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Abstract

The Amazon Continental Shelf (ACS) is a complex habitat that receives a large annual

freshwater discharge into the ocean, producing a superficial plume and carrying with it large

amounts of nutrients to the continental shelf along thousands of kilometers while sustaining

high biodiversity in the estuary–ocean continuum. For the first time, this study monitored six

sites in a wide transect with approximately 240 km radius on the ACS every 2–4 months.

The objectives were (1) to analyze the composition of larval Brachyuran crabs and (2) to pre-

dict the importance of environmental parameters (temperature, salinity and chlorophyll-a) in

structuring their abundance. A total of 17,759 larvae identified were distributed in 8 families

and 24 taxa. The water salinity was the best predictor of larval distribution. The statistical

models used indicated that Panopeidae and Portunidae larvae are more frequent and more

likely to occur in shallow water layers, while Calappidae occur in deeper layers, and Grapsi-

dae, Ocypodidae, Sesarmidae, Pinnotheridae and Leucosiidae occur similarly in both strata.

The larval dispersal extent varies among families and throughout the year while the groups

are distributed in different salinities along the platform. The probability of occurrence of Por-

tunidae is higher in ocean water (� 33.5); Grapsidae, Panopeidae, and Pinnotheridae is

higher in intermediate and ocean salinity waters (25.5 to 33.5); Ocypodidae, Sesarmidae

and Calappidae is higher in estuarine and intermediate salinity waters (5 to 25.5), whereas

Leucosiidae, euryhaline, occur in all salinities (5 to 33.5). Furthermore, the Amazon River

seasonal flow and plume movement throughout the year not only regulate the larval distribu-

tion and dispersion of estuarine species but are also fundamental for the ACS species, pro-

viding the necessary nutrient input for larval development in the region.

Introduction

The various aspects of the Brachyura larval cycle, such as morphology, tolerance to environ-

mental factors, and geographic distribution have been studied from the 1960s to the present
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day [1–3]. The larval dispersal strategies (retention and export) of estuarine crab species are

known to be strongly correlated with vertical migration in the water column [4, 5] since the

speed and direction of horizontal currents vary with depth [6, 7]. The changing vertical posi-

tion of larvae, either by daily or ontogenetic migration, allows using the stratified currents for

displacement in different distances and directions [8], the so-called Selective Tidal Stream

Transport (STST) [9, 10].

Dispersal strategies have been identified especially from laboratory experiments used to

assess larva tolerance to varying abiotic factors and based on these results suggest the adopted

migratory behavior. This type of study has already been carried out for crabs of the families

Ocypodidae [11], Panopeidae [12], Varunidae [13], among several others. However, obtaining

a successful experiment simulating environmental conditions and guaranteeing complete lar-

val development, especially counting on obtaining ovigerous females whose eggs are in hatch-

ing conditions is not an easy task, which certainly contributes to the lack of data for most

species. On the other hand, investigating larval distribution in a natural environment (estuary

and continental shelf) and providing valuable information on the species life cycle and migra-

tory behavior, also presents several difficulties, especially in countries where research invest-

ment is low, justifying the low number of publications on this topic compared to studies

developed with the adult population in the same environments [14–20].

This scenario is aggravated in the vast and complex Amazon region, which harbours one of

the largest aquatic diversities on the planet so that a significant portion of species is still

unidentified and has unknown distribution limits [21–23], except for some relatively well doc-

umented commercial fish groups [24–26] and, recently, zooplankton [18], shrimps [27] and

thalassinoids [28]. In estuarine and coastal Amazonian regions, data on the distribution of Bra-

chyura larvae and their regulatory factors are extremely limited [29] and practically nonexis-

tent for the extended continental shelf (� 240 km from the coast) [30], one of the widest in the

world. This gap can be explained, mainly, by the high financial cost of sampling and strong

currents, which hinder access to the area and limit the knowledge on the Brachyura fauna life

history and geographical distribution.

This megadiverse and conspicuous environment of the Amazon Continental Shelf (ACS)

[26] drains an average discharge of 5.7 x 1012 m3/year from the Amazonas/Araguaia/Tocantins

hydrographic system [31]. This freshwater mass from the continent forms a surface plume on

the continental shelf, whose trajectory changes throughout the year due to the interaction of

different factors, such as the Amazon River discharge, North Brazil Currents (NBC), North

Equatorial Countercurrent (NECC) and Guyana Current (GC), the atmospheric Intertropical

Convergence Zone (ITCZ), as well as winds and tides [32, 33]. In addition to the enormous

water discharge, a large supply of organic matter and sediment, approximately 900 to 1150 x

106 ton/year [34, 35], greatly affects the planktonic dynamics and biomass of the adjacent

coastal and Atlantic regions [36, 37], making the Amazon estuary unique among estuaries

worldwide [38].

To date, the occurrence of 194 species of adult Brachyura has been recorded in the ACS, of

which only 74 have some larval stage described [39] while 34 species in their benthic phase are

constantly captured as accompanying fauna by the industrial fishing fleet with emphasis to the

pink shrimp Farfantepenaeus subtilis (Pérez-Farfante, 1967) [40]. In this study, the larval

period of Brachyura was evaluated regarding (1) parameters of larval composition/distribution

and (2) how these relate to environmental profiles. The first parameters were analyzed by the

larval dispersal extent related to the estuary/plume, and by the frequency of occurrence (FO)

in the plume categories. The latter was predicted by the probability of occurrence (PO) and

abundance for the temperature, salinity, and chlorophyll-a profiles in the ACS with a multimo-

del approach.
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Our objective is to improve the knowledge on biodiversity of this important component of

the food web, as well as to characterize the group configuration in the plankton of the conti-

nental shelf, revealing possible larval dispersal strategies, distribution, and life cycle in the larg-

est estuarine-marine region of the world. It was expected that all larval developmental stages of

each species should be distributed on their parental populations over the ACS.

