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1  |  INTRODUC TION

Zooplankton time- series are fundamental in the assessment of 
the state and the health of marine ecosystems (Boero et al., 2015; 
O'Brien et al., 2017; Ratnarajah et al., 2023). Zooplankton are indeed 
recognised among the essential biological variable in the framework 
of the 2022 GCOS Implementation Plan (https://gcos.wmo.int/en/
publi catio ns/gcos- imple menta tion- plan2022) and as an indicator of 

the good environmental status in the EU Marine Strategy Framework 
Directive (2008/56/EC https://ec.europa.eu/envir onmen t/marin e/
good- envir onmen tal- statu s/index_en.htm).

Zooplankton assemblages include representatives of the entire 
spectrum of taxa, spanning from protozoans to chordates (Bucklin 
et al., 2021; Bucklin, Nishida, et al., 2010). These organisms are central 
components of a holistic ecosystem assessment due to their interme-
diary role in the food web, linking lower with higher trophic levels. As 
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Abstract
Molecular tools increasingly refine and improve the identification of zooplankton 
organisms based on phenotypic features, providing a more robust and comprehen-
sive species description. Integration of data helps revealing the hidden diversity of 
zooplankton and facilitating the detection of rare and non- indigenous species. This 
approach, merging morphological characters and a diagnostic marker for specific 
identification, such as the mitochondrial cytochrome c oxidase I (COI), is here used to 
characterize key taxa from the zooplankton assemblage of the Gulf of Naples at the 
Long- Term Ecological Research site MareChiara (LTER- MC) (Central Tyrrhenian Sea, 
Western Mediterranean Sea). Zooplankton biodiversity assessment using integrated 
taxonomy was focused on selected crustacean groups: cyclopod copepods (Agetus 
typicus, Oithona plumifera, Oncaea mediterranea, Oncaea scottodicarloi); newly records 
of cladocerans (Evadne nordmanni), euphausiids (Euphausia krohnii, Nematoscelis mega-
lops, Nyctiphanes spp.) and sergestids (Lucifer typus), with the aim to boost the knowl-
edge of real zooplankton biodiversity. The results of our investigation provide new 
high- quality molecular references of the analysed taxa and contribute to unveiling the 
genetic diversification of zooplankton species and their relevant ecological signifi-
cance for Mediterranean coastal waters.
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a result, they incorporate the inherent properties and variations occur-
ring at all levels of marine ecosystems, their changes in communities 
being important indicators of both the overall ecosystem health and 
global impacts.

Notwithstanding its importance, zooplankton diversity is still 
particularly challenging to assess. At present, this task is performed 
mostly based on the morphological identification of species. In moni-
toring programs, zooplankton taxa are generally identified only to the 
class or family level (O'Brien et al., 2017), and only well- known and 
dominant species (mainly copepods) are identified accurately, whereas 
other taxa, including rare ones, are often underestimated (Laakmann 
et al., 2020). The taxonomic identification of zooplanktonic organisms 
based on morphological characters requires a high level of special-
ization (Di Capua et al., 2022; Zingone et al., 2019), but the number 
of expert taxonomists is rapidly declining (Laakmann et al., 2020). 
Moreover, the occurrence of numerous cryptic species and species 
complexes, together with limited diagnostic characters for meroplank-
tonic species, further hinders the assessment of zooplankton biodi-
versity and biogeography, with frequent species misidentifications (Di 
Capua et al., 2022; Laakmann et al., 2020). In the last two decades, the 
use of molecular taxonomy in zooplankton research has led to a rev-
olution in species identification and characterization, as well as in the 
assessment of biodiversity (Djurhuus et al., 2018). The mitochondrial 
cytochrome C oxidase I (COI) gene has proved successful in the identi-
fication of zooplanktonic organisms and is considered a reference gene 
for taxonomic purposes (Blanco- Bercial et al., 2014; Bucklin, Hopcroft, 
et al., 2010; Bucklin, Nishida, et al., 2010; Laakmann et al., 2020). The 
creation of robust reference libraries, however, requires prior accurate 
morphological identification to align phenotypic and genotypic infor-
mation (Bucklin et al., 2021).

