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Abstract

Systema Naturae includes representatives of every major lineage of the animal phylum Cnidaria. However, Linnaeus did 
not classify the members of the phylum as is now done, and the diversity of the group is not well represented. We con
trast the Linnaean perspective on cnidarian diversity with the modern, phylogenetic perspective. Lor each order, we 
detail diversity at the family level, providing phylogenetic context where possible.

Keywords: Systematics, black coral, coral, hydroid, jellyfish, octocoral, sea anemone

The Linnaean perspective on Cnidarian diversity

The phylum Cnidaria is a diverse group of relatively simple animals united by the ability to synthesize a 
highly complex cellular product, the enida. Its members, which include corals, hydroids, jellyfishes, sea 
anemones, and sea fans, are abundant and common in marine environments, and have been known to natural 
historians for millennia.

Linnaeus (1758) included representatives of all major cnidarian lineages in Systema Naturae in various 
orders of Vermes Imperfecta. His taxonomic placement of cnidarian species was based largely on whether 
they were solitary or colonial, and whether they had no skeleton, a stony skeleton, or a proteinaceous skeleton. 
Linnaeus’ Mollusca included three genera with members that are now considered part of Cnidaria: Priapus, 
Holothuria, and Medusa. Like all members of his Mollusca, these animals have relatively uniform bodies and 
lack a skeleton. Priapus was defined as having a fixed base and a terminal orifice, characteristics common to 
many sessile animals; the Linnaean species equinus remains in use as Actinia equina, the type species of the 
actiniarian sea anemone genus Actinia (see Williams et al. 1982). Linnaeus’ Holothuria included free-swim
ming forms with a humped body and tentacles of unequal length and number; this genus includes the hydro- 
zoan Physalia physalis, described by Linnaeus (1758) as Holothuria physalis. Members of the genus Medusa 
share a pelagic, gelatinous body with a central mouth on the lower surface. This genus includes all of the Lin
naean species now assigned to Scyphozoa and Cubozoa. Common hydrozoans, such as the blue button Por
pita porpita and the by the wind sailor Velella velella, were also included in this genus. Not all species of 
Medusa are cnidarians, however: Medusa beroe is clearly a member of the ctenophore genus Beroe, although 
identity of the Linnaean species is unclear (Bayha et al. 2004). The genus Priapus was suppressed for Cni
daria in Opinion 1295 of the International Commission on Zoological Nomenclature (Bulletin of Zoological 
Nomenclature 42:34-36; April 1985): it has been ruled to belong to phylum Priapulida.

128 • Zootaxa 1668 © 2007 Magnolia Press LINNAEUS TERCENTENARY: PROGRESS IN INVERTEBRATE TAXONOMY



Lithophyta and Zoophyta are distinguished from Mollusca in being colonial. Members of Lithophyta have 
a hard skeleton; those of Zoophyta have no skeleton, or a flexible one. The lithophytes are a heterogeneous 
assemblage of hydrozoan corals (e.g., Millepora), octocorals (e.g., Tubipora), scleractinian corals (e.g., 
Madrepora), and bryozoans. Zoophyta is likewise heterogeneous, including the hydrozoans Hydra and Tubu
laria, and several groups now classed in Octocorallia, including Isis, Gorgonia, and Pennatula. Although 
these names remain in use and are valid for particular cnidarian genera, Linnaeus’ (1758) concept of each 
does not correspond to modern use. For example, Gorgonia includes taxa now recognized as belonging to the 
anthozoan subclass Octocorallia (e.g., the gorgonian Gorgonia ñabellum) and to its sister subclass, Hexacor
allia (e.g., Gorgonia spiralis, now the black coral Cirripathes spiralis). Hydra includes species belonging to 
groups other than Cnidaria (e.g., the ciliate Epistylis digitalis, described as Hydra digitalis). Millepora 
includes at least one scleractinian coral (Millepora damicornis, now Pocillopora damicornis).

Although Linnaeus (1758) recognized the breadth of diversity now encompassed in Cnidaria, none of the 
higher-level distinctions made in Systema Naturae correspond to modern taxonomic groups. The cnidarians 
classified together in Mollusca, Lithophyta, or Zoophyta are, by and large, only distantly related. All of the 
Linnaean categories include representatives of at least two classes, and Mollusca includes three: the antho
zoan Actinia equina, the hydrozoan Physalia physalis, and the scyphozoan Aurelia aurita. Nonetheless, the 
characters Linnaeus used to differentiate taxa are commonly used to recognize groups within lineages, and 
their importance and applicability remain the focus of taxonomic and phylogenetic discussion (e.g., France et 
al. 1996; Berntson et al. 1999; Daly et al. 2003; Marques & Collins 2004; Dunn et al. 2005; Medina et al 
2006; McFadden & Alderslade 2007).

Modern perspectives on Cnidarian diversity 

P h y lu m  Cnid a r ia

Cnidaria comprises two reciprocally monophyletic clades. The distinction between Anthozoa and Medusozoa 
is well-supported by anatomy and life history (Salvini-Plawen 1978; Bridge et al. 1995), genome structure 
(Bridge eta/,1992; but see Brugler 2004 for unusual cerianthid genome), and DNA sequences (e.g., Cavalier- 
Smith et al. 1996; Odorico & Miller 1997; Collins 1998; Berntson et al. 1999; Kim et al. 1999; Medina et al. 
2001; Won et al. 2001; Collins 2002). The traditional taxonomic structure of Cnidaria mirrors its phylogenetic 
structure, although the ranks of many groups are incompatible with their hierarchical phylogenetic position. 
For instance, the class Anthozoa comprises all members of the clade Anthozoa; its sister taxon, Medusozoa, 
comprises the remaining classes. Thus, class and other ranks have different phylogenetic implications across 
the phylum.

Cnidae, organelle-like capsules with eversible tubules (e.g., Weill 1934; Watson 1988), are the diagnostic 
feature of the phylum. Of the three types of cnidae (nematocysts, ptychocysts, and spirocysts), only nemato- 
cysts are found across the clade. All cnidarians possess cnidae; no loss of the feature has been documented. 
Three other features sometimes considered to be diagnostic of Cnidaria are radial symmetry and planula and 
polyp stages in development, but all are problematic. Although many cnidarians exhibit radial symmetry, 
some are directionally asymmetric (Dunn & Wagner 2006), and many have a biradial or bilateral organization, 
leading some to conclude that bilateral symmetry is the ancestral condition for the phylum (Salvini-Plawen 
1978; Matus et al. 2006). Furthermore, the other two features are difficult to define. For example, the motile 
stage between embryo and settled juvenile in any given cnidarians life cycle is typically termed a planula, 
and, although this stage is usually ciliated, sausage-shaped, and non-feeding, deviations from this pattern -  
e.g., Haliclystus (class Staurozoa), Hydra (class Hydrozoa), Zoanthidea (class Anthozoa)—have been well 
documented. Polyp forms are even more variable than planulae, being solitary or colonial; if colonial, polyps
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may be monomorphic or polymorphic; they may or may not have a mineralized skeleton; they may be benthic 
or pelagic; and tentacles, although commonly present, may be absent.

We summarize the current state of knowledge of the membership of classes and orders of cnidarians, with 
brief notes on families. The most recent coverage of the phylum at these levels was by Dunn (1982).

C l a s s  A n t h o z o a

M. Daly, C. S. McFadden & D. G. Fautin

The class Anthozoa comprises two reciprocally monophyletic lineages, Octocorallia and Hexacorallia. All 
members of Anthozoa are exclusively polypoid, and may be colonial, clonal, or solitary, skeleton-less or with 
a mineralic and/or proteinaceous skeleton. Anthozoa currently contains approximately 7,500 extant species.

Although an early phylogeny based on fragments of 18S rDNA from a relatively small subset of Cnidaria 
found Anthozoa to be paraphyletic with respect to a monophyletic Medusozoa, this result was interpreted as 
an artifact of analytical methods and the taxon sample because Anthozoa was recovered as a clade under some 
analytical parameters and when additional data and taxa were considered (Bridge et al. 1995). Subsequent 
studies of larger rDNA datasets (France et al. 1996; Odorico & Miller 1997; Song & Won 1997; Berntson et 
al. 1999; Collins 2002) support anthozoan monophyly. Phylogenetic analyses of morphological data (e.g., 
Won etal. 2001) also have corroborated this hypothesis, and have suggested at least three diagnostic apomor- 
phies for Anthozoa: actinopharynx, siphonoglyph, and mesenteries. The actinopharynx (= stomadeum, gullet) 
is an ectoderm-lined tube that projects into the gastrovascular cavity (= coelenteron) ; this structure is found in 
all Anthozoa, with one known exception, the black coral Sibopathes (Opresko 1993). The siphonoglyph (= 
sulcus) is a densely ciliated, often more highly glandular region of the actinopharynx; it is single, paired, or, 
rarely, absent (e.g., in ptyochodactiarian sea anemones; the presence of a siphonoglyph in antipatharians is 
disputed), and in asexually-derived individuals, there may be more than two. The siphonoglyph reflects the 
plane of bilateral symmetry for the polyp (Finnerty et al. 2004). Bilateral symmetry is further defined by the 
mesenteries (the term septa, which has been used for these structures, should be reserved for the calcareous 
radial partitions secreted by the mesenteries of scleractinians: Bayer et al. 1983), radially-arrayed sheets of 
tissue that extend all or part of the way from the body wall to the actinopharynx. Unlike the gastric septa of 
Staurozoa, at least some of the mesenteries extend nearly halfway across the gastrovascular cavity, from the 
body wall and to the actinopharynx. Mesenteries are arranged in cycles (members of each cycle form more or 
less simultaneously) and bear the gametogenic tissue and epitheliomuscular cells that are concentrated as 
retractor muscles. The free edge of a mesentery is typically elaborated into a mesenterial filament with abun
dant gland cells, nematocysts, and cilia. The exclusively polypoid nature of the anthozoan life cycle is some
times considered a synapomorphy for the group (e.g., Hyman 1940; Brusca & Brusca 1990), but this attribute 
is shared with at least some medusozoans and may be a pleisiomorphy (Collins etal. 2006a).

SUBCLASS HEXACORALLIA
M. Daly & D. G. Fautin

The anthozoan subclass Hexacorallia comprises all scleractinian and black corals, tube anemones, and sea 
anemones in the broadest sense (i.e., orders Actiniaria, Antipatharia, Ceriantharia, Corallimorpharia, Sclerac
tinia, and Zoanthidea). Hexacorallia currently contains about 4,300 extant species (Doumenc & van Praët 
1987). As the name suggests, most hexacorallians have hexamerous symmetry, although eight- or ten-part 
symmetry are not uncommon. All members of Hexacorallia have spirocysts, a type of enida with a single
walled capsule and a tubule composed of tiny entangling sub-threads (Mariscal etal. 1977).
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Because the morphology of hexacorallian polyps is more variable than that of octocorallian polyps, mono- 
phyly of the group and relationships within it have been difficult to interpret. Based on similarities in mor
phology between the cerinula larvae of the cerianthid Arachnactis and the antipatharian polyp, Antipatharia 
and Ceriantharia have been separated from the remaining orders as a distinct subclass, Ceriantipatharia (see 
van Beneden 1897; Hyman 1940; Wells & Hill 1956; Berntson et al. 1999). France et al. (1996), Berntson et 
al. (1999), and Brugler and France (2007) addressed the placement of Ceriantharia and Antipatharia explic
itly, and determined that Ceriantharia and Antipatharia are not sister taxa: Ceriantharia is sister to (or the basal 
member of) Hexacorallia, within which Antipatharia nests. Other studies of hexacorallian relationships cor
roborate these conclusions (Berntson etal. 2001; Won etal. 2001; Daly et al. 2002, 2003). Two phylogenies 
based on 18S rDNA (Song et al. 1994; Song & Won 1997) found support for excluding Ceriantharia from 
Hexacorallia, but this seems to have been an artifact of their relatively small sample size because subsequent 
studies of 18S that included more taxa concluded that Ceriantharia is the basal-most lineage within Hexacor
allia (Berntson et al. 2001; Won etal. 2001; Daly etal. 2002, 2003).

Most molecular phylogenetic analyses support monophyly of each of the extant hexacorallian orders, 
although the relationship between Scleractinia and Corallimorpharia is controversial. Nuclear data (Won etal. 
2001; Daly etal. 2002, 2003) support Corallimorpharia as the sister-group to a monophyletic Scleractinia, but 
analyses of mitochondrial genes suggest that Corallimorpharia nests within Scleractinia (France et al. 1996; 
Romano & Cairns 2000; Medina etal. 2006). This may be the result of relatively limited taxon samples in the 
analyses of mitochondrial sequences: a study by Brugler and France (2007) that expanded the sample of 
Medina et al. (2006) to include an antipatharian and a zoanthidean found that Corallimorpharia and Sclerac
tinia are reciprocally monophyletic sister taxa. Chen et alls (1995) analysis of a very small fragment of 28S 
rDNA suggested that Corallimorpharia is more closely related to a subset of Actiniaria, but these authors did 
not recover this topology in subsequent analysis of a more extensive data set (Veron etal. 1996). The putative 
order Ptychodactiaria has been subsumed within Actiniaria, based on morphological (Cappola & Fautin 2000) 
and molecular (Berntson et al. 1999; Daly et al. 2003) evidence. Questions of monophyly aside, relationships 
among the orders are unclear. The relationship between Actiniaria and Zoanthidea is poorly resolved in all 
phylogenetic studies of molecular data (e.g., Daly et al. 2002, 2003; Brugler & France 2007). However, most 
analyses agree that Actiniaria, Antipatharia, Corallimorpharia, Scleractinia, and Zoanthidea constitute a clade, 
with Ceriantharia as its sister group.

Order Actiniaria
E. Rodriguez, M. Daly, & D. G. Fautin

The order Actiniaria Hertwig, 1882 comprises soft-bodied, solitary polyps with tentacles that are not pinnate, 
and arise at the margin and/or from the disc. These attributes are seen in some members of other hexacorallian 
orders, raising concern that Actiniaria is not monophyletic (e.g., Stephenson 1921; Schmidt 1972, 1974). 
Although no published genetic studies have explicitly addressed relationships among actiniarians, all broad- 
scale analyses of hexacorallian or anthozoan phylogeny (e.g., Berntson etal. 1999; Won et al. 2001; Daly et 
al. 2002, 2003) have included multiple actiniarians, and nearly all have demonstrated monophyly of the order. 
A notable exception is the analysis by Chen et al. (1995) of 28S rDNA, which found Actiniaria polyphyletic 
with respect to Corallimorpharia and Scleractinia; this result was based on a very small fragment of DNA, and 
has not been seen in subsequent analyses.

Currently, Actiniaria comprises approximately 1,200 species in 46 families. Its members are found at all 
depths, in all oceans, and in many estuaries. The current classification for Actiniaria is based on that of Car- 
lgren (1949), who recognized three suborders: Endocoelantheae, Nynantheae, and Protantheae. Nynantheae is 
the only suborder to comprise more than two families; it was further divided by Carlgren into three “tribes”
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(actually infraorders) and three “subtribes” (actually superfamilies). This classification was not intended to 
reflect phylogeny, and does not: at least some of the nyantheae infraorders are paraphyletic (e.g., Berntson et 
al. 1999; Daly etal. 2002, 2003).

Actiniarian families are characterized by the types and distribution of nematocysts; they can be distin
guished based on polyp structure, including the morphology and development of musculature, number and 
arrangement of mesenteries, arrangement and morphology of tentacles, and presence of specialized structures 
such as acontia. Although nematocyst distribution is used to define some actiniarian taxa, the value of these 
data for differentiating species or higher taxa has been questioned (Fautin 1988). Several classifications of 
nematocysts have been proposed (e.g., Schmidt 1972; Mariscal 1974; England 1991; Östman 2000), leading 
to conflicting diagnoses of the cnidom in some taxa. Furthermore, although all systems of classification for 
cnidae determine type based on the morphology of the tubule of discharged capsules, for most groups, cnidom 
has been assessed mainly with undischarged capsules from preserved specimens, making assessment of enida 
morphology tentative at best (e.g., Fautin submitted). Polyp anatomy is less controversial, but may be no less 
problematic: features of taxonomic value, including acrorhagi, marginal sphincter musculature, and reproduc
tive morphology have been the subject of re-evaluation or are difficult to distinguish in a few critical instances 
(e.g., Riemann-Ziirneck 1980; Fautin 1984; England 1987; Cappola & Fautin 2000; Daly & den Hartog
2004). Few families have been the focus of phylogenetic study, and monophyly is unclear for most groups. 
Furthermore, lack of type material and inadequate species descriptions mean that many species cannot be reli
ably identified, necessitating the redescription of species and establishment of neotypes. The chapter in this 
volume by Fautin et al. (2007) covers the genera of Actiniaria and Corallimorpharia.

Included families
Aiptasiomorphidae Carlgren, 1949 is a monogeneric family comprising four valid species (Carlgren 1949; 

Fautin 2007). The family is distinguished by the absence of certain types of nematocysts in the tenta
cles and relatively weak musculature rather than any uniquely present attribute, so may not be mono
phyletic.

Acontiophoridae Carlgren, 1938 comprises four genera and fewer than 10 valid species (Fautin 2007). The 
family is distinguished by the lack of a marginal sphincter rather than any uniquely present attribute, 
so may not be monophyletic.

Actinernidae Stephenson, 1922 comprises four genera and approximately 10 species (Carlgren 1949; Fautin 
2007). Actinernidae belongs to a distinctive suborder of Actiniaria distinguished by an unusual 
arrangement of mesenteries; it is differentiated from all other members of the Endocoelantheae in 
lacking microcnemes and in having two siphonoglyphs. The polarities of the diagnostic attributes are 
unclear, rendering assessment of its probable monophyly difficult.

Actiniidae Rafinesque, 1815 comprises 44 genera and more than 200 valid species (Carlgren 1949; Fautin 
2007). Actiniidae is likely not monophyletic. The diagnosis of the family does not include any 
attribute not seen in other Actiniaria, and studies of DNA sequences that include exemplars from 
Actiniidae and those from other families in Endomyaria have failed to recover its members as sister 
taxa (Daly etal. 2003; contra M cCommas etal. 1991).

Actinodendridae Haddon, 1898 comprises three genera and approximately 10 valid species (Ardelean 2003; 
Fautin 2007). Phylogenetic analysis of morphological attributes indicates that Actinodendridae is 
monophyletic (Ardelean 2003); its members are united in having the oral disc drawn out into long 
arm-like lobes bearing dendritic tentacles and in lacking a marginal sphincter.

Aiptasiidae Carlgren, 1924 comprises five genera and approximately 20 valid species (Carlgren 1949; Fau
tin 2007). Aiptasiidae is distinguished by the types of nematocysts in the acontia and the relatively 
weak musculature of the sphincter; because these attributes are also present in several other families, 
Aiptasiidae may not be monophyletic.
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Actinoscyphiidae Stephenson, 1920 comprises eight genera and approximately 10 valid species, most of 
which live in deep-sea and chemosynthetic habitats (Sanamyan & Sanamyan, 2007; Rodriguez et al. 
submitted). Phylogenetic analysis of morphological data (Rodriguez et al. submitted) indicates that 
Actinoscyphiidae is monophyletic, but its membership is likely to change as its close ally, Actinostol
idae, is revised.

Actinostolidae Carlgren, 1893 comprises 19 genera and approximately 70 valid species, most of which are 
from deep-sea and polar waters (Fautin & Hessler 1989; Fautin 2007; Rodriguez et al. submitted). 
The family is distinguished by no acontia and a mesogleal marginal sphincter rather than any unique 
attribute. A recent phylogenetic analysis of morphological data indicated that this family is not mono
phyletic (Rodriguez etal. submitted).

Aliciidae Duerden, 1895 comprises five genera and approximately 10 valid species (Fautin 2007). The fam
ily is characterized by outgrowths in the column containing macrobasic amastigophores, ectodermal 
longitudinal muscles in the column, and either no marginal sphincter or a weak one. Schmidt (1974) 
hypothesized, based on morphology and cnidae, that Aliciidae is closely related to Boloceroididae.

Andresiidae Stephenson, 1922 is a monospecific family whose sole species is from the sublittoral of the 
Mediterranean Sea and surrounding waters (Fautin 2007). This family is characterized by a burrowing 
habit, an endodermal sphincter, 24 pairs of perfect mesenteries, 24 long, sometimes-deciduous tenta
cles, and no basilar muscles.

Andvakiidae Danielssen, 1890 comprises two genera and fewer than five species (Carlgren 1949; Fautin 
2007). Andvakiidae is acontiate, with two kinds of nematocysts in the acontia, and its members have 
a mesogleal sphincter; it thus resembles families Isophelliidae, Sagartiidae, and Sagartiomorphidae, 
from which it is distinguished by lacking basilar muscles.