Material and methods

Study area

The investigation and the field studies did not involve endangered or protected species. All

applicable international, national, and/or institutional guidelines for the care and use of ani-

mals were followed. The study was conducted on the Amazon Continental Shelf (ACS), specif-

ically in the area affected by the plume of the Amazon and Tocantins/Araguaia Basins. We

sampled in six different locations along the coastal area of Marajó Island to near the slope,

from 23 to 233 km away from the coast (Fig 1), and ranging from 2–4 months from July 2013

to January 2015. The Amazon River discharge to the ACS has strong seasonality, with approxi-

mately 220,000 and 100,000 m3 s-1 maximum and minimum flows in May and November,

respectively [41, 42]. Additionally, the Amazon plume that remains close to the continental

margin in the winter in the Northern Hemisphere (January to March / April), begins to spread

to the north during the peak discharge of the Amazon River in the spring (May). In the sum-

mer (June to July), the NBC retroflection takes the plume to the east and, in the fall (Septem-

ber), 70% of the plume water is exported to the east via this route [33, 43].

Data collection

Two sets of standardized samples were collected during daytime and syzygy from 6 sampling

stations differing in their distance from the coast and two different sampling depths (horizon-

tal, oblique), but also different seasons (7 expeditions in 2 years). Two zooplankton hauls were

conducted: one horizontal subsurface at 0.5 m from the surface and another oblique (’V’-

shaped, covering up to 75% of the local depth, approximately 10, 19, 34, 39, 53 and 80m depths

off the coast to the slope). Horizontal and oblique hauls in each site at different coastal dis-

tances (23, 53, 83, 158, 198, and 233 km), were chosen because they represent regions under

the greatest influence of the Amazon estuarine plume (23–83 km from the coast) and also to

contemplate the large extension of the Continental Shelf (approximately 300 km) with a dis-

tance of 158–233 km with a predominance of ocean waters. Both hauls used a plankton trawl

consisting of a 2 m long conical net with 200 μm mesh, 60 cm opening diameter, and a coupled

flow meter. The hauls lasted five minutes at a speed of approximately 2 knots (� 4 km / h).

Before plankton samples, the environmental variables water temperature (˚C), salinity, and

chlorophyll-a (μg / L) contents were obtained using a CTD probe (Hydrolab DS 5) that was

used to get samples every 0.5 meters.

The obtained 84 samples (7 expeditions x 6 sites x 2 hauling methods), with an initial vol-

ume of 500 mL each, were preserved in formaldehyde buffered with sodium tetraborate, 4%

final solution. In the laboratory, the samples were fractionated into 250 mL aliquots with a Fol-

som-type subsample. All brachyuran larvae in the aliquots were dissected and identified to the

lowest taxonomic level possible [1, 45–61] by observing the morphological parameters, such as

the arrangement and number of spines and setae in the antennae, antennules, maxilliped, max-

illa, abdomen, and telson, under an Axioscope Zeiss A1 optical microscope (Carl Zeiss, Ober-

kochen, Germany). The recent taxonomy was checked in the World Register of Marine

Species [http://www.marinespecies.org]. After identification, the non-dissected larvae were
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deposited and registered in the Carcinological Collection of the Museu Paraense Emı́lio Goeldi

(MPEG).

Data analyses

Density was estimated (larvae m–3) by dividing brachyuran larval abundance by the volume fil-

tered through the plankton net. The volume was given by the number of rotations of the

Hydrobios flowmeter attached to the net aperture, based on the difference between the initial

and final numbers observed in each trawl, and calculated as V = A × R × C, where A = net

aperture area (A = π.r2), R = number of flowmeter rotations during the haul (Df–Di, final and

initial numbers, respectively), and C = measurement factor (m rotations–1 = 0.3) determined

after device calibration.

The frequency of larval occurrence (FO %) was given for each species as FO = a × 100/A,

where a = number of samples containing the species, and A = the total number of samples.

The results were categorized as follows: very frequent (FO� 70%), frequent (30� FO< 70%),

infrequent (10 < FO< 30%), and sporadic (FO� 10%) [62].

Fig 1. The Amazon continental shelf, northern Brazil, and the six sampling sites surveyed (23 km, 53 km, 83 km, 158 km, 198 km, and 233 km offshore,

from the NE coast of Marajó Island). Reef shapefile [44]. Reprinted from [Moura et al., 2016] under a CC BY license, with permission from [Nils Edwin Asp

Neto], original copyright [2016].

https://doi.org/10.1371/journal.pone.0252695.g001
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The expected abundance of each species group (either family or genus, depending on the

lowest taxonomic level identified) was predicted by an intensive multimodel approach [63].

We fit several different predictors to each dataset, corresponding to each group abundance

data. Given the presence of many zeros in our datasets–some of which might simply be struc-

tural zeros–we conditionally predicted the expected abundance in the predicted probability of

occurrence of each species group using the presence-absence data. The details of each step of

the data analysis are given below.

