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INTRODUCTION

Purpose

This manual accompanies the computer software 
package PRIMER (Plymouth Routines In Multivariate 
Ecological Research), obtainable from PRIMER-E 
Ltd, Plymouth (see www.primer-e.com). Its scope is 
the analysis of data arising in community ecology and 
environmental science which is multivariate in character 
(many species, multiple environmental variables), and 
it is intended for use by ecologists with no more than a 
minimal background in statistics. As such, this methods 
manual complements the PRIMER user manual, by 
giving the background to the statistical techniques 
employed by the analysis programs (Table 0.1), at a 
level of detail which should allow the ecologist to 
understand the output from the programs, be able to 
describe the results in a non-technical way to others 
and have confidence that the right methods are being 
used for the right problem.

This may seem a tali order, in an area of statistics 
(primarily multivariate analysis) which has a reputation 
as esoteric and mathematically complex! However, 
whilst it is true that the computational details o f some 
of the core techniques described here (for example, 
non-metric multidimensional scaling) are decidedly non­
trivial, we maintain that all o f the methods that have

Table 0.1. Chapters in this manual in which the main methodology 
underlying specific PRIMER routines are covered

 ̂ PRIMER also contains a number o f  other routines dealing with 
file and data manipulation (e.g. averaging, joining, defining factors, 
selecting subsets), graph options, output o f results etc. The running 
o f these routines, and those in Table 0.1, is fully described in the 
accompanying PRIMER User Manual/Tutorial.

been adopted or developed within PRIMER are so 
conceptually straightforward as to be amenable to 
simple explanation and transparent interpretation. In 
fact, the adoption of non-parametric and permutation 
approaches for display and testing of multivariate data 
requires, paradoxically, a lower level of statistical 
sophistication on the part of the user than does a satis­
factory exposition of standard (parametric) hypothesis 
testing in the univariate case.

The principal aim of this manual is therefore to describe 
a coherent strategy for the interpretation of data on 
community structure, namely values o f abundance, 
biomass, % cover, presence/absence etc. for a set of 
species and one or more replicate samples taken:
a) at a number of sites at one time (spatial analysis);
b) at the same site at a number of times (temporal 

analysis);
c) for a community subject to different uncontrolled 

or manipulative "treatments”;
or some combination of these.

These species-by-samples arrays are typically large, 
and patterns in community structure are often not readily 
apparent from simple inspection of the data. Statistical 
analysis therefore centres around reducing the complex­
ity of these matrices, usually by some graphical repres­
entation o f the biological relationships between the 
samples. This is followed by statistical testing to 
identify and characterise changes in community structure 
in time or space and relate these to changing environ­
mental or experimental conditions.

Material covered

It should be made clear at the outset that the title 
“Change in Marine Communities” does not in any 
way reflect a restriction in the scope of the techniques 
in the PRIMER package to the marine environment. 
The first edition of this manual was intended primarily 
for a marine audience and, given that its examples are 
still drawn entirely from marine contexts, it would be 
disingenuous to change the title now to a more general 
one. However, it will be self-evident to the reader 
that there is very little in the following pages that is 
exclusively marine. Indeed, the PRIMER package is 
now not only used world-wide for all types of marine 
community surveys and experiments, of benthic fauna, 
algae, corals, plankton, fish, diet studies etc., but is 
increasingly found in freshwater, terrestrial and 
palaeontology contexts, and sometimes solely in multi­
variate studies of physico-chemical characteristics.

Routines Chapters

Similarity 2
CLUSTER 3
PCA 4, 11
MDS 5
ANOSIM, ANOSIM2 6
SIMPER 7
DIVERSE 8, 17
CASWELL, Geometric & Dominance Plots 8
Transform 9
Aggregate 10
BIO-ENV, Draftsman Plot 11
MVDISP, RELATE 15
BVSTEP, 2 STAG E 16
TAXDTEST 17

http://www.primer-e.com
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As a result o f the authors’ own research interests and 
the widespread use of community data in pollution 
monitoring, a major thrust of the manual is the biological 
effects o f contaminants but, again, most of the methods 
are much more generally applicable. This is reflected 
in a range o f more fundamental ecological studies 
among the real data sets exemplified here.

The literature contains a large array of sophisticated 
statistical techniques for handling species-by-samples 
matrices, ranging from their reduction to simple diver­
sity indices, through curvilinear or distributional 
representations of richness, dominance, evenness etc., 
to a plethora o f multivariate approaches involving 
clustering or ordination methods. This manual does 
not attempt to give an overview of all the options, or 
even the majority of them. Instead it presents a strategy 
which has evolved over several years within the 
Community Ecology/Biodiversity group at Plymouth 
Marine Laboratory (PML), and which has a proven 
track record in interpretation of a wide range of marine 
community data; see, for example, papers listed under 
Clarke or Warwick in Appendix 3 (which have attained 
four-figure total citations in SCI journals). The analyses 
and displays in these papers, and in this manual, almost 
all draw upon the wide range of routines available in 
the PRIMER package (though in many cases annotations 
etc in plots have been further edited by simple importing 
into graphics programs such as Microsoft Powerpoint).

Note also that, whilst other software packages will 
not encompass this specific combination of routines, 
several o f the individual techniques can be found 
elsewhere. For example, the core clustering and 
ordination methods described here are available in 
several mainstream statistical packages (SAS, S-Plus, 
Systat, Statgraphics etc.), and more specialised stat­
istical programs (CANOCO, PATN, PC-ORD, the 
Cornell Ecology programs, etc.) tackle essentially 
similar problems, though usually employing different 
techniques and a different strategy.

Practical use

The arrangement of topics, and level of exposition, 
have benefited from experience gained at several 
training workshops funded jointly by F AO, UNEP 
and UNESCO/IOC, and a series of commercially-run 
PRIMER courses at Plymouth and venues outside the 
UK. The advocacy of these techniques thus springs 
not only from regular use and development within 
PM L’s Community Ecology/Biodiversity group but 
also from valuable feedback from a series of workshops 
in which practical data analyses were central.

Throughout the manual, extensive use is made of data 
sets from the published literature to illustrate the tech­
niques. Appendix 1 gives the original literature source 
for each of these 25 or so data sets and an index to all 
the pages on which they are analysed. Each data set 
is allocated a single letter designation and, to avoid 
confusion, referred to in the text o f the manual by that 
letter, placed in curly brackets (e.g. {A} = Amoco-Cadiz 
oil spill, macrofauna; {B} = Bristol Channel, Zoo­
plankton; {C} = Celtic Sea, Zooplankton etc).

Literature citation

This 2nd edition o f the manual follows the 1st edition 
closely in respect of the first 15 chapters, though minor 
revisions have been made throughout. Chapters 16 
and 17 are entirely new. Appendix 2 lists some back­
ground papers appropriate to each chapter, including 
the source of specific analyses, and a full listing of 
references cited is in Appendix 3.

Whilst the manual is genuinely collaboratively authored, 
for the purposes of directing queries on specific topics 
it is broadly true that the first author (KRC) bears the 
responsibility for the chapters on statistical methods 
(1-7, 9, 11) and the second author (RMW) is mainly 
responsible for the chapters on interpretation (10, 12- 
14), the responsibility for Chapters 8 and 15 being 
shared more or less equally. Chapters 16 and 17 were 
written by KRC, drawing on the results of joint papers 
in various authorship combinations by KRC, RMW 
and Paul Somerfield (also of the Plymouth Marine 
Laboratory). Since this manual is not accessible within 
the published literature, referral to the methods it 
describes would properly be by citing the primary 
papers on which it is based; these are indicated in the 
text and Appendix 2. Alternatively, comprehensive 
discussion of the philosophy (and many of the details) 
of the multivariate and univariate approaches advocated 
can be found in Clarke (1993, 1999) and Warwick 
(1993), respectively, with the newer methods in this 
edition best summarised in Clarke and Warwick 
(1998a), Somerfield and Clarke (1995) and Warwick 
and Clarke (2001).

Acknowledgements

We are grateful to a large number of individuals and 
institutions for their help and support -  please see the 
detailed list at the end of the manual.

K R Clarke 
R M Warwick 
2001



Chapter 1
page 1-1

CHAPTER 1: A FRAMEWORK FOR STUDYING CHANGES IN 
COMMUNITY STRUCTURE

The purpose of this opening chapter is twofold:

a) to introduce some of the data sets which are used 
extensively, as illustrations of techniques, through­
out the manual;

b) to outline a framework for the various possible 
stages in a community analysis^.

Examples are given of some core elements of the 
recommended approaches, foreshadowing the analyses 
explained in detail later and referring forward to the 
relevant chapters. Though, at this stage, the details 
are likely to remain mystifying, the intention is that 
this opening chapter should give the reader some feei 
for where the various techniques are leading and how 
they slot together. As such, it is intended to serve 
both as an introduction and a summary.

Stages

It is convenient to categorise possible analyses broadly 
into four main stages.

1) Representing communities by graphical description 
of the relationships between the biota in the various 
samples. This is thought of as pure description, 
rather than explanation or testing, and the emphasis 
is on reducing the complexity of the multivariate 
information in typical species/samples matrices, to 
obtain some form of low-dimensional picture o f 
how the biological samples interrelate.

2) Discriminating sites/conditions on the basis of their 
biotic composition. The paradigm here is that o f 
the hypothesis test, examining whether there are 
“proven” community differences between groups 
of samples identified a priori, for example demon­
strating differences between control and putatively 
impacted sites, establishing before/after impact 
differences at a single site, etc.

3) Determining levels o f  “stress” or disturbance, by 
attempting to construct biological measures from the 
community data which are indicative of disturbed 
conditions. These may be absolute measures (“this 
observed structural feature is indicative of pollution”) 
or relative criteria (“under impact, this coefficient

 ̂ The term community is used throughout the manual, somewhat 
loosely, to refer to any assemblage data (samples leading to counts, 
biomass, % cover, etc. for a range o f species); the usage does not 
necessarily imply internal structuring o f the species composition, 
fo r example by competitive interactions.

is expected to decrease in comparison with control 
levels”). Note the contrast with the previous stage, 
however, which is restricted to demonstrating diff­
erences between groups of samples, not ascribing 
directionality to the change (e.g. deleterious con­
sequence).

4) Linking to environmental variables and examining 
issues of causality of any changes. Having allowed 
the biological information to “tell its own story”, 
any associated physical or chemical variables 
matched to the same set o f samples can be examined 
for their own structure and its relation to the biotic 
pattern (its “explanatory power”). The extent to 
which identified environmental differences are 
actually causal to observed community changes 
can only really be determined by manipulative 
experiments, either in the field or through laboratory 
/mesocosm studies.

Techniques

The spread of methods for extracting workable repres­
entations and summaries of the biological data can be
grouped into three categories.

1) Univariate methods collapse the full set of species 
counts for a sample into a single coefficient, for 
example a species diversity index. This might be 
some measure o f the numbers of different species 
for a fixed number of individuals (species richness) 
or the extent to which the community counts are 
dominated by a small number of species (dominance 
/evenness index), or some combination of these. 
Also included are biodiversity indices which measure 
the degree to which species or organisms in a 
sample are taxonomically or phylogenetically 
related to each other. Clearly, the a priori selection 
of a single taxon as an indicator species, amenable 
to specific inferences about its response to a partic­
ular environmental gradient, also gives rise to a 
univariate analysis.

2) Distributional techniques, also termed graphical 
or curvilinear plots (when they are not strictly 
distributional), are a class of methods which 
summarise the set of species counts for a single 
sample by a curve or histogram. One example is k- 
dominance curves (Lambshead et al, 1983), which 
rank the species in decreasing order of abundance, 
convert the values to percentage abundance relative
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to the total number of individuals in the sample, 
and plot the cumulated percentages against the 
species rank. This, and the analogous plot based 
on species biomass, are superimposed to define 
A B C  (abundance-biomass comparison) curves 
(Warwick, 1986), which have proved a useful con­
struct in investigating disturbance effects. Another 
example is the species abundance distribution 
(sometimes termed the distribution o f  individuals 
amongst species), in which the species are categ­
orised into geometrically-scaled abundance classes 
and a histogram plotted of the number of species 
falling in each abundance range (e.g. Gray and 
Pearson, 1982). It is then argued, again from emp­
irical evidence, that there are certain characteristic 
changes in this distribution associated with comm­
unity disturbance.

Such distributional techniques relax the constraint 
in the previous category that the summary from 
each sample should be a single variable; here the 
emphasis is more on diversity curves than single 
diversity indices, but note that both these categories 
share the property that comparisons between samp­
les are not based on particular species identities: 
two samples can have exactly the same diversity or 
distributional structure without possessing a single 
species in common.

3) M ultivariate methods are characterised by the fact 
that they base their comparisons of two (or more) 
samples on the extent to which these samples share 
particular species, at comparable levels of abund­
ance. Either explicitly or implicitly, all multivariate 
techniques are founded on such similarity coeffic­
ients, calculated between every pair of samples. 
These then facilitate a classification or clustering  
(these terms are interchangeable) of samples into

groups which are mutually similar, or an ordination 
plot in which, for example, the samples are “mapped” 
(usually in two or three dimensions) in such a way 
that the distances between pairs of samples reflect 
their relative dissimilarity of species composition.

Techniques described in detail in this manual are a 
method of hierarchical agglomerative clustering 
(e.g. Everitt, 1980), in which samples are successive­
ly fused into larger groups, as the criterion for the 
similarity level defining group membership is relaxed, 
and two ordination techniques: principal components 
analysis (PCA, e.g. Chatfield and Collins, 1980) and 
non-metric multi-dimensional scaling (NMDS, usually 
shortened to MDS, Kruskal and Wish, 1978).

For each broad category o f analysis, the techniques 
appropriate to each stage are now discussed, and 
pointers given to the relevant chapters.

UNIVARIATE TECHNIQUES

For diversity indices and other single-variable 
extractions from the data matrix, standard statistical 
methods are usually applicable and the reader is 
referred to one o f the many excellent general 
statistics texts (e.g. Sokal and Rohlf, 1981). The 
requisite techniques for each stage are summarised in 
Table 1.1. For example, when samples have the 
structure o f a number of replicates taken at each of a 
number of sites (or times, or conditions), computing 
the means and 95% confidence intervals gives an 
appropriate representation o f the Shannon diversity 
(say) at each site, with discrimination between sites 
being demonstrated by one-way analysis o f variance 
(ANOVA), which is a test o f the null hypothesis that 
there are no differences in mean diversity between

Table 1.1. Univariate techniques. Summary o f analyses fo r  the four stages.

Univariate examples

Stages Diversity indices (Ch 8) Indicator taxa Biodiversity indices (Ch 17)

1) Representing 
communities

Means and 95% confidence intervals for each site/condition (Ch 8, 9, 17)

2) Discriminating 
sites/conditions

One-way analysis o f  variance, ANOVA (Ch 6)

3) Determining 
stress levels

By reference to historical data for sites (Ch 14, 15) and regional “species pool ” (Ch 17) 
Ultimately a decrease in diversity Initial increase in opportunists Loss o f taxonomic distinctness

4) Linking to 
environment

Regression techniques (Ch 11); for causality issues see Ch 12
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sites. Linking to the environment is then also relat­
ively straightforward, particularly if the environmental 
variables can be condensed into one (or a small number 
of) key summary statistics. Simple or multiple regress­
ion of Shannon diversity as the dependent variable, 
against the environmental descriptors as independent 
variables, is then technically feasible, though rarely 
very informative in practice, given the over-condensed 
nature of the information utilised.

For impact studies, much has been written about the 
effect of pollution or disturbance on diversity measures: 
whilst the response is not necessarily undirectional 
(under the hypothesis of Huston, 1979, diversity is 
expected to rise at intermediate disturbance levels 
before its strong decline with gross disturbance), 
there is a sense in which determining stress levels is 
possible, through relation to historical diversity patterns 
for particular environmental gradients. Similarly, 
empirical evidence may exist that particular indicator 
taxa (e.g. Capitellids) change in abundance along 
specific pollution gradients (e.g. of organic enrichment). 
Note though that, unlike the diversity measures con­
structed from abundances across species, averaged in 
some way11, indicator species levels or the number of 
species in a sample (£) may not initially satisfy the 
assumptions necessary for classical statistical analysis. 
For *S, the normality and constant variance conditions 
can usually be produced by transformation o f the 
variable (e.g. log S). However, for most individual 
species, abundance across the set o f samples is likely 
to be a very poorly-behaved variable, statistically 
speaking. Typically, a species will be absent from 
many of the samples and, when it is present, the counts 
are often highly variable, with an abundance probab­
ility distribution which is heavily right-skewed7. Thus, 
for all but the most common individual species, trans­
formation is no real help and parametric statistical 
analyses cannot be applied to the counts, in any form. 
In any case, it is not valid to “snoop” in a large data 
matrix, o f typically 100-250 taxa, for one or more 
“interesting” species to analyse by univariate techn­
iques (any indicator or keystone species selection must

 ̂And thus subject to the central limit theorem, which will tend to 
induce statistical normality.
•j*

It is the authors’ experience, certainly in the study o f benthic 
communities, that the individuals o f a species are not distributed 
at random in space (a Poisson process) but are often highly clust­
ered, either through local variation in forcing environmental 
variables or mechanisms o f recruitment, mortality and community 
interactions. This leads to counts which, in statistical terms, are 
described as over-dispersed, combined with a high prevalence o f  
zeros, causing major problems in attempting parametric modelling 
by categorical/log-linear methods.

be done a priori). Such arguments lead to the tenets 
underlying this manual:

a) community data are usually highly multivariate 
(large numbers of species, each subject to high 
statistical noise) and need to be analysed en masse 
in order to elicit the important biological signal 
and its relation to the environment;

b) standard parametric modelling is totally invalid.

Thus, throughout, little emphasis is given to represent­
ing communities by univariate measures, though some 
definitions of indices can be found at the start of 
Chapter 8, some brief remarks on hypothesis testing 
(ANOVA) at the start of Chapter 6, a discussion of 
transformations (to approximate normality and constant 
variance) at the start o f Chapter 9, an example given 
of a univariate regression between biota and environ­
ment in Chapter 11, and a more extensive discussion 
of sampling properties of diversity indices, and bio­
diversity measures based on taxonomic relatedness, 
makes up Chapter 17. Finally, Chapter 14 gives a 
series of detailed comparisons of univariate with 
distributional and multivariate techniques, in order to 
gauge their relative sensitivities and merits in a range 
of practical studies.

EXAMPLE: Frierfjord macrofauna

The first example is from the IOC/GEEP practical 
workshop on biological effects of pollutants (Bayne 
et a f  1988), held at the University of Oslo, August 
1986. This attempted to contrast a range of biochemical, 
cellular, physiological and community analyses, applied 
to field samples from potentially contaminated and 
control sites, in a ijordic complex (Frierijord/Lang- 
esundfjord) linked to Oslofjord (/F}, Fig. 1.1). For 
the benthic macrofaunal component of this study 
(Gray et a f  1988), four replicate 0.1m2 Day grab 
samples were taken at each of six sites (A-E and G, 
Fig 1.1) and, for each sample, organisms retained on 
a 1.0 mm sieve were identified and counted. Wet 
weights were determined for each species in each 
sample, by pooling individuals within species.

Part o f the resulting data matrix can be seen in Table 
1.2: in total there were 110 different taxa categorised 
from the 24 samples. Such matrices (abundance, A, 
and/or biomass, B ) are the starting point for the biotic 
analyses of this manual, and this example is typical in 
respect of the relatively high ratio of species to samples 
(always »  1) and the prevalence of zeros. Here, as 
elsewhere, even an undesirable reduction to the 30 
“most important” species (see Chapter 2) leaves more
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Eh

Langesund
gord

Oslofjord

Fig. LÍ. Frierfjord, Norway {F}. Benthic community sampling 
sites (A-G) for the IOC/GEEP Oslo Workshop; site F omitted 
fo r macrobenthos.

1  1 1 1 1 1 »-----
A B C D E G 

Site

Fig. 1.2. Frierfiord macrofauna {F}. Means and 95% 
confidence internals for Shannon diversity (H), from four  
replicates at each o f six sites (A-E, G).

than 50% of the matrix consisting o f zeros. Standard 
multivariate normal analyses (e.g. Mardia et al9 1979) 
of these counts are clearly ruled out; they require both 
that the number of species (variables) be small in 
relation to the number of samples, and that the abund­
ance or biomass values are transformable to approx­
imate normality: neither is possible.

As discussed above, one easy route to simplification 
o f this “high-dimensional” complexity is to reduce 
each column of the matrix (each sample) to a single,

Table 1.2. Frierßord macrofauna {Fj. Abundance and biomass 
matrices (part only) fo r  the 110 species in 24 samples (four rep­
licates at each o f six sites A-E, G); abundance in numbers per 
0.1m2, biomass in mg per 0.1m2.

Species
Samples

AÍ A2 A3 A4 BÍ B2 B3 B4
Abundance
Cerianthus lloydi 0 0 0 0 0 0 0 0
Halicryptus sp. 0 0 0 1 0 0 0 0
Onchnesoma 0 0 0 0 0 0 0 0
Phascolion strombi 0 0 0 1 0 0 1 0
Golfingia sp. 0 0 0 0 0 0 0 0
Holothuroidea 0 0 0 0 0 0 0 0
Nemertina, indet. 12 6 8 6 40 6 19 7
Polycaeta, indet. 5 0 0 0 0 0 1 0
Amaena trilobata 1 1 1 0 0 0 0 0
Amphicteis gunneri 0 0 0 0 4 0 0 0
Ampharetidae 0 0 0 0 1 0 0 0
Anaitides groenl. 0 0 0 1 1 0 0 0
Anaitides sp. 0 0 0 0 0 0 0 0

Biomass
Cerianthus lloydi 0 0 0 0 0 0 0 0
Halicryptus sp. 0 0 0 26 0 0 0 0
Onchnesoma 0 0 0 0 0 0 0 0
Phascolion strombi 0 0 0 6 0 0 2 0
Golfingia sp. 0 0 0 0 0 0 0 0
Holothuroidea 0 0 0 0 0 0 0 0
Nemertina, indet. 1 41 391 1 5 1 2 1
Polycaeta, indet. 9 0 0 0 0 0 0 0
Amaena trilobata 144 14 234 0 0 0 0 0
Amphicteis gunneri 0 0 0 0 45 0 0 0
Ampharetidae 0 0 0 0 0 0 0 0
Anaitides groenl. 0 0 0 7 11 0 0 0
Anaitides sp. 0 0 0 0 0 0 0 0

univariate description. Fig. 1.2 shows the results of 
computing the Shannon diversity (FT, see Chapter 8) 
of each sample1, and plotting for each site the mean 
diversity and its 95% confidence interval, based on a 
pooled estimate o f variance across all sites from the 
ANOVA table, Chapter 6. (An analysis o f the type 
outlined in Chapter 9 shows that prior transformation 
of H' is not required; it already has approximately 
constant variance across the sites, a necessary prerequis­
ite for standard ANOVA). The most obvious feature 
of Fig. 1.2 is the relatively higher diversity at the 
“control” location, A.

1 Using the PRIMER DIVERSE routine.
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Distributional examples

Stages

1) Representing 
communities

ABC (^-dominance) curves (Ch 8 ) Species abundance distributions (Ch 8 )

Curves fo r each site/condition (or preferably replicate)

2) Discriminating 
sites/conditions

ANOVA on univariate summaries (e.g. W, Ch 8), or:
ANOSIM test (Ch 6) on “distances” Test for commonality o f distributions
between every pair o f curves (e.g. chi-squared) i f  valid

3) Determining Biomass curve drops below
stress levels numbers curve under disturbance

Species abundance distribution has 
“longer tail” with disturbance

4) Linking to 
environment

Difficult, except fo r univariate summaries o f the cuiwes (by regression) 
(Causality: see Ch 12)

DISTRIBUTIONAL TECHNIQUES

A less condensed form o f summary of each sample is 
offered by the distributional/graphical methods, outlined 
for the four stages in Table 1.3.

Representation is by curves or histograms (Chapter 
8), either plotted for each replicate sample separately 
or for pooled data within sites or conditions. The former 
permits a visual judgement of the sampling variation 
in the curves and, as with diversity indices, replication 
is required to discriminate sites, i.e. test the null hypoth­
esis that two or more sites (/conditions etc.) have the 
same curvilinear structure. The easiest approach to 
testing is then to summarise each replicate curve by a 
single statistic and apply ANOVA as before: for the 
ABC method, mentioned earlier, the W statistic (Chapter 
8) is a convenient measure of the extent to which the 
biomass curve “dominates” the abundance curve, or 
vice-versa. This is effective in practice though, in 
theory, it simply amounts to computing another diversity 
index and is therefore just a univariate approach. A 
more general test, which honours the curvilinear struc­
ture, could be constructed by the ANOSIM procedure 
(described later under multivariate techniques), comp­
uted between every pair o f replicate ABC curves'.

* This is somewhat esoteric and is not pursued in this manual; for  
details see Clarke (1990). Similarly outside the current scope are 
tests o f equality fo r two or more observed histograms arising 
from species abundance distributions. Again, the most straight­
forward approach to testing is probably to summarise each dist­
ribution by two or three measures (o f location, spread, skewness 
etc.) and cany out ANOVA on the summary statistics fo r each 
replicate. Another possibility is a chi-squared text (or some form  
o f Cramer-von Mises approach), for testing equality o f two or 
more frequency distributions, but this is unlikely to be valid given 
the species interdependencies in a single sample.

The distributional/graphical techniques have been 
proposed specifically as a way of 
levels. For the ABC method, the strongly polluted 
(/disturbed) state is indicated if the abundance A>dom- 
inance curve falls above the biomass curve throughout 
its length (e.g. see the later plots in Fig. 1.4): the phen­
omenon is linked to the loss of large-bodied “climax” 
species and the rise of small-bodied opportunists. Note 
that the ABC procedure claims to give an 
measure, in the sense that disturbance status is attrib­
utable on the basis of samples from a single site; in 
practice however it is always wise to design collection 
from (matched) impacted and control sites to confirm 
that the control condition exhibits the undisturbed 
ABC pattern (biomass curve above the abundance 
curve, throughout).

Similarly, the species abundance distribution has 
features characteristic of disturbed status (e.g. see the 
middle plots in Fig. 1.6), namely a move to a less “J- 
shaped” distribution by a reduction in the first one or 
two abundance classes (loss of rarer species), 
combined with the gain of some higher abundance 
classes (very numerous opportunist species).

The distribution/graphical methods may thus have 
particular merits in allowing recognition of stressed 
states (Chapter 14), though they have the disadvant­
age o f being more difficult to work with statistically, 
for example in linking to
where the only viable course again seems to be reduct­
ion of the curve(s) for each sample to a summary 
statistic (such as W),which can be regressed on part­
icular abiotic variables.
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Table 1.4. Loch Linnhe macrofauna {L}. Abundance/biomass matrix (part only); one (pooled) set o f values per year (1963-1973).

Species

1963 1964 1965 1966 . . .

A B A B A B A B

Scutopus ventrolineatus 0 0 0 0 11 0.05 0 0
Nucula tenuis 2 0.01 13 0.07 16 0.10 6 0.04
Mytilus edulis 0 0 0 0 5 0.09 0 0
Modiolus sp. indet. 0 0 0 0 0 0 0 0
Thyasira flexuosa 93 3.57 210 7.98 28 1.06 137 5.17
Myrtea spinifera 214 27.39 136 17.41 2 0.26 282 36.10
Lucinoma borealis 12 0.39 26 1.72 0 0 22 0.73
Montacuta ferruginosa 1 0 0 0 4 0.02 0 0
Mysella bidentata 0 0 0 0 0 0 0 0
Abra sp. indet. 0 0 0 0 12 0.26 0 0
Corbula gibba 2 0.13 8 0.54 9 0.27 2 0.13
Thracia sp. indet. 0 0 0 0 0 0 0 0

2 fern

Fig. 1.3. Loch Linnhe and Loch Eil, Scotland {Lj. Map o f  site 
34 (Linnhe) and site 2 (Eil), sampled annually over 1963-1973.

EXAMPLE: Loch Linnhe macrolaima

Pearson (1975) describes a time series of macrobenthic 
community samples, taken over the period 1963-1973 
inclusive, at two sites in a sea loch system on the 
west coast o f Scotland (/L/, Fig. 1.3.) Pooling to a 
single sample for each o f the 11 years resulted in 
abundance and biomass matrices of 115 rows (species) 
and 11 columns (samples), a small part o f which is 
shown in Table 1.4.^ Starting in 1966, pulp-mill 
effluent was discharged to the sea lochs (Fig. 1.3),

with the rate increasing in 1970 and a significant 
reduction taking place in 1972 (Pearson, 1975). The 
top left-hand plot of Fig 1.4 shows the Shannon divers­
ity o f the macrobenthic samples over this period, and 
the remaining plots the ABC curves for each year.f 
There appears to be a consistent change o f structure 
from one in which the biomass curve dominates the 
abundance curve in the early years, to the curves cross­
ing, reversing altogether and then finally reverting to 
their original form.

EXAMPLE: Garroch Head macrofauna

Pearson and Blackstock (1984) describe the sampling 
o f a transect of 12 sites across the sewage-sludge 
disposal ground at Garroch Head in the Firth of Clyde, 
SW Scotland ({G}, Fig. 1.5). The samples considered 
here were taken during 1983 and consisted o f abund­
ance and biomass values of 84 macrobenthic species, 
together with associated contaminant data on the extent 
of organic enrichment and the concentrations of heavy 
metals in the sediments. Fig. 1.6 shows the resulting 
species abundance distributions for the twelve sites, 
i.e. at site 1, twelve species were represented by a 
single individual, two species by 2-3 individuals, three 
species by 4-7  individuals, etc. (Gray and Pearson, 
1982). For the middle sites close to the dump centre, 
the hypothesised loss of less-abundant species, and 
gain o f a few species in the higher geometric classes, 
can clearly be seen.

 ̂ It is displayed in this form purely for illustration; this is not a 
valid file format for PRIMER, which requires the abundance and
biomass information to be in separate (same-shape) arrays. Computed from the PRIMER Dominance plot routine.
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Fig. 1.4. Loch Linnhe macro­
fauna {L}. Top left: Shannon 
diversity over the 11 annual 
samples, also indicating timing 
o f start o f effluent discharge 
and a later increase and de­
crease in level; remaining plots 
show ABC curves for the sep­
arate years 1963-1973 (B = 
biomass, thin line; A = abund­
ance, thick line).

MULTIVARIATE TECHNIQUES

Table 1.5 summarises the analyses possible under the 
four stages, when adopting one of three multivariate 
methods: hierarchical clustering (CLUSTER), multi­
dimensional scaling (MDS) and principal components 
analysis (PCA).

The first two methods start explicitly from a triangular 
matrix o f similarity coefficients computed between 
every pair o f samples (e.g. Table 1.6). The coefficient 
is usually some simple algebraic measure (Chapter 2) 
of how close the abundance levels are for each species, 
averaged over all species, and defined such that 100% 
represents total similarity and 0% complete dissimilar­
ity. There is a range of properties that such a coeff­
icient should possess but still some flexibility in its 
choice: it is important to realise that the definition o f

what constitutes similarity o f two communities may 
vary, depending on the biological question under con­
sideration. As with the earlier methods, a multivariate 
analysis too must attempt to reduce the complexity o f 
the (high-dimensional) community data by taking a 
particular (low-dimensional) “view” o f the structure 
it exhibits. A view in which most of the emphasis is 
on the pattern of occurrence of rare species may be 
very different than one in which the emphasis is wholly 
on the handful of species that numerically dominate 
most of the samples. One convenient way of providing 
this spectrum of choice, to match the biological imper­
atives whilst retaining desirable theoretical properties, 
is to restrict attention to a single similarity coefficient 
(specifically that of Bray and Curtis, 1957) but allow 
a choice of prior transformation o f the data. A useful 
transformation continuum (Chapter 9) ranges through: 
no transform, square root, fourth root, logarithmic and
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finally, reduction of the sample information to the 
recording only of presence or absence for each species.11 
At the former end of the spectrum all attention will be 
focused on the dominant counts, at the latter end on 
the rarer species.

For the clustering technique, representation o f the 
communities for each sample is by a dendrogram (e.g. 
Fig. 1.7a), linking the samples in hierarchical groups 
on the basis of some definition of similarity between 
each cluster (Chapter 3). This is a particularly relevant

Cumbrae

Bute

Ayrshire

Arran

Dumpsite

f  ? ® ® » f3 4 5 •
7»»«S •

Firth of Clyde 5 km

Fig. 1.5. Garroch Head, Scotland fGj. Location o f sewage sludge 
dump ground and position o f sampling sites (1-12); the dump 
centre is at site 6.

representation in cases where the samples are expected 
to divide into well-defined groups, perhaps structured 
by some clear-cut environmental distinctions. Where, 
on the other hand, the community pattern is responding 
to abiotic gradients which are more continuous, then 
representation by an ordination is usually more approp­
riate. The method of non-metric MDS (Chapter 5) 
attempts to place the samples on a “map”, usually in 
two dimensions (e.g. see Fig. 1.7b), in such a way that 
the rank order o f  the distances between samples on 
the map exactly agrees with the rank order of the match­
ing (dis)similarities, taken from the triangular similarity 
matrix. If successful, and success is measured by a 
stress coefficient which reflects lack of agreement in 
the two sets of ranks, the ordination gives a simple 
and compelling visual representation o f “closeness” 
of the species composition for any two samples.

The PCA technique (Chapter 4) takes a different start­
ing position, and makes rather different assumptions 
about the definition of (dis)similarity o f two samples, 
but again ends up with an ordination plot, usually in 
two or three dimensions, which approximates the cont­
inuum of relationships between samples (e.g. Fig. 
1.8). In fact, PCA is a rather unsatisfactory procedure 
for most species-by-samples matrices, for at least two 
reasons:

Site 2Site 1

</> 16
Site 5 Site 6

0) 12

16
14
12
10
8
6
4
2
0

Site Site 10

1 3 5 7 9 11 13 1 11 13

Site 3

Site 8Site 7

Site 11 Site 12

1 3 5 7 9 11 13

Geometric abundance class
3 5 7 9 11 13

Fig. 1.6. Garroch Head 
macrofauna {G}, Plots o f 
number o f species against 
number o f  individuals per 
species in x2 geometric 
classes, for the 12 sampling 
sites o f Fig. 1.5.

 ̂ The PRIMER routines automatically offer this set o f transformation choices, applied to the whole 
data matrix, but also cater for more selective transformations o f particular sets o f  variables, as is 
often appropriate to environmental rather than species data.
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Table 7.5. Multivariate techniques. Summary o f analyses for the four stages.

Multivariate examples

Stages

1) Representing 
communities

Hierarchical clustering (Ch 2, 3) MDS ordination (Ch 5) PCA ordination (Ch 4)

Dendrogram o f samples Configuration plot o f  samples (often 2-dimensional)

2) Discriminating ANOSIM on sample similarity matrix (Ch 6)
sites/conditions Similarity percentage breakdown (Ch 7) gives species responsible

3) Determining 
stress levels

ANOSIM on Euclidean 
distances (or multinormal 
tests, rarely valid)

“Meta-analyses”, variability measures, breakdown o f sériation (Ch 15)

4) Linking to 
environment

Visual: superimposing environmental variables on biotic ordinations (Ch II)  
Analytical: finding subset o f environmental variables whose ordination “best matches’ 

the biotic ordination (Ch 11, 16)
(Causality: see Ch 12)

Table 1.6. Frierfjord macrofauna {F} Bray-Curtis similarities, 
after Vf-transformation o f  counts, for every pair o f replicate 
samples from sites A, B, C only (four replicates per site).

a) it defines dissimilarity o f samples in an inflexible 
way (Euclidean distance in the full-dimensional 
species space, Chapter 4), not well-suited to the 
rather special nature of species abundance data, with 
its predominance of zero values;

b) it requires exclusion of the species which are less 
common, so that the number of species retained is 
more comparable with the number o f samples.

However, a description of its operation is included in 
this manual because it is an historically important 
technique, the first ordination method to be devised 
and one which is still commonly encountered1, and

T In fact, rather a bewildering arra
in common use (e.g. Principal Co-or
ence Analysis, Detrended Correspondenc
5 has some brief remarks on their
this manual concentrates only
available in PRIMER.

because it comes into its own in the analysis of envir­
onmental samples. Abiotic variables (sediment grain 
size, salinity, contaminant levels etc.) are usually 
relatively few in number, are continuously scaled, 
and their distributions can be transformed so that 
standard correlation coefficients (and Euclidean dist­
ances) are appropriate ways of describing their inter­
relationships. PCA is then a fully satisfactory means 
of producing a low-dimensional summary, and even 
has some advantages over MDS in providing an inter­
pretation of the main axes of the plot.

Discriminating sites/conditions from a multivariate
analysis requires non-“classical” hypothesis testing 
ideas, since it is totally invalid to make the standard 
assumptions of normality (which in this case would 
need to be multivariate normality of the 100+ dimens­
ions of the different species!). Instead, Chapter 6 
describes a simple permutation or randomisation test 
(of the type first studied by Mantel, 1967), that makes 
very few assumptions about the data and is therefore 
widely applicable. In Fig. 1,7b for example, it is clear 
without further testing that site A has a different 
community composition across its replicates than the 
groups (E, G) or (B, C, D); much less clear is whether 
there is any statistical evidence of a distinction between 
the B, C and D sites. A non-parametric test of the 
null hypothesis of “no site differences between B, C 
and D” can be constructed by defining a statistic which 
contrasts between-site and within-site “distances”, 
then recomputing it for all possible permutations of 
the 12 labels (4 Bs, 4 Cs and 4 Ds) between the 12 
locations on the MDS. If these arbitrary site relabell­
ings generate values of the statistic which are similar

AÍ A2 A3 A4 BÍ B2 B3 B4 Cl C2 C3 C4
AÍ -

A2 61 -

A3 69 60 -

A4 65 61 66 -

BÍ 37 28 37 35 -

B2 42 34 31 32 55 -

B3 45 39 39 44 66 66 -

B4 37 29 29 37 59 63 60 -

Cl 35 31 27 25 28 56 40 34 -

C2 40 34 26 29 48 69 62 56 56 -

C3 40 31 37 39 59 61 67 53 40 66 -

C4 36 28 34 37 65 55 69 55 38 64 74 -
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Fig. 1.7. Frierfjord macrofauna {F}. a) Dendrogram fo r  hier­
archical clustering (group-average linking); b) non-metric multi­
dimensional scaling (MDS) ordination in two dimensions; both 
computed for the four replicates from each o f the six sites (A-E, 
G), using the similarity matrix partially shown in Table 1.4.

to the value for the real labelling, then there can clearly 
be little evidence that the sites are biologically disting­
uishable. This idea is formalised and extended to more 
complex sample designs in Chapter 6; for reasons 
which are described there it is preferable to compute 
a “between versus within site” summary statistic 
directly from the (rank) similarity matrix rather than 
the distances on the MDS plot. This, and the analogy 
with ANOVA, suggests the term ANOSIM for the 
test (Analysis of Similarities, Clarke and Green, 1988;

3 - 67
2 72 66

71 681 " 69
0 - 63

-1 - 73
-2 -

65
-3 - 64
-4 - 70

-5 -

-6 -4 -2 0 2 4 6 
PC1

Fig. 1.8. Loch Linnhe macrofauna {L}. Two-dimensional princ­
ipal components analysis (PCA) ordination o f the aW-transform­
ed abundances from the 11 years 1963—1973, omitting the less- 
common species.

Clarke, 1993).^ It is possible to employ the same test 
in connection with PCA, using an underlying dissimil­
arity matrix of Euclidean distances, though when the 
ordination is of a relatively small number of environ­
mental variables, which can be transformed into approx­
imate multivariate normality, then abiotic differences 
between sites can be tested by a standard multivariate 
equivalent o f ANOVA (MANOVA, e.g. Mardia et al, 
1979).

Part of the process o f discriminating sites, times, treat­
ments etc., where successful, is the ability to identify 
the species that are principally responsible for these 
distinctions: it is all too easy to lose sight of the basic 
data matrix in a welter of sophisticated multivariate 
analyses! Similarly, as a result o f a cluster analysis, 
one might determine certain sites/times that group 
together, and again wish to identify which species are 
mainly responsible for the observed clustering. Note 
the distinction here between a priori groups, identified 
before examination of the data, and a posteriori groups, 
identified as a result o f the data analysis (the ANOSIM 
tests are only applicable to a priori hypotheses). These 
ideas are pursued in Chapter 7, primarily through a 
partition of the average Bray-Curtis dissimilarity 
between groups o f samples, into components from 
different species (“similarity percentage breakdown”, 
SIMPER, Clarke, 1993).

In the determination o f  stress levels, whilst the multi­
variate techniques are sensitive (Chapter 14) and well- 
suited to establishing community differences associated 
with different sites/times/treatments etc., their species- 
specific basis would appear to make them unsuitable

 ̂PRIMER performs tests for one- and two-way crossed and nested 
designs in the routine ANOSIM, with a special type o f two-way 
crossed design tested in A NOS I M2.
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Biota + C C,N,Cd

Fig. 1.9. Garroch Head macrofauna {G}. a) MDS ordination o f Bray-Curtis similarities from ^-transformed species biomass data for  
the sites shown in Fig. 1.5; b) the same MDS bat with superimposed circles o f increasing size, representing increasing carbon concentrat­
ions in matched sediment samples; c) ordination o f (log-transformed) carbon, nitrogen and cadmium concentrations in the sediments at 
the 12 sites.

for drawing general inferences about the pollution 
status of an isolated group of samples. Even in comp­
arative studies, on the face of it there is not a clear 
sense of directionality of change (e.g. deleterious­
ness), when it is established that communities at putat- 
ively impacted sites differ from those at control sites. 
Nonetheless, there are a number o f ways in which 
such directionality has been ascribed in published 
studies, whilst retaining an essentially multivariate 
form of analysis (Chapter 15):

a) a meta-analysis -  a combined ordination of data 
from NE Atlantic shelf waters, at a coarse level of 
taxonomic discrimination1 -  suggests a common 
directional change in the balance of taxa under a 
variety of types of pollution/disturbance (Warwick 
and Clarke, 1993a);

b) a number o f studies demonstrate increased multi­
variate dispersion among replicates under impacted 
conditions, in comparison to controls (Warwick 
and Clarke, 1993b);

c) another feature of disturbance, demonstrated in a 
spatial coral community study (but with wider 
applicability to other spatial and temporal patterns), 
is a loss of smooth sériation along transects of 
increasing depth, again in comparison to controls 
in time and space (Clarke et al, 1993).

Two methods of linking multivariate biotic patterns 
to environmental variables are explored in Chapter 
11; these are illustrated here by the Garroch Head 
dump-ground study described earlier (Fig. 1.5). The 
MDS o f the macrofaunal communities from the 12

The effect o f canying out the various graphical and multivariate 
analyses at taxonomic levels higher than species is the subject o f  
Chapter 10.

sites is shown in Fig. 1,9a; this is based on Bray-Curtis 
similarities computed from (transformed) species 
biomass values.+ A steady change in the community 
is apparent as the dump centre (site 6) is approached 
along the western arm o f the transect (sites 1 to 6), 
with a mirrored structure along the eastern arm (sites 
6 to 12), so that the samples from the two ends of the 
transect have similar species composition. That this 
biotic pattern correlates with the organic loading of 
the sediments can best be seen by superimposing the 
values for a single environmental variable, such as 
Carbon concentration, on the MDS configuration. Fig. 
1,9b represents C values by circles of differing diameter, 
placed at the corresponding site locations on the MDS, 
and the pattern across sites of the 11 available environ­
mental variables (sediment concentrations of C, N, Cu, 
Cd, Zn, Ni, etc.) can be viewed in this way (Chapter 
11).§

A different approach is required in order to answer 
questions about combinations o f environmental var­
iables, for example to what extent the biotic pattern 
can be “explained” by knowledge of the full set, or a 
subset, of the abiotic variables. Though there is clearly 
one strong underlying gradient in Fig. 1,9a (horizontal 
axis), corresponding to an increasing level of organic 
enrichment, there are nonetheless secondary community 
differences (e.g. on the vertical axis) which may be 
amenable to explanation by metal concentration diff­
erences, for example. The heuristic approach adopted

* Chapter 13, and the meta-analysis
the relative merits and drawbacks o f using species abundance or 
species biomass when both are available; in fact, Chapter 13 is a 
wider discussion o f the relative advantages o f sampling particular 
components o f the marine biota, fo r a study on the effects o f  
pollutants.

 ̂ The PRIMER MDS routine allows simple and flexible superimp­
osition o f individual variables in this way, whether environmental 
(as here) or species values.
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Table 1.7. Nutrient enrichment experiment, Solbergstrand mesocosm, Norway {N}. Meiofaunal abundances (shown for copepods only) 
from four replicate boxes for each o f three treatments (Control, Low and High levels o f added nutrients).

Species

Control Low dose High dose

Cl C2 C3 C4 LÍ L2 L3 L4 HI H2 H3 H4

Halectinosoma gothiceps 0 0 1 1 16 23 8 16 0 1 0 0
Danielssania fusiformis 1 1 1 1 1 3 8 5 1 0 0 3
Tisbe sp.1 (gracilis group) 0 0 0 0 0 0 0 0 2 27 119 31
Tisbe sp. 2 0 0 0 0 45 22 39 25 6 0 3 32
Tisbe sp. 3 0 0 0 0 86 83 88 0 5 29 0 20
Tisbe sp. 4 0 0 0 0 151 249 264 87 8 0 0 34
Tisbe sp. 5 0 0 0 0 129 0 0 115 4 0 1 40
Typhlamphiascus typhlops 4 2 2 4 5 8 4 3 0 0 0 0
Bulpamphiascus imus 1 0 0 2 0 0 0 0 0 0 0 0
Stenhelia reflexa 3 1 0 1 2 0 0 0 0 0 0 0
Amphiascus tenuiremis 1 0 0 0 0 0 2 6 0 0 0 0
Ameira parvula 0 0 0 0 4 2 3 2 2 0 1 2
Proameira simplex 0 0 0 0 0 2 0 5 0 0 0 0
Leptopsyllus paratypicus 0 0 1 0 0 0 0 0 0 0 0 0
Enhydrosoma longifurcatum 2 2 1 2 3 1 0 0 0 0 0 0
Laophontidae indet. 0 0 0 0 0 0 1 0 0 0 0 0
Ancorabolis mirabilis 3 0 4 4 2 18 3 3 27 3 1 0
Unidentified Copepodites 0 0 1 0 1 1 1 3 0 1 0 0

here is to display the multivariate pattern of the environ­
mental data, ask to what extent it matches the between- 
site relationships observed in the biota, and then max­
imise some m atching coefficient between the two, by 
examining possible subsets o f the abiotic variables 
(the BIO-ENV or BVSTEP procedures, Chapters 11 
and 16 respectively)11.

Fig. 1.9c is based on this optimal subset for the Garroch 
Head sediment variables, namely (C, N, Cd). It is an 
MDS plot, using Euclidean distance for its dissimilar­
ities/ and is seen to replicate the pattern in Fig. 1.9a 
rather closely. In fact, the optimal match is determined

 ̂ The BIOENV routine in PRIMER optimises the match over all 
combinations o f abiotic variables. Where this is not computation­
ally feasible, the BVSTEP routine performs a stepwise search, 
adding (or subtracting) single abiotic variables at each step, much 
as in stepwise multiple regression. This also allows generalisation 
to pattern-matching scenarios other than abiotic-to-biotic. For 
example, BVSTEP allows selection o f a subset o f species whose 
multivariate structure matches, to a high degree, the pattern for  
the fu ll set o f species (Chapter 16); this provides a more general 
alternative to the SIMPER procedure (o f Chapter 7), for identifying 
influential species.

It is, though, virtually indistinguishable in this case from a PCA, 
because o f the small number o f  variables and the implicit use o f 
the same dissimilarity matrix fo r both techniques.

by correlating the underlying dissimilarity matrices 
rather than the ordinations themselves, in parallel with 
the reasoning behind the ANOSIM tests, discussed 
earlier.

The suggestion is therefore that the biotic pattern o f 
the Garroch Head sites is associated not just with an 
organic enrichment gradient but also with a particular 
heavy metal. It is important, however, to realise the 
limitations of such an “explanation”. Firstly, there are 
usually other combinations o f abiotic variables which 
will correlate nearly as well with the biotic pattern, 
particularly as here when the environmental variables 
are strongly inter-correlated amongst themselves. 
Secondly, there can be no direct implication o f 
o f the link between these abiotic variables and the 
community structure, based solely on field survey 
data: the real driving factors could be unmeasured but 
happen to correlate highly with the variables identified 
as producing the optimal match. This is a general 
feature o f inference from purely observational studies 
and can only be avoided formally by “randomising 
out” effects o f unmeasured variables; this requires 
random allocation of treatments to observational units 
for field or laboratory-based community 
(Chapter 12).
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Fig. 1.10. Nutrient enrichment experiment {N}. Separate MDS 
ordinations o f VV-transformed abundances fo r copepod and 
nematode species, in four replicate boxes from each o f three 
treatments (C, L, H).

EXAMPLE: Nutrient enrichment 
experiment, Solbergstrand

An example is given in Table 1.7 of meiofaunal comm­
unity data from a nutrient enrichment experiment in 
the Solbergstrand mesocosm, Norway {N}, in which 
12 undisturbed box cores of sediment were transferred 
into the mesocosm basins and separately “dosed” with 
two levels of increased nutrients (low, L, and high, H),

with some boxes remaining undosed (control, C). Fig. 
1.10 shows the MDS plots of the four replicate boxes 
from each treatment, separately for the copepod and 
nematode components of the meiofaunal communities 
(see also Chapter 12). For the copepods, there is a 
clear imputation o f a (causal) response to the treat­
ment, though this is less apparent for the nematodes, 
and requires a test o f the null hypothesis of “no treat­
ment effect”, using the ANOSIM test of Chapter 6.

SUMMARY

A framework has been outlined of three categories of 
technique (univariate, graphical/distributional and 
multivariate) and four analysis stages {representing 
communities, discriminating sites/conditions, deter­
m ining levels o f  stress and linking to environmental 
variables). The most powerful tools are in the multi­
variate category, and those that underlie the PRIMER 
routines in particular are now examined from first 
principles.



Chapter 1
page 1-14



Chapter 2
page 2-1

CHAPTER 2: MEASURES OF SIMILARITY OF SPECIES ABUNDANCE 
/BIOMASS BETWEEN SAMPLES

SIMILARITY FOR QUANTITATIVE 
DATA MATRICES

Data matrix

The available biological data is assumed to consist of 
an array o fp  rows (species) and n columns (samples), 
whose entries are counts of each species for each 
sample, or the total biomass of all individuals or their 
percentage cover, or some other “quantity” of each 
species in each sample. This includes the special case 
where only presence (1) or absence (0) of each species 
is known. For the moment nothing further is assumed 
about the structure of the samples. They might consist 
of one or more replicates (repeated samples) from a 
number o f different sites, times or experimental 
"treatments” but this information is not used in the 
initial analysis. The strategy outlined in Chapter 1 is 
to observe any pattern of similarities and differences 
across the samples (i.e. let the biology "tell its own 
story”) and, only later, compare this with known or 
hypothesised inter-relations between the samples based 
on environmental or experimental factors.

Similarity coefficient

The starting point for many of the analyses that follow 
is the concept of similarity (S) between any pair of 
samples, in terms of the biological communities they 
contain. Inevitably, because the information for each 
sample is multivariate (many species), there are many 
ways of defining similarity, each giving different weight 
to different aspects of the community. For example, 
some definitions might concentrate on the similarity 
in abundance of the few commonest species whereas 
others pay more attention to concurrence of rarer 
species.

The data matrix itself may first be modified; there are 
three main possibilities.

a) The absolute numbers (/biomass/cover), i.e. the 
fully quantitative data observed for each species, 
are most commonly used. In this case, two samples 
are considered perfectly similar only if they contain 
the same species in exactly the same abundance.

b)The relative numbers (/biomass/cover) are some­
times used, i.e. the data is standardised  to give the 
percentage of total abundance (over all species)

that is accounted for by each species. Thus each 
matrix entry is divided by its column total (and 
multiplied by 100) to form the new array. Such 
standardisation will be essential if, for example, 
differing and unknown volumes of sediment or 
water are sampled, so that absolute numbers of 
individuals are not comparable between samples. 
Even if sample volumes are the same (or, if different 
and known, abundances are adjusted to a unit sample 
volume), it may still sometimes be biologically 
relevant to define two samples as being perfectly 
similar when they have the same % composition o f 
species, fluctuations in total abundance (/biomass 
/cover) being of no interest. This is not the normal 
situation, however, changes in total abundance 
usually having meaningful interpretation in quantit­
ative sampling.

c) A reduction to simple presence or absence of each 
species may be all that is justifiable. For example, 
sampling artefacts may make quantitative counts 
totally unreliable, or concepts of abundance may 
be difficult to define for some important faunal 
components.

A similarity coefficient S  is conventionally defined to 
take values in the range (0, 100%), or less commonly 
(0, 1), with the ends of the range representing the 
extreme possibilities:

S = 100% (or 1) if two samples are totally similar;

S  = 0 if two samples are totally dissimilar.

What constitutes total similarity, and particularly total 
dissimilarity, o f two samples depends on the specific 
similarity coefficient adopted but there are clearly 
some properties that it would be desirable for a coeff­
icient to possess. For example, most biologists would 
feei that S  should equal zero when two samples have 
no species in common and S  must equal 100% if two 
samples have identical entries (after modification, in 
cases b and c above).

Similarity matrix

Similarities are calculated between every pair of 
samples and it is conventional to set these n (n -1)/2 
values out in a lower triangular matrix. This is a 
square array, with row and column labels being the 
sample numbers 1 to n , but it is not necessary to fill 
in either the diagonals (similarity o f sample j  with
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itself is always 100%!) or the upper right triangle (the 
similarity o f sample j  to sample k  is the same as the 
similarity o f sample k  to sample j , o f course).

Similarity matrices are the basis (explicitly or implicitly) 
of many multivariate methods, both in the representation 
given by a clustering or ordination analysis and in some 
associated statistical tests. A similarity matrix can be 
used to:

a) discriminate sites (or times) from each other, by 
noting that similarities between replicates within a 
site are consistently higher than similarities between 
replicates at different sites (ANOSIM test, Chapter 
6);

b) cluster sites into groups that have similar comm­
unities, so that similarities within each group of 
sites are usually higher than those between groups 
(Clustering, Chapter 3);

c) allow a gradation of sites to be represented graph­
ically, in the case where site A has some similarity 
with site B, B with C, C with D but A and C are 
less similar, A and D even less so etc. (Ordination, 
Chapter 4).

Species similarity matrix

In a complementary way, the original data matrix can 
be thought o f as describing the pattern of occurrences 
of each species across the given set o f samples, and a 
matching triangular array o f similarities can be con­
structed between every pair o f  species. Two species 
are “similar” (S ' near one) if they have significant 
representation at the same set of sites, and totally 
“dissimilar” (S ' = 0) if they never co-occur. Species 
similarities are discussed later in this chapter, and the 
resulting clustering and ordination diagrams in Chapter 
7, but for the bulk of this manual “similarity” refers 
to between-sample similarity.

Bray-Curtis coefficient

O f the numerous similarity measures that have been 
suggested over the years\ one has become particularly 
common in ecology, usually referred to as the Bray- 
Curtis coefficient, since Bray and Curtis (1957) were 
primarily responsible for introducing this coefficient 
into ecological work. The similarity between the yth 
and Âth samples, Sjk, has two definitions (they are

 ̂ Legendre and Legendre (1998), in their excellent and invaluable 
reference text on all things multivariate in ecology, give definitions 
o f about 25 similarity coefficients!

entirely equivalent, as can be seen from some simple 
algebra or by calculating a few examples):

j X/=i ¡Tzj ~ yjk I ^

X m Ov

(2 .1)

lo o z r =i2m inQ w ,A )

E m  o  ’y + y  ík )

Here y,j represents the entry in the z'th row and yth 
column of the data matrix, i.e. the abundance (/biomass 
/cover) for the zth species in the yth sample (i=  1, 2, ...,y?; 
j  = 1,2,  ..., n). Similarly, y ik is the count for the zth 
species in the Ath sample. | ... | represents the absolute 
value of the difference (the sign is ignored) and min(.,.) 
the minimum of the two counts; the separate sums in 
the numerator and denominator are both over all rows 
(species) in the matrix.

EXAMPLE: Loch Linnhe macrofauna

A trivial example, used in this and the following chapter 
to illustrate simple manual computation of similarities 
and hierarchical clusters, is provided by extracting six 
species and four years from the Loch Linnhe macro­
fauna data {L} o f Pearson (1975), seen already in Fig. 
1.3 and Table 1.4. (O f course, arbitrary extraction of 
“interesting” species and years is not a legitimate 
procedure in a real application; it is done here simply 
as a means of showing the computational steps.)

Table 2.1. Loch Linnhe macrofauna {L} subset, (a) Abundance 
(unstr ans formed) fo r  some selected species and years, (b) The 
resulting Bray-Curtis similarities between every pair o f samples.

(a) Year: 64 68 71 73 (b)
(Sample: 1 2 3 4) Sample 1 2 3 4
Species 1 -

Echinoca. 9 0 0 0 2 8 -

Myrioche. 19 0 0 3 3 0 42 -
Labidopi 9 37 0 10 4 39 21 4 -
Amaeana 0 12 144 9
Capitella 0 128 344 2
Mytilus 0 0 0 0

Table 2.1a shows the data matrix of counts and Table 
2.1b the resulting lower triangular matrix of Bray-Curtis 
similarity coefficients. For example, using the first 
form of equation (2.1), the similarity between samples 
1 and 4 (years 1964 and 1973) is:

Sjk =100
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>14 100( 1 -
9 + 1 6 + 1 + 9 + 2 + 0  

9 + 22 + 19 + 9 + 2 + 0
39.3

The second form of equation (2.1) can be seen to give 
the same result:

o(3Í±1±í ±5±5±51L39.3
14 [9 + 22 + 19 + 9 + 2+  Oj

Computation is therefore simple and it is easy to verify 
that the coefficient possesses the following desirable 
properties.

a) S = 0 if the two samples have no species in common, 
since min (y,y,y¡k) = 0 for all i (e.g. samples 1 and 3 
of Table 2.1a). Of course, S = 100 if two samples 
are identical, since \y¡j-y¡k\ = 0 for all i.

b) A scale change in the measurements does not change 
S. For example, biomass could be expressed in g 
rather than mg or abundance changed from numbers 
per cm2 of sediment surface to numbers per m2; all 
y  values are simply multiplied by the same constant 
and this cancels in the numerator and denominator 
terms of equation (2 .1).

c) “Joint absences” also have no effect on S. In Table 
2 .1a the last species is absent in all samples; omitting 
this species clearly makes no difference to the two 
summations in equation (2.1). That similarity should 
depend on species which are present in one or other 
(or both) samples, and not on species which are 
absent from both, is usually a desirable property. 
As Field et al (1982) put it: "taking account of joint 
absences has the effect o f saying that estuarine and 
abyssal samples are similar because both lack outer- 
shelf species”. Note that a lack o f dependence on 
joint absences is a property not shared by all simil­
arity coefficients.

Transformation of raw data

In one or two ways, the similarities o f Table 2.1b are 
not a good reflection of the overall match between the 
samples, taking all species into account. To start with, 
the similarities all appear too low; samples 2 and 3 
would seem to deserve a similarity rating higher than 
50%. As will be seen later, this is not an important 
consideration since the most useful multivariate methods 
depend on the relative order (ranking) of the similarities 
in the triangular matrix, rather than their absolute 
values. More importantly, the similarities of Table 
2 .1b are unduly dominated by the counts for the two 
most abundant species (4 and 5), as can be seen from 
studying the form of equation (2 .1): terms involving

species 4 and 5 will dominate the sums in both numer­
ator and denominator. Yet the larger abundances in 
the original data matrix will often be extremely variable 
in replicate samples (in statistical terms, variance is 
often found to increase with the square of the mean) 
and it is usually quite undesirable to base an assess­
ment o f similarity of two communities only on the 
counts for a handful of very abundant species.

The answer is to transform the original y  values (the 
counts, biomass, % cover or whatever) before computing 
the Bray-Curtis similarities. Two useful transformations 
are the root transform, aly, and the double root (or 4th 
root) transform, V V y .  There is more on the effects of 
transformation later in the manual; for now it is only 
necessary to note that the root transform, V y ,  has the 
effect of down-weighting the importance of the highly 
abundant species, so that similarities depend not only 
on their values but also those o f less common (“mid­
range”) species. The 4th root transform, Wy, takes 
this process further, with a more severe down-weighting 
of the abundant species, allowing not only the mid­
range but also the rarer species to exert some influence 
on the calculation of similarity. An alternative severe 
transformation, with very similar effect to the 4th root, 
is the log  transform, log(l+y).

The result o f the 4th root transform for the previous 
example is shown in Table 2.2a, and the Bray-Curtis 
similarities computed from these transformed abund­
ances, using equation (2.1), are given in Table 2.2b.1 
There is a general increase in similarity levels but, of 
more importance, the rank order of similarities is no 
longer the same as in Table 2.1b (e.g. £24 > Sm and S3 4  

> Sn  now), showing that transformations can have a 
significant effect on the final ordination or clustering.

Table 2.2. Loch Linnhe macrofauna {L} subset. (a) VV-trans­
formed abundance for the four years and six species o f Table 2.1. 
(b) Resulting Bray-Curtis similarity matrix.

(a) Year: 64 68 71 73 (b)
(Sample: 1 2 3 4) Sample 1 2 3 4
Species 1 -
Echinoca. 7.7 0 0 0 2 26 -

Myrioche. 2.7 0 0 1.3 3 0 68 -
Labidopl 7.7 2.5 0 1.8 4 52 68 42 -
Amaeana 0 1.9 3.5 1.7
Capitella 0 3.4 4.3 1.2
Mytilus 0 0 0 0

Bray-Curtis is the main coefficient calculated by the PRIMER 
Similarity routine, which also allows a range o f transformations 
o f the data.
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In fact, for very variable data, choice of transformation 
can sometimes be more critical than choice of similarity 
coefficient or ordination technique, and the subject 
therefore merits a chapter to itself (Chapter 9).

Canberra coefficient

An alternative to transformation is to select a similarity 
coefficient that automatically balances the weighting 
given to each species when computed on original counts 
(/biomass/cover). One such possibility given by Lance 
and Williams (1967), and referred to as the Canberra 
coefficient, defines similarity between sample j  and 
sample k  as:

rjk =

SJk = 100-
p

-Z \y>j -y¡k \

(y>j + y  ik)
(2.2)

Clearly, this has a strong likeness to the Bray-Curtis 
coefficient, but the absolute differences in counts for 
each species are separately scaled, i.e. the denominator 
scaling term is inside not outside the summation over 
species. For example, from Table 2.1a, the Canberra 
similarity between samples 1 and 4 is:

5 , 4 = 1 0 0  1 - I
9 16 1 9 2
— + —  + —  + —+ — 
9 22 19 9 2

M
• = 24.4

Note that joint absences have no effect here because 
they are deliberately excluded (since 0/0 is undefined) 
and p  is reset to be the number of species that are present 
in at least one of the two samples under consideration.

The separate scaling constrains each species to make 
equal contribution (potentially) to the similarity between 
two samples. However abundant a species is, its 
contribution to S  can never be more than 100//?, and a 
rare species with a single individual in each o f the two 
samples contributes the same as a common species 
with 1000 individuals in each. Whilst there may be 
circumstances in which this is desirable, more often it 
leads to overdomination of the pattern by a large number 
o f rare species, of no real significance. (Often the 
sampling strategy is incapable of adequately quantifying 
the rarer species, so that they are distributed arbitrarily, 
to some degree, across the samples.)

Correlation coefficient

A common statistical means of assessing the relation­
ship between two columns o f data (samples j  and k  
here) is the standard product m om ent, or Pearson , 
correlation coefficient:

Z,Oy -y-jXyik -y-0
> /Z » ( y ‘j  ~ÿ - j )2 Z i ( y ik -  ÿ-k

(2.3)

where is defined as the mean value over all species

for the yth sample. In this form it is not a similarity 
coefficient, since it takes values in the range (-1, 1), 
not (0, 100), with positive correlation (r near +1) if high 
counts in one sample match high counts in the other, 
and negative correlation (r < 0) if high counts match 
absences. There are a number of ways of converting 
r to a similarity coefficient, the most obvious for 
community data being S = 50(1+r).

Whilst correlation is sometimes used as a similarity 
coefficient explicitly in this form, and more often 
implicitly as the similarity measure underlying certain 
ordination techniques (e.g. Principal Components 
Analysis, Chapter 4), it is not particularly suitable for 
much biological community data, with its plethora of 
zero values. For example, it violates the criterion that 
S  should not depend on joint absences; here two 
columns are more highly positively correlated (and 
give S  nearer 100) if species are added which have 
zero counts for both samples. If correlation is to be 
used a measure o f similarity, it makes good sense to 
transform the data initially, exactly as for the Bray- 
Curtis computation, so that large counts or biomass 
do not totally dominate the coefficient.