Bathyphelliidae Carlgren, 1932 comprises four genera and eight valid species (Fautin 2007). Riemann-Ziir- 
neck (1997a) hypothesized non-monophyly of the family based on attributes of the nematocysts of 
some members of the family (e.g., Daontesia). Bathyphelliidae is distinguished by acontia containing 
a single type of nematocysts, and having macro- and micro-cnemes, an elongated body, and few tenta
cles.

Boloceroididae Carlgren, 1924 comprises three genera and approximately 10 valid species (Fautin 2007). 
Boloceroididae belongs to infraorder Boloceroidaria, a small group distinguished by longitudinal 
muscles in the column, a disc-like aboral end, and the absence of basilar muscles. Boloceroididae is 
distinguished from Nevadneidae, the other family of Boloceroidaria, in having an endodermal sphinc
ter at the base of each tentacle.

Capneidae Gosse, 1860 comprises two genera and five valid species (Carlgren 1949; Dunn 1982). Dunn 
(1983) reestablished and amended the name and authorship of the family, recognizing Aurelianidae 
Andres, 1883 as a junior synonym. Capneidae is characterized by short, lobed tentacles that have a 
relatively unusual arrangement for actiniarians: several tentacles arise from each principal endo- and 
exo-coel.

Condylanthidae, Stephenson, 1922 comprises five genera and approximately 10 valid species (Fautin 2007). 
Members of this family have both macro- and micro-cnemes, a rare trait among actiniarians with an 
endodermal sphincter.

Diadumenidae Stephenson, 1920 is a monogeneric family comprising approximately 10 valid species (Fau
tin 2007). Members of Diadumenidae have two types of nematocysts in their acontia and lack a mar
ginal sphincter; both of these attributes are seen in several other families.

Edwardsiidae Andres, 1881 comprises seven genera and more than 100 valid species (Williams 1981; Daly 
2002; Fautin 2007). Monophyly of Edwardsiidae has been demonstrated by analyses of molecular 
(Daly et al. 2002) and morphological (Daly 2002) data, and is evidenced by the shared, derived state 
of eight macrocnemes.
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Exocoelactiidae Carlgren, 1925 is a monogeneric family comprising two valid species from the deep sea 
(Arellano & Fautin 2001; Fautin 2007). Exocoelactiidae is characterized by a weak mesogleal sphinc
ter and the irregular arrangement of the mesenteries in connection with the bilateral development of 
the younger mesenteries.

Galatheanthemidae Carlgren, 1956 is a monogeneric family comprising two valid species restricted to 
abyssal-hadal depths (Fautin 2007). Galatheanthemidae is characterized by the formation of a chiti- 
nous tube that covers much of the animal’s column, a strong mesogleal sphincter, and no basilar mus
cles.

Gonactiniidae Carlgren, 1893 comprises two monospecific genera. Gonactiniidae belongs to a distinctive 
suborder of Actiniaria (Protantheae) distinguished by longitudinal muscles in the column, no ciliated 
tracts on the mesenterial filaments, no marginal sphincter, and no basilar muscles. In lacking all of 
these features, its members are unique among Actiniaria, and monophyly of the family is expected.

Halcampidae Andres, 1883 comprises six genera and approximately 20 valid species (Fautin 2007). Halcam
pidae is characterized by an elongated body with cuticle, a marginal sphincter muscle that is either 
absent or mesogleal, and microcnemes. Because Halcampidae distinguished by absences rather than 
any uniquely present attributes, this family may not be monophyletic.

Halcampoididae Appellöf, 1896 comprises eight genera and approximately 10 valid species (Dunn 1982; 
Fautin 2007). Halcampoididae is distinguished by no basilar muscles, a marginal sphincter, a variable 
number of mesenteries, and relatively longer tentacles in the inner cycle. Because none of these 
attributes are unique to this group, or even seen uniquely in combination in it, it is probable that Hal
campoididae is not monophyletic. Furthermore, boundaries between Halcampoididae and Halo
clavidae are not clearly established (Rodríguez & López-González 2003).

Halcuriidae Carlgren, 1918 comprises two genera and approximately 10 valid species (Fautin 2007). Hal
curiidae belongs to suborder Endocoelantheae, which is distinguished by an unusual arrangement of 
mesenteries; it is differentiated from all other members of the Endocoelantheae in having macro- and 
micro-cnemes and a unique siphonoglyph. The polarities of these diagnostic attributes are unclear, 
rendering assessment of its monophyly difficult.

Haliactiidae Carlgren, 1949 comprises six genera and approximately 10 valid species (Fautin 2007). Hali
actiidae is distinguished by an elongated body, microcnemes, acontia, and no basilar or marginal 
sphincter muscles. The absence of musculature that distinguishes Haliactiidae from Acontiophoridae 
may be a functional rather than a phylogenetic distinction (Hand 1961), and thus Haliactiidae may not 
be monophyletic.

Haliplanellidae Hand, 1956 comprises two genera and two valid species (Dunn 1982; de Oliveira Pires 
1987). Haliplanellidae is distinguished by the relatively small body size of its members, no marginal 
sphincter, and the types of nematocyst in the acontia. Because these attributes are all seen in other 
families, the monophyly of Haliplanellidae is unlikely.

Haloclavidae Verrili, 1899 comprises eight genera and approximately 25 valid species (Rodríguez & López- 
González 2003; Fautin 2007). Haloclavidae is distinguished by a single well-developed siphonoglyph 
and no basilar muscles or marginal sphincter, rather than any unique attribute. The genera of Halo
clavidae share relatively longer tentacles in the outer cycle and lack of basilar muscles, but are heter
ogeneous in terms of the column anatomy and the morphology of the sphincter muscle, which is 
either absent, weak and endodermal, or relatively strong and endodermal (Stephenson 1935, Carlgren 
1949). The distinction between Haloclavidae and Halcampoididae is not clearly established 
(Rodríguez & López-González 2003). In phylogenetic analyses of molecular data (Berntson et al. 
1999; Daly et al. 2003), the type genus Haloclava clusters with some members of Actiniidae.

Hormathiidae Carlgren, 1932 comprises 15 genera and approximately 110 species, and is especially promi
nent in the deep sea (Fautin & Barber 1999; Fautin 2007). Some of its members occur symbiotically
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with crustaceans or molluscs. Hormathiidae is characterized by having acontia containing only one 
type of nematocyst, a mesogleal marginal sphincter, and column divisible into two regions and usu
ally provided with cuticle and tubercles.

Iosactiidae Riemann-Zürneck, 1997 is a monogeneric family comprising one species from the deep-sea 
(Riemann-Ziirneck 1997b; Fautin 2007). Iosactiidae is characterized by a burrowing habit, no basilar 
muscles, a small endodermal sphincter, 24 pairs of perfect mesenteries, and 24 deciduous tentacles, 
each with a sphincter. Its phylogenetic affinity is unclear: in having an endodermal sphincter and 
deciduous tentacles, it resembles some members of Actiniidae (e.g., Bolocera), but these same fea
tures, plus the number of mesenteries and general burrowing structure, relate it to Andresiidae.

Isanthidae Carlgren, 1938 comprises five genera and seven valid species (Fautin 2007). Isanthidae is charac
terized by an elongated body, mesogleal marginal sphincter, and macro- and micro-cnemes.

Isophelliidae Stephenson, 1935 comprises seven genera and approximately 35 valid species (Fautin 2007). 
Isophelliidae is distinguished by acontia containing two types of nematocysts and both macro- and 
micro-cnemes. Isophelliidae is very similar to Andvakiidae, differing only in the former having basi
lar muscles, although the two have traditionally been placed in separate superfamilies. Microcnemes, 
which are absent in Sagartiidae, are the sole attribute distinguishing Isophelliidae and Sagartiidae.

Kadosactidae Riemann-Zürneck, 1991 comprises two genera and four valid species from the deep sea (Rie
mann-Zürneck 1991; Sanamyan & Sanamyan 2007). Kadosactidae is characterized by a column pro
vided with cuticle and divisible into two regions, a strong mesogleal marginal sphincter, and acontia 
containing two types of nematocysts. The recent description of Seepactis, a second genus of Kadosac
tidae, renders the family heterogeneous.

Limnactiniidae Carlgren, 1921 is a monogeneric family comprising two valid species (Fautin 2007). This 
family is characterized by no tentacles, marginal sphincter, or basilar muscles.

Liponematidae Hertwig, 1882 is a monogeneric family comprising three valid species from deep-sea and 
polar waters (Fautin 2007). Liponematidae is characterized by attributes of its tentacles: each of the 
many tentacles has a sphincter at its base, allowing the tentacle to autotomize, and there is more than 
one tentacle per exocoel but only one per endocoel. Although its members resemble Bolocera (family 
Actiniidae) in general anatomy and cnidom, the arrangement of tentacles has been argued as sufficient 
to warrant family-level distinction (Dunn & Bakus 1977).

Metridiidae Carlgren, 1893 comprises two genera and approximately five valid species (Fautin 2007). 
Metridiidae is distinguished in having acontia containing two types of nematocysts, a mesogleal mar
ginal sphincter, and a lobed margin and oral disc with numerous short tentacles arrayed in the lobes. 
These attributes are not exclusive to members of Metridiidae.

Minyadidae Milne-Edwards, 1857 comprises two genera and approximately five species (Fautin 2007). Its 
members are unique among Actiniaria in being neritic, using a chitinous float secreted by the pedal 
disc for buoyancy.

Nemanthidae Carlgren, 1940 is a monogeneric family comprising three valid species (Fautin 2007). Nem
anthidae is distinguished by acontia-like structures that are thicker than acontia but with fewer nema
tocysts that are not necessarily different than those of the filaments, and a mesogleal marginal 
sphincter.

Nevadneidae Carlgren, 1925 is a monospecific family (Carlgren 1949; Fautin 2007). Nevadneidae belongs 
to Boloceroidaria, an infraorder of Actiniaria distinguished by the presence of longitudinal muscles in 
the column, a disc-like aboral end, and no basilar muscles. Nevadneidae it is differentiated from Bolo
ceroididae, the other family of Boloceroidaria, by an unusual arrangement of tentacles and in lacking 
a sphincter at the base of each tentacle.

Octineonidae Fowler, 1894 is a monogeneric family with three valid species (Carlgren 1949; Fautin 2007). 
Octineonidae is acontiate, with a single type of nematocyst in the acontia, and thus resembles mem-
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bers of the families Bathyphelliidae and Hormathiidae, from which it is distinguished by lacking basi
lar muscles.

Oractiidae Riemann-Zürneck, 2000 is a monogeneric family comprising two valid species (Riemann-Zür
neck 2000). Oractiidae is distinguished by an endodermal marginal sphincter, 10 pairs of mesenteries 
but only eight macrocnemes, one siphonoglyph, and no basilar muscles.

Phymanthidae Andres, 1883 comprises two genera and approximately a dozen valid species (Fautin 2007). 
Phymanthidae is distinguished by verrucae on the distal column, a weak endodermal marginal 
sphincter muscle or none at all, and two kinds of tentacles: marginal ones arranged in cycles that may 
have knoblike or branched protuberances, and discal ones that are typically very short and arranged 
radially (Carlgren 1949).

Preactiidae England in England & Robson, 1984 comprises two genera and two valid species (Fautin 
2007). Its two species are very similar, sharing a suite of unusual attributes, including mesenteries of 
each pair fused medially at the animal’s proximal end, and tentaculate vesicles on the column. Preac
tiidae is one of the two families comprising the former order Ptychodactiaria, currently included as a 
suborder within Actiniaria based on morphological data (Cappola & Fautin 2000; Fautin 2007). How
ever, molecular evidence supports the inclusion of one of its species, Dactylanthus antarcticus, within 
the suborder Nynantheae, suggesting a close relationship with endomyarian actiniarians (Berntson et 
al. 1999; Daly etal. 2003).

Ptychodactiidae Appellöf, 1893 is a monogeneric family comprising one valid species (Fautin 2007). Pty
chodactiidae is one of the two families comprising the former order Ptychodactiaria, currently 
included as suborder Ptychodacteae within Actiniaria based on morphological data (Cappola & Fautin 
2000; Fautin 2007). However, morphological similarities with Preactiidae and the demonstrated close 
relationship between Preactiidae and members of the suborder Nynantheae suggest that Ptychodacti
idae belongs among the endomyarian actiniarians of suborder Nynantheae.

Sagartiidae Gosse, 1858 comprises 14 genera and approximately 85 valid species (Carlgren 1949; Fautin 
2007). Sagartiidae is characterized by a mesogleal marginal sphincter and acontia containing two 
types of nematocysts, attributes also seen in other families. The family is heterogeneous and is proba
bly not monophyletic.

Sagartiomorphidae Carlgren, 1934 is a monospecific family (Fautin 2007). Sagartiomorphidae is character
ized by having a strong mesogleal marginal sphincter and acontia containing only one type of nemato
cyst. It differs from Hormathiidae in having microbasic amastigophores (referred to also as 
microbasic /umastigophores) rather than basitrichs in the acontia, and from Sagartiidae in lacking 
basitrichs in the acontia.

Stichodactylidae Andres, 1883 comprises two genera and approximately 10 valid species (Fautin 2007). Sti
chodactylidae is distinguished by a column typically bearing distal verrucae, a weak endodermal mar
ginal sphincter, and short tentacles arranged in multiple endocoelic rows or long tentacles arranged in 
single endocoelic rows. Because of its distinctive arrangement of tentacles, this family has sometimes 
been accorded rank higher than family (e.g., Stephenson 1921).

Thalassianthidae Milne-Edwards, 1857 comprises four genera and eight valid species (Fautin 2007). 
Thalassianthidae is distinguished by an oral disc typically lobed with endocoelic dendritic tentacles 
and nematospheres (globular tentacles with dense cnidae). The highly modified tentacles and their 
arrangement suggest monophyly of the family.

Order Antipatharia
S. C. France, M. Brugler & D. Opresko

The order Antipatharia Milne-Edwards & Haime, 1857 is composed of noncalcareous, colonial anthozoans
characterized by a spiny, proteinaceous skeleton (corallum) that can be unbranched and wire-like or simply to
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complexly dendritic. The skeleton is secreted by the axial epithelial tissue of the polyps in concentric layers 
around a small central hollow core. The polyps, each of which is often no more than a few millimeters in 
diameter (maximum size about 1 cm in diameter), possess six simple (unbranched) tentacles, six primary 
mesenteries, and zero, four, or six secondary mesenteries. The number of mesenteries and the morphology of 
the corallum, polyps, and axial spines are the principal taxonomic characters used in classification.

Antipatharians were originally grouped with gorgonians by Linnaeus, where they remained until Dana 
(1846) transferred them to the suborder Actinoidea. The Antipatharia was not recognized as a distinct order 
until the treatments of Milne-Edwards & Haime (1857) and Lacaze-Duthiers (1865). Prior to the 21st century 
and the work of Opresko (2001, 2002, 2003a, 2004, 2006), the last major taxonomic revision (van Pesch 
1914) grouped all species into a single family, Antipathidae1. The current classification includes seven fami
lies, seven subfamilies, 40 genera, and 235 species; approximately a quarter of these have been described in 
the past two decades. Opresko (1972) provides an excellent history of the systematics and classification of 
antipatharians.

Black corals occur in all ocean basins, from 4,000 to 8,600 meters, although most species are found at 
depths >100 m (Grigg & Opresko 1977). Due to the relative inaccessibility of the deep-sea habitat, many spe
cies have been described from poor and incomplete material, including fragments of colonies, young colonies, 
or specimens without polyps. Characters used to distinguish antipatharian families include polyp structure 
(i.e., number of mesenteries, modification of the polyp shape, and possible differences in the absolute and rel
ative size of the tentacles) and general morphology of the spines. Additionally, because the same corallum 
morphology may occur in different families, there may be uncertainties about family affinities if only the cor
allum, and not the soft tissue, is available for study. Missing type material and inadequate species descriptions 
have resulted in many species names that cannot be reliably identified, necessitating the establishment of neo
types. Over the past two decades there has been a spike in the number of new species descriptions (50 since 
1990), largely as a result of technological breakthroughs allowing for increased sampling of deep-sea corals 
(Opresko 2005), and the revisionary works of Opresko (2001, 2002, 2003a, 2004, 2006), which have also 
erected 20 new genera and three new families since 2001.

Few published genetic studies have assessed phylogenetic relationships within Antipatharia, although 
several researchers are currently working on the group. Only a single study has examined the evolutionary 
relationships of select black coral families to one another, although the taxonomic and geographic coverage is 
very limited (15 species, representing seven genera and three families, all but one from Sulawesi (Indonesia); 
Lapian et al. 2007). Brugler and France (unpub. data) have analyzed three mitochondrial gene regions (two 
intergenic spacer regions and coxi) and the nuclear ITS region for species representing all families, and find 
strong support for monophyly of Cladopathidae, Leiopathidae, Myriopathidae, and Schizopathidae, as well as 
schizopathid subfamilies Parantipathinae and Schizopathinae. To date, we have sequenced an insufficient 
number of taxa to assess monophyly of the Stylopathidae, but our analyses suggest both Antipathidae and 
Aphanipathidae are polyphyletic and require further inspection. A preliminary cladistic analysis of morpho
logical characters, with cerianthids (tube anemones) as the outgroup found the following associations 
(although many were polyphyletic): Schizopathidae was sister to Cladopathidae, a result strongly supported 
by DNA sequence analyses (Brugler & France unpub. data), Myriopathidae was sister to the Aphanipathidae, 
and Leiopathidae grouped with Antipathidae (Opresko, unpub. data).

Included families
Antipathidae Ehrenberg, 1834 comprises five genera and approximately 100 species. The Antipathidae, the 

oldest and most species-rich family, is likely not monophyletic. It has historically been considered a

1. Except for Dendrobrachia /a/fax Brook, Family Dendrobrachiidae: this was later shown to be a misclassified octo- 
coral (Opresko & Bayer 1991: Berntson et al. 2001).
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taxonomie dumping ground and is thus, not surprisingly, morphologically heterogeneous, including 
polyps of variable size, skeletons of varying ramification, and spines of varying shape and size (e.g., 
Opresko & Baron-Szabo 2001; Opresko & Sanchez 2005). Several taxa have recently been trans
ferred to new genera and families in the revisions of Opresko (2001, 2002, 2003a, 2004, 2006), and a 
revision of the remaining species is pending.

Aphanipathidae Opresko, 2004 comprises nine genera and 22 species. Polyps have six primary and four sec
ondary mesenteries, short, blunt, subequal tentacles, and spines that are tuberculate, but not notched, 
bifurcated or multiply-lobed at the apex. Two subfamilies (Aphanipathinae, Acanthopathinae) are dif
ferentiated by relative development of polypar spines. Phylogenetic analyses of DNA sequence data 
suggest the family is not monophyletic (Brugler & France, unpub. data).

Cladopathidae Kinoshita, 1910 comprises six genera and 16 species (Opresko 2003a, 2005). The family is 
uniquely distinguished by the absence of secondary mesenteries. Polyps are transversely elongated 
with six primary mesenteries. The genera are further subdivided into three subfamilies: Cladopathi
nae, Hexapathinae, and Sibopathinae. The last is the only known anthozoan to lack an actinopharynx 
(and thus has only incomplete mesenteries). Morphological (Opresko, unpub. data) and molecular 
(Brugler & France unpub. data) phylogenetic analyses support monophyly of the family. 

Leiopathidae Haeckel, 1896 is a monogeneric family comprising six valid species, all of which are fairly dis
tinctive from the remaining Antipatharia. Opresko (1998) suggested that the family may merit higher 
taxonomic status. Leiopathidae is distinguished by polyps with six primary and six secondary mesen
teries, all of which are complete. The corallum is irregularly sympodial, with poorly developed spines 
and lacking pinnules.

Myriopathidae Opresko, 2001 comprises five genera and 32 species. The family is distinguished by small 
polyps with short tentacles, six primary and four secondary mesenteries, distinct interpolypar spaces, 
and tali, conical spines on the corallum. Mitochondrial and nuclear sequences support monophyly of 
the family (Brugler & France, unpub. data).

Schizopathidae Brook, 1889 comprises 11 genera and 37 species. Brook (1889) considered Schizopathidae 
to have ‘dimorphic zooids’ (two gonozooids flanking one gastrozooid, each bearing one pair of tenta
cles) , but subsequent work has shown there is a single polyp type with lateral chambers specialized 
for reproduction (Opresko 2005). The family is distinguished by transverse elongation of polyps that 
have six primary and four secondary mesenteries. Genera are divided into two subfamilies that are 
differentiated by the transverse diameter of the polyp (Parantipathinae - 2-3 mm; Schizopathinae >3 
mm). Molecular phylogenetic analyses provide good support for monophyly of the family and sub
families (Brugler & France unpub. data).