To the presence-absence data, we fit binomial generalized linear models with logistic link-

function [64] using different predictors. We computed the predictors by taking the powerset

(excluding, of course, the empty set; please check [65] for clarifications on this issue) of the

available covariables (plankton net depth, temperature, chlorophyll-a, distance from the estu-

ary, salinity, and their squared values) and used each element of the powerset to fit the models,

which yields 511 different models. For each model, we computed the Akaike weights:

oj ¼
expf� Dj=2g

PM
i¼1

expf� Di=2g
; ð1Þ

where ωj is the Akaike weight for the j-th model and Dj ¼ AICj � mini2MfAICig is the scaled

AIC for the j-model in a set ofMmodels. The value ofM is the difference between the number

of elements in the powerset of covariables (511) and the number of models that achieved con-

vergence; thus,Mmay have varied greatly between any two species groups. Finally, the proba-

bility of occurrence (PO) was predicted based on all models weighted by their corresponding

Akaike weights. We used, as a reference scenario for the predictions, the median values of tem-

perature and chlorophyll-a and three different values of salinity (5, 23, and 33.5) for estuary

distance varying between 23 and 233 km (respectively, the nearest and the farthest sites).

Given the predicted PO using the presence-absence data, we fit Poisson generalized linear

models with log-link function to the observed abundance data using the previous rationale

(several models, each one with one element of the powerset of covariables, weighted by the

Akaike weights, discarding models that did not converge, computing the predictions on the

reference scenario). Since the observed abundances largely depend on the water volume col-

lected in the sample, we set the volume as an offset in all models and used the median for the

predictions.

The final prediction for the expected abundance of each group is given by the product

between its predicted abundance and the PO in the reference scenario. It is noteworthy that

our multimodel and information-theoretical approach does not allow (and it would be mean-

ingless) to report p-values of any kind [63, 68], thus we used the total weight of each variable

across all plausible models, varying from 0 (never important) to 1 (always important), as a

measure of influence on the predictions. For clarity, we considered a model to be plausible if

its Δj< 2, which, within the information-theoretical context, means that there is strong empir-

ical evidence that the model is a good approximation to reality (low loss of information) com-

pared to the pool of all models under consideration (see [63, 66–68], for instance).

Results

Environmental variables

The water temperature range in the ACS was 7˚C (23 to 30˚C), with the highest value recorded

in January (beginning of the more intense rain period) and the lowest in July (beginning of the

less rainy period). The lowest temperatures were recorded at great depths, from 200 km away

from the continent. However, a temperature of about 28˚C was predominant in most of the
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shelf extension. The water salinity varied widely (range of 36), with a minimum of 2 (May,

rainy season) and a maximum of 38 (January), while increasing gradually away from the coast.

The chlorophyll-a content ranged from 0.3 to 85.1 μg/L-1, in January, decreasing as the coast-

ocean distance increased (for detailed environmental variables in this region, see [27]). The

Amazon River outflow was higher (291,900 m3.s-1) in May and lower (�110,000 m3.s-1) in

October 2013–2014, with a water volume variation similar to the historical average from 1985

to 2015 (Fig 2, S1 Table).

Larval species/family composition

A total of 17,759 identified larvae were distributed in eight families and 24 taxa (Table 1).

Panopeus lacustrisDesbonne in Desbonne and Schramm, 1867 was the most abundant spe-

cies (67% FO, of which 57% megalopa), followed by Achelous spp. De Hann, 1833 (12%) and

Armases rubripes Rathbun, 1897 (9%). Both phases of larval development (zoea and megalopa)

of P. lacustris, A. rubripes, Gelasiminae Miers, 1886 and Portunidae Rafinesque, 1815 were

found in the ACS. Also, the occasional occurrence of Leptuca cumulanta (Crane, 1943) ZI and

ZII stages, and Ucides cordatus (Linnaeus, 1763) and Goniopsis cruentata (Latreille, 1803) ZI

were also observed but not included in the mathematical models, whereas the other species lar-

val stages occurred heterogeneously on the ACS (Table 1). Achelous spp., A. rubripes, Calappa
sp. Weber,1795, Callinectes spp. Stimpson, 1860, Gelasiminae 2, Pachygrapsus gracilis (de Saus-

sure, 1857), P. lacustris, and Pinnixa sp. White, 1846 larvae occurred over the entire study

period. WhereasHexapanopeus spp. Rathbun, 1898 zoea did not occur in May only and Portu-

nidae n. id. did not occur during the lower outflow in October. Additionally,Minuca rapax

Fig 2. Historical outflow variation of the Amazon River (Óbidos station, Pará) from 1985 to 2015 provided by the Brazilian national water agency

(ANA) (http://www.snirh.gov.br/hidroweb/). Black circles indicate field sampling.

https://doi.org/10.1371/journal.pone.0252695.g002
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(Smith, 1870), Gelasiminae 1, 2 and 3 larval density peaked during the higher river outflow in

May (see S1–S8 Figs).

Table 1. Larval composition and frequency of occurrence of Brachyura on the Amazon Continental Shelf. Legend according to [69] that characterize the Amazon

River plume depending on salinity: E = estuarine plume (0< Salinity� 20), IP = intermediate plume (20< Salinity� 31), OP = outer plume (31< Salinity� 36),

OO = open ocean (Salinity> 36). The frequency of occurrence increases as follows white� 10%, light gray� 10–30%, dark gray� 30–70%, and black� 70%.

