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India: An approach for
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The Mahanadi Estuarine System (MES), with a complex network of freshwater

channels, rivers, andmangroves, is a leading seaport in State Odisha on the east

coast of India, but subjected to intense human activity in recent years. Such

anthropic impingements are known to impact sediment-dwelling biota

adversely. However, information on the macrobenthic community of the

MES is not well documented yet. Therefore, the primary objectives of this

study (February 2013-March 2017) were to address knowledge gaps on the

macrobenthic community structure vis-à-vis local environmental conditions

and to evaluate the extent of anthropogenic disturbances on macrobenthos.

The results from 264 benthic grab samples (van Veen, 0.04m2; 2 replicates × 12

GPS fixed locations × 3 seasons) revealed 73 taxa representing 64 genera and

48 families of macrobenthic fauna. The polychaetes (81.41%) and crustaceans

(15.42%) were significant faunal groups that contributed mainly to the benthic

population and diversity. Multivariate approaches using benthic community

attributes and biotic indices (AMBI and M-AMBI) as proxy measures of

environmental disturbances proved effective for appraisal. The correlations

between the environmental parameters (temperature, pH, salinity) and

community estimates were statistically significant. Hierarchical clustering

analysis disclosed three major groups (Global R 0.70; p < 0.002) influenced

by tolerant/opportunist species. The lower abundance, richness, diversity, and

dominance of opportunistic species mark the signs of environmental stress.
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The community health status remained unbalanced, as indicated by AMBI

scoring. M-AMBI analysis contributed best in differentiating areas exposed to

diverse impacts and indicated polluted community health status with moderate

ecological quality. Our results reiterate the effective use of macrobenthos as

bioindicators for ecological status and monitoring. The findings could be

utilized for future monitoring assessments, translated into valuable

information, and designed into well-defined sustainable management

strategies for the MES.
KEYWORDS

macrobenthos, pollution monitoring, Mahanadi estuary, Odisha, Bay of Bengal, AMBI,
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Highlights
• Comprehensive assessment of the macrobenthic fauna

from a tropical mangrove-associated estuary in India.

• Differential benthic responses to anthropogenic

interference examined through a suite of univariate

and multivariate analyses.

• Less diverse benthic communities and more

opportunist ic species marked signs of local

environmental stress.

• AMBI and M-AMBI indices differentiated benthic

community health/ecological quality in relation to

various anthropogenic impacts.

• Macrobenthos effective as bioindicators for habitat

monitoring and assessment of the estuary.

• Recommendations for conservation and management of

the Mahanadi estuary outlined.
Introduction

Estuaries are naturally stressed bionetworks that exhibit a

high degree of variability in their environmental conditions

(Elliott and Quintino, 2007). These highly productive

ecosystems have been the focal points for various human

activities, of which rapid industrialization and indiscriminate

urbanization are accountable for divergent pressures and

ecosystem degradation (Lotze et al., 2006; John et al., 2017;

Dash et al., 2021). Together with extreme climatic events,

unprecedented demands of a rapidly increasing population for

space, development, and resources have resulted in changes

across global estuaries and started questioning the future of

the estuaries (Kennish, 2002; Wetz and Yoskowitz, 2013; Elliott
02
et al., 2019). Given the limitations of physicochemical

approaches for determining the effects of such disturbances,

the importance of macrobenthic investigations are frequently

emphasized (Dauvin et al., 2016; Belal, 2019).

With extended life spans, sedentary lifestyles, and varying

thresholds of sensitivity to ambient water/sediment conditions,

benthic organisms are excellent bioindicators of prolonged

environmental variations, mirrored through fluctuations in

species composition and abundance (Veiga et al., 2016; Sany

et al., 2018a). Furthermore, the distribution patterns of

macrobenthos are susceptible to a wide range of anthropogenic

interferences and show spatial and temporal shifts accordingly

(Dash et al., 2021). Therefore, studies on the macrobenthic

communities are increasingly adopted for assessing the health of

the aquatic ecosystems (Mulik et al., 2017; Borja et al., 2019; Mulik

et al., 2020a; Mulik et al., 2020b; Pandey et al., 2021; Dauvin et al.,

2021; Subramanian et al., 2021).

Many tropical estuaries, particularly in South and Southeast

Asia, are polluted and over-exploited (Bae et al., 2017; Sarathy

et al., 2022). In India, the estuaries have been reported with

altered or degraded environmental quality owing to the

inadvertent growth of industries and metropolises on the

banks of the major rivers (Sigamani et al., 2015; Feebarani

et al., 2016; Mulik et al., 2017; Mitra et al., 2018; Mulik et al.,

2020a; Mulik et al., 2020b). The increased loads of municipal and

industrial effluents, in amounts higher than the assimilatory

capacity of the system, are accumulating pollutants and causing

hypoxia-like conditions (Mitra et al., 2018; Mulik et al., 2020a;

Kumar et al., 2021). Despite the large deltas with some luxuriant

estuarine mangrove cover along the east coast of India (in

contrast to the west coast), studies that have looked at the

effects of changed environmental conditions on macrobenthic

fauna are largely limited (Raut et al., 2005; Ansari et al., 2017;

Bhowmik and Mandal, 2021; Dash et al., 2021; Pandey

et al., 2021).
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The Mahanadi estuary at Paradip in the State of Odisha

(Figure 1), a leading maritime gateway on the east coast of India,

is not exempt from the severe anthropogenic disturbances in

recent times (Nayak, 2020). Port/harbor expansion, dredging,

increased marine traffic, loss of mangroves, and aquaculture

development, amongst others, are some regularly seen activities

in the vicinity. Such events, not to mention the additional

burdens of pollution and changes in physicochemical

conditions of the estuary, show adverse impacts on the

sediment-dwelling benthic communities (Nayak et al., 2018),

making this study highly relevant.

Identifying the differential response of macrobenthos to

environmental changes is crucial for their habitat protection.

In this perspective, a suite of univariate and multivariate data

analyses remains invaluable (e.g., Clarke et al., 2014; Sany et al.,

2018b; Mulik et al., 2020a). Among others, the biotic indices

such as AMBI (AZTI’s Marine Biotic Index) and M-AMBI

(Multivariate AMBI) are robust and used widely for coastal

environmental monitoring and benthic quality assessment

(Borja et al., 2000; Bald et al., 2005; Muxika et al., 2007; Borja

et al., 2014). In addition, these indices glean complex ecological

information into easily communicable and understandable

scores for possible conservation/management insights (Pinto

et al., 2009).

The present study was primarily aimed to provide a state-

of-the-art appraisal of the macrobenthos at Mahanadi estuary.

The objectives were - (i) to identify macrobenthic communities

and their composition in relation to local environmental

conditions as an approach for ecological assessment and (ii) to

evaluate the extent of anthropogenic disturbances on

macrobenthos through the application of marine biotic indices

as proxy measures of environmental degradation. This is the first

long-term investigation of the hitherto poorly explored

Mahanadi Estuarine System (MES). Therefore, it can form the

basis for future environmental monitoring, assessment, and

management of the region.
Materials and methods

Study area

River Mahanadi, together with its three tributaries - Daya,

Nuna, and Bhargavi, discharges into the Bay of Bengal in the State

of Odisha on the east coast of India (20°17’08’’ N; 86°42’24’’ E)

(Figure 1). The mixed semi-diurnal tides with a range of 1.45 to

2.20 m (mean, 1.29 m) reach 13 km upstream (depth 5.19 ±

1.11m) and support a rich diversity of the estuarine (mangrove)

flora and fauna (Dey et al., 2013; Palei et al., 2014). According to

the Indian Water Resources Information System (I-WRIS, 2021),

Mahanadi is one of India’s largest and longest (494 km) river

systems, with a catchment area of over 65,628 km2. The leading

seaport, ‘Paradip’ - located 8 km south of the river mouth- is a hub
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for regional sea-borne trade. With a steadily rising population, the

port township is fast developing as a core investment region for

petroleum and chemicals (Hazra et al., 2020). Several industries

like Indian Farmers and Fertilizers Cooperative Ltd., Paradip

Phosphates Limited, Pellet Plant, Indian Oil Corporation

Limited, Essar Steel, Ice manufacturing plants, Sea Food

Processing units, besides many others, have sprung up in the

immediate vicinity, with near denudation of once dense mangrove

vegetation fringing the mudflats. Although fishing and cultivation

are the traditional livelihood choices of the coastal residents,

lucrative shrimp farming has gained precedence in recent years.