Stylopathidae Opresko, 2006 comprises three genera and nine species. The family is distinguished by the 
tendency of pinnules to occur in groups of two, three or four, and by parts of the corallum to fuse and 
anastomose. Spines are smooth, conical, and simple, with an acute or rounded apex. Polyps on the 
smallest branches are slightly elongated in the axial direction, but always smaller in diameter than 
those of the Schizopathidae.

Order Ceriantharia 
M. Daly

The order Ceriantharia Perrier, 1883 comprises soft-bodied, solitary, elongate polyps with a ring of short 
labial tentacles in addition to the marginal tentacles. Ceriantharians have an arrangement of mesenteries 
unique among hexacorallians: mesenteries are coupled but not paired, with single mesenteries added only in 
the ventral intermesenterial compartment. Ceriantharians are burrowers, using their muscular column to pene
trate sediment and producing a flexible, felt-like tube of discharged cnidae and mucus that sheaths the column.
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Members of this order also possess a unique type of enida, the ptychocyst, which is used in the construction of 
the tube (Mariscal et al. 1977). Because Ceriantharians have so many unique attributes, the group is inferred 
to be monophyletic, but no phylogenetic study has explicitly investigated this question.

Ceriantharia comprises approximately 100 named species, but diversity in this group remains poorly 
understood. Many species are known only from the long-lived, planktonic larval stage, the cerinula, and syn
onymies for even relatively common and well-known species are under active investigation (e.g., Molodtsova 
2001a, 2001b, 2003; Wirtz etal. 2001). The number of genera is not clear: many monospecific genera have 
not been used since their creation, but have also not been formally synonymized. Dunn (1982) lists eight valid 
genera for the order, but Tiffon (1987) cites 18, and Fautin (2007) lists 39. The current higher-level classifica
tion was erected by den Hartog (1977), who used attributes of the cnidom to divide Ceriantharia into two sub
orders, Penicillaria and Spirularia. Penicillaria comprises only the family Arachnanthidae, and is 
characterized as having pencilli (also called microbasic p-mastigophores or microbasic amastigophores) 
(Schmidt 1972; den Hartog 1977). Spirularia comprises families Botrucnidiferidae and Cerianthidae, and 
lacks pencilli. The monophyly of each suborder and relationships within them remain unknown.

Included families
Arachnanthidae McMurrich, 1910 is characterized by nematocyst-dense internal structures called acontio- 

ids. The family is composed of two genera known from adults and larvae, and several known from 
larvae only (Tiffon 1987).

Botrucnidiferidae Carlgren, 1912 is characterized by nematocyst-dense internal structures called botruc- 
nidae. The two most commonly encountered genera, Botruanthus and Botrucnidifer, are each known 
from a single species (Tiffon 1987).

Cerianthidae Milne-Edwards & Haime, 1852 is characterized by lacking specialized nematocyst-bearing 
internal structure. It is composed of three genera known from both adults and larvae, and several gen
era known from larvae only (Tiffon 1987).

Order Corallimorpharia 
M. Daly & D. G. Fautin

Members of order Corallimorpharia Carlgren, 1940 have had a complex taxonomic history that mirrors mod
ern confusion about the phylogenetic position of this order within Hexacorallia. Corallimorpharians resemble 
actiniarians in lacking a skeleton, and in being solitary or clonal rather than colonial. However, the internal 
morphology and cnidom of a corallimorpharian polyp is more similar to that of a scleractinian coral polyp 
(e.g., Gosse 1860; Moseley 1877; Schmidt 1972, 1974). In separating Corallimorpharia as a distinct order, 
Carlgren (1940) recognized that although they clearly have affinities with both actiniarians and scleractinians, 
corallimorpharians are not easily accommodated in either group. The features used to identify Corallimor
pharia are the same as those used for actiniarians.

Molecular phylogenetic analyses have largely focused on the relationship between corallimorpharians and 
scleractinians. The results of these studies have been mixed: studies emphasizing DNA sequences from the 
mitochondrion or including a relatively sparse taxon sample (e.g., Fautin & Lowenstein 1994; Romano & 
Cairns 2001; Medina etal. 2006) typically recover Corallimorpharia nested within Scleractinia, whereas those 
that emphasize nuclear sequences or morphological data, or sample more broadly, find reciprocal monophyly 
of Scleractinia with respect to Corallimorpharia (e.g., Daly etal. 2003; Brugler & France 2007; Collins etal. 
2006a; but see Chen et al. 1995). In nearly all analyses, Corallimorpharia is monophyletic, regardless of its 
relationship to Scleractinia. However, no analysis published to date has included multiple representatives of 
each putative lineage of Corallimorpharia, and thus monophyly is not established for any of its subordinal 
taxa. The chapter in this volume by Fautin et al. (2007) covers the genera of Actiniaria and Corallimorpharia.
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Included families
Corallimorphidae Hertwig, 1882 comprises three genera and approximately 10 species (den Hartog 1980;

Fautin 2007). Its members have retractile tentacles with acrospheres, and lack photosymbionts. 
Discosomatidae Duchassaing & Michelotti, 1864 comprises two genera and approximately 10 species 

(Dunn & Hamner 1980; den Hartog 1980; Fautin 2007). Its members have flat, disc-like polyps with 
discal and marginal tentacles. Discal tentacles are highly variable in morphology and are arranged in 
radial, endocoelic rows; marginal tentacles are typically small, often with acrospheres (Dunn & Ham
ner 1980; den Hartog, 1980). Carlgren (1949) erroneously used the junior synonym Actinodiscus 
instead of Discosoma in his influential classification and thus named the family Actinodiscidae; Dou- 
menc and van Praët (1987) repeated this name in their treatment of the systematics of Corallimor
pharia. Relationships among Discosomatidae have never been examined through phylogenetic 
analysis.

Ricordeidae Watzl, 1922 is a monogeneric family comprising two valid species (den Hartog 1980; Fautin 
2007). Its members have flat, disc-like polyps with short, simple tentacles arranged in radial, 
endocoelic rows. Neither the tentacles nor the oral disc are retractile, den Hartog (1980) proposed 
that Ricordeidae was intermediate between Corallimorphidae and Discosomatidae.

Sideractiidae Danielssen, 1890 comprises two monospecific genera (Carlgren 1949; Doumenc & van Praët 
1987; den Hartog etal. 1993). Its members are variable in column morphology, but all have tentacles 
with well-developed acrospheres that correspond in a one-to-one relationship with both the 
endocoelic and exocoelic spaces. The relationship between Sideractiidae and the other corallimor- 
pharian families, which have multiple tentacles in each endo- and/or exo-coel, is unclear.

Order Scleractinia
S. L. Romano & J. L. Stake

The Scleractinia Bourne, 1900 are polyp animals found exclusively in marine habitats. Its members are 
referred to as stony corals because all members of the order bear a solid calcareous skeleton that is external to 
the soft tissues, secreted by epidermal cells at the base of polyps to form cup-like calyces subdivided by septa 
and into which the polyp can retract for protection. Within the Anthozoa, such a skeleton is unique to the 
order. The approximately 1,300 described extant species (Cairns 1999) are divided ecologically into two main 
groups. One group, the reef builders, comprises 656 species. These are perhaps the best known scleractinian 
corals and are found mostly in the clear, shallow waters of the tropics. The second group, composed of 669 
species, does not build reefs and is found in all regions of the oceans, including temperate and polar regions, 
and from relatively shallow waters to 6,000 m. The oldest scleractinian coral fossils are from the mid-Triassic 
(about 240 million years ago) and are similar to the scleractinians of today.

Higher-order relationships between families and suborders of scleractinians are poorly understood. The 
first comprehensive studies of scleractinian relationships in the mid-19th century were based on skeletal char
acters of both fossil and extant taxa (Milne-Edwards & Haime 1857; Ogilvie 1897). Vaughan and Wells’ 
(1943) more recent treatment of the order revised several families, and is reflected in the current taxonomic 
organization of the order. The most widely accepted scleractinian phylogeny is that of Wells (1956), whose 
work is based on co-occurrence of genera in the fossil record and morphological characters of both fossil and 
extant scleractinians, but this phylogeny is not the product of an explicit phylogenetic analysis.

Scleractinian phylogeny has received renewed attention in recent years, primarily due to the availability 
of new techniques. Roniewicz and co-workers (Roniewicz & Morycowa 1993; Stolarski & Roniewicz 2001) 
used refined microstructural observations of both fossil and extant taxa to reevaluate scleractinian relation
ships. Veron (2000) has provided the most recent treatment of the order based on in situ observations and tra
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ditional morphological characters of extant taxa. However, his descriptions of new species bearing 
photosymbiotic dinoflagellates (= zooxanthellae) and revisions of families have not followed the International 
Code of Zoological Nomenclature, calling into question the taxonomic validity of his revisions. Phylogenetic 
analyses of molecular data have been used to reevaluate the relationships of families and genera within Scler
actinia (Chen etal. 1995; Romano & Palumbi 1996; Veron etal. 1996; Romano & Cairns 2000; Cuif etal. 
2003; Fukami et al. 2004; Le Goff-Vitry et al. 2004). Molecular characters are especially appealing as they 
are independent of morphological characters and the problems associated with them (determining homologies 
and high levels of variability). Formal revision of the order has not been proposed based on molecular phylo
genetic studies despite development of new hypotheses for groupings within the order. Most recently, Kerr 
(2005) used a supertree approach based on matrix representation parsimony to provide a comprehensive 
hypothesis for relationships within the order based on both morphological and molecular data.

Wells (1956) divided the order into five suborders (comprising all fossil and extant taxa) but regarded 
hypothesized relationships among suborders as tentative, and made few hypotheses about relationships among 
families. Veron (1986, 1995, 2000) elevated some families to suborders, resulting in 24 extant families in 
seven suborders (with another six extinct suborders), but did not include any hypotheses for relationships 
among suborders due to poor understanding of skeletal homologies. Roniewicz and Morycowa’s (1993) 
hypothesis for evolution within the Scleractinia is based primarily on fossil taxa with consideration of a small 
number of extant taxa. Their phylogeny is based on microstructural morphological characters and is very dif
ferent from that of Wells (1956): it suggests that the order is polyphyletic, with the living families divided into 
two clades. Relationships of families within each of these clades are generally different from those of Wells’ 
(1956) suborders. Phylogenetic analyses based on molecular data generally support traditional groupings of 
genera into families, but are not congruent with the limited hypotheses proposed for among family relation
ships. Molecular data suggests a split in the Scleractinia early in the evolutionary history of the group (Chen et 
al. 1995; Romano 1996; Veron etal. 1996; Romano & Cairns 2000; Chen etal. 2002; Cuif etal. 2003; Daly et 
al. 2003; Fukami et al. 2004; Le Goff-Vitry et al. 2004; Medina et al. 2006). The two clades supported by 
molecular data do not correspond to the two clades supported by microstructural morphological characters. 
Several families have member genera spread throughout the phylogenetic tree, with some appearing on oppo
site sides of the major scleractinian split. Romano and Palumbi’s (1996) analysis suggest that this split 
occurred before the onset of the skeleton in Scleractinia, although further analyses by Medina etal. (2006) do 
not support this hypothesis. Debate about the origin of the scleractinian skeleton has further confounded the 
use of morphological characters for evaluating relationships within the order. Kerr’s (2005) supertree analysis 
supports the division of the order into two major clades corresponding to those suggested by molecular data. 
This is not surprising given the predominance of molecular data in his analysis. The current state of taxonomy 
in the Scleractinia demonstrates the need for a comprehensive réévaluation of families and their relationships.

The following list of families still follows the nomenclature set forth by Wells (1956) with a few excep
tions noted. For traditional family designations that are not supported by recent molecular studies, a brief 
description of the evidence is provided.

Included families
Acroporidae Verrili 1902 comprises four genera, all zooxanthellate, and approximately 200 nominal species. 

A phylogenetic analysis of the family was conducted as part of a monograph on the genus Acropora 
and found the family to be monophyletic (Wallace 1999). Subsequent analyses based on molecular 
data have found the family to be paraphyletic because the genus Alveopora (Poritidae) is found within 
the clade containing all of the acroporids (Fukami etal. 2000; Romano & Cairns 2000; Le Goff-Vitry 
et al. 2004; Kerr 2005).

Agariciidae Gray, 1847 comprises six genera, all zooxanthellate, and approximately 45 nominal species. The 
family is considered to be monophyletic based on limited molecular data (Romano & Palumbi 1996;
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Romano & Cairns 2000; Le Goff-Vitry et al. 2004; Kerr 2005). However, there has been no phyloge
netic analysis of the entire family.

Anthemiphylliidae Vaughan 1907 comprises a single genus with seven nominal species. All species are 
azooxanthellate. The family is considered monophyletic based on morphological and limited molecu
lar data, although no phylogenetic analysis has been conducted on the family (Romano & Cairns 
2000; Le Goff-Vitry et al. 2004; Kerr 2005).

Astrocoeniidae Koby, 1890 currently comprises either two or four genera, depending upon the reference used 
(Wells 1956; Veron 2000). The family is polyphyletic, with one clade equal to Madracis sensu Veron 
(2000); Veron removed this genus from Pocilloporidae and placed it here. Molecular evidence does 
not support this move, and without Madracis the family is monophyletic according to limited molec
ular evidence (Romano & Cairns 2000; Le Goff-Vitry et al. 2004; Kerr 2005).

Caryophylliidae Gray, 1846 comprises more than 50 genera and approximately 300 nominal species which 
are neither zooxanthellate or azooxanthellate. The subfamily Euphyllidae was elevated to family sta
tus by Veron (2000). Monophyly of the family is not supported by molecular phylogenetic analysis. 
The family is polyphyletic and molecular data suggests the family needs réévaluation (Romano & 
Cairns 2000; Le Goff-Vitry etal. 2004; Kerr 2005).

Dendrophylliidae Gray, 1847 comprises 20 genera and approximately 150 nominal species. The majority of 
genera are azooxanthellate. A phylogenetic analysis by Cairns (2001) showed that the family is 
monophyletic. Limited molecular evidence also supports this conclusion (Romano & Cairns 2000; 
Cairns 2001; Le Goff-Vitry etal. 2004; Kerr 2005).

Euphyllidae Veron, 2000 comprises five zooxanthellate genera and 14 nominal species. Veron (2000) ele
vated this subfamily of Caryophylliidae to family status because he found the designation of subfami
lies to be artificial. The family has not been subject to phylogenetic analysis. The potential 
monophyly of the family remains in question and needs further evaluation.

Faviidae Gregory, 1900 comprises 24 genera and over 100 nominal species that are all zooxanthellate. It is 
thought to be polyphyletic based on evidence in several molecular studies, although a complete phy
logenetic analysis has not been conducted for the family (Romano & Cairns 2000; Cuif et al. 2003; 
Daly etal. 2003; Fukami etal. 2004; Le Goff-Vitry et al. 2004; Kerr 2005).

Flabellidae Bourne, 1905 comprises 10 genera with approximately 100 nominal species, all of which are 
azooxanthellate. It is currently monophyletic based on morphological and limited molecular evidence, 
although no phylogenetic analysis has been conducted for the family (Cairns 1989; Romano & Cairns 
2000; Le Goff-Vitry et al. 2004; Kerr 2005).

Fungiacyathidae Chevalier, 1987 comprises one genus with approximately 20 nominal species, all of which 
are azooxanthellate. It is monophyletic based on morphological and limited molecular data (Cairns 
1989; Romano & Cairns 2000; Le Goff-Vitry et al. 2004; Kerr 2005).

Fungiidae Dana, 1846 comprises 11 genera with approximately 44 nominal species, all of which are zooxan
thellate. It is considered monophyletic based on phylogenetic analysis of morphological data and lim
ited molecular data (Cairns 1984a; Hoeksema 1989; Romano & Cairns 2000; Kerr 2005). Le Goff- 
Vitry et al. (2004) found weak support for paraphyly in the family with limited taxonomic sampling.

Gardineriidae Stolarski, 1996 comprises a single genus made up of five nominal species, all of which are 
azooxanthellate. It is monophyletic based on morphological data but has not been the subject of a 
phylogenetic analysis (Stolarski 1996).

Guyniidae Hickson, 1910 comprises seven genera with 10 nominal species. All genera are monospecific 
except Guynia. The family has been the subject of a phylogenetic analysis using morphological data 
(Stolarski 2000), but may be polyphyletic based on limited molecular data (Cuif etal. 2003; Le Goff- 
Vitry et al. 2004; Kerr 2005).
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Meandrinidae Gray, 1847 comprises seven genera after Veron (2000) placed three species from Caryophyl
liidae here. All of the genera are zooxanthellate. The genera within this family remain in question. 
There has not been a phylogenetic analysis conducted for the entire family. Fukami et al. (2004) 
found the family to be monophyletic with strong support; however, other molecular studies suggest 
the family is paraphyletic (Romano & Cairns 2000; Le Goff-Vitry et al. 2004; Kerr 2005).

Merulinidae Verrili, 1866 comprises five genera with approximately 12 nominal species, all of which are 
zooxanthellate. The family is considered polyphyletic based on molecular evidence (Fukami et al. 
2004; Kerr 2005); however, no complete phylogenetic analysis has been conducted for the family.

Micrabaciidae Vaughan, 1905 comprises four genera with 13 nominal species, all of which are azooxanthel
late. The family is monophyletic based on morphological data (Cairns 1989).

Mussidae Ortmann, 1890 comprises 13 genera with almost 50 nominal species. All genera are zooxanthel
late. The family is polyphyletic based on molecular data although the family has not been analyzed 
completely (Fukami et al. 2004; Kerr 2005).

Oculinidae Gray, 1847 comprises 11 genera with approximately 30 nominal species. The family is split 
almost evenly between azooxanthellate and zooxanthellate genera. It is polyphyletic based on molec
ular evidence although no complete treatment of the family has been conducted (Romano & Cairns 
2000; Le Goff-Vitry et al. 2004; Kerr 2005).

Pectiniidae Vaughan & Wells, 1943 comprises five genera with almost 20 nominal species, all of which are 
zooxanthellate. Although the entire family has not been the subject of a phylogenetic analysis, it is 
considered polyphyletic based on limited molecular data (Fukami etal. 2004; Kerr 2005).

Pocilloporidae Gray, 1842 comprises five genera, of which one is azooxanthellate, with over 30 nominal 
species. It has not been the subject of a phylogenetic analysis. Based on limited inclusion of some 
genera in the family, it is paraphyletic if Madracis is included (see Astrocoeniidae). With limited sam
pling and without Madracis the family forms a monophyletic clade based on molecular data (Romano 
& Cairns 2000; Cuif etal. 2003; Le Goff-Vitry et al. 2004; Kerr 2005).

Poritidae Gray, 1842 comprises five genera containing over 70 nominal species, all of which are zooxanthel
late. Although it has not been the explicit focus of any phylogenetic analysis, Poritidae is considered 
polyphyletic based on molecular evidence. The genus Alveopora is consistently found with the 
acroporids (Romano & Cairns 2000; Le Goff-Vitry et al. 2004; Kerr 2005).

Rhizangiidae D'Orbigny, 1851 comprises five genera with more than 30 nominal species. All but one genus 
is azooxanthellate. The family is thought to be monophyletic, but there is little data available to con
firm or refute this assertion (Kerr 2005).

Siderastreidae Vaughan & Wells, 1943 comprises six genera with 27 nominal species, all of which are zoox
anthellate. It has not been the subject of a phylogenetic analysis, but is considered polyphyletic based 
on molecular evidence from several representatives of the family used in larger analyses (Chen et al. 
2000; Romano & Cairns 2000; Daly etal. 2003; Le Goff-Vitry et al. 2004; Kerr 2005).

Trachyphylliidae Verrili, 1901 comprises a single zooxanthellate genus and a single species. The family is 
by definition monophyletic (Fukami etal. 2004; Kerr 2005).

Turbinoliidae Milne-Edwards & Haime, 1848 comprises 22 genera and 51 nominal species, all of which are 
azooxanthellate. It is monophyletic based on morphological data (Cairns 1997; Kerr 2005).

Order Zoanthidea
M. Daly

Members of order Zoanthidea (= Zoantharia, Zoanthinaria) are clonal, soft bodied polyps with two rows of
marginal tentacles. Their internal anatomy and mesenterial arrangement is distinctive among hexacorallians,
and the group is presumed to be monophyletic, although no published studies have examined this question
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explicitly. Less clear is the relationship between Zoanthidea and other members of Hexacorallia: this group 
has been interpreted as the sister group to Actiniaria (e.g. Schmidt 1974; Medina et al. 2006; Brugler & 
France 2007; Sinniger et al. 2007), as the basal member of a clade that also comprises Antipatharia, Coralli
morpharia, and Scleractinia (Daly et al. 2003), and as the sister to Actiniaria, Antipatharia, Corallimorpharia, 
and Scleractinia (Brugler & France 2007). None of these analyses have considered many zoanthidean taxa, 
relative to the sampling for other lineages.