General suitability of Bray-Curtis

Why does the Bray-Curtis coefficient have such a 
dominant role in ecological studies? The answer is 
simple; it is one o f the very few measures that satisfy 
all o f the following, practically desirable criteria:

a) it takes the value 100 when two samples are identical 
(as do most coefficients);

b) it takes the value 0 when two samples have no species 
in common (this is a much tougher condition and 
most coefficients fail it);

c) a change of measurement unit does not affect its value 
(most coefficients pass this one);

d) its value is unchanged by inclusion or exclusion of 
a species which is jointly absent from the two samples 
(another difficult condition to satisfy, and many 
coefficients fail);

e) inclusion (or exclusion) of a third sample, C, in the 
data array makes no difference to the similarity 
between samples A and B (surprisingly, many coeff­
icients fail this, because they depend on some form
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of standardisation carried out for each species, either 
by the species total or maximum value across all 
samples);

f) it has the flexibility to register differences in total 
abundance for two samples as a less-than-perfect 
similarity when the relative abundances for all species 
are identical (some coefficients standardise auto­
matically by sample totals, so cannot reflect this 
component o f similarity/difference).

In addition, Faith et al (1987) use a simulation study 
to look at the robustness of various similarity coeff­
icients in reconstructing a (non-linear) ecological 
response gradient. They find that Bray-Curtis and a 
very closely-related modification, the Kulczynski 
coefficient (Kulczynski 1928)

Y p .m in t y , , , y ik)
S ,¿ = 1 0 0 ---------^ ' =1 -  ? -  - ------  (2.4)

perform most satisfactorily.

Coefficients other than Bray-Curtis, which satisfy all 
of the above conditions, either have counterbalancing 
drawbacks, or are so closely related to Bray-Curtis as 
to be virtually indistinguishable in most practical 
applications. An example of the former is the Canberra 
coefficient, with its forced equal weighting of rare 
and common species. The latter is exemplified by 
Kulczynski, which clearly reverts exactly to Bray- 
Curtis for standardised samples (when the column 
totals are all 100). Comparing equations (2.1) and 
(2.4), it is seen only to differ from Bray-Curtis, for 
non-standardised data, in respect of the form of average 
used in the denominator term, employing a harmonic 
rather than arithmetic mean of the column totals. This 
can only have a substantial influence on the outcome 
in cases where total abundance (/biomass/cover) is 
very variable and close to zero for one or more samples, 
which will also usually be restricted to analyses on 
untransformed data.

PRESENCE/ABSENCE DATA

As discussed at the beginning o f this chapter, quantit­
ative uncertainty may make it desirable to reduce the 
data simply to presence or absence of each species in 
each sample, or this may be the only feasible or cost- 
effective option for data collection in the first place. 
Alternatively, reduction to presence/absence may be 
thought of as the ultimate in severe transformation o f 
counts; the data matrix (e.g. in Table 2.1a) is replaced

by 1 (presence) or 0 (absence) and Bray-Curtis similarity 
(say) computed. This will have the effect o f giving 
potentially equal weight to all species, whether rare 
or abundant (and will thus have somewhat similar effect 
to the Canberra coefficient).

Many similarity coefficients have been proposed based 
on (0, 1) data arrays; see for example, Sneath and 
Sokal (1973) or Legendre and Legendre (1998). When 
computing similarity between samples j  and k , the 
two columns of data can be reduced to the following 
four summary statistics without any loss of relevant 
information:

a = the number of species which are present in both 
samples;

b = the number of species present in sample j  but absent 
from sample k\

c = the number of species present in sample k  but absent 
from sampley;

d=  the number of species absent from both samples. 

For example, when comparing samples 1 and 4 from
Table 2.1a, these frequencies are:

Sample 4: 1 0
Sample 1: 1 a - 2 b= 1

0 c - 2 d= 1

In fact, because of the symmetry, coefficients must be 
a symmetric function of b and c, otherwise Su  will not 
be equal to S^. Similarly, similarity measures that 
are not affected by joint absences will not contain d. 
The following are some o f the more commonly advoc­
ated coefficients.

The simple matching similarity between samples j  
and k  is defined as:

SJk = 100[(fl + d)/(a + b + c + d)] (2.5)

so called because it represents the probability ( x i00) 
of a single species picked at random (from the full 
species list) being present in both samples or absent 
in both samples. Note that S  is a function of d  here, 
and thus depends on joint absences.

If the ’’simple matching” coefficient is adjusted, by 
first removing all species which are jointly absent from 
samples j  and k, one obtains the Jaccard  coefficient:

Sjk = 100 [a/(a + b + c)] (2.6)
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i.e. S  is the probability ( x i00) that a single species 
picked at random (from the reduced species list) will 
be present in both samples.

A popular coefficient found under several names, 
commonly Sorenson  or Dice, is

S ¡¡c = 100[2a/(2a + b + c)] (2.7)

Note that this is identical to the Bray-Curtis coeff­
icient when the latter is calculated on (0, 1) presence 
/absence data, as can be seen most clearly from the 
second form of equation (2.1).11 For example, reducing 
Table 2.1a to (0, 1) data, and comparing samples 1 and 
4 as previously, equation (2.1) gives:

o o { ® ± ! ± i ± ^ ± i ! U 5 7 . i  
14 1 1 + 2 + 2 + 1+1 + 0

This is clearly the same construction as substituting 
a = 2 , b =  1, c = 2 into equation (2.7).

Several other coefficients have been proposed; Legendre 
and Legendre (1998) list at least 15, but only one further 
measure is given here. In the light o f the earlier discuss­
ion on coefficients satisfying desirable, biologically- 
motivated criteria, note that there is a presence/absence 
form of the Kulczynskicoefficient (2.4), a close relative 
o f Bray-Curtis, namely:

Sjk = 50
a a

V a + b  a + c
(2.8)

RECOMMENDATIONS

1 ) In most ecological studies, some intuitive axioms 
for desirable practical behaviour of a similarity 
coefficient lead inexorably to the use of the Bray- 
Curtis measure (or a closely-related coefficient 
such as that o f Kulczynski).

2) Similarities calculated on original abundance (or 
biomass) values can often be over-dominated by a 
small number of highly abundant (or large-bodied) 
species, so that they fail to reflect similarity of overall 
community composition.

3) Some coefficients (such as the Canberra), which 
separately scale the contribution o f each species to 
adjust for this, have a tendency to over-compensate, 
i.e. rare species, which may be arbitrarily distributed 
across the samples, are given equal weight to common 
ones. The same criticism applies to reduction of the 
original matrix to simple presence/absence of each 
species. In addition, the latter loses potentially 
valuable information about the approximate pre­
valence of a species (absent, rare, present in modest 
numbers, common, very abundant etc).

4) A balanced compromise is often to apply the Bray- 
Curtis similarity to counts (/biomass/cover values) 
which have been moderately, V y ,  or fairly severely 
transformed, log(l+y) or VVy. All species then 
contribute something to the definition of similarity, 
whilst the retention o f some information on the 
prevalence of a species ensures that the commoner 
species are generally given greater weight than the 
rare ones.

5) Initial standardisation is occasionally desirable, 
dividing each count by the total abundance of all 
species in that sample; this is essential when non­
comparable, unknown sample volumes have been 
taken. Without this column standardisation, the 
Bray-Curtis coefficient will reflect differences 
between two samples due both to differing commun­
ity composition and differing total abundance. The 
standardisation removes any effect o f the latter; 
whether this is desirable is a biological rather than 
statistical question. (Experience with benthic 
communities suggests that standardisation should 
usually be avoided, valuable biological information 
being contained in the abundance, biomass or cover 
totals). Note, however, that column standardisation 
does not remove the need subsequently to transform 
the data matrix, if the similarities are to take account 
of more than just the few commonest species/

SPECIES SIMILARITIES

Starting with the original data matrix o f abundances 
(or biomass, % cover etc), the similarity between any 
pair of species can be defined in an analogous way to 
that for samples, but this time involving comparison 
o f the zth and /th row (species) across all j  — I, ..., n 
columns (samples).

 ̂ Thus the Sorensen coefficient can be obtained in the PRIMER f In the PRIMER Similarity routine, standardisation is not the default
Similarity routine by “transforming” the data to presence /absence option for sample similarities but, i f  selected, it is therefore carried
and selecting Bray-Curtis similarity. out before any transformation.
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Bray-Curtis coefficient

The Bray-Curtis similarity between species and is:

Z n I
j=i\yy

S¡¡ = 100 I - -

Z l i O 'ÿ  + Tÿ)
(2.9)

The extreme values are (0, 100) as previously:

S' = 0 if two species have no samples in common (i.e. 
are never found at the same sites)

S ' = 100 if the y  values for two species are the same at 
all sites

However, different initial treatment of the data is
required, in two respects.

1) Similarities between rare species have little meaning; 
very often such species have single occurrences, 
distributed more or less arbitrarily across the sites, 
so that S' is usually zero (or occasionally 100). If 
these values are left in the similarity matrix they 
will tend to confuse and disrupt the patterns in any 
subsequent clustering or ordination analysis; the 
rarer species should thus be omitted from the data 
matrix before computing species similarities.

2) A different form of standardisation of the data matrix 
is appropriate and (in contrast to the samples analysis) 
it usually makes sense to carry this out routinely in 
place o f a transformation. Two species could have 
quite different mean levels of abundance yet be 
“perfectly similar” in the sense that their counts are 
in strict ratio to each other across the samples. One 
species might be of much larger body size, and thus 
tend to have smaller counts, for example; or there 
might be a direct host-parasite relationship between 
the two species. It is therefore appropriate to stand­
ardise the original data by dividing each entry by 
its row (species) total, and multiplying by 100:

ya y  ík (2.10)

before computing the similarities (S'). The effect 
o f this can be seen from the artificial example in the 
following table, for three species and five samples. 
For the original matrix, the Bray-Curtis similarity 
between species 1 and 2, for example, is only S' = 
33% but the two species are found in strict proportion 
to each other across the samples so that, after row 
standardisation, they have a more realistic similarity 
of S' = 100%. Note that it is not clear that a trans­
formation now serves any useful purpose. Its role

Counts Similarities
Sample 1 2 3 4 5 Species 1 2 3
Species 1 -

1 2 0 0 4 4 2 33 -
2 10 0 0 20 20 3 20 7 -
3 0 4 4 1 1

i Standardise

Sample 1 2 3 4 5 Species 1 2 3
Species 1 -

1 20 0 0 40 40 2 100 -
2 20 0 0 40 40 3 20 20 -
3 0 40 40 10 10

in the samples analysis was to reduce (though not 
totally remove) the large disparities in counts between 
species; the standardisation by row total has here 
removed such differences.

Correlation coefficient

The standard product moment correlation coefficient 
defined in equation (2.3), and subsequently modified 
to a similarity, is perhaps more appropriate for defining 
species similarities than it was for samples, in that it 
automatically incorporates a type of row standardisation. 
In fact, this is a full normalisation (subtracting the 
row mean from each count and dividing by the row 
standard deviation) and it is less appropriate than the 
simple row standardisation above. In addition, the 
previous argument about the effect of joint absences 
is equally appropriate to species similarities: an inter­
tidal species is no more similar to a deep-sea species 
because neither is found in shelf samples. A correlation 
will again be a function o f joint absences; the Bray- 
Curtis coefficient will not.

RECOMMENDATION

For species similarities, a coefficient such as Bray- 
Curtis calculated on row-standardised and untrans­
formed data seems most appropriate. The rarer species 
(usually at least half of the species set) should first be 
removed from the matrix, to have any chance o f an 
interpretable clustering or ordination analysis. There 
are several ways of doing this, all o f them arbitrary to 
some degree. Field et al (1982) suggest removal of 
all species that never constitute more than p%  o f the 
total abundance (/biomass/cover) of any sample, where 
p  is chosen to retain around 50 or 60 species (typically 
p  -  3%, or so, for soft-sediment benthic data). This is 
preferable to simply retaining the 50 or 60 species 
with the highest total abundance across all samples,
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since the latter strategy may result in omitting several 
species which are key constituents of a site which is 
characterised by a low total number of individuals.^1 
It is important to note, however, that this inevitably 
arbitrary process of omitting species is not necessary 
for the more usual between-sample similarity calcul­
ations. There the computation of the Bray-Curtis 
coefficient downweights the contributions of the less 
common species in an entirely natural and continuous 
fashion (the rarer the species the less it contributes, 
on average), and all species should be retained in 
these calculations.

DISSIMILARITY COEFFICIENTS

The converse concept to similarity is that o f dissimil­
arity, the degree to which two samples are unlike each 
other. Though similarity and dissimilarity are just 
opposite sides of the same coin, the latter is a more 
natural starting point in constructing ordinations, in 
which dissimilarities (5) between pairs of samples are 
turned into distances (d) between sample locations on 
a “map”. Thus large dissimilarity implies that samples 
should be located at a large distance from each other, 
and dissimilarities near 0 imply nearby location; 5 must 
therefore always be positive, of course.

Similarities can easily be turned into dissimilarities, by:

Euclidean distance

The natural distance between any two points in space 
is referred to as Euclidean  distance (from classical or 
Euclidean geometry). In the context of a species abund­
ance matrix, the Euclidean distance between samples 
j  and k  is defined algebraically as:

Jjk = J z i .U y » ■y*) (2.13)

This can best be understood, geometrically, by taking 
the special case where there are only two species so that 
samples can be represented by points in 2-dimensional 
space, namely their position on the two axes of Species 1 
and Species 2 counts. This is illustrated below for a 
simple two samples by two species abundance matrix. 
The co-ordinate points (2, 3) and (5, 1) on the (Sp. 1, 
Sp. 2) axes are the two samples j  and k. The direct 
distance djk between them of V[(2-5)2 + (3—1 )2] (from 
Pythagoras) clearly corresponds to equation (2.13).

Sample: j k
Sp 2 

3
Sp 1 
Sp 2

2
3

Euclidean
Manhatten

J

T~ Sp 1T TT T

S  = 1 0 0 - 5  (2.11)

For example, for the Bray-Curtis coefficient this gives:

* ,* = 1 0 0
Zf=il>v -y*\ 
5 X , 0 '¡j

(2 .12)

which has limits £ = 0  (no dissimilarity) and S=  100 
(total dissimilarity).

However, rather than conversion from similarities, 
other important dissimilarity measures arise in the 
first place as distances. Their role as implicit dis­
similarity matrices underlying particular ordination 
techniques will be seen more clearly later (e.g. in 
Principal Components Analysis, Chapter 4).

The PRIMER Similarity routine will compute Bray-Curtis species 
similarities, with or without row standardisation and transformation 
(though the default is as recommended here). Prior to this, the 
Select Variables option allows reduction o f the number o f species, 
by retaining those that contribute pYo or more to at least one o f  
the samples, or by specifying the number n o f “most important” 
species to retain. The latter uses the same p% criterion but gradually 
increases p  until only n species are left.

It is easy to envisage the extension of this to a matrix 
with three species; the two points are now simply 
located on 3-dimensional species axes and their straight 
line distance apart is a natural geometric concept. 
Algebraically, it is the root of the sums of squared 
distances apart along the three axes, equation (2.13). 
Extension to four and higher numbers of species (dimen­
sions) is harder to envisage geometrically (in our 3- 
dimensionsal world) but the concept remains unchanged 
and the algebra is no more difficult to understand in 
higher dimensions than three: additional squared dist­
ances apart on each new species axis are added to the 
summation under the square root in (2.13). In fact, 
this concept o f representing a species-by-samples 
matrix as points in high-dimensional is
a very fundamental and important one and will be met 
again in Chapter 4, where it is crucial to an under­
standing of Principal Components Analysis.

Manhattan distance

Euclidean distance is not the only way of defining dist­
ance apart o f two samples in species space; an altern­
ative is to sum the distances along each species axis:
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This is often referred to as M anhattan (or city-block) 
distance because in two dimensions it corresponds to 
the distance you would have to travel to get between 
any two locations in a city whose streets are laid out 
in a rectangular grid. It is illustrated for the simple 
example above by the dashed lines. Manhattan distance 
is o f interest here because of its obvious close affinity 
to Bray-Curtis dissimilarity, equation (2.12). In fact, 
when a data matrix has initially been column standard­
ised (but not transformed), Bray-Curtis dissimilarity 
is just (half) the Manhattan distance, since the sum­
mation in the bottom line of (2.12) then always takes 
the value 200.

[It is worth noting a point of terminology in passing, 
though not one of any great practical consequence. 
Euclidean and Manhattan measures, (2.13) and (2.14), 
are called distances or metrics because they obey the 
triangle inequality, i.e. for any three samples j , k, r :

djk + dkr > djr (2.15)

Bray-Curtis dissimilarity does not, in general, satisfy 
the triangle inequality, so should not be called a metric. 
However, many other useful dissimilarity coefficients 
are also not metrics. For example, the square of Euclid­
ean distance (i.e. equation (2.13) without the V sign) 
is another natural definition of “distance” which is not

a metric, yet dissimilarities from this would have the 
same rank order as those from Euclidean distance and 
therefore give rise, for example, to identical MDS 
ordinations (see Chapter 5). It follows that whether a 
dissimilarity coefficient is, or is not, a metric is likely 
to be of limited practical significance for the strategy 
this manual advocates.]

RECOMMENDATION

There are thus a variety of means of generating a 
similarity or dissimilarity (/distance) matrix to input 
to the next stage o f a multivariate analysis, which 
might be either a clustering or ordination of samples, 
Fig. 2.1. For comparative purposes it may sometimes 
be of interest to use Euclidean distance in the species 
space as input to a cluster analysis11 (an example is 
given later in Fig. 5.5) but, in general, the recommend­
ation remains unchanged: Bray-Curtis similarity/dis­
similarity, computed after suitable transformation, 
will often be a satisfactory coefficient for biological 
data on community structure. Background physical 
or chemical data is a different matter since it is usually 
of a rather different type, and Chapter 11 shows the 
usefulness of the concept o f Euclidean distance in the 
(normalised) environmental variable space. Initially 
though, concentration is on analysing the biological 
data in isolation, and the next stage will often be to 
perform a cluster analysis (Fig 2.1).

Sam ples
1 2  3 4

</>Q)
(3
0aco

Transformed 
(to balance rarer 
and com m on spp)

Sam ple 
sim ilarities 
(non-correlation 
based, e.g . 
Bray-Curtis)

2 4 1 3

Clustering 
of sam ples

Ordination 
of sam ples  
(usually  
rank-based)

Fig. 2.1. Stages in a multivariate 
analysis based on similarity 
coefficients.

^ The PRIMER Similarity routine can generate Euclidean distances (normalised or not, see page 4-6), on either biotic or environmental 
input matrices.
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CHAPTER 3: HIERARCHICAL CLUSTERING

CLUSTER ANALYSIS

The previous chapter has shown how to replace the 
original data matrix with pairwise similarities, chosen 
to reflect the particular aspect of similarity in community 
structure (similarity in counts o f abundant species, 
similarity in general disposition of rare species etc) 
which the biologist requires to emphasise for the study 
in question. Typically, the number of pairwise simil­
arities is large, n(n-l ) / 2  for n samples, and it can often 
be no easier to detect a pattern in the resulting lower 
triangular similarity matrix than it is in the original 
data. Table 3.1 illustrates this for just a portion (roughly 
a quarter) of the similarity matrix for the Frierfjord 
macrofauna data {F}. Close examination shows that 
the four replicates within site A generally have higher 
within-site similarities than do pairs of replicates within 
sites B and C, or replicates between sites, but the pattern 
is far from clear. What is needed is a graphical display 
linking samples that have mutually high levels of 
similarity.

Table 3.1. Frierfjord macrofauna counts {F}. Bray-Curtis sim­
ilarities, after VV-transformation o f counts, fo r every pair o f 
replicate samples from sites A, B, C only (four replicate samples 
per sitej.

Cluster analysis (or classification) aims to find “nat­
ural groupings” of samples such that samples within a 
group are more similar to each other, generally, than 
samples in different groups. Cluster analysis is used 
in the present context in the following ways.

a) Different sites (or different times at the same site) 
can be seen to have differing community composi­
tions by noting that replicate samples within a site 
form a cluster that is distinct from replicates within 
other sites. This can be an important hurdle to over­
come in any analysis; if replicates for a site are

clustered more or less randomly with replicates from 
every other site then further interpretation is likely 
to be dangerous. (A more formal statistical test for 
distinguishing sites is the subject of Chapter 6).

b) When it is established that sites can be distinguished 
from one another (or, when replicates are not taken, 
it is assumed that a single sample is representative 
o f that site or time), sites or times can be partitioned 
into groups with similar community structure.

c) Cluster analysis o f the species similarity matrix can 
be used to define species assemblages, i.e. groups of 
species that tend to co-occur in a parallel manner 
across sites.

Range of methods

Literally hundreds o f clustering methods exist, some 
of them operating on similarity/dissimilarity matrices 
whilst others are based on the original data. Everitt 
(1980) and Cormack (1971) give excellent and readable 
reviews. Clifford and Stephenson (1975) is another 
well-established text on classification methods, from 
an ecological viewpoint.

Five classes of clustering methods can be distinguished, 
following the categories of Cormack (1971).

1 ) H ierarchical methods. Samples are grouped and 
the groups themselves form clusters at lower levels 
of similarity.

2) Optimising techniques. A single set o f mutually 
exclusive groups (usually a pre-specified number) 
is formed by optimising some clustering criterion, 
for example minimising a within-cluster distance 
measure in the species space.

3 ) Mode-seeking methods. These are based on consider­
ations o f density o f samples in the neighbourhood 
o f other samples, again in the species space.

A) Clumping techniques. The term “clumping” is 
reserved for methods in which samples can be placed 
in more than one cluster.

5) M iscellaneous techniques.

Cormack (1971) also warned against the indiscriminate 
use of cluster analysis: “availability o f ... classification 
techniques has led to the waste of more valuable scient­
ific time than any other ‘statistical5 innovation55. The

A2 A3 A4 B2 B3 B4
AÍ
A2
A3
A4

B2
B3
B4 59

56
C2
C3
C4
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ever larger number of techniques and their increasing 
accessibility on modem computer systems makes this 
warning no less pertinent today. The policy adopted 
here is to concentrate on a single technique that has 
been found to be of widespread utility in ecological 
studies, whilst emphasising the potential arbitrariness 
in all classification methods and stressing the need to 
perform a cluster analysis in conjunction with a range 
o f other techniques (e.g. ordination, statistical testing) 
to obtain balanced and reliable conclusions.

HIERARCHICAL AGGLOMERATIVE 
CLUSTERING

The most commonly used clustering techniques are 
the hierarchical agglomerative methods. These usually 
take a similarity matrix as their starting point and succ­
essively fu s e  the samples into groups and the groups 
into larger clusters, starting with the highest mutual 
similarities then gradually lowering the similarity level 
at which groups are formed.11 The process ends with 
a single cluster containing all samples. Hierarchical 
divisive methods perform the opposite sequence, start­
ing with a single cluster and sp li t t in g  it to form succ­
essively smaller groups.

The result of a hierarchical clustering is represented 
by a tree diagram or dendrogram , with the x  axis 
representing the full set of samples and the y  axis 
defining a similarity level at which two samples or 
groups are considered to have fused. Note that there 
is no firm convention for which way up the dendro­
gram should be portrayed (increasing or decreasing y  
axis values) or even whether the tree can be placed on 
its side; all three possibilities can be found in this 
manual!

Fig. 3.1 shows a dendrogram for the similarity matrix 
from the Frierfjord macrofaunal abundances, a subset 
of which is shown in Table 3.1. It can be seen that all 
four replicates from sites A, D, E and G fuse with 
each other to form distinct site groups b e fo re  they 
amalgamate with samples from any other site; that, 
conversely, site B and C replicates are not distin­
guished, and that A, E and G do not link to B, C and 
D until quite low levels of between-group similarities 
are reached.

 ̂ The PRIMER CLUSTER routine displays the dendrogram from  
hierarchical agglomerative clustering, allowing a choice from the 
three linkage possibilities described below and various options 
fo r  axis labelling, orientation etc.

CB
E
(A(0
L_3oI>*(0
CÛ

100
G G G G E E  E E D D D D C C B B C B B C A A A A

Fig. 3.1. Frierfjord macrofauna counts {F}. Dendrogram for  
hierarchical clustering (using group-average linking) o f four 
replicate samples from  each o f  sites A-E, G, based on the Bray- 
Curtis similarity matrix shown (in part) in Table 3.1.

The mechanism by which Fig. 3.1 is extracted from 
the similarity matrix, including the various options 
for defining what is meant by the similarity of two 
g r o u p s  o f samples, is best described for a simpler 
example.

Construction of dendrogram

Table 3.2 shows the steps in the successive fusing of 
samples, for the subset o f Loch Linnhe macrofaunal 
abundances used as an example in the previous chap­
ter. The data matrix has been W-transformed, and 
the first triangular array is the Bray-Curtis similarity 
of Table 2.2.

Samples 2 and 4 are seen to have the highest similar­
ity (underlined) so they are combined, at similarity 
level 68.1%. (Above this level there are considered to 
be four clusters, simply the four separate samples.) A 
new similarity matrix is then computed, now contain­
ing three clusters: “ 1”, “2&4” and “3”. The similarity 
between cluster “ 1” and cluster “3” is unchanged at 
0.0 of course but what is an appropriate definition of 
similarity 5(1, 2&4) between clusters “ 1” and “2&4”, 
for example? This will be some function of the simil­
arities 5(1,2), between samples 1 and 2, and 5(1,4), 
between 1 and 4; there are three main possibilities 
here.
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Table 3.2. Loch Linnhe macrofauna {L} subset. Abundance array
the successively fused similarity matrices from a hierarchical clustering,

Year: 64 68 71 73
Sample: 1 2 3 4 Sample 1 2 3 4 Sample 1 2&4 3 Sample 1 2&3&4
Species 1 - 1 - 1
Echinoca. 1.7 0 0 0 -»  2 25.6 _ -> 2&4 38.9 - -> 2&3&4 2±9
My ri oche. 2.1 0 0 1.3 3 0.0 67.9 3 0.0 55.0 -
Labidopl. 1.7 2.5 0 1.8 4 52.2 68.1 42.0 -
Amaeana 0 1.9 3.5 1.7
Capitella 0 3.4 4.3 1.2
Mytilus 0 0 0 0

a) Single linkage.5( 1, 2&4) is the of .S’(l, 2)
and 5(1, 4), i.e. 52.2%.

b) Complete linkage.5(1, 2&4) is the o f 
5(1,2) and 5(1, 4), i.e. 25.6%.

c) Group-average link.5(1, 2&4) is the o f
5(1, 2) and 5(1, 4), i.e. 38.9%.

Table 3.2 adopts group-average linking, hence

5(2&4, 3) = [5(2, 3) + 5(4, 3)]/2 = 55.0

The new matrix is again examined for the highest 
similarity, defining the next fusing; here this is bet­
ween “2&4” and “3”, at similarity level 55.0%. The 
matrix is again reformed for the two new clusters “ 1” 
and “2&3&4” and there is only a single similarity, 
5(1, 2&3&4), to define. For 
this is the mean of 5(1, 2&4) and 5(1, 3) but it must 
be a weighted mean, allowing for the fact that there 
are twice as many samples in cluster “2&4” as in 
cluster “3”. Here:

5(1, 2&3&4) = [2 X 5(1, 2&4) + 1 x 5(1, 3)]/3

= (2 X 38.9 + 1 x 0)/3 = 25.9

Though it is computationally efficient to form each 
successive similarity matrix by taking weighted aver­
ages of the similarities in the previous matrix, an 
alternative which is entirely equivalent (and perhaps 
conceptually simpler) is to define the similarity bet­
ween two groups as the simp (unweighted) average 
of all between-group similarities in the initial triang­
ular matrix. Thus:

5 (1 ,2&3&4) = [5(1, 2) + 5( 1, 3) + 5( 1, 4)]/3 

= (25.6 + 0.0 + 52.2)/3 = 25.9, 

the same answer as above.

The final merge of all samples into a single group 
therefore takes place at similarity level 25.9%, and 
the clustering process for the group-average linking 
shown in Table 3.2 can be displayed in the following 
dendrogram.

ci
E 55 -  
35

100   _____________
Sample 2 4 3 1

Dendrogram features

This example raises a number of more general points
about the use and appearance of dendrograms.

1) Samples need to be re-ordered along the x axis, for 
clear presentation of the dendrogram; it is always 
possible to arrange samples in such an order that 
none of the dendrogram branches cross each other.

2) The resulting order o f samples on the x axis is not 
unique. A simple analogy would be with a child’s 
“mobile”; the vertical lines are strings and the 
horizontal lines rigid bars. When the structure is 
suspended by the top string, the bars can rotate 
freely, generating many possible re-arrangements 
of samples on the x  axis. For example, in the above 
figure, samples 2 and 4 could switch places (new 
sequence 4, 2, 3, 1) or sample 1 move to the opposite 
side of the diagram (new sequence 1, 2, 4, 3), but a 
sequence such as 1, 2, 3, 4 is not possible. It follows 
that to use the x axis sequence as an ordering of 
samples is misleading.

3) Cluster analysis attempts to group samples into dis­
crete clusters, not display their inter-relations on a 
continuous scale; the latter is the province of 
ordination and this would be preferable for the 
simple example above. Clustering imposes a rather 
arbitrary grouping on what appears to be a contin­
uum of change from an unpolluted year (1964), 
through steadily increasing impact (loss of some 
species, increase in abundance of “opportunists” 
like Capitella), to the start o f a reversion to an
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improved condition in 1973. O f course it is unwise 
and unnecessary to attempt serious interpretation 
of such a small subset o f data but, even so, the 
equivalent MDS ordination for this subset (met in 
Chapter 5) contrasts well with the relatively un­
helpful information in the above dendrogram. (A 
PCA ordination of the full data set can be seen in 
Fig. 4.1.)

4) The hierarchical nature of this clustering procedure 
dictates that, once a sample is grouped with others, 
it will never be separated from them in a later stage 
of the process. Thus, early borderline decisions 
which may be somewhat arbitrary are perpetuated 
through the analysis and may sometimes have a 
significant effect on the shape of the final dendro­
gram. For example, similarities 5(2, 3) and 5(2, 4) 
above are very nearly equal. Flad 5(2, 3) been just 
greater than 5(2, 4), rather than the other way round, 
the final picture would have been a little different. 
In fact, the reader can verify that had 5(1, 4) been 
around 56% (say), the same marginal shift in the 
values of 5(2, 4) and 5(2, 3) would have had radical 
consequences, the final dendrogram now grouping 
2 with 3 and 1 with 4 before these two groups come 
together in a single cluster. From being the first to 
be joined, samples 2 and 4 now only link up at the 
final step. Such situations are certain to arise if, as 
here, one is trying to force what is essentially a 
steadily changing pattern into discrete clusters.

Dissimilarities

Exactly the converse operations are needed when 
clustering from a dissimilarity rather than a similarity 
matrix. The two samples or groups with the lo w e s t  
dissimilarity at each stage are fused. The single link­
age definition of dissimilarity o f two groups is the 
m in im u m  dissimilarity over all pairs of samples bet­
ween groups; complete linkage selects the m a x im u m  
dissimilarity and group-average linking involves just 
an unweighted mean dissimilarity.

Linkage options

The differing consequences of the three linkage options 
are most easily seen for the special case used in Chapter 
2, where there are only two species (rows) in the orig­
inal data matrix. Samples are then points in the sp e c ie s  
sp a c e , with the (x,y) axes representing abundances of 
(Sp.1, Sp.2) respectively. Consider also the case where 
dissimilarity between two samples is defined simply 
as their (Euclidean) distance apart in this plot.

Sp 2
Group 1 

□ Group 2
□

□ □ n -
Samples

Single link 

Complete link

Sp 1

In the above diagram, the single link dissimilarity 
between Groups 1 and 2 is then simply the minimum 
distance apart o f the two groups, giving rise to an 
alternative name for the single linkage, namely near­
est neighbour clustering. Complete linkage dissimil­
arity is clearly the maximum distance apart of any two 
samples in the different groups, namely furthest neigh­
bour clustering. Group-average dissimilarity is the 
mean distance apart of the two groups, averaging over 
all between-group pairs.

Single and complete linkage have some attractive theor­
etical properties. For example, they are effectively 
non-metric. Suppose that the Bray-Curtis (say) simil­
arities in the original triangular matrix are replaced 
by their ranks, i.e. the highest similarity is given the 
value 1, the next highest 2, down to the lowest simil­
arity with rank n ( n - l ) / 2  for n  samples. Then a single 
(or complete) link clustering of the ranked matrix will 
have the exactly the same s tr u c tu re  as that based on 
the original similarities (though the y  axis similarity 
scale in the dendrogram will be transformed in some 
non-linear way). This is a desirable feature since the 
precise similarity values will not often have any direct 
significance; what matters is their relationship to each 
other and any non-linear (monotonie) rescaling o f the 
similarities would ideally not affect the analysis. This 
is also the stance taken for the preferred ordination 
technique in this manual’s strategy, the method of 
non-metric multi-dimensional scaling (MDS, see 
Chapter 5).

However, in practice, single link clustering has a 
tendency to produce chains of linked samples, with 
each successive stage just adding another single 
sample onto a large group. Complete linkage will 
tend to have the opposite effect, with an emphasis on 
small clusters at the early stages. (These character­
istics can be reproduced by experimenting with the 
special case above, generating nearest and furthest 
neighbours in a 2-dimensional species space). 
Group-averaging, on the other hand, is often found 
empirically to strike a balance in which a moderate 
number o f medium-sized clusters are produced, and 
only grouped together at a later stage.
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F/". 3.2 Bristol Channel Zooplankton {B}. Sampling sites.

EXAMPLE: Bristol Channel Zooplankton

Collins and Williams (1982) perform hierarchical 
cluster analyses o f Zooplankton samples, collected by 
double oblique net hauls at 57 sites in the Bristol 
Channel UK, for three different seasons in 1974 
This was not a pollution study but a baseline survey 
carried out by the Plymouth laboratory, as part o f a 
major programme to understand and model the eco­
system o f the estuary. Fig. 3.2 is a map of the sample 
locations, sites 1-58 (site 30 not sampled).

Fig. 3.3 shows the results of a hierarchical clustering 
using group-average linking on data sampled during 
April 1974. The raw data were expressed as numbers 
per cubic metre for each of 24 holozooplankton species, 
and Bray-Curtis similarities calculated on VV-trans- 
formed abundances. From the resulting dendrogram, 
Collins and Williams select the four groups determined 
at a 55% similarity level and characterise these as 
estuarine (sites 1 -8, 10, 12), (9,
11, 13-27, 29), euryhaline (28, 31 ,33-35,42-
44, 47-50, 53-55) and stenohal (32, 36-41,
45, 46, 51, 52, 56-58). A corresponding clustering o f 
species and a re-ordering of the rows and columns of 
the original data matrix allows the identification of a 
number o f species groups characterising these main 
site clusters, as is seen later (Chapter 7).

The dendrogram provides a sequence o f fairly con­
vincing groups; once each of the four main groups has 
formed it remains separate from other groups over a 
relatively large drop in similarity. Even so, a cluster 
analysis gives an incomplete and disjointed picture of 
the sample pattern. Remembering the analogy of the 
“mobile”, it is not clear from the dendrogram alone 
whether there is any natural sequence o f community 
change across the four main clusters (implicit in the 
designations true estuarine, estuarine and marine, 
euryhaline marine, stenohaline marine). For example, 
the stenohaline marine group could just as correctly 
have been rotated to lie between the estuarine and 
marine and euryhaline marine groups. In fact, there is 
a strong (and more-or-less continuous) gradient of 
community change across the region, associated with 
the changing salinity levels. This is best seen in an 
ordination of the 57 samples on which are superimposed 
the salinity levels at each site; this example is there­
fore returned to in Chapter 11.

RECOMMENDATIONS

1) Hierarchical clustering with group-average linking, 
based on sample similarities or dissimilarities such 
as Bray-Curtis, has proved a useful technique in a 
number of ecological studies of the last three decades. 
It is appropriate for delineating groups o f sites with
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Fig. 3.3. Bristol Channel Zooplankton {B}. Dendrogram for hierarchical clustering o f the 57 sites, using group-average linking o f 
Bray-Curtis similarities calculated on VV-transformed abundance data.

distinct community structure (this is not to imply 
that groups have no species in common, o f course, 
but that different characteristic patterns of abundance 
are found consistently in different groups).

2) Clustering is less useful (and could sometimes be 
misleading) where there is a steady gradation in 
community structure across sites, perhaps in response 
to strong environmental forcing (e.g. large range 
of salinity, sediment grain size, depth of water 
column, etc.).

Ordination is preferable in these situations.

3) Even for samples which are strongly grouped, 
cluster analysis is often best used in conjunction 
with ordination. Superimposition of the clusters 
(at various levels of similarity) on an ordination 
plot will allow any relationship between the groups 
to be more informatively displayed, and it will be 
seen later (Chapter 5) that agreement between the 
two representations strengthens belief in the 
adequacy of both.
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CHAPTER 4: ORDINATION OF SAMPLES BY PRINCIPAL COMPONENTS 
ANALYSIS (PCA)

ORDINATIONS

An ordination is a map o f the samples, usually in two 
or three dimensions, in which the placement of samples, 
rather than representing their simple geographical 
location, reflects the similarity of their biological 
communities. To be more precise, distances between 
samples on the ordination attempt to match the corr­
esponding dissimilarities in community structure: 
nearby points have very similar communities, samples 
which are far apart have few species in common or 
the same species at very different levels o f abundance 
(or biomass). The word ’'attempt” is important here 
since there is no uniquely defined way in which this 
can be achieved. (Indeed, when a large number of 
species fluctuate in abundance in response to a wide 
variety of environmental variables, each species being 
affected in a different way, the community structure 
is essentially high-dimensional and it may be imposs­
ible to obtain a useful two or three-dimensional rep­
resentation).

So, as with cluster analysis, several methods have been 
proposed, each using different forms of the original 
data and varying in their technique for approximating 
high-dimensional information in low-dimensional plots. 
They include:

a) Principal Components Analysis , PCA (see, for 
example, Chatfield and Collins, 1980);

b) Principal Co-ordinates Analysis , PCoA (Gower, 
1966);

c) Correspondence Analysis and Detrended Corres­
pondence Analysis, DECORANA (Hill and Gauch, 
1980);

à) M ulti-D imensional Scaling , MDS; in particular 
non-metric M D S  (see, for example, Kruskal and 
Wish, 1978).

A comprehensive survey of ordination methods is 
outside the scope of this volume. As with clustering 
methods, detailed explanation is given only o f the 
techniques required for the analysis strategy adopted 
throughout the manual. This is not to deny the validity 
of other methods but simply to affirm the importance 
of applying, with understanding, one or two techniques 
o f proven utility. The two ordination methods selected

are therefore (arguably) the simplest of the various 
options, at least in concept.

a) PCA is the longest-established method, though the 
relative inflexibility of its definition limits its prac­
tical usefulness more to multivariate analysis of 
environmental data rather than species abundances 
or biomass; nonetheless it is still widely encountered 
and is of fundamental importance.

b) Non-metric MDS is a more recent development, 
whose complex algorithm could only have been 
contemplated in an era o f advanced computational 
power; however, its rationale can be very simply 
described and understood, and many people would 
argue that the need to make few (if any) assumptions 
about the data make it the most widely applicable 
and effective method available.

PRINCIPAL COM PONENTS ANALYSIS

The starting point for PCA is the original data matrix 
rather than a derived similarity matrix (though there 
is an implicit dissimilarity matrix underlying PCA, 
that o f Euclidean distance). The data array is thought 
of as defining the positions of samples in relation to 
axes representing the full set of species, one axis for 
each species. This is the very important concept intro­
duced in Chapter 2, following equation (2.13). Typic­
ally, there are many species so the samples are points 
in a very high-dimensional space.

A simple 2-dimensional example

It helps to visualise the process by again considering 
an (artificial) example in which there are only two 
species (and nine samples).

Sample 1 2 3 4 5 6 1 8 9

Abundance Sp. 1 6 0 5 7 11 10 15 18 14

Sp.2 2 0 8 6 6 10 8 14 14

The nine samples are therefore points in two dimensions, 
and labelling these points with the sample number gives 
the following plot.
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This is an ordination already, o f 2-dimensional data 
on a 2-dimensional map, and it summarises pictorially 
all the relationships between the samples, without 
needing to discard any information at all. However, 
suppose for the sake of example that a 1-dimensional 
ordination is required, in which the original data is 
reduced to a genuine ordering of samples along a 
line. How do we best place the samples in order? 
One possibility (though a rather poor one!) is simply 
to ignore altogether the counts for one o f the species, 
say Species 2. The Species 1 axis then automatically 
gives the 1-dimensional ordination (Sp.1 counts are 
again labelled by sample number):

PCI

and this picture is a much more realistic approximation 
to the 2-dimenensional sample relationships (e.g. 1 is 
now closer to 2 than 3 is, 7, 9 and 8 are more equally 
spaced and in the "right" sequence etc).

The second principal component axis (PC2) is defined 
as the axis perpendicular to PCI, and a full principal 
component analysis then consists simply of a rotation 
of the original 2-dimensional plot:

Sample 2 314 65 97 8
--------------------------------------------------------------  Sp. 1

0 5 10 15 20 counts

(Think o f this as projecting the points in the 2-dimen­
sional space down onto the Sp.1 axis). Not surprisingly, 
this is a rather inaccurate 1-dimensional summary of 
the sample relationships in the full 2-dimensional data, 
e.g. samples 7 and 9 are rather too close together, certain 
samples seem to be in the "wrong order" (9 should be 
closer to 8 than 7 is, 1 should be closer to 2 than 3 is) 
etc. More intuitively obvious would be to choose the
1-dimensional picture as the (perpendicular) projection 
of points onto the line of "best fit" in the 2-dimensional 
plot.

to give the following principal component plot.

PC2
I 3 6 9
)-------------4---- -------------- 8 - PCI
I 1 5 7

Obviously the (PCI, PC2) plot contains exactly the 
same information as the original (Sp.1, Sp.2) graph. 
The whole point o f the procedure though is that, as in 
the current example, we may be able to dispense with 
the second principal component (PC2): the points in 
the (PCI, PC2) space are projected onto the PCI axis 
and relatively little information about the sample 
relationships is lost in this reduction of dimensionality.

10

5

0

The 1-dimensional ordination, called the f ir s t  principal 
component axis (PCI), is then:

PC2 i 3 6

— V u  t  ' F 1 * PCI

Definition of PCI axis

Up to now we have been rather vague about what is 
meant by the “best fitting” line through the sample 
points in 2-dimensional species space. There are two 
natural definitions. The first chooses the PCI axis as 
the line which minimises the sum o f squared perpend­
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icular distances of the points from the line.^ The 
second approach comes from noting in the above 
example that the biggest differences between samples 
take place along the PCI axis, with relatively small 
changes in the PC2 direction. The PCI axis is there­
fore defined as that direction in which the variance of 
sample points projected perpendicularly onto the axis 
is maximised. In fact, these two separate definitions 
o f the PCI axis turn out to be totally equivalent and 
one can use whichever concept is easier to visualise.

Extensions to 3-dimensional data

Suppose that the simple example above is extended to 
the following matrix of counts for three species.

Sample 2 3 4 5

Abundance Sp.1 6 0 5 7 11 10 15 18 14

Sp.2 2 0 8 6 6 10 8 14 14

Sp.3 3 1 6 6 9 11 10 16 15

Samples are now points in three dimensions (Sp.1, 
Sp.2 and Sp.3 axes) and there are therefore three 
principal component axes, again simply a rotation of 
the three species axes. The definition o f the (PCI, 
PC2, PC3) axes generalises the 2-dimensional case in 
a natural way:

PCI is the axis which maximises the variance of points 
projected perpendicularly onto it;

PC2 is constrained to be perpendicular to PCI, but is 
then again chosen as the direction in which the 
variance of points projected perpendicularly onto 
it is maximised;

PC3 is the axis perpendicular to both PCI and PC2 
(there is no choice remaining here).

Sp 3

This type o f idea may be familiar from ordinaiy linear regression, 
except that the latter is formulated asymmetrically: the regression 
o f y  on x minimises the sum o f squared vertical distances ofpoints 
from the line.

An equivalent way of visualising this is again in terms 
of “best fit”: PCI is the “best fitting” line to the sample 
points and, together, the PCI and PC2 axes define a 
plane (stippled in the above diagram) which is the 
“best fitting” plane.

Algebraic definition

The above geometric formulation can be expressed 
algebraically. The three new variables (PCs) are just 
linear combinations of the old variables (species),

such that PCI, PC2 and PC3 are In the
above example:

PCI = 0.62x  Sp.1 + 0.52xS
PC2 = -0 .73  x  Sp.1 + 0.65 x  S  (4.1)
PC 3 = 0.28 x  Sp.1 + 0.55xS

The principal components are therefore interpretable 
(in theory) in terms of the counts for each original 
species axis. Thus PCI is a sum of roughly equal 
(and positive) contributions from each of the species; 
it is essentially ordering the samples from low to high 
total abundance. At a more subtle level, for samples 
with the same total abundance, PC2 then mainly dis­
tinguishes relatively high counts o f Sp.2 (and low 
Sp.1) from low Sp.2 (and high Sp.1); Sp.3 values do 
not feature strongly in PC2 because the corresponding 
coefficient is small. Similarly the PC3 axis mainly 
contrasts Sp.3 and Sp.2 counts.

Variance explained by each PC

The definition of principal components given above 
is in terms o f successively maximising the variance o f 
sample points projected along each axis, with the 
variance therefore decreasing from PCI to PC2 to 
PC3. It is thus natural to quote the values of these 
variances (in relation to their total) as a measure o f 
the amount o f “information” contained in each axis. 
Furthermore, it turns out that the total of the variances 
along all PC axes is equal to the total variance o f 
points projected successively onto each of the original 
species axes. That is, letting denote variance
of samples on the zth PC axis and denote
variance of points on the zth species axis (/ = 1, 2, 3):

f v a r ( P C i )  = TjVariSp.i) (4.2)

Thus, the relative variation o f points along the zth PC 
axis (as a percentage o f the total), namely

l = 1 0 0 j r ( f a )  =100
y  var(PCi)

(4.3)
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has a useful interpretation as the % of the original total 
variance explained by the z’th PC. For the simple 3- 
dimensional example above, PCI explains 93%, PC2 
explains 6% and PC3 only 1% of the variance in the 
original samples.

Ordination plane

This brings us back finally to the reason for rotating 
the original three species axes to three new principal 
component axes. The first two PCs represent a plane 
o f “best fit”, encompassing the maximum amount of 
variation in the sample points. The % variance exp la in ­
e d  by PC3 may be small and we can dispense with 
this third axis, projecting all points perpendicularly 
onto the (PCI, PC2) plane to give the 2-dimensional 
ordination plane  that we have been seeking. For the 
above example this is:

PC2

PCI

and it is almost a perfect 2-dimensional summary of 
the 3-dimensional data, since PCI and PC2 account 
for 99% of the total variation. In effect, the points lie 
on a plane (in fact, nearly on a line!) in the original 
species space, so it is no surprise to find that this PCA 
ordination differs negligibly from that for the initial 
2-species example: the counts added for the third 
species were highly correlated with those for the first 
two species.

Higher-dimensional data

O f course there are many more species than three in a 
normal species by samples array, typically at least 30, 
but the approach to defining principal components and 
an ordination plane is the same. Samples are now points 
in (say) a 30-dimensional species space and the “best 
fitting” 2-dimensional plane is found and samples 
“projected” onto it to give the 2-dimensional PCA 
ordination. The PC axes are the “perpendicular direct­
ions” in this 30-dimensional space along which the 
variances of the points are (successively) maximised. 
The degree to which a 2-dimensional PCA succeeds 
in representing the full 30-dimensional information is 
seen in the percentage of total variance explained by 
the first two (of 30) principal components. Often PCI 
and PC2 may not explain more than 40-50% of the 
total variation, and a 2-dimensional PCA ordination 
gives an inadequate and potentially misleading picture

of the relationship between the samples. A 3-dimen­
sional sample ordination, using the first three PC axes, 
may give a fuller picture or it may be necessary to 
invoke PC4, PC5 etc. before a reasonable percentage 
of the total variation is encompassed. Guidelines for 
an acceptable level of “% variance explained” are 
difficult to set, since they depend on the objectives of 
the study, the number o f species and samples etc., but 
an empirical rule-of-thumb might be that a picture 
which accounts for as much as 70-75% of the original 
variation is likely to describe the overall structure 
rather well.

The geometric concepts of fitting planes and projecting 
points in (say) 30-dimensional space are not ones that 
most people are comfortable with (!) so it is important 
to realise that, a lg e b ra ic a lly ,  the central ideas are no 
more complex than in three dimensions. Equations 
like (4.1) simply extend to p  (=30) principal compon­
ents, each a linear function of the p  species counts. 
The “perpendicularity” (<orthogonality) o f the principal 
component axes is reflected in the zero values for all 
sums of cross-products of coefficients, e.g. for equation 
(4.1):

(0.62)x(-0.73) + (0.52)x(0.65) + (0.58)x(0.20) = 0

(0.62)x(0.28) + (0.52)x(0.55) + (0.58)x(-0.79) = 0
etc.,

the coefficients being scaled so that their sum of squares 
adds to one, e.g.

(0.62)2+ (0.52) 2+

(- 0.73) 2+ (0.65f  + =
etc.

There is clearly no difficulty in extending such relations 
to 4, 5 or any number o f coefficients.

The algebraic construction of coefficients satisfying 
these conditions but also defining which “perpend­
icular directions” maximise variation o f the samples 
in the species space, is outside the scope of this manual. 
It involves calculating eigenvalues and eigenvectors 
of a p  by p  matrix, see Chatfield and Collins (1980), 
for example. (Note that a knowledge of matrix algebra 
is essential to understanding this construction). The 
advice to the reader is to hang on to the geometric 
picture: all the essential ideas o f PCA are present in 
visualising the construction o f a 2-dimensional 
ordination plot from a 3-dimensional species space.
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EXAMPLE: Loch Linnhe macrofauna

The various options available, and the limitations 
imposed when constructing an ordination using PCA, 
are best appreciated in the context of a real data set. 
A 2-dimensional PCA of the full Loch Linnhe macro­
faunal abundance data {L} is shown in Fig. 4.1. The 
original matrix contained a total of 115 species for 
the 11 samples, one for each year of the period 1963- 
1973. Pulp-mill effluent was first discharged to the 
loch in 1966, with an increased discharge in 1969/70 
and a subsequent decrease in 1972/73.

Exclude less-common species

The retention of rarer species in a PCA ordination will 
have a strongly distorting effect, even supposing that 
the matrix operations to construct the ordination are 
possible. For the Loch Linnhe data there are 11 samples 
in 115-dimensional species space! An initial and 
drastic reduction in the number of species is necessary 
for the PCA algorithm to work. In fact, many of the 
species are represented only by a single individual in 
a single year and their omission will not be a serious 
loss to interpretation, but the necessity o f making an 
(essentially arbitrary) decision about the species to 
exclude is one of the problems with applying PCA to 
biological community data. By contrast, the clustering 
methods of the last chapter were applied to a similarity 
matrix which could be constructed from all species, 
the rarer ones either being emphasised, as in reduction 
to presence/ absence, or down-weighted automatically 
(though not ignored totally) by the choice of similarity 
coefficient and transformation. An ordination method

3 - 67
2 72 66

1
71 68

" 69
0 - 63

-1 - 73
-2 -

65
-3 - 64
-4 - 70

-5 I i

-6 -4 -2 0 2 4 6 
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Fig. 4.1. Loch Linnhe macrofauna {Lj. 2-dimensional PCA 
ordination o f  sample abundances ( VV-transformed) from the 11 
years 1963-1973. PCI (x-axis) and PC2 (y-axis) together account 
fo r 57% o f the total sample variability.

based on this similarity matrix (for example, the MDS 
method of Chapter 5) clearly scores over PCA, in this 
respect. In fact, Fig. 4.1 is based on a data matrix of 
only 29 species, those making up more than 3% of the 
total abundance in at least one of the samples. (The 
rationale for this type of selection procedure was 
discussed in the section on species similarities in 
Chapter 2). Calculations o f the principal components 
is now possible though, even so, the software package 
needs to handle its computations carefully. A total of 
11 sample points will always fit perfectly into 10 
dimensions (think o f the lower-dimensional analogy 
again: 3 points in 3-dimensional space will always lie 
on a 2-dimensional plane). Thus, only 10 (at most) 
PC axes can be constructed, or to put it another way, 
all the sample variance can be explained by the first 
10 PCs. In fact, the first two PCs in Fig. 4.1 explain 
57% of the total variability so the 2-dimensional 
ordination does not give a fully satisfactory picture of 
the changing community pattern over the years. If 
this example were being taken further, it would be 
advisable to look also at the third PC (at least), perhaps 
with some form of 3-dimensional perspective plot or 
by the three separate 2-dimensional plots of (PCI, PC2), 
(PCI, PC3) and (PC2, PC3). Nonetheless, one main 
feature is clear from Fig. 4.1 : the relatively large change 
in community composition between 1970 and 1971, 
and the reversion in 1973 to a community which is 
more like the earlier years.

Transformation of abundance/biomass

In much the same way as was seen for the calculation 
o f similarity coefficients in Chapter 2, it may be 
necessary to make an initial transformation of the 
abundance or biomass values to avoid over-domination 
of the resulting analysis by the very common species. 
For the Loch Linnhe data, Capitella numbers in a 
yearly sample range from 0 to over 4,000 individuals, 
whereas the bulk of the other species have counts in 
single or double figures. For untransformed data (and 
using a covariance-based analysis, as discussed below), 
the Capitella axis will clearly contain a substantial 
part o f the overall variation of samples in the species 
space, so that the direction of the PCI axis will tend 
to be dictated by that species alone. A more balanced 
picture will emerge after transformation: Fig. 4.1 is 
based on VV-transformed abundances.

Scale and location changes

The data matrix can also be normalised  (after any 
transformation has taken place). For each species 
abundance, subtract the mean count and divide by the
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standard deviation over all samples for that species. 
This makes the variance of samples along all species 
axes the same (= 1) so all species are of potentially 
equal importance in determining the principal comp­
onents. This normalised analysis is referred to as 
correlation-based PCA rather than the covariance- 
based PCA obtained when the data is not normalised 
(the terminology comes from whether the algebraic 
extraction of eigenvalues and eigenvectors takes place 
on the correlation or covariance matrix between 
species).

When does one use normalisation and when transform­
ation (or both)? In fact, the arguments are somewhat 
analogous to those seen in Chapter 2 for the computation 
o f similarities. There, techniques which tended to 
weight all species equally (for example, the calculation 
o f Canberra coefficients) were rejected in favour of 
methods that maintained a greater (though not over­
whelmingly greater) importance for common species 
than rarer ones. This was achieved through initial V ,  
VV or log transformation; the equivalent option here 
would be to take the same transformation and apply 
covariance-based PCA. It is true that, here, the set of 
species has first been drastically reduced so that all 
the rarer species are eliminated; nonetheless there 
seems no compelling reason why the remaining species 
should be given equal weight, as they would in a corr­
elation-based PCA.

Note that even if normalisation is used, it still makes 
sense to perform an initial transformation. This has 
the effect of reducing the inevitable right-skewness of 
the spread of sample counts along a species axis (i.e. 
abundances tend to bunch at smaller values with a 
long “tail” of occasional large counts). Computation 
of variances and the resulting normalisation are really 
designed to cope with data which are, as the name 
implies, approximately normally distributed; transform­
ation makes this more likely.

PCA OF ENVIRONMENTAL DATA

The conclusion above is that covariance-based PCA 
would probably be preferred to correlation-based PCA 
for species abundance matrices, though the summary 
at the end of this chapter makes it clear that neither is 
a very satisfactory ordination method for such data. 
There is one important situation, however, where PCA 
is a more useful tool and where normalisation is usually 
essential. This is in the multivariate analysis of environ­
mental rather than species data. In conventional 
statistical notation, one has a matrix of p  columns

(variables) by n rows (samples)11, with the variables 
perhaps being a mixture o f  physical parameters (grain 
size, salinity, depth of the water column) and other 
environmental or chemical measurements (nutrient 
levels, heavy metal, hydrocarbon or PCB concentrat­
ions etc). Patterns in the environmental data across 
samples can be displayed in an analogous way to species 
data, by a multivariate ordination, and techniques for 
linking the biological and environmental summaries 
are discussed in Chapter 11.

PCA is more appropriate to environmental variables 
because of the form of the data (there are no large 
blocks of zero counts needing to be treated in a special 
way: it is no longer necessary to select a dissimilarity 
coefficient that ignores “joint absences” and some 
form of Euclidean distance measure makes more sense 
for environmental data). However, a crucial difference 
between species and environmental data is that the 
latter will usually have a complete mix of measurement 
scales (salinity in %o, grain size in (j) units, depth in m, 
metal concentrations in pg/g, PCBs in ng/g etc). In a 
multi-dimensional visualisation o f the environmental 
data matrix, the samples are points referred to environ­
m ental axes rather than species axes, but what does it 
mean now to talk about (Euclidean) distance between 
two sample points in the environmental variable 
space? If the units on each axis differ, and have no 
natural connection with each other, then point A can 
be made to appear closer to point B than point C, or 
closer to point C than point B, simply by a change of 
scale on one of the axes (e.g. measuring PCBs in pg/g 
not ng/g, or depth in fathoms rather than m). Obviously 
it would be entirely wrong for the PCA ordination to 
vary with such arbitrary scale changes. There is one 
natural solution to this: perform a correlation-based 
PCA, i.e. normalise all axes (after transformations, if 
any) so that they have comparable, dimensionless 
scales.

The problem does not generally arise for species data, 
o f course, because though a scale change on the axes 
may be contemplated (e.g. changing counts from 
numbers of individuals per core to numbers per m2 of 
sediment surface), the same scale change is made on 
each axis and the PCA ordination will be unaffected. 
The overall guideline would therefore be to use

 ̂Note that this is the opposite convention to that used in ecology 
for abundance matrices, where the rows (species) are the variables 
(the reason for the different ecological convention is clear: binomial 
species names are much more neatly displayed as row than column 
labels!). Input to the PRIMER PCA routine can use either convention. 
It is unnecessary to transpose the matrix before entry; one simply 
needs to be careful to specify whether rows or columns are to be 
treated as the variables.
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correlation-based PCA for environmental variables 
and covariance-based PCA for species data (if no 
alternative, preferable ordination method is available 
for the latter). In both cases, prior transformation is 
likely to be beneficial; different transformations may 
be desirable for different variables in the environ­
mental analysis, e.g. contaminant concentrations will 
often be right-skewed (and require something like log 
transformation) and sediment granulometry measures 
like “% mud” or “silt/clay” may need no transform­
ation at all. These issues are returned to in Chapter 9.

PCA STRENGTHS

1)PC 4 is conceptually simple. Whilst the algebraic 
basis o f the PCA algorithm requires a facility with 
matrix algebra for its understanding, the geometric 
concepts of a “best fitting” plane in the species 
space, and perpendicular projection of samples 
onto that plane, are relatively easily grasped. Some 
of the more recently proposed ordination methods, 
which either extend or supplant PCA (e.g. Principal 
Co-ordinates Analysis, Detrended Correspondence 
Analysis) can be harder to understand for practit­
ioners without a mathematical background.

2) I t  is computationally straightforward. Again, this 
statement needs to be seen in relative terms. After 
the number of species has been reduced, usually 
rather drastically, the required matrix operations 
pose no problems to modern computing power and 
packages are widely available which carry out the 
necessary eigenvalue (latent root) extraction. That 
multivariate methods have only come to the fore as 
a practical data analysis tool since the 1970’s is not 
surprising. Even the computationally simplest of 
the techniques, PCA, which dates back to the earlier 
period o f classical statistics, could not be carried 
out manually in most realistic examples. Nonetheless, 
PCA tends to take only fractions of seconds of 
processing time on a modem PC. The constraints 
are mainly on the number of species handled, and 
large numbers o f samples can usually be accomm­
odated. This is in contrast to cluster and MDS 
analyses which tend to be more constrained by the 
number o f samples they can handle; once the data 
is reduced to a similarity matrix between samples 
(the input form to both clustering and MDS) the 
number of species in the original matrix is irrelevant. 
PCA could therefore have a role, when there are 
very large numbers of samples, in providing an 
initial picture which would suggest separation of 
the data into two (or more) distinct sets o f samples, 
each of which is analysed by more accurate (but

more computationally-intensive) ordinations such 
as MDS.

3) Ordination axes are interpretable. The PC axes 
are simple linear combinations of the values for 
each species, as in equation (4.1), so in theory have 
some potential for interpretation. In practice though, 
when there are more than a handful of species (as 
is usual), this rarely leads to any useful information. 
Environmental data arrays often contain a smaller 
number of variables however, and interpretation of 
the PCA axes may be informative in that case (see, 
for example, Chapter 11).

PCA WEAKNESSES

1) There is little flexibility in defining dissimilarity. 
An ordination is essentially a technique for converting 
dissimilarities o f community composition between 
samples into (Euclidean) distances between these 
samples in a 2- or higher-dimensional ordination 
plot. Implicitly, PCA defines dissimilarity between 
two samples as their Euclidean distance apart in 
the full /7-dimensional species space; however, as 
was seen in Chapter 2, this is rather a poor way of 
defining sample dissimilarity: something like a 
Bray-Curtis coefficient would be preferred but 
standard PCA cannot accommodate this. The only 
flexibility it has is in transforming (and/or normal­
ising) the species axes so that dissimilarity is defined 
as Euclidean distance on these new scales.

2) Its distance-preserving properties are poor. Having 
defined dissimilarity as distance in the /7-dimensional 
species space, PCA converts these distances by 
projection o f the samples onto the 2-dimensional 
ordination plane. This may distort some distances 
rather badly. Taking the usual visual analogy of a
2-dimensional ordination from three species, it can 
be seen that samples which are relatively far apart 
on the PC3 axis can end up being co-incident when 
projected (perhaps from “opposite sides”) onto the 
(PC 1, PC2) plane.

Sp 3
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EXAMPLE: Dosing experiment, 
Solbergstrand mesocosm

An example of this final point for a real data set can 
be seen in Fig. 4.2. This is of nematode data for the 
dosing experiment {D} in the Solbergstrand mesocosms, 
at the GEEP Oslo Workshop. Intact box core samples 
were collected from Osloijord and held for three 
months under four dosing regimes: control, low, 
medium and high levels of a hydrocarbon and Cu 
contaminant mixture, continuously dosed to the basin 
waters. Four replicate box cores were subjected to 
each treatment and at the end o f the period cores for 
all 16 boxes were examined for nematode commun­
ities (amongst other faunistic components). Fig. 4.2 
shows the resulting PCA, based on log-transformed 
counts for 26 nematode genera (those making up more 
than 3% o f the total individuals in at least one core). 
The interest here, of course, is in whether all replicates 
from one of the four treatments separate out from 
other treatments, indicating a change in community 
composition which could be attributed to a directly 
causal effect o f the contaminant dosing. A cursory 
glance suggests that the high dose replicates (H) may 
indeed do this. However, closer study shows that the 
% o f variance explained by the first two PC axes is 
very low: 22% for PCI and 15% for PC2. The picture 
is likely to be very unreliable therefore, and an examin­
ation of the third and higher PCs confirms the distortion: 
some of the H replicates are much further apart in the 
full species space than this projection into two dimen­
sions would imply. For example, the right-hand H 
sample is actually closer to the nearest M sample than 
it is to other H samples. The distances in the full 
species space are therefore poorly-preserved in the 2- 
dimensional ordination.

H
H H

H

C M

Fig. 4.2. Dosing experiment, Solbergstrand {D}. 2-dimensional 
PCA ordination o f log-transformed nematode abundances from  
16 box cores (4 replicates from  each o f  control, low, medium 
and high doses o f a hydrocarbon and Cu contaminant mixture). 
PCI and PC2 account fo r 37% o f the total variance.

This example is returned to again in Chapter 5, Fig. 5.5, 
where it is seen that an MDS of the same data makes 
a much better stab at “dissimilarity preservation”, 
though the data is such that no method will find it 
easy to represent in two dimensions. The moral here 
is clear:

a) be very wary o f interpreting any PCA plot which 
explains so little of the total variability in the original 
data;

b) statements about apparent differences in a multi­
variate community analysis of one site (or time or 
treatment) from another should be backed-up by 
appropriate statistical tests; this is the subject of 
Chapter 6.
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CHAPTER 5: ORDINATION OF SAMPLES BY MULTI-DIMENSIONAL 
SCALING (MDS)

OTHER ORDINATION METHODS

Principal Co-ordinates Analysis

The two main weaknesses of PCA, identified at the end 
of Chapter 4, are its inflexibility of dissimilarity measure 
and its poor distance-preservation. The first problem 
is addressed in an important paper by Gower (1966), 
describing an extension to PCA termed Principal Co­
ordinates Analysis (PCoA), also sometimes referred 
to as classical scaling. This allows a much wider 
definition of dissimilarity than simple Euclidean distance 
in the species space (the basis of PCA). Other dissimil­
arity measures are converted to distances, in high­
dimensional space, but the final step is again a projection 
onto a low-dimensional ordination space (e.g. a 2- 
dimensional plane), as in ordinary PCA. Thus, PCA 
is a special case of PCoA, when the original dissimil­
arity is just Euclidean distance. It follows that PCoA 
is still subject to the second criticism of PCA: its lack 
o f emphasis on distance-preservation when the informat­
ion is difficult to represent in a low number of dimen­
sions.

Detrended Correspondence Analysis

Correspondence analyses are a class of ordination 
methods featuring strongly in French data-analysis 
literature (for a review in English see Greenacre, 
1984). Key papers in ecology are Hill (1973a) and 
Hill and Gauch (1980), who introduced detrended 
correspondence analysis (DECORANA). The methods 
start from the data matrix, rather than a set of dissimil­
arity coefficients, so are rather inflexible in their 
definition of sample dissimilarity; in effect, multinomial 
assumptions generate an implicit dissimilarity measure 
of “chi-squared” distance. Basic correspondence 
analysis (CA) has its genesis in a particular model of 
unimodal species response to underlying (but un­
measured) environmental gradients; an account is 
outside the scope of this manual but a comprehensive 
exposition (by C.F.J ter Braak) of CA and related 
techniques can be found in Jongman et al (1987).^

The popular DECORANA version of CA has a primary 
motivation of straightening out an “arch effect” in a

 ̂A convenient way o f carrying out correspondence analyses, and 
related canonical methods, is to use ter Braak1 s excellent 
CANOCO package.

