass position; minimum 1.6 mm (16 gage) stainless steel. Provide damper linkage and electric operators. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.2 REHEAT COILS, DUCT MOUNTED

The coils shall be continuous circuit booster type for steam or hot water as shown on drawings. Use the same coil material as listed in Paragraphs 2.1. Surgical service duct mounted reheat coils shall have copper fins.

2.3 WATER COILS, INCLUDING GLYCOL-WATER

- A. Use the same coil material as listed in Paragraphs 2.1.
- B. Drainable Type (Self Draining, Self Venting); Manufacturer standard:
 - 1. Cooling, all types.
 - 2. Heating or preheat.

- Runaround energy recovery. ARI certification of capacity adjustment is waived. See Section 23 72 00, AIR-TO-AIR ENERGY RECOVERY EQUIPMENT.
- C. Cleanable Tube Type; manufacturer standard:
 - 1. Well water applications.
 - 2. Waste water applications.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow coil manufacturer's instructions for handling, cleaning, installation and piping connections.
- B. Comb fins, if damaged. Eliminate air bypass or leakage at coil sections.

3.2 STARTUP AND TESTING

A. Perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and Section 23 05 11, COMMON WORK RESULTS FOR HVAC and submit the test reports and records to the COR. The COR shall be provided the opportunity to observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR. Provide a minimum of 7 days prior notice.

3.3 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications to COR.

- - - E N D - - -

SECTION 26 05 11

REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

- A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.
- B. Definitions:

- 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render

satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 are the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the Contracting Officers Representative (COR) a minimum of 15 working days prior to the manufacturer's performing the factory tests.
 - Four copies of certified test reports shall be furnished to the COR two weeks prior to final inspection and not more than 90 days after completion of the tests.

3. When materials and equipment fail factory tests, and re-testing and re-inspection is required, the Contractor shall be liable for all additional expenses for the Government to witness re-testing.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be

accomplished in this manner for the required work, the following requirements are mandatory:

- Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E.
- 2. Before initiating any work, a job specific work plan must be developed by the Contractor with a peer review conducted and documented by the COR and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
- 3. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the COR.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles

such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as panelboards, cabinets, motor controllers, fused and non-fused safety switches, separately enclosed circuit breakers, individual breakers and controllers motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall indicate the arc hazard boundary (inches), working distance (inches), arc flash incident energy at the working distance (calories/cm2), required PPE category and description including the glove rating, voltage rating of the equipment, limited approach distance (inches), restricted approach distance (inches), prohibited approach distance (inches), equipment/bus name, date prepared, and manufacturer name and address.

1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and

specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.

- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:

- a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
- b. A control sequence describing start-up, operation, and shutdown.
- c. Description of the function of each principal item of equipment.
- d. Installation instructions.
- e. Safety precautions for operation and maintenance.
- f. Diagrams and illustrations.
- g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
- h. Performance data.
- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this

reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.15 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests. Repair, replacement, and retesting shall be accomplished at no additional cost to the Government.

1.16 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.17 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 05 19

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.

- 2. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM): D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape D2304-10.....Test Method for Thermal Endurance of Rigid Electrical Insulating Materials
 - D3005-10.....Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape
- C. National Electrical Manufacturers Association (NEMA):

WC 70-09.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy

D. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

- E. Underwriters Laboratories, Inc. (UL):
 - 44-10..... Thermoset-Insulated Wires and Cables
 - 83-08.....Thermoplastic-Insulated Wires and Cables
 - 467-07.....Grounding and Bonding Equipment

486A-486B-03.....Wire Connectors

- 486C-04.....Splicing Wire Connectors
- 486D-05.....Sealed Wire Connector Systems
- 486E-09.....Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors
- 493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables
- 514B-04.....Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.
- D. Color Code:
 - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - 3. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
 - 4. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V
Black	А	Brown
Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with	colored (other	than green) tracer.

5. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the Contracting Officers Representative (COR).

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, or pullboxes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with nonmetallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.3 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes and pullboxes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.4 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.5 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.6 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.7 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

3.8 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.

- 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of grounding electrode conductors.
 - 2. Certifications:
 - a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): B1-07.....Standard Specification for Hard-Drawn Copper Wire B3-07....Standard Specification for Soft or Annealed Copper Wire B8-11....Standard Specification for Concentric-Lay-
 - Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):
 - 81-83..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System Part 1: Normal Measurements
- D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 70E-12....National Electrical Safety Code 99-12....Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL):
 - 44-10Thermoset-Insulated Wires and Cables
 - 83-08Thermoplastic-Insulated Wires and Cables
 - 467-07Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.

- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND CONNECTIONS

A. Above Grade:

- Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
- 2. Connection to Building Steel: Exothermic-welded type connectors.
- 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
- 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.3 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.4 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum
6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section,
length as shown on the drawings, with hole size, quantity, and spacing

per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install grounding equipment in accordance with the NEC, as shown on the drawings, and as specified herein.
- B. System Grounding:
 - Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
 - 2. Isolation transformers and isolated power systems shall not be system grounded.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):
 - 1. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.
- B. Panelboards, Motor Control Centers, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.
- C. Transformers:
 - Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the nearest component of the grounding electrode system.

3.4 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.

- Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
- 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
- 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
 - Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
 - 4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to

the device box ground screw and a jumper to the branch circuit equipment grounding conductor.

- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

3.5 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.6 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81.
- B. Resistance measurements of separate grounding electrode systems shall be made before systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.

---END---

SECTION 26 05 33

RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- B. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- C. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- D. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:

- A. Manufacturer's Literature and Data: Showing each cable type and rating. The specific item proposed and its area of application shall be identified on the catalog cuts.
- B. Shop Drawings:
 - 1. Size and location of main feeders.
 - 2. Size and location of panels and pull-boxes.

3. Layout of required conduit penetrations through structural elements.

- C. Certifications:
 - Two weeks prior to the final inspection, submit four copies of the following certifications to the Contracting Officers Representative (COR):
 - a. Certification by the manufacturer that the material conforms to the requirements of the drawings and specifications.
 - b. Certification by the contractor that the material has been properly installed.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. B. American National Standards Institute (ANSI): C80.1-05.....Electrical Rigid Steel Conduit C80.3-05.....Steel Electrical Metal Tubing C80.6-05.....Electrical Intermediate Metal Conduit C. National Fire Protection Association (NFPA): 70-08.....National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-04..... and Fittings 6-07..... Electrical Rigid Metal Conduit - Steel 50-95..... Enclosures for Electrical Equipment 360-093.....Liquid-Tight Flexible Steel Conduit 467-07..... Equipment 514A-04.....Metallic Outlet Boxes 514B-04.....Conduit, Tubing, and Cable Fittings Covers 651-05.....Schedule 40 and 80 Rigid PVC Conduit and Fittings 651A-00..... Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing E. National Electrical Manufacturers Association (NEMA): TC-2-03.....Electrical Polyvinyl Chloride (PVC) Tubing and Conduit TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing

FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 0.5 in [13 mm] unless otherwise shown. Where permitted by the NEC, 0.5 in [13 mm] flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - 1. Rigid steel: Shall conform to UL 6 and ANSI C80.1.
 - 2. Rigid intermediate steel conduit (IMC): Shall conform to UL 1242 and ANSI C80.6.
 - 3. Electrical metallic tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 4 in [105 mm] and shall be permitted only with cable rated 600 V or less.
 - 4. Flexible galvanized steel conduit: Shall conform to UL 1.
 - 5. Liquid-tight flexible metal conduit: Shall conform to UL 360.
 - 6. Surface metal raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid steel and IMC conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing fittings: Threaded cast iron type. Use continuous draintype sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank

cover plates having the same finishes as that of other electrical plates in the room.

- 2. Electrical metallic tubing fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Compression couplings and connectors: Concrete-tight and raintight, with connectors having insulated throats.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 3. Flexible steel conduit fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 4. Liquid-tight flexible metal conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Surface metal raceway fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 6. Expansion and deflection couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 0.75 in [19 mm] deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.

- Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple conduit (trapeze) hangers: Not less than 1.5 x 1.5 in [38 mm x 38 mm], 12-gauge steel, cold-formed, lipped channels; with not less than 0.375 in [9 mm] diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
 - 4. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the Contracting Officers Representative (COR) prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except where permitted by the COR as required by limited working space.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, as shown, and as specified herein.
- B. Essential (Emergency) raceway systems shall be entirely independent of other raceway systems, except where shown on drawings.
- C. Install conduit as follows:
 - 1. In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut square, ream, remove burrs, and draw up tight.
 - Independently support conduit at 8 ft [2.4 M] on centers. Do not use other supports, i.e., suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts.
 - Support within 12 in [300 mm] of changes of direction, and within 12 in [300 mm] of each enclosure to which connected.
 - 8. Close ends of empty conduit with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
 - 9. Conduit installations under fume and vent hoods are prohibited.
 - 10. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
 - 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
 - 12. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:

- Install conduit with wiring, including homeruns, as shown on drawings.
- 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COR.

3.3 CONCEALED WORK INSTALLATION

- A. Above Furred or Suspended Ceilings and in Walls:
 - Conduit for conductors 600 V and below: Rigid steel, IMC or EMT. Mixing different types of conduits indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 6 ft
 [1.8 M] of flexible metal conduit extending from a junction box to
 the fixture.
 - 4. Tightening setscrews with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 8 ft [2.4 M] intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:

1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.

3.5 WET OR DAMP LOCATIONS

- A. Unless otherwise shown, use conduits of rigid steel or IMC.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Unless otherwise shown, use rigid steel or IMC conduit within 5 ft [1.5 M] of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers. Conduit shall be half-lapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.

3.6 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water. Provide a green equipment grounding conductor with flexible metal conduit.

3.7 EXPANSION JOINTS

- A. Conduits 3 in [75 mm] and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 3 in [75 mm] with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 5 in [125 mm] vertical drop midway between the ends. Flexible conduit shall have a bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for conduits 15 in [375 mm] and larger are acceptable.
- C. Install expansion and deflection couplings where shown.

3.8 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 200 lbs [90 kg]. Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 0.25 in [6 mm] bolt size and not less than 1.125 in [28 mm] embedment.

- b. Power set fasteners not less than 0.25 in [6 mm] diameter with depth of penetration not less than 3 in [75 mm].
- c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.9 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 24 in [600 mm] center-to-center lateral spacing shall be maintained between boxes.
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 4 in [100 mm] square x 2.125 in [55 mm] deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- G. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Product Data: For each type of lighting control, submit the following information.
 - 1. Manufacturer's catalog data.
 - 2. Wiring schematic and connection diagram.
 - 3. Installation details.
- C. Manuals:
 - Submit, simultaneously with the shop drawings companion copies of complete maintenance and operating manuals including technical data sheets, and information for ordering replacement parts.
 - Two weeks prior to the final inspection, submit four copies of the final updated maintenance and operating manuals, including any changes, to the Contracting Officers Representative (COR).
- D. Certifications:
 - 1. Two weeks prior to final inspection, submit four copies of the following certifications to the COR:
 - a. Certification by the Contractor that the equipment has been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

Α.	Publications listed below (including amendments, addenda, revisions,
	supplements, and errata) form a part of this specification to the extent
	referenced. Publications are referenced in the text by designation only.
в.	Green Seal (GS):
	GC-12Occupancy Sensors
C.	Illuminating Engineering Society of North America (IESNA):
	IESNA LM-48 Guide for Calibration of Photoelectric Control
	Devices
D.	National Electrical Manufacturer's Association (NEMA)
	C136.10American National Standard for Roadway Lighting
	Equipment-Locking-Type Photocontrol Devices
	and Mating Receptacles - Physical and
	Electrical Interchangeability and Testing
	ICS-1 and Systems
	General Requirements
	ICS-2 And Systems:
	Controllers, Contractors, and Overload Relays
	Rated Not More than 2000 Volts AC or 750 Volts
	DC: Part 8 - Disconnect Devices for Use in
	Industrial Control Equipment
	ICS-6 Standard for Industrial Controls and Systems
	Enclosures
Е.	Underwriters Laboratories, Inc. (UL):
	20Standard for General-Use Snap Switches
	773 Standard for Plug-In Locking Type Photocontrols
	for Use with Area Lighting
	773A Switches for
	Lighting Control
	98 Switches
	917Clock Operated Switches

PART 2 - PRODUCTS

2.1 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.

- Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
- 3. Relay Unit: Dry contacts rated for 20A ballast load at 120V and 277V, for 13A tungsten at 120V, and for 1 hp at 120V.
- 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
- 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
- 6. Bypass Switch: Override the on function in case of sensor failure.
- 7. Manual/automatic selector switch.
- Automatic Light-Level Sensor: Adjustable from 2 to 200 fc [21.5 to 2152 lx]; keep lighting off when selected lighting level is present.
- Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
 - 3. Detection Coverage: As scheduled on drawings.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified.
- B. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- C. Set occupancy sensor "on" duration to 5 minutes.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.

D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function.

- - - E N D - - -

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, terminations, and circuit breakers wiring and connection data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-12.....International Building Code
- C. National Electrical Manufacturers Association (NEMA): PB 1-11.....Panelboards 250-08.....Enclosures for Electrical Equipment (1,000V Maximum)
- D. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

70E-12..... Standard for Electrical Safety in the Workplace

E. Underwriters Laboratories, Inc. (UL):

50-95..... Enclosures for Electrical Equipment

67-09....Panelboards

489-09..... Molded Case Circuit Breakers and Circuit

Breaker Enclosures

PART 2 - PRODUCTS

2.1 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 120/240 V Panelboard: 10,000 A symmetrical.

- 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame.
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - 7. An operating handle which indicates closed, tripped, and open positions.
 - 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
 - 9. For circuit breakers being added to existing panelboards or motor control centers, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Install a printed schedule of circuits in each panelboard after approval by the Contracting Officers Representative (COR). Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- C. Provide blank cover for each unused circuit breaker mounting space.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.

- b. Inspect physical, electrical, and mechanical condition.
- c. Verify appropriate anchorage and required area clearances.
- d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
- e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
- f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

SECTION 26 24 19 MOTOR CONTROL CENTERS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the installation of new equipment into existing motor control centers.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Catalog Data: Submit catalog data and information as required to demonstrate that materials conform to the specification requirements. Data shall include features, characteristics, ratings, and settings of all adjustable components.
- C. Shop Drawings:
 - 1. Clearly present sufficient information to determine compliance with drawings and specifications.
 - Include electrical ratings, enclosure type, dimensions, weights, mounting details, front view, side view, equipment and device arrangement, running overcurrent protection, branch circuit overcurrent protection, wiring diagrams, materials, connection diagrams for device, and nameplate schedule.
- D. Manuals: Two weeks prior to the final inspection, submit four copies of the following to the COTR:
 - 1. Complete maintenance, operating and testing manuals, including wiring diagrams, technical data sheets, including load current, overload relay and settings of adjustable relays, and information for ordering replacement parts:

- a. Include complete "As Installed" diagrams that indicate all pieces of equipment and their interconnecting wiring.
- b. Include complete diagrams of the internal wiring for each piece of equipment, including "As Installed" revisions of the diagrams.
- c. The wiring diagrams shall identify the terminals to facilitate installation, maintenance, operation, and testing.
- d. Instructions for testing and adjusting overcurrent protective devices.
- E. Certification: Two weeks prior to final inspection, submit four copies of the following to the COTR:
 - 1. Certification by the manufacturer that the motor control centers conform to the requirements of the drawings and specifications.
 - 2. Certification by the contractor that the motor control centers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturers Association (NEMA): ICS 1-05.....Industrial Control and Systems: General

Requirements

- ICS 2-05.....Industrial Control and Systems: Controllers, Contactors, and Overhead Relays, Rated 600 volts
- ICS 6-06.....Industrial Control and Systems: Enclosures
- FU 1-02.....Low-Voltage Cartridge Fuses
- 250-03.....Enclosures for Electrical Equipment (1000 Volts Maximum)
- C. National Fire Protection Association (NFPA): 70-05.....National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL): 845-05.....Motor Control Centers

PART 2 - PRODUCTS

2.1 FEEDER UNITS

A. Circuit breaker: shall conform to the applicable portions of Section 26 24 16, PANELBOARDS.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Installation shall be in accordance with NEC, written instructions of the manufacturer, and as shown on the drawings.

3.2 ACCEPTANCE CHECKS AND TESTS

Perform in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections and electrical tests:

- 1. Visual and Mechanical Inspection
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify required area clearances.
 - d. Verify that fuse and circuit breaker sizes and types correspond to approved shop drawings.
 - e. Use calibrated torque-wrench method to verify the tightness of accessible bolted electrical connections, or perform a thermographic survey after energization.
 - f. Confirm correct operation and sequencing of electrical and mechanical interlock systems.
 - g. Clean motor control center.
 - h. Inspect insulators for evidence of physical damage or contaminated surfaces.
 - i. Exercise all active components.
 - j. Verify the correct operation of all sensing devices, alarms, and indicating devices.
 - k. If applicable, inspect control power transformers.
- 2. Electrical Tests
 - a. Perform insulation-resistance tests on each bus section.
 - b. Perform overpotential tests.
 - c. Perform insulation-resistance test on control wiring; do not perform this test on wiring connected to solid-state components.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the motor control center is in good operating condition and properly performing the intended function.

- - - E N D - - -

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
 - 99-12.....Health Care Facilities
- C. National Electrical Manufacturers Association (NEMA):
 WD 1-10.....General Color Requirements for Wiring Devices
 WD 6-08Wiring Devices Dimensional Specifications
- D. Underwriter's Laboratories, Inc. (UL):

5-11 Surface Metal Raceways and Fittings		
20-10Seneral-Use Snap Switches		
231-07Power Outlets		
467-07 Equipment		
498-07 Receptacles		
943-11Iround-Fault Circuit-Interrupters		
1449-07 Devices		
1472-96 Controls		

- PART 2 PRODUCTS
- 2.1 RECEPTACLES
 - A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - Mounting straps shall be plated steel, with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.

- Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles: Hospital-grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be ivory in color.
 - 2. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 3. Ground Fault Interrupter Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring.
 - a. Ground fault interrupter shall consist of a differential current transformer, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Ground Fault Interrupter Duplex Receptacles (not hospital-grade) shall be the same as ground fault interrupter hospital-grade receptacles except for the hospital-grade listing.
 - 4. Safety Type Duplex Receptacles:
 - a. Bodies shall be gray in color.
 - Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
 - Screws exposed while the wall plates are in place shall be the tamperproof type.
 - 5. Duplex Receptacles (not hospital grade): Shall be the same as hospital grade duplex receptacles except for the hospital grade listing and as follows.
 - a. Bodies shall be brown nylon.
- C. Receptacles; 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
 - 1. Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- C. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
- D. Duplex Receptacles on Emergency Circuit: Wall plates shall be red nylon with the word "EMERGENCY" engraved in 6 mm (1/4 inch) white letters.

2.4 SURFACE MULTIPLE-OUTLET ASSEMBLIES

- A. Shall have the following features:
 - 1. Enclosures:
 - a. Thickness of steel shall be not less than 1 mm (0.040 inch) for base and cover. Nominal dimensions shall be 40 mm x 70 mm (1-1/2 inches by 2-3/4 inches) with inside cross sectional area not less than 2250 square mm (3-1/2 square inches). The enclosures shall be thoroughly cleaned, phosphatized, and painted at the factory with primer and the manufacturer's standard baked enamel finish.
 - Receptacles shall be duplex, hospital grade. See paragraph 'RECEPTACLES' in this Section. Device cover plates shall be the manufacturer's standard corrosion resistant finish and shall not exceed the dimensions of the enclosure.
 - Unless otherwise shown on drawings, receptacle spacing shall be 600 mm (24 inches) on centers.

- 4. Conductors shall be as specified in Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLE.
- 5. Installation fittings shall be the manufacturer's standard bends, offsets, device brackets, inside couplings, wire clips, elbows, and other components as required for a complete system.
- 6. Bond the assemblies to the branch circuit conduit system.
- 7. Where dual channel raceways are required, provide barrier between systems.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multigang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- J. Install vertically mounted receptacles with the ground pin up. Install horizontally mounted receptacles with the ground pin to the right.

- K. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- L. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical condition.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.
 - 2. Healthcare Occupancy Tests:
 - a. Test hospital grade receptacles for retention force per NFPA 99.

- - - END - - -

SECTION 26 29 11 MOTOR STARTERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. All motor starters and variable speed motor controllers, including installation and connection (whether furnished with the equipment specified in other Divisions or otherwise), shall meet these specifications.

1.2 RELATED WORK

- A. Other sections which specify motor driven equipment, except elevator motor controllers.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items common to Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS:
- B. Shop Drawings:
 - 1. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - Include electrical ratings, dimensions, weights, mounting details, materials, running over current protection, size of enclosure, over current protection, wiring diagrams, starting characteristics, interlocking and accessories.
- C. Manuals:
 - Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, maintenance and operation.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.

- c. Elementary schematic diagrams shall be provided for clarity of operation.
- Two weeks prior to the project final inspection, submit four copies of the final updated maintenance and operating manual to the Contracting Officer's Representative (COR).
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certifications to the COR:
 - Certification that the equipment has been properly installed, adjusted, and tested.
 - Certification by the manufacturer that medium voltage motor controller(s) conforms to the requirements of the drawings and specifications. This certification must be furnished to the COR prior to shipping the controller(s) to the job site.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE): 519..... Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems C37.90.1.....Standard Surge Withstand Capability (SWC) Tests for Protective Relays and Relay Systems C. National Electrical Manufacturers Association (NEMA): ICS 1..... Industrial Control and Systems General Requirements ICS 1.1.....Safety Guidelines for the Application, Installation and Maintenance of Solid State Control ICS 2.....Industrial Control and Systems, Controllers, Contactors and Overload Relays Rated 600 Volts DC ICS 6.....Industrial Control and Systems Enclosures ICS 7.....Industrial Control and Systems Adjustable-Speed Drives ICS 7.1.....Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems D. National Fire Protection Association (NFPA): 70.....National Electrical Code (NEC)

E. Underwriters Laboratories Inc. (UL):

508..... Equipment

PART 2 - PRODUCTS

2.1 MOTOR STARTERS, GENERAL

- A. Shall be in accordance with the requirements of the IEEE, NEC, NEMA (ICS 1, ICS 1.1, ICS 2, ICS 6, ICS 7 and ICS 7.1) and UL.
- B. Shall have the following features:
 - 1. Separately enclosed unless part of another assembly.
 - 2. Circuit breakers and safety switches within the motor controller enclosures shall have external operating handles with lock-open padlocking provisions and shall indicate the ON and OFF positions.
 - 3. Motor control circuits:
 - a. Shall operate at not more than 120 volts.
 - b. Shall be grounded except as follows:
 - 1) Where isolated control circuits are shown.
 - 2) Where manufacturers of equipment assemblies recommend that the control circuits be isolated.
 - c. Incorporate a separate, heavy duty, control transformer within each motor controller enclosure to provide the control voltage for each motor operating over 120 volts.
 - d. Incorporate over current protection for both primary and secondary windings of the control power transformers in accordance with the NEC.
 - 4. Overload current protective devices:
 - a. Overload relay (solid state type.)
 - b. One for each pole.
 - c. Manual reset on the door of each motor controller enclosure.
 - d. Correctly sized for the associated motor's rated full load current.
 - e. Check every motor controller after installation and verify that correct sizes of protective devices have been installed.
 - f. Deliver four copies of a summarized list to the COR, which indicates and adequately identifies every motor controller installed. Include the catalog numbers for the correct sizes of protective devices for the motor controllers.
 - Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular starter. H-O-A switch is not required for manual motor starters.
 - 6. Incorporate into each control circuit a 120-volt, solid state time delay relay (ON delay), minimum adjustable range from 0.3 to 10

minutes, with transient protection. Time delay relay is not required where H-O-A switch is not required.

- 7. Unless noted otherwise, equip with not less than two normally open and two normally closed auxiliary contacts. Provide green run pilot lights and H-O-A control devices as indicated, operable at front of enclosure without opening enclosure. Push buttons, selector switches, pilot lights, etc., shall be interchangeable.
- 8. Enclosures:
 - a. Shall be the NEMA types shown on the drawings for the motor controllers and shall be the NEMA types which are the most suitable for the environmental conditions where the motor controllers are being installed.
 - b. Doors mechanically interlocked to prevent opening unless the breaker or switch within the enclosure is open. Provision for padlock must be provided.
 - c. Enclosures shall be primed and finish coated at the factory with the manufacturer's prime coat and standard finish.
- C. Motor controllers incorporated with equipment assemblies shall also be designed for the specific requirements of the assemblies.
- D. For motor controllers being installed in existing motor control centers or panelboards, coordinate with the existing centers or panelboards.
- E. Additional requirements for specific motor controllers, as indicated in other sections, shall also apply.
- F. Provide a disconnecting means or safety switch near and within sight of each motor. Provide all wiring and conduit required to facilitate a complete installation.

2.2 VARIABLE SPEED MOTOR CONTROLLERS

- A. Shall be in accordance with applicable portions of 2.1 above.
- B. Shall be solid state, micro processor-based with adjustable frequency and voltage, three phase output capable of driving standard NEMA B design, three phase alternating current induction motors at full rated speed. The drives shall utilize a full wave bridge design incorporating diode rectifier circuitry with pulse width modulation (PWM). Other control techniques are not acceptable. Silicon controlled rectifiers (SCR) shall not be used in the rectifying circuitry. The drives shall be designed to be used on variable torque loads and shall be capable of providing sufficient torque to allow the motor to break away from rest upon first application of power.

- C. Unit shall be capable of operating within voltage parameters of plus 10 to minus 10 percent of line voltage, and be suitably rated for the full load amps of the maximum watts (HP) within its class.
- D. Operating and Design Conditions:

Elevation: 1000 feet AMSL Temperatures: Maximum +100°F Minimum -10°F Relative Humidity: 95% Drive Location: Exterior air handling unit

- E. Controllers shall have the following features:
 - 1. Isolated power for control circuits.
 - 2. Manually re-settable motor overload protection for each phase.
 - Adjustable current limiting circuitry to provide soft motor starting. Maximum starting current shall not exceed 200 percent of motor full load current.
 - 4. Independent acceleration and deceleration time adjustment, manually adjustable from 2 to 30 seconds. (Set timers to the equipment manufacturer's recommended time in the above range.)
 - 5. Provide 4 to 20 ma current follower circuitry for interface with mechanical sensor devices.
 - 6. Automatic frequency adjustment from 20 Hz to 60 Hz.
 - 7. Provide circuitry to initiate an orderly shutdown when any of the conditions listed below occur. The controller shall not be damaged by any of these electrical disturbances and shall automatically restart when the conditions are corrected. The drive shall be able to restart into a rotating motor operating in either the forward or reverse direction and matching that frequency.
 - a. Incorrect phase sequence.
 - b. Single phasing.
 - c. Over voltage in excess of 10 percent.
 - d. Under voltage in excess of 10 percent.
 - e. Running over current above 110 percent (shall not automatically reset for this condition.)
 - f. Instantaneous overcurrent above 150 percent (shall not automatically reset for this condition).
 - g. Surge voltage in excess of 1000 volts.
 - h. Short duration power outages of 12 cycles or less (i.e., distribution line switching, generator testing, and automatic transfer switch operations.)
 - 8. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for

manual reset or fault correction; adjustable delay time between restart attempts.

- F. Minimum efficiency shall be 95 percent at 100 percent speed and 85 percent at 50 percent speed.
- G. The displacement power factor of the controller shall not be less than 95 percent under any speed or load condition.
- H. Controllers shall include a door interlocked fused safety disconnect switch or door interlocked circuit breaker switch which will disconnect all input power.
- I. Controller shall include a 3% line reactor, and RFI/EMI filter.
- J. The following accessories are to be door mounted:
 - 1. AC Power on light.
 - 2. Ammeter (RMS motor current).
 - 3. HAND-OFF-AUTOMATIC switch.
 - 4. Manual speed control in HAND mode.
 - 5. System protection lights indicating that the system has shutdown and will not automatically restart.
 - 6. System protection light indicating that the system has shutdown but will restart when conditions return to normal.
 - 7. Manual variable speed controller by-pass switch.
 - 8. Diagnostic shutdown indicator lights for each shutdown condition.
 - 9. Provide two N.O. and two N.C. dry contacts rated 120 volts, 10 amperes, 60 HZ for remote indication of the following:
 - a. System shutdown with auto restart.
 - b. System shutdown without auto restart.
 - c. System running.
 - 10. Incorporate into each control circuit a 120-volt, time delay relay (ON delay), adjustable from 0.3-10 minutes, with transient protection. Provide transformer/s for the control circuit/s.
 - 11. Controller shall not add any current or voltage transients to the input AC power distribution system nor shall transients from other devices on the AC power distribution system affect the controller. Controllers shall be protected to comply with IEEE C37.90.1 and UL-508. Line noise and harmonic voltage distortion shall not exceed the values allowed by IEEE 519.
- K. Hardware and software to enable the BAS to monitor, control, and display controller status and alarms.
- L. Network Communications Ports: Ethernet and RS-422/485.
- M. Embedded BAS Protocols for Network Communications: As specified in Division 22.

- N. Bypass Operation: Manually transfers motor between power converter output and bypass circuit, manually, automatically, or both. Unit is capable of stable operation (starting, stopping, and running) with motor completely disconnected from power converter. Transfer between power converter and bypass contactor and retransfer shall only be allowed with the motor at zero speed.
- O. Bypass Controller: Provide contactor-style bypass, arranged to isolate the power converter input and output and permit safe testing of the power converter, both energized and de-energized, while motor is operating in bypass mode. Motor overload protection shall be provided.
 - 1. Bypass Contactor: Load-break NEMA-rated contactor.
 - 2. Input and Output Isolating Contactors: Non-load-break, NEMA-rated contactors.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor control equipment in accordance with manufacturer's recommendations, the NEC, NEMA and as shown on the drawings.
- B. Motor Data: Provide neatly-typed label inside each motor starter enclosure door identifying motor served, nameplate horsepower, full load amperes, code letter, service factor, voltage/phase rating and heater element installed.
- C. Connect hand-off auto selector switches so that automatic control only is by-passed in "manual" position and any safety controls are not by-passed.
- D. Install manual motor starters in flush enclosures in finished areas.
- E. Examine control diagrams indicated before ordering motor controllers. Should conflicting data exist in specifications, drawings and diagrams, request corrected data prior to placing orders.

3.2 ADJUSTING

- A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.
- B. Adjust overload-relay heaters or settings if power factor correction capacitors are connected to the load side of the overload relays.
- C. Adjust trip settings of MCPs and thermal-magnetic circuit breakers with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where

these maximum settings do not allow starting of a motor, notify COR before increasing settings.

3.3 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections and electrical tests:
 - 1. Visual and Mechanical Inspection
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Inspect contactors.
 - d. Clean motor starters and variable speed motor controllers.
 - e. Verify overload element ratings are correct for their applications.
 - f. If motor-running protection is provided by fuses, verify correct fuse rating.
 - g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - 2. Variable speed motor controllers:
 - a. Final programming and connections to variable speed motor controllers shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.
 - b. Test all control and safety features of the variable frequency drive.

3.4 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor starters and variable speed motor controllers are in good operating condition and properly performing the intended functions.

3.5 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses (including heater elements) for each starter/controller installed on this project.

- - - E N D - - -

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.
 - g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.

- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI):

C78.1-91.....Fluorescent Lamps - Rapid-Start Types -Dimensional and Electrical Characteristics C78.376-01.....Chromaticity of Fluorescent Lamps

C. American Society for Testing and Materials (ASTM):

C635-07.....Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Layin Panel Ceilings

- D. Environmental Protection Agency (EPA): 40 CFR 261.....Identification and Listing of Hazardous Waste
- E. Federal Communications Commission (FCC): CFR Title 47, Part 15...Radio Frequency Devices

CFR Title 47, Part 18...Industrial, Scientific, and Medical Equipment F. Illuminating Engineering Society (IES): LM-79-08..... Electrical and Photometric Measurements of Solid-State Lighting Products LM-80-08..... Measuring Lumen Maintenance of LED Light Sources LM-82-12.....Characterization of LED Light Engines and LED Lamps for Electrical and Photometric Properties as a Function of Temperature G. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91.....Surge Voltages in Low Voltage AC Power Circuits H. International Code Council (ICC): IBC-12..... International Building Code I. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 101-12....Life Safety Code J. National Electrical Manufacturer's Association (NEMA): C82.1-04..... Fluorescent Lamp Ballasts - Line Frequency Fluorescent Lamp Ballasts C82.2-02.....Method of Measurement of Fluorescent Lamp Ballasts C82.4-02.....Lamp Ballasts - Ballasts for High-Intensity Discharge and Low-Pressure Sodium (LPS) Lamps (Multiple-Supply Type) C82.11-11..... Lamp Ballasts - High Frequency Fluorescent Lamp Ballasts LL-9-09......Dimming of T8 Fluorescent Lighting Systems SSL-1-10......Electronic Drivers for LED Devices, Arrays, or Systems K. Underwriters Laboratories, Inc. (UL): 496-08.....Lampholders 542-0599..... Fluorescent Lamp Starters Locations 924-12..... Emergency Lighting and Power Equipment 935-01......Fluorescent-Lamp Ballasts

1029A-06.....Ignitors and Related Auxiliaries for HID Lamp Ballasts 1598-08.....Luminaires 1574-04.....Track Lighting Systems 2108-04....Low-Voltage Lighting Systems 8750-09....Light Emitting Diode (LED) Light Sources for Use in Lighting Products

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

- A. Shall be in accordance with NFPA, UL, as shown on drawings, and as specified.
- B. Sheet Metal:
 - Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
 - 2. Wireways and fittings shall be free of burrs and sharp edges, and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - 3. When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.
 - 4. Hinged door frames shall operate smoothly without binding. Latches shall function easily by finger action without the use of tools.
- C. Ballasts and lamps shall be serviceable while the fixture is in its normally installed position. Ballasts shall not be mounted to removable reflectors or wireway covers unless so specified.
- D. Lamp Sockets:
 - Fluorescent: Single slot entry type, requiring a one-quarter turn of the lamp after insertion. Lampholder contacts shall be the biting edge type.
 - 2. Compact Fluorescent: 4-pin.
- E. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.
- F. Metal Finishes:

- 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.
- Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing.
- 3. Exterior finishes shall be as shown on the drawings.
- G. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- H. Light Transmitting Components for Fluorescent Fixtures:
 - 1. Shall be 100 percent virgin acrylic.
 - 2. Flat lens panels shall have not less than 3 mm (1/8 inch) of average thickness.
 - 3. Unless otherwise specified, lenses, reflectors, diffusers, and louvers shall be retained firmly in a metal frame by clips or clamping ring in such a manner as to allow expansion and contraction without distortion or cracking.
- I. Lighting fixtures in hazardous areas shall be suitable for installation in Class and Division areas as defined in NFPA 70.
- J. Compact fluorescent fixtures shall be manufactured specifically for compact fluorescent lamps with ballast integral to the fixture. Assemblies designed to retrofit incandescent fixtures are prohibited except when specifically indicated for renovation of existing fixtures.

2.2 BALLASTS

- A. Linear Fluorescent Lamp Ballasts: Multi-voltage (120 277V), electronic programmed-start type, designed for type and quantity of lamps indicated. Ballasts shall be designed for full light output unless dimmer or bi-level control is indicated. Ballasts shall include the following features:
 - 1. Lamp end-of-life detection and shutdown circuit (T5 lamps only).
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: Class A.

- 4. Total Harmonic Distortion (THD): 10 percent or less.
- 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
- 6. Operating Frequency: 20 kHz or higher.
- 7. Lamp Current Crest Factor: 1.7 or less.
- 8. Ballast Factor: 0.87 or higher unless otherwise indicated.
- 9. Power Factor: 0.98 or higher.
- 10. EMR/RFI Interference: Comply with CFR Title 47 Part 18 for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.
- B. Compact Fluorescent Lamp Ballasts: Multi-voltage (120 277V), electronic programmed rapid-start type, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated. Ballasts shall include the following features:
 - 1. Lamp end-of-life detection and shutdown circuit.
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: Class A.
 - 4. Total Harmonic Distortion (THD): 10 percent or less.
 - 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 - 6. Operating Frequency: 20 kHz or higher.
 - 7. Lamp Current Crest Factor: 1.7 or less.
 - 8. Ballast Factor: 0.95 or higher unless otherwise indicated.
 - 9. Power Factor: 0.98 or higher.
 - 10. Interference: Comply with CFR Title 47 Part 18 for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.

2.3 LAMPS

- A. Linear T5 and T8 Fluorescent Lamps:
 - 1. Except as indicated below, lamps shall be low-mercury energy saving type, have a color temperature between 3500° and 4100°K, a Color Rendering Index (CRI) equal or greater than 80, average rated life equal to or greater than 24,000 hours when used with an instant start ballast and 30,000 hours when used with a programmed or rapid start ballast (based on 3 hour starts), and be suitable for use with dimming ballasts, unless otherwise indicated.

- 2. Lamps shall comply with EPA Toxicity Characteristic Leachate Procedure (TCLP) requirements.
- B. Compact Fluorescent Lamps:
 - T4, CRI 80 (minimum), color temperature 3500°K, average rated life equal to or greater than 12,000 hours (based on 3 hour starts), and suitable for use with dimming ballasts, unless otherwise indicated.
 - 2. Lamps shall comply with EPA Toxicity Characteristic Leachate Procedure (TCLP) requirements.

2.4 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandal-resistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.
 - 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
 - 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltage: Multi-voltage (120 277V).

2.5 LED LIGHT FIXTURES

A. General:

- 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
- LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
- 3. LED drivers shall include the following features unless otherwise indicated:

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

- a. Minimum efficiency: 85% at full load.
- b. Minimum Operating Ambient Temperature: -20° C. (-4° F.)
- c. Input Voltage: 120 277V (±10%) at 60 Hz.
- d. Integral short circuit, open circuit, and overload protection.
- e. Power Factor: \geq 0.95.
- f. Total Harmonic Distortion: ≤ 20%.
- g. Comply with FCC 47 CFR Part 15.
- 4. LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.
- B. LED Downlights:
 - 1. Housing, LED driver, and LED module shall be products of the same manufacturer.
- C. LED Troffers:
 - LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
 - 2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.
- C. Wall-mounted fixtures shall be attached to stude in the walls, or to 20 gauge metal backing plate that is attached to the stude in the walls. Lighting fixtures shall not be attached directly to gypsum board.
- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.

- 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
- 4. Hardware for recessed fluorescent fixtures:
 - a. Where the suspended ceiling system is supported at the four corners of the fixture opening, hardware devices shall clamp the fixture to the ceiling system structural members, or plaster frame at not less than four points in such a manner as to resist spreading of the support members and safely lock the fixture into the ceiling system.
 - b. Where the suspended ceiling system is not supported at the four corners of the fixture opening, hardware devices shall independently support the fixture from the building structure at four points.
- 5. Hardware for surface mounting fluorescent fixtures to suspended ceilings:
 - a. In addition to being secured to any required outlet box, fixtures shall be bolted to grid ceiling system at four points spaced near corners of each fixture. The bolts shall be not less than 1/4 inch secured to channel members attached to and spanning the tops of the ceiling structural grid members. Non-turning studs may be attached to the ceiling structural grid members or spanning channels by special clips designed for the purpose, provided they lock into place and require simple tools for removal.
 - b. In addition to being secured to any required outlet box, fixtures shall be bolted to ceiling structural members at four points spaced near the corners of each fixture. Pre-positioned 1/4 inch studs or threaded plaster inserts secured to ceiling structural members shall be used to bolt the fixtures to the ceiling. In lieu of the above, 1/4 inch toggle bolts may be used on new or existing ceiling provided the plaster and lath can safely support the fixtures without sagging or cracking.
- E. Furnish and install the new lamps as specified for all lighting fixtures installed under this project, and for all existing lighting fixtures reused under this project.
- F. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and

installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.

- G. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.
- I. Dispose of lamps per requirements of Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform the following:
 - 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.
 - b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.
 - 2. Electrical tests:
 - a. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum, unless specifically recommended otherwise by the lamp manufacturer. Burn-in dimmed fluorescent and compact fluorescent lamps for at least 100 hours at full voltage, unless specifically recommended otherwise by the lamp manufacturer. Replace any lamps and ballasts which fail during burn-in.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---

SECTION 27 05 11

REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Requirements for Communications Installations, applies to all sections of Division 27.
- B. Furnish and install communications cabling, systems, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of transformers, cable, and other items and arrangements for the specified items are shown on drawings.

1.2 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.3 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 MANUFACTURED PRODUCTS

A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.

- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Contracting Officers Representative (COR) a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the COR prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.5 EQUIPMENT REQUIREMENTS

Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.6 EQUIPMENT PROTECTION

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.

- Damaged equipment shall be, as determined by the COR, placed in first class operating condition or be returned to the source of supply for repair or replacement.
- 3. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
- 4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.7 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- C. Coordinate location of equipment and pathways with other trades to minimize interferences. See the GENERAL CONDITIONS.

1.8 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.9 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Nameplates shall be laminated black phenolic resin with a white core with engraved lettering, a minimum of 6 mm (1/4 inch) high. Secure nameplates with screws. Nameplates that are furnished by manufacturer as a standard catalog item, or where other method of identification is herein specified, are exceptions.

1.10 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage, or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings, and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - Elementary and interconnection wiring diagrams for communication and signal systems, control system and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- F. Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - Inscribe the following identification on the cover: the words
 "MAINTENANCE AND OPERATION MANUAL," the name and location of the
 system, equipment, building, name of Contractor, and contract number.

Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.

- 3. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation and maintenance instructions.
 - e. Safety precautions.
 - f. Diagrams and illustrations.
 - g. Testing methods.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
 - j. Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- G. Approvals will be based on complete submission of manuals together with shop drawings.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - 2. Each type of conduit and pathway coupling, bushing and termination fitting.
 - 3. Raceway and pathway hangers, clamps and supports.
 - 4. Duct sealing compound.
- I. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a VA representative to see typical active systems in operation, when there has been no prior experience with the manufacturer or the type of equipment being submitted.

1.11 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.12 TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the COR at least 30 days prior to the planned training.

- - - E N D - - -

SECTION 27 05 26

GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies general grounding and bonding requirements of telecommunication installations for equipment operations.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, telecommunications system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning.

1.2 RELATED WORK

- A. Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 27.
- B. Section 27 10 00, STRUCTURED CABLING: Low Voltage power and lighting wiring.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Shop Drawings:
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Contracting Officers Representative (COR):
 - Certification that the materials and installation is in accordance with the drawings and specifications.
 - 2. Certification, by the Contractor, that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the

extent referenced. Publications are referenced in the text by the basic designation only. A. American Society for Testing and Materials (ASTM): B1-2001..... Standard Specification for Hard-Drawn Copper Wire B8-2004.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft B. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-1983..... EEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System C. National Fire Protection Association (NFPA): D. Telecommunications Industry Association, (TIA) J-STO-607-A-2002.....Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications E. Underwriters Laboratories, Inc. (UL): 83-2003 Thermoplastic-Insulated Wires and Cables 467-2004Grounding and Bonding Equipment 486A-486B-2003Wire Connectors PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.
- C. Telecom System Grounding Riser Conductor: Telecommunications Grounding Riser shall be in accordance with J STO-607A. Use a minimum 50mm² (1/0 AWG) insulated stranded copper grounding conductor unless indicated otherwise.

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

2.2 SPLICES AND TERMINATION COMPONENTS

A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).

2.3 TELECOMMUNICATION SYSTEM GROUND BUSBARS

- A. Provide solid copper busbar, pre-drilled from two-hole lug connections with a minimum thickness of 6 mm (1/4 inch) for wall and backboard mounting using standard insulators sized as follows:
 - 1. Room Signal Grounding: 300 mm x 100 mm (12 inches x 4 inch).
 - 2. Master Signal Ground: 600 mm x 100 mm (24 inches x 4 inch).

2.4 GROUND CONNECTIONS

- A. Above Grade:
 - Bonding Jumpers: compression type connectors, using zinc-plated fasteners and external tooth lockwashers.
 - 2. Ground Busbars: Two-hole compression type lugs using tin-plated copper or copper alloy bolts and nuts.
 - 3. Rack and Cabinet Ground Bars: one-hole compression-type lugs using zinc-plated or copper alloy fasteners.
- B. Cable Shields: Make ground connections to multipair communications cables with metallic shields using shield bonding connectors with screw stud connection.

2.5 EQUIPMENT RACK AND CABINET GROUND BARS

Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 4 mm thick by 19 mm wide $(3/8 \text{ inch } x \frac{3}{4} \text{ inch})$.

2.6 GROUND TERMINAL BLOCKS

At any equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

2.7 SPLICE CASE GROUND ACCESSORIES

Splice case grounding and bonding accessories shall be supplied by the splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as hereinafter specified.
- B. System Grounding:

- Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
- 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic structures (including ductwork and building steel), enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are buried or otherwise normally inaccessible (except connections for which periodic testing access is required) by exothermic weld.

3.3 SECONDARY EQUIPMENT AND CIRCUITS

- A. Metallic Piping, Building Steel, and Supplemental Electrode(s):
 - 1. Provide a supplemental ground electrode and bond to the grounding electrode system.
- B. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - 2. Non-metallic conduit systems shall contain an equipment grounding conductor, except that non-metallic feeder conduits which carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment need not contain an equipment grounding conductor.
 - 3. Conduit containing only a grounding conductor, and which is provided for mechanical protection of the conductor, shall be bonded to that conductor at the entrance and exit from the conduit.
- C. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders and power and lighting branch circuits.
- D. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.

- 3. Provide ground bars in panelboards, bolted to the housing, with sufficient lugs to terminate the equipment grounding conductors.
- E. Receptacles shall not be grounded through their mounting screws. Ground with a jumper from the receptacle green ground terminal to the device box ground screw and the branch circuit equipment grounding conductor.

3.4 CORROSION INHIBITORS

A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.5 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.6 TELECOMMUNICATIONS SYSTEM

- A. Bond telecommunications system grounding equipment to the electrical grounding electrode system.
- B. Furnish and install all wire and hardware required to properly ground, bond and connect communications raceway, cable tray, metallic cable shields, and equipment to a ground source.
- C. Ground bonding jumpers shall be continuous with no splices. Use the shortest length of bonding jumper possible.
- D. Provide ground paths that are permanent and continuous with a resistance of 1 ohm or less from raceway, cable tray, and equipment connections to the building grounding electrode. The resistance across individual bonding connections shall be 10 milli ohms or less.
- E. Above-Grade Grounding Connections: When making bolted or screwed connections to attach bonding jumpers, remove paint to expose the entire contact surface by grinding where necessary; thoroughly clean all connector, plate and other contact surfaces; and apply an appropriate corrosion inhibitor to all surfaces before joining.
- F. Bonding Jumpers:
 - Use insulated ground wire of the size and type shown on the Drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire.
 - 2. Assemble bonding jumpers using insulated ground wire terminated with compression connectors.

- 3. Use compression connectors of proper size for conductors specified. Use connector manufacturer's compression tool.
- G. Bonding Jumper Fasteners:
 - 1. Conduit: Fasten bonding jumpers using screw lugs on grounding bushings or conduit strut clamps, or the clamp pads on push-type conduit fasteners. When screw lug connection to a conduit strut clamp is not possible, fasten the plain end of a bonding jumper wire by slipping the plain end under the conduit strut clamp pad; tighten the clamp screw firmly. Where appropriate, use zinc-plated external tooth lockwashers.
 - 2. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers, and nuts. Install protective cover, e.g., zinc-plated acorn nuts on any bolts extending into wireway or cable tray to prevent cable damage.
 - Ground Plates and Busbars: Fasten bonding jumpers using two-hole compression lugs. Use tin-plated copper or copper alloy bolts, external tooth lockwashers, and nuts.
 - Unistrut: Fasten bonding jumpers using zinc-plated, self-drill screws and external tooth lockwashers.

3.7 COMMUNICATION ROOM GROUNDING

A. Telecommunications Ground Busbars:

- 1. Provide communications room telecommunications ground busbar hardware at 18 inches at locations indicated on the Drawings.
- 2. Connect the telecommunications room ground busbars to other room grounding busbars as indicated on the Grounding Riser diagram.
- B. Telephone-Type Cable Rack Systems: aluminum pan installed on telephonetype cable rack serves as the primary ground conductor within the communications room. Make ground connections by installing the following bonding jumpers:
 - 1. Install a 6 AWG bonding between telecommunications ground busbar and the nearest access to the aluminum pan installed on the cable rack.
 - 2. Use 6 AWG bonding jumpers across aluminum pan junctions.
- C. Self-Supporting and Cabinet-Mounted Equipment Rack Ground Bars:
 - When ground bars are provided at the rear of lineup of bolted together equipment racks, bond the copper ground bars together using solid copper splice plates supplied by the ground bar manufacturer.

- Bond together nonadjacent ground bars on equipment racks and cabinets with 16 mm² (6 AWG) insulated copper wire bonding jumpers attached at each end with compression-type connectors and mounting bolts.
- 3. Provide a 16 mm² (6 AWG) bonding jumper between the rack and/or cabinet ground busbar and the aluminum pan of an overhead cable tray or the raised floor stringer as appropriate.
- D. Backboards: Provide a screw lug-type terminal block or drilled and tapped copper strip near the top of backboards used for communications cross-connect systems. Connect backboard ground terminals to the aluminum pan in the telephone-type cable tray using an insulated 16 mm² (16 AWG) bonding jumper.
- E. Other Communication Room Ground Systems: Ground all metallic conduit, wireways, and other metallic equipment located away from equipment racks or cabinets to the cable tray pan or the telecommunications ground busbar, whichever is closer, using insulated 16 mm² (6 AWG) ground wire bonding jumpers.

3.8 COMMUNICATIONS CABLE GROUNDING

- A. Bond all metallic cable sheaths in multipair communications cables together at each splicing and/or terminating location to provide 100 percent metallic sheath continuity throughout the communications distribution system.
 - At terminal points, install a cable shield bonding connector provide a screw stud connection for ground wire. Use a bonding jumper to connect the cable shield connector to an appropriate ground source like the rack or cabinet ground bar.
 - 2. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or the splice case grounding and bonding accessories provided by the splice case manufacturer. When an external ground connection is provided as part of splice closure, connect to an approved ground source and all other metallic components and equipment at that location.

3.9 COMMUNICATIONS CABLE TRAY SYSTEMS:

A. Bond the metallic structures of one cable tray in each tray run following the same path to provide 100 percent electrical continuity throughout this cable tray systems as follows:

- Splice plates provided by the cable tray manufacturer can be used for providing a ground bonding connection between cable tray sections when the resistance across a bolted connection is 10 milliohms or less. The Subcontractor shall verify this loss by testing across one slice plate connection in the presence of the Contractor.
- Install a 16 mm² (6 AWG) bonding jumper across each cable tray splice or junction where splice plates cannot be used.
- 3. When cable tray terminations to cable rack, install 16 mm² (6 AWG) bonding jumper between cable tray and cable rank pan.

3.10 COMMUNCIATIONS RACEWAY GROUNDING

- A. Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to ground metallic conduit at each end and to bond at all intermediate metallic enclosures.
- B. Wireway: use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and across all section junctions.
- C. Cable Tray Systems: Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 16 meters (50 feet).