Zoanthideans have traditionally been grouped into two suborders: Macrocnemina and Brachycnemina, 
which differ in the arrangement of the mesenteries (Haddon & Shackleton 1891). Many Brachycnemina share 
a planktonic larval form (Ryland 1997; Ryland etal. 2000). Although these distinctions are well accepted and 
relatively clear, they seem not to reflect phylogenetic history. In their analysis of relationships among 
zoanthideans using mitochondrial DNA sequences, Sinniger et al. (2005) found that Macrocnemina is para
phyletic with respect to a monophyletic Brachycnemina. The results of Sinniger et al. (2005) highlight taxo
nomic difficulties in Zoanthidea, demonstrating para- and poly-phyly of many genera and families. 
Furthermore, studies of DNA sequences and of allozymes have indicated that there is significant cryptic 
diversity in Zoanthidea, suggesting that extensive revision of species and genera are necessary (Burnett et al. 
1997; Ryland & Lancaster 2003; Sinniger etal. 2005; Reimer etal. 2006, 2007a, b). Because of this confusion 
at lower taxonomic levels, estimates of diversity should be considered tentative.

Included families
Abyssoanthidae Reimer & Fugiwara, 2007 in Reimer et al. 2007 is a monospecific family. This taxon was 

erected based on differences in DNA sequence and has not been characterized morphologically. 
Sequences of 16S rDNA and cytochrome oxidase subunit I from its sole species, Abyssoanthus nan
kaiensis, were highly divergent compared to other zoanthideans. Phylogenetically, it is the basal-most 
member of the clade containing Epizoanthidae and Sphenopidae (Reimer et al. 2007a). 

Epizoanthidae Delage & Hirouard, 1910 comprises three genera and approximately five named species. 
Phylogenetic analysis of multiple representatives of three of its genera failed to recover its members 
as monophyletic; these taxa formed a paraphyletic grade with respect to Sphenopidae (Sinniger et al.
2005).

Neozoanthidae Herberts, 1972 is a monogeneric family whose sole species has never been included in a 
phylogenetic analysis. The name has not been used by many other workers, and its species have not 
been reported since its description.

Sphenopidae Hertwig, 1882 comprises three genera. The number of species in this group is unclear, in part 
because diversity of its two larger genera, Palythoa and Protopalythoa is poorly known (e.g. Burnett 
et al 1997; Reimer et al. 2006, 2007b). Nonetheless, phylogenetic analysis of molecular sequence 
data from two species (in two genera) supported monophyly of the family (Sinniger et al. 2005). 

Zoanthidae Gray, 1840 comprises three genera and approximately five named species. Phylogenetic analysis 
of multiple representatives of three of its genera failed to recover its members as monophyletic; these 
taxa formed a paraphyletic grade with respect to Sphenopidae (Sinniger et al. 2005).

SUBCLASS OCTOCORALLIA
C. S. McFadden

The anthozoan subclass Octocorallia comprises the soft corals, gorgonians (sea fans, sea whips), sea pens, and 
blue coral. Octocorallia is currently estimated to include approximately 3,000 extant species. As the name 
suggests, the diagnostic apomorphies of the subclass are the eight tentacles and eight mesenteries of octocoral 
polyps, characters that are invariant within the clade. The presence of pinnules (lateral extensions) on the ten
tacles is also considered diagnostic, although this character is absent in several taxa (Alderslade & McFadden
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2007). With only the single, well-documented exception of Taiaroa tauhou, all octocorals have colonial pol
yps. Because of the uniformity of polyp morphology across the group, Octocorallia has long been considered 
to be monophyletic (e.g., Dana 1846; Haeckel 1866; Kükenthal 1925), a conclusion that has been supported 
strongly by all molecular phylogenetic analyses of Anthozoa conducted to date (16S rDNA: France et al. 
1996; 18S rDNA: Song & Won 1997; Berntson et al. 1999, 2001; Won et al. 2001; 28S rDNA: Chen et al.
1995).

Interpretations of relationships within Octocorallia vary widely, and at present there is little consensus 
among octocoral taxonomists about higher order relationships within the clade (Fabricius & Alderslade 2001; 
McFadden et al. 2006a). The sea pens (Pennatulacea) and blue corals (Helioporacea) have, however, been 
assigned to separate orders since the early 20th century (e.g., Hickson 1906; for a notable exception, see 
Kükenthal 1925). The unique colony form of sea pens, in which an axial polyp differentiates into a proximal 
peduncle and a distal rachis, represents a morphological synapomorphy that clearly unites order Pennatulacea 
and distinguishes its members from all other octocorals (Hickson 1930; Bayer 1956, 1981; Williams 1995, 
1997). Likewise, Helioporacea, represented only by the monospecific Heliopora and one other enigmatic 
genus (Bayer 1992), are the only octocorals that produce a skeleton of crystalline aragonite, a convergent fea
ture shared with the hexacorallian order Scleractinia.

Classification of the majority of octocorals—the soft corals and gorgonians—into higher taxonomic levels 
remains problematic, and in the past they have variously been divided among as few as two (Kükenthal 1925) 
and as many as six (e.g., Madsen 1944) orders. Historically, the most widely accepted classification, reflected 
in most mid-late 20th century invertebrate biology texts (e.g. Hyman 1940; Barnes 1980; Brusca & Brusca 
1990), was that of Hickson (1930), who divided the soft corals and gorgonians among four orders (Alcyona
cea, Gorgonacea, Stolonifera, Telestacea) distinguished by colony growth form. Recognition that these groups 
grade into one another without clear morphological distinctions led Bayer (1981) to merge them into a single 
order, Alcyonacea, a decision that has been embraced by modern taxonomists (e.g., Fabricius & Alderslade 
2001). This large and morphologically diverse order is not, however, defined by any synapomorphies.

For taxonomic convenience, Alcyonacea is often sub-divided into six sub-ordinal groups representing dif
ferent grades of colony form and skeletal composition, but it is widely acknowledged that these groups do not 
reflect phylogenetic relationships (Fabricius & Alderslade 2001). Indeed, molecular phylogenetic analyses 
using 18S rDNA and mitochondrial protein-coding genes have not recovered any of the sub-ordinal groups of 
Alcyonacea as monophyletic (Berntson et al. 2001; McFadden et al. 2006a). In addition, the distinctions 
between orders Alcyonacea, Pennatulacea, and Helioporacea have not been well supported by molecular stud
ies. The 18S phylogeny of Berntson etal. (2001) found Pennatulacea to be polyphyletic; in contrast, McFad
den et al.’s (2006a) mitochondrial gene phylogeny recovered a monophyletic Pennatulacea, but found it to be 
nested within a paraphyletic group of alcyonaceans as the sister clade to the gorgonian family Ellisellidae. The 
phylogenetic position of Heliopora with respect to the other octocorals remains unresolved (Berntson et al. 
2001; McFadden et al. 2006a). Even though the traditional ordinal classification has not been well supported, 
most molecular phylogenetic studies conducted to date have nonetheless divided Octocorallia into two or 
three genetically distinct clades; morphological synapomorphies distinguishing these clades have, however, 
yet to be identified (Berntson et al. 2001; Sánchez et al. 2003a; McFadden et al. 2006a).

Order Alcyonacea

As currently defined, order Alcyonacea Lamouroux, 1816 includes 30 families of soft corals (octocorals with
out a supporting skeletal axis) and gorgonians (octocorals with a supporting skeletal axis of scleroproteinous 
gorgonin and/or calcite) (Bayer 1981). Alcyonacean families are distinguished primarily on the basis of over
all colony growth form, presence or absence of a supporting skeletal axis, and details of axial composition. 
The form and distribution of sclerites (microscopic calcite crystals embedded in the coenenchymal tissue and
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polyps) are the most important characters used to distinguish genera and species of octocorals, but are less 
important for familial distinctions. Alcyonaceans are found worldwide, at all depths and in all oceans.

Within this large order, two groups of gorgonians, Calcaxonia and Holaxonia, are currently recognized as 
morphologically distinct suborders defined by skeletal apomorphies (Grasshoff 1999). An additional four 
“subordinal groups” (Alcyoniina, Protoalcyonaria, Scleraxonia, Stolonifera) are distinguished for conve
nience, but are recognized as grades of colony architecture rather than clades (Fabricius & Alderslade 2001). 
Molecular phylogenetic analyses unite the calcaxonian families in a clade with order Pennatulacea, with 
respect to which they are paraphyletic (McFadden et al. 2006a). The remaining alcyonaceans belong to one or 
more separate clades within which sub-ordinal and family relationships remain unresolved (Berntson et al. 
2001; McFadden et al. 2006a). Many families and genera of Alcyonacea require extensive taxonomic revi
sion, and numerous species remain either undescribed or simply unidentifiable; lost type specimens and the 
poor quality of most 19th and early 20th century species descriptions preclude species-level identifications in 
many groups (e.g., McFadden et al. 2006b). Estimates of numbers of species per family are consequently only 
rough approximations that may not accurately reflect actual numbers of valid species.

[Group Alcyoniina: colonies with polyps united within a fleshy mass of coenenchyme]

Included families
Alcyoniidae Lamouroux, 1812 comprises 34 genera and approximately 430 species of fleshy or membra

nous soft corals with polyps not arranged in clusters. The family is defined by the absence of those 
characters that distinguish the other families belonging to group Alcyoniina, and, not surprisingly, 
molecular phylogenetic analyses indicate that it is not monophyletic (McFadden et al. 2006a). 

Nephtheidae Gray, 1862 comprises 20 genera and approximately 500 described species of soft corals (250 
species in the genus Dendronephthya alone) that form upright, branched colonies with a distinct stalk, 
and usually have the polyps arranged in clusters along or at the ends of branches. Several genera, 
however, have digitate or lobate growth forms similar to those found in family Alcyoniidae. The fam
ily is not monophyletic (McFadden et al. 2006a).

Nidaliidae Gray, 1869 comprises seven genera and approximately 75 species with an unbranched (digiform 
or capitate) or arborescent growth form. Colonies are typically stiff and brittle as a result of large, 
densely packed sclerites that are arranged longitudinally in the tissue surrounding the polyp cavities. 
The family is probably not monophyletic (McFadden et al. 2006a).

Paralcyoniidae Bayer, 1981 comprises four genera and approximately 10 species of soft corals in which the 
entire polyparium is retractable into a capsule-like base. The genera Paralcyonium, Studeriotes and 
Ceeceenus appear to form a monophyletic group (McFadden et al. 2006a; McFadden, unpub. data), 
but a fourth monospecific genus (Maasella) has never been included in a phylogenetic analysis. 

Xeniidae Wright & Studer, 1889 comprises 14 genera and approximately 130 species of soft corals that lack 
mesenterial filaments in all but the asulcal pair of mesenteries and have sclerites that are typically in 
the form of small, smooth-surfaced platelets or corpuscles. The family appears to be monophyletic, 
with the possible exception of the genus Anthelia, which differs in sclerite ultrastructure (Alderslade 
2000) and does not group with other xeniid genera in some molecular analyses (McFadden et al. 
2006a).

[Suborder Calcaxonia: gorgonians with an axis of gorgonin containing large amounts of non-scleritic calcite 
(as internodes or embedded in the gorgonin) and without a hollow, cross-chambered central core]

Included families
Chrysogorgiidae Verrili, 1883 comprises 12 genera and approximately 90 species of gorgonians character

ized by regular, geometric branching patterns and a highly calcified axis that typically exhibits a 
metallic sheen. The family has not been the subject of a phylogenetic analysis.
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Dendrobrachiidae Brook, 1889 comprises three species in the enigmatic genus Dendrobrachia, gorgonians 
with an axis that is entirely proteinaceous, has conspicuous ridges and spines, and lacks a hollow core. 
Based on these skeletal characters, Dendrobrachia was originally assigned to the hexacorallian order 
Antipatharia (Brook 1889; Thomson 1910). The presence of polyps with eight pinnate tentacles was 
recently confirmed from newly collected material, however, and the genus has subsequently been 
transferred to Octocorallia (Opresko & Bayer 1991). The phylogenetic relationship of Dendrobrachia 
to other octocoral families remains uncertain (Berntson et al. 2001), although it shares some morpho
logical characters with Chrysogorgiidae (Opresko & Bayer 1991).

Ellisellidae Gray, 1859 comprises 10 genera and approximately 100 species of gorgonians with a strongly 
calcified axis and sclerites in the characteristic form of dumbbells, clubs or double-ended spindles 
ornamented with hemi-spherical tubercles. The 10 genera fall into three groups; within each, generic 
distinctions are unclear and it has been proposed that most genera should be reduced to subgeneric 
standing (Bayer & Grasshoff 1994). Morphological apomorphies and molecular analyses support 
monophyly of the family (McFadden et al. 2006a).

Ifalukellidae Bayer, 1955 comprises two genera and six species of gorgonians with a highly calcified axis 
and minute sclerites with coarse surface texture, similar in form to those of Xeniidae. A molecular 
phylogenetic analysis of the mitochondrial m shl gene suggests the family is monophyletic (McFad
den etal. 2006a).

Isididae Lamouroux, 1812 comprises 38 genera and approximately 135 species of gorgonians divided 
among four sub-families. The family is distinguished by a segmented axis consisting of nodes of pure 
gorgonin alternating with solid (or occasionally tubular) non-scleritic calcareous internodes. The fam
ily has not been the subject of a phylogenetic analysis, but France and Brugler (unpub. data) have 
identified a mitochondrial genome arrangement synapomorphy for the subfamily Keratoisidinae.

Primnoidae Gray, 1857 comprises 32 genera and approximately 210 species of gorgonians with a highly cal
cified axis and non-retractile polyps that are heavily armored with calcareous scales. The family has 
not been the subject of a phylogenetic analysis.

[Suborder Holaxonia: gorgonians with an axis consisting primarily of gorgonin, often with small amounts of
embedded non-scleritic calcite, and with a hollow, cross-chambered central core]

Included families
Acanthogorgiidae Gray, 1859 comprises six genera and approximately 110 species of gorgonians with con

spicuous, non-retractile polyps and an axis of gorgonin surrounding a wide, hollow, cross-chambered 
central core. The family is not monophyletic, and several genera (Acanthogorgia, Anthogorgia) 
appear to be paraphyletic with Plexauridae (McFadden et al. 2006a).

Gorgoniidae Lamouroux, 1812 comprises 17 genera and approximately 260 species of gorgonians with 
retractile polyps and an axis of gorgonin surrounding a narrow, hollow, cross-chambered central core. 
Several molecular phylogenetic analyses suggest the family is not monophyletic (Sánchez et al. 
2003b; Wirshing etal. 2005; McFadden et al. 2006a).

Keroeididae Kinos hita, 1910 comprises five genera and approximately 13 species of gorgonians with an axis 
of partially fused sclerites surrounding a hollow, cross-chambered central core. The family has not 
been the subject of a phylogenetic analysis.

Plexauridae Gray, 1859 comprises approximately 38 genera and 365 species of gorgonians divided among 
two sub-families (Plexaurinae, Stenogorgiinae (=Paramuriceinae)) that have been treated as separate 
families by some authors (e.g., Bayer 1956). The family is distinguished by an axis with a wide, hol
low, cross-chambered central core surrounded by gorgonin with locules (hollow spaces) that often 
contain embedded non-scleritic calcite; polyps are retractile. Plexauridae is not monophyletic: several
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molecular phylogenetic studies have supported the separation of the two sub-families and identified 
several other distinct clades that are paraphyletic with respect to Acanthogorgiidae and Gorgoniidae 
(Sánchez et al. 2003b; Wirshing etal. 2005; McFadden etal. 2006a).

[Group Protoalcyonaria: solitary polyps]

Included families
Haimeidae Wright, 1865 comprises four monospecific genera of solitary polyps. The validity of these genera 

and of the family itself is questionable. The family was dropped by Hickson (1930), but re-established 
by Bayer and Muzik (1976) following the discovery of the solitary polyp Taiaroa. Bayer (1981) did 
not, however, include Haimeidae in his classification.

Taiaroidae Bayer & Muzik, 1976 is a monospecific family comprising the species Taiaroa tauhou. This spe
cies consists of solitary polyps, a growth form that distinguishes it from all other octocorals. Its phylo
genetic position within Octocorallia remains unresolved (Berntson et al. 2001).

[Group Scleraxonia: colonies with an axis or internal axial-like layer composed predominantly of sclerites
that may be either unfused or fused with calcite]

Included families
Anthothelidae Broch, 1916 comprises approximately 13 genera and 55 species, often divided among three 

subfamilies. This family is distinguished by a medulla (inner tissue layer) that contains unfused scler
ites and is separated from the cortex (outer tissue layer that houses the polyps) by longitudinal bound
ary canals. Inclusion of several anthothelid genera in molecular phylogenetic analyses of Octocorallia 
suggests the family is not monophyletic (McFadden et al. 2006a).

Briareidae Gray, 1859 comprises two or three genera and approximately 10 species in which the medulla 
contains unfused sclerites and is not separated from the cortex by a ring of boundary canals. The fam
ily has not been the subject of phylogenetic analyses.

Coralliidae Lamouroux, 1812 comprises three genera, one of them of uncertain status, and approximately 30 
species of gorgonians with dimorphic polyps and an axis composed of sclerites fused together solidly 
with calcite. The family has not been the subject of a phylogenetic analysis.

Melithaeidae Gray, 1870 comprises approximately six genera and 105 species of gorgonians with an axial 
medulla that consists of flexible nodes (free sclerites embedded in gorgonin) alternating with rigid 
internodes (sclerites fused with calcite). The five genera in sub-family Melithaeinae grade into one 
another morphologically and consequently have been collapsed into one to three genera by some 
authors (Bayer 1981; Grasshoff 1999; Ofwegen 1987; Fabricius & Alderslade 2001). The family has 
not been the subject of a phylogenetic analysis.

Paragorgiidae Kükenthal, 1916 comprises two genera and 17 species of gorgonians with dimorphic polyps 
and an axial medulla formed by unfused sclerites. A recent cladistic analysis suggests the family is 
monophyletic (Sánchez 2005).

Parisididae Aurivillius, 1931 is a monogeneric family of approximately five species of gorgonians having an 
axis of flexible nodes (free sclerites embedded in gorgonin) alternating with rigid internodes formed 
by tuberculate sclerites fused with calcite. The axis construction is similar to that of Melithaeidae, but 
the form of the sclerites in the nodes and internodes differs. The family has not been the subject of a 
phylogenetic analysis.

Subergorgiidae Gray, 1859 comprises three genera and approximately six species of gorgonians with an 
axial medulla of partially fused sclerites that is separated from the cortex by a ring of longitudinal 
boundary canals. The family has not been the subject of a phylogenetic analysis.
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[Group Stolonifera: colonies with polyps united basally by stolons that may fuse to form ribbons or thin 
membranes]

Included families
Acrossotidae Bourne, 1914 is a monogeneric family comprising one or two species in the genus Acrossota. 

The family is distinguished by the complete absence of pinnules on the tentacles, a trait that may, 
however, be shared by some species in other families (Alderslade & McFadden 2007). Acrossota has 
never been included in a phylogenetic analysis.

Clavulariidae Hickson, 1894 comprises approximately 24 genera and 60 species, often divided among four 
sub-families. Species in this family are united only by their colony growth form, which consists of 
polyps that are connected basally by stolons or thin membranes. Although Clavulariidae has not been 
the subject of a phylogenetic analysis, the inclusion of several genera in broader analyses of sub-class 
Octocorallia suggests that the family is not monophyletic (McFadden et al. 2006a).

Coelogorgiidae Bourne, 1900 is a monospecific family comprising the species Coelogorgia palmosa. This 
species forms colonies in which an elongated axial polyp buds daughter axial polyps that in turn pro
duce short lateral polyps. Several molecular phylogenetic analyses support a sister relationship 
between this species and family Xeniidae (McFadden et al. 2006a; McFadden et al., unpub. data). 

Cornulariidae Dana, 1846 is a monogeneric family comprising approximately four species in the genus Cor
nularia. The family is distinguished by the presence of a chitinous outer sheath that forms a theca-like 
cup around the polyp. Cornularia has never been included in a phylogenetic analysis. 

Pseudogorgiidae Utinomi & Harada, 1973 is a monospecific family comprising the species Pseudogorgia 
godeffroyi. This species, in which a single, very long axial polyp differentiates into a blade-like col
ony with short lateral polyps embedded in its thick coenenchymal walls, is poorly known and has 
never been included in a phylogenetic analysis.

Tubiporidae Ehrenberg, 1828 is a monogeneric family in which polyps are housed in vertical, calcareous 
tubes connected to one another by horizontal, stolonic platforms. Tubipora musica is well known, but 
the validity of several other nominal species is uncertain. A molecular phylogenetic analysis based on 
mitochondrial genes suggests a close relationship between Tubipora and some genera of Clavulari
idae (McFadden et al. 2006a).

