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Abstract: Annelida is a ubiquitous, common and diverse group of organisms, found in terrestrial,
fresh waters and marine environments. Despite the large efforts put into resolving the evolutionary
relationships of these and other Lophotrochozoa, and the delineation of the basal nodes within the
group, these are still unanswered. Annelida holds an enormous diversity of forms and biological
strategies alongside a large number of species, following Arthropoda, Mollusca, Vertebrata and
perhaps Platyhelminthes, among the species most rich in phyla within Metazoa. The number of
currently accepted annelid species changes rapidly when taxonomic groups are revised due to
synonymies and descriptions of a new species. The group is also experiencing a recent increase in
species numbers as a consequence of the use of molecular taxonomy methods, which allows the
delineation of the entities within species complexes. This review aims at succinctly reviewing the
state-of-the-art of annelid diversity and summarizing the main systematic revisions carried out in the
group. Moreover, it should be considered as the introduction to the papers that form this Special
Issue on Systematics and Biodiversity of Annelids.
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1. Introduction

We entered the 21st century with a view about Annelida very different to what we
have today, only twenty years later. In those days, we thought that the classification of
the group was suffering a revolution because early molecular analyses placed clitellates
within polychaetes [1–3]. Although there were also some indications that several of the
then considered phyla, such as Sipuncula, Myzostomida, Vestimentifera, Pogonophora and
Echiura, had annelid affinities (e.g., [4–11]), it was not until the advent of the phylogenomic
methods that we were provided with strong enough evidence to consider these taxa within
Annelida (e.g., [12–15]). This expansion of the Annelida concept greatly increased the
diversity within the group, including aspects such as body plan, anatomy, reproductive
biology, life history, feeding strategies, and species richness.

The fossil record evidenced that early annelids, provided with head appendages,
birramous parapodia and simple chaetae were already present in the Early Cambrian [16]
(although molecular clocks date the origin of annelids even earlier, e.g., [17]). These taxa
do seem closely related to the extant annelid groups, which in most cases diversified
rapidly during the Late Cambrian—Ordovician [16]. The deep relationships in the annelid
radiation remain poorly resolved, in part due to the short basal branches as a consequence
of this rapid diversification, but also due to the analysis of artifacts such as the long branch
attraction of some groups [12,15,18–21]. Sister group relationships of Annelida are still
being debated, but its placement within Lophotrochozoa and monophyly are now widely
accepted (e.g., [12–15,22,23].

There have been several revisions of Annelida in the last 20 years. The volume
Polychaetes & Allies The Southern Synthesis [24] (no longer in print but pdfs are available on
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the ABRS website, http://www.environment.gov.au/science/abrs/publications/fauna-
of-australia/fauna-4a (accessed on 17 March 2021)), known as the red book, included an
historical overview of not just polychaetes, but also of sipunculans, echiuroids, myzostomes
and pogonophorans and, while oligochaetes were also originally to be included, this
unfortunately did not happen. Its chapters include information on the biology and ecology
of annelids, the higher classification based on the most recently available cladistics analysis
by Rouse and Fauchald [4] and a chapter on each family then recognized with standardized
content on morphology, diversity, physiology, reproduction, distribution, including how
many species were present in Australian waters. While the title suggests it is Australia
focused, the book is relevant to all parts of the world, as almost all polychaete families
occur worldwide.

Shortly after the publication of Polychaetes & Allies, Rouse and Pleijel [8] published
Polychaetes, also known as the black book. This book, whilst dealing with the anatomy,
biology and ecology of polychaetes, it also focused on the phylogenetic relationships of the
different clades and taxa. After the publication of these two books thorough reviews, some
dramatic changes in the understanding of the systematics and classification of the annelids
have taken place (e.g., [12–15]. Since 2014, an ambitious project aiming at updating the
prestigious Handbook of Zoology [25–28] has gathered the interest of many Annelida experts
with the aim of producing a comprehensive overview on different annelid groups, including
updated information regarding the systematics, morphology, physiology, behavior, ecology
and applied zoological research. The Handbook of Zoology, Annelida [29–31] appeared first
online and later in book form, and it will eventually cover all clades and taxonomic annelid
groups. It represents the third 21st century “must have” book series for annelid workers.
In these volumes, it is highlighted the enormous efforts that have been put into resolving
the phylogenetic relationships and the description of the diversity of forms and biological
strategies exhibited within the group.

However, besides these comprehensive reviews, it is clear that further work is needed
in order to pursue a better understanding of the diversification patterns in Annelida,
to evaluate the current awareness on the species’ richness, its distribution patterns and
highlight where the major gaps of knowledge are in the different taxa.