CA ordination, which is expected on theoretical grounds 
if species abundances have unimodal (Guassian) 
responses along a single strong environmental gradient. 
Where such models are not appropriate, it is unclear 
what artefacts the algorithms may introduce into the 
final picture. In the Hill and Gauch (1980) procedure, 
the detrending is essentially carried out by first 
splitting the ordination space into segments, stretching 
or shrinking the scale in each segment and then re­
aligning the segments to remove wide-scale curvature. 
For some people, this is uncomfortably close to 
attacking the data with scissors and glue and, though 
the method is not as subjective as this would imply, 
some arbitrary decisions about where and how the 
segmentation and rescaling are defined are rather 
hidden from the user in the program code. Thus 
Pielou (1984) and others have criticized DEOCRANA 
for its “overzealous” manipulation of the data. It is 
also a pity that the multivariate techniques which 
historically have been applied most frequently in the 
ecological literature are often either inadequately 
suited to the data or are based on conceptually complex 
algorithms (e.g. DECORANA and TWINSPAN, Hill 
1979a, b), erecting a communication barrier between 
data analyst and ecologist.

The ordination technique which is adopted in this 
manual’s strategy, non -metric  is itself a com­
plex numerical algorithm but it can (and will) be 
argued that it is conceptually simple. It makes few (if 
any) model assumptions about the form of the data or 
the inter-relationship o f the samples, and the link 
between the final picture and the user’s original data 
is relatively transparent and easy to explain. It 
addresses both the major criticisms of PCA made 
earlier: it has great flexibility  both in the definition
and conversion of dissimilarity to distance and its 
rationale is the preservation of these relationships in 
the low-dimensional ordination space.

NON-METRIC MULTIDIMENSIONAL 
SCALING

The method of non-metric was introduced by
Shepard (1962) and Kruskal (1964), for application to 
problems in psychology; a useful introductory text is 
Kruskal and Wish (1978), though again the applications 
described are not ecological. Throughout this manual
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the term MDS refers to Kruskal’s non-metric procedure 
(metric MDS is possible, and is akin to PCoA, but will 
not be discussed in any detail).

The starting point is the similarity or dissimilarity 
matrix among samples (Chapter 2). This can be 
whatever similarity matrix is biologically relevant to 
the questions being asked of the data. Through 
choice of coefficient and possible transformation or 
standardisation, one can choose whether to ignore 
joint absences, to emphasise similarity in common or 
rare species, to compare only % composition or allow 
sample totals to play a part, etc. In fact, the flexibility 
o f MDS goes beyond this. It recognises the essential 
arbitrariness of a b so lu te  similarity values; Chapter 2 
showed that the range o f values taken could alter 
dramatically with transformation (often, the more 
severe the transformation, the higher and more 
compressed the similarity values become) and there is 
no absolute interpretation of a statement like “the 
similarity of sample 1 to sample 2 is 1.5 times that of 
sample 1 to sample 3”. The natural interpretation is 
in terms of the re la tiv e  values of similarity to each 
other, e.g. simply that “sample 1 is more similar to 
sample 2 than it is to sample 3” . This is an intuitively 
appealing and very generally applicable base from 
which to build a graphical representation of the sample 
patterns and, in effect, the ranks o f the similarities 
a re  the only information used by a successful non­
metric MDS ordination.

The purpose of MDS can thus be simply stated: it 
constructs a “map” or configuration o f the samples, 
in a specified number of dimensions, which attempts 
to satisfy all the conditions imposed by the rank 
(dis)similarity matrix, e.g. if sample 1 has higher 
similarity to sample 2 than it does to sample 3 then 
sample 1 will be placed closer on the map to sample 2 
than it is to sample 3.

EXAMPLE: Loch Linnhe macrofauna

This is illustrated in Table 5.1 for the subset of the 
Loch Linnhe macrofauna data used to demonstrate 
hierarchical clustering (Table 3.2). Similarities 
between VV-transformed counts of the four year 
samples are given by Bray-Curtis similarity coeff­
icients, and the corresponding rank similarities are 
also shown. (The highest similarity has the lo w e s t  
rank, 1, and the lowest similarity the highest rank, 
n ( n - l ) /2 , )  The MDS configuration is constructed to 
p r e s e r v e  the similarity ranking as Euclidean distances 
in the 2-dimensional plot: samples 2 and 4 are closest,

2 and 3 next closest, then 1 and 4, 3 and 4, 1 and 2, 
and finally, 1 and 3 are furthest apart. The resulting 
figure is a more informative summary than the corres­
ponding cluster analysis in Chapter 3, showing, as it 
does, a gradation o f change from clean (1) to progress­
ively more impacted years (2 and 3) then a reversal of 
the trend, though not complete recovery to the initial 
position (4).

Though the mechanism for constructing such MDS 
plots has not yet been described, two general features 
of MDS can already be noted.

1) MDS plots can be arbitrarily sca led , located , ro ta te d  
or in v e r te d . Clearly, rank order information about 
which samples are most or least similar can say 
nothing about which direction in the MDS plot is 
“up” or “down”, or the absolute “distance apart” of 
two samples: what can be interpreted is re la tiv e  
distances apart, o f course.

2) It is not difficult in the above example to see that 
four points could be placed in two dimensions in 
such a way as to satisfy the similarity ranking 
exactly.11 For more realistic data sets, though, this 
will not usually be possible and there will be some 
distortion or stress between the similarity rankings 
and the corresponding distance rankings in the 
ordination plot (even in a high-dimensional config­
uration). This motivates the principle of the MDS 
algorithm: to choose a configuration of points which 
minimises this degree of stress, appropriately 
measured.

EXAMPLE: Exe estuary nematodes

The construction o f an MDS plot is illustrated with 
data collected by Warwick (1971) and subsequently 
analysed in this way by Field e t  a l  (1982). A total of 
19 stations from different sites and tide-levels in the 
Exe estuary, UK, were sampled bi-monthly at low 
spring tides between October 1966 and September 
1967.

 ̂ In fact, there are rather too many ways o f satisfying it and the 
algorithm described in this chapter will find  slightly different 
solutions each time it is run, all o f them equally correct. However, 
this is not a problem in genuine applications with (say) six or 
more points. The number o f similarities increases roughly with 
the square o f the number o f samples and a position is reached very 
quickly in which not all rank orders can be preserved and this 
particular indeterminacy disappears.
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Table 5.1. Loch Linnhe macrofauna {L} subset. Abundance array after VV-transform, the Bray-Curtis similarities (as in Table 3.2), 
the rank similarity matrix and the resulting 2-dimensional MDS ordination.

Year: 64 68 71 73
Sample: 1 2 3 4 Sample 1 2 3 4 Sample 1 2 3 4

Species 1 - 1 - 3
Echinoca. 1.7 0 0 0 -> 2 25.6 - -> 2 5 - -» 2
Myrioche. 2.1 0 0 1.3 3 0.0 67.9 - 3 6 2 - 1 4
Labidopl. 1.7 2.5 0 1.8 4 52.2 68.1 42.0 - 4 3 1 4 -
Amaeana 0 1.9 3.5 1.7
Capitella 0 3.4 4.3 1.2
Mytilus 0 0 0 0

Three replicate sediment cores were taken for meio- 
faunal analysis on each occasion, and nematodes 
identified and counted. This analysis considers only 
the mean nematode abundances across replicates and 
season (no seasonal differences were evident in a 
more detailed analysis), so the data matrix consists of 
182 species and 19 samples.

This is not an example of a pollution study: the Exe 
estuary is a relatively unimpacted environment. The 
aim here is to display the biological relationships 
among the 19 stations and then to link these to environ­
mental variables (granulometry, interstitial salinity 
etc.) measured at these sites, to reveal potential deter­
minants of nematode community structure. Fig. 5.1 
shows the 2-dimensional MDS ordination of the 19 
samples, based on VV-transformed abundances and a 
Bray-Curtis similarity matrix. Distinct clusters of 
sites emerge (in agreement with those from a matching 
cluster analysis), bearing no clear-cut relationship to 
geographical position or tidal level o f the samples.

15

12 14 ,c
13 17

16

6
11

10 5

Fig. 5.1. Exe estuary nematodes {X}. MDS ordination o f the 19 
sites based on VV-transformed abundances and Bray-Curtis 
similarities (stress = 0.05).

3 1

Instead they appear to relate to variables such as 
sediment type and organic content, and these links are 
discussed in Chapter 11. For now the question is: 
what are stages in the construction of Fig. 5.1?

MDS ALGORITHM

The non-metric MDS algorithm, as employed in 
Kruskal’s original MDSCAL program for example, is 
an iterative procedure,constructing the MDS plot by
successively refining the positions o f the points until 
they satisfy, as closely as possible, the dissimilarity 
relations between samples? It has the following 
steps.

1 ) Specify the number o f  required
for the final ordination plot. If, as will sometimes 
be desirable, one wishes to compare configurations 
in two and three dimensions then they have to be 
constructed separately. For the moment think of 
as 2.

2) Construct a starting configur
This could be the result o f an ordination by another 
method, for example PCA or PCoA, or it could 
literally be just a random set of points in 
dimensions.

3). Regress the interpoint di
the corresponding dissimilariLet denote

the distance between the /th and Ath sample points 
on the current ordination plot, and {8;*} the corres­
ponding dissimilarity in the original dissimilarity 
matrix (of, say, Bray-Curtis coefficients). A scatter 
plot is then drawn o f distance against dissimilarity 
for all n(n-l)/2such pairs of values. This is termed
a Shepard diagram  and Fig. 5.2 shows the type o f 
graph that results.

f
This is also the algorithm used in the PRIMER MDS routine. 

The required input is a similarity matrix, either as calculated in 
PRIMER or read in directly from Excel, for example.



Chapter 5
page 5-4

2

CO
Û
2

c
1a>

o

(0
5 íes*□□

0
60 80 1004020

Bray-Curtis dissimilarity

Fig. 5.2. Exe estuary nematodes {X}. Shepard diagram o f the 
distances (d) in the MDS plot (Fig. 5.1) against the dissimilar­
ities (S) in the Bray-Curtis matrix. The line is the fitted non­
par ametric regression; stress (=0.05) is a measure o f scatter 
about the line.

(In fact, Fig. 5.2 is at a late stage of the iteration, 
corresponding to the final 2-dimensional configur­
ation of Fig. 5.1; at earlier stages the graph will 
appear similar though with a greater degree of 
scatter). The decision that characterises different 
ordination procedures must now be made: how 
does one define the underlying relation between 
distance in the plot and the original dissimilarity? 
There are two main approaches.

a) Fit a standard linear regression o f d  on 5, so 
that final distance is constrained to be proportional 
to original dissimilarity. More flexible would be to 
fit some form o f curvilinear regression (maybe a 
quadratic, cubic or other polynomial). These are 
parametric models giving rise to the term metric 
M D S  for this approach.

b) Perform a non-parametric regression of d  on S 
giving rise to a non-metric M DS. Fig. 5.2 illustrates 
the non-parametric (monotonie) regression line. 
This is a “best-fitting” line which moulds itself to 
the shape of the scatter plot, but is always constrained 
to increase (and therefore consists of a series of 
steps). The relative success o f non-metric MDS, in 
preserving the sample relationships in the distances 
of the ordination plot, comes from the flexibility in 
shape o f this non-parametric regression line. A 
perfect MDS was defined previously as one in 
which the rank order o f dissimilarities was totally 
preserved in the rank order o f distances; individual

points on the Shepard plot must then all be 
(monotonie) increasing: the larger a dissimilarity, 
the larger (or equal) the corresponding distance, 
and the non-parametric regression line is a perfect 
fit. It follows that the extent to which the scatter 
points deviate from the line measures the failure to 
match the rank order dissimilarities, motivating the 
following definition of stress.

A) M easure goodness-of-fit o f  the regression by calc­
ulating the stress value

Stress = ) £ j X k (djk - d j O f Z j U k d j k  (5-1)

where d jk is the distance predicted from the fitted

regression line corresponding to dissimilarity 5jk.

If d j k = d j k for all the n(n-l)/2  distances in this

summation, the stress is zero. Large scatter clearly 
leads to large stress and this can be thought of as 
measuring the difficulty involved in compressing 
the sample relationships into two (or a small number) 
of dimensions. Note that the denominator is simply 
a scaling term: distances in the final plot have only 
relative not absolute meaning and the squared 
distance term in the denominator makes sure that 
stress is a dimensionless quality.

5) Perturb the current configuration in a direction 
o f  decreasing stress. This is perhaps the most 
difficult part o f the algorithm to visualise and will 
not be detailed; it is based on established techni­
ques of numerical optimisation, in particular the 
method of steepest descent. The essential idea is 
that the regression relation is used to evaluate stress 
for (small) changes in the position of points on the 
ordination plot, and points are then moved to new 
positions in directions which look like they will 
decrease the stress most rapidly.

6) Repeat steps 3 to 5 until convergence is achieved. 
The iteration now cycles around the two stages o f a 
new regression o f distance on dissimilarity for the 
new ordination positions, then further perturbation 
o f the positions in directions o f decreasing stress. 
In most cases, the cycle will stop when further 
adjustment of the points leads to no improvement 
in stress.

Features of the algorithm

Like all iterative procedures, especially ones this
complex, things can go wrong! By a series of minor
adjustments to the parameters at its disposal (the co-
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ordinate positions in the configuration), the method 
gradually finds its way down to a minimum of the 
stress function. This is most easily envisaged in three 
dimensions, with just a 2-dimensional parameter 
space (the jc, y  plane) and the vertical axis (z) denoting 
the stress at each (x, y ) point. In reality the stress 
surface is a function of more parameters than this of 
course, but we have seen before how useful it can be 
to visualise high-dimensional algebraic operations in 
terms of 3-dimensional geometry. An appropriate 
analogy is to imagine a rambler walking across a 
range of hills in a thick fog(!), attempting to find the 
lowest point within an encircling range of high peaks. 
A good strategy is always to walk in the direction in 
which the ground slopes away most steeply (the 
method of steepest descent, in fact) but there is no 
guarantee that this strategy will necessarily find the 
lowest point overall, i.e. the global m inim um  o f the 
stress function. The rambler may reach a low point 
from which the ground rises in all directions (and 
thus the steepest descent algorithm converges) but 
there may be an even lower point on the other side of 
an adjacent hill. He is then trapped in a local minimum  
of the stress function. Whether he finds the global or 
a local minimum depends very much on where he 
starts the walk, i.e. the starting configuration of 
points in the ordination plot.

Such local minima do occur in many MDS analyses, 
usually corresponding to configurations of sample 
points which are only slightly different from one 
another. Often this may be because there are one or 
two points which bear little relation to any o f the 
other samples and there are several choices as to 
where they may be placed, or perhaps they have a 
more complex relationship with other samples and 
may be difficult to fit into (say) a 2-dimensional 
picture.

There is no guaranteed method o f ensuring that a 
global minimum of the stress function has been 
reached; the practical solution is therefore to repeat 
the MDS analysis several times starting with different 
random positions of samples in the initial configuration 
(step 2 above). If the same (lowest stress) solution 
re-appears from a number of different starts then 
there is a strong assurance, though never a total 
guarantee, that this is indeed the best solution. Note 
that the easiest way to determine whether the same 
solution has been reached as in a previous attempt is 
simply to check for equality of the stress values; 
remember that the configurations themselves could be 
arbitrarily rotated or reflected with respect to each

other.^ In genuine applications, converged stress 
values are rarely precisely the same if configurations 
differ materially.

Degenerate solutions can also occur, in which groups 
of samples collapse to the same point (even though 
they are not 100% similar), or to the vertices of a 
triangle, or are strung out round a circle. In these 
cases the stress may go to zero. (This is akin to our 
rambler starting his walk outside the encircling hills, 
so that he sets off in totally the wrong direction and 
ends up at the sea!) Artefactual solutions of this sort 
are relatively rare and easily detected: repetition from 
different random starts will find many solutions 
which are more sensible. (In fact, a more likely cause 
of an ordination in which points tend to be placed 
around the circumference of a circle is that the input 
matrix is of similarities when the program has been 
told to expect dissimilarities, or vice-versa; in such 
cases the stress will also be very high.) A much more 
common form of degenerate solution is repeatable 
and is a genuine result o f a disjunction in the data. 
For example, if the data divide into two groups which 
have no species in common, or for which all dissimil­
arities within the groups are smaller than any dissimil­
arity between groups, then there is clearly no yardstick 
within our non-parametric approach for determining 
how far apart the groups should be placed in the MDS 
plot. It is then not surprising to find that the samples 
in each group collapse to a point (a commonly met 
special case is when one of the two groups consists of 
a single outlying point). The solution is to split the 
data and carry out an ordination separately on the two 
groups (or, in the latter case, re-run the MDS omitting 
the outlier).

Another feature of MDS mentioned earlier is that, 
unlike PCA, there is not any direct relationship between 
ordinations in different numbers o f dimensions. In 
PCA, the 2-dimensional picture is just a projection of 
the 3-dimensional one, and all PC axes can be generated 
in a single analysis. With MDS, the minimisation of 
stress is clearly a quite different optimisation problem 
for each ordination of different dimensionality; indeed, 
this explains the greater success of MDS in distance- 
preservation. Samples that are in the same position 
with respect to (PC 1, PC2) axes, though are far apart

 ̂ The arbitrariness o f orientation can be a practical nuisance 
when comparing different ordinations, and it can be helpful to 
rotate an MDS so that its direction o f maximal variation always 
lies along the x axis. This can be simply achieved by applying 
PCA to the 2-d MDS co-ordinates (this is not the same thing as 
applying PCA to the original data matrix o f course!); the 
PRIMER MDS routine does this automatically but also then 
permits easy user-control o f  final orientation and reflection.
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on the PC3 axis, will be projected on top o f each 
other in a 2-dimensional PCA but they will remain 
separate, to some degree, in a 2-dimensional as well 
as a 3-dimensional MDS.

If the ultimate aim is a 2-dimensional ordination, it 
may still be useful to carry out a 3-dimensional MDS 
initially. Its first two dimensions will often provide a 
reasonable starting point to the iterative computations 
for the 2-dimensional configuration.11 In fact, this 
strategy will tend to reduce the risk of finding local 
minima or degenerate solutions. The samples are 
likely to fit more easily into three dimensions, itself 
reducing the risk of finding a local minimum; the 2- 
dimensional iteration will then be constrained to start 
much nearer a global minimum than it would for a 
purely random initial configuration. Another reason 
for obtaining higher-dimensional solutions is to compare 
their stress with that from two dimensions: this is one 
of several ways in which the accuracy of a 2-dimension- 
al MDS can be assessed.

ADEQUACY OF MDS 
REPRESENTATION

1)7$ the stress value small? By definition, stress 
increases with reducing dimensionality o f the 
ordination (or in rare cases where a low-dimensional 
ordination is a perfect representation, stress remains 
constant). It has therefore been suggested that 
stress values in 2, 3, 4 etc. dimensions should be 
compared: if there is a particularly large drop in 
stress passing from two to three dimensions (say) 
and only a modest, steady decrease thereafter, this 
would imply that a 3-dimensional ordination is 
likely to be a more satisfactory representation than 
a 2-dimensional one. However, experience with 
ecological data suggests that clear-cut “shoulders” 
such as this, in the plot of minimum stress against 
dimensionality, are rarely seen. It is also undeniable 
that a 2-dimensional picture will usually be a more 
useful and accessible summary, so the question is 
often turned around: not “What is the true dimension­
ality o f the data?” but “Is a 2-dimensional plot a 
usable summary of the sample relationships, or is it 
likely to be sufficiently misleading to force its 
abandonment in favour of a 3- or higher-dimensional

 ̂ This procedure is adopted by the PRIMER MDS routine, which 
also allows the user to specify the number o f random re-starts 
(ideally at least 10). The PRIMER results log contains the co­
ordinates o f  the best (lowest stress) 2-dimensional and 3-dimen­
sional solutions and the stress values fo r  all 2-d and 3-d repeats. 
It can plot either the optimal 2-d or 3-d configuration.

plot?” One answer to this is through empirical 
evidence and simulation studies of stress values. 
Stress increases not only with reducing dimensional­
ity but also with increasing quantity of data, but a 
rough rule-of-thumb for 2-dimensional ordinations, 
using the stress formula (5.1), is as follow s/

Stress <0.05 gives an excellent representation with no 
prospect of misinterpretation (a perfect representation 
would probably be one with stress <0.01 since 
numerical iteration procedures often terminate 
when stress reduces below this value*).

Stress <0.1 corresponds to a good ordination with no 
real prospect o f  a misleading interpretation; 3- or 
higher-dimensional solutions will not add any 
additional information about the overall structure 
(though the fíne structure of any compact groups 
may bear closer examination).

Stress <0.2 still gives a potentially useful 2-dimensional 
picture, though for values at the upper end of this 
range too much reliance should not be placed on 
the detail of the plot; a cross-check of any conclusions 
should be made against those from an alternative 
technique (e.g. the superimposition of cluster groups 
suggested in point 5 below).

Stress >0.3 indicates that the points are close to being 
arbitrarily placed in the 2-dimensional ordination 
space. In fact, the totally random positions used as 
a starting configuration for the iteration usually 
give a stress around 0.35-0.45. Values o f stress in 
the range 0.2-0.3 should therefore be treated with a 
great deal of scepticism and certainly discarded in 
the upper half o f  this range, especially for a small 
to moderate number of points (<50 say). Other 
techniques will be certain to highlight inconsistencies 
and higher-dimensional ordinations should be 
examined.

2) Does the Shepard diagram appear satisfactory? 
The stress value totals the scatter around the regress­
ion line in a Shepard diagram, for example the low 
stress of 0.05 for Fig. 5.1 is reflected in the low 
scatter in Fig. 5.2. Outlying points in the plot could

f There are alternative definitions o f stress, fo r example the 
“stress formula 2 ” option provided in the MDSCAL and KYST 

programs. This differs only in the denominator scaling term in 
(5.1) but is believed to increase the risk o f  finding local minima 
and to be more appropriate fo r other forms o f  multivariate 
scaling, e.g. multidimensional unfolding, which are outside the 
scope o f  this manual.

* This is true o f  the MDS routine in PRIMER, for example.
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Fig. 5.3. Exe estuary nemat­
odes {X}. Dendrogram o f the 
19 stations, using group- 
average clustering from Bray- 
Curtis similarities on VV- 
transformed abundances. The 
four groups o f stations separ­
ated at a 15% similarity 
threshold (dotted line) are 
indicated (the two tightly 
clustered sub-groups within 
group 1 were designated 1A 
and IB by Field et al 1982).

be identified with the samples involved; often there 
are a range of outliers all involving dissimilarities 
with a particular sample and this can indicate a 
point which really needs a higher-dimensional 
representation for accurate placement, or simply 
corresponds to a major error in the data matrix.

3) Is  there distortion when similar samples are 
connected in the ordination plot?  One simple 
check on the success o f the ordination in dissimil- 
arity-preservation is to identify the top 10% or 
20% (say) of values in the similarity matrix and 
draw a line between the corresponding points on 
the MDS configuration. An inaccurate represent­
ation is indicated if several connections are made 
between points which are further apart on the plot 
than other unconnected pairs of points.

4) Is  the ((m inim um  spanning tree” consistent with 
the ordination picture?  A similar idea to the 
above is to construct the m inim um  spanning tree 
(MST, Gower and Ross, 1969). All samples are 
“connected” by a single line which is allowed to 
branch but does not form a closed loop, such that 
one minimises the sum along this line o f dissimil­
arities (taken from the original dissimilarity matrix 
not the distance matrix from the ordination, note). 
This line is then plotted on the 2-dimensional 
ordination and inadequacy is again indicated by 
connections which look unnatural in the context of 
placement of samples in the MDS configuration.

5) Do superimposed groups fro m  a cluster analysis 
distort the ordination plot?  The combination of 
clustering and ordination analyses can be a very 
effective way o f checking the adequacy and mutual 
consistency of both representations. Fig. 5.3 shows 
the dendrogram from a cluster analysis o f the Exe 
estuary nematode data {X} of Fig. 5.1. Two or 
more (arbitrary) similarity values are chosen at a 
spread of hierarchical levels, each determining a 
particular grouping o f samples. In Fig. 5.3, four 
groups are formed at around a 15% similarity level 
and eight groups would be determined for any 
similarity threshold between 30 and 45%.

Fig. 5.4. Exe estuary nematodes {X}. 2-dimensional MDS con­
figuration, as in Fig. 5.1, with superimposed clusters from Fig. 
5.3, at similarity levels o f 15% (dashed line) and 30%-45% 
(continuous line).
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Fig. 5.5. Dosing experiment, 
Solbergstrand mesocosm {D}.
Nematode abundances for  
four replicates from each o f 
four treatments (control, low, 
medium and high dose o f  
hydrocarbons and Cu) after 
species reduction and log 
transformation as in Fig. 4.2.
a), c) Group-averaged clust­
ering from Bray-Curtis simil­
arities; clusters formed at two 
arbitrary levels are superim­
posed on the 2-dimensional 
MDS obtained from the same 
similarities (stress = 0.16).
b), d) Group-average cluster- 
ing from Euclidean distances; 
clusters from two levels are 
superimposed on the 2-dimen­
sional PCA o f Fig. 4.2. Note 
the greater degree o f distortion 
in the latter.

These two sets of groupings are superimposed on 
the MDS ordination, Fig. 5.4, and it is clear that 
the agreement between the two techniques is 
excellent: the clusters are sharply defined and 
would be determined in much the same way if one 
were to select clusters by eye from the 2-dimensional 
ordination alone. The stress for Fig. 5.4 is also 
low, at 0.05, giving confidence that the 2-dimensional 
plot is an accurate representation o f the sample 
relationships. One is not always as fortunate as 
this, and a more revealing example of the benefits 
of viewing clustering and ordination in combination 
is provided by the data of Fig. 4 2 }

EXAMPLE: Dosing experiment, 
Solbergstrand

The nematode abundance data from the dosing experim­
ent {D} at the GEEP Oslo Workshop was previously 
analysed by PCA, see Fig. 4.2 and accompanying 
text. The analysis was likely to be unsatisfactory, 
since the % o f variance explained by the first two

 ̂ One option within PRIMER is to run CLUSTER on the ranks o f  
the similarities rather than the similarities themselves. Whilst not 
o f any real merit in itself (and not the default option), Clarke 
(1993) argues that this could have marginal benefit when performing 
a group-average cluster analysis solely to see how well the clusters 
agree with the MDS plot: the argument is that the information 
utilised by both techniques is then made even more comparable.

principal components was very low, at 37%. Fig. 
5.5c shows the MDS ordination from the same data, 
and in order to make a fair comparison with the PCA 
the data matrix was treated in exactly the same way 
prior to analysis.1 The stress for the 2-dimensional 
MDS configuration is moderately high (at 0.16), 
indicating some difficulty in displaying the relation­
ships between these 16 samples in two dimensions. 
However, the PCA was positively misleading in its 
apparent separation of the four high dose (H) replicates 
in the 2-dimensional space; by contrast the MDS does 
provide a usable summary which is not likely to lead 
to serious misinterpretation. This can be seen by 
superimposing the corresponding cluster analysis 
results, Fig. 5.5a, onto the MDS. Two similarity 
thresholds have been chosen in Fig. 5.5a such that 
they (arbitrarily) divide the samples into 5 and 10 
groups, the corresponding hierarchy of clusters being 
indicated in Fig. 5.5c by thin and thick lines respect­
ively. Whilst it is clear that there are no natural 
groupings o f the samples in the MDS plot, and the 
groupings provided by the cluster analysis must 
therefore be regarded with some caution, the two 
analyses are not markedly inconsistent.

T The same 26 species were retained and a log transformation 
applied before computation o f Bray-Curtis similarities, though, o f 
course, a species reduction would not normally be necessary with 
MDS or clustering o f samples.
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In contrast, the parallel operation for the PCA ordination 
clearly illustrates the poorer distance-preserving 
properties of this method. Fig. 5.5d repeats the 2- 
dimensional PCA of Fig. 4.2 but with superimposed 
groups from a cluster analysis of the Euclidean distance 
matrix* between the 16 samples (Fig. 5.5b). With the 
same division into five clusters (thin lines) and ten 
clusters (thick lines), a much more distorted picture 
results, with samples that are virtually coincident in 
the PCA plot being placed in separate groups and 
samples appearing distant from each other forming a 
common group.

The outcome that would be expected on theoretical 
grounds is therefore apparent in practice here: MDS 
can provide a more realistic picture in situations where 
PCA gives a distorted representation o f the true 
“distances” between samples. In fact, the biological 
conclusions from this particular study are entirely 
negative: the test described in Chapter 6 shows that 
there are no statistically significant differences in 
community structure between any of the four dosing 
levels in this experiment.

EXAMPLE: Celtic Sea Zooplankton

In situations where the samples are strongly grouped, 
as in Fig. 5.3 and 5.4, both clustering and ordination 
analyses will demonstrate this, usually in equally 
adequate fashion. The strength o f ordination is in 
displaying a gradation o f community composition 
across a set o f samples. An example is provided by 
Fig. 5.6, of Zooplankton data from the Celtic Sea {C}. 
Samples were collected from 14 depths', separately 
for day and night time studies at a single site. The 
changing community composition with depth can be 
traced on the resulting MDS (from Bray-Curtis simil­
arities). There is a greater degree of variability in 
community structure of the near-surface samples, 
with a marked change in composition at about 20-25 
m; deeper than this the changes are steady but less 
pronounced and they step in parallel for day and night 
time samples.§ Another obvious feature is the strong 
difference in community composition between day 
and night near-surface samples, contrasted with their

* As previously noted, Euclidean distance is the dissimilarity 
measure implicit in a PCA ordination.

 ̂ The precise relationships between the day and night samples for  
the larger depths (F-N) would now best be examined by an MDS 
o f that data alone, the greater precision resulting from  the MDS 
then not needing to cater, in the same 2-d picture, for the relation­
ships to (and between) the A-E samples. This re-analysis o f  
subsets should be a commonly-used strategy in the constant battle 
to display high-dimensional information in low dimensions.

Fig. 5.6. Celtic Sea Zooplankton {C}. MDS plot for night 
(boxed) and day time samples from 14 depths (5 to 70m, 
denoted A,B,...,N), taken at a single site during September 1978.

relatively higher similarity at greater depth. Cluster 
analysis o f the same data would clearly not permit the 
accuracy and subtlety of interpretation that is possible 
from ordination of such a gradually changing comm­
unity pattern.

MDS STRENGTHS

1 ) M DS is simple in concept.The numerical algorithm
is undeniably complex, but it is always clear what 
MDS is trying to achieve: the construction of a 
sample map whose inter-point distances have the 

same rank order as the corresponding dissimilar­
ities between samples.

2) I t  is based on the relevant 
MDS works on the sample dissimilarity matrix not 
on the original data array, so there is complete 
freedom of choice to define similarity of commun­
ity composition in whatever terms are biologically 
most meaningful.

3) Species deletions are unnecAnother advant­
age o f starting from the sample dissimilarity matrix 
is that the number o f species on which it was based 
is largely irrelevant to the amount of calculation 
required. O f course, if the original matrix contained 
a large number of species whose patterns of abund­
ance across the samples varied widely, and prior 
transformation (or choice of similarity coefficient) 
dictated that all species were given equal weight, 
then the structure in the sample dissimilarities is 
likely to be more difficult to represent in a low 
number of dimensions. More usually, the similarity
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Table 5.2. Road distances (miles) between pairs o f selected towns and cities in the UK (part only).

Ln
London Te
Teesside 247 Tn
Taunton 144 302 St
Stranraer 399 186 416 So
Southampton 77 286 67 422 Sh
Shrewsbury 153 168 146 270 163 PI
Plymouth 211 376 74 490 146 220 Pr
Perth 417 183 452 145 455 306 526 Pz
Penzance 281 442 140 556 217 286 78 592 Ox
Oxford 57 220 109 357 65 104 180 390 250 Nt
Nottingham 122 127 180 283 158 79 254 297 320 94 Nw
Norwich U l 224 248 385 189 195 319 399 389 139 124 Nc
Newcastle 273 35 327 155 311 194 401 150 467 247 153 256 Me
Manchester 184 103 203 218 206 66 277 254 343 142 70 184 128 Lv
Liverpool 197 135 203 219 216 58 278 254 344 154 97 215 153 35 Li
Lincoln 132 119 209 279 184 115 284 293 350 119 36 106 150 84 118 Le
Leeds 190 65 237 217 224 106 312 235 378 160 67 173 91 40 73 67 Kn
Kendal 253 77 270 146 275 124 344 182 410 211 137 244 85 72 72 138 71 In
Inverness 531 297 566 251 569 420 640 115 706 505 411 514 264 368 369 408 349 296 Hu
Hull 168 82 247 252 221 140 321 265 387 156 73 143 117 93 128 37 56 124 380 HI
Holyhead 259 226 252 315 269 106 326 351 392 210 172 296 249 123 94 201 163 169 465 214 Gc
Gloucester 105 224 78 341 91 75 152 376 218 49 102 179 249 125 128 131 159 194 491 169 181 G1
Glasgow 392 179 409 84 415 263 483 61 549 350 276 378 143 211 212 272 210 139 169 245 308 334
Fort William 495 274 512 185 517 366 586 105 652 453 379 481 238 314 314 375 313 242 66 347 411 436 103

measure will automatically downweight the contrib­
ution of species that are rarer (and thus more prone 
to random and uninterpretable fluctuations). There 
is then no necessity to delete species, either to obtain 
realistic low-dimensional ordinations or to make 
the calculations viable; the computational scale is 
determined solely by the number of samples.

A) M D S is generally applicable. MDS can validly be 
applied in a wide variety of situations; fewer 
assumptions are made about the nature and quality 
o f the data when using MDS than for (arguably) 
any other ordination method. It seems difficult to 
imagine a more parsimonious position than stating 
that all that should be relied on is the rank order of 
similarities (though of course this still depends on 
the data transformation and similarity coefficient 
chosen). The step to considering only rank order 
of similarities, rather than their actual values, is not 
as potentially inefficient as it might at first appear, 
in cases where we have more faith in the exact 
value of the (dis)similarities. A simple example 
which illustrates this is in the reconstruction of 
genuine maps. Table 5.2 is a lower triangular 
matrix giving the road distances between a number 
of major towns and cities in the UK. This is a real 
distance matrix (for a change!) but it can be input 
to an MDS in the same way as above, replacing the

distances with their rank order. The resulting 
“map” is shown in Fig. 5.7. Towns and cities are 
placed fairly close to their true locations though 
there is some distortion, and stress is not zero, 
because road distances are not the same as direct 
(“as the crow flies”) distances. The distortion is 
most evident in the peninsular regions where road 
distances are much greater than direct distances, 
e.g. the placement of Penzance and Plymouth in 
relation to the Welsh locations. Using a direct 
distance matrix instead, but again based only on the 
rank distances, the MDS algorithm now produces 
Fig. 5.8. With only minor exceptions, this fits on 
top o f the true map of these locations, as indicated 
by the superimposed coastline: the reconstruction 
is near perfect, and the stress equals zero. This is a 
remarkable demonstration of the ability o f MDS to 
generate powerful displays from only rank order 
information (“Manchester is closer to Leeds than 
Plymouth is to Penzance” etc.), and such examples 
can be most useful (and are commonly used) in 
explaining the purpose and interpretation of 
ordinations to the non-specialist.1

1 For example, Everitt (1978) uses a road distance matrix for the 
UK to illustrate PCoA, and Clarke (1993) uses great-circle dist­
ances between pairs o f world cities in an MDS, to illustrate the 
concept o f  stress in an MDS, when seeking a 2-d representation 
o f “dissimilarities” arising from an inherently higher-dimensional 
(3-d) configuration.
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Fig. 5.7. Non-metric MDS configuration o f the road distances 
(partly given in Table 5.2) between selected UK towns and cities 
(stress = 0.04).

5) Similarities can be given unequal weight. If some 
samples are inherently less reliable than others 
because they are based on smaller amounts of 
material sampled (perhaps combining the results of 
fewer replicates), then similarities involving these 
samples can be given less influence in the cons­
truction of the MDS configuration: a weighting 
term could be added to the definition o f stress in 
equation (5.1). It is also true, though not of much 
practical significance here, that the algorithm can 
operate perfectly successfully when the similarity 
matrix is subject to a certain amount o f missing 
data.f

MDS WEAKNESSES

\ ) M D S  is computationally demanding. To generate 
a configuration with a moderate number of samples 
takes some time on a modern PC (for up to n = 100 
samples, a few seconds for each o f 10 random starts,

f Neither o f these options are currently implemented in PRIMER. 
They could only be o f importance i f  data were to arise directly as 
similarities constructed from pairwise comparisons o f  biological 
material, and some o f those comparisons are not made or are 
lost. It is not o f relevance i f  similarities are generated from a 
species-by-samples data matrix since, usually, either all or none 
o f the similarities involving a particular sample can be calculated. 
I f  the latter, then there is clearly no way the sample could feature 
in the ordination!

Fig. 5.8. Non-metric MDS configuration o f the same towns and 
cities as in Table 5.2, but starting from the matrix o f direct ( “as 
the crow flies ”) distances between every pair (stress = 0).

say), though speed has become much less of an 
issue than it once was. MDS on more than about 
= 1000 samples is not only rather computationally 
intensive (processor time increases roughly proport­
ional to n2)*but also increasing sample size generally 
brings increasing complexity of the sample relation­
ships, and a 2-dimensional representation is unlikely 
to be adequate in any case. (Of course this last 
point is just as true, if not more true, for other 
ordination methods). This scenario was touched 
on in Chapter 4 and in the discussion o f Fig. 5.6, 
where it was suggested that large data sets can 
often, with benefit, be sub-divided or on
the basis o f well-defined subsets from a cluster 
analysis, and the groups analysed separately by 
MDS. Representatives (or averages) from each 
group can then be input to another MDS to display 
the large-scale structure across groups.

2) Convergence to the global
not guaranteed .As we have seen, the iterative

nature of the MDS algorithm makes it necessary to 
repeat each analysis a number of times, from different

* There are no longer absolute co
PRIMER though there will be effective constraints imposed by 
available memory and processor speed. However, the pertinent 
question should now be not “how many samples will it handle? ” 
but “how many samples does it make sense to try to represent, 
approximately, in a single 2-d picture?”
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starting configurations, to be fairly confident that a 
solution that re-appears several times (with the 
lowest observed stress) is indeed the global minimum 
o f the stress function. Generally, the higher the 
stress, the greater the likelihood o f non-optimal 
solutions, so a larger number o f repeats is required; 
this adds to the computational burden.

3) The algorithm places most weight on the large 
distances. A common feature of most ordination 
methods (including MDS and PCA) is that more 
attention is given to correct representation o f the 
overall structure of the samples than' their local 
structure. For MDS, it is clear from the form of 
equation (5.1) that the largest contributions to 
stress will come from incorrect placement of 
samples which are very distant from each other. 
Where distances are small, the sum of squared 
difference terms will also be relatively small and 
the minimisation process will not be as sensitive to 
incorrect positioning. This is another reason therefore 
for repeating the ordination within each large cluster: 
it will lead to a more accurate display of the fine 
structure, if this is important to interpretation. An 
example is given later in Figs. 6.2a and 6.3, and is 
fairly typical of the generally minor differences 
that result: the subset of points are given more 
freedom to expand in a particular direction but 
their relative positions are usually only marginally 
changed.

RECOMMENDATIONS

1 ) MDS can be recommended as one o f the best (the 
best, arguably) ordination techniques available 
(e.g. Everitt, 1978). The few comprehensive studies 
that have compared ordination methods for commun­
ity data give non-metric MDS a high rating (e.g. 
Kenkel and Orloci, 1986). In comparison with 
earlier techniques, such as PCA, MDS has a number 
o f practical advantages stemming from its flexibility 
and (lack of) assumptions.

2) When the inter-sample relationships are relatively 
simple, e.g. there are a few strong clusters or one 
strong gradient of change across all samples, most 
ordination methods will perform adequately and 
give comparable pictures. The main advantage of 
MDS is its greater ability to represent more complex 
relations accurately in low-dimensional space.

3) If the stress is low (say <0.1), an MDS ordination
is probably a more useful representation than a
cluster analysis: when the samples are strongly

grouped the MDS will reveal this anyway, and 
when there is a more gradual continuum of change, 
or some interest in the placement of major groups 
with respect to each other, MDS will display this 
in a way that a cluster analysis is quite incapable of 
doing. For higher values o f stress, the techniques 
should be thought of as com plementary  to each 
other; neither may present the full picture so the 
recommendation is to perform  both  and view them  
in combination. This may make it clear which 
points on the MDS are problematic to position 
(examining some of the local minimum solutions 
can help here11) and an ordination in a higher dim­
ension may prove more consistent with the cluster 
groupings. Conversely, the MDS plots may make 
it clear that some groups in the cluster analysis are 
arbitrary subdivisions of a natural continuum.

 ̂ For example, run the PRIMER MDS routine several times, with 
a single random starting position on each occasion, and examine 
the plots that give a higher stress than originally detected.
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CHAPTER 6: TESTING FOR DIFFERENCES BETWEEN GROUPS OF 
SAMPLES

Many community data sets possess some a priori 
defined structure within the set of samples, for example 
there may be replicates from a number of different 
sites (and/or times). A pre-requisite to interpreting ^
community differences between sites should be a ^
demonstration that there are statistically significant 
differences to interpret. S

UNIVARIATE TESTS ¡
cro

When the species abundance (or biomass) information 
in a sample is reduced to a single index, such as 
Shannon diversity (see Chapter 8), the existence of 
replicate samples from each of the groups (sites/times 
etc.) allows formal statistical treatment by analysis of 
variance (ANOVA). This requires the assumption 
that the univariate index is normally distributed and 
has constant variance across the groups, conditions 
which are normally not difficult to justify (perhaps 
after transformation, see Chapter 9). A so-called 
global test of the null hypothesis (H0), that there are 
no differences between groups, involves computing a 
particular ratio of variability in the group means to 
variability among replicates within each group. The 
resulting F  statistic takes values near 1 if the null 
hypothesis is true, larger values indicating that H0 is 
false; standard tables of the F  distribution yield a 
significance level (p) for the observed F  statistic. 
Roughly speaking, p  is interpreted as the probability 
that the group means we have observed (or a set of 
means which appear to differ from each other to an 
even greater extent) could have occurred if the null 
hypothesis H0 is actually true.

Fig.6.1 and Table 6.1 provide an illustration, for the 6 
sites and 4 replicates per site o f the Frierfjord macro­
fauna samples. The mean Shannon diversity for the 6 
sites is seen in Fig.6.1, and Table 6.1 shows that the F  
ratio is sufficiently high that the probability of observing 
means as disparate as this by chance is /xO.OOl (or 
p< 0.1%), if the true mean diversity at all sites is the 
same. This is deemed to be a sufficiently unlikely 
chance event that the null hypothesis can safely be 
rejected. Convention dictates that values of p<5% 
are sufficiently small, in a single test, to discount the 
possibility that Ho is true, but there is nothing sacrosanct 
about this figure: clearly, values o f p  = 4% and 6% 
should elicit the same inference. It is also clear

3

2

1
B D

Site

Fig. 6.1. Frierfjord macrofauna {F}. Means and 95% confid­
ence intervals o f Shannon diversity (H ) at the 6 fie ld  sites (A- 
E, G) shown in Fig. 1. 1.

that repeated significance tests, each of which has 
(say) a 5% possibility of describing a chance event 
as a real difference, will cumulatively run a much 
greater risk of drawing at least one false inference. 
This is one o f the (many) reasons why it is not usually 
appropriate to handle a multi-species matrix by perform­
ing an ANOVA on each species in turn. (More decisive 
reasons are the complexities of dependence between 
species and the general inappropriateness of normality 
assumptions).

Fig. 6.1 shows the main difference to be a higher 
diversity at the outer site, A. The intervals displayed 
are 95% confidence intervals for the true mean 
diversity at each site; note that these are of equal 
width because they are based on the assumption of 
constant variance, that is, they use a pooled estimate 
of replication variability from the residual mean square 
in the ANOVA table.

Table 6.1. Frierfjord macrofauna {F}. ANOVA table showing 
rejection (at a significance level o f  0.1%) o f the global hypothesis 
o f “no site-to-site differences ” in Shannon diversity (H ’).

Sum of Deg. of Mean F ratio Sig.
squares freedom Square level

Sites 3.938 5 0.788 15.1 <0.1%
Residual 0.937 18 0.052
Total 4.874 23
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Further details o f how confidence intervals are deter­
mined, why the ANOVA F  ratio and F  tables are 
defined in the way they are, how one can allow to 
some extent for the repeated significance tests in 
pairwise comparisons o f site means etc, are not 
pursued here. This is the ground of basic statistics, 
covered by many standard texts, for example Sokal 
and Rohlf (1981), and such computations are available 
in all general-purpose statistics packages. This is not 
to imply that these concepts are elementary; in fact it 
is ironic that a proper understanding of why the uni­
variate F  test works requires a level of mathematical 
sophistication that is not needed for the simple permuta­
tion approach to the analogous global test for differences 
in multivariate structure between groups, outlined 
below.

MULTIVARIATE TESTS

One important feature o f the multivariate analyses 
described in earlier chapters is that they in no way 
utilise any known structure among the samples, e.g. 
their division into replicates within groups. (This is 
in contrast with Canonical Variate Analysis, for 
example, which deliberately seeks out ordination axes 
that, in a certain well-defined sense, best separate out 
the known groups; e.g. Mardia et al, 1979). Thus, the 
ordination and dendrogram of Fig 6.2, for the Frierfjord 
macrofauna data, are constructed only from the 
pairwise similarities among the 24 samples, treated 
simply as numbers 1 to 24. By superimposing the 
group (site) labels A to G on the respective replicates 
it becomes immediately apparent that, for example, 
the 4 replicates from the outer site (A) are quite 
different in community composition from both the 
mid-fjord sites B, C and D and the inner sites E and 
G. A statistical test of the hypothesis that there are 
no site-to-site differences overall is clearly unnecess­
ary, though it is less clear whether sufficient evidence 
exists to assert that B, C and D differ.

This simple structure o f groups, and replicates within 
groups, is referred to as a 1-way layout, and it was 
seen above that 1-way ANOVA would provide the 
appropriate testing framework i f  the data were uni­
variate (e.g. diversity or total abundance across all 
species). There is an analogous multivariate analysis 
o f variance (MANOVA, e.g. Mardia et al, 1979), in 
which the F  test is replaced by a test known as W ilks’ 
A, but its assumptions will never be satisfied for 
typical multi-species abundance (or biomass) data. 
This is the problem referred to in the earlier chapters 
on choosing similarities and ordination methods; 
there are typically many more species (variables) than

samples and the probability distribution of counts 
could never be reduced to approximate (multivariate) 
normality, by any transformation, because o f the 
dominance of zero values. For example, for the 
Frierfjord data, as many as 50% of the entries in the 
species/samples matrix are zero, even after reducing 
the matrix to only the 30 most abundant species!

A valid test can instead be built on a simple non- 
parametric permutation procedure, applied to the 
(rank) similarity matrix underlying the ordination or 
classification of samples, and therefore termed an
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Fig. 6.2 Frierfjord macrofauna {F}. a) MDS plot, b) dendrogram, 
fo r  4 replicates from  each o f  the 6  sites (A-E and G), from  B ray  
Curtis similarities computed fo r VV-transformed species abundances 
(MDS stress  =  0.05).
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ANOSIM test {analysis o f  similarities^ , by analogy 
with the acronym ANOVA (analysis of variance). 
The history o f such permutation tests dates back to 
the epidemiological work of Mantel (1967), and this 
is combined with a general randomization approach 
to the generation of significance levels {Monte Carlo 
tests, Hope 1968). In the context below, it was des­
cribed by Clarke and Green (1988).

4ANOSIM’ FOR THE 1-WAY LAYOUT

Fig.6.3 displays the MDS based only on the 12 samples 
(4 replicates per site) from the B, C and D sites of the 
Frierfjord macrofauna data. The null hypothesis (H0) 
is that there are no differences in community compos­
ition at these 3 sites. In order to examine H0, there 
are 3 main steps:

1) Compute a test statistic reflecting the observed 
differences between  sites, contrasted with differences 
among replicates within  sites. Using the MDS plot of 
Fig. 6.3, a natural choice might be to calculate the 
average distance between every pair of replicates 
within a site, and contrast this with the average distance 
apart o f all pairs of samples corresponding to replicates 
from different sites. A test could certainly be construct­
ed from these distances but it would have a number o f 
drawbacks.

a) Such a statistic could only apply to a situation in 
which the method o f display was an MDS rather 
than, say, a cluster analysis.

b) The result would depend on whether the MDS was 
constructed in two, three or higher dimensions. 
There is often no “correct” dimensionality and one 
may end up viewing the picture in several different 
dimensions -  it would be unsatisfactory to generate 
different test statistics in this way.

c) The configuration of B, C and D replicates in Fig. 
6.3 also differs slightly from that in Fig. 6.2a, 
which includes the full set of sites A-E, G. It is 
again undesirable that a test statistic for comparing 
only B, C and D should depend on which other 
sites are included in the picture.

These three difficulties disappear if the test is based 
not on distances between samples in an MDS but on 
the corresponding rank similarities between samples

 ̂ The PRIMER ANOSIM routine covers tests for replicates from  
1-way and 2-way (nested or crossed) layohts; the ANOSIM2 
routine tackles the special case o f a 2-way layout with no replic­
ation, which needs a modified style o f  test described at the end o f  
this chapter.

Fig. 6.3. Frierfjord macrofauna {F}. MDS ordination as for  
Fig. 6.2 but computed only from the similarities involving sites 
B, C and D (stress = 0.11).

in the underlying triangular similarity matrix. If 
is defined as the average of all rank similarities among 
replicates within  sites, and is the average of rank 
similarities arising from all pairs of replicates 
different sites, then a suitable test statistic is

where M  =  n in - 1 )/2 and is the total number of 
samples under consideration. Note that the highest 
similarity corresponds to a rank of 1 (the lowest 
value), following the usual mathematical convention 
for assigning ranks.

The denominator constant in equation (6.1) has been 
chosen so that:

a) Rcan never technically lie outside the range (-1,1);

b)/? = 1 only if all replicates within sites are more 
similar to each other than replicates from differ­
ent sites;

c) Ris approximately zero if the null hypothesis is 
true, so that similarities between and within sites 
will be the same on average.

R  will usually fall between 0 and 1, indicating some 
degree of discrimination between the sites. substant­
ially less than zero is unlikely since it would correspond 
to similarities across different sites being than
those within sites; such an occurrence is more likely
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to indicate an incorrect labelling of samples.' The R 
statistic itself is a useful comparative measure o f the 
degree o f separation of sites, and its value is at least 
as important as its statistical significance (arguably 
more so). As with standard univariate tests, it is 
perfectly possible for R  to be significantly different 
from zero yet inconsequentially small, if there are 
many replicates at each site.

2) Recompute the statistic under permutations o f  the 
sample labels. Under the null hypothesis H0: “no 
difference between sites”, there will be little effect on 
average to the value of R if the labels identifying 
which replicates belong to which sites are arbitrarily 
rearranged; the 12 samples of Fig. 6.3 are just replicates 
from a single site if H0 is true. This is the rationale 
for a permutation test o f H0; all possible allocations 
of four B, four C and four D labels to the 12 samples 
are examined and the R statistic recalculated for each. 
In general there are

(kn)ll[(n!)kk!] (6 .2)

distinct ways of permuting the labels for n replicates 
at each o f k  sites, giving 5775 permutations here. It is 
computationally possible to examine this number of 
re-labellings but the scale of calculation can quickly 
get out o f hand with modest increases in replication, 
so the full set o f permutations is randomly sampled 
(usually with replacement) to give the null distribution 
of R. In other words, the labels in Fig. 6.3 are randomly 
reshuffled, R recalculated and the process repeated a 
large number of times (7).

3) Calculate the significance level by referring the 
observed value o f R  to its permutation distribution. I f  
H0 is true, the likely spread of values of R  is given by 
the random rearrangements, so that if the true value 
of R  looks unlikely to have come from this distribution 
there is evidence to reject the null hypothesis. Formally, 
if only t o f the T  simulated values of R are as large (or 
larger than) the observed R  then H0 can be rejected at 
a significance level of (¿+1)/(7T1), or in percentage 
terms, 100(¿+1)/(7T1)%.

Chapman and Underwood (1999) point out some situations in 
which negative R values (though not necessarily significantly 
negative) do occur in practice, when the community is species- 
poor and individuals have a heavily clustered spatial distribution, 
so that variability within a group is extreme. It usually also 
requires a design failure, e.g. a major stratifying factor (a differing 
substrate, say) is encompassed within each group but its effect is 
ignored in the analysis.

EXAMPLE: Frierfjord macrofauna

The rank similarities underlying Fig. 6.3 are shown in 
Table 6.2 (note that these are the similarities involv­
ing only sites B, C and D, extracted from the matrix 
for all sites and re-ranked). Averaging across the 3
diagonal sub-matrices (within groups B, C and D) 
gives rw = 22.7, and across the remaining (off-diagonal) 
entries gives rB = 37.5. Also = 12 and M =  66, so
that R  = 0.45. In contrast, the spread o f values 
possible from random re-labelling o f the 12 samples 
can be seen in the histogram of Fig. 6.4: the largest of 
T = 999simulations is less than 0.45 (t= 0). An 

observed value o f R = 0.45 is seen to be a most 
unlikely event, with a probability o f less than 1 in a 
1000 if H0 is true, and we can therefore reject H0 at a 
significance level o f p<0.1% (at least, because 
0.45 may still have been the most extreme outcome 
observed had we chosen an even larger number o f 
simulations).

Table 6.2. Frierfjord macrofauna
for the 4 replicates from  each o f
the most, and B í and C l the least,

BÍ B2 B3 B4 Cl C2 C3 C4 D1 D2 D3 D4
BÍ -

B2 33 -

B3 8 7 -
B4 22 11 19 -

Cl 66 30 58 65 -

C2 44 3 15 28 29 -
C3 23 16 5 38 57 6 -

C4 9 34 4 32 61 10 1 -

D1 48 17 42 56 37 55 51 62 -

D2 14 20 24 39 52 46 35 36 21 -

D3 59 49 50 64 54 53 63 60 43 41 -

D4 40 12 18 45 47 27 26 31 25 2 13 -

Pairwise tests

The above is a global test, indicating that there are site 
differences somewhere that may be worth examining
further. Specific pairs of sites can then be compared: 
for example, the similarities involving only sites B 
and C are extracted, re-ranked and the test procedure 
repeated, giving an Rvalue o f 0.23. This time there 
are only 35 distinct relabellings so, under the null 
hypothesis H0 that sites B and C do not differ, the full 
permutation distribution of possible values o f can 
be computed; 12% of these values are equal to or larger 
than 0.23 so H0 cannot be rejected. By contrast, R  = 
0.54 for the comparison of B against D, which is the 
most extreme value possible under the 35 permutations.
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Fig. 6.4. Frierfjord macrofauna {F}. Simulated distribution o f  
the test statistic R (equation 6.1) under the null hypothesis o f  
‘no site differences'; this contrasts with an observed value fo r  R 
o f 0.45.

B and D are therefore inferred to differ significantly 
at thep< 3% level. For C against D, R = 0.57 similarly 
leads to rejection of the null hypothesis (p<3%).

There is a danger in such repeated significance tests 
which should be noted (although rather little can be 
done to ameliorate it here). To reject the null hypothesis 
at a significance level of 3% implies that a 3% risk is 
being run of drawing an incorrect conclusion (a Type 
I  error in statistical terminology). If many such tests 
are performed this risk will cumulate. For example, 
all pairwise comparisons between 10 sites, each with 
4 replicates (allowing 3% level tests at best), would 
involve 45 tests, and the overall risk of drawing at 
least one false conclusion is high. For the analogous 
pairwise comparisons following the global F test in a 
univariate ANOVA, there exist multiple comparison 
tests which attempt to adjust for this repetition of risk. 
One straightforward possibility, which could be carried 
over to the present multivariate test, is a Bonferroni 
correction. In its simplest form, this demands that, if 
there are n pairwise comparisons in total, each test 
uses a significance level o f 0.05/ft. The so-called 
experiment-wise Type I error, the overall probability 
of rejecting the null hypothesis at least once in the 
series o f pairwise tests, when there are no genuine 
differences, is then kept to 0.05.

However, the difficulty with such a Bonferroni corr­
ection is clear from the above example: with only 4 
replicates in each group, and thus only 35 possible 
permutations, a significance level o f 0.05/3 (=1.7%) 
can never be achieved! It may be possible to plan for 
a modest improvement in the number of replicates: 5 
replicates from each site would allow a 1% level test
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for a pairwise comparison, equation (6.2) showing 
that there are then 126 permutations, and two groups 
of 6 replicates would give close to a 0.2% level test. 
However, this may not be realistic in some practical 
contexts, or it may be inefficient to concentrate effort 
on too many replicates at one site, rather than (say) 
increase the spatial coverage of sites. Also, for a 
fixed number o f replicates, a too demandingly low 
Type I error (significance level) will be at the expense 
of a greater risk of Type I I  error, the probability of 
not detecting a difference when one genuinely exists.

Strategy for interpretation

The solution, as with all significance tests, is to treat 
them in a more pragmatic way, exercising due caution 
in interpretation certainly, but not allowing the formality 
of a test procedure for pairwise comparisons to interfere 
with the natural explanation of the group differences. 
Herein lies the real strength of defining a test statistic, 
such as R , which has an absolute interpretation of its 
value. This is in contrast to a standard Z-type statistic, 
which typically divides an appropriate measure (taking 
the value zero under the null hypothesis) by its standard 
deviation, so that interpretation is limited purely to 
statistical significance o f the departure from zero.

The recommended course of action, for a case such as 
the above Frierfjord data, is therefore always to carry 
out, and take totally seriously, the global ANOSIM 
test for overall differences between groups. Usually 
the total number of replicates, and thus possible 
permutations, is relatively large, and the test will be 
reliable and informative. If it is not significant, then 
generally no further interpretation is permissible. If it 
is significant, it is legitimate to ask where the main 
between-group differences have arisen. The best tool 
for this is an examination of the R value for each pair­
wise comparison: large values (close to unity) are 
indicative of complete separation of the groups, small 
values (close to zero) imply little or no segregation. If 
the MDS is of sufficiently low stress to give a reliable 
picture, then the relative group separations will also 
be evident from this.11 The R value itself is not unduly 
affected by the number of replicates in the two groups 
being compared; this is in stark contrast to its statistical 
significance, which is dominated by the group sizes 
(for large numbers of replicates, R values near zero

But the comparison o f ANOSIM R values is the more generally 
valid approach, e.g. when the two descriptions do not appear to 
be showing quite the same thing. Calculation o f R is in no way 
dependent on whether the 2-dimensional approximation implicit 
in an MDS is satisfactory or not, since R is computed from the 
underlying, full-dimensional similarity matrix.
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could still be deemed “significant”, and conversely, 
few replicates could lead to R  values close to unity 
being classed as “non-significant”).

The analogue of this approach in the univariate case 
(say in the comparison of species richness between sites) 
would be firstly to compute the global F  test for the 
ANOVA. If this establishes that there are significant 
overall differences between sites, the size of the effects 
would be ascertained by examining the differences in 
mean values between each pair of sites, or equivalently, 
by simply looking at a plot o f how the mean richness 
varies across sites (perhaps with the replicates also 
shown). It is then immediately apparent where the 
main differences lie, and the interpretation is a natural 
one, emphasising the important biological features 
(e.g. absolute loss in richness is 5, 10, 20 species, or 
relative loss is 5%, 10%, 20% of the species pool, or 
whatever), rather than putting the emphasis solely on 
significance levels in pairwise comparisons o f means, 
which runs the risk of missing the main message 
altogether.

So, returning to the multivariate data of the above 
Frierfjord example, interpretation o f the ANOSIM 
tests is seen to be straightforward: a significant level 
(p<0.1%) and a mid-range value of R  (= 0.45) for the 
global test of sites B, C and D establishes that there 
are statistically significant differences between these 
sites. Similarly mid-range values of R  (slightly higher, 
at 0.54 and 0.57) for the B v D and C v D comparisons, 
contrasted with a much lower value (of 0.27) for B v C, 
imply that the explanation for the global test result is 
that D differs from both B and C, but the latter sites 
are not distinguishable.

The above discussion has raised the issue o f Type II 
error for an ANOSIM permutation test, and the com­
plementary concept, that of the power o f the test, namely 
the probability of detecting a difference between groups 
when one genuinely exists. Ideas o f power are not 
easily examined for non-parametric procedures of this 
type, which make no distributional assumptions and 
for which it is difficult to specify a precise non-null 
hypothesis. All that can be obviously said in general 
is that power will improve with increasing replication, 
and some low levels o f replication should be avoided 
altogether. For example, if comparing only two groups 
with a 1-way ANOSIM test, based on only 3 replicates 
for each group, then there are only 10 distinct permutat­
ions and a significance level better than 10% could 
never be attained. A test demanding a significance 
level o f 5% would then have no power to detect a 
difference between the groups, however large that 
difference is!

Generality of application

It is evident that few, if  any, assumptions are made 
about the data in constructing the 1-way ANOSIM 
test, and it is therefore very generally applicable. It is 
not restricted to Bray-Curtis similarities or even to 
similarities computed from species abundance data: it 
could provide a non-parametric alternative to Wilks’ 
A test for data which are more nearly multivariate- 
normally distributed, e.g. for testing whether groups 
(sites or times) can be distinguished on the basis of 
their environmental data (see Chapter 11). The latter 
would involve computing a Euclidean distance matrix 
between samples (after suitable transformation of the 
environmental variables) and entering this as a dissim­
ilarity matrix to the ANOSIM procedure. Clearly, if 
multivariate normality assumptions are genuinely 
justified then the ANOSIM test must lack sensitivity 
in comparison with standard MANOVA, but this 
would seem to be more than compensated for by its 
greater generality.

Note also that there is no restriction to a balanced 
number of replicates. Some groups could even have 
only one replicate provided enough replication exists 
in other groups to generate sufficient permutations for 
the global test (though there will be a sense in which 
the power of the test is compromised by a markedly 
unbalanced design, here as elsewhere). More usefully, 
note that no assumptions have been made about the 
variability of within-group replication needing to be 
similar for all groups. This is seen in the following 
example, for which the groups in the 1-way layout are 
not sites but samples from different years at a single 
site.

EXAMPLE: Indonesian reef-eorals

Warwick et al (1990b) examined data from 10 replicate 
transects across a single coral-reef site in S. Tikus 
Island, Thousand Islands, Indonesia, for each of the 
six years 1981, 1983, 1984, 1985, 1987 and 1988. 
The community data are in the form o f % cover of a 
transect by each of the 58 coral species identified, 
and the analysis used Bray-Curtis similarities on 
untransformed data to obtain the MDS of Fig. 6.5. 
There appears to be a strong change in community 
pattern between 1981 and 1983 (putatively linked to 
the 1982/3 El Niño) and this is confirmed by a 1-way 
ANOSIM test for these two years alone: R  = 0.43 (p< 
0.1%). Note that, though not really designed for this 
situation, the test is perfectly valid in the face of 
greater “variability” in 1983 than 1981; in fact it is 
mainly a change in variability rather than location in
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the MDS plot that distinguishes the 1981 and 1983 
groups (a point returned to in Chapter 15)}  This is in 
contrast with the standard univariate ANOVA (or multi­
variate MANOVA) test, which will have no power to 
detect a variability change; indeed it is invalid without 
an assumption of approximately equal variances (or 
variance-covariance matrices) across the groups.

Fig. 6.5. Indonesian reef corals, S. Tikus Island {I}. MDS of%
species cover from 10 replicate transects in each o f 6 years: 1 = 
1981, 3 — 1983 etc (stress = 0.19).

The basic 1-way ANOSIM test can also be extended 
to cater (to some degree) for more complex sample 
designs, as follows.

ANOSIM FOR TWO-WAY LAYOUTS

Three types of field and laboratory designs are con­
sidered here:

a) the 2 -way nested case can arise where two levels
o f spatial replication are involved, e.g. sites are 
grouped a priori to be representative of two “treat­
ment” categories (control and polluted) but there 
are also replicate samples taken within sites;

b)the 2 -way crossed case can arise from studying a
fixed set o f sites at several times (with replicates at 
each site/time combination), or from an experim­
ental study in which the same set o f “treatments”

O f course it could equally be argued
test, this is a drawback rather th
The price for being able to detect
arguably a loss o f specificity in int
important to ascribe differences
community” rather than variation

(e.g. control and impact) are applied at a number o f 
locations (“blocks”), for example in the different 
mesocosm basins of a laboratory experiment;

c) a 2-way crossed case wit of each 
treatment/block combination can also be catered 
for, to a limited extent, by a different style o f 
permutation test.

The following examples of cases a) and b) are drawn 
from Clarke (1993) and the two examples of case c) 
are from Clarke and Warwick (1994).