Taxon Stages Month Hauls Plume

E IP OP OO

Calappidae

Calappa sp. ZI–ZIV Oct/14 O

Grapsidae

Goniopsis cruentata ZI Oct/13 O

Grapsidae n. id. ZII–ZIV May/14 O

Pachygrapsus gracilis ZI–ZIII Oct/13 O

Leucosiidae

Leucosiidae n. id. ZII–ZIV Jul/14 SS

Persephona spp. ZI–ZIV Oct/13 O

Ocypodidae

Gelasiminae 1 ZI May/14 SS

Gelasiminae 2 ZI May/14 SS

Gelasiminae 3 ZI May/14 SS

Gelasiminae n. id. ZII–ZVI Jan/14 SS

Leptuca cumulanta ZI, ZII Oct/13 O

Megalopa 1 Jan/14 O

Megalopa 2 Jul/14 SS

Minuca rapax ZI, ZIII, ZIV May/14 SS

Uca maracoani ZI, ZIII, ZIV Jul/13 O

Ucides cordatus ZI Jan/15 SS

Panopeidae

Hexapanopeus spp. ZI–ZIV Jan/14 SS

Megalopa Jan/15 SS

Panopeus lacustris ZI–ZIV, M Oct/13 SS

Panopeus sp. ZI–ZIV Oct/13 SS

Pinnotheridae

Austinixa sp. ZI–ZV Jan/14 SS

Dissodactylus crinitichelis ZI–ZIV Jan/15 SS

Pinnixa sp. ZI–ZV Jan/14 SS

Megalopa Jan/15 O

Portunidae

Achelous spp. ZI–ZVII Jul/13 SS

Callinectes spp. ZI–ZVIII Jul/13 SS

Megalopa 1 Jul/14 SS

Megalopa 2 Jan/14 O

Portunidae n. id. ZI–ZIII May/14 SS

Sesarmidae

Armases rubripes ZI–ZIV, M Jan/14 SS

ZI = zoea I; ZII = zoea II; ZIII = zoea III; ZIV = zoea IV; ZV = zoea V; ZVI = zoea VI; ZVII = zoea VII; ZVIII = zoea VIII; M = megalopae; n. id. = not identified;

SS = sub-superficial; O = oblique.

https://doi.org/10.1371/journal.pone.0252695.t001
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Larval dispersal (depth strata, coastal distance, and estuarine plume)

The mathematical model results indicate different patterns of larval dispersal along the conti-

nental shelf. Regarding the disposition in the water column, Panopeidae Ortmann, 1863, Pin-

notheridae De Haan, 1833, and Portunidae were more abundant and had a higher PO in

subsurface waters while A. rubripes and Ocypodidae larval stages were more abundant in the

water column. Calappa sp. larvae occurred almost exclusively in the water column, while

Grapsidae MacLeay, 1938 and Leucosiidae Samouelle, 1819 abundances were similar in both

strata, surface and water column (Figs 3–5).

The occurrence of crabs was heterogeneous, varying according to the distance from the

coast and water salinity. Portunidae larvae had a greater abundance and higher PO in waters

with 33.5 salinity and furthest from the continent, from 83 km away from the coast (Fig 4D).

On the other hand, Ocypodidae (Fig 4E) and A. rubripes (Fig 4F) abundance and PO were

higher near the coast, up to 158 km, in estuarine and intermediate plume waters, with 5 and

25.5 salinity, respectively. Grapsidae (Fig 3A), Panopeidae (Fig 3B), and Pinnotheridae (Fig

3C) larval stages were also more abundant in coastal waters, however, with higher PO in waters

with 25.5 and 33.5 salinity. Calappa sp. larvae occurred with especially higher density at 158

km (Fig 5G) between 83 and 233 km from the coast, mainly in waters with 5 and 25.5 salinity,

while Leucosiidae larval distribution (Fig 5H) was similar throughout the continental shelf

therefore, occurring in several salinities.

During the highest flow period, Pinnixa sp., Grapsidae, Panopeidae and Portunidae larvae

were concentrated in the mid and outer continental shelf since the freshwater plume “pushes”

the larvae to locations away from the coast. The opposite was observed during the lowest out-

flow, these larvae concentrated near coastal areas (23 and 53 km from the coast) due to the

lower freshwater outflow entering the ACS (Figs 6 and 7, S2 and S3 Tables). Furthermore, few

taxa were not affected by the Amazon plume. Leucosiidae had the highest larval density on the

middle continental shelf (158 km) while the density of Ocypodidae was also the highest up to

158 km in the highest flow (May) and decreased/reduced in the lowest flow period (October).

The A. rubripes larvae occurred particularly in three sites closest to the coast (23, 53, and 83

km) with few variations in the period and among months whereas Calappa sp. larvae occurred

158 km away from the coast, near reef areas, regardless of varying river flow, and D. crinitiche-
lisMoreira, 1901, occurred only between 83 and 158 km away from the coast (S2 Table).

Discussion

The results indicate that the larval dispersal of Brachyura along the ACS is structured by the

Amazon River plume, whose outflow reaches the highest and lowest volume in May and Octo-

ber, respectively. Larval species that hatch near the coast are subject to the same abiotic factors

as light, temperature, pressure, and salinity [70], and biotic factors such as predators and food

availability [71, 72]. However, each taxon can adjust its vertical position up or down the water

column according to the changing exogenous stimuli [10, 73, 74], affecting the direction and

the distance that the larvae are horizontally transported [19, 75]. These different responses are

probably related to characteristics intrinsic to each species or family, such as adult habitat [76],

osmoregulation [77], presence of predators [78], among other factors.

In the export process, brachyuran larvae are carried along the plume edge towards the ACS.

In the maximum flow conditions, the Amazon plume can extend up to 300 km from the coast

[79] and up to 10 meters deep [80], with salinity below 35 [81].