Annelids are critically important in most marine ecosystems because of their diversity
and abundance, especially in soft sediments from the intertidal to the deep-sea, as well
as encrusting or attached to hard substrates. They exhibit a variety of feeding strategies
ranging from deposit feeders, filter feeders, carnivores, herbivores and parasites, thus
occupying all levels within the food chain. Some groups of polychaetes, fundamentally
earthworms, are important bioturbators, turning over the sediment as well as breaking
down organic matter. These mud swallowing feeders may also accumulate heavy metals
and other contaminants in their body, and they are able to transfer these to other members
of the trophic webs. Annelids are a major component of the marine benthos and terrestrial
realm, and they comprise species with different tolerances to stress. Consequently, they
have been considered as good bioindicators in environmental monitoring (e.g., [32–34])
and surrogates for marine biodiversity [35,36] biomarkers (e.g., [37–40]).

Annelids also exhibit a tremendous range of reproductive strategies ranging from
mass spawning, brooding, laying of egg capsules as well as asexual reproduction [41].
Life spans range from a few weeks to many years, with some species spawning annually,
whereas others only breed once and then die. Thus, while the biomass of polychaetes
may not be high, in benthic communities they typically have a high productivity which
is readily available to a wide range of organisms. Some species of annelids are widely
collected as bait for recreational fishing (e.g., [42]), and some species are used as food for
aquaculture practices, or are collected during the annual mass spawning associated with
phases of the moon for human consumption. Annelid bioactive compounds are being
used after showing properties compatible with anesthetics, fluorescent probes and even
antibiotics and pesticides [43,44]. Negative ecological and economic impacts have also
been reported because of annelids. For instance, an invasive species can cause problems
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such as blocking intake pipes to power stations, impact commercial value of mollusks by
boring into shells, or modifying benthic habitats [45–47].

Until late in the last century, several polychaete workers assumed many polychaetes
were widely distributed (e.g., [48–52]). Consequently, taxonomists and ecologists from
around the world identified polychaetes using comprehensive and well-illustrated mono-
graphs such as those used by Fauvel [53,54] and Day [51,52], even though these were
focused on the polychaete fauna of France and South Africa, respectively. The concept of
“cosmopolitan” species was widely accepted with well-known examples such as Capitella
capitata (Fabricius 1780), Marphysa sanguinea (Montagu, 1813), Terebellides stroemii Sars, 1835,
Owenia fusiformis Delle Chiaje, 1844 or Chaetozone setosa Malmgren, 1867. However, the
validity of this concept was questioned around the 1980s as detailed morphological studies,
as well as molecular analyses, proved that “cosmopolitan species” were in fact siblings
or cryptic species (e.g., [55–63]). As recently synthesized by several authors [64–66], most
species natural distributions is discrete (although a few species from shallow waters and
more from pelagic deep sea environments have been shown to exhibit wide distribution
patterns), and these can be delimited with appropriate microscopic imagining techniques
or molecular analyses. However, the number of translocated species (intentionally or
unintentionally transported by anthropogenic means) outside of their natural range ex-
pands as we increase our surveys. Anthropogenic environments are more susceptible for
the establishment of non-indigenous species, both in terrestrial [67] and in coastal areas,
especially in ports and estuaries. Most recorded non-indigenous or invasive polychaete
species are within the Serpulidae, Sabellidae and Spionidae [68].