As a result, the chemicals used for enhancing aquaculture

production have been rampant. With the leaching of such

substances into the waters, impacts on the estuary are

imminent. Besides the untreated sewage from the township,

effluents containing oil sludge, sulfur, ash, and gypsum released

from industries are proven deterrent to the estuarine ecosystem

(Hazra et al., opp. cit. and references therein; SPBO, 2020;

Acharyya et al., 2021a; Acharyya et al., 2021b). Overall, the

MES has become vulnerable to increased anthropogenic

pressures and necessitates further assessment studies.

The climate of Mahanadi Delta is influenced by the

premonsoon (March-May), postmonsoon (September-

November), and winter (December-February) seasons every

year. The southwest monsoon is the major monsoon season

during which southwest directional winds blow from June to

September. The northwest directional winds influence the winter

months (December to February). The weather is typically

marked by hot and humid conditions (31.46°C) in April-June

and cool and dry (28.66°C) in December-January (https://www.

worldweatheronline.com/). The southwest or summer monsoon

(mid-June to September) brings heavy precipitation (average,

417.75 mm). The Mahanadi in spate discharges about

45,000 m3 s-1 into the Bay of Bengal (Mohanti and Swain,

2005), reducing salinity and increasing fluvial loads in the

nearshore waters. Furthermore, the southwest monsoon winds

generate waves up to ~3 m high or more (Dash et al., 2020). As a

result, the coast remains wave-dominated throughout the

southwest monsoon and mixed wave and tide-dominated in

the non-monsoon periods (Mohanti and Swain, opp. cit.).
Samples collection and laboratory
analyses

Both biotic (macrobenthos) and abiotic (water and

sediment) samples were collected trimonthly for nearly five

years, covering the premonsoon, postmonsoon, and winter

seasons (February 2013– March 2017). However, the pre-and

postmonsoon sampling in 2016-2017 could not be completed

due to logistic constraints.

A total of 12 sampling stations - from the river mouth to

13 km upstream (Figure 1), were fixed and reached with the
frontiersin.org
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help of a handheld GPS (Garmin Etrex 72H, Taiwan). The

geographic location of the stations also represents various

land-use land-cover types and habitat functioning in the

vicinity. For instance, St. 1 (river mouth), St. 2 (adjacent to

fishing harbor), and St. 11 (upstream area) act as migratory

bird’s foraging zone (BFZ). Similarly, Sts. 3-8 (adjoining

mangroves) are the mangrove-associated zone (MAZ).

Intensive shrimp farming (at Sts. 3, 6, and 7) and a factory

named Indian Farmers Fertiliser Cooperative Limited (IFFCO)

(at St. 8) are also present in the MAZ. The remaining Sts. 9, 10,

and 12 adjacent to the country boat berthing facility and Essar

Steel India Limited, a leading manufacturer and supplier of

steel products and iron ore pellets, stand for the mangrove

denuded zone (DZ). In addition, the two bifurcates of River

Mahanadi at St. 12 bring considerable freshwater influx at the

confluence (Figure 1).

Altogether, 264 sediment samples (in replicates) were

collected with the help of a van Veen grab (0.04 m2). After

separating a small fraction of the sediment (~25g) for textural

and organic matter analyses, each grab sample was transferred to

a 500 mm sieve and gently washed with the seawater for

macrobenthos. All specimens retained on the sieve were fixed

in 5% buffered formaldehyde with 1% Rose Bengal for further

processing and identification in the laboratory. Species-level

identification of the macrobenthos (where possible) was

carried out under a stereomicroscope (Leica, E24W, Germany)
Frontiers in Marine Science 04
by following the standard literature (Fauvel, 1953; Fauchald,

1977; Abbott and Dance, 1982; Subba Rao et al., 1991; Blake

et al., 2009; Yokoyama and Sukumaran, 2012; Muir and Hossain,

2014; Hutchings and Kupriyanova, 2018). The World Register of

Marine Species (http://www.marinespecies.org/index.php) was

followed to validate the scientific names. The faunal density at

each station was expressed as ind. m−2. Further, to estimate the

wet biomass (gm-2), preserved specimens were separated into

different groups, kept on a mesh, and then moisture blotted out

carefully with absorbent paper and weighed (OHAUS PAJ603

electronic balance).

Sand, silt, and clay (%) compositions in the sediment were

determined by the pipette method (Krumbein and Pettijohn,

1938) and assigned the textural classes (Shepard, 1954). The

organic matter (OM) (%) was estimated by the modified

Walkey-Black wet-oxidation method (Gaudette et al., 1974). In

the case of hydrographical parameters, salinity (psu), dissolved

oxygen (DO) (mg l-1), nitrite-nitrogen (NO�
2 ) (µmol l-1),

and orthophosphate (PO�
4 ) (µmol l-1) were estimated by

following the standard protocols (APHA, 1989; Grasshoff

et al., 1999). Water temperature (using a mercury-filled

thermometer of 0.5°C sensitivity), pH (using a Hanna HI

98107 with ±0.1 accuracy), depth (m) (using echo sounder),

and transparency (m) (using a Secchi disc) were measured in

situ. The instruments were calibrated before recording in situ

variables in the field.
A

B

D E F

C

FIGURE 1

Mahanadi estuary in State Odisha on the east coast of India. The sampling stations (1-12) cover the ecotone influenced by the tides, i.e., from
the river mouth to 13 km upstream. Examples of each habitat and sources of disturbances are denoted. (A) Denuded zone; (B, C) Mud flat and
bird foraging zone, (D) IFFCO factory; (E) Fishing harbour, and (F) Mangrove associated zone.
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Data treatment and statistical analyses

The faunal diversity indices such as mean abundance,

species richness (S), and Shannon-Wiener index (H’) were

computed using the PRIMER v.7 software (Plymouth Routines

in Multivariate Ecological Research) (Clarke and Gorley, 2015).

The (square root-transformed) data were used for Bray-Curtis

similarity (clustering through hierarchical group-average

linking) and non-metric multidimensional scaling (nMDS)

ordinations. The significance of sample groupings was tested

through the Analysis of Similarities (ANOSIM), whereas

confirmatory evidence of the faunal assemblages was provided

through the Similarity Profile Analysis (SIMPROF) (Clarke and

Ainsworth, 1993). The species abundance matrix was

represented by a shade plot where the gradation of shade from

grey to black is linearly proportional to the increase in species

abundance (Clarke and Gorley, 2015). The unconstrained binary

divisive clustering (UNCTREE) analysis further examined both

sample and species associations. The environmental data were

normalized and subjected to Principal Component Analysis

(PCA) to distinguish the sampling sites in relation to their

(local) environmental conditions. The analysis of variance

(ANOVA) tests was used to probe the spatial and temporal

differences. The PCA was carried out using PRIMER v.7.
Biotic indices for environmental
assessment

AMBI and M-AMBI indices were used to assess the gradient

of anthropogenic stress across the MES. The index scores were

derived from the AMBI v.6 software (http://www.ambi.azti.es).