3.11 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make necessary modifications or additions to the grounding electrode system for compliance without additional cost to the Government. Final tests shall assure that this requirement is met.
- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not less than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.

- - - E N D - - -

SECTION 27 05 33

RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for all communications cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Mounting board for communication closets: Section 06 10 00, ROUGH CARPENTRY.
- B. Sealing around penetrations to maintain the integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- C. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- D. General electrical requirements and items that is common to more than one section of Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- E. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:

- A. Shop Drawings:
 - 1. Size and location of panels and pull boxes
 - 2. Layout of required conduit penetrations through structural elements.
 - 3. The specific item proposed and its area of application shall be identified on the catalog cuts.
- B. Certification: Prior to final inspection, deliver to the Contracting Officers Representative (COR) four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.

1.4 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent

referenced. Publications are referenced in the text by the basic designation only. B. National Fire Protection Association (NFPA): C. Underwriters Laboratories, Inc. (UL): 1-03.....Flexible Metal Conduit 5-01..... and Fittings 6-03.....Rigid Metal Conduit 50-03..... Enclosures for Electrical Equipment 360-03.....Liquid-Tight Flexible Steel Conduit 467-01.....Grounding and Bonding Equipment 514A-01.....Metallic Outlet Boxes 514B-02.....Fittings for Cable and Conduit 514C-05.....Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-02.....Schedule 40 and 80 Rigid PVC Conduit 651A-03..... Type EB and A Rigid PVC Conduit and HDPE Conduit 797-03.....Electrical Metallic Tubing 1242-00.....Intermediate Metal Conduit D. National Electrical Manufacturers Association (NEMA): TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-03.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 13 mm (1/2 inch) unless otherwise shown. Where permitted by the NEC, 13 mm (1/2 inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - 1. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
 - Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
 - Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inch) and shall be permitted only with cable rated 600 volts or less.
 - 4. Flexible galvanized steel conduit: Shall Conform to UL 1.
 - 5. Liquid-tight flexible metal conduit: Shall Conform to UL 360.

- 6. Surface metal raceway: Shall Conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid steel and IMC conduit fittings:
 - a. Fittings shall meet requirements of UL 514B and ANSI/ NEMA FB1.
 - a. Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - b. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - c. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - d. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - e. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
 - 2. Electrical metallic tubing fittings:
 - a. Fittings shall meet requirements of UL 514B and ANSI/ NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - d. Indent type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
 - 3. Flexible steel conduit fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.

- b. Clamp type, with insulated throat.
- 4. Liquid-tight flexible metal conduit fittings:
 - a. Fittings shall meet requirements of UL 514B and ANSI/ NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- 6. Expansion and deflection couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
 - Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
 - 4. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

F. Wireways: Equip with hinged covers, except where removable covers are shown.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the COR prior to drilling through structural sections.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the COR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.
 - 6. Independently support conduit at 8'0" on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
 - Support within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
 - 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
 - 9. Conduit installations under fume and vent hoods are prohibited.
 - 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit

installations, provide a locknut on inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.

- 11. Do not use aluminum conduits in wet locations.
- 12. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COR.

3.3 CONCEALED WORK INSTALLATION

- A. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - 3. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for conductors above 600 volts:
 - 1. Rigid steel or rigid aluminum.
 - 2. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
- C. Conduit for Conductors 600 volts and below:
 - 1. Rigid steel, IMC, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- G. Surface metal raceways: Use only where shown.

- H. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).

- c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".

3.11 COMMUNICATION SYSTEM CONDUIT

- A. Install the communication raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All empty conduits located in communication closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.

E. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- F. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- G. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

- - - E N D - - -

SECTION 27 10 00 STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of the structured cabling system to provide a comprehensive telecommunications infrastructure.

1.2 RELATED WORK

- A. Sealing around penetrations to maintain the integrity of time rated construction: Section 07 84 00, FIRESTOPPING.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Manufacturer's Literature and Data: Showing each cable type and rating.
 - Certificates: Two weeks prior to final inspection, deliver to the Contracting Officers Representative (COR) four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.
- B. American Society of Testing Material (ASTM): D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape
- C. Federal Specifications (Fed. Spec.):

A-A-59544-00.....Cable and Wire, Electrical (Power, Fixed Installation)
D. National Fire Protection Association (NFPA): 70-05.....National Electrical Code (NEC)
E. Underwriters Laboratories, Inc. (UL): 44-02.....Thermoset-Insulated Wires and Cables 83-03....Thermoplastic-Insulated Wires and Cables 467-01....Electrical Grounding and Bonding Equipment 486A-01....Wire Connectors and Soldering Lugs for Use with Copper Conductors 486C-02.....Splicing Wire Connectors 486D-02.....Insulated Wire Connector Systems for Underground

- Use or in Damp or Wet Locations 486E-00.....Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors
- 493-01..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable
- 514B-02.....Fittings for Cable and Conduit

```
1479-03.....Fire Tests of Through-Penetration Fire Stops
```

PART 2 - PRODUCTS

2.1 CONTROL WIRING

- A. Unless otherwise specified in other sections of these specifications, control wiring shall be as specified for power and lighting wiring, except the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be large enough so that the voltage drop under inrush conditions does not adversely affect operation of the controls.

2.2 COMMUNICATION AND SIGNAL WIRING

- A. Shall conform to the recommendations of the manufacturers of the communication and signal systems; however, not less than what is shown.
- B. Wiring shown is for typical systems. Provide wiring as required for the systems being furnished.
- C. Multi-conductor cables shall have the conductors color coded.

2.3 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.4 FIREPROOFING TAPE

A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.

- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Install all wiring in raceway systems.
- B. Wire Pulling:
 - 1. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
 - 2. Use ropes made of nonmetallic material for pulling feeders.
 - Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the COR.
 - 4. Pull in multiple cables together in a single conduit.

3.2 CONTROL, COMMUNICATION AND SIGNAL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- B. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- C. Where separate power supply circuits are not shown, connect the systems to the nearest panelboards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.
- D. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
- E. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.
- 3.3 CONTROL, COMMUNICATION AND SIGNAL SYSTEM IDENTIFICATION
 - A. Install a permanent wire marker on each wire at each termination.
 - B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.

C. Wire markers shall retain their markings after cleaning.

3.4 EXISITNG WIRING

Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

- - - E N D - - -

SECTION 27 11 00 COMMUNICATIONS EQUIPMENT ROOM FITTINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section specifies furnishing, installing, certification, testing, and guaranty of a complete and operating Voice and Digital Cable Distribution System ("the System"), and associated equipment and hardware to be installed in the VA Medical Center ("the Facility"). System shall include, but not be limited to: equipment cabinets, interface enclosures, and relay racks; necessary combiners, traps, and filters; and necessary passive devices such as: splitters, couplers, cable "patch", "punch down", and cross-connector blocks or devices, voice and data distribution sub-systems, and associated hardware. System shall additionally include, but not be limited to: telecommunication closets (TC); telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, and/or "break out" devices.
- B. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- C. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by Contractor.
- D. The Voice and Digital Telecommunication Distribution Cable Equipment and System provides the media which voice and data information travels over and connects to the Telephone System which is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Therefore, since the System connects to or extends the telephone system, the System's installation and operation shall adhere to all appropriate National, Government, and/or Local Life Safety and/or Support Codes, which ever are the more stringent for this Facility. At a minimum , the System shall be installed according to NFPA, Section 70, National Electrical Code (NEC), Article 517 and Chapter 7; NFPA, Section 99, Health Care Facilities, Chapter 3-4; NFPA, Section 101, Life Safety Code, Chapters 7, 12, and/or 13; Joint Commission on Accreditation of Health Care Organization (JCAHCO), Manual for Health Care Facilities, all necessary

Life Safety and/or Support guidelines; this specification; and the original equipment manufacturer's (OEM) suggested installation design, recommendations, and instructions. The OEM and Contractor shall ensure that all management, sales, engineering, and installation personnel have read and understand the requirements of this specification before the System is designed, engineered, delivered, and provided.

- E. The VA Project Manager (PM) and/or if delegated, Contracting Officers Representative (COR) are the approving authorities for all contractual and mechanical changes to the System. The Contractor is cautioned to obtain in writing, all approvals for system changes relating to the published contract specifications and drawings, from the PM and/or the COR before proceeding with the change.
- F. System Performance:
 - At a minimum, the System shall be able to support the following voice and data operations for Category 6 Certified Telecommunication Service:
 - a. Provide the following interchange (or interface) capabilities:1) Basic Rate (BRI).
 - 2) Primary Rate (PRI).
 - b. ISDN measured at new rack in existing telecom room:
 - 1) Narrow Band BRI:
 - a) B Channel: 64 kilo-Bits per second (kBps), minimum.
 - b) D Channel: 16 kBps, minimum.
 - c) H Channel: 384 kBps, minimum.
 - 2) Narrow Band PRI:
 - a) B Channel: 64 kBps, minimum.
 - b) D Channel: 64 kBps, minimum.
 - c) H Channel: 1,920 kBps, minimum.
 - 3) Wide (or Broad) Band: All channels: 140 mega(m)-Bps, minimum, capable to 565 mBps at "T" reference.
 - c. ATM operation and interface: ATM 155 mBps measured at new rack in existing telecom room.
 - d. Frame Relay: All stated compliance's measured at new rack in existing telecom room.
 - e. Integrated Data Communications Utility (IDCU) operation and interface: Measured at new rack in existing telecom room.

- f. Government Open Systems Interconnection Profile (GOSSIP) compliant: Measured at new rack in existing telecom room.
- g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga(g)-Bps data bit stream speed measured at new rack in existing telecom room. (shall be Synchronous Optical Network [SONET] compliant).
- h. System Sensitivity: Satisfactory service shall be provided for at least 3,000 feet for all voice and data locations.
- 2. At a minimum the System shall support the following operating parameters:
 - a. EPBX connection:
 - 1) System speed: 1.0 gBps per second, minimum.
 - 2) Impedance: 600 Ohms.
 - 3) Cross Modulation: -60 deci-Bel (dB).
 - 4) Hum Modulation: -55 dB.
 - 5) System data error: 10 to the -10 Bps, minimum.
 - 6) Loss: Measured at the frame output with reference Zero (0) deciBel measured (dBm) at 1,000 Hertz (Hz) applied to the frame input.
 - a) Trunk to station: 1.5 dB, maximum.
 - b) Station to station: 3.0 dB, maximum.
 - c) Internal switch crosstalk: -60 dB when a signal of <u>+</u> 10 deciBel measured (dBm), 500-2,500 Hz range is applied to the primary path.
 - d) Idle channel noise: 25 dBm "C" or 3.0 dBm "O" above reference (terminated) ground noise, whichever is greater.
 - e) Traffic Grade of Service for Voice and Data:
 - (1) A minimum grade of service of P-01 with an average traffic load of 7.0 CCS per station per hour and a traffic overload in the data circuits will not interfere with, or degrade, the voice service.

(2) Average CCS per voice station: The average CCS capacity per voice station shall be maintained at 7.0 CCS when the EPBX is expanded up to the projected maximum growth as stated herein.

- b. Telecommunications Outlet (TCO):
 - 1) Voice:

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

- a) Isolation (outlet-outlet): 24 dB.
- b) Impedance: 600 Ohms, balanced (BAL).
- c) Signal Level: 0 deciBel per mili-Volt (dBmV) + 0.1 dBmV.
- d) System speed: 100 mBps, minimum.
- e) System data error: 10 to the -6 Bps, minimum.
- 2) Data:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, BAL.
 - c) Signal Level: 0 dBmV + 0.1 dBmV.
 - d) System speed: 120 mBps, minimum.
 - e) System data error: 10 to the -8 Bps, minimum.
- 3) Fiber optic:
 - a) Isolation (outlet-outlet): 36 dB.
 - b) Signal Level: 0 dBmV + 0.1 dBmV.
 - c) System speed: 540 mBps, minimum.
 - d) System data error: 10 to the -6 bps, minimum.

1.2 RELATED WORK

- A. Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Specification Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Specification Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Specification Section 27 10 00, STRUCTURED CABLING.
- E. Specification Section 26 27 26, WIRING DEVICES.
- F. Specification Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- G. Specification Section 27 51 16, PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS.
- H. H-088-C3, VA HANDBOOK DESIGN FOR TELEPHONE SYSTEMS

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only. Except for a specific date given the issue in effect (including amendments, addenda, revisions, supplements, and errata) on the date the system's submittal is technically approved by VA, shall be enforced. B. National Fire Protection Association (NFPA):

70	NATIONAL ELECTRICAL CODE (NEC)	
75	Protection of Electronic Computer/Data Processing Equipment	
77	Recommended Practice on Static Electricity	
	Standard for Health Care Facilities	
101	Life Safety Code	
1221	Emergency Services Communication Systems	

C. Underwriters Laboratories, Inc. (UL):

65	Wired Cabinets
96	Lightning Protection Components
96A	INSTALLATION REQUIREMENTS FOR LIGHTNING PROTECTION SYSTEMS
467	Grounding and Bonding Equipment
497/497A/497B	PROTECTORS FOR PAIRED CONDUCTORS/ COMMUNICATIONS CIRCUITS/DATA COMMUNICATIONS AND FIRE ALARM CIRCUITS
884	Underfloor Raceways and Fittings

D. ANSI/EIA/TIA Publications:

568B	Commercial Building Telecommunications Wiring Standard
569B	Commercial Building Standard for Telecommunications Pathways and Spaces
606A	ADMINISTRATION STANDARD FOR THE TELECOMMUNICATIONS INFRASTRUCTURE OF COMMERCIAL BUILDINGS
607A	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings
758	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings

- E. Lucent Technologies: Document 900-200-318 "Outside Plant Engineering Handbook".
- F. International Telecommunication Union Telecommunication Standardization Sector (ITU-T).
- G. Federal Information Processing Standards (FIPS) Publications.
- H. Federal Communications Commission (FCC) Publications: Standards for telephone equipment and systems.

- I. United States Air Force: Technical Order 33K-1-100 Test Measurement and Diagnostic Equipment (TMDE) Interval Reference Guide.
- J. Joint Commission on Accreditation of Health Care Organization (JCAHO): Comprehensive Accreditation Manual for Hospitals.
- K. National and/or Government Life Safety Code(s): The more stringent of each listed code.

1.4 QUALITY ASSURANCE

- A. The authorized representative of the OEM, shall be responsible for the design, satisfactory total operation and certification of the System.
- B. The OEM shall meet the minimum requirements identified in Paragraph 2.1.A. Additionally, Contractor shall have had experience with three or more installations of systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identification of these installations shall be provided as a part of submittal identified in Paragraph 1.5.
- C. The System Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The System Contractor shall be authorized by the OEM to certify and warranty the installed equipment. In addition, the OEM and System Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certification must be provided in writing as part of the Contractor's Technical Submittal.
- D. All equipment, cabling, terminating hardware, TCOs, and patch cords shall be sourced from the certifying OEM or at the OEM's direction, and support the System design, the OEM's quality control and validity of the OEM's warranty.
- E. The Contractor's Telecommunications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the COR before being allowed to commence work on the System.

1.5 SUBMITTALS

- A. Provide submittals in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. The COR shall retain one copy for review and approval.
 - If the submittal is approved the COR shall retain one copy for Official Records and return three (3) copies to the Contractor.
 - 2. If the submittal is disapproved, three (3) copies will be returned to the Contractor with a written explanation attached that indicates the areas the submittal deviated from the System specifications. The COR shall retain one copy for Official Records.
- B. Environmental Requirements: Technical submittals shall confirm the environmental specifications for physical TC areas occupied by the System. These environmental specifications shall identify the requirements for initial and expanded system configurations for:
 - 1. Floor loading for batteries and cabinets.
 - 2. Minimum floor space and ceiling heights.
 - 3. Minimum size of doors for equipment passage.
 - 4. Power requirements: The Contractor shall provide the specific voltage, amperage, phases, and quantities of circuits required.
- C. Documents: The submittal shall be separated into sections for each subsystem and shall contain the following:
 - 1. Title page to include:
 - a. VA Medical Center.
 - b. Contractor's name, address, and telephone (including FAX)
 numbers.
 - c. Date of Submittal.
 - d. VA Project No.
 - List containing a minimum of three locations of installations of similar size and complexity as identified herein. These locations shall contain the following:
 - a. Installation Location and Name.
 - b. Owner's or User's name, address, and telephone (including FAX) numbers.
 - c. Date of Project Start and Date of Final Acceptance by Owner.
 - d. System Project Number.
 - e. Brief (three paragraphs minimum) description of each system's function, operation, and installation.

- 3. Narrative Description of the system.
- 4. A List of the equipment to be furnished. The quantity, make, and model number of each item is required.
- 5. Pictorial layouts of each MTC, IMTC, and RTCs; MCCS, IMCCS, VCCS, and HCCS termination cabinet(s), each distribution cabinet layout drawing, and TCO as each is expected to be installed and configured.
- Equipment technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
- 7. List of test equipment as per paragraph 1.5.D. below.
- 8. Letter certifying that the Contractor understands the requirements of the SAMPLES Paragraph 1.5.E.
- 9. Letter certifying that the Contractor understands the requirements of Section 3.2 concerning acceptance tests.
- D. Test Equipment List:
 - The Contractor is responsible for furnishing all test equipment required to test the system in accordance with the parameters specified. Unless otherwise stated, the test equipment shall not be considered part of the system. The Contractor shall furnish test equipment of accuracy better than the parameters to be tested.
 - 2. The test equipment furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
 - a. Spectrum Analyzer.
 - b. Signal Level Meter.
 - c. Volt-Ohm Meter.
 - d. Time Domain Reflectometer (TDR) with strip chart recorder (Data and Optical Measuring).
 - e. Bit Error Test Set (BERT).
 - f. Camera with a minimum of 60 pictures to that will develop immediately to include appropriate test equipment adapters. A video camera in VHS format is an acceptable alternate.
- E. Samples: A sample of each of the following items shall be furnished to the COR for approval prior to installation.
 - 1. TCO Wall Outlet Box 4" x 4"x 2.5" with:
 - a. One each telephone (or voice) rj45 jack installed.

- b. Two each multi pin data rj45 jacks installed.
- c. Cover Plate installed.
- 2. Data CCS patch panel, punch block or connection device with RJ45 connectors installed.
- 3. Telephone CCS system with IDC and/or RJ45 connectors and cable terminal equipment installed.
- 4. Fiber optic CCS patch panel or breakout box with cable management equipment and "ST" connectors installed.
- 5. 610 mm (2 ft.) section of each copper cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
- 610 mm (2 ft.) section of each fiber optic cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
- F. Certifications:
 - Submit written certification from the OEM indicating that the proposed supervisor of the installation and the proposed provider of the contract maintenance are authorized representatives of the OEM. Include the individual's exact name and address and OEM credentials in the certification.
 - 2. Submit written certification from the OEM that the wiring and connection diagrams meet National and/or Government Life Safety Guidelines, NFPA, NEC, UL, this specification, and JCAHCO requirements and instructions, requirements, recommendations, and guidance set forth by the OEM for the proper performance of the System as described herein. The VA will not approve any submittal without this certification.
 - 3. Pre-acceptance Certification: This certification shall be made in accordance with the test procedure outlined in paragraph 3.2.B.
- G. Equipment Manuals: Fifteen (15) working days prior to the scheduled acceptance test, the Contractor shall deliver four complete sets of commercial operation and maintenance manuals for each item of equipment furnished as part of the System to the RE. The manuals shall detail the theory of operation and shall include narrative descriptions, pictorial illustrations, block and schematic diagrams, and parts list.
- H. Record Wiring Diagrams:
 - Fifteen (15) working days prior to the acceptance test, the Contractor shall deliver four complete sets of the Record Wiring

Diagrams of the System to the RE. The diagrams shall show all inputs and outputs of electronic and passive equipment correctly identified according to the markers installed on the interconnecting cables, Equipment and room/area locations.

2. The Record Wiring Diagrams shall be in hard copy and two compact disk (CD) copies properly formatted to match the Facility's current operating version of Computer Aided Drafting (AutoCAD) system. The COR shall verify and inform the Contractor of the version of AutoCAD being used by the Facility.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. System Requirements:
 - The System shall provide the following minimum services that are designed in accordance with and supported by an Original Equipment Manufacturer (OEM), and as specified herein. System shall provide continuous voice and data, service. System shall be capacity sized so that loss of connectivity to external telephone systems shall not affect Facilities operation in specific designated locations. System shall:
 - a. Be capable of inter-connecting and functioning fully with the existing Local Telephone Exchange (LEC) Network(s), Federal Telephone System (FTS) Inter-city Network(s), Inter-exchange Carriers, Integrated Services Digital Network (ISDN), Electronic Private Branch Exchange (EPBX) switches, asynchronous/synchronous data terminals and circuits including Automatic Transfer Mode (ATM), Frame Relay, and local area networks (LAN), at a minimum.
 - b. Be a voice and data cable distribution system that is based on a physical "Star" Topology. c. Be compatible with and able to provide direct digital connection to trunk level equipment including, but, not limited to: directly accessing trunk level equipment including the telephone system, audio paging, Industry Standard "T" and/or "DS" carrier services and external protocol converters. Additionally, connections to "T" and/or "DS" access/equipment or Customer Service Units (CSU) that are used in FTS and other trunk applications shall be included in the System design. Provide T-1 access/equipment (or CSU), as required for use, in FTS and other trunk applications by system design if this

equipment is not provided by the existing telephone system and/or will be deactivated by the installation of the System. The Contractor shall provide all T-1 equipment necessary to terminate and make operational the quantity of circuits designated. The CSU's shall be connected to the System's emergency battery power supply. The System shall be fully capable of operating in the Industry Standard "DS" protocol and provide that service when required.

- B. System Performance:
 - At a minimum, the System shall be able to support the following voice and data operations for Category 6 Certified Telecommunication Service:
 - a. Provide the following interchange (or interface) capabilities:
 - 1) Basic Rate (BRI).
 - 2) Primary Rate (PRI).
 - b. ISDN measured at new rack in existing telecom room:
 - 1) Narrow Band BRI.
 - a) B Channel: 64 kilo-Bits per second (kBps), minimum.
 - b) D Channel: 16 kBps, minimum.
 - c) H Channel: 384 kBps, minimum.
 - 2) Narrow Band PRI:
 - a) B Channel: 64 kBps, minimum.
 - b) D Channel: 64 kBps, minimum.
 - c) H Channel: 1,920 kBps, minimum.
 - 3) Wide (or Broad) Band:
 - a) All channels: 140 mega (m)-Bps, minimum, capable to 565 mBps at "T" reference.
 - c. ATM operation and interface: ATM 155 mBps measured at new rack in existing telecom room.
 - d. Frame Relay: All stated compliance's measured at at new rack in existing telecom room.
 - e. Integrated Data Communications Utility (IDCU) operation and interface: Measured at new rack in existing telecom room.
 - f. Government Open Systems Interconnection Profile (GOSSIP) compliant: Measured at new rack in existing telecom room.
 - g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga(g)-Bps data bit stream speed measured at

new rack in existing telecom room. (shall be Synchronous Optical Network [Sonet] compliant).

- h. System Sensitivity: Satisfactory service shall be provided for at least 3,000 feet for all voice and data locations.
- 2. At a minimum the System shall support the following operating parameters:
 - a. EPBX connection:
 - 1) System speed: 1.0 gBps per second, minimum.
 - 2) Impedance: 600 Ohms.
 - 3) Cross Modulation: -60 deci-Bel (dB).
 - 4) Hum Modulation: -55 Db.
 - 5) System data error: 10 to the -10 Bps, minimum loss measured at the frame output with reference Zero (0) deciBel measured (dBm) at 1,000 Hertz (Hz) applied to the frame input.
 - a) Trunk to station: 1.5 dB, maximum.
 - b) Station to station: 3.0 dB, maximum.
 - c) Internal switch crosstalk: -60 dB when a signal of <u>+</u> 10 deciBel measured (dBm), 500-2,500 Hz range is applied to the primary path.
 - d) Idle channel noise: 25 dBm "C" or 3.0 dBm "O" above reference (terminated) ground noise, whichever is greater.
 - e) Traffic Grade of Service for Voice and Data:

(1) A minimum grade of service of P-01 with an average traffic load of 7.0 CCS per station per hour and a traffic overload in the data circuits will not interfere with, or degrade, the voice service.

(2) Average CCS per voice station: The average CCS capacity per voice station shall be maintained at 7.0 CCS when the EPBX is expanded up to the projected maximum growth as stated herein.

- b. Telecommunications Outlet (TCO):
 - 1) Voice:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, balanced (BAL).
 - c) Signal Level: 0 deciBel per mili-Volt (dBmV) + 0.1 dBmV.
 - d) System speed: 100 mBps, minimum.
 - e) System data error: 10 to the -6 Bps, minimum.

- 2) Data:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, BAL.
 - c) Signal Level: 0 dBmV + 0.1 dBmV.
 - d) System speed: 120 mBps, minimum.
 - e) System data error: 10 to the -8 Bps, minimum.
- C. General:
 - 1. All equipment to be supplied under this specification shall be new and the current model of a standard product of an OEM or record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
 - a. Maintains a stock of replacement parts for the item submitted.
 - b. Maintains engineering drawings, specifications, and operating manuals for the items submitted.
 - c. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid.
 - 2. Specifications of equipment as set forth in this document are minimum requirements, unless otherwise stated, and shall not be construed as limiting the overall quality, quantity, or performance characteristics of items furnished in the System. When the Contractor furnishes an item of equipment for which there is a specification contained herein, the item of equipment shall meet or exceed the specification for that item of equipment.
 - 3. The Contractor shall provide written verification, in writing to the COR at time of installation, that the type of wire/cable being provided is recommended and approved by the OEM. The Contractor is responsible for providing the proper size and type of cable duct and/or conduit and wiring even though the actual installation may be by another subcontractor.
 - 4. The Telephone Contractor is responsible for providing interfacing cable connections for the telephone and PA systems with the System.
 - 5. The telephone equipment and PA interface shall be the interface points for connection of the PA interface cabling from the telephone switch via the system telephone interface unit.

- Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of FCC standards for telephone equipment, systems, and service.
- 7. All passive distribution equipment shall meet or exceed -80 dB radiation shielding specifications.
- 8. All interconnecting twisted pair, fiber-optic cables shall be terminated on equipment terminal boards, punch blocks, breakout boxes, splice blocks, and unused equipment ports/taps shall be terminated according to the OEM's instructions for telephone cable systems without adapters. The Contractor shall not leave unused or spare twisted pair wire, fiber-optic cable unterminated, unconnected, loose or unsecured.
- 9. Color code all distribution wiring to conform to the Telephone Industry standard, EIA/TIA, and this document, which ever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance. Reference Specification Section 27 10 00, STRUCTURED CABLING.
- 10. Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC power distribution system as shown on the plans or if not shown on the plans consult with COR regarding a suitable circuit location prior to bidding.
- 11. Plug-in connectors shall be provided to connect all equipment, except coaxial cables and interface points. Coaxial cable distribution points and RF transmission lines shall use coaxial cable connections recommended by the cable OEM and approved by the System OEM. Base- band cable systems shall utilize barrier terminal screw type connectors, at a minimum. Crimp type connectors installed with a ratchet type installation tool are and acceptable alternate as long as the cable dress, pairs, shielding, grounding, and connections and labeling are provided the same as the barrier terminal strip connectors. Tape of any type, wire nuts, or solder type connections are unacceptable and will not be approved.

- 12. All equipment faceplates utilized in the System shall be stainless steel, anodized aluminum, or UL approved cycolac plastic for the areas where provided.
- 13. Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.
- D. Equipment Functional Characteristics:

FUNCTIONS	CHARACTERISTICS
Input Voltage	105 to 130 VAC
POWER LINE FREQUENCY	60 HZ ±2.0 HZ
Operating Temperature	O to 50 degrees (°) Centigrade (C)
Humidity	80 percent (%) minimum rating

- E. Equipment Standards and Testing:
 - The System has been defined herein as connected to systems identified as Critical Care performing Life Support Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.
 - 2. All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory where such standards have been established for the supplies, materials or equipment. See paragraph minimum requirements Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, and the guidelines listed in paragraph 2.J.2.
 - 3. The provided active and passive equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the COR approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.

4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards.

2.2 EQUIPMENT ITEMS

- A. Stand Alone Equipment Rack:
 - 1. The rack shall be constructed of heavy 16 gauge cold rolled steel and have fully adjustable equipment front mounting rails that allows front panel equipment mounting and access. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using Facility Service Chief or the RE. It shall be floor or wall mounted or mounted on casters as directed by the RE.
 - 2. Technical Characteristics:

Overall Height	2180 mm (85 7/8in.), maximum
Overall Depth	650 mm (25 1/2in.), maximum
Overall Width	535 mm (21 1/16in.), maximum
Front Panel Opening	480 mm (19in.), EIA horizontal width
Hole Spacing	per EIA and Industry Standards

- B. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:
 - 1. The connector panel(s) shall be made of flat smooth 3.175 mm (1/8 in.) thick solid aluminum, custom designed, fitted and installed in the cabinet. Bulkhead equipment connectors shall be mounted on the panel to enable all cabinet equipment's signal, control, and coaxial cables to be connected through the panel. Each panel shall be color matched to the cabinet installed.
 - a. Voice (or Telephone):
 - 1) The CSS for voice or telephone service shall be Industry Standard type 110 (minimum) punch blocks for voice or telephone, and control wiring in lieu of patch panels, each being certified for category six service. IDC punch blocks (with internal RJ45 jacks) are acceptable for use in all CCS and shall be specifically designed for category six telecommunications service and the size and type of UTP cable used as described herein. As a minimum, punch block strips shall be secured to an OEM designed physical anchoring unit on a wall location in the MTC, IMTC, RTC, and TC. However, console, cabinet, rail, panel, etc. mounting is allowed at the

OEM recommendation and as approved by the RE. Punch blocks shall not be used for Class II or 120 VAC power wiring.

2) Technical Characteristics:

Number of horizontal rows	100, MINIMUM
Number of terminals per row	4, minimum
Terminal protector	required for each used or unused terminal
Insulation splicing	required between each row of terminals

- b. Digital or High Speed Data:
 - The CSS for digital or high-speed data service shall be a patch panel with modular female RJ45 jacks installed in rows. Patch panels and RJ45 jacks shall be specifically designed for category six telecommunications service and the size and type of UTP or STP cable used. Each panel shall be 480 mm (19in.) horizontal EIA rack mountable dimensions with EIA standard spaced vertical mounting holes.
 - 2) Technical Characteristics:

Number of horizontal rows	2, minimum
Number of jacks per row	24, MINIMUM
Type of jacks	RJ45
Terminal protector	required for each used or unused jack
Insulation	required between each row of jacks

- c. Fiber optic:
 - Product reference of a Government Approved (US State Department) type is Telewire, PUP-17 with pre-punched chassis mounting holes arranged in two horizontal rows. This panel may be used for fiber optic, audio, control cable, and Class II Low Voltage Wiring installations when provided with the proper connectors. This panel is not allowed to be used for 120 VAC power connections.

Height	Two rack units (RUs), 88 mm (3.5in.) minimum
Width	484 mm (19 1/16in.), EIA minimum
Number of connections	12 pairs, minimum
Connectors	
Audio Service	Use RCA 6.35 mm (1/4in.) Phono, XL or Barrier Strips, surface mounted with spade lugs (punch block or wire wrap type strips are acceptable alternates for barrier strips as long as system design is maintained and COR approved)
Control Signal Service	Barrier strips surface mounted with spade lugs (punch block or wire wrap type strips are acceptable alternates for barrier strips as long as system design is maintained and COR approved)
Low voltage power (class II)	Barrier strips with spade lugs and clear full length plastic cover, surfaced mounted
Fiber optic	"ST" Stainless steel, female

2) Technical Characteristics:

d. Mounting Strips and Blocks:

- Barrier Strips: Barrier strips are approved for AC power, data, voice, and control cable or wires. Barrier strips shall accommodate size and type of audio spade (or fork type) lugs used with insulating and separating strips between terminals for securing separate wires in a neat and orderly fashion. Each cable or wire end shall be provided with an audio spade lug, which is connected to an individual screw terminal on the barrier strip. The barrier strips shall be surface secured to a console, cabinet, rail, panel, etc. 120 VAC power wires shall not be connected to signal barrier strips.
- 2) Technical Characteristics:

Terminal size	6-32, minimum
Terminal Count	ANY COMBINATION
Wire size	20 AWG, minimum
Voltage handling	100 V, minimum
Protective connector cover	Required for Class II and 120 VAC power connections

- Solderless Connectors: The connectors (or fork connectors) shall be crimp-on insulated lug to fit a 6-32 minimum screw terminal. The fork connector shall be installed using a standard lug-crimping tool.
- 3. Punch Blocks: As a minimum, Industry Standard 110 type punch blocks are approved for data, voice, and control wiring. Punch blocks shall be specifically designed for the size and type of wire used. Punch block strips shall be secured to a console, cabinet, rail, panel, etc. Punch blocks shall not be used for Class II or 120 VAC power wiring.
- 4. Wire Wrap Strips: Industry Standard wire wrap strips (16.5 mm (0.065in.) wire wrap minimum) are approved for data, voice and control wiring. Wire wrap strips shall be secured to a cabinet, rail, panel, etc. Wire wrap strips shall not be used for Class II or 120 VAC power wiring.
- C. Wire Management System and Equipment:
 - 1. Wire Management System: The system(s) shall be provided as the management center of the respective cable system, CCS, and TC it is incorporated. It shall perform as a platform to house peripheral equipment in a standard relay rack or equipment cabinet. It shall be arranged in a manner as to provide convenient access to all installed management and other equipment. All cables and connections shall be at the rear of each system interface to IDC and/or patch panels, punch blocks, wire wrap strips, and/or barrier strip.
 - 2. Wire Management Equipment: The wire management equipment shall be the focal point of each wire management system. It shall provide an orderly interface between outside and inside wires and cables (where used), distribution and interface wires and cables, interconnection wires and cables and associated equipment, jumper cables, and provide a uniform connection media for all system fire retardant wires and cables and other subsystems. It shall be fully compatible and interface to each cable tray, duct, wireway, or conduit used in the system. All interconnection or distribution wires and cables shall enter the system at the top (or from a wireway in the floor) via a overhead protection system and be uniformly routed down either side (or both at the same time) of the frames side protection system

then laterally via a anchoring or routing shelf for termination on the rear of each respective terminating assembly. Each system shall be custom configured to meet the System design and user needs.

2.3 ENVIRONMENTAL REQUIREMENTS

Technical submittals shall identify the environmental specifications for housing the system. These environmental specifications shall identify the requirements for initial and expanded system configurations for:

- A. Floor loading for batteries and cabinets.
- B. Minimum floor space and ceiling heights.
- C. Minimum size of doors for equipment passage.
- D. Power requirements: The bidders shall provide the specific voltage, amperage, phases, and quantities of circuits required.

2.4 INSTALLATION KIT

The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the COR all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware. The following are the minimum required installation sub-kits:

- A. System Grounding:
 - The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
 - 2. This includes, but is not limited to:
 - a. Coaxial Cable Shields.
 - b. Control Cable Shields.
 - c. Data Cable Shields.
 - d. Equipment Racks.
 - e. Equipment Cabinets.
 - f. Conduits.
 - g. Duct.

- h. Cable Trays.
- i. Power Panels.
- j. Connector Panels.
- k. Grounding Blocks.
- B. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- C. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- D. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- E. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- F. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- G. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Product Delivery, Storage and Handling:
 - Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The COR may inventory the cable, patch panels, and related equipment.

- Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the RE.
- B. System Installation:
 - After the contract's been awarded, and within the time period specified in the contract, the Contractor shall deliver the total system in a manner that fully complies with the requirements of this specification. The Contractor shall make no substitutions or changes in the System without written approval from the COR and PM.
 - 2. The Contractor shall install all equipment and systems in a manner that complies with accepted industry standards of good practice, OEM instructions, the requirements of this specification, and in a manner which does not constitute a safety hazard. The Contractor shall insure that all installation personnel understands and complies with all the requirements of this specification.
 - 3. The Contractor shall install suitable filters, traps, directional couplers, splitters, TC's, and pads for minimizing interference and for balancing the System. Items used for balancing and minimizing interference shall be able to pass telephone and data signals in the frequency bands selected, in the direction specified, with low loss, and high isolation, and with minimal delay of specified frequencies and signals. The Contractor shall provide all equipment necessary to meet the requirements of Paragraph 2.1.C and the System performance standards.
 - 4. All passive equipment shall be connected according to the OEM's specifications to insure future correct termination, isolation, impedance match, and signal level balance at each telephone/data outlet.
 - 5. Where TCOs are installed adjacent to each other, install one outlet for each instrument.
 - 6. All lines shall be terminated in a suitable manner to facilitate future expansion of the System. There shall be a minimum of one spare 25 pair cable at each distribution point on each floor.
 - 7. All vertical copper and fiber optic cables shall be terminated so any future changes only requires modifications of the EPBX or signal closet equipment only.
 - 8. Terminating resistors or devices shall be used to terminate all unused branches, outlets, equipment ports of the System, and shall

be devices designed for the purpose of terminating fiber optic or twisted pair cables carrying telephone and data systems.

- C. Conduit and Signal Ducts:
 - 1. Conduit:
 - a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weatherheads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed. The minimum conduit size shall be 19 mm (3/4 in.).
 - b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow telephone cables to be installed in partitioned cable tray with data cables may be granted in writing by the COR if requested.) Conduits shall be provided in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.
 - c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
 - d. When "innerduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
 - e. Conduit (including GFE) fill shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.

- f. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- 2. Signal Duct, Cable Duct, or Cable Tray:
 - a. The Contractor shall use existing signal duct, cable duct, and/or cable tray, when identified and approved by the RE.
 - b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
 - c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and be UL certified and labeled for use with telecommunication circuits and/or systems. The COR shall approve width and height dimensions.
- F. Connectors: Circuits, transmission lines, and signal extensions shall have continuity, correct connection and polarity. A uniform polarity shall be maintained between all points in the system.
 - 1. Wires:
 - a. Wire ends shall be neatly formed and where insulation has been cut, heat shrink tubing shall be employed to secure the insulation on each wire. Tape of any type is not acceptable.
 - b. Audio spade lugs shall be installed on each wire (including spare or unused) end and connect to screw terminals of appropriate size barrier strips. AC barrier strips shall be provided with a protective cover to prevent accidental contact with wires carrying live AC current. Punch blocks are approved for signal, not AC wires. Wire Nut or "Scotch Lock" connectors are not acceptable for signal wire installation.
 - Cables: Each connector shall be designed for the specific size cable being used and installed with the OEM's approved installation tool. Typical system cable connectors include; but, are not limited to: Audio spade lug, punch block, wirewrap, etc.

- 3. Line or Microphone Audio: Each connector shall be installed according to the cable or connector OEM's instructions and use the OEM's approved installation tool. Install the connector's to provide and maintain the following audio signal polarity:
 - a. XLR type connectors Signal or positive conductor is pin 3; common or neutral conductor is pin 2; ground conductor is pin 1.
 - b. Two and 3 conductor 1/4" Signal or positive conductor is tip; neutral or 1/8" phono plugs conductor is ring and ground or shield and jacks conductor is sleeve.
 - c. RCA Phono Plugs the Signal or positive conductor is tip; and Jacks neutral or shield conductor is sleeve.
- 4. Speaker Line Audio:
 - a. Each connector shall be installed according to the cable, transformer or speaker OEM instructions and using the OEM's approved installation tool. The Contractor shall ensure each speaker is properly phased and connected in the same manner throughout the System using two conductor type wires.
 - b. One of the conductors shall be color coded to aid in establishing speaker signal polarity. Each speaker line shall be permanently soldered or audio spade lug connected to each appropriate speaker or line matching transformer connection terminal. Speaker line connection to each audio amplifier shall use audio spade lugs, as described herein.

G. AC Power: AC power wiring shall be run separately from signal cable.H. Grounding:

- General: The Contractor shall ground all Contractor Installed Equipment and identified Government Furnished Equipment to eliminate all shock hazards and to minimize, to the maximum extent possible, all ground loops, common mode returns, noise pickup, crosstalk, etc. The total ground resistance shall be 0.1 Ohm or less.
 - a. The Contractor shall install lightning arrestors and grounding in accordance with the NFPA and this specification.
 - b. Under no conditions shall the AC neutral, either in a power panel or in a receptacle outlet, be used for system control, subcarrier or audio reference ground.
 - c. The use of conduit, signal duct or cable trays as system or electrical ground is not acceptable and will not be permitted.

These items may be used only for the dissipation of internally generated static charges (not to be confused with externally generated lightning) that may applied or generated outside the mechanical and/or physical confines of the System to earth ground. The discovery of improper system grounding shall be grounds to declare the System unacceptable and the termination of all system acceptance testing.

- 2. Cabinet Buss: A common ground buss of at least #10 AWG solid copper wire shall extend throughout each equipment cabinet and be connected to the system ground. Provide a separate isolated ground connection from each equipment cabinet ground buss to the system ground. Do not tie equipment ground busses together.
- 3. Equipment: Equipment shall be bonded to the cabinet bus with copper braid equivalent to at least #12 AWG. Self grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternates.
- 4. Cable Shields: Cable shields shall be bonded to the cabinet ground buss with #12 AWG minimum stranded copper wire at only one end of the cable run. Cable shields shall be insulated from each other, faceplates, equipment racks, consoles, enclosures or cabinets; except, at the system common ground point. Coaxial and audio cables, shall have one ground connection at the source; in all cases, cable shield ground connections shall be kept to a minimum.
- I. Equipment Assembly:
 - 1. Cabinets:
 - a. Each enclosure shall be: floor or wall mounted with standard knockout holes for conduit connections or cable entrance; provide for ventilation of the equipment; have front and rear locking doors (except wall mounted cabinets that require only a front locking door); power outlet strip(s), and connector or patch panel(s).
 - b. Rack (including freestanding radio relay) mounted equipment shall be installed in the enclosure's equipment adjustable mounting racks with equipment normally requiring adjustment or observation mounted so operational adjustment(s) can be conveniently made. Heavy equipment shall be mounted with rack slides or rails

allowing servicing from the front of the enclosure. Heavy equipment shall not depend only upon front panel mounting screws for support. Equipment shall be provided with sufficient cable slack to permit servicing by removal of the installed equipment from the front of the enclosure. A color matched blank panel (spacer) of 44 mm (1.75 in.) high, shall be installed between each piece of equipment (active or passive) to insure adequate air circulation. The enclosure shall be designed for efficient equipment cooling and air ventilation. Each console or cabinet shall be equipped with a quiet fan and nondisposable air filter.

- c. Enclosures and racks shall be installed plumb and square. Each shall be permanently attached to the building structure and held firmly in place. Fifteen inches of front vertical space opening shall be provided for additional equipment.
- d. Signal connector, patch, and bulkhead panels (i.e.: audio, data, control, analog video, etc.) shall be connected so that outputs from each source, device or system component shall enter the panel at the top row of jacks, beginning left to right as viewed from the front, which will be called "inputs". Each connection to a load, device or system component shall exit the panel at the bottom row of jacks, beginning left to right as viewed from the front, which will be called "outputs".
 - Equipment located indoors shall be installed in metal racks or enclosures with hinged doors to allow access for maintenance without causing interference to other nearby equipment.
 - Cables shall enter the equipment racks or enclosures in such a manner that allows all doors or access panels to open and close without disturbing or damaging the cables.
 - 3) All distribution hardware shall be securely mounted in a manner that allows access to the connections for testing and provides sufficient room for the doors or access panels to open and close without disturbing the cables.
- J. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for voice and data circuits shall be stenciled using laser printers. Handwritten labels are not acceptable.
 - 1. Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A.

Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams".

- Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.
- 3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.
- 4. Termination Hardware: The Contractor shall label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams".

3.2 TESTS

- A. Pretesting:
 - Upon completing the installation of the System, the Contractor shall align and balance the system. The Contractor shall pretest the entire system.
 - 2. Pretesting Procedure:
 - a. During the system pretest, the Contractor shall verify (utilizing the approved spectrum analyzer and test equipment) that the System is fully operational and meets all the system performance requirements of this standard.
 - b. The Contractor shall pretest and verify that all System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. The Contractor shall measure and record the aural carrier levels of each system telephone and data channel, at each of the following points in the system:
 - 1) Local Telephone Company Interfaces or Inputs.
 - 2) EPBX interfaces or inputs and outputs.
 - 3) MDF interfaces or inputs and outputs.
 - 4) EPBX output S/NR for each telephone and data channel.

- 5) Signal Level at each interface point to the distribution system, the last outlet on each trunk line plus all outlets installed as part of this contract.
- 3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the RE.
- B. Acceptance Test:
 - 1. After the System has been pretested and the Contractor has submitted the pretest results and certification to the RE, then the Contractor shall schedule an acceptance test date and give the COR 30 days written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of a Government Representative and an OEM certified representative. The System shall be tested utilizing the approved test equipment to certify proof of performance and Life Safety compliance. The test shall verify that the total System meets the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
- C. Performance Testing:
 - Perform Category 6 tests in accordance with ANSI/EIA/TIA-568-B.1 and ANSI/EIA/TIA-568-B.2. Test shall include the following: wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
 - 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with ANSI/EIA/TIA-568-B.3.
- D. Total System Acceptance Test: The Contractor shall perform verification tests for UTP copper cabling system(s) and the single mode fiber optic cabling system(s) after the complete telecommunication distribution system and workstation outlet are installed.
 - Voice Testing: Connect to the network interface device at the demarcation point. Go off-hook and receive dial tone from the LEC. If a test number is available, place and receive a local, long distance, and FTS telephone call.
 - Data Testing: Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network is achieved.

3.3 TRAINING

- A. Furnish the services of a factory-trained engineer or technician for a total of two four hour classes to instruct designated Facility IRM personnel. Instruction shall include cross connection, corrective, and preventive maintenance of the System and equipment.
- B. Before the System can be accepted by the VA, this training must be accomplished. Training will be scheduled at the convenience of the Facilities Contracting Officer and Chief of Engineering Service.

3.4 WARRANTY

- A. Comply with FAR clause 52.246-21, except that warranty shall be as follows:
 - The Contractor shall warranty that all installed material and equipment will be free from defects, workmanship, and will remain so for a period of one year from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the COR, that certifies each item of equipment installed conforms to OEM published specifications.
 - 2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. The Contractor and OEM shall provide this contact capability at no additional cost to the VA.
 - 3. All Contractor installation, maintenance, and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
 - 4. Additionally, the Contractor shall accomplish the following minimum requirements during the one year warranty period:
 - a. Response Time:
 - The COR is the Contractor's reporting and contact officials for the System trouble calls, during the guarantee period.
 - A standard workweek is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal Holidays.
 - 3) The Contractor shall respond and correct on-site trouble calls, during the standard work week to:

- a) A routine trouble call within one working days of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
- b) An emergency trouble call within 6 hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable anytime. Additionally, the loss of a minimum of 50 station or system lines shall be deemed as this type of a trouble call.
- 4) The Contractor shall respond on-site to a catastrophic trouble call within 4 hours of its report. A catastrophic trouble call is considered total system failure.
 - a) If a system failure cannot be corrected within four hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate system CSS or TCO equipment, or cables. The alternate equipment and/or cables shall be operational within four hours after the four hour trouble shooting time.
 - b) Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as a catastrophic trouble call if so determined by the COR. The COR shall notify the Contractor of this type of trouble call at the direction of the Facilities Director.
- b. Required on-site visits during the one year warranty period
 - The Contractor shall visit, on-site, for a minimum of eight hours, once every 12 weeks, during the guarantee period, to perform system preventive maintenance, equipment cleaning, and operational adjustments to maintain the System according the descriptions identified in this SPEC.
 - a) The Contractor shall arrange all Facility visits with the COR prior to performing the required maintenance visits.
 - b) The Contractor in accordance with the OEM's recommended practice and service intervals shall perform preventive maintenance during a non-busy time agreed to by the COR and the Contractor.

- c) The preventive maintenance schedule, functions and reports shall be provided to and approved by the COR.
- 2) The Contractor shall provide the COR a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the COR with sample copies of these reports for review and approval at the beginning of the Total System Acceptance Test. The following reports are the minimum required:
 - a) Monthly Report: The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this guarantee period to COR by the fifth working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and Systems for preventive and predictive maintenance
 - b) Contractor Log: The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
- 3) The COR shall provide the Facility Engineering Officer, two
 - (2) copies of actual reports for evaluation.
 - a) The COR shall ensure copies of these reports are entered into the System's official acquisition documents.
 - b) The Facilities Chief Engineer shall ensure copies of these reports are entered into the System's official technical as-installed documents.
- B. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use, accidents, other vendor, contractor, owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the COR in writing upon the discovery of these

incidents. The COR will investigate all reported incidents and render findings concerning any Contractor's responsibility.

- - - E N D - - -

SECTION 27 15 00 COMMUNICATIONS HORIZONTAL CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section specifies the furnishing, installing, certification, testing, and guaranty of a complete and operating Voice and Digital Cable Distribution System (here-in-after referred to as "the System"), and associated equipment and hardware to be installed in the VA Medical Center here-in-after referred to as "the Facility". The System shall include, but not be limited to: equipment cabinets, interface enclosures, and relay racks; necessary combiners, traps, and filters; and necessary passive devices such as: splitters, couplers, cable "patch", "punch down", and cross-connector blocks or devices, voice and data distribution sub-systems, and associated hardware. The System shall additionally include, but not be limited to: telecommunication closets (TC); telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, and/or "break out" devices.
- B. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- C. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by Contractor.
- D. The Voice and Digital Telecommunication Distribution Cable Equipment and System provides the media which voice and data information travels over and connects to the Telephone System which is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Therefore, since the System connects to or extends the telephone system, the System's installation and operation shall adhere to all appropriate National, Government, and/or Local Life Safety and/or Support Codes, which ever are the more stringent for this Facility. At a minimum , the System shall be installed according to NFPA, Section 70, National Electrical Code (NEC), Article 517 and Chapter 7; NFPA, Section 99, Health Care Facilities, Chapter 3-4; NFPA, Section 101, Life Safety Code, Chapters 7, 12, and/or 13; Joint Commission on Accreditation of Health Care

Organization (JCAHCO), Manual for Health Care Facilities, all necessary Life Safety and/or Support guidelines; this specification; and the original equipment manufacturer's (OEM) suggested installation design, recommendations, and instructions. The OEM and Contractor shall ensure that all management, sales, engineering, and installation personnel have read and understand the requirements of this specification before the System is designed, engineered, delivered, and provided.

- E. The VA Project Manager (PM) and/or if delegated, Contracting Officers Representative (COR) are the approving authorities for all contractual and mechanical changes to the System. The Contractor is cautioned to obtain in writing, all approvals for system changes relating to the published contract specifications and drawings, from the PM and/or the COR before proceeding with the change.
- F. System Performance:
 - At a minimum, the System shall be able to support the following voice and data operations for Category 6 Certified Telecommunication Service:
 - a. Provide the following interchange (or interface) capabilities:
 - 1) Basic Rate (BRI).
 - 2) Primary Rate (PRI).
 - b. ISDN measured at the new rack in the existing telecom room:
 - 1) Narrow Band BRI:
 - a) B Channel: 64 kilo-Bits per second (kBps), minimum.
 - b) D Channel: 16 kBps, minimum.
 - c) H Channel: 384 kBps, minimum.
 - 2) Narrow Band PRI:
 - a) B Channel: 64 kBps, minimum.
 - b) D Channel: 64 kBps, minimum.
 - c) H Channel: 1,920 kBps, minimum.
 - 3) Wide (or Broad) Band: All channels: 140 mega(m)-Bps, minimum, capable to 565 mBps at "T" reference.
 - c. ATM operation and interface: ATM 155 mBps measured at new rack in existing telecom room.
 - d. Frame Relay: All stated compliance's measured at new rack in existing telecom room.
 - e. Integrated Data Communications Utility (IDCU) operation and interface: Measured at new rack in existing telecom room.