2. Results and Discussion
2.1. Systematics

Since 1866 annelids (although not including clitellates) were divided in two groups:
Annelidae erraticae and Annelidae sedentariae [69]. The terms Errantia and Sedentaria
were widely used afterwards to refer to the more mobile or vagile forms and the tubiculous
or sedentary forms, respectively. This division was originally made based on the type of
segmentation: polychaetes with homonymous segmentation (with all segments similar)
were placed in Errantia, and those with heteronomous segmentation (segments are grouped
in morphology distinct series each with a different function) in Sedentaria. This was
not strictly followed later on, and some annelid families were moved around between
these two groups (e.g., [51–54,70–73]). Since the 1960s, a different classification system,
where families were gathered in orders, started to be widely used (e.g., [74–78]). Some
of these “orders” were shown to be natural clusters when cladistic analyses started to be
implemented on annelids [79]. However, some of the early phylogenetic hypotheses of
Annelida were conflicting, especially at interpreting the basal relationships. While some
of the classifications, based on analyses of morphological data, divided Annelida into
Clitellata and Polychaeta, and the later further split into Scolecida (parapodia with similar
rami and the possession of two or more pairs of pygidial cirri) and Palpata (with palps and
peristomium limited to the lips) [8,41,79,80], other studies contradicted this view based
on methodological discrepancies (e.g., [81,82]). Later molecular phylogenies corroborated
that clitellates, echiurids, myzostomids and sipunculids, were within the polychaetes
and recovered some of the earlier considered taxa within Palpata (that is Canalipalpata)
closely related to Scolecida, returning to the earlier concept of Errantia (see Figure 1) and
Sedentaria (including Clitellata) (see Figure 2) (e.g., [12–15,83–85]). There is, however,
a series of heterogeneous and basally branching annelids previously considered among the
sedentarians or errants. These are the Palaeoannelida, Chaetopteridae, Amphinomida and
Sipuncula (e.g., [13–15], Figure 1).
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Figure 1. Small selection of some basal annelids (A,B) and Errantia (C–I). (A). Euphrosine foliosa Audouin & H Milne Ed-
wards, 1833 (Amphinomida); (B). Aspidosiphon muelleri Diesing, 1851 (Sipuncula); C. Dorvillea similis (Crossland, 1924) 
(Eunicida); (D). Amphiduros fuscescens (Marenzeller, 1875) (Phyllodocida); (E). Phyllodoce sp. (Phyllodocida); (F). Harmothoe 
areolata (Grube, 1860) (Phyllodocida); (G). Eunice cf. dubitata Fauchald, 1974 (Eunicida); (H). Vanadis Formosa Claparède, 
1870 (Phyllodocida); Nereis sp. (Phyllodocida). Photos: (A,D–I) by Xavier Salvador Costa; (B) by Daniel Martin; (C) by 
Alexander Semenov. 

Figure 1. Small selection of some basal annelids (A,B) and Errantia (C–I). (A). Euphrosine foliosa Audouin & H Milne
Edwards, 1833 (Amphinomida); (B). Aspidosiphon muelleri Diesing, 1851 (Sipuncula); C. Dorvillea similis (Crossland, 1924)
(Eunicida); (D). Amphiduros fuscescens (Marenzeller, 1875) (Phyllodocida); (E). Phyllodoce sp. (Phyllodocida); (F). Harmothoe
areolata (Grube, 1860) (Phyllodocida); (G). Eunice cf. dubitata Fauchald, 1974 (Eunicida); (H). Vanadis Formosa Claparède,
1870 (Phyllodocida); Nereis sp. (Phyllodocida). Photos: (A,D–I) by Xavier Salvador Costa; (B) by Daniel Martin; (C) by
Alexander Semenov.
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Figure 2. Small selection of the diversity encountered in Sedentaria. (A). Amphictene auricoma (O.F. Müller, 1776) (Terebe-
lliformia); (B). Maxmuelleria gigas (M. Müller, 1852) (Echiura); (C). Maldanidae (Capitellida); (D). Escalibregma sp. (Scali-
bregmatidae); (E). Armandia polyophthalma Kükenthal, 1887 (Opheliida), (F). Dasybranchus gajolae Eisig, 1887 (Capitellida); 
(G). Acromegalomma sp. (Sabellida); (H). Loimia tuberculata Nogueira, Hutchings & Carrerette, 2015 (Terebelliformia). 
Pho-tos: (A,C,E,F) by Xavier Salvador Costa; (D) by Dani Martin, (G,H) by Alexander Semenov. 
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(G). Acromegalomma sp. (Sabellida); (H). Loimia tuberculata Nogueira, Hutchings & Carrerette, 2015 (Terebelliformia). Photos:
(A,C,E,F) by Xavier Salvador Costa; (D) by Dani Martin, (G,H) by Alexander Semenov.
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2.2. Annelid Diversity

The current ranges of valid nominal species in the literature go from 14,000 to
20,000 [7,86–88], and databases such as WoRMS currently considers 23,774 accepted species
of extant annelids [89]. Recounting the number of species after the latest revisions, such
as the Handbook of Zoology chapters [29–31] and the present special issue ([90–101]), there
seems to be around 20,000 currently accepted nominal species (Figure 3). There is a con-
tinuous documentation of new species and diversity patterns as new taxonomic surveys
are carried out in poorly explored geographic areas and localities, in new environments,
such as the deep-sea and, surprisingly, also in apparently well-known zones when using
different collecting gear, sorting methods or identification techniques, such as SEM and
molecular taxonomy.
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Figure 3. Metatree (based in [88,102]). The estimates for currently valid species were obtained from
following studies or experts, although some minor groups are missing in the tree.; Clitellata, Erséus
and Martinsson, pers. com. [94]; Terebelliformia [93]; Arenicolidae [89]; Opheliidae [90], Salibregmati-
dae and Travisia [89,90]; Capitellida [89]; Spionida [103–106]; Sabellariidae [89,107]; Sabellida [99];
Siboglinidae [108]; Cirratuliformia [89,100]; Orbiniida [95]; Phyllodocida [101]; Eunicida [91]; Sipun-
cula [97]; Amphinomida [89].