AMBI index is a univariate measure that uses a ‘differential

weighting’ algorithm based on the classification of benthic

species into five Ecological Groups (EGs) (i.e., EGI - species

very sensitive; EGII - indifferent to enrichment; EGIII - tolerant

to excess OME (organic matter enrichment); EGIV - second-

order opportunistic species and, EGV -first-order opportunistic

species) (Grall and Glémarec, 1997). The macrobenthos of

Mahanadi estuary were assigned to different EGs by following

the AMBI v.6 December 2020 taxa list. In addition, a few taxa

not identified up to species level or not found in the AMBI

database were also assigned for their respective EGs availing the

WORMS database. However, 18.7% of total taxa were either not

assigned to any EG or ignored due to irrelevant species (cf. Borja

and Muxika, 2005).

The scores of the AMBI index were used to categorize the

ecological quality of the estuary into five classes based on a scale

from 0 to 7 (0-1.2: high, 1.2-3.3: good, 3.3-4.3: moderate, 4.3-5.5:

poor and, >5.5: bad). On the other hand, M-AMBI is a

multimetric index that derives scores from multiple factors
Frontiers in Marine Science 05
(species richness, Shannon-Weiner diversity index, and AMBI

scores). Further, it requires setting a reference condition

(Muxika et al., 2007) of a high ecological quality ratio (EQR)

of environmental and biological parameters specific to the

habitat (Borja et al., 2012). Reference conditions are

characterized by high biological and environmental quality

elements giving the site a high ecological quality ratio (EQR)

compared to the impacted site (Bigot et al., 2008). The Water

Framework Directive (WFD) offers four criteria to select

reference conditions: (1) pristine or minor disturbance, (2)

historical data, (3) predictive modelling, and (4) expert

judgment (Basset et al., 2013). Since finding the less disturbed

or pristine environment is as difficult as getting the historical

data in the era of ‘Anthropocene,’ it is always prudent to perform

predictive modelling for setting the reference condition.

Therefore, an internal control with high diversity, richness,

and low AMBI from the dataset was used to set the reference

target, and the M-AMBI scores were calculated as suggested

by Muxika et al. (2007). The scores of M-AMBI were used to

qualify the samples into five grades based on a scale from 0 to 1

(>0.77: high, 0.77–0.53: good, 0.53–0.38: moderate, 0.38–0.20:

poor, and <0.20: bad). Procedures adopted to estimate indices

scores, algorithm, boundary limits, and community health/

ecological quality classifications were based on the WFD scale

of indices detailed by Equbal et al. (2017).

The pairwise Mann–Whitney U test was applied to assess

differences on a seasonal scale within the faunal groups.

Differences were considered significant at p<0.05 for all power

test analyses. Finally, Pearsons’ correlation coefficient test was

carried out to find the possible influence of environmental

parameters on biotic indices (Graph Pad Software, USA).
Results

Physico-chemical characteristics
of water

The water temperature ranged from 21.5 to 36.0°C (mean,

28.34 ± 1.08°C), with the lowest measurements during winter

and the highest during premonsoon (Table 1). The upper

reaches were relatively warmer than the lower reaches of the

estuary (Figure 2). The water pH was slightly alkaline - especially

downstream (>7.5), and varied significantly between the seasons

(two-way ANOVA F = 19.89, p < 0.01). With increasing salinity

from upstream to downstream, brackish water conditions

(9.26 ± 1.87 psu) prevailed along the estuary’s entire (13 km

long) stretch. Seasonal salinity changed in the order of winter >

premonsoon > postmonsoon. The sampling stations in the

proximity of industries (e.g., Sts. 8, 9, 10) showed less DO

than those adjoining mangroves (Sts. 5, 6, 7). There was a
frontiersin.org

http://www.ambi.azti.es
https://doi.org/10.3389/fmars.2022.1008912
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Nayak et al. 10.3389/fmars.2022.1008912
significant difference in DO between pre-and postmonsoon

periods (one-way ANOVA F =4.61, p< 0.05).

The distribution of dissolved nutrients revealed higher

concentrations of NO�
2 (3.17 ± 0.75 mmol l-1) and PO�

4

(4.22 ± 1.06 mmol l-1) at the stations close to shrimp farms

and industries (e.g., Sts. 7, 8, 11). Nutrient enrichment was

high during the premonsoon, followed by postmonsoon and

winter seasons (Table 1). The sampling stations subjected to

higher anthropogenic intervention and upstream fluvial loads

(Sts. 7-12) also had a lower water column transparency. The

waters are more turbid for postmonsoon (0.35 ± 0.03) than

premonsoon (0.55 ± 0.05) or winter (0.95 ± 0.09). Station-wise

environmental parameters for each year and season are provided

as Supplementary Data (STable 1).
Sediment characteristics

The estuarine sediments were comprised mostly of sand

(48.03 ± 6.52) and silt (51.81 ± 6.51) (Table 1), with three
Frontiers in Marine Science 06
distinct textural classes (i.e., silty sand, sandy silt, and silt). The

OM ranged from 0.07 to 6.63% and was rather high at the creek/

canal confluence locations (Figure 2). The correlation between

textural grades and OM was clear. For instance, sediments from

the river mouth (St. 1) and upstream (St. 12) with a high sand

composition contained less OM in contrast to the mangrove

sediments (Sts. 2-9) with a high silt composition. Seasonally, silt

was distinctive of the postmonsoon. The sediment textural

classes also indicated significant spatial and temporal

variations (two-way ANOVA, sand F=3.23, p < 0.05; silt

F=3.18, p < 0.05; clay F=10.89, p < 0.01).

The PCA revealed significant eigenvalues (>1), and the

percentage of variance was 31.9% for PC1, followed by 26.9%

for PC2. While most stations in the MAZ with silt and OM were

on the positive side of the two axes, the sites of the DZ with a sand

abundance were on the negative side (Figure 3). Overall, the first

axis had segregation of stations based on their sediment nature,

and the second axis was based on their water characteristics. The

stations belonging to BFZ were closely associated with the water

quality (salinity, DO, pH, NO�
2 ) (Figure 3).
TABLE 1 Hydrographical and sediment characteristics of Mahanadi estuary during February 2013-March 2017.

Environmental parameters Premonsoon (n = 36) Postmonsoon (n = 36) Winter (n = 60) Mean (n = 132)

Water

Temperature (°C) 26.00-37.00 24.00-35.00 21.00-31.00 21.50-36.00

(31.38 ± 1.49) (30.03 ± 1.22) (25.51 ± 1.19) (28.34 ± 1.08)

pH 1.33-7.96 3.75-8.32 5.93-9.23 2.27-9.19

(6.86 ± 0.45) (7.34 ± 0.39) (7.86 ± 0.26) (7.44 ± 0.24)

Salinity (psu) 2.49-22.41 0.13-7.04 3.07-24.98 0.13-23.38

(10.69 ± 1.55) (0.98 ± 0.48) (13.37 ± 1.78) (9.26 ± 1.87)

Dissolved oxygen (mg l-1) 0.16-7.52 2.40-8.00 0.80-8.96 1.04-8.56

(4.31 ± 0.73) (5.26 ± 0.69) (4.44 ± 0.81) (4.63 ± 0.44)

Nitrite-nitrogen (µmol l-1) 0.84-34.83 0.29-6.98 0.32-25.24 0.34-21.23

(4.21 ± 1.51) (1.90 ± 0.38) (3.31 ± 1.21) (3.17 ± 0.75)

Orthophosphate (µmol l-1) 0.08-29.16 0.08-20.60 0.37-23.74 0.31-22.62

(5.55 ± 2.18) (4.34 ± 1.55) (3.79 ± 1.19) (4.42 ± 1.06)

Transparency (m) 0.34-0.85 0.21-0.55 0.64-1.77 0.21-1.77

(0.55 ± 0.05) (0.35 ± 0.03) (0.95 ± 0.09) (0.62 ± 0.18)