- f. Government Open Systems Interconnection Profile (GOSSIP) compliant: Measured at new rack in existing telecom room.
- g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga(g)-Bps data bit stream speed measured at new rack in existing telecom room (shall be Synchronous Optical Network [SONET] compliant).
- h. System Sensitivity: Satisfactory service shall be provided for at least 3,000 feet for all voice and data locations.
- 2. At a minimum the System shall support the following operating parameters:
 - a. EPBX connection:
 - 1) System speed: 1.0 gBps per second, minimum.
 - 2) Impedance: 600 Ohms.
 - 3) Cross Modulation: -60 deci-Bel (dB).
 - 4) Hum Modulation: -55 dB.
 - 5) System data error: 10 to the -10 Bps, minimum.
 - 6) Loss: Measured at the frame output with reference Zero (0) deciBel measured (dBm) at 1,000 Hertz (Hz) applied to the frame input.
 - a) Trunk to station: 1.5 dB, maximum.
 - b) Station to station: 3.0 dB, maximum.
 - c) Internal switch crosstalk: -60 dB when a signal of <u>+</u> 10 deciBel measured (dBm), 500-2,500 Hz range is applied to the primary path.
 - d) Idle channel noise: 25 dBm "C" or 3.0 dBm "O" above reference (terminated) ground noise, whichever is greater.
 - e) Traffic Grade of Service for Voice and Data:
 - (1) A minimum grade of service of P-01 with an average traffic load of 7.0 CCS per station per hour and a traffic overload in the data circuits will not interfere with, or degrade, the voice service.

(2) Average CCS per voice station: The average CCS capacity per voice station shall be maintained at 7.0 CCS when the EPBX is expanded up to the projected maximum growth as stated herein.

- b. Telecommunications Outlet (TCO):
 - 1) Voice:

VA Medical Center, Huntington, WV Renovate 3W for Surgery Administration

- a) Isolation (outlet-outlet): 24 dB.
- b) Impedance: 600 Ohms, balanced (BAL).
- c) Signal Level: 0 deciBel per mili-Volt (dBmV) + 0.1 dBmV.
- d) System speed: 100 mBps, minimum.
- e) System data error: 10 to the -6 Bps, minimum.
- 2) Data:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, BAL.
 - c) Signal Level: 0 dBmV + 0.1 dBmV.
 - d) System speed: 120 mBps, minimum.
 - e) System data error: 10 to the -8 Bps, minimum.
- 3) Fiber optic:
 - a) Isolation (outlet-outlet): 36 dB.
 - b) Signal Level: 0 dBmV + 0.1 dBmV.
 - c) System speed: 540 mBps, minimum.
 - d) System data error: 10 to the -6 bps, minimum.

1.2 RELATED WORK

- A. Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Specification Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Specification Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Specification Section 27 10 00, STRUCTURED CABLING.
- E. Specification Section 26 27 26, WIRING DEVICES.
- F. Specification Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- G. Specification Section 27 31 00, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT.
- H. Specification Section 27 31 31, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT - EXTENSION.
- I. Specification Section 27 51 16, PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only. Except for a specific date given the issue in effect

(including amendments, addenda, revisions, supplements, and errata) on the date the system's submittal is technically approved by VA, shall be enforced.

B. National Fire Protection Association (NFPA):

70	NATIONAL ELECTRICAL CODE (NEC)	
75	Protection of Electronic Computer/Data Processing Equipment	
77	Recommended Practice on Static Electricity	
	Standard for Health Care Facilities	
101	Life Safety Code	
1221	Emergency Services Communication Systems	

C. Underwriters Laboratories, Inc. (UL):

65	Wired Cabinets
96	Lightning Protection Components
96A	INSTALLATION REQUIREMENTS FOR LIGHTNING PROTECTION SYSTEMS
467	Grounding and Bonding Equipment
497/497A/497B	PROTECTORS FOR PAIRED CONDUCTORS/ COMMUNICATIONS CIRCUITS/DATA COMMUNICATIONS AND FIRE ALARM CIRCUITS
884	Underfloor Raceways and Fittings

D. ANSI/EIA/TIA Publications:

568B	Commercial Building Telecommunications Wiring Standard
569B	Commercial Building Standard for Telecommunications Pathways and Spaces
606A	ADMINISTRATION STANDARD FOR THE TELECOMMUNICATIONS INFRASTRUCTURE OF COMMERCIAL BUILDINGS
607A	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings
758	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings

- E. Lucent Technologies: Document 900-200-318 "Outside Plant Engineering Handbook".
- F. International Telecommunication Union Telecommunication Standardization Sector (ITU-T).

- G. Federal Information Processing Standards (FIPS) Publications.
- H. Federal Communications Commission (FCC) Publications: Standards for telephone equipment and systems.
- I. United States Air Force: Technical Order 33K-1-100 Test Measurement and Diagnostic Equipment (TMDE) Interval Reference Guide.
- J. Joint Commission on Accreditation of Health Care Organization (JCAHO): Comprehensive Accreditation Manual for Hospitals.
- K. National and/or Government Life Safety Code(s): The more stringent of each listed code.

1.4 QUALITY ASSURANCE

- A. The authorized representative of the OEM, shall be responsible for the design, satisfactory total operation of the System, and its certification.
- B. The OEM shall meet the minimum requirements identified in Paragraph 2.1.A. Additionally, the Contractor shall have had experience with three or more installations of systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identification of these installations shall be provided as a part of the submittal as identified in Paragraph 1.5.
- C. The System Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The System Contractor shall be authorized by the OEM to certify and warranty the installed equipment. In addition, the OEM and System Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certification must be provided in writing as part of the Contractor's Technical Submittal.
- D. All equipment, cabling, terminating hardware, TCOs, and patch cords shall be sourced from the certifying OEM or at the OEM's direction, and support the System design, the OEM's quality control and validity of the OEM's warranty.
- E. The Contractor's Telecommunications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s)

for the installer(s) as a part of the submittal or to the COR before being allowed to commence work on the System.

1.5 SUBMITTALS

- A. Provide submittals in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. The COR shall retain one copy for review and approval.
 - If the submittal is approved the COR shall retain one copy for Official Records and return three (3) copies to the Contractor.
 - If the submittal is disapproved, three (3) copies will be returned to the Contractor with a written explanation attached that indicates the areas the submittal deviated from the System specifications. The COR shall retain one copy for Official Records.
- B. Environmental Requirements: Technical submittals shall confirm the environmental specifications for physical TC areas occupied by the System. These environmental specifications shall identify the requirements for initial and expanded system configurations for:
 - 1. Minimum floor space and ceiling heights.
 - Power requirements: The Contractor shall provide the specific voltage, amperage, phases, and quantities of circuits required.
 - 3. Proposed floor plan, based on the expanded system configuration of the bidder's proposed EPBX for this FACILITY.
- C. Documents: The submittal shall be separated into sections for each subsystem and shall contain the following:
 - 1. Title page to include:
 - a. VA Medical Center.
 - b. Contractor's name, address, and telephone (including FAX)
 numbers.
 - c. Date of Submittal.
 - d. VA Project No.
 - List containing a minimum of three locations of installations of similar size and complexity as identified herein. These locations shall contain the following:
 - a. Installation Location and Name.
 - b. Owner's or User's name, address, and telephone (including FAX) numbers.
 - c. Date of Project Start and Date of Final Acceptance by Owner.
 - d. System Project Number.

- e. Brief (three paragraphs minimum) description of each system's function, operation, and installation.
- 3. Narrative Description of the system.
- 4. A List of the equipment to be furnished. The quantity, make, and model number of each item is required. 5. Pictorial layouts of each MTC, IMTC, and RTCs; MCCS, IMCCS, VCCS, and HCCS termination cabinet(s), each distribution cabinet layout drawing, and TCO as each is expected to be installed and configured.
- Equipment technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
- 7. Engineering drawings of the System, showing calculated signal levels at the EPBX output, each input and output distribution point, proposed TCO values, and signal level at each TCO multipin, fiberoptic, jack.
- 8. List of test equipment as per paragraph 1.5.D. below.
- 9. Letter certifying that the Contractor understands the requirements of the SAMPLES Paragraph 1.5.E.
- Letter certifying that the Contractor understands the requirements of Section 3.2 concerning acceptance tests.
- D. Test Equipment List:
 - The Contractor is responsible for furnishing all test equipment required to test the system in accordance with the parameters specified. Unless otherwise stated, the test equipment shall not be considered part of the system. The Contractor shall furnish test equipment of accuracy better than the parameters to be tested.
 - 2. The test equipment furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
 - a. Spectrum Analyzer.
 - b. Signal Level Meter.
 - c. Volt-Ohm Meter.
 - d. Time Domain Reflectometer (TDR) with strip chart recorder (Data and Optical Measuring).
 - e. Bit Error Test Set (BERT).

- f. Camera with a minimum of 60 pictures to that will develop immediately to include appropriate test equipment adapters. A video camera in VHS format is an acceptable alternate.
- E. Samples: A sample of each of the following items shall be furnished to the COR for approval prior to installation.
 - 1. TCO Wall Outlet Box 4" x 4"x 2.5" with:
 - a. One each telephone (or voice) rj45 jack installed.
 - b. Two each multi pin data rj45 jacks installed.
 - c. Cover Plate installed.
 - 2. Data CCS patch panel, punch block or connection device with RJ45 connectors installed.
 - 3. Telephone CCS system with IDC and/or RJ45 connectors and cable terminal equipment installed.
 - 4. Fiber optic CCS patch panel or breakout box with cable management equipment and "ST" connectors installed.
 - 5. 610 mm (2 ft.) section of each copper cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
 - 6. 610 mm (2 ft.) section of each fiber optic cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
- F. Certifications:
 - Submit written certification from the OEM indicating that the proposed supervisor of the installation and the proposed provider of the contract maintenance are authorized representatives of the OEM. Include the individual's exact name and address and OEM credentials in the certification.
 - 2. Submit written certification from the OEM that the wiring and connection diagrams meet National and/or Government Life Safety Guidelines, NFPA, NEC, UL, this specification, and JCAHCO requirements and instructions, requirements, recommendations, and guidance set forth by the OEM for the proper performance of the System as described herein. The VA will not approve any submittal without this certification.
 - 3. Preacceptance Certification: This certification shall be made in accordance with the test procedure outlined in paragraph 3.2.B.
- G. Equipment Manuals: Fifteen (15) working days prior to the scheduled acceptance test, the Contractor shall deliver four complete sets of

commercial operation and maintenance manuals for each item of equipment furnished as part of the System to the RE. The manuals shall detail the theory of operation and shall include narrative descriptions, pictorial illustrations, block and schematic diagrams, and parts list.

- H. Record Wiring Diagrams:
 - Fifteen (15) working days prior to the acceptance test, the Contractor shall deliver four complete sets of the Record Wiring Diagrams of the System to the RE. The diagrams shall show all inputs and outputs of electronic and passive equipment correctly identified according to the markers installed on the interconnecting cables, Equipment and room/area locations.
 - 2. The Record Wiring Diagrams shall be in hard copy and two compact disk (CD) copies properly formatted to match the Facility's current operating version of Computer Aided Drafting (AutoCAD) system. The COR shall verify and inform the Contractor of the version of AutoCAD being used by the Facility.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. System Requirements:
 - The System shall provide the following minimum services that are designed in accordance with and supported by an Original Equipment Manufacturer (OEM), and as specified herein. The System shall provide continuous inter-Facility voice and data, service. The System shall be capacity sized so that loss of connectivity to external telephone systems shall not affect the Facilities operation in specific designated locations. The System shall:
 - a. Be capable of inter-connecting and functioning fully with the existing Local Telephone Exchange (LEC) Network(s), Federal Telephone System (FTS) Inter-city Network(s), Inter-exchange Carriers, Integrated Services Digital Network (ISDN), Electronic Private Branch Exchange (EPBX) switches, asynchronous/synchronous data terminals and circuits including Automatic Transfer Mode (ATM), Frame Relay, and local area networks (LAN), at a minimum.
 - b. Be a voice and data cable distribution system that is based on a physical "Star" and/or "Bus" Topology.
 - c. Be compatible with and able to provide direct digital connection to trunk level equipment including, but, not limited to: directly

accessing trunk level equipment including the telephone system, audio paging, Industry Standard "T" and/or "DS" carrier services and external protocol converters. Additionally, connections to "T" and/or "DS" access/equipment or Customer Service Units (CSU) that are used in FTS and other trunk applications shall be included in the System design. Provide T-1 access/equipment (or CSU), as required for use, in FTS and other trunk applications by system design if this equipment is not provided by the existing telephone system and/or will be deactivated by the installation of the System. The Contractor shall provide all T-1 equipment necessary to terminate and make operational the quantity of circuits designated. The CSU's shall be connected to the System's emergency battery power supply. The System shall be fully capable of operating in the Industry Standard "DS" protocol and provide that service when required.

- 2. Cable Systems Twisted Pair and Fiber optic:
 - a. General:
 - The Contractor shall be responsible for providing a new system conforming to current and accepted telephone and digital industrial/commercial cable distribution standards. The distribution cable installation shall be fully coordinated with the Facility, the PM, the COR and the Contractor prior to the start of installation.
 - 2) The Contractor is responsible for complete knowledge of the space and cable pathways (i.e. equipment rooms, TCs, conduits, wireways, etc.) of the Facility. The Contractor shall at a minimum design and install the System using the Pathway Design Handbook H-088C3, TIA/EIA Telecommunications Building Wiring Standards, and Facility Chief of Information Resource Management's (IRM) instructions, as approved in writing by the PM and/or RE.
 - 3) The System cables shall be fully protected by cable duct, trays, wireways, conduit (rigid, thin wall, or flex), and when specifically approved, flexible innerduct. It is the responsibility of the Contractor to confirm all contract drawings and the Facility's physical layout to determine the necessary cable protective devices to be provided. If flexible

innerduct is used, it shall be installed in the same manner as conduit.

- 4) Cable provided in the system (i.e. backbone, outside plant, inside plant, and station cabling) shall conform to accepted industry and OEM standards with regards to size, color code, and insulation. The pair twists of any pair shall not be exactly the same as any other pair within any unit or sub-unit of cables that are bundled in twenty-five (25) pairs or less. The absence of specifications regarding details shall imply that best general industry practices shall prevail and that first quality material and workmanship shall be provided. Certification Standards, (i.e., EIA, CCITT, FIPPS, and NFPA) shall prevail.
- 5) Some areas of this Facility may be considered "plenum". All wire and cable used in support of the installation in those areas (if any) shall be in compliance with national and local codes pertaining to plenum environments. It is the responsibility of the Contractor to review the VA's cable and wire requirements with the COR and the IRM prior to installation to confirm the type of environment present at each location.
- 6) The Contractor shall provide outside and inside plant cables that furnishes the number of cable pairs required in accordance with the System requirements described herein. The Contractor shall fully coordinate and obtain approval of the design with the OEM, COR and the IRM prior to installation.
- 7) All metallic cable sheaths, etc. shall be grounded by the Contractor (i.e.: risers, underground, station wiring, etc.) as described herein.
- 8) If temporary cable and wire pairs are used, they shall be installed so as to not present a pedestrian safety hazard and the Contractor shall be responsible for all work associated with the temporary installation and for their removal when no longer necessary. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and approved by the COR and the IRM prior to installation.

- 9) Conductors shall be cabled to provide protection against induction in voice and data circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
- 10) Measures shall be employed by the Contractor to minimize the radiation of RF noise generated by the System equipment so as not to interfere with audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
- 11) The System's cables shall be labeled on each end and been fully tested and certified in writing by the Contractor to the COR before proof of performance testing can be conducted. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges specified. The tests required for data cable must be made to guarantee the operation of this cable at not less than 10 mega (m) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at the maximum rate of speed. All cable installation and test records shall be made available at acceptance testing by the COR or Contractor and thereafter maintained in the Facility's Telephone Switch Room. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 12) The Contractor shall coordinate with the COR and the IRM to install the computer interface cable to the Facility Telephone Switch Room from the Facility's Computer Room for all data, DHCP, FTS, ATM, Frame Relay, and telephone circuits and as shown on the drawings.
- 13) The Contractor shall coordinate with the COR and the IRM to provide all cable pairs/circuits from the Facility Telephone Switch Room and establish circuits throughout the Facility for all voice, data, computer alarm (except fire alarm), private

maintenance line, Radio Paging, PA, LAN, DHCP, and any low voltage circuits as described herein.

- 14) The Contractor shall provide proper test equipment to guarantee that cable pairs meet each OEM's standard transmission requirements, and guarantee the cable will carry data transmissions at the required speeds, frequencies, and fully loaded bandwidth.
- b. Telecommunications Closets (TC): In TC's that are served with both a UTP backbone cable and a fiber optic backbone cable, the UTP cable shall be terminated on separate RJ-45, 8-pin connectors with 110A or equivalent type punch down blocks located on the back or front of a 48-port modular patch panel dedicated to data applications. Only the UTP backbone cable pairs, identified as being connected to the fiber optic backbone, shall be extended to the fiber optic interface device. All connecting cables required to extend these cables (i.e. patch cords, twenty-five pair connectors, etc.), to the fiber optic interface device, in the TC's shall also be provided by the Contractor to insure a complete and operational fiber optic distribution system:
 - In TC's, which are only served by a UTP backbone cable, the cable shall be terminated on separate modular connecting devices (110A or equivalent) that are dedicated to data applications. In order to provide full service to all data cable pairs as identified in each TC/cabinet including spare capacity noted herein, the size of all vertical (riser) cables and/or outside cables serving these TC's shall be increased as required.
- c. Horizontal and Station Cable:
 - A Four (4) UTP 24 AWG station wiring cable shall be installed from the top TCO jack to the TC and shall be of a type designed to support Category 6 communications (250 mega-Hertz [mHz] or above). At the jack location, terminate all four pair on the RJ-45/11 jack. At the signal closet, all four pair shall be terminated on the modular punch down blocks dedicated to telephone applications.
 - 2) A Four (4) UTP 24 AWG (in thermoplastic jacket unless otherwise specified by RE) station wiring cable shall be

installed from each of the two (2) bottom TCO RJ-45 jacks (shall conform to EIA/TIA 568 Standard "T568A" and NFPA) to the TC and shall be of a type designed to support Category 6 communications (250 mHz or above).

- d. Telecommunication Outlets (TCO), Jacks: All TCO's shall have a minimum of three (3) RJ-45 type jacks. The top jack shall be an eight pin RJ-45/11 compatible jack, labeled, and designated for telephone applications only. The bottom two jacks shall be eight pin RJ-45 type unkeyed (sometimes called center keyed) jacks, labeled, and designated for data.
- e. Fiber Optics:
 - 1) A complete fiber optic cable distribution system shall be provided as a part of the System. The Contractor shall provide a fiber optic cable that meets the minimum bandwidth requirements for FDDI, ATM, and Frame Relay services. This fiber optic cable shall be a 62.5/125 micron multi-mode, containing a minimum of 18 strands of fiber, unless otherwise specified, and shall not exceed a distance of 2,000 Meters (M), or 6,560 feet (ft.) in a single run. Loose tube cable, which separates the individual fibers from the environment, shall be installed for all outdoor runs or for any area which includes an outdoor run. Tight buffered fiber cable shall be used for indoor runs. The multimode fibers shall be terminated and secured at both ends in "ST" type female stainless steel connectors installed in an appropriate patch or breakout panel with a cable management system. A 610 mm (2 ft.) cable loop (minimum) shall be provided at each end to allow for future movement.
 - 2) In addition, a 12 strand (minimum), 8.3 mm single mode fiber optic cable shall be provided. Single mode fibers shall be terminated and secured at both ends with "ST" type female stainless steel connectors installed in an appropriate patch or breakout panel. The panel shall be provided with a cable management system. A 610 mm (2 ft.) cable loop (minimum) shall be provided at each end to allow for future movement.
 - 3) The fiber optic backbone shall use a conventional hierarchical "star" design where each TC is wired to the primary hub (main

cross-connect system) or a secondary hub (intermediate crossconnect system) and then to the primary hub. There shall be no more than two hierarchical levels of cross-connects in the backbone wiring. Each primary hub shall be connected and terminated to a CCS in the Telephone Switch Room. Additionally, a parallel separate fiber optic interconnection shall be provided between the Telephone Switch Room CCS and the MDF in the Main Computer Room.

- 4) In the TC's, Telephone Switch Room, and Main Computer Room, all fiber optic cables shall be installed in a CCS and/or MDF rack mounted fiber optic cable distribution component/splice case (Contractor provided and installed rack), patch, or breakout panel in accordance with industry standards. Female "ST" connectors shall be provided and installed on the appropriate panel for termination of each strand.
- 5) The Contractor shall test each fiber optic strand. Cable transmission performance specifications shall be in accordance with EIA/TIA standards. Attenuation shall be measured in accordance with EIA fiber optic test procedures EIA/TIA-455-46, -61, or -53 and NFPA. Information transmission capacity shall be measured in accordance with EIA/TIA-455-51 or -30 and NFPA. The written results shall be provided to the COR for review and approval.
- 3. Specific Subsystem Requirements: The System shall consist, as a minimum, of the following independent sub-systems to comprise a complete and functional voice and digital telecommunications cabling system: "Main" (MTC), "intermediate" (IMTC), and "riser" (RTC) TC's; "backbone" cabling (BC) system; "vertical" (or "riser") trunk cabling system; "horizontal" (or "lateral") sub-trunk cabling system, vertical and horizontal cross-connection (VCC and HCC respectively) cabling systems, and TCO's with a minimum of three (3) RJ-45 jacks for the appropriate telephone, Data connections, and additional jacks, connectors, drop and patch cords, terminators, and adapters provided.
 - a. Telecommunication Closet (TC):
 - 1) There shall be a minimum of one TC for the MTC, each building IMTC, and each RTC per building floor location. However, in

large building(s), where the horizontal distance to the farthest voice and digital work area may exceed 90 Meters (M) (or 295 feet [ft]), additional TC's shall be provided as described herein. The maximum DC resistance per cable pair shall be no more than 28.6 Ohms per 305 M (1,000 feet). Each TC shall be centrally located to cover the maximum amount of local floor space. The TC's house in cabinets or enclosures, on relay racks, and/or on backboards, various telecommunication data equipment, controllers, multiplexers, bridges, routers, LAN hub(s), telephone cross-connecting, active and passive equipment.

- 2) Additionally, the TC's may house nurses call, code one (or blue), video, public address, radio entertainment, intercom, and radio paging equipment. Regardless of the method of installation, mounting, termination, or cross-connecting used, all backbone, vertical, and horizontal copper and fiber optic cables shall be terminated on appropriate cross-connection systems (CCS) containing patch panel(s), punch blocks, and/or breakout devices provided in enclosures and tested as described herein. A cable and/or wire management system shall be a part of each CCS.
 - a) A minimum of three 110-120 VAC active quad outlets shall be provided, each with "U" grounded receptacles at a minimum of one outlet for each front, side and back wall. These outlets shall be separately protected by an AC circuit breaker provided in the designated Government Emergency Critical Care AC power panel,that is connected to the Facilities Emergency AC Power Distribution System. For larger building TC applications, a minimum of one additional quad AC outlet shall be provided for every 800M² (or 8,000 ft²) of useable floor space. Additional outlets shall be equally spaced along the wall.
 - b) Climate control shall be provided in each TC 24 hours a day, seven days per week and 52 week per year to prevent failure of electronic components and for mission critical functional applications. The COR are responsible for

informing the Contractor regarding the minimum climate control requirements.

- b. Cross-connect Systems (CCS):
 - The CCS shall be selected based on the following criteria: requires the use of a single tool, has the fewest amount of parts, and requires the least amount of assembly or projected trouble shooting time during the life of the system.
 - 2) The CCS system used at the MTC, each IMTC, and each TC shall force cross-connect cable slack management through adherence to the OEM's installation methods, provided cable management systems, and as described herein, so that moves, adds, and changes can be administered easily and cost effectively.
 - 3) Copper Cables: The MTC, each IMTC, and TC shall contain a copper CCS sized to support the System TCO's and connections served by each individual TC and as shown on the drawings. The System layout shall allow for a minimum of 50% anticipated growth. Additionally, each CCS must provide maximum flexibility, while maintaining performance, in order to meet system-changing requirements that are likely to occur throughout its useful life.
 - 4) Fiber Optic Cables:
 - a) The MTC and each TC shall contain a fiber CCS sized to support the System TCO's and connections served by each individual TC and as shown on the drawings. The System layout shall allow for a minimum of 50% anticipated growth.
 - b) Each fiber CCS must provide maximum flexibility and cable management while maintaining performance in order to meet changing requirements that are likely to occur throughout the expected life of the system. All fiber optic cable slack shall be stored in protective enclosures.
 - c) If it is determined that a fiber optic distribution system is not necessary for the immediate system needs. Each TC shall be provided with fiber optic cable(s) that contain a minimum of 12 strands "dark" multimode fiber and 12 strands "dark" single mode fiber, each fiber properly terminated on its respective female stainless steel connector mounted in

an appropriate fiber termination enclosure provided in each TC.

- 5) The Contractor shall not "cross-connect" the copper or fiber optic cabling systems and subsystems even though appropriate "patch" cords are to be provided for each "patch", "punch", or "breakout" panel. In addition, the Contractor shall not provide active electronic distribution or interface equipment as a part of the System.
- 6) Grounding: Proper grounding and bonding shall be provided for each TC and all internal equipment. Reference shall be made to proper codes and standards, such that all grounding systems must comply with all applicable National, Regional, and Local Building and Electrical codes. The most stringent code of these governing bodies shall apply.
 - a) If local grounding codes do not exist for the System location, then at a minimum, a #6 American Wire Gauge (AWG) stranded copper wire, or equivalent copper braid, shall be connected to a separate earth grounding system for each TC (the looping of TC's in a general location is allowed as long as the specifications contained herein are met). Under no circumstance shall the AC neutral be used for this ground. See PART 3 - EXECUTION for specific grounding instructions.
 - b) Each copper UTP or STP cable that enters a TC from the outside of a building (regardless if the cable is installed underground or aerial) shall be provided with a surge protector and grounded an to earth ground at each cable's entry point in and out of the MTC and each IMTC.
- c. Main Cross-connection Subsystem (MCCS): The MCCS shall be located in the MTC and it shall be the common point of appearance for inter and intra-building copper and fiber optic "backbone" system cables, and connections to the telephone and data cable systems. The MTC usually houses telephone EPBX, public address, radio paging interface, routers, and main hierarchical data LAN concentrating equipment. Additionally, it shall provide a single administration and management point for the entire System.

- d. Voice (or Telephone) Cable Cross-Connection Subsystem:
 - 1) Due to the usually high number of copper cable termination's required at the MCCS, Insulation Displacement Connection (IDC) hardware shall be used. Termination options shall include the following for a Category 6 Cabling System: IDC termination of cross-connection wire(s), IDC patch cord connector to IDC patch cord connector, and hybrid modular cord to IDC patch cord connector shall be the minimum provided.
 - 2) Additionally, due to the large or many MCCS (at initial installation and over the life of the System) copper termination points, the CCS that makes the best use of real estate while still following the OEM design and installation guidelines, and meeting the specifications described herein, shall be provided.
 - 3) For ease of maintenance purposes, all terminations shall be accessible without need for disassembly of the IDC wafer. IDC wafers shall be removable from their mounts to facilitate testing on either side of connector. Designation strips or labels shall be removable to allow for inspection of terminations. The maximum number of terminations on a wall or on a rack frame or panel shall comply with OEM recommendations and guidelines, and as described herein. A cable management system shall be provided as a part of the IDC.
 - 4) IDC connectors shall be capable of supporting cable reterminations without damaging the connector and shall support a minimum of 200 (telephone equipment standard compliant) IDC insertions or withdrawals on either side of the connector panel.
 - 5) A non-impact termination method using a full-cycle terminating tool having both a tactile and an audible feedback to indicate proper termination is required. For personnel safety and ease of use in day to day administration, high impact installation tools shall not be used.
 - 6) All system "inputs" from the EPBX, FTS, Local Telephone System, or diverse routed voice distribution systems shall appear on the "left" side of the IDC (110A blocks with RJ45 connections are acceptable alternates to the IDC) of the MCCS.

- 7) All system "outputs" from the MCCS to the voice backbone cable distribution system shall appear on the "right" side of the same IDC (or 110A blocks) of the MCCS.
- 8) The splitting of pairs within cables between different jacks or connections shall not be allowed. In the case of ISDN and/or ATM and /or Frame Relay applications, terminating resistors shall be provided externally to the patch panel connector or jack.
- 9) UTP or STP cross connecting wires shall be provided for each "pair" of connection terminals plus an additional 50% spare.
- e. Data Cross-Connection Subsystems:
 - The MCCS shall be a Main Distribution Terminating (MDT) data unit and shall be provided in the MTC. The MDT shall consist of a "patch" panel(s) provided with modular RJ45 female connectors for cross-connection of all copper data cable terminations. The panels shall provide for system grounding (where no dielectric cables are used) and be provided with a cable management system.
 - 2) Each panel shall conform to EIA dimensions and be suitable for mounting in standard equipment racks, have the RJ45 jacks aligned in two horizontal rows (up to a maximum of 48 jacks per panel), and shall not exceed the OEM's recommendations. Each RJ45 jack shall be of modular design and capable of accepting and functioning with other modular (i.e. RJ11) plugs without damaging the jack. It is not necessary to provide a jack for unused positions that are not part of the 50% expansion requirement.
 - a) All data system inputs from the server(s), data LAN,bridge, or interface distribution systems shall appear onthe "top" row of jacks of the appropriate patch panel.
 - b) All System outputs or backbone cable connections shall appear on "bottom" row of jacks of the same patch panel.
 - c) The splitting of pairs within cables between different jacks is not allowed. In cases of ISDN and/or ATM and/or Frame Relay applications, terminating resistors shall be provided externally to patch panel connector or jack.

- 3) A patch cord shall be provided for each system "pair" of connection jacks. Each patch cord shall have modular RJ45 connectors provided on each end to match the panel's modular RJ45 female jack's being provided.
- f. Fiber optic Cross-Connection Subsystems: The MTC shall be provided with a separate fiber MCCS. Each TC shall be provided with a rack mounted patch or distribution panel that is installed inside a lockable cabinet or "breakout enclosure" that accommodates a minimum of 12 strands multimode fiber and 12 strand single mode fiber (these counts shall not be included the 50% spare requirement). Two of the single mode fibers shall be designated for educational analog video applications. A cable management system shall be provided for each panel.
 - The panel(s) shall contain a minimum of 24 female "ST" connectors, be able to accommodate splices and field mountable connectors and have capacity for additional connectors to be added up to the OEM's maximum standard panel size for this type of use. All patch panel sides, including the front and back, shall be protected by a cabinet or enclosure.
 - 2) The panel(s) shall conform to EIA dimensions and be suitable for installation in standard racks, cabinets, and enclosures. The panels shall provide for system grounding (where no dielectric cables are used).
 - 3) The patch panel with the highest OEM approved density of fiber "ST" termination's (maximum of 72 each), while maintaining a high level of manageability, shall be selected. Patch cables, with proper "ST" connectors installed on each end shall be provided for each pair of fiber optic cable "ST" connectors.
 - a) All System "inputs" from interface equipment or distribution systems shall appear on the "top" row of connectors of the appropriate patch panel.
 - b) All System "outputs" or backbone cable connections shall appear on the "bottom" row of connectors of the same patch panel.
 - 4) In order to achieve a high level of reliability that approximates that of an OEM connector, field installable connectors shall have an OEM specified physical contact

polish. Every fiber cable shall be terminated with the appropriate connector, and tested to ensure compliance to OEM and specifications outlines herein. Where a local fiber optic system connector standard, Industry Standard fiber optic "ST" female connector terminated with a fiber optic cable, shall be used. But, if the fiber optic cable is not used (or "dark"), a "ST" male terminating "cap" shall be provided for each unused "ST" female connector.

- g. Intermediate Cross-connection Subsystems (IMCCS): The MTC and each IMTC shall be provided with an IMCCS that shall be the connection point between the MCCS system and the distribution backbone cable and the IMCCS, that is located in one or more buildings on a campus, where each IMCCS is placed by system design. For a technical explanation of internal equipment and system requirements, refer to the above MTC and MCCS paragraphs.
- h. Distribution Cable Systems / Backbone Cable System (Common to Inter-buildings): The backbone cable system extends from the MCCS to each IMCCS to establish service between buildings on a campus. The media (copper and fiber optic) used in the BC system shall be designed according to the system requirements, OEM standards and guidelines, and as described herein. A multi-pair copper for voice and data, and separate multiple fiber optic backbone system shall be provided as a part of the BC distribution system.
 - All outside cable shall be minimum of STP or UTP, 22 AWG solid conductors, solid PVC insulation, and filled core (flexgel waterproof Rural Electric Association (REA) LISTED PE 39 CODE) between the outer armor or jacket and inner conductors protective lining.
 - The copper cable system shall be configured as a "Star" Topology with separate dedicated cables between the MCCS and each IMCCS.
 - 3) UTP and STP copper cables shall consist of thermoplastic insulated conductors formed into binder groups. The groups are to be identified by distinctly colored binders and assembled to form a single compact core covered by a protective sheath. Each cable shall be rated for Category 6 Telecommunications

System Service. A minimum of eight pairs per circuit, plus an additional 50% spare for growth shall be provided.

- 4) Where the distance limitations of UTP or STP may be exceeded, multimode (or single mode) fiber optic cable(s) shall be used to augment the voice and/or data backbone cable system(s). The total loss of each fiber shall not exceed 12 decibel (dB) at 850 nano-Meter (nM), 11 dB at 1,300 nM, or 10 dB at 1,500 nM.
- 5) All voice system "inputs" from the MCCS via the BC distribution system shall appear on the "left" side of IDC (minimum 110 blocks) punch terminals of the IMCCS.
- 6) All voice system "outputs" or trunk line connections shall appear on the "right" side of the same IDC (minimum 110 blocks) of the IMCCS.
- 7) All data system "inputs" from the MCCS via the BC distribution system shall appear on the "top" row of jacks of the appropriate patch panel of the IMCCS.
- 8) All data system "outputs" or trunk line connections shall appear on the "bottom" row of jacks in the same patch panel of the IMCCS.
- 9) The splitting of pairs within cables between different jacks shall not be allowed. In the case of ISDN and/or ATM and /or Frame Relay applications, terminating resistors shall be provided externally to the patch panel connector or jack.
- 10) A patch cord shall be provided for each system "pair" of connection jacks. Each patch cord shall have modular connectors provided on each end to match the panel's modular female jack.
- 11) The fiber optic BC system shall be configured as a "Buss" Topology with separate dedicated fibers between the MCCS and each IMCCS. The System shall be sized to meet the system requirements plus an expansion capability of 50%. Fiber optic cable(s) having a minimum of 12 strands multimode fiber and 12 strands single mode fiber shall be provided. Two of the single mode fibers shall be designated for analog video service.
- 12) All BC shall be identified with permanent labels at both ends. Labels will indicate system, floor, closet, and zone. The

label designations shall match those used for cross-connect terminals and patch panels.

- i. Horizontal (or Station) Cabling (HC): The HC distribution cabling system connects the distribution field of the voice and data HCCS, in a "Star" Topology, to each TCO or connector and as shown on the drawings via the sub-trunk system.
 - Horizontal cables shall consist of insulated, UTP or STP conductors that are rated for Category 6 telecommunications service for voice and data systems.
 - The number of UTP or STP distribution pairs dedicated to each floor from the HC shall be sufficient to accommodate all the horizontal voice and data circuits served by the distribution cable to each TCO.
 - a) A minimum of four pairs for voice shall be connected to the "right" side of the IDC (or 110A block) that the VCCS "input" connections appear in the RTC.
 - b) A minimum of two separate sets of four pairs each for data shall be connected to the "bottom" row of RJ45 jacks that the VCCS "input" connections appear in the RTC.
 - 3) The horizontal cable length to the farthest system outlet shall be limited to a maximum of 90M (or 295 ft). These maximum lengths must be derated, adjusted and reduced to include cross-connection and distribution system losses. Additional TC(s) shall be provided on large floor areas of buildings to limit the horizontal distribution to a maximum of 90M (or 295 ft).
 - 4) The splitting of pairs within a cable between different jacks shall not be permitted.
 - 5) The installation of the HC shall conform to appropriate OEM recommendations and standards outlined herein. This requirement will insure adequate protection for Electro-Magnetic Interference (EMI) sources.
 - 6) A system design where "looping" the HC distribution cables from room to room shall not be permitted.
- j. System Telecommunication Outlets (TCO): The System shall be capable of receiving the specified telephone (or voice) and data signals acquired from the LEC, FTS contracted carrier and

computer system, and shall process and distribute them to the designated TCO's and as shown on the drawings. At a minimum, one TCO shall be provided on each room wall, associated with an active 120 VAC shall be provided and as shown on the drawings. The only exception to the general rule, of one outlet per wall, shall be those "special" locations (e.g., surgical suites, radiology MRI rooms, labs, patient bed rooms, warehouse, loading docks, storage rooms, etc.) where there is usually only one TCO provided as designated on the drawings.

- Each TCO shall consist of three multipin modular RJ45 jacks, one designated for telephone and two for data service. Each TCO with appropriate jacks installed shall be provided by the Contractor in each designated location and as shown on the drawings.
- 2) The Contractor shall connect each telephone multipin modular RJ45 jack to a separate "right side as you look at it" telephone HC distribution system HCCS "punch down" 110A block or approved IDC terminating device in each associated RTC. The modular RJ45 jack shall be able to accept and operate with smaller modular RJ11 plugs while providing proper connection and not damaging the modular jack. he OEM shall warrant all modular RJ45/11 jacks in such a manner to be usable for modular RJ11 plugs.
- 3) The Contractor shall connect each TCO data multipin modular RJ45 jack to a separate lower row jack on the HCCS "patch panel" in each associated RTC. The Contractor is not to "cross-connect" VCCS and HCCS data distribution cables or provides active electronic data distribution equipment as a part of the System.
- 4) A non-impact termination method, using either a stuffer cap with installation tool or full-cycle terminating tool having both tactile and audible feedback to indicate proper termination shall be used. High impact installation tools shall not be used.
- 5) Each terminated conductor end shall be properly trimmed to assure a minimum clearance of 6.35 mm (0.250 in) clearance between the conductors of adjacent modules.

6) The multipin RJ45 jack shall be modular in construction that will accept and operate with a modular UTP and STP RJ45 connector and its pin assignments.

B. System Performance:

- At a minimum, the System shall be able to support the following voice and data operations for Category 6 Certified Telecommunication Service:
 - a. Provide the following interchange (or interface) capabilities:1) Basic Rate (BRI).
 - 2) Primary Rate (PRI).
 - b. ISDN measured at the new rack in the existing telecom room:
 - 1) Narrow Band BRI.
 - a) B Channel: 64 kilo-Bits per second (kBps), minimum.
 - b) D Channel: 16 kBps, minimum.
 - c) H Channel: 384 kBps, minimum.
 - 2) Narrow Band PRI:
 - a) B Channel: 64 kBps, minimum.
 - b) D Channel: 64 kBps, minimum.
 - c) H Channel: 1,920 kBps, minimum.
 - 3) Wide (or Broad) Band:
 - a) All channels: 140 mega(m)-Bps, minimum, capable to 565 mBps at "T" reference.
 - c. ATM operation and interface: ATM 155 mBps measured at the new rack in the existing telecom room.
 - d. Frame Relay: All stated compliance's measured at the new rack in the existing telecom room.
 - e. Integrated Data Communications Utility (IDCU) operation and interface: Measured at the new rack in the existing telecom room.
 - f. Government Open Systems Interconnection Profile (GOSSIP) compliant: Measured at the new rack in the existing telecom room.
 - g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga(g)-Bps data bit stream speed measured at the new rack in the existing telecom room (shall be Synchronous Optical Network [Sonet] compliant).
 - h. System Sensitivity: Satisfactory service shall be provided for at least 3,000 feet for all voice and data locations.

- 2. At a minimum the System shall support the following operating parameters:
 - a. EPBX connection:
 - 1) System speed: 1.0 gBps per second, minimum.
 - 2) Impedance: 600 Ohms.
 - 3) Cross Modulation: -60 deci-Bel (dB).
 - 4) Hum Modulation: -55 Db.
 - 5) System data error: 10 to the -10 Bps, minimum loss measured at the frame output with reference Zero (0) deciBel measured (dBm) at 1,000 Hertz (Hz) applied to the frame input.
 - a) Trunk to station: 1.5 dB, maximum.
 - b) Station to station: 3.0 dB, maximum.
 - c) Internal switch crosstalk: -60 dB when a signal of \pm 10 deciBel measured (dBm), 500-2,500 Hz range is applied to the primary path.
 - d) Idle channel noise: 25 dBm "C" or 3.0 dBm "O" above reference (terminated) ground noise, whichever is greater.
 - e) Traffic Grade of Service for Voice and Data:
 - (1) A minimum grade of service of P-01 with an average traffic load of 7.0 CCS per station per hour and a traffic overload in the data circuits will not interfere with, or degrade, the voice service.

(2) Average CCS per voice station: The average CCS capacity per voice station shall be maintained at 7.0 CCS when the EPBX is expanded up to the projected maximum growth as stated herein.

- b. Telecommunications Outlet (TCO):
 - 1) Voice:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, balanced (BAL).
 - c) Signal Level: 0 deciBel per mili-Volt (dBmV) + 0.1 dBmV.
 - d) System speed: 100 mBps, minimum.
 - e) System data error: 10 to the -6 Bps, minimum.
 - 2) Data:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, BAL.
 - c) Signal Level: 0 dBmV + 0.1 dBmV.

- d) System speed: 120 mBps, minimum.
- e) System data error: 10 to the -8 Bps, minimum.
- C. General:
 - 1. All equipment to be supplied under this specification shall be new and the current model of a standard product of an OEM or record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
 - a. Maintains a stock of replacement parts for the item submitted.
 - b. Maintains engineering drawings, specifications, and operating manuals for the items submitted.
 - c. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid.
 - 2. Specifications of equipment as set forth in this document are minimum requirements, unless otherwise stated, and shall not be construed as limiting the overall quality, quantity, or performance characteristics of items furnished in the System. When the Contractor furnishes an item of equipment for which there is a specification contained herein, the item of equipment shall meet or exceed the specification for that item of equipment.
 - 3. The Contractor shall provide written verification, in writing to the COR at time of installation, that the type of wire/cable being provided is recommended and approved by the OEM. The Contractor is responsible for providing the proper size and type of cable duct and/or conduit and wiring even though the actual installation may be by another subcontractor.
 - 4. The Telephone Contractor is responsible for providing interfacing cable connections for the telephone and PA systems with the System.
 - 5. The telephone equipment and PA interface shall be the interface points for connection of the PA interface cabling from the telephone switch via the system telephone interface unit.
 - 6. Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of FCC standards for telephone equipment, systems, and service.

- 7. All passive distribution equipment shall meet or exceed -80 dB radiation shielding specifications.
- 8. All interconnecting twisted pair, fiber-optic cables shall be terminated on equipment terminal boards, punch blocks, breakout boxes, splice blocks, and unused equipment ports/taps shall be terminated according to the OEM's instructions for telephone cable systems without adapters. The Contractor shall not leave unused or spare twisted pair wire, fiber-optic cable unterminated, unconnected, loose or unsecured.
- 9. Color code all distribution wiring to conform to the Telephone Industry standard, EIA/TIA, and this document, which ever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance. Reference Specification Section 27 10 00, STRUCTURED CABLING.
- 10. Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC power distribution system as shown on the plans or if not shown on the plans consult with COR regarding a suitable circuit location prior to bidding.
- 11. Plug-in connectors shall be provided to connect all equipment, except coaxial cables and interface points. Coaxial cable distribution points and RF transmission lines shall use coaxial cable connections recommended by the cable OEM and approved by the System OEM. Base- band cable systems shall utilize barrier terminal screw type connectors, at a minimum. Crimp type connectors installed with a ratchet type installation tool are and acceptable alternate as long as the cable dress, pairs, shielding, grounding, and connections and labeling are provided the same as the barrier terminal strip connectors. Tape of any type, wire nuts, or solder type connections are unacceptable and will not be approved.
- 12. All equipment faceplates utilized in the System shall be stainless steel, anodized aluminum, or UL approved cycolac plastic for the areas where provided.
- 13. Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure

protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.

D. Equipment Functional Characteristics:

FUNCTIONS	CHARACTERISTICS
Input Voltage	105 to 130 VAC
POWER LINE FREQUENCY	60 HZ ±2.0 HZ
Operating Temperature	O to 50 degrees (°) Centigrade (C)
Humidity	80 percent (%) minimum rating

- E. Equipment Standards and Testing:
 - The System has been defined herein as connected to systems identified as Critical Care performing Life Support Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.
 - 2. All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory where such standards have been established for the supplies, materials or equipment. See paragraph minimum requirements Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, and the guidelines listed in paragraph 2.J.2.
 - 3. The provided active and passive equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the COR approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.
 - 4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards.

2.2 DISTRIBUTION EQUIPMENT AND SYSTEMS

A. Telecommunication Outlet (TCO):

- 1. The TCO shall consist of one telephone multipin jack and two data multipin jacks mounted in a steel outlet box. A separate 100mm (4in.) x 100mm (4in.) x 63mm (2.5in.) steel outlet box with a labeled stainless steel faceplate will be used. A second 100mm (4in.) x 100mm (4in.) x 63mm (2.5in.) steel outlet box with a labeled faceplate shall be provided as required adjacent to the first box to ensure system connections and expandability requirements are met.
- All telephone multipin connections shall be RJ-45/11 compatible female types. All data multipin connections shall be RJ-45 female types.
- 3. The TCO shall be fed from the appropriate CCS located in the respective RTC in a manner to provide a uniform and balanced distribution system.
- 4. Interface of the data multipin jacks to appropriate patch panels (or approved "punch down" blocks) in the associated RTC, is the responsibility of the Contractor. The Contractor shall not extend data cables from the RTCs to data terminal equipment or install data terminal equipment.
- 5. The wall outlet shall be provided with a stainless steel or approve alternate cover plate to fit the telephone multipin jack, data multi- pin jacks and the outlet box provided (100mm (4in.) x 100mm (4in.) for single and 100mm (4in.) x 200mm (8in.) for dual outlet box applications). For PBPU installations, the cover plate shall be stainless steel.
- B. Distribution Cables: Each cable shall meet or exceed the following specifications for the specific type of cable. Each cable reel shall be sweep tested and certified by the OEM by tags affixed to each reel. The Contractor shall turn over all sweep tags to the COR or PM. Additionally, the Contractor shall provide a 610 mm (2 ft.) sample of each provided cable, to the COR and receive approval before installation. Cables installed in any outside location (i.e. above ground, under ground in conduit, ducts, pathways, etc.) shall be filled with a waterproofing compound between outside jacket (not immediately touching any provided armor) and inter conductors to seal punctures in the jacket and protect the conductors from moisture.
 1. Remote Control:

- a. The remote control cable shall be multi-conductor with stranded (solid is permissible) conductors. The cable shall be able to handle the power and voltage necessary to control specified system equipment from a remote location. The cable shall be UL listed and pass the FR-1 vertical flame test, at a minimum. Each conductor shall be color-coded. Combined multi-conductor and coaxial cables are acceptable for this installation, as long as all system performance standards are met.
- b. Technical Characteristics:

LengthAs required, in 1K (3,000 ft.) reels minimumConnectorsAs required by system designSize18 AWG, minimum, Outside 20 AWG, minimum, InsideColor codingRequired, EIA industry standardBend radius10X the cable outside diameterImpedanceAs requiredShield coverageAs required by OEM specificationAttenuationFrequency in mHzdB per 305 M (1,000ft.), maximum
Size 18 AWG, minimum, Outside 20 AWG, minimum, Inside Color coding Required, EIA industry standard Bend radius 10X the cable outside diameter Impedance As required Shield coverage As required by OEM specification Attenuation Impedance
20 AWG, minimum, InsideColor codingRequired, EIA industry standardBend radius10X the cable outside diameterImpedanceAs requiredShield coverageAs required by OEM specificationAttenuationImpedance
Color codingRequired, EIA industry standardBend radius10X the cable outside diameterImpedanceAs requiredShield coverageAs required by OEM specificationAttenuation
Bend radius 10X the cable outside diameter Impedance As required Shield coverage As required by OEM specification Attenuation Impedance
Impedance As required Shield coverage As required by OEM specification Attenuation Impedance
Shield coverage As required by OEM specification Attenuation
Attenuation
Frequency in mHz dB per 305 M (1 000ft) maximum
ab per sos m (1,0001e.), maximum
0.7 5.2
1.0 6.5
4.0 14.0
8.0 19.0
16.0 26.0
20.0 29.0
25.0 33.0
31.0 36.0
50.0 52.0

2. Telephone:

- a. The System cable shall be provided by the Contractor to meet the minimum system requirements of Category Six service. The cable shall interconnect each part of the system. The cable shall be completely survivable in areas where it is installed.
- b. Technical Characteristics:

Length As	required,	in 1K	(3,000	ft.) reels	
-----------	-----------	-------	--------	------------	--

	minimum
Cable	Voice grade category six
Connectors	As required by system design
Size	22 AWG, minimum, Outside
	24 AWG, minimum, Inside
Color coding	Required, telephone industry standard
Bend radius	10X the cable outside diameter
Impedance	120 Ohms <u>+</u> 15%, BAL
Shield coverage	As required by OEM specification
Attenuation	
Frequency in mHz	dB per 305 M (1,000ft.), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0
25.0	33.0
31.0	36.0
62.0	52.0
100.0	68.0

- 3. Data Multi-Conductor:
 - a. The cable shall be multi-conductor, shielded or unshielded cable with stranded conductors. The cable shall be able to handle the power and voltage used over the distance required. It shall meet Category Six service at a minimum.
 - b. Technical Characteristics:

Wire size	22 AWG, minimum
Working shield	350 V
Bend radius	10X the cable outside diameter
Impedance	100 Ohms <u>+</u> 15%, BAL
Bandwidth	100 mHz, minimum
DC RESISTANCE	10.0 Ohms/100M, maximum
Shield coverage	
Overall Outside (if OEM	100%

specified)	
Individual Pairs (if OEM specified)	100%
Attenuation	
Frequency in mHz	dB per 305 M (1,000ft.), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0
25.0	33.0
31.0	36.0
62.0	52.0
100.0	68.0

4. Fiber Optic:

- a. Multimode Fiber:
 - The general purpose multimode fiber optic cable shall be a dual window type installed in conduit for all system locations. A load-bearing support braid shall surround the inner tube for strength during cable installation.
 - 2) Technical Characteristics:

Bend radius	6.0", minimum
	Outer jacket, As required
FIBER DIAMETER	62.5 MICRONS
Cladding	125 microns
Attenuation	
850 nM	4.0 dB per kM, maximum
1,300 nM	2.0 dB per kM, maximum
Bandwidth	
850 nM	160 mHz, minimum
1,300 nM	500 mHz, minimum
Connectors	Stainless steel

- b. Single mode Fiber:
 - The general purpose single mode fiber optic cable shall be a dual window type installed in conduit for all system locations. A load-bearing support braid shall surround the inner tube for strength during cable installation.
 - 2) Technical Characteristics:

Bend radius	100 mm (4 in.) minimum
Outer jacket	PVC
Fiber diameter	8.7 microns
Cladding	125 microns
Attenuation at 850 nM	1.0 dBm per km
Connectors	Stainless Steel

- 5. AC Power Cable: AC power cable(s) shall be 3-conductor, no. 12 AWG minimum, rated for 13A-125V and 1,625W. Master AC power, install specification and requirements are given in NEC and herein.
- 6. Public Address and/or General Purpose Audio:
 - a. The audio cable shall be two-conductor, STP cable with stranded conductors. The cable shall be able to handle the power used for the load impedance over the distance required, with not more than 5% power loss. This cable is to be provided in local PA areas only and is not to be used as a part of the telephone system.
 - b. Technical Characteristics:

Impedance	70.7VRMS audio signal
Wire size	20 AWG, minimum
Working shield	350 V
Color coding	Required, EIA audio industry standard
Connectors	As required
Bend radius	10X the cable outside diameter
Impedance	100 Ohms <u>+</u> 15%, BAL
Bandwidth	20 mHz, minimum
DC resistance	10.0 Ohms/100M (330 ft.), maximum
Shield coverage	
Overall Outside (if OEM specified)	100%
Individual Pairs (if OEM specified)	100%

Attenuation	
Frequency in mHz	dB per 305 M (1,000ft.), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0

- C. Outlet Connection Cables:
 - 1. Telephone:
 - a. The Contractor shall provide a connection cable for each TCO telephone jack in the System with 10% spares. The telephone connection cable shall connect the telephone instrument to the TCO telephone jack. The Contractor shall not provide telephone instrument(s) or equipment.
 - b. Technical Characteristics:

Length	1.8M (6ft.), minimum
Cable	Voice Grade
Connector	RJ-11/45 compatible male on each end
Size	24 AWG, minimum
Color coding	Required, telephone industry standard

- 2. Data:
 - a. The Contractor shall provide a connection cable for each TCO data jack in the system with 10% spares. The data connection cable shall connect a data instrument to the TCO data jack. The Contractor shall not provide data terminal(s)/equipment.
 - b. Technical Characteristics:

Length	1.8M (6 ft.), minimum
Cable	Data grade Category Six
Connector	RJ-45 male on each end
Color coding	Required, data industry standard
Size	24 AWG, minimum

- D. System Connectors:
 - 1. Solderless (Forked Connector):
 - a. The connector shall have a crimp-on coupling for quick connect/disconnect of wires or cables. The crimp-on connector shall be designed to fit the wire or cable furnished. The connector barrel shall be insulated and color-coded.
 - b. Technical Characteristics:

Impedance	As required
Working Voltage	500 V

- 2. Multipin:
 - a. The connector shall have a crimp-on coupling for quick connect/disconnect of wires or cables. The crimp-on connector shall be designed to fit the wire or cable furnished. The connector housing shall be fully enclosed and shielded. It shall be secured to the cable group by screw type compression sleeves.
 - b. Technical Characteristics:

Impedance	As required
Working Voltage	500 V
Number of pins	As requires, usually 25 pairs minimum

3. Modular (RJ-45/11 and RJ-45): The connectors shall be commercial types for voice and high speed data transmission applications. he connector shall be compatible with telephone instruments, computer terminals, and other type devices requiring linking through the modular telecommunications outlet to the System. The connector shall be compatible with UTP and STP cables.