Globally, Copepoda dominate marine zooplankton (Boxshall & 
Halsey, 2004), being highly diversified in morphology, physiology, be-
havior, habitat preference, geographic distribution and climatic tolerance 
(Uttieri, 2018). They represent up to 90%– 97% of the marine zooplank-
ton biomass (Bradford- Grieve et al., 1999), living in any type of environ-
ment from deep- sea trenches to neuston (Huys & Boxshall, 1991), and 
from polar waters to hydrothermal vents (Walter & Boxshall, 2022).

Cladocera are small and cosmopolitan crustaceans season-
ally abundant in coastal waters (Rivier, 1998). Out of the approxi-
mately 620 known species (Forró et al., 2008), only eight are truly 
marine, an unbalance that can be considered as “curious” (Durbin 
et al., 2008). Nevertheless, their broad distribution makes them el-
igible for phylogeographic and population genetic studies (Durbin 
et al., 2008). Marine cladocerans are restricted to coastal waters, 
where they make up a significant part of the zooplanktonic commu-
nity at given periods, and in Gulf of Naples they dominate in summer 
(Mazzocchi et al., 2023).

Among Malacostraca, Euphasiacea and Sergestoidea are of par-
ticular importance in the pelagic realm. In the Mediterranean Sea, 
only thirteen species referred to seven genera of Euphausiacea are 
reported (Costanzo & Guglielmo, 1976; Guglielmo, 2010), while sys-
tematics and ecology are well studied mainly in the North Atlantic 
and South Pacific Oceans (Bucklin et al., 2007; Gibbons, 1997; 

Gibbons et al., 1995; Mauchline, 1980). Decapods of the family 
Luciferidae (superfamily Sergestoidea) are a typical component 
of tropical and subtropical epipelagic systems (Omori, 1992). 
They have rarely been reported from the Mediterranean Sea, 
making their study in this basin particularly challenging (Galil & 
Shlagman, 2010).

More than 200 zooplanktonic taxa have been regularly identi-
fied through diagnostic morphological characters at the Long- Term 
Ecological Research station MareChiara (LTER- MC) in the Gulf of 
Naples (GoN; Central Tyrrhenian Sea, Western Mediterranean Sea) 
from 1984 to 2015 (Mazzocchi et al., 2023). In a previous paper, 
phenotype- based approaches were combined with molecular ones 
to identify key calanoid copepod species collected at LTER- MC, 
revealing the occurrence of cryptic species and the biogeographic 
connections among different populations (Di Capua et al., 2022). 
The same methodological framework is here extended to other 
relevant components of the LTER- MC zooplankton assemblage, 
focusing on key target crustacean taxa (Copepoda, Cladocera, 
Malacostraca) with a pivotal role in the pelagic ecosystems, not 
only at the investigated station but also in neritic areas worldwide 
(Castellani & Edwards, 2017). Starting from the multidecadal knowl-
edge of the zooplankton assemblage at LTER- MC, in this study we 
complement the routine morphological taxonomic identification of 
zooplanktonic organisms with DNA barcoding to disentangle the 
identification of key target species: (i) regularly found copepods 
that require highly laborious taxonomic identification (Agetus typ-
icus, Oithona plumifera, Oncaea mediterranea, Oncaea scottodicar-
loi); (ii) a recently recorded cladoceran (Evadne nordmanni), never 
observed before at LTER- MC; and (iii) malacostraca often forming 
dense and abundant swarms at LTER- MC, but not easily identified, 
in particular during their life stages (the euphausiids Euphausia 
krohnii, Nematoscelis megalops, Nyctiphanes spp., and the sergestid 
Lucifer typus). The study is aimed at expanding the current knowl-
edge of the biodiversity of zooplanktonic taxa using integrated tax-
onomy. This lays the foundation and contributes to DNA barcoding 
libraries for Mediterranean coastal areas, starting from the GoN 
due to its high representativeness, by providing new high quality 
and validated reference sequences. From a broader perspective, by 
complementing taxonomic description with biological and ecolog-
ical traits of the investigated taxa we aim at drawing a more com-
prehensive picture of their role in different marine environments, 
as well as of their phylogeographic connections in Mediterranean 
coastal waters.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling

Zooplankton samples were collected in the GoN at the coastal LTER- MC 
site.	 A	 WP2	 plankton	 net	 (mouth	 diameter:	 57 cm;	 mesh	 aperture	
width:	200 μm)	was	towed	vertically	from	−50 m	depth	to	the	surface	
at	low	speed	(0.7–	1.0 m s−1). All sampling activities were performed in 
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the framework of the LTER- MC activities and of the Naples Ecological 
REsearch and Augmented ocean observation (NEREA) project (https://
www.nerea - obser vatory.org/), an augmented observatory including 
“omic approaches”. Upon collection, the live material was brought 
within	2 h	 to	 the	 laboratory,	where	 it	was	 filtered	on	a	200 μm nitex 
filter, preserved in 95% ethanol and stored in the dark at 4°C. After 
24 h,	the	ethanol	was	replaced	to	remove	seawater	excess.

2.2  |  Morphological analyses

Individual organisms were sorted out from LTER- MC zooplankton 
samples under a Leica M165C stereomicroscope. For copepods and 
cladocerans, the identification was carried out at species level on adult 
females using diagnostic morphological characters and classification 
according to Boltovskoy (1999), Razouls et al. (2005- 2022), and 
Trégouboff and Rose (1957), checking original descriptions and 
revisions, when relevant.

Malacostraca larvae, euphausiid eggs and larval stages were 
identified using the taxonomic keys reported by Castellani and 
Edwards (2017), while for Sergestoidea the work by Dakin and 
Colefax (1940) was used as reference.

The taxonomic classification and nomenclature of all taxon 
names are in agreement with the World Register of Marine Species 
(https://www.marin espec ies.org/worms liter ature.php).

2.3  |  Selected key taxa

2.3.1  |  Copepoda,	Cyclopoida

Eight Cyclopoida specimens referred to four species from two or-
ders were selected. Oncaea species are very abundant and regu-
larly collected throughout the years at the LTER- MC site (Di Capua 
et al., 2017). Oncaea scottodicarloi was described by Heron and 
Bradford- Grieve (1995) as a distinct species based on specimens 
collected in the GoN, while Oncaea mediterranea was discovered 
for the first time in the Mediterranean Sea by Claus (1863). Oithona 
plumifera is one of the most abundant of the eight Oithona species 
at the LTER- MC site, while Agetus typicus is a rare species regularly 
observed since 1984 (Di Capua & Mazzocchi, 2021).

2.3.2  |  Cladocera

At LTER- MC site, five species (Evadne spinifera, Pseudevadne terges-
tina, Penilia avirostris, Podon intermedius and Pleopis polyphaemoides) 
are regularly recorded with a clear seasonal succession among them 
from April to August (Montalbano, 2021). In addition, the present 
study includes a species morphologically identified as Evadne nor-
dmanni, which was recorded for the first time at LTER- MC in April 
2021 (Figure 1c).

2.3.3  | Malacostraca

Euphausiacea and Sergestoidea swarms are recorded at the LTER- MC 
site occasionally, but they are identified only at high taxonomic level. 
Usually, eggs and different larval stages are collected in March– April. 
In January 2021, a swarm of eggs and calyptopis of Euphausiidae 
were	collected,	with	more	than	41 ind.	m−3 (Figure 1a,b). Two eggs 
and nine calyptopis stages were selected for this study, and identi-
fied morphologically.