Depth (m) 2.00-7.00 5.00-12.00 3.00-9.00 2.00-12.00

(4.00 ± 0.60) (7.00 ± 0.70) (5.00 ± 0.53) (5.19 ± 1.11)

Sediment

Sand (%) 14.11-98.85 3.27-94.14 5.94-95.64 3.27-98.85

(45.80 ± 9.83) (41.99 ± 13.60) (53.00 ± 8.46) (48.03 ± 6.52)

Silt (%) 1.10-85.79 5.84-96.28 4.31-93.99 1.10-96.28

(53.94 ± 9.86) (57.86 ± 13.57) (46.90 ± 8.45) (51.81 ± 6.51)

Clay (%) 0.04-0.76 0.02-0.76 0.00-0.76 0.00-0.76

(0.26 ± 0.11) (0.15 ± 0.09) (0.10 ± 0.04) (0.16 ± 0.05)

Organic matter (%) 0.24-6.63 0.28-4.05 0.07-5.08 0.07-6.63

(1.70 ± 0.37) (1.96 ± 0.44) (1.67 ± 0.28) (1.76 ± 0.24)
Values are given as minimum-maximum (mean ± standard error).
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Macrobenthic community

The present study recorded 100,500 individuals from 73

taxa, 64 genera, and 48 families represented by major faunal

groups such as Polychaeta, Brachiopoda, Sipuncula, Crustacea,

Mollusca, Echinodermata, and Pisces. However, polychaetes

(81.41%), and crustaceans (15.42%) were found to be

important in terms of their abundance (Table 2). Within

Polychaeta, families such as Spionidae (9 species), Capitellidae

(4 species), and Nereididae (4 species) were the most diverse and

dominant groups, contributing 48% to the total population. The

notable species of polychaetes were nereid Perinereis cavifrons,

nephtyid Micronephthys oligobranchia, spionids Dipolydora

coeca, Malacoceros indicus, and Polydora cornuta. The

important species of crustacean and molluscs included
Frontiers in Marine Science 07
Victoriopisa chilkensis, Psammacoma gubernaculum, and

Nassarius stolatus, with their juvenile populations (Table 2).

The macrobenthic faunal abundance ranged between 50 and

3,213 ind. m-2 (760 ± 727) (Table 2) was high at the BFZ in winter

(mean, 2,288 ind. m-2) and postmonsoon (3,213 ind. m-2). In

particular, the prevalence of P. cavifrons for these two seasons

(773-970 ind. m-2) is noteworthy. The faunal abundance of the

BFZ varied significantly between premonsoon and postmonsoon

(Mann–Whitney test, p = 0.00), whereas it differed between

premonsoon and winter for the MAZ (Mann–Whitney, p =

0.03). The wet weight biomass was low in upstream (e.g., 0.03

gm-2 at St. 9) than in the downstream areas (25 gm-2 at St. 2). The

macrobenthic faunal abundance data (Polychaeta, Mollusca, and

Crustacea) tested for seasonal, species and station wise changes

together with their interaction effects revealed significant
FIGURE 2

Spatial distribution patterns of hydrographical (water temperature, salinity, dissolved oxygen, nitrite, and orthophosphate) and sediment (sand,
silt, and organic matter) variables in Mahanadi estuary.
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differences, particularly for the molluscs (Table 3). Station-wise

data on macrobenthic faunal abundance for each season were

provided in the supplementary information (STable 2).
Macrobenthic assemblages

The abundance and distribution of 49 macrobenthic species at

one ormore sampling stations in the estuary accounted for ≥1% of

the total population. Hierarchical clustering and nMDS plots have

shown a clear-cut separation of the sampling stations into three

major faunal groups (Global R 0.70; p < 0.002) (Figure 4). Group I,

representing the BFZ (Sts. 1, 2, and 11), was dominated by

Perinereis cavifrons, Cossura coasta, and Dendronereis

aestuariana species (p = 1.07, p < 0.07), whereas Group II, for

the MAZ (Sts. 3-8), is characterized byMicronephtys-Victoriopisa-

Heteromastus assemblage. The sampling sites of DZ (Sts. 9, 10,

and 12) as Group III contained Cossura-Dipolydora-Malacoceros

assemblage. The UNCTREE analysis further confirmed the

presence of these three faunal clusters (BFZ - Global R: 1, B%:

31.1, p: 2.59; MAZ- Global R: 0.61, B%: 48, p:1.06; DZ - Global R:

1, B%: 64.2, p: 1.07 (Figure 5).
Ecological groups (EGs)

Altogether, 61 macrobenthic species (out of 73) were

categorized into their corresponding EGs (Table 2). Except for

EGV (one species), the other groups were diverse and

represented by 12-17 taxa. The highest faunal (mean) density
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was contributed by EGIV (36.4%), followed by EGII (20.8%),

EGIII (20.5%), EGI (19.5%), and EGV (2.7%). The species such

as Heteromastus filiformis, C. coasta, D. coeca (of EGIV), P.

cavifrons (EGIII), M. oligobranchia (EGII), and V. chilkensis

(EGI) were abundant, and collectively formed 60% of the total

population. The faunal composition of MAZ (41.5%) and DZ

(38.3%) was dominated by EGIV organisms, while BFZ (36.6%)

by the EGIII (Figure 6). Seasonally, both premonsoon (41.7%)

and winter (35.3.%) periods were characterized by EGIV and the

postmonsoon (35.3.%) by EGIII species.
AMBI and M-AMBI indices

According to the AMBI scores, the estuary’s ecological quality

was good throughout except for St. 8, which had moderate

conditions (Table 4). The AMBI scores improved from the

premonsoon to the winter period. In this context, the samples

with poor to moderate status from MAZ and BFZ (Sts. 2 and 7-9)

in the premonsoon were represented by moderate to good status

during the postmonsoon and winter (Figure 6B). The differences

between premonsoon and winter were significant (Mann-Whitney,

p = 0.01). Also, the sampling stations in the DZ were depicted with

good ecological quality. However, in terms of community health,

the estuary was unbalanced and polluted (Table 4).

In contrast to AMBI, the M-AMBI scores classified around

60% of the samples as moderate and 33.3% as good quality.

M-AMBI followed a trend similar to that of AMBI, improving

sample grades from the premonsoon to the winter period

(Figure 6C). Except for St. 12 and St. 9 (DZ), where samples
FIGURE 3

Principal Component Analysis (PCA) depicting the influence of environmental variables on the sampling (1-12) sites of the Mahanadi estuary
during 2013-2017.The circle represents the correlation circle, and the orientation of the environmental parameters (lines) approximate their
correlation to each other and to the ordination axes (DO = dissolved oxygen, Sal = salinity, OM = total organic matter, NO�

2 = nitrite-nitrogen,
PO4- = orthophosphate, WT = water temperature). The MAZ (n = 66) – Mangrove associated zone includes St. 3, 4, 5, 6, 7, and 8, The BFZ
(n = 33) – Birds foraging zone includes St. 1, 2 and 11, and the DZ (n = 33) – Denuded zone is represented by St. 9, 10 and 12.
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TABLE 2 Numerical abundance of macrobenthic fauna and their assignment to ecological groups (EGs-Ecological groups, NA-Not assigned,
IG-Ignored, SD-standard deviation).