Туре	Number of Pins
RJ-11/45	Compatible with RJ45
RJ-45	Eight
Dielectric	Surge
Voltage	1,000V RMS, 60 Hz @ one minute, minimum
Current	2.2A RMS @ 30 Minutes or 7.0A RMS @ 5.0 seconds
Leakage	100 μA, maximum

a. Technical Characteristics:

Connectability	
Initial contact resistance	20 mili-Ohms, maximum
Insulation displacement	10 mili-Ohms, maximum
Interface	Must interface with modular jacks from a variety of OEMs. RJ-11/45 plugs shall provide connection when used in RJ-45 jacks.
Durability	200 insertions/withdrawals, minimum

- 4. Fiber Optic: The connectors shall be commercial types for voice and high speed data transmission applications. The connector shall be compatible with telephone instruments, computer terminals, and other type devices requiring linking through the modular telecommunications outlet to the system. The connector shall be compatible with UTP and STP cables.
- E. Terminators:
 - 1. Coaxial:
 - a. These units shall be metal-housed precision types in the frequency ranges selected. They shall be the screw-on type that has low VSWR when installed and the proper impedance to terminate the required system unit or coaxial cable.
 - b. Technical Characteristics:

Frequency	0-1 GHz
Power blocking	As required
Return loss	25 dB
Connectors	"F", "BNC", minimum
Impedance	50 or 75 Ohms, UNBAL

- 2. Audio:
 - a. These units shall be metal-housed precision types in the frequency ranges selected. They shall be the screw-on audio spade lug, twin plug, XL types that has low VSWR when installed and the proper impedance to terminate the required system unit or coaxial cable.
 - b. Technical Characteristics:

Frequency	20-20 kHz, minimum
Power blocking	As required

Return loss	15 dB
Connectors	"Audio spade lug", "1/4", "1/8", "XL" or "RCA"
Impedance	
Bal	100 Ohms, minimum
Unbal	75 Ohm, minimum

- 3. Fiber Optic:
 - a. These units shall be metal-housed precision types in the frequency ranges selected. They shall be the screw-on type that has low VSWR when installed and the proper impedance to terminate the required system unit or fiber optic cable.
 - b. Technical Characteristics:

Frequency	Lightwave
Power blocking	As required
Return loss	25 dB
Connectors	"ST", minimum
Construction	Stainless steel
Impedance	As required

- F. Distribution Frames:
 - 1. A new stand-alone (i.e., self supporting, free standing) MDF shall be provided as an extension of the existing system and connected to the existing rack. The MDF shall be modular and equipped with modular terminating mini blocks (i.e. Ericsson, 3M, etc.), and patch panels that are as small as possible and provide all the requirements of this specifications as described herein.
 - 2. Technical Characteristics:

Telephone	
IDC type unit	As described in Part 2
Contact wires	50 micron of Gold over Nickel
Contact pressure	100 Grams, MIN
110A Punch blocks	Acceptable alternate to IDC
Data	110A blocks as described in Part 2
Fiber optic	Patch panel as described in Part 2
Analog Video	Patch panel as described in Part 2

2.3 TELECOMMUNCATIONS CLOSET REQUIREMENTS

Refer to VA Handbook H-088C3, Telephone System Requirements, for specific TC guidelines for size, power input, security, and backboard mounting requirements. It is the Contractors responsibility to ensure TC compliance with the System Requirements.

2.4 ENVIRONMENTAL REQUIREMENTS

Technical submittals shall identify the environmental specifications for housing the system. These environmental specifications shall identify the requirements for initial and expanded system configurations for:

- A. Floor loading for batteries and cabinets.
- B. Minimum floor space and ceiling heights.
- C. Minimum size of doors for equipment passage.
- D. Power requirements: The bidders shall provide the specific voltage, amperage, phases, and quantities of circuits required.

2.5 INSTALLATION KIT

The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the COR all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware. The following are the minimum required installation sub-kits:

A. System Grounding:

- The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
- 2. This includes, but is not limited to:
 - a. Coaxial Cable Shields.
 - b. Control Cable Shields.
 - c. Data Cable Shields.
 - d. Equipment Racks.

- e. Equipment Cabinets.
- f. Conduits.
- g. Duct.
- h. Cable Trays.
- i. Power Panels.
- j. Connector Panels.
- k. Grounding Blocks.
- B. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- C. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- D. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- E. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- F. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- G. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Product Delivery, Storage and Handling:
 - 1. Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and

equipment catalog numbers, model and serial identification numbers. The COR may inventory the cable, patch panels, and related equipment.

- Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the RE.
- B. System Installation:
 - After the contract's been awarded, and within the time period specified in the contract, the Contractor shall deliver the total system in a manner that fully complies with the requirements of this specification. The Contractor shall make no substitutions or changes in the System without written approval from the COR and PM.
 - 2. The Contractor shall install all equipment and systems in a manner that complies with accepted industry standards of good practice, OEM instructions, the requirements of this specification, and in a manner which does not constitute a safety hazard. The Contractor shall insure that all installation personnel understands and complies with all the requirements of this specification.
 - 3. The Contractor shall install suitable filters, traps, directional couplers, splitters, TC's, and pads for minimizing interference and for balancing the System. Items used for balancing and minimizing interference shall be able to pass telephone and data signals in the frequency bands selected, in the direction specified, with low loss, and high isolation, and with minimal delay of specified frequencies and signals. The Contractor shall provide all equipment necessary to meet the requirements of Paragraph 2.1.C and the System performance standards.
 - 4. All passive equipment shall be connected according to the OEM's specifications to insure future correct termination, isolation, impedance match, and signal level balance at each telephone/data outlet.
 - 5. Where TCOs are installed adjacent to each other, install one outlet for each instrument.
 - 6. All lines shall be terminated in a suitable manner to facilitate future expansion of the System. There shall be a minimum of 50% capacity for future expansion.

- 7. All vertical and horizontal copper and fiber optic cables shall be terminated so any future changes only requires modifications of the EPBX or signal closet equipment only.
- 8. Terminating resistors or devices shall be used to terminate all unused branches, outlets, equipment ports of the System, and shall be devices designed for the purpose of terminating fiber optic or twisted pair cables carrying telephone and data systems.
- C. Conduit and Signal Ducts:
 - 1. Conduit:
 - a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weatherheads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed. The minimum conduit size shall be 19 mm (3/4 in.).
 - b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow telephone cables to be installed in partitioned cable tray with data cables may be granted in writing by the COR if requested.) Conduits shall be provided in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.
 - c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
 - d. When "innerduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
 - e. Conduit (including GFE) fill shall not exceed 40%. Each conduit end shall be equipped with protective insulator or sleeve to cover conduit end, connection nut or clamp, to protect wire or

cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with NEC. AC power conduit shall be run separate from signal conduit.

- f. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- g. Ensure that Critical Care Nurse Call and PA Systems (as identified by NEC Section 517) are completely separated and protected from all other systems.
- 2. Signal Duct, Cable Duct, or Cable Tray:
 - a. The Contractor shall use new cable tray, when identified and approved by the RE.
 - b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
- D. Distribution System Signal Wires and Cables:
 - 1. Wires and cables shall be provided in the same manner and use like construction practices as Fire Protective and other Emergency Systems that are identified and outlined in NFPA 101, Life Safety Code, Chapters 7, 12, and/or 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions. The wires and cables shall be able to withstand adverse environmental conditions in their respective location without deterioration. Wires and cables shall enter each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of the cables.
 - a. Each wire and cable shall terminate on an item of equipment by direct connection. Spare or unused wire and cable shall be provided with appropriate connectors (female types) that are installed in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.
 - b. Fiber optic cables that are spare, unused or dark shall be provided with Industry Standard "ST" type female connectors

installed in appropriate break out, patch, or bulkhead connector panels provided in enclosure(s) and shall be protected from the environment.

- c. Coaxial cables that are spare, unused or dark shall be provided with the cable OEM specified type female connectors installed in appropriate break out, patch, or bulkhead connector panels provided in enclosure(s) and shall be protected from the environment.
- d. All cable junctions and taps shall be accessible. Provide an 8" X 8" X 4" (minimum) junction box attached to the cable duct or raceway for installation of distribution system passive equipment. Ensure all equipment and tap junctions are accessible.
- 2. Routing and Interconnection:
 - a. Wires or cables between consoles, cabinets, racks and other equipment shall be in an approved conduit, signal duct, cable duct, or cable tray that is secured to building structure.
 - b. Wires and cables shall be insulated to prevent contact with signal or current carrying conductors. Wires or cables used in assembling consoles, panels, equipment cabinets and racks shall be formed into harnesses that are bundled and tied. Harnessed wires or cables shall be combed straight, formed and dressed in either a vertical or horizontal relationship to equipment, controls, components or terminations.
 - c. Harnesses with intertwined members are not acceptable. Each wire or cable that breaks out from a harness for connection or termination shall have been tied off at that harness or bundle point, and be provided with a neatly formed service loop.
 - d. Wires and cables shall be grouped according to service (i.e.: AC, grounds, signal, DC, control, etc.). DC, control and signal cables may be included with any group. Wires and cables shall be neatly formed and shall not change position in the group throughout the conduit run. Wires and cables in approved signal duct, conduit, cable ducts, or cable trays shall be neatly formed, bundled, tied off in 600 mm to 900 mm (24 in. to 36 in.) lengths and shall not change position in the group throughout the run. Concealed splices are not allowed.

- e. Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control, microphone and line level audio and data wires or cables, on the right. This installation shall be accomplished with ties and/or fasteners that will not damage or distort the wires or cables. Limit spacing between tied off points to a maximum of 150 mm (6 inches).
- f. Do not pull wire or cable through any box, fitting or enclosure where change of cable tray or signal or cable duct alignment or direction occurs. Ensure the proper bend radius is maintained for each wire or cable as specified by its OEM.
- g. Employ temporary guides, sheaves, rollers, and other necessary items to protect the wire or cable from excess tension or damage from bending during installation. Abrasion to wire or cable jackets is not acceptable and not allowed. Replace all cables whose jacket has been abraded. The discovery of any abraded and/or damaged cables during the proof of performance test shall be grounds for declaring the entire system unacceptable and the termination of the proof of performance test. Completely cover edges of wire or cable passing through holes in chassis, cabinets or racks, enclosures, pull or junction boxes, conduit, etc., with plastic or nylon grommeting.
- h. Cable runs shall be splice free between conduit junction and interface boxes and equipment locations.
- Cables shall be installed and fastened without causing sharp bends or rubbing of the cables against sharp edges. Cables shall be fastened with hardware that will not damage or distort them.
- j. Cables shall be labeled with permanent markers at the terminals of the electronic and passive equipment and at each junction point in the System. The lettering on the cables shall correspond with the lettering on the record diagrams.
- k. Completely test all of the cables after installation and replace any defective cables.

- Wires or cables installed outside of conduit, cable trays, wireways, cable duct, etc.
 - Only when specifically authorized as described herein, will wires or cables be identified and approved to be installed outside of conduit. The wire or cable runs shall be UL rated plenum and OEM certified for use in air plenums.
 - 2) Wires and cables shall be hidden, protected, fastened and tied at 600 mm (24 in.) intervals, maximum, as described herein to building structure.
 - 3) Closer wire or cable fastening intervals may be required to prevents sagging, maintain clearance above suspended ceilings, remove unsightly wiring and cabling from view and discourage tampering and vandalism. Wire or cable runs, not provided in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers shall be sleeved and sealed with an approved fire retardant sealant.
 - 4) Wire or cable runs to system components installed in walls (i.e.: volume attenuators, circuit controllers, signal, or data outlets, etc.) may, when specifically authorized by the RE, be fished through hollow spaces in walls and shall be certified for use in air plenum areas.
- E. Outlet Boxes, Back Boxes, and Faceplates:
 - Outlet Boxes: Signal, power, interface, connection, distribution, and junction boxes shall be provided as required by the system design, on-site inspection, and review of the contract drawings.
 - Back Boxes: Back boxes shall be provided as directed by the OEM as required by the approved system design, on-site inspection, and review of the contract drawings.
 - 3. Face Plates (or Cover Plates): Faceplates shall be of a standard type, stainless steel, anodized aluminum or UL approved cycolac plastic construction and provided by the Contractor for each identified system outlet location. Connectors and jacks appearing on the faceplate shall be clearly and permanently marked.
- F. Connectors: Circuits, transmission lines, and signal extensions shall have continuity, correct connection and polarity. A uniform polarity shall be maintained between all points in the system. 1. Wires:

- a. Wire ends shall be neatly formed and where insulation has been cut, heat shrink tubing shall be employed to secure the insulation on each wire. Tape of any type is not acceptable.
- b. Audio spade lugs shall be installed on each wire (including spare or unused) end and connect to screw terminals of appropriate size barrier strips. AC barrier strips shall be provided with a protective cover to prevent accidental contact with wires carrying live AC current. Punch blocks are approved for signal, not AC wires. Wire Nut or "Scotch Lock" connectors are not acceptable for signal wire installation.
- Cables: Each connector shall be designed for the specific size cable being used and installed with the OEM's approved installation tool. Typical system cable connectors include; but, are not limited to: Audio spade lug, punch block, wirewrap, etc.
- 3. Line or Microphone Audio: Each connector shall be installed according to the cable or connector OEM's instructions and use the OEM's approved installation tool. Install the connector's to provide and maintain the following audio signal polarity:
 - a. XLR type connectors Signal or positive conductor is pin 3; common or neutral conductor is pin 2; ground conductor is pin 1.
 - b. Two and 3 conductor 1/4" Signal or positive conductor is tip; neutral or 1/8" phono plugs conductor is ring and ground or shield and jacks conductor is sleeve.
 - c. RCA Phono Plugs the Signal or positive conductor is tip; and Jacks neutral or shield conductor is sleeve.
- 4. Speaker Line Audio:
 - a. Each connector shall be installed according to the cable, transformer or speaker OEM instructions and using the OEM's approved installation tool. The Contractor shall ensure each speaker is properly phased and connected in the same manner throughout the System using two conductor type wires.
 - b. One of the conductors shall be color coded to aid in establishing speaker signal polarity. Each speaker line shall be permanently soldered or audio spade lug connected to each appropriate speaker or line matching transformer connection terminal. Speaker line connection to each audio amplifier shall use audio spade lugs, as described herein.

- G. AC Power: AC power wiring shall be run separately from signal cable.
- H. Grounding:
 - General: The Contractor shall ground all Contractor Installed Equipment and identified Government Furnished Equipment to eliminate all shock hazards and to minimize, to the maximum extent possible, all ground loops, common mode returns, noise pickup, crosstalk, etc. The total ground resistance shall be 0.1 Ohm or less.
 - a. The Contractor shall install lightning arrestors and grounding in accordance with the NFPA and this specification.
 - b. Under no conditions shall the AC neutral, either in a power panel or in a receptacle outlet, be used for system control, subcarrier or audio reference ground.
 - c. The use of conduit, signal duct or cable trays as system or electrical ground is not acceptable and will not be permitted. These items may be used only for the dissipation of internally generated static charges (not to be confused with externally generated lightning) that may applied or generated outside the mechanical and/or physical confines of the System to earth ground. The discovery of improper system grounding shall be grounds to declare the System unacceptable and the termination of all system acceptance testing.
 - 2. Cabinet Buss: A common ground buss of at least #10 AWG solid copper wire shall extend throughout each equipment cabinet and be connected to the system ground. Provide a separate isolated ground connection from each equipment cabinet ground buss to the system ground. Do not tie equipment ground busses together.
 - 3. Equipment: Equipment shall be bonded to the cabinet bus with copper braid equivalent to at least #12 AWG. Self grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternates.
 - 4. Cable Shields: Cable shields shall be bonded to the cabinet ground buss with #12 AWG minimum stranded copper wire at only one end of the cable run. Cable shields shall be insulated from each other, faceplates, equipment racks, consoles, enclosures or cabinets; except, at the system common ground point. Coaxial and audio cables,

shall have one ground connection at the source; in all cases, cable shield ground connections shall be kept to a minimum.

- I. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for voice and data circuits shall be stenciled using laser printers. Handwritten labels are not acceptable.
 - Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams".
 - Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or bakelite material. System equipment shall be labeled on the face of unit corresponding to its source.
 - 3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.
 - 4. Termination Hardware: The Contractor shall label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams".

3.2 TESTS

- A. Interim Inspection:
 - 1. This inspection shall verify that the equipment provided adheres to the installation requirements of this document. The interim inspection will be conducted by a factory-certified representative and witnessed by a Government Representative. Each item of installed equipment shall be checked to insure appropriate UL certification markings. This inspection shall verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B pin assignments and cabling connections are in compliance with ANSI/EIA/TIA standards. Visually confirm Category 6 marking of outlets, faceplates, outlet/connectors and patch cords.
 - Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.

- 3. The Contractor shall notify the RE, in writing, of the estimated date the Contractor expects to be ready for the interim inspection, at least 20 working days before the requested inspection date.
- 4. Results of the interim inspection shall be provided to the COR and PM. If major or multiple deficiencies are discovered, a second interim inspection may be required before permitting the Contractor to continue with the system installation.
- 5. The COR and/or the PM shall determine if an additional inspection is required, or if the Contractor will be allowed to proceed with the installation. In either case, re-inspection of the deficiencies noted during the interim inspection(s), will be part of the proof of performance test. The interim inspection shall not affect the Systems' completion date. The Contracting Officer shall ensure all test documents will become a part of the Systems record documentation.
- B. Pretesting:
 - Upon completing the installation of the System, the Contractor shall align and balance the system. The Contractor shall pretest the entire system.
 - 2. Pretesting Procedure:
 - a. During the system pretest, the Contractor shall verify (utilizing the approved spectrum analyzer and test equipment) that the System is fully operational and meets all the system performance requirements of this standard.
 - b. The Contractor shall pretest and verify that all System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. The Contractor shall measure and record the aural carrier levels of each system telephone and data channel, at each of the following points in the system:
 - 1) Local Telephone Company Interfaces or Inputs.
 - 2) EPBX interfaces or inputs and outputs.
 - 3) MDF interfaces or inputs and outputs.
 - 4) EPBX output S/NR for each telephone and data channel.

- 5) Signal Level at each interface point to the distribution system, the last outlet on each trunk line plus all outlets installed as part of this contract.
- 3. The Contractor shall provide four (4) copies of recorded system pretest measurements and written certification that the System is ready for the formal acceptance test shall be submitted to the COR.
- C. Acceptance Test: After the System has been pretested and the Contractor has submitted the pretest results and certification to the COR, then the Contractor shall schedule an acceptance test date and give the COR 30 days written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of a Government Representative and an OEM certified representative. The System shall be tested utilizing the approved test equipment to certify proof of performance and Life Safety compliance. The test shall verify that the total System meets the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
- D. Performance Testing:
 - Perform Category 6 tests in accordance with ANSI/EIA/TIA-568-B.1 and ANSI/EIA/TIA-568-B.2. Test shall include the following: wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
 - 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with ANSI/EIA/TIA-568-B.3.
- E. Total System Acceptance Test: The Contractor shall perform verification tests for UTP copper cabling system(s) and the multimode fiber optic cabling system(s) after the complete telecommunication distribution system and workstation outlet are installed.
 - Voice Testing: Connect to the network interface device at the demarcation point. Go off-hook and receive dial tone from the LEC. If a test number is available, place and receive a local, long distance, and FTS telephone call.
 - Data Testing: Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network is achieved.

3.3 TRAINING

- A. Furnish the services of a factory-trained engineer or technician for a total of two four hour classes to instruct designated Facility IRM personnel. Instruction shall include cross connection, corrective, and preventive maintenance of the System and equipment.
- B. Before the System can be accepted by the VA, this training must be accomplished. Training will be scheduled at the convenience of the Facilities Contracting Officer and Chief of Engineering Service.

3.4 WARRANTY

- A. Comply with FAR clause 52.246-21, except that warranty shall be as follows:
 - The Contractor shall warranty that all installed material and equipment will be free from defects, workmanship, and will remain so for a period of one year from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the COR has taken procession of the building(s)), that certifies each item of equipment installed conforms to OEM published specifications.
 - 2. The Contractor's maintenance personnel shall have the ability to contact Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. The Contractor and OEM shall provide this contact capability at no additional cost to the VA.
 - 3. All Contractor installation, maintenance, and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
 - 4. Additionally, the Contractor shall accomplish the following minimum requirements during the one year warranty period:
 - a. Response Time:
 - The COR is the Contractor's reporting and contact official for the System trouble calls, during the warranty period.
 - A standard workweek is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal Holidays.
 - 3) The Contractor shall respond and correct on-site trouble calls, during the standard work week to:

- a) A routine trouble call within one working days of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
- b) An emergency trouble call within 6 hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at anytime. Additionally, a loss of a minimum of 50 station or system lines shall be deemed as this type of a trouble call.
- 4) The Contractor shall respond on-site to a catastrophic trouble call within 4 hours of its report. A catastrophic trouble call is considered total system failure.
 - a) If a system failure cannot be corrected within four hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate system CSS or TCO equipment, or cables. The alternate equipment and/or cables shall be operational within four hours after the four hour trouble shooting time.
 - b) Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as a catastrophic trouble call if so determined by the COR. The COR shall notify the Contractor of this type of trouble call at the direction of the Facilities Director.
- b. Required on-site visits during the one year warranty period
 - The Contractor shall visit, on-site, for a minimum of eight hours, once every 12 weeks, during the warranty period, to perform system preventive maintenance, equipment cleaning, and operational adjustments to maintain the System according the descriptions identified in this SPEC.
 - a) The Contractor shall arrange all Facility visits with the COR prior to performing the required maintenance visits.
 - b) The Contractor in accordance with the OEM's recommended practice and service intervals shall perform preventive maintenance during a non-busy time agreed to by the COR or Facility Contracting Officer and the Contractor.

- c) The preventive maintenance schedule, functions and reports shall be provided to and approved by the COR.
- 2) The Contractor shall provide the COR a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the COR with sample copies of these reports for review and approval at the beginning of the Total System Acceptance Test. The following reports are the minimum required:
 - a) Monthly Report: The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this warranty period to COR by the fifth working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and Systems for preventive and predictive maintenance.
 - b) Contractor Log: The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
- 3) The COR shall provide the Facility Engineering Officer, two
 - (2) copies of actual reports for evaluation.
 - a) The COR shall ensure copies of these reports are entered into the System's official acquisition documents.
 - b) The Facilities Chief Engineer shall ensure copies of these reports are entered into the System's official technical as-installed documents.
- B. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use, accidents, other vendor, contractor, owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the COR in writing upon the discovery of these

incidents. The COR will investigate all reported incidents and render findings concerning any Contractor's responsibility.

- - - E N D - - -

SECTION 27 51 16

PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

PART 1 - GENERAL

1.1 SECTION SUMMARY

- A. Work covered by this document includes design, engineering, labor, material and products, equipment warranty and system guarantee, training and services for, and incidental to, the complete installation of an extension to the existing facility Emergency Service Public Address System (PAS) and associated equipment (here-in-after referred to as the System) in approved locations indicated on the contract drawings. These items shall be tested and certified capable of receiving, distributing, interconnecting and supporting PAS communications signals generated local and remotely as detailed herein.
- B. Work shall be complete, Occupational Safety and Health Administration (OSHA), National Recognized Testing Laboratory (NRTL - i.e. Underwriters Laboratory [UL]) Listed and Labeled; and VA Central Office (VACO), Telecommunications Voice Engineering (TVE 005OP3B) tested, certified and ready for operation.
- C. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- D. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
- E. Specification Order of Precedence: In the event of a conflict between the text of this document and the Project's Contract Drawings outlined and/or cited herein; THE TEXT OF THIS DOCUMENT TAKES PRECEDENCE. HOWEVER, NOTHING IN THIS DOCUMENT WILL SUPERSEDE APPLICABLE EMERGENCY LAWS AND REGULATIONS, SPECIFICALLY NATIONAL AND/OR LOCAL LIFE AND PUBLIC SAFETY CODES. The Local Fire Marshall and/or VA Public Safety Officer are the only authorities that may modify this document's EMERGENCY CODE COMPLIANCE REQUIREMENTS, on a case by case basis, in writing and confirmed by VA's PM, COR and TVE-0050P3B. <u>The VA CO is the</u> <u>only approving authority</u> for other amendments to this document that may be granted, on a case by case basis, in writhing with technical concurrencies by VA's RE, TVE-0050P3B and identified Facility Project Personnel.

F. The Original Equipment Manufacturer (OEM) and Contractor shall ensure <u>that all</u> management, sales, engineering and installation personnel have read and understand the requirements of this specification <u>before</u> the system is designed, engineered, delivered and provided. The Contractor shall furnish a written statement attesting this requirement as a part of the technical submittal that includes each name and certification, including the OEMs.

1.2 RELATED SECTIONS

- A. 01 33 23 Shop Drawings, Product Data and Samples.
- B. 07 84 00 Firestopping.
- C. 26 05 19 Low Voltage Electrical Power Conductors and Cables.
- D. 27 05 11 Requirements for Communications Installations.
- E. 27 05 26 Grounding and Bonding for Communications Systems.
- F. 27 05 33 Raceways and Boxes for Communications Systems.
- G. 27 11 00 Communications Cabling Interface and Equipment Rooms Fittings.
- H. 27 15 00 Horizontal and Vertical Communications Cabling Equipment and Systems.

1.3 DEFINITIONS

- A. Provide: Design, engineer, furnish, install, connect complete, test, certify and guarantee.
- B. Work: Materials furnished and completely installed.
- C. Review of contract drawings: A service by the engineer to reduce the possibility of materials being ordered which do not comply with contract documents. The engineer's review shall not relieve the Contractor of responsibility for dimensions or compliance with the contract documents. The reviewer's failure to detect an error does not constitute permission for the Contractor to proceed in error.
- D. Headquarters Technical Review, for National and VA communications and security, codes, frequency licensing, standards, guidelines compliance:

Office of Telecommunications Special Communications Team (0050P2B) 1335 East West Highway - 3rd Floor Silver Spring, Maryland 20910 (0) 301-734-0350, (F) 301-734-0360

1.4 REFERENCES

- A. The installation shall comply fully with all governing authorities, laws and ordinances, regulations, codes and standards, including, but not limited to:
 - 1. United States Federal Law:
 - a. Departments of:
 - Commerce, Consolidated Federal Regulations (CFR), Title 15 Under the Information Technology Management Reform Act (Public Law 104-106), the Secretary of Commerce approves standards and guidelines that are developed by the:
 - a) Chapter II, National Institute of Standards Technology (NIST - formerly the National Bureau of Standards). Under Section 5131 of the Information Technology Management Reform Act of 1996 and the Federal Information Security Management Act of 2002 (Public Law 107-347), NIST develops - Federal Information Processing Standards Publication (FIPS) 140-2-Security Requirements for Cryptographic Modules.
 - b) Chapter XXIII, National Telecommunications and Information Administration (NTIA - aka 'Red Book') Chapter 7.8 / 9;
 CFR, Title 47 Federal communications Commission (FCC) Part 15, Radio Frequency Restriction of Use and Compliance in "Safety of Life" Functions & Locations
 - 2) FCC Communications Act of 1934, as amended, CFR, Title 47 -Telecommunications, in addition to Part 15 - Restrictions of use for Part 15 listed Radio Equipment in Safety of Life / Emergency Functions / Equipment/ Locations (also see CFR, Title 15 - Department of Commerce, Chapter XXIII - NTIA):
 - a) Part 15 Restrictions of use for Part 15 listed Radio
 Equipment in Safety of Life / Emergency Functions /
 Equipment/Locations.
 - b) Part 58 Television Broadcast Service.
 - c) Part 90 Rules and Regulations, Appendix C.
 - d) Form 854 Antenna Structure Registration.
 - 3) Health, (Public Law 96-88), CFR, Title 42, Chapter IV Health & Human Services, CFR, Title 46, Subpart 1395(a)(b) JCAHO "a hospital that meets JCAHO accreditation is deemed to meet the

Medicare conditions of Participation by meeting Federal Directives:"

- a) All guidelines for Life, Personal and Public Safety; and, Essential and Emergency Communications.
- 4) Labor, CFR, Title 29, Part 1910, Chapter XVII Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standard:
 - a) Subpart 7 Definition and requirements (for a NRTL 15 Labatory's, for complete list, contact

(<u>http://www.osha.gov/dts/otpca/nrtl/faq_nrtl.html</u>):

- 1) UL:
 - a) 44-02 Standard for Thermoset-Insulated Wires and Cables.
 - b) 65 Standard for Wired Cabinets.
 - c) 83-03 Standard for Thermoplastic-Insulated Wires and Cables.
 - d) 467-01 Standard for Electrical Grounding and Bonding Equipment
 - e) 468 Standard for Grounding and Bonding Equipment.
 - f) 486A-01 Standard for Wire Connectors and Soldering Lugs for Use with Copper Conductors
 - g) 486C-02 Standard for Splicing Wire Connectors.
 - h) 486D-02 Standard for Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations.
 - i) 486E-00 Standard for Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors.
 - j) 493-01 Standard for Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable.
 - k) 514B-02 Standard for Fittings for Cable and Conduit.
 - 1) 1069 Hospital Signaling and Nurse Call Equipment.
 - m) 1333 Vertical (Riser) Fire Rating.
 - n) 1449 Standard for Transient Voltage Surge Suppressors.
 - o) 1479-03 Standard for Fire Tests of Through-Penetration Fire Stops.
 - p) 1863 Standard for Safety, Communications Circuits

27 51 16 - 4

Accessories.

- q) 2024 Standard for Optical Fiber Raceways.
- r) 60950-1/2 Information Technology Equipment -Safety.
- 2) Canadian Standards Association (CSA): same tests as for UL.
- 3) Communications Certifications Labatory (CCL): same tests as for UL.
- 4) Intertek Testing Services NA, Inc. (ITSNA formerly Edison Testing Labatory [ETL]): same tests as for UL.
- b) Subpart 35 Compliance with NFPA 101 Life Safety Code.
- c) Subpart 36 Design and construction requirements for exit routes.
- d) Subpart 268 Telecommunications.
- e) Subpart 305 Wiring methods, components, and equipment for general use.
- 5) Department of Transportation, CFR, Title 49 (Public Law 89-670), Part 1, Subpart C - Federal Aviation Administration (FAA):
 - a) Standards AC 110/460-ID & AC 707 / 460-2E Advisory Circulars for Construction of Antenna Towers.
 - b) Forms 7450 and 7460-2 Antenna Construction Registration.
- 6) Veterans Affairs (Public Law No. 100-527), CFR, Title 38, Volumes I & II:
 - a) Office of Telecommunications:
 - 1) Handbook 6100 Telecommunications.
 - a) Spectrum Management FCC & NTIA Radio Frequency Compliance and Licensing Program.
 - b) Special Communications Proof of Performance Testing, VACO Compliance and Life Safety Certification(s).
 - b) Office of Cyber and Information Security (OCIS):
 - 1) Handbook 6500 Information Security Program.
 - Wireless and Handheld Device Security Guideline Version
 August 15, 2005.
 - c) VA's National Center for Patient Safety Veterans Health Administration Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.

27 51 16 - 5

- d) VA's Center for Engineering Occupational Safety and Health, concurrence with warning identified in VA Directive 7700.
- e) Office of Construction and Facilities Management (CFM):
 - 1) Master Construction Specifications (PG-18-1).
 - 2) Standard Detail and CAD Standards (PG-18-4).
 - 3) Equipment Guide List (PG-18-5.
 - Electrical Design Manual for VA Facilities (PG 18-10), Articles 7 & 8.
 - 5) Minimum Requirements of A/E Submissions (PG 18-15):
 - a) Volume B, Major New Facilities, Major Additions; and Major Renovations, Article VI, Paragraph B.
 - b) Volume C Minor and NRM Projects, Article III, Paragraph S.
 - c) Volume E Request for Proposals Design/Build Projects, Article II, Paragraph F.
 - Mission Critical Facilities Design Manual (Final Draft -2007).
 - Life Safety Protected Design Manual (Final Draft -2007).
 - Solicitation for Offerors (SFO) for Lease Based Clinics
 (05-2009).
- b. Federal Specifications (Fed. Specs.):
 - 1) A-A-59544-00 Cable and Wire, Electrical (Power, Fixed Installation).
- 2. United States National Codes:
 - a. American Institute of Architects (AIA): Guidelines for Healthcare Facilities.
 - b. American National Standards Institute/Electronic Industries
 Association/Telecommunications Industry Association
 (ANSI/EIA/TIA):
 - 568-B Commercial Building Telecommunications Wiring Standards:
 - a) B-1 General Requirements.
 - b) B-2 Balanced twisted-pair cable systems.
 - c) B-3 Fiber optic cable systems.
 - 569 Commercial Building Standard for Telecommunications Pathways and Spaces.

- 606 Administration Standard for the Telecommunications Infrastructure of Communications Buildings.
- 607 Commercial Building Grounding and Bonding Requirements for Telecommunications.
- 5) REC 127-49 Power Supplies.
- 6) RS 160-51 Sound systems.
- 7) RS 270 Tools, Crimping, Solderless Wiring Devices, Recommended Procedures for User Certification.
- 8) SE 101-A49 Amplifier for Sound Equipment
- 9) SE 103-49 Speakers for Sound Equipment
- c. American Society of Mechanical Engineers (ASME):
 - 1) Standard 17.4 Guide for Emergency Personnel.
 - Standard 17.5 Elevator & Escalator Equipment (prohibition of installing non-elevator equipment in Elevator Equipment Room / Mechanical Penthouse).
- d. American Society of Testing Material (ASTM):
 - D2301-04 Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape.
- e. Building Industries Communications Services Installation (BICSI):
 - All standards for smart building wiring, connections and devices for commercial and medical facilities.
 - 2) Structured Building Cable Topologies.
 - 3) In consort with ANSI/EIA/TIA.
- f. Institute of Electrical and Electronics Engineers (IEEE):
 - SO/TR 21730:2007 Use of mobile wireless communication and computing technology in healthcare facilities -Recommendations for electromagnetic compatibility (management of unintentional electromagnetic interference) with medical devices.
 - 2) 0739-5175/08/©2008 IEEE Medical Grade Mission Critical -Wireless Networks.

3) C62.41 - Surge Voltages in Low-Voltage AC Power Circuits.

- g. NFPA:
 - 70 National Electrical Code (current date of issue) -Articles 517, 645 & 800.
 - 75 Standard for Protection of Electronic Computer Data-Processing Equipment.
 - 3) 77 Recommended Practice on Static Electricity.

- 4) 99 Healthcare Facilities.
- 5) 101 Life Safety Code.
- 6) 1600 Disaster Management, Chapter 5.9 Communications and Warning
- 3. State Hospital Code(s).
- 4. Local Town, City and/or County Codes.
- 5. Accreditation Organization(s):
 - a. Joint Commission on Accreditation of Hospitals Organization (JCAHO) - Section VI, Part 3a - Operating Features.

1.5 QUALIFICATIONS

- A. The OEM shall have had experience with three (3) or more installations of systems of comparable size and complexity with regards to type and design as specified herein. Each of these installations shall have performed satisfactorily for at least one (1) year after final acceptance by the user. Include the names, locations and point of contact for these installations as a part of the submittal.
- B. The Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The Contractor shall be authorized by the OEM to pass thru the OEM's warranty of the installed equipment to VA. In addition, the OEM and Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certifications must be provided in writing as part of the Contractor's Technical submittal.
- C. The Contractor's Communications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, operation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the COR before being allowed to commence work on the System.
- D. The Contractor shall display all applicable national, state and local licenses.
- E. The Contractor shall submit copy (s) of Certificate of successful completion of OEM's installation/training school for installing technicians of the System's PA equipment being proposed.

1.6 CODES AND PERMITS

- A. Provide all necessary permits and schedule all inspections as identified in the contract's milestone chart, so that the system is proof of performance tested and ready for operation on a date directed by the Owner.
- B. The contractor is responsible to adhere to all codes described herein and associated contractual, state and local codes.
- C. The Contractor shall display all applicable national, state and local licenses and permits.

1.7 SCHEDULING

A. It is the responsibility of the Contractor to coordinate all work with the other trades for scheduling, rough-in, and finishing all work specified. The owner will not be liable for any additional costs due to missed dates or poor coordination of the supplying contractor with other trades.

1.8 REVIEW OF CONTRACT DRAWINGS AND EQUIPMENT DATA SUBMITTALS

(Note: The Contractor is encouraged, but not required, to submit separate technical submittal(s) outlining alternate technical approach(s) to the system requirements stated here-in as long as each alternate technical document(s) is complete, separate, and submitted in precisely the same manner as outlined herein. VA will review and rate each received alternate submittal, which follows this requirement, in exactly the same procedure as outlined herein. Partial, add-on, or addenda type alternates will not be accepted or reviewed.)

- A. Submit at one time within 10 days of contract awarding, drawings and product data on all proposed equipment and system. Check for compliance with contract documents and certify compliance with Contractor's "APPROVED" stamp and signature.
- B. Support all submittals with descriptive materials, i.e., catalog sheets, product data sheets, diagrams, and charts published by the manufacturer. These materials shall show conformance to specification and drawing requirements.
- C. Where multiple products are listed on a single cut-sheet, circle or highlight the one that you propose to use. Provide a complete and through equipment list of equipment expected to be installed in the system, with spares, as a part of the submittal. Special Communications (TVE-0050P3B) will not review any submittal that does not have this list.

- D. Provide four (4) copies to the PM for technical review. The PM will provide a copy to the offices identified in Paragraph 1.3.C & D, at a minimum for compliance review as described herein where each responsible individual(s) shall respond to the PM within 10 days of receipt of their acceptance or rejection of the submittal(s).
- E. Provide interconnection methods, conduit (where not already installed), junction boxes (J-Boxes), cable, interface fixtures and equipment lists for the: ENR(s) (aka DMARC), TER, TCR, MCR, MCOR, PCR, ECR, Stacked Telecommunications Rooms (STR), Nurses Stations (NS), Head End Room (HER), Head End Cabinet (HEC), Head End Interface Cabinet (HEIC) and approved TCO locations Telecommunications Infrastructure Plant (TIP) interface distribution layout drawing, as they are to be installed and interconnected to teach other (REFER TO APPENDIX B - SUGGESTED TELECOMMUNI-CAITONS ONE LINE TOPOLOGY pull-out drawing).
- F. Equipment OEM technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
- G. Surveys Required as a Part of The Technical Submittal:
 - 1. The Contractor shall provide the following System survey(s) that depict various system features and capacities required <u>in addition</u> <u>to</u> the on-site survey requirements described herein. Each survey shall be in writing and contain the following information (the formats are suggestions and may be used for the initial Technical Submittal Survey requirements), as a minimum:
 - a. PA Cable System Design Plan:
 - 1) An OEM and contractor designed functioning PA System cable plan to populate the entire TIP empty conduit/pathway distribution systems provided as a part of Specification 27 11 00 shall be provided as a part of the technical proposal. A specific functioning PA: cable, interfaces, J-boxes and back boxes shall coincide with the total growth items as described herein. It is the Contractor's responsibility to provide the Systems' entire PA cable and accessory requirements and engineer a functioning PA distribution system and equipment requirement plan.
 - 2) The Required PA Equipment locations.

1.9 PROJECT RECORD DOCUMENTS (AS BUILTS)

- A. Throughout progress of the Work, maintain an accurate record of changes in Contract Documents. Upon completion of Work, transfer recorded changes to a set of Project Record Documents.
- B. The floorplans shall be marked in pen to include the following:
 - 1. All device locations with UL labels affixed.
 - 2. Conduit locations.
 - 3. Each interface and equipment specific location.
 - 5. Telecommunication Outlet (s -TCO) equipment and specific location
 - 6. TIP Wiring diagram(s).
 - 7. Warranty certificate.
 - 8. System test results.
 - 9. System Completion Document(s) or MOU.

1.10 WARRANTIES / GUARANTY

- A. The Contractor shall warrant the installation to be free from defect in material and workmanship for a period of two (2) years from the date of acceptance of the project by the owner. The Contractor shall agree to remedy covered defects within four (4) hours of notification of major failures or within twenty-four (24) hours of notification for individual station related problems.
- B. The Contractor shall agree to grantee the system according to the guidelines outlined in Article 4 herein.

1.11 USE OF THE SITE

- A. Use of the site shall be at the GC's direction.
- B. Coordinate with the GC for lay-down areas for product storage and administration areas.
- C. Coordinate work with the GC and their sub-contractors.
- D. Access to buildings wherein the work is performed shall be directed by the GC.

1.12 DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft.
- B. Store products in original containers.
- C. Coordinate with the GC for product storage. There may be little or no storage space available on site. Plan to potentially store materials off site.
- D. Do not install damaged products. Remove damaged products from the site and replaced with new product at no cost to the Owner.

1.13 PROJECT CLOSE-OUT

- A. Prior to final inspection and acceptance of the work, remove all debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from the project site and thoroughly clean your work area.
- B. Before the project closeout date, the Contractor shall submit:
 - 1. Warranty certificate.
 - 2. Evidence of compliance with requirements of governing authorities such as the Low Voltage Certificate of Inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that is a part of the system.
- C. Contractor shall submit written notice that:
 - 1. Contract Documents have been reviewed.
 - 2. Project has been inspected for compliance with contract.
 - 3. Work has been completed in accordance with the contract.

PART 2 - PRODUCTS / FUNCTIONAL REQUIREMENTS

2.1 GENERAL REQUIREMENTS FOR EQUIPMENT AND MATERIALS

- A. The specific location for the PA equipment is shown on the Drawings.
- B. Coordinate features and select interface components to form an integrated PA system. Match components and interconnections between the systems for optimum performance of specified functions.
- C. Expansion Capability: The PA equipment interfaces and cables shall be able to increase number of enunciation points in the future by a minimum of 50 percent (%) above those indicated without adding any internal or external components or main trunk cable conductors.
- D. Equipment: Active electronic type shall use solid-state components, fully rated for continuous duty unless otherwise indicated. Select equipment for normal operation on input power usually supplied between 110 to 130 VAC, 60 Hz.
- E. Meet all FCC requirements regarding low radiation and/or interference of RF signal(s). The system shall be designed to prevent direct pickup of signals from within and outside the building structure.
- F. Deliver a fully functioning and operable PA in the specific locations shown on the drawings.

2.2 SYSTEM DESCRIPTION

A. Furnish and install a complete and fully functional and operable PA system as an extension of the existing building system. Provide additional require conduit(s) according to Specification 27 11 00.

- B. The Contractor shall continually employ interfacing methods that are approved by the OEM and VA. At a minimum, an acceptable interfacing method requires not only a physical and mechanical connection, but also a matching of signal, voltage, and processing levels with regard to signal quality and impedance. The total PA system shall be configured and installed so that the combination of equipment actually employed does not produce any undesirable visual or aural effects such as signal distortions, noise pulses, glitches, hum, transients, images, etc. The interface points must adhere to all standards described herein for the full separation of Critical Care and Life Safety systems.
- C. It is not acceptable to utilize the telephone cable system for the control of radio signals and equipment. The System Contractor shall connect the Telephone System Remote Control System to the Radio System Paging Control Unit ensuring that all NFPA and UL Critical Care and Life Safety Circuit and System separation guidelines are satisfied. The System Contractor is not allowed to make any connections to the Telephone System. The Owner shall arrange for the interconnection between the PA and Telephone Systems with the appropriate responsible parties.
- D. The System shall interface with the Facility's existing PAS so that a global page (aka "all call" page) is communicated to the existing PAS and the new System of this project. Arrangements for interconnection of the System and the telephone system(s) shall be coordinated with the owner and the PBX provider.
- E. All passive distribution equipment shall meet or exceed -80 dB radiation shielding (aka RFI) shielding specifications and be provided with screw type audio connectors.
- F. All equipment face plates utilized in the system shall be stainless steel, anodized aluminum or UL approved cycolac plastic for the areas where provided.
- G. All trunk, branch, and interconnecting cables and unused equipment ports or taps shall be terminated with proper terminating resistors designed for RF, audio and digital cable systems without adapters.
- H. Noise filters and surge protectors shall be provided for each equipment interface cabinet, headend cabinet, control console and local and remote amplifier locations to insure protection from input primary AC power surges and to insure noise glitches are not induced into low voltage data circuits.

- I. Plug-in connectors shall be provided to connect all equipment, except coaxial cables and RF transmission line interface points. Coaxial cable distribution points and RF transmission lines shall use coaxial cable connections recommended by the cable OEM and approved by the system OEM. Base band cable systems shall utilize barrier terminal screw type connectors, at a minimum. As an alternate, crimp type connectors installed with a ratchet type installation tool are acceptable provided the cable dress, pairs, shielding, grounding, connections and labeling are the same as the barrier terminal strip connectors. Tape of any type, wire nuts or solder type connections are unacceptable and will not be approved.
- J. Contractor is responsible for pricing all accessories and miscellaneous equipment required to form a complete and operating system. Unless otherwise noted in this Part, equipment quantities shall be as indicated on the drawings.

2.3 SYSTEM PRFORMANCE:

- A. At a minimum, each distribution, interconnection, interface, terminating point and TCO shall be capable of supporting the Facility's PA system voice and data service as follows:
 - Shall be compliant with and not degrade the operating parameters of the Public Switched Telephone Network (PSTN) and the Federal Telecommunications System (FTS) at each PSTN and FTS interface, interconnection and terminating locations in the TERs.
 - Audio Input: The signal level of each audio input channel at each input point shall be a MINIMUM of zero decibels measured (dBm), +0.10 dBm across 150 Ohms, balanced.
 - 3. Audio Output: The audio signal level at each speaker shall be a MINIMUM of +0.25 Watt (W) and a maximum of +20 W, 600 Ohms balanced impedance, on a 70.7 V audio distribution line Contractor to determine and set each speaker's proper audio signal level (top) based on speaker location and the ambient noise level in speaker coverage area.
 - 4. The system shall meet the following MINIMUM parameters at each speaker:
 - a. Cross Modulation: -46 dB
 - b. Hum Modulation: -55 dB
 - c. Isolation (outlet-outlet): 24 dB
 - d. Impedance:

- 1) Distribution: 600 Ohm balanced @ 70.7 V audio line level.
 - 2) Speaker: Selectable, as required.
- e. Audio Gain: 10 dB minimum @ mid-range measured with a sound pressure level meter (SPL)
- f. Signal to noise (S/N) ratio: 35 dB, minimum
- B. Audio Level Processing: The head-end equipment shall consist of audio mixer(s), volume limiter(s) and/or compressor(s), and power amplifier(s) to process, adjust, equalize, isolate, filter, and amplify each audio channel for each zone or sub-zone in the system and distribute them into the system's distribution trunks. It is acceptable to use identified telephone system cable pairs designated for PA use or identified as spare telephone cable pairs by the Facility's Telephone System Contractor.
 - 1. THE USE OF TELEPHONE CABLE TO DISTRIBUTE PA SIGNALS CARRYING AC OR DC VOLTAGE IS NOT ACCEPTABLE AND WILL NOT BE APPROVED.
 - Additionally, each remote location shall be provided with the equipment required to ensure the system supervision and designed audio channel capacity at each speaker identified on the contract drawings.

2.4 MANUFACTURERS

- A. All products shall be fully compatible with the existing PA system. The products specified shall be new, FCC and UL Listed, labeled and produced by OEM of record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
 - 1. Maintains a stock of replacement parts for the item submitted,
 - Maintains engineering drawings, specifications, and operating manuals for the items submitted, and
 - 3. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid (IFB).
- B. Specifications contained herein as set forth in this document detail the salient operating and performance characteristics of equipment in order for VA to distinguish acceptable items of equipment from unacceptable items of equipment. When an item of equipment is offered or furnished for which there is a specification contained herein, the item of equipment offered or furnished shall meet or exceed the specification for that item of equipment.