Order Helioporacea

The order Helioporacea Bock, 1938 comprises just two monogeneric families that are unique among octocor
als in producing calcified skeletons of crystalline aragonite. The well-known blue coral, Heliopora coerulea, 
is distributed widely throughout the Indo-Pacific where it is a common member of shallow coral reef commu
nities. The enigmatic genus Epiphaxum is known from only a few localities at depths of 50-400 m (Bayer 
1992). The phylogenetic relationship of these two families to one another and to other Octocorallia remains 
uncertain.

Included families
Helioporidae Moseley, 1876 is a monospecific family comprising the species Heliopora coerulea, the only 

octocoral known to produce a massive aragonite skeleton similar to that of Scleractinia. Polyps are 
housed within cylindrical tubes in the skeleton, and are interconnected via solenia; a thin layer of tis
sue containing solenia also covers the outer surface of the skeleton (Fabricius & Alderslade 2001). 

Lithotelestidae Bayer & Muzik, 1977 is represented by three extant and one fossil species of the genus 
Epiphaxum (Bayer 1992). This family has a stoloniferous growth form in which the stolons and the 
polyp calyces become calcified with non-scleritic aragonite.
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Order Pennatulacea

The sea pens, order Pennatulacea Verrili, 1865, are arguably the most morphologically distinctive group of 
octocorals, and achieve the highest level of colony integration among Anthozoa. Colonies develop from an 
axial polyp (oozooid) that differentiates into a bulbous peduncle used to anchor the colony in soft substrate, 
and a distal rachis that bears secondary polyps. The colony is usually supported by an internal, rod-like axis of 
non-scleritic calcite, similar in crystalline structure to that of the ellisellid gorgonians (Bayer 1955). The sec
ondary polyps of sea pens are usually dimorphic, consisting of tentaculate autozooids and siphonozooids that 
lack or have greatly reduced tentacles (Williams 1995). The 14 families of Pennatulacea currently considered 
valid (Williams 1995) are distinguished largely by the arrangement of the secondary polyps around the rachis, 
with some families displaying distinctly bilateral colony symmetry. Sea pens live partially buried in soft sedi
ments; although they reach their highest diversity in the deep-sea some species are found in shallow water, 
including Indo-Pacific coral reefs (Williams 1993) and estuaries (Imahara & Ogawa 2006).

Cladistic analyses of Pennatulacea using family-level morphological characters support the monophyly of 
the order (Williams 1993, 1997), as does a recent molecular phylogeny of Octocorallia based on several mito
chondrial genes (McFadden et al. 2006a). No studies to date, however, have examined phylogenetic relation
ships among or within any families of sea pens. Although representatives of a number of genera have been 
included in recent molecular phylogenies (Berntson et al. 2001; McFadden et al. 2006a), taxon sampling is 
still too sparse to draw conclusions regarding monophyly of families. Most families are diagnosed by combi
nations of character states that are shared with other families, and relatively few families are distinguished by 
autapomorphies. The most recent taxonomic synopsis of Pennatulacea, summarized below, is that of Williams 
(1995); he emphasizes that many families are in need of taxonomic revision, and that estimates of numbers of 
valid species are consequently only approximate.

Included families
Anthoptilidae Kölliker, 1880 is a monogeneric family comprising at least two valid species of elongated, 

whip-like colonies with polyps that are arranged biserially, are non-retractile and lack calyces. 
Chunellidae Kükenthal, 1902 comprises three genera and approximately four species that have polyps 

arranged along the stalk in pairs or groups of three, separated from one another by bare rachis. 
Echinoptilidae Hubrecht, 1885 comprises two genera and seven described species of radially symmetrical 

colonies with non-retractile, bifurcated calyces.
Funiculinidae Gray, 1870 is a monogeneric family comprising at least three species of whip-like colonies 

with polyps that are arranged biserially along the rachis and can retract into tubular, eight-toothed 
calyces.

Halipteridae Williams, 1995 is a monogeneric family comprising at least six valid species of elongated, 
whip-like colonies with autozooids arranged in oblique rows (often forming raised ridges) along two 
longitudinal series.

Kophobelemnidae Gray, 1860 comprises three genera and approximately 18 species of clavate colonies with 
polyps arranged biserially or along three sides of the rachis.

Pennatulidae Ehrenberg, 1834 comprises six genera and approximately 50 species [sometimes separated 
into Pennatulidae (two genera) and Pteroeididae Kölliker 1870 (four genera)]. Colonies are bilaterally 
symmetrical with autozooids disposed along the margins of leaves that are in turn arranged laterally 
around the rachis.

Protoptilidae Kölliker, 1872 comprises two genera and approximately seven species of bilaterally symmetri
cal colonies with retractile polyps that are arranged in one to three longitudinal series along the rachis. 

Renillidae Gray, 1870 is a monogeneric family comprising at least four species distinguished from other sea 
pens by their unique foliate colony growth form.
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Scleroptilidae Jungersen, 1904 is a monogeneric family comprising one valid species and several species of 
uncertain status. The polyps are arranged along the stalk in pairs or groups of three, separated from 
one another by bare rachis. This family is distinguished from Chunellidae by the presence of rod- or 
spindle-shaped sclerites in the rachis.

Stachyptilidae Kölliker, 1880 comprises two genera and four species of somewhat clavate, bilaterally sym
metrical colonies with autozooids arranged biserially along the rachis in oblique rows.

Umbellulidae Kölliker, 1880 is a monogeneric family comprising at least nine valid species of sea pens with 
a long, slender stalk and a single, terminal cluster of autozooids.

Veretillidae Herklots, 1858 comprises five genera and approximately 35 species distinguished by radial sym
metry of the colony and retractile autozooids without calyces.

Virgulariidae Verrili, 1868 comprises five genera and approximately 40 species. Colonies are bilaterally 
symmetrical with autozooids disposed along the margins of leaves that are in turn arranged laterally 
around the rachis.

CLASS CUBOZOA
A.G. Collins

Cubozoa is the most species-poor class of phylum Cnidaria, presently containing 36 valid species in two 
orders (Gershwin 2005a, 2005b, 2006a, 2006b). Linnaeus (1758) described the first cubozoan, Carybdea mar
supialis (Linnaeus 1758). Given their distinctive features it is not surprising that as additional species were 
described, they were classified together (e.g., Gegenbaur 1856; Aggasiz 1862; Kramp 1961). Haeckel (1880) 
was the first to recognize them (in the taxon Cubomedusae) as distinct from other major groups of medusozo- 
ans. Werner (1973) elevated the group as class Cubozoa, after he and others recognized that the life cycle and 
polyps were quite distinct from those of Scyphozoa, in which cubozoan species had been classified.

Few tests of cubozoan monophyly have been conducted, but putative synapomorphies for the group can 
be found in the cladistic analyses of Schuchert (1993), Bridge et al. (1995), Marques and Collins (2004), and 
Van Iten et al. (2006). Cubomedusae are distinctive in exhibiting four perradial sensory rhopalia containing 
strikingly complex eyes with ocelli, vitreous bodies, lenses, and retinas (Pearse & Pearse 1978), as well as sta- 
tocysts. A piece of tissue entirely of subumbrellar origin, known as the velarium, narrows the subumbrellar 
opening of cubozoans. The velarium is infused by canals and supported by perpendicularly arranged struc
tures known as frenulae. The tentacles of cubomedusae are concentrated at the four interradial corners and 
have thickened muscular bases termed pedalia. Less readily observed diagnostic features of Cubozoa include 
the organization of the nervous system of the polyps and the process by which the solitary polyp entirely 
metamorphoses into a single juvenile medusa. Molecular analyses including approximately 10 cubozoan spe
cies have found robust support for cubozoan monophyly (Collins 2002; Collins et al. 2006a).

Order Carybdeida

Four families are presently classified in Carybdeida Gegenbaur 1857 (see Gershwin 2005b, 2006b): Ala
tinidae, Carybdeidae, Tamoyidae, and Tripedaliidae. Species of Carybdeida can be recognized by their 
unbranched pedalia located at the four interradial corners of the bell margin. With the exception of one family, 
Tripedaliidae, pedalia and tentacles number four. Unlike most members of Chirodropida, species of Caryb
deida lack gastric saccules. The only explicit tests of monophyly of the group were based on molecular data 
sampled from nine species representing three of the four families (Collins 2002; Collins et al. 2006a); the 
results strongly support monophyly of Carybdeida. Alatinidae is the only family not yet sampled, but it seems 
likely that the group has a single origin within Cubozoa.
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Included families
Alatinidae Gershwin, 2005b comprises two genera, one monospecific, the other with approximately 10 valid 

species (Gershwin 2005b). Its members have not been included in any phylogenetic analyses and its 
monophyly remains untested. Putative synapomorphies and distinguishing characteristics of alatinids 
are crescentic phacellae and T-shaped rhopaliar niche ostia (Gershwin 2005b). Gershwin (2005b) 
noted that the cnidoms of Alatinidae and Tripedaliidae are similar.

Carybdeidae Gegenbaur, 1857 is a monogeneric family with six valid species (Gershwin 2005b, 2006b; 
Gershwin & Alderslade 2005). Four of these have been sampled for molecular data (Collins 2002; 
Collins etal. 2006a). One of these species, Carybdea sivickisi, is clearly closely related to a represen
tative of Tripedaliidae, a connection which has also been noted on morphological grounds (Gershwin 
2006b). The other species of Carybdeidae can be distinguished by the presence of a heart-shaped 
opening of the rhopalial niche ostia.

Tamoyidae Haeckel, 1880 comprises four genera and six valid species (Gershwin 2005a; Gershwin & Alder
slade 2005). Two tamoyids representing two genera (one called 'Darwin carybdeid' has since been 
described as Gerongia rifkinae, Gershwin & Alderslade 2005) have been sampled for molecular data 
and were found to form a well supported clade (Collins 2002; Collins et al. 2006a). Character varia
tion across the different tamoyid genera is clearly laid out by Gershwin and Alderslade (2005), and 
the only character which appears to potentially be an unambiguous synapomorphy for the group 
should it prove to be monophyletic is the possession of frown-shaped rhopalial niche ostia (Gershwin 
2005a).

Tripedaliidae Conant, 1897 is a monogeneric family with two valid species (Moore 1988). Only a single 
species has been sampled for molecular data, and no explicit tests of the group's monophyly have 
been conducted. Species are easily distinguished from members of the other families of Carybdeida 
by the possession of multiple pedalia and tentacles (three for one species, two for the other) at the 
interradial corners of the bell margin.

Order Chirodropida

Two families are currently classified in order Chirodropida Haeckel, 1880 (see Gershwin 2006a): Chiropsalm
idae and Chirodropidae. Members of Chirodropida are easily distinguished from those of the other cubozoan 
order Carybdeida by their branched pedalia bearing numerous tentacles. In addition, with the exception of one 
species, all chirodropids possess gastric saccules (often termed diverticula), a feature absent in Carybdeida. 
The only explicit tests of the monophyly of the order are weak in terms of taxon sampling, including one spe
cies from each order (Collins 2002; Collins et al. 2006a). Nonetheless, these found strong support for a clade 
of Chirodropida exclusive of Carybdeida.
Included families
Chirodropidae Haeckel, 1880 comprises three genera with four valid species (Gershwin 2006a). Only a sin

gle species in this family has been sampled for molecular data (Collins et al. 2006a), and monophyly 
of the family has not been explicitly tested. It is unclear if any unambiguous putative synapomorphies 
exist for the group. Three species (in two genera) possess gastric saccules that are branched, but the 
monospecific genus Chirodectes lacks these structures altogether (Gershwin 2006a).

Chiropsalmidae Thiel, 1936 comprises three genera and seven valid species (Gershwin 2006a). Only a single 
species in this family has been sampled for molecular data (Collins et al. 2006a), and monophyly of 
the family has not been explicitly tested. Chiropsalmids are distinguished from other chirodropids by 
the presence of smooth, unbranched, finger-like gastric saccules that lack any filaments.
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CLASS HYDROZOA
P. Cartwight & A.G. Collins

Hydrozoa comprises two reciprocally monophyletic clades, Trachylina and Hydroidolina (Collins 2002; Col
lins et al. 2006a), which together contain approximately 3,500 valid species (Schuchert 2007a). Molecular 
and morphological phylogenetic analyses robustly support monophyly of Hydrozoa (Bridge etal. 1992; Col
lins 2002; Marques & Collins 2004; Collins et al. 2006a). Despite wide consensus regarding the monophyly 
and composition of Hydrozoa, it has few unambiguous, diagnostic morphological apomorphies. The cladistic 
analyses of Schuchert (1993), Bridge et al. (1995), Marques and Collins (2004), and Van Iten et al. (2006) 
identify sets of putative synapomorphies for Hydrozoa. Gap junctions have only been documented in hydro- 
zoans within Cnidaria. If medusae are present in the life cycle, they usually possess a velum and two nerve 
rings, and are budded laterally from the polyps rather than arising by strobilation, as in Scyphozoa, or by com
plete transformation of the polyp, as in Cubozoa. Hydrozoan polyps lack septae. Most hydrozoans have game- 
togenic tissue of ectodermal origin and location, in contrast with non-hydrozoan cnidarians, which possess 
gametogenic tissue of endodermal origin and location.

S u b c l a s s  H y d r o i d o l i n a

Hydroidolina Collins, 2000 includes Anthoathecata, Leptothecata, and Siphonophorae (see Marques & Col
lins 2004; Collins et al. 2006a). The monophyly of Hydroidolina is well supported by phylogenetic analyses 
of molecular (Bridge et al. 1995; Collins 2002; Collins etal. 2006a) and morphological (Bouillon & Boero 
2000a; Marques & Collins 2004) data. The statocysts of Hydroidolina, when present, are ectodermal in origin. 
Hydroidolina polyps may be solitary or colonial, and the colonies may be polymorphic, a state that is only 
present in one genus (Monobrachium) of Trachylina. The relationships between major groups of Hydroidolina 
(Leptothecata, Anthoathecata, Siphonophorae) are uncertain (Collins 2002; Collins etal. 2006a).

Order Anthoathecata

Anthoathecata Cornelius, 1992 comprises two suborders, Filifera and Capitata, and approximately 1,140 valid 
species (Bouillon etal. 2006). The polyps do not have a skeletal covering and can be solitary or colonial. The 
medusae do not have statocysts and the gametogenic tissue is confined to the manubrium. Molecular phyloge
netic studies do not support monophyly of Anthoathecata, suggesting instead that Anthoathecata is a para- 
phyletic assemblage that gave rise to one or more of the other suborders of Hydroidolina (Collins et al. 
2006a).

Suborder Filifera

Filifera comprises 22 families (Schuchert 2007a) and approximately 765 valid species (Bouillon et al. 2006). 
Although the suborder has the putative morphological synapomorphies of filiferan tentacles on the feeding 
polyps and desmoneme and eurytele nematocysts, molecular phylogenetic analyses do not support its mono
phyly (Collins 2002; Collins et al. 2005, 2006a).

Included families
Australomedusidae Russell 1971 comprises three genera (Schuchert 2007a) and approximately five valid 

species (Bouillon etal. 2006). No representatives have been included in molecular phylogenetic anal-
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yses and its members have never been the subject of a phylogenetic analysis. This family is distin
guished by polyps with large extensible hypostomes and medusae with (usually) four radial canals 
and four clusters of tentacles at the perradii of the bell margin.

Balellidae Stechow 1922 is a monospecific family (Bouillon et al. 2006) whose sole species has not been 
included in molecular phylogenetic analyses. This family is distinguished by polyps with two widely 
separated whorls of filiform tentacles.

Bougainvilliidae Lütken, 1850 comprises 13 genera (Schuchert 2007a) and approximately 100 valid species 
(Bouillon et al. 2006). Bougainvilliidae includes Rhizorhagium, which is not found within 
Schuchert's (2007b) classification (2007a). Molecular phylogenetic analyses that include two species 
from two genera were ambiguous with regard to monophyly (Collins et al. 2006a) and the group 
awaits a thorough phylogenetic investigation. Bougainvilliidae lacks morphological synapomorphies 
and shares many features with other families (Calder 1988; Schuchert 2007c). Some genera classified 
elsewhere by Schuchert (2007a), e.g., Lizzia in Rathkeidae, have been considered part of Bougainvil
liidae (Bouillon etal. 2006).

Bythotiaridae Maas, 1905 comprises nine genera (Schuchert 2007a) and approximately 25 valid species 
(Bouillon etal. 2006). No representatives have been included in molecular phylogenetic analyses and 
the group has not been the subject of a phylogenetic analysis. Hydroids from this family can be distin
guished by their habit of living inside the prebranchial cavity of ascidians. Medusae are recognized by 
marginal tentacles that have tiny or absent basal bulbs and terminate in a cluster of enidae, but these 
features are present in Eucodoniidae.

Clathrozoellidae Peña Cantero, Vervoort & Watson, 2003 is a monogeneric family (Schuchert 2007a) with 
four valid species (Bouillon et al. 2006). No representatives have been included in molecular phylo
genetic analyses. This family is distinguished by a pseudohydrotheca covering the polyps.

Cytaeididae Agassiz, 1862 comprises three genera (Schuchert 2007a) and approximately 20 valid species 
(Bouillon etal. 2006). No representatives have been included in molecular phylogenetic analyses and 
the group has not been the subject of an explicit phylogenetic analysis. There are no known morpho
logical synapomorphies for this group and the validity of one of the genera (Perarella) is questionable 
(Bouillon et al. 2006; Schuchert 2007c).

Eucodoniidae Schuchert, 1996 is a monospecific family (Schuchert 1996) that has not been included in 
molecular phylogenetic analyses. This family is distinguished by four clusters of embedded nemato- 
cysts around the mouth margin of medusae (Schuchert 1996).

Eudendriidae Agassiz, 1862 comprises two genera (Schuchert 2007a) and approximately 85 valid species 
(Marques 1996). Only a single representative has been included in molecular phylogenetic analyses 
(Collins et al. 2006a). Possible synapomorphies for this group include the absence of desmoneme 
nematocysts, a styloid gonophore, and trumpet-shaped hypostome (Marques 1996).

Hydractiniidae Agassiz, 1862 comprises seven genera (Schuchert 2007a) and approximately 100 valid spe
cies (Bouillon et al. 2006). Eleven species representing two genera have been included in molecular 
phylogenetic analyses, which supported monophyly of the group (Cunningham & Buss 1993). How
ever, taxon sampling in this analysis was not broad. The hydractiniid genus Clava is sometimes clas
sified together with genera of Oceanidae in the family Clavidae (see Bouillon etal. 2006), suggesting 
that its phylogenetic status is uncertain. Hydroids of the family are distinguished by stolonal, poly
morphic colonies that may bear spines.

Laingiidae Bouillon, 1978 comprises three genera and four valid species (Bouillon 1978; Bouillon et al. 
2006). One species has been included in molecular phylogenetic analyses (Collins etal. 2006a). This 
group was originally classified as its own subclass by Bouillon (1978) but molecular phylogenetic 
analyses have shown that at least one member of the group, Fabienna sphaerica, is nested within 
Hydroidolina and closely related to Proboscidactylidae (see Collins et al. 2006a). This hypothesis is
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supported by morphological data, including a solid radial canal and macrobasic euryteles (Schuchert
1996).

Niobiidae Peterson, 1979 is a monospecific family (Bouillon et al. 2006) whose sole species has not been 
included in molecular phylogenetic analyses. The hydroid stage is unknown and the medusae are dis
tinguished by marginal tentacle bulbs that develop into medusae buds (Petersen 1979).

Oceanidae Eschscholtz, 1829 comprises eight genera (Schuchert 2004) and approximately 25 valid species 
(Bouillon etal. 2006). Representatives of the family have not been included in any phylogenetic anal
yses. The family is distinguished by scattered filiform tentacles on the polyps, but this character is not 
specific to this group (Calder 1988; Schuchert 2004). Several genera of this family are sometimes 
classified with Clava in the family Clavidae (see Bouillon et al. 2006), suggesting that its phyloge
netic status is uncertain.

Pandeidae Haeckel, 1879 comprises 23 genera (Schuchert 2007a) and approximately 75 valid species 
(Bouillon etal. 2006). One species has been included in molecular phylogenetic analyses (Collins et 
al. 2006a), but no explicit analyses of its phylogeny have been attempted. There are no known syna
pomorphies for this group and it is probably not monophyletic, as it encompasses a diverse assem
blage of genera (Calder 1988).

Proboscidactylidae Hand & Hendrickson, 1950 is a monogeneric family (Schuchert 2007a) with six valid 
species (Bouillon et al. 2006). One species has been included in molecular phylogenetic analyses 
(Collins et al. 2006a). Hydroids of this family are distinguished by polymorphic stolonal colonies 
bearing gastrozooid polyps with two filiform tentacles.