Among decapod larvae, a zoea of the suborder 
Dendrobranchiata, superfamily Sergestoidea (Figure 1d) was 
morphologically identified as a zoea of Luciferidae (Dakin & 
Colefax, 1940).

2.4  |  Molecular analyses

DNA extraction, purification, and PCR were performed as re-
ported by Di Capua et al. (2022). Folmer et al. (1994) primers pairs 
(LCO1490:5′- GGTCA ACA AAT CAT AAA GAT ATTGG- 3 HCO2198: 5′- 
TAAAC TTC AGG GTG ACC AAA AAATCA- 3′) were used in PCR to am-
plify the COI gene of crustaceans, considered a universal marker for 
marine zooplankton (Bucklin et al., 2011, 2021; Bucklin, Hopcroft, 
et al., 2010).

Consensus sequences were generated with BioEdit Sequence 
Alignment Editor (Hall, 1999) and unique sequences (collapse of 
identical sequences) were obtained with mothur v.1.44.3 (Schloss 
et al., 2009). Identification by similarity was performed blasting our se-
quences against the Barcode of Life Data Systems (BOLD) (Meiklejohn 
et al., 2019; Ratnasingham & Hebert, 2007) and GenBank databases 
(http://www.ncbi.nlm.nih.gov). Moreover, identification by gener-
ation of and placement in a tree (phylogenetic approach) was per-
formed by downloading reference sequences from GenBank and/or 
BOLD (Meiklejohn et al., 2019; Ratnasingham & Hebert, 2007). Such 
reference sequences were filtered to remove low quality sequences 
(barcode <400 base pairs; bp), not identified to species level, or pre-
senting ambiguities (as in Di Capua et al., 2022) and combined with 
our Sanger sequences. The software MAFFT (Katoh et al., 2018; 
Kuraku et al., 2013) was used to perform an alignment of the total 
sequence data, which was subsequently checked in Sea View v4.0 
(Gouy et al., 2010). Maximum Likelihood (ML) trees (GTR model) were 
constructed with Fastree (Price et al., 2010) and visualized in the iTOL 
(Interactive Tree Of Life) software (Letunic & Bork, 2019).

In the case of Cyclopoida, 359 COI reference sequences, re-
ferred to the three analyzed copepods (Oncaea, Oithona and Agetus), 
were downloaded from BOLD and, subsequently, filtered to remove 
low quality data. Nine insect sequences (four species) where cho-
sen as outgroups (Anopheles pristinus accession numbers GU989357, 
GU989358, GU989348; Gressittacantha terranova accession num-
bers HM461319, HM461301, HM461312, HM461287; Lepicerus 
inaequalis accession number KJ871320; and Mycetaulus bipunctatus 
accession number KR436825).

https://www.nerea-observatory.org/
https://www.nerea-observatory.org/
https://www.marinespecies.org/wormsliterature.php
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For Cladocera, 224 COI reference sequences were downloaded 
from BOLD and were filtered as above. The alignment included 92 
filtered data from BOLD, the E. spinifera sequences from the GoN 
and one sequence of a calanoid copepod species (Calanus helgo-
landicus accession number JX995315.1) as an outgroup (Di Capua 
et al., 2022).

In Euphausiacea trees, 1,362 COI reference sequences were 
downloaded from BOLD and GenBank, and were filtered as above, 
generating a final dataset including 95 COI data. The multialign-
ment included filtered data from BOLD and GenBank, our eu-
phausiacea COI sequences and the outgroup, represented by four 
Stomatopoda sequences (BOLD: Oratosquilla oratoria accession 
number NC014342; GenBank: Harpiosquilla harpax accession num-
ber NC006916, Squilla empusa accession number NC007444 and 
Squilla mantis accession number NC006081).

Phylogenetic networks were generated for E. nordmanni and 
Nyctiphanes genus. Haplotype lists were generated with DnaSP 
(Rozas et al., 2017), then Median- Joining (MJ) haplotype networks 
were inferred with Network- fluxus 10 using default parameters.

