THE

JOURNAL OF MALACOLOGY. ESTABLIBHED IN 1890 AG"THE CONCHOLOQIET. A JOURNAL OF MALACOLOQY.'

EDITED BY

WALTER E. COLLINGE, B.Sc.,
Lfecturer on Zoology and Comparative Anatomy in the University of Birmingham, President of the Midland Malacological Society.

WITH THE CO.OPERATION OF

DR. JOSEF. F. BABOR,
The University, Prague.
THE REV. A. H. COOKE, M.A., F.Z.S.,
Fellow of King's College, Cambridge.
CHARLES HEDLEY, F.L.S.,
Australian Museum, Sydney, N.S.W.
E. R SYKES, B.A., F.Z.S., F.L.S., London.
B. B. WOODWARD, F.G.S., F.L.S., British Museum (South Kensinglon), London.

Volume IX.
1902.

LONIDON:
HGLAU ANO CO., 37, SOHO SQITARE, W.
1902.

