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Abstract: Bioerosion caused by boring mussels (Mytilidae: Lithophaginae) can negatively impact coral
reef health. During biodiversity surveys of coral-associated fauna in Curaçao (southern Caribbean),
morphological variation in mussel boreholes was studied. Borings were found in 22 coral species, 12 of
which represented new host records. Dead corals usually showed twin siphon openings, for each mussel
shaped like a figure of eight, which were lined with a calcareous sheath and protruded as tubes from
the substrate surface. Most openings surrounded by live coral tissue were deeper and funnel-shaped,
with outlines resembling dumbbells, keyholes, ovals or irregular ink blotches. The boreholes appeared
to contain black siphon and mantle tissue of the mussel. Because of the black color and the hidden
borehole opening in live host corals, the mantle tissue appeared to mimic dark, empty holes, while they
were actually cloaking live coral tissue around the hole, which is a new discovery. By illustrating the
morphological range of borehole orifices, we aim to facilitate the easy detection of boring mussels for
future research.
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Boring mussels (Mytilidae: Lithophaginae) are notorious for their bioerosion of lime-
stone rock, bivalve shells, reef corals and various manmade calcareous substrates [1–9].
Most of these boring mussels (also called date mussels) belong to the genera Leiosolenus
Carpenter, 1857 and Lithophaga Röding, 1798 [10]. In addition to causing damage to the
structure of reef corals [11–15], these animals are suspected to make host corals more
susceptible to diseases [16].

In order to detect the presence of boring mussels inside corals, it is important to
recognize the orifices of their boreholes. For their feeding and respiration, boring mussels
inhale and exhale seawater through a pair of siphons at the posterior edge of their mantle
tissue [17–19]. The siphons use openings in the substrate surface for contact with the
surrounding seawater [20]. The outline of such openings is described as “figure-of-eight”
or “dumbbell” [3–5,8,20–23] shape, not to be confused with the twin openings of U-shaped
excavations of Polydora worms (Polychaeta) [24–28] and the perforations made by boring
clionaid sponges (Porifera) [25,29].

In mussels of the genus Leiosolenus, the borehole and its openings are lined with an
aragonite (calcareous) sheath that is excreted by the bivalve [16,20,30,31]. At the substrate
surface, such sheaths may appear as chimney-like tubes that provide protection to the
siphons [21,22,32,33]. However, these sheaths are not always visible, and the openings of
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some borings are described as being oval in shape, which may perhaps be influenced by
the host coral or by overgrowing algae [20,32,33]. Oval orifices of mussel borings can be
irregular in shape [32,34] and should not be confused with the crescent-shaped openings of
some coral-dwelling gall-crab species [35–37]. Owing to their morphological variability, the
openings of mussel holes may not always be recognized; it is possible that they therefore
become classified as “unknown holes” [38]. Because boring mussels can have a negative
impact on the health of reef corals [12,16], it is important that their presence can be detected
through the easy recognition of their orifices. In this study, we provide information on how
these openings can be spotted in the field.