Protiaridae Haeckel, 1879 comprises five genera (Schuchert 2007a) and approximately eight valid species 
(Bouillon et al. 2006). No representatives have been included in molecular phylogenetic analyses. 
Medusae of this family are distinguished by large, hollow tentacular bulbs and four well-developed 
tentacles that are often interspersed with short, solid tentacles.

Ptilocodiidae Coward, 1909 comprises six genera (Schuchert 2007a) and eight valid species (Bouillon et al.
2006). The group has not been the subject of a phylogenetic analysis. Hydroids of this family are dis
tinguished by the absence of tentacles on the feeding polyps.

Rathkeidae Russell, 1954 comprises six genera (Schuchert 2007a) and approximately 20 valid species 
(Bouillon et al. 2006). Three species representing three genera have been included in molecular phy
logenetic analyses and in phylogenetic analyses, and these support familial monophyly (Schuchert 
2007a). Species of this family are distinguished by primary medusae buds arising from stolons and 
secondary medusae buds arising interradially from the medusa manubrium.

Rhysiidae Brinckmann, 1965 is a monogeneric family (Schuchert 2007a) with three valid species (Bouillon 
etal. 2006). No representatives have been included in molecular phylogenetic analyses. This family is 
distinguished by dactylozooids covered with perisarc to the capitate apical tip and female gonozooids 
that transform into a sporosac-like structure.

Russelliidae Kramp, 1957 is a monospecific family (Bouillon et al. 2006) whose sole species has not been 
included in molecular phylogenetic analyses. The hydroid stage is unknown and the medusa pos
sesses marginal tentacles in groups of three: one large and two small hollow tentacles. The large ten
tacles are sunk into the umbrella margin, forming a furrow.

Stylasteridae Gray, 1847 comprises 26 genera (Schuchert 2007a) and approximately 260 valid species 
(Bouillon et al. 2006). Cairns (1984b) published a cladistic analysis of the genera of this diverse 
group, but its monophyly was not tested because only one outgroup was considered. Nevertheless, 
species of the group are readily distinguished by a massive calcareous exoskeleton, often brightly pig
mented, and they very likely form a clade.
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Trichydridae Hincks, 1868 is a monospecific family (Bouillon et al. 2006) whose sole species has not been 
included in molecular phylogenetic analyses. No putative synapomorphies are known in the hydroid 
stage, but medusae are distinguished by the possession of many tiny, anastomosing centripetal canals. 

Tubiclavoididae Moura, Cunha & Schuchert, 2007 is a monospecific family (Moura et al. 2007) whose 
sole species has been included in molecular phylogenetic analyses (Moura et al. 2007), the results of 
which have not been published. The species is characterized by elongate polyps with scattered fili
form tentacles and hydrocauli covered with striated perisarc.

Suborder Capitata

Capitata comprises 26 families (Schuchert 2007a) and approximately 375 valid species (Bouillon etal. 2006). 
The putative synapormorphies are stenotele nematocysts and capitate tentacles on the polyps or filiform ten
tacles in separated whorls (Bouillon & Boero 2000b). Molecular phylogenetic analyses suggest that Capitata 
is a paraphyletic assemblage containing two clades, Aplanulata and the other capitates (Collins 2002; Collins 
et al. 2005, 2006a). The synapomorphy for Aplanulata is the absence of a ciliated planula larva (Petersen 
1990). Four families, Tubulariidae, Corymorphidae, Candelabridae, and Hydridae have been sampled in 
molecular phylogenetic analyses that support monophyly of Aplanulata (Collins et al. 2005; Collins et al. 
2006a), but it is likely that other families are part of this group (Petersen 1990; Collins et al. 2006a). Mosaics 
of features, very few of which appear to be unique to any particular family, distinguish the medusa stages of 
capitate families.

Included families
Acaulidae Fraser, 1924 comprises three genera and five valid species (Bouillon et al. 2006). No representa

tives have been included in molecular phylogenetic analyses and the group has not been the subject of 
an explicit phylogenetic analysis. Members of this family are distinguished by scattered capitate ten
tacles on the distal portions of their solitary polyps.

Boeromedusidae Bouillon, 1985 is a monospecific family (Bouillon et al. 2006) whose sole species has not 
been included in molecular phylogenetic analyses. Hydroids are unknown; medusae have an apical 
projection, four tentacles terminating in nematocyst clusters, and four perradial pouches bearing 
gametes hanging from the manubrium.

Boreohydridae Wesblad, 1947 comprises two genera (Bouillon 1985) and two valid species (Bouillon et al. 
2006). No representatives have been included in molecular phylogenetic analyses and the group has 
not been the subject of an explicit phylogenetic analysis. This family is distinguished by small solitary 
polyps that possess a whorl of three to five diminutive tentacles (Schuchert 2006).

Candelabridae Stechow, 1921 comprises three genera (Schuchert 2006) and approximately 20 valid species 
(Bouillon etal. 2006). Just a single representative has been included in molecular phylogenetic analy
ses (Collins et al. 2005) and no explicit tests of the group’s monophyly have been conducted. The 
family is distinguished by its solitary or pseudo-colonial polyps that are relatively large and bear 
numerous scattered capitate tentacles (Schuchert 2006).

Cladocorynidae Allman, 1872 comprises two genera (Schuchert 2006) and seven valid species (Bouillon et 
al. 2006). Only a single representative has been included in molecular phylogenetic analyses (Collins 
et al. 2005) and no explicit tests of the group’s monophyly have been conducted. The putative syna
pomorphy for the family is patches of macrobasic euryteles on the body wall of the polyp (Petersen 
1990).

Cladonematidae Gegenbaur, 1856 comprises four genera (Schuchert 2006) and approximately 20 valid spe
cies (Bouillon et al. 2006). Phylogenetic analyses including three species representing two genera 
support monophyly of the group (Collins etal. 2005). The family is distinguished by benthic medusae 
with branched tentacles and adhesive structures at the tips of the medusae tentacles (Petersen 1990).
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Corymorphidae Allman, 1872 comprises 10 genera (Schuchert 2007a) and approximately 45 valid species 
(Bouillon et al. 2006). Two species from one genus were included in molecular phylogenetic analy
ses, the results of which contradicted monophyly (Collins etal. 2005). There are no known synapo
morphies for this group (Petersen 1990).

Corynidae Johnston, 1836 comprises seven genera and approximately 90 valid species (Schuchert 2001). A 
molecular phylogenetic analysis sampling 13 species from four genera strongly contradicted mono
phyly of the group, with some species being closely allied to members of Polyorchidae (Collins et al.
2005). Not surprisingly, no morphological synapomorphies have been identified for Corynidae 
(Schuchert 2001).

Halimedusidae Arai & Brinckmann-Voss, 1980 comprises three genera (Mills 2000; Schuchert 2007a), 
each with a single valid species (Bouillon et al. 2006). No representatives have been included in 
molecular phylogenetic analyses and the group has not been the subject of an explicit phylogenetic 
analysis. Species of this family have small solitary polyps that give rise to medusae with distinct inter- 
radial peaks in jelly above the manubrium base, a feature also present in medusae of Boeromedusidae 
(Mills 2000).

Hydridae Linnaeus, 1758 is a monogeneric family (Schuchert 2007a) with approximately 30 valid species 
(Bouillon et al. 2006). A molecular phylogenetic analysis sampling three species representing both 
the green and brown hydra groups supported monophyly of the family (Collins et al. 2006a). Hem- 
mrich etal. (2007) sampled additional taxa (mainly focused on laboratory strains) and also found the 
group to be monophyletic, although this study aimed at elucidating relationships within the group. 
Hydridae is distinguished by the absence of medusae, its freshwater habitat, and lateral budding of 
polyps.

Hydrocorynidae Rees, 1957 comprises two genera (Schuchert 2007a) and three valid species (Bouillon etal.
2006). No representatives have been included in molecular phylogenetic analyses and the group has 
not been the subject of an explicit phylogenetic analysis. Hydroids of the group are colonial, with 
hydranths arising from a chitinized hydrorhizal plate. No putative synapomorphies have been identi
fied for the medusa stage.

Margelopsidae Uchida, 1927 comprises three genera (Schuchert 2006) and six valid species. No representa
tives have been included in molecular phylogenetic analyses and the group has not been the subject of 
an explicit phylogenetic analysis. The family is distinguished by its small, pelagic, solitary polyps.

Milleporidae Fleming, 1828 is a monogeneric family with approximately seven valid species (Razak & 
Hoeksema 2003). One species has been sampled for molecular analysis (Collins et al. 2006a). This 
family is distinguished by colonies that build massive calcareous skeletons, polyps with capitate ten
tacles, and dimorphism with gastrozooids and dactylozooids.

Moerisiidae Poche, 1914 comprises three genera (Schuchert 2007a) and fewer than 10 valid species (Bouil
lon et al. 2006). One representative has been included in molecular phylogenetic analyses (Collins et 
al. 2005), but the family has never been the subject of an explicit phylogenetic analysis. Polyp stages 
of this family, where known, are solitary with scattered filiform tentacles. Medusae are recognized by 
a manubrium with radial lobes that extend toward and connect with the radial canals.

Paracorynidae Picard, 1957 is a monospecific family (Bouillon et al. 2006). No representatives have been 
included in molecular phylogenetic analyses. This family is distinguished by a flat, highly organized 
colony, with polymorphic zooids. Bouillon (1974) suggested that Paracoryne could be interpreted as 
an individual flattened polyp, rather than as a colony.

Pennariidae McCrady, 1859 is a monogeneric family with two valid species (Schuchert 2006). A single, 
widespread representative has been included in molecular phylogenetic analyses and no explicit tests 
of the group’s monophyly have been conducted. The family is distinguished by a pinnate hydroid col
ony with polyps that contain an aboral whorl of filiform tentacles and capitate tentacles scattered
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towards the oral end.
Polyorchidae Agassiz, 1862 comprises three genera (Schuchert 2007a) and five valid species (Bouillon etal. 

2006). Three species from two genera have been included in molecular phylogenetic analyses, which 
strongly supported monophyly of the group (Collins et al. 2005). The hydroid is unknown. Its large 
medusae are distinguished by a conspicuous gastric peduncle, a manubrium with four oral lips stud
ded with nematocysts, numerous tentacles, and abaxial ocelli.

Porpitidae Goldfuss, 1818 comprises two genera and three valid species (Kirkpatrick & Pugh 1984). One 
species from each genus was sampled in a molecular phylogenetic analysis, and the family was found 
to be monophyletic (Collins et al. 2005). This family is distinguished by a highly polymorphic, 
pelagic colonial stage, although it has been argued that this is not a colony but a modified individual 
polyp (Petersen 1990).

Protohydridae Allman, 1888 is a monogeneric family with two valid species (Schuchert 2006). No represen
tatives have been included in molecular phylogenetic analyses and the group has not been the subject 
of an explicit phylogenetic analysis. The family is distinguished by small polyps that lack tentacles 
and gonophores and a pedal disk that is epidermal in origin (Petersen 1990).

Solanderiidae Marshall, 1873 is a monogeneric family (Schuchert 1996) with approximately seven valid 
species (Bouillon etal. 2006). No representatives have been included in molecular phylogenetic anal
yses and the group has not been the subject of an explicit phylogenetic analysis. Species of the family 
are easily recognized by their large, branching colonies with chitinous, anastomosing internal skele
tons.

Sphaerocorynidae Prévôt, 1959 comprises two genera (Petersen 1990) and approximately five valid species 
(Bouillon etal. 2006). No representatives have been included in molecular phylogenetic analyses and 
the group has not been the subject of an explicit phylogenetic analysis. Hydroids of the family are 
long-stemmed and scattered with capitate tentacles at the broadest part of the hydranth. Medusae pos
sess apical projections with an apical chamber and a single abaxial ocellus on each of four tentacles; 
each tentacle terminates in an elliptical nematocyst pad.

Teissieridae Bouillon, 1974 comprises three genera (Petersen 1990) and approximately 10 valid species 
(Bouillon etal. 2006). No representatives have been included in molecular phylogenetic analyses and 
the group has not been the subject of an explicit phylogenetic analysis. Two genera are sometimes 
classified in a separate family (Bouillon et al. 2006). This family is distinguished by a colony with a 
unique basal plate of periderm that forms spines.

Tricyclusidae Kramp, 1949 is a monospecific family (Schuchert 2006) whose sole member has not been 
included in molecular phylogenetic analyses. This family is distinguished by solitary polyps that have 
a gelatinous perisarc and three whorls of capitate tentacles.

Tubulariidae Fleming, 1828 comprises six genera (Schuchert 2007a) and approximately 60 valid species 
(Bouillon et al. 2006). Four species from three different genera have been sampled in a molecular 
phylogenetic analysis and found to be monophyletic (Collins etal. 2005). Although no explicit test of 
the group’s monophyly was conducted, a larger study subjected 32 species to morphological phyloge
netic analyses (Marques & Migotto 2001). This study did support reciprocal monophyly of two sub
families, Ectopleurinae and Tubulariinae. The family is distinguished by polyps possessing two sets 
of tentacles, an aboral and oral whorl with gonophores developing between the sets of tentacles. The 
medusae often have a manubrium surrounded by gametogenic tissue. Based on these features and the 
molecular data, monophyly of the family is likely.

Zancleidae Russell, 1953 comprises four genera (Schuchert 2007a) and approximately 25 valid species 
(Bouillon et al. 2006). Two species from one genus have been included in molecular phylogenetic 
analyses (Collins et al. 2005), but no detailed analyses of the groups' phylogenetic status have been 
conducted. Phylogenetic analyses contradict monophyly, although the node separating these species
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was poorly supported (Collins etal. 2005). Hydroids of the family possess no obvious putative syna
pomorphies. Zancleid medusae have four perradial exumbrellar nematocyst pads.

Zancleopsidae Bouillon, 1978 comprises two genera (Petersen 1990) and six valid species (Bouillon et al. 
2006). No representatives have been included in molecular phylogenetic analyses and the group has 
not been the subject of an explicit phylogenetic analysis. The hydroid phase is unknown. Medusae 
have a conical or dome-shaped umbrella without an apical chamber, and usually have two opposed 
capitate tentacles that typically have capitate side branches.

Order Leptothecata

Molecular and morphological phylogenetic analyses support monophyly of Leptothecata Cornelius, 1982 
(e.g., Collins et al. 2006a; Leclère et al. 2007). The synapomorphy for Leptothecata is the theca, a skeletal 
covering on the polyps (hydrotheca) and gonophores (gonotheca). However, some phylogenetic analyses have 
identified a theca-less taxon as the earliest diverging lineage of Leptothecata, suggesting that the theca may 
have evolved after the origin of Leptothecata. Leptothecate polyps are always colonial and the tentacles of the 
polyps are arranged in a single whorl. The medusae usually have shallow bells with gametogenic tissue 
restricted to the radial canals. The approximately 2,000 valid species are classified into two suborders, Conica 
and Proboscidoidea (Bouillon etal. 2006). When families of Leptothecata are distinguished based on features 
of the medusa stage, suites of characters are typically used although very few individual characters are unique 
to any particular family.

Suborder Conica

Conica is the more diverse of the two orders of leptothecates, comprising approximately 1,770 valid species 
(Bouillon etal. 2006) in 29-31 families (Bouillon etal. 2006; Schuchert 2007a). The presumed synapomor
phy of the suborder is a conical hypostome on the polyps. Leclère et al. (2007) did not recover a monophyletic 
Conica; however this work addressed a different question and support in the relevant part of the topologies 
was weak.

Included families
Aequoreidae Eschscholtz, 1829 comprises four genera (Schuchert 2007a) with approximately 25 valid spe

cies (Bouillon et al. 2006). One species has been included in a molecular phylogenetic analysis (Col
lins et al. 2006a). No putative synapomorphies are known in the hydroid stage. The family is 
distinguished by relatively large medusae that possess a large number of (greater than 16) radial 
canals (Cornelius 1992).

Aglaopheniidae Agassiz, 1862 comprises eight genera (Schuchert 2007a) and approximately 250 valid spe
cies (Bouillon et al. 2006). Eleven species, including four genera, have been included in molecular 
phylogenetic analyses; their monophyly was strongly supported (Leclère et al. 2007). The family is 
distinguished by one median nematotheca below each hydrotheca and a pair of lateral nematotheca 
fused with the hydrotheca. Fused lateral nematotheca are thought to be a pleisiomorphy for the family 
(Leclère etal. 2007).

Barcinidae Bouillon, Gili, Pages, Palanques & Puig, 1999 is a monospecific family (Gili etal. 1999) whose 
sole member has not been included in molecular phylogenetic analyses. Hydroids of the family are 
unknown; medusae are distinguished by the presence of closed statocysts and adaxial ocelli (Gili et 
al. 1999).

Blackfordiidae Bouillon, 1984 is a monogeneric family (Schuchert 2007a) with three valid species (Bouillon 
et al. 2006). A single representative has been included in molecular phylogenetic analyses. No puta
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tive synapomorphies are known in the hydroid stage; the medusae have four long fluted lips and 
numerous marginal tentacles with endodermal cores that extend into the mesoglea of the bell.

Campanulinidae Johnston, 1836 comprises 13 genera (Schuchert 2007a) and approximately 40 valid spe
cies (Bouillon et al. 2006). None of its species have been included in molecular phylogenetic analy
ses. No putative synapomorphies are known in the hydroid stage and the group is almost certainly a 
polyphyletic assemblage of genera that have a tubular hydrotheca with a pointed, segmental or 
pleated operculum, and that lack a medusa stage (Cornelius 1992; Bouillon etal. 2006).

Cirrholoveniidae Bouillon, 1984 is a monogeneric family (Schuchert 2007a) with two valid species (Bouil
lon etal. 2006). Neither of its species have been included in molecular phylogenetic analyses, and no 
putative synapomorphies have been proposed for either the hydroid or medusa stage.

Clathrozoidae Hirohito, 1967 comprises two monospecific genera (Bouillon et al. 2006), neither of which 
have been included in molecular phylogenetic analyses. Members of this family are distinguished by 
a hydroid skeleton consisting of anastomosed chitinous stolons.

Dipleurosomatidae Boeck, 1866 comprises four genera and approximately eight valid species (Bouillon et 
al. 2006). No representatives have been included in molecular phylogenetic analyses and no putative 
synapomorphies are known in the hydroid stage. Medusae of this family are distinguished by 
branched or irregularly arranged radial canals and a manubrium with a narrow base.

Eirenidae Haeckel, 1879 comprises nine (Schuchert 2007a) or 10 genera (Bouillon etal. 2006) and approxi
mately 65 valid species (Bouillon et al. 2006). None of its species have been included in molecular 
phylogenetic analyses. No putative synapomorphies have been proposed for either the medusa or 
hydroid stages, the latter of which is recognized by elongate polyps and diminutive or absent hydroth- 
ecae.

Haleciidae Hincks, 1868 comprises four genera (Schuchert 2007a) and approximately 120 valid species 
(Bouillon etal. 2006). Two species representing three genera have been included in molecular phylo
genetic analyses, which contradict monophyly of this group, albeit with low support for the nodes 
separating its representatives (Leclère etal. 2007). This family is distinguished by large polyps that 
are unable to retract into the hydrotheca. The hydrotheca often appears as a collar at the base of the 
polyp.

Halopterididae Millard, 1962 comprises 12 genera and approximately 85 valid species (Schuchert 1997; 
Bouillon etal. 2006). Eleven species representing three genera have been included in molecular phy
logenetic analyses, which strongly support monophyly of the group (Leclère etal. 2007). This family 
is distinguished by one median nematotheca and a pair of lateral nematotheca associated with each 
hydrotheca. The hydrothecae are found on stems and terminal branches. These morphological charac
ters are interpreted as pleisiomorphies for the family (Leclère et al. 2007).

Hebellidae Fraser, 1912 comprises six genera (Schuchert 2007a) and approximately 40 valid species (Bouil
lon et al. 2006). Two species representing two genera have been included in molecular phylogenetic 
analyses, which provide low support for monophyly (Leclère et al. 2007). Monophyly of Hebellidae 
(without the genus Staurodiscus, which is sometimes considered to be a part of Laodiceidae) was also 
supported in a phylogenetic analysis based on morphology (Marques et al. 2006). None of its diag
nostic characters are unique to the group, many of them being present in members of Lafoeidae or 
putative outgroups (Marques etal. 2006).

Kirchenpaueriidae Stechow, 1921 comprises five genera (Schuchert 2007a) and 40 valid species (Bouillon 
etal. 2006). Four species from three genera have been sampled for molecular analysis, which strongly 
support monophyly of the group (Leclère et al. 2007). This family is distinguished by having one 
median nematotheca below each hydrotheca.