The pattern observed in other world regions suggests that temperature is one of the most

important seasonal factors controlling the biological processes within plankton populations

and communities [82, 83]. In this study, however, temperature and chlorophyll-a were not
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important dispersal predictors so the different larval strategies seem to be mainly regulated by

the strong influence of the Amazon River outflow on the water salinity and the Amazon plume

expansion and retraction throughout the year (S4 Table). Increases in meroplankton abun-

dance are likely to be ascribed to high nutrient input and primary production, e.g. chloro-

phyll-a between 4 and 5 (mg/m3) [15] and the fact that chlorophyll-a is widely available in

PCA, this factor does not explain the variation in larval abundance. Although plume flow was

not closely followed in this study, its influence on the salinity is notorious and, consequently,

on the larval community of brachyurans on the continental shelf, diverging from other coastal

regions due to the peculiar characteristic and strength of this hydrological system. Other fac-

tors frequently related to the movement of planktonic larvae, such as acting tides, winds, and

surface currents [19, 84] were not addressed in this work, but these important parameters

should be investigated in future research. In this context, the larval dispersal of each family

and its distribution in the water column on the ACS is detailed below.

Grapsidae

The Grapsidae zoea (P. gracilis and Grapsidae n. id.) is distributed similarly in the water col-

umn and surface layer, with higher expected abundance and PO in waters with salinity

between 25.5 and 33.5, estimated to be more coastal. However, the larvae moved away from

the coastal region, occurring only in 198 and 233 km during the highest discharge of the Ama-

zon River (May) but moved closer to the continent, where water salinity is higher compared to

the plume, during the lowest flow period.

Our results confirm the larval export proposed for P. gracilis [85], however, PO is higher in

more coastal areas, a behavior also adopted by others Pachygrapsus Randall, 1840 [5, 86, 87],

HemigrapsusDana, 1851 [88], and Geograpsus Stimpson, 1858 [89]. Similar to P. gracilis, larvae

of the Pachygrapsus andHemigrapsus genera also go through all the larval developmental

stages in the mid-continental shelf [90, 91]. Some zoeas like P. crassipes zoeae are distributed

in all water column strata, surface, and bottom [70], whereas others such asHemigrapsus zoeae

have negative geotaxis and swim towards the surface [75], spending the entire larval cycle

about 15m deep [92], revealing that the vertical arrangement varies among different genera

and species of grapsids in the water column.

The P. gracilis zoea I, II and III were the most abundant larvae of the family in the ACS, and

occurred every month, confirming the continuous reproduction, similar to P. transversus [93,

94]. However, larval peaks for the species were observed on the ACS and estuary in October

and May, respectively [29, 85]. P. gracilis zoeae seem to have a high tolerance to varying salinity

since three of at least five zoea stages that make up the genus [95, 96] are found over the entire

ACS extension (23 to 233 km) and in different salinity strata. No megalopa of this species was

found in the ACS, despite the information that they develop on the continental shelf [97] and

immigration is correlated with high salinity and current speed, typical of estuary flood tides.

Future work should clarify such gaps regarding other grapsids in ACS.

Panopeidae

Panopeidae larvae are distributed mainly in the surface layer of the water column, both zoea

and megalopa had a higher predicted abundance and PO associated with intermediate and

Fig 3. Final expected abundance (product between the expected abundance and the probability of occurrence) of Brachyura larvae (A:

Grapsidae; B: Panopeidae; C: Pinnotheridae) according to the distance from the estuary and net depth in different salinities. The shaded

regions refer to the weighted 95% confidence interval. All predictions used the observed median values of temperature (28.4˚C), chlorophyll-a
(7.34 μg / L) and water volume (278.3 m–3).

https://doi.org/10.1371/journal.pone.0252695.g003
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Fig 4. Final expected abundance (product between the expected abundance and the probability of occurrence) of Brachyura larvae (D:

Portunidae; E: Ocypodidae; F: Sesarmidae) according to the distance from the estuary and net depth in different salinities. The shaded

regions refer to the weighted 95% confidence interval. All predictions used the observed median values of temperature (28.4˚C), chlorophyll-

a (7.34 μg / L) and water volume (278.3 m–3).

https://doi.org/10.1371/journal.pone.0252695.g004

Fig 5. Final expected abundance (product between the expected abundance and the probability of occurrence) of Brachyura larvae (G: Calappidae; H:

Leucosiidae) according to the distance from the estuary and net depth in different salinities. The shaded regions refer to the weighted 95% confidence interval.

All predictions used the observed median values of temperature (28.4˚C), chlorophyll-a (7.34 μg / L) and water volume (278.3 m–3).

https://doi.org/10.1371/journal.pone.0252695.g005
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oceanic salinities (25.5 and 33.5), as well as lower and higher density in May and October,

respectively. Because PanopeusH. Milne Edwards, 1834 larvae occur in the full extent of the

ACS (� 240 km), they seem to have greater tolerance to ocean waters compared toHexapano-
peus spp. [54]. The latter also performs larval export, but dispersal extends up to 158 km from

the coast, with all its zoea stages (I to IV) developing on the mid-continental shelf.

Pinnotheridae

The predicted abundance and PO for Pinnotheridae larvae were slightly higher in surface

waters and with intermediate and oceanic salinity (25.5, 33.5) while all zoeal stages were pres-

ent in the ACS. Further, Pinnixa and AustinixaHeard and R.B. Manning, 1997 larval dispersal

reached half the extension of the continental shelf (158 km), and were present throughout the

year, with a density peak in January, consistent with the reproductive habits already reported

for other species [98–101].