There are several factors influencing the discrepancy in the total numbers of annelid
species considered as currently valid:

• Literature thorough scrutiny, including old and obscure publications. It is not uncom-
mon to see how some taxonomic and nomenclatural mistakes have been passed on to
most recent publications. Many annelid genera and families require a thorough follow
up of synonyms (species that may have been synonymized with others or moved to
a different genus or taxonomic group), and also way to rescue some old names that
have been lost in most recent taxonomic lists. Of course, databases such as WoRMS are
of invaluable help, but as much as they try to keep updated with taxonomic progress
there is often a lag [109].

• Some groups require an exhaustive taxonomic revision that includes the examination
of type material. This has become more difficult lately as shipping of preserved
specimens has become an extremely regulated process, and unaffordable (for economic
or time-related reasons) for some museums. Travelling to museums where the type
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specimens of a genus are housed is also challenging as these may be spread around
the globe.

• Taxonomists too often have a partial understanding of their group because we tend
to specialize in particular families, genera, environments or geographic areas. This
may lead to a non-confident or tentative perception of the overall diversity of larger
groups.

• When referring to the total number of a species we generally mean that the currently
accepted binomial names are based on morphologically recognizable entities. Tax-
onomists often hold knowledge of a wider number of morphospecies that are new but
not formerly described. In fact, the average time it takes from the first collection of a
specimen of a new species to its formal naming and description in a scientific paper is
21 years [110]. The reason for this may be the need for more specimens to account for
intraspecific variability or to be preserved in a specific manner, revisions/examination
of similar or related species are needed, the group requires a revision, a lack of fund-
ing or the need for collaboration with other (often lacking) experts in the group, e.g.,
taxonomic impediment, etc. [110,111]. Moreover, when the lines of evidence for delin-
eating species are molecular (e.g., DNA sequences), these newly recognized lineages
are not often accompanied by formal descriptions [112]. In these situations (no formal
binomials), species will be missing from species lists in most cases.

• Cryptic species. The number of complexes of annelid species accounted for in recent
years has vastly increased due to the use of molecular data. This has an impact in the
real overall diversity present in the group. Although this is not necessary reflected in
the total number of species accounted for, and this is because species delineated by
molecular mean are often not accompanied by a formal species description (as dis-
cussed by Goldstein et al. [112] and exemplified by [61,113–116]).

According to some predictions, there are potentially still 13,000 to 24,000 of annelid
species awaiting to be discovered and described [86].

2.3. Gaps of Knowledge and Future Perspectives

In this special issue, a considerable number of researchers have participated towards
providing a summary of the current knowledge about the biology, systematics and diversity
in a broad range of annelid taxonomic groups. Most of them acknowledge the improvement
in the assessment of internal relationships within the groups after molecular phylogenetic
analyses have been performed. However, they also indicate that these are still not fully
settled in most cases, and the analyses require further data, analytical considerations or
a combination of sources of information. Robust phylogenies with comprehensive taxon
coverage are crucial for stablishing the backbone of classification and to trace the evolution.
The review papers in this special issue point to some of the main gaps in the knowledge on
each of the taxonomic groups they deal with, but there are large similarities between all of
them. It seems clear that there are some geographic areas that have been scarcely studied.
In the marine realm, these include the North Indo-Pacific, South America, polar waters, but
mainly the African coastline. In the terrestrial and limnic realms, South America, Africa and
Asia are in need of further taxonomic surveys (Figure 4, but see papers in this Special Issue
for more information). Our knowledge about habitats such as extreme environments [92]
and the deep sea is also very limited (e.g., [117]).
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Figure 4. Occurrence data from Global Biodiversity Information Facility (GBIF) with 813,947 georeferenced records for
Annelida in the marine and terrestrial environments. In red and orange, hotspots of occurrences, in yellow sites with
one occurrence. This map does not show the real knowledge about annelid records, but those uploaded in this platform.
However, it can be used as a proxy of the current number of undertaken surveys.

In the papers within this Special Issue, there are suggestions as to how to proceed
in the future if we want to progress at a steady and efficient manner towards increasing
our knowledge about Annelida and in discovering the real diversity held in this phylum.
These can be summarized as follows:

• An increase in field work in the areas that have been poorly surveyed. There is also a
large amount of material, specially coming from deep sea expeditions, that is awaiting
to be studied in natural history museums. Therefore, only diving in poorly studied
geographic areas, in extreme environments and in museum collections will provide
us with a good understanding about the diversity of annelids.