Species/Taxa EGs Mean (ind.m-2) SD Min Max % Contribution % Relative frequency

Polychaeta

Orbinia sp. IV 0.9 3.5 13 25 0.11 6.06

Aricidea sp. NA 11.9 28.7 13 150 1.57 31.06

Cossura coasta IV 48.6 194.3 13 1388 6.38 17.42

Cossura sp. IV 24.5 80.6 13 550 3.22 24.24

Boccardia sp. III 0.2 2.2 13 25 0.02 0.76

Heterospio sp. II 1.1 8.5 13 75 0.15 2.27

Malacoceros indicus III 23.6 73.1 13 713 3.10 38.64

Dispio sp. III 0.5 2.4 13 13 0.06 3.79

Magelona cincta I 7.7 23.3 13 138 1.01 12.12

Polydora cornuta IV 22.8 210 13 2388 3.00 6.82

Dipolydora coeca IV 47.3 127.8 13 900 6.22 38.64

Pseudopolydora kempi IV 2.9 10.2 13 75 0.39 10.61

Paraprionospio sp. IV 5.7 32.7 13 363 0.75 11.36

Prionospio polybranchiata III 8 33.6 13 250 1.04 12.88

Cirriformia filigera IV 0.8 5.9 13 63 0.10 2.27

Capitella species complex V 10.1 35.2 13 288 1.33 15.91

Heteromastus filiformis IV 61 112.6 13 588 8.01 48.48

Mediomastus sp. III 7.2 39.9 13 388 0.94 6.82

Notomastus aberans III 2.8 12.8 13 88 0.37 6.06

Euclymene annandalei I 6.1 31.5 13 288 0.80 9.09

Hypereteone barantollae II 0.7 2.8 13 13 0.09 5.30

Pisione sp. I 0.3 1.9 13 13 0.04 2.27

Hesione sp. II 0.3 2.4 13 25 0.04 1.52

Ancistrosyllis sp. III 0.3 3.3 38 38 0.04 0.76

Hermundura annandalei II 9 28.3 13 188 1.18 18.18

Syllis sp. II 0.8 3.4 13 25 0.10 5.30

Perinereis cavifrons III 126.9 467.3 13 2788 16.66 19.70

Namalycastis indica IV 0.3 2.4 13 25 0.04 1.52

Dendronereis aestuarina III 22.4 83.2 13 800 2.95 28.03

Neanthes chingrighattensis IV 21.8 54.1 13 300 2.86 36.36

Glycera alba IV 10.6 22.2 13 125 1.39 29.55

Glycera sphyrabrancha II 16.4 45.4 13 300 2.15 20.45

Micronephthys oligobranchia II 80 138.7 13 1000 10.51 56.06

Nephtys polybranchia II 0.9 8.8 13 100 0.12 2.27

Cryptonome parvecarunculata IG 1 8 13 88 0.14 3.03

Diopatra sp. I 4.1 14.2 13 88 0.53 9.85

Lumbrineris simplicis II 2.3 6.3 13 38 0.30 13.64

Lumbrinereis sp. II 0.6 3.4 13 25 0.07 3.03

Sternaspis sp.1 III 8.4 42.3 13 375 1.11 9.85

Sternaspis sp. 2 III 3 15.1 13 100 0.40 5.30

Melinna aberrans III 5.3 18.9 13 150 0.70 12.12

Pectinaria sp. I 0.4 2.6 13 25 0.05 2.27

Terebella ehrenbergi III 0.9 3.8 13 25 0.11 5.30

Myriochele sp. II 4.8 18.3 13 150 0.63 12.12

Fabriciola sp. I 4.8 15.1 13 88 0.63 15.15

Brachiopoda

Lingula sp. I 2.3 10 13 88 0.30 7.58

(Continued)
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were downgraded from good (premonsoon) to moderate

(postmonsoon and winter) and moderate (premonsoon and

postmonsoon) to poor condition (winter). A unidirectional

shift in quality grades was observed at St. 2 (BFZ), where

samples upgraded from poor (premonsoon) to moderate

(postmonsoon) and good condition (winter). In contrast, the

samples from Sts. 6, 7, and 8 (MAZ) and St. 10 (DZ) showed

quality improvement only during the winter period (Figure 6C).

Both spatial and temporal differences in the M-AMBI scores of
Frontiers in Marine Science 10
the BFZ (ANOVA F=9.2, P <0.001) and the MAZ were

significant (F=.3, P=0.04).
Relationship between the estuarine
environment and macrobenthos

The Pearson’s correlation coefficients indicate a significant

relationship between water quality parameters and benthic (AMBI
TABLE 2 Continued

Species/Taxa EGs Mean (ind.m-2) SD Min Max % Contribution % Relative frequency

Sipunculida

Sipunculid sp. I 0.9 6.9 13 75 0.11 2.27

Crustacea

Belzebub hanseni NA 0.2 1.5 13 13 0.02 1.52

Paracaprella pusilla I 2.6 7.4 13 38 0.34 12.88

Corophium volutator III 12.6 129.6 25 1488 1.65 3.79

Victoriopisa chilkensis I 76.6 172 13 1525 10.06 69.70

Cumacid sp. I 6.3 39.1 13 413 0.82 9.09

Cyathura sp. III 5.3 34.1 13 275 0.70 6.82

Exosphaeroma parva III 3.3 23.2 13 250 0.44 4.55

Sphaeroma sp. II 3 18.3 13 150 0.40 5.30

Harpacticid sp. IG 0.5 5.4 63 63 0.06 0.76

Macrobrachium sp. NA 5.7 16.5 13 88 0.75 15.91

Clibanarius sp. IG 0.5 2.4 13 13 0.06 3.79

Crab juveniles IG 0.9 4.3 13 38 0.12 6.06

Gastropoda

Paratectonatica tigrina II 0.7 7.6 88 88 0.09 0.76

Pirenella cingulata I 0.4 2.6 13 25 0.05 2.27

Nassarius foveolatus II 0.2 2.2 25 25 0.02 0.76

Nassarius stolatus II 2.3 8 13 63 0.30 9.85

Agaronia gibbosa IG 0.2 1.5 13 13 0.02 1.52

Gastropod juveniles NA 2.5 6.4 13 38 0.32 15.91

Bivalvia

Nucula sp. I 0.2 2.2 25 25 0.02 0.76

Acrosterigma variegatum III 0.1 1.1 13 13 0.01 0.76

Psammacoma gubernaculum I 3.9 18.8 13 175 0.51 10.61

Meretrix sp. I 0.3 1.9 13 13 0.04 2.27

Bivalve juveniles IG 2.5 6.8 13 38 0.32 13.64

Echinoderms

Ophiuroid juveniles II 1.4 5 13 38 0.19 9.09

Pisces

Periophthalmus sp. IG 3.9 10.9 13 88 0.51 18.18

Boleophthalmus boddarti IG 1.3 10.2 13 113 0.17 3.79

Diversity indices

Abundance (ind. m-2) 760.6 727.9 50 3213

Biomass (g m-2) 1.8 3.4 0.03 25

Species richness (S) 8.7 4.6 2 24

Shannon-Weiner index (H’log2) 2.2 0.8 0.1 3.9
The sample size n = 132 (mean of duplicate 264 grab samples).
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and M-AMBI) indices, whereas sedimentary attributes did not

show any marked association (Table 5). Among the water quality

parameters, temperature, pH, and salinity were influential in

assessing community health. The distribution of macrobenthos

in EGI, EGIII, and EGIV seems to have been governed by

temperature, pH, salinity, and DO conditions (Table 5).
Discussion

Environmental status of
Mahanadi estuary

As physically controlled ecosystems, estuaries are

characterized by wide variabilities in their local environmental

conditions. The environment, however, becomes imbalanced

and stressed when exposed to increased anthropogenic

stressors (Kennish, 2005; Brown et al., 2022; Suzzi et al., 2022).