Pinnotheridae larval export has already been suggested based on the high abundance of

zoea I larvae in the superficial layer during the estuary low tides, in addition to a positive corre-

lation between larval density and salinity [102], which is in line with our results. In California

(USA) estuaries, this migration of zoea I to the continental shelf was observed for Pinnixa faba
(Dana, 1851), P. tubicolaHolmes,1895, Pinnotheres pugettensisHolmes, 1900, and Scleroplax
granulata Rathbun, 1894, where later stages zoea developed at a depth of 17 m while megalo-

pae, between 49 m and 6 km from the coast [92]. In the Chesapeake Bay, all larval stages of Pin-
nixa chaetopterana Stimpson, 1860, Pinnixa sayana Stimpson, 1860, Tumidotheres maculatus
(Say, 1818) and Zaops ostreum (Say, 1817) were always found close to the bottom, indicating

larval retention [2, 103]. Likewise, larval retention for Pinnixa gracilipes was also suggested in

an Amazonian estuary due to the presence of ZI, ZII and ZIV in the lower estuary [29].

In our study, only the Pinnixa sp. distribution was influenced by the Amazon River outflow

since larvae occurred 83 km and 23 km from the coast during high and low discharge, respec-

tively. The Austinixa sp. distribution did not vary much while D. crinitichelis zoeae were found

in October only, 83 and 158 km from the coast, places that overlap the coral reefs of the ACS,

potential habitats of several Echinoidea, host organisms of the adult crab (mainly the Orders

Clypeasteroida and Spatangoidea) [56].

In this context, we believe that the different patterns may be related to the host habitat,

since Pinnotheridae consists basically of symbiotic crabs or parasites of benthic invertebrates,

which inhabit thalassinoids burrows [98], Polychaeta tubes [99], bivalves [104], echinoderms,

among others. And because the symbiotic relationships can vary from quite host-specific to

very non-specific [105], there will likely be species adaptations to the different host environ-

ments, which should be further investigated in more detail.

Portunidae

In the ACS, we found all larval stages of Achelous spp. and Callinectes spp., as well as Portuni-

dae larvae distributed in the superficial layer, with greater abundance and PO from 83 km

from the coast and in high salinity (33.5), where the later developmental stages are highly

abundant. Also, larvae of this family are found more distant (83 to 233 km) and closer (23 to

233 km) to the coast during the high and low outflow of the Amazon River, respectively,

Fig 6. Density of Brachyura larvae on the ACS in May and October 2014. Grapsidae (A), Panopeidae (B), Pinnotheridae (C),

and Portunidae (D). Bold line: plume-ocean ecotone (44). Reprinted from [Moura et al., 2016] under a CC BY license, with

permission from [Nils Edwin Asp Neto], original copyright [2016].

https://doi.org/10.1371/journal.pone.0252695.g006
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indicating their affinity with ocean waters while confirming this group previous work on the

larval stages.

We assume that export strategy [106], is probably followed by the Callinectes larvae that

leave the Amazon estuaries close to the plume toward the continental shelf. Whereas marine

species larvae that inhabit the ACS, such as Achelous and Cronius, for example, normally

develop in the ocean salinity range [3], from hatching to settling in the benthic or free-swim-

ming habitat of adults. In both cases, inhabiting high salinity waters is essential for the success-

ful larval development of these species [107, 108].

The larvae identified here as Achelous spp. are believed to correspond mostly to Achelous
rufiremus (Holthuis, 1959), which is the most abundant benthic macroinvertebrate species at

almost four degrees of latitude in the ACS and is the most abundant in the bycatch pink

shrimp fishing [40, 109]. However, the description of the larval morphology is not available to

confirm this hypothesis. This problem can be solved in the future by using DNA barcoding

analysis to identify larvae originating from the natural environment.

Ocypodidae

In the ACS, all Ocypodidae larval stages were present, with zoea and megalopa concentrated

up to 158 km and 83 km away from the continent, respectively. The highest predicted abun-

dance and PO were recorded in estuarine and intermediate salinity waters (5 and 25.5), with a

greater dispersal extent (up to 233 km) and reproductive peak during the Amazon River high

outflow (May), as observed in the Amazon estuary [29].

This family export strategy to the adjacent continental shelf is already known [4, 110–112].

Except for L. cumulanta, which retains all larval stages in the estuary [29], so that ZI and ZII

larvae may have been accidentally dragged by currents to the continental shelf, thus justifying

the single occurrence 23 km from the coast.

The Ocypodidae larval density was higher in deep compared to superficial waters. Similar

to observations forMinuca pugnax (Smith, 1870) larvae [11] and other ocypodids, where ZI

and the later zoea stages occur close to the surface and deeper in the water column, respec-

tively, suggesting an ontogenetic alteration in the vertical position [103], allowing these larvae

to take advantage of the gravitational circulation for eventual transport of the megalopa back

to the estuary [16], and to settle juveniles and adults in the same habitats [113, 114].

The U. cordatus species is a peculiar case because has an inconspicuous cycle, which breeds

seasonally in the Amazon, specifically in the rainy season full or new moon [115, 116]. Our

sample covered two reproductive cycles of this crab, despite that, only three ZI specimens were

found at the estuary mouth (23 km) in January. This low abundance probably results from the

species high synchronization associated with the action of currents, since U. cordatus always

spawns at ebb tide in the night, in new or full moons [117], and its synchronization is so strong

that one day later upon release, ZI larvae are no longer found in the estuary [116]. Thus, once

on the continental shelf, the larval transport may have been enhanced since, in January, the

land winds blow the Amazon plume against the continental margin, which follows quickly

with the North Brazil Current towards the French Guiana [33, 80], justifying not being cap-

tured by our nets.