3  |  RESULTS

3.1  |  Morphological and molecular identification

The	COI	sequences	generated	were	 longer	 than	400 bp.	Analysis	by	
similarity confirmed morphological identification at species level for 
copepods and cladocerans with high similarity (98– 100%) (Table 1). 
The sequences generated from eleven specimens morphologically 
identified as eggs and calyptopis of Euphausiacea were assigned to the 
two species Nematoscelis megalops (99% of similarity) and Euphausia 
krohnii (100% of similarity). The rest of the sequences were assigned to 

the genus Nyctiphanes (92% of similarity), corresponding to a reference 
of N. simplex from the Pacific Ocean, since no molecular references 
for this taxon are available from the Mediterranean Sea. The larva 
of Sergestoidea was morphologically and molecularly identified as 
Luciferidae, according to the low similarity (94%) with a reference of 
Lucifer typus, a species reported also from the Mediterranean Sea (Galil 
& Shlagman, 2010), but lacking of molecular reference from this area.

3.2  |  Copepoda, Cyclopoida

In the COI ML tree, all epipelagic species of Oncaea sensu stricto 
clustered together (Figure 2) in a highly supported clade (96%). 
Our sequence of O. mediterranea showed 100% identity with the 
sequence of Oncaea cf. mediterranea (broad form, GBCX1651- 14), 
and indeed robustly clustered with two other references of O. med-
iterranea from the Eastern Mediterranean Sea. In the O. scottodi-
carloi clade our sequences robustly clustered with samples from 
Greece (99% bootstrap). Seven epipelagic species of Oithona gen-
erated several clades, while the sequences from our specimens 
identified morphologically as O. plumifera clustered (100% boot-
strap) with other two O. plumifera references from Villefranche 
sur Mer (Figure 2). Our new reference of Agetus typicus grouped 
with the only two references available for corycaeids of the genus 
Ditrichocorycaeus (Figure 2).

3.3  |  Cladocera

The morphological identification of four parthenogenetic females 
of Evadne nordmanni was confirmed by molecular analyses 
(100% of similarity with EU675885.1), and the placement in the 

F I G U R E  1 HD-	images	of	zooplankton	
taxa new for the Gulf of Naples: 
(a) egg of Euphausiidae Euphausia krohnii;
(b) calyptopis of Euphausiidae Euphasia 
krohnii; (c) Cladocera Evadne nordmanni;
(d) zoea of Sergestoidea Lucifer sp.
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tree showed our new sequences from the Mediterranean Sea 
clustering into a sister clade with other references from the Baltic 
Sea (Figure 3). The two globally distributed Evadne species, namely 
E. spinifera and E. nordmanni, grouped in two well supported
and separated clades (99.9% bootstrap). Finally, the haplotype

network of E. nordmanni including 33 COI sequences generated 
22	haplotypes	with	high	haplotype	diversity	(h = 0.97)	(Figure 4). 
The specimens from the GoN produced two haplotypes (H7 and 
H14) related to several haplotypes with a clear geographic signal 
(Figure 4).

F I G U R E  2 ML	phylogenetic	tree	of	cyclopoid	species	with	the	new	reference	of	Agetus typicus, Oncaea mediterranea, O. scottodicarloi and 
Oithona plumifera, at the LTER- MC site.
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F I G U R E  3 ML	phylogenetic	tree	of	Cladocera	species	with	the	new	reference	of	Evadne nordmanni species at the LTER- MC site.
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3.4  |  Euphausiacea

New reference sequences from the Mediterranean Sea 
were obtained for three genera: Euphausia, Nematoscelis and 
Nyctiphanes. The COI ML tree showed our first four COI sequence 
for Nyctiphanes sp. calyptopis clustering all together within the 
Nyctiphanes clade as sister species of N. australis (Figure 5). Our 
calyptopis sequence was identified as Nematoscelis megalops 
(bootstrap 100%), clustering in the clade including other reference 
of this species (Figure 5). The genus Euphasia showed a big, highly 
supported clade (93%) including twenty species. The sequences 
generated from two eggs and one calyptopis were placed in the 
clade (100% bootstrap) with other two references of E. krohnii 
from the Atlantic and Pacific Oceans.