Lafoeidae Agassiz, 1865 comprises nine genera (Marques etal. 2006) and approximately 100 valid species 
(Bouillon etal. 2006). A tenth genus, Billardia, is sometimes classified in the family (Bouillon etal.
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2006), but its phylogenetic affinity is unclear. Lafoeidae (excluding Billardia) has been shown likely 
to be monophyletic based on morphology, though putative synapomorphies were dependent on out
group choice (Marques et al. 2006). Most species in the family have gonothecae closely packed in a 
coppinia.

Laodiceidae Agassiz, 1862 comprises six genera (Schuchert 2007a) and approximately 25 valid species 
(Bouillon et al. 2006). The family has not been the subject of phylogenetic analysis, and no putative 
synapomorphies are known in the hydroid stage. Medusae of Laodiceidae have marginal cordyli and 
lack statocysts, but cordyli and cordyli-like structures are known in other families of Leptothecata.

Lineolariidae Allman, 1864 comprises three genera and four valid species (Bouillon et al. 2006). The group 
has never been the subject of a phylogenetic analysis. Species are recognized by having hydrothecae 
and gonothecae that are adherent to the substrate for most of their lengths.

Lovenellidae Russell, 1953 comprises five genera (Schuchert 2007a) and approximately 30 valid species 
(Bouillon et al. 2006). Two representatives from two genera, Lovenella and Eucheilota (sometimes 
considered to be in a separate family, Eucheilotidae), have been sampled for molecular data and found 
to form a strongly supported monophyletic group (Govindarajan et al. 2006). Further sampling is 
needed for a more explicit test of monophyly. The family is distinguished only by medusae characters, 
including lateral cirri, numerous statocysts, and a short manubrium.

Malagazziidae Bouillon, 1984 comprises three genera (Schuchert 2007a) and approximately 20 valid species 
(Bouillon etal. 2006). No representatives have been included in molecular phylogenetic analyses and 
the group has not been the subject of any phylogenetic analyses. No putative synapomorphies are 
known in the hydroid stage. Medusae of this family have gametogenic tissue completely surrounding 
the radial canals and tentacle bulbs with adaxial excretory papillae, features that are also exhibited by 
other leptothecate groups.

Melicertidae Agassiz, 1862 comprises four genera (Schuchert 2007a) and as many as six valid species 
(Bouillon etal. 2006). One species from the family has been included in molecular phylogenetic anal
yses, and so monophyly of the group remains untested. Phylogenetic analyses suggest that this family 
may be the sister taxon to the rest of Leptothecata (Collins et al. 2006a). This family is distinguished 
by the absence of a hydrotheca (though the hydroid is known only for one of the genera), suggesting 
that the theca may have evolved after the divergence of Melicertidae from the rest of the leptothe- 
cates. Medusae are recognized by eight simple or bifurcating radial canals, a manubrium with a broad 
base, and the absence of cirri, statocysts and cordyli.

Mitrocomidae Haeckel, 1879 comprises 10 genera (Schuchert 2007a) and approximately 30 valid species 
(Bouillon et al. 2006). The group has never been part of any analysis explicitly assessing its mono
phyly. Members of the family are distinguished by tubular, sessile hydrothecae in the hydroid stage 
and by a manubrium attached to the subumbrella along a continuum of the radial canals and open sta
tocysts in the medusa stage. Genera with ocelli associated with open statocysts (Octogonade, Tiarop
sidium, and Tiaropsis) are sometimes classified separately in family Triaropsidae (Bouillon et al. 
2006).

Octocannoididae Bouillon, Boero & Seghers, 1991 is a monospecific family (Bouillon et al. 2006). This 
family is only known from the medusa stage and is distinguished by multiple club shaped tentaculae 
at the bell margin in addition to eight normal tentacles; all have dark pigment spots. The gametogenic 
tissue is divided into lateral halves along the radial canals.

Orchistomatidae Bouillon, 1984 is a monogeneric family (Schuchert 2007a) with five valid species (Bouil
lon etal. 2006). No representatives have been included in molecular phylogenetic analyses and the 
family’s monophyly has not been tested. Hydroid stages are unknown; medusae are distinguished by a 
short manubrium, a large gastric peduncle, a mouth with many crenulated lips, adaxial ocelli, and lat
erally compressed tentacles.
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Phialellidae Russell, 1953 comprises two genera (Schuchert 2007a) and approximately 10 valid species 
(Bouillon et al. 2006). No representatives have been included in molecular phylogenetic analyses. 
This family is distinguished by the absence of marginal cirri from the medusa and a crease line at the 
base of the hydrothecal operculum. It is questionable whether these characters are synapomorphies 
for the group (Cornelius 1982).

Plumulariidae McCrady, 1859 comprises six genera (Schuchert 2007a) with approximately 170 valid species 
(Bouillon et al. 2006). Fourteen species representing five genera have been sampled for molecular 
phylogenetic analysis, which strongly supports monophyly of the group (Leclère et al. 2007). The 
family is distinguished by attributes of the paired nematothecae, which are either absent or never 
fused with hydrothecae.

Sertulariidae Lamouroux, 1812 comprises 26 genera (Schuchert 2007a) and approximately 600 valid spe
cies (Bouillon et al. 2006). Five species representing four genera have been included in molecular 
phylogenetic analyses, which contradicted monophyly of this group, albeit with low support for the 
nodes separating the different lineages (Leclère et al. 2007). This family is characterized by erect col
onies and sessile hydrotheca with a hinged operculum.

Sugiuridae Bouillon, 1984 is a monospecific family (Bouillon et al. 2006) whose sole member has never 
been included in molecular phylogenetic analyses. No putative synapomorphies are known in the 
hydroid stage. This family is characterized by medusae with multiple manubria.

Syntheciidae Marktanner-Turneretscher, 1890 comprises three genera (Schuchert 2007a) and approxi
mately 35 valid species (Bouillon et al. 2006). No representatives have been included in molecular 
phylogenetic analyses and the group’s monophyly has not been tested. Species of this family usually 
have erect colonies that are unbranched or with pinnate stems, with hydrotheca on both sides of the 
stem.

Teclaiidae Bouillon, Gili, Pages, Palanques & Puig, 1999 comprises two genera (Schuchert 2007a), each 
with a single valid species (Bouillon etal. 2006). No representatives have been included in molecular 
phylogenetic analyses. The hydroid stage is unknown and the medusae possess marginal tentacles 
separated by cordiliform structures.

Thyroscyphidae Stechow, 1920 comprises five genera (Schuchert 2007a) and approximately 20 valid species 
(Bouillon etal. 2006). No representatives have been included in molecular phylogenetic analyses and 
the group has not been the subject of a phylogenetic analysis. Members of this family possess an ecto
dermal annular fold on the polyp, but this feature is also present in some species of Aglaopheniidae 
and Sertulariidae.

Tiarannidae Russell, 1940 comprises six genera (Schuchert 2007a) and approximately 15 valid species 
(Bouillon et al. 2006). No representatives have been included in molecular phylogenetic analyses. 
Medusae of this family are distinguished by having the gametogenic tissue folded on the adradial 
walls of the manubrium and/or on the perradial manubrial pouches.

Suborder Proboscidoidea

Proboscidoidea comprises three families (Schuchert 2007a) and approximately 150 valid species (Bouillon et
al. 2006). The putative synapomorphy for this suborder is a flared hypostome forming a pregastric cavity. The
group was not revealed as monophyletic in the analyses of Govindarajan et al. (2006), but this study was not
focused on this question and leptothecate taxon sampling was relatively narrow.

Included families
Bonneviellidae Broch, 1909 is a monogeneric family (Schuchert 2007a) with approximately 10 valid species 

(Bouillon et al. 2006). Four representatives, only one of which was identified to species, have been
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included in molecular phylogenetic analyses. These analyses supported monophyly of the family 
(Govindarajan et al. 2006), but more explicit tests await further sampling. This family has a unique 
hypostome morphology, with the pregastric cavity separated by the base of the tentacles, projecting 
into the gastric cavity and fusing to form a ring.

Campanulariidae Johnston, 1836 comprises 11 genera (Schuchert 2007a) with approximately 140 valid spe
cies (Bouillon et al. 2006). Forty six species representing eight genera have been sampled for molec
ular phylogenetic analysis. The results fail to support monophyly of the group: members of 
Bonneviellidae nest inside Campanulariidae (Govindarajan et al. 2006). Members of Campanulari
idae are distinguished by the campanulate-shaped skeleton (theca) surrounding the polyp and a 
peduncled hypostome. Bonneviellidae does not have this feature.

Phialuciidae Bouillon, 1984 is a monospecific family (Bouillon et al. 2006) whose sole species has not been 
included in molecular phylogenetic analyses. Hydroids are similar to those of campanulariids, but 
with a rounded hypostome. Medusae possess rudimentary bulbs between hollow marginal tentacles.

Order Siphonophorae

Siphonophora Eschscholtz, 1829 comprises 16 families (Schuchert 2007a) and approximately 160 valid spe
cies (Dunn etal. 2005) divided into three suborders: Calycophorae, Cystonectae, and Physonectae. Molecular 
phylogenetic analysis strongly support siphonophore monophyly (Collins 2002; Dunn et al. 2005). Siphono- 
phores are characterized by their holopelagic, highly polymorphic colonial organization.

Suborder Calycophorae

Calycophorae comprises six families and approximately 100 valid species (Pugh 1999). Molecular phyloge
netic analyses support monophyly of Calycophorae (Dunn et al. 2005). The putative synapomorphies for the 
group are the absences of an apical pneumatophore and palpons (Dunn et al. 2005).

Included families
Abylidae Agassiz, 1862 comprises five genera and approximately 10 valid species (Pugh 1999). Only a sin

gle representative has been included in molecular phylogenetic analyses (Dunn etal. 2005), and no 
explicit tests of the group’s monophyly have been conducted. This family is distinguished by having 
two nectophores, with the posterior one lacking a somatocyst.

Clausophyidae Totton, 1954 comprises four genera and approximately 10 valid species (Pugh 1999). Three 
species representing two genera have been sampled for molecular analysis, the results of which sup
port monophyly of the group (Dunn etal. 2005). This family is distinguished by the possession of two 
nectophores, each of which has a somatocyst.

Diphyidae Quoy & Gaimard, 1827 comprise eight genera and approximately 50 valid species (Pugh 1999). 
Seven representatives, representing six genera, have been included in molecular phylogenetic analy
ses, the results of which strongly support monophyly of the group (Dunn etal. 2005). The possession 
of two dissimilar nectophores appears to be a synapomorphy for the group (Dunn etal. 2005). 

Hippopodiidae Kölliker, 1853 comprises two genera and five valid species (Pugh 1999). Four representa
tives including species from both genera have been included in molecular phylogenetic analyses, the 
results of which strongly support monophyly of the group (Dunn et al. 2005). This family is distin
guished by multiple nectophores of one type and the absence of bracts; both of these features appear 
to be synapomorphies for this group (Dunn et al. 2005).
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Prayidae Kölliker, 1853 comprises seven genera and 12 valid species (Pugh 1999). Six species from five 
genera have been included in molecular phylogenetic analyses. The results of these phylogenetic 
analyses contradict monophyly of the group; Hippopodiidae nests within Prayidae (Dunn etal. 2005). 
The family is distinguished by two relatively large nectophores.

Sphaeronectidae Huxley, 1859 is a monogeneric family with four valid species (Pugh 1999). A single repre
sentative has been included in molecular phylogenetic analyses and no explicit tests of the group’s 
monophyly have been conducted (Dunn etal. 2005). This family is distinguished by a single spherical 
nectophore.

Suborder Cystonectae

Cystonectae comprises two families and five recognized species (Pugh 1999). Molecular phylogenetic analy
ses demonstrate that Cystonectae is monophyletic and the sister group to all other siphonophores (Dunn et al.
2005). The putative synapomorphy of Cystonectae is the absence of a nectosome or bracts and a relatively 
large pneumatophore.

Included families
Physaliidae Brandt, 1835 is a monospecific family (Pugh 1999). Although its sole species has been included 

in molecular phylogenetic analyses (Dunn et al. 2005; Collins et al. 2006a), there have been no 
explicit investigations of cryptic diversity within the group. This family is distinguished by a large, 
horizontal pneumatophore.

Rhizophysidae Brandt, 1825 comprises two genera and four recognized species (Pugh 1999). Two species 
have been sampled for molecular analysis, the results of which do not support monophyly: Physali
idae nests within this group (Dunn et al. 2005). Further sampling is needed to test this result. This 
family is distinguished by an apical and vertical pneumatophore.

Suborder Physonectae

Physonectae comprises seven families and approximately 50 valid species (Pugh 1999). The putative synapo
morphies are the relatively small apical pneumatophore and a series of identical nectophores located beneath 
the pneumatophore. Molecular phylogenetic analyses suggest that the Physonectae is paraphyletic with 
respect to Calycophorae (Collins 2002; Dunn etal. 2005).

Included families
Agalmatidae Brandt, 1835 comprises nine genera and approximately 25 valid species (Pugh 1999). Nine 

species representing three genera have been included in molecular phylogenetic analyses, the results 
of which contradict monophyly and indicate that Agalmatidae is a polyphyletic assemblage (Dunn et 
al. 2005). There are no unique morphological features for this family.

Apolemidae Huxley, 1859 comprises three monospecific genera (Pugh 1999). Four representatives from one 
genus (Apolema) have been included in molecular phylogenetic analyses, although none were identi
fied to species. The results of these phylogenetic analyses strongly support monophyly of the group 
(Dunn et al. 2005), although further sampling is needed to explicitly test this hypothesis. This family 
is distinguished by a hollowed nectophore that forms a pair of large axial wings.

Athorybiidae Huxley, 1859 comprises two genera and three known species (Pugh 1999). Two representatives 
have been included in molecular phylogenetic analyses, but these represent Atlantic and Pacific popu
lations of the same species. Phylogenetic analyses support monophyly (Dunn etal. 2005), but further 
taxon sampling is needed to test this hypothesis. The family is distinguished by the absence of a nec-
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tophore, a feature which appears to be a synapomorphy for this group (Dunn etal. 2005). 
Forskaliidae Haeckel, 1888 is a monogeneric family with six valid species (Pugh 2003). Six representatives 

of four species have been included in molecular phylogenetic analyses; one of the species (Forskalia 
edwardsi) was sampled from two locations in the Pacific and one from the Atlantic. Phylogenetic 
analyses support monophyly (Dunn etal. 2005). The putative synapomorphy for the group is the pos
session of four types of bracts (Dunn etal. 2005).

Physophoridae Eschscholtz, 1829 is a monospecific family (Pugh 1999) whose sole species has been 
included in molecular phylogenetic analyses (Dunn etal. 2005). One of the distinguishing features of 
the species, short stemmed physonects, is a pleisiomorphy (Dunn etal. 2005).

Pyrostephidae Moser, 1925 comprises two genera and four valid species (Kirkpatrick & Pugh 1984). Two 
species of Bargmannia have been included in molecular phylogenetic analyses; the results of these 
analyses support monophyly (Dunn et al. 2005). This family is distinguished by long stems, dioecy, 
and the absence of palpons. The absence of palpons is likely a synapomorphy that arose convergently 
in Calycophorae (Dunn et al. 2005); the other traits are pleisiomorphies. Although it has not been 
tested explicitly, the molecular evidence and the absence of palpons suggest that monophyly of this 
group is likely.

Rhodaliidae Haeckel, 1888 comprises seven genera and 10 valid species (Pugh 1983). Only a single repre
sentative has been included in molecular phylogenetic analyses (Dunn et al. 2005) and no explicit 
tests of the group’s monophyly have been conducted. The distinguishing features of the family are 
short stemmed physonects and a benthic life style.

SUBCLASS TRACHYLINA

The hydrozoan subclass Trachylina comprises all species classified in Actinulida, Limnomedusae, Narcome
dusae, and Trachymedusae (Schuchert 2007). These four orders presently contain about 150 valid extant spe
cies (Bouillon etal. 2006).

The phylogenetic hypotheses of Bouillon and Boero (2000) and Marques and Collins (2004) recognize a 
close relationship between Actinulida, Narcomedusae, and Trachymedusae, all of which are direct developing 
and have ecto-endodermal statocysts. However, the position of Limnomedusae has been somewhat controver
sial. Bouillon and Boero (2000) maintain that the presence of a polyp stage in Limnomedusae indicates that it 
shares a common ancestry with Anthoathecata, Leptothecata, and Siphonophora, but its position was equivo
cal in cladistic analyses of morphological and life history characteristics (Marques & Collins 2004). Molecu
lar phylogenetic analyses including samples from Limnomedusae, Narcomedusae, and Trachymedusae have 
provided strong evidence for their close relationship (Collins 2002; Collins etal. 2006a). Actinulida has yet to 
be sampled for molecular data. The clearest diagnostic apomorphy for Trachylina is statocysts of ecto-endo- 
dermal origin (Haeckel 1879).

Order Actinulida

Actinulida Swedmark & Teissier, 1959 was created for Halammohydridae and Otohydridae, two groups of 
interstitial species. Integral to their decision was the documentation that species of both groups have direct 
development via an actinula-like stage. Swedmark and Teissier (1966) regarded this life cycle as ancestral for 
Hydrozoa, and therefore rejected earlier ideas that Halammohydridae was a derived group of Narcomedusae 
(Remane 1927). However, subsequent authors have suggested that these animals are most likely descendants 
of trachyline species with free-swimming medusa stages (e.g., Werner 1965; Salvini-Plawen 1987; Bouillon 
& Boero 2000; Marques & Collins, 2004). Trachymedusae and Narcomedusae are also direct developers with
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ontogenetically similar (ecto-endodermal) statocysts. However, characters affiliating the two actinulid fami
lies to any particular group within Trachylina, or even to each other, are lacking.

Included families
Halammohydridae Remane, 1927 is a monogeneric family with ten valid species (Bouillon et al., 2006), all 

of which live interstitially. No species of this family have ever been included in a phylogenetic analy
sis. Members of Halammohydridae possess a distinctive aboral adhesive organ, a nerve ring, and two 
amphicoronate whorls of aboral tentacles; these unique features suggest that the group is monophyl
etic.

Otohydridae Swedmark & Teissier, 1958 is a monogeneric family with two valid species (Bouillon et al.
2006). Its members have not been included in any phylogenetic analyses. The species of Otohydridae 
are readily distinguished from those of Halammohydridae because they lack a nerve ring and have 
one whorl of dimorphic oral tentacles.

Order Limnomedusae

Limnomedusae Kramp, 1938 has a complicated taxonomic history. Kramp (1938; Browne & Kramp 1939) 
erected the taxon for the hydrozoan families Moerisiidae, Olindiasidae (= Olindiidae), and Proboscidactylidae 
to accommodate species with a biphasic life-cycle that did not readily fit in the Anthoathecata ^Anthomedu
sae or Athecata) because their medusae had either ecto-endodermal statocysts or gametogenic tissue along 
their radial canals, and also failed to fall in Leptothecata (=Leptomedusae or Thecata) because their polyps 
were not covered by a theca. Naumov (1960) added Monobrachiidae, whose species meet the criteria above. 
Two other families, Armorhydridae and Microhydrulidae, have also been classified within Limnomedusae, 
for lack of better alternatives (Bouillon 1985).

Broader considerations of more characteristics, including the cnidom, have indicated that Moerisiidae has 
a closer relationship to members of the anthoathecate group Capitata (Rees 1958; Petersen 1990). Likewise, 
the absence of statocysts and the presence of desmonemes strongly suggest that Proboscidactylidae shares a 
recent common ancestor with anthoathecate species classified in Filifera (Edwards 1973; Schuchert 1996). 
Molecular data have confirmed that Moerisiidae and Proboscidactylidae are more closely related to anthoath
ecate species than they are to those of Limnomedusae (Collins 2002; Collins etal. 2006a). Thus, Limnomedu
sae is presently limited to Armorhydridae, Microhydrulidae, Monobrachiidae, and Olindiasidae.

The molecular phylogenetic analyses of Collins etal. (2006a) included representatives of Monobrachiidae 
and Olindiasidae. These analyses did not support monophyly of the order, instead favoring (but with modest 
support values) the hypothesis that the group is a paraphyletic grade at the base of Trachylina. Additionally, 
these data provided relatively strong support for the hypothesis that the trachymedusan family Geryoniidae is 
derived within Limnomedusae. It is unclear precisely why Armorhydridae is included in Limnomedusae, as it 
appears to not share any putative synapomorphies with other limnomedusans. Their medusae, which inhabit 
the interstices of coarse sediments, differ from those of other limnomedusans by the presence of hollow tenta
cles and the absence of radial canals (gametes borne on the manubrium), statocysts, or other sense organs. The 
position of Microhydrulidae in Limnomedusae is also somewhat tentative. Adult stages of species of Micro
hydrulidae are unknown. Their polyps are solitary, minute, without tentacles, and armed with just a general 
nematocyst type, microbasic euryteles.