• Most of the knowledge about the biology, anatomy and behavior of annelid groups is
based on a limited number of species for each family. This is more obvious in modern
biology that mainly focuses on model organisms, especially in the fields of compar-
ative physiology and morphology. Studies based on a larger number of taxa and
including some of the microscopic modern technics (phase contrast, scanning electron
microscopy, transmission electron microscopy, confocal laser scanning microscopy,
tomography and 3D reconstructions) are needed.

• It is recommended to undertake an integrative approach for delimiting and docu-
menting species. This includes the combination of morphological, molecular and
biological data. For several groups of annelids, understanding the reproductive and
developmental features has also shown to be helpful for species delimitation.

• Species descriptions or re-description often requires re-examination of type specimens
for species comparisons. Ideally, a thorough examination of specimens from different
geographical areas and ecological features is needed in order to establish species
boundaries and to assess intraspecific variability.

• Obtaining genetic information for at least the type species (preferably from type
locality) of each genus is needed, as this would allow generic revisions. Specimens for
genetic analysis should be collected from the type localities and vouchers deposited.

• For species with wide geographical or bathymetric distribution, population genetic
studies are necessary to reveal potential cryptic species. In this line, the advent of
high-throughput sequencing methods has a lot to offer for the generation of species
delimitation datasets.
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• Molecular taxonomy is revealing hidden diversity at a high speed, but formal tax-
onomic descriptions are lagging behind the molecular work. Therefore, we should
increase the efforts made in describing the species encountered after molecular meth-
ods. Only trained taxonomist can undertake the development of a proper account and
documentation of these lineages, as these activities often require revision of genera,
revision of old literature, synonymies and varying terminology, re-examination of
museum types, etc.

• Policy should take care of biodiversity, and governments should invest in systems
and in training the next generation of taxonomists. The taxonomic work has been
neglected for decades and we are suffering a loss of taxonomic knowledge. This has a
direct impact on the speed with which species are described, but also on the quality
of the biodiversity assessments and the studies based on those. We need to train and
sustain more systematists able to discover, describe, identify and classify species.

• We need to promote, care and engage with museum collections and public databases.
It is imperative that the type material (holotype, type series, additional specimens
showing intraspecific variability, and DNA extractions) is always deposited in properly
curated permanent museum collection(s) where it is maintained in optimal conditions.
Museums and researchers need to commit to open-access databases such as World
Register of Marine Species—WoRMS, Ocean Biodiversity Information System—OBIS,
National Center for Biotechnology Information—Genbank, or the Global Biodiversity
Information Facility—GBIF, that offer invaluable information for research projects.

2.4. This Special Issue

For the present special issue, we aimed at gathering updated information and discuss
the recent advances in different diversity aspects and in recent systematic revisions of some
of the major Annelida clades, including Palaeoannelida, Sipuncula, Phyllodocida, Eunicida,
Orbiniida, Cirratuliformia, Sabellida, Opheliida and Scalibregmatidae, Terebelliformia,
and Clitellata [90,91,93–97,99–101]. Other chapters take a more ecological approach, for
example the papers on extreme or interstitial annelids [92,98]. By gathering this infor-
mation, we aim to highlight the importance of annelids in biodiversity assessments and
ecosystem functioning, to recapitulate differing diversity aspects about selected groups of
annelids, and highlight the bridge between the written literature and the public databases
and platforms regarding taxonomy, occurrence data and DNA sequences (e.g., WoRMS,
GBIF, GenBank or DriloBASE Taxo). We also aim at revealing where the gaps of knowledge
are and where the efforts should be concentrated if we want to progress towards a deeper
understanding of the annelid diversity inhabiting our planet. We need to increase efforts
in exploring understudied areas and in revisiting museum collections, in reviewing some
neglected taxonomic groups, training the next generations of taxonomists and systema-
tists, uncover hidden diversity, embrace methods for speeding up diversity assessments
and taxonomic surveys, connect the updated taxonomic results with the more applied
approach of ecology and pay special attention to the large number of species that have
been translocated (e.g., [66]).

We have gathered 46 colleagues from 16 countries and 37 institutions at different stages
in their careers, stressing the importance of collaboration (every chapter is multiauthored
and multi-international), an amalgamation of different perspectives and sources of data,
aiming at mentoring the next generation of annelid workers and highlighting the interna-
tional and collaborative annelid community. Unfortunately, and due to different reasons,
this special issue is not complete, and some relevant annelid groups and environments
have not been included.
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