Among the environmental variables observed for the MES,

the water temperature was strongly marked by seasonality. In

this case, other atmospheric influences, such as precipitation,

nearshore sea temperatures, and river run-offs, are likely to

influence its variability (Leal Filho et al., 2022). High water

temperature in the premonsoon was evident in the present

study. The other traceable stressors like municipal wastes,

sewage, and litter from Paradip port city, fisher hamlets, and
Frontiers in Marine Science 11
fishing harbour that enter the estuary through Atharbanki, a

mangrove channel, are also found to affect the water quality to a

greater extent. Nutrient enrichment at the stations close to BFZ,

shrimp farms, and the fertilizer industry (Sts. 1-3 and 6-8) can be

explained by avifaunal excrements and untreated effluents. The

low pH in the proximity of industries (Sts. 8-9) is attributable to

the influx of acidic wastes (Sundaray et al., 2009; Acharyya et al.,

2021a; Acharyya et al., 2021b). On the other hand, (acidic)

humic substances carried by freshwater in colloidal suspension

get coagulated upon meeting the seawater and can shift the pH

to an alkaline condition (Beer, 1996). The latter was apparent

from the downstream measurements at the Mahanadi estuary

and was similar to findings from other estuaries elsewhere

(Mohanty, 2018; Habib et al., 2021; Jabir et al., 2021).

The east-flowing rivers in India, the Brahmaputra, Ganges,

Irrawaddy, Godavari, Mahanadi, Krishna, and Cauvery,

contribute significantly to the total freshwater discharge into

the Bay of Bengal (BoB) (from 1.5 × 1012 m3 to 1.83 ×

1013 m3 per year) (Varkey et al., 1996; Thadathil et al., 2002).

These rivers have a maximum climatological discharge between

July and September when the southwest monsoon rainfall is at

its peak and decreases gradually to a minimum during the winter

and premonsoon (Sandeep and Pant, 2019). Hence, salinity with

an increasing gradient towards the mouth of the estuary was low

for the wet (monsoon) season and high for the dry (winter)

season. Higher DO at Sts. 5-7 of the MAZ could be due to
TABLE 3 Result of three-way ANOVA of macrobenthic faunal abundance data (Polychaeta, Mollusca, and Crustacea): Comparing the significance
of seasonal, species, station differences, and their interaction effects (*p< 0.05, **p< 0.01, ***p< 0.001).

Group Source Degrees of Freedom Mean Sum of Squares Snedecor’s F ratio Remarks

Polychaeta Between seasons (A) 2 72.63 2.38 p > 0.05

Between species (B) 44 159.52 5.23*** p< 0.001

Between stations (C) 11 99.99 3.28** p< 0.01

AB interaction 88 67.44 2.21** p< 0.01

BC interaction 484 48.28 1.58** p< 0.01

AC interaction 22 20.02 0.66 p> 0.05

Error 968 30.52

Mollusca Between seasons (A) 2 0.45 7.74** p< 0.01

Between species (B) 10 0.30 5.14** p< 0.01

Between stations (C) 11 0.14 2.51** p< 0.01

AB interaction 20 0.11 1.94** p< 0.01

BC interaction 110 0.07 1.25* p < 0.05

AC interaction 22 0.11 1.86** p< 0.01

Error 220 0.06

Crustacea Between seasons (A) 2 1.09 0.14 p> 0.05

Between species (B) 13 87.27 11.07*** p< 0.001

Between stations (C) 11 9.64 1.22 p> 0.05

AB interaction 26 5.15 0.65 p>0.05

BC interaction 143 10.04 1.27* p<0.05

AC interaction 22 10.88 1.38 p> 0.05

Error 286 7.89
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A
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FIGURE 4

(A) Bray-Curtis similarity and (B) n-MDS ordination showing sampling (1-12) site groupings based on macrobenthic abundance data in the
Mahanadi estuary (similarity: 48.7%).
FIGURE 5

Macrobenthic communities of Mahanadi estuary in 2013-2017: Shade plot, a visual representation of abundances (averaged over seasons) of 49
macrobenthic species accounting for ≥ 1% or ˜1% of the total abundance at one or more sampling sites. Groups are named Bird foraging zone,
Mangrove associated zone, and Denuded zone with linear greyscale intensity proportional to square root transformation abundance (ind.m-2).
The three significantly different sub-clusters marked by SIMPROF-powered UNCTREE analysis (X-axis) are evident.
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sustained autotrophic production in the waters. This process

originates through nutrient-rich outwelling from the adjacent

mangroves during inundation regimes (Cohen et al., 2004;

Prasad and Ramanathan, 2008). However, land-based sulphate

leaching from the gypsum dumps (heaped close to the fertilizer

industry), and industrial effluents, besides others, are the drivers

of near hypoxia conditions at Sts. 8-10 (cf. Nayak et al., 2018;

Taillardat et al., 2020; Sharma et al., 2022). Depletion in DO is a

strong indicator of poor water quality (Costa et al., 2018). Such

low DO can prolong hypoxia and affect major estuarine

ecosystem-level processes, including fluxes and rates linked to

carbon and nitrogen biogeochemical cycling. Therefore,

maintaining the best possible conditions across the river

basins, including coastal and offshore waters, is essential

(Karydis and Kitsiou, 2013; Barletta et al., 2019) and crucial

for ecosystem functioning and maintaining estuarine

biodiversity (Ghosh et al., 2022).

Fine sediment deposition is difficult in the regions where

strong water currents persist (Mitchell, 2020). Low fine particle

accretion, sandy texture, and lesser OM at seaward (St. 1) and

near confluence sites (Sts. 10, 12) support this phenomenon in

the study area. Similarly, mud (silt and clay) accruals occurred

mainly in sheltered seascapes (mangrove-fringed sites, Sts. 3-8)

due to weak tidal currents and land-based fine particle sources.

Muddy sediments retained more OM (>2%) than sandy

sediments because of the better adsorption capacity of the

fine-grained particles (Gaonkar et al., 2021; Haddout et al.,

2022). Furthermore, litter from mangrove vegetation (leaves,

propagules, and twigs) and subsurface root growth significantly

deliver organic carbon to mangrove sediments (Alongi, 1998).

Therefore, sites adjoining mangroves revealed higher OM

arising from autogenic sources and outwelling (Hossain et al.,

2014; Mohanty et al., 2019).

Reliable information on aquatic resources is key to

improving their management (Karydis and Kitsiou, 2013).

Furthermore, the competence in accommodating changes

(episodic or permanent) to managerial plans requires an in-

depth understanding of the drivers of water quality deviations

and the availability of natural resources at different timescales

(Costa et al., 2018). Anthropogenic activities have significantly

threatened the Mahanadi estuary’s water quality and biota. As a

result, continuous monitoring and potential corrective measures

are required to mitigate such effects.
Macrobenthos of Mahanadi estuary

Studies on the macrobenthos of the MES and adjacent

mangrove waterways/intertidal mudflats are confined mainly

to taxonomic accounts, without much inference to the local

environmental conditions (Deb, 1998; Pattanayak and Haldar,

1998; Rao, 1998; Surya Rao and Maitra, 1998; Nayak et al., 2018;

Tudu et al., 2018; Mohanty et al., 2022). In recent years,
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industrial expansion has become disproportionately rapid

along major waterways due to well-connected transport hubs

and habitation sites, as is the case for the MES. The complex

network of creeks and canals acting as vectors and sink for the

effluents released from the port town, fishing harbour/landing

centers, industrial units, etc. (Rodgers et al., 2020) shows

significant consequences on the benthic communities.