Included families
Armorhydridae Swedmark & Teissier, 1958 is a monospecific family whose single valid species, Armorhy

dra janowiczi, lives interstitially in coarse sediments. This species has never been included in a popu
lation-level analysis, which could presumably reveal cryptic diversity.
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Microhydrulidae Bouillon & Deroux, 1967 comprises two genera and three described species, all consid
ered valid (Bouillon et al. 2006). Its members have not been included in any phylogenetic analyses. 
The species are only known from the minute polyp stage (< 500 pm), which are distinguished from 
those of other Limnomedusae by their lack of tentacles and mouths. There is no evidence of mono-
phyly.

Monobrachiidae Naumov, 1960 is a monogeneric family containing three valid species (Bouillon et al.
2006). Only a single species has been sampled for molecular data, and the species have never been the 
subject of a phylogenetic analysis. The family can be differentiated from other limnomedusans by its 
polymorphic hydroid colonies, which live on bivalve molluscs. Monophyly of the family is likely. 

Olindiasidae Haeckel, 1879 comprises 16 genera (Schuchert 2007) and approximately 40 valid species 
(Bouillon et al., 2006). Six species and genera were included in the analyses of Collins etal. (2006a); 
results of these analyses indicate that the family is paraphyletic, having given rise to the trachymedu- 
san family Geryoniidae. Olindiasidae differs from Geryoniidae only in the presence of a polyp stage, 
so non-monophyly of the group is not surprising.

Order Narcomedusae

Narcomedusae Haeckel, 1879 currently contains four families (Schuchert 2007): Aeginidae, Cuninidae, Sol
marisidae, and Tetraplatiidae. Investigations of narcomedusan relationships are still in their infancy. The most 
detailed published analysis is that of Collins etal. (2006b), which included representatives of Aeginidae, Cun
inidae, and Tetraplatiidae and corroborated the narcomedusan affinities suggested by Hand (1955) for the 
worm-shaped Tetraplatia. Molecular data consistently support the monophyly of Narcomedusae (Collins 
2002; Collins etal. 2006a, b). Even as taxon sampling increases in such studies, monophyly of Narcomedusae 
is likely to be upheld because its members share a number of distinctive features that are likely to be synapo
morphies. For instance, the oral-aboral axes in adult medusae are derived from the transverse axes of their 
respective planulae (Bouillon 1987) and the tentacles arise from the exumbrella rather than at the margin.

Included families
Aeginidae Gegenbaur, 1857 comprises six genera (Schuchert 2007) with fewer than ten accepted species 

(Bouillon etal. 2006). Only two species have been sampled for molecular data, and these do not form 
a clade (Collins et al. 2006b) because Tetraplatia is derived within them. The paraphyly of Aeginidae 
is not surprising, as it is differentiated from Cuninidae and Solmarisidae by the presence of interradial 
manubrial pouches that are very similar to pouches that run up into the interradially located flying 
buttresses of Tetraplatia. This character may be a synapomorphy of Aeginidae plus Tetraplatiidae. 

Cuninidae Bigelow, 1913 comprises four genera (Schuchert 2007) and approximately 20 valid species 
(Bouillon etal. 2006). A single species has been sampled for molecular data (Collins etal. 2006b); no 
test of the monophyly of the group has been conducted. Cuninidae is distinguished from other nar- 
comedusans by manubrial pouches located in the perradii.

Solmarisidae Haeckel, 1879 comprises two genera (Schuchert 2007) and approximately 10 valid species 
(Bouillon et al., 2006). No representatives have been sampled for molecular data and monophyly of 
the group has not been assessed. Solmarisidae is separated from other narcomedusans because its spe
cies lack manubrial pouches.

Tetraplatiidae Schuchert, 2007 is a monogeneric family containing two valid species (Rees & White 1957), 
one of which has been sampled for molecular data (Collins et al. 2006b). While monophyly of the 
group has not been tested, the distinctive morphology of its members (Hand 1955; Rees & White 
1957) would suggest that the species of Tetraplatia have a single evolutionary origin.
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Order Trachymedusae

As presently constituted, Trachymedusae Haeckel, 1866 contains five families (Schuchert 2007): Geryoni
idae, Halicreatidae, Petasidae, Ptychogastriidea, and Rhopalonematidae. No detailed analyses of their rela
tionships have been conducted. Only four species, representing Geryoniidae, Halicreatidae, and 
Rhopalonematidae, have been sampled for molecular data (Collins et al. 2006a). These data indicate that the 
group may be diphyletic; a representative of Geryoniidae was found to have a close relationship to some 
members of Limnomedusae. As a practical matter, the two groups are difficult to distinguish. Members of 
Geryoniidae, like other trachymedusans and unlike limnomedusans, lack polyp stages. However, geryonids 
share several characters (e.g., centripetal canals, hollow marginal tentacles, and four or six radial canals) with 
members of Limnomedusae. Disentangling the relationships among limnomedusans and trachymedusans is 
clearly a priority for future studies in trachyline systematics.

Included families
Geryoniidae Péron & Lesueur, 1810 comprises two monospecific genera (Bouillon etal. 2006). Each of the 

geryonid species has a cosmopolitan distribution and neither has been the subject of population-level 
genetic studies, which could detect cryptic diversity. The two genera are distinctive, differing mainly 
in symmetry: one is four-parted and the other six-parted. Monophyly is likely.

Halicreatidae Fewkes, 1886 comprises five genera (Schuchert 2007) and approximately 10 valid species 
(Bouillon et al. 2006). A single representative has been sampled for molecular data (Collins et al. 
2006a). Halicreatidae is distinguished from other trachymedusans by a wide circular manubrium that 
lacks lips, and tentacles that are stiff distally.

Petasidae Haeckel, 1879 comprises two monospecific genera (Bouillon etal. 2006; Schuchert 2007). No rep
resentatives have been sampled for molecular data and monophyly of the group has not been assessed. 
Petasidae is distinguished from other trachymedusans in having tentacles that terminate in a club- 
shaped knob of enidae and four radial canals (shared with Liriope of Geryoniidae and Varitentacula 
of Halicreatidae).

Ptychogastriidae Mayer, 1910 comprises two genera (Schuchert 2007) and three valid species (Bouillon et 
al. 2006). No representatives have been sampled for molecular data and monophyly of the group has 
not been assessed. Members of Ptychogastriidae are benthopelagic and distinguished from other tra- 
chymedusan families by having adhesive discs on some tentacles.

Rhopalonematidae Russell, 1953 comprises 16 genera (Schuchert 2007) and approximately 35 valid species 
(Bouillon et al. 2006). Two species have been sampled for molecular data (Collins etal. 2006a), and 
although they did not form a clade, no convincing test of the group's monophyly has been conducted. 
The family is distinguished from other trachymedusans by the possession of eight (usually) narrow 
radial canals and a narrow manubrium that terminates in a mouth with distinct lips.

CLASS SCYPHOZOA
M.N. Dawson

Class Scyphozoa presently contains approximately 200 extant morphospecies (Mianzan & Cornelius 1999), 
but the true diversity of the group is likely to be at least two times greater (Dawson 2004). Thus, current esti
mates of species richness in any higher taxon are best viewed as an estimate. Scyphozoa has historically 
included five morphogroups, ascribed ordinal status but known colloquially as coronates, cubomedusae, 
rhizostomes, semaeostomes, and stauromedusae (e.g., Mayer 1910; Kramp 1961). However, many investiga
tors using morphological data (e.g., Thiel 1966; Russell 1970; Werner 1973; Marques & Collins 2004; see
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also Arai 1997) determined that Class Scyphozoa is composed of only coronates, rhizostomes, and semaeo- 
stomes. This interpretation has been corroborated by the consensus of recent molecular analyses (Collins 
2002; Collins etal. 2006a), Cubozoa and Staurozoa are now recognized as distinct classes. Moreover, molec
ular analyses also have indicated that Scyphozoa comprises only two monophyletic groups: Order Coronatae 
and Order Discomedusae. Discomedusae comprises the semaeostomes, which are paraphyletic with respect to 
a monophyletic Rhizostomeae (Collins 2002; Dawson 2004; Collins etal. 2006a).

The life-history of almost all Scyphozoa includes a sexually reproducing planktonic medusoid phase 
(absent in Cassiopeidae) alternating with an asexually reproducing benthic polypoid phase (absent in a hand
ful of polyp-less deep-water medusae). Scyphozoa are distinguished from other Medusozoa by the presence of 
polydisc strobilation in metamorphosing polyps (a pattern of strobilation that is further modified in some 
rhizostomes), rhopalia (as opposed to rhopaloids or complex eyes), and ephyrae (Marques & Collins 2004; 
Collins etal. 2006a).

The current operational classification for Scyphozoa is therefore a somewhat cumbersome mix of ordinal 
and higher taxonomic groupings based on a molecular and morphological consensus (e.g., Thiel 1966; Russell 
1970; Werner 1973; Arai 1997; Collins 2002; Dawson 2004; Marques & Collins 2004; Collins et al. 2006a) 
coupled with the sub-ordinal and family-level treatment of Kramp (1961) used by Russell (1970) and Mian- 
zan and Cornelius (1999). The contribution of analyses of the polyps to systematic classification within Scy
phozoa remains practically negligible, with some notable exceptions (e.g., Jarms etal. 2002).

Order Coronatae

Coronatae Vanhoffen, 1892 comprises many deepwater (three families exclusively) and some shallow-water 
species (all or a fraction of species in the three remaining families; Jarms etal. 2002). Coronates possess three 
synapomorphies that distinguish them from other scyphozoans: a coronal furrow, a coronate pedalium, and 
oocytes that develop without accessory pigments (Marques & Collins 2004). Molecular analyses including 
representatives of as many as four coronate families support monophyly of Coronatae (e.g. Collins 2002; 
Dawson 2004; Collins etal. 2006a). However, little is known about many of the medusae that inhabit deepwa
ter and the morphological characters listed by Kramp (1961) distinguish some families poorly.

Included families
Atollidae Bigelow, 1913 is a monogeneric family composed of six valid species that inhabit the mesopelagic 

zone. Medusae have more than eight rhopalia alternating with an equal number of tentacles; the mar
ginal lappets are twice as numerous as the tentacles (Kramp 1961).

Atorellidae Vanhoffen, 1902 is a monogeneric family composed of five valid species. Medusae have six rho
palia.

Linuchidae Haeckel, 1879 is composed of two genera with four valid species, all of which are found in trop
ical shallow waters. Kramp (1961) considered the monospecific genus Linantha doubtful. 

Nausithoidae Bigelow, 1913 comprises three genera with 22 valid species. Medusae have eight rhopalia, 
eight tentacles, 16 marginal lappets, and 16 radiating stomach pouches (Kramp, 1961). Preliminary 
molecular analyses suggest that Nausithoidae may be polyphyletic (Dawson 2004).

Paraphyllinidae Maas, 1903 is a monogeneric family comprising three valid species. Medusae in this family 
have four interradial rhopalia with four or more tentacles (Kramp 1961). All exclusively inhabit deep- 
water.

Periphyllidae Haeckel, 1880 comprises four genera and seven valid species. Medusae in this family have 
four interradial rhopalia with four to 28 tentacles (Kramp 1961). All exclusively inhabit deepwater.
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SUBCLASS DISCOMEDUSAE

Discomedusae are distinguished from coronates in having heterotrichous anisorhiza nematocysts, podocysts, 
complex radial canals, and a partially present circular canal (Marques & Collins, 2004), although the complex 
radial canal is a homoplasy (also being present in some hydromedusae) and medial circular canals are promi
nent in some rhizostomes.

Order Semaeostomeae

Within Discomedusae, three genera constitute a group, traditionally known as order Semaeostomeae Agassiz, 
1862, which is probably paraphyletic with respect to Order Rhizostomeae. The semaeostomes are distin
guished from rhizostomes by two homoplasies (loss of desmocytes, shared with Staurozoa; presence of glan
dular cells, shared with Anthozoa and Hydrozoa) and a synapomorphy (presence of nerve cells in the 
planulae: Marques & Collins 2004).

Included families
Cyaneidae Agassiz, 1862 comprises three genera, one distributed globally in shallow-water, another in the 

Southern Ocean (Larson 1986), and the third in low-to-mid latitude Atlantic and adjacent basins, with 
approximately 20 recognized morphospecies. The cyaneid medusae are the only Discomedusae hav
ing tentacles originating on the subumbrellar surface of the bell at some distance inside of the bell 
margin.

Pelagiidae Gegenbaur, 1856 comprises three genera (Kramp 1961) and 15-20 recognized morphospecies. 
Cladistic analyses of morphological variation indicate that traditionally recognized genera are likely 
polyphyletic (Gershwin & Collins 2002). Pelagiidae are discomedusae with completely separated but 
unbranched gastric pouches and long, pointed, folded oral arms (Kramp 1961).

Ulmaridae Haeckel, 1879 comprises 14 genera and approximately 40 valid species. Slightly more than one- 
third are in the genus Aurelia and are currently identifiable only using molecular comparisons (e.g., 
Dawson 2003, Dawson et al. 2005), although many may represent previously described morphospe
cies (e.g., Mayer 1910). Many of the remaining species are in monospecific genera of deepwater 
medusae. Ulmarid medusae have simple or branched radial canals and a ring canal, which distinguish 
them from all other semaeostomes (but not from all rhizostome medusae).

Order Rhizostomeae

The most diverse order of Scyphozoa, Rhizostomeae Cuvier, 1799 is a monophyletic clade according to phy
logenetic analyses of DNA sequence data (Dawson 2004) and is often distinguished from other Discomedusae 
by monodisc strobilation (although this is not diagnostic of all species in the clade), having oral arms that bear 
suctorial mouths and are fused proximally, and the absence of tentacles on the bell margin (a feature shared 
with some deepwater semaeostomes). Kramp (1961), following Stiasny (1921) separated Rhizostomes into 
suborders and superfamilies in addition to the more standard Linnaean ranks. The phylogeny implied by 
Stiasny’s (1921) taxonomy is largely supported by patterns of development (Holst et al. 2007) and phyloge
netic analyses of DNA sequence from five families representing all superfamilies and suborders (Daryanabard 
& Dawson, in press). Stiasny’s (1921) taxonomy therefore remains the most current (Mianzan & Cornelius 
1999) and so is presented below without further embellishment (see Kramp 1961 for more details).
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Suborder Kolpophorae

Cassiopeidae Agassiz, 1862 is a monogeneric family comprising 10 species.
Cepheidae Agassiz, 1862 comprises four genera and 16 species.
Mastigiidae Stiasny, 1921 comprises three genera and 14 species.
Thysanostomatidae Gegenbaur, 1857 is a monogeneric family with three species.
Versurigidae Gegenbaur, 1857 is a monospecific family.

Suborder Daktyliophorae

Lychnorhizidae Haeckel, 1880 comprises three genera and six species.
Catostylidae Gegenbaur, 1857 comprises six genera and 24 species.
Lobonematidae Stiasny, 1921 comprises two genera and five species.
Rhizostomatidae Cuvier, 1799 comprises four genera and 11 species.
Stomolophidae Haeckel, 1880 is a monogeneric family with two species.

CLASS STAUROZOA
A.G Collins

Staurozoa is the most recently designated class of phylum Cnidaria (Marques & Collins 2004). The primary 
justification for its creation was that order Stauromedusae failed to form a clade with the other scyphozoan 
taxa in cladistic analyses of morphology and life history characteristics (Marques & Collins 2004), or in 
molecular phylogenetic analyses (Collins 2002). The cladistic analysis of Marques and Collins (2004) 
included a problematic extinct group, Conulata, which had a sister group relationship to Stauromedusae in 
their analyses. The class Staurozoa was erected to contain both of these groups. Subsequent work refining the 
character scoring for Conulata suggested that these enigmatic fossils are more likely to share a common 
ancestry with Scyphozoa than with Stauromedusae (Van Iten etal. 2006), contradicting the original concept of 
Staurozoa. Nevertheless, the cladistic analysis of Van Iten et al. (2006) and further phylogenetic research 
based on molecular sequence data (Collins & Daly 2005; Collins etal. 2006a) have suggested that Staurome
dusae may be the sister group to all other medusozoans. In terms of extant diversity, Staurozoa is equivalent to 
the order Stauromedusae.

Order Stauromedusae

The approximately 50 valid species of Stauromedusae Haeckel, 1879 are currently classified in two suborders, 
Cleistocarpida and Eleutherocarpida (Mills 2007). Only preliminary results from ongoing studies of the sys- 
tematics of Stauromedusae have been published (Collins & Daly 2005; Collins etal. 2006). Thus far, six spe
cies of Stauromedusae, representing both suborders and three of the six families, have been sampled for 
molecular data. These data strongly support monophyly of the sampled species (Collins & Daly 2005; Collins 
etal. 2006a).

As benthic medusozoans, staurozoans are quite distinctive. Several likely synapomorphies of the clade are 
listed by Collins and Daly (2005), including eight adradial clusters of capitate tentacles and non-ciliated 
creeping planulae. Families and genera of Stauromedusae are recognized by a combination of characters 
(Uchida 1929; Kramp 1961; Larson & Fautin 1989; Kikinger & Salvini-Plawen 1995), e.g., with or without a 
claustrum, peduncle having one or four chambers, peduncle having four intramesogleal muscles or not, coro-
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nal muscle being discontinuous in each adradius or unbroken, possession of eight perradial and interradial 
marginal anchors, primary tentacles, or none. While genera appear to be well defined, the families and subor
ders seem to be confused.

Suborder Cleistocarpida

Cleistocarpida comprises two families, Craterolophidae and Depastridae. The presumed synapomorphy of the 
suborder is the claustrum, tissue that transversely divides the four gastric pockets. The only explicit tests of 
the group’s monophyly were based on molecular data from two cleistocarpid representatives, each represent
ing one of the families (Collins & Daly 2005; Collins et al. 2006a). Monophyly of Cleistocarpida is contra
dicted by these data. The claustrum, a relatively complex feature (Berrill 1963), appears to be derived 
independently in different groups of Stauromedusae.

Included families
Craterolophidae Uchida, 1929 is a monogeneric family with two valid species (Mills 2007). One species of 

Craterolophidae has been sampled for molecular data and no explicit test of the group's monophyly 
has been conducted. Members of this family are distinguished from other cleistocarpids by the lack of 
primary tentacles in the perradii and interradii and the absence of longitudinal muscles in the pedun
cle.

Depastridae Haeckel, 1879 comprises four genera and approximately 10 valid species (Mills 2007). Only 
one species has been sampled for molecular data, and species of the family have never been the sub
ject of a phylogenetic analysis. The family can be differentiated from other cleistocarpids by the pres
ence of four longitudinal muscles running the length of the peduncle and primary perradial and 
interradial tentacles (Larson & Fautin 1989).

Suborder Eleutherocarpida

Eleutherocarpida is distinguished from Cleistocarpida by the lack of a claustrum (Mills 2007). Phylogenetic 
assessments of Eleutherocarpida are still in their infancy: only members of Lucernariidae have been sampled 
for molecular data. Analyses of these data suggest that the suborder does not form a clade, and therefore the 
lack of a claustrum is not a synapomorphy of the group (Collins & Daly 2005; Collins etal. 2006a).

Included families
Kishinouyeidae Uchida, 1929 comprises three genera and approximately 10 species (Mills 2007). No repre

sentative from this family has been included in a phylogenetic analysis and its monophyly is untested. 
The one potential synapomorphy of the group is the lack of muscles in the peduncle.

Kyopodiidae Larson, 1988 is a monospecific family. Its sole species has never been included in a popula
tion-level analysis, which could presumably reveal cryptic diversity. Its morphology is highly unusual 
within Stauromedusae: the calyx is tiny in comparison with the peduncle, and the gametes and gastric 
cavity reside at the base of the peduncle (Larson 1988). Even if further diversity is revealed in the 
family, Kyopodiidae is likely to be monophyletic.

Lipkeidae Vogt, 1887 is a monogeneric family with three species. No representative from this family has 
been included in a phylogenetic analysis and its monophyly is untested. Its species are distinguished 
from other Eleutherocarpida by their lack of anchors or papillae and their possession of eight adradial 
arms bearing either rudimentary or no secondary tentacles (Kramp 1961). The peduncle is single 
chambered, with muscles, and the coronal muscle is unbroken.
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Lucernariidae Johnston, 1847 is the most diverse family of Stauromedusae, comprising four genera and 
approximately 20 valid species (Mills 2007). Four species (one only identified to genus) representing 
two genera have been sampled for molecular data (Collins & Daly 2005; Collins et al. 2006a); the 
results of these analyses strongly contradict monophyly of the group. Of the characters typically used 
in classifying Eleutherocarpida, the only one shared by members of Lucernariidae is the possession of 
muscles throughout the length of the peduncle.
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