- C. Equipment Standards and Testing:
 - The System has been defined herein as connected to systems identified as an Emergency performing Public Safety Support Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Public and Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.
 - All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory (NRTL) where such standards have been established for the supplies, materials or equipment.
 - 3. The provided equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the COR approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.
 - 4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards. The placement of the UL Seal shall be a permanent part of the electronic equipment that is not capable of being transportable from one equipment item to another.

2.5 PRODUCTS

- A. General.
 - Contractor is responsible for pricing all accessories and miscellaneous equipment required to form a complete and operating system. The equipment quantities provided herein shall be as indicated on the drawings with the exception of the indicated spare equipment.
 - 2. Contractor Furnished Equipment List (CFEs):
 - a. The Contractor is required to provide a list of the CFE equipment to be furnished. The quantity, make and model number of each item is required. Select the required equipment items quantities that will satisfy the needs of the system as described herein and with the OEM's concurrence applied to the list(s), in writing.

- B. TER, TCR, TR, SCC, PCR, STR, HER Rooms and Equipment: Refer to CFM Physical Security Manual (07-2007) for VA Facilities, Chapters 9.3 & 1) and PG 18-10, EDM, Chapters 7- Table 7-1, 8 & Appendix B, Telecommunications One Line Topology for specific Room and TIP Connection Requirements.
 - 1. Interface Equipment:
 - a. TER:
 - 1) Amplifier Equipment:
 - a) Paging (aka zone):
 - Inputs for 600-ohm balanced telephone line, LO-Z balanced microphone, and background music.
 - Input Sensitivity: Compatible with master stations and central equipment so amplifier delivers full rated output with sound-pressure level of less than 10 dynes/sq. cm impinging on master stations speaker microphones, or handset transmitters
 - Automatic Level Control (ALC) for pages, adjustable adjustable background music muting level during page, wall or rack mountable.
 - 4) 16-ohm, 25V, 25V center tapped (CT), and 70V outputs. Amplifier quantity and size (output power) as needed. Continuous amplifier power rating shall exceed loudspeaker load on amplifier by at least 25%.
 - 5) Output Power: 70-V balanced line. 80 percent of the sum of wattage settings of connected for each station and speaker connected in all-call mode of operation, plus an allowance for future stations.
 - 6) Total Harmonic Distortion: Less than 5 percent at rated output power with load equivalent to quantity of stations connected in all-call mode of operation.
 - 7) Minimum Signal-to-Noise Ratio: 45 dB, at rated output.
 - Frequency Response: Within plus or minus 3 dB from 70 to 12,000 Hz.
 - b) Output Regulation: Maintains output level within 2 dB from full to no load.
 - c) Amplifier Protection: Prevents damage from shorted or open output.
 - d) Be provided with electronic supervision function(s).

- e) Provide one spare amplifier.
- C. TIP DISTRIBUTION SYSTEM:
 - 1. System Speakers:
 - a. Ceiling Cone-Type:
 - 1) Minimum Axial Sensitivity: 91 dB at one meter, with 1-W input.
 - 2) Frequency Response: Within plus or minus 3 dB from 70 to 15,000 Hz.
 - 3) Minimum Dispersion Angle: 100 degrees.
 - 4) Line Transformer: Maximum insertion loss of 0.5 dB, power rating equal to speaker's, and at least four level taps.
 - 5) Enclosures: Steel housings or back boxes, acoustically dampened, with front face of at least 0.0478-inch steel and whole assembly rust proofed and factory primed; complete with mounting assembly and suitable for surface ceiling, flush ceiling, pendant or wall mounting; with relief of back pressure.
 - 6) Baffle: For flush speakers, minimum thickness of 0.032-inch aluminum with textured white finish. Completely fill the baffle with fiberglass.
 - 7) Vandal-Proof, High-Strength Baffle: For flush-mounted speakers, self-aging cast aluminum with tensile strength of 44,000 psi, 0.025-inch minimum thickness; countersunk heattreated alloy mounting screws; and textured white epoxy finish.
 - Size: 8 inches with 1-inch voice coil and minimum 5-oz. ceramic magnet.
 - 9) Have a minimum of two (2) safety wires installed to a solid surface or use a flexible conduit from ceiling / wall back box to the speaker back box.
 - 10) The speakers and mounting shall be self contained and wall mounted with flush back box at a minimum of 10 meter intervals and shall match (or contrast with, at the direction of the RE) the color of the adjacent surfaces.
 - Provide one spare speaker, mount, and back box for each 50 speakers or portion thereof.
 - b. System Cables: In addition to the TIP provided under
 Specification Section 27 15 00 TIP Horizontal and Vertical
 Communications Cabling, provide the following additional TIP

installation and testing requirements, provide the following minimum System TIP cables & interconnections:

- 1) Line Level Audio and Microphone Cable:
 - a) Line level audio and microphone cable for inside racks and conduit.
 - b) Shielded, twisted pair Minimum 22 American Wire Gauge (AWG), stranded conductors and 24 AWG drain wire with overall jacket.
- 2) Speaker Level (Audio 70.7Volt [V]) Cable, Riser Rated:
 - a) For use with 70.7 V audio speaker circuits.
 - b) 18 AWG stranded pair, minimum.
 - c) UL-1333 listed.
- 3) Speaker Level Audio Cable, Plenum Rated (70.7V):
 - a) For use with 70.7 V audio speaker circuits.
 - b) 18 AWG stranded pair, minimum.
- 4) All cabling shall be riser rated.
- Provide one (1) spare 1,000 foot roll of approved System (not microphone) cable only.
- 2. Raceways, Back Boxes and conduit:
 - a. Raceways:
 - In addition to the Raceways, Equipment Room Fittings provided under Specification Sections 27 15 00 TIP Communication Room Fittings and 27 15 00 - TIP Communications Horizontal and Vertical Cabling, provide the following additional TIP raceway and fittings:
 - 2) Each raceway that is open top, shall be: UL certified for telecommunications systems, partitioned with metal partitions in order to comply with NEC Parts 517 & 800 to "mechanically separate telecommunications systems of different service, protect the installed cables from falling out when vertically mounted and allow junction boxes to be attached to the side to interface "drop" type conduit cable feeds.
 - Intercommunication System cable infrastructure: EMT or in Jhooks above accessible ceilings, 24 inches on center.
 - Junction boxes shall be not less than 2-1/2 inches deep and 6 inches wide by 6 inches long.
 - 5) Flexible metal conduit is prohibited unless specifically approved by 0050P3B.

- b. System Conduit:
 - The PA system is NFPA listed as Emergency / Public Safety Communication System which requires the entire system to be installed in a separate conduit system.
 - The use of centralized mechanically partitioned wireways may be used to augment main distribution conduit on a case by case basis when specifically approved by VA Headquarters (0050P3B).
 - 3) Conduit Sleeves:
 - a) The AE has made a good effort to identify where conduit sleeves through full-height and fire rated walls on the drawings, and has instructed the electrician to provide the sleeves as shown on the drawings.
 - b) While the sleeves shown on the drawings will be provided by others, the contractor is responsible for installing conduit sleeves and fire-proofing where necessary. It is often the case, that due to field conditions, the nursecall cable may have to be installed through an alternate route. Any conduit sleeves required due to field conditions or those omitted by the engineer shall be provided by the cabling contractor.
- 3. Device Back Boxes:
 - a. Furnish to the electrical contractor all back boxes required for the PA system devices.
 - b. The electrical contractor shall install the back boxes as well as the system conduit. Coordinate the delivery of the back boxes with the construction schedule.
- D. Installation Kit:
 - 1. General: The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the COR all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation

hardware. The following are the minimum required installation subkits:

- 2. System Grounding:
 - a. The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
 - b. This includes, but is not limited to:
 - 1) Coaxial Cable Shields.
 - 2) Control Cable Shields.
 - 3) Data Cable Shields.
 - 4) Equipment Racks.
 - 5) Equipment Cabinets.
 - 6) Conduits.
 - 7) Duct.
 - 8) Cable Trays.
 - 9) Power Panels.
 - 10) Connector Panels.
 - 11) Grounding Blocks.
- 3. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- 4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- 5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- 7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.

8. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 PROJECT MANAGEMENT

- A. Assign a single project manager to this project who will serve as the point of contact for the Owner, the General Contractor, and the Engineer.
- B. The Contractor shall be proactive in scheduling work at the hospital, specifically the Contractor will initiate and maintain discussion with the general contractor regarding the schedule for ceiling cover up and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P3B) at (301) 734-0350 to have a VA Certified Telecommunications Representative assigned to the project for telecommunications review, equipment and system approval and co-ordination with VA's Spectrum Management and OCIS Teams.

3.2 COORDINATION WITH OTHER TRADES

- A. Coordinate with the VA the location of the PA system faceplate and the faceplate opening for the PA system back boxes.
- B. Before beginning work, verify the location, quantity, size and access for the following:
 - Junction boxes, wall boxes, wire troughs, conduit stubs and other related infrastructure for the systems.
 - 2. System components installed by others.
 - 3. Overhead supports and rigging hardware installed by others.
- C. Immediately notify the Owner, GC and Consultant(s) in writing of any discrepancies

3.3 NEEDS ASSESSMENT

Provide a one-on-one meeting with the particular manager of each unit affected by the installation of the new PA system. Review the floor plan drawing, educate the nursing manager with the functions of the equipment that is being provided and gather details specific to the individual units; coverage and priorities of calls; staffing patterns; and other pertinent details that will affect system programming and training.

3.4 INSTALLATION

A. General

- 1. Execute work in accordance with National, State and local codes, regulations and ordinances.
- 2. Install work neatly, plumb and square and in a manner consistent with standard industry practice. Carefully protect work from dust, paint and moisture as dictated by site conditions. The Contractor will be fully responsible for protection of his work during the construction phase up until final acceptance by the Owner.
- 3. Install equipment according to OEM's recommendations. Provide any hardware, adaptors, brackets, rack mount kits or other accessories recommended by OEM for correct assembly and installation.
- Secure equipment firmly in place, including receptacles, speakers, system cables, etc.
 - All supports, mounts, fasteners, attachments and attachment
 points shall support their loads with a safety factor of at least
 5:1.
 - b. Do not impose the weight of equipment or fixtures on supports provided for other trades or systems.
 - c. Any suspended equipment or associated hardware must be certified by the OEM for overhead suspension.
 - d. The Contractor is responsible for means and methods in the design, fabrication, installation and certification of any supports, mounts, fasteners and attachments.
- Locate overhead ceiling-mounted loudspeakers as shown on drawings, with minor changes not to exceed 12" in any direction.
 - a. Mount transformers securely to speaker brackets or enclosures using screws. Adjust torsion springs as needed to securely support speaker assembly.
 - b. Speaker back boxes shall be completely filled with fiberglass insulation.
 - c. Seal cone speakers to their enclosures to prevent air passing from one side of the speaker to the other.
- Finishes for any exposed work such as plates, racks, panels, speakers, etc. shall be approved by the Architect, Owner and 0050P3B.
- 7. Coordinate cover plates with field conditions. Size and install cover plates as necessary to hide joints between back boxes and

surrounding wall. Where cover plates are not fitted with connectors, provide grommeted holes in size and quantity required. Do not allow cable to leave or enter boxes without cover plates installed.

- Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of FCC standards for telephone and data equipment, systems, and service.
- 9. Color code all distribution wiring to conform to the PA Industry Standard, EIA/TIA, and this document, whichever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance.
- 10.Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC power distribution system as shown on the plans or if not shown on the plans consult with COR regarding a suitable circuit location prior to bidding.
- 11. Product Delivery, Storage and Handling:
 - a. Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The COR may inventory the cable, patch panels, and related equipment.
 - b. Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the RE.
- 12.Where TCOs are installed adjacent to each other, install one outlet for each instrument.
- 13.Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.
- B. Wiring Practice in addition to the MANDATORY infrastructure requirements outlined in VA Construction Specifications 27 10 00 - TIP Structured Communications Cabling, 27 11 00 - TIP Communications Rooms Fittings and 27 15 00 - TIP Horizontal and Vertical Communicators Cabling, the following additional practices shall be adhered too:
 - Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."

- Execute all wiring in strict adherence to the National Electrical Code, applicable local building codes and standard industry practices.
- 3. Wiring shall be classified according to the following low voltage signal types:
 - Balanced microphone level audio (below -20dBm) or Balanced line level audio (-20dBm to +30dBm)
 - b. 70V audio speaker level audio.
 - c. Low voltage DC control or power (less than 48VDC)
- 4. Where raceway is to be EMT (conduit), wiring of differing classifications shall be run in separate conduit. Where raceway is to be an enclosure (rack, tray, wire trough, utility box) wiring of differing classifications which share the same enclosure shall be mechanically partitioned and separated by at least four (4) inches. Where Wiring of differing classifications must cross, they shall cross perpendicular to one another.
- 5. Do not splice wiring anywhere along the entire length of the run. Make sure cables are fully insulated and shielded from each other and from the raceway for the entire length of the run.
- Do not pull wire through any enclosure where a change of raceway alignment or direction occurs. Do not bend wires to less than radius recommended by manufacturer.
- Replace the entire length of the run of any wire or cable that is damaged or abraided during installation. There are no acceptable methods of repairing damaged or abraided wiring.
- 8. Use wire pulling lubricants and pulling tensions as recommended by the OEM.
- 9. Use grommets around cut-outs and knock-outs where conduit or chase nipples are not installed.
- 10.Do not use tape-based or glue-based cable anchors.
- 11.Ground shields and drain wires to the Facility's signal ground system as indicated by the drawings.
- 12.Field wiring entering equipment racks shall be terminated as follows:
 - a. Provide ample service loops at harness break-outs and at plates, panels and equipment. Loops should be sufficient to allow plates, panels and equipment to be removed for service and inspection.

- b. Line level and speaker level wiring may be terminated inside the equipment rack using specified terminal blocks (see "Products.") Provide 15% spare terminals inside each rack. Microphone level wiring may only be terminated at the equipment served.
- c. If specified terminal blocks are not designed for rack mounting, utilize ¾" plywood or 1/8" thick aluminum plates/blank panels as a mounting surface. Do not mount on the bottom of the rack.
- d. Employ permanent strain relief for any cable with an outside diameter of 1" or greater.
- 13.Use only balanced audio circuits unless noted otherwise
- 14.Make all connections as follows:
 - a. Make all connections using rosin-core solder or mechanical connectors appropriate to the application.
 - b. For crimp-type connections, use only tools that are specified by the manufacturer for the application.
 - c. Use only insulated spade lugs on screw terminals. Spade lugs shall be sized to fit the wire gauge. Do not exceed two lugs per terminal.
 - d. Wire nuts, electrical tape or "Scotch Lock" connections are not acceptable for any application.
- 15.Make all connections as follows:
 - a. Make all connections using rosin-core solder or mechanical connectors appropriate to the application.
 - b. For crimp-type connections, use only tools that are specified by the manufacturer for the application.
 - c. Use only insulated spade lugs on screw terminals. Spade lugs shall be sized to fit the wire gauge. Do not exceed two lugs per terminal.
 - d. Wire nuts, electrical tape or "Scotch Lock" connections are not acceptable for any application.
- 16.Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.
- 17.Wires or cables previously approved to be installed outside of conduit, cable trays, wireways, cable duct, etc:

- a. Only when specifically authorized as described herein, will wires or cables be identified and approved to be installed outside of conduit. The wire or cable runs shall be UL rated plenum and OEM certified for use in air plenums.
- b. Wires and cables shall be hidden, protected, fastened and tied at 600 mm (24 in.) intervals, maximum, as described herein to building structure.
- c. Closer wire or cable fastening intervals may be required to prevents sagging, maintain clearance above suspended ceilings, remove unsightly wiring and cabling from view and discourage tampering and vandalism. Wire or cable runs, not provided in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers shall be sleeved and sealed with an approved fire retardant sealant.
- d. Wire or cable runs to system components installed in walls (i.e.: volume attenuators, circuit controllers, signal, or data outlets, etc.) may, when specifically authorized by the RE, be fished through hollow spaces in walls and shall be certified for use in air plenum areas.
- e. Completely test all of the cables after installation and replace any defective cables.
- f. Wires or cables that are installed outside of buildings shall be in conduit, secured to solid building structures. If specifically approved, on a case by case basis, to be run outside of conduit, the wires or cables shall be installed, as described herein. The bundled wires or cables must: Be tied at not less than 460 mm (18 in.) intervals to a solid building structure; have ultra violet protection and be totally waterproof (including all connections). The laying of wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not allowed and will not be approved.
- E. Cable Installation In addition to the MANDATORY infrastructure requirements outlined in VA Construction Specifications 27 10 00 -Structured TIP Communications Cabling, 27 11 00 - TIP Communications Rooms and Fittings and 27 15 00 - TIP Communications Horizontal and Vertical Cabling and the following additional practices shall be adhered too:

- Support cable on maximum 2'-0" centers. Acceptable means of cable support are cable tray, j-hooks, and bridal rings. Velcro wrap cable bundles loosely to the means of support with plenum rated Velcro straps. Plastic tie wraps are not acceptable as a means to bundle cables.
- 2. Run cables parallel to walls.
- 3. Install maximum of 10 cables in a single row of J-hooks. Provide necessary rows of J-hooks as required by the number of cables.
- 4. Do not lay cables on top of light fixtures, ceiling tiles, mechanical equipment, or ductwork. Maintain at least 2'-0" clearance from all shielded electrical apparatus.
- 5. All cables shall be tested after the total installation is fully complete. All test results are to be documented. All cables shall pass acceptable test requirements and levels. Contractor shall remedy any cabling problems or defects in order to pass or comply with testing. This includes the re-pull of new cable as required at no additional cost to the Owner.
- Ends of cables shall be properly terminated on both ends per industry and OEM's recommendations.
- 7. Provide proper temporary protection of cable after pulling is complete before final dressing and terminations are complete. Do not leave cable lying on floor. Bundle and tie wrap up off of the floor until you are ready to terminate.
- 8. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at outlets and terminals.
- 9. Splices, Taps, and Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables may not be spliced.
- 10.Bundle, lace, and train conductors to terminal points without exceeding OEM's limitations on bending radii. Install lacing bars and distribution spools.
- 11.Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used.
- 12.Cable shall not be run through structural members or be in contact with pipes, ducts, or other potentially damaging items.
- 13.Separation of Wires: (REFER TO RACEWAY INSTALLATION) Separate speaker-microphone, line-level, speaker-level, and power wiring runs. Install in separate raceways or, where exposed or in same

enclosure, separate conductors at least 12 inches apart for speaker microphones and adjacent parallel power and telephone wiring. Separate other intercommunication equipment conductors as recommended by equipment manufacturer.

14.Serve all cables as follows:

- a. Cover the end of the overall jacket with a 1" (minimum) length of transparent heat-shrink tubing. Cut unused insulated conductors 2" (minimum) past the heat-shrink, fold back over jacket and secure with cable-tie. Cut unused shield/drain wires 2" (minimum) past the Heatshrink and serve as indicated below.
- b. Cover shield/drain wires with heat-shrink tubing extending back to the overall jacket. Extend tubing ¼" past the end of unused wires, fold back over jacket and secure with cable tie.
- c. For each solder-type connection, cover the bare wire and solder connection with heat-shrink tubing.
- F. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for PA circuits shall be stenciled using laser printer.
 - Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams."
 - Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or Bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.
 - a. Clearly, consistently, logically and permanently mark switches, connectors, jacks, relays, receptacles and electronic and other equipment.
 - b. Engrave and paint fill all receptacle panels using 1/8" (minimum) high lettering and contrasting paint.
 - c. For rack-mounted equipment, use engraved Lamacoid labels with white 1/8" (minimum) high lettering on black background. Label the front and back of all rack-mounted equipment.
 - 3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.

- 4. Termination Hardware: The Contractor shall label TCOs and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams."
- 5. Where multiple pieces of equipment reside in the same rack group, clearly and logically label each indicating to which room, channel, receptacle location, etc. they correspond.
- 6. Permanently label cables at each end, including intra-rack connections. Labels shall be covered by the same, transparent heatshrink tubing covering the end of the overall jacket. Alternatively, computer generated labels of the type which include a clear protective wrap may be used.
- Contractor's name shall appear no more than once on each continuous set of racks. The Contractor's name shall not appear on wall plates or portable equipment.
- 8. Ensure each OEM supplied item of equipment has appropriate UL Labels / Marks for the service the equipment is performed permanently attached / marked. SYSTEM EQUIPMENT INSTALLED NOT BEARING THESE UL MARKS WILL NOT BE ALLOWED TO BE A PART OF THE SYSTEM. THE CONTRACTOR SHALL BEAR ALL COSTS REQUIRED TO PROVIDE REPLACEMENT EQUIPMENT WITH APPROVED UL MARKS.
- G. Conduit and Signal Ducts: When the Contractor and/or OEM determines additional system conduits and/or signal ducts are required in order to meet the system minimum performance standards outlined herein, the contractor shall provide these items as follows:
 - 1. Conduit:
 - a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weather heads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed.
 - b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow PA cables to be installed in partitioned cable tray with voice cables may be granted in writing by the COR if requested).
 Conduits shall be provided in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles

517 for Critical Care and 800 for Communications systems, at a minimum.

- c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- d. When "interduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- e. Conduit fill (including GFE approved to be used in the system) shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.
- f. Ensure that Critical Care PA and Nurse Call Systems (as identified by NEC Section 517) are completely separated and protected from all other systems.
- 2. Signal Duct, Cable Duct, or Cable Tray:
 - a. The Contractor shall use GFE signal duct, cable duct, and/or cable tray, when identified and approved by the RE.
 - b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
 - c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and be UL certified and labeled for use with telecommunication circuits and/or systems. The COR shall approve width and height dimensions.
 - d. All cable junctions and taps shall be accessible. Provide an 8" X8" X 4" (minimum) junction box attached to the cable duct or

raceway for installation of distribution system passive equipment. Ensure all equipment and tap junctions are accessible

3.5 PROTECTION OF NETWORK DEVICES

Contractor shall protect network devices during unpacking and installation by wearing manufacturer approved electrostatic discharge (ESD) wrist straps tied to chassis ground. The wrist strap shall meet OSHA requirements for prevention of electrical shock, should technician come in contact with high voltage.

3.6 CUTTING, CLEANING AND PATCHING

- A. It shall be the responsibility of the contractor to keep their work area clear of debris and clean area daily at completion of work.
- B. It shall be the responsibility of the contractor to patch and paint any wall or surface that has been disturbed by the execution of this work.
- C. The Contractor shall be responsible for providing any additional cutting, drilling, fitting or patching required that is not indicated as provided by others to complete the Work or to make its parts fit together properly.
- D. The Contractor shall not damage or endanger a portion of the Work or fully or partially completed construction of the Owner or separate contractors by cutting, patching or otherwise altering such construction, or by excavation. The Contractor shall not cut or otherwise alter such construction by the Owner or a separate contractor except with written consent of the Owner and of such separate contractor; such consent shall not be unreasonably withheld. The Contractor shall not unreasonably withhold from the Owner or a separate contractor the Contractor's consent to cutting or otherwise altering the Work.
- E. Where coring of existing (previously installed) concrete is specified or required, including coring indicated under unit prices, the location of such coring shall be clearly identified in the field and the location shall be approved by the Project Manager prior to commencement of coring work.

3.7 FIREPROOFING

- A. Where PA wires, cables and conduit penetrate fire rated walls, floors and ceilings, fireproof the opening.
- B. Provide conduit sleeves (if not already provided by electrical contractor) for cables that penetrate fire rated walls and Telecommunications Rooms floors and ceilings. After the cabling

installation is complete, install fire proofing material in and around all conduit sleeves and openings. Install fire proofing material thoroughly and neatly. Seal all floor and ceiling penetrations.

- C. Use only materials and methods that preserve the integrity of the fire stopping system and its rating.
- D. Install fireproofing where low voltage cables are installed in the same manholes with high voltage cables; also cover the low voltage cables with arc proof and fireproof tape.
- E. Use approved fireproofing tape of the same type as used for the high voltage cables, and apply the tape in a single layer, one-half lapped or as recommended by the manufacturer. Install the tape with the coated side towards the cable and extend it not less than 25 mm (one inch) into each duct.
- F. Secure the tape in place by a random wrap of glass cloth tape.

3.8 GROUNDING

- A. Ground PA cable shields and equipment to eliminate shock hazard and to minimize ground loops, commonmode returns, noise pickup, cross talk, and other impairments as specified in CFM Division 27, Section 27 05 26
 - Grounding and Bonding for Communications Systems.
- B. Facility Signal Ground Terminal: Locate at main room or area signal ground within the room (i.e. head end and telecommunications rooms) or area(s) and indicate each signal ground location on the drawings.
- C. Extend the signal ground to inside each equipment cabinet and/or rack. Ensure each cabinet and/or rack installed item of equipment is connected to the extended signal ground. Isolate the signal ground from power and major equipment grounding systems.
- D. When required, install grounding electrodes as specified in CFM Division 26, Section 26 05 26 -Grounding and Bonding for Electrical Systems.
- E. Do not use " 3^{rd} or 4^{th} " wire internal electrical system conductors for communications signal ground.
- F. Do not connect the signal ground to the building's external lightning protection system.
- G. Do Not "mix grounds" of different systems.
- H. Insure grounds of different systems are installed as to not violate OSHA Safety and NEC installation requirements for protection of personnel.

PART 4 - TESTING / GUARANTY / TRAINING

4.1 SYSTEM LISTING

The PA System is NFPA listed as an "Emergency / Public Safety" Communications system. Therefore, the following testing and guaranty provisions are the minimum to be performed and provided by the contractor and OEM.

4.2 PROOF OF PERFORMANCE TESTING

- A. Pretesting:
 - Upon completing installation of the speakers, the Contractor shall align, balance, and completely pretest the entire system under full operating conditions.
 - 2. Pretesting Procedure:
 - a. During the System Pretest the Contractor shall verify (utilizing approved test equipment) that the System is fully operational and meets all the System performance requirements of this standard.
 - 3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the RE.
- B. Acceptance Test:
 - 1. After the PA System has been pretested and the Contractor has submitted the pretest results and certification to the RE, then the Contractor shall schedule an acceptance test date and give the COR 30 day's written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of TVE 0050P3B and an OEM certified representatives. The System shall be tested utilizing the approved test equipment to certify proof of performance and Emergency / Public Safety compliance. The tests shall verify that the total System meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
 - 2. The acceptance test shall be performed on a "go-no-go" basis. Only those operator adjustments required to show proof of performance shall be allowed. The test shall demonstrate and verify that the installed System does comply with all requirements of this specification under operating conditions. The System shall be rated as either acceptable or unacceptable at the conclusion of the test. Failure of any part of the System that precludes completion of

system testing, and which cannot be repaired in four (4) hours, shall be cause for terminating the acceptance test of the System. Repeated failures that result in a cumulative time of eight (8) hours to affect repairs shall cause the entire System to be declared unacceptable. Retesting of the entire System shall be rescheduled at the convenience of the Government.

- Retesting of the entire System shall be rescheduled at the convenience of the Government and costs borne by the Contractor at the direction of the SRE.
- C. Acceptance Test Procedure:
 - 1. Physical and Mechanical Inspection:
 - a. The TVE 005OP3B Representative will tour all areas where the PA system and all sub-systems are completely and properly installed to insure they are operationally ready for proof of performance testing. A system inventory including available spare parts will be taken at this time. Each item of installed equipment shall be checked to ensure appropriate UL certification labels are affixed.
 - b. The System diagrams, record drawings, equipment manuals, TIP Auto CAD Disks, intermediate, and pretest results shall be formally inventoried and reviewed.
 - c. Failure of the System to meet the installation requirements of this specification shall be grounds for terminating all testing.
 - 2. Operational Test:
 - a. After the Physical and Mechanical Inspection, the system head end equipment shall be checked to verify that it meets all performance requirements outlined herein. A spectrum analyzer and sound level meter may be utilized to accomplish this requirement.
 - b. Following the head end equipment test, each speaker (or on board speaker) shall be inspected to ensure there are no signal distortions such as intermodulation, data noise, popping sounds, erratic system functions, on any function.
 - c. The distribution system shall be checked at each interface, junction, and distribution point, first, middle, and last speaker in each leg to verify the PA distribution system meets all system performance standards.
 - d. If the RED system is a part of the system, each volume stepper switches shall be checked to insure proper operation of the

pillow speaker, the volume stepper and the RED system (if installed).

- e. Additionally, each installed head end equipment, microphone console; amplifier, mixer, distributed speaker/amplifier, monitor speaker, telephone interface, power supply and remote amplifiers shall be checked insuring they meet the requirements of this specification.
- f. Once these tests have been completed, each installed sub-system function shall be tested as a unified, functioning and fully operating system. The typical functions are: "all call," three sub-zoned, minimum of 15 minutes of UPS operation, electrical supervision, trouble panel, corridor speakers and audio paging.
- h. Individual Item Test: The TVE 0050P3B Representative will select individual items of equipment for detailed proof of performance testing until 100% of the System has been tested and found to meet the contents of this specification. Each item shall meet or exceed the minimum requirements of this document.
- 3. Test Conclusion:
 - a. At the conclusion of the Acceptance Test, using the generated punch list (or discrepancy list) the VA and the Contractor shall jointly agree to the results of the test, and reschedule testing on deficiencies and shortages with the RE. Any retesting to comply with these specifications will be done at the Contractor's expense.
 - b. If the System is declared unacceptable without conditions, all rescheduled testing expenses will be borne by the Contractor.
- D. Acceptable Test Equipment: The test equipment shall furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
 - 1. Spectrum Analyzer.
 - 2. Signal Level Meter.
 - 3. Volt-Ohm Meter.
 - 4. Sound Pressure Level (SPL) Meter.
 - 5. Oscilloscope.
 - 6. Random Noise Generator.
 - 7. Audio Amplifier with External Speaker.

4.3 WARRANTY

- A. Comply with FAR 52.246-21, except that warranty shall be as follows:
- B. Contractor's Responsibility:
 - The Contractor shall warranty that all provided material and equipment will be free from defects, workmanship and will remain so for a period of two (2) years from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the COR, that certifies each item of equipment installed conforms to OEM published specifications.
 - 2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. This contact capability shall be provided by the Contractor and OEM at no additional cost to the VA.
 - 3. All Contractor maintenance and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
 - 4. Additionally, the Contractor shall accomplish the following minimum requirements during the two year guaranty period:
 - a. Response Time During the Two Year Guaranty Period:
 - The COR is the Contractor's ONLY OFFICIAL reporting and contact official for nurse call system trouble calls, during the guaranty period.
 - A standard work week is considered 8:00 A.M. to 5:00 P.M. or as designated by the COR, Monday through Friday exclusive of Federal Holidays.
 - 3) The Contractor shall respond and correct on-site trouble calls, during the standard work week to:
 - a) A routine trouble call within one (1) working day of its report. A routine trouble is considered a trouble which causes a power supply; one (1) master System control station, microphone console or amplifier to be inoperable.
 - b) Routine trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as an emergency trouble call.

The COR shall notify the Contractor of this type of trouble call.

- c) An emergency trouble call within four (4) hours of its report. An emergency trouble is considered a trouble which causes a sub-zone, zone, distribution point, terminal cabinet, or all call system to be inoperable at anytime.
- 4) If a PA System component failure cannot be corrected within four (4) hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate System equipment. The alternate equipment/system shall be operational within a maximum of 12 hours after the four (4) hour trouble shooting time and restore the effected location operation to meet the System performance standards. If any sub-system or major system trouble cannot be corrected within one working day, the Contractor shall furnish and install compatible substitute equipment returning the System or subsystem to full operational capability, as described herein, until repairs are complete.
- b. Required On-Site Visits During the Two Year Guaranty Period
 - The Contractor shall visit, on-site, for a minimum of eight

 (8) hours, once every 12 weeks, during the guaranty period, to
 perform system preventive maintenance, equipment cleaning, and
 operational adjustments to maintain the System according the
 descriptions identified in this document.
 - 2) The Contractor shall arrange all Facility visits with the COR prior to performing the required maintenance visits.
 - 3) Preventive maintenance procedure(s)shall be performed by the Contractor in accordance with the OEM's recommended practice and service intervals during non-busy time agreed to by the COR and Contractor.
 - The preventive maintenance schedule, functions and reports shall be provided to and approved by the COR.
 - 5) The Contractor shall provide the COR a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the COR with sample copies of these reports for review and approval at the

beginning of the Acceptance Test. The following reports are the minimum required:

- a) The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this warranty period to COR by the fifth (5^{th)} working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and systems for preventive and predictive maintenance.
- b) The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
- 6) The COR shall convey to the Facility Engineering Officer, two
 - (2) copies of actual reports for evaluation.
 - a) The COR shall ensure a copy of these reports is entered into the System's official acquisition documents.
 - b) The Facility Chief Engineer shall ensure a copy of these reports is entered into the System's official technical record documents.
- C. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use; accidents; other vendor, contractor, or owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the COR in writing upon the discovery of these incidents. The COR will investigate all reported incidents and render an official opinion in writing concerning the supplied information.

- - - E N D - - -

SECTION 28 05 00

COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Common Work Results for Electronic Safety and Security (ESS), applies to all sections of Division 28.
- B. Furnish and install fully functional electronic safety and security cabling system(s), equipment and approved accessories in accordance with the specification section(s), drawing(s), and referenced publications. Capacities and ratings of cable and other items and arrangements for the specified items are shown on each system's required Bill of Materials (BOM) and verified on the approved system drawing(s). If there is a conflict between contract's specification(s) and drawings(s), the contract's specification requirements shall prevail.
- C. The Contractor shall provide a fully functional and operating ESS, programmed, configured, documented, and tested as required herein and the respective Safety and Security System Specification(s). The Contractor shall provide calculations and analysis to support design and engineering decisions as specified in submittals. The Contractor shall provide and pay all labor, materials, and equipment, sales and gross receipts and other taxes. The Contractor shall secure and pay for plan check fees, permits, other fees, and licenses necessary for the execution of work as applicable for the project. Give required notices; the Contractor will comply with codes, ordinances, regulations, and other legal requirements of public authorities, which bear on the performance of work.
- D. The Contractor shall provide an ESS, installed, programmed, configured, documented, and tested. The security system shall include but not limited to: physical access control, video surveillance, fire alarm interface, equipment cabinetry, and uninterruptible power supplies (UPS) interface. Operator training shall not be required as part of the Security Contractors scope and shall be provided by the Owner. The Security Contractor shall still be required to provide necessary maintenance and troubleshooting manuals as well as submittals as identified herein. The work shall include the procurement and installation of electrical wire and cables, the installation and testing of all system components. Inspection, testing, demonstration, and acceptance of equipment, software, materials, installation, documentation, and workmanship, shall be as specified herein. The

Contractor shall provide all associated installation support, including the provision of primary electrical input power circuits.

- E. Repair Service Replacement Parts On-site service during the warranty period shall be provided as specified under "Emergency Service". The Contractor shall guarantee all parts and labor for a term of one (1) year, unless dictated otherwise in this specification from the acceptance date of the system as described in Part 5 of this Specification. The Contractor shall be responsible for all equipment, software, shipping, transportation charges, and expenses associated with the service of the system for one (1) year. The Contractor shall provide 24-hour telephone support for the software program at no additional charge to the owner. Software support shall include all software updates that occur during the warranty period.
- F. Section Includes:
 - 1. Description of Work for Electronic Security Systems,
 - 2. Electronic security equipment coordination with relating Divisions,
 - 3. Submittal Requirements for Electronic Security,
 - Miscellaneous Supporting equipment and materials for Electronic Security,
 - 5. Electronic security installation requirements.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- D. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- E. Section 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- F. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- G. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- H. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- I. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY
 SYSTEMS. Requirements for Commissioning.
- J. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). For physical access control integration.

28 05 00 - 2

K. Section 28 23 00 - VIDEO SURVEILLANCE. Requirements for security camera systems.

1.3 DEFINITIONS

- A. AGC: Automatic Gain Control.
- B. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- C. BICSI: Building Industry Consulting Service International.
- D. CCD: Charge-coupled device.
- E. Central Station: A PC with software designated as the main controlling PC of the security access system. Where this term is presented with initial capital letters, this definition applies.
- F. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel section.
- G. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- H. CPU: Central processing unit.
- I. Credential: Data assigned to an entity and used to identify that entity.
- J. DGP: Data Gathering Panel component of the Physical Access Control System capable to communicate, store and process information received from readers, reader modules, input modules, output modules, and Security Management System.
- K. DTS: Digital Termination Service: A microwave-based, line-of-sight communications provided directly to the end user.
- L. EMI: Electromagnetic interference.
- M. EMT: Electric Metallic Tubing.
- N. ESS: Electronic Security System.
- O. File Server: A PC in a network that stores the programs and data files shared by users.
- P. GFI: Ground fault interrupter.
- Q. IDC: Insulation displacement connector.
- R. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- S. I/O: Input/Output.
- T. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to

perform the detection, and any interface equipment between sensors and communication link to central-station control unit.

- U. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- V. LAN: Local area network.
- W. LCD: Liquid-crystal display.
- X. LED: Light-emitting diode.
- Y. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- Z. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
- AA. M-JPEG: Motion Joint Photographic Experts Group.
- BB. MPEG: Moving picture experts group.
- CC. NEC: National Electric Code
- DD. NEMA: National Electrical Manufacturers Association
- EE. NFPA: National Fire Protection Association
- FF. NTSC: National Television System Committee.
- GG. NRTL: Nationally Recognized Testing Laboratory.
- HH. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- II. PACS: Physical Access Control System; A system comprised of cards, readers, door controllers, servers and software to control the physical ingress and egress of people within a given space
- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. RCDD: Registered Communications Distribution Designer.
- NN. RFI: Radio-frequency interference.
- OO. RIGID: Rigid conduit is galvanized steel tubing, with a tubing wall that is thick enough to allow it to be threaded.

- PP. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25-pin connector and certain signal characteristics for interfacing computer equipment.
- QQ. RS-485: An TIA/EIA standard for multipoint communications.
- RR. Solid-Bottom or Non-ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- SS. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion detection, closed circuit television, intercom) into a single platform and graphical user interface.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- VV. UPS: Uninterruptible Power Supply
- WW. UTP: Unshielded Twisted Pair
- XX. Workstation: A PC with software that is configured for specific limited security system functions.

1.4 QUALITY ASSURANCE

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- C. Contractor Qualification:
 - The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems

of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The CORs Representative (COR) reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- D. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 GENERAL ARANGEMENT OF CONTRACT DOCUMENTS

A. The Contract Documents supplement to this specification indicates approximate locations of equipment. The installation and/or locations

28 05 00 - 6

of the equipment and devices shall be governed by the intent of the design; specification and Contract Documents, with due regard to actual site conditions, recommendations, ambient factors affecting the equipment and operations in the vicinity. The Contract Documents are diagrammatic and do not reveal all offsets, bends, elbows, components, materials, and other specific elements that may be required for proper installation. If any departure from the contract documents is deemed necessary, or in the event of conflicts, the Contractor shall submit details of such departures or conflicts in writing to the owner or owner's representative for his or her comment and/or approval before initiating work.

B. Anything called for by one of the Contract Documents and not called for by the others shall be of like effect as if required or called by all, except if a provision clearly designed to negate or alter a provision contained in one or more of the other Contract Documents shall have the intended effect. In the event of conflicts among the Contract Documents, the Contract Documents shall take precedence in the following order: the Form of Agreement; the Supplemental General Conditions; the Special Conditions; the Specifications with attachments; and the drawings.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- D. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.

- 3. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- E. Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. Additional general provisions are as follows:
 - The Contractor shall schedule submittals in order to maintain the project schedule. For coordination drawings refer to Specification Section 01 33 10 - Design Submittal Procedures, which outline basic submittal requirements and coordination. Section 01 33 10 shall be used in conjunction with this section.
 - The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
 - 3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
 - 4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for COR and Contractor review stamps.
 - 5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards CAD Standard Application Guide, and VA BIM Guide. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed

necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the COR for approval before the initiation of work.

- 6. Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - Where two (2) or more binders are necessary to accommodate data; correlate data in each binder into related groupings according to the Project Manual table of contents. Crossreferencing other binders where necessary to provide essential information for communication of proper operation and/or maintenance of the component or system.
 - Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.
 - b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
 - c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
 - d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.
 - e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - 1) Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.

- 3) Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2) Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
 - 3) The manuals shall include:
 - a) Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b) A control sequence describing start-up, operation, and shutdown.
 - c) Description of the function of each principal item of equipment.
 - d) Installation and maintenance instructions.
 - e) Safety precautions.
 - f) Diagrams and illustrations.
 - g) Testing methods.
 - h) Performance data.
 - i) Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
 - j) Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.

- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.
- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.
- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.
- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.
- Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract

Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.

- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information. Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.
- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.
- 7. Contractor Review: Review submittals prior to transmittal. Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return nonconforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.
- Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 9. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- F. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization.

Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:

- 1. Section I Drawings:
 - a. General Drawings shall conform to VA CAD Standards Guide. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings.
 - b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.
 - c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
 - d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following:
 - 1) Security devices by symbol
 - The associated device point number (derived from the loading sheets)
 - 3) Wire & cable types and counts
 - 4) Conduit sizing and routing
 - 5) Conduit riser systems
 - 6) Device and area detail call outs
 - e. Architectural details Architectural details shall be produced for each device mounting type (door details for EECS and IDS, Intrusion Detection system (motion sensor, vibration, microwave Motion Sensor and Camera mounting,
 - f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the SMS throughout the facility (or area in scope).
 - g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., electronic entry control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.

- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations, standard wire detail to include termination schedule. Diagram shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.
- i. Security Details:
 - Panel Assembly Detail For each panel assembly, a panel assembly details shall be provided identifying individual panel component size and content.
 - Panel Details Provide security panel details identify general arrangement of the security system components, backboard size, wire through size and location, and power circuit requirements.
 - 3) Device Mounting Details Provide mounting detailed drawing for each security device (physical access control system, intrusion detection, video surveillance and assessment, and intercom systems) for each type of wall and ceiling configuration in project. Device details shall include device, mounting detail, wiring and conduit routing.
 - 4) Details of connections to power supplies and grounding
 - 5) Details of surge protection device installation
 - Sensor detection patterns Each system sensor shall have associated detection patterns.
- j. Electrical Panel Schedule Electrical Panel Details shall be provided for all SMS systems electrical power circuits. Panel details shall be provided identifying panel type (Standard, Emergency Power, Emergency/Uninterrupted Power Source, and Uninterrupted Power Source Only), panel location, circuit number, and circuit amperage rating.
- k. Door Schedule A door schedule shall be developed for each door equipped with electronic security components. At a minimum, the door schedule shall be coordinated with Division 08 work and include the following information:
 - 1) Item Number
 - 2) Door Number (Derived from A/E Drawings)
 - 3) Floor Plan Sheet Number
 - 4) Standard Detail Number
 - 5) Door Description (Derived from Loading Sheets)
 - 6) Data Gathering Panel Input Number
 - 7) Door Position or Monitoring Device Type & Model Number

- 8) Lock Type, Model Number & Power Input/Draw (standby/active)
- 9) Card Reader Type & Model Number
- 10) Shunting Device Type & Model Number
- 11) Sounder Type & Model Number
- 12) Manufacturer
- 13) Misc. devices as required
 - a) Delayed Egress Type & Model Number
 - b) Intercom
 - c) Camera
 - d) Electric Transfer Hinge
 - e) Electric Pass-through device
- 14) Remarks column indicating special notes or door configurations
- 2. Camera Schedule A camera schedule shall be developed for each camera. Contractors shall coordinate with the COR to determine camera starting numbers and naming conventions. All drawings shall identify wire and cable standardization methodology. Color coding of all wiring conductors and jackets is required and shall be communicated consistently throughout the drawings package submittal. At a minimum, the camera schedule shall include the following information:
 - a. Item Number
 - b. Camera Number
 - c. Naming Conventions
 - d. Description of Camera Coverage
 - e. Camera Location
 - f. Floor Plan Sheet Number
 - g. Camera Type
 - h. Mounting Type
 - i. Standard Detail Reference
 - j. Power Input & Draw
 - k. Power Panel Location
 - 1. Remarks Column for Camera
- 3. Section IV Manufacturers' Data: The data package shall include manufacturers' data for all materials and equipment, including sensors, local processors and console equipment provided under this specification.
- 4. Section V System Description and Analysis: The data package shall include system descriptions, analysis, and calculations used in sizing equipment required by these specifications. Descriptions and calculations shall show how the equipment will operate as a system to

meet the performance requirements of this specification. The data package shall include the following:

- a. Central processor memory size; communication speed and protocol description; rigid disk system size and configuration; flexible disk system size and configuration; back-up media size and configuration; alarm response time calculations; command response time calculations; start-up operations; expansion capability and method of implementation; sample copy of each report specified; and color photographs representative of typical graphics.
- b. Software Data: The data package shall consist of descriptions of the operation and capability of the system, and application software as specified.
- c. Overall System Reliability Calculations: The data package shall include all manufacturers' reliability data and calculations required to show compliance with the specified reliability.
- 5. Section VI Certifications & References: All specified manufacturer's certifications shall be included with the data package. Contractor shall provide Project references as outlined in Paragraph 1.4 "Quality Assurance".
- G. Group II Technical Data Package
 - 1. The Contractor shall prepare a report of "Current Site Conditions" and submit a report to the COR documenting changes to the site, particularly those conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions which affect the installation of the system or its performance. The Contractor shall not correct any deficiency without written permission from the COR.
 - 2. System Configuration and Functionality: The contractor shall provide the results of the meeting with VA to develop system requirements and functionality including but not limited to:
 - a. Baseline configuration
 - b. Access levels
 - c. Schedules (intrusion detection, physical access control, holidays, etc.)
 - d. Badge database
 - e. System monitoring and reporting (unit level and central control)
 - f. Naming conventions and descriptors
- H. Group III Technical Data Package

- Development of Test Procedures: The Contractor will prepare performance test procedures for the system testing. The test procedures shall follow the format of the VA Testing procedures and be customized to the contract requirements. The Contractor will deliver the test procedures to the COR for approval at least 60 calendar days prior to the requested test date.
- I. Group IV Technical Data Package
 - 1. Performance Verification Test
 - a. Based on the successful completion of the pre-delivery test, the Contractor shall finalize the test procedures and report forms for the performance verification test (PVT) and the endurance test. The PVT shall follow the format, layout and content of the predelivery test. The Contractor shall deliver the PVT and endurance test procedures to the COR for approval. The Contractor may schedule the PVT after receiving written approval of the test procedures. The Contractor shall deliver the final PVT and endurance test reports within 14 calendar days from completion of the tests. Refer to Part 3 of this section for System Testing and Acceptance requirements.
- J. Group V Technical Data Package: Final copies of the manuals shall be delivered to the COR as part of the acceptance test. The draft copy used during site testing shall be updated with any changes required prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each sub-contractor installing equipment or systems, as well as the nearest service representatives for each item of equipment for each system. The manuals shall include a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include all modifications made during installation, checkout, and acceptance. Six (6) hard-copies and one (1) soft copy on CD of each item listed below shall be delivered as a part of final systems acceptance.
 - Functional Design Manual: The functional design manual shall identify the operational requirements for the entire system and explain the theory of operation, design philosophy, and specific functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system

operating modes. Manufacturer developed literature may be used; however, shall be produced to match the project requirements.

- 2. Equipment Manual: A manual describing all equipment furnished including:
 - a. General description and specifications; installation and checkout procedures; equipment electrical schematics and layout drawings; system schematics and layout drawings; alignment and calibration procedures; manufacturer's repair list indicating sources of supply; and interface definition.
- 3. Software Manual: The software manual shall describe the functions of all software and include all other information necessary to enable proper loading, testing, and operation. The manual shall include:
 - a. Definition of terms and functions; use of system and applications software; procedures for system initialization, start-up, and shutdown; alarm reports; reports generation, database format and data entry requirements; directory of all disk files; and description of all communications protocols including data formats, command characters, and a sample of each type of data transfer.
- 4. Operator's Manual: The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:
 - a. Computers and peripherals; system start-up and shutdown procedures; use of system, command, and applications software; recovery and restart procedures; graphic alarm presentation; use of report generator and generation of reports; data entry; operator commands' alarm messages, and printing formats; and system access requirements.
- 5. Maintenance Manual: The maintenance manual shall include descriptions of maintenance for all equipment including inspection, recommend schedules, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.
- 6. Spare Parts & Components Data: At the conclusion of the Contractor's work, the Contractor shall submit to the COR a complete list of the manufacturer's recommended spare parts and components required to satisfactorily maintain and service the systems, as well as unit pricing for those parts and components.
- 7. Operation, Maintenance & Service Manuals: The Contractor shall provide two (2) complete sets of operating and maintenance manuals in the form of an instructional manual for use by the VA Security Guard

Force personnel. The manuals shall be organized into suitable sets of manageable size. Where possible, assemble instructions for similar equipment into a single binder. If multiple volumes are required, each volume shall be fully indexed and coordinated.

- 8. Equipment and Systems Maintenance Manual: The Contractor shall provide the following descriptive information for each piece of equipment, operating system, and electronic system:
 - a. Equipment and/or system function.
 - b. Operating characteristics.
 - c. Limiting conditions.
 - d. Performance curves.
 - e. Engineering data and test.
 - f. Complete nomenclature and number of replacement parts.
 - g. Provide operating and maintenance instructions including assembly drawings and diagrams required for maintenance and a list of items recommended to stock as spare parts.
 - h. Provide information detailing essential maintenance procedures including the following: routine operations, trouble shooting guide, disassembly, repair and re-assembly, alignment, adjusting, and checking.
 - i. Provide information on equipment and system operating procedures, including the following; start-up procedures, routine and normal operating instructions, regulation and control procedures, instructions on stopping, shut-down and emergency instructions, required sequences for electric and electronic systems, and special operating instructions.
 - j. Manufacturer equipment and systems maintenance manuals are permissible.
- 9. Project Redlines: During construction, the Contractor shall maintain an up-to-date set of construction redlines detailing current location and configuration of the project components. The redline documents shall be marked with the words 'Master Redlines' on the cover sheet and be maintained by the Contractor in the project office. The Contractor will provide access to redline documents anytime during the project for review and inspection by the COR or authorized Office of Protection Services representative. Master redlines shall be neatly maintained throughout the project and secured under lock and key in the contractor's onsite project office. Any project component or assembly that is not installed in strict accordance with the drawings shall be so noted on the drawings. Prior to producing

Record Construction Documents, the contractor will submit the Master Redline document to the COR for review and approval of all changes or modifications to the documents. Each sheet shall have COR initials indicating authorization to produce "As Built" documents. Field drawings shall be used for data gathering & field changes. These changes shall be made to the master redline documents daily. Field drawings shall not be considered "master redlines".