EXAMPLE: Clyde nematodes (2-way 
nested case)

Lambshead (1986) analysed meiobenthic communities 
from three putatively polluted (P) areas of the Firth o f 
Clyde and three control (C) sites, taking three replicate 
samples at each site (with one exception). The resulting 
MDS, based on fourth-root transformed abundances 
o f the 113 species in the 16 samples, is given in Fig. 
6.6a. The sites are numbered 1 to 3 for both conditions 
but the numbering is arbitrary -  there is nothing in 
common between PI and Cl (say). This is what is 
meant by sites being “nested” within conditions. Two 
hypotheses are then appropriate:

HI: there are no differences among sites each
“treatment” (control or polluted conditions);

H2: there are no differences control and poll­
uted conditions.

The approach to H2 might depend on the outcome of 
testing H 1.

HI can be examined by extending the 1-way ANOSIM 
test to a constrained randomisation procedure. The
presumption under HI is that there may be a difference 
between general location o f C and P samples in the 
MDS plots but within each condition there cannot be 
any pattern in allocation of replicates to the three sites. 
Treating the two conditions entirely separately, one 
therefore has two separate 1 -way permutation analyses 
o f exactly the same type as for the Frierfjord macro­
fauna data (Fig. 6.3). These generate test statistics 
and Rp,computed from equation (6.1), which can be
combined to produce an average statistic This 
can be tested by comparing it with values from all 
possible permutations of sample labels permitted under 
the null hypothesis. This does not mean that all 16 
sample labels may be arbitrarily permuted; the random­
isation is constrained to take place only within the
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separate conditions: P and C labels may not be switched. 
Even so, the number o f possible permutations is large 
(around 20,000).

Notice again that the test is not restricted to balanced 
designs, i.e. those with equal numbers of replicate 
samples within sites and/or equal numbers of sites 
within treatments (although lack of balance causes a 
minor complication in the efficient averaging of Rc 
and Rp, see Clarke, 1988, 1993). Fig. 6.6b displays 
the results of 999 simulations (constrained relabellings) 
from the permutation distribution for R under the 
null hypothesis HI. Possible values range from -0.3 
to 0.6, though 95% of the values are seen to be <0.27 
and 99% are <0.46. The observed R of 0.75 therefore 
provides a strongly significant rejection of hypothesis 
HI.

H2, which will usually be the more interesting of the 
two hypotheses, can now be examined. ' The test of 
HI demonstrated that there are, in effect, only three

a

C3 P1
P1 P1
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C2
02 C2

C 1C1
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P2 p2

genuine “replicates” (the sites 1-3) at each of the two 
conditions (C and P).

This is a 1-way layout, and H2 can be tested by 1-way 
ANOSIM but one first needs to combine the inform­
ation from the three original replicates at each site, to 
define a similarity matrix for the 6 “new” replicates. 
Consistent with the overall strategy that tests should 
only be dependent on the rank similarities in the 
original triangular matrix, one first averages over the 
appropriate ranks to obtain a reduced matrix. For 
example, the similarity between the three PI and 
three P2 replicates is defined as the average o f the 
nine inter-group rank similarities; this is placed into 
the new similarity matrix along with the 14 other 
averages (Cl with C2, PI with Cl etc) and all 15 
values are then re-ranked\ the 1-way ANOSIM then 
gives R  = 0.74. There are only 10 distinct permutations 
so that, although this is actually the most extreme R 
value possible, H2 is only able to be rejected at a 
p< 10% significance level.

The other scenario to consider is that the first test 
fails to reject H I . There are then two possibilities for 
examining H2:

a) Proceed with the average ranking and re-ranking 
exactly as above, on the assumption that even if it 
cannot be proved  that there are no differences 
between sites it would be unwise to assume that 
this is so; the test may have had rather little power 
to detect such a difference.
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Fig. 6.6. Clyde nematodes {Yj. a) MDS o f species abundances 
from three ‘'polluted” (PJ-P3) and three “control” sites (C l-  
C3), with three replicate samples at most sites (stress = 0.09). 
b) Simulated distribution o f the test statistic R under the hypothesis 
HI o f “no site differences” within each condition; the observed 
R is 0.75.

b) Infer from the test of HI that there are no differ­
ences between sites, and treat all replicates as if 
they were separate sites, e.g. there would be 7 
replicates for control and 9 replicates for polluted 
conditions in a 1-way ANOSIM test applied to the 
16 samples in Fig. 6.6a.

Which of these two courses to take is a matter for 
debate, and the argument here is exactly that of 
whether “to pool” or “not to pool” in forming the 
residual for the analogous univariate 2-way ANOVA. 
Option b) will certainly have greater power but runs a 
real risk o f being invalid; option a) is the conservative 
test and it is certainly unwise to design a study with 
anything other than option a) in mind.11

The ANOSIM program in the PRIMER package always takes 
this first option.
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EXAMPLE: Eaglehawk Neek meiofauna 
(2-way crossed case)

An example o f a two-way crossed design is given in 
Warwick et al (1990a) and is introduced more fully 
here in Chapter 12. This is a so-called natural exp­
eriment, studying disturbance effects on meiobenthic 
communities by the continual reworking of sediment 
by soldier crabs. Two replicate samples were taken 
from each of four disturbed patches of sediment, and 
from adjacent undisturbed areas, on a sand flat at 
Eaglehawk Neck, Tasmania; Fig. 6.7a is a schematic 
representation of the 16 sample locations. There are 
two factors: the presence or absence of disturbance 
by the crabs and the “block effect” of the four different 
disturbance patches. It might be anticipated that the 
community will change naturally across the sand flat, 
from block to block, and it is important to be able to 
separate this effect from any changes associated with 
the disturbance itself. There are parallels here with 
impact studies in which pollutants affect sections of 
several bays, so that matched control and polluted 
conditions can be compared against a background of 
changing community pattern across a wide spatial 
scale. There are presumed to be replicate samples 
from each treatment/block combination (the meaning 
of the term crossed), though balanced numbers are 
not essential.
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For the Eaglehawk Neck data, Fig. 6.7b displays the 
MDS for the 16 samples (2 treatments x 4 blocks x 2 
replicates), based on Bray-Curtis similarities from root- 
transformed abundances o f 59 meiofaunal species. 
The pattern is remarkably clear and a classic analogue 
of what, in univariate two-way ANOVA, would be 
called an additive model. The meiobenthic community 
is seen to change from area to area across the sand 
flat but also appears to differ consistently between 
disturbed and undisturbed conditions. A test for the 
latter sets up a null hypothesis that there are no disturb­
ance effects, allowing for the fact that there may be 
block effects, and the procedure is then exactly that 
o f the 2-way ANOSIM test for hypothesis HI of the 
nested case. For each separate block an R  statistic is 
calculated from equation (6.1), as if for a simple one­
way test for a disturbance effect, and the resulting 
values averaged to give R  . Its permutation distribution 
under the null hypothesis is generated by examining 
all simultaneous re-orderings of the four labels (two 
disturbed, two undisturbed) within each block. There 
are only three distinct permutations in each block, 
giving a total o f 34 (= 81) combinations overall and

Fig. 6.7. Tasmania, Eaglehawk Neck {T}. a) Schematic o f the 
‘2-way crossed ’ sampling design fo r  16 meiofaunal cores with 
two disturbed and two undisturbed replicates from each o f four 
patches o f burrowing activity by soldier crabs (shaded), b) MDS 
o f species abundances for the 16 samples, showing separation 
o f the blocks on the x-axis and discrimination o f  disturbed from  
undisturbed communities on the y-axis (stress = 0.11).

the observed value of R  (= 0.94) is the highest value 
attained in the 81 permutations. The null hypothesis 
is therefore rejected at a significance level of just 
over 1%.

The procedure departs from the nested case because 
o f the symmetry in the crossed design. One can now 
test the null hypothesis that there are no block effects, 
allowing for the fact that there are treatment (disturb­
ance) differences, by simply reversing the roles of 
treatments and blocks. R  is now an average of two R 
statistics, separately calculated for disturbed and un­
disturbed samples, and there are 8!/[(2!)44!] = 105 
permutations o f the 8 labels for each treatment. A 
random selection from the 1052 = 11,025 possible 
combinations must therefore be made. In 1000 trials
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the true value o f R (=0.85) is again the most extreme 
and is almost certainly the largest in the full set; the 
null hypothesis is decisively rejected. In this case the 
test is inherently uninteresting but in other situations 
(e.g. a sites x times study) tests for both factors could 
be of practical importance.

EXAMPLE: Mesocosm experiment (2-way 
crossed ease with no replication)

Although the above test may still function if a few 
random cells in the 2-way layout have only a single 
replicate, its success depends on reasonable levels o f 
replication overall to generate sufficient permutations. 
A commonly arising situation in practice, however, is 
where the 2-way design includes no replication at all.^ 
Typically this could be a sites x times field study (see 
next section) but it may also occur in experimental 
work: an example is given by Austen and Warwick 
(1995) o f a laboratory mesocosm study in which a 
complex array of treatments was applied to soft- 
sediment cores taken from a single, intertidal location 
in the Westerschelde estuary, Netherlands. A total o f 
64 cores were randomly divided between 4 mesocosm 
basins, 16 to a basin.

 ̂As noted earlier, this case is not covered by the PRIMER ANOSIM 
routine. It uses a separate routine, ANOSIM2.

Fig. 6.8. Westerschelde nem­
atodes experiment [Wf. MDS 
o f species abundances from  
16 different nutrient-enrichment 
treatments, A to P, applied to 
sediment cores in each o f  four 
mesocosm basins, 1 to 4 (stress 
= 0.28).

The experiment involved 15 different nutrient enrich­
ment conditions and one control, the treatments being 
applied to the surface of the undisturbed sediment cores. 
After 16 weeks controlled exposure in the mesocosm 
environment, the meiofaunal communities in the 64 
cores were identified, and Bray-Curtis similarities on 
root-transformed abundances gave the MDS of Fig. 
6.8. The full set o f 16 treatments was repeated in each 
of the 4 basins (blocks), so the structure is a 2-way 
treatments x blocks layout with only one replicate per 
cell. Little, if any, of this structure is apparent from 
Fig. 6.8 and a formal test o f the null hypothesis

H0: there are no treatment differences (but allowing 
the possibility of basin effects)

is clearly necessary before any sort of interpretation 
is attempted.

In the absence of replication, a test is still possible in the 
univariate case, under the assumption that interaction 
effects are small in relation to the main treatment or 
block differences (Scheffé, 1959). In a similar spirit, 
a global test of H0 is possible here, relying on the 
observation that i f  certain treatments are responsible 
for community changes, in a more-or-less consistent 
way across blocks, separate MDS analyses for each 
block should show a repeated treatment pattern. This 
is illustrated schematically in the top half o f Fig. 6.9: 
the fact that treatment A is consistently close to B 
(and C to D) can only arise is H0 is false. The analogy
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SAMPLES
Block 1 Block 2 Block 3

SIMILARITY
MATRIX

Treatment A B C D A B C D A B C D

SPECIES
COUNTS
(possibly
trans­
formed)

RANK
CORRELATION
Block 1 2 3

1
Average

I  i  I
RANK SIMILARITIES

between
every pair
of columns

Total

1
2

i

6

r.

MDS
PLOTS

Block 1

Bray-Curtis
(say) Block 2

between 
every pair 
of columns

Block 3(Not
used)

Rank separately and "unpeel"

A B

(from Kendall’s 
concordance)

Fig. 6.9. Schematic diagram 
illustrating the stages in def­
ining concordance o f treatment 
patterns across the blocks, and 
the two computational routes

f o )  Pax

with the univariate test is clear: large interaction effects 
imply that the treatment pattern differs from block to 
block and there is little chance of identifying a treat­
ment effect; on the other hand, for a treatment x block 
design such as the current mesocosm experiment there 
is no reason to expect treatments to behave very differ­
ently in the different basins.

What is therefore required is a measure of how well the 
treatment patterns in the ordinations for the different 
blocks match; this statistic can then be recomputed 
under all possible (or a random subset of) permutations 
of the treatment labels within each block. As previously, 
if the observed statistic does not fall within the body 
o f this (simulated) distribution there is significant 
evidence to reject H0 Note that, as required by the 
statement of H05 the test makes no assumption about 
the absence of block effects; between-block similarities 
are irrelevant to a statistic based only on agreement in 
within-block patterns.

In fact, for the same reasons advanced for the previous 
ANOSIM tests (e.g. arbitrariness in choice of MDS 
dimensionality), it is more satisfactory to define agree­
ment between treatment patterns by reference to the 
underlying similarity matrix and not the MDS locations. 
Fig. 6.9 indicates two routes, which lead to equivalent 
formulations. If there are n treatments and thus N  = 
n (n -1)/2 similarities within a block, a natural choice

for agreement of two blocks, j  and k, is the Spearman 
correlation coefficient

<63)

between the matching elements of the two simil­
arity matrices {r;j, r lk: ƒ=], since these ranks are
the only information used in successful MDS plots. 
The coefficients can be averaged across all 
pairs from the b blocks, to obtain an overall measure 
of agreement pav on which to base the test. A short cut 
is to define, from the row totals { r¡.} and grand total 
K. shown in Fig. 6.9, Kendall’s (1970) 
concordance between the full set o f ranks:

w  = - 2— ^ 2— ~ - ) 2 (6 .4)b N ( N  -  1) 1-1

and then exploit the known relationship between this 
and Pav

pm =  ( b W - ] ) / ( b - l )  ( 6 .5 )

As a correlation coefficient, pav takes values in the 
range (-1, 1), with pav = 1 implying perfect agreement 
and Pav » 0 if  the null hypothesis H0 is true.



Chapter 6
page 6-12

G I L
B O H

E
J

D

K

M E 

N

D H

A

I

M

M d K

P L

B

°  H D r  
I C

B «  p N
A p K

L

Fig. 6.10. Westerschelde nem­
atodes experiment {W}. MDS
for the 16 treatments (A to P), 
performed separately for each 
o f the four basins; no shared 
treatment pattern is apparent 
(stress ranges from 0.16 to 
0.20) .

Note that standard significance tests and confidence 
intervals for p or W (e.g. as given in basic statistical 
tables) are totally invalid, since they rely on the ranks 
{r,f i= l,...,N }  being from independent variables; this 
is obviously not true of similarity coefficients from 
all possible pairs of a set o f (independent) samples. 
This does not make pav any the less appropriate as a 
measure of agreement whose departure from zero 
(rejection of H0) is testable by permutation.

For the nutrient enrichment experiment, Fig. 6.10 shows 
the separate MDS plots for the 4 mesocosm basins. 
Although the stress values are rather high (and the 
plots therefore slightly unreliable as a summary of the 
among treatment relationships), there appears to be 
no commonality of pattern, and this is borne out by a 
near zero value for pav o f -0.03. This is central to the 
range o f simulated values for pav under H0 (obtained 
by permuting treatment labels separately for each 
block and recomputing pav), so the test provides no 
evidence of any treatment differences. Note that the 
symmetry o f the 2-way layout also allows a test o f the 
(less interesting) hypothesis that there are no block 
effects, by looking for any consistency in the among- 
basin relationships across separate analyses for each 
o f the 16 treatments. The test is again non-significant, 
with pav = -0.02. The overall negative conclusion to 
the tests should bar any further attempts at interpret­
ation o f these data.

EXAMPLE: Exe nematodes (no replication 
and missing data)

A final example demonstrates a positive outcome to 
such a test, in a common case o f a 2-way layout of 
sites and times with the additional feature that samples 
are missing altogether from a small number o f cells. 
Fig. 6.11 shows again the MDS, from Chapter 5, of 
nematode communities at 19 sites in the Exe estuary.

15

12 14 10
13 17

16

6
11

10 5

Fig. 6.11. Exe estuary nematodes {X}. MDS, fo r 19 inter-tidal 
sites, o f species abundances averaged over 6 bi-monthly sampling 
occasions; see also Fig. 5.1 (stress = 0.05).

3 1 
2
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In fact, this is based on an average of data over six 
successive bi-monthly sampling occasions. For the 
individual times, the samples remain strongly clustered 
into the 4 or 5 main groups apparent from Fig. 6.11. 
Less clear, however, is whether any structure exists 
within the largest group (sites 12 to 19) or whether 
the scatter in Fig. 6.11 is simply the consequence of 
sampling variation.

Rejection of the null hypothesis of “no site differences” 
would be suggested by a common site pattern in the 
separate MDS plots for the 6 times (Fig. 6.12). At 
some of the times, however, one o f the site samples is 
missing (site 19 at times 1 and 2, site 15 at time 4 and 
site 18 at time 6). Instead of removing these sites from 
all plots, in order to achieve matching sets of similar­
ities, one can remove for each pair of times only those 
sites missing for either o f that pair, and compute the 
Spearman correlation p between the remaining rank 
similarities. The p values for all pairs of times are 
then averaged to give pav, i.e. the left-hand route is 
taken in the lower half o f Fig. 6.9. This is usually 
referred to as pairwise removal o f missing data, in 
contrast to the listwise removal that would be needed 
for the right-hand route. Though increasing the 
computation time, pairwise removal clearly utilises 
more of the available information.

Fig. 6.12 shows evidence of a consistent site pattern, 
for example in the proximity o f sites 12 to 14 and the 
tendency o f site 15 to be placed on its own; the fact 
that site 15 is missing on one occasion does not under­
mine this perceived structure. Pairwise computation 
gives pav = 0.36 and its significance can be determined 
by a Monte Carlo test, as before. The (non-missing)

site labels are permuted amongst the available samples, 
separately for each time, and these designations fixed 
whilst all the paired p values are computed (using 
pairwise removal) and averaged. Here the, largest 
such pav value in 999 simulations was 0.30, so the 
null hypothesis is rejected at thep<0.1% level.

In the same way, one can also carry out a test of the 
hypothesis that there are no differences across tim e  
for sites 12 to 19. The component plots, o f the 4 to 6 
times for each site, display no obvious features and 
Pav = 0.08 (p< 18%). The failure to reject this null 
hypothesis justifies, to some extent, the use of averaged 
data across the 6 times, in the earlier analyses.

Tests of this form, searching for agreement between 
two or more similarity matrices, occur also in Chapter 
11 (in the context of matching species to environmental 
data) and Chapter 15 (where they link biotic patterns 
to some model structure). The discussion there includes 
use of measures other than a simple Spearman coeff­
icient, for example a weighted Spearman coefficient 
pw (suggested for reasons explained in Chapter 11), 
and these adjustments could certainly be implemented 
here also if desired, using the left-hand route in the 
lower half of Fig.6.9. In the present context, this type 
of “matching” test is clearly an inferior one to that 
possible where genuine replication exists within the 
2-way layout. It cannot cope with follow-up tests for 
differences between specific pairs o f treatments, and 
it can have little sensitivity if the numbers of treatments 
and blocks are both small. A test for two treatments 
is impossible note, since the treatment pattern in all 
blocks would be identical.

15 18

16

17

15

1213
16

00 -A. 1̂

14
19

Fig. 6 .12. Exe estuary nemat­
odes {X}. MDS fo r  sites 12 to 
19 only, performed separately 

fo r the 6 sampling times (read 
across rows for time order); in 
spite o f the occasional missing 
sample some commonality o f  
site pattern is apparent (stress 
ranges from  0.01 to 0.08).
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RECOMMENDATIONS

1)For typical species abundance matrices, it is much 
better to use an ANOSIM-type permutation proced­
ure rather than a classical MANOVA test; the latter 
will almost always be totally invalid.

2) Choice of the level and type o f replication should 
be carefully considered. Though it is difficult to 
define power for any o f the ANOSIM tests, it is 
clearly important to take sufficient replicates to 
generate a large enough set o f permutations for 
meaningful significance levels. Equally important 
is that replicates should genuinely represent the 
condition being sampled: pseudo-replication (see 
Hurlbert, 1984) is commonplace, e.g. analyses of 
sub-cores of single cores, or sets of spatially cont­
iguous samples which are unrepresentative of the

extent of a site. For pseudo-replicates in a 2-way 
layout, the only valid course is to average them and 
carry out the above global test for the case of “no 
replication” .

3) A point that cannot be over-stressed is that ANOSIM 
tests only apply to groups of samples specified prior 
to seeing (or collecting) the data. A dangerous mis­
conception is that one can use a cluster analysis of 
the species abundance data to define sample group­
ings, whose statistical validity can be established 
by performing an ANOSIM test for differences 
between these groups. This is entirely erroneous, 
the argument being completely circular. The only 
safe course here is to use this first set o f data to 
define potential groups o f interest, i.e. to erect the 
hypothesis, and then to collect a further set of data 
to test that hypothesis.
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CHAPTER 7: SPECIES ANALYSIS

SPECIES CLUSTERING AND MDS

Chapter 2 (page 2-6) describes how the original data 
matrix can be used to define similarities between every 
pair of species; two species are thought of as “similar” 
if their numbers (or biomass) tend to fluctuate in 
parallel across sites. The resulting species similarity 
matrix can be input to a cluster analysis or ordination 
in exactly the same way as for sample similarities.^1

Fig. 7.1 displays the results of a cluster analysis on the 
Exe estuary nematode data {X} first seen in Chapter 5. 
The dendogram is based on Bray-Curtis similarities 
computed on standardised abundances, as given in 
equations (2.9) and (2.10). Following the recommend­
ations on page 2-6, the number o f species was first 
reduced, retaining only those that accounted for more 
than 4% of the total abundance at any one site. Cluster 
analysis with a greater number o f species is possible 
but the “hit-and-miss” occurrence of the rarer species 
across the sites tends to confuse the picture. In fact,

at a similarity of around 10%, the dendrogram divides 
fairly neatly into 5 clusters o f species, and these groups 
can be identified with the 5 clusters that emerge from 
the sample dendrogram, Fig. 5.3. (This identification 
comes simply from categorising the species by the 
site groups in which they have the greatest abundance; 
the correspondence between site and species groupings 
on this basis is seen to be very close.)

Fig 7.2 shows the 2-dimensional MDS plot of the same 
species similarities. The groups determined from the 
cluster analysis are superimposed and indicate a good 
measure of agreement. However, both clustering and 
MDS have worked well here because the sites are 
strongly grouped, with many species characteristic of 
only one site group. Typically, species cluster analyses 
are less clearly delineated than this and the correspond­
ing MDS ordinations have high stress. A more inform­
ative approach is often to concentrate on the sample 
similarities and highlight the species principally 
responsible for determining the sample groupings in 
the cluster or ordination analyses.

100

70 -

OJ _=  60 -
E
'55
W 50 -  0
O0
Q. 40 -  
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Fig. 7.1. Exe estuary nemat­
odes PC}. Dendrogram using 
group-average linking on Bray- 
Curtis species similarities 
from standardised abundance 
data; the 57 most important 
species were retained from an 
original list o f 182. The 5 
groups defined at arbitrary 
similarity level o f 10% are 
indicated.

 ̂Computation o f species similarities is an option available in the PRIMER CLUSTER routine, and 
is referred to as inverse analysis by Field et al (1982).
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DETERMINING DISCRIMINATING 
SPECIES

With a wide range of sophisticated multivariate tech­
niques at one’s disposal, it is all too easy to lose sight 
of the original data. A full understanding requires the 
data matrix to be re-examined in the light o f  the multi­
variate results. In its original form, it can be difficult 
to trace patterns in the data matrix (indeed, this is the 
rationale for multivariate analysis in the first place) 
but a simple re-ordering o f  columns (samples) and  
rows (species) can be an effective way of displaying 
groupings or gradual changes in species composition.

This is illustrated by the data on Bristol Channel Zoo­
plankton {B} met in Chapter 3. The 57 sites are reorder­
ed according to the four groupings in the dendrogram 
(Fig. 3.3), and the 24 species re-ordered according to 
their approximate placement across the species MDS. 
The abundance values are then coded on an approx­
imately log scale, utilising the single character codes
1-9, a-z, A-Y for counts up to 10,000 (Z for >10,000), 
and with dots denoting absences. The resulting matrix 
(Fig. 7.3) is a highly succinct presentation of the raw 
data, with virtually no loss of information content. 
The log scale, which ensures narrower interval widths 
for smaller counts, reflects typical sampling variability

Fig. 7.2. Exe estuary nemat­
odes {X}. 2-dimensional MDS 
o f the species similarity matrix, 
as in Fig. 7.1. The five groups 
from the cluster analysis are 
indicated (stress = 0.08).

for abundance data and matches the likely multi­
variate analysis. (Ordination of the data,
using interval means, is indistinguishable from that 
based on original abundances.)

Grp 111111111122222222222222222233333333333333444444444444444 
Site 124536781192112112111212222243445544335543544333355523445 

02 4397710564185926324890343354571115726876889062
22 + ....... 5 ...................................................
7 + ................. d .........................................
6 +zAzyByAzq3.dhh.............................................
8 +95 927.. 1 ............. 2 .............................. 1....
14 +2228.28.6...... 1.2.32..1.2...... 1.1......................
17 +. .212489412362. . 121.11. . 1. . 13 . . 1___ 3.2. .1 1. .
15 +. . . .emhzc3. . .c.c .......gk.........v...p...................
1 + .entntsAwhAyzCBzGDNVSFMDvFzzvj............................
21 +2262542___23 .12135h6736. . .1......38.2.4....... 24........
10 +2......112 . 38321118b58 .1.....3. .2.5512.1.3.11. .1111.2.2. .
20 + .11...3.al.2gkjk5hcejl.1..b.dk4v.2 ....de2e.2421. .1.
4 + ............de. ccyRKKBAwzyuRMHWTxKFVMGBsqquJt.........y y .
23 + . . a . e ...... dhjccnutEC . vFBvDGEVXJNNWKMKAxvBQyCCzuFyu.E . . z
24 + .............. 1......2 .......1..1..642___ 8____2..2.122..
2 +  c ............u ......... xuABu. . . Cyr j q . . . . z w u y . . . zyH J
19 +. .61.3.21..3d.13.d698b73368..... 2rg2c41..a6986d5dfb5ajl.
18 +nnkkkgqskgxvFCFyC..FEHFyADCz.w ....NDEyuFB.GJFPESURQKVQHJ
3 +. . . . ecdc. .mhdhAuvjuy. AGxyHFUqsEzBzCJtEvxzCQRNNRKXPSJUZYQU
13 + ..........d.hh......... rtrvVvjvzAHCFtw .ywDYZPMNSSSXDZZZZZ
11 + ..................................... p .....JUCvzEzPSDDZZP.
9 + ............2 ............................1. .2. .1. . .133.3. . .
12 + .........................................1 ___ 2. .2.31......
5 + ....................................................... z.y.

Fig. 7.3. Bristol Channel Zooplankton {B}. Re-ordered and coded 
abundance matrix for the 24 species and 57 sites. Abundance 
codes are: 1=1, 2=2, ..., 9=9, a=10-ll, b=12-13, c=14-16, ..., 
s=100-116, ..., z=293-341, A=342-398, ..., 0=1000-1165, ..., 
Y=8577-9999, Z>10000. (For X>4 this is the logarithmic scale 
int[15(log1(>Y) -  5] assigned to 4-9,a-z,A-Z, omitting i,l,o,I,L,0).
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The effect of the re-ordering here is to concentrate the 
higher abundances in the diagonal region of the matrix, 
and it is then relatively easy to identity species which 
have characteristically different abundance levels 
between (say) sample groups 1 and 2 (e.g. species 6, 
1, 4, 23, 18, 3). However, for a matrix with larger 
numbers of species and a less satisfactory species 
ordination, a more automatic, analytical procedure for 
identifying influential species is preferable, as follows.

Similarity breakdown

The fundamental information on the multivariate 
structure o f an abundance matrix is summarised in the 
Bray-Curtis similarities between samples, and it is by 
disaggregating these that one most precisely identifies 
the species responsible for particular aspects of the 
multivariate picture.1 So, first compute the average 
dissimilarity 8  between all pairs of inter-group samples 
(e.g. every sample in group 1 paired with every sample 
in group 2) and then break this average down into 
separate contributions fro m  each species to 8  .

For Bray-Curtis dissimilarity 8jk between two samples 
j  and k, the contribution from the Zth species, S/k(i), could 
simply be defined as the Zth term in the summation of 
equation (2.11), namely:

s jk(0  = i 00.|yÿ -  y ik| / x f =1 + y  it ) (7.1)

8jk(i) is then averaged over all pairs (j, k), with j  in the 
first and k  in the second group, to give the average 
contribution 8 l from the Zth species to the overall

dissimilarity 8  between groups 1 and 2 }  Typically, 
there are many pairs of samples (j, k) making up the 
average S¡, and a useful measure of how consistently 

a species contributes to S¡ across all such pairs is the 

standard deviation SD(^) of the Sjk{i) values.8 If S{

f This is implemented in the PRIMER SIMPER routine ( “similarity 
percentages ”), both in respect o f contribution to average similarity
within a group and average dissimilarity between groups.
+

Though this is a natural definition, it should be noted that, in
the general unstandardised case, there is no unambiguous partition 
o f Ôjk into contributions from each species, since the standardising
term in the denominator o f equation (7.1) is a function o f all species
values.

8 The usual definition o f standard deviation from elementary statistics 
is a convenient measure o f variability here, but there is no sense 
in which the Sjfri) values are independent observations, and one 
cannot use standard statistical inference to define, say, 95% 
confidence intervals fo r the mean contribution from the ith 
species.

is large and SD(^) small (and thus the ratio ¿>, /SD(<5[) 
is large), then the Zth species not only contributes much 
to the dissimilarity between groups 1 and 2 but it also 
does so consistently in inter-comparisons of all samples 
in the two groups; it is thus a good discriminating 
species.

For the Bristol Channel Zooplankton data {B} of Fig. 
7.3, Table 7.1 shows the results of breaking down the 
dissimilarities between sample groups 1 and 2 into 
species contributions. Species are ordered by their 
average contribution 8 l to the total average dissimil­

arity 8  = I \ 8 t = 59.5. Species which are likely to be 
good discriminators of groups 1 and 2 are indicated 
by an asterisk in the J ,/S D (^ ) column. The final 
column rescales the first column to percentages, i.e. it 
computes the % o f the total dissimilarity 8  that is 
contributed by the Zth species and then cumulates 
these percentages down the rows o f the table. It can 
be seen that many of the species play some part in 
determining the dissimilarity between groups 1 and 2, 
and this is typical o f such analyses. Here, nearly 90% 
of the contribution to 8  is accounted for by the first 
twelve species listed, with over 50% accounted for by 
the first five. The results are in good agreement, of 
course, with the pattern observed in the condensed 
matrix format of Fig. 7.3.

In much the same way, though perhaps of less practical 
significance, one can examine the contribution each 
species makes to the average similarity within a group, 
S  . The average contribution of the Zth species, S l , 
could be defined by taking the average, over all pairs

Table 7.1. Bristol Channel Zooplankton {B}. Breakdown o f  
average dissimilarity between groups 1 and 2 into contributions 
from each species; species are ordered in decreasing contribution 
(part only given).

_
Sp Name 5, SD(Si) ôj /SD(5i) SSi %
6 Eurytemora affinis 7.7 2.8 2.7* 13.0
4 Centropages hamatus 7.3 4.4 1.7* 25.2
3 Calanus helgolandicus 6.8 4.0 1.7* 36.7
1 Acartia bifilosa 5.7 4.0 1.4* 46.3

23 Temora longicornis 5.6 3.3 1.7* 55.6
18 Pseudocalanus elongatus 4.7 1.5 3.1* 63.5
13 Paracalanus parvus 3.3 4.2 0.8 69.1
15 Pleurobrachia pileus jv 3.1 2.8 1.1 74.3
20 Sagitta elegans jv 2.9 1.9 1.6* 79.1
19 Sagitta elegans 2.1 1.6 1.3 82.5
8 Gastrosaccus spinifer 2.0 1.8 1.1 85.9
14 Pleurobrachia pileus 1.9 1.6 1.2 89.0
10 Mesopodopsis slabberi 1.7 1.4 1.3 91.9
21 Schistomysis spiritus 1.6 1.4 1.1 94.5
17 Polychaete lai'vae 1.5 1.3 1.2 97.1
2 Acartia clausi 0.7 1.8 0.4 98.3
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of samples within a group, of the zth term in the simil­
arity definition of equation (2.1) (the second form). 
The more abundant a species is within a group, the 
more it will contribute to the similarities.
It typifies that group if it is found at a consistent 
abundance throughout, so the standard deviation of 
its contribution SD(5'/)  is low, and the ratio .S', /SD(5,;) 
high. Note that this says nothing about whether that 
species is a good discriminator o f one group from
another; it may be very typical o f a number o f groups.

Such a breakdown is shown for group 1 o f the Bristol 
Channel Zooplankton data in Table 7.2. The average 
similarity within the group is 66.3, with more than 
two-thirds o f this contributed by only three species 
(6, 18 and 1), the first two of which are found at very 
consistent levels within the group.

Table 7,2, Bristol Channel Zooplankton {B}. Breakdown o f  
average similarity within group 1 into contributions from each 
species (part only given).

Limitations of the method

The SIMPER procedure has two main constraints which,
to some extent, limit its usefulness.11

a) It applies only to Bray-Curtis dissimilarities, whereas 
one might legitimately want to examine the influence 
o f particular variables in a more general case, e.g. 
when the variables are not species abundances but 
environmental measures, and the dissimilarity coeff­
icient is not Bray-Curtis but Euclidean distance.

b) It compares two groups o f samples at a time, identify­
ing the influential species only for each specific 
comparison. Some multivariate patterns, however, 
are not so readily categorised but represent a cont­
inuum o f community change in response to one or 
more underlying gradients.

r A third constraint is the restriction to a one-way layout, allowing 
only comparison o f levels o f one factor. However, this is easily 
relaxed, e.g. to a two-way crossed design in which species cont­
ributions to the dissimilarities between Wo levels o f factor I 
( ‘treatments )  are averaged across the separate levels o f factor 2 
( ‘blocks), see Platell et al (1998).

What is needed here is a more holistic technique, 
identifying the set of influential species which, between 
them , capture the full multivariate pattern (whether 
clustered or forming a gradation), and which operates 
with any appropriately-defined similarity coefficient. 
A possible method is suggested in a later chapter (16) 
on comparing multivariate patterns.

RECOMMENDATIONS

A multivariate display of the samples, either by an 
ordination or a cluster analysis, is not the end-point of 
a community analysis; it should be seen as a frame­
work within which the patterns of individual species 
abundances can be interpreted.

1) This may be by simple re-examination o f the data 
matrix, ordered and re-presented (perhaps averaged 
within groups) in the light o f the information from the 
multivariate analysis.

2) In the case of a convincing clustering o f samples, 
individual species contributions to the separation of the 
groups can be examined with the SIMPER procedure. 
Note that this is not a statistical testing framework, just 
an exploratory analysis. It indicates which species are 
principally responsible either for an observed clustering 
pattern or for differences between sets o f samples 
that have been defined a priori and are confirmed to 
differ in community structure by the tests of Chapter 6.

3) Species identified in this manner (or by the more 
general pattern-matching procedures discussed in 
Chapter 16) are sometimes viewed most effectively in 
conjunction with the ordination. One at a time, they 
can be superimposed on an MDS (or PCA) plot, as 
circles whose varying diameters reflect the abundance 
changes for that species across samples (see, for 
example, Fig. 15.3).f

* Both the PRIMER MDS and PCA routines allow fo r straight­
forward superimposition o f  either individual species abundances 
(from the data file used to create the ordination) or from an 
independent data set (e.g. o f  environmental variables measured 
for the same set o f samples).

Sp Name Si SD(S|) S, /SD(Si) 2  S, %

6 Eurytemora affinis 19.3 6.3 3.1* 29.1
18 Pseudocalanus elongatus 14.7 2.7 5.4* 51.3

1 Acartia bifilosa 12.2 6.4 1.9* 69.6
17 Polychaete laiwae 3.9 3.1 1.2 75.5
14 Pleurobrachia pileus 3.4 3.8 0.9 80.7
2 1 Schistomysis spiritus 3.3 3.6 0.9 85.7
15 Pleuorbrachia pileus jv 3.3 4.7 0.7 90.7
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CHAPTER 8: DIVERSITY MEASURES, DOMINANCE CURVES AND 
OTHER GRAPHICAL ANALYSES

UNIVARIATE MEASURES

A variety of different statistics (single numbers) can 
be used as measures of some attribute of community 
structure in a sample. These include the total number 
of individuals (TV), total number of species (5), the total 
biomass (B \  and also ratios such as B/N  (the average 
size o f an organism in the sample) and N/S  (the average 
number of individuals per species). Abundance or 
biomass totals (or averages) are not dimensionless 
quantities so tend to be less informative than diversity 
indices, such as: richness of the sample, in terms o f 
the number of species for a given number of individuals; 
dominance in the way in which the total number of 
individuals in the sample is divided up among the 
different species (technically referred to as the species 
abundance distribution).

Diversity indices

The main aim is to reduce the multivariate (multi­
species) complexity of assemblage data into a single 
index (or small number of indices) evaluated for each 
sample, which can then be handled statistically by 
univariate analyses. It will often be possible to apply 
standard normal-theory tests (¿-tests and ANOVA) to 
such derived indices, possibly after transformation 
(see page 6-1).

A bewildering variety of diversity indices has been 
used, in a vast literature on the subject, and some of 
the most frequently used candidates are listed below.11 
More detail can be found in two (of several) overviews 
aimed specifically at the biological reader, Heip et al
(1988) and Magurran (1991). It should be noted, 
however, that diversity indices of this type tend to 
exploit some combination of just two features of the 
sample information1:

a) Species richness. This measure is either simply the 
total number of species present or some adjusted

11 The PRIMER DIVERSE routine permits selection o f a subset 
from this list (and more), returning the values to a worksheet fo r  
further analysis or export to a mainstream statistical package.

f This can often be demonstrated quite effectively by calculating 
a plethora o f indices for a set o f samples, then submitting the 
resulting worksheet to the PCA routine (treating the diversity 
indices as i f  they were environmental variables, see Chapter 4). 
The first two principal axes are often then found to explain most 
o f the variability in the fu ll suite o f indices, i.e. the information 
content is inherently only 2-dimensional.

form which attempts to allow for differing numbers 
o f individuals. Obviously, for samples which are 
strictly comparable, we would consider a sample 
containing more species than another to be the more 
diverse.

b)Equitability. This expresses how evenly the indiv­
iduals are distributed among the different species, 
and is often termed evenness. For example, if two 
samples each comprising 100 individuals and four 
species had species abundances of 25, 25, 25, 25 
and 97, 1, 1, 1, we would intuitively consider the 
former to be more diverse although the species 
richness is the same. The former has high evenness, 
but low dominance (essentially the reverse of 
evenness), while the latter has low evenness and 
high dominance (the sample being highly dominated 
by one species).

Different diversity indices emphasize the species rich­
ness or equitability components of diversity to varying 
degrees. The most commonly used diversity measure 
is the Shannon  (or Shannon-Wiener) diversity index :

H ' = -  X¡ pilogO,) (8.1)

where p ,is the proportion of the total count (or biomass
etc) arising from the rth species. Note that logarithms 
to the base 2 are often sometimes used in the calculation, 
reflecting the index’s genesis in information theory. 
There is, however, no natural biological interpretation 
here, so the more usual natural logarithm (to the base 
e) is probably preferable, and commonly used. Clearly, 
when comparing published indices it is important to 
check that the same logarithm base has been used in 
each case. If not, it is simple to convert between results 
since log2x = (logeX)/(loge2), i.e. all indices just need 
to be multiplied or divided by a constant factor. 
Whether it is sensible to compare across different 
studies is another matter, since Chapter 17 shows that, 
like many of the indices given here (Simpson being a 
notable exception, Fig. 17.1), it can be sensitive to the 
degree of sampling effort. Hence should only be 
compared across equivalent sampling designs.

Species richness

Species richness is often given simply as the total
number o f species {S),which is obviously very 
dependent on sample size (the bigger the sample, the 
more species there are likely to be). Alternatively,
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M a rg a le fs  index (d) is used, which also incorporates 
the total number of individuals (TV) and is a measure 
of the number of species present for a given number 
o f individuals:

d  = ( S - l ) / \o g N (8.2)

Equitability

This is often expressed as Pielou’s evenness index:

J ' = H ' / H'max = H r/ \ o g S  (8.3)

where H'max is the maximum possible value of Shannon 
diversity, i.e. that which would be achieved if all species 
were equally abundant (namely, log S).

Simpson

Another commonly used measure is the Simpson index, 
which has a number of forms:

£ = £/>,2

\ - X =  1 -  (S p ,2)

X' = { X , N i ( N - W { N ( N - \ ) }

1 - V  = 1 -  {£ ,N¿Nr \)} l{N{N- \)}  (8.4)

where TV, is the number of individuals of species /. The 
index X has a natural interpretation as the probability 
that any two individuals from the sample, chosen at 
random, are from the same species (X is always < 1). 
It is a dominance index, in the sense that its largest 
values correspond to assemblages whose total abund­
ance is dominated by one, or a very few, of the species 
present. Its complement, 1 -  X, is thus an equitability 
or evenness index, taking its largest value (of 1 - S A) 
when all species have the same abundance. The slightly 
revised forms X! and 1 -  X' are appropriate when total 
sample size (TV) is small (they correspond to choosing 
the two individuals at random without replacement 
rather than with replacement). As with Shannon, 
Simpson diversity can be employed when the {/?,} 
come from proportions of biomass, standardised abund­
ance or other data which are not strictly integral 
counts but, in that case, the X' and 1 -  X' forms are not 
appropriate.

Other count-based measures

Further well-established indices include that of Brillouin 
(see Pielou 1975):

and a further model-based description, Fisher’s a  
(Fisher et al, 1943), which is the shape parameter, 
fitted by maximum likelihood, under the assumption 
that the species abundance distribution follows a log 
series. This has certainly been shown to be the case 
for some ecological data sets but can by no means be 
universally assumed, and (as with Brillouin) its use is 
clearly restricted to genuine (integral) counts.

The final option in this category is the rarefaction 
method of Sanders (1968) and Hurlbert (1971), which 
under the strict assumption that individuals arrive in 
the sample independently o f each other, can be used 
to project back from the counts o f total species (S) 
and individuals (TV), how many species (ESn) would 
have been ‘expected’ had we observed a smaller number 
{n) o f individuals:

E S n - lL U
( N - N ¡ ) \ ( N - n ) l
( N - N j

(8.6)

The idea is thereby to generate an absolute measure of 
species richness, say ES\oo (the number of different 
species ‘expected’ in a sample o f 100 individuals), 
which can be compared across samples of very differing 
sizes. It must be admitted, however, that the independ­
ence assumption is practically unrealistic. It corresponds 
to individuals from each species being spatially rand­
omly distributed, giving rise to independent Poisson 
counts in replicate samples. This is rarely observed 
in practice, with most species exhibiting some form 
of spatial clustering, which can often be extreme. 
Rarefaction will then be strongly biased, consistently 
overestimating the expected number of species for 
smaller sample sizes.

Hill numbers

Finally, Hill (1973b) proposed a unification of several 
diversity measures in a single statistic, which includes 
as special cases:

TVo-S

TV! = exp {H )

TV2 ¡ ^ p }

TV«, = 1 / max{pi} (8.7)

H  = AT1 loge{yV!/(7V, lA^!.. -A's!)} (8.5)

N\ is thus a transform of Shannon diversity, N 2 the 
reciprocal o f  Simpson’s X and is clearly another 
possible evenness index, taking larger values if no 
species dominates the total abundance. Other variations 
on these H ill numbers  are given by Heip (1988).
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Fig. 8.1. Hamilton Harbour, 
Bermuda {Hf. Diversity (H) 
and 95% confidence intervals 
for macrobenthos (left) and 
meiobenthic nematodes (right) 
at six stations.

Units of measurement

The numbers of individuals belonging to each species 
are the most common units used in the calculation o f 
the above indices. For internal comparative purposes 
other units can sometimes be used, e.g. biomass or total 
cover o f each species along a transect or in quadrats 
(e.g. for hard-bottom epifauna), but obviously diversity 
measures using different units are not comparable. 
Often, on hard bottoms where colonial encrusting 
organisms are difficult to enumerate, total or percentage 
cover will be much more realistic to determine than 
species abundances.

Representing communities

Changes in univariate indices between sites or over time 
are usually presented graphically simply as plots o f 
means and confidence intervals for each site or time. 
For example, Fig. 8.1 graphs the differences in diversity 
o f the macrobenthos and meiobenthic nematodes at 
six stations in Hamilton Harbour, Bermuda, showing 
that there are clear differences in diversity between 
sites for the former but much less obvious differences 
for the latter. Fig. 8.2 graphs the temporal changes in 
three univariate indices for reef corals at South Tikus 
Island, Indonesia, spanning the period of the 1982-3 
El Niño (an abnormally long period of high water temp­
eratures which caused extensive coral bleaching in 
many areas throughout the Pacific). Note the dramatic 
decline between 1981 and 1983 and subsequent partial 
recovery in both the number o f species (S) and the 
Shannon diversity (H [), but no obvious changes in 
evenness (,T ).

Discriminating sites or times

The significance of differences in univariate indices 
between sampling sites or times can simply be tested 
by one-way analysis of variance (ANOVA), followed

by t-tests or (preferably) multiple comparison tests for 
individual pairs of sites11; see the discussion at the start 
o f Chapter 6.

Determining stress levels

Increasing levels of environmental stress have historic­
ally been considered to decrease diversity e.g. H ’% 
decrease species richness (e.g. d) and decrease even­
ness (e.g. J \  i.e. increase dominance. This interpret­
ation may, however, be an over-simplification of the 
situation. Subsequent theories on the influence of 
disturbance or stress on diversity have suggested that 
in situations where disturbance is minimal, species 
diversity is reduced because of competitive exclusion 
between species; with a slightly increased level or 
frequency of disturbance competition is relaxed, 
resulting in an increased diversity, and than at sill 
higher or more frequent levels of disturbance species 
start to become eliminated by stress, so that diversity 
falls again. Thus it is at intermediate levels of disturb­
ance that diversity is highest (Connell, 1978; Huston, 
1979). Therefore, depending on the starting point of 
the community in relation to existing stress levels, 
increasing levels of stress (e.g. induced by pollution) 
may either result in an increase or decrease in diversity. 
It is difficult, if not impossible, to say at what point 
on this continuum the community under investigation 
exists, or what value of diversity one might expect at 
that site if the community were not subjected to any 
anthropogenic stress. Thus, changes in diversity can 
only assessed by comparisons between stations along 
a spatial contamination gradient (e.g. Fig. 8.1) or with 
historical data (Fig. 8.2).

These tools are routinely available in all basic statistics packages 
and are not replicated in the current version o f PRIMER; the 
DIVERSE routine can simply output the chosen suite o f indices 
fo r each sample as a worksheet, which can be saved in Excel (or 
text) format fo r  input to many such packages.
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Fig. 8.2. Indonesian reef corals, South Tikus Island {I}. Total number o f species (S), Diversity (H) and Evenness (J) based on coral 
species cover data along transects, spanning the 1982—2 El Niño.

Caswell’s neutral model

In some circumstances, the equitability component of 
diversity can, however, be compared with a theoretical 
expectation for diversity, given the number of individ­
uals and species present. Observed diversity has been 
compared with predictions from Caswell's neutral 
model (Caswell, 1976). This model constructs an 
ecologically ‘neutral’ community with the same number 
of species and individuals as the observed community, 
assuming certain community assembly rules (random 
births/deaths and random immigrations/emigrations) 
and no interactions between species. The deviation 
statistic V is then determined which compares the 
observed diversity (H ’) with that predicted from the 
neutral model (E(^')):

[H’- E j H ’)]
SD(H')

(8.8)

A value o f zero for the Vstatistic indicates neutrality, 
positive values indicate greater diversity than predicted 
and negative values lower diversity. Values >+2 or 
< -2  indicate ‘significant’ departures from neutrality. 
The computer program of Goldman and Lambshead
(1989) is useful.11

Table 8.1 gives the Vstatistics for the macrobenthos 
and nematode component of the meiobenthos from 
Hamilton Harbour, Bermuda (c.f. Fig. 8.1). Note that 
the diversity of the macrobenthos at stations H4 and 
H3 is significantly below neutral model predictions, 
but the nematodes are close to neutrality at all stations.

This is implemented in the PRIMER CASWELL routine, but the 
significance aspects should be treated with some caution since they 
are inevitably crucially dependent on the neutral model assumptions. 
These are usually over-simplistic fo r real assemblages (even 
when genuinely neutral, in the sense that their species do not 
interact) because they again assume simple spatial randomness.

This might indicate that the macrobenthic communities 
are under some kind of stress at these two stations. 
However, it must be borne in mind that deviation in 
H ’ from the neutral model prediction depends only on 
differences in equitability, since the species richness 
is fixed, and that the equitability component of diversity 
may behave differently from the species richness 
component in response to stress (see, for example, 
Fig. 8.2). Also, it is quite possible that the ‘intermediate 
disturbance hypothesis’ will have a bearing on the 
behaviour of V in response to disturbance, and increased 
disturbance may either cause it to decrease or increase. 
Using this method, Caswell found that the flora of 
tropical rain forests had a diversity below neutral model 
predictions!

Table 8.1. Hamilton Harbour, Bermuda {H}. V statistics for  
summed replicates o f  macrobenthos and meiobenthic nematode 
samples at six stations.

Station Macrobenthos Nematodes

H2 + 0.5 -0 .1
H3 -5 .4 + 0.4
H4 -4 .5 -0 .5
H5 -1 .9 0.0
H6 -1 .3 -0 .4
H7 -0 .2 -0 .4

GRAPHICAL/DISTRIBUTIONAL PLOTS

The purpose of graphical/distributional representations 
is to extract information on patterns of relative species 
abundances without reducing that information to a 
single summary statistic, such as a diversity index. 
This class of techniques can be thought of as inter­
mediate between univariate summaries and full 
multivariate analyses. Unlike multivariate methods, 
these distributions may extract universal features of
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community structure which are not a function of the
specific taxa present, and may therefore be related to
levels of biological ‘stress’.'

1 ) Rarefaction curves (Sanders, 1968) were among 
the earliest to be used in marine studies. They are 
plots of the number of individuals on the x-axis 
against the number of species on the y-axis. The 
more diverse the community is, the steeper and 
more elevated is the rarefaction curve. The sample 
sizes (N) may differ widely between stations, but 
the relevant sections of the curves can still be 
compared.

2) Gray and Pearson (1982) recommend plotting the 
number of species in x2 geometric abundance 
classes as a means of detecting the effects of pollution 
stress. These are plots of the number of species 
represented by only 1 individual in the sample (class
1), 2-3 individuals (class 2), 4 -7  (class 3), 8-15 
(class 4) etc. In unpolluted situations there are many 
rare species and the curve is smooth with its mode 
well to the left. In polluted situations there are 
fewer rare species and more abundant species so 
that the higher geometric abundance classes are 
more strongly represented, and the curve may also 
become more irregular or ‘jagged’ (although this 
latter feature is more difficult to quantify). Gray 
and Pearson further suggest that it is the species in 
the intermediate abundance classes 3 to 5 that are 
the most sensitive to pollution-induced changes 
and might best illustrate the differences between 
polluted and unpolluted sites (i.e. this is a way of 
selecting ‘indicator species’ objectively).

3 ) R anked  species abundance (dominance) curves 
are based on the ranking o f species (or higher taxa) 
in decreasing order of their importance in terms of 
abundance or biomass. The ranked abundances, 
expressed as a percentage of the total abundance of 
all species, are plotted against the relevant species 
rank. Log transformations of one or both axes have 
frequently been used to emphasise or downweight 
different sections of the curves. Logging the x (rank) 
axis enables the distribution of the commoner species 
to be better visualised.

-j*
Two plotting programs o f this typ

package: Geometric class plots, wh
ution o f  geometric abundance (/biom

plots, which generate ranked species
choosing from ordinary, cumulative
or dual (abundance-biomass compari
the remainder o f  this chapter.

4) k-dominance curves are ranked abund­
ances plotted against species rank, or log species 
rank (Lambshead et al,1983). This has a smoothing 
effect on the curves. Ordering of curves on a plot 
will obviously be the reverse of rarefaction curves, 
with the most elevated curve having the 
diversity. To compare d  separately from
the number o f  species,the .r-axis (species rank) may
be rescaled from 0-100 (relative species rank), to 
produce Lorenz curves.

EXAMPLES: Carroch Head and Ekofisk 
niacrofauna

Plots o f geometric abundance classes along a transect 
across the Garroch Head {G}sewage-sludge dump site 
(Fig. 8.3) are given in Fig. 8.4. Note that the curves 
are very steep at both ends of the transect (the relatively 
unpolluted stations) with many species represented 
by only one individual, and they extend across very 
few abundance classes (6 at station 1 and 3 at station 
12). As the dump centre at station 6 is approached 
the curves become much flatter, extending over many 
more abundance classes (13 at station 7), and there 
are fewer rare species.

In Fig. 8.5a, average ranked species abundance curves 
(with the x-axis logged) are given for the macrobenthos 
at a group of 6 sampling stations within 250m of the 
current centre o f oil-drilling activity at the Ekofisk 
field in the North Sea {E},compared with a group of 
10 stations between 250m and 1km from the centre 
(see inset map in Fig. 10.6a for locations of these stat­
ions). Note that the curve for the more polluted (inner) 
stations is J-shaped, showing high dominance of abund­
ant species, whereas the curve for the less polluted 
(outer) stations is much flatter, with low dominance

a s a a p l
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Fig. 8.3. Garroch Head macrofauna {G}. Map showing location 
o f dump-ground and position o f sampling stations (1-12); the 
dump centre is at station 6.
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Fig. 8.4. Garroch Head macro­
fauna {G}. Plots o f x2 geo­
metric species abundance 
classes for the 12 sampling 
stations shown in Fig. 8.3.
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Fig. 8.5b shows ^-dominance curves for the same data. 
Here the curve for the inner stations is elevated, 
indicating lower diversity than at the 250m -lkm  
stations.

Abundance/biomass comparison plots

Whether ^-dominance curves are plotted from the 
species abundance distribution of from species biomass 
values, the from the species abundance distribution of 
from species biomass values, the y-axis is always scaled 
in the same range (0 to 100). This facilitates the 
Abundance/Biomass Comparison (ABC) method of 
determining levels of disturbance (pollution-induced 
or otherwise) on benthic macrofauna communities. 
Under stable conditions o f infrequent disturbance the 
competitive dominants in macrobenthic communities

are A-selected or conservative species, with the attrib­
utes of large body size and long life-span: these are 
rarely dominant numerically but are dominant in terms 
of biomass. Also present in these communities are 
smaller r-selected or opportunistic species with a short 
life-span, which can be numerically significant but do 
not represent a large proportion of the community 
biomass. When pollution perturbs a community, 
conservative species are less favoured in comparison 
with opportunists. Thus, under pollution stress, the 
distribution of numbers of individuals among species 
behaves differently from the distribution of biomass 
among species.

The ABC method, as originally described by Warwick 
(1986), involves the plotting of separate ^-dominance
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Fig. 8.5. Ekofisk macrobenthos
{E}, a) Average ranked species 
abundance curves (x-axis 
logged) for 6 stations within 
250m o f the centre o f drilling 
activity (dotted line) and 10 
stations between 250m and 
lkm from the centre (solid 
line); b) k-dominance curves 
for the same groups o f stations.
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Fig. 8.6. Hypothetical k-dominance cum es for species biomass and abundance, showing ‘unpolluted’, ‘moderately polluted’ and 
‘grosslypolluted’ conditions.

curves (Lambshead et al, 1983) for species abundances 
and species biomasses on the same graph and making 
a comparison of the forms o f these curves. The species 
are ranked in order of importance in terms of abundance 
or biomass on the x-axis (logarithmic scale) with 
percentage dominance on the y -axis (cumulative 
scale). In undisturbed communities the biomass is 
dominated by one or a few large species, leading to 
an elevated biomass curve. Each of these species, 
however, is represented by rather few individuals so 
they do not dominate the abundance curve, which 
shows a typical diverse, equitable distribution. Thus, 
the ^-dominance curve for biomass lies above the 
curve for abundance for its entire length (Fig. 8.6a). 
Under moderate pollution (or disturbance), the large 
competitive dominants are eliminated and the inequality 
in size between the numerical and biomass dominants 
is reduced so that the biomass and abundance curves 
are closely coincident and may cross each other one 
or more times (Fig. 8.6b). As pollution becomes more 
severe, benthic communities become increasingly 
dominated by one or a few opportunistic species 
which whilst they dominate the numbers do not 
dominate the biomass, because they are very small­
bodied. Hence, the abundance curve lies above the 
biomass curve throughout its length (Fig. 8.6c).

The contention is that these three conditions (termed 
unpolluted, moderately polluted  and grossly polluted) 
should be recognisable in a community without 
reference to control samples in time or space, the two 
curves acting as an “internal control” against each 
other. Reference to spatial or temporal control samples 
is, however, still desirable. Adequate replication of 
sampling is a prerequisite o f the method, since the 
large biomass dominants are often represented by few 
individuals, which will be liable to a higher sampling 
error than the numerical dominants.

EXAMPLES: Loch Linnhe and Garroch 
Head macrofauna

ABC curves for the macrobenthos at site 34 in Loch 
Linnhe, Scotland {L} between 1963 and 1973 are 
given in Fig. 8.7. The time course of organic pollution 
from a pulp-mill, and changes in species diversity 
(//%  are shown top left. Moderate pollution started 
in 1966, and by 1968 species diversity was reduced. 
Prior to 1968 the ABC curves had the unpolluted 
configuration. From 1968 to 1970 the ABC plots 
indicated moderate pollution. In 1970 there was an 
increase in pollutant loadings and a further reduction 
in species diversity, reaching a minimum in 1972, and 
the ABC plots for 1971 and 1972 show the grossly 
polluted configuration. In 1972 pollution was decreased 
and by 1973 diversity had increased and the ABC 
plots again indicated the unpolluted condition. Thus, 
the ABC plots provide a good ‘snapshot5 of the pollution 
status of the benthic community in any one year, without 
reference to the historical comparative data which 
would be necessaiy if a single species diversity measure 
based on the abundance distribution was used as the 
only criterion.

ABC plots for the macrobenthos along a transect of 
stations across the accumulating sewage-sludge dump- 
ground at Garroch Head, Scotland {G} (Fig 8.3) are 
given in Fig. 8.8. Note how the ABC curves behave 
along the transect, with the peripheral stations 1 and 
12 having unpolluted configurations, those near the 
dump-centre at station 6 with grossly polluted config­
urations and intermediate stations showing moderate 
pollution. Of course, at the dump-centre itself there 
are only three species present, so that any method of 
data analysis would have indicated gross pollution. 
However, the biomass and abundance curves start to
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Fig. 8 .7. Loch Linnhe macro­
fauna {L}. Shannon diversity 
(H) and ABC plots over the 
11 years, 1963 to 1973. Abund­
ance = thick line, biomass — 
thin line.
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become transposed at some distance from the dump- 
centre, when species richness is still high.

Transformations of A-dominance curves

Very often A-dominance curves approach a cumulative 
frequency of 100% for a large part o f their length, and 
in highly dominated communities this may be after the 
first two or three top-ranked species. Thus, it may be 
difficult to distinguish between the forms of these 
curves. The solution to this problem is to transform 
the y-axis so that the cumulative values are closer to 
linearity. Clarke (1990) suggests the modified logistic 
transformation:

y, ' = log[( 1 + yi)l( 101 -  y,)] (8.9)

An example of the effect o f this transformation on 
ABC curves is given in Fig. 8.9 for the macrofauna at 
two stations in Frierfjord, Norway A being an 
unimpacted reference site and C a potentially impacted 
site. At site C there is an indication that the biomass 
and abundance curves cross at about the tenth species, 
but since both curves are close to 100% at this point, 
the crossover is unclear. The logistic transformation 
enables this crossover to be better visualised, and 
illustrates more clearly the differences in the ABC 
configurations between these two sites.
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Fig. 8.8. Garroch Head macro­
fauna {G}. ABC curves fo r  
macrobenthos in 1983. Abund­
ance = thick line, biomass = 
thin line.

Partial dominance curves

A second problem with the cumulative nature of k- 
dominance (and ABC) curves is that the visual inform­
ation presented is over-dependent on the single most 
dominant species. The unpredictable presence of 
large numbers of a species with small biomass, perhaps 
an influx o f the juveniles of one species, may give a 
false impression of disturbance. With genuine disturb­
ance, one might expect patterns of ABC curves to be 
unaffected by successive removal o f the one or two 
most dominant species in terms of abundance or 
biomass, and so Clarke (1990) recommended the use 
of partial dominance curves, which compute the 
dominance o f the second ranked species over the 
remainder (ignoring the first ranked species), the

same with the third most dominant etc. Thus if a¡ is 
the absolute (or percentage) abundance of the rth 
species, when ranked in decreasing abundance order, 
the partial dominance curve is a plot o f p¡ against log 
i ( /=  1, 2 ,..., S - 1), where

Pi = 10 0 « i/ Z j= i  aj» P i  = 1 0 0 a 2/  ’

•••> Ps-\ =100 (8.10)

Earlier values can therefore never affect later points 
on the curve. The partial dominance curves (ABC) 
for undisturbed macrobenthic communities typically 
look like Fig. 8.10, with the biomass curve (thin line) 
above the abundance curve (thick line) throughout its 
length. The abundance curve is much smoother than
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the biomass curve, showing a slight and steady decline 
before the inevitable final rise. Under polluted cond­
itions there is still a change in position of partial domin­
ance curves for abundance and biomass, with the 
abundance curve now above the biomass curve in 
places, and the abundance curve becoming much more 
variable. This implies that pollution effects are not 
just seen in changes to a few dominant species but are 
a phenomenon which pervades the complete suite o f 
species in the community. For example, the time series 
of macrobenthos data from Loch Linnhe (see Fig. 8.11)
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Fig. 8.10. Frierjjord macrofauna {F}. Partial dominance curves 
(abundance/biomass comparison) fo r reference site A (c .f Figs 
8.9a, c fo r  corresponding standard and transformed ABC plots).

Fig. 8.9. Frierjjord macro­
fauna {F}. a), b) Standard
ABC plots for sites A (reference) 
and C (potentially impacted), 
c), d) ABC plots for sites A 
and C with the y-axis subjected 
to modified logistic transform­
ation. Abundance = thick 
line, biomass = thin line.

shows that in the most polluted years 1971 and 1972 
the abundance curve is above the biomass curve for 
most of its length (and the abundance curve is very 
atypically erratic), the curves cross over in the moderat­
ely polluted years 1968 and 1970 and have an unpolluted 
configuration prior to the pollution impact in 1966. In 
1967, there is perhaps the suggestion of incipient change 
in the initial rise in the abundance curve. Although 
these curves are not so smooth (and therefore not so 
visually appealing!) as the original ABC curves, they 
may provide a useful alternative aid to interpretation 
and are certainly more robust to random fluctuations 
in the abundance of a small-sized, numerically dominant 
species.

Phyletic role in ABC method

Warwick and Clarke (1994) have shown that the ABC 
response results from (i) a shift in the proportions of 
different phyla present in communities, some phyla 
having larger-bodied species than others, and (ii) a 
shift in the relative distributions of abundance and 
biomass among species within the Polychaeta but not 
within any of the other major phyla (Mollusca, Crust­
acea, Echinodermata). The shift within polychaetes 
reflects the substitution o f larger-bodied by smaller- 
bodied species, and not a change in the average size 
o f individuals within a species. In most instances the 
phyletic changes reinforce the trend in species substitut­
ions within the polychaetes, to produce the overall ABC
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response, but in some cases they may work against 
each other. In cases where the ABC method has not 
succeeded as a measure of the pollution status of marine 
macrobenthic communities, it is because small non- 
polychaete species have been dominant. Prior to the 
Amoco Cadiz oil-spill, small ampeliscid amphipods 
(crustacea) were present at the Pierre Noire station in 
relatively high abundance (Dauvin, 1984), and their 
disappearance after the spill confounded the ABC plots 
(Ibanez and Dauvin, 1988). It was the erratic presence 
of large numbers of small amphipods (Corophium) or 
molluscs {Hydrobia) which confounded these plots in 
the Wadden Sea (Beukema, 1988). These small non- 
polychaetous species are not indicative of polluted 
conditions, as Beukema points out. Indications of 
pollution or disturbance detected by this method should 
therefore be viewed with caution if the species respons­
ible for the polluted configurations are not polychaetes.

1968

1972

10

Fig. 8.11. Loch Linnhe macro­
fauna  {L}. Selected years 
1966-68 and 1970-72. a-j) 
ABC curves (logistic transform). 
g)-l) Partial dominance curves 
fo r  abundance (thick line) and 
biomass (thin line) for the same 
years.

W statistics

When the number of sites, times or replicates is large, 
presenting ABC plots for every sample can be cumber­
some, and it would be convenient to reduce each plot 
to a single summary statistic. Clearly, some information 
must be lost in such a condensation: cumulative domin­
ance curves are plotted, rather than quoting a diversity 
index, precisely because of a reluctance to reduce the 
diversity information to a single statistic. Nonetheless, 
Warwick’s (1986) contention that the biomass and 
abundance curves increasingly overlap with moderate 
disturbance, and transpose altogether for the grossly 
disturbed condition, is a unidirectional hypothesis and 
very amenable to quantification by a single summary 
statistic.

Fig. 8.12 displays the difference curves B-A  for each 
of four replicate macrofauna samples from two stations
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Fig. 8.12. Hamilton Harbour macrobenthos {H}. Difference 
(B-A) between cumulative dominance c utwe s for biomass and 
abundance for four replicate samples at stations H2 (thick line) 
and H4 (thin line).