During biodiversity surveys of coral-associated fauna along the leeward side of Cu-
raçao (southern Caribbean) in October–December 2021 and April 2022 [39,40] a number
of live and dead corals were checked for boreholes of lithophagine mussels. To verify the
presence of mussels underneath openings, two corals were broken to reveal the position of
the mussels (Figure 1).
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showing either a lateral side (B) or the dorsal side (D). The dark color of each hole (A,C) indicates 
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Figure 1. Coral colonies of Siderastrea siderea at Curaçao, showing the position of borehole open-
ings (A,C: arrows) and Leiosolenus mussels underneath them (B,D). One coral contains three mus-
sels (A,B: I–III) and the other only one (C,D). Each exposed mussel has the posterior side upward,
showing either a lateral side (B) or the dorsal side (D). The dark color of each hole (A,C) indicates the
presence of the mussel’s mantle tissue; in some individuals approaching dark Bordeaux red (A: insert
2× enlargement). The mantle tissue may be covered by some detritus particles (B,D). In exposed
mussels, the mantle tissue is retracted inside the shell (B,D). Scale bars: 1 cm.
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The morphological variety in the orifices appeared to be more extensive than previ-
ously reported. Many corals, mostly dead but also live ones, showed two calcareous tubes
(sheaths), protruding from the substrate surface, described as aragonite chimney-like struc-
tures [21,32]. In addition to showing a figure-of-eight shape consisting of two connected tubes
(Figure 2A–E), some twin openings appeared to be separate (Figure 2F). A slit was seen in the
calcareous margin where twin tubes were merged, varying in width (Figure 2A–E). The tubes
did not protrude as high as those made by boring bivalves of the family Gastrochaenidae,
which excavate in dead coral [22,32]. Most orifices in live corals showed a so-called “dumb-
bell shape”, although “keyhole shape” appears to be more appropriate (Figure 2G–I). Other
openings surrounded by live coral tissue appeared to have an oval outline (Figure 2J–L) or
one resembling an irregular ink blotch (Figure 2M,N). A few boreholes showed an empty
Leiosolenus shell inside (Figure 2O).
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Figure 2. Morphological variation of orifices in corals containing Leiosolenus mussels at Curaçao.
(A–E) Figure-of-eight shape with two calcareous tubes showing black siphon tissue inside; the tubes
are connected apart from a slit (inserts: 2.5× enlargement). (F) The siphon tubes are separated by the
host coral. Black mantle tissue is cloaking holes that are shaped like a dumbbell or keyhole (G–I), an
oval (J–L), or an irregular ink blotch (M,N). (O) A hole containing valves of a dead mussel. Substrate:
dead coral (A,C,D); live corals of Orbicella franksi (B,I), Montastraea cavernosa (E,J), Madracis senaria (F),
Agaricia humilis (G,O), Siderastrea siderea (H), Favia fragum (K), Porites astreoides (L), Pseudodiploria
strigosa (M), Millepora alcicornis (N). Scale bars: 1 cm.
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The inner surface of the tubes was lined with black siphon tissue (Figure 2A–F). The tubes
were not visible in the larger holes (Figure 2G–N), which appeared to be pitch black, making
them appear to be empty. Closer inspection showed that they were filled with the mussel’s
black mantle and siphon tissue. Disturbance evoked the retraction of the tissue, revealing that
the orifice was funnel-shaped (Figure 3) and that the mantle originally covered live polyps
around the hole, masking its true outline. Since the boring activity of the mussels is in posterior
and lateral directions [22,41] and the host coral expands, the mussels are forced to move their
holes upward in order to remain close to the host’s surface [22], as illustrated by Gohar and
Soliman (1983: Figure 11B) [23] and by Yahel et al. (2009: Figure 1B) [42]. It is notable that
boring mussels of some genera have anterior boring glands [20], suggesting that they can
indeed bore in an upward direction. When the calcareous tubes fail in keeping track of the
expanding coral and stop reaching the host’s surface, the mussel’s mantle sustains an open
orifice surrounded by growing coral tissue, forcing the host to form a funnel-shaped entrance
(Figures 1C, 2H,I, and 3). Such openings may resemble crevices formed by Pedum clams that
live inside massive corals [11,43,44] or incavations formed by some coral-gall crabs [35].
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ure-of-eight twin openings (Table 1). There were twelve new Caribbean host records, in-
cluding those of the two Millepora species. Three extant Leiosolenus species have been 
described from Caribbean corals [45–49]: L. aristatus (Dillwyn, 1817), L. bisulcatus 
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three Madracis species: M. auretenra (misidentified as M. mirabilis), M. decactis (Lyman, 
1859) and M. formosa Wells, 1973 [45]. 

Figure 3. Leiosolenus boring in a colony of Siderastrea siderea in Curaçao with a funnel-shaped entrance.
(A) The mussel’s black mantle tissue expanded with a keyhole-shaped outline. (B) The same borehole
(from a slightly different angle) with part of the mantle tissue withdrawn (arrow and contour line
showing the previous position as depicted in (A)). Retraction of the mantle tissue reveals even more
that the opening is funnel shaped. Scale bar: 0.5 cm.

Close up, the color of the mantle tissue appeared to be dark red (Bordeaux) in some
mussel individuals, which is slightly visible in Figure 1A. An examination of black holes in
corals for the presence of mantle tissue inside makes it easier to see whether boring mussels
are present, distinguishing them from dark empty holes without mussels. Previous studies
on boring mussels did not pay attention to how mantle coloration may cause lithophagine
holes to become less discernible. This finding may help to study whether coral-dwelling
date mussels are more abundant than previously thought.