- 10. Record Specifications: The Contractor shall maintain one (1) copy of the Project Specifications, including addenda and modifications issued, for Project Record Documents. The Contractor shall mark the Specifications to indicate the actual installation where the installation varies substantially from that indicated in the Contract Specifications and modifications issued. (Note related Project Record Drawing information where applicable). The Contractor shall pay particular attention to substitutions, selection of product options, and information on concealed installations that would be difficult to identify or measure and record later. Upon completion of the mark ups, the Contractor shall submit record Specifications to the COR. As with master relines, Contractor shall maintain record specifications for COR review and inspection at anytime.
- 11. Record Product Data: The Contractor shall maintain one (1) copy of each Product Data submittal for Project Record Document purposes. The Data shall be marked to indicate the actual product installed where the installation varies substantially from that indicated in the Product Data submitted. Significant changes in the product delivered to the site and changes in manufacturer's instructions and recommendations for installation shall be included. Particular attention will be given to information on concealed products and installations that cannot be readily identified or recorded later. Note related Change Orders and mark up of Record Construction Documents, where applicable. Upon completion of mark up, submit a complete set of Record Product Data to the COR.
- 12. Miscellaneous Records: The Contractor shall maintain one (1) copy of miscellaneous records for Project Record Document purposes. Refer to other Specifications for miscellaneous record-keeping requirements and submittals concerning various construction activities. Before substantial completion, complete miscellaneous records and place in good order, properly identified and bound or filed, ready for use and reference. Categories of requirements resulting in miscellaneous records include a minimum of the following:

- a. Certificates received instead of labels on bulk products.
- b. Testing and qualification of tradesmen. ("Contractor's Qualifications")
- c. Documented qualification of installation firms.
- d. Load and performance testing.
- e. Inspections and certifications.
- f. Final inspection and correction procedures.
- g. Project schedule
- 13. Record Construction Documents (Record As-Built)
 - a. Upon project completion, the contractor shall submit the project master redlines to the COR prior to development of Record construction documents. The COR shall be given a minimum of a thirty (30) day review period to determine the adequacy of the master redlines. If the master redlines are found suitable by the COR, the COR will initial and date each sheet and turn redlines over to the contractor for as built development.
 - b. The Contractor shall provide the COR a complete set of "as-built" drawings and original master redlined marked "as-built" blue-line in the latest version of AutoCAD drawings unlocked on CD or DVD. The as-built drawing shall include security device number, security closet connection location, data gathering panel number, and input or output number as applicable. All corrective notations made by the Contractor shall be legible when submitted to the COR. If, in the opinion of the COR, any redlined notation is not legible, it shall be returned to the Contractor shall organize the Record Drawing sheets into manageable sets bound with durable paper cover sheets with suitable titles, dates, and other identifications printed on the cover. The submitted as built shall be in editable formats and the ownership of the drawings shall be fully relinquished to the owner.
 - c. Where feasible, the individual or entity that obtained record data, whether the individual or entity is the installer, subcontractor, or similar entity, is required to prepare the mark up on Record Drawings. Accurately record the information in a comprehensive drawing technique. Record the data when possible after it has been obtained. For concealed installations, record and check the mark up before concealment. At the time of substantial completion, submit the Record Construction Documents to the COR. The Contractor shall organize into bound and labeled

sets for the COR's continued usage. Provide device, conduit, and cable lengths on the conduit drawings. Exact in-field conduit placement/routings shall be shown. All conduits shall be illustrated in their entire length from termination in security closets; no arrowed conduit runs shall be shown. Pull box and junction box sizes are to be shown if larger than 100mm (4 inch).

- K. FIPS 201 Compliance Certificates
 - 1. Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:
 - a. Fingerprint Capture Station
 - b. Card Readers
 - c. Facial Image Capturing Camera
 - d. PIV Middelware
 - e. Template Matcher
 - f. Electromagnetically Opaque Sleeve
 - g. Certificate Management
 - 1) CAK Authentication System
 - 2) PIV Authentication System
 - 3) Certificate Validator
 - 4) Cryptographic Module
- L. Approvals will be based on complete submission of manuals together with shop drawings.
- M. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - 2. Each type of conduit and pathway coupling, bushing and termination fitting.
 - 3. Conduit hangers, clamps and supports.
 - 4. Duct sealing compound.
- N. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- O. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a VA representative to see typical active systems in operation, when there has been no prior

experience with the manufacturer or the type of equipment being submitted.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI)/ International Code Council (ICC):
 - Al17.1....Standard on Accessible and Usable Buildings and Facilities
- C. American National Standards Institute (ANSI)/ Security Industry Association (SIA):

AC-03.....Access Control: Access Control Guideline Dye Sublimation Printing Practices for PVC Access Control Cards

CP-01-00.....Control Panel Standard-Features for False Alarm Reduction

- PIR-01-00.....Passive Infrared Motion Detector Standard -Features for Enhancing False Alarm Immunity
- TVAC-01.....CCTV to Access Control Standard Message Set for System Integration
- D. American National Standards Institute (ANSI)/Electronic Industries
 Alliance (EIA):

330-09.....Electrical Performance Standards for CCTV Cameras

- 375A-76.....Electrical Performance Standards for CCTV Monitors
- E. American National Standards Institute (ANSI):

ANSI S3.2-99.....Method for measuring the Intelligibility of Speech over Communications Systems

F. American Society for Testing and Materials (ASTM)

B1-07.....for Hard-Drawn Copper Wire

B3-07.....Standard Specification for Soft or Annealed Copper Wire

B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

VA Medical Center, Huntington, WVVA Project No. 581-14-103Renovate 3W for Surgery Administration100% CD: 03/28/14				
	C1238-97 (R03)	Standard Guide for In	stallation of Walk-Through	
		Metal Detectors		
	D2301-04	Standard Specificatio	on for Vinyl Chloride	
		Plastic Pressure Sens	itive Electrical Insulating	
		Таре		
G.	Architectural Barriers	Act (ABA), 1968		
н.	Department of Justice:	American Disability A	Act (ADA)	
	28 CFR Part 36-2010 ADA	A Standards for Accessi	ble Design	
I.	Department of Veterans Affairs:			
	VHA National CAD Standard Application Guide, 2006			
	VA BIM Guide, V1.0 10			
J.	Federal Communications	Commission (FCC):		
	(47 CFR 15) Part 15	Limitations on the Us	se of Wireless	
	Equipment/Systems			
К.	Federal Information Pro	-		
	FIPS-201-1		ification (PIV) of Federal	
		Employees and Contrac	tors	
L.	Federal Specifications			
	A-A-59544-08		rical (Power, Fixed	
		Installation)		
М.	Government Accountabili			
	GAO-03-8-02		ties for Federally Owned	
		and Leased Facilities		
IN.	Homeland Security Presi			
	пбрр-12	Federal Employees and	dentification Standard for	
0	Institute of Electrical			
0.	81-1983	-		
			l Earth Surface Potentials	
		of a Ground System		
	802.3af-08		Standard	
	802.3at-09			
	C2-07National Electrical Safety Code			
			tice on Surge Voltages in	
		Low-Voltage AC Power	Circuits	
	C95.1-05	Standards for Safety	Levels with Respect to	
		Human Exposure in Rad	lio Frequency	
		Electromagnetic Field	ls	
P.	International Organizat	tion for Standardizatio	on (ISO):	
	7810	Identification cards	- Physical characteristics	

7811..... Physical Characteristics for Magnetic Stripe Cards 7816-1.....Identification cards - Integrated circuit(s) cards with contacts - Part 1: Physical characteristics 7816-2.....Identification cards - Integrated circuit cards - Part 2: Cards with contacts -Dimensions and location of the contacts 7816-3.....Identification cards - Integrated circuit cards - Part 3: Cards with contacts - Electrical interface and transmission protocols 7816-4.....Identification cards - Integrated circuit cards - Part 11: Personal verification through biometric methods 7816-10.....Identification cards - Integrated circuit cards - Part 4: Organization, security and commands for interchange 14443......Identification cards - Contactless integrated circuit cards; Contactless Proximity Cards Operating at 13.56 MHz in up to 5 inches distance 15693.....Identification cards -- Contactless integrated circuit cards - Vicinity cards; Contactless Vicinity Cards Operating at 13.56 MHz in up to 50 inches distance 19794.....Information technology - Biometric data interchange formats Q. National Electrical Contractors Association 303-2005.......Installing Closed Circuit Television (CCTV) Systems R. National Electrical Manufactures Association (NEMA): Maximum) TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable S. National Fire Protection Association (NFPA): 70-11..... National Electrical Code (NEC)

Premises Security Systems 99-2005.....Health Care Facilities T. National Institute of Justice (NIJ) 0601.02-03.....Standards for Walk-Through Metal Detectors for use in Weapons Detection 0602.02-03.....Hand-Held Metal Detectors for Use in Concealed Weapon and Contraband Detection U. National Institute of Standards and Technology (NIST): IR 6887 V2.1.....Government Smart Card Interoperability Specification (GSC-IS) Special Pub 800-37.....Guide for Applying the Risk Management Framework to Federal Information Systems Special Pub 800-63.....Electronic Authentication Guideline Special Pub 800-73-3....Interfaces for Personal Identity Verification (4 Parts)Pt. 1- End Point PIV Card Application Namespace, Data Model & RepresentationPt. 2- PIV Card Application Card Command InterfacePt. 3- PIV Client Application Programming InterfacePt. 4- The PIV Transitional Interfaces & Data Model Specification Special Pub 800-76-1....Biometric Data Specification for Personal Identity Verification Special Pub 800-78-2....Cryptographic Algorithms and Key Sizes for Personal Identity Verification Special Pub 800-79-1....Guidelines for the Accreditation of Personal Identity Verification Card Issuers Special Pub 800-85B-1...DRAFTPIV Data Model Test Guidelines Special Pub 800-85A-2...PIV Card Application and Middleware Interface Test Guidelines (SP 800-73-3 compliance) Special Pub 800-96.....PIV Card Reader Interoperability Guidelines Special Pub 800-104A....Scheme for PIV Visual Card Topography V. Occupational and Safety Health Administration (OSHA): 29 CFR 1910.97.....Nonionizing radiation W. Section 508 of the Rehabilitation Act of 1973 X. Security Industry Association (SIA): AG-01Security CAD Symbols Standards

Υ.	Underwriters Laboratories, Inc. (UL):
	1-05Flexible Metal Conduit
	5-04 Surface Metal Raceway and Fittings
	6-07Rigid Metal Conduit
	44-05 Cables
	50-07 Enclosures for Electrical Equipment
	83-08 and Cables
	294-99The Standard of Safety for Access Control System
	Units
	305-08Btandard for Panic Hardware
	360-09Conduit
	444-08Cafety Communications Cables
	464-09Audible Signal Appliances
	467-07 Electrical Grounding and Bonding Equipment
	486A-03 Uire Connectors and Soldering Lugs for Use with
	Copper Conductors
	486C-04Splicing Wire Connectors
	486D-05 Insulated Wire Connector Systems for Underground
	Use or in Damp or Wet Locations
	486E-00Equipment Wiring Terminals for Use with Aluminum
	and/or Copper Conductors
	493-07 Fhermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
	514A-04Metallic Outlet Boxes
	514B-04Fittings for Cable and Conduit
	51-05Conduit
	609-96 And Systems
	634-07 Burglar-Alarm
	Systems
	636-01 Standard for Holdup Alarm Units and Systems
	639-97Detection Units
	651-05Conduit
	651A-07Type EB and A Rigid PVC Conduit and HDPE Conduit
	752-05 Equipment
	797-07Electrical Metallic Tubing
	827-08Central Station Alarm Services
	1037-09 Anti-theft Alarms and Devices
	1635-10Digital Alarm Communicator System Units
	1076-95Burglar Alarm Units
	and Systems

1242-06......Intermediate Metal Conduit 1479-03.....Fire Tests of Through-Penetration Fire Stops 1981-03....Central Station Automation System 2058-05....High Security Electronic Locks 60950....Safety of Information Technology Equipment 60950-1....Information Technology Equipment - Safety - Part 1: General Requirements

- Z. Uniform Federal Accessibility Standards (UFAS) 1984
- AA. United States Department of Commerce: Special Pub 500-101Care and Handling of Computer Magnetic Storage

Media

1.8 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.9 MAINTENANCE & SERVICE

- A. General Requirements
 - The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.
- B. Description of Work

- The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, physical access control equipment, facility interface, signal transmission equipment, and video equipment.
- C. Personnel
 - Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The COR shall be advised in writing of the name of the designated service representative, and of any change in personnel. The COR shall be provided copies of system manufacturer certification for the designated service representative.
- D. Schedule of Work
 - 1. The work shall be performed during regular working hours, Monday through Friday, excluding federal holidays.
- E. System Inspections
 - 1. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.
- F. Emergency Service
 - The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner

shall have sole authority for determining catastrophic and noncatastrophic system failures within parameters stated in General Project Requirements.

- a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from [notification] [arrival on site]. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
- b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.
- G. Operation
 - Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.
- H. Records & Logs
 - The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.
- I. Work Request
 - 1. The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.
- J. System Modifications
 - The Contractor shall make any recommendations for system modification in writing to the COR. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the COR. Any modifications made to the system shall be

incorporated into the operation and maintenance manuals and other documentation affected.

- K. Software
 - 1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.10 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.11 DELIVERY, STORAGE, & HANDLING

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.
 - Damaged equipment shall be, as determined by the COR, placed in first class operating condition or be returned to the source of supply for repair or replacement.
 - 3. Painted surfaces shall be protected with factory installed removable heavy craft paper, sheet vinyl or equal.
 - Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.12 PROJECT CONDITIONS

- A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - Interior, Controlled Environment: System components, except centralstation control unit, installed in temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of 2 to 50 deg C (36 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, non-condensing. NEMA 250, Type 1 enclosure.

1.13 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the COR a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the COR prior to final inspection and not more than 90 days after completion of the tests.
 - When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.14 ELECTRICAL POWER

A. Electrical power of 120 Volts Alternating Current (VAC) shall be indicated on the Division 26 drawings.

1.15 COMPONENT ENCLOSURES

- A. Construction of Enclosures
 - Thickness of metal in-cast and sheet metal enclosures of all types shall not be less than those in Tables I and II, UL 611. Sheet steel used in fabrication of enclosures shall be not less than 14 gauge. Consoles shall be 16-gauge.
 - 2. Covers of pull and junction boxes provided to facilitate initial installation of the system shall be held in place by tamper proof Torx Center post security screws. Stenciled or painted labels shall be affixed to such boxes indicating they contain no connections. These labels shall not indicate the box is part of the Electronic Security System (ESS).

1.16 ELECTRONIC COMPONENTS

A. All electronic components of the system shall be of the solid-state type, mounted on printed circuit boards conforming to UL 796. Boards shall be plug-in, quick-disconnect type. Circuitry shall not be so densely placed as to impede maintenance. All power-dissipating components shall incorporate safety margins of not less than 25 percent with respect to dissipation ratings, maximum voltages, and currentcarrying capacity.

1.17 SUBSTITUTE MATERIALS & EQUIPMENT

- A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. In addition to this Section the Security Contractor shall also reference Section II, Products and associated divisions. The COR shall have final authority on the authorization or refusal of substitutions. If there are no proposed substitutions, a statement in writing from the Contractor shall be submitted to the COR stating same. In the preparation of a list of substitutions, the following information shall be included, as a minimum:
 - 1. Identity of the material or devices specified for which there is a proposed substitution.

- 2. Description of the segment of the specification where the material or devices are referenced.
- 3. Identity of the proposed substitute by manufacturer, brand name, catalog or model number and the manufacturer's product name.
- 4. A technical statement of all operational characteristic expressing equivalence to items to be substituted and comparison, feature-byfeature, between specification requirements and the material or devices called for in the specification; and Price differential.
- C. Materials Not Listed: Furnish all necessary hardware, software, programming materials, and supporting equipment required to place the specified major subsystems in full operation. Note that some supporting equipment, materials, and hardware may not be described herein. Depending on the manufacturers selected by the COR, some equipment, materials and hardware may not be contained in either the Contract Documents or these written specifications, but are required by the manufacturer for complete operation according to the intent of the design and these specifications. In such cases, the COR shall be given the opportunity to approve the additional equipment, hardware and materials that shall be fully identified in the bid and in the equipment list submittal. The COR shall be consulted in the event there is any question about which supporting equipment, materials, or hardware is intended to be included.
- D. Response to Specification: The Contractor shall submit a point-by-point statement of compliance with each paragraph of the security specification. The statement of compliance shall list each paragraph by number and indicate "COMPLY" opposite the number for each paragraph where the Contractor fully complies with the specification. Where the proposed system cannot meet the requirements of the paragraph, and does not offer an equivalent solution, the offers shall indicate "DOES NOT COMPLY" opposite the paragraph number. Where the proposed system does not comply with the paragraph as written, but the bidder feels it will accomplish the intent of the paragraph in a manner different from that described, the offers shall indicate "COMPARABLE". The offers shall include a statement fully describing the "comparable" method of satisfying the requirement. Where a full and concise description is not provided, the offered system shall be considered as not complying with the specification. Any submission that does not include a point-bypoint statement of compliance, as described above, shall be disqualified. Submittals for products shall be in precise order with

the product section of the specification. Submittals not in proper sequence will be rejected.

1.18 LIKE ITEMS

A. Where two or more items of equipment performing the same function are required, they shall be exact duplicates produced by one manufacturer.All equipment provided shall be complete, new, and free of any defects.

1.19 WARRANTY

A. The Contractor shall, as a condition precedent to the final payment, execute a written guarantee (warranty) to the COR certifying all contract requirements have been completed according to the final specifications. Contract drawings and the warranty of all materials and equipment furnished under this contract are to remain in satisfactory operating condition (ordinary wear and tear, abuse and causes beyond his control for this work accepted) for one (1) year from the date the Contactor received written notification of final acceptance from the COR. Demonstration and training shall be performed prior to system acceptance. All defects or damages due to faulty materials or workmanship shall be repaired or replaced without delay, to the COR's satisfaction, and at the Contractor's expense. The Contractor shall provide quarterly inspections during the warranty period. The contractor shall provide written documentation to the COR on conditions and findings of the system and device(s). In addition, the contractor shall provide written documentation of test results and stating what was done to correct any deficiencies. The first inspection shall occur 90 calendar days after the acceptance date. The last inspection shall occur 30 calendar days prior to the end of the warranty. The warranty period shall be extended until the last inspection and associated corrective actions are complete. When equipment and labor covered by the Contractor's warranty, or by a manufacturer's warranty, have been replaced or restored because of it's failure during the warranty period, the warranty period for the replaced or repaired equipment or restored work shall be reinstated for a period equal to the original warranty period, and commencing with the date of completion of the replacement or restoration work. In the event any manufacturer customarily provides a warranty period greater than one (1) year, the Contractor's warranty shall be for the same duration for that component.

1.20 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this

reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. All equipment shall be UL 827, UL 1981, and UL 60950 compliant and rated for continuous operation.
- B. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of 8 hours of run time in the event of a loss of primary power to the facility.
- C. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- D. All equipment and materials for the system will be compatible to ensure correct operation.

2.2 EQUIPMENT ITEMS

A. Wires and Cables:

- 1. Shall meet or exceed the manufactures recommendation for power and signals.
- Shall be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
- 3. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.
- 4. All conduit, pull boxes, and junction boxes shall be marked with colored permanent tape or paint that will allow it to be distinguished from all other infrastructure conduit.
- 5. Conduit fills shall not exceed 50 percent unless otherwise documented.
- 6. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
- At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area.
- 8. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage

for the security subsystems shall be any cable or sets of cables carrying 30 VDC/VAC or higher.

2.3 INSTALLATION KIT

- A. General:
 - 1. The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. All unused and partially opened installation kit boxes, coaxial, fiber-optic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware shall be turned over to the COR. The following sections outline the minimum required installation sub-kits to be used:
 - 2. System Grounding:
 - a. The grounding kit shall include all cable and installation hardware required. All head end equipment and power supplies shall be connected to earth ground via internal building wiring, according to the NEC.
 - b. This includes, but is not limited to:
 - 1) Coaxial Cable Shields
 - 2) Control Cable Shields
 - 3) Data Cable Shields
 - 4) Equipment Racks
 - 5) Equipment Cabinets
 - 6) Conduits
 - 7) Cable Duct blocks
 - 8) Cable Trays
 - 9) Power Panels
 - 10) Grounding
 - 11) Connector Panels
 - 3. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
 - 4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire

wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.

- 5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- 7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 8. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.
- F. Equipment location shall be as close as practical to locations shown on the drawings.

3.2 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section 07 84 00 "Firestopping."

3.3 DEMONSTRATION AND TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the COR at least 30 days prior to the planned training.
- D. Provide services of manufacturer's technical representative for 4 hours to instruct VA personnel in operation and maintenance of units.

3.4 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure electronic safety and security service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and conduit with other trades to minimize interferences. See the GENERAL CONDITIONS.

3.5 SYSTEM PROGRAMMING

- A. General Programming Requirements
 - 1. Provide all programming to integrate the new devices into the existing system headends.

3.6 TESTING AND ACCEPTANCE

- A. Performance Requirements
 - 1. General:
 - a. The Contractor shall perform contract field, performance verification, and endurance testing and make adjustments of the completed security system when permitted. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing. Written notification of planned testing shall be given to the COR at least 60 calendar days prior to the test and after the Contractor has received written approval of the specific test procedures.

- b. The COR shall witness all testing and system adjustments during testing. Written permission shall be obtained from the COR before proceeding with the next phase of testing. Original copies of all data produced during performance verification and endurance testing shall be turned over to the COR at the conclusion of each phase of testing and prior to COR approval of the test.
- 2. Test Procedures and Reports: The test procedures, compliant w/ VA standard test procedures, shall explain in detail, step-by-step actions and expected results demonstrating compliance with the requirements of the specification. The test reports shall be used to document results of the tests. The reports shall be delivered to the COR within seven (7) calendar days after completion of each test.
- B. The inspection and test will be conducted by a factory-certified contractor representative and witnessed by a Government Representative. The results of the inspection will be officially recorded by a designated Government Representative and maintained on file by the COR (RE), until completion of the entire project. The results will be compared to the Acceptance Test results.
- C. Exclusions
 - 1. The Contractor will not be held responsible for failures in system performance resulting from the following:
 - a. An outage of the main power in excess of the capability of any backup power source provided the automatic initiation of all backup sources was accomplished and that automatic shutdown and restart of the PACS performed as specified.
 - b. Failure of an Owner furnished equipment or communications link, provided the failure was not due to Contractor furnished equipment, installation, or software.
 - c. Failure of existing Owner owned equipment, provided the failure was not due to Contractor furnished equipment, installation, or software.

- - - E N D - - -

SECTION 28 05 13

CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the finishing, installation, connection, testing and certification the conductors and cables required for a fully functional for electronic safety and security (ESS) system.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- D. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SECURITY AND SAFETY. Requirements for infrastructure.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
- F. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- G. RCDD: Registered Communications Distribution Designer.
- H. Solid-Bottom or Non-ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- I. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.

J. UTP: Unshielded twisted pair.

1.4 QUALITY ASSURANCE

A. See section 28 05 00, Paragraph 1.4.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Manufacturer's Literature and Data: Showing each cable type and rating.
 - Certificates: Two weeks prior to final inspection, deliver to the COR four copies of the certification that the material is in accordance with the drawings and specifications and diagrams for cable management system.
 - 3. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Clearances for access above and to side of cable trays.
 - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - 4. Maintenance Data: For wire and cable to include in maintenance manuals.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.
- B. American Society of Testing Material (ASTM): D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating
 - Tape
- C. Federal Specifications (Fed. Spec.): A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed

Installation)

D. National Fire Protection Association (NFPA):

- E. Underwriters Laboratories, Inc. (UL):
 - 44-05.....Thermoset-Insulated Wires and Cables
 - 83-08.....Thermoplastic-Insulated Wires and Cables
 - 467-07.....Electrical Grounding and Bonding Equipment

486A-03	Wire Connectors and Soldering Lugs for Use with
	Copper Conductors
486C-04	.Splicing Wire Connectors
486D-05	Insulated Wire Connector Systems for Underground
	Use or in Damp or Wet Locations
486E-00	Equipment Wiring Terminals for Use with Aluminum
	and/or Copper Conductors
493-07	Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
514B-04	.Fittings for Cable and Conduit
1479-03	Fire Tests of Through-Penetration Fire Stops

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - 1. Test optical fiber cable to determine the continuity of the strand end to end. Use optical-fiber flashlight.
 - Test optical fiber cable on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.
 - 3. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install UTP, optical fiber, and coaxial cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 GENERAL

- A. General: All cabling locations shall be in conduit systems as outlined in Division 28 unless a waiver is granted in writing or an exception is noted on the construction drawings.
- B. Support of Open Cabling: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 - 1. Support brackets with cable tie slots for fastening cable ties to brackets.
 - 2. Lacing bars, spools, J-hooks, and D-rings.
 - 3. Straps and other devices.
- C. Cable Trays:

- Cable Tray Materials: Metal, suitable for indoors, and protected against corrosion by [electroplated zinc galvanizing, complying with ASTM B 633, Type 1, not less than 0.000472 inch (0.012 mm) thick].
- Ladder Cable Trays: See drawings for width. Rung spacing of 12 inches (305 mm).
- D. Conduit and Boxes: Comply with requirements in Division 28 Section
 "Conduits and Backboxes for Electrical Systems."[Flexible metal conduit
 shall not be used.]
 - Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

2.2 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements for plywood backing panels in Division 06 Section "Rough Carpentry".

2.3 UTP CABLE

- A. Description: 100-ohm, 4-pair UTP, formed into 25-pair binder groups covered with a blue thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-B.2, Category 6.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type CM or CMG.
 - b. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
 - c. Communications, Riser Rated: Type CMR, complying with UL 1666.
 - d. Communications, Limited Purpose: Type CMX.
 - e. Multipurpose: Type MP or MPG
 - f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 - g. Multipurpose, Riser Rated: Type MPR complying with UL 1666.

2.4 UTP CABLE HARDWARE

- A. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.
- B. Connecting Blocks: 110-style for Category 6. Provide blocks for the number of cables terminated on the block, plus 50 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

2.5 OPTICAL FIBER CABLE

- A. Description: Multimode, 62.5/125-micrometer, 12-fiber, tight buffer, optical fiber cable.
 - 1. Comply with ICEA S-83-596 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.3 for performance specifications.
 - 3. Comply with TIA/EIA-492AAAA-B for detailed specifications.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 - a. General Purpose, Nonconductive: Type OFN or OFNG.
 - b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 - c. Riser Rated, Nonconductive: Type OFNR, complying with UL 1666.
 - d. General Purpose, Conductive: Type OFC or OFCG.
 - e. Plenum Rated, Conductive: Type OFCP, complying with NFPA 262.
 - f. Riser Rated, Conductive: Type OFCR, complying with UL 1666.
 - 5. Conductive cable shall be steel armored type.
 - 6. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
 - 7. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.
- B. Jacket:
 - 1. Jacket Color: Orange for 62.5/125-micrometer cable.
 - 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
 - 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).

2.6 OPTICAL FIBER CABLE HARDWARE

- A. Cable Connecting Hardware: Meet the Optical Fiber Connector Intermateability Standards (FOCIS) specifications of TIA/EIA-604-2, TIA/EIA-604-3-A, and TIA/EIA-604-12. Comply with TIA/EIA-568-B.3.
 - 1. Quick-connect, simplex and duplex, Type SC connectors. Insertion loss shall be not more than 0.75 dB.
 - 2. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.7 LOW-VOLTAGE CONTROL CABLE

A. Paired Lock Cable: NFPA 70, Type CMG.

- 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
- 2. PVC insulation.
- 3. Unshielded.
- 4. PVC jacket.
- 5. Flame Resistance: Comply with UL 1581.

- B. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with NFPA 262.
- C. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- D. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Plastic jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.8 CONTROL-CIRCUIT CONDUCTORS

- A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
- B. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
- C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF, complying with UL 83.

2.9 FIRE ALARM WIRE AND CABLE

- A. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
- B. Signaling Line Circuits: Twisted, shielded pair, size as recommended by system manufacturer.
 - Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a 2-hour rating.
- C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
 - 1. Low-Voltage Circuits: No. 16 AWG, minimum.

- 2. Line-Voltage Circuits: No. 12 AWG, minimum.
- 3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor[with outer jacket] with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.

2.10 IDENTIFICATION PRODUCTS

A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.11 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
- F. Cable will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

2.12 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.13 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 - 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
 - Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 - 8. Pulling Cable:
 - a. Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
 - b. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
 - c. Use ropes made of nonmetallic material for pulling feeders.
 - d. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the COR.
 - e. Pull in multiple cables together in a single conduit.
- C. Splice cables and wires where necessary only in outlet boxes, junction boxes, or pull boxes.
 - Splices and terminations shall be mechanically and electrically secure.
 - 2. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.

- D. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- E. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
- F. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.
- G. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- H. Optical Fiber Cable Installation:
 - 1. Comply with TIA/EIA-568-B.3.
 - 2. Cable shall be terminated on connecting hardware that is rack or cabinet mounted.
- I. Open-Cable Installation:
 - Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - 2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than [60 inches (1525 mm)] <Insert dimension> apart.
 - 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

3.2 FIRE ALARM WIRING INSTALLATION

- A. Comply with NECA 1 and NFPA 72.
- B. Wiring Method: Install wiring in metal raceway according to Division 28 Section CONDUITS AND BACKBOXES FOR ELECTRICAL SYSTEMS."
 - Install plenum cable in environmental air spaces, including plenum ceilings.
 - Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.
- C. Wiring Method:
 - Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
 - Fire-Rated Cables: Use of 2-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is[not] permitted.

- 3. Signaling Line Circuits: Power-limited fire alarm cables may be installed in the same cable or raceway as signaling line circuits.
- D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarmindicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.

3.3 CONTROL CIRCUIT CONDUCTORS

- A. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 - 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 - 3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.4 CONNECTIONS

- A. Comply with requirements in Division 28 Section, PHYSICAL ACCESS CONTROL for connecting, terminating, and identifying wires and cables.
- B. Comply with requirements in Division 28 Section "VIDEO SURVEILLANCE" for connecting, terminating, and identifying wires and cables.
- C. Comply with requirements in Division 28 Section "FIRE DETECTION AND ALARM" for connecting, terminating, and identifying wires and cables.

3.5 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "PENETRATION FIRESTOPPING."
- B. Comply with TIA/EIA-569-A, "Firestopping" Annex A.
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING

- A. For communications wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. For low-voltage wiring and cabling, comply with requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY."

3.7 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A.
- B. Install a permanent wire marker on each wire at each termination.
- C. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- D. Wire markers shall retain their markings after cleaning.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - 4. Optical Fiber Cable Tests:
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - b. Link End-to-End Attenuation Tests:

- Multimode Link Measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.
- Attenuation test results for links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.
- D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.9 EXISITNG WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

- - - E N D - - -

SECTION 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of the grounding and bonding required for a fully functional Electronic Safety and Security (ESS) system.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 28 05 00 REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS. For general electrical requirements, quality assurance, coordination, and project conditions that are common to more than one section in Division 28.
- C. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for low voltage power and lighting wiring.

1.3 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Shop Drawings:
 - 1. Clearly present enough information to determine compliance with drawings and specifications.
 - Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Contracting Officers Representative (COR):
 - Certification that the materials and installation are in accordance with the drawings and specifications.
 - 2. Certification by the contractor that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. B. American Society for Testing and Materials (ASTM): B1-07..... Standard Specification for Hard-Drawn Copper Wire B3-07......Standard Specification for Soft or Annealed Copper Wire B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-1983..... Each LEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System C2-07.....National Electrical Safety Code D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 99-2005.....Health Care Facilities E. Underwriters Laboratories, Inc. (UL): 44-05 Thermoset-Insulated Wires and Cables 467-07Grounding and Bonding Equipment 486A-486B-03Wire Connectors

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.

2.2 SPLICES AND TERMINATION COMPONENTS

- A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).2.4 ground connections
- B. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- C. Above Grade:
 - Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.
 - 4. Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.
 - Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 - a) Pipe Connectors: Clamp type, sized for pipe.
 - Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.3 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 4 mm thick by 19 mm wide $(3/8 \text{ inch x } \frac{3}{4} \text{ inch})$.

2.4 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

2.5 SPLICE CASE GROUND ACCESSORIES

A. Splice case grounding and bonding accessories shall be supplied by the splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

2.6 COMPUTER ROOM GROUND

A. Provide 50mm2 (1/0 AWG) bare copper grounding conductors bolted at mesh intersections to form an equipotential grounding grid. The

equipotential grounding grid shall form a 600mm (24 inch) mesh pattern. The grid shall be bonded to each of the access floor pedestals.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are buried or otherwise normally inaccessible (except connections for which periodic testing access is required) by exothermic weld.

3.3 CORROSION INHIBITORS

A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.4 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.5 COMPUTER ROOM/SECURITY EQUIPMENT ROOM GROUNDING

- A. Conduit: Ground and bond metallic conduit systems as follows:
 - Ground metallic service conduit and any pipes entering or being routed within the computer room at each end using 16 mm² (6AWG) bonding jumpers.
 - Bond at all intermediate metallic enclosures and across all joints using 16 mm² (6 AWG) bonding jumpers.

3.6 WIREWAY GROUNDING

A. Ground and Bond Metallic Wireway Systems as follows:

- Bond the metallic structures of wireway to provide 100 percent electrical continuity throughout the wireway system by connecting a 16 mm² (6 AWG) bonding jumper at all intermediate metallic enclosures and across all section junctions.
- Install insulated 16 mm² (6 AWG) bonding jumpers between the wireway system bonded as required in paragraph 1 above, and the closest building ground at each end and approximately every 16 meters (50 feet).
- 3. Use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and cross all section junctions.
- 4. Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 meters.

3.7 LABELING

- A. Comply with requirements in Division 26 Section "ELECTRICAL IDENTIFICATION" Article for instruction signs. The label or its text shall be green.
- B. Install labels at the telecommunications bonding conductor and grounding equalizer.
 - Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - Power Distribution Units or Panel boards Serving Electronic Equipment: 3 ohm(s).

- - - E N D - - -

SECTION 28 05 28.33

CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 06 10 00 ROUGH CARPENTRY. Requirements for mounting board for communication closets.
- C. Section 07 84 00 FIRESTOPPING. Requirements for sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 60 00 FLASHING AND SHEET METAL. Requirements for fabrications for the deflection of water away from the building envelope at penetrations.
- E. Section 07 92 00 JOINT SEALANTS. Requirements for sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- F. Section 09 91 00 PAINTING. Requirements for identification and painting of conduit and other devices.
- G. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general electrical requirements, general arrangement of the contract documents, coordination, quality assurance, project conditions, equipment and materials, and items that is common to more than one section of Division 28.
- H. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.

- D. FMC: Flexible metal conduit.
- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquidtight flexible metal conduit.
- G. LFNC: Liquidtight flexible nonmetallic conduit.
- H. NBR: Acrylonitrile-butadiene rubber.
- I. RNC: Rigid nonmetallic conduit.

1.4 QUALITY ASSURANCE

A. Refer to Paragraph 1.4 Quality Assurance, in Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

1.5 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Furnish the following:
- B. Shop Drawings:
 - 1. Size and location of main feeders;
 - 2. Size and location of panels and pull boxes
 - 3. Layout of required conduit penetrations through structural elements.
 - 4. The specific item proposed and its area of application shall be identified on the catalog cuts.
- C. Certification: Prior to final inspection, deliver to the Contracting Officer's Representative (COR) four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.
- D. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- E. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- F. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work. 1. Custom enclosures and cabinets.
- G. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.

I. Source quality-control test reports.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA):
 - TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing
 - FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable
- C. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):
 - 1-05.....Flexible Metal Conduit
 - 5-04.....Surface Metal Raceway and Fittings
 - 6-07.....Rigid Metal Conduit
 - 50-07..... Enclosures for Electrical Equipment
 - 360-09.....Liquid-Tight Flexible Steel Conduit
 - 467-07.....Grounding and Bonding Equipment
 - 514A-04.....Metallic Outlet Boxes
 - 514B-04.....Fittings for Cable and Conduit
 - 514C-02.....Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers
 - 651-05.....Schedule 40 and 80 Rigid PVC Conduit
 - 651A-07.....Type EB and A Rigid PVC Conduit and HDPE Conduit
 - 797-07.....Electrical Metallic Tubing

1242-06.....Intermediate Metal Conduit

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2 CONDUIT

- A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
- B. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
- C. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.

- D. Flexible galvanized steel conduit: Shall Conform to UL 1.
- E. Liquid-tight flexible metal conduit: Shall Conform to UL 360.
- F. Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).

2.3 WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

2.4 CONDUIT FITTINGS

- A. Rigid steel and IMC conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - 5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - 6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- B. Electrical metallic tubing fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - 3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - 4. Indent type connectors or couplings are prohibited.

- 5. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- C. Flexible steel conduit fittings:
 - 1. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - 2. Clamp type, with insulated throat.
- D. Liquid-tight flexible metal conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- E. Direct burial plastic conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514C and NEMA TC3.
 - 2. As recommended by the conduit manufacturer.
- F. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- G. Expansion and deflection couplings:
 - 1. Conform to UL 467 and UL 514B.
 - Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - 3. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - 4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

- A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

A. UL-50 and UL-514A.

- B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- D. Metal Floor Boxes: Cast or sheet metal, semi-adjustable, rectangular.
- E. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- F. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 CABINETS

- A. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- B. Hinged door in front cover with flush latch and concealed hinge.
- C. Key latch to match panelboards.
- D. Metal barriers to separate wiring of different systems and voltage.
- E. Accessory feet where required for freestanding equipment.

2.8 WIREWAYS

A. Equip with hinged covers, except where removable covers are shown.

2.9 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time. WIRELINE DATA TRANSMISSION MEDIA FOR SECURITY SYSTEMS

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the COR prior to drilling through structural sections.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the COR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other electronic safety and security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam

sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.

C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, "JOINT SEALANTS".

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.
 - 6. Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
 - Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
 - 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
 - 9. Conduit installations under fume and vent hoods are prohibited.
 - 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
 - 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, "FLASHING AND SHEET METAL".
 - 12. Do not use aluminum conduits in wet locations.
 - 13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:

- 1. Install conduit with wiring, including homeruns, as shown.
- 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COR.
- D. Fire Alarm:
 - Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 28 31 00, "FIRE DETECTION AND ALARM".

3.3 CONCEALED WORK INSTALLATION

- A. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - 4. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:
 - 1. Rigid steel, IMC, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, "PAINTING".
 - 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, "PAINTING" for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage

rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.

- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.8 ELECTRONIC SAFETY AND SECURITY CONDUIT

- A. Install the electronic safety and security raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.

- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
3⁄4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

- - - E N D - - -

SECTION 28 13 00

PHYSICAL ACCESS CONTROL SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of a complete and fully operating Physical Access Control System as an extension of the existing system, hereinafter referred to as the PACS.
- B. This Section includes a Physical Access Control System consisting of a field-installed Controllers connected by a high-speed electronic data transmission network. The PACS shall have the following:
 - 1. Physical Access Control:
 - a. Regulating access through doors.
 - b. Credential cards and readers
 - c. Biometric identity verification equipment
 - d. RS-232 ASCII interface
- C. System Architecture:
 - Criticality, operational requirements, and/or limiting points of failure may dictate the development of an enterprise and regional server architecture as opposed to system capacity. Provide server and workstation configurations with all necessary connectors, interfaces and accessories as shown.
- D. PACS shall provide secure and reliable identification of Federal employees and contractors by utilizing credential authentication per FIPS-201.
- E. Physical Access Control System (PACS) shall consist of:
 - 1. Field installed controllers,
 - 2. Card readers,
 - 3. Biometric identification devices,
 - 4. Door locks and sensors,
 - 5. Power supplies,
 - 6. Interfaces with:
 - a. Video Surveillance and Assessment System,
 - b. Automatic door operators,
- F. Information system supporting PACS, routers and controllers shall comply with FIPS 200 requirements (Minimum Security Requirements for Federal Information and Information Systems) and NIST Special

Publication 800-53 (Recommended Security Controls for Federal Information Systems).

- G. All security relevant decisions shall be made on "secure side of the door". Secure side processing shall include;
 - 1. Challenge/response management,
 - 2. PKI path discovery and validation,
 - 3. Credential identifier processing,
 - 4. Authorization decisions.
- H. System Software: Based on existing central-station, workstation operating system, server operating system, and application software.
- I. Software and controllers shall be capable of matching full 56 bit FASC-N plus minimum of 32 bits of public key certificate data.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- D. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- E. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- F. Section 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- G. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general requirements that are common to more than one section in Division 28.
- H. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- I. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- J. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- K. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. For requirements for commissioning, systems readiness checklists, and training.
- L. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.

1.3 QUALITY ASSURANCE

- A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1
- B. The Contractor shall be responsible for providing, installing, and the operation of the PACS as shown. The Contractor shall also provide certification as required.
- C. The security system will be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- D. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- E. Product Qualifications:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- F. Contractor Qualifications:
 - 1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of

satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The Contracting Officers Representative (COR) reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- a. The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- b. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- G. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 SUBMITTALS

- A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1
- B. Submit below items in conjunction with Master Specification Sections 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, Section 02 41 00, DEMOLITION, and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- C. Provide certificates of compliance with Section 1.3, Quality Assurance.

- D. Provide a complete and thorough pre-installation and as-built design package in both electronic format and on paper, minimum size 48 x 48 inches (1220 x 1220 millimeters); drawing submittals shall be per the established project schedule.
- E. Shop drawing and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a complete list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all individual security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.
 - Provide a detailed device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - Drawing sheets that will be plotted on the individual floor plans or site plans shall:
 - a. Include a title block as defined above.
 - b. Clearly define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.
 - Address all general and drawing specific notes for a particular drawing sheet.
 - 3. A detailed riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.

- c. Include the number, size, identification, and maximum lengths of interconnecting wires.
- d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A detailed system drawing for each applicable security system shall:
 - a. Clearly identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- 5. A detailed schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the PACS, provide the door ID, door type (e.g. wood or metal), locking mechanism (e.g. strike or electromagnetic lock) and control device (e.g. card reader or biometrics).
- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.
- F. Pre-installation design packages shall go through a full review process conducted by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. 35 percent

- 2. 65 percent
- 3. 90 percent
- 4. 100 percent
- G. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- H. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per Section 01 00 00, GENERAL REQUIREMENTS, and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- I. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- J. General: Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. Additional general provisions are as follows:
 - The Contractor shall schedule submittals in order to maintain the project schedule. For coordination drawings refer to Specification Section 01 33 10 - DESIGN SUBMITTAL PROCEDURES, which outline basic submittal requirements and coordination. Section 01 33 10 shall be used in conjunction with this section.
 - The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
 - 3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.

- 4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for COR and Contractor review stamps.
- 5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the COR for approval before the initiation of work.
- Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - Where two (2) or more binders are necessary to accommodate data, correlate data in each binder into related groupings according to the Project Manual table of contents. Crossreferencing other binders where necessary to provide essential information for communication of proper operation and or maintenance of the component or system.
 - Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.
 - b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
 - c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
 - d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if

not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.

- e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.
 - Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: In each manual include information specified in the individual Specification section, and the following information for each major component of building equipment and controls:
 - 1) General system or equipment description.
 - 2) Design factors and assumptions.
 - 3) Copies of applicable Shop Drawings and Product Data.
 - 4) System or equipment identification including: manufacturer, model and serial numbers of each component, operating instructions, emergency instructions, wiring diagrams, inspection and test procedures, maintenance procedures and schedules, precautions against improper use and maintenance, repair instructions, sources of required maintenance materials and related services, and a manual index.
- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address

of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.

- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.
- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.
- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.
- 1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information. Organize the text in a consistent format under a separate heading

for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.

- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.
- 7. Contractor Review: Review submittals prior to transmittal. Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return nonconforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.
- Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 9. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- K. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization. Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:
 - a. General Drawings shall conform to VA Special Conditions and CAD Standards Documents. All text associated with security details

shall be 1/8" tall and meet VA text standard for AutoCAD $\sp{\sc math wavelength}$ drawings.

- b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.
- c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
- d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following:
 - 1) security devices by symbol,
 - the associated device point number (derived from the loading sheets),
 - 3) wire & cable types and counts
 - 4) conduit sizing and routing
 - 5) conduit riser systems
 - 6) device and area detail call outs
- e. Architectural details Architectural details shall be produced for each device mounting type (door details for doors with physical access control, reader pedestals and mounts, security panel and power supply details).
- f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the physical access control system throughout the facility (or area in scope).
- g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., physical access control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.
- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations,

standard wire detail to include termination schedule. Diagram shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.

- i. Security Details:
 - Panel Assembly Detail For each panel assembly, a panel assembly details shall be provided identifying individual panel component size and content.
 - Panel Details Provide security panel details identify general arrangement of the security system components, backboard size, wire through size and location, and power circuit requirements.
 - 3) Device Mounting Details Provide mounting detailed drawing for each security device (physical access control system, intrusion detection, video surveillance and assessment, and intercom systems) for each type of wall and ceiling configuration in project. Device details shall include device, mounting detail, wiring and conduit routing.
 - 4) Details of connections to power supplies and grounding
 - 5) Details of surge protection device installation
 - Sensor detection patterns Each system sensor shall have associated detection patterns.
 - 7) Equipment Rack Detail For each equipment rack, provide a scaled detail of the equipment rack location and rack space utilization. Use of BISCI wire management standards shall be employed to identify wire management methodology. Transitions between equipment racks shall be shown to include use vertical and horizontal latter rack system.
 - 8) Security Control Room The contractor shall provide a layout plan for the Security Control Room. The layout plan shall identify all equipment and details associated with the installation.
 - 9) Operator Console The contractor shall provide a layout plan for the Operator Console. The layout plan shall identify all equipment and details associated with the installation. Equipment room - the contractor shall provide a layout plan for the equipment room. The layout plan shall identify all equipment and details associated with the installation.

- 10) Equipment Room Equipment room details shall provide architectural, electrical, mechanical, plumbing, IT/Data and associated equipment and device placements both vertical and horizontally.
- j. Electrical Panel Schedule Electrical Panel Details shall be provided for all SMS systems electrical power circuits. Panel details shall be provided identifying panel type (Standard, Emergency Power, Emergency/Uninterrupted Power Source, and Uninterrupted Power Source Only), panel location, circuit number, and circuit amperage rating.
- k. Door Schedule A door schedule shall be developed for each door equipped with electronic security components. At a minimum, the door schedule shall be coordinated with Division 08 work and include the following information:
 - 1) Item Number
 - 2) Door Number (Derived from A/E Drawings)
 - 3) Floor Plan Sheet Number
 - 4) Standard Detail Number
 - 5) Door Description (Derived from Loading Sheets)
 - 6) Data Gathering Panel Input Number
 - 7) Door Position or Monitoring Device Type & Model Number
 - 8) Lock Type, Model Number & Power Input/Draw (standby/active)
 - 9) Card Reader Type & Model Number
 - 10) Shunting Device Type & Model Number
 - 11) Sounder Type & Model Number
 - 12) Manufacturer
 - 13) Misc. devices as required
 - a) Delayed Egress Type & Model Number
 - b) Intercom
 - c) Camera
 - d) Electric Transfer Hinge
 - e) Electric Pass-through device

14) Remarks column indicating special notes or door configurations

2. Camera Schedule - A camera schedule shall be developed for each camera. Contractors shall coordinate with the COR to determine camera starting numbers and naming conventions. All drawings shall identify wire and cable standardization methodology. Color coding of all wiring conductors and jackets is required and shall be communicated consistently throughout the drawings package submittal. At a minimum, the camera schedule shall include the following information:

- a. Item Number
- b. Camera Number
- c. Naming Conventions
- d. Description of Camera Coverage
- e. Camera Location
- f. Floor Plan Sheet Number
- g. Camera Type
- h. Mounting Type
- i. Standard Detail Reference
- j. Power Input & Draw
- k. Power Panel Location
- 1. Remarks Column for Camera
- 3. Section IV Manufacturers' Data: The data package shall include manufacturers' data for all materials and equipment, including sensors, local processors and console equipment provided under this specification.
- 4. Section VI Certifications & References: All specified manufacturer's certifications shall be included with the data package. Contractor shall provide Project references as outlined in Paragraph 1.4 "Quality Assurance".
- K. Group II Technical Data Package
 - 1. The Contractor shall prepare a report of "Current Site Conditions" and submit a report to the COR documenting changes to the site, particularly those conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions which affect the installation of the system or its performance. The Contractor shall not correct any deficiency without written permission from the COR.
 - System Configuration and Functionality: The contractor shall provide the results of the meeting with VA to develop system requirements and functionality including but not limited to:
 - a. Baseline configuration
 - b. Access levels

- c. Schedules (intrusion detection, physical access control, holidays, etc.)
- d. Badge database
- e. System monitoring and reporting (unit level and central control)
- f. Naming conventions and descriptors
- L. Group III Technical Data Package
 - Development of Test Procedures: The Contractor will prepare performance test procedures for the system testing. The test procedures shall follow the format of the VA Testing procedures and be customized to the contract requirements. The Contractor will deliver the test procedures to the COR for approval at least 60 calendar days prior to the requested test date.
- M. Group IV Technical Data Package
 - 1. Performance Verification Test
 - a. Based on the successful completion of the pre-delivery test, the Contractor shall finalize the test procedures and report forms for the performance verification test (PVT) and the endurance test. The PVT shall follow the format, layout and content of the pre-delivery test. The Contractor shall deliver the PVT and endurance test procedures to the COR for approval. The Contractor may schedule the PVT after receiving written approval of the test procedures. The Contractor shall deliver the final PVT and endurance test reports within 14 calendar days from completion of the tests. Refer to Part 3 of this section for System Testing and Acceptance requirements.
 - 2. Training Documentation
 - a. New Facilities and Major Renovations: Familiarization training shall be provided for new equipment or systems. Training can include site familiarization training for VA technicians and administrative personnel. Training shall include general information on new system layout including closet locations, turnover of the completed system including all documentation, including manuals, software, key systems, and full system administration rights. Lesson plans and training manuals training shall be oriented to type of training to be provided.
- N. Group V Technical Data Package: Final copies of the manuals shall be delivered to the COR as part of the acceptance test. The draft copy used during site testing shall be updated with any changes required

prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each sub-contractor installing equipment or systems, as well as the nearest service representatives for each item of equipment for each system. The manuals shall include a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include all modifications made during installation, checkout, and acceptance. Six (6) hard-copies and one (1) soft copy on CD of each item listed below shall be delivered as a part of final systems acceptance.

- Functional Design Manual: The functional design manual shall identify the operational requirements for the entire system and explain the theory of operation, design philosophy, and specific functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system operating modes. Manufacturer developed literature may be used; however, shall be produced to match the project requirements.
- 2. Equipment Manual: A manual describing all equipment furnished including:
 - a. General description and specifications; installation and checkout procedures; equipment electrical schematics and layout drawings; system schematics and layout drawings; alignment and calibration procedures; manufacturer's repair list indicating sources of supply; and interface definition.
- 3. Software Manual: The software manual shall describe the functions of all software and include all other information necessary to enable proper loading, testing, and operation. The manual shall include:
 - a. Definition of terms and functions; use of system and applications software; procedures for system initialization, start-up, and shutdown; alarm reports; reports generation, database format and data entry requirements; directory of all disk files; and description of all communications protocols including data formats, command characters, and a sample of each type of data transfer.