(H2 and H4) in Hamilton Harbour, Bermuda; these are 
simply the result of subtracting the abundance (A,) 
from the biomass (B,) value for each species rank (i) 
in an ABC curved For all four replicates from H2, 
the biomass curve is above the abundance curve 
throughout its length, so the sum of the B —A, values 
across the ranks i will be strongly positive. In contrast, 
this sum will be strongly negative for the replicates at 
H4, for which abundance and biomass curves are largely 
transposed. Intermediate cases in which A and B  curves 
are intertwined will tend to give E(5,-v4,) values near 
zero. The summation requires some form of standard­
isation to a common scale, so that comparisons can be 
made between samples with differing numbers o f 
species, and Clarke (1990) proposes the W (for 
Warwick) statistic:

^  = l f =, ( S , - 4 ) / [ 5 0 ( S - l ) ]  (8.11)

It can be shown algebraically that W  takes values in 
the range (-1, 1), with W -» +1 for even abundance 
across species but biomass dominated by a single 
species, and W -> -1 in the converse case (though 
neither limit is likely to be attained in practice).

An example is given by the changing macrofauna 
communities along the transect across the sludge 
dump-ground at Garroch Head {G}. Fig. 8.13 plots 
the W values for each o f the 12 stations against the 
station number. These summarise the 12 component 
ABC plots of Fig. 8.8 and clearly delineate a similar

 ̂Note that, as always with an ABC curve, B, and A, do not necessarily 
refer to values for the same species; the ranking is performed separ­
ately for abundance and biomass.

pattern of gradual change from unpolluted to disturbed 
conditions, as the centre of the dumpsite is approached.

Hypothesis testing for dominance curves

There are no replicates in the Garroch Head data to 
allow testing for statistical significance of observed 
changes in ABC patterns but, for studies involving 
replication, the W  statistic provides an obvious route 
to hypothesis testing. For the Bermuda samples of 
Fig. 8.12, W takes values 0.431, 0.253, 0.250 and 
0.349 for the four replicates at H2 and -0.082, 0.053, 
-0.081 and -0.068 for the four H4 samples. These 
data can be input into a standard univariate ANOVA 
(equivalent in the case of two groups to a standard 2- 
sample Mest), showing that there is indeed a clearly 
established difference in abundance-biomass patterns 
between these two sites {F = 45.3,/?<0.1%).
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Fig. 8.13. Garroch Head macrofauna {G}. W values corresponding 
to the 12 ABC curves o f Fig. 8.8, plotted against station number; 
station 6 is the centre o f  the dump ground (Fig. 8.3).

More general forms of hypothesis testing are possible, 
likely to be particularly relevant to the comparison of 
^-dominance curves calculated for replicates at a number 
of sites, times or conditions (or in some two-way 
layout, as discussed in Chapter 6). A measure of 
“dissimilarity” could be constructed between any pair 
of ^-dominance (or B-A) curves, for example based 
on their absolute distance apart, summed across the 
species ranks. When computed for all pairs of samples 
in a study this provides a (ranked) triangular dis­
similarity matrix, essentially similar in structure to 
that from a multivariate analysis; thus the 1-way and
2-way ANOSIM tests (Chapter 6) can be used in 
exactly the same way to test hypotheses about differ­
ences between a priori specified groups of samples. 
Clarke (1990) discusses some appropriate definitions 
of “dissimilarity” for use with dominance curves in 
such tests.
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CHAPTER 9: TRANSFORMATIONS

There are two distinct roles for transformations in 
community analyses:
a) to validate statistical assumptions for parametric 

techniques -  in the approach of this manual such 
methods are restricted to univariate tests;

b)to  weight the contributions of common and rare 
species in the (non-parametric) multivariate repres­
entations.

The second reason is the only one of relevance to the 
preceding chapters, with the exception of Chapter 8 
where it was seen that standard parametric analysis of 
variance (ANOVA) could be applied to diversity indices 
computed from replicate samples at different sites or 
times. Being composite indices, derived from all species 
counts in a sample, some of these will already be 
approximately continuous variâtes with symmetric 
distributions, and others can be readily transformed to 
the normality and constant variance requirements of 
standard ANOVA. Also, there may be interest in the 
abundance patterns of individual species, specified a 
priori (e.g. keystone species), which are sufficiently 
common across most sites for there to be some possib­
ility of valid parametric analysis after transformation.

UNIVARIATE CASE

For purely illustrative purposes, Table 9.1 extracts the 
counts of a single Thyasira species from the Frierfjord 
macrofauna data {F}, consisting of four replicates at 
each of six sites.

Table 9.1. Frierjjord macrofauna {Fj. Abundance o f a single 
species (Thyasira sp.) in four replicate grabs at each o f the six 
sites (A-E, G).

Two features are apparent:
1) the replicates are not symmetrically distributed (they 

tend to be right-skewed);
2) the replication variance tends to increase with increas­

ing mean, as is clear from the mean and standard 
deviation (s.d.) values given in Table 9.1.

The lack of symmetiy (and thus approximate normality) 
of the replication distribution is probably of less import­
ance than the large difference in variability; ANOVA 
relies on an assumption o f constant variance across 
the groups. Fortunately, both defects can be overcome 
by a simple transformation of the raw data; a power 
transformation (such as a square root), or a logarithmic 
transformation, have the effect both of reducing right­
skewness and stabilising the variance.

Power transformations

The power transformations y* = y x form a simple and 
useful family, in which decreasing values of X produce 
increasingly severe transformations. The log transform, 
y* = loge(y), can also be encompassed in this series 
(technically, (yÀ -  \)/X -> loge(y) as X -> 0). Box and 
Cox (1964) give a maximum likelihood procedure for 
optimal selection of X but, in practice, a precise value 
is not important, and indeed rather artificial if one 
were to use slightly different values of X for each new 
analysis. The aim should be to select a transformation of 
the right order for all data of a particular type, choosing 
only from, say: none, square root, 4th root or logarith­
mic. It is not necessaiy for a valid ANOVA that the 
variance be precisely stabilised or the non-normality 
totally removed, just that gross departures from the 
parametric assumptions (e.g. the order o f magnitude 
change in s.d. in Table 9.1) are avoided. One useful 
technique is to plot log(A.¿/.) against log (mean) and 
estimate the approximate slope o f this relationship 
(ß). This is shown here for the data of Table 9.1.

Log(s.d.)

ß = 0.55

Log(mean)

It can be shown that, approximately, if X is set roughly 
equal to 1 -  ß, the transformed data will have constant 
variance. That is, a slope of zero implies no transform­
ation, 0.5 implies the square root, 0.75 the 4th root 
and 1 the log transform. Here, the square root is 
indicated and Table 9.2 gives the mean and standard

Site: A B C D E G
Replicate

1 1 7 0 1 62 6 6

2 4 0 0 8 1 0 2 6 8

3 3 3 0 5 93 52
4 1 1 2 3 13 69 36

Mean 4.8 3.0 0 . 8 6 . 8 81.8 55.5

Stand, dev. 4.3 2.9 1.5 5.1 18.7 14.8
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deviations of the root-transformed abundances: the 
s.d. is now remarkably constant in spite of the order 
of magnitude difference in mean values across sites. 
An ANOVA would now be a valid and effective testing 
procedure for the hypothesis o f “no site-to-site differ­
ences”, and the means and 95% confidence intervals 
for each site can be back-transformed to the original 
measurement scales for a more visually helpful plot.

Like all illustrations, though genuine enough, this one 
works out too well to be typical! In practice, there is 
usually a good deal o f scatter in the log s.d. versus 
log mean plots; more importantly, most species will 
have many more zero entries than in this example and 
it is impossible to “transform these away”: species 
abundance data are simply not normally distributed 
and can only rarely be made so. Another important 
point to note here is that it is never valid to “snoop” 
in a data matrix of, perhaps, several hundred species 
for one or two species that display apparent differences 
between sites (or times), and then test the “significance” 
o f these groups for that species. This is the problem 
of multiple comparisons referred to in Chapter 6; a 
purely random abundance matrix will contain some 
species which fallaciously appear to show differences 
between groups in a standard 5% significance level 
ANOVA (even were the ANOVA assumptions to be 
valid). The best that such “snooping” can do, in hypoth­
esis testing terms, is identify one or two potential key 
or indicator species that can be tested with an entirely 
independent set o f samples.

These two difficulties between them motivate the only 
satisfactory approach to most community data sets: a 
properly multivariate one in which all species are 
considered in combination in non-parametric methods 
of display and testing, which make no distributional 
assumptions at all about the individual counts.

MULTIVARIATE CASE

There being no necessity to transform to attain distrib­
utional properties, transformations play an entirely 
separate (but equally important) role in the clustering 
and ordination methods o f the previous chapters, that

of defining the balance between contributions from 
common and rarer species in the measure of similarity 
of two samples.

Returning to the simple example of Chapter 2, a subset 
of the Loch Linnhe macro fauna data, Table 9.3 shows 
the effect o f a 4th root transformation o f these abund­
ances on the Bray-Curtis similarities. The rank order 
of the similarity values is certainly changed from the 
untransformed case, and one way of demonstrating 
how dominated the latter is by the single most numerous 
species (Capitella capitata) is shown in Table 9.4. 
Leaving out each o f the species in turn, the Bray-Curtis 
similarity between samples 2 and 4 fluctuates wildly 
when Capitella is omitted in the untransformed case, 
though changes much less dramatically under 4th root 
transformation, which downweights the effect of single 
species.

Table 9.3. Loch Linnhe macrofauna {L} subset. Untransformed 
and 4th root-transformed abundances fo r some selected species 
and samples (years), and the resulting Bray-Curtis similarities 
between samples.

Untransformed
Sample: 1 2 3 4
Species Sample 1 2 3 4
Echinoca. 9 0 0 0 1 -

Myrioche. 19 0 0 3 2 8 -
Labidopl. 9 37 0 10 3 0 42 -
Amaeana 0 12 144 9 4 39 21 4 -
Capitella 0 128 344 2
Mytilus 0 0 0 0

VV-transformed
Sample: 1 2 3 4
Species Sample 1 2 3 4
Echinoca. 1.7 0 0 0 1 -

Myrioche. 2.1 0 0 1.3 2 26 -
Labidopl. 1.7 2.5 0 1.8 3 0 68 -
Amaeana 0 1.9 3.5 1.7 4 52 68 42 -
Capitella 0 3.4 4.3 1.2
Mytilus 0 0 0 0

Transformation sequence

The previous remarks about the family of power trans­
formations apply equally here: they provide a continuum 
of effect from X = 1 (no transform), for which only 
the common species contribute to the similarity, through 
X = 0.5 (square root), which allows the intermediate 
abundance species to play a part, to X -  0.25 (4th 
root), which takes some account also of rarer species. 
As noted earlier, X -> 0 can be thought of as equivalent

Table 9.2. Frierfjord macrofauna {F}. Mean and standard deviation 
over the four replicates at each site, for root-transformed abund­
ances o f  Thyasira sp.

Site: A B C D E G

Mean (y*) 2.01 1.45 0.43 2.42 9.00 7.40

S.d.(y*) 0.97 1.10 0.87 1.10 1.04 1.04
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to the loge(y) transformation and the latter would 
therefore be more severe than the 4th root transform. 
However, in this form, the transformation is impractical 
because the (many) zero values produce log(O) —» -oo. 
Thus, common practice is to use log(l+y) rather than 
log(y), since log(l+y) is always positive for positive;; 
and log( 1 +y) = 0 for y  = 0. The modified transformation 
no longer falls strictly within the power sequence; on 
large abundances it does produce a more severe trans­
formation than the 4th root but for small abundances it 
is less severe than the 4th root. In fact, there are rarely 
any practical differences between cluster and ordination 
results performed followingy ° 25 or log(l+j;) transform­
ations; they are effectively equivalent in focusing 
attention on patterns within the whole community, 
mixing contributions from both common and rare 
species.11

Table 9.4. Loch Linnhe macrofauna {Lj subset. The changing 
similarity between samples 2 and 4 (o f Table 9.3) as each o f the 
six species is omitted in turn, fo r both untransformed and 4th root- 
transformed abundances.

The logical end-point of this transformation sequence 
is therefore not the log transform but a reduction of 
the quantitative data to presence/absence, the Bray- 
Curtis coefficient (say) being computed on the resulting 
matrix of 1 ’s (presence) and 0’s (absence). This comp­
utation is illustrated in Table 9.5 for the subset o f the 
Loch Linnhe macrofauna data used earlier. Comparing 
with Table 9.3, note that the rank order of similarities 
again differs, though it is closer to that for the 4th 
root transformation than for the untransformed data. 
In fact, reduction to presence/absence can be thought 
o f as the ultimate transformation in down-weighting 
the effects of common species. Species which are 
sufficiently ubiquitous to appear in a ll  samples (i.e. 
producing a 1 in all columns) clearly cannot discriminate

 ̂ Though practical differences are likely to be negligible, on purely 
theoretical grounds it could be argued that the 4th root is the more 
satisfactoiy o f the two transformations because Bray-Curtis simil­
arity is then invariant to a scale change in y. Similarity values 
would be altered under a log(l+y) transformation i f  abundances 
were converted from absolute values to numbers per m2 o f the 
sampled substrate, or i f  biomass readings were converted from  
mg to g. This does not happen with a strict power transformation; 
it is clear from equation (2.1) that any multiplying constant applied 
to y  will cancel on the top and bottom lines o f the summations.

between the samples in any way, and therefore do not 
contribute to the final multivariate description. The 
emphasis is therefore shifted firmly towards patterns in 
the intermediate and rarer species, the generally larger 
numbers of these tending to over-ride the contributions 
from the few numerical or biomass dominants.

Table 9.5. Loch Linnhe macrofauna
absence (0) o f the six species in t
the resulting Bray-Curtis similarities.

Presence/absence
Sample: 1 2 3 4
Species Sample 1 2 3 4
Echinoca. 1 0 0 0 1 -

Myrioche. 1 0 0 1 2 33 -

Labidopl. 1 1 0 1 3 0 80 -
Amaeana 0 1 1 1 4 57 86 67 -
Capitella 0 1 1 1
Mytilus 0 0 0 0

One inevitable consequence of “widening the franchise” 
in this way, allowing many more species to have a 
say in determining the overall community pattern, is 
that it will become increasingly harder to obtain 2-d 
ordinations with low stress: the “view” we have chosen 
to take of the community is inherently high-dimensional. 
This can be seen in Fig. 9.1, for the dosing experiment 
{D} in the Solbergstrand mesocosm (GEEP Oslo work­
shop), previously met in Figs. 4.2 and 5.5. Four levels 
of contaminant dosing (designated Control, Low, 
Medium, High) were each represented by four replicate 
samples of the resulting nematode communities, giving 
the MDS ordinations of Fig. 9.1. Note that as the 
severity of the transformation increases, through none, 
root, 4th root and presence/absence (Fig. 9.1a to 9 .Id 
respectively), the stress values rise from 0.08 to 0.19.

It is important to realise that this is an argument 
for deciding against transformation of the data. Fig. 
9.1a is not a b e tte r  representation of the between- 
sample relationships than the other plots: it is a 
one. The choice of transformation is determined by 
which aspects of the community we wish to study. If 
interest is in the response o f the whole community 
then we have to accept that it may be more difficult to 
capture this in a low-dimensional picture (a 3-d or 
higher-dimensional MDS may be desirable). On the 
other hand, if the data are totally dominated by one or 
two species, and it is these that are of key biological 
interest, then o f course it will be possible to visualise 
in a  1 - or 2-d picture how their numbers (or biomass) 
vary between samples: in that case an ordination on 
untransformed data will be little different from a simple 
scatter plot o f the counts for the two main species.

Untransformed
Species omitted: None 1 2 3 4 5 6
Bray-Curtis (S): 21 21 21 14 13 54 21

VV-t ransformed
Species omitted: None 1 2 3 4 . 5 6
Bray-Curtis (S): 68 68 75 61 59 76 68
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CONCLUSIONS

1 ) The transformation sequence in a multivariate analy­
sis, corresponding to a progressive downweighting 
of the common species, is effectively:

p ?  ^
None —>  "V y  pres/abs

log(l

The choice of transformation from this sequence can 
affect the conclusions of an analysis (in fact, it may 
sometimes have more effect than choice of similarity 
coefficient or ordination method). In many respects 
the choice o f transformation is more a biological 
than a statistical question: which “view” of the comm­
unity do we wish to take (shallow  or deep), given 
that there are potentially many different 2-dimension­
al summaries of this high-dimensional data?

2) Statistical considerations do enter, however, particul­
arly in relation to the reliability o f sampling. The 
numerical (and especially the biomass) dominants 
may be highly spatially variable. With untransformed 
data, a biomass MDS can be distorted by a single 
chance capture of a very large-bodied species, as 
can an abundance MDS by the capture o f larvae or 
opportunist colonisers with a strong degree o f spatial

Fig 9.1 Dosing experimenty 
Solbergstrand {D}. MDS o f
nematode communities in four  
replicates from each o f four  
treatments (C  = control, L = 
low, M  - medium, H  = high 
dose o f  a hydrocarbon/copper 
contaminant mixture dosed to 
mesocosm basins), based on 
Bray-Curtis similarities from  
transformed data: a) no trans­
form (stress = 0.08), b) V(stress 
= 0.14), c) vV(stress = 0.18), 
d) presence/absence (stress — 
0.19).

clustering, such that replicate samples at the same 
location give counts varying from 10’s to 1000’s. 
At the other extreme, an analysis which places a lot 
of weight on species which are typically only ever 
found as single individuals in one sample is highly 
susceptible to the arbitrary “noise” introduced by 
the chance capture of rarer species.

3) The practical choice is therefore often between a 
moderate ( V )  and rather severe ( V V  or log) transform, 
retaining the hard-won quantitative information but 
downplaying the species dominants. Note that the 
4th root transform is largely equivalent to reducing 
the original data to about a 6 or 7 point scale: 0 = 
absent, 1 = one individual, 2 = handful, 3 = sizeable 
number, 4 = abundant, >5 = very abundant. Rounding 
the transformed counts to this discrete scale will, in 
many cases, make rather little difference to the multi­
variate ordination (though this would not be the case 
for some of the univariate and graphical methods of 
Chapter 8). The scale may appear crude but is not 
unrealistic; individual species counts are often highly 
variable in (genuine) replicate sampling at one 
location and, if the primary requirement is a multi­
variate description, effort expended in deriving 
precise counts from a single sample could often be 
better spent in analysing more samples, to a less 
exacting level o f detail. This is also a central theme 
of the following chapter.
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CHAPTER 10: SPECIES REMOVAL AND AGGREGATION

SPECIES REMOVAL

For some univariate and graphical methods o f data 
analysis it is important to include all species present 
at each site, since the omission o f some o f them will 
affect the outcome of the analysis. (This is obviously 
true for diversity measures such as species richness, 
for example). In certain circumstances, however, it is 
not possible or not advisable to include all species in 
multivariate analyses. There are two main circum­
stances where eliminating species is necessary:

a) Sample PCA {not MDS) ordination. The number 
of species will sometimes need to be reduced, to 
avoid problems with computing eigenvalues (see 
Chapter 4).1

b) Species analysis (by clustering or MDS ordination). 
Although it is not difficult to construct dendrograms 
and also possible to compute MDS configurations 
for all species, the rarer species, whose occurrence at 
a particular station may largely be due to chance, 
must be excluded for any chance of an interpretable 
outcome (see Chapter 7).

The way in which species are eliminated requires 
careful consideration. A commonly employed method 
is to remove those species which are rare in respect of 
their total abundance at all stations in the survey, for 
example those species comprising less than 1 or 2% 
of the total number of individuals. This however can 
be dangerous in situations where total abundance 
between stations is very variable, as is often the case. 
Situations frequently arise where certain stations have 
a very low overall abundance of organisms, but there 
may be many species which are absolutely characteristic 
o f those stations. Using the above method of species 
reduction, all these species could be eliminated! To 
overcome this problem it is recommended that species 
accounting for >p% o f the total score (abundance or 
biomass) in any one sample are retained {p is chosen

 ̂As discussed in Chapter 4, PCA is not normally recommended 
for species data though, i f  needed, PRIMER can perform it straight­
forwardly. The main use o f the PCA routine in PRIMER, however, 
is fo r multivariate analysis o f environmental variables, see the 
next chapter. It is important to re-emphasize that sample MDS 
ordinations do not require the arbitrary initial step o f eliminating 
some species, and this is one o f  the strengths o f  MDS: it down- 
weights the contributions from rare species in a natural way, 
without the need for initial removals.

to reduce species to the required number; typically 
=3 or 4).+

SPECIES ‘REDUNDANCY’

We have already seen (Chapters 4 & 5) that sample 
relationships can often be well summarised in a 2- 
dimensional ordination, which is reduced from a very 
much higher-dimensional species space. This implies 
that many groups o f species must be 
in the way they characterise the samples, and that an 
analysis of a small subset of the total number of species 
may give a similar result to that for the full species 
analysis. This can be confirmed by performing MDS 
on an arbitrarily chosen subset of species. Gray 
(1988), for example, compared the configurations 
produced from an MDS of 110 species of macrobenthos 
at six stations in Frierfjord, Norway with a similar 
analysis using just 19 arbitrarily selected species 
(Fig. 10.1). Note that the ordinations are remarkably 
similar in the way in which they discriminate between 
sites (although there is a slight difference in that the 
replicate samples at stations G and E are transposed 
in location).

Thus, it appears likely that there will be considerable 
redundancy in the species which characterise the 
composition o f the community, that is, ‘explain’ the 
observed multivariate pattern of samples. For example, 
not only might it be possible to find a small subset of 
species which reproduces nearly all the information 
contained in the full analysis but there might be several 
such (mutually exclusive) subsets. Detection of such 
structural redundancy at the species level is a topic
pursued in Chapter 16, but another way in which this 
idea can be exploited is considered here, in the context 
of taxonomic aggregation.

SPECIES AGGREGATION

The painstaking work involved in sorting and ident­
ifying samples to the species level has resulted in 
community analysis for environmental impact studies 
being traditionally regarded as labour-intensive, time-

f Or automatically in the PRIMER
that selects variables, by specifying
species (n) to retain, and letting the
p  to achieve this.
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consuming and therefore relatively expensive. One 
practical means of overcoming this problem is to exploit 
the redundancy in community data by analysing the 
samples to higher taxonomic levels, such as family, 
rather than to species. If results from identifications 
to higher taxonomic levels are comparable to a full 
species analysis, this means that:

a) A great deal of labour can be saved. Several groups 
o f marine organisms are taxonomically difficult, 
for example (in the macrobenthos) several families 
of polychaetes and amphipods; as much time can 
be spent in separating a few of these difficult groups 
into species as the entire remainder of the sample, 
even in Northern Europe where taxonomic keys for 
identification are most readily available.

b)L ess taxonomic expertise is needed. Many taxa 
really require the skills o f specialists to separate 
them into species, and this is especially true in parts 
of the world where fauna is poorly described. For 
certain groups of marine organisms, e.g. the meio- 
benthos, the necessary expertise required to identify 
even the major taxa (nematodes and copepods) to 
species is lacking in most laboratories which are 
concerned with the monitoring of marine pollution, 
so that these components o f the biota are rarely 
used in such studies, despite their many inherent 
advantages (see Chapter 13).

For the marine macro- and meiobenthos, aggregations 
o f the species data to higher taxonomic levels have 
been made1 and the resultant data matrices have been 
subjected to several forms of statistical analysis to see

1 This can be performed in PRIMER using the Aggregate routine, 
which pools the species counts in a data matrix to genus or family 
level, say, using an aggregation worksheet. The latter specifies 
the genus, family, order, class etc designations for each species, 
and such aggregation files are also o f  fundamental importance in 
computing biodiversity measures based on the taxonomic relatedness 
o f  species in each sample, see Chapter 17.

Fig, 10,1 Frierfjord macro­
fauna {F}, Sample MDS using 
Bray-Curtis similarities on vV 
transformed counts fo r: a) all 
110 species, b) 19 arbitrarily 
selected species (stress = 0.14, 
0.13 respectively).

how much information has been lost compared with 
the full species-level analysis. Although such exper­
iments have not often been done for other components 
of the marine biota (e.g. plankton), results from the 
benthic studies are remarkably clear in that very little 
information appears to be lost after a moderate degree 
of aggregation.

Methods amenable to aggregation

1 ) M ultivariate methods. Although taxonomic levels 
higher than that o f species can be used to some degree 
for all types o f  statistical analysis o f community 
data, it is probably for multivariate methods that 
this is most appropriate, in view of the redundancy 
discussed above. All ordination/clustering techniques 
are amenable to aggregation, and there is now subs­
tantial empirical evidence that identification only 
to the family level for macrobenthos, and the genus 
level for meiobenthos, makes very little difference 
to the results (see, for example, Figs. 10.2-10.6, 
and more recent results described in Chapter 16). 
There are also certain possible theoretical advantages 
to conducting multivariate analyses at a high taxon­
omic level for pollution impact studies. Natural 
environmental variables which also affect community 
structure are rarely constant in surveys designed to 
detect pollution effects over relatively large geograph­
ical areas. In the case of the benthos, these ‘nuisance’ 
variables include water depth and sediment granul­
ometry. However, it is a tenable hypothesis that these 
variables usually influence the fauna more by species 
replacement than by changes in the proportions of 
the major taxa present. Each major group, in its 
adaptive radiation, has evolved species which are 
suited to rather narrow ranges of natural environ­
mental conditions, whereas the advent of pollution 
by man has been too recent for the evolution of 
suitably adapted species. Ordinations of abundance 
or biomass data of these major taxa are therefore
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Fig. 10.2. Nutrient-enrichment experiment, Solbergstrand {N}. MDS plot o f copepod abundances (^-transformed, Bray-Curtis similar­
ities) for four replicates from each o f three treatments; species data aggregated into genera and families (stress = 0.09, 0.09, 0.08).

more likely to correlate with a contamination 
gradient than are species ordinations, the latter 
being more complicated by the effects of natural 
environmental variables when large heterogeneous 
geographical areas are considered. In short, higher 
taxa may well reflect well-defined pollution gradients 
more closely than species.

2) Distributional methods. Aggregation for ABC 
curves is possible, and family level analyses are 
often identical to species level analyses (see Fig. 
10.7).

3) Univariate methods. The concept o f pollution

indicator groups rather than indicator species is 
well-established. For example, at organically 
enriched sites, polychaetes of the family Capitell­
idae become abundant (not just Capitella capitata), 
as do meiobenthic nematodes of the family Onch­
olaimidae. The nematode copepod ratio (Raffaelli 
and Mason, 1981) is an example of a pollution 
index based on higher taxonomic levels. Such 
indices are likely to be of more general applicability 
than those based on species level information. 
Diversity indices themselves can be defined at 
hierarchical taxonomic levels for internal comparative 
purposes, although this is not commonly done in 
practice.

Species Families Phyla

64

on
3Oo 72 73 69 68

70

69 6872 7372

Fig. 10.3. Loch Linnhe macrofauna {Lj. MDS (using Bray-Curtis similarities) o f samples from 11 years. Abundances are VV-transformed 
(top) and untransformed (bottom), with 115 species (left), aggregated into 45 families (middle) and 9 phyla (right). (Reading across rows, 
stress = 0.09, 0.09, 0.10, 0.09, 0.09, 0.02).
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Species Phyla

Oil
spill

Oil
spill

Fig. 10.4. Amoco-Ccidiz oil spill 
{A}. MDS fo r macrobenthos 
at station “Pierre Noire” in the 
Bay o f Morlaix. Species data 
(left) aggregated into phyla 
(right). Sampling months are 
A:4/77, B:8/77, C:9/77, D:12/77, 
E:2/78, F : 4/78, G: 8/78, H: 11/78, 
1:2/79, J:5/79, K:7/79, 1:10/79, 
M:2/80, N:4/80, 0:8/80, P:10/80, 
0:1/81, R:4/81, S:8/81, T:ll/81, 
U:2/82. The oil-spill was during 
3/78, (stress = 0.09, 0.07).

MULTIVARIATE EXAMPLES

Nutrient-enrichment experiment

In the soft-bottom mesocosms at Solbergstrand, Norway 
{N}, box-cores of sublittoral sediment were subjected 
to three levels of particulate organic enrichment (L = 
low dose, H = high dose and C = control), there being 
four replicates from each treatment. After 56 days the 
meiobenthic communities were analysed. Fig 10.2 
shows that, for the copepods, there were clear differ­
ences in community structure between treatments at 
the species level, which were equally evident when the 
species data were aggregated into genera and families.

(Indeed, at the family level the configuration is arguably 
more linearly related to the pollution gradient than at 
the species level).

Loch Linnhe macrofauna

MDS ordinations of the Loch Linnhe macrobenthos are 
given in Fig. 10.3, using both double square root and 
untransformed abundance data. Information on the 
time-course of pollution events and changes in diversity 
are given in Fig. 10.7 (top left). The ordinations have 
been performed separately using all 115 species, the 
45 families and the 9 phyla. In all ordinations there is 
a separation to the right of the years 1970, 1971 and 
1972 associated with increasing pollution levels and

Species Genera
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Fig. 10.5. Indonesian reef corals {I}. MDS fo r  species (p=75) and genus (p=24) data at South Pari Island (Bray-Curtis similarities on 
untransformed % cover). The El Niño occurred in 1982—3. 1=1981, 3=1983 etc. (stress = 0.25).
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community stress, and a return to the left in 1973 
associated with reduced pollution levels and community 
stress. This pattern is equally clear at all levels o f 
taxonomic aggregation. Again, the separation o f the 
most polluted years is most distinct at the phylum 
level, at least for the double square root transformed 
data (and the configuration is more linear with respect 
to the pollution gradient at the phylum level for the 
untransformed data).

Amoco-Cadiz oil-spill

Macrofauna species were sampled at station ‘Pierre 
Noire’ in the Bay of Morlaix on 21 occasions between 
April 1977 and February 1982, spanning the period of 
the wreck of the ‘Amoco-Cadiz’ in March 1978. The 
sampling site was some 40km from the initial tanker 
disaster but substantial coastal oil slicks resulted.

The species abundance MDS has been repeated with the 
data aggregated into five phyla: Annelida, Mollusca, 
Arthropoda, Echinodermata a n d ‘others’ (Fig. 10.4).

a Sam pling s ite s

The analysis of phyla closely reflects the timing of 
pollution events, the configuration being slightly more 
linear than in the species analysis. All pre-spill samples 
(A-E) are in the top left of the configuration, the immed­
iate post-spill sample (F) shifts abruptly to the bottom 
right after which there is a gradual recovery in the 
pre-spill direction. Note that in the species analysis, 
although results are similar, the immediate post-spill 
response is rather more gradual. The community 
response at the phylum level is remarkably clear.

Indonesian reef corals

The El Niño of 1982-3 resulted in extensive bleaching 
of reef corals throughout the Pacific. Fig. 10.5 shows 
the coral community response at South Pari Island 
over six years in the period 1981-1988, based on ten 
replicate line transects along which coral species cover 
was determined. Note the immediate post-El Niño 
location shift on the species MDS and a circuitous 
return towards the pre-El Nino condition. This is closely 
reflected in the genus level analysis.

b  S pecies

A —*  (30km E)

□

500m2kmA

A
Distance from centre of drilling activity:

A >3.5km □  1 - 3.5km ®  250m - 1km S <250m

Fam ilies Phyla

Fig. 10.6. Ekoflsk oil-platform macrobenthos {Ej. a) Map o f station positions, indicating symbol/shading conventions for distance zones 
from the centre o f  drilling activity; b)-d) MDS for root-transformed species, family and phyla abundances respectively (stress = 0.12, 
0.11, 0.13).
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Ekofísk oil-platform macrobenthos

Changes in community structure o f the soft-bottom 
benthic macrofauna in relation to oil drilling activity 
at the Ekofisk platform in the North Sea {E} have been 
studied by Gray et al (1990), Warwick and Clarke 
(1991). The positions of the 39 sampling stations 
around the rig are coded by different symbol and 
shading conventions in Fig. 10.6a, according to their 
distance from the centre o f drilling activity at that 
time. In the MDS species abundance analysis (Fig. 
10.6b), community composition in all of the zones is 
distinct, and there is a clear gradation of change from 
the (black circle) inner to the (open triangle) outer 
zones. Formal significance testing (using the methods

of Chapter 6) confirms statistically the differences 
between all zones. The MDS has been repeated with 
the species data aggregated into families (Fig. 10.6c) 
and phyla (Fig. 10.6d). The separation of sites is still 
clear, and pairwise comparisons confirm the statistical 
significance of differences between all zones, even at 
the phylum level, which does show some deterioration 
of the pattern. This is in contrast to (species-level) 
univariate and graphical/distributional measures, in 
which only the inner zone (less than 250m from the 
rig) was significantly different from the other three 
zones (see Chapter 14). Thus, phylum level analyses 
are again shown to be surprisingly sensitive in detecting 
pollution-induced community change, and little inform­
ation at all is lost by working at the family level.
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Fig. 10.7. Loch Linnhe macro- 
fauna {L}. Shannon diversity 
(H ) and ABC plots over the 
11 years, 1963 to 1973, for  
data aggregated to family level 
(c.f Fig. 8.7). Abundance = 
thick line, biomass = thin line.



Chapter 10
page 10-7

Species Genera

X(Ü

<Dn
E3z

24

20

16

12

8

4

0

10

8

6

4

2

0

2.5
X

coi— 1.5o>
5

0.5

81 83 84 85 87 88

1.6

1.2

0.8

0.4

_!____ I____I_
81 83 84 85 87 88

Year

Fig. 10.8. Indonesian reef corals
m  Means and 95% confidence 

intervals for number o f taxa 
and Shannon diversity at South 
Tikus Island, showing the impact 
and partial recovery from the 
1982-3 El Niño. Species data 
(left) have been aggregated 
into genera (right).

GRAPHICAL EXAMPLES 

Loch Linnhe macrofauna

ABC plots for the Loch Linnhe macrobenthos species 
data are given in Chapter 8, Fig. 8.7, where the perform­
ance of these curves with respect to the time-course 
of pollution events is discussed. In Fig. 10.7 the species 
data are aggregated to family level, and it is seen that 
the curves are virtually identical to the species level 
analysis, so that there would have been no loss of 
information had the samples only been sorted originally 
into families.

Similar results were produced by replotting the ABC 
curves for the Garroch Head sewage sludge dumping 
ground macrobenthos {G}(Fig. 8.8) at the family level 
(Warwick, 1988b).

UNIVARIATE EXAMPLE 

Indonesian reef corals

Fig. 10.8 shows results from another survey o f 10 
replicate line transects for coral cover over the period 
1981-1988, in this case at South Tikus Island, Indonesia 
{I}. Note the similarity o f the species and genus 
analyses for the number of taxa and Shannon diversity, 
with an immediate post-El Niño drop and subsequent 
suggestion o f partial recovery.

RECOMMENDATION

Clearly the operational taxonomic level for environ­
mental impact studies is another factor to be considered 
when planning such a survey, along with decisions 
about the number of stations to be sampled, number 
of replicates, types of statistical analysis to be employed 
etc. The choice will depend on several factors, particul­
arly the time, manpower and expertise available and 
the extent to which that component of the biota being 
studied is known to be robust to taxonomic aggregation, 
for the type of statistical analysis being employed, 
and the type of perturbation expected. Thus, it is 
difficult to give general recommendations and each 
case must be treated on its individual merits. However, 
for routine monitoring of organic enrichment situations 
using macrobenthos, one can by now be rather certain 
that family level analysis will be perfectly adequate. 
Similarly, for meiofaunal taxa, there are by now many 
examples where multivariate analysis of genus-level 
information is indistinguishable from that for 
species.11 For other components of the marine fauna, 
and observational studies not concerned with 
detection of organic enrichment impacts, the body of 
evidence supporting a particular choice of taxonomic 
level is much smaller.

1 See also Chapter 16, which exten
providing the tools for quantifying
ation a multivariate analysis provides
indeed the transformation) is varied.
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CHAPTER 11: LINKING COMMUNITY ANALYSES TO 
ENVIRONMENTAL VARIABLES

APPROACH

In many studies, the biotic data is matched by a suite 
o f environmental variables measured at the same set 
o f sites. These could be natural variables describing 
the physical properties of the substrate (or water) from 
which the samples were taken, e.g. median particle 
diameter, depth of the water column, salinity etc, or 
they could be contaminant variables such as sediment 
concentrations of heavy metals. The requirement here 
is to examine the extent to which the physico-chemical 
data is related to (“explains”) the observed biological 
pattern.

The approach adopted is firstly to analyse the biotic data 
and then ask how well the information on environmental 
variables, taken either singly (Field et al, 1982) or in 
combination (Clarke and Ainsworth, 1993), matches 
this community structured The motivation here, as in 
earlier chapters, is to retain simplicity and transparency 
of analysis, by letting the species and environmental 
data “tell their own stories” (under minimal model 
assumptions) before judging the extent to which one 
provides an “explanation” of the other.

ANALYSIS OF ENVIRONMENTAL 
DATA

An analogous range of multivariate methods is available 
for display and testing of environmental samples as 
has been described for faunistic data: species are simply 
replaced by physical/chemical variables. However, the 
matrix entries are now o f a rather different type and 
lead to different analysis choices. No longer do zeros 
predominate; the readings are usually more nearly 
continuous and, though their distributions are often 
right-skewed (with variability increasing with the mean), 
it is often possible to transform them to approximate 
normality (and stabilise the variance) by a simple root 
or logarithmic transformation, see Chapter 9. Under 
these conditions, Euclidean distance is an appropriate 
measure o f dissimilarity and PCA (Chapter 4) is an 
effective ordination technique, though note that this

 ̂ Methods such as canonical correlation (e.g. Mardia et al, 1979), 
and the important technique o f  canonical correspondence (ter 
Braak, 1986), take the rather different stance o f embedding the 
environmental data within the biotic analysis, motivated by specific 
gradient models defining the species-environment relationships.

will need to be performed on the correlation rather 
than the covariance matrix, i.e. the variables will usually 
have different units of measurement and need normal­
ising to a common scale (see the discussion on p4-6).

In the typical case of samples from a spatial contaminant 
gradient, it is also usually true that the number of 
variables is either much smaller than for a biotic matrix 
or, if a large number of chemical determinations has 
been made (e.g. GC/MS analysis of a range of specific 
aromatic hydrocarbons, PCB congeners etc.) they are 
often highly inter-correlated, tending to preserve a 
fixed relation to each other in a simple dilution model. 
A PCA can thus be expected to do an adequate job of 
representing in (say) two dimensions a pattern which 
is inherently low-dimensional to start with.

In a case where the samples are replicates from different 
groups, defined a priori, the ANOSIM tests of Chapter 
6 are equally available for testing environmental hypoth­
eses, e.g. establishing differences between sites, times, 
conditions etc., where such tests are meaningful/ The 
appropriate (rank) dissimilarity matrix would use 
normalised Euclidean distances.

EXAMPLE: Garroch Head macrolaima

For the 12 sampling stations (Fig. 8.3) across the 
sewage-sludge dump ground at Garroch Head {G}, 
the biotic information was supplemented by sediment 
chemical data on metal concentrations (Cu, Mn, Co, 
...) and organic loading (% carbon and nitrogen); also 
recorded was the water depth at each station. The 
data matrix is shown in Table 11.1; it follows the 
normal convention in classical multivariate analysis 
of the variables appearing as columns and the 
samples as row s/

* The ANOSIM tests in the PRIMER package are not now the only 
possibility; the data will have been transformed to approximate 
normality so, i f  the number o f variables is not large, classical multi­
variate (MANOVA) tests such as Wilks’ A (e.g. Mardia et al, 1979) 
are valid.

* This is in contrast with abundance matrices which, because o f  
their generally larger number o f variables (species) are usually 
transposed, i.e. the samples are displayed as columns. The PRIMER 
software package can handle data entered either way round, 
though in reading in earlier “.p m l” PRIMER files it assumes 
biotic matrices are species-by-samples and environmental ones 
are samples-by-variables.
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Table IL L  Garroch Head dump ground {G}. Sediment metal concentrations (ppm), water depth at the site (m) and organic loading o f 
the sediment (% carbon and nitrogen), for the transect o f 12 stations across the sewage-sludge dump site (centre at station 6), see Fig. 8.3.

Station Cu Mn Co Ni Zn Cd Pb Cr Dep %C %N

1 26 2470 14 34 i 60 0 70 53 144 3 0.53
2 30 1170 15 32 156 0.2 59 15 152 3 0.46
3 37 394 12 38 182 0.2 81 77 140 2.9 0.36
4 74 349 12 41 227 0.5 97 113 106 3.7 0.46
5 115 317 10 37 329 2.2 137 177 112 5.6 0.69
6 344 221 10 37 652 5.7 319 314 82 11.2 1.07
7 194 257 11 34 425 3.7 175 227 74 7.1 0.72
8 127 246 10 33 292 2.2 130 182 70 6.8 0.58
9 36 194 6 16 89 0.4 42 57 64 1.9 0.29
10 30 326 11 26 108 0.1 44 52 80 3.2 0.38
11 24 439 12 34 119 0.1 58 36 83 2.1 0.35
12 22 801 12 33 118 0 52 51 83 2.3 0.45

No replication is available for the 12 stations so the 
variance-to-mean plots suggested in Chapter 9 are not 
possible, but simple scatter plots of all pairwise combin­
ations of variables (idraftsman plots , see the later Fig. 
11.9) suggest that log transformations are appropriate 
for the concentration variables, though not for water 
depth. The criteria here are that variables should not 
show marked skewness across the samples, enabling 
meaningful normalisation, and that the relationships 
between them should be approximately linear; the 
standard product-moment correlations between variables 
and Euclidean distances between samples are then 
satisfactory summaries. In pursuit o f this, note that 
whilst each variable could in theory be subjected to a 
different transformation it is more logical to apply the 
same transformation to all variables of the same type. 
Thus the decision to log all the metal data stems not 
just from the draftsman plots but also from previous 
experience that such concentration variables often 
have standard deviations proportional to their means; 
i.e. a roughly constant percentage variation is log 
transformed to a stable absolute variance.

Fig. 11.1 displays the first two axes (PCI and PC2) of 
a PCA ordination on the transformed data of Table 
11.1. In fact, the first component accounts for much 
o f the variability (61%) in the full matrix, the first 
two components accounting for 88%, so the 2-d plot 
provides an accurate summary of the sample relation­
ships. Broadly speaking, PCI represents an axis of 
increasing contaminant load:

PC I = 0.38 C u '-0 .2 2  M n '-  0.08 C o 'F 0.15NV
+ 0 .37Z n 'F 0.33 Cd' + 0.37Pb' + 0.35 Cr' 
-0 .1 2  Dep' + 0.37 C' + 0.33 N ' (11.1),

since most of the sizeable coefficients are positive. 
The dashes denote that the variables have been log 
transformed (excepting Dep) and normalised to zero 
mean and unit standard deviation. Fig. 11.1 shows a
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Fig. IL L  Garroch Head dump ground {G}. Two-dimensional 
PCA ordination o f the 11 environmental variables o f  Table 11.1 
(transformed and normalised), fo r  the stations (1-12) across the 
sewage-sludge dump site centred at station 6 (% variance explained 
=  88%).

strong pattern of incremental change on moving from 
the ends of the transect to the centre of the dump site, 
which (unsurprisingly) has the greatest levels of organic 
enrichment and metal concentrations (a significant 
exception being Mn).

LINKING BIOTA TO UNIVARIATE 
ENVIRONMENTAL MEASURES

Univariate community measures

If the biotic data are best summarised by one, or a few, 
simple univariate measures (such as diversity indices), 
one possibility is to attempt to correlate these with a 
similarly small number of environmental variables, 
taken one at a time. The summary provided by a 
principal component from a PCA o f environmental



Chapter 11
page 11-3

variables can be exploited in this way. In the case of 
the Garroch Head dump ground, Fig. 11.2 shows the 
relation between Shannon diversity of the macrofauna 
samples at the 12 sites and the overall contaminant 
load, as reflected in the first PC of the environmental 
data (Fig. 11.1). Here the relationship appears to be a 
simple linear decrease in diversity with increasing 
load, and the fitted linear regression line clearly has a 
significantly non-zero slope (ß = -  0.29, p  < 0.1%).
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Fig. 11.2. Garroch Head macrofauna fG}. Linear regression o f 
Shannon diversity (Hf), at the 12 sampling stations, against the 
first PC axis score from the environmental PC A o f Fig. 11.1, 
which broadly represents an axis o f increasing contaminant 
load (equation 11.1).

Multivariate community measures

In most cases however, the biotic data is best described 
by a multivariate summary, such as an MDS ordination. 
Its relation to a univariate environmental measure can 
then be visualized in bubble plots by representing the 
values of this variable as a symbol of differing sizes and 
superimposing these symbols on the biotic ordination 
o f the corresponding samples. This, or the alternative 
superimposition of coded values for the variable, can 
be an effective means of noting consistent differences 
in the environmental variable between biotic clusters 
or observing a smooth relationship with ordination 
gradients (Field et al, 1982).^

 ̂Bubble plots, superimposing environmental data onto an ordination, 
are a basic feature provided in the PRIMER MDS plotting routine. 
The technique can also be useful in a wider context: Field et al 
(1982) superimpose morphological characteristics o f each species 
onto a species MDS o f the type seen in Chapter 7, and Warwick 
and Clarke (1993a; see also Fig. 15.3) give an example o f  super­
imposition o f  biotic variables drawn from the same data matrix 
as used to create the MDS. The latter can provide useful insight 
into the role o f individual taxa in shaping the biotic picture (see 
section 4 o f the PRIMER User Manual/Tutorial), especially when 
the number o f  taxa is small, as is the case for the phylum-level 
“meta-analysis” o f Chapter 15.

EXAMPLE: Bristol Channel Zooplankton

The cluster analysis of Zooplankton samples from 57 
sites in the Bristol Channel was seen in Chapter 
3, and the dendogram suggested a division of the 
samples into 4 or 5 main clusters (Fig. 3.3). The 
matching MDS (Fig. 11.3), whilst in good agreement 
with the cluster analysis, reveals a more informative 
picture of a strong gradient of change from the Inner 
Channel to the Celtic Sea sites.

This is seen most graphically by superimposing a 
code representing the salinity levels for each sample 
(Fig. 11.4). Biological considerations suggest that a 
simple linear coding is not appropriate: one would 
expect species turnover to be much greater through a 
salinity differential o f 1 ppt in fully saline water than 
the turnover from a similar 1 ppt change at (say) 25 
ppt. This motivates the application of a 
logarithmic transformation, log (36 -  or more 
precisely:

s* = a -  bloge(3<5 -  5) (11.2)

where a = 8.33, b -3 are simple constants chosen for
this data to constrain the transformed variable 5* to 
lie, when rounded to the nearest integer, in the range 
1 (low) to 9 (high salin ity)/ Fig. 11.4 then clearly 
displays the strong correlation o f the Zooplankton 
community structure with the salinity gradient. It 
also helps to focus attention on sites which appear 
slightly anomalous in this respect, and raises questions 
about whether there are secondary environmental 
variables which might explain the biological differ­
entiation of samples at similar salinities/

* In the PRIMER TRANSFORM
salinity variable is therefore: int(0. +
these bubble values can then be u

+
* Note the horseshoe effect (more properly termed the arch effect), 
which is a common feature o f the ordination from single, strong 
environmental gradients. Both theoretically and empirically, 
non-metric MDS would seem to be less susceptible to this than 
metric ordination methods, but without the drastic (and somewhat 
arbitrary) intervention in the plot that a technique like detrended 
correspondence analysis uses (specifically to “cut and paste” 
such ordinations to a straight line), some degree o f curvature is 
unavoidable and natural. Where samples towards opposite ends 
o f the environmental gradient have few species in common (thus 
giving dissimilarities near 100%), samples which are even further 
apart on the gradient have little scope to increase their dissimil­
arity further. To some extent, non-metric MDS can compensate 
for this by the flexibility o f  its monotonie regression o f distance 
on dissimilarity (Chapter 5), but arching o f  the tails o f the plot is 
clearly inevitable after dissimilarities o f 100% are reached.
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Fig. 11.3. Bristol Channel Zoo­
plankton {B}. Biotic MDS for  
the 57 sampling sites (1-29, 
31-58) mapped in Fig. 3.2, 
from the same Bray-Curtis 
similarities on Vv-transformed 
abundances used for the cluster 
analysis o f Fig. 3.3 (stress = 
0.11).
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Fig. 11.4. Bristol Channel Zoo­
plankton {B}. MDS o f Fig. 
11.3, with superimposed codes 
representing increasing salinity 
levels at the 57 sites; 1: <26.3, 
2: (26.3, 29.0), 3: (29.0, 31.0), 
..., 8: (34.7,35.1), 9: >35.1 ppt.

EXAMPLE: Garroch Head macrofauna

The macrofauna samples from the 12 stations on the 
Garroch Head transect {G}lead to the MDS plot o f 
Fig. 11.5a. For a change, this is based not on abundance 
but biomass values (root-transformed).' Earlier in the 
chapter, it was seen that the contaminant gradient 
induced a marked response in species diversity (Fig.

'  Chapter 14 argues that, where it
times be more biologically relevant than abundance, though in 
practice MDS plots from both will be broadly similar, especially 
under heavy transformation, as the data tends towards presence/ 
absence (Chapter 9).

11.2), and there is an even more graphic representation 
o f steady community change in the multivariate plot 
as the dump centre is approached (stations 1 through 
to 6), with gradual reversion to the original community 
structure on moving away from the centre (stations 6 
through to 12).

The correlation o f the biotic pattern with particular 
contaminant variables is clearly illustrated by the 
superimposition technique discussed above: Fig. 
11,5b displays the values of % carbon in the sediment 
(Tables 11.1) as circles of varying diameter, which 
confirms the main axis of the biotic MDS as one o f 
the increasing organic enrichment. Several o f the 
metal concentrations from Table 11.1 show a similar
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Fig. 11.5. Garroch Head macro­
fauna {G}, a) MDS o f Bray- 
Curtis similarities from trans­
formed species biomass data 
at the 12 stations (Fig. 8.3); 
b)-d) the same MDS but with 
superimposed circles o f increas­
ing size with increasing sediment 
concentration o f C, Mn and 
Pb, from Table 11.1. (Stress 
= 0.05).

pattern, one exception being Mn, which displays a 
strong gradient in the other direction (Fig. 11.5c).

In fact, some of the metal and organic variables are so 
highly correlated with each other (e.g. compare the 
plot for Pb in Fig. 11.5d with 11.5b) that there is little 
point in retaining all of them in the environmental data 
matrix. Clearly, when two abiotic variables are so 
strongly related (collinear), separate putative effects 
on the biotic structure could never be disentangled 
(their effects are said to be confounded).

EXAMPLE: Exe estuary nematodes

The Garroch Head data is an example o f a smooth 
gradation in faunal structure reflected in a matching 
gradation in several contaminant variables. In contrast, 
the Exe estuary nematode communities {X/, discussed 
in Chapter 5, separate into five well-defined clusters 
of samples (Fig. 11.6a). For each o f the 19 intertidal 
sites, six environmental variables were also recorded: 
the median particle diameter of the sediment (MPD), 
its percentage organic content (% Org), the depth of 
the water table (WT) and o f the blackened hydrogen 
sulphide layer (H2S), the interstitial salinity (Sal) and 
the height of the sample on the shore, in relation to 
the inter-tidal range (Ht).

When each of these is superimposed in turn on the 
biotic ordination, as bubble plots, some instructive 
patterns emerge. MPD (Fig. 11.6b) appears to increase

monotonically along the main MDS axis but cannot 
be responsible for the division, for example, between 
sites 1-4 and 7-9. On the other hand, the relation of 
salinity to the MDS configuration is non-monotonic 
(Fig. 11.6c), with larger values for the “middle” groups, 
but now providing a contrast between the 1-4 and 7-9 
clusters. Some other variables, such as the height up 
the shore (Fig. 11.6d), appear to bear little relation to 
the overall biotic structure, in that samples within the 
same faunal groups are frequently at opposite 
extremes of the intertidal range.

These plots, however, make clear the limitations in 
relating the community structure to a single environ­
mental variable at a time: there is no basis for answering 
questions such as “how well does the full set of abiotic 
data jointly explain the observed biotic pattern” and 
“is there a subset of the environmental variables that 
explains the pattem equally well, or better?” These 
questions are answered in classical multivariate statistics 
by techniques such as canonical correlation (e.g. Mardia 
e t  ál, 1979) but, as discussed in earlier chapters, this 
requires assumptions which are unrealistic for species 
abundance or biomass data (correlation and Euclidean 
distance as measures of similarity for biotic data, 
linear relationships between abundance and environ­
mental gradients etc).

Instead, the need is to relate community structure to 
multivariate descriptions of the abiotic variables, 
using the type of non-parametric, similarity-based 
methods of previous chapters.
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LINKING BIOTA TO MULTIVARIATE 
ENVIRONMENTAL PATTERNS

The intuitive premise adopted here is that if the suite 
o f environmental variables responsible for structuring 
the community were known1, then samples having 
rather similar values for these variables would be 
expected to have rather similar species composition, 
and an ordination based o
would group sites in the sa

plot. If key environmental variables are omitted, the 
match between the two plots will deteriorate. By the 
same token, the match will also worsen if abiotic data 
which are irrelevant to the community structure are 
included.

The Exe estuary nematode data again provides an 
appropriate example. Fig. 11.7a repeats the species 
MDS for the 19 sites seen in Fig. 11,6a. The remaining

1 These might sometimes include
e.g. when assessing how sediment meiofaunal communities might
be affected by densities o f a structuring (critical) macrofaunal
species. There is an implicit assumption here, o f course, that the
observed sample patterns are not dominated by internal stochastic
forces, e.g. competitive interactions within the assemblage constit­
uting the biotic data matrix. I f  they are, the procedure will fa il to
“explain” the community structure in terms o f  the provided set o f
environmental variables, naturally.

Fig. 1L6. Exe estuary nemat­
odes {X}. a) MDS o f species 
abundances at the 19 sites, as 
in Fig. 5.1; b)-d) the same
MDS but with superimposed 
circles representing, respect­
ively, median particle diameter 
o f the sediment, its interstitial 
salinity and height up the shore 
o f the sampling locations. (Stress 
= 0.05).

plots in Fig. 11.7 are o f specific combinations o f the 
six sediment variables: H2S, Sal, MPD, %Org, WT 
and Ht, as defined above. For consistency of present­
ation, these plots are also MDS ordinations but based 
on an appropriate dissimilarity matrix (Euclidean 
distance on the normalised abiotic variables). In 
practice, since the number o f variables is small, and 
the distance measures the same, the MDS plots will 
be largely indistinguishable from PCA configurations 
(note that Fig. 11.7b is effectively just a scatter plot, 
since it involves only two variables).

The point to notice here is the remarkable degree of 
concordance between biotic and abiotic plots, especially 
Figs. 11.7a and c; both group the samples in very 
similar fashion. Leaving out MPD (Fig. 11.7b), the 
(7-9) group is less clearly distinguished from (6, 11) 
and one also loses some matching structure in the 
(12-19) group. Adding variables such as depth of the 
water table and height up the shore (Fig. 11.7d), the 
(1-4) group becomes more widely spaced than is in 
keeping with the biotic plot, sample 9 is separated 
from 7 and 8, sample 14 split from 12 and 13 etc, and 
the fit again deteriorates. In fact, Fig. 11.7c represents 
the best fittin g  environmental combination, in the
sense defined below, and therefore best “explains” 
the community pattern.



Chapter 11
page 11-7

Biota

12 14

12-19

H2S, Sal, MPD

1314 12 *^17

All 6 variables

10

15

7
9 8

11

19

16 12

14

17 13

18

Fig. 11.7. Exe estuary nemat­
odes {X}. MDS ordinations o f  
the 19 sites, based on: a) species 
abundances, as in Fig. 5.1; b) 
two sediment variables, depth 
o f the H2S layer and interstitial 
salinity; c) the environmental 
combination “best matching” 
the biotic pattern: H2S, salinity 
and median particle diameter; 
d) all six abiotic variables. 
(Stress = 0.05, 0, 0.04, 0.06).

Measuring agreement in pattern

Quantifying the match between any two plots could 
be accomplished by a Procrustes analysis (Gower, 
1971), in which one plot is rotated, scaled or reflected 
to fit the other, in such a way as to minimize a sum of 
squared distances between the superimposed configur­
ations. This is not wholly consistent, however, with 
the approach in earlier chapters; for exactly the same 
reasons as advanced in deriving the ANOSIM statistic 
in Chapter 6, the “best match” should not be dependent 
on the dimensionality one happens to choose to view 
the two patterns. The more fundamental constructs 
are, as usual, the similarity matrices underlying both 
biotic and abiotic ordinations/ These are chosen 
differently to match the respective form o f the data 
(i.e. Bray-Curtis for biota, Euclidean distance for 
environmental variables) and will not be scaled in the 
same way. Their ranks, however, can be compared 
through a rank correlation coefficient, a very natural 
measure to adopt bearing in mind that a successful 
MDS is a function only of the similarity ranks.

The procedure is summarised schematically in Fig. 
11.8, and Clarke and Ainsworth (1993) describe the 
approach in detail. Three possible matching coefficients 
are defined between the (unravelled) elements of the 
respective rank similarity matrices {r¡; i = 1, ..., N} 
and {s¡; i = 1, ..., TV), where N  = n (n -1)/2 and n is the 
number o f samples. The simplest is the Spearman  
coefficient (e.g. Kendall, 1970):

P s = l ~
N (N  -1 )

(11.3)

A standard alternative is Kendall’s t  (Kendall, 1970) 
which, in practice, tends to give rather similar results 
to ps.The third possibility is a modified form o f
Spearman, the weighted Sp  (or
rank correlation:

Pw = 1 - N ( N - l )
X'N (ri
¿W=] r,+ s,

(11.4)

For example, in spite o f  the very low stress in Fig. 11.7, a 2-d 
Procrustes fi t  o f 11.7a with 11.7c will be rather poor, since the 
(5, 10) and (12-19) groups are interchanged between the plots. 
Yet, the interpretation o f  the two analyses is fundamentally the 
same (five clusters, with the (5, 10) group out on a limb etc). This 
match will probably be better in 3-d but will be fully expressed, 
without arbitrary dimensionality constraints, in the underlying 
similarity matrices.

This is so defined by Clarke and Ainsworth (1993) because it is 
algebraically related to the average o f the harmonic mean o f each 
(r¡, s) pair. The denominator term, r, + sh down-weights the contrib­
ution o f large ranks; these are the low similarities, the highest simil­
arity corresponding to the lowest value o f rank similarity (1), as 
usual. Note that pw and r tend to give consistently lower values 
than psfor the same match; nothing should therefore be inferred 
from a comparison o f absolute values o f  ps, rand  pw.
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Fig. 11.8. Schematic diagram 
o f the BIO-ENV procedure: 
selection o f the abiotic variable 
subset maximising rank correl­
ation (p) between biotic and 
abiotic (dis)similarity matrices.

The constant terms are defined such that, in both
(11.3) and (11.4), plies in the range (-1, 1), with the 
extremes of p  = -1 and +1 corresponding to the cases 
where the two sets of ranks are in complete opposition 
or complete agreement, though the former is unlikely 
to be attainable in practice because o f the constraints 
inherent in a similarity matrix. Values of around 
zero correspond to the absence of match between 
the two patterns, but typically will be positive. It is 
tempting, but wholly wrong, to refer to standard 
statistical tables of Spearman’s rank correlation, to 
assess whether two patterns are “significantly” matched 
(p > 0). This is invalid because the ranks (or {5/}) 
are not mutually independent variables, since they are 
based on a large number (N)of strongly interdependent 
similarity calculations.

In itself, this does not compromise the use o f as an 
index o f agreement o f the two triangular matrices. 
However, it could be less than ideal because few o f 
the equally-weighted difference terms in equation
(11.3) involve “nearby” samples. In contrast, the 
premise at the beginning of this section makes it clear 
that we are seeking a combination o f environmental 
variables which attains a good match of the 
similarities (low ranks) in the biotic and abiotic 
matrices. The value of when computed from 
triangular similarity matrices, will tend to be swamped 
by the larger number of terms involving distant pairs 
o f samples, contributing large squared differences in
(11.3). This motivates the down-weighting denominator 
term in (11.4). However, experience suggests that, 
typically, this modification affects the outcome only 
marginally and, in the interests o f simplicity o f 
explanation, the well-known Spearman coefficient 
may be preferred.

The BIO-ENV procedure
The matching o f biotic to environmental patterns can 
now take place', as outlined schematically in Fig. 11.8. 
Combinations of the environmental variables are 
considered at steadily increasing levels of complexity, 
i.e. kvariables at a time {k =  1, 2, 3 ,..., v). Table 11.2
displays the outcome for the Exe estuary nematodes.

Table 11.2. Exe estuary nematodes
environmental variables, taken ka t
o f biotic and abiotic similarity
by weighted Spearman rank corrpu;
overall optimum. See earlier text

k Best variable combinations (p„)

1 H2S %Org Sal ...
(.62) (.54) (.53)

2 H2S, Sal H2S, MPD H2S, %Org Sal, %Org ...
(.76) (67)

3 H2S, Sal, MPD H2S, Sal, %Org H2S, Sal, WT ...
(SO) (

4H2S, Sal, MPD, %Org H2S, Sal, MPD, Ht ...
(79)

5 H Ä  Sal, MPD, %Org, Ht ...
(.79)

6 H2S, Sal, MPD, %Org, Ht, WT
(77)

The single abiotic variable which best groups the
sites, in a manner consistent with the faunal patterns, 
is the depth of the H2S layer (pw = 0.62); next best is 
the organic content (pw = 0.54), etc. O f course, since 
the faunal ordination is not essentially 1-dimensional

'  This is implemented in the PRI
performs a full search, up to a fixed
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(Fig. 11.7a), it would not be expected that a single 
environmental variable would provide a very success­
ful match, though knowledge of the H2S variable alone 
does distinguish points to the left and right of Fig. 
11.7a (samples 1 to 4 and 6 to 9 have lower values 
than for samples 5, 10 and 12 to 19, with sample 11 
intermediate).

The best 2-variable combination also involves depth 
o f the H2S layer but adds the interstitial salinity. The 
correlation (pM, = 0.76) is markedly better than for any 
other 2-variable subset, and this is the combination 
shown in Fig. 11.7b. The best 3-variable combination 
retains these two but adds the median particle diameter, 
and gives the overall optimum value for p w o f 0.80 
(Fig. 11.7c); pw drops slightly to 0.79 for the best 4- 
and higher-way combinations. The results in Table 11.2 
do therefore seem to accord with the visual impressions 
in Fig. 11.7.T In this case, the first column of Table 11.2 
has a hierarchical structure: the best combination at 
one level is always a subset of the best combination on 
the line below. This is not guaranteed (although it seems 
to happen surprisingly often) since all combinations 
have been evaluated and simply ranked.

An exhaustive search over v variables involves

s - ï ü à r 2’ - 1 <"-5>

combinations, i.e. 63 for the Exe estuary study, though 
this number quickly becomes prohibitive when v is 
larger than about 15. Above that level, one could 
consider stepwise (and related) procedures which 
search in a more hierarchical fashion, adding and 
deleting variables one at a time (this is implemented 
in the BVSTEP procedure of Chapter 16). In practice 
though, it may be desirable to limit the scale of the 
search initially, for a number of reasons, e.g. always 
to include a variable known from previous experience 
or external information to be potentially causal. 
Alternatively, as discussed earlier, scatter plots of the 
environmental variables may demonstrate that some 
are highly inter-correlated and nothing in the way of 
improved “explanation” could be achieved by entering 
them all into the analysis.

f This will not always be the case i f  the 2-d faunal ordination has 
non-negligible stress. It is the matching o f the similarity matrices 
which is definitive, although it would usually be a good idea to 
plot the abiotic ordination fo r  the best combination at each value 
o f k, in order to gauge the effect o f a small change in p  on the 
interpretation. Experience suggests that combinations giving the 
same value o f p  to two decimal places do not give rise to ordinations 
which are distinguishable in any practically important way, thus 
it is recommended that p  is quoted only to this accuracy, as in 
Table 11.2.

An example is given by the Garroch Head macrofauna 
study {Gj,for which the 11 abiotic variables of Table 
11.1 are first transformed, to validate the use of Euclid­
ean distances and standard product-moment correlations 
(page 11-2). As indicated earlier, choice of transform­
ations is aided by a draftsman  i.e. scatter plots 
of all pairwise combinations of variables, Fig. 11.9. 
Here, this is after all the concentration variables, but 
not water depth, have been log transformed*, in line 
with the recommendations on page 11-2.

The draftsman plot, and the associated correlation 
matrix between all pairs o f variables, can then be 
examined for evidence o f collinearity (page 11-5), 
indicated by straight-line relationships, with little 
scatter, in Fig. 11.9. A further rule-of-thumb would 
be to reduce all subsets o f (transformed) variables 
which have mutual correlations averaging more than 
about 0.95 to a single representative. This suggests 
that C, Cu, Zn and Pb are so highly inter-correlated 
that it would serve no useful purpose to leave them 
all in the BIO-ENV analysis. For every good match 
that included C, there would be equally good matches 
including Cu, Zn or Pb, leading to a plethora of effect­
ively identical solutions. Here, the organic carbon 
load (C) is retained and the other three excluded, 
leaving 8 abiotic variables in the full BIO-ENV search. 
This results in an optimal match of the biotic pattern 
with C, N and Cd (pw = 0.78). The corresponding 
ordination plots are seen in Fig. 11.10. The biotic 
MDS of Fig. 11.10a, though structured mainly by a 
single strong gradient towards the dump centre (e.g. 
the organic enrichment gradient seen in Fig. 11.10b), 
is not wholly 1-dimensional. Additional information, 
on a heavy metal, appears to improve the “explanation”.