Mussel boreholes were found in 20 scleractinian species and two milleporids (Table 1).
Twenty species had large holes (oval and other shapes), and only nine showed figure-of-
eight twin openings (Table 1). There were twelve new Caribbean host records, including
those of the two Millepora species. Three extant Leiosolenus species have been described
from Caribbean corals [45–49]: L. aristatus (Dillwyn, 1817), L. bisulcatus (d’Orbigny, 1853)
and L. dixonae (Scott, 1986). The latter has only been recorded from three Madracis species:
M. auretenra (misidentified as M. mirabilis), M. decactis (Lyman, 1859) and M. formosa
Wells, 1973 [45].
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Table 1. Coral species at Curaçao observed as hosts for Leiosolenus; * = new host record. Shape of
orifices observed: T = figure of eight; O = other (oval, dumbbell, keyhole and ink blotch).

Host Taxon Orifice Shape

Cnidaria: Anthozoa: Scleractinia
Agariciidae

Agaricia agaricites (Linnaeus, 1758) O
Agaricia humilis (Verrill, 1901) * T O

Agaricia lamarcki Milne Edwards & Haime, 1851 * O
Astrocoeniidae

Stephanocoenia intersepta (Esper, 1795) O
Faviidae: Faviinae

Colpophyllia natans (Houttuyn, 1772) * T O
Diploria labyrinthiformis (Linnaeus, 1758) *

Favia fragum (Esper, 1793) O
Pseudodiploria strigosa (Dana, 1846) T O

Meandrinidae
Eusmilia fastigiata (Pallas, 1766) * O

Meandrina meandrites (Linnaeus, 1758) * O
Merulinidae

Orbicella annularis (Ellis & Solander, 1786) O
Orbicella faveolata (Ellis & Solander, 1786) * T O

Orbicella franksi (Gregory, 1895) * T O
Montastraeidae

Montastraea cavernosa (Linnaeus, 1767) O
Pocilloporidae

Madracis auretenra Locke, Weil & Coates, 2007 O
Madracis decactis (Lyman, 1859) T O

Madracis pharensis (Heller, 1868) * T
Madracis senaria Wells, 1973 * T O

Poritidae
Porites astreoides Lamarck, 1816 O

Siderastreidae
Siderastrea siderea (Ellis & Solander, 1768) O

Cnidaria: Hydrozoa: Anthoathecata
Milleporidae

Millepora alcicornis Linnaeus, 1758 * O
Millepora complanata Lamarck, 1816 * T O

Dead coral T

Leiosolenus aristatus has been recorded from Brazil as an introduced species in inva-
sive Tubastraea corals [50] and also from Southeast Florida but without a host record [51].
Leiosolenus bisulcatus was previously recorded from Agaricia agaricites, Favia fragum, Pseu-
dodiploria strigosa, Siderastrea radians, Siderastrea siderea and Stephanocoenia intersepta (as
S. michelini) [45,47,52]. Leiosolenus bisulcatus has also been recorded from Oculina arbuscula
Agassiz, 1880 in North Carolina, USA [53] and from Mussismilia hispida (Verrill, 1902) and
Siderastrea stellata Verrill, 1868 in Brazil [54]. In the present study, the mussels were not
identified at the species level, but considering previous host records, L. bisulcatus is the most
likely an associate for most host coral species, with the exception of L. aristatus for Madracis.

By presenting the host range of boring mussels and by showing the morphological
range of their borehole orifices, we aim to facilitate the easy detection of these bioeroding
organisms in future research. Our findings may also help in the interpretation of fossil
holes of boring mussels, recognized as trace fossils of the ichnogenus Gastrochaenolites, and
may tell us more about the condition and habitat of their host corals or other substrates
when these were still alive [4,55–59].

For a better understanding of the host specificity of coral-associated boring mussels,
more research is needed on the host selection during settlement of their larvae, like in
earlier studies on Indo-Pacific Lithophaginae [31,60,61], some coral barnacles [62,63], and
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Christmas tree worms [64,65]. The present findings may stimulate future studies on
borehole orifices in the Indo-Pacific, where more species of coral-dwelling Lithophaginae
and host-coral species occur than in the Atlantic [32,66–75]. Molecular techniques are
available [2,18,73,76] to study the host specificity of coral-dwelling Lithophaginae on coral
reefs in both the Atlantic and the Indo-Pacific.

Coral-dwelling mussels are not the only invertebrates participating in the coral-
associated biodiversity of reef corals [77–81]. It is noteworthy that Lithophaginae may also
contribute to this fauna indirectly by acting as hosts for symbiotic species themselves, such
as pea crabs [82,83]. It is evident that more research is needed on the ecology and evolution
of coral-dwelling mussels.
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