- 4. Operator's Manual: The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:
 - a. Computers and peripherals; system start-up and shutdown procedures; use of system, command, and applications software; recovery and restart procedures; graphic alarm presentation; use of report generator and generation of reports; data entry; operator commands' alarm messages, and printing formats; and system access requirements.
- 5. Maintenance Manual: The maintenance manual shall include descriptions of maintenance for all equipment including inspection, recommend schedules, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.
- 6. Spare Parts & Components Data: At the conclusion of the Contractor's work, the Contractor shall submit to the COR a complete list of the manufacturer's recommended spare parts and components required to satisfactorily maintain and service the systems, as well as unit pricing for those parts and components.
- 7. Operation, Maintenance & Service Manuals: The Contractor shall provide two (2) complete sets of operating and maintenance manuals in the form of an instructional manual for use by the VA Security Guard Force personnel. The manuals shall be organized into suitable sets of manageable size. Where possible, assemble instructions for similar equipment into a single binder. If multiple volumes are required, each volume shall be fully indexed and coordinated.
- 8. Equipment and Systems Maintenance Manual: The Contractor shall provide the following descriptive information for each piece of equipment, operating system, and electronic system:
 - a. Equipment and/or system function.
 - b. Operating characteristics.
 - c. Limiting conditions.
 - d. Performance curves.
 - e. Engineering data and test.
 - f. Complete nomenclature and number of replacement parts.
 - g. Provide operating and maintenance instructions including assembly drawings and diagrams required for maintenance and a list of items recommended to stock as spare parts.

- h. Provide information detailing essential maintenance procedures including the following: routine operations, trouble shooting guide, disassembly, repair and re-assembly, alignment, adjusting, and checking.
- i. Provide information on equipment and system operating procedures, including the following; start-up procedures, routine and normal operating instructions, regulation and control procedures, instructions on stopping, shut-down and emergency instructions, required sequences for electric and electronic systems, and special operating instructions.
- j. Manufacturer equipment and systems maintenance manuals are permissible.
- 9. Project Redlines: During construction, the Contractor shall maintain an up-to-date set of construction redlines detailing current location and configuration of the project components. The redline documents shall be marked with the words 'Master Redlines' on the cover sheet and be maintained by the Contractor in the project office. The Contractor will provide access to redline documents anytime during the project for review and inspection by the COR or authorized Office of Protection Services representative. Master redlines shall be neatly maintained throughout the project and secured under lock and key in the contractor's onsite project office. Any project component or assembly that is not installed in strict accordance with the drawings shall be so noted on the drawings. Prior to producing Record Construction Documents, the contractor will submit the Master Redline document to the COR for review and approval of all changes or modifications to the documents. Each sheet shall have COR initials indicating authorization to produce "As Built" documents. Field drawings shall be used for data gathering & field changes. These changes shall be made to the master redline documents daily. Field drawings shall not be considered "master redlines".
- 10. Record Specifications: The Contractor shall maintain one (1) copy of the Project Specifications, including addenda and modifications issued, for Project Record Documents. The Contractor shall mark the Specifications to indicate the actual installation where the installation varies substantially from that indicated in the Contract Specifications and modifications issued. (Note related

Project Record Drawing information where applicable). The Contractor shall pay particular attention to substitutions, selection of product options, and information on concealed installations that would be difficult to identify or measure and record later. Upon completion of the mark ups, the Contractor shall submit record Specifications to the COR. As with master relines, Contractor shall maintain record specifications for COR review and inspection at anytime.

- 11. Record Product Data: The Contractor shall maintain one (1) copy of each Product Data submittal for Project Record Document purposes. The Data shall be marked to indicate the actual product installed where the installation varies substantially from that indicated in the Product Data submitted. Significant changes in the product delivered to the site and changes in manufacturer's instructions and recommendations for installation shall be included. Particular attention will be given to information on concealed products and installations that cannot be readily identified or recorded later. Note related Change Orders and mark up of Record Construction Documents, where applicable. Upon completion of mark up, submit a complete set of Record Product Data to the COR.
- 12. Miscellaneous Records: The Contractor shall maintain one (1) copy of miscellaneous records for Project Record Document purposes. Refer to other Specifications for miscellaneous record-keeping requirements and submittals concerning various construction activities. Before substantial completion, complete miscellaneous records and place in good order, properly identified and bound or filed, ready for use and reference. Categories of requirements resulting in miscellaneous records include, a minimum of the following:
 - a. Certificates received instead of labels on bulk products.
 - b. Testing and qualification of tradesmen. ("Contractor's Qualifications")
 - c. Documented qualification of installation firms.
 - d. Load and performance testing.
 - e. Inspections and certifications.
 - f. Final inspection and correction procedures.
 - g. Project schedule
- 13. Record Construction Documents (Record As-Built)

- a. Upon project completion, the contractor shall submit the project master redlines to the COR prior to development of Record construction documents. The COR shall be given a minimum of a thirty (30) day review period to determine the adequacy of the master redlines. If the master redlines are found suitable by the COR, the COR will initial and date each sheet and turn redlines over to the contractor for as built development.
- b. The Contractor shall provide the COR a complete set of "as-built" drawings and original master redlined marked "as-built" blue-line in the latest version of AutoCAD drawings unlocked on CD or DVD. The as-built drawing shall include security device number, security closet connection location, data gathering panel number, and input or output number as applicable. All corrective notations made by the Contractor shall be legible when submitted to the COR. If, in the opinion of the COR, any redlined notation is not legible, it shall be returned to the Contractor for resubmission at no extra cost to the Owner. The Contractor shall organize the Record Drawing sheets into manageable sets bound with durable paper cover sheets with suitable titles, dates, and other identifications printed on the cover. The submitted as built shall be in editable formats and the ownership of the drawings shall be fully relinquished to the owner.
- c. Where feasible, the individual or entity that obtained record data, whether the individual or entity is the installer, subcontractor, or similar entity, is required to prepare the mark up on Record Drawings. Accurately record the information in a comprehensive drawing technique. Record the data when possible after it has been obtained. For concealed installations, record and check the mark up before concealment. At the time of substantial completion, submit the Record Construction Documents to the COR. The Contractor shall organize into bound and labeled sets for the COR's continued usage. Provide device, conduit, and cable lengths on the conduit drawings. Exact in-field conduit placement/routings shall be shown. All conduits shall be illustrated in their entire length from termination in security closets; no arrowed conduit runs shall be shown. Pull box and junction box sizes are to be shown if larger than 100mm (4 inch). O. FIPS 201 Compliance Certificates

- 1. Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:
 - a. Fingerprint Capture Station
 - b. Card Readers
 - c. Facial Image Capturing Camera
 - d. PIV Middelware
 - e. Template Matcher
 - f. Electromagnetically Opaque Sleeve
 - g. Certificate Management
 - 1) CAK Authentication System
 - 2) PIV Authentication System
 - 3) Certificate Validator
 - 4) Cryptographic Module
- P. Approvals will be based on complete submission of manuals together with shop drawings.
- Q. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1
- B. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- C. American National Standards Institute (ANSI)/ Security Industry Association (SIA):

AC-03.....Access Control: Access Control Guideline Dye Sublimation Printing Practices for PVC Access Control Cards

TVAC-01.....CCTV to Access Control Standard - Message Set for System Integration

D. American National Standards Institute (ANSI)/ International Code Council (ICC): A117.1.....Standard on Accessible and Usable Buildings and

Facilities

VA Medical Center, Huntington, WV VA Project No. 581-14-103 Renovate 3W for Surgery Administration 100% CD: 03/28/14 E. Department of Justice American Disability Act (ADA) 28 CFR Part 36.....ADA Standards for Accessible Design 2010 F. Department of Veterans Affairs (VA): Physical Access Control System (PACS) Requirements PACS-R: VA Handbook 0730 Security and Law Enforcement G. Government Accountability Office (GAO): GAO-03-8-02 Security Responsibilities for Federally Owned and Leased Facilities H. National Electrical Contractors Association 303-2005..... TInstalling Closed Circuit Television (CCTV) Systems I. National Electrical Manufactures Association (NEMA): Maximum) J. National Fire Protection Association (NFPA): 70-11..... National Electrical Code K. Underwriters Laboratories, Inc. (UL): 294-99..... The Standard of Safety for Access Control System Units 305-08..... Hardware 639-97.....Detection Units 752-05.....Standard for Bullet-Resisting Equipment 827-08......Central Station Alarm Services 1076-95..... Standards for Proprietary Burglar Alarm Units and Systems 1981-03.....Central Station Automation System 2058-05..... High Security Electronic Locks L. Homeland Security Presidential Directive (HSPD): HSPD-12.....Policy for a Common Identification Standard for Federal Employees and Contractors M. Federal Communications Commission (FCC): (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems N. Federal Information Processing Standards (FIPS): FIPS-201-1..... Personal Identity Verification (PIV) of Federal Employees and Contractors O. National Institute of Standards and Technology (NIST): IR 6887 V2.1.....Government Smart Card Interoperability Specification (GSC-IS)

VA Medical Center, Huntington, WV VA Project No. 581-14-103 Renovate 3W for Surgery Administration 100% CD: 03/28/14 Special Pub 800-63.....Electronic Authentication Guideline Special Pub 800-96.....PIV Card Reader Interoperability Guidelines Special Pub 800-73-3....Interfaces for Personal Identity Verification (4 Parts)Pt. 1- End Point PIV Card Application Namespace, Data Model & RepresentationPt. 2- PIV Card Application Card Command InterfacePt. 3- PIV Client Application Programming InterfacePt. 4- The PIV Transitional Interfaces & Data Model Specification Special Pub 800-76-1....Biometric Data Specification for Personal Identity Verification Special Pub 800-78-2....Cryptographic Algorithms and Key Sizes for Personal Identity Verification Special Pub 800-79-1....Guidelines for the Accreditation of Personal Identity Verification Card Issuers Special Pub 800-85B-1...DRAFTPIV Data Model Test Guidelines Special Pub 800-85A-2...PIV Card Application and Middleware Interface Test Guidelines (SP 800-73-3 compliance) Special Pub 800-96.....PIV Card Reader Interoperability Guidelines Special Pub 800-37.....Guide for Applying the Risk Management Framework to Federal Information Systems Special Pub 800-96.....PIV Card Reader Interoperability Guidelines Special Pub 800-96.....PIV Card Reader Interoperability Guidelines Special Pub 800-104A....Scheme for PIV Visual Card Topography Special Pub 800-116.....Recommendation for the Use of PIV Credentials in Physical Access Control Systems (PACS) P. Institute of Electrical and Electronics Engineers (IEEE): C62.41.....IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits Q. International Organization for Standardization (ISO): 7810...... Identification cards - Physical characteristics 7811..... Physical Characteristics for Magnetic Stripe

Cards

VA Medical Center, Huntington, Renovate 3W for Surgery Admini		VA Project No. 581-14-103 100% CD: 03/28/14
7816-1	Identification cards	- Integrated circuit(s)
	cards with contacts -	Part 1: Physical
	characteristics	
7816-2	Identification cards	- Integrated circuit cards
	- Part 2: Cards with	contacts -Dimensions and
	location of the contact	cts
7816-3	Identification cards	- Integrated circuit cards
	- Part 3: Cards with	contacts - Electrical
	interface and transmis	ssion protocols
7816-4	Identification cards	- Integrated circuit cards
	- Part 11: Personal ve	erification through
	biometric methods	
7816-10	Identification cards	- Integrated circuit cards
	- Part 4: Organization	n, security and commands
	for interchange	
14443	Identification cards	- Contactless integrated
	circuit cards; Contac	tless Proximity Cards
	Operating at 13.56 MH	z in up to 5 inches
	distance	
15693Identification cards Contactless integrated		
	circuit cards - Vicin	ity cards; Contactless
	Vicinity Cards Operat	ing at 13.56 MHz in up to
	50 inches distance	
19794	Information technology	y - Biometric data
	interchange formats	
R. Uniform Federal Accessibility Standards (UFAS) 1984		

S. ADA Standards for Accessible Design 2010

T. Section 508 of the Rehabilitation Act of 1973

1.6 DEFINITIONS

- A. ABA Track: Magnetic stripe that is encoded on track 2, at 75-bpi density in binary-coded decimal format; for example, 5-bit, 16character set.
- B. Access Control List: A list of (identifier, permissions) pairs associated with a resource or an asset. As an expression of security policy, a person may perform an operation on a resource or asset if and only if the person's identifier is present in the access control list (explicitly or implicitly), and the permissions in the (identifier,

permissions) pair include the permission to perform the requested operation.

- C. Access Control: A function or a system that restricts access to authorized persons only.
- D. API Application Programming Interface
- E. Assurance Level (or E-Authentication Assurance Level): A measure of trust or confidence in an authentication mechanism defined in OMB Memorandum M-04-04 and NIST Special Publication (SP) 800-63, in terms of four levels: [M-04-04]
 - 1. Level 1: LITTLE OR NO confidence
 - 2. Level 2: SOME confidence
 - 3. Level 3: HIGH confidence
 - 4. Level 4: VERY HIGH confidence
- F. Authentication: A process that establishes the origin of information, or determines an entity's identity. In this publication, authentication often means the performance of a PIV authentication mechanism.
- G. Authenticator: A memory, possession, or quality of a person that can serve as proof of identity, when presented to a verifier of the appropriate kind. For example, passwords, cryptographic keys, and fingerprints are authenticators.
- H. Authorization: A process that associates permission to access a resource or asset with a person and the person's identifier(s).
- I. BIO or BIO-A: A FIPS 201 authentication mechanism that is implemented by using a Fingerprint data object sent from the PIV Card to the PACS. Note that the short-hand "BIO (-A)" is used throughout the document to represent both BIO and BIO-A authentication mechanisms.
- J. Biometric: An authenticator produced from measurable qualities of a living person.
- K. CAC EP CAC End Point with end point PIV applet
- L. CAC NG CAC Next Generation with transitional PIV applet
- M. Card Authentication Key (CAK): A PIV authentication mechanism (or the PIV Card key of the same name) that is implemented by an asymmetric or symmetric key challenge/response protocol. The CAK is an optional mechanism defined in NIST SP 800-73. [SP800-73] NIST strongly recommends that every PIV Card contain an asymmetric CAK and corresponding certificate, and that agencies use the asymmetric CAK protocol, rather than a symmetric CAK protocol, whenever the CAK authentication mechanism is used with PACS.

- N. CCTV: Closed-circuit television.
- O. Central Station: A PC with software designated as the main controlling PC of the PACS. Where this term is presented with initial capital letters, this definition applies.
- P. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- Q. CPU: Central processing unit.
- R. Credential: Data assigned to an entity and used to identify that entity.
- S. File Server: A PC in a network that stores the programs and data files shared by users.
- T. FIPS Federal Information Processing Standards
- U. FRAC First Responder Authentication Credential
- V. HSPD Homeland Security Presidential Directive
- W. I/O: Input/Output.
- X. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- Y. IEC International Electrotechnical Commission
- Z. ISO International Organization for Standardization
- AA. KB Kilobyte
- BB. kbit/s Kilobits / second
- CC. LAN: Local area network.
- DD. LED: Light-emitting diode.
- EE. Legacy CAC Contact only Common Access Card with v1 and v2 applets
- FF. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- GG. NIST: National Institute of Standards and Technology
- HH. PACS: Physical Access Control System
- II. PC/SC: Personal Computer / Smart Card
- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.

- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. PIV: Personal Identification Verification
- NN. PIV-I PIV Interoperable credential
- 00. PPS: Protocol and Parameters Selection
- PP. RF: Radio frequency.
- QQ. ROM: Read-only memory. ROM data are maintained through losses of power.
- RR. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25pin connector and certain signal characteristics for interfacing computer equipment.
- SS. RS-485: An TIA/EIA standard for multipoint communications.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. TPDU: Transport Protocol Data Unit
- VV. TWIC Transportation Worker Identification Credential
- WW. UPS: Uninterruptible power supply.
- XX. Vcc: Voltage at the Common Collector
- YY. WAN: Wide area network.
- ZZ. WAV: The digital audio format used in Microsoft Windows.
- AAA. Wiegand: Patented magnetic principle that uses specially treated wires embedded in the credential card.
- BBB. Windows: Operating system by Microsoft Corporation.
- CCC. Workstation: A PC with software that is configured for specific limited security system functions.

1.7 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.

- 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.8 MAINTENANCE & SERVICE

- A. General Requirements
 - 1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.
- B. Description of Work
 - The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, physical access control equipment, facility interface, signal transmission equipment, and video equipment.
- C. Personnel
 - Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The COR shall be advised in writing of the name of the designated service representative, and of any change in personnel. The COR shall be provided copies of system manufacturer certification for the designated service representative.
- D. Schedule of Work

- The work shall be performed during regular working ours, Monday through Friday, excluding federal holidays. These inspections shall include:
 - a) The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.
- E. Emergency Service
 - The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and noncatastrophic system failures within parameters stated in General Project Requirements.
 - a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from notification. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
 - b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.

- F. Operation
 - Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.
- G. Records & Logs
 - The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.
- H. Work Request
 - 1. The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.
- I. System Modifications
 - The Contractor shall make any recommendations for system modification in writing to the COR. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the COR. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.
- J. Software
 - 1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's

warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.9 PERFORMANCE REQUIREMENTS

- A. PACS shall provide support for multiple authentication modes and bidirectional communication with the reader. PACS shall provide implementation capability for enterprise security policy and incident response.
- B. All processing of authentication information must occur on the "safe side" of a door
- C. Physical Access Control System shall provide access to following Security Areas:
 - 1. Controlled
 - 2. Limited
 - 3. Exclusion
- D. PACS shall provide:
 - 1. One authentication factor for access to Controlled security areas
 - 2. Two authentication factors for access to Limited security areas
 - 3. Three authentication factors for access to Exclusion security areas
- E. PACS shall provide Credential Validation and Path Validation per NIST 800-116.
- F. Distributed Processing: System shall be a fully distributed processing system so that information, including time, date, valid codes, access levels, and similar data, is downloaded to Controllers so that each Controller makes access-control decisions for that Location. Do not use intermediate Controllers for physical access control. If communications to Central Station are lost, all Controllers shall automatically buffer event transactions until communications are restored, at which time buffered events shall be uploaded to the Central Station.
- G. System Network Requirements:

- Interconnect system components and provide automatic communication of status changes, commands, field-initiated interrupts, and other communications required for proper system operation.
- H. Field equipment shall include Controllers, sensors, and controls. Controllers shall serve as an interface between the Central Station and sensors and controls. Data exchange between the Central Station and the Controllers shall include down-line transmission of commands, software, and databases to Controllers. The up-line data exchange from the Controller to the Central Station shall include status data such as intrusion alarms, status reports, and entry-control records. Controllers are classified as alarm-annunciation or entry-control type.
- I. Door Hardware Interface: Coordinate with Division 08 Sections that specify door hardware required to be monitored or controlled by the PACS. The Controllers in this Section shall have electrical characteristics that match the signal and power requirements of door hardware. Integrate door hardware specified in Division 08 Sections to function with the controls and PC-based software and hardware in this Section.
- J. References to industry and trade association standards and codes are minimum installation requirement standards.
- K. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.10 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.

- 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the COR a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the COR prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.11 WARRANTY OF CONSTRUCTION.

- A. Warrant PACS work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

1.12 GENERAL REQUIREMENTS

- A. For general requirements that are common to more than one section in Division 28 refer to Section 28 05 00, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS.
- B. General requirements applicable to this section include:
 - 1. General Arrangement Of Contract Documents,
 - 2. Delivery, Handling and Storage,
 - 3. Project Conditions,
 - 4. Electrical Power,
 - 5. Lightning, Power Surge Suppression, and Grounding,
 - 6. Electronic Components,
 - 7. Substitute Materials and Equipment, and
 - 8. Like Items.

PART 2 - PRODUCTS

2.1 GENERAL

- A. All equipment and materials for the system will be compatible to ensure correct operation as outlined in FIPS 201, March 2006 and HSPD-12.
- B. The security system characteristics listed in this section will serve as a guide in selection of equipment and materials for the PACS. If

updated or more suitable versions are available then the Contracting Officer will approve the acceptance of prior to an installation.

- C. PACS equipment shall meet or exceed all requirements listed below.
- D. A PACS shall be comprised of, but not limited to, the following components:
 - 1. Controllers (Data Gathering Panel)
 - 2. Card Readers
 - 3. Biometric Identity Verification Equipment
 - 4. Interfaces
 - 5. Door Hardware interface
 - 6. RS-232 ASCII Interface
 - 7. Cables

2.2 CONTROLLERS

- A. Controllers: Intelligent peripheral control unit, complying with UL 294, that stores time, date, valid codes, access levels, and similar data downloaded from the Central Station or workstation for controlling its operation.
- B. Subject to compliance with requirements in this Article, manufacturers may use multipurpose Controllers.
- C. Battery Backup: Sealed, lead acid; sized to provide run time during a power outage of 90 minutes, complying with UL 924.
- D. Alarm Annunciation Controller:
 - The Controller shall automatically restore communication within 10 seconds after an interruption with the field device network with dc line supervision on each of its alarm inputs.
 - a. Inputs: Monitor dry contacts for changes of state that reflect alarm conditions. Provides at least eight alarm inputs, which are suitable for wiring as normally open or normally closed contacts for alarm conditions.
 - b. Alarm-Line Supervision:
 - Supervise the alarm lines by monitoring each circuit for changes or disturbances in the signal, and for conditions as described in UL 1076 for line security equipment by monitoring for abnormal open, grounded, or shorted conditions using dc change measurements. System shall initiate an alarm in response to an abnormal current, which is a dc change of 5 percent or more for longer than 500 ms.

- 2) Transmit alarm-line-supervision alarm to the Central Station during the next interrogation cycle after the abnormal current condition.
- c. Outputs: Managed by Central Station software.
- 2. Auxiliary Equipment Power: A GFI service outlet inside the Controller enclosure.
- E. Entry-Control Controller:
 - Function: Provide local entry-control functions including one- and two-way communications with access-control devices such as card readers, keypads, biometric personal identity verification devices, door strikes, magnetic latches, gate and door operators, and exit push-buttons.
 - a. Operate as a stand-alone portal Controller using the downloaded database during periods of communication loss between the Controller and the field-device network.
 - b. Accept information generated by the entry-control devices; automatically process this information to determine valid identification of the individual present at the portal:
 - On authentication of the credentials or information presented, check privileges of the identified individual, allowing only those actions granted as privileges.
 - Privileges shall include, but not be limited to, time of day control, day of week control, group control, and visitor escort control.
 - c. Maintain a date-, time-, and Location-stamped record of each transaction. A transaction is defined as any successful or unsuccessful attempt to gain access through a controlled portal by the presentation of credentials or other identifying information.
 - 2. Inputs:
 - a. Data from entry-control devices; use this input to change modes between access and secure.
 - b. Database downloads and updates from the Central Station that include enrollment and privilege information.
 - 3. Outputs:
 - a. Indicate success or failure of attempts to use entry-control devices and make comparisons of presented information with stored identification information.

- b. Grant or deny entry by sending control signals to portal-control devices and mask intrusion alarm annunciation from sensors stimulated by authorized entries.
- c. Maintain a date-, time-, and Location-stamped record of each transaction and transmit transaction records to the Central Station.
- d. Door Prop Alarm: If a portal is held open for longer than 20 seconds, alarm sounds.
- 4. With power supplies sufficient to power at voltage and frequency required for field devices and portal-control devices.
- 5. Data Line Problems: For periods of loss of communications with Central Station, or when data transmission is degraded and generating continuous checksum errors, the Controller shall continue to control entry by accepting identifying information, making authentication decisions, checking privileges, and controlling portal-control devices.
 - a. Store up to 1,000 transactions during periods of communication loss between the Controller and access-control devices for subsequent upload to the Central Station on restoration of communication.
- 6. Controller Power: NFPA 70, Class II power supply transformer, with 12- or 24-V ac secondary, backup battery and charger.
 - a. Backup Battery: Premium, valve-regulated, recombinant-sealed, lead-calcium battery; spill proof; with a full 1-year warranty and a pro rata 19-year warranty. With single-stage, constantvoltage-current, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
 - b. Backup Battery: Valve-regulated, recombinant-sealed, lead-acid battery; spill proof. With single-stage, constant-voltagecurrent, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
 - c. Backup Power Supply Capacity: 90 minutes of battery supply.Submit battery and charger calculations.
 - d. Power Monitoring: Provide manual dynamic battery load test, initiated and monitored at the control center; with automatic disconnection of the Controller when battery voltage drops below

Controller limits. Report by using local Controller-mounted LEDs and by communicating status to Central Station. Indicate normal power on and battery charger on trickle charge. Indicate and report the following: 1) Trouble Alarm: Normal power off load assumed by battery. 2) Trouble Alarm: Low battery. 3) Alarm: Power off.

2.3 CARD READERS

- A. Power: Card reader shall be powered from its associated Controller, including its standby power source.
- B. Response Time: Card reader shall respond to passage requests by generating a signal that is sent to the Controller. Response time shall be 800ms or less, from the time the card reader finishes reading the credential card until a response signal is generated.
- C. Enclosure: Suitable for surface, semiflush, or pedestal mounting. Mounting types shall additionally be suitable for installation in the following locations:
 - 1. Indoors, controlled environment.
 - 2. Indoors, uncontrolled environment.
 - Outdoors, with built-in heaters or other cold-weather equipment to extend the operating temperature range as needed for operation at the site.
- D. Display: LED or other type of visual indicator display shall provide visual and audible status indications and user prompts. Indicate power on/off, whether user passage requests have been accepted or rejected, and whether the door is locked or unlocked.
- E. Shall be utilized for controlling the locking hardware on a door and allows for reporting back to the main control panel with the time/date the door was accessed, the name of the person accessing the point of entry, and its location.
- F. Will be fully programmable and addressable, locally and remotely, and hardwired to the system.
- G. Shall be individually home run to the main panel.
- H. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design

- I. Shall support a variety of card readers that must encompass a wide functional range. The PACS may combine any of the card readers described below for installations requiring multiple types of card reader capability (i.e., card only, card and/or PIN, card and/or biometrics, card and/or pin and/or biometrics, supervised inputs, etc.). These card readers shall be available in the approved technology to meet FIPS 201, and is ISO 14443 A or B, ISO/IEC 7816 compliant. The reader output can be Wiegand, RS-22, 485 or TCP/IP.
- J. Shall be housed in an aluminum bezel with a wide lead-in for easy card entry.
- K. Shall contain read head electronics, and a sender to encode digital door control signals.
- L. LED's shall be utilized to indicate card reader status and access status.
- M. Shall be able to support a user defined downloadable off-line mode of operation (e.g. locked, unlocked), which will go in effect during loss of communication with the main control panel.
- N. Shall provide audible feedback to indicate access granted/denied decisions. Upon a card swipe, two audible tones or beeps shall indicate access granted and three tones or beeps shall indicate access denied. All keypad buttons shall provide tactile audible feedback.
- 0. Shall have a minimum of two programmable inputs and two programmable outputs.
- P. All card readers that utilize keypad controls along with a reader and shall meet the following specifications:
 - Entry control keypads shall use a unique combination of alphanumeric and other symbols as an identifier. Keypads shall contain an integral alphanumeric/special symbols keyboard with symbols arranged in ascending ASCII code ordinal sequence. Communications protocol shall be compatible with the local processor.
- Q. Shall include a Light Emitting Diode (LED) or other type of visual indicator display and provide visual or visual and audible status indications and user prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected. The design of the keypad display or keypad enclosure shall limit the maximum horizontal and vertical viewing angles of the keypad. The maximum horizontal viewing angle shall be plus and minus five (5) degrees or less off a vertical plane perpendicular to the plane of the

face of the keypad display. The maximum vertical viewing angle shall be plus and minus 15 degrees or less off a horizontal plane perpendicular to the plane of the face of the keypad display.

- Shall respond to passage requests by generating a signal to the local processor. The response time shall be 800 milliseconds or less from the time the last alphanumeric symbol is entered until a response signal is generated.
- 2. Shall be powered from the source as designed and shall not dissipate more than 150 Watts.
- Shall be suitable for surface, semi-flush, pedestal, or weatherproof mounting as required.
- 4. Shall provide a means for users to indicate a duress situation by entering a special code.
- R. PIV Contact Card Reader
 - Application Protocol Data Unit (APDU) Support: At a minimum, the contact interface shall support all card commands for contact based access specified in Section 7, End-point PIV Card Application Card Command Interface of SP 800-73-1, Interfaces for Personal Identity Verification.
 - Buffer Size: The reader must contain a buffer large enough to receive the maximum size frame permitted by International Organization for Standardization International Electrotechnical Commission (ISO/IEC) 7816-3:1997, Section 9.4.
 - Programming Voltage: PIV Readers shall not generate a Programming Voltage.
 - 4. Support for Operating Class: PIV Readers shall support cards with Class A Vccs as defined in ISO/IEC 7816-3:1997 and ISO/IEC 7816-3:1997/Amd 1:2002.
 - Retrieval Time: Retrieval time¹ for 12.5 kilobytes (KB) of data through the contact interface of the reader shall not exceed 2.0 seconds.
 - 6. Transmission Protocol: The PIV Reader shall support both the character-based T=0 protocol and block-based T=1 protocol as defined in ISO/IEC 7816-3:1997.
 - 7. Support for PPS Procedure: The reader shall support Protocol and Parameters Selection (PPS) procedure by having the ability to read

character TA1 of the Answer to Reset (ATR) sent by the card as defined in ISO/IEC 7816-3:1997.

- S. Contactless Smart Cards and Readers
 - Smart card readers shall read credential cards whose characteristics of size and technology meet those defined by ISO/IEC 7816, 14443, 15693.
 - 2. The readers shall have "flash" download capability to accommodate card format changes.
 - 3. The card reader shall have the capability of reading the card data and transmitting the data to the main monitoring panel.
 - 4. The card reader shall be contactless and meet or exceed the following technical characteristics:
 - a. Data Output Formats: FIPS 201 low outputs the FASC-N in an assortment of Wiegand bit formats from 40 - 200 bits. FIPS 201 medium outputs a combination FASC-N and HMAC in an assortment of Wiegand bit formats from 32 - 232 bits. All Wiegand formats or the upgradeability from Low to Medium Levels can be field configured with the use of a command card.
 - b. FIPS 201 readers shall be able to read, but not be limited to, DESfire and iCLASS cards.
 - c. Reader range shall comply with ISO standards 7816, 14443, and 15693, and also take into consideration conditions, are at a minimum 1" to 2" (2.5 - 5 cm).
 - d. APDU Support: At a minimum, the contactless interface shall support all card commands for contactless based access specified in Section 7, End-point PIV Card Application Card Command Interface of SP 800-73-1, Interfaces for Personal Identity Verification.
 - e. Buffer Size: The reader shall contain a buffer large enough to receive the maximum size frame permitted by ISO/IEC 7816-3, Section 9.4.
 - f. ISO 14443 Support: The PIV Reader shall support parts (1 through 4) of ISO/IEC 14443 as amended in the References of this publication.
 - g. Type A and B Communication Signal Interfaces: The contactless interface of the reader shall support both the Type A and Type B communication signal interfaces as defined in ISO/IEC 14443-2:2001.

- h. Type A and B Initialization and Anti-Collision The contactless interface of the reader shall support both Type A and Type B initialization and anti-collision methods as defined in ISO/IEC 14443-3:2001.
- i. Type A and B Transmission Protocols: The contactless interface of the reader shall support both Type A and Type B transmission protocols as defined in ISO/IEC 14443-4:2001.
- j. Retrieval Time: Retrieval time for 4 KB of data through the contactless interface of the reader shall not exceed 2.0 seconds.
- k. Transmission Speeds: The contactless interface of the reader shall support bit rates of fc/128 (~106 kbits/s), fc/64(~212 kbits/s), and configurable to allow activation/deactivation.
- Readibility Range: The reader shall not be able to read PIV card more than 10cm(4inch) from the reader

2.4 BIOMETRIC IDENTITY VERIFICATION EQUIPMENT

- A. Shall be FIPS 201 and NIST SP 800-76 compliant.
- B. Shall utilize hand/palm, fingerprint, retinal, facial image, or voice verification and could be utilized as secondary authentication in conjunction with card readers in high security area as defined by the VA. (Note: VA policy requires that the use of biometric measurements is limited to secondary authentication in high or medium security applications).
- C. Shall be programmable, addressable, and hardwired directly to the main control panel and individually home run to the main control panel.
- D. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design
- E. Shall include a means to construct individual templates or profiles based upon measurements taken from the person to be enrolled. This template shall be stored as part of the System Reference Database Files. The stored template shall be used as a comparative base by the personnel identity verification equipment to generate appropriate signals to the associated local processors.
- F. Shall interface with PACS and SMS and provide the employee's name, contact information, and point of access.
- G. Shall allow for surface, flush, or pedestal mounting.

- H. Shall have communications protocol in place that shall allow for communications with the SMS.
- I. Shall determine when multiple attempts were made for verification, and shall automatically prompt the user for additional attempts up to a maximum of three tries. After a third failed attempt the unit shall generate an entry control alarm. This alarm will report to the SMS and the CCTV system. The camera viewpoint for where the alarm was generated shall automatically be called up onto a monitor and be recorded via the recording equipment. An alarm within the SMS shall also be generated recording, at a minimum, the date, time, and attempted point of entry.
- J. Hand/Palm Geometry Verification:
 - Shall utilize unique human hand measurements to identify authorized, enrolled personnel.
 - 2. During the scan process the hand geometry device, which shall allow the user's hand to remain in full view during the scanning process, shall a three (3) dimensional measurement of the user's hand identifying its size and shape.
 - 3. This scan process shall start automatically once the user's hand is positioned. The hand geometry device shall be able to use either left or right hands for enrollment and verification.
 - 4. Shall include an LED or other type of visual indicator display and provide visual or visual and audible status indications and user prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected.
 - 5. Shall only be updated at the unit itself and automatic updates via the SMS shall not be allowed.
 - 6. Any significant change to the user's hand, scars, loss of digit, or any other change that will alter the three dimension view of the hand shall require an update to the unit and SMS.
 - 7. Shall provide an enrollment, recognition, and code/credential verification mode. The enrollment mode shall create a hand template for new personnel and enter the template into the entry control database file created for that person. Template information shall be compatible with the system application software. The operating mode shall be selectable by the system manager/operator from the central processor. When operating in recognition mode, the hand geometry device shall allow passage when the hand scan data from the verification attempt matches a hand geometry template stored in the

database files. When operating in code/credential verification mode, the hand geometry device shall allow passage when the hand scan data from the verification attempt matches the hand geometry template associated with the identification code entered into a keypad; or matches the hand geometry template associated with credential card data read by a card reader.

- K. Fingerprint Verification:
 - Shall use a unique human fingerprint pattern to identify authorized, enrolled personnel.
 - 2. Shall allow the user's hand to remain in full view during the scanning process, shall incorporate positive measures to establish that the hand or fingers being scanned by the device belong to a living human being.
 - 3. Shall provide an optical or other type of scan of the user's fingers. The fingerprint verification scanner shall automatically initiate the scan process provided the user's fingers are positioned.
 - 4. LED or other type of visual indicator displays shall provide a visual or visual and audible status indication and enrollee prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected.
 - 5. Any significant change to the user's finger such as scars, loss of digit, or any other change that will alter the finger print shall require an update to the unit and SMS.
 - Shall provide an adjustable acceptance tolerance or template match criteria under system manager/operator control.
 - 7. Shall respond to passage requests by generating signals to the local processor. The verification time shall be 2.0 seconds or less from the moment the finger print analysis scanner initiates the scan process until the fingerprint analysis scanner generates a response signal.
 - 8. Shall:
 - a. Provide an enrollment mode, recognition mode, and code/credential verification mode. The enrollment mode shall create a fingerprint template for new personnel and enter the template into the system database file created for that person.
 - b. Template information shall be compatible with the system application software.

- c. The operating mode shall be selectable by the system manager/operator from the central station.
- 9. When operating in recognition mode, the fingerprint analysis scanner shall allow passage when the fingerprint data from the verification attempt matches a fingerprint template stored in the database files.
- 10. When operating in code/credential verification mode, the fingerprint analysis scanner shall allow passage when the fingerprint data from the verification attempt matches a fingerprint template associated with the identification code. When entered into a keypad or it matches the fingerprint template associated with credential, the card data will then be recognized by the card reader.
- 11. Shall store template transactions involving fingerprint scans. The template match scores shall be stored in the matching personnel data file in a format compatible with the system application software, and shall be used for report generation.
- 12. Shall be unit listed as FIPS 201 Approved product.
- L. Iris Verification:
 - 1. Shall utilize unique patterns within the human eye to identify authorized, enrolled personnel.
 - 2. Shall use ambient light to capture an image of the iris of the person presenting themselves for identification. The resulting video image shall be compared against a stored template that was captured during the enrollment process.
 - Shall utilize a threshold for identification. The efficiency and accuracy of the device shall not be adversely affected by enrollees who wear contact lenses or eye glasses.
 - Shall provide a means for enrollees to align their eye for identification that does not require facial contact with the device.
 - 5. Initiation for the scan should be automatic, but push-button could be provided to initiate the scan process. The device shall include adjustments to accommodate differences in enrollee height and mounting height shall be UFAS compliant.
 - 6. The LED or other type of visual indicator displays shall provide a visual or visual and audible status indication and enrollee prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected.

- 7. Verification time for the retinal verification unit shall be no greater that 1.5 seconds from the moment the action is initiated until a response signal has been generated.
- 8. Shall provide an enrollment mode, recognition mode, and code/credential verification mode:
 - a. The enrollment mode shall create an iris template for new personnel and enter the template into the system database file created for that person. Template information shall be compatible with the system application software.
 - b. When operating in recognition mode, the retinal verification unit shall allow passage when the retinal verification data from the verification attempt matches an iris template stored in the database files.
 - c. When operating in code/credential verification mode, the iris scanner shall allow passage when the retinal verification data from the verification attempt matches the retinal verification template. This will occur when the associated information matches the identification code entered into a keypad or matches the retinal verification template associated with the credential card data when recognized by a card reader.
- 9. Shall store template transactions involving retinal verifications. The template match scores shall be stored in the matching personnel data file in a file format compatible with the system application software, and shall be used for report generation.
- M. Voice Verification:
 - 1. Shall utilize unique patterns within the human speech pattern to identify authorized, enrolled personnel.
 - 2. Shall digitize a profile of a person's speech to produce a stored model voice print, or template. Users shall record their full names utilizing their natural voice tendencies. This process shall be initiated by a push to talk button on the voice verification device.
 - 3. Shall utilize a threshold for identification. The efficiency and accuracy of the device shall not be adversely affected by enrollees who have a speech impediment.
 - 4. Shall provide a means for enrollees to align their voice for identification that does not require contact with the device.
 - 5. The LED or other type of visual indicator displays shall provide a visual or visual and audible status indication and enrollee prompts.

The display shall indicate power on/off, and whether user passage requests have been accepted or rejected.

- Verification time for the voice verification unit shall be no greater that 1.5 seconds from the moment the action is initiated until a response signal has been generated.
- 7. Shall provide an enrollment mode, recognition mode, and code/credential verification mode:
 - a. The enrollment mode shall create a voice template for new personnel and enter the template into the system database file created for that person. Template information shall be compatible with the system application software.
 - b. When operating in recognition mode, the voice verification unit shall allow passage when the voice verification data from the verification attempt matches a voice template stored in the database files.
 - c. When operating in code/credential verification mode, the voice verifier shall allow passage when the voice verification data from the verification attempt matches the voice verification template. This will occur when the associated information of the identification code entered into a keypad matches the voice verification template associated with a credential card data is recognized by a card reader.
- 8. Shall store template transactions involving voice verifications. The template match scores shall be stored in the matching personnel data file in a file format compatible with the system application software, MPEG or equivalent, and shall be used for report generation.

2.5 SYSTEM SENSORS AND RELATED EQUIPMENT

- A. The PACS (Physical Access Control System) and related Equipment provided by the Contractor shall meet or exceed the following performer specifications:
- B. Request to Exit Detectors:
 - 1. Passive Infrared Request to Exit Motion Detector (REX PIR) (1) The Contractor shall provide a surface mounted motion detector to signal the physical access control system request to exit input. The motion detector shall be a passive infrared sensor designed for wall or ceiling mounting 2134 to 4572 mm (7 to 15 ft) height. The detector shall provide two (2) form "C" (SPDT) relays rated one (1)

Amp. @ 30 VDC for DC resistive loads. The detectors relays shall be user adjustable with a latch time from 1-60 seconds. The detector shall also include a selectable relay reset mode to follow the timer or absence of motion. The detection pattern shall be adjustable plus or minus fourteen (\pm 14) degrees. The detector shall operate on 12 VDC with approximately 26 mA continuous current draw. The detector shall have an externally visible activation LED. The motion detector shall measure approximately 38 mm H x 158 mm W x 38 mm D (1.5 x 6.25 x 1.5 in). The detector shall be immune to radio frequency interference. The detector shall not activate or set-up on critical frequencies in the range 26 to 950 Megahertz using a 50 watt transmitter located 30.5 cm (1 ft) from the unit or attached wiring. The detector shall be available on gray or black enclosures. The color of the housing shall be coordinated with the surrounding surface.

- C. Guard tour stations:
 - The guard tour station shall be single gang brushed steel plate flush mounted in a single gang box. The switch shall be a normally open momentary keyed switch.
- D. Delayed Egress (DE)
 - 1. General:
 - a. The delay egress locking hardware shall provide a method to secure emergency exits and provide an approved delayed emergency exit method. The package shall be Underwriters Laboratories listed as a delay egress-locking device. The delay egress device shall be available to support configurations with both rated and non-rated fire doors. The delay egress device shall comply with Life Safety Codes (NFPA-101, BOCA) as it applies to special locking arrangements for delay egress locks. Unless specifically identified as a non-fire rated opening, all doors shall be equipped with fire rated door hardware. The Contractor shall be responsible for providing all equipment and installation to provide a fully functioning system. Need to amend to use crashbars type mechanical release switches.
 - 2. The delay-locking device shall include all of the following features:
 - a. Delay Egress Mode

1) The delayed egress device shall be a SDC 101V Series Exit Check with wall mounted control module. Upon activation of an approved panic bar the delay locking device shall begin a delay sequence of 30 seconds; a flush mounted wall LED panel adjacent to the door will indicate initiation of the countdown time. During the 30 second delay period, a local sounding device shall annunciate a tone activation of the delay cycle and verbal exit instructions. At the end of the delay cycle the locking device shall unlock and allow free egress. The reset of the local sounding device shall be user definable and include options to select either local sound until silenced by reset or local sounder silenced upon opening of the door. Unless otherwise indicated the local delay sounder shall be silenced upon opening of the door. The SDC's device trigger output shall be connected to the SMS DGP alarm panel for preactivation warning. The contractor shall specify the bond sensor option when ordering the delayed egress hardware; this output shall be wired to the SMS DGP to activate an alarm if the door does not lock. Use of reset panel not top mounted device.

2) Delayed egress doors will have bond sensors.

3) Delayed egress activation shall also trigger CCTV call -up.

- b. Fire Alarm Mode
 - Upon activation of the facility's fire evacuation and water flow alarm signal the delay locking devices shall immediately unlock and provide free egress. The Contractor shall provide any required fire alarm relays or interface devices.
- c. Reset Mode
 - The delay egress device shall be manually reset by the Delayed Egress controller located at the door via key switch.
 - The delay egress device shall automatically reset upon fire alarm system reset.
 - 3) The delayed egress shall be resettable through the SMS.
- d. The Contractor shall provide a Master Open Switch for all the facility's delayed egress hardware, with protective cover and permanent labeling in the Unit Control Room. The switch shall be wired into the fire alarm system to activate the evacuation alarms. When the switch is pressed all delayed egress or

evacuation doors shall unlock and generate an alarm at the security console monitor showing and recording time and date of when the switch was pressed. The contractor is responsible for coordinating the wiring and connection with the fire alarm contactor. The Master Open Switch shall be linked to the fire alarm panel for the release of doors locks.

- e. Each individual delayed egress door shall have the ability to unlock through a manual action on the SMS.
- f. Unless otherwise indicated the Contractor shall provide all of the above reset methods for each door. All signs will meet the latest ADA requirements.
- g. Signs
 - The delay egress package shall be provided with a warning sign complying with local code requirements. The warning sign shall be attached to the interior side of the controlled door. The sign shall be located on the interior side of the door above and within 304 mm (12 in) of the panic bar. The sign shall read:

EMERGENCY EXIT.

PUSH UNTIL

ALARM SOUNDS

DOOR CAN BE OPENED,

- IN 30 SECONDS.
- Signs shall be coordinated and comply with the building's existing sign specifications. Signs shall include grade 2 Braille.
- 3) Signs shall meet the current ADA requirements.
- In instances of code and specification conflicts, the life safety code requirement shall prevail.
- 5) The Division 10 Contractor shall provide samples for approval with their submittal package.
- 3. Physical Access Control Interface
 - a. The delay egress device shall be capable of interface with card access control systems.
 - b. The system shall include a bypass feature that is activated via a dry contact relay output from the physical access control system. This bypass shall allow authorized personnel to pass through the controlled portal without creating an alarm condition or

activating the delay egress cycle. The bypass shall include internal electronic shunts or door switches to prevent activation (re-arming) until the door returns to the closed position. An unused access event shall not cause a false alarm and shall automatically rearm the delay egress lock upon expiration of the programmed shunt time. The delay egress physical access control interface shall support extended periods of automated and/or manual lock and unlock cycles.

- E. Crash Bar:
 - 1. Emergency Exit with Alarm (Panic):
 - a. Entry control portals shall include panic bar emergency exit hardware as designed.
 - b. Panic bar emergency exit hardware shall provide an alarm shunt signal to the PACS and SMS.
 - c. The panic bar shall include a conspicuous warning sign with one (1) inch (2.5 cm) high, red lettering notifying personnel that an alarm will be annunciated if the panic bar is operated.
 - d. Operation of the panic bar hardware shall generate an intrusion alarm that reports to both the SMS and Intrusion Detection System. The use of a micro switch installed within the panic bar shall be utilized for this.
 - e. The panic bar shall utilize a fully mechanical connection only and shall not depend upon electric power for operation.
 - f. The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key by-pass. Refer to Section 2.2.I.9 for key-bypass specifications.
 - g. Normal Exit:
 - 1) Entry control portals shall include panic bar non-emergency exit hardware as designed.
 - 2) Panic bar non-emergency exit hardware shall be monitored by and report to the SMS.
 - 3) Operation of the panic bar hardware shall not generate a locally audible or an intrusion alarm within the IDS.
 - 4) When exiting, the panic bar shall depend upon a mechanical connection only. The exterior, non-secure side of the door shall be provided with an electrified thumb latch or lever to

provide access after the credential I.D. authentication by the SMS.

5) The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key bypass. Refer to Section 2.2.I.9 for key-bypass specifications. The strikes/bolts shall include a micro switch to indicate to the system when the bolt is not engaged or the strike mechanism is unlocked. The signal switches shall report a forced entry to the system in the event the door is left open or accessed without the identification credentials.

F. Key Bypass:

- 1. Shall be utilized for all doors that have a mortise or rim mounted door hardware.
- Each door shall be individually keyed with one master key per secured area.
- 3. Cylinders shall be six (6)-pin and made of brass or equivalent. Keys for the cylinders shall be constructed of solid material and produced and cut by the same distributor. Keys shall not be purchased, cut, and supplied by multiple dealers.
- 4. All keys shall have a serial number cut into the key. No two serial numbers shall be the same.
- 5. All keys and cylinders shall be stored in a secure area that is monitored by the Intrusion Detection System.
- G. Automatic Door Opener and Closer:
 - 1. Shall be low energy operators.
 - 2. Door closing force shall be adjustable to ensure adequate closing control.
 - Shall have an adjustable back-check feature to cushion the door opening speed if opened violently.
 - Motor assist shall be adjustable from 0 to 30 seconds in five (5) second increments. Motor assist shall restart the time cycle with each new activation of the initiating device.
 - 5. Unit shall have a three-position selector mode switch that shall permit unit to be switched "ON" to monitor for function activation, switched to "H/O" for indefinite hold open function or switched to "OFF," which shall deactivate all control functions but will allow standard door operation by means of the internal mechanical closer.

- 6. Door control shall be adjustable to provide compliance with the requirements of the Americans with Disabilities Act (ADA) and ANSI standards Al17.1.
- 7. All automatic door openers and closers shall:
 - a. Meet UL standards.
 - b. Be fire rated.
 - c. Have push and go function to activate power operator or power assist function.
 - d. Have push button controls for setting door close and door open positions.
 - e. Have open obstruction detection and close obstruction detection built into the unit.
 - f. Have door closer assembly with adjustable spring size, back-check valve, sweep valve, latch valve, speed control valve and pressure adjustment valve to control door closing.
 - g. Have motor start-up delay, vestibule interface delay; electric lock delay and door hold open delay up to 30 seconds. All operators shall close door under full spring power when power is removed.
 - h. Are to be hard wired with power input of 120 VAC, 60Hz and connected to a dedicated circuit breaker located on a power panel reserved for security equipment.
- H. Door Status Indicators:
 - 1. Shall monitor and report door status to the SMS.
 - 2. Door Position Sensor:
 - a. Shall provide an open or closed indication for all doors operated on the PACS and report directly to the SMS.
 - b. Shall also provide alarm input to the Intrusion Detection System for all doors operated by the PACS and all other doors that require monitoring by the intrusion detection system.
 - c. Switches for doors operated by the PACS shall be double pole double throw (DPDT). One side of the switch shall monitor door position and the other side if the switch shall report to the intrusion detection system. For doors with electromagnetic locks a magnetic bonding sensor (MBS) can be used in place of one side of a DPDT switch, in turn allowing for the use of a single pole double throw (SPDT) switch in it place of a DPDT switch.

- d. Switches for doors not operated by the PACS shall be SPDT and report directly to the IDS.
- e. Shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).

2.6 PORTAL CONTROL DEVICES

- A. Shall be used to assist the PACS.
- B. Such devices shall:
 - 1. Provide a means of monitoring the doors status.
 - Allow for exiting a space via either a push button, request to exit, or panic/crash bar.
 - 3. Provide a means of override to the PACS via a keypad or key bypass.
 - 4. Assist door operations utilizing automatic openers and closures.
 - 5. Provide a secondary means of access to a space via a keypad.
- C. Shall be connected to and monitored by the main PACS panel.
- D. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design
- E. Shall provide a secondary means of physical access control within a secure area.
- F. Push-Button Switches:
 - Shall be momentary contact, back lighted push buttons, and stainless steel switch enclosures for each push button as shown. Buttons are to be utilized for secondary means of releasing a locking mechanism.
 - a. In an area where a push button is being utilized for remote access of the locking device then no more than two (2) buttons shall operate one door from within one secure space. Buttons will not be wired in series with one other.
 - b. In an area where locally stationed guards control entry to multiple secure points via remote switches. An interface board shall be designed and constructed for only the amount of buttons it shall house. These buttons shall be flush mounted and clearly labeled for ease of use. All buttons shall be connected to the PACS and SMS system for monitoring purposes.
 - c. Shall have double-break silver contacts that will make 720 VA at60 amperes and break 720 VA at 10 amperes.
- G. Entry Control Devices:

- 1. Shall be hardwired to the PACS main control panel and operated by either a card reader or a biometric device via a relay on the main control panel.
- 2. Shall be fail-safe in the event of power failure to the PACS system.
- 3. Shall operate at 24 VCD, with the exception of turnstiles and be powered by a separate power supply dedicated to the door control system. Each power supply shall be rated to operate a minimum of two doors simultaneously without error to the system or overload the power supply unit.
- Shall have a diode or metal-oxide veristor (MOV) to protect the controller and power supply from reverse current surges or backcheck.
- 5. Electric Strikes/Bolts: Shall be:
 - a. Made of heavy-duty construction and tamper resistant design.
 - b. Tested to over one million cycles.
 - c. Rated for a minimum of 1000 lbs. holding strength.
 - d. Utilize an actuating solenoid for the strike/bolt. The solenoid shall move from fully open to fully closed position and back in not more than 500 milliseconds and be rated for continuous duty.
 - e. Utilize a signal switch that will indicate to the system if the strike/bolt is not engaged or is unlocked when it should be secured.
 - f. Flush mounted within the door frame.
- 6. Electric Mortise Locks: Shall be installed within the door and an electric transfer hinge shall be utilized to allow the wires to be transferred from the door frame to the lock. If utilized with a double door then the lock shall be installed inside the active leaf. Electric Mortise Locks shall:
 - a. These locks shall be provided and installed by the Division 8 "DOOR HARDWARE" Contractor.
 - b. Provide integration of the Electric Mortise Locks with the PACS
 for:
 - 1) Lock Power

2.7 VIDEO AND CAMERA CONTROL

A. Control station or designated workstation displays live video from a CCTV source.

- Control Buttons: On the display window, with separate control buttons to represent Left, Right, Up, Down, Zoom In, Zoom Out, Scan, and a minimum of two custom command auxiliary controls.
- Provide at least seven icons to represent different types of cameras, with ability to import custom icons. Provide option for display of icons on graphic maps to represent their physical location.
- 3. Provide the alarm-handling window with a command button that will display the camera associated with the alarm point.
- B. Display mouse-selectable icons representing each camera source, to select source to be displayed. For CCTV sources that are connected to a video switcher, control station shall automatically send control commands through a COM port to display the requested camera when the camera icon is selected.
- C. Allow cameras with preset positioning to be defined by displaying a different icon for each of the presets. Provide control with Next and Previous buttons to allow operator to cycle quickly through the preset positions.