Fig 7. Density of Brachyura larvae on the ACS in May and October 2014. Ocypodidae (E), Sesarmidae (F), Calappidae (G),

and Leucosiidae (H). Bold line: plume-ocean ecotone (44). Reprinted from [Moura et al., 2016] under a CC BY license, with

permission from [Nils Edwin Asp Neto], original copyright [2016].

https://doi.org/10.1371/journal.pone.0252695.g007
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Therefore, unlike U. cordatus, the possibility of finding Gelasiminae larvae is always greater

since its several spawnings throughout the year guarantee a constant larval supply to the conti-

nental shelf.

Sesarmidae

This semi-terrestrial crab A. rubripes has continuous reproduction with a peak of ovigerous

females in the summer (December, January, and February) [118]. Unlike adults living in oligo-

haline estuaries, larvae are not as tolerant to low salinity so that full development is only possi-

ble in more saline waters, suggesting migration to the continental shelf [119, 120]. Our results

confirm larval export, with all larval stages dispersed up to 123 km from the coast, and repro-

ductive peak in January, the high rainfall period in the Amazon region. The rainfall intensity

seems to be the parameter regulating A. rubripes reproduction in the equatorial region, as

observed for Aratus pisonii (H. Milne Edwards, 1837) [121, 122] and Armases angustipes
(Dana, 1852) [123], which can be advantageous to these populations due to increased concen-

tration of nutrients, higher tides—increasing the chance of transport over long distances—and

increased seawater productivity, which favors the larval development in plankton [121, 124].

In the ACS, the abundance and PO predicted for A. rubripes zoea and megalopa are higher

in deeper water, mainly in estuarine salinity (5), with lower occurrence in intermediate salinity

(25.5). These salinity values are consistent with those used in the species cultivation for the lar-

val description (about 19) [60] but differ from the high survival range of zoea (30) for speci-

mens grown in Uruguay [120]. Such disagreement seems to indicate that the saline tolerance

varies among larval populations from different locations, adapting to the low salinity resulting

from the great discharge of freshwater from the estuaries while the plume seasonality and river

flow do not affect their distribution in the plankton in the Amazon region. Besides, the mega-

lopa was observed concentrated up to 83 km away from the coast, seemingly opting for even

lower salinity waters compared to the zoea, a pattern previously observed in megalopae of A.

pisonii [125] and Armases spp. [126, 127], and also followed by other crab species that re-

migrate from the continental shelf to estuaries and rivers.

Calappidae

The zoea of Calappa sp. occurred on the platform throughout the year, indicating continuous

reproduction. The high predicted abundance and PO in deeper layers of the water column

indicate that zoeae were practically absent from the surface layer. This genus inhabits coral,

sand and mud bottoms, and is exclusive to the continental shelf [39]. The larvae were concen-

trated mainly in the coral reef regions (83 to 158 km from the coast), while adults [40] were

distributed over the entire reef system area, estimated between 9,500 and 56,000 km2 [44, 128].

Thus, these environments, fundamental to the development of Calappa, are greatly affected by

humans since 1960 due to predatory bottom trawling fishing to capture the pink shrimp,

which destroys the reefs and captures the genus as bycatch [40, 109], and the future possibility

of oil and gas exploration in the area [128].

Although adults inhabit only the continental shelf, and the genus larval distribution is not

affected by the seasonality of the river flow, we find that Calappa zoea seems to have some

affinity with plume water, perhaps by the injection of land-derived sediments, nutrients, and

organic matter dissolved in the ocean environment [129]. This transition region, where the

plume front meets the ocean water is an ecotone (83 to 158 km), intricately linked to the river

discharge flow, being one of the ACS areas with the greatest amplitude of primary productivity

when the concentration of nutrients and irradiance conditions are optimal, especially in the
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maximum flow period [43, 81], to support larval marine species, such as Calappa, living close

to the transition zone.

In the ACS, four species of the genus are found in the adult population [40]: Calappa nitida
Holthuis, 1958, Calappa ocellataHolthuis, 1958, Calappa sulcata Rathbun, 1898, and Calappa
gallus (Herbst, 1803). The latter is the only species in the region with the ZI stage described

[45], which limited the identification of the specimens.

In our study, we found zoeae with morphological characteristics corresponding to the ZIV,

based on this, we believe that the larval development of the Calappa species in the ACS consists

of ZI to IV and megalopa, which should be confirmed in later larval descriptions.

Leucosiidae

The expected abundance and PO for Leucosiidae zoea were high in waters with different salin-

ities (5, 25.5, and 33.5) while not differing regarding the vertical arrangement in the water col-

umn. This response may be related to the combination of distinct characteristics of the two

groups found. The Persephona Leach, 1817 zoeae were distributed more homogeneously along

with the ACS and not only close to the coastal region (23 km) whereas Leucosiidae zoeae were

present only away from the coast (from 83 km). Despite this, during the largest river flow, the

occurrence of both taxa was restricted to 233 km from the coast, and their distribution was

more homogeneous in October and January.

Similar to Calappa, this group inhabits the sandy and mud bottoms, and coral reefs on the

continental shelf, it occurs almost all year round and is also caught as accompanying fauna in

shrimp fisheries [40]. Of the eight Leucosiidae genera inhabiting the ACS, only the larval

development of Persephona mediterranea (Herbst, 1794) has been completely described (ZI–

ZIV and megalopa) [48] while Persephona lichtensteinii Leach, 1817 and Persephona punctata
(Linnaeus, 1758) has been only the ZI described in the literature [49]. Little is known about the

developmental stages of the life cycle of these crabs, so this is the first information about the

larval ecology of the group in a natural environment.