The network analysis of the genus Nyctiphanes, using the 
fourteen available sequences, showed ten haplotypes and high 
haplotype	 diversity	 (h = 0.92).	 The	 four	 specimens	 from	 the	 GoN	
(Mediterranean Sea) generated different haplotypes (H1- H4) and 
showed a clear separation from other species (Figure 6).

4  |  DISCUSSION

The integrated morphological and molecular analysis of a set of 
crustacean species of the LTER- MC zooplankton community, 
where they have been observed over the years, allowed to 
link the individual identification (α taxonomy) to a wider Ω 
taxonomy framework. Such integration is pivotal not only for the 
knowledge of the species itself (Tanduo et al., 2021, 2022) but 
also to assess the diversity of a system and the phylogeographic 
relationships among distant populations (Di Capua et al., 2022; 
Goetze & Ohman, 2010; Pereira et al., 2017). The crucial aspect 
is represented by the availability of robust, verified DNA barcode 
references, which guarantee the perfect correspondence between 
the phenotypic and molecular identifications.

Indeed, molecular data associated with long- term quali- 
quantitative datasets linking taxonomic, ecological and molecu-
lar approaches to the study of zooplankton taxa, are also crucial 
for the development of robust metagenomic and metabarcoding 
assessments.

F I G U R E  4 Phylogenetic	network	of	
Evadne nordmanni species including our 
references. The length of the connecting 
lines is proportional to the number of base 
substitutions between the haplotypes.
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F I G U R E  5 ML	phylogenetic	tree	of	Euphausiidae	with	the	new	reference	of	three	new	genera	(Nyctiphanes, Nematoscelis, Euphausia) at 
the LTER- MC site.
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At LTER sites, such as LTER- MC, expertise and knowledge of 
morphology- based zooplankton taxonomy built and maintained 
across years are now leading to the generation of high- quality refer-
ence sequences associated with morphological features, to enhance 
molecular taxonomy and molecular ecology studies, paving the way 
for an augmented omic- observatory.

Planktonic Cyclopoida (Oithonidae, Oncaeidae and Corycaeidae) 
are one of the most important and abundant copepod groups in oligo-
trophic waters (Gallienne & Robins, 2001; Medellín- Mora et al., 2021). 
Cyclopoida can be distinguished at species level based on detailed 
morphological identification (Böttger- Schnack & Machida, 2011; 
Heron & Frost, 2000; Paffenhofer, 1993), but validated references 
are almost absent in public molecular datasets. Our sequences ob-
tained from the GoN specimes showed that COI barcoding can ac-
curately identify also cyclopoids at the species level (98%– 100% 
similarity), as observed for calanoid species (Di Capua et al., 2022). 
COI barcoding can accurately identify Oncaea species, as discussed 
in Di Capua et al. (2017); in addition, a new reference of O. medi-
terranea was obtained from a site close to its type locality (Messina; 
Tyrrhenian Sea). Based on COI barcoding, Oithona plumifera from the 
GoN is genetically related to the other populations from the Western 
Mediterranean Sea, also confirming its close relationships with O. at-
lantica and O. similis (Cornils et al., 2017). The O. plumifera sequences 
from the GoN group with other references from the Mediterranean 
Sea, suggesting a distinct molecular lineage for this basin, without 
indicating crypticity as shown for O. similis (Cornils et al., 2017).