Macrobenthic diversity and dominance patterns in the

Mahanadi estuary reflected varying degrees of natural and

man-induced stressors. Spatial and temporal benthic faunal

distribution appeared to be primarily structured by sediment

texture, OM, salinity, and pH. For instance, the abundance of

polychaetes in the estuary could represent their tolerance to a

wide array of (shifting/changing) environmental conditions

(Sanchis et al., 2021). The deposit-feeding P. cavifrons is an

important link between detritus accumulation and higher

trophic levels. As an opportunist, P. cavifrons can repopulate

in defaunated areas where the perturbations like dredging (St. 2,

opposite to fishing harbour) and mangrove denudation (sites in

the proximity of industries) occur. Furthermore, the capitellids,

including Heteromastus, spionids, and Magelona spp., exhibit a

natural proliferation in fine-muddy sediments (Afli et al., 2008;

Sivadas and Ingole, 2016), while Paraprionospio and Magelona

spp. survive in hypoxic and lesser competitive environments

inhospitable to their predators and competitors (Sivadas et al.,

2021). The impoverished faunal trends noticed towards the

estuary mouth (St. 1) and upstream (St.12) also confirm the

observations of Shirodkar and Nayak (2010). Macrobenthos in

the proximity of shrimp farms and industries (IFFCO, Essar

Steel) could represent the impacted environmental conditions as

pollution indicators (Borja et al., 2000; Dauvin et al., 2012;

Albano et al., 2013; Shivarudrappa et al., 2019). Seasonally

varied diversity indices are perceptible, with maximum

abundance in the winter (Kundu et al., 2010). The findings of

this study were consistent with other regional (Mulik et al., 2017;

Dias et al., 2018; Rehitha et al., 2019; Sivadas et al., 2021;

Subramanian et al., 2021; Kumar et al., 2022; Rehitha et al.,

2022) and global (Abrogueña et al., 2021; Bravo et al., 2021;

Dauvin et al., 2021; Salimi et al., 2021; Sánchez-Ovando et al.,

2021; Kanhai, 2022) benthic evaluations.

An estuary is a dynamic environment where the

macrobenthos are adapted to live in widely shifting

environmental conditions over relatively short distances

(Ortega et al., 2018). The benthic assemblages of Mahanadi

estuary are distinct in relation to the local environmental

settings. For example, the heterogeneity in Micronephtys-

Victoriopisa-Heteromastus assemblage of the MAZ could

represent anthropic interventions (through industries, ferry

traffic, mangrove destruction, and shrimp farms) modifying

the habitat and its preference for the sediment composed of

silty-sand and high OM. Also, Cossura-Dipolydora-Malacoceros

assemblage of the DZ, under similar man-made disturbances

(boat berthing, Essar steel), occupied the sediment with silt and
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high OM. Therefore, each zone showed the macrofaunal

responses to diverse stressors in the vicinity. The effect could

be revealed through a low diversity, which testifies to the

relationship between biodiversity loss and human-induced

disturbances (D’Alessandro, 2020).
Benthic quality status of the
Mahanadi estuary

Apart from the anthropogenic interventions, monsoon-

mediated perturbations also lead to a high degree of substrate
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heterogeneity and changes in the structure and function of

biological communities in the estuary (Sivadas et al., 2011). The

benthic community attributes such as abundance, richness, and

diversity fluctuate mostly through defaunation, migration, and

spawning of species with recovery followed by stable conditions,

recruitment, and resettlement (Gaonkar et al., 2013; Sivadas et al.,

2021). As a result, tolerant or opportunist species often dominate

these communities, exhibiting a highly dynamic population under

specific situations (Sivadas et al., 2016). The health assessment of

the MES based on the biotic indices demonstrated a high

agreement with inferences extracted from benthic community

structures against natural or anthropogenic disturbances.
A

B

C

FIGURE 6

(A) Ecological groups associated with stations/zones of Mahanadi estuary; (B) AMBI and (C) M-AMBI seasonal variations across stations/zones in
Mahanadi estuary.
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The dominance of P. cavifrons, Heteromastus filiformis, and

Dipolydora coeca in organically rich and contaminated

sediments consequently changed the ecological quality status

of MAZ and DZ from poor to moderate. In contrast, good to

moderate conditions at sandy sediments (BFZ) suggest that low

organic content is also favourable to EGI and EGIII forms

(Sigamani et al., 2015). Overall, the present study affirms both

MAZ and DZ as polluted, with benthic communities of tolerant

(EGIII) and second-order opportunistic (EGIV) species. The

Odisha Pollution Control Board (OSPCB) estimates untreated

domestic wastewater discharge from urban settlements in the

Mahanadi basin at 3,45,000 m3 (m3 = 1000 liters) per day,

producing biochemical oxygen demand (BOD) load of about
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68.8 tonnes daily. The water quality index (WQI) of the Paradip

coastal waters (riverine and estuarine stretch) also indicated a

deteriorating trend from “grade C” in 2013-15 to “grade D” in

2017 (SPCB report card, 2020).

The benthic indices obtained through quality-based

evaluation in the present study reflect different stages of the

estuarine environmental conditions. Large-scale variability in

the environmental parameters and ecological quality status of

the benthic habitat at each station (or zone) could be attributable

to the heterogeneous MES (Elliott and Quintino, 2007).

Temporal variation of macrobenthic communities was evident

through either increased or decreased benthic indices depending

upon life strategy (r-selected and k-selected) and niche
TABLE 4 Results of AMBI, M-AMBI and biodiversity of macrobenthos from Mahanadi estuary, during February 2013-March 2017.

Stations EG I
(%)

EG II
(%)

EG III
(%)

EG IV
(%)

EG V
(%)

Mean
AMBI

Disturbance
classification

(based on AMBI)

N
(ind.m2)

S H’log2 Mean
M-

AMBI

Disturbance
classification
(based on
M-AMBI)

CHs EQs CHs EQs

St.1 17.98 28.21 26.99 22.46 4.36 2.50 Unbalanced Good 716.27 12.00 2.84 0.60 Unbalanced Good

St.2 15.16 17.40 37.29 30.14 0.00 2.74 Unbalanced Good 1507.18 10.55 1.88 0.48 Polluted Moderate

St.3 30.25 19.71 22.15 27.59 0.00 2.21 Unbalanced Good 654.82 9.36 2.36 0.53 Unbalanced Good

St.4 16.28 15.54 24.05 40.09 4.04 3.02 Unbalanced Good 430.91 7.55 2.13 0.45 Polluted Moderate

St.5 24.59 26.14 4.91 39.83 4.55 2.60 Unbalanced Good 353.64 7.45 2.23 0.47 Polluted Moderate

St.6 25.02 22.61 20.23 24.27 7.92 2.51 Unbalanced Good 694.55 11.09 2.44 0.55 Unbalanced Good

St.7 15.23 15.91 10.18 58.68 0.00 3.18 Unbalanced Good 1092.18 9.27 2.33 0.48 Polluted Moderate

St.8 11.08 12.37 15.55 58.44 2.57 3.44 Polluted Moderate 396.73 6.27 1.93 0.38 Heavily
polluted

Poor

St.9 18.66 18.74 11.87 47.97 0.64 2.90 Unbalanced Good 355.91 6.09 1.81 0.40 Polluted Moderate

St.10 22.83 22.05 9.93 43.71 0.00 2.64 Unbalanced Good 430.91 6.82 2.02 0.43 Polluted Moderate

St.11 12.18 20.16 45.45 20.63 1.56 2.51 Unbalanced Good 1933.18 10.55 2.02 0.49 Polluted Moderate

St.12 25.05 28.16 17.27 23.13 6.37 2.36 Unbalanced Good 573.00 7.73 2.03 0.46 Polluted Moderate
fronti
The mean sample n = 11 at each Station (St. 1 – St. 12).
CHs, Community Health status; EQs, Ecological Quality status; N, Abundance; S, Species richness; H’log2, Shannon-Weiner index.
TABLE 5 Relationship between biotic indices and environmental variables.