CONCLUDING REMARKS

Further examples of the BIO-ENV procedure are 
given in Clarke and Ainsworth (1993), Clarke (1993), 
Somerfield et al(1994) and many subsequent applic­
ations. For a series o f data sets on impacts on benthic 
macrofauna around N Sea oil rigs, Olsgard (1997, 
1998) use the BIO-ENV procedure in a particularly 
interesting way. They examine which transformations 
(Chapter 9) and what level o f taxonomic aggregation 
(Chapter 10) tend to maximise the BIO-ENV correl­
ation, p. The hypotheses examined are that certain

i This actually uses a log(c+x) transformation where c is a constant 
such as 1 or 0.1. The necessity for this, rather than a simple log(x) 
transform, comes from the zero values for the Cd concentrations 
in Table 11.1, log(0) being undefined. A useful rule-of-thumb here 
is to set the constant c to the lowest non-zero measurement, or the 
concentration detection limit.
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Fig. 11.9. Garroch Head macrofauna {G}. Draftsman plot (all possible pairwise scatter plots) fo r  the 11 abiotic variables recorded at 12 
sampling stations across the sewage sludge dumpsite. All variables except water depth have been log transformed.

parts of the community, on the spectrum of rare to 
common species, may delineate the underlying impact 
gradient more clearly (see page 9-4), as may some 
taxonomic levels, higher than species (see page 10-2). 
Another question which naturally arises is the extent 
to which the conclusions from BIO-ENV can be 
supported by significance tests. This is problematic 
given the lack o f model assumptions underlying this

procedure, which can be seen as both a strength 
(generality, ease o f understanding, simplicity of 
interpretation) and a weakness (lack of a structure for 
formal statistical inference). A simple RELATE test 
is available (see Chapter 15) of the null hypothesis 
that there is no relationship between the biotic inform­
ation and a specific abiotic pattern, i.e. that p is effect­
ively zero. This can be examined by a permutation or

Biota

c

C,N

C,Cd C,N,Cd

Fig 11.10: Garroch Head macro­
fauna {G}. MDS plots fo r the 
12 sampling stations across 
the sewage-sludge dump site 
(Fig. 8.3), based on: a) species 
biomass, as in Fig. 11.5a; 
b)-d) three combinations o f  
carbon, nitrogen and cadmium 
concentrations (log transform­
ed) in the sediments, the best 
match with the biota over all 
combinations o f the 8 variables 
being fo r  C, N and Cd (pw = 
0.78). (Stress = 0.05, 0,0.01, 
0.01).
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randomisation test, of a type met previously in Chapter 
6 (Fig. 6.9), in which p  is recomputed for all (or a 
random subset of) permutations o f the sample labels 
in one of the two underlying similarity matrices. As 
usual, if the observed value of p  exceeds that found in 
95% of the simulations, which by definition correspond 
to unrelated ordinations, then the null hypothesis can 
be rejected at the 5% level.

Note however that this is not a valid procedure if the 
abiotic set being tested against the biotic pattern is the 
result of optimal selection by the BIO-ENV procedure, 
on the same data. For v variables, this is implicitly 
equivalent to carrying out 2V-1 null hypothesis tests, 
each of which potentially runs a 5% risk of Type 1 
error (rejecting the null hypothesis when it is really 
true). This rapidly becomes a very large number of 
tests as v increases, and a naïve RELATE test on the 
optimal combination is almost certain to indicate a 
‘significant’ biotic-abiotic relation, even with entirely 
random data sets!^ However, the null hypothesis of 
‘no relation’ is often not tenable from the start and 
testing is then rather irrelevant: the BIO-ENV procedure 
is best thought of as an exploratory tool. A more 
convincing confirmatory strategy is to use an initial 
set of data to suggest an optimal combination of abiotic 
variables, and an independent data set, utilising only 
that reduced number of variables, in a RELATE test 
or a second BIO-ENV analysis. If there were any 
variables featuring marginally and arbitrarily in the 
first run o f BIOENV, they would be unlikely to do so 
again on the second run.

Design

Two final points can be made about the sampling 
design. The general subject of experimental and field 
survey design is an immense one, which cannot be 
covered here.T It is also a problematic area for many 
of the (non-parametric) multivariate techniques because 
the lack o f formal model structures makes it difficult 
to define power o f statistical procedures, such as the 
randomisation tests described above and in Chapters 
6 and 15. In the context o f linking biotic and abiotic 
patterns, it is intuitively clear that this has the greatest 
prospect o f success if there are a moderately large

 ̂ What is needed here, o f course, is a randomisation test which 
incorporates the fitting stage and thus allows for the selection 
bias in the optimal solution; this is planned for a future version 
o f PRIMER.

Green (1979) provides some useful guidelines, mainly on field  
observational studies, and Underwood (1998) concentrates on 
design o f field manipulative experiments; both books are largely 
concerned with univariate data but many o f the fundamental issues 
are common to all analyses.

number of sample conditions, and the closest possible 
matching o f environmental with biological data. In 
the case of a number of replicates from each of a number 
of sites, this could imply that the biotic samples, which 
would be well-separated in order to represent genuine 
variation at a site, would each have a closely-matched 
environmental replicate.

Another lesson of the earlier Garroch Head example 
is the difficulty of drawing conclusions about causality 
from any observational study. In that case, a subset 
of abiotic variables were so highly correlated with 
each other that it was desirable to omit all but one of 
them from the computations. There may sometimes 
be good external reasons for retaining a particular 
member of the set but, in general, one of them is 
chosen arbitrarily as a proxy  for the rest (e.g. in the 
Garroch Head data, C was a proxy for the highly 
inter-correlated set C, Cu, Zn, Pb). If that variable 
does appear to be linked to the biotic pattern then any 
member of the subset could be implicated, of course. 
More importantly, there cannot be a definitive causal 
implication here, since each retained variable is also a 
proxy for any potentially causal variable which 
correlates highly with it, but remains unmeasured. 
Clearly, in an environmental impact study, a design in 
which the main pollution gradient (e.g. chemical) is 
highly correlated with variations in some natural 
environmental measures (e.g. salinity, sediment 
structure), cannot be very informative, whether the 
latter variables are measured or not. A desirable 
strategy, particularly for the non-parametric multi­
variate analyses considered here, is to limit the influence 
of important natural variables by attempting to select 
sites which have the same environmental conditions 
but a range of contaminant impacts (including control 
sites* o f course). Even then, in a purely observational 
study one can never entirely escape the stricture that 
any apparent change in community, with changing 
pollution impact, could be the result of an unmeasured 
natural variable with which the contaminant levels 
happen to correlate. Such issues of causality motivate 
the following chapter on experimental approaches.

+
Note the plurality; Underwood (1992) argues persuasively that 

impact is best established against a baseline o f site-to-site variability 
in control conditions.



Chapter 11
page 11-12



Chapter 12
page 12-1

CHAPTER 12: CAUSALITY: COMMUNITY EXPERIMENTS IN THE 
FIELD AND LABORATORY

In Chapter 11 we have seen how both the univariate and 
multivariate community attributes can be correlated 
with natural and anthropogenic environmental variables. 
With careful sampling design, these methods can 
provide strong evidence as to which environmental 
variables appear to affect community structure most, 
but they cannot actually pro  cause and effect. In 
experimental situations we can investigate the effects of 
a single factor (the treatment)on community structure, 
while other factors are held constant or controlled, thus 
establishing cause and effect. There are three main 
categories of experiments that can be used:

1) ‘Natural experim ents’.Nature provides the treat­
ment, i.e. we compare places or times which differ 
in the intensity of the environmental factor in 
question.

2) Field experiments.The experimenter provides the 
treatment, i.e. environmental factors (biological, 
chemical or physical) are manipulated in the field.

3) Laboratory experiments.Environmental factors 
are manipulated by the experimenter in laboratory 
mesocosms or microcosms.

The degree o f ‘naturalness’ (hence realism) 
from 1-3, but the degree of control which can be exerted 
over confounding environmental variables 
from 1-3.

In this chapter, each class of experiments is illustrated 
by a single example. Unfortunately all these concern 
the meiobenthos, since this component of the biota is 
very amenable to community level experiments (see 
Chapter 13), whereas experiments with other compon­
ents of the marine biota have mainly been concerned 
with populations of individual species, rather than 
communities.

In all cases care should be taken to avoid 
replication, i.e. the treatments should be replicated, 
rather than a series of ‘replicate’ samples taken from 
a single treatment (pseudoreplicates, e.g. Hurlbert, 
1984). This is because other confounding variables, 
often unknown, may also differ between the treatments.
It is also important to run experiments long enough 
for community changes to occur; this favours compon­
ents of the fauna with short generation times (see 
Chapter 13).

It should be made clear at the outset that the treatment 
o f experiments in this chapter is somewhat cursory.

The subject of ecological experiments requires a book 
of its own, indeed it gets an excellent one in Underwood 
(1998). The latter, however, in common with most 
biologically-oriented texts on experiments, is almost 
entirely concerned with univ analysis of single 
attributes (a population abundance, a diversity measure, 
etc). Experiments with multiple outcomes which are 
analysed by multivariate methods are still far from 
commonplace, though becoming more evident in recent 
literature (for papers with a methodological bent see, 
for example, Anderson 2001 a,b, Chapman and Under­
wood, 1999, Krzanowski (in press), Legendre and 
Anderson, 1999, McArdle and Anderson, 2001, Under­
wood and Chapman, 1998).

NATURAL EXPERIMENTS’

It is doubtful whether so called 
deserve to be called ‘experiments’ at all, and not 
simply well-designed field surveys, since they make 
comparisons of places or times which differ in the 
intensity of the particular environmental factor under 
consideration. The obvious logical flaw with this 
approach is that its validity rests on the assumption 
that places or times differ in the intensity of the 
selected environmental factor (treatment); there is no 
possibility o f randomly
experimental units,the central tool of experimentation
and one that ensures that the potential effects of 
unmeasured, uncontrolled variables are averaged out 
across the experimental groups. Design is often a 
problem, but statistical techniques such as two-way 
ANOVA, e.g. Sokal and Rohlf (1981), Underwood 
(1981), or two-way ANOSIM (Chapter 6), may enable 
us to examine the treatment effect allowing for differ­
ences between sites, for example. This is illustrated 
in the first example below.

In some cases natural experiments may be the only 
possible approach for hypothesis testing in community 
ecology, because the attribute of community structure 
under consideration may result from 
rather than ecological mechanisand we obviously
cannot conduct manipulative field or laboratory 
experiments over evolutionary time. One example of 
a community attribute which may be determined by 
evolutionary mechanisms relates to size spectra in 
marine benthic communities. Several hypotheses, 
some complementary and some contradictory, have
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been invoked to explain biomass size spectra and species 
size distributions in the metazoan benthos, both of 
which have bimodal patterns in shallow temperate 
shelf seas. Ecological explanations involve physical 
constraints of the sedimentary environment, animals 
needing to be small enough to move between the 
particles (i.e. interstitial) or big enough to burrow, 
with an intermediate size range capable of neither 
(Schwinghamer, 1981). Evolutionary explanations 
invoke the optimisation of two size-related sets of 
reproductive and feeding traits: for example small 
animals (meiobenthos) have direct benthic development 
and can be dispersed as adults, large animals (macro­
benthos) have planktonic larval development and 
dispersal, there being no room for compromise 
(Warwick, 1984).

To test these hypotheses we can compare situations 
where the causal mechanisms differ and therefore 
give rise to different predictions about pattern. For 
example, the reproductive dichotomy noted above 
between macrobenthos and meiobenthos breaks down 
in the deep-sea, in polar latitudes and in fresh water, 
although the physical sediment constraints in these 
situations will be the same as in temperate shelf seas. 
The evolutionary hypothesis therefore predicts that 
there should be a unimodal pattern in these situations, 
whereas the ecological hypothesis predicts that it 
should remain bimodal. Using these’ situations as 
natural experiments, we can therefore falsify one or 
the other (or both) of these hypotheses.

However, natural experiments o f this kind extend 
outside the purpose o f this manual, and our chosen 
example concerns the ecological effects of disturbance 
on community structure.

Fig. 12.1. Tasmania, Eagiehawk Neck {T}. Sketch showing the 
type o f sample design. Sample positions (same symbols as in Fig. 
12.3) in relation to disturbed sediment patches (shaded).

The effects of disturbance by soldier crabs on 
meiobenthic community structure {T}

On a sheltered intertidal sandflat at Eagiehawk Neck, on 
the Tasman Peninsula in S.E. Tasmania, the burrowing 
and feeding activities of the soldier crab Mictyris platy­
cheles are evidenced as intensely disturbed areas of 
sediment which form discrete patches interspersed with 
smooth undisturbed areas. The crabs feed by manipul­
ating sand grains in their mandibles and removing fine 
particulate material, but they are not predators on the 
meiofauna, though their feeding and burrowing activity 
results in intense sediment disturbance. This situation 
was used as a ‘natural experiment5 on the effects of 
disturbance on meiobenthic community structure. Meio­
fauna samples were collected in a spatially blocked 
design, such that each block comprised two disturbed 
and two undisturbed samples, each 5m apart (Fig. 12.1).

Table 12.1. Tasmania, Eagiehawk Neck {T}. Mean values per core sample o f  univariate measures for nematodes, copepods and total 
meiofauna (nematodes + copepods) in the disturbed and undisturbed areas. The significance levels fo r differences are from a two-way 
ANOVA, i.e. they allow fo r  differences between blocks, although these were not significant at the 5% level.

Total Total Species Shannon Species

Nematodes
individuals (N) species (S) richness (d) diversity ( / / ’) evenness (J ’)

Disturbed 205 14.4 2.6 1.6 0.58
Undisturbed 200 20.1 3.7 2.2 0.74
Significance (%) 91 1 0.3 0.1 1

Copepods
Disturbed 94 5.4 1.0 0.96 0.59
Undisturbed 146 5.7 1.0 0.84 0.49
Significance (%) 11 52 99 52 38

Total meiofauna
Disturbed 299 19.8 3.4 2.0 0.66
Undisturbed 346 25.9 4.4 2.3 0.69
Significance (%) 48 1 3 3 16
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Block 2

Block 4
Fig. 12.2. Tasmania, Eagiehawk 

Neck {T}. Replicate k-domin­
ance curves for nematode abund­
ance in each sampling block. 
D = disturbed, U = undisturbed.

Block 3

Nematodes

Block 1

Univariate indices. The significance of differences 
between disturbed and undisturbed samples (treatments) 
was tested with two-way ANOVA (blocks/treatments), 
Table 12.1. For the nematodes, species richness, 
Shannon diversity and evenness were significantly 
reduced in disturbed as opposed to undisturbed areas, 
although total abundance was unaffected. For the 
copepods, however, there were no significant differ­
ences in any o f these univariate measures.

Graphical/distributional plots, ^-dominance curves 
(Fig. 12.2) also revealed significant differences in the 
relative species abundance distributions for nematodes 
(using both the ANOVA and ANOSlM -based tests

referred to briefly at the end o f Chapter 8, and detailed 
in Clarke, 1990). For the copepods, however, (plots 
given in Chapter 13, Fig. 13.4), k-dominance curves are 
intermingled and crossing, and there is no significant 
treatment effect.

Multivariate ordinations. MDS revealed significant 
differences in species composition for both nematodes 
and copepods: the effects o f crab disturbance were 
similar within each block and similar for nematodes 
and copepods. Note the similarities in Fig. 12.3 between 
the nematode and copepod configurations: both disturb­
ed samples within each block are above both of the 
undisturbed samples (except for one block for the

Nematodes Copepods Meiofauna

a d* %

0

Fig. 12.3. Tasmania, Eagiehawk Neck {T}. MDS configurations for nematode, copepod and 'meiofauna ’ (nematode + copepod) abund­
ance (root-transformed). Different shapes represent the four blocks o f  samples. Open symbols = undisturbed, filled = disturbed (stress 
= 0.12, 0.09. 0.11 respectively).
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Table 12.2. Tasmania, Eagiehawk Neck {T}. Results o f the two- 
way ANOSIM test fo r  treatment (disturbance/no disturbance) and 
block effects.

Disturbance Blocks

R Sig.(%) R Sig.(%)

Nematodes 1.0 1.2 0.85 0.0

Copepods 0.56 3.7 0.62 0.0

Meiofauna 0.94 1.2 0.85 0.0

copepods), and the blocks are arranged in the same 
sequence across the plot. For both nematodes and 
copepods, two-way ANOSIM shows a significant 
effect o f both treatment (disturbance) and blocks, 
Table 12.2, but the differences are more marked for 
the nematodes (with higher values of the R statistic).

Conclusions. Univariate indices and graphical/distrib­
utional plots were only significantly affected by crab 
disturbance for the nematodes. Multivariate analysis 
revealed a similar response for nematodes and copepods 
(i.e. it seems to be a more sensitive measure of commun­
ity change). In multivariate analyses, natural variations 
in species composition across the beach (i.e. between 
blocks) were about as great as those between treatments 
within blocks, and the disturbance effect would not 
have been clearly evidenced without this blocked 
sampling design.

FIELD EXPERIMENTS

Field manipulative experiments include, for example, 
caging experiments to exclude or include predators, 
controlled pollution of experimental plots, and big- 
bag experiments with plankton. Their use has been 
predominantly for (univariate) population  rather than 
community studies, although multivariate analysis o f 
manipulative experiments is becoming more widespread 
(see, for example, Anderson and Underwood, 1997, 
Morrisey et al, 1996, Gee and Somerfield, 1997, Austen 
and Thrush, 2001). The following example is one in 
which univariate, graphical and multivariate statistical 
analyses have been applied to meiobenthic communities.

Azoic sediment recolonisation experiment with 
predator exclusion {Z}

Olafsson and Moore (1992) studied meiofaunal colon­
isation of azoic sediment in a variety of cages designed 
to exclude epibenthic macrofauna to varying degrees: 
A -  1 mm mesh cages designed to exclude all macro­
fauna; B -1 mm control cages with two ends left open; 
C -  10 mm mesh cages to exclude only larger macro-

8F
3F

8A
8E

1B
1E 8D

8B1C 8C
3D
3B1A1D

3C
3E 3A

Fig. 12.4. Azoic sediment recolonisation experiment {Z}. MDS
configuration for harpacticoid copepods (4th root transformed
abundances) after 1, 3 and 8 months, with 6 different treatments
(A-F), see text (stress = 0.07).

fauna; D -  10 mm control cages with two ends left open; 
E -  open unmeshed cages; F -  uncaged background 
controls. Three replicates of each treatment were 
sampled after 1 month, 3 months and 8 months and 
analysed for nematode and harpacticoid copepod 
species composition.

Univariate indices. The presence of cages had a more 
pronounced impact on copepod diversity than nemat­
ode diversity. For example, after 8 months, H' and J ' 
(but not S) for copepods had significantly higher values 
inside the exclusion cages than in the control cages 
with the ends left open, but for the nematodes, differ­
ences in H ’ were o f borderline significance (p = 5.3%).

Graphical/distributional plots. No significant treat­
ment effect for either nematodes or copepods could be 
detected between ^-dominance curves for all sampling 
dates, using the ANOSIM test referred to at the end 
of Chapter 8.

Multivariate analysis. For the harpacticoid copepods 
there was a clear successional pattern o f change in 
community composition over time (Fig. 12.4), but no 
such pattern was obvious for the nematodes. Fig. 12.4 
uses data from Table 2 in Olafsson and Moore’s paper, 
which are for the 15 most abundant harpacticoid species 
in all treatments and for the mean abundances o f all 
replicates within a treatment on each sampling date. 
On the basis of these data, there is no significant 
treatment effect using the 2-way ANOSIM test for 
one replicate per cell11 (see page 6-10), but the fuller 
replicated data may have been more revealing.

 ̂ This is the PRIMER ANOS1M2 test, which will be uninformative 
in the presence o f sizeable treatment/time interactions, a likely 
possibility here.
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LABORATORY EXPERIMENTS

More or less natural communities of some components 
of the biota can be maintained in laboratory (and also 
outdoor) experimental containers and subjected to a 
variety of manipulations. Many types of experimental 
systems have been used for marine studies, ranging 
from microcosms (containers less than 1 m3) to meso- 
cosms (1-1000 m3). Recent examples o f microcosm 
experiments analysed by multivariate means can be 
found, for example, in Austen and McEvoy (1997), 
Schratzberger and Warwick (1998a, 1999), and meso- 
cosm experiments in Austen et al (1998), Widdicombe 
and Austen (1998, 2001). Macrocosms (larger than 
IO3 m3), usually involving the artificial enclosure of 
natural areas in the field, have also been used, for 
pelagic studies.

Effects of organic enrichment on meiofauna! 
community structure {N}

Gee et al (1985) collected undisturbed box cores of 
sublittoral sediment and transferred them to the 
experimental mesocosms established at Solbergstrand, 
Oslofjord, Norway. They produced organic enrichment 
by the addition of powdered Ascophyllum nodosum to 
the surface of the cores, in quantities equivalent to 50 
g C m'2 (four replicate boxes) and 200 g C m'2 (four 
replicate boxes), with four undosed boxes as controls, 
in a randomised design within one of the large meso- 
cosm basins. After 56 days, five small core samples 
of sediment were taken from each box and combined 
to give one sample. The structure of the meiofaunal 
communities in these samples was then compared.

Univariate indices. Tablel2.3 shows that, for the 
nematodes, there were no significant differences in 
species richness or Shannon diversity between treat­
ments, but evenness was significantly higher in enriched 
boxes than controls. For the copepods, there were 
significant differences in species richness and evenness 
between treatments, but not in Shannon diversity.

Nem atodes
100

80

60

40

20

0
101

Fig. 12.5. Nutrient enrichment 
experiment {N}. k-dominance 
curves for nematodes, total cop­
epods and copepods omitting 
the ‘weed ’ species o f Tisbe, 
for summed replicates o f each 
treatment, C = control, L = 
low and H — high dose.

Table 12.3. Nutrient-enrichment experiment {N}. Univariate 
measures for all replicates at the end o f the experiment, with the 
F-ratio and significance levels from one-way ANOVA.

Species Shannon Species
richness diversity evenness {.]')

Nematodes
Control 3.02 2.25 0.750

3.74 2.39 0.774
3.36 2.47 0.824
4.59 2. 0.747

Low dose 4.39 2.86 0.877
2.65 2.47 0.840
4.67 2.89 0.875
2.33 2.27 0.860

High dose 2.86 2.17 0.782
2.82 2.39 0.843
4.30 2.40 0.829
4.09 2.47 0.853

F ratio 0.04 1.39 5.13
Sig leve ns ns <5%

Copepods
Control 2.53 1.93 0.927

1.92 1.56 0.969
2.50 1.77 0.908
2.47 1.94 0.931

Low dose 1.80 1.60 0.643
1.66 1.28 0.532

1.66 1.1 0.484
1.79 1.54 0.640

High dose 1.75 1.59 0.767
0.97 1.00 0.620
1.03 0.30 0.165

1.18 1.70 0.872
F ratio 17.72 2.65 4.56
Sig leve(p) <0.1% ns <5%

Graphical/distributional ploFig. 12.5 shows the
average ^-dominance curves over all four boxes in 
each treatment. For the nem these are closely
coincident, suggesting no obvious treatment effect. For 
the copepods, however, there are apparent differences 
between the curves. A notable feature of the copepod

C opepods ex. TisbeC opepods
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Fig. 12.6. Nutrient enrichment experiment {N}. MDS o f W-transformed abundances o f nematodes, copepods and total meiofauna (nematodes 
+ copepods). C = control, L = low dose, H = high dose (stress = 0.18, 0.09, 0.12).

Table 12.4. Nutrient enrichment experiment {N}. Values o f the 
R statistic from the ANOSIM test, in pairwise comparisons between 
treatments, together with significance levels. C = control, L = 
low dose, H  = high dose.

Treatment Statistic 
value (R)

% Sig. 
level

Nematodes
(L,C) 0.27 2.9
(H,C) 0.22 5.7
(H,L) 0.28 8.6

Copepods
(L,C) 1.00 2.9
(HyC) 0.97 2.9

' (H,L) 0.59 2.9

assemblages in the enriched boxes was the presence, 
in highly variable numbers, of several species o f the 
large epibenthic harpacticoid Tisbe, which are ‘weed’ 
species often found in old aquaria and associated with 
organic enrichment. If this genus is omitted from the 
analysis, a clear sequence of increasing elevation of 
the ^-dominance curves is evident from control to high 
dose boxes.

Multivariate analysis. Fig. 12.6 shows that, in an MDS 
of VV-transformed species abundance data, there is no 
obvious discrimination between treatments for the 
nematodes. In the ANOSIM test (Table 12.4) the 
values of the R statistic in pairwise comparisons between

treatments are low (0.2-0.3), but there is a significant 
difference between the low dose treatment and the 
control, at the 5% level. For the copepods, there is a 
clear separation o f treatments on the MDS, the R 
statistic values are much higher (0.6-1.0), and there 
are significant differences in community structure 
between all treatments.

Conclusions. The univariate and graphical/distributional 
techniques show lowered diversity with increasing 
dose for copepods, but no effect on nematodes. The 
multivariate techniques clearly discriminate between 
treatments for copepods, and still have some discrimin­
ating power for nematodes. Clearly the copepods have 
been much more strongly affected by the treatments 
in all these analyses, but changes in the nematode 
community may not have been detectable because of 
the great variability in abundance o f nematodes in the 
high dose boxes. The responses observed in the meso- 
cosm were similar to those sometimes observed in the 
field where organic enrichment occurs. For example, 
there was an increase in abundance of epibenthic 
copepods (particularly Tisbe spp.) resulting in a 
decrease in the nematode/copepod ratio. In this 
experiment, however, the causal link is closer to 
being established, though the possible constraints and 
artefacts inherent in any laboratory mesocosm study 
should always be borne in mind (see, for example, the 
discussion in Underwood and Peterson, 1988).
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CHAPTER 13: DATA REQUIREMENTS FOR BIOLOGICAL EFFECTS 
STUDIES: WHICH COMPONENTS AND ATTRIBUTES 
OF THE MARINE BIOTA TO EXAMINE?

COMPONENTS

The biological effects of pollutants can be studied on 
assemblages o f a wide variety of marine organisms:

Pelagos
-  plankton (both phytoplankton and Zooplankton)

-  fish (pelagic and dem ersal)

Benthos (soft-bottom)
-  macrobenthos

-  meiobenthos
-  microbenthos, not much used in community studies

Benthos (hard-bottom)
-  epifauna (encrusting forms, e.g. corals)
-  motile fauna (both macrofauna and meiofauna in 

e.g. algae, holdfasts and epifauna)

These various components of the biota each have certain 
practical and conceptual advantages and disadvantages 
for use in biological effects studies. These are discussed 
in this chapter, and an example is given for each of 
the components (although not all o f these examples 
are directly concerned with pollution effects).

PLANKTON

The advantages o f plankton are that:

a) Long tows over relatively large distances result in 
community samples which reflect integrated ecolog­
ical conditions over large areas. They are therefore 
useful in monitoring more global changes.

b) Identification o f macro-planktonic organisms is 
moderately easy, because o f the ready availability 
of appropriate literature.

The d isadvan tage  of plankton is that, because the water
masses in which they are suspended are continually 
mobile, they are not useful for monitoring the local 
effects o f a particular pollutant source.

Example: Continuous Plankton Recorder
Plankton samples have been collected from ‘ships o f 
opportunity’ plying their usual commercial routes across 
the NE Atlantic since the late 1940s (e.g. Colebrook, 
1986). The plankton recorders collect samples through 
a small aperture, and these are trapped on a continuously 
winding roll o f silk so that each section of silk contains 
an integrated sample from a relatively large area. This

has enabled long term trends in plankton abundance 
to be assessed; e.g. Colebrook (1986) describes a 
gradual decline in both Zooplankton and phytoplankton 
since the early 1950s, with an upturn in the 1980s 
(Fig. 13.1).

FISH

The advantages o f fish are that:

a) Because of their mobility they are again more useful 
for studying general rather than local effects, but 
some demersal fish communities may show site 
fidelity, such as the coral-reef fish in the example 
below.

b) The taxonomy o f fish is relatively easy, at least in 
Europe and N. America.

c) Fish are of immediate commercial and public interest, 
and so studies of fish communities are more directly 
related to the needs of environmental managers 
than, for example, the meiobenthos (despite the 
fact, o f course, that the latter are vitally important 
to the early life-stages of fish!).
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o
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Fig. 13.1. Continuous Plankton Recorder Survey o f the NE Atlantic 

{Pj. First principal components for Zooplankton and phytoplankton 
over the first 35 years of the survey (from Colebrook 1986). Graphs 
scaled to zero mean and unit variance.

Zooplankton

Phytoplankton
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The disadvantages o f fish are that:

a) Strictly quantitative sampling which is equally rep­
resentative of all the species in the community is 
difficult. The overall catching efficiency of nets, 
traps etc. is often unknown, as are the differing 
abilities of species to evade capture or their suscept­
ibility to be attracted to traps. Visual census methods 
are also not free from bias, since some species will 
be more conspicuous in colouration or behaviour 
than other dull secretive species.

b) Uncertainty about site fidelity is usually, but not 
always, a problem.

Example: Maldives coral reef-fish
For a study in the Maldive islands, Dawson-Shepherd 
et al(1992) used visual census methods to compare 
reef-fish assemblages at 23 coral reef-flat sites, 11 of 
which had been subjected to coral mining for the 
construction industry and 12 were non-mined controls. 
The MDS (Fig. 13.2) clearly distinguished mined 
from non-mined sites.

MACROBENTHOS

The advantages o f soft-bottom macrobenthos are that:

a) They are relatively non-mobile and are therefore 
useful for studying the local effects of pollutants.

b) Their taxonomy is relatively easy.

c) Quantitative sampling is relatively easy.

d) There is an extensive research literature on the 
effects o f pollution, particularly organic enrichment, 
on macrobenthic communities, against which specific 
case-histories can be evaluated.

M

c M M
M M

C

M

Fig. 13.2. Maldive Islands, coral-reef fish {M}. MDS ordination 
o f fish species abundance data from mined (M) and control (C) 
reef-flats (stress = 0.08).

This combination o f advantages has resulted in the 
soft-bottom macrobenthos being probably the most 
widely used component of the marine biota in environ­
mental impact studies. Despite this, they do have 
several disadvantages:

a) Relatively large-volume sediment samples must be 
collected, so that sampling requires relatively large 
research ships.

b) Because it is generally not practicable to bring large 
volumes of sediment back to the laboratory for 
processing, sieving must be done at sea and is rather 
labour intensive and time consuming (therefore 
expensive).

c) The potential response time of the macrobenthos to 
a pollution event is slow. Their generation times 
are measured in years, so that although losses of 
species due to pollution may take immediate effect, 
the colonisation of new species which may take 
advantage of the changed conditions is slow. Thus, 
the full establishment of a community characterising 
the new environmental conditions may take several 
years.

d)The macrobenthos are generally unsuitable for 
causality experiments in mesocosms, because such 
experiments can rarely be run long enough for fully 
representative community changes to occur, and 
recruitment of species to mesocosm systems is often 
a problem because of their planktonic larval stages 
(see Chapter 12).

Example: Amoco Cadiz oil-spill
The sensitivity of macrobenthic community structure 
to pollution events, when using multivariate methods 
o f data analysis, is discussed in Chapter 14. The 
response of the macrobenthos in the Bay o f  Morlaix 
to the Amoco Cadiz oil-spill some 40 km away, 
described in Chapter 10, is a good example of this 
(Fig. 13.3).

MEIOBENTHOS

Apart from sharing the advantage o f non-mobility, 
and therefore usefulness for local effects studies, the 
relative advantages and disadvantages of the meio­
benthos are exactly the reverse of the macrobenthos. 
Their advantages are:

a) Because of their small size and high density in marine 
sediments, quantitative sampling of the meiobenthos 
is easy from small ships, open boats etc.

b) The small volume o f the samples means that they
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Oil
spill

Fig. 13.3. Amoco-Cadiz oil spill, Bay o f  Morlaix {A}. MDS for
macrobenthos at station “Pierre Noire ”, at approximately three- 
monthly sampling internals (stress = 0.09).

can easily be transported to the laboratory, and need 
not be processed on board ship.

c) Their generation times are usually measured in 
months rather than years, so that their potential 
response time to pollution events is much faster 
than that o f the macrobenthos.

d) Because of this fast response time, and direct benthic 
rather than planktonic development, the meiobenthos 
are good candidates for causality experiments in 
experimental microcosms and mesocosms.

The disadvantages of meiobenthos are that:

a) Their taxonomy is considered difficult. Identification 
o f almost all the meiobenthic taxa to species level 
presents difficulties even in Europe and N America, 
and in many parts of the world the fauna is almost 
completely unknown. However, to a considerable 
degree, three factors mitigate against this problem:

i. The robustness of community analyses to the use 
o f taxonomic levels higher than species (see Chapter 
10).
ii. The cosmopolitan nature o f most meiobenthic
genera.

iii. The increasing availability o f easily used keys 
to meiobenthic genera. For example, the pictorial 
keys to marine nematodes of Platt and Warwick 
(1988) have been used successfully worldwide.

b) Community responses of the meiobenthos to pollution 
are not as well documented as for the macrobenthos, 
and there is only a modest body of information in 
the literature against which particular case-histories 
can be evaluated.

Example: Soldier crab disturbance of nematode 
assemblages, Tasmania

This natural field experiment was described in Chapter
12. It will be remembered that the nematode diversity 
profiles were affected by the crab disturbance (Fig. 
12.2), whereas no significant effect was noted for 
copepods (Fig. 13.4). Many nematode species are 
more sedentary in habit than copepods, often adhering 
to sand-grains by secretions from their caudal glands, 
and some species prefer conditions of low oxygen 
concentration or are obligate anaerobes. The so called 
‘thiobiotic’ meiofaunal community contains many 
nematode species, but apparently no copepods. Non- 
bioturbated sediments will have a vertical gradient in 
physical and chemical conditions ranging from wave- 
disturbed sediments with an oxiphilic meiofauna 
community near the surface to a stable sediment with 
a thiobiotic community deeper down. Dramatic 
disturbance by crabs, of the kind found at this site, 
will inevitably destroy this gradient, so that the whole 
sediment column will be well aerated and unstable. 
This reduction in habitat complexity is probably the 
most parsimonious explanation for the reduction in 
nematode species diversity.

The differential response of these two components of 
the meiobenthos has been elaborated here in order to 
demonstrate how a knowledge of the biology of these 
components can aid in the interpretation of community 
responses to perturbation. The macrobenthos and 
meiobenthos may also respond differently to different 
kinds of perturbation (e.g. physical disturbance, 
“pollution”) so that a comparative study of both may 
be indicative o f the cause.

Example: Macrobenthos and meiobenthos in 
Hamilton Harbour, Bermuda

Fig. 13.5 shows the average ^-dominance curves for 
the macrobenthos and the nematode component of the 
meiobenthos at six stations in Hamilton Harbour. For 
the macrobenthos, the curves at three of the stations 
(H3, H4 & H6) are much more elevated than the other 
three, suggesting some kind o f perturbation at these 
sites. For the nematodes, however, all curves are closely 
coincident. There must therefore be some form of 
perturbation affecting the macrobenthos but not the 
meiobenthos, and it was suggested by Warwick et al 
(1990c) that this is more likely to be physical disturb­
ance of the sediment resulting from the regular passage 
o f large cruise liners within the harbour, rather than 
pollution. This is because the macrobenthos are much 
more dependent on sediment stability to maintain 
diversity than are the meiobenthos.
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Fig. 13.4. Tasmania, Eagiehawk 
Neck {T}. k-dominance curves 
fo r  disturbed (D) and undis­
turbed (U) copepod samples 
in 4 separate sampling blocks.

HARD-BOTTOM EPIFAUNA

The advantages of using hard-bottom encrusting faunas,
reef-corals etc. are:
a) They are immobile and therefore good for local 

effects studies.
b) A major advantage over sedimentary faunas is that 

non-destructive (visual) sampling is possible.

The disadvantages are:
a) Remote sampling is difficult. Intertidal or shallow 

subtidal sites can be surveyed (the latter by divers), 
but use of remote cameras requires a greater level 
of technical sophistication.

b) Enumeration of colonial organisms is difficult, so 
that abundance units such as number of colonies or 
percentage cover must be used; biomass measure­
ments are difficult to make.

Example: Indonesian reef corals

The example shown in Fig. 13.6, o f the effects of the 
1982-3 El Niño on reef coral communities at South 
Pari Island, was described in Chapter 10. A clear 
difference is seen in community composition between 
1981 and 1983, with a more steady pattern of change 
thereafter, though without full reversion to the initial 
state.
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Fig. 13.5. Hamilton Harbour, 
Bermuda {H}. k-dominance 
curves for macrobenthos (left) 
and meiobenthic nematodes 
(right) at six stations (H2-H7).
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Fig. 13.6. Indonesian reef-corals {I}. MDS fo r  coral species 
percentage cover data for South Pari Island (10 replicate tran­
sects in each year). 1—1981, 3=1983 etc. (stress = 0.25).

HARD-BOTTOM MOTILE FAUNA

The motile fauna living on rocky substrates and assoc­
iated with algae, holdfasts, hydroids etc. has rarely 
been used in pollution impact studies because of its 
many disadvantages:

a) Remote sampling is difficult.

b) Quantitative extraction from the substrate, and 
comparative quantification of abundances between 
different substrate types, are difficult.

c) Responses to perturbation are largely unknown.

d) A suitable habitat (e.g. algae) is not always available. 
A solution to this problem, and also problem (b),

Meiofauna
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that has sometimes been tried in practice, is to deploy 
standardised artificial substrates, e.g. plastic mesh 
pan-scrubbers, along suspected pollution gradients 
in the field, allowing these to become colonised.

Example: Metazoan fauna of intertidal seaweed 
samples from the Isles of Scilly

The entire metazoan fauna (macrofauna 4- meiofauna) 
was examined from five species of intertidal macro- 
algae (Chondrus, Laurencia, Lomentaria, Cladophora, 
Polysiphonia) each collected at eight sites near low 
water from rocky shores on the Isles of Scilly, UK 
(Gee and Warwick, 1994). The MDS plots for meio­
benthos and macrobenthos were very similar, with the 
algal species showing very similar relationships to each 
other in terms of their meiofaunal and macrofaunal 
community structure (Fig. 13.7). The structure of the 
weed therefore clearly influenced community structure 
in both these components of the benthic fauna.

ATTRIBUTES

Species abundance data are by far the most commonly 
used in environmental impact studies at the community 
level. However, the abundance of a species is perhaps 
the least ecologically relevant measure of its relative 
importance in a community, and we have already 
seen in Chapter 10 that higher taxonomic levels than 
species may be sufficient for environmental impact 
analyses. So, when planning a survey, consideration 
should be given not only to the number of stations 
and number o f replicates to be sampled, but also to 
the level of taxonomic discrimination which will be 
used, and which measure(s) of the relative importance 
of these taxa will be made.

Macrofauna
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Fig. 13.7. Isles of Scilly seaweed 
fauna fS}. MDS o f standard­
ised VV-transformed meiofauna 
and macrofauna species abund­
ance data. The five seaweed 
species are indicated by differ­
ent symbol and shading con­
ventions (stress = 0.19, 0.18).
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Fig. 13.8. Frierfjord macro­
fauna  {F}. MDS ordinations 
fo r abundance and biomass o f 
the 4 replicates at each o f  the 
6 sites (stress = 0.10, 0.08).

Abundance, biomass and production

As a measure of the relative ecological importance for 
soft-sediment and water-column sampling of species, 
biomass is better than abundance, and production in 
turn is better than biomass. However, the determination 
o f annual production of all species within a community 
over a number of sites or times would be so time 
consuming as to be completely impracticable.11 We 
are therefore left with the alternatives of studying 
abundances, biomasses, or both. Abundances are 
marginally easier to measure, biomass may be a better 
reflection of ecological importance, and measurement 
o f both abundance and biomass opens the possibility 
o f comparing species-by-sites matrices based on these 
two different measures (e.g. by the ABC method 
discussed in Chapter 8).

In practice, multivariate analyses of abundance and 
biomass data often give remarkably similar results, 
despite that fact that the species mainly responsible for 
discriminating between stations are usually different. In 
Fig. 13.8, for example, the Frierfjord macrobenthos 
MDS configurations for abundance and biomass are 
very similar but it is small polychaete species which 
are mainly responsible for discriminating between 
sites on the basis of abundance, and species such as 
the large echinoid Echinocardium cordatum which 
discriminate the sites on the basis o f biomass.

 ̂Although relative “production” o f species can be approximated 
using empirical relationships between biomass, abundance and 
production, and these “production ” matrices subjected to multi­
variate analysis, see Chapter 15.

Species or higher taxa

We have already seen in Chapter 10 that, in many 
pollution-impact studies, it has been found for both 
graphical and multivariate analyses that there is 
surprisingly little loss of information when the species 
data are aggregated to higher taxa, e.g. genera, families 
or sometimes even phyla. For the detection of pollution 
impact, initial collection o f data at the level of higher 
taxa would result in a considerable saving of time 
(and cost) in the analysis o f samples. Such a strategy 
would, of course, be quite inappropriate if the objective 
were to be differently defined, for example, the quant­
ification of biodiversity properties.

RECOMMENDATIONS

It is difficult to give firm recommendations as to which 
components or attributes of the biota should be studied, 
since this depends on the problem in hand and the 
expertise and funds available. In general, however, 
the wider the variety of components and attributes 
studied, the easier the results will be to interpret. A 
broad approach at the level of higher taxa is often 
preferable to a painstakingly detailed analysis of species 
abundances. If only one component of the fauna is to 
be studied, then consideration should be given to 
working up a larger number of stations/replicates at 
the level of higher taxa in preference to a small number 
of stations at the species level. O f course, a large 
number of replicated stations at which both abundance 
and biomass are determined at the species level is 
always the ideal!



Chapter 14
page 14-1

CHAPTER 14: RELATIVE SENSITIVITIES AND MERITS OF 
UNIVARIATE, GRAPHICAL/DISTRIBUTIONAL AND 
MULTIVARIATE TECHNIQUES

Two communities with a completely different taxonomic 
composition may have identical univariate or graphical/ 
distributional structure, and conversely those comprising 
the same species may have very different univariate 
or graphical structure. This chapter compares univariate, ^
graphical and multivariate methods of data analysis ‘5
by applying them to a broad range of studies on various £
components o f the marine biota from a variety o f ^
localities, in order to address the question of whether o
species dependent and species independent attributes c

of community structure behave the same or differently 
in response to environmental changes, and which are 
the most sensitive. Within each class of methods we 
have seen in previous chapters that there is a very 
wide variety o f different techniques employed, and to 
make this comparative exercise more tractable we 
have chosen to examine only one method for each 
class:

Shannon-Wiener diversity index H' (see Chapter 8),

^-dominance curves including ABC plots (Chapter 8),

non-metric MDS ordination on a Bray-Curtis similarity 
matrix of appropriately transformed species abund­
ance or biomass data (Chapter 5).

EXAMPLE 1: Macrobenthos from 
Frierfjord/Langesundijord, Norway

As part of the GEEP/IOC Oslo Workshop, macro­
benthos samples were collected at a series of six stations 
in Frierfjord/Langesundfjord {F f  station A being the 
outermost and station G the innermost (station F  was 
not sampled for macrobenthos). For a map of the 
sampling locations see Fig. 1.1.

Univariate indices

Site A had a higher species diversity and site C the 
lowest but the others were not significantly different 
(Fig. 14.1).

Graphical/distributional plots

ABC plots indicated that stations C, D and E were 
most stressed, B was moderately stressed, and A and 
G were unstressed (Fig. 14.2).

?

Site

Fig. 14.1. Frierfjord macrobenthos {Ff. Shannon diversity (mean 
and 95% confidence intervals) fo r each station.

Multivariate analysis

An MDS of all 24 samples (4 replicates at each station), 
supported by the ANOSIM test, showed that only 
stations B and C were not significantly different from 
each other (Fig. 14.3). Gray et al (1988) show that 
the clusters correlate with water depth rather than 
with measured levels of anthropogenic variables such 
as hydrocarbons or metals.

Conclusions

The MDS was much better at discriminating between 
stations than the diversity measure, but perhaps more 
importantly, sites with similar univariate or graphical/ 
distributional community structure did not cluster 
together on the MDS. For example, diversity at E 
was not significantly different from D but they are 
furthest apart on the MDS; conversely, E and G had 
different ABC plots but clustered together. However, 
B, C and D all have low diversity and the ABC plots 
indicate disturbance at these stations. The most likely 
explanation is that these deep-water stations are 
affected by seasonal anoxia, rather than anthropogenic 
pollution.
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Fig. 14.2. Frierfjord macro­
benthos {F}. ABC plots based 
on the totals from 4 replicates 
at each o f the 6 sites. Solid 
lines: abundances; dotted lines: 
biomass.

Fig. 14.3. Frierfjord macrobenthos {F}. MDS o f 4 replicates at 
each o f sites A-E, G, from Bray-Curtis similarities on 4th root- 
transformed counts (stress = 0.10).

EXAMPLE 2: Macrobenthos from the 
Ekofisk oilfield, N. Sea

Changes in community structure o f the soft-bottom 
benthic macrofauna in relation to oil -drilling activity 
at the Ekofisk platform in the North Sea {E} have been 
described by Gray et al (1990). The positions o f the 
sampling stations around the rig are coded by shading 
and symbol conventions in Fig. 14.4a, according to 
their distance from the active centre of drilling activity 
at the time of sampling.

Univariate indices

It can be seen from Fig. 14.4b that species diversity 
was only significantly reduced in the zone closer than 
250m from the rig, and that the three outer zones did 
not differ from each other in terms of Shannon diversity 
(this conclusion extends to the other standard measures 
such as species richness and evenness).

Graphical/distributional plots

The ^-dominance curves (Fig. 14.4c) also only indicate 
a significant effect within the inner zone, the curves 
for the three outer zones being closely coincident.

Multivariate analysis

In the MDS analysis (Fig. 14.4d) community compos­
ition in all o f the zones was distinct, and there was a 
clear gradation of change from the inner to outer zones. 
Formal significance testing (using ANOSIM) confirmed 
statistically the differences between all zones. It will 
be recalled from Chapter 10 that there was also a clear 
distinction between all zones at higher taxonomic levels 
than species (e.g. family), even at the phylum level 
for some zones.

Conclusions

Univariate and graphical methods of data analysis 
suggest that the effects on the benthic fauna are rather 
localised. The MDS is clearly more sensitive, and 
can detect differences in community structure up to 
3 km away from the centre o f activity.
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Fig. 14.4. Ekofisk macrobenthos {E}. a) Map o f sampling sites, represented by different symbol and shading conventions according to 
their distance from the 2/4K rig at the centre o f drilling activity; b) Shannon diversity (mean and 95% confidence intervals) in these distance 
zones; c) mean k-dominance curves; d) MDS from root-transformed species abundances (stress = 0.12).

EXAMPLE 3: Reef corals at South Pari 
Island, Indonesia

Warwick et al(1990b) analysed coral community J  
responses to the El Niño of 1982-3 at two reef sites in ^
the Thousand Islands, Indonesia based on 10 'já
replicate line transects for each o f the years 1981, 83, >
84, 85, 87 and 88. |

Univariate indices

At Pari Island there was an immediate reduction in 
diversity in 1983, apparent full recovery by 1985, 
with a subsequent but not significant reduction (Fig.
14.5).

Graphical/distributional plots

The mean ^-dominance curves were similar in 1981 
and 1985, with the curves for 1983, 1984, 1987 and 
1988 more elevated (Fig. 14.6). Tests on the replicate 
curves (using the method briefly referred to at the end

3

2

1
1981 1983 1984 1985 1987 1988

Year

Fig. 14.5. Indonesian reef corals, ///.
(means and 95% confidence interv

from  10 transects in each year.

o f Chapter 8) confirmed the significance of differences 
between 1981, 1985 and the other years, but the latter 
were not distinguishable from each other.
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Fig. 14.6. Indonesian reef-corals, Pari Island {I}, k-dominance 
cuides for totals o f all ten replicates in each year.

M u l t iv a r i a t e  a n a ly s is

Though the MDS has rather a high stress it nonetheless 
shows an immediate location shift in community 
composition at the ten replicate sites between 1981 
and 1983, and ANOSEM indicates significant differences 
between all pairs of years. Recovery proceeded in the 
pre-El Niño direction but was not complete by 1988 
(Fig. 14.7).

C o n c lu s io n s

All methods of data analysis demonstrated the dramatic 
post El Niño decline in species, though the multivariate 
techniques were seen to be more sensitive in monitoring 
the recovery phase in later years.

EXAMPLE 4: Fish communities from 
coral reefs in the Maldives

In the Maldive islands, Dawson-Shepherd et al (1992) 
compared reef-fish assemblages at 23 coral reef-flat 
sites ß i} , 11 of which had been subjected to coral 
mining for the construction industry and 12 were non­
mined controls. The reef-slopes adjacent to these 
flats were also surveyed.

U n iv a r ia te  in d ic e s

Using ANOVA, no significant differences in diversity 
(Fig. 14.8) were observed between mined and control 
sites, with no differences either between reef flats and 
slopes.

G r a p h ic a l /d i s t r ib u t io n a l  p lo ts

No significant differences could be detected between 
mined and control sites, in ^-dominance curves for 
either species abundance or biomass. Fig. 14.9 displays 
the mean curves for reef-flat data pooled across the 
replicates for each condition.

M u l t iv a r ia te  a n a ly s is

The MDS (Fig. 14.10) clearly distinguished mined 
from control sites on the reef-flats, and also to a lesser 
degree even on the slopes adjacent to these flats, 
where ANOSIM confirmed the significance of this 
difference.

Fig. 14.7. Indonesian reef-corals, Pari Island {I}. MDS for coral 
species percentage cover data (1 = 1981, 3 = 1983 etc).
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Fig. 14.8. Maldive Islands, coral-reef fish ß i} . Shannon species 
diversity (means and 95% confidence intervals) at mined (closed 
symbols) and control (open symbols) sites, fo r  both reef fa t s  
(circles) and reef slopes (squares).
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Fig. 14.9. Maldive Islands, coral-reef fish {M}. Average k-dom- 
inance cui'ves fo r abundance and biomass at mined and control 
reef-flat sites.

Conclusions

There were clear differences in community composition 
due to mining activity revealed by multivariate methods, 
even on the reef-slopes adjacent to the mined flats, but 
these were not detected at all by univariate or graphical/ 
distributional techniques, even on the flats, where the 
separation in the MDS is so obvious.
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Fig. 14.11. Isles o f  Scilly {S}. Map o f the 8 sites from each o f  
which 5 seaweed species were collected.

EXAMPLE 5: Macro- and meiobenthos 
from Isles of Scilly seaweeds

The entire metazoan fauna (macrofauna + meiofauna) 
has been analysed from five species of intertidal macro­
algae (Chondrus, Laurencia, Lomentaria, Cladophora , 
Polysiphonia) each collected at eight sites near low 
water from rocky shores on the Isles of Scilly ÍS} 
(Fig. 14.11).

Univariate indices

The meiofauna and macrofauna showed clearly different

Fig. 14.10. Maldive Islands, coral-reef fish {M}. MDS o f 4th root- 
transformed species abundance data. Symbols as in Fig. 14.8, 
i.e. circles = reef-flat, squares = slope, solid = mined, open = 
control (stress = 0.09).

diversity patterns with respect to weed type; for the 
meiofauna there was a trend o f increasing diversity 
from the coarsest (Chondrus)to the finest 
onia) weed, but for the macrofauna there was no clear 
trend and Polysiphonia  had the lowest diversity (Fig.
14.12).

Graphical/distributional plots

These differences in meiofauna and macrofauna species 
diversity profiles were also reflected in the ^-dominance 
curves (Fig. 14.13) which had different sequencing 
for these two faunal components, for example the 
Polysiphonia  curve was the lowest for meiofauna and 
highest for macrofauna.

Multivariate analysis

The MDS plots for meiobenthos and macrobenthos 
were very similar, with the algal species showing 
very similar relationships to each other in terms o f 
their meiofaunal and macrofaunai community structure 
(see Fig. 13.7, in which the shading and symbol con­
ventions for the different weed species are the same 
as those in Fig. 14.12). Two-way ANOSIM (weed 
species/sites) showed all weed species to be signif­
icantly different from each other in the composition 
o f both macrofauna and meiofauna.
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Fig. 14.12. Isles o f Scilly seaweed 
fauna fS}. Shannon diversity 
(mean and 95% confidence 
intervals) fo r  the meiofauna 
and macrofauna o f different 
weed species: Ch = Chondrus, 
La = Laurencia, Lo = Loment­
aria, Cl = Cladophora, Po = 
Polysiphonia.

Conclusions

The MDS was more sensitive than the univariate or 
graphical methods for discriminating between weed 
species. Univariate and graphical methods gave 
different results for macrobenthos and meiobenthos, 
whereas for the multivariate methods the results were 
similar for both.

EXAMPLE 6: Meiobenthos from th e 
Tamar Estuary, S.W. England

Austen and Warwick (1989) compared the structure 
o f the two major taxonomic components of the meio­
benthos, nematodes and harpacticoid copepods, in the 
Tamar estuary {R}. Six replicate samples were taken 
at a series of ten intertidal soft-sediment sites (Fig. 
14.14).

Graphical/distributional plots

The average ^-dominance curves showed no clear 
sequencing of sites for the nematodes, for example 
the curve for site 1 was closely coincident with that for

for site 10 (Fig. 14.15). For the copepods, however, 
the curves became increasingly elevated from the mouth 
to the head of the estuary. However, for both nematodes 
and copepods, many of the curves were not distinguish­
able from each other.

Multivariate analysis

In the MDS, both nematodes and copepods showed a 
similar (arched) sequencing of sites from the mouth 
to the head of the estuary (Fig. 14.16). ANOSIM 
showed that the copepod assemblages were significantly 
different in all pairs of sites, and the nematodes in all 
pairs except 6/7 and 8/9.

Conclusions

The multivariate technique was more sensitive in dis­
criminating between sites, and gave similar patterns for 
nematodes and copepods, whereas graphical methods 
gave different patterns for the two taxa. For nematodes, 
factors other than salinity seemed to be more important 
in determining diversity profiles, but for copepods 
salinity correlated well with diversity.

Meiofauna
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Fig. 14.13. Isles o f Scilly seaweed 
fauna {Sj. k-dominance curves 
for meiofauna (left) and macro­
fauna (right). Ch = Chondrus, 
La = Laurencia, Lo -  Loment­
aria, Cl = Cladophora, Po = 
Polysiphonia.

Macrofauna
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graphical and multivariate methods all distinguished 
disturbed from undisturbed sites. For copepods only 
the multivariate methods did. Univariate and graphical 
methods indicated different responses for nematodes 
and copepods, whereas the multivariate methods indic­
ated a similar response for these two taxa.

GENERAL CONCLUSIONS

Three general conclusions emerge from these examples:

1) The similarity in community structure between sites 
or times based on their univariate or graphical/distrib­
utional attributes is different from their clustering 
in the multivariate analysis.

2) The species-dependent multivariate method is much 
more sensitive than the species-independent methods 
in discriminating between sites or times.

3) In examples where more than one component of the 
fauna has been studied, univariate and graphical 
methods may give different results for different 
components, whereas multivariate methods tend to 
give the same results.

The sensitive multivariate methods have hitherto only 
been used for detecting differences in community 
composition between sites. Although these differences 
can be correlated with measured levels of stressors 
such as pollutants, the multivariate methods so far 
described do not in themselves indicate deleterious 
change which can be used in value judgements. Only 
the species-independent methods of data analysis lend 
themselves to the determination of deleterious responses 
although, as we have seen in Chapter 8, even the 
interpretation of changes in diversity is not always 
straightforward in these terms. There is a need to 
employ sensitive techniques for determining stress 
which utilise the full multivariate information contained 
in a species/sites matrix, and three such possibilities 
form the subject of the next chapter.

Nematodes Copepods

Fig. 14.15'. Tamar estuary meio­
benthos {R}. k-dominance 
curves for amalgamated data 
from 6 replicate cores for nem­
atode and copepod species 
abundances. For clarity o f  
presentation, some sites have 
been omitted.
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Fig. 14.14. Tamar estuary meiobenthos {R}. Map showing locations 
o f 10 intertidal mud-flat sites.

EXAMPLE 7: Meiofauna from Eaglehawk 
Neck sandfiat, Tasmania

This example of the effect o f disturbance by burrowing 
and feeding o f soldier crabs was dealt with in 
some detail in Chapter 12. For nematodes, univariate,
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Nematodes Copepods

88

10 10
Fig. 14.16. Tamar estuary meio­

benthos {Rj. MDS o f 4th root- 
transformed nematode and cop- 
epod species abundance data 
fo r six replicate cores at each 
o f 10 stations.

RECOMMENDATIONS

It is important to apply a wide variety of classes of 
data analysis, as each will give different information 
and this will aid interpretation. Sensitive multivariate 
methods will give an ‘early warning’ that community 
changes are occurring, but indications that these changes

are deleterious are required by environmental managers, 
and the less sensitive taxa-independent methods will 
also play a role. Amongst the latter are the newly- 
devised biodiversity measures based on taxonomic 
(or phylogenetic) distinctness o f the species making 
up a sample -  see the discussion in Chapter 17 of their 
advantages over classical diversity indices.
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CHAPTER 15: MULTIVARIATE MEASURES OF COMMUNITY STRESS

We have seen in Chapter 14 that multivariate methods 
o f analysis are very sensitive for detecting differences 
in community structure between samples in space, or 
changes over time. Generally, however, these methods 
are used to detect differences between communities, 
and not in themselves as measures of community stress 
in the same sense that species-independent methods 
(e.g. diversity, ABC curves) are employed. Even using 
the relatively less-sensitive species-independent methods 
there may be problems of interpretation in this context. 
Diversity does not behave consistently or predictably 
in response to environmental stress. Both theory 
(Connell, 1978; Huston, 1979) and empirical observ­
ation (e.g. Dauvin, 1984; Widdicombe and Austen, 
1998) suggest that increasing levels of disturbance 
may either decrease or increase diversity, or it may 
even remain the same. A monotonic response would 
be easier to interpret. False indications of disturbance 
using the ABC method may also arise when, as some­
times happens, the species responsible for elevated 
abundance curves are pollution sensitive rather than 
pollution tolerant species (e.g. small amphipods, 
Hydrobia etc). Knowledge o f the actual identities of 
the species involved will therefore aid the interpretation 
o f ABC curves, and the resulting conclusions will be 
derived from an informal hybrid of species-independent 
and species-dependent information (Warwick and 
Clarke, 1994). In this chapter we describe three 
possible approaches to the measurement of community 
stress using the fully species-dependent multivariate 
methods.

META-ANALYSIS OF MARINE 
MACROBENTHOS

This method was initially devised as a means of 
comparing the severity of community stress between 
various cases of both anthropogenic and natural 
disturbance. On initial consideration, measures of 
community degradation which are independent of the 
taxonomic identity of the species involved would be 
most appropriate for such comparative studies. Species 
composition varies so much from place to place 
depending on local environmental conditions that any 
general species-dependent response to stress would 
be masked by this variability. However, diversity 
measures are also sensitive to changes in natural 
environmental variables and an unperturbed community 
in one locality could easily have the same diversity as 
a perturbed community in another. Also, to obtain

comparative data on species diversity requires a highly 
skilled and painstaking analysis of species and a high 
degree of standardisation with respect to the degree 
of taxonomic rigour applied to the sample analysis; 
e.g. it is not valid to compare diversity at one site where 
one taxon is designated as “nemertines” with another 
at which this taxon has been divided into species.

The problem of natural variability in species compos­
ition from place to place can be potentially overcome 
by working at taxonomic levels higher than species. 
The taxonomic composition of natural communities 
tends to become increasingly similar at these higher 
levels. Although two communities may have no species 
in common, they will almost certainly comprise the 
same phyla. For soft-bottom marine benthos, we have 
already seen in Chapter 10 that disturbance effects 
are detectable with multivariate methods often at the 
highest taxonomic levels, even in some instances where 
these effects are rather subtle and are not evidenced 
in univariate measures even at the species level, e.g. 
the Ekofisk {E} study.

Meta-analysis is a term widely used in biomedical 
statistics and refers to the combined analysis of a range 
of individual case-studies which in themselves are of 
limited value but in combination provide a more global 
insight into the problem under investigation. Warwick 
and Clarke (1993a) have combined macrobenthic data 
aggregated to phyla from a range of case studies {J} 
relating to varying types o f disturbance, and also from 
sites which are regarded as unaffected by such pertur­
bations. A choice was made of the most ecologically 
meaningful units in which to work, bearing in mind 
the fact that abundance is a rather poor measure of 
such relevance, biomass is better and production is 
perhaps the most relevant of all (Chapter 13). Of 
course, no studies have measured production (P) of 
all species within a community, but many studies 
provide both abundance (A) and biomass (B) data. 
Production was therefore approximated using the 
allometric equation:

P  = (B/A)013X A (15.1)

where B/Ais simply the mean body-weight, and 0.73 
is the average exponent o f the regression of annual 
production on body-size for macrobenthic invertebrates. 
Since the data from each study are standardised (i.e. 
production of each phylum is expressed as a proportion 
of the total) the intercept of this regression is irrelevant. 
For each data set the abundance and biomass data were
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first aggregated to phyla, following the classification 
of Howson (1987); 14 phyla were encountered overall 
(see the later Table 15.1). Abundance and biomass 
were then combined to form a production matrix using 
the above formula. All data sets were then merged 
into a single production matrix and an MDS performed 
on the standardised, 4th root-transformed data using 
the Bray-Curtis similarity measure. All macrobenthic 
studies from a single region (the NE Atlantic shelf) 
for which both abundance and biomass data were 
available were used, as follows:

1) A transect of 12 stations sampled in 1983 on a west- 
east transect (Fig. 1.5) across a sewage sludge dump- 
ground at Garroch Head, Firth o f  Clyde, Scotland 
{G}. Stations in the middle of the transect show 
clear signs o f gross pollution.

2) A time series of samples from 1963-1973 at two 
stations (sites 34 and 2, Fig. 1.3) in West Scottish 
sea-lochs, L. Linnhe and L. Eil {L/, covering the 
period of commissioning o f a pulp-mill. The later 
years show increasing pollution effects on the macro­
fauna, except that in 1973 a recovery was noted in 
L. Linnhe following a decrease in pollution loading.

3) Samples collected at six stations in Frierfjord 
(OsloQord), Norway {F}. The stations (Fig. 1.1) 
were ranked in order of increasing stress A -G -E - 
D -B -C , based on thirteen different criteria. The 
macrofauna at stations B, C and D were considered 
to be influenced by seasonal anoxia in the deeper 
basins of the fjord.

4) Amoco-Cadiz oil spill, Bay of Morlaix {A}. In view 
of the large number of observations, the 21 sampling 
occasions have been aggregated into five years for 
the meta-analysis: 1977 = pre-spill, 1978 = immediate 
post-spill and 1979-81 = recovery period.

5) Two stations in the Skagerrak at depths of 100 and 
300m. The 300m station showed signs of disturbance 
attributable to the dominance of the sediment re­
working bivalve Abra nitida.

6) An undisturbed station off the coast o f Northumber­
land, NE England.

7) An undisturbed station in Carmarthen Bay, S Wales.

8) An undisturbed station in Kiel Bay; mean of 22 sets 
of samples.

In all, this gave a total o f 50 samples, the disturbance 
status o f which has been assessed by a variety of diff­
erent methods including univariate indices, dominance 
plots, ABC curves, measured contaminant levels etc. 
The MDS for all samples (Fig. 15.1) takes the form of 
a wedge with the pointed end to the right and the wide 
end to the left. It is immediately apparent that the 
long axis of the configuration represents a scale of 
disturbance, with the most disturbed samples to the 
right and the undisturbed samples to the left. (The 
reason for the spread o f sites on the vertical axis is 
less obvious). The relative positions of samples on 
the horizontal axis can thus be used as a measure of 
the relative severity of disturbance. Another gratifying 
feature o f this plot is that in all cases increasing levels 
o f disturbance result in a shift in the same direction, 
i.e. to the right. For visual clarity, the samples from 
individual case studies are plotted in Fig. 15.2, with 
the remaining samples represented as dots.

1 ) Garroch H ead (Clyde) sludge dump-ground {G}. 
Samples taken along this transect span the full scale 
of the long axis of the configuration (Fig. 15.2a). 
Stations at the two extremities of the transect (1 
and 12) are at the extreme left of the wedge, and 
stations close to the dump centre (6) are at the 
extreme right.

SK1

nr Garroch Head (G1...G12)
A77 FB Loch Linnhe (L63...L73)

A79 Loch Eil (E63...E73)
A8A80 A?G3 FC Frierfjord (FA...FG)

G11 E66
KL cif. L71SK3 po E71

CR cE¿ 5E63E68 E70E69 G8CK E64 E63 G6
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Skagerrak (SK1,SK3) 
Northumberland (NR) 

G12 Camarthen Bay (CR)
Keil Bay (KL)

Fig. 15.1. Joint NE Atlantic 
shelf studies (“meta-analysis”)  
{J}. Two dimensional MDS 
ordination of phylum level 
“production” data (stress = 
0.16).
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Fig. 15.2. Joint NE Atlantic shelf studies (“meta-analysis”) {J}.
As Fig. 15.1 but with individual studies highlighted: a) Garroch 
Head (Clyde) dump-ground; b) Loch Linnhe and Loch Eil; c) 
Frierford and Amoco-Cadiz spill (Morlaix).