Amazon specificity

The process of zoeal larvae leaving from estuaries and returning later as megalopa has been

extensively studied and reviewed worldwide [9, 10, 106, 130]. The larval supply of Brachyura is

continuous, with few exceptions as U. cordatus, because the ACS is located in a tropical Ama-

zon region, where summer lasts throughout the year, unlike temperate environments with

well-defined seasons, where the spring and summer are the periods of highest larval density

[130–133].

Despite this, collecting Brachyura larvae in the plankton of this area is still challenging

since, besides the large ocean volume in which the larvae can potentially disperse, they are also

distributed in larval patches that remain intact from spawning to the megalopa stage [134,

135]. Given this, knowing the larval distribution of families in the different strata of the water

column is relevant for future sampling, where oblique hauling has proven to be effective in

capturing Ocypodidae larvae, Armases and Calappa, while surface hauling is ideal for sampling

Panopeidae, Pinnotheridae and Portunidae in the ACS.

The Amazon fluvial discharge affects the dispersion of estuarine families while the Amazon

plume influences the species of the continental shelf, being responsible for the continuous dis-

tribution of nutrients on the ACS [79] and increasing the primary ocean production in the

area. Moreover, the area connecting the ACS and the coast consists of mangroves of the Ama-

zon River mouth, considered a Ramsar site, is extremely important for numerous aquatic

organisms, whether as habitat, feeding zone, or nursery [136, 137].
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Conclusion

Our study provides the first documentation on the larval dispersal of Brachyura on the Ama-

zon Continental Shelf. Additionally, it is the first time that data on expected abundance is pre-

dicted for each group and presented as the product between the predicted abundance and the

probability of occurrence. Crab larvae showed different distribution and dispersal boundaries,

adapting to this particular environment. The group of estuarine species P. gracilis, Gelasimi-

nae, U.maracoani (Latreille, 1802), P. lacustris, Panopeus sp., Austinixa sp., Pinnixa sp., Calli-
nectes spp. and A. rubripes perform larval export to the platform, while Calappa sp.,

Leucosiidae, Persephona spp., D. crinitichelis and Achelous spp., inhabit the platform as adults,

especially close to the rhodolith reef region and complete the larval cycle in this same environ-

ment. We confirm that the flow of the Amazon River greatly influences the dynamics of the

Amazon Continental Shelf, especially the salinity, which is directly related to the larval distri-

bution of Brachyura in this area. We emphasize that further studies on larval description and

DNA barcoding could contribute to understanding the Brachyura larval ecology since to pro-

tect and value the region biodiversity, the knowledge on species identity, spatial distribution,

and correlations with environmental conditions are essential, as these existing gaps create diffi-

culties for identifying and defining priority areas for effective species conservation in the Ama-

zon region.
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https://doi.org/10.1590/S0044-59672009000200014

80. Lentz SJ, Limeburner R. The Amazon River Plume during AMASSEDS: Spatial characteristics and

salinity variability. J Geophys Res. 1995; 100: 2355–2375. https://doi.org/10.1029/94JC01411

81. Smith WO Jr, DeMaster DJ. Phytoplankton biomass and productivity in the Amazon River plume: cor-

relation with seasonal river discharge. Cont Shelf Res. 1996; 6: 227–244. https://doi.org/10.1016/

0278-4343(95)00007-N
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109. Nóbrega PSV, Santos CRM, Martinelli-Lemos JM. Impacts of trawling on the invertebrate assemblage

of Blue Amazon. Bol Inst Pesca; Forthcoming.

110. Dittel AIR, Epifanio CE. Seasonal abundance and vertical distribution of crab larvae in Delaware Bay.

Estuaries. 1982; 5: 197–202. https://doi.org/10.2307/1351835

111. Morgan SG. Adaptive significance of hatching rhythms and dispersal patterns of estuarine crab larvae:

avoidance of physiological stress by larval export? J Exp Mar Biol Ecol. 1987; 113: 71–78. https://doi.

org/10.1016/0022-0981(87)90083-9

112. Rodrı́guez A, Drake P, Arias AM. Reproductive periods and larval abundance patterns of the crabs

Panopeus africanus and Uca tangeri in a shallow inlet (SW Spain). Mar Ecol Prog Ser. 1997; 149:

133–142. https://doi.org/10.3354/meps149133

113. Brodie RJ, Behum ME, Monroe E, Glenn N, Staton JL. Recruitment to adult habitats following marine

planktonic development in the fiddler crabs, Uca pugilator, U. pugnax, and U. minax. Mar Biol. 2005;

147: 105–111. https://doi.org/10.1007/S00227-005-1557-1

114. O’Connor N. Settlement and recruitment of the fiddler crabs Uca pugnax and U. pugilator in a North

Carolina, USA; salt marsh. Mar Ecol Prog Ser. 1993; 93: 227–234. https://doi.org/10.3354/

meps093227

115. Diele K, Simith DJB. Salinity tolerance of northern Brazilian mangrove crab larvae, Ucides cordatus

(Ocypodidae): necessity for larval export? Estuar Coast Shelf Sci. 2006; 68: 600–608. https://doi.org/

10.1016/j.ecss.2006.03.012

116. Diele K. Life history and population structure of the exploited mangrove crab Ucides cordatus cordatus
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