Pearsons linear r

Variables Biomass N S H’(log2) AMBI M-AMBI EGI EGII EGIII EGIV EGV

Temperature (°C) -0.323 -0.087 -0.537** -0.448** 0.475* -0.593*** -0.439** -0.156 0.132 0.142 0.221

pH 0.227 0.165 0.392** 0.304 -0.643*** 0.489** 0.514** 0.19 0.097 -0.534 0.046

Salinity (psu) 0.217 -0.213 0.252 0.213 -0.109 0.264 0.394* -0.031 -0.394* 0.162 0.157

Dissolved Oxygen (mgl-1) 0.135 0.344* 0.121 0.039 -0.261 0.117 0.025 0.099 0.31 -0.409* -0.025

Nitrite (µ mol.l-1) 0.229 0.164 0.077 -0.133 0.041 -0.034 -0.042 0.094 -0.098 0.101 -0.027

Orthophosphate (µ mol.l-1) 0.226 -0.076 -0.084 -0.127 0.434** -0.215 -0.29 -0.052 -0.275 0.548 -0.136

Organic matter (%) -0.121 0.059 0.02 0.012 -0.092 0.042 -0.012 -0.101 0.196 -0.053 -0.299

Sand % 0.171 -0.073 0.207 0.267 -0.176 0.248 0.155 0.314 -0.232 -0.123 0.233

Silt % -0.171 0.074 -0.206 -0.267 0.175 -0.247 -0.153 -0.314 0.232 0.122 -0.233

Clay % -0.032 -0.047 -0.153 -0.131 0.219 -0.183 -0.232 -0.05 0.049 0.156 -0.068
ers
Values are Pearson’s correlation coefficient; bold font denotes correlations are significant at p < 0.05. n = 132.
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performance (sensitive, indifferent and tolerant) of the

individual species (Equbal et al., 2017). The improved sample

quality between premonsoon and winter is suggestive of

satisfactory performance by the benthic indices during stable,

less turbulent, and low seasonal impact periods (Kröncke and

Reiss, 2010; Karakassis et al., 2013; Sigamani et al., 2015; Bae

et al., 2016; Chan et al., 2016; Feebarani et al., 2016; Sivadas et al.,

2016; Mulik et al., 2017). In fact, for many estuaries on the east

coast of India, premonsoon exhibit the most stressed conditions

with excess and continuous accumulation of contaminants

(Mitra et al., 2018). However, a good flush-out of pollutants is

only possible during the monsoon season (Mulik et al., 2020a),

aided further by a breakdown of contaminants owing to

changing redox chemistry and consequences on benthic-

pelagic coupling (Ghosh et al., 2022).

The applied biotic indices evaluated the benthic quality

status by discriminating the highly disturbed from the less

disturbed areas of the estuary. While the robustness of the M-

AMBI (compared to AMBI) in sample quality assessment was

explained by several researchers (Khan et al., 2014; Equbal et al.,

2017; Pandey et al., 2021), a few others have observed its reverse

performance due to lack of reference conditions and spatial

benthic variability, heterogeneity within the estuarine complexes

(Sigamani et al., 2015). According to Borja and Tunberg (2011),

both AMBI and M-AMBI are sensitive to detecting human-

mediated disturbances modified by natural disturbances.

However, for regions strongly influenced by season, coastal

dynamics, and anthropogenic disturbances, the univariate

AMBI could show a high degree of variability than the

multimetric M-AMBI (Kröncke and Reiss, 2010). The

temporal variability of AMBI was indeed found to be less than

M-AMBI (Equbal et al., 2018). Nevertheless, the marine biotic

index, especially the M-AMBI, appeared to be more robust and

realistic in grading the habitat quality into different classes.

Therefore M-AMBI index can be used as far as the assessment

of benthic habitat quality of the MES is concerned.
Recommendations for conservation
and management

Considering the Mahanadi estuary’s polluted health status,

some holistic management initiatives are required immediately.

The government can enforce authority and share responsibilities

with local stakeholders, academic institutions, and non-

governmental organizations as partners (Romañach et al.,

2018). Regular monitoring of the environmental conditions

and mangrove cover through advanced research (by observing

heavy metal concentrations, application of Remote Sensing and

GIS, and others) and citizen science approaches are essential

(Zauki et al., 2019; Wolswijk et al., 2020; Durango-Cordero et al.,

2021; Gopalakrishnan et al., 2021; Wolswijk et al., 2022).
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Afforestation of degraded mangrove zones, embankment of

tidal rivers - without affecting zonation/succession of the

wetland species, and biodiversity conservation (as mandated

by the Department of Forest and Environment, Government of

Odisha) are some crucial endeavours in the right direction.

Moreover, the impact of local pollution on human health

should be apprised through appropriate awareness campaigns.

The approaches of this kind would be able to lessen the present-

day waste discharge, habitat fragmentation, and ecological

functioning damages.
Conclusions

The present study unveiled the macrobenthic community of

the mangrove-associated MES and demonstrated the impacts of

anthropogenic intervention through an ecological approach.

Significant sources of anthropic stressors (municipal wastes,

sewage, litter, acidic discharges from industries, nutrients, and

shrimp farm run-offs) were influential in structuring the

macrobenthic assemblages of the MES on spatial and temporal

scales. The dominance of opportunistic (second-order

opportunists, EGIV) and tolerant (EGIII) species marked the

signs of environmental stress, regardless of the sources of

disturbance, i.e., natural or anthropogenic. The higher (mean)

abundance of opportunists and tolerant species in the MAZ and

DZ was mainly caused by OM enrichment that was further

modified by the industrial and shrimp farming effluents. Marine

biotic indices, especially the M-AMBI, informed the MES’s

current state of ecological quality. The improved benthic

community health from moderate to good in the premonsoon

and winter was largely due to stable environmental conditions,

allowing multiple species to co-exist in the light of reduced

tolerant/opportunist species. The findings of this study also

identified a set of environmental factors (water temperature,

nutrient enrichment, salinity, DO, pH) influencing the

macrobenthic assemblages of the MES. Evaluating the

structure of macrobenthos in relation to anthropogenic/natural

pressures and impacts provided the much-needed breadth of

knowledge to help the management authorities formulate

appropriate conservation strategies/policies. Given the

importance of aquatic ecosystems for livelihood and climate

change mitigation, the coastal and estuarine ecosystems must be

protected so that their goods and services are sustainably utilized

in the present and also availed by future generations.
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Muxika, I., Borja, Á., and Bald, J. (2007). Using historical data, expert judgement
and multivariate analysis in assessing reference conditions and benthic ecological
status, according to the European water framework directive. Mar. Pollut. Bull. 55,
16–29. doi: 10.1016/J.MARPOLBUL.2006.05.025

Nayak, A. (2020). Benthic macrofauna of Mahanadi estuary Odisha, East coast
of India, doctoral thesis submitted to Ravenshaw university. 406. Available at:
http://hdl.handle.net/10603/355684.

Nayak, A., Charan Kumar, B., Lovaraju, A., Raut, D., Sanghamitra Rout, S.,
Dash, B., et al. (2018). Benthic infauna from mudflats of Atharbanki mangrove
waterway in Odisha, India. J. Mar. Biol. Assoc. India. 60, 33–39. doi: 10.6024/
jmbai.2018.60.1.2026-05

Ortega, I., Colling, L. A., and Dumont, L. F. C. (2018). Response of soft-bottom
macrobenthic assemblages to artisanal trawling fisheries in a subtropical estuary.
estuar. Coast. Shelf Sci. 207, 142–153. doi: 10.1016/J.ECSS.2018.04.007

Palei, N. C., Rath, B. P., Pradhan, S. D., Swain, K. K., and Pati, M. (2014). The
water birds of Paradeep Phosphate limited (PPL) campus of Jagatsinghpur District
in Odisha, India.World J. Zool. 9 (3), 208–213. doi: 10.5829/idosi.wjz.2014.9.3.8552

Pandey, V., Venkatnarayanan, S., Kumar, P. S., Ratnam, K., Jha, D. K., Rajaguru,
S., et al. (2021). Assessment of ecological health of Swarnamukhi river estuary,
southeast coast of India, through AMBI indices and multivariate tools.Mar. Pollut.
Bull. 164, 112031. doi: 10.1016/J.MARPOLBUL.2021.112031

Pattanayak, J. G., and Haldar, B. P. (1998). Other groups. In Fauna of Mahanadi
estuary, Orissa, Estuarine Ecosystem Series, Rec. Zool. Surv. India 3, 215–218.
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