2) Loch L innhe and Loch  In the early years
(1963-68) both stations are situated at the unpolluted 
left-hand end of the configuration (Fig. 15.2b). After 
this the L. Eil station moves towards the right, and 
at the end o f the sampling period (1973) it is close 
to the right-hand end; only the sites at the centre of 
the Clyde dump-site are more polluted. The L. Linnhe 
station is rather less affected and the previously 
mentioned recovery in 1973 is evidenced by the 
return to the left-hand end o f the wedge.

3 ) Frierfjord (Oslojjord) {FThe left to right order
of stations in the meta-analysis is A -G -E -D -B -C  
(Fig. 15.2c), exactly matching the ranking in order 
o f increasing stress. Note that the three stations 
affected by seasonal anoxia (B,C and D) are well 
to the right of the other three, but are not as severely 
disturbed as the organically enriched sites in 1) and
2) above.
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4 ) Amoco-Cadiz spill, M orlaix  Note the shift to
the right between 1977 (pre-spill) and 1978 (post­
spill), and the subsequent return to the left in 1979— 
81 (Fig. 15.2c). However, the shift is relatively 
small, suggesting that this is only a mild effect.

5 ) Skagerrak.The biologically disturbed 300m station 
is well to the right of the undisturbed 100m station, 
although the former is still quite close to the left- 
hand end of the wedge.

6-8) Unpolluted sites.The Northumberland, Carmarthen
Bay and Keil Bay stations are all situated at the left- 
hand end of the wedge.

An initial premise of this method was that, at the phylum 
level, the taxonomic composition o f communities is 
relatively less affected by natural environmental vari­
ables than by pollution or disturbance (Chapter 10). 
To examine this, Warwick and Clarke (1993a) super­
imposed symbols scaled in size according to the values 
of the two most important environmental variables 
considered to influence community structure, sediment 
grain size and water depth, onto the meta-analysis 
MDS configuration (a technique described in Chapter
11). Both variables had high and low values scattered 
arbitrarily across the configuration, which supports 
the original assumption.

With respect to individual phyla, annelids comprise a 
high proportion of the total “production” at the polluted 
end o f the wedge, with a decrease at the least polluted 
sites. Molluscs are also present at all sites, except 
the two most polluted, and have increasingly higher 
dominance towards the non-polluted end of the wedge. 
Echinoderms are even more concentrated at the non­
polluted end, with some tendency for higher dominance 
at the bottom of the configuration (Fig. 15.3a). Crustacea 
are again concentrated to the left, but this time entirely 
confined to the top part of the configuration (Fig. 15.3b). 
Clearly, the differences in relative proportions of 
crustaceans and echinoderms are largely responsible 
for the vertical spread of samples at this end of the 
wedge, but these differences cannot be explained in 
terms o f the effects o f any recorded natural environ­
mental variables. Nematoda are clearly more important 
at the polluted end o f the wedge, an obvious conseq­
uence o f the fact that species associated with organic 
enrichment tend to be very large in comparison with 
their normal meiofaunal counterparts (e.g. Onchol- 
aimids), and are therefore retained on the macrofaunal 
ecologists’ sieves. Other less important phyla show 
no clear distribution pattern, except that most are 
absent from the extreme right-hand samples.
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Fig. 15.3. Joint NE Atlantic shelf studies (“meta-analysis”)  {Jj.
As Fig. 15.1 but highlighting the role o f specific phyla in shaping 
the MDS; symbol size represents % production in each sample 
from: a) echinoderms, b) crustaceans.

This multivariate approach to the comparative scaling 
of benthic community responses to environmental stress 
seems to be more satisfactory than taxon-independent 
methods, having both generality and consistency of 
behaviour. It is difficult to assess the sensitivity of 
the technique because data on abundance and biomass 
of phyla are not available for any really low-level or 
subtle perturbations. However, its ability to detect 
the deleterious effect o f the Amoco-Cadiz oil spill, 
where diversity was not impaired, and to rank the 
Frierijord samples correctly with respect to levels of 
stress which had been determined by a wide variety 
of more time-consuming species-level techniques, 
suggests that this approach may retain much o f the 
sensitivity of multivariate methods. It certainly seems, 
at least, that there is a high signal/noise ratio in the 
sense that natural environmental variation does not 
affect the communities at this phyletic level to an extent 
which masks the response to perturbation. The fact 
that this meta-analysis “works” has a rather weak 
theoretical basis. Why should Mollusca as a phylum  
be more sensitive to perturbation than Annelida, for 
example? The answer to this is unlikely to be straight­
forward and would need to be addressed by considering 
a broad range o f toxicological, physiological and 
ecological characteristics which are more consistent 
within than between phyla.

The application o f these findings to the evaluation of 
data from new situations requires that both abundance

and biomass data are available. The scale of perturb­
ation is determined by the 50 samples present in the 
meta-analysis. These can be regarded as the training 
set against which the status of new samples can be 
judged. The best way to achieve this would be to merge 
the new data with the training set to generate a single 
production matrix for a re-run o f the MDS analysis. 
The positions of the new data in the two dimensional 
configuration, especially their location on the principal 
axis, can then be noted. O f course the positions of 
the samples in the training set may then be altered 
relative to each other, though such re-adjustments 
would be expected to be small. It is also natural, at 
least in some cases, that each new data set should add 
to the body of knowledge represented in the meta­
analysis, by becoming part o f an expanded training 
set against which further data are assessed. This 
approach would preserve the theoretical superiority 
and practical robustness o f applying MDS (Chapter
5) in preference to ordination methods such as PCA.

However, there are circumstances in which more 
approximate methods might be appropriate, such as 
when it is preferable to leave the training data set 
unmodified. Fortunately, because of the relatively 
low dimensionality of the multivariate space (14 
phyla, of which only half are of significance), a two- 
dimensional PCA o f the “production” data gives a 
plot which is rather close to the MDS solution. The 
eigenvectors for the first three principal components, 
which explain 72% o f the total variation, are given in 
Table 15.1. The value of the PCI score for any existing 
or new sample can then easily be calculated from the 
first column of this table, without the need to re-analyse 
the full data set. This score could, with certain caveats 
(see below), be interpreted as a disturbance index. This 
index is on a continuous scale but, on the basis of the 
training data set given here, samples with a score of 
>+1 can be regarded as grossly disturbed, those with a 
value between -0.2 and +1 as showing some evidence 
of disturbance and those with values <-0.2 as not 
signalling disturbance with this methodology. A more 
robust, though less incisive, interpretation would place 
less reliance on the absolute location of samples on 
the MDS or PCA plots and emphasise the movement 
(to the right) of putatively impacted samples relative 
to appropriate controls. For a new study, the spread of 
sample positions in the meta-analysis allows one to scale 
the importance of observed changes, in the context of 
differences between control and impacted samples for 
the training set.

It should be noted that the training data is unlikely to 
be fully representative of all types o f perturbation that 
could be encountered. For example, in Fig. 15.1, all



Table 15.1. Joint NE Atlantic shelf studies (“,meta-analysis”) {J}.
Eigenvectors for the first three principal components from covar­
iance-based PCA o f standardised and 4th root-transformed phylum 
“production ” (all samples).

the grossly polluted samples involve organic enrichment 
of some kind, which is conducive to the occurrence of 
the large nematodes which play some part in the posit­
ioning of these samples at the extreme right of the meta­
analysis MDS or PCA. This may not happen with 
communities subjected to toxic chemical contamination 
only. Also, the training data are only from the NE 
European shelf, although data from a tropical locality 
(Trinidad, West Indies) have also been shown to 
conform with the same trend (Agard et al, 1993). 
Other studies have looked at specific impacts in 
relation to the above training set, and reinforced the 
same pattern, though it must be said that there are 
disappointingly few examples in the soft-sediment 
macrobenthic literature to date. It is unclear whether 
this represents a paucity of data of the right type 
(biomass measurements are still uncommon, in spite 
o f the relative ease with which they can be made, 
given the faunal sorting necessary for abundance 
quantification), or reflects a failure of the analysis to 
generalise; there appear to be no published data with 
a contradictory trend, however.

INCREASED VARIABILITY

Warwick and Clarke (1993b) noted that, in a variety 
o f environmental impact studies, the variability among 
samples collected from impacted areas was much 
greater than that from control sites. The suggestion

Chapter 15
page 15-5

was that this variability in itself may be an identifiable 
symptom of perturbed situations. The four examples 
examined were:

1 ) Meiobenthos fro m  a nutrient-enrichment study 
{N}; a mesocosm experiment to study the effects of 
three levels of particulate organic enrichment (control, 
low dose and high dose) on meiobenthic community 
structure (nematodes plus copepods), using four 
replicate box-cores of sediment for each treatment 
level.

2) Macrobenthos fro m  the Ekofisk oil f ie ld , N  Sea
{E}; a grab sampling survey at 39 stations around 
the oil field centre. To compare the variability among 
samples at different levels of pollution impact, the 
stations were divided into four groups (A-D) with 
approximately equal variability with respect to 
pollution loadings. These groups were selected 
from a scatter plot of the concentrations o f two key 
pollution-related environmental variables, total PAHs 
and barium. Since the dose/response curve of 
organisms to pollutant concentrations is usually 
logarithmic, the values of these two variables were 
log-transformed.

3) Corals fro m  S  Tikus Island, Indonesia {I}; changes 
in the structure of reef-coral communities between 
1981 and 1983, along ten replicate line transects, 
resulting from the effects of the 1982-83 El Niño.

4) R ee ffish  in the Maldive Islands {M}; the structure 
of fish communities on reef flats at 23 coral sites, 
11 of which had been subjected to mining, with the 
remaining 12 unmined sites acting as controls.

Data were analysed by non-metric MDS using the 
Bray-Curtis similarity measure and either square root 
(mesocosm, Ekofisk, Tikus) or fourth root (Maldives) 
transformed species abundance data (Fig. 15.4). While 
the control and low dose treatments in the meiofaunal 
mesocosm experiment show tight clustering of replic­
ates, the high dose replicates are much more diffusely 
distributed (Fig. 15.4a). For the Ekofisk macrobenthos, 
the Group D (most impacted) stations are much more 
widely spaced than those in Groups A-C (Fig. 15.4b). 
For the Tikus Island corals, the 1983 replicates are 
widely scattered around a tight cluster of 1981 replicates 
(Fig. 15.4c), and for the Maldives fish the control 
sites are tightly clustered entirely to the left o f a more 
diffuse cluster of replicates of mined sites (Fig. 15.4d). 
Thus, the increased variability in multivariate structure 
with increased disturbance is clearly evident in all 
examples.

Phylum PCI PC2 PC3

Cnidaria -0.039 0.094 0.039
Platyhelminthes -0.016 0.026 -0.105
Nemertea 0.169 0.026 0.061
Nematoda 0.349 -0.127 -0.166
Priapulida -0.019 0.010 0.003
Sipuncula -0.156 0.217 0.105
Annelida 0.266 0.109 -0.042
Chelicerata -0.004 0.013 -0.001
Crustacea 0.265 0.864 -0.289
Mollusca -0.445 -i0.007 0.768
Phoronida -0.009 0.005 0.008
Echinodermata -0.693 -0.404 -0.514
Hemichordata -0.062 -0.067 -0.078
Chordata -0.012 0.037 -0.003
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It is possible to construct an index from the relative 
variability between impacted and control samples. One 
natural comparative measure of dispersion would be 
based on the difference in average distance among 
replicate samples for the two groups in the 2-d MDS 
configuration. However, this configuration is usually 
not an exact representation of the rank orders of simil­
arities between samples in higher dimensional space. 
These rank orders are contained in the triangular 
similarity matrix which underlies any MDS. (The 
case for using this matrix rather than the distances is 
analogous to that given for the ANOSIM statistic in 
Chapter 6.) A possible comparative Index of Multi­
variate Dispersion (IMD) would therefore contrast 
the average rank of the similarities among impacted 
samples (r^) with the average rank among control 
samples (rc) , having re-ranked the full triangular 
matrix ignoring all between-treatment similarities. 
Noting that high similarity corresponds to low rank 
similarity, a suitable statistic, appropriately 
standardised, is:

IMD = 2(rt - r c)/(Nl + N C) (15.2)

where

Nc = n c(nc- l)/2, Nt = n t(nt - l)/2 (15.3)

and nc, nt are the number of samples in the control 
and treatment groups respectively. The chosen denom­
inator ensures that IMD has maximum value o f+1 when

Fig. 15.4. Variability study {N,
Ey Iy M}. Two-dimensional con­
figurations for MDS ordinations 
o f the four data sets. Treatment 
codes: a) H = High dose, L ~  
Low dose, C = Controls; b) 
A -D  are the station groupings 
by pollution load; c) I = 1981, 
3 = 1983; d) M = Mined, C = 
Controls (stress: 0.08, 0.12, 
0.11, 0.08).

all similarities among impacted samples are lower than 
any similarities among control samples. The converse 
case gives a minimum for IMD o f -1 , and values near 
zero imply no difference between treatment groups.

In Table 15.2, IMD values are compared between each 
pair o f treatments or conditions for the four examples. 
For the mesocosm meiobenthos, comparisons between 
the high dose and control treatments and the high dose 
and low dose treatments give the most extreme IMD 
value o f +1, whereas there is little difference between 
the low dose and controls. For the Ekofisk macro­
fauna, strongly positive values are found in comparisons 
between the group D (most impacted) stations and the

Table 15.2. Variability study {Ny E, /, M}. Index o f  Multivariate 
Dispersion (IMD) between all pairs o f conditions.

Study Conditions compared IMD

Meiobenthos High dose / Control +/
High dose / Low dose +/
Low dose / Control -0.33

Macrobenthos Group D / Group C +0.77
Group D / Group B +0.80
Group D / Group A +0.60
Group C / Group B -0.02
Group C / Group A -0.50
Group B / Group A -0.59

Corals 1983 / 1981 +0.84

Reef-fish Mined / Control reefs +0.81



Chapter 15
page 15-7

other three groups. It should be noted however that 
stations in groups C, B and A are increasingly more 
widely spaced geographically. Whilst groups B and 
C have similar variability, the degree o f dispersion 
increases between the two outermost groups B and A, 
probably due to natural spatial variability. However, 
the most impacted stations in group D, which fall 
within a circle of 500 m diameter around the oil-field 
centre, still show a greater degree of dispersion than 
the stations in the outer group A which are situated 
outside a circle of 7 km diameter around the oil-field. 
Comparison of the impacted versus control conditions 
for both the Tikus Island corals and the Maldives reef- 
fish gives strongly positive IMD values. For the 
Maldives study, the mined sites were more closely 
spaced geographically than the control sijtes, so this is 
another example for which the increased dispersion 
resulting from the anthropogenic impact is “working 
against” a potential increase in variability due to 
wider spacing of sites. Nonetheless, for both the 
Ekofisk and Maldives studies the increased dis­
persion associated with the impact more than cancels 
out that induced by the differing spatial scales. For 
both the mesocosm meiobenthos and the Tikus island 
coral studies there are no such differences in spatial 
layout between the treatments to dilute the observed 
dispersion effects.

Application of the comparative index o f multivariate 
dispersion suffers from the lack of any obvious stat­
istical framework within which to test hypotheses of 
comparable variability between groups. As outlined 
above, it is also restricted to the comparison o f only 
two groups, though it can be extended to several groups 
in straightforward fashion. Let r{ denote the mean of 
the Ni = nfn-X)!2  rank similarities among the n¡ samples 
within the zth group (ƒ = 1, ..., g), having (as before) 
re-ranked the triangular matrix ignoring all between- 
group similarities, and let N  denote the number of 
similarities involved in this ranking process (N  = Z/A,). 
Then the dispersion sequence

rx! k , r2 / k, ..., rg ! k  (15.4)

defines the relative variability within each o f the g  
groups, the larger values corresponding to greater 
within-group dispersion. The denominator scaling 
factor k  is (N + l)/2, i.e. simply the mean of all N  
ranks involved, so that a relative dispersion o f unity 
corresponds to “average dispersion”. (If the number 
o f samples is the same in all groups then the values in 
equation (15.4) will average unity, though this will not 
quite be the case if  the {zz,} are unbalanced.)

Table 15.3. Variability study {N, E, I, M}. Relative dispersion o f 
the groups (equation 15.4) in each o f the four studies.

Meiobenthos Control 0.58
Low dose 0.79
High dose 1.63

Macrobenthos Group A 1.34
Group B 0.79
Group C 0.81
Group D 1.69

Corals 1981 0.58
1983 1.42

Reef-fish Control reefs 0.64
Mined reefs 1.44

As an example, the relative dispersion values given 
by equation (15.4) have been computed1 for the four 
studies considered above (Table 15.3). This can be 
seen as complementary information to the IMD values; 
Table 15.2 provides the pairwise comparisons which 
follow the global picture in Table 15.3. The conclusions 
from Table 15.3 are, of course, consistent with the 
earlier discussion, e.g. the increase in variability at 
the outermost sites in the Ekofisk study, because of 
their greater geographical spread, being nonetheless 
smaller than the increased dispersion at the central, 
impacted stations.

These four examples all involve either experimental 
or spatial replication but a similar phenomenon can 
also be seen with temporal replication. Warwick et al 
(in press) report a study of macrobenthos in Tees Bay, 
UK, for annual samples (taken at the same two times 
each year) over the period 1973-96. This straddled a 
significant, and widely reported, phase shift in plank­
tonic communities in the N Sea, in about 1987. The 
multivariate dispersion index (IMD), contrasting pre- 
1987 with post-1987, showed a consistent negative 
value (increase in inter-annual dispersion in later years) 
for each of six locations in Tees Bay, at each of the 
two sampling times (Table 15.4).

Table 15.4. Variation inter-annually, Tees Bay macrobenthos {V}.
Index o f Multivariate Dispersion (IMD) between pre- and post-1987 
years, before/after a reported change in N Sea pelagic assemblages.

March September
Area 0 -0.15 -0.15
Area 1 -0.09 -0.60
Area 2 -0.33 -0.33
Area 3 -0.35 -0.36
Area 4 -0.28 -0.67
Area 6 -0.46 -0.15

1 Both the IMD and the relative dispersion values are computed 
by the PRIMER MVD1SP routine.
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BREAKDOWN OF SERIATION

Clear-cut zonation patterns in the form of a serial change 
in community structure with increasing water depth 
are a striking feature of intertidal and shallow-water 
benthic communities on both hard and soft substrata. 
The causes of these zonation patterns are varied, and 
may differ according to circumstances, but include 
environmental gradients such as light or wave energy, 
competition and predation. None of these mechanisms, 
however, will necessarily give rise to discontinuous 
bands o f different assemblages o f species, which is 
implied by the term zonation , and the more general 
term sériation is perhaps more appropriate for this 
pattern of community change, zonation (with discont­
inuities) being a special case.

Many of the factors which determine the pattern of 
seriation are likely to be modified by disturbances of 
various kinds. For example, dredging may affect the 
turbidity and sedimentation regimes and major engin­
eering works may alter the wave climate. Elimination 
o f a particular predator may affect patterns which are 
due to differential mortality of species caused by that 
predator. Increased disturbance may also result in the 
relaxation of interspecific competition, which may in 
turn result in a breakdown of the pattern of seriation 
induced by this mechanism. Where a clear sequence 
o f community change along transects is evident in the 
undisturbed situation, the degree of breakdown o f this 
sequencing could provide an index o f subsequent 
disturbance. Clarke et al (1993) have described a 
possible index of multivariate seriation , and applied 
it to a study of the impact of dredging on intertidal 
coral reefs at Ko Phuket, Thailand {K}.

In 1986, a deep-water port was constructed on the 
south-east coast of Ko Phuket, involving a 10-month 
dredging operation. Three transects were established 
across nearby coral reefs (Fig. 15.5), transect A being 
closest to the port and subject to the greatest sediment­
ation, partly through the escape o f fine clay particles 
through the southern containing wall. Transect C was 
some 800 m away, situated on the edge o f a channel 
where tidal currents carry sediment plumes away from 
the reef, and transect B was expected to receive an 
intermediate degree of sedimentation.

Data from surveys of these three transects, perpendicular 
to the shore, are presented here for 1983, 86, 87 and 
88 (see Chapter 16 for later years). Line-samples 10m 
long were placed parallel to the shore at 10m intervals 
along the perpendicular transect from the inner reef 
flat to the outer reef edge, 12 lines along each of 
transects A and C and 17 along transect B. The same

Fig. 15.5. Ko Phuket corals {Kf. Map o f study site showing locations 
o f transects, A, B and C.

transects were relocated each year and living coral 
cover (m) o f each species recorded. Transect C was 
not surveyed in 1986.

The basic data were root-transformed and Bray-Curtis 
similarities calculated between every pair o f samples 
within each year/transect combination; the resulting 
triangular similarity matrices were then input to non­
metric MDS (Fig. 15.6). By joining the points in an 
MDS, in the order o f the samples along the inshore- 
to-offshore transect, one can visualise the degree of 
seriation, that is, the extent to which the community 
changes in a smooth and regular fashion, departing 
ever further from its state at the start o f the transect. 
A measure o f linearity of the resulting sequence could 
be constructed directly from the location o f the points 
in the MDS. However, this could be misleading when 
the stress is not zero, so that the pattern of relationships 
between the samples cannot be perfectly represented 
in 2 dimensions; this will often be the case, as with 
some o f the component plots in Fig. 15.6. (Even 
where the stress is low, the well-known 
effect, Seber, 1984, will mitigate against a genuinely 
linear sequence appearing in a 2-d ordination as a 
straight line; see the footnote on page 11-4). Again, 
a more satisfactory approach is to work with the 
fundamental similarity matrix that underlies the MDS 
plots, o f whatever dimension.

The index o f multivariate seriation (IMS) proposed is 
therefore defined as a Spearman correlation coefficient 
(/ os,e.g. Kendall, 1970, see also equation 6.3) computed

THAILAND

Phuket #
Deep
water
port

Area
dredged
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.74

Year

.26

12

87

88

.64

.72

.71

.32

.80

17

.65

.72

F/g. 75.6. Ko Phuket corals 
{K}. MDS ordination o f the 
changing coral communities 
(species cover data) along 
three transects (A to C) at 
four times (1983 to 1988). 
The lines indicate the degree 
o f seriation by linking success­
ive points along a transect, 
from onshore (1) to offshore 
samples (12 or 17); IMS 
values are at top right. 
Sample 1 from transect A in 
1983 is omitted (see text) and 
no samples were taken fo r  
transect C in 1986 (reading 
across rows, stress = 0.10, 
0.11, 0.09; 0.10, 0.11; 0.08, 
0.14, 0.11; 0.07,0.09,0.10).

between the corresponding elements o f two triangular 
matrices o f rank “dissimilarities” . The first is that of 
Bray-Curtis coefficients calculated for all pairs from 
the n coral community samples (n = 12 or 17 in this 
case). The second is formed from the inter-point 
distances of n points laid out, equally-spaced, along a 
line. If the community changes exactly match this 
linear sequence (for example, sample 1 is close in 
species composition to sample 2, samples 1 and 3 are 
less similar; 1 and 4 less similar still, up to 1 and 12 
having the greatest dissimilarity) then the IMS takes 
the value 1. If, on the other hand, there is no discernible 
biotic pattern along the transect, or if the relationship 
between the community structure and distance offshore 
is very non-monotonic -  with the composition being 
similar at opposite ends of the transect but veiy different 
in the middle -  then the IMS will be close to zero. 
These near-zero values can be negative as well as 
positive but no particular significance attaches to this.

A statistical significance test would clearly be useful, 
to answer the question: when is the IMS sufficiently 
different from zero to reject the null hypothesis of a 
complete absence of seriation? Such a( test can be 
derived by a permutation procedure. If the null hypo­
thesis is true then the labelling o f samples along the

transect (1,2, ..., ri) is entirely arbitrary, and the spread 
of IMS values which are consistent with the null hypo­
thesis can be determined by recomputing it for permut­
ations of the sample labels in one of the two similarity 
matrices (holding the other fixed). For T  randomly 
selected permutations of the sample labels, if only t  
of the T  simulated IMS values are greater than or 
equal to the observed IMS, the null hypothesis can be 
rejected at a significance level of 100(/+l)/(r+l)% .^

In structure, the test is analogous to that considered at 
the end of Chapter 6 (implemented in the PRIMER 
routine ANOSIM2), and again referred to briefly in 
Chapter 11 in the context of the BIO-ENV procedure.

 ̂ The calculations for the tests were carried out using the PRIMER 
RELATE routine. In exactly the same way, community change 
could be related to a temporal trend (equally-spaced points in time 
or around a circle, such as a seasonal cycle) or to the sampling 
positions in a 2-dimensional spatial layout. There are null hypoth­
esis tests specifically for seriation and cyclicity in RELATE, and a 
general test fo r  lack of relationship between any two supplied 
similarity matrices with the same label sets (independently derived). 
The relation to spatial layout can be tested by first calculating 
Euclidean distances on an “environmental ” data matrix consisting 
simply o f  the co-ordinates o f the sample positions, then feeding  
this and the biotic triangular matrix into the RELA TE routine.
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One distinctive feature o f the current test is that tied 
ranks will be much more prevalent, particularly in the 
similarities computed from the linear sequence, and it 
is advisable to make proper allowance for this in calc­
ulating the Spearman coefficients. Kendall (1970, eqt 
3.7) gives an appropriate adjustment to p s, and this 
form is used in the analysis below.

In 1983, before the dredging operations, MDS config­
urations (Fig. 15.6) indicate that the points along each 
transect conform rather closely to a linear sequence, 
and there are no obvious discontinuities in the sequence 
of community change (i.e. no discrete clusters separated 
by large gaps); the community change follows a quite 
gradual pattern. The values of the IMS are consequently 
high (Table 15.5), ranging from 0.62 (transect C) to 
0.72 (transect B).

The correlation with a linear sequence is highly sign­
ificant in all three cases. Note that in the 1983 MDS 
for transect A, the furthest inshore sample has been 
omitted; it had very little coral cover and was an outlier 
on the plot, resulting in an unhelpfully condensed 
display of the remaining points. (This is to be expected 
in MDS analyses where one sample has a higher dis­
similarity to all other samples than any other dissimil­
arity in the matrix, and the MDS needs to be replotted 
with this point removed). There is no similar technical 
need, however, to remove this sample from the IMS 
calculation; this was not done in Table 15.5 though 
doing so would increase the p s value from 0.65 to 0.74 
(as indicated in Fig. 15.6).

Table 15.5. Ko Phuket corals {Kj. Index o f Multivariate Seriation 
(IMS) along the three transects, fo r  four sampling occasions. 
Figures in parentheses are the % significance levels in a permut­
ation test fo r absence o f seriation (T = 999 simulations).

Year Transect A Transect B Transect C

1983 0.65 (0 0.72(0.1%) 0.62(0.1%)
1986 0.26 (3 0.71 (0 -
1987 0.19(6.4%) 0.32 (0 0.65(0.1%)
1988 0.64(0.1%) 0.80(0.1%) 0.72(0.1%)

On transect A, subjected to the highest sedimentation, 
visual inspection o f the MDS gives a clear impression 
of the breakdown o f the linear sequence for the next 
two sampling occasions. The IMS is dramatically 
reduced to 0.26 in 1986, when the dredging operations 
commenced, although the correlation with a linear 
sequence is still ju st significant (p=3.8%). By 1987 
the IMS on this transect is further reduced to 0.19 and 
the correlation with a linear sequence is no longer 
significant. On transect B, further away from the 
dredging activity, the loss of seriation is not evident 
until 1987, when the sequencing of points on the MDS 
configuration breaks down and the IMS is reduced to 
0.32, although the latter is still significant (p=0.2%). 
Note that the MDS plots o f Fig. 15.6 may not tell the 
whole story; the stress values lie between 0.07 and 
0.14, indicating that the 2-dimensional pictures are 
not perfect representations (though unlikely seriously 
to mislead, see Chapter 5). The largest stress is, in 
fact, that for transect B in 1987, so that the seriation 
that is still detectable by the test is only imperfectly 
seen in the 2-dimensional plot. It is also true that the 
increased number of points (17) on transect B, in 
comparison with A and C (12), will lead to a more 
sensitive test. On transect C there is no evidence of 
the breakdown of seriation at all, either from the IMS 
values or from inspection o f the MDS plot. By 1988 
transects A and B had completely recovered their 
seriation pattern, with IMS values equal to or higher 
than their 1983 values, highly significant correlations 
with a linear sequence (p<0.1%) and clear sequencing 
evident on the MDS plots. There was clearly a graded 
response, with a greater breakdown of seriation occur­
ring earlier on the most impacted transect, some 
breakdown on the middle transect but no breakdown 
at all on the least impacted transect.

Overall, the breakdown in the pattern of seriation was 
due to the increase in distributional range of species 
which were previously confined to distinct sections of 
the shore. This is commensurate with the disruption 
of almost all the types of mechanism which have been 
invoked to explain patterns of seriation, and gives us 
no clue as to which of these is the likely cause.
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CHAPTER 16: FURTHER COMPARISON OF MULTIVARIATE PATTERNS

To motivate the methods of this chapter consider again 
the analysis of macrobenthic samples from the Bay of 
Morlaix {A}, before and after the Amoco-Cadiz oil 
spill. The MDS of Fig. 16.1 shows a clear signal of 
community change through time, a combination of 
cyclical seasonal fluctuations (the samples are approx­
imately quarterly) with the major perturbation o f the 
oil spill after approximately a year, and a partial 
recovery over the next four years. The intricate and 
informative picture is based on a matrix of 257 species 
but the question naturally arises as to whether all these 
species are influential in forming the temporal pattern. 
This cannot be the case, of course, because many 
species are very uncommon. The later Fig. 16.3a 
shows an identical MDS plot based on only 125 species, 
the omitted ‘least important’ 132 species accounting 
for only 0 .2% of the total abundance and, on average, 
being absent from all 5 replicate samples on 90% of 
the 21 sampling times. However, the question still 
remains: do all the 125 species contribute to the MDS 
or is the pattern largely determined by a small number 
of highly influential species? If the latter, an MDS of 
that small species subset should generate an ordination 
that looks very like Fig. 16.1, and this suggests the 
following approach (Clarke and Warwick, 1998a).

Am oco-Cadiz 
oil spill 
Mar 78

Fig. 16.1. Amoco-Cadiz oil spill {A}. MDS for 257 macrobenthic 
species in the Bay o f Morlaix, fo r 21 sampling times (A, B, C, 
..., U; see legend to Fig. 10.4 for precise dates). The ordination 
is based on Bray-Curtis similarities from fourth root-transformed 
abundances and the samples were taken at approximately 
quarterly internals over 5 years, reflecting normal seasonal 
cycles and the perturbation o f the oil spill (stress -  0.09).

MATCHING OF ORDINATIONS

The BIO-ENV technique of Chapter 11 can be general­
ised in a natural way, to the selection of species rather 
than environmental variables. The procedure is shown 
schematically in Fig. 16.2. Here the two starting data 
sets are not: 1) biotic, and 2) abiotic descriptions of 
the same set of samples, but: 1 ) the faunal matrix, and
2) a copy of that same faunal matrix. Variable sets 
(species) are selected from the second matrix such that 
their sample ordination matches, ‘as near as makes no 
difference’, the ordination of samples from the first 
matrix, the full species set. This matching process, as 
seen in Chapter 11, best takes place by optimising the 
correlation between the elements o f the underlying 
similarity matrices, rather than matching the respective 
ordinations, because of the approximation inherent in 
viewing inter-sample relationships in only 2-dimensions, 
say. The appropriate correlation coefficient could be 
Spearman or Kendall, or some weighted form of 
Spearman, but there is little to be gained in this context 
from using anything other than the simplest form, the 
standard Spearman coefficient (p).

A definition of a ‘near-perfect’ match is needed, and 
this is (somewhat arbitrarily) deemed to be when p 
exceeds 0.95. Certainly two ordinations from similarity 
matrices that are correlated at this level will be virtually 
indistinguishable and could not lead to different inter­
pretation of the patterns. The requirement is therefore 
to find the smallest possible species subset whose 
Bray-Curtis similarity matrix correlates at least at p = 
0.95 with the (fixed) similarity matrix for the full set 
o f species.

There is a major snag, however, to carrying over the 
BIO-ENV approach to this context. A search through 
all possible subsets of 125 species involves: 125 poss­
ibilities for a single species, 125C2 (= 125.124/2) pairs 
o f  species, 125C3 (= 125.124.123/6) triples, etc., and 
this number clearly gets rapidly out o f control. In fact 
a full search would need to look at 2 125 -  1 possible 
combinations, an exceedingly large number!

Stepwise procedure

One way round the problem is to search not over 
possible combination but some more limited space, 
and the natural choice here is a algorithm
which operates sequentially and involves both forward
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Fig. 16.2. Schematic diagram 
o f selection o f a subset o f  
species whose multivariate 
sample pattern matches that 
for the fu ll set o f  species. The 
search is either over all subsets 
o f species (generalised BIO- 
ENV routine) or, more practic­
ally, stepwise selection o f  
species (B VSTEP routine), 
with the aim o f finding the 
smallest subset o f species giving 
rank correlation between the 
similarity matrices o f p >  0.95.

and backward-stepping phases.11 At each stage, a sel­
ection is made o f the best single species to add to or 
drop from  the existing selected set. Typically, the proc­
edure will start with a null set, picking the best single 
variable (maximising p), then adding a second variable 
which gives the best combination with the first, then 
adding a third to the existing pair. The backward 
elimination phase then intervenes, to check whether 
the first selected variable can now be dropped, the 
combination of second and third selections alone not 
having been considered before. The forward selection 
phase returns and the algorithm proceeds in this fashion 
until no further improvement is possible by the addition 
o f a single variable to the existing set or, more likely 
here, the stopping criterion is met (p exceeds 0.95). 
In order fully to clarify the alternation of forward and 
backward stepping phases, Table 16.1 describes a 
purely hypothetical (and unrealistically convoluted) 
search over 6 variables. Analogously to the MDS 
algorithm of Chapter 6, it is quite possible that such 
an iterative search procedure will get trapped in a local 
optimum and miss the true best solution; only a minute 
fraction of the vast search space is ever examined. Thus, 
it may be helpful to begin the search at several, different, 
random starting points, i.e. to start sequential addition 
or deletion from an existing, randomly selected set of 
25% (say) of the species.7

11 This concept may be familiar from stepwise multiple regression 
in univariate statistics, which tackles a similar problem o f selecting 
a subset o f  explanatory variables which account for as much as 
possible o f  the variance in a single response variable.

The PRIMER B VSTEP routine carries out this stepwise approach 
on the active worksheet (the faunal data matrix), for a separately 
specified, fixed  similarity matrix (Bray-Curtis on the faunal data 
matrix here). There are options always to exclude, or always to 
include, certain variables (species) in the selection, to start the 
algorithm either with none, all or a random set o f variables in the 
initial selection, and to output results o f  the iteration at various 
levels o f detail.

EXAMPLE: Amoco-Cadiz oil spill

Applying this (BVSTEP) procedure to the 125-species 
set from the Bay o f  Morlaix, a smallest subset of only 
9 species can be found, whose similarity matrix across 
the 21 samples correlates with that for the full species 
set, at p > 0.95. The MDS plot for the 21 samples based 
only on these 9 species is shown in Fig. 16.3b and is 
seen to be largely indistinguishable from 16.3a. The 
make-up of this influential s  set is discussed later
but it is important to realise, as often with stepwise proc­
edures, that this may be far from a unique solution. 
There are likely to be other sets of species, a little larger 
in number or giving a slightly lower p value, that would 
do a (nearly) equally good job of ‘explaining’ the full 
pattern.

One interesting way of seeing this is to discard the 
initial selection o f 9 species, and search again for a 
further subset that produces a near-perfect match (p >
0.95) to the pattern for the full set o f 125 species. Fig. 
16.3c shows that a second such set be found, this 
time of 11 species. If the two sets are discarded, a third 
(of 14 species), then a fourth (of 18 species) can also 
be identified, and Fig. 16.3d and e again show the high 
level of concordance with the full set, Fig. 16.3a. There 
are now 73 species left and a fifth set can just about 
be pulled out of them (Fig. 16.3f), though now the 
algorithm terminates at a genuine maximum of p; a 
match better than p = 0.91 cannot be found by the 
stepwise procedure, even after several attempts with 
different random starting positions. If these (27) species 
are also discarded, the ability of the remaining 46 
species to reconstruct the initial pattern degrades slowly 
(Fig. 16.3g) then rapidly (Fig. 16.3h and i), i.e. little 
of the original ‘signal’ remains.
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Table 16.1. Hypothetical illustration o f stages in a stepwise algorithm (F: forward selection, B: backward elimination steps) to select a 
subset o f species which match the multivariate sample pattern for a fu ll set (here, 6 species). Bold underlined type indicates the subset 
with the highest p  at each stage, and italics denote a backward elimination step that decreases p  and is therefore ignored. The procedure 
ends when p  attains a certain threshold (p > 0.95), or when forward selection does not increase p.

Step Direction Species sets Best p

1 F 1 2 3 4 5 6 0.6
2 F 2+1 2+3 2+4 2+5 2+6 0.65
3 B 2 4 0.6
4 F 2+4+1 2+4+3 2+4+5 2+4+6 0.7
5 B 2+4 2+5 4+5 0.8
6 B 4 5 0.55
1 F 4+5+1 4+5+2 4+5+3 4+5+6 0.85
8 B 4+5 4+1 5+1 0.8
9 F 4+5+1+2 4+5+1+3 4+5+1+6 0.9
10 B 4+5+1 4+5+6 4+1+6 5+1+6 0.92
11 B 5+1 5+6 1+6 0.93
12 B 5 6 0.55
13 F 5+6+1 5+6+2 5+6+3 5+6+4 0.94
14 B 5+6 5+2 6+2 0.93
15 F 5+6+2+1 5+6+2+3 5+6+2+4 0.95
16 B 5+6+2 5+6+4 5+2+4 6+2+4 0.94
17 STOP p = 0.95 threshold reached, for species subset 2+4+5+6

Clarke and Warwick (1998a) discuss the implication 
of these plots for concepts of structural redundancy  
in assemblages (and, arguably, for functional redund­
ancy, or at least compensation capacity). They invest­
igate whether the various sets of species ‘peeled’ out 
from the matrix have a similar taxonomic structure. 
For example, Table 16.2 displays the first and second 
‘peeled’ species lists and defines a taxonomic mapping 
coefficient, used to measure the degree to which the 
first set has taxonomically closely-related counterparts

in the second set, and vice-versa. (Note that such taxon- 
omic-relatedness concepts are the basis of several bio­
diversity indices proposed in Chapter 17.) A permutat­
ion test can be constructed which leads to the conclusion 
that the peeled subsets are more taxonomically similar 
(i.e. have greater taxonomic coherence) than would 
be expected by chance. The number o f such coherent 
subsets that can be ‘peeled out’ from the matrix is 
clearly some measure of redundancy of information 
content.

Set 1 (9 spp)All spp Set 2 (11 spp)

Oil spill

.95 .95

Set 4 (18 spp)Set 3 (14 spp) Set 5 (27 spp)

.95 .95 .91

Set 7 (13 spp)Set 6 (19 spp) Set 8 (13 spp)

.72 .38 .02

Fig. 16.3. Amoco-Cadiz oil spill 
{A}. MDS plots from 21 samples 
(approximately quarterly) o f  
macrobenthos in the Bay o f  
Morlaix (Bray-Curtis on 4th- 
root transformed abundances).
a) As Fig. 16.1 but discarding 
the rare species, leaving 125;
b)—f) based on a succession o f  
five, small, mutually exclusive 
subsets o f species, generated 
by the B VSTEP procedure, 
showing the high level o f match­
ing with the fu ll data (p values 
in bottom right o f plots, and 
number o f species in top right); 
g)-i) after successive removal 
o f the species in previous plots, 
the ability to match the original 
pattern by selecting from the 
remaining species rapidly 
degrades (stress = 0.09, 0.08, 
0.08, 0.08, 0.12, 0.12, 0.21, 
0.24, 0.24 respectively).
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Table 16.2. Amoco-Cadiz oil spill {A}. Illustration o f taxonomic 
mapping o f the second and third ‘peeled' species subsets (i.e. 
those underlying Fig. 16.3c,d), from  the successive application 
o f B VSTEP, highlighting the (closer than random) taxonomic 
parallels between the species sets which are capable o f ‘explaining ' 
the fu ll pattern o f Fig. 16.3a. Continuous lines represent the 
closest relatives in the right-hand set to each species in the left- 
hand set (underlined values are the number o f steps distant through 
the taxonomic tree, see Chapter 17 for examples). Dashed lines 
map the right-hand set to the left-hand (non-underlined values 
are again the taxonomic distances). The taxonomic mapping 
similarity coefficient, M, averages the displayed mean taxonomic 
distances.

Owenia fusiformis----2 -----    2 Myriochele sp.

Melinna palmata__2 _________________  3 Thelepus cincinnatus

Heterocirrus alatus 4 _  ;______________4 Sylaroides plumosa

4  Aricidea minuta

Odontosyllis gibba 2 . . . .____________  2 Exogene hebes

^ ' 3  Nephtys hombergii

^ 3  Phyllodoce lineata

' 4 Hyalinoecia bilineata

Ampelisca brevicornis__1 _________    7  Ampelisca typica

Bathyporeia tenuipes 1  7 ... 7  Bathyporeia nana

Leucothoe incisa 2

Periambus typicus 2 _________________  3  Megaluropus agilis

Philocheras bispinosus 2  _____    3 Macropipus depurator

Nassarius reticulatus 2 -—-----------------------------4 Gastrosaccus lobatus

Thyasira flexuosa 1 _______  ..... 3  Venus ovata

M = 2.73 M = 2.86

Viewed at a pragmatic level, the message of Fig. 16.3 
is therefore clear. It is not a single, small set o f species 
which is responsible for generating the observed sample 
patterns o f Fig. 16.1, of disturbance and (partial) re­
covery superimposed on a seasonal cycle. Instead,the 
same temporal patterns are imprinted several times in 
the full species matrix. The steady increase in size of 
successive ‘peeled’ sets reflects the different signal-to- 
noise ratios for different species, or groups of species. 
The signal can be reproduced by only a few species 
initially but, as these are sequentially removed, the 
remaining species have increasingly higher ‘noise’ 
levels, requiring an ever greater number o f them to 
generate the same strength o f ‘signal’. Clarke and 
Warwick (1998a) give further macrobenthic examples, 
o f time series from Northumberland subtidal sites, 
whose structural redundancy is at a similar level (4-5 
peeled subsets), though this is by no means a universal 
phenomenon (M G Chapman, pers. comm., for rocky 
shore assemblages; Clarke and Gorley, 2001, for Zoo­
plankton communities).

FURTHER EXTENSIONS

Both BIO-ENV and B VSTEP procedures can be gener­
alised to accommodate possibilities other than their 
‘defaults’ of selecting abiotic variables to optimise a 
match with fixed biotic similarities, and selecting subsets 
of species to link to the sample patterns of the full 
species set. In fact, the main distinction between the 
two concepts is simply one of whether a full search is 
performed, as in BIO-ENV, or, for large scale problems, 
a stepwise search approach is adopted, as in B VSTEP.

The first (fixed) similarity matrix can be from species 
(e.g. Bray-Curtis), environmental variables (e.g. Euclid­
ean), or even a model matrix, such as the equally-spaced 
inter-point distances in the seriation matrix of Chapter 
15. The second matrix, whose variables are to be 
selected from, can also be of biotic or abiotic form. 
Some possible applications involve searching for:^

1) species within one faunal group that ‘best explain’ 
the pattern of a different faunal group (‘BIO-BIO’), 
e.g. key macrofaunal species which are structuring 
(or are correlated with environmental variables that 
are structuring) the full meiofaunal assemblages;

2) species subsets which best respond to (characterise) 
a given gradient of one or more observed contam­
inants ( ‘EN V-BIO’);

3) species subsets which match a given spatial or temp­
oral pattern ( ‘M ODEL-BIO’), e.g. the model might 
be the geographic layout o f samples, expressed 
literally as inter-sample distances, or a linear time- 
trend (equal-spaced steps, as with seriation), or a 
circular pattern appropriate to a single seasonal 
cycle, etc;

4) subsets of environmental variables which best 
characterise an a priori categorisation of samples 
(‘MODEL-ENV’), e.g. selecting quantitative beach 
morphology variables which best delineate a given 
classification o f beach types (F. Valesini, pers. 
comm.).

All these combinations are possible in both the PRIMER BIO-ENV 
(full search) and B VSTEP (stepwise search) routines. The fixed  
(dis)similarity/distance matrix can be o f  any form (biotic, abiotic 
or model, created within PRIMER or imported from outside) and 
the data matrix from which variables are to be selected has basically 
two options fo r  (dis)similarity calculation, which the user has to 
specify (Bray-Curtis fo r  species, or normalised/non-normalised 
Euclidean for environment). Often, o f course, it will not make sense 
to run a fu ll search fo r  a species data matrix; conversely, it will 
not be optimal to run a stepwise search when there are only a small 
number o f variables in an environmental array.



SECOND-STAGE MDS

It is not normally a viable sampling strategy, for soft- 
sediment benthos at least, to use the B VSTEP procedure 
to identify a subset of species as the only ones whose 
abundance is recorded in future. Savings of monitoring 
effort at the identification analysis stage can sometimes 
be made, however, by working at a higher taxonomic 
level than species (see Chapter 10). Where full species- 
based information is available, MDS plots can be gener­
ated at different levels of taxonomic aggregation (i.e. 
using species, genera, families, etc) and the configur­
ations visually compared. Another axis o f choice for 
the biologist is that of the transformation applied to 
the original counts (or biomass, or cover). Chapter 9 
shows that different transformations pick out different 
components of the assemblage, from only the dominant 
species (no transform), through increasing contributions 
from mid-abundance and less-common species ( V ,  V V ,  
log) to a weighting placing substantial attention on 
less-common species (presence/absence). The environ­
mental impact, or other spatial or temporal ‘signal5, 
may be clearer to discern from the ‘noise5 under some 
transformations than it is for others.

Amoco-Cadiz oil spill

The difficulty quickly arises that so many MDS plots 
are generated that visual comparison is no longer easy, 
and it is always subjective, relying only on the 2-d 
approximation inherent in an MDS plot, rather than 
the full high-dimensional information. For example, 
Fig. 16.4 displays the MDS plots for the Morlaix study 
at only two taxonomic levels: data at species and 
aggregated to family level, for each of the full range 
o f transformations, but it is already difficult to form a 
clear summary of the relative effects of the different 
choices. However, part of the solution to this problem 
has already been met earlier in the chapter. For every 
pair o f MDS plots -  or rather the similarity matrices 
that underlie them -  it is easy to define a measure of 
how closely the sample patterns match: it is the Spear­
man rank correlation (p) applied to the elements of the 
similarity matrices. Different transformations and 
aggregation levels will affect the absolute range of 
calculated Bray-Curtis similarities but, as always, it is 
their relative values that matter. If all statements of 
the form ‘sample A is closer to B than it is to C5 are 
identical for the two similarity matrices then the conclus­
ions of the analyses will be identical, the MDS plots 
will match perfectly and p will take the value 1.

Table 16.3 shows the results o f calculating the rank 
correlations (p) between every pair o f analysis options

Chapter 1 6
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Fig. 16.4. Amoco-Cadiz oil spill {A}. MDS plots o f the 21 sampling 
occasions (A, B, C, ...) in the Bay o f Morlaix, for all macrobenthic 
species (left) and aggregated into families (right), and for different 
transformations o f the abundances (in top to bottom order: no 
transform, root, 4th-root, log(l+x), presence/absence). For 
precise dates see the legend to Fig. 10.4; the oil-spill occurred 
between E and F  (stress, reading left to right: 0.06, 0.07; 0.07, 
0.08; 0.09, 0.10; 0.09, 0.09; 0.14, 0.18).

represented in Fig. 16.4. For example, the largest 
correlation is 0.996 for untransformed species and 
family-level analyses, the smallest is 0.639 between 
untransformed and presence/absence family-level 
analyses, etc. Though Table 16.3 is clearly a more 
quantitatively objective description of the pairwise 
comparisons between analyses, the plethora of coeff­
icients still make it difficult to extract the overall 
message. Looking at the triangular form of the table, 
however, the reader can perhaps guess what the next 
stage is! Spearman correlations are themselves a type 
o f similarity measure: two analyses telling essentially 
the same story have a higher p (high similarity) than 
two analyses giving very different pictures (low p, 
low similarity). All that needs adjustment is the simil­
arity scale, since correlations can potentially take values
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Samples
1234567

Sample rank 
dissimilarities

MDS
ordinations

Set A (eg 
species, no 
transform)

Set B (eg 
species, V 
transform)

Set C (eg 
family, no 
transform)

Rank
correlations

2
3

5
Bray- 6 
Curtis 7

© •

Correlation
P ab

Correlation
P bc

• ©
Second stage 

MDS

Table 16.3. Amoco-Cadiz oil spill {A}. Spearman correlation 
matrix between eveiy pair o f  similarity matrices underlying the 
10 plots o f Fig. 16.4, measuring the extent to which they ‘tell the 
same sto iy’ about the 21 Morlaix samples. These correlations 
(rank ordered) are treated like a similarity matrix and input to a 
second-stage MDS. Key: s — species-level analysis, ƒ = family-level; 
0 = no transform, 1 = root, 2 = 4th root, 3 = log(l +x), 4 = presence 
/absence.

sO si s2 s3 s4 fO fl 12 O

si .970
s2 .862 .949
s3 .852 .942 .995
s4 .736 .847 .961 .946
fO .996 .965 .855 .845 .726
fl .949 .993 .961 .958 .865 .947
n .791 .893 .972 .974 .953 .785 .924
D .760 .869 .962 .971 .946 .753 .904 .993
f4 .645 .756 .877 .870 .923 .639 .792 .946 .929

in (-1, 1) rather than (0,100) say. In practice, negative 
correlations in this context will be rare (but if  they 
arise they indicate even less similarity of the two 
pictures) but the problem is entirely solved anyway 
by working, as usual, with the ranks o f the p values,
i.e. rank (dis)similarities. It is then natural to input 
these into an MDS ordination, as shown schematically 
in Fig. 16.5.

The resulting picture is termed a second-stage M D S  
and is displayed in Fig. 16.6 for the Morlaix analyses 
o f Fig. 16.4. The relationship between the various 
analysis options is now summarised in a clear and 
straightforward fashion (with near-zero stress). The 
different transformations form the main (left to right) 
axis, in steady progression through: no transform, V, 
VV and log(l+x), to pres/abs. The difference between

Fig. 16.5. Schematic diagram 
o f the stages in quantifying 
and displaying agreement, by 
second-stage MDS, o f different 
multivariate analyses o f a corr­
esponding set o f samples.

species and family level analyses largely forms the 
other (bottom to top) axis. Three important points are 
immediately clear:

1) Log and VV transforms are virtually identical in their 
effect on the data, with differences between these 
transformations being much smaller than that between 
species and family-level analyses in that case.

2) With the exception of these two, the transformations 
generally have a much more marked effect on the 
outcome than the aggregation level (the relative 
distance apart on the MDS of the points representing 
different transformations, but the same taxonomic 
level, is much greater than the distance apart of 
species and family-level analyses, for the same 
transformation).

s3
s2

s4

Fig. 16.6. Amoco-Cadiz oil spill {A}. Second-stage MDS o f the
10 analyses o f Fig. 16.4. The proximity o f the points indicates the 
extent to which different analysis options capture the same inform­
ation. s = species-level analysis, f = family-level; 0 — no transform, 
1 = root, 2 = 4th root, 3 = log(l +x), 4 = presence /absence. Stress 
= 0.01, so the 2-dpicture tells the whole story, e.g. that choice 
o f aggregation level has less effect here than transformation.
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3) The effect of taxonomic aggregation becomes greater 
as the transformation becomes more severe, so that 
for presence/absence data the difference between 
species and family-level is much more important 
than it is for untransformed or mildly transformed 
counts. Whilst this is not unexpected, it does indicate 
the necessity to think about analysis choices in comb­
ination, when designing a study.

Other applications

The concept of a second-stage M D S  used on rank 
correlations between similarity matrices -  from different 
taxonomic aggregation levels (species, genus, family, 
trophic group) and, in the same analysis, different 
faunal groups (nematodes, macrofauna) recorded for 
the same set o f sites -  was introduced by Somerfield 
and Clarke (1995), for studies in Liverpool Bay and 
the Fai estuary, UK. Olsgard et al (1997, 1998) 
expanded the scope to include the effects of different 
transformation, simultaneously with differing aggreg­
ation levels, for data from N Sea oilfield studies.11 
Other interesting applications include Kendall and 
Widdicombe (1999) who examined different body- 
size components o f the fauna as well as different 
faunal groups, from a hierarchical spatial sampling 
design (spacings of 50cm, 5m, 50m, 500m) in Plymouth 
subtidal waters. They used a second-stage MDS to 
display the effects of different combinations of body- 
sizes, faunal groups and transformation. Olsgard and 
Somerfield (2000) introduced the pattern from environ­
mental variables as an additional point on a second- 
stage MDS, together with biotic analyses from different 
faunal components (polychaetes, molluscs, crustacea, 
echinoderms) at another N Sea oilfield. The idea is 
that biotic subsets whose multivariate pattern links 
well to the environmental data will be represented by 
points on the second-stage MDS which lie close to 
the environmental point. The converse operation can 
also be envisaged, as a visual counterpart to the BIO - 
ENV procedure. For small numbers of environmental 
variables, the abiotic patterns from subsets of these 
can be represented as points on the second-stage MDS, 
in which the (fixed) biotic similarity matrix is also 
shown. The best environmental combinations should 
then ‘converge’ on the (single) biotic point.

11 They also carried out another interesting analysis, assessing 
BIO-ENV results in the light o f analysis choices. It was hypoth­
esised earlier (p9-4 and 10-2), that a contaminant impact may 
manifest itself more clearly in the assemblage pattern for inter­
mediate transform and aggregation choices. Olsgard et al (1997) 
do indeed show, for the Valhall oilfield, that the BIO-ENV  
matching o f sediment macrobenthos to the degree o f disturbance 
from drilling muds disposal (measured by sediment THC, Ba 
concentrations etc), was optimised by intermediate transform (V) 
and aggregation level (family).

EXAMPLE: Phuket coral-reef time series

A rather different application of second-stage MDS11 
is motivated by considering the two-way layout from 
a time-series of coral-reef assemblages, along an 
onshore-offshore transect in Ko Phuket, Thailand 
{K}. These data were previously met in Chapter 15, 
where only samples from the earlier years 1983, 86, 
87, 88 were considered (as available to Clarke et a f  
1993). The time series has been subsequently expanded 
to the 13 years 1983-2000, omitting 1984, 85, 89, 90 
and 96, on transect A (Brown et a f  in press). This 
transect consisted of 12 equally-spaced positions along 
the onshore-offshore gradient, and was subject to 
sedimentation disturbance from dredging for a new 
deep-water port in 1986 and 87. For 10 months during 
late 1997 and 98 there was also a wide scale sea-level 
depression in the Indian Ocean, leading to significantly 
greater irradiance exposures at mid-day low tides. 
Elevated sea temperatures were also observed (in 
1991, 95, 97, 98), sometimes giving rise to coral 
bleaching events, but these generally resulted in only 
short-term partial mortalities.

The two (crossed) factors here are the years and the 
positions down the transect ( 1-12, at the same spacing 
each year). Separate MDS plots of the onshore-offshore 
(seriation) pattern for each year show some visual 
differences which can be summarised in Spearman 
rank correlations (p) between their underlying simil­
arity matrices. These correlations in turn are entered 
into the second-stage MDS to produce Fig. 16.7; it 
demonstrates both the sedimentation-based disruption 
to the gradient in 1986 and 87, and the negative sea- 
level anomaly of 1998. Interestingly, these are on 
opposite sides of the MDS plot, suggesting that the 
departures from the ‘normal’ onshore-offshore gradient 
are of a different type.

Note the subtlety of what this analysis tries to isolate: 
the compositions of the transect over the different years 
are not directly compared, as they would be if all were 
analysed together on the same (first-stage) MDS, for 
example. There may (and will) be natural year-to-year 
fluctuations in abundances which would separate the 
transects on a combined MDS plot but which do not 
disrupt the serial change in assemblage down the tran­
sect. The second-stage procedure will not be sensitive 
to such natural fluctuations. In fact, it eliminates them

11 Both types ofproblem are catered for in the PRIMER 2STAGE 
routine, the inputs either being a series o f similarity matrices (which 
can be taken from any source provided they refer to the same set 
o f sample labels), or a single similarity matrix, from a 2-way 
layout with appropriate factors defined.
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95

by concentrating only on whether the (gradient) 
pattern is the same each year -  assemblage 
similarities between the same transect points in 
different years do not enter the calculations (as seen 
in Fig. 16.5). Disruptions to the gradient pattern in 
certain years are, in a sense, interactions between 
gradient and year, removing year-to-year main effects, 
and this is what the second-stage MDS sets out to 
display in such a context/

Fig. 16.7. Ko Phuket corals {K}. Second-stage MDS plot o f the 
13 different years in the period 1983 to 2000, based on comparing 
the multivariate analyses, fo r  each year, o f  the 12 transect 
positions down the shore (transect A). Note the differences in 
the onshore-offshore seriation pattern in 1986/7 and again in 
1998, evidenced by the separation o f these years on the plot 
(stress = 0.11).

T The idea has parallels with the ANOSIM2 procedure at the end 
o f Chapter 6, which sets out to remove the main effects o f factor 
A in a two-way layout, by concentrating only on the patterns o f  
factor B, in separate MDS plots for each level o f factor A.
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CHAPTER 17: BIODIVERSITY MEASURES BASED ON RELATEDNESS 
OF SPECIES

SPECIES RICHNESS DISADVANTAGES

Chapter 8 discussed a range of diversity indices based 
on species richness and the species abundance distrib­
ution. Richness (S) is widely used as the preferred 
measure of biological diversity (biodiversity) but it has 
some major drawbacks, many o f which apply equally 
to other diversity indices such as H', H, J', etc.

1 ) Observed richness is heavily dependent on sample 
size/effort. In nearly all marine contexts, it is not 
possible to collect exhaustive census data. The 
assemblages are sampled using sediment cores, trawls 
etc, and the ‘true’ species richness o f a station is 
rarely fully represented in such samples. For example, 
Gage and Coghill (1977) describe a set of contiguous 
core samples taken for macrobenthic species in a 
Scottish sea-loch. A species-area p lo t (or accum­
ulation curve) which illustrates how the number of 
different species detected increases as the samples 
are accumulated11, shows that, even after 64 replicate 
samples are taken at this single locality, the observed 
number of species is still rising.

40"

64321
No. of replicate sam ples

“The harder you look, the more species you find” 
is fundamental to much biological sampling and 
the asymptote of accumulation curves is rarely 
reached. Observed species richness S  is therefore

 ̂ This uses the Species-Area plot routine in PRIMER, which has the 
option o f plotting the curve in the presented sample order or (as 
here) randomising that order a large number o f times. In the latter 
case, the resulting curves are averaged to obtain the smoothed 
relationship o f average number o f species for each number o f 
replicates (sample size).

highly sensitive to sample size and totally non­
comparable across studies involving unknown, 
uncontrolled or simply differing degrees of sampling 
effort. The same is true, to a lesser extent, of many 
other standard diversity indices. Fig. 17.1 shows 
the effect o f increasing numbers of individuals on 
the values of some of the diversity indices defined 
in Chapter 8. This is a sub-sampling study, selecting 
different numbers of individuals at random from a 
single, large community sample. The only index to 
demonstrate a lack of bias in mean value is Simpson 
diversity, given here in the form 1-À/, see equation 
(8.4). Comparison of richness, Shannon, evenness, 
Brillouin etc values for differing sample sizes is 
clearly problematic.

2) Species richness does not directly reflect phylo- 
genetic diversity. “A measure o f biodiversity o f a 
site ought ideally to say something about how 
different the inhabitants are from each other” (Harper 
and Hawksworth, 1994). It is clear that a sample 
consisting of 10 species from the same genus should 
be seen as much less biodiverse than another sample 
of 10 species, all of which are from different families: 
genetic, phylogenetic or, at least, taxonomic related­
ness of the individuals in a sample is the key concept 
which is developed in this chapter, into practical 
indices which genuinely reflect biodiversity and 
are robust to sampling effort variations.

3) No statistical fram ew ork exists fo r  departure o f  S  
from  ‘expectation\  Whilst observed species richness 
measures can be compared across sites (or times) 
which are subject to strictly controlled and equivalent 
sampling designs, there is no sense in which the 
values o f S  can be compared with some absolute 
standard, i.e. we cannot generally answer the question 
“what do we expect the richness to be at this site?”, 
in the absence of anthropogenic impact, say.

4) The response o f  S  to environmental degradation 
is not monotonie. Chapter 8 discusses the well- 
established paradigm (see Wilkinson, 1999, and 
references therein) that, under moderate levels of 
disturbance, species richness may actually increase, 
before decreasing again at higher impact levels. It 
would be preferable to work with a biological index 
whose relation to the degree o f perturbation was 
purely monotonie (increasing or decreasing, but 
not both).
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Fig. 17.1. Amoco-Cadiz oil spill {A}, pooled pre-impact data. Values o f 6 standard diversity indices (y-axis, see Chapter 8 for definitions), 
fo r  simulated samples o f increasing numbers o f individuals (x-axis, log scaled), drawn randomly without replacement from the fu ll set 
o f 140,344 macrobenthic organisms.

5) Richness can vary markedly with differing  
habitat type. Again, the ideal would be a measure 
which is less sensitive to differences in natural 
environmental variables but is responsive to 
anthropogenic disturbance.

AVERAGE TAXONOMIC DIVERSITY 
AND DISTINCTNESS

Two measures, which address some o f the problems 
identified with species richness and the other diversity 
indices, are defined by Warwick and Clarke (1995a). 
They are based not just on the species abundances 
(denoted by x h the number of individuals of species i 
in the sample) but also the taxonomic distances (co,7), 
through the classification tree, between every pair o f 
individuals (the first from species i and the second 
from species j ) .  For a standard Linnean classification, 
these are discrete distances, the simple tree below 
illustrating path lengths of zero steps (individuals 
from the same species), one step (same genus but 
different species) and two steps (different genera)11. 
Clarke and Warwick (1999) advocate a simple linear 
scaling whereby the largest number o f steps in the

11 The principle extends naturally to a phylogeny with continuously 
varying branch lengths and even, ultimately, to a molecular-based 
genetic distance between individuals (of the same or different species), 
see Clarke and Warwick (2001), Fig. 1.

tree (two species at greatest taxonomic distance apart) 
is set to co = 100. Thus, for a sample consisting only 
of the 5 species shown, the path between individuals 
in species 3 and 4 is 0034 = 100, between species 1 and 
2 is con = 50, between two individuals o f species 5 is 
CO55 = 0 , etc.

Family

Genera

S p ecies

(=0)
Individuals

Average taxonomic diversity of a sample is then defined
(Warwick and Clarke, 1995a) as:

A = [ Z I (</. co ij x¡ Xj ] /  [ Nl)/2 ] (17.1)

where the double summation is over all pairs of species 
i and j(i,j = 1 ,2 , ..., S; i<jand = L, x , , the total 

number o f individuals in the sample. A has a simple 
interpretation: it is the average ‘taxonomic distance 
apart’ o f every pair o f individuals in the sample or, to 
put it another way, the expected path length between 
any two individuals chosen at random.
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Fig. 17.2. Amoco-Cadiz oil spill {A}, p o o le d  pre-im pact data, a), b) Quantitative indices (y-axis): A verage taxonomic d iversity (A) and  
distinctness ( A  *) fo r random subsets o f  fixed numbers o f  individuals (x-axis, logged), drawn randomly from the pooled  sample, as in Fig. 17.1. 
c)-f) L ist-based (presence/absence) indices (y-axis): A verage taxonomic distinctness (A~ ), total phylogenetic diversity (PD), average  
phylogenetic  diversity (<&~) and Variation in taxonomic distinctness (A~), fo r  random subsets o ffix ed  numbers o f  species (x-axis) drawn  
fro m  the fu ll species list fo r  the p o o le d  sample. The sam ple-size independence o f  TD -based indices is clear, contrasting with PD and  
m ost standard diversity measures (Fig. 17.1).

Note also that when the taxonomic tree collapses to a 
single-level hierarchy (all species in the same genus, 
say), A becomes

A0 = [ 2 1,1,i<j p¡pj ] /  (\-  AT1), where p, = x, /

= ( 1  -  £ ( /?,2 ) / ( l - A r ' )  (17.2)

which is a form of Simpson diversity. The Simpson 
index is actually defined from the probability that any 
two individuals selected at random from a sample belong 
to the same species (Simpson, 1949). A is therefore seen 
to be a natural extension o f Simpson, from the case 
where the path length between individuals is either 0 
(same species) or 100 (different species) to a more 
refined scale of intervening relatedness values (0 = same 
species, 20 = different species in the same genera, 40 
= different genera but same family, etc).f It follows that 
A will often track Simpson diversity fairly closely. To 
remove the dominating effect of the speciestabundance 
distribution {*,}, leaving a measure which is more nearly 
a pure reflection of the taxonomic hierarchy, Warwick 
and Clarke (1995a) proposed dividing A by the Simpson 
index A°, to give average taxonom ic distinctness

' In addition, there is a relationship between  A  and Simpson indices 
com puted a t all higher taxonomic levels, as recently reported  by 
Shim atani (2001)

A* = [ c o ijx , x j ] / [  Z£,<y Xixj] ( 17.3)

Another way of thinking of this is as the expected 
taxonomic distance apart of any two individuals chosen 
at random from the sample, provided those two individ­
uals are not from the same species.