2.8 WIRES AND CABLES

- A. Comply with Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."
- B. PVC-Jacketed, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; PVC jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 1. NFPA 70, Type CM.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- C. Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- D. RS-485 communications require 2 twisted pairs, with a distance limitation of 4000 feet (1220 m).

- E. PVC-Jacketed, RS-485 Cable: Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, PVC insulation, unshielded, PVC jacket, and NFPA 70, Type CMG.
- F. Plenum-Type, RS-485 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and fluorinated-ethylene-propylene jacket. 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- G. Multiconductor, Readers and Wiegand Keypads Cables: No. 22 AWG, paired and twisted multiple conductors, stranded (7x30) tinned copper conductors, semirigid PVC insulation, overall aluminum foil-polyester tape shield with 100 percent shield coverage, plus tinned copper braid shield with 65 percent shield coverage, and PVC jacket.
 - 1. NFPA 70, Type CMG.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
 - 3. For TIA/EIA-RS-232 applications.
- H. Plenum-Type, Multiconductor, Readers and Keypads Cable: 6 conductors, No. 20 AWG, stranded (7x28) tinned copper conductors, fluorinatedethylene-propylene insulation, overall aluminum foil-polyester tape shield with 100 percent shield coverage plus tinned copper braid shield with 85 percent shield coverage, and fluorinated-ethylene-propylene jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- I. LAN (Ethernet) Cabling: Comply with Division 28 Section "Conductors and Cables for Electronic Safety and Security."

PART 3 - EXECUTION

3.1 GENERAL

A. The Contractor shall install all system components and appurtenances in accordance with the manufacturers' instructions, ANSI C2, and shall furnish all necessary interconnections, services, and adjustments required for a complete and operable system as specified. Control signals, communications, and data transmission lines grounding shall be installed as necessary to preclude ground loops, noise, and surges from affecting system operation. Equipment, materials, installation, workmanship, inspection, and testing shall be in accordance with manufacturers' recommendations and as modified herein.

- B. Consult the manufacturers' installation manuals for all wiring diagrams, schematics, physical equipment sizes, etc., before beginning system installation. Refer to the Riser/Connection diagram for all schematic system installation/termination/wiring data.
- C. All equipment shall be attached to walls and ceiling/floor assemblies and shall be held firmly in place (e.g., sensors shall not be supported solely by suspended ceilings). Fasteners and supports shall be adequate to support the required load.

3.2 CURRENT SITE CONDITIONS

A. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions which will affect performance of the system to the Owner in a report as defined in paragraph Group II Technical Data Package. The Contractor shall not take any corrective action without written permission from the Owner.

3.3 EXAMINATION

- A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.
- B. Examine roughing-in for LAN and control cable conduit systems to PCs, Controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.4 PREPARATION

- A. Comply with recommendations in SIA CP-01.
- B. Comply with EIA/TIA-606, "Administration Standard for the Telecommunications Infrastructure of Commercial Buildings."
- C. Obtain detailed Project planning forms from manufacturer of accesscontrol system; develop custom forms to suit Project. Fill in all data available from Project plans and specifications and publish as Project planning documents for review and approval.
 - 1. Record setup data for control station and workstations.
 - 2. For each Location, record setup of Controller features and access requirements.
 - 3. Propose start and stop times for time zones and holidays, and match up access levels for doors.

- 4. Set up groups, linking, and list inputs and outputs for each Controller.
- 5. Assign action message names and compose messages.
- 6. Set up alarms. Establish interlocks between alarms, intruder detection, and video surveillance features.
- 7. Prepare and install alarm graphic maps.
- 8. Develop user-defined fields.
- 9. Develop screen layout formats.
- 10. Propose setups for guard tours and key control.
- 11. Discuss badge layout options; design badges.
- 12. Complete system diagnostics and operation verification.
- 13. Prepare a specific plan for system testing, startup, and demonstration.
- 14. Develop acceptance test concept and, on approval, develop specifics of the test.
- 15. Develop cable and asset management system details; input data from construction documents. Include system schematics and Technical Drawings.
- D. In meetings with Architect and Owner, present Project planning documents and review, adjust, and prepare final setup documents. Use final documents to set up system software.

3.5 CABLING

- A. Comply with NECA 1, "Good Workmanship in Electrical Contracting."
- B. Install cables and wiring according to requirements in Division 28 Section "Conductors and Cables for Electronic Safety and Security."
- C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Use NRTL-listed plenum cable in environmental air spaces, including plenum ceilings. Conceal raceway and cables except in unfinished spaces.
- D. Install LAN cables using techniques, practices, and methods that are consistent with Category 5E rating of components and that ensure Category 5E performance of completed and linked signal paths, end to end.
- E. Install cables without damaging conductors, shield, or jacket.
- F. Boxes and enclosures containing security system components or cabling, and which are easily accessible to employees or to the public, shall be

provided with a lock. Boxes above ceiling level in occupied areas of the building shall not be considered to be accessible. Junction boxes and small device enclosures below ceiling level and easily accessible to employees or the public shall be covered with a suitable cover plate and secured with tamperproof screws.

G. Install end-of-line resistors at the field device location and not at the Controller or panel location.

3.6 CABLE APPLICATION

- A. Comply with EIA/TIA-569, "Commercial Building Standard for Telecommunications Pathways and Spaces."
- B. Cable application requirements are minimum requirements and shall be exceeded if recommended or required by manufacturer of system hardware.
- C. RS-232 Cabling: Install at a maximum distance of 50 feet (15 m).
- D. RS-485 Cabling: Install at a maximum distance of 4000 feet (1220 m).
- E. Card Readers and Keypads:
 - Install number of conductor pairs recommended by manufacturer for the functions specified.
 - 2. Unless manufacturer recommends larger conductors, install No. 22 AWG wire if maximum distance from Controller to the reader is 250 feet (75 m), and install No. 20 AWG wire if maximum distance is 500 feet (150 m).
 - 3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the Controller.
 - 4. Install minimum No. 18 AWG shielded cable to readers and keypads that draw 50 mA or more.
- F. Install minimum No. 16 AWG cable from Controller to electrically powered locks. Do not exceed 250 feet (75 m).
- G. Install minimum No. 18 AWG ac power wire from transformer to Controller, with a maximum distance of 25 feet (8 m).

3.7 GROUNDING

- A. Comply with Division 26 Section "Grounding and Bonding for Electrical Systems."
- B. Comply with IEEE 1100, "Power and Grounding Sensitive Electronic Equipment."
- C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- D. Signal Ground:

- 1. Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.
- 2. Bus: Mount on wall of main equipment room with standoff insulators.
- 3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.

3.8 INSTALLATION

- A. System installation shall be in accordance with UL 294, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.4 and 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a operable system.
- D. The PACS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a network.
- E. For integration purposes, the PACS shall be integrated where appropriate with the following associated security subsystems:
 - 1. CCTV:
 - a. Provide 24 hour coverage of all entry points to the perimeter and agency buildings. As well as all emergency exits utilizing a fixed color camera.
 - b. Be able to monitor, control and record cameras on a 24 hours basis.
 - c. Be programmed automatically call up a camera when an access point is but into an alarm state.
 - d. For additional PACS system requirements as they relate to the CCTV, refer to Section 28 23 00, VIDEO SURVEILLANCE.
- F. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.
- G. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system

integration meet or exceed the minimum system requirements outlined on the systems software packages.

- H. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system. The Contractor shall not take any corrective action without written permission from the Government.
- I. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.
- J. Existing Equipment:
 - 1. The Contractor shall connect to and utilize existing door equipment, control signal transmission lines, and devices as outlined in the design package. Door equipment and signal lines that are usable in their original configuration without modification may be reused with Contracting Officer approval.
 - 2. The Contractor shall perform a field survey, including testing and inspection of all existing door equipment and signal lines intended to be incorporated into the PACS, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.
 - 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.
 - 4. The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or improper installation of equipment.

- 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.
- K. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.
- L. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- M. Control Panels:
 - 1. Connect power and signal lines to the controller.
 - 2. Program the panel as outlined by the design and per the manufacturer's programming guidelines.
- N. Card Readers:
 - 1. Connect all signal inputs and outputs as shown and specified.
 - 2. Terminate input signals as required.
 - 3. Program and address the reader as per the design package.
 - Readers shall be surface or flushed mounted and all appropriate hardware shall be provided to ensure the unit is installed in an enclosed conduit system.
- O. Biometrics:
 - Connect all signal input and output cables along with all power cables.
 - 2. Program and ensure the device is in operating order.
- P. Portal Control Devices:

- Install all signal input and output cables as well as all power cables.
- 2. Devices shall be surface or flush mounted as per the design package.
- 3. Program all devices and ensure they are working.
- Q. Door Status Indicators:
 - Install all signal input and output cables as well as all power cables.
 - 2. RTE's shall be surface mounted and angled in a manner that they cannot be compromised from the non-secure side of a windowed door, or allow for easy release of the locking device from a distance no greater than 6 feet from the base of the door.
 - Door position sensors shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).
- R. Entry Control Devices:
 - 1. Install all signal input and power cables.
 - 2. Strikes and bolts shall be mounted within the door frame.
 - 3. Mortise locks shall be mounted within the door and an electric transfer hinge shall be utilized to transfer the wire from within the door frame to the mortise lock inside the door.
 - 4. Electromagnetic locks shall be installed with the mag-lock mounted to the door frame and the metal plate mounted to the door.
- T. Supplemental Contractor Quality Control:
 - The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed PACS; and are approved by the Contracting Officer.
 - The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
 - 3. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
 - 4. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.9 SYSTEM SOFTWARE

A. Install, configure, and test software and databases for the complete and proper operation of systems involved. Assign software license to Owner.

3.10 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports:
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. LAN Cable Procedures: Inspect for physical damage and test each conductor signal path for continuity and shorts. Use Class 2, bidirectional, Category 5 tester. Test for faulty connectors, splices, and terminations. Test according to TIA/EIA-568-1, "Commercial Building Telecommunications Cabling Standards - Part 1 General Requirements." Link performance for UTP cables must comply with minimum criteria in TIA/EIA-568-B.
 - 2. Test each circuit and component of each system. Tests shall include, but are not limited to, measurements of power supply output under maximum load, signal loop resistance, and leakage to ground where applicable. System components with battery backup shall be operated on battery power for a period of not less than 10 percent of the calculated battery operating time. Provide special equipment and software if testing requires special or dedicated equipment.
 - 3. Operational Test: After installation of cables and connectors, demonstrate product capability and compliance with requirements. Test each signal path for end-to-end performance from each end of all pairs installed. Remove temporary connections when tests have been satisfactorily completed.

3.11 PROTECTION

A. Maintain strict security during the installation of equipment and software. Rooms housing the control station, and workstations that have been powered up shall be locked and secured, with an activated burglar alarm and access-control system reporting to a Central Station complying with UL 1610, "Central-Station Burglar-Alarm Units," during periods when a qualified operator in the employ of Contractor is not present.

3.12 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.13 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- C. Develop separate training modules for the following:
 - 1. Computer system administration personnel to manage and repair the LAN and databases and to update and maintain software.
 - 2. Operators who prepare and input credentials to man the control station and workstations and to enroll personnel.
 - 3. Security personnel.
 - 4. Hardware maintenance personnel.
 - 5. Corporate management.
- D. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.

----END----

SECTION 28 23 00 VIDEO SURVEILLANCE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide and install a complete Video Surveillance System as an extension of the existing system, which is identified as the Video Assessment and Surveillance System hereinafter referred to as the VASS System as specified in this section.
- B. This Section includes video surveillance system consisting of cameras, data transmission wiring, and a control station with its associated equipment.
- C. Video surveillance system Video assessment & surveillance system shall be integrated with monitoring and control system specified in Division 28 Section PHYSICAL ACCESS CONTROL that specifies systems integration.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- D. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- E. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- F. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- G. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- H. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- I. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. Requirements for commissioning, systems readiness checklists, and training.
- J. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM. Requirements for physical access control system integration.

1.3 DEFINITIONS

- A. AGC: Automatic gain control.
- B. B/W: Black and white.
- C. CCD: Charge-coupled device.
- D. CIF: Common Intermediate Format CIF images are 352 pixels wide and 88/240 (PAL/NTSC) pixels tall (352 x 288/240).
- E. 4CIF: resolution is 704 pixels wide and 576/480 (PAL/NTSC) pixels tall (704 x 576/480).
- F. H.264 (also known as MPEG4 Part 10): an encoding format that compresses video much more effectively than older (MPEG4) standards.
- G. IPS: Images per second.
- H. MPEG: Moving picture experts group.
- I. MPEG4: a video encoding and compression standard that uses inter-frame encoding to significantly reduce the size of the video stream being transmitted.
- J. NTSC: National Television System Committee.
- K. UPS: Uninterruptible power supply.
- L. PTZ: refers to a movable camera that has the ability to pan left and right, tilt up and down, and zoom or magnify a scene.

1.4 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the VASS System as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.
- D. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- E. Product Qualification:

- Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
- 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- F. Contractor Qualification:
 - 1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Video Assessment and Surveillance System's (VASS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the VASS. The Contractor shall only utilize factory-trained technicians to install, terminate and service cameras, control, and recording equipment. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The Contracting Officer's Representative reserves the option of surveying the company's

facility to verify the service inventory and presence of a local service organization.

- 2. The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- G. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01
 33 23, Shop Drawings, Product Data, and Samples, and Section 02 41 00,
 Demolition Drawings.
- B. Provide certificates of compliance with Section 1.4, Quality Assurance.
- C. Provide a pre-installation and as-built design package in both electronic format and on paper, minimum size 1220 x 1220 millimeters (48 x 48 inches); drawing submittals shall be per the established project schedule.
- D. Pre-installation design and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - 1) Outline all general and job specific work required within the design package.

- Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
- 2. Floor plans, site plans, and enlarged plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.
 - Address all general and drawing specific notes for a particular drawing sheet.
- 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.

- A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the VASS Systems, provide the camera ID, camera type (e.g. fixed or pan/tilt/zoom (P/T/Z), lens type (e.g. for fixed cameras only) and housing model number.
- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Pre-installation design packages shall be reviewed by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. 35 percent
 - 2. 65 percent
 - 3. 90 percent
 - 4. 100 percent
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- H. Submit completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. B. American National Standards Institute (ANSI)/Electronic Industries Alliance (EIA): 330-09..... Electrical Performance Standards for CCTV Cameras 375A-76.....Electrical Performance Standards for CCTV Monitors C. Institute of Electrical and Electronics Engineers (IEEE): C62.41-02.....IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits 802.3af-08.....Power over Ethernet Standard D. Federal Communications Commision (FCC): (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment / Systems E. National Electrical Contractors Association (NECA): 303-2005..... Installing Closed Circuit Television (CCTV) Systems F. National Fire Protection Association (NFPA): 70-08..... Article 780-National Electrical Code G. Federal Information Processing Standard (FIPS): 140-2-02..... Security Requirements for Cryptographic Modules H. Underwriters Laboratories, Inc. (UL): 983-06.....Camera Units 3044-01..... Standard for Surveillance Closed Circuit Television Equipment 1.7 COORDINATION
 - A. Coordinate arrangement, mounting, and support of video surveillance equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.

- 3. To allow right of way for piping and conduit installed at required slope.
- So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for video surveillance items that are behind finished surfaces or otherwise concealed.

1.8 WARRANTY OF CONSTRUCTION

- A. Warrant VASS System work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Video signal format shall comply with the NTSC standard composite video, interlaced. Composite video signal termination shall be 75 ohms.
- B. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor entry connection to components.
- C. Power Connections: Comply with requirements in Section 28 05 00 COMMON WORK REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2, as recommended by manufacturer for type of line being protected.
- D. Tamper Protection: Tamper switches on enclosures, control units, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled. Control-station, control-unit alarm display shall identify tamper alarms and indicate locations.

2.2 CAMERAS

A. All Cameras will be EIA 330 and UL 1.Minimum Protection for Power Connections 120 V and more: Auxiliary panel suppressors shall comply with requirements in Section 28 05 00 COMMON WORK REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2.

- B. Minimum Protection for Communication, Signal, Control, and Low-Voltage 983 compliant as well as:
 - Will be charge coupled device (CCD cameras and shall conform to National Television System Committee (NTSC) formatting.
 - Fixed cameras shall be color and the primary choice for monitoring following the activities described below. Pan/Tilt/Zoom (P/T/Z) cameras shall be color and are to be utilized to complement the fixed cameras.
 - 3. Shall be powered by either 12 volts direct current (VDC) or 24 volts alternate current (VAC). Power supplies shall be Class 2 and UL compliant and have a back-up power source to ensure cameras are still operational in the event of loss of primary power to the VASS System.
 - 4. Shall be powered over Ethernet. Network switches supporting PoE cameras shall have a back-up power source to ensure cameras are still operational in the event of loss of primary power to the VASS System.
 - 5. Shall be rated for continuous operation under the environmental conditions listed in Part 1, Project Conditions.
 - 6. Will be home run to a monitoring and recording device via a controlling device such as a matrix switcher or network server and monitored on a 24 hour basis at a designated Security Management System location.
 - Each function and activity shall be addressed within the system by a unique user defined name, with minimum of twenty (20) characters. The use of codes or mnemonics identifying the VASS action shall not be accepted.
 - 8. Shall come with built-in video motion detection that shall automatically monitor and process information from each camera. The camera motion detection shall detect motion within the camera's field of view and provide automatic visual, remote alarms as a result of detected motion.
 - 9. Shall be programmed to digitally flip from color to black and white at dusk and vice versa at low light conditions.

- 10. Will be fitted with AI/DC lenses to ensure the image quality under different light conditions.
- 11. P/T/Z cameras shall be utilized in a manner that they complement fixed cameras and shall not be used as a primary means of monitoring activity.
- 12. Dummy or fake cameras will not be utilized at any time.
- 13. Appropriate signage shall be designed, provided, and posted that notifies people that an area is under camera surveillance.

2.3 CONTROLLING EQUIPMENT

- A. Shall be utilized to call up, operate, and program all cameras associated VASS System components.
- B. Will have the ability to operate the cameras locally and remotely. A matrix switcher or a network server shall be utilized as the VASS System controller.
- C. The controller shall be able to fit into a standard 47.5 cm (19 inch) equipment rack.
- D. Control and programming keyboards shall be provided with its own type of switcher. All keyboards shall:
 - 1. Be located at each monitoring station.
 - 2. Be addressable for programming purposes.
 - 3. Provide interface between the operator and the VASS System.
 - 4. Provide full control and programming of the switcher.
 - 5. Have the minimum following controls:
 - a. programming
 - b. switching
 - c. lens function
 - d. P/T/Z
 - e. environmental housing
 - f. annotation

2.4 VIDEO CAMERAS

- A. The cameras shall be high-resolution color video cameras with wide dynamic range capturing capability.
- B. The camera shall meet or exceed the following specifications:
 - The image capturing device shall be a [1/3]/[1/4]-inch image sensor designed for capturing wide dynamic images.
 - a. The image capturing device shall have a separate analog-todigital converter for every pixel.

- b. The image capturing device shall sample each pixel multiple times per second.
- c. The dynamic range shall be 95 dB typical and 120 dB maximum.
- 3. The camera shall optimize each pixel independently.
- 4. The camera shall have onscreen display menus for programming of the camera's settings.
- 5. The signal system shall be NTSC.
- C. The camera shall have composite video output.
- D. The camera shall come with a manual varifocal lens.
- E. The video output shall be composite: 1.0 volts peak-to-peak at 75-ohm load.
- H. Fixed Color Camera
 - 1. The camera shall be a high-resolution color video camera with wide dynamic range capturing capability.
 - 2. Comply with UL 639.
 - 3. Pickup Device: [1/3]/[1/4] CCD interline transfer.
 - 4. Signal-to-Noise Ratio: Not less than 50 dB, with the camera AGC off.
 - 5. With AGC, manually selectable on or off.
 - Manually selectable modes for backlight compensation or normal lighting.
 - Scanning Synchronization: Determined by external synch over the coaxial cable. Camera shall revert to internally generated synchronization on loss of external synch signal.
 - 8. White Balance: Auto-tracing white balance, with manually selectable fixed balance option.
 - 9. Fixed Color Cameras Technical Characteristics:

Pickup device	1/3" interline transfer CCD
Total pixels	NTSC: 811(H) x 508(V)
Effective pixels	NTSC: 768(H) x 494(V)
Resolution	500 TV lines
Sync. System	Internal Sync
Scanning system	NTSC: 525 Lines/60 Fields
S/N ratio	More than 48 dB
Electronic shutter	Auto 1/60 (1/50) ~1/100,000 sec.
Min. illumination	0.2 lux F2.0
Video output	Composite 1.0 Vp-p/75 ohm

White balance	Auto
Automatic gain control	ON
Frequency horizontal	NTSC: 15.734 KHz
Frequency vertical	NTSC: 59.94Hz
Lens type	Board lens/[DC]/[AI] varifocal lens
Focal length	[3-12mm] <insert values=""></insert>
Power source	DC12V/500mA or AC24/500mA
Power consumption	< 3W (Max)

- 10. [Fixed color camera shall be enclosed in dome and have board mounted varifocal lens].
- 11. Camera accessories shall include:
 - a. Surface mount adapter
 - b. Wall mount adapter
 - c. Flush mount adapter

2.5 POWER SUPPLIES

- A. Power supplies shall be a low-voltage power supplies matched for voltage and current requirements of cameras and accessories, type as recommended by camera[, infrared illuminator,] and lens manufacturer.
- B. Technical specifications:
 - 1. Input: 115VAC, 50/60Hz, 2.7 amps
 - 2. Outputs:
 - a. Number of outputs, [16] <insert number of outputs>
 - b. [Fuse/PTC] <insert type> protected, power limited
 - c. Output voltage & power:
 - 1) 24VAC @ 12.5 amps (300VA) or 28VAC @ 10 amp (280VA) supply current
 - 3. Illuminated power disconnect circuit breaker with manual reset
 - 4. Surge suppression
 - 5. Camera synchronization
 - 6. [Wall/Rack] <insert mount type> mount.
 - 7. Enclosure: NEMA 250, Type 3, 4X.

2.6 WIRES AND CABLES

A. Shall meet or exceed the manufactures recommendation for power and signal.

- B. Will be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
- C. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.
- D. All conduit, pull boxes, and junction boxes shall be clearly marked with colored permanent tape or paint that will allow it to be distinguished from all other conduit and infrastructure.
- E. Conduit fills shall not exceed 50 percent unless otherwise documented.
- F. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
- G. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area
- H. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security system shall be defined as any cable or sets of cables carrying 30 VDC/VAC or higher.
- I. For all equipment that is carrying digital data between the Physical Access Control System and Database Management or at a remote monitoring station, shall not be less that 20 AWG and stranded copper wire for each conductor. The cable or each individual conductor within the cable shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.
- J. All cables and conductors, except fiber optic cables, that act as a control, communication, or signal lines shall include surge protection. Surge protection shall be furnished at the equipment end and additional triple electrode gas surge protectors rated for the application on each wire line circuit shall be installed within 1 m. (3 ft.) of the building cable entrance. The inputs and outputs shall be tested in both normal and common mode using the following wave forms:
 - 1. A 10 microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 watts and peak current of 60 amperes.
 - 2. An 8 microsecond rise time by 20 microsecond pulse width wave form with a peak voltage of 1000 volts and peak current of 500 amperes.

- K. The surge suppression device shall not attenuate or reduce the video or sync signal under normal conditions. Fuses and relays shall not be used as a means of surge protection.
- L. Coaxial Cables
 - All video signal cables for the VASS System, with exception to the PoE cameras, shall be a coaxial cable and have a characteristic impedance of 75 ohms plus or minus 3 ohms.
 - 2. For runs up to 750 feet use of an RG-59/U is required. The RG-59/U shall be shielded which provides a minimum of 95 percent coverage, with a stranded copper center conductor of a minimum 23 AWG, polyethylene insulation, and black non-conductive polyvinylchloride (PVC) jacket.
 - 3. For runs between 750 feet and 1250 feet, RG-6/U is required. RG-6/U shall be shielded which provides a minimum of 95 percent coverage, with a stranded copper center conductor of a minimum 18 AWG, polyethylene insulation, and black non-conductive polyvinylchloride (PVC) jacket.
 - 4. For runs of 1250 to 2750 feet, RG-11/U is required. RG-11/U shall be shielded which provides a minimum of 95 percent coverage, with a stranded copper center conductor of a minimum 14 AWG, polyethylene insulation, and black non-conductive polyvinylchloride (PVC) jacket.
 - 5. All runs greater than 2750 feet will be substituted with a fiber optic cable. If using fiber optics as a signal carrier then the following equipment will be utilized:
 - a. Multimode fiber optic cable a minimum size of 62 microns
 - b. Video transmitter, installed at the camera that utilizes 12 VDC or 24 VAC for power.
 - c. Video receiver, installed at the switcher.
 - 6. RG-59/U Technical Characteristics

AWG	22
Stranding	7x29
Conductor Diameter	.031 in.
Conductor Material	BCC
Insulation Material	Gas-injected FHDPE
Insulation Diameter	.145 in.
Outer Shield Type	Braid/Braid
Outer Jacket Material	PVC

Overall Nominal Diameter	.242 in.
UL Temperature Rating	75°C
Nom. Characteristic Impedance	75 Ohms
Nom. Inductance	0.094 µH/ft
Nom. Capacitance	Conductor to Shield 17.0 pF/ft
Nom. Velocity of Propagation	80 %
Nom. Delay	1.3 ns/ft
Nom. Conductor DC Resistance @ 20°C	12.2 Ohms/1000 ft
Nom. Outer Shield DC Resistance @ 20°C	2.4 Ohms/1000 ft
Max. Operating Voltage	UL 300 V RMS

7. RG-6/U Technical Characteristics:

	10
AWG	18
Stranding	7x27
Conductor Diameter	.040 in.
Conductor Material	BC
Insulation Material	Gas-injected FHDPE
Insulation Diameter	.180 in.
Outer Shield Material	Trade Name Duofoil
Outer Shield Type	Tape/Braid
Outer Shield %Coverage	100 %
Outer Jacket Material	PVC
Overall Nominal Diameter	.274 in.
Nom. Characteristic Impedance	75 Ohms
Nom. Inductance	0.106 µH/ft
Nom. Capacitance	Conductor to Shield 16.2 pF/ft
Nom. Velocity of Propagation	82 %
Nom. Delay	1.24 ns/ft
Nom. Conductor DC Resistance	6.4 Ohms/1000 ft
Nominal Outer Shield DC Resistance @ 20°C	2.8 Ohms/1000 ft
Max. Operating Voltage	UL 300 V RMS

8. RG-11/U Technical Characteristics:

AWG	15
Stranding	19x27
Conductor Diameter	.064 in.
Conductor Material	BC
Insulation Material	Gas-injected FHDPE
Insulation Diameter	.312 in.
Inner Shield Type	Braid
Inner Shield Material	BC - Bare Copper
Inner Shield %Coverage	95 %
Inner Jacket Material	PE - Polyethylene
Inner Jacket Diameter	.391 in.
Outer Shield Type	Braid
Outer Shield Material	BC - Bare Copper
Outer Shield %Coverage	95 %
Outer Jacket Material	Trade Name Belflex
Outer Jacket Material	PVC Blend
Overall Nominal Diameter	.520 in.
Operating Temperature Range	-35°C To +75°C
Non-UL Temperature Rating	75°C
Nom. Characteristic Impedance	75 Ohms
Nom. Inductance	0.097 µH/ft
Nom. Capacitance	Conductor to Shield 17.3 pF/ft
Nom. Velocity of Propagation	78 %
Nom. Delay	1.30 ns/ft
Nom. Conductor DC Resistance	3.1 Ohms/1000 ft
Nom. Inner Shield DC Resistance	1.8 Ohms/1000 ft
Nom. Outer Shield DC Resistance	1.4 Ohms/1000 ft
Max. Operating Voltage Non-UL	300 V RMS

- 9. Signal Cables:
 - a. Signal wiring for PoE cameras depends on the distance the camera is being installed from either a hub or the server.

- b. If the camera is up to 300 ft from a hub or the server, then use a shielded UTP category 5 (CAT-V) cable a with standard RJ-45 connector at each end. The cable with comply with the Power over Ethernet, IEEE802.3af, Standard.
- c. If the camera is over 300 ft from a hub or server then utilize a multimode fiber optic cable with a minimum size of 62 microns.
- d. Provide a separate cable for power.
- e. CAT-5 Technical Characteristics:

Number of Pairs	4
Total Number of Conductors	8
AWG	24
Stranding	Solid
Conductor Material	BC - Bare Copper
Insulation Material	PO - Polyolefin
Overall Nominal Diameter	.230 in.
IEC Specification	11801 Category 5
TIA/EIA Specification	568-B.2 Category 5e
Max. Capacitance Unbalance	(pF/100 m) 150 pF/100 m
Nom. Velocity of Propagation	70 %
Max. Delay	(ns/100 m) 538 @ 100MHz
Max. Delay Skew	(ns/100m) 45 ns/100 m
Max. Conductor DC Resistance	9.38 Ohms/100
Max. DCR Unbalance@ 20°C	3 %
Max. Operating Voltage	UL 300 V RMS

10. Fiber Optic Cables Technical Characteristics:

Fiber Type	62.5 Micron
Number of Fibers	4
Core Diameter 6	2.5 +/- 2.5 microns
Core Non-Circularity	5% Maximum
Clad Diameter	125 +/- 2 microns
Clad Non-Circularity	1% Maximum
Core-clad Offset	1.5 Microns Maximum
Primary Coating Material	Acrylate
Primary Coating Diameter	245 +/- 10 microns
Secondary Coating Material	Engineering Thermoplastic

Secondary Coating Diameter	900 +/- 50 microns
Strength Member Material	Aramid Yarn
Outer Jacket Material	PVC
Outer Jacket Color	Orange
Overall Diameter	.200 in.
Numerical Aperture	. 275
Maximum Gigabit Ethernet	300 meters
Maximum Gigabit Ethernet	550 meters

11. Power Cables

- a. Will be sized accordingly and shall comply with the NEC. High voltage power cables will be a minimum of three conductors, 14
 AWG, stranded, and coated with a non-conductive polyvinylchloride (PVC) jacket. Low voltage cables will be a minimum of 18 AWG, stranded and non-conductive polyvinylchloride (PVC) jacket.
- b. Will be utilized for all components of the VASS System that require either a 110 VAC 60 Hz or 220 VAC 50 Hz input. Each feed will be connected to a dedicated circuit breaker at a power panel that is primarily for the security system.
- c. All equipment connected to AC power shall be protected from surges. Equipment protection shall withstand surge test waveforms described in IEEE C62.41. Fuses shall not be used as a means of surge protection.
- d. Shall be rated for either 110 or 220 VAC, 50 or 60 Hz, and shall comply with VA Master Spec 26 05 21 Low Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- e. Low Voltage Power Cables
 - Shall be a minimum of 18 AWG, Stranded and have a polyvinylchloride outer jacket.
 - Cable size shall determined using a basic voltage over distance calculation and shall comply with the NEC's requirements for low voltage cables.

PART 3 - EXECUTION

3.1. GENERAL

A. Installation: The Contractor shall install all system components including Owner furnished equipment, and appurtenances in accordance with the manufacturer's instructions, ANSI C2 and as shown, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable data transmission system.

- B. Identification and Labeling: The Contractor shall supply permanent identification labels for each cable at each end that will appear on the as-built drawings. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified by type or signal being carried and termination points. The labels shall be printed on letter size label sheets that are self laminated vinyl that can be printed from a computer data base or spread sheet. The labels shall be E-Z code WES12112 or equivalent.
 - The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing.
- C. Contractor's Field Test: The Contractor shall verify the complete operation of the data transmission system during the Contractor's Field Testing. Field test shall include a bit error rate test. The Contractor shall perform the test by sending a minimum of 1,000,000 bits of data on each DTM circuit and measuring the bit error rate. The bit error rate shall not be greater than one (1) bit out of each 100,000 bits sent for each dial-up DTM circuit, and one (1) bit out of 1,000,000 bits sent for each leased or private DTM circuit. The Contractor shall submit a report containing results of the field test.
- D. Acceptance Test and Endurance Test: The wire line data transmission system shall be tested as a part of the completed IDS and EECS during the Acceptance test and Endurance Test as specified.
- E. Identification and Labeling: The Contractor shall supply identification tags or labels for each cable. Cable shall be labeled at both end points and at intermediate hand holes, manholes, and junction boxes. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified with type of signal being carried and termination points.

3.2 INSTALLATION

A. System installation shall be in accordance with NECA 303, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.

- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable system.
- D. The VASS System will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a complete network.
- E. For integration purposes, the VASS System shall be integrated where appropriate with the following associated security subsystems:
 - 1. PACS:
 - a. Provide 24 hour coverage of all entry points to the perimeter and agency buildings, as well as all emergency exits utilizing a fixed color camera.
 - b. Record cameras on a 24 hours basis.
 - c. Be programmed go into an alarm state when an emergency exit is opened, and notify the Physical Access Control System and Database Management of an alarm event.
- F. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.
- G. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.
- H. A complete VASS System shall be comprised of, but not limited to, the following components:
 - 1. Cameras
 - 2. Lenses
 - 3. Video Display Equipment
 - 4. Camera Housings and Mounts
 - 5. Controlling Equipment
 - 6. Recording Devices
 - 7. Wiring and Cables

- I. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.
- J. Existing Equipment
 - The Contractor shall connect to and utilize existing video equipment, video and control signal transmission lines, and devices as outlined in the design package. Video equipment and signal lines that are usable in their original configuration without modification may be reused with Contracting Officer approval.
 - 2. The Contractor shall perform a field survey, including testing and inspection of all existing video equipment and signal lines intended to be incorporated into the VASS System, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.
 - 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.
 - The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or incorrect installation of equipment.
 - 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment

is removed or replaced the Contractor shall repair those areas to match the current existing conditions.

- K. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.
- L. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- M. Interconnection of Console Video Equipment: The Contractor shall connect signal paths between video equipment as specified by the OEM. Cables shall be as short as practicable for each signal path without causing strain at the connectors. Rack mounted equipment on slide mounts shall have cables of sufficient length to allow full extension of the slide rails from the rack.
- N. Cameras:
 - 1. Install cameras with focal length lens as indicated for each zone.
 - 2. Connect power and signal lines to the camera.
 - 3. Aim camera to give field of view as needed to cover the alarm zone.
 - 4. Aim fixed mounted cameras installed outdoors facing the rising or setting sun sufficiently below the horizon to preclude the camera looking directly at the sun.
 - 5. Focus the lens to give a sharp picture (to include checking for day and night focus and image quality) over the entire field of view
 - Synchronize all cameras so the picture does not roll on the monitor when cameras are selected.
 - 7. PTZ cameras shall have all preset positions and privacy areas defined and programmed.
- O. Monitors:
 - 1. Install the monitors as shown and specified in design and construction documents.

- 2. Connect all signal inputs and outputs as shown and specified.
- 3. Terminate video input signals as required.
- 4. Connect the monitor to AC power.
- P. Switcher:
 - 1. Install the switcher as shown in the design and construction documents, and according to the OEM.
 - 2. Connect all subassemblies as specified by the manufacturer and as shown.
 - Connect video signal inputs and outputs as shown and specified; terminate video inputs as required.
 - 4. Connect alarm signal inputs and outputs as shown and specified; connect control signal inputs and outputs for ancillary equipment or secondary control/monitoring sites as specified by the manufacturer and as shown.
 - 5. Connect the switcher CPU and switcher subassemblies to AC power.
 - 6. Load all software as specified and required for an operational VASS System configured for the site and building requirements, including data bases, operational parameters, and system, command, and application programs.
 - 7. Provide the original and 2 backup copies for all accepted software upon successful completion of the endurance test.
 - 8. Program the video annotation for each camera.
- Q. Video Encoder/Decoder
 - 1. Install the Video Encoder/Decoder per design and construction documents, and as specified by the OEM.
 - 2. Connect analog camera inputs to video encoder.
 - 3. Connect network camera to video decoder.
 - 4. Connect video encoder to VASS network.
 - 5. Connect video decoder to video matrix, DVR, monitor etc.
 - 6. Connect unit to AC power (UPS).
 - Configure the video encoder/decoder per manufacturer's recommendation and project requirements.
- R. Video Recording Equipment:
 - 1. Install the video recording equipment as shown in the design and construction documents, and as specified by the OEM.
 - 2. Connect video signal inputs and outputs as shown and specified.
 - 3. Connect alarm signal inputs and outputs as shown and specified.

- 4. Connect video recording equipment to AC power.
- 5. Program the video recording equipment;
 - a. Recording schedules
 - b. Camera caption
- S. Video Signal Equipment:
 - 1. Install the video signal equipment as shown in the design and construction documents, and as specified by the OEM.
 - 2. Connect video or signal inputs and outputs as shown and specified.
 - 3. Terminate video inputs as required.
 - 4. Connect alarm signal inputs and outputs as required.
 - 5. Connect control signal inputs and outputs as required
 - 6. Connect electrically powered equipment to AC power.
- T. Camera Housings, Mounts, and Poles:
 - Install the camera housings and mounts as specified by the manufacturer and as shown, provide mounting hardware sized appropriately to secure each camera, housing and mount with maximum wind and ice loading encountered at the site.
 - 2. Provide a foundation for each camera pole as specified and shown.
 - Provide a ground rod for each camera pole and connect the camera pole to the ground rod as specified in Division 26 of the VA Master Specification and the VA Electrical Manual 730.
 - Provide electrical and signal transmission cabling to the mount location via a hardened carrier system from the Physical Access Control System and Database Management to the device.
 - 5. Connect signal lines and AC power to the housing interfaces.
 - 6. Connect pole wiring harness to camera.

3.3 SYSTEM START-UP

- A. The Contractor shall not apply power to the VASS System until the following items have been completed:
 - 1. VASS System equipment items and have been set up in accordance with manufacturer's instructions.
 - 2. A visual inspection of the VASS System has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
 - System wiring has been tested and verified as correctly connected as indicated.

- 4. All system grounding systems have been verified as installed and connected as indicated.
- 5. Power supplies to be connected to the VASS System have been verified as the correct voltage, phasing, and frequency as indicated.
- B. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Contracting Officer's Representative and Commissioning Agent. Provide a minimum of 7 days prior notice.
- C. Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.

3.4 SUPLEMENTAL CONTRACTOR QUIALITY CONTROL

- A. The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed VASS System; and are approved by the Contracting Officer.
- B. The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
- C. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
- D. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -"COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

3.6 DEMONSTRATION AND TRAINING

A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, "GENERAL REQUIREMENTS".

- B. Provide services of manufacturer's technical representative for [four] <insert hours> hours to instruct VA personnel in operation and maintenance of units.
- C. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS".

----END----

SECTION 28 31 00

FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the Contracting Officers Representative (COR) or his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Fire alarm signals:
 - Building shall have an automatic digitized voice fire alarm signal with emergency manual voice override to notify occupants to evacuate. The digitized voice message shall identify the area of the building (smoke zone) from which the alarm was initiated.
 - 2. Building shall have a general evacuation fire alarm signal in accordance with ASA S3.41 to notify all occupants in the respective building to evacuate.
- D. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit located in the basement main fire alarm control room

1.2 SCOPE

- A. A fully addressable fire alarm system as an extension of an existing non-addressable fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.
- B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- C. Existing fire alarm speakers, combination speaker/strobes, bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- D. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed.
- E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- F. Basic Performance:
 - Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
 - Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
 - 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
 - 4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.

- 5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
- 6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.
- C. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- D. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- E. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- F. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.

1.4 SUBMITTALS

- A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Drawings:
 - Prepare drawings using AutoCAD Release 14 software and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COR). Bid drawing files will be provided to the Contractor at the pre-construction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
 - 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross

section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.

- 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.
- 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COR 3 sets of as-built drawings and one set of the as-built drawing computer files using AutoCAD 2007 or later. As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.

- c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
- d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
- e. Complete listing of all digitized voice messages.
- f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
- g. Include information indicating who will provide emergency service and perform post contract maintenance.
- h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.
- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.

- c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
- d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
- e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:
 - 1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
 - 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
 - 3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES

A. Complete inspection, testing, maintenance and repair service for the fire alarm system shall be provided by a factory trained authorized representative of the manufacturer of the major equipment for a period of 5 years from the date of acceptance of the entire installation by the Contracting Officer.

- B. Contractor shall provide all necessary test equipment, parts and labor to perform required inspection, testing, maintenance and repair.
- C. All inspection, testing, maintenance and permanent records required by NFPA 72, and recommended by the equipment manufacturer shall be provided by the contractor. Work shall include operation of sprinkler system alarm and supervisory devices as well as all reused existing equipment connected to the fire alarm system. It shall include all interfaced equipment including but not limited to elevators, HVAC shutdown, and extinguishing systems.
- D. Maintenance and testing shall be performed in accordance with NFPA 72. A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment. The schedule shall include a systematic examination, adjustment and cleaning of all equipment.
- E. Non-included Work: Repair service shall not include the performance of any work due to improper use, accidents, or negligence for which the contractor is not responsible.
- F. Service and emergency personnel shall report to the Engineering Office or their authorized representative upon arrival at the hospital and again upon the completion of the required work. A copy of the work ticket containing a complete description of the work performed and parts replaced shall be provided to the VA COR or his authorized representative.
- G. Emergency Service:
 - 1. Warranty Period Service: Service other than the preventative maintenance, inspection, and testing required by NFPA 72 shall be considered emergency call-back service and covered under the warranty of the installation during the first year of the warranty period, unless the required service is a result of abuse or misuse by the Government. Written notification shall not be required for emergency warranty period service and the contractor shall respond as outlined in the following sections on Normal and Overtime Emergency Call-Back Service. Warranty period service can be required during normal or overtime emergency call-back service time periods at the discretion of the COR or his authorized representative.
 - 2. Normal and overtime emergency call-back service shall consist of an on-site response within 4 hours of notification of a system trouble.

- 3. Normal emergency call-back service times are between the hours of 7:30 a.m. and 4:00 p.m., Monday through Friday, exclusive of federal holidays. Service performed during all other times shall be considered to be overtime emergency call-back service. The cost of all normal emergency call-back service for years 2 through 5 shall be included in the cost of this contract.
- 4. Overtime emergency call-back service shall be provided for the system when requested by the Government. The cost of the first 40 manhours per year of overtime call-back service during years 2 through 5 of this contract shall be provided under this contract. Payment for overtime emergency call-back service in excess of the 40 man hours per year requirement will be handled through separate purchase orders. The method of calculating overtime emergency callback hours is based on actual time spent on site and does not include travel time.

1.7 APPLICABLE PUBLICATIONS

A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.

National Fire Protection Association (NFPA):
NFPA 13of Sprinkler
Systems, 2010 edition
NFPA 14 Standard for the Installation of Standpipes and
Hose Systems, 2010 edition
NFPA 20 Standard for the Installation of Stationary
Pumps for Fire Protection, 2010 edition
NFPA 70National Electrical Code (NEC), 2010 edition
NFPA 72National Fire Alarm Code, 2010 edition
NFPA 90Aof Air
Conditioning and Ventilating Systems, 2009
edition
NFPA 101Life Safety Code, 2009 edition

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory
- D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011
- E. American National Standards Institute (ANSI):

S3.41.....Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008

F. International Code Council, International Building Code (IBC), 2009 edition

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. Existing non-addressable equipment may be reused only where indicated on the drawings. All addressable equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturer's requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33, CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduit shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduit shall be 3/4 inch (19 mm) minimum.
- B. Wire:
 - 1. Wiring shall be in accordance with NEC article 760, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as recommended by the manufacturer of the addressable fire alarm system to extend an existing non-addressable system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
 - 2. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
 - 3. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.

- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
 - 4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COR.

2.3 VOICE COMMUNICATION SYSTEM (VCS)

- A. General:
 - An emergency voice communication system shall be an extension of the existing system in the building.
 - Upon receipt of an alarm signal from the building fire alarm system, the VCS shall automatically transmit a pre-recorded fire alarm message throughout the floor in alarm, the floor above, and the floor below.
 - A digitized voice module shall be used to store each prerecorded message.
 - 4. The VCS shall supervise all speaker circuits, control equipment, remote audio control equipment, and amplifiers.
- B. Speaker Circuit Control Unit:
 - The speaker circuit control unit shall include switches to manually activate or deactivate speaker circuits grouped by floor in the system.
 - 2. Speaker circuit control switches shall provide on, off, and automatic positions and indications.
 - The speaker circuit control unit shall include visual indication of active or trouble status for each group of speaker circuits in the system.
 - 4. A trouble indication shall be provided if a speaker circuit group is disabled.
 - 5. A lamp test switch shall be provided to test all indicator lamps.

- 6. A single "all call" switch shall be provided to activate all speaker circuit groups simultaneously.
- 7. A voice message disconnect switch shall be provided to disconnect automatic digitized voice messages from the system. The system shall be arranged to allow manual voice messages and indicate a system trouble condition when activated.
- C. Speaker Circuit Arrangement:
 - 1. Speaker circuits shall be arranged such that there is one speaker circuit per smoke zone.
 - 2. Audio amplifiers and control equipment shall be electrically supervised for normal and abnormal conditions.
 - 3. Speaker circuits shall be either 25 VRMS or 70.7 VRMS with a minimum of 50 percent spare power available.
 - Speaker circuits and control equipment shall be arranged such that loss of any one speaker circuit will not cause the loss of any other speaker circuit in the system.
- D. Digitized Voice Module (DVM):
 - The Digitized Voice Module shall provide prerecorded digitized evacuation and instructional messages. The messages shall be professionally recorded and approved by the COR prior to programming.
 - 2. The DVM shall be configured to automatically output to the desired circuits following a 10-second slow whoop alert tone.
 - 3. Prerecorded magnetic taped messages and tape players are not permitted.
 - 4. The digitized message capacity shall be no less than 15 second in length.
 - 5. The digitized message shall be transmitted 3 times.
 - 6. The DVM shall be supervised for operational status.
 - 7. Failure of the DVM shall result in the transmission of a constant alarm tone.
 - 8. The DVM memory shall have a minimum 50 percent spare capacity after those messages identified in this section are recorded. Multiple DVM's may be used to obtain the required capacity.
- E. Audio Amplifiers:
 - Audio Amplifiers shall provide a minimum of 50 Watts at either 25 or 70.7 VRMS output voltage levels.
 - 2. Amplifiers shall be continuously supervised for operational status.

- 3. Amplifiers shall be configured for either single or dual channel application.
- Each audio output circuit connection shall be configurable for Style X.
- 5. A minimum of 50 percent spare output capacity shall be available for each amplifier.
- F. Tone Generator(s):
 - Tone Generator(s) shall be capable of providing a distinctive 3pulse temporal pattern fire alarm signal as well as a slow whoop.
 - Tone Generator(s) shall be continuously supervised for operational status.

2.4 ALARM NOTIFICATION APPLIANCES

- A. Strobes:
 - Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
 - Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
 - 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
 - 4. Strobes may be combined with the audible notification appliances specified herein.
- B. Speakers:
 - Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the 1/2 watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet (3,000 mm) with the 1/2 watt tap.
 - 2. Frequency response shall be a minimum of 400 HZ to 4,000 HZ.
 - 3. Four inches (100 mm) or 8 inches (200 mm) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.

2.5 ALARM INITIATING DEVICES

- A. Manual Fire Alarm Stations:
 - 1. Shall be non-breakglass, address reporting type.

- 2. Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
- Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE".
- 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
- 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.
- B. Smoke Detectors:
 - Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
 - Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
 - 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
 - 4. All spot type and duct type detectors installed shall be of the photoelectric type.
 - 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
 - 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.

2.6 SUPERVISORY DEVICES

A. Duct Smoke Detectors:

- 1. Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
- 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".
- 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.

2.7 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the addressable fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.8 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key separate from the control equipment.
- C. All keys shall be delivered to the COR.

2.9 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Manual pull stations 1
 - 2. Heat detectors 1
 - 3. Fire alarm strobes 1
 - 4. Smoke detectors 1

- 5. Control equipment keys 3
- 6. Monitor modules 3
- 7. Control modules 3
- 8. Fire alarm SLC cable (same as installed) 500 feet (152 m)
- B. Spare and replacement parts shall be in original packaging and submitted to the COR.
- C. Furnish and install a storage cabinet of sufficient size and suitable for storing spare equipment. Doors shall include a pad locking device. Padlock to be provided by the VA. Location of cabinet to be determined by the COR.
- D. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system <u>on site</u>. The minimum level of modification includes addition and deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

2.10 INSTRUCTION CHART:

Provide a typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COR before being posted.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.
- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.

- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COR.
- E. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
- F. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
- G. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station, heat detector, gaseous suppression system, or smoke detector shall cause the following operations to occur:
 - Operate the emergency voice communication system in Building. For sprinkler protected buildings, flash strobes continuously only in the zone of alarm.
 - Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in Building.
 - 3. Release only the magnetic door holders in the smoke zone after the alert signal.
 - 4. Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 - 5. Unlock the electrically locked exit doors within the zone of alarm.
- B. Smoke detectors in the primary elevator lobbies of the Building shall, in addition to the above functions, return all elevators in the bank to the secondary floor.
- C. Smoke detectors in the remaining elevator lobbies in addition to the above functions, return all elevators in the bank to the primary floor.

- D. Operation of a smoke detector at a corridor door used for automatic closing shall also release only the magnetic door holders in that smoke zone.
- E. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- F. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.
- G. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
 - 3. Open each alarm initiating and notification circuit to see if trouble signal actuates.
 - 4. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.

B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.
- C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

- - END - -