The taxonomic and molecular classification of Brachiopoda 
is under revision (Durbin et al., 2008; Onbé, 1999; Richter et al., 
2001), and our tree represents the first overview of the evolution-
ary relationships including Mediterranean marine cladocerans. Our 
COI fragments do not show monophyly at the genus level, but a 
good resolution at the species level, in agreement with Durbin 
et al. (2008). We provide the first DNA barcode of Evadne nordmanni, 
which also represents the first reference for the Mediterranean Sea. 
In the North Adriatic Sea, E. nordmanni is regularly abundant in May 
and then less abundant in September (Aubry et al., 2012). The spe-
cies has also been reported occasionally in two coastal sites of the 

Tyrrhenian Sea (Margiotta et al., 2020; Umani et al., 2010). Compared 
to the other cladocerans typically recorded at the LTER- MC in sum-
mer (Mazzocchi et al., 2023), E. nordmanni appears in early spring at 
lower temperatures and salinities.

High haplotype diversity and high number of haplotypes spread 
from NE Pacific, SW Pacific to NE Atlantic, including the Baltic Sea, 
support the hypothesis of rapid colonization of the world ocean by this 
species (Durbin et al., 2008). However, the actual distribution of E. nord-
manni may go unreported because of the close similarity of this species 
to the congener E. spinifera, the two being difficult to tell apart based 
on morphological characters only. The knowledge of the distribution 
of marine cladocerans is incomplete, particularly in the Mediterranean 
Sea. Our haplotypes from the GoN are similar to those of the Baltic Sea 
and the North Sea, supporting E. nordmanni as an ideal candidate for 
transport in ballast water and in ballast tank sediments by transoceanic 
ships (Cristescu & Hebert, 2002; Durbin et al., 2008) thanks to their 
biological and ecological traits, including euryhalinity and temperature 
tolerance (Rivier, 1998), as well as long survival as resting eggs (Egloff 
et al., 1997; MacIsaac et al., 1999; Möllmann et al., 2002).

The identification of planktonic larval stages is difficult or impos-
sible at species and even at genus level: fine taxonomic identification 
is only possible by molecular tools (Brandner et al., 2017; Di Capua, 
Micarelli, et al., 2021, Di Capua, Piredda, et al., 2021;	Walczyńska	
et al., 2019). In many marine species, the presence of pelagic larval 
stages, together with the absence of obvious distribution barriers, 
suggest a high level of gene flow (Palumbi, 2003). The distribution 
of meroplankton taxa is connected to the characteristics of the local 
benthic communities according to hydrodynamic and environmental 
conditions (Morgan, 2001). Meroplankters are important contribu-
tors to the zooplankton communities, but they are very often under-
estimated during routine time- series analyses (Lindeque et al., 1999). 
Recently, environmental DNA approaches applied at LTER- MC have 
revealed the high and hidden diversity of larval stages (Di Capua, 
Piredda, et al., 2021). Molecular data generated from crustacean 
larval stages (eggs and larvae) have produced four new references 
of euphausiids and sergestids from the Mediterranean Sea. The sur-
face and vertical currents in the GoN may favour the entrance of 

F I G U R E  6 Phylogenetic	network	of	
three species of Nyctiphanes, including our 
references. The length of the connecting 
lines is proportional to the number of base 
substitutions between the haplotypes.
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offshore species, including those living in proximity to the submarine 
canyons engraving the bottom of the GoN (Cianelli et al., 2015). Our 
data suggest the presence of new species within the Nyctiphanes 
genus from the Mediterranean Sea, but additional morphological 
and molecular studies on adults are needed to disentangle this issue.

The analysis of zooplankton species using the COI gene builds 
an informative framework to identify and explore priority issues in 
the diversity, structure and functioning of zooplankton communi-
ties. Long- term series are essential baselines to evaluate the evolu-
tion of biodiversity in terms of species composition and their relative 
abundances. In this view, integrated taxonomy supports a wider 
appreciation of biodiversity, and helps to evaluate our impacts on 
biodiversity and the efficacy of measures aimed at reducing them.
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