A further form of the index, exploited greatly in what 
follows, takes the special case where quantitative data 
is not available and the sample consists simply o f a 
species list (presence/absence data). Both A and A* 
reduce to the same coefficient

A+ = [ ZI,<y co i j ] / [ S ( S - l)/2 ] (17.4)

where S, as usual, is the observed number of species 
in the sample and the double summation ranges over 
all pairs i and j  of these species (/</). Put simply, the 
average taxonomic distinctness (AvTD) A+ of a species 
list is the average taxonomic distance apart of all its 
pairs of species. This is a very intuitive definition of 
biodiversity, as average taxonomic breadth of a sample.

Sampling properties

For quantitative data, repeating the pairwise exercise 
(Fig. 17.1) o f random subsampling o f individuals from 
a single, large sample, Fig. 17.2a and b show that both
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taxonomic diversity (A) and average taxonomic distinct­
ness (A*) inherit the sample-size independence seen 
in the Simpson index, from which they are generalised. 
Clarke and Warwick (1998b) formalise this result by 
showing that, whatever the hierarchy or subsample 
size, A is exactly unbiased and A* is close to being so 
(except for very small subsamples). For non-quantit- 
ative data (a species list), the corresponding question 
is to ask what happens to the values o f A+ for random 
subsamples of a fixed number o f species drawn from 
the full list. Fig. 17.2c demonstrates that the mean 
value of A+ is unchanged, its exact unbiasedness in all 
cases again being demonstrated in Clarke and Warwick 
(1998b). This lack of dependence of A+ (in mean 
value) on the number of species in the sample has far- 
reaching consequences for its use in comparing 
historic data sets and other studies for which 
sampling effort is uncontrolled, unknown or unequal.

EXAMPLES: Ekofisk oil-field and Tees 
Bay soft-sediment macrobenthos

The earlier Fig. 14.4 demonstrated a change in the 
sediment macrofaunal communities around the Ekofisk 
oil-field / 'E/, out to a distance o f about 3 km from the 
centre of drilling activity. This was only evident, 
however, from the multivariate (MDS and ANOSIM) 
analyses, not from univariate diversity measures such 
as Shannon H', where reduced diversity was only 
apparent up to a few hundred metres from the centre 
(Fig. 17.3a). The implication is that the observed 
community change resulted in no overall loss of 
diversity but this is not the conclusion that would 
have been drawn from calculating the quantitative 
average taxonomic distinctness index, A*. Fig. 17.3b 
shows a clear linear trend of increase in A* with (log) 
distance from the centre, the relationship only breaking

down into a highly variable response for the strongly 
impacted sites, within 100m of the drilling activity.

A further example, from the coastal N Sea, is given 
by a time-series o f macrobenthic samples, with data 
averaged over 6 locations in Tees Bay, UK, ({V?, 
Warwick et ol, in press). Samples were taken in March 
and September for each o f  the years 1973 to 1996, 
and Fig. 17.4 shows the September inter-annual patterns 
for four (bio)diversity measures. Notable is the clear 
increase in Shannon diversity at around 1987/88 (Fig. 
17.4b), coinciding with significant widescale changes 
in the N Sea planktonic system which have been 
reported elsewhere (e.g. Reid et al, in press). However, 
Shannon diversity is very influenced here by the high 
numbers o f a single abundance dominant (Spiophanes 
bombyx), whose decline after 1987 led to greater 
equitability in the quantitative species diversity 
measures. A more far-reaching change, representative 
of what was happening to the community as a whole, 
is indicated by looking at the taxonomic relatedness 
statistics based only on presence/absence data. Use 
of simple species lists has the advantage here of ensuring 
that no one species can dominate the contributions to 
the index. Average taxonomic distinctness (A+) is 
seen to show a marked decline at about the time of 
this N Sea regime shift (Fig. 17.4c), indicating a 
biodiversity loss, a very different (and more robust) 
conclusion than that drawn from Shannon diversity.

OTHER RELATEDNESS MEASURES

The remainder of this chapter deals only with data in 
the form of a species list for a locality (presence/absence 
data). There is a substantial literature on measures 
incorporating, primarily, phylogenetic relationships 
amongst species (see references in the review-type 
papers of Faith, 1994, Humphries et al 1995). The

Shannon sp ecies diversity H' 
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Fig. 17.3. Ekofisk macrobenthos
{E}. a) Shannon diversity (H) 
for the 39 sites (y-axis), plotted 
against distance from centre 
o f drilling activity (x-axis, log 
scale), b) Quantitative average 
taxonomic distinctness A* for  
the 39 sites, indicating a re­
sponse trend not present for  
standard diversity indices.
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context is conservation biology, with the motivation 
being the selection o f individual species, or sets of 
species (or reserves), with the highest conservation 
priority, based on the unique evolutionary history 
they represent, or their complementarity to existing 
well-conserved species (or reserves). Warwick and 
Clarke (2001) draw a potentially useful distinction of 
terminology between this individual species-focused 
conservation context and the use, as in this chapter, 
of relatedness information to monitor differences in 
community-wide patterns in relation to changing 
environmental conditions. They suggest that the term 
taxonomic/phylogenetic distinctiveness (of a species) 
is reserved for weights assigned to individual species, 
reflecting their priority for conservation; whereas 
taxonomic/phylogenetic distinctness (of a community) 
summarises features of the overall hierarchical structure 
of an assemblage (the spread, unevenness etc. of the 
classification tree).

Phylogenetic diversity (PD)

In the distinctiveness context, Vane-Wright et al (1991), 
Williams et a l (1991) and May (1990) introduced 
measures based only on the topology (‘elastic shape’) 
of a phylogenetic tree, appropriate when branch lengths 
are entirely unknown, and Faith (1992, 1994) defined 
a phylogenetic diversity (PD) measure based on known 
branch lengths: PD is simply the cumulative branch 
length of the full tree. Whether this is thought o f as 
representing the total evolutionary history, the genetic

Fig. 17.4. Variations inter-annu- 
ally in Tees Bay macrobenthos 
{V}. (Bio)diversity indices for  
Tees Bay areas combined, from 
sediment samples in September 
each year, over the period 1973 
—96, straddling a major regime- 
shift in N Sea ecosystems, about 
1987. a) Richness, S; b) Shann­
on, H'; c) Average taxonomic 
distinctness, A”, based on pres­
ence/absence and reflecting 
the mean taxonomic breadth 
o f the species lists; d) Variation 
in taxonomic distinctness, A ' 
(also pres/abs), reflecting un­
evenness in the taxonomic 
hierarchy.

turnover or morphological richness, it is an appealingly 
simple statistic. Unfortunately, Fig. 17.5 demonstrates 
some o f the disadvantages of using these measures in 
a distinctness context. The figure compares only 
samples (lists) with the same number o f species (7), 
at four hierarchical levels (say, species within genera 
within families, all in one order), so that each step 
length is set to 33.3. Fig. 17.5b and c have the same 
tree topology, yet we should not consider them to 
have the same average (or total) distinctness, since 
each species is more taxonomically similar to its 
neighbours in b than c (reflected in A+ values of 33.3 
and 66.6 respectively). Similarly, contrasting Fig. 17.5d 
and e, the total PD is clearly identical, the sum of all 
the branch lengths being 333 in both cases, but this 
does not reflect the more equitable distribution of 
species amongst higher taxa in d than e (A+ does, 
however, capture this intuitive element of biodiversity, 
with respective values of 52 and 43).

Average PD

More importantly, there is another clear reason why 
phylogenetic diversity PD is unsuitable for monitoring 
purposes. Firstly, note that PD itself is a rather 
than average property; as new species are added to 
the list it always increases. This makes PD highly 
dependent on species richness and thus sampling 
effort, a demonstration of which can be seen in Fig. 
17.2d (and the later Fig. 17.9a), a near straight line 
relationship o f PD with S .This is to be expected, and
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Order 

Family 

Genus

S pecies 3 4 5 6 72

4 5 6 71 2 3

1 2 3 4 5 6 7

e

1 2 3 4 5 6 7

1 2 3 4 5 6 7

2 3 4 5 6 71

a better equivalent to average taxonomic distinctness 
(AvTD, A+) would be average phylogenetic diversity 
(AvPD), defined as the ratio:

0 + = PD I S  (17.5)

This is a very intuitive summary of average distinctness, 
being the contribution that each species makes on 
average to the total tree length, but unfortunately it 
does not have the same lack of dependence on sampling 
effort that characterises A+. Fig. 17.2e (and the later 
Fig. 17.9b) show that its value decreases markedly as 
the number of species (S) increases, making it mislead­
ing to compare AvPD values across studies with differ­
ing levels of sampling effort.

‘Total’ versus ‘average’ measures

Note the distinction here between total and average 
distinctness measures. AvPD ( 0 +) is the analogue of 
AvTD (A+), both being ways of measuring the average 
taxonomic breadth of an assemblage (a species list), 
for a given number of species. A+ will give the same 
value (on average) whatever that number of species; 
0 + will not. Total PD measures the total taxonomic 
breadth o f the assemblage and has a direct analogue 
in total taxonomic distinctness:

TTD = 5. A+ = I ,  cou ) / ( S -  1)] (17.6)

Explained in words, this is the average taxonomic 
distance from species i to every other species, summed 
over all species, z = 1 ,2 , ..., S. (Taking an average 
rather than a sum gets you back to AvTD, A+.) TTD

Fig. 17.5. a)-f) Example taxon­
omic hierarchies for presence/  
absence data on 7 species (i.e. 
o f fixed species richness), with 
4 levels and 3 step lengths (thus 
each o f 33.3, though the third 
step only comes into play for  
plot f). (P~: average phylo­
genetic diversity, A": average 
taxonomic distinctness, A  : 
variation in TD. The plots 
show, inter alia: the expected 
1biodiversity ’ decrease from  
a) to d) and e) to b) (in both 
A~ and O ;, and from d) to e) 
(but only in A", not in ); 
unevenness o f f) in relation to 
c), reflected in increased K 
though unchanged A~.

may well be a useful measure of total taxonomic breadth 
of an assemblage, as a modification of species richness 
which allows for the species inter-relatedness, so that 
it would be possible, for example, for an assemblage 
of 20 closely-related species to be deemed less ‘rich’ 
than one o f 10 distantly-related species. In general, 
however, like total PD, total TD will tend to track
species richness rather closely, and will only therefore
be useful for tightly controlled designs in which effort 
is identical for the samples being compared, or sampling 
is sufficiently exhaustive for the asymptote o f the 
species-area curve to have been reached (i.e. comparison 
of censuses rather than samples).

Variation in TD

Finally, a comparison o f Fig. 17.5c and f  shows that 
the scope for extracting meaningful biodiversity indices 
(unrelated to richness) from simple species lists has 
not yet been exhausted. Average taxonomic distinctness 
is the same in both cases (A+ = 66.6) but the tree 
constructions are very different, the former having 
consistent, intermediate taxonomic distances between 
pairs of species, in comparison with the latter’s disparate 
range of small and large values. This can be conven­
iently summarised in a further statistic, the variance 
of the taxonomic distances {coy} between each pair of 
species i andy, about their mean value A+:

A+ = [ ££,<, (®y -  A+)2 ] / [ -  1 )/2 ] (17.7)

termed the variation in taxonom
Its behaviour in a practical application will be examined



Chapter 17
page 17-7

later in the chapter11, but note for the moment that it, 
too, appears to have the desirable sampling property 
of (approximate) lack of dependence of its mean value 
on sampling effort (see Fig. 17.2f).

‘EXPECTED DISTINCTNESS’ TESTS

Species master list

The construction of taxonomic distinctness indices from 
simple species lists makes it possible to address another 
o f the ‘desirable features’ listed at the beginning of 
the chapter: there is a potential framework within 
which TD measures can be tested for departure from 
‘expectation’. This envisages a master list or inventory 
o f species, within defined taxonomic boundaries and 
encompassing the appropriate region/biogeographic 
area, from which the species found at one locality can 
be thought of as drawn. For example, the next illustr­
ation uses the entire British faunal list o f free-living 
marine nematodes, a total o f 395 species identified to 
date. The species complement at any particular locality 
and/or historic period (e.g. putatively impacted areas 
such as Liverpool Bay or the Firth of Clyde) can be 
compared with the master list, to ask whether the 
observed subset of species is representative of the 
biodiversity expressed in the full species inventory. 
Clearly, such a comparison is impossible for species 
richness S , or total TD or PD, since the list at one 
location is automatically shorter than the master list. 
Also, comparison of S  between different localities (or 
historic periods) is invalidated by the inevitable differ­
ences in sampling effort in constructing the lists for 
different places (or times). However, the key observ­
ation here (Clarke and Warwick, 1998b) is that average 
taxonomic distinctness (A+) of a randomly selected 
sublist does not differ, in mean value, from AvTD for 
the master list. So, localities that have attracted 
differing degrees of sampling effort are potentially 
directly comparable, with each other and with A+ for 
the full inventory. The latter is the ‘expected value’ 
for average distinctness from a defined faunal group,

 ̂ The PRIMER DIVERSE routine has options to compute the full 
range o f relatedness-based biodiversity measures discussed in this 
chapter: A, A *, A" , TTD, AT, PD, 0 ,  simultaneously for all the 
samples in a species matrix. It returns the values to a worksheet 
that can be displayed as scatter plots, via the Draftsman plot 
routine, analysed in a multivariate way (e.g. by PCA, with indices 
as variables) or exported fo r  conventional univariate analysis 
(e.g. ANOVA) elsewhere. These DIVERSE options require the 
availability o f an aggregation file, detailing which species map 
to which genus, families etc, in exactly the same format needed 
for the Aggregate routine which was used to perform higher taxon­
omic level analyses in Chapter IO.

and reductions from this level, at one place or time,
can potentially be interpreted as loss of biodiversity.

Testing framework

Furthermore, there is a natural testing framework for 
how large a decrease (or increase) from expectation 
needs to be, in order to be deemed statistically ‘signif­
icant’. For an observed set o f species at one location, 
sublists of size in are drawn at random from the master 
inventory, and their AvTD values computed. From, 
say, 999 such simulated sublists, a a can
be constructed of the expected range of A+ values, for 
sublists of that size, against which the true A+ for that 
locality can be compared. If the observed A+ falls 
outside the central 95% of the simulated A+ values, it 
is considered to have departed significantly from 
expectation: a two-sided test is probably appropriate 
since departure could theoretically be in the direction 
o f enhanced as well as reduced distinctness.

The next stage is to repeat the construction of these 
95% probability intervals for a range of sublist sizes
(m = 10, 15, 20, ...)  and plot the resulting upper and 

lower limits on a graph of A+ against m. When these 
limit points are connected across the range o f values, 
the effect is to produce a f u  (such as seen in 
Fig. 17.8). The real A+ values for a range of observ­
ational studies are now added to this plot, allowing 
simultaneous comparison to be made of distinctness 
values with each other and with the ‘expected’ limits.’

EXAMPLE: UK free-living nematodes

Warwick and Clarke (1998) examined 14 species lists 
from a range of different habitats and impacted/undist­
urbed UK areas {{U},Fig. 17.6), referring them to a 
6-level classification of free-living, marine nematodes 
(Lorenzen, 1994), based on cladistic principles. The 
taxonomic groupings were: species, genus, family, 
suborder, order and subclass, all within one class, thus 
giving equal step lengths between adjacent taxonomic 
levels o f 16.67 (species within different subclasses 
then being at a taxonomic distance o f co = 100). The 
relatively comprehensive British master list (compiled 
from Platt and Warwick, 1983, 1988, Warwick
1998) consisted of 395 species, the individual area/ 
habitat sublists ranging in size from 27 to 164 species.

•j*
Histogram and funnel plots o f the ‘expected ’ spread o f AT values 

fo r a given subsample size (or size range), drawn from a master 
species list, are plotted in the PRIMER TAXDTEST routine, access­
ible when the active sheet is the aggregation file fo r  the master 
list. An option is given to superimpose a real data value on the 
simulated histogram, or a set o f real values on the funnel plot.
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They included two studies of the same (generally 
impacted) area, the Firth o f Clyde, carried out by 
different workers and resulting in very disparate 
sublist sizes (53 and 112).

FO

C2

TY

< if ¥ ^  EM 
FA TA ES

Fig. 17.6. UK regional study, free-living nematodes {U}. The 
location/habitat combinations for the 14 species sublists whose 
taxonomic distinctness structure is to be compared. Sublittoral 
offshore sediments at N: Northumberland (Warwick and Buchanan 
1970); TY: Tyne (Somerfield et al, 1993); L: Liverpool Bay 
(Somerfield et al, 1995). Intertidal sand beaches at ES: Exe 
(Wanvick, 1971); Cl: Clyde (Lambshead, 1986); C2: Clyde 
(Jayasree, 1976); FO: Forth (Jayasree, 1976); SS: Scilly (Warwick 
and Coles, 1977). Estuarine intertidal mudflats at EM: Exe 
(Warwick, 1971); TA: Tamar (Austen and Warwick, 1989); FA: 
Fai (Somerfield et al, 1994a,b). Algal habitats in SA: Scilly 
(Gee and Warwick, 1994 a,b). Also mixed habitats at E : Exe, 
S: Scilly.

H is to g r a m s

Species richness levels o f the 14 lists are clearly not 
comparable since sampling effort is unequal. However, 
the studies have been rationalised to a common taxon­
omy and AvTD values may be meaningfully compared. 
Fig. 17.7 contrasts two o f the studies, which have 
similar-length species lists: sandy sites in the Exe 
estuary (ES, 122 species) and the Firth o f Clyde (C l, 
112 species). Fig. 17.7a displays the histogram of A+ 
values for 999 random subsamples of size m = 122, 
drawn from the full inventory of 395 species, and this 
is seen to be centred around the master AvTD of 78.7, 
with a (characteristic) left-skewness to the A+ distrib­
ution. The observed A+ o f 79.1 for the Exe data falls 
very close to this mean, in the body of the distribution, 
and therefore suggests no evidence of reduced taxon­
omic distinctness. Fig. 17.7b shows the histogram of 
simulated A+ values in subsets of size m = 112, having 
(of course) the same mean A+ o f 78.7 but, in contrast, 
the observed A+ of 74.1 for the Clyde data now falls 
well below its value for any of the randomly selected 
subsets, demonstrating a significantly reduced average 
distinctness.

F u n n e l  p lo ts

Fig. 17.8 displays the funnel plot, catering for all sublist 
sizes. The simulated 95% probability limits are again 
based on 999 random selections for each of m = 10, 
15, 20, ..., 250 species from the 395. The mean A+ is 
constant for all m (at 78.7) but the limits become increas­
ingly wide as the sample size decreases, reducing the 
likelihood of being able to detect a change in distinctness 
(i.e. reducing the power o f the test). The probability 
limits also demonstrate the left-skewness of the A+ 
distribution about its mean throughout, though especially

10 (H m -  112 sp ec ie sm = 122 sp ec ie s Exe sa n d s  
'A+ = 79.1

100-

8 0 -8 0 -

6 0 -6 0 -0>o»o>
4 0 -4 0 -

Clyde san ds  
A+ = 74.1

20 -20 -

u_

0 - 0 -

74 75 76 77 78 79 80 81 8274 75 76 77 78 79 80 81 82
Average Taxonom ic D istinctness A+

Fig. 17.7. UK regional study, 
free-living nematodes {U}. 
Histograms o f simulated AvTD, 
from 999 sublists drawn rand­
omly from a UK master list o f  
395 species. Sublist sizes o f a) 
m=122, b) m=112, correspond­
ing to the observed number o f  
species in the Exe (ES) and 
Clyde (Cl) surveys. True A 
also indicated: the Exe value 
is central but the null hypoth­
esis that AvTD for the Clyde 
equates to that for the UK list 
as a whole is clearly rejected 
(p<0.001 or 0.1%)
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Fig. 17.8. UK regional study y 
free-living nematodes {U}. 
Funnel plot for simulated AvTD, 
as in Fig. 17.1, but for a range 
o f sublist sizes m=10, 15, 20, 
..., 250 (x-axis). Crosses, and 
thick lines, indicate limits within 
which 95% o f simulated A " 
values lie; the thin line indicates 
mean A ' (the AvTD for the 
master list), which is not a 
function o f m. Points are the 
true AvTD (y-axis) for the 14 
location/habitat studies (see 
Fig. 17.6 fo r codes), plotted 
against their sublist size (x- 
axis).

for low numbers o f species. Superimposing the real
A+ values for the 14 habitat/location combinations, five
features are apparent:

1)The impacted areas of Clyde, Liverpool Bay, Fai 
and, to a lesser extent, Tamar, are all seen to have 
significantly reduced average distinctness, whereas 
pristine locations in the Exe and Scilly have A+ values 
close to that o f the UK master list.

2) Unlike species richness (and in keeping with the 
‘desirability criteria’ stated earlier), A+ does not 
appear to be strongly dependent on habitat type: Exe 
sand and mud habitats have very different numbers 
o f species but rather centrally-placed distinctness; 
Scilly algal and sand habitats have near-identical A+ 
values. Warwick and Clarke (1998) also demonstrate 
a lack o f habitat dependence in A+ from a survey of 
Chilean nematodes (data of W Wieser).

3) There is apparent monotonicity of response o f the 
index to environmental degradation (also in keeping 
with another initial criterion). To date, there is no 
evidence of average taxonomic distinctness increasing 
in response to stress.

4) In spite of the widely differing lengths of their species 
lists, it is notable that the two Clyde studies (C l, C2) 
return rather similar (depressed) values for A+.

5) There is no evidence of any empirical relation in the 
(A+, S)scatter plot. We know from the sampling 
theory that the mechanics of calculating A+ does

not lead to an intrinsic relationship between the
two but that does not prevent there being an 
correlation; the latter would imply some genuine 
assemblage structuring which predisposed large 
communities to be more (or less) ‘averagely distinct’ 
than small communities. The lack of an intrinsic, 
mechanistic correlation greatly aids the search for 
such interesting observational relationships (see 
also the later discussion on AvTD, VarTD correl­
ations). The same cannot be said for phylogenetic 
diversity, PD. Fig. 17.9a shows the expected near- 
linear relation between total PD and for these 
meiofaunal studies (total TD and would have 
given a similar picture) but, more significantly, Fig. 
17.9b bears out the previous statements about the 
dependence also o f averag PD (<t>+) on S. This 

intrinsic relationship, shown by the declining curve 
for the expected value of 0 + as a function of the 
number of species in the list, contrasts markedly 
with the constant mean line for A+ in Fig. 17.8. 
Nothing can therefore by read into an observed 
negative correlation of <D+ and S  in a practical study: 
such a relationship would be likely, as here, to be 
purely mechanistic, i.e. artefactual.

AvTD is therefore seen to possess many of the features 
listed at the beginning o f the chapter as desirable in a 
biodiversity index -  a function, in part, o f its attractive 
mathematical sampling properties (for formal statistical 
results on unbiasedness and variance structure see 
Clarke and Warwick, 1998b, 2001). Many questions
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Fig. 17.9. UK regional study, free-living nematodes fU}. Scatter plots
against list size m, the latter also showing the declining ‘expected’ meanO

remain, however -  from theoretical issues of its depend­
ence (or lack o f it) on essentially arbitrary assumptions 
about relative weighting of step lengths through the 
taxonomic tree, to further practical demonstration o f 
its performance (or lack of it) for other faunal groups 
and environmental impacts. The following example 
addresses these two questions in particular.

EXAMPLE: N Europe groundfish surveys

An investigation of the taxonomic structure of demersal 
fish assemblages in the North Sea, English Channel 
and Irish Sea, motivated by concerns over the impacts 
o f beam trawling, is reported by Rogers (1999). 
A total o f 277 ICES Quarter-rectangles were sampled 
{Q},for 93 species o f groundfish, by research vessels 

from different N European countries. Sampling effort 
per rectangle was not constant. For the purposes o f 
display, quarter-rectangles were grouped into 9 larger 
sea-areas: 1-Bristol Channel, ..., 9-Eastern Central 
N Sea (Fig. 17.10, see legend for area definitions).

There is a wealth of taxonomic detail to exploit in this 
case. The analysis uses a 14-level classification (Fig. 
17.11), based on phylogenetic information, compiled 
by J.D. Reynolds (Univ E Anglia), primarily from 
Nelson (1994) and McEachran and Miyake (1990). 
The distinctness structure of this master list, and its 
AvTD o f A+ = 80.1, for all groundfish species that 
could be reliably sampled and identified, becomes the 
standard against which the species lists from the various 
quarter-rectangles are assessed.

Funnel plot

Fig. 17.12 displays the resulting funnel plot of the range 
o f A+ values expected from sublists o f size 5 to 35,

Fig. 17.10. Quarter ICES rectangles, groundfish surveys {Q}. 277
rectangles from 9 sea areas. 1: Bristol Channel, 2: W Irish Sea, 
3: E Irish Sea, 4: W Channel, 5: NE Channel, 6: SE Channel, 7: 
SW  North Sea, 8: SE North Sea, 9: E Central North Sea.

repeating the mean, lower and upper limits in sub-plots 
o f observed A+ values for the 9 sea areas. A+ is clearly 
seen to be reduced in some areas, particularly 6, 8 and 
9, whilst remaining at ‘expected’ levels in others. 
Rogers et al(1999) discuss possible explanations for 
this, noting the contribution made by the spatial pattern 
o f  elasmobranchs, a taxonomic group they argue may 
be particularly susceptible to disturbance by commercial 
trawling, because o f their life history traits.

Weighting of step lengths

Many of the fine-scale phylogenetic groupings in Fig. 
17.11 are utilised comparatively rarely (e.g. subgenera 
only within Raja,tribe only within the Pleuronectidae
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Class Superorder Order Superfamily Subfamily Genus Species

Phylum Subdivision Series

Carcharinifbrmes r

Suborder Family Tribe Subgenus

C hondrichthyes
Rajiformes

 T r ia k id a e -^
- Scyliorhinidae —  

R ajidae

Torpediniform es

• Squaliform es -

Svgnathi formes
Syngnathidae p

Scorpaeniform es

I-------
T  etraodontiform es

-  T rig lid ae-E

Pleuronectiform es

Scophthalm idai

Gadiformes

Lophiiform es

A n gu illiform es-C

• M ustelus asterias
■ Galeorhinus galeus
• Scy liorhinus canicula  
- Raja radiata
• Raja undulata
; Raja brachyura 

Torpedo nobiliana  
' Squalus acanthias 
; Capros aper 

Syngnathus rostellatus 
Entelurus aequoreus 
H ippocam pus ramulosus

—  M yxocephalus scorpius
—  Liparis liparis
—  Trigloporus lastoviza
—  Aspitrigla cuculus
—  M ola m ola
—  Pholis gunnellus
—  Lumpenus lumpretaeformis
—  Dicentrarchus labrax
—  M ullus surm uletus
—  Labrus bergylta
—  Crenilabrus m elops
—  Centrolabrus exoletus
—  Gobius paganellus
—  L esueurigobius friesii
—  Echiichthys vipera
—  Blennius ocellaris
—  D iplecogaster bimaculata
—  Phrynorhombus regius
—  Scophthalm us rhombus
—  Lepidorhom bus vvhifTiagoni:
—  Solea  lascaris
—  S olea  solea
—  Pleuronectes platessa
—  M icrostom us kitt
—  H ippoglossus h ippoglossus
—  A rnoglossus imperialis
—  M erluccius m erluccius
—  M elanogram m us aeglefinus
—  Trisopterus luscus
—  Pollachius pollachius  

M olva m olva  
C iliata m ustela  
Gaidropsarus mediterraneus 
Lophius piscatorius 
A nguilla anguilla

M ustelus m ustelus  
Scyliorhinus stellaris 
Raja naevus 
Raja clavata  
Raja m ontagui 
Raja m icroocellata  
Torpedo marmorata 
Chelon labrosus 
Gasterosteus aculeatus 
Syngnathus acus 
H ippocam pus hippocam pus 
Taurulus bubalis 
A gonus cataphractus 
Cyclopterus lumpus 
Eutrigla gurnardus 
Trigla lucerna 
Zeus faber 
Zoarces viviparus 
Chirolophis ascanii 
C epola rubescens 
Spondyliosom a cantharus 
Labrus mixtus 
Ctenolabrus rupestris 
G obius niger 
G obius gasteveni 
Trachinus draco 
Parablennius gattorugine 
Perciform es sp  
Phrynorhombus norvegicus 
Scophthalm us maximus 
Zeugopterus punctatus 
M icrochirus variegatus 
B uglossid ium  luteum  
Platichthys flesus 
G lyptocephalus cynoglossus  
Limanda lim anda  
H ippoglosso ides platessoides  
Arnoglossus laterna 
Raniceps raninus 
Gadus morhua 
Trisopterus minutus 
Merlangius merlangus 
Rhinonem us cimbrius 
Gaidropsarus vulgaris 
Coryphaenoides rupestris 
Conger conger

Fig. 17.11. Quarter ICES rectangles, groundfish surveys {Q}. 14-level classification (phylogenetically-based) used for the construction o f  
taxonomic distances between 93 demersal fish species, those that could be reliably sampled and identified for the 277 rectangles in this 
N European study.

Table 17.1. Quarter ICES rectangles, groundfish surveys {Q}. 
The 13 taxonomic/phylogenetic categories (k) used in the ground­
fish study, the standard taxonomic distances /co*/ and an alternative 
formulation {to/®} based on taxon richness {sk} at each level. 
co¿ (or co/%) is the path length between species from different 
taxon group k but the same group k+1.

etc), and the standard assumption that all step lengths 
between taxonomic levels are given equal weight (7.69, 
in this case) may appear arbitrary. For example, if a 
new category is defined which is not actually used, 
then the resulting change in all the step lengths, in 
order to accommodate it, seems unwarranted. The 
natural alternative here is to make the step lengths 
proportional to the extent of group melding that takes 
place, larger steps corresponding to larger decreases 
in taxon richness. A null category would then add no 
additional step length. Table 17.1 shows the resulting 
taxonomic distances {co(0)} between species connected 
at the differing levels, contrasted with the standard, 
equal-stepped, distances {co}. Obviously, both are 
standardised so that the largest distance in the tree 
(between species in the different classes Chondrichthyes 
and Osteichthyes) is set to 100.

Fig. 17.13 demonstrates the minimal effect these revised 
weights have on the calculation of average taxonomic 
distinctness, A+. It is a scatter plot o f A+(0) (revised 
weights) against A+ (standard, equal-stepped, distances) 
for the 277 quarter-rectangle species lists. The relation

k Taxon Sk CO h w #>

1 Species 93 7.7 1.3
2 Sub-genus 89 15.4 6.9
3 Genus 72 23.1 8.9
4 Tribe 67 30.8 12.5
5 Sub-family 59 38.5 21.4
6 Family 41 46.2 22.9
7 Super-family 39 53.8 27.4
8 Sub-order 33 61.5 44.4
9 Order 14 69.2 54.9
10 Series 9 76.9 61.4
11 Super-order 7 84.6 65.6
12 Sub-division 6 92.3 85.3
13 Class 2 100.0 100.0
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Fig. 17.13. Quarter ICES rectangles, groundfish surveys {Q}. 
Comparison o f observed A', for each o f 277 rectangles, between 
two weighting options for taxonomic distance between species: 
equal step-lengths between hierarchical levels (x-axis), and lengths 
proportional to change in taxonomic richness at that step (y-axis).

is seen to be very tight, with only about 3 samples de­
parting from near-linearity. (These are outliers of very 
low species richness -  in one case as few as 2 species 
-  and have been removed from Fig. 17.12.) Clearly, 
the relative values of A+ are robust in this case to the 
precise definition of the step-length weights, a reassuring 
conclusion which is also borne out for the UK nematode 
study {I)}. For the data o f Fig. 17.8, Clarke and War­
wick (1999) consider the effects o f various alternative 
step-length definitions, consistently increasing or 
decreasing the weights at higher taxonomic levels as 
well as weighting them by changes in taxon richness.

Fig. 17.12. Quarter ICES rect­
angles, groundfish surveys {Q}. 
AvTD (presence/absence data) 
against observed number o f 
species, in each o f 274 rect­
angles, grouped into 9 sea 
areas (Fig. 17.10). Dashed 
line indicates mean o f 5000 
simulated sublists for each size 
m = 5, 6, 7, ...,35, confirming 
the theoretical unbiasedness 
and therefore comparability o f 
A~ for widely differing degrees 
o f sampling effort. Continuous 
lines denote 95% probability 
limits for  A* from a single sub­
list o f specified size from the 
master list (of 93 species).

The only alteration to the conclusions came from de­
creasing the step lengths at the higher (coarsest) taxon­
omic levels, especially suppressing the highest level 
altogether (so that species within different subclasses 
were considered no more taxonomically distant than 
those within different orders). The Scilly data sets 
then showed a clear change in their average distinctness 
in comparison with the other 11 A+ values.^

The unusual structure of the Scillies sublists is also 
exemplified, in a more elegant way, by considering 
not just average but variation in taxonomic distinctness.

VARIATION IN TAXONOMIC 
DISTINCTNESS, A*

VarTD was defined in equation (17.7), as the variance 
of the taxonomic distances {<%} between each pair of 
species i and y, about their mean distance A+. It has 
the potential to distinguish differences in taxonomic 
structure resulting, for example, in assemblages with 
some genera becoming highly species-rich whilst a range 
of other higher taxa are represented by only one (or a 
very few) species. In that case, average TD may be 
unchanged but variation in TD will be greatly increased, 
and Clarke and Warwick (2001) argue (on a sample 
of one!) that this might be expected to be characteristic 
of island fauna, such as that for the Isles o f Scilly.

lí Both the PRIMER DIVERSE and TAXDTEST routines allow such 
compression o f taxonomic levels, either at the top or bottom o f the 
tree (or both), and also permit automatic computation o f step- 
length weights based on changes in taxon richness and, indeed, 
any user-specified weighting.
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Fig. 17.14. UK regional study, 
free-living nematodes fUf. 
Funnel plot, as in Fig. 17.8, 
but for simulated VarTD (A~), 
against sublist sizes m=10, 
15, 20, ..., 250 (x-axis), drawn 

from the 395-species master list. 
Thin line denotes the theoretical 
(and simulated) mean A ', which 
is no longer entirely constant, 
declining very slightly for small 
values o f m. The bias is clearly 
negligible, however, showing 
that (like A )  A~ is comparable 
across studies with differing 
sampling effort (as here). Super­
imposed observed A" values 
fo r  the 14 location/habitat 
combinations (Fig. 17.6) show 
a significantly larger than 
expected VarTD for the Scilly 
datasets.

For the UK nematode study Fig. 17.14 displays 
the funnel plot for VarTD (A+) which is the companion 
to Fig. 17.8 (for AvTD, A+). It is constructed in the 
same way, by many random selections o f sublists of a 
fixed size m from the UK master list o f 395 nematode 
species, and recomputation of A+ for each subset. The 
resulting histograms are typically more symmetric 
than for A+, as seen by the 95% probability limits for 
‘expected’ A+ values, across the full range o f sublist 
sizes: m =10, 15 ,20 ,25 ,..., shown in Fig. 17.14. Three
features are noteworthy:

1)The simulated mean A+ (thin line in Fig. 17.14) is 
again largely independent o f sublist size, only de­
clining slightly for very short lists (and the slight 
bias is dwarfed by the large uncertainty at these 
low sizes). Clarke and Warwick (2001) derive an 
exact formula for the sampling bias of A+ and show, 
generally, that it will be negligible. This again has 
important practical implications because it allows 
A+ to be meaningfully compared across (historic) 
studies in which sampling effort is uncontrolled.

2) The various UK habitat/location combinations all 
fall within ‘expected’ ranges, with the interesting 
exception of the Scilly data sets. These have signif­
icantly higher VarTD values, as discussed above.

3 )A + therefore appears to be extracting independent 
information, separately interpretable from A+, about 
the taxonomic structure o f individual data sets. 
This assertion is testable by a approach.

JOINT (AvTD, VarTD) ANALYSES

The histogram and funnel plots of Figs. 17.7 and 17.8 
are univariate analyses, concentrating on only one index 
at a time. Also possible is a bivariate approach in 
which (A+, A+) values are considered jointly, both in 
respect of the observed outcomes from real data sets 
and their expected values under subsampling from a 
master species inventory. Fig. 17.15 shows the results 
of a large number o f random selections o f 100 
species from the 395 in the UK nematode list 
each selection gives rise to an (AvTD, VarTD) pair 
and these are graphed in a scatter plot (Fig. 17.15a). 
Their spread defines the (rather
than range)of distinctness behaviour, for a sublist of
100 species. Superimposed on the same plot are the 
observed (A+, A+) pairs for three of the studies with 
list sizes o f about that order: all three (Clyde, Liver­
pool Bay and Scilly) are seen to fall outside the 
expected structure, though in different ways, as 
previously discussed.

‘Ellipse’ plots

It aids interpretation to construct the bivariate equivalent 
of the univariate 95% probability limits in the histogram 
or funnel plots, namely a 95% probability within
which (approximately) 95% of the simulated values 
fall. An adequate description here is provided by the 
ellipse from a fitted bivariate normal distribution to 
separately transformed scales for A+ and A+.
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Fig. 17.15. UK regional study, free-living nematodes {U}. a) Scatter plot o f (AvTD, VarTD) pairs from random selections o f m = 100 
species from the UK nematode list o f395; also superimposed are three observed points: Clyde (Cl), Liverpool Bay (L) and Scilly (S), 
all falling outside ‘expectation ’. b) Probability contours (back-transformed ellipses) containing approximately 95, 90, 75 and 50% o f  
the simulated values. Both plots are based on 1000 simulations though only 500 points are displayed, fo r clarity.

AvTD in particular needs a reverse power transform 
to eliminate the left-skewness though, as previously 
noted, any transformation of VarTD can be relatively 
mild, if needed at all. Clarke and Warwick (2001) 
discuss the fitting procedure in detail^ and Fig. 17.15b 
shows its success in generating convincing probability 
contours, containing very close to the nominal levels 
o f 50, 75, 90 and 95% of simulated data points. In 
the normal convention, the ‘expected region’ is taken 
as the outer (95%) contour, which is an ellipse on the 
transformed scales, though typically ‘egg-shaped’ 
when back-transformed to the original (A+, A+) plot.

A different region needs to be constructed for each 
sublist size or, in practice, for a range of values of m 
straddling the observed sizes. Though these could all 
be displayed on a single plot, it may improve clarity 
to separate them in groups o f two or three, as in Fig.
17.16. The conclusions are largely unchanged from 
those drawn earlier, for the separate funnel plots, and 
it would be reasonable to query the advantage o f a 
bivariate approach here. However, it has at least 
three merits:

l)T h e  procedure automatically compensates for the 
repeated testing inherent in two separate, univariate 
tests.

 ̂ Accomplished by the PRIMER TAXDTEST routine, which auto­
matically carries out the simulations and transformation/fitting o f  
bivariate probability regions to obtain (transformed) ‘ellipse’ plots, 
fo r  specified sublist sizes, on which real data pairs (A' ,A':) may 
be superimposed

2) The ‘failure to reject’ region of the null hypothesis, 
inside the simulated 95% probability contour, is not 
rectangular, as it would be for two separate tests. 
This opens the possibility for other faunal groups, 
where simulated A+ and A+ values may be negatively 
correlated (as appears to happen for components of 
the macrobenthos, Clarke and Warwick, 2001), that 
significance could follow from the combination of 
moderately low AvTD and VarTD values, where 
neither of them on their own would indicate rejection.

3) It aids interpretation o f spatial biodiversity patterns 
to know whether there is any intrinsic, artefactual 
correlation to be expected between the two indices, 
resulting from the fact that they are both calculated 
from the same set o f data. Here, Fig. 17.15 shows 
emphatically that no such internal correlation is to 
be expected (though, as just commented, the indep­
endence of A+ and A+ is not a universal result, and 
needs to be examined by simulation for each new 
master list). Yet the empirical correlation between 
A+ and A+ for the 14 studies is not zero but large 
and positive (Fig. 17.17). This implies a genuine 
correlation from location to location in these two 
assemblage features, which it is legitimate to inter­
pret. The suggestion (Clarke and Warwick, 2001) 
is that pollution may be connected with a loss both 
of the normal wide spread o f higher taxa (reduced 
A+), and  that the higher taxa lost are those with a 
simple subsidiary structure, represented only by 
one or two species, genera or families, leaving a 
more balanced tree (reduced A+).
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C2: Clyde 2 
EM: Exe mud 
FA: Fai 
FO: Forth
N: Northumberland 
SA: Scillies algae 
SS: Scillies sand 
TA: Tamar

C1: Clyde 1 
E: Exe (all)
ES: Exe sand 
L: Liverpool Bay 
S: Scillies (all) 
TY: Tyne

Average Taxonom ic D istin ctn ess A+

Fig. 17.16. UK regional study, free-living nematodes {U}. ‘Ellipse’ plots o f 95% probability regions fo r  (AvTD, VarTD) pairs, as for  
Fig. 17.15 but fo r  a range o f  sublist sizes: a) m = 40, 50; b) m = 60, 80; c) m = 100, 115; d) m = 120, 160. The observed (A \ A") 
values for the 14 location/habitat studies are superimposed on the appropriate plot for their particular species list size (given in brackets). 
As seen in the separate funnel plots (Figs. 17.8 and 17.14), Clyde, Liverpool Bay, Fai (borderline) and all the Isles o f Scilly data sets 
depart significantly from expectation.
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Fig. 17.17. UK regional study, free-living nematodes {U}. Simple 
scatter plot o f observed (AvTD, VarTD) values for the 14 location/ 
habitat studies, showing the strongly positive empirical correlation 
(Pearson r = 0.79), which persists even i f  the three Scilly values 
are excluded (r -  0.75).

CONCLUDING REMARKS 

Other applications

These taxonomic distinctness indices detailed above 
are relatively recent and, so far, have been applied in 
few studies in the published literature. Some marine 
exceptions, not illustrated earlier, are Haii and Green- 
street (1998) for demersal fish, Piepenburg (1997) 
for starfish and brittle-stars in polar regions, Price 
al(1999) for Atlantic starfish assemblages11, Somerfield 
et al {1997) for further sediment macrobenthos around

Iszak and Price (2001) also consider the extension o f taxonomic 
distinctness ideas to the construction o f a similarity coefficient (for 
presence/absence data) between two assemblages, taking into 
account the taxonomic relatedness o f their species. Effectively, 
they use what is defined by Clarke and Warwick (1998a) as a 
taxonomic mapping similarity between two species lists, used 
there to examine the taxonomic relatedness o f the species sets 
successively ‘peeled’ from the full list, in the structural redundancy 
analysis o f influential groups o f species, discussed in Chapter 16.
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oilfields, and Ward et al (submitted) for a latitudinal 
study of pelagic copepods. Two non-marine examples 
are D. Danielopol (pers. comm.) for groundwater copep­
ods and Shimatani (2001) for forest stands. A bivariate 
biodiversity example is given by Warwick and Light 
(in press), who use ‘ellipse’ plots of expected (A+, A+) 
values, from live faunal records of the Isles o f Scilly, 
to examine whether easily sampled bivalve and 
gastropod death assemblages could be considered 
representative o f the taxonomic distinctness structure 
o f the live fauna.

Caveats

In view of its limited application to date, too much 
should not be claimed for this methodology!11 It is 
surprising that anything sensible can be said about 
diversity at all, for data consisting simply o f species 
lists, and arising from unknown or uncontrolled 
sampling effort (which usually renders it impossible 
to read anything into the relative size of these lists). 
Yet, much of the later part o f this chapter suggests 
that not only can we find one index (AvTD) which 
may be validly compared across such studies, and 
which captures an intuitive sense of what biodiversity 
means, but we can also find a second one (VarTD), 
with similarly attractive statistical properties, and 
which seems to capture (in some cases, at least) an 
entirely independent attribute o f biodiversity structure.

Nonetheless, it is clear that controlled sampling designs, 
carried out in a strictly uniform way across different 
spatial, temporal or experimental conditions, must 
provide additional, meaningful, comparative diversity 
information (on richness, primarily) that A+ and A+ 
are designed to ignore. Even here, though, concepts 
of taxonomic relatedness can expand the relevance o f 
richness indices: rather than use S, or one of its variants 
(see Chapter 8), total taxonomic distinctness (TTD) 
or total phylogenetic diversity (PD), see pages 17-5 
and 17-6, capture the richness of an assemblage in 
terms o f its number o f species and whether they are 
closely or distantly related.

Sensitivity and robustness

Returning for a moment to the quantitative form o f 
average distinctness, equation (17.3), the Ekofisk oil­
field study suggested that such relatedness measures 
may have a greater sensitivity to disturbance events 
than is seen with species-level richness or evenness

 ̂ A quote from Dr Johnson seems apt: “It is not done well; but 
you are surprised to find  it done at a ll”! (Boswell’s ‘Life o f  
Johnson’, 1763)

indices (Warwick and Clarke, 1995). This suggestion 
was not borne out by subsequent oil-field studies 
(Somerfield et al, 1997), particularly where the impact 
was less sustained, the data collection at a less extensive 
level and hence the gradients more subtly entwined 
with natural variability. But it would be a mistake to 
claim sensitivity as a rationale for this approach: there 
is much empirical evidence that the best way of detect­
ing subtle community shifts arising from environmental 
impacts is not through univariate indices at all, but by 
non-parametric multivariate display and testing (Chapter 
14). The difficulty with the multivariate techniques is 
that, since they match precise species identities through 
the construction o f similarity coefficients, they can be 
sensitive to wide scale differences in habitat type, geo­
graphic location (and thus species pool) etc.

Though independent of particular species identities, 
many of the traditional univariate indices have their 
own sensitivities, to habitat type, dominant species 
and sampling effort differences, as we have discussed. 
The general point here is that robustness (to sampling 
details) and sensitivity (to impact) are usually conflicting 
criteria. What is properly claimed for average taxon­
omic distinctness is not sensitivity but:

a) relevance -  it is a genuine reflection of biodiversity 
loss, gain, or neither (rather than recording simply 
a change of assemblage composition), and one that 
appears to respond in a monotonie way to impact;

b) robustness -  it can be meaningfully compared across 
studies from widely separated locations, with few 
(or even no) species in common, from different 
habitats, using data in presence/absence form (and 
thus not sensitive to dominant species), and with 
different levels o f sampling effort. This makes its 
natural use the comparison of regional/global studies 
and/or historic data sets.

Taxonomic artefacts

A natural question is the extent to which relatedness 
indices are subject to taxonomic artefacts. Linnean 
hierarchies can be inconsistent in the way they define 
taxonomic units across different phyla, for example. 
This concern can be addressed on a number o f levels. 
As suggested earlier, the concept of mutual distinctness 
of a set o f species is not constrained to a Linnean class­
ification. The natural metric may be one of genetic 
distance (e.g. Nei, 1996) or that from a soundly-based 
phylogeny combining molecular approaches with more 
traditional morphology. The Linnean classification 
clearly gives a discrete approximation to a more contin­
uous distinctness measure, and this is why it is important 
to establish that the precise weightings given to the
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step lengths between taxonomic levels are not critical 
to the relative values that the index takes, across the 
studies being compared. Nonetheless, it is.a legitimate 
concern that a cross-phyletic distinctness analysis 
could represent a simple shift in the balance of two 
major phyla as a decrease in biodiversity, not because 
the phylum whose presences are increasing is genuinely 
less (phylogenetically) diverse but because its taxonomic 
sub-units have been arbitrarily set at a lower level. Such 
taxonomic artefacts could be readily examined by 
computing, for example, the (AvTD, VarTD) structure 
across different phyla in a standard species catalogue 
(e.g. Howson, 1987). The pragmatic approach, as 
illustrated here for the UK nematode study and the 
groundfish data, is to work within a well-characterised, 
reasonably taxonomically coherent group.

Master species list

Concerns about the precise definition of the master 
list (e.g. its biogeographic range or habitat specificity) 
also naturally arise. Note, however, that the existence 
of such a wide-scale inventory is not a central require­
ment, more o f a secondary refinement. It is not used 
in constructing and contrasting the values of A+ for 
individual samples, and only features in two ways in 
these analyses:

1) In the funnel plots (Figs. 17.8, 17.12, 17.14), location 
o f the points does not require a master species list, 
the latter being used only to display the background 
reference o f the mean value and limits that would 
be expected for samples drawn at random from such 
an inventory. In Fig. 17.12, in fact, the limits are 
not even that relevant since they apply to single 
samples rather than, for example, to the mean of 
the tens o f samples plotted for each sea area. The 
most useful plot for interpretation here is simply a 
standard means plot of the observed mean A+ and 
its 95% confidence interval, calculated from the 
replicates for each sea area (see Rogers et al, 1999 
and Warwick and Clarke, 2001).

2) In Table 17.1 and Fig. 17.3, the master species list 
is employed to calculate step lengths in a revised

form of A+ -  weighting by taxon richness at the differ­
ent hierarchical levels. The existence of a master 
inventory makes this procedure more appealing, since 
if the taxon richness weighting was determined only 
by the samples to hand, the index would need to be 
adjusted as each new sample (containing further 
species) was added. The message o f this chapter, 
however, is that the additional complication of adjust­
ing the weights in A+ for differences in taxon richness 
is unnecessary. Constant step lengths appear to be 
adequate.

The inventory is therefore only used for setting a back­
ground context, the theoretical mean and funnel limits. 
Various lists could sensibly be employed: global, local 
geographic, biogeographic provinces, or simply the 
combined species list of all the studies being analysed. 
The addition of a small number of newly-discovered 
species to the master inventory is unlikely to have a 
detectable effect on the overall mean and funnel for 
A+. If these are located in the taxonomic tree at random 
with respect to the existing taxa (rather than all belong­
ing to the same high or low order group) they will have 
little or no effect on the theoretical mean A+. This, of 
course, is one of the advantages of using an index of 
average rather than total taxonomic distinctness.

It also makes clear what the limitations are to the validity 
o f A+ comparisons. Whilst many marine community 
studies seem to consist of the low-level (species or 
genera) identifications which are necessary for meaning­
ful computation of A+, there are always some taxa that 
cannot be identified to this level. There is no real 
difficulty here, since A+ is always used in a relative 
manner, provided  these taxa are treated in the same 
way in all samples (e.g. omitted). The ability to impose 
taxonomic consistency, by suitable omissions or re­
groupings, is clearly an important caveat on the use of 
taxonomic distinctness for historic or widely-sourced 
data sets. Where such conditions can be met, however, 
we believe that these (and possibly other) measures 
based on taxonomic relatedness, have a promising 
future role in biodiversity assessment in relation to 
global change and at global scales.
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APPENDIX 1: INDEX OF EXAMPLE DATA

The following is a list o f all (real) data sets used as 
examples in the text, where they are referenced by 
their indexing letter (A-Z). The entries give all pages 
on which each set is analysed and also its source refer­
ence (see also Appendix 3). These are not always the 
appropriate references for the analyses o f the text; the 
latter can generally be found in Appendix 2.

A -  Amoco-Cadiz oil spill, Bay of Morlaix, France. 
Macrofauna.(Dauvin, 1984).
p  10-4, 10-5, 13-2, 1
16-6, 17-2, 17-3

B — Bristol Channel, England. (Collins
and Williams, 1982).
p  3-5, 3-6, 7-2 to 7-4,

C -  Celtic Sea. Zooplankton.(Collins, pers. comm.).
p  5 -9

D -  Dosing experiment, Solbergstrand mesocosm,
Norway (GEEP Workshop). (Warwick

et al,1988).
p  4-8, 5-8, 5-9, 9-4

E — Ekofisk oil platform, N.Sea. (Gray
et al,1990).

p  8-5, 8-6, 10-5, 10-6,
17-4

F -  Frierfjord, Norway (GEEP Workshop). 
fauna.(Gray et al,1988).

p  1-3, 1-4, 1-9, 1-10,
8-10, 10-1, 10-2, 13-6,

G -  Garroch Head, sludge dump-ground, Scotland. 
Macrofauna.(Pearson and Blackstock, 1984).

p  1-6, 1-8, 1-11, 1-12,
to 11-5, 11-9, 11-10, 15-2

H -  Hamilton Harbour, Bermuda (GEEP Workshop). 
Macrofauna, nematodes.(Warwick 1990c).
p  8-3, 8-4, 8-12, 13-3,

I -  Indonesian reef corals, S. Pari and S. Tikus Islands. 
Coral % cover.(Warwick 1990b).

p  6-6, 6-7, 8-3, 8-4,
13- 5, 14-3, 14-4, 1 5-5

J -  Joint NE Atlantic shelf studies (“meta-analysis”). 
Macrofauna "production”.(Warwick and Clarke,

1993a).
p  15-2 to 15-5

K — Ko Phuket coral reefs, Thailand.
cover.(Clarke et al,1993; Brown in press).

p  15-8 to 15-10, 16-7,
L -  Loch Linnhe and Loch Eil, Scotland, pulp-mill 

effluent. Macrofauna.(Pearson, 1975).

p  1-6, 1-7, 1-10, 4-5,
10- 4, 10- 6, 10- 7, 15-2,

M — Maldive Islands mining. (Dawson-
Shepherd et al,1992).

p  13-2, 14-4, 14- 5, 15-
N -  Nutrient-enrichment experiment, Solbergstrand 

mesocosm, Norway. Ne (Gee
et al,1985).

p  1-12, 1-13, 10-3, 1
15-7

P -  Plankton survey (Continuous Plankton Recorder), 
N.E. Atlantic. Zooplankton, (Cole-
brook, 1986). 
p  13-1

Q -  Quarter-ICES rectangles, beam-trawl surveys, N. 
Europe. Groundfish.(Rogers 1998).

p  17-10 to 17-12

R -  Tamar estuary mud-flat, S.W. England.
copepods.(Austen and Warwick, 1989).

p i  4-6 to 14-8

S — Scilly Isles, UK. Seawe (Gee and
Warwick, 1994).

p  13-5, 14- 5, 14-6

T — Tasmania, Eaglehawk Neck.
(Warwick et al,1990a).

p  6-9, 12-2 to 12- 4, 13

U -  UK regional studies. N(Warwick and 
Clarke, 1998).

p  17-7 to 17-10, 17-13

V -  Variation inter-annual ly, Tees Bay, UK.
benthos. (Warwick et in press).

p  15-7, 17-5

W -W esterschelde estuary cores, Netherlands; meso­
cosm experiment on food supply.
(Austen and Warwick, 1995).

p  6-10, 6-12

X -  Exe estuary, S.W. England. (Warwick,
1971).
p 5-2 to 5-4, 5-7, 6-12,
11-9

Y -  Clyde, Scotland. Nematodes(Lambshead, 1986).
p  6-7, 6 -8

Z -  Azoic sediment recolonization experiment. 
epods. (Olafsson and Moore, 1992). 

p  12-4
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APPENDIX 2: PRINCIPAL LITERATURE SOURCES AND FURTHER 
READING

This manual chiefly reflects an approach to multivariate 
and other community analyses that has been adopted 
and developed at the Plymouth Marine Laboratory 
(PML) for well over a decade, and has benefited from 
experience at numerous IOC/UNEP and commercial 
training courses. Methods papers from work at PML 
covered in this manual include: Field (1982), 
Warwick (1986), Clarke and Green (1988), Clarke 
(1990), Warwick and Clarke (1993a & b, 1995a), 
Clarke and Ainsworth (1993), Clarke (1993), 
Clarke and Warwick (1994, 1998a & b, 1999, 2001) 
and Somerfield and Clarke (1995, 1997). Clarke (1993,
1999), Warwick ( 1993) and Warwick and Clarke (2001) 
give general reviews, and a large number of papers from 
PML and authors worldwide exemplify their use via 
the PRIMER package (some are listed in Appendix 3 
but there are currently over a thousand in the SCI).

O f course, the exposition here draws on a wider body 
of statistical techniques, and there follows a brief list 
o f the main sources that can be consulted for more 
detail on the methods and analyses of each Chapter.

Chapter 1: Framework. The categorisation here is 
an extension of that given by Warwick (1988a). The 
Frierfjord macrofauna data and analyses (Tables 1.2 
& 1.6 and Figs. 1.1, 1.2 & 1.7) are extracted and re­
drawn from Bayne et al(1988), Gray (1988) and 
Clarke and Green (1988), the Loch Linnhe macrofauna 
data (Table 1.4 and Fig. 1.3) from Pearson (1975), 
and the ABC curves (Fig. 1.4) from Warwick (1986). 
The species abundance distribution for Garroch Head 
macrofauna (Fig. 1.6) is first found in Pearson 
(1983), and the multivariate linking to environmental 
variables (Fig. 1.9) in Clarke and Ainsworth (1993). 
The mesocosm data and analysis (Table 1.7 and Fig.
1.10) are extracted and redrawn from Gee ( 1985).

Chapters 2 and 3: Similarity and Clustering. These 
methods originated in the 1950’s and 60’s (e.g. Florek 
et al, 1951; Sneath, 1957; Lance and Williams, 1967). 
The description here widens that o f Field (1982), 
with some points taken from the general texts of Everitt 
( 1980) and Cormack (1971). The dendrogram of Frier- 
fjord macrofaunal samples (Fig.3.1) is redrawn from 
Gray et al(1988), and the Zooplankton example (Figs.
3.2 & 3.3) from Collins and Williams (1982).

Chapter 4: Ordination by PCA. This is a founding 
technique of multivariate statistics, see for example 
Chatfield and Collins (1980) and Everitt (1978). The 
final example (Fig. 4.2) is from Warwick (1988).

Chapter 5: Ordination by MDS. Non-metric MDS 
was introduced by Shepard (1962) and Kruskal (1964); 
two standard texts are Kruskal and Wish (1978) and 
Schiffman et al(1981). Here, the exposition parallels 
that in Field et al(1982) and Clarke (1993); the Exe 
nematode graphs (Figs. 5.1-5.4) are redrawn from the 
former. The dosing experiment (Fig. 5.5) is discussed 
in Warwick et al(1988).

Chapter 6: Testing. The basic permutation test and 
simulation of significance levels can be traced to Mantel 
(1967) and Hope (1968), respectively. In this context 
(e.g. Figs. 6.2 & 6.3 and eqt. 6.1) it is described by 
Clarke and Green (1988). A fuller discussion of the 
extension to 2-way nested and crossed ANOSIM tests 
(including Figs. 6.4 & 6.6) is in Clarke (1993) (with 
some asymptotic results in Clarke, 1988); the coral 
analysis (Fig. 6.5) is in Warwick (1990b), and 
the Tasmanian meiofaunal MDS (Fig. 6.7) in Warwick 
et al(1990a). The 2-way design without replication
(Figs. 6.8-6.12) is tackled in Clarke and Warwick 
(1994); see also Austen and Warwick (1995).

Chapter 7: Species analyses. Clustering and ordination 
of species similarities is as illustrated in Field 
(1982), for the Exe nematode data (Figs 7.1 & 7.2, 
redrawn); see also Clifford and Stephenson (1975). 
The SIMPER (“similarity percentages”) procedure is 
described in Clarke (1993).

Chapter 8: Univariate/graphical analyses. Pielou 
(1975), Heip et al(1988) and Magurran (1991) are 
useful texts, summarising a large literature on a variety 
o f diversity indices and ranked species abundance 
plots. The diversity examples here (Figs. 8.1 & 8.2) 
are discussed by Warwick e (1990c, 1990b respect­
ively) and the Caswell Vcomputations (Table 8.1) are
from Warwick et al(1990c). The Garroch Head species 
abundance distributions (Fig. 8.4) are first found in 
Pearson et al(1983); Fig. 8.3 is redrawn from Pearson
and Blackstock (1984). Warwick (1986) introduced 
Abundance-Biomass Comparison curves, and the Loch 
Linnhe and Garroch Head illustrations (Figs. 8.7 & 
8.8) are redrawn from Warwick (1986) and Warwick 
et al {1987). The transformed scale and partial domin­
ance curves o f Figs. 8.9-8.11 were suggested by Clarke 
(1990), which paper also tackles issues of summary 
statistics (Fig. 8.12, equation 8.7, and as employed in 
Fig. 8.13) and significance tests for dominance curves.

Chapter 9: Transformations. This chapter is an 
expansion of the discussion in Clarke and Green (1988);



Appendix 2
page A2-2

Fig. 9.1 is recomputed from Warwick (1988).

Chapter 10: Aggregation. This description of the 
effects of changing taxonomic level is based on Warwick 
(1988b), from which Figs. 10.2-10.4 and 10.7 are 
redrawn. Fig. 10.1 is discussed in Gray (1988), 
Fig. 10.5 and 10.8 in Warwick (1990b) and Fig.
10.6 in Gray et al(1990) (or Warwick and Clarke, 
1993a, in this categorisation). More recent work on 
the effects on the analysis o f choice of taxonomic 
level (and transform) can be found in Olsgard 
(1997, 1998) and Olsgard and Somerfield (2000).

Chapter 11: Linking to environment. For wider 
reading on this type of “canonical” problem, see Chapter 
5 of Jongman et al(1987), including ter Braak’s (1986)
method o f canonical correspondence analysis. The 
approach here of performing environmental and biotic 
analyses separately, and then comparing them, combines 
that advocated by Field et (1982: superimposing 
variables on the biotic MDS) and by Clarke and Ains­
worth (1993: the BIO-ENV program). The data in Table 
11.1 is from Pearson and Blackstock (1984). Fig 11.3 
is redrawn from Collins and Williams (1982) and Fig.
11.6 from Field et al(1982); Figs. 11.7-11.8, 11.10 
and Table 11.2 are from Clarke and Ainsworth (1993).

Chapter 12: Community experiments. Influential 
papers and books on field experiments, and causal 
interpretation from observational studies in general, 
include Connell (1974), Flurlbert (1984), Green (1979) 
and many papers by A J Underwood, M G Chapman 
and collaborators, in particular the Underwood (1997) 
book. Underwood and Peterson (1988) give some 
thoughts specifically on mesocosm experiments. Lab- 
based “microcosm” experiments on community struct­
ure, using this analysis approach, are typified by Austen 
and Somerfield (1997) and Schratzberger and Warwick 
(1998b). Figs. 12.2 and 12.3 are redrawn from Warwick 
e ta l(1990a) and Figs. 12.5,12.6 from Gee (1985).

Chapter 13: Data requirements. The exposition 
parallels that in Warwick (1993) but with additional 
examples. Figs. 13.1-13.3 and 13.8 are redrawn from 
Warwick (1993), and earlier found in Colebrook (1986), 
Dawson-Shepherd et al(1992), Warwick (1988b) and 
Gray et al(1988) respectively. Fig. 13.4 is redrawn
from Warwick et al(1990a), Fig. 13.5 from Warwick 
et al(1990c), Fig. 13.6 from Warwick (1990b) 
and Fig. 13.7 from Warwick and Clarke (1991).

Chapter 14: Relative sensitivities. This parallels the 
earlier sections o f Warwick and Clarke (1991), from 
which all these figures (except Figs. 14.11 & 14.14) 
have been redrawn. Primary source versions o f the

figures can be found as follows: Figs. 14.1-14.3, Gray 
et al(1988); Figs. 14.5-14.7, Warwick (1990b); 
Figs 14.9-14.10, Dawson-Shepherd (1992); Figs. 
14.11-14.12, Gee and Warwick (1994); Figs. 14.14-
14.16, Austen and Warwick (1989).

Chapter 15: Multivariate measures of disturbance.
This follows the format o f Warwick and Clarke (1995) 
and is an amalgamation o f ideas from three primary 
papers: Warwick and Clarke (1993a) on “meta-analysis” 
of NE Atlantic macrobenthic studies, Warwick and 
Clarke (1993b) on the increase in multivariate dispersion 
under disturbance, and Clarke (1993) on the break­
down o f multivariate sériation patterns. Figs. 15.1- 
15.3 and Table 15.1 are redrawn and extracted from 
the first, Fig. 15.4 and Table 15.2 from the second and 
Figs. 15.5 & 15.6 and Table 15.5 from the third. The 
analysis in Table 15.4 is from Warwick (in press).

Chapter 16: Comparing multivariate patterns. The
general extension o f the BIO-ENV approach of Chapter 
11, to combinations other than selecting environmental 
variables to match biotic patterns, is described in Clarke 
and Warwick (1998a). This details the forward/back­
ward stepping search algorithm BVSTEP, and uses it 
to select subsets o f “influential species” from a biotic 
matrix. Second-stage MDS is defined in Somerfield 
and Clarke (1995) and early examples o f its use can 
be found in Olsgard et al(1997, 1998). Figs. 16-1 to
16-3, and Tables 16-1, 16-2, are extracted from Clarke 
and Warwick (1998a), and Fig. 16-5 from Somerfield 
and Clarke (1995).

Chapter 17: Taxonomic distinctness measures.
Warwick and Clarke (1995a) first defined taxonomic 
diversity/distinctness. Earlier work, from a conservation 
perspective, and using different species relatedness 
properties (such as PD), can be found in, e.g. Faith 
(1992, 1994), Vane-Wright (1991) and Williams 
et al(1991). The superior sampling properties of 
average taxonomic distinctness (A+), and its testing 
structure in the case of simple species lists, are given 
in Clarke and Warwick (1998b), and applied to UK 
nematodes by Warwick and Clarke (1998) and Clarke 
and Warwick (1999). Variation in taxonomic distinct­
ness (A+) was introduced, and its sampling properties 
examined, in Clarke and Warwick (2001), and a review 
of the area can be found in Warwick and Clarke (2001), 
from which Figs. 17.1, 17.2, 17.5, 17.11, 17.12 are 
redrawn. Fig. 17.3 is discussed in Warwick and Clarke 
(1995a), Fig. 17.4 in Warwick (in press), Figs. 17.6, 
17.8, 17.9, 17.14, 17.17 in Clarke and Warwick (2001), 
Fig. 17.7 in Clarke and Warwick (1998b) and Figs. 
17.10, 17.13 in Rogers e t a l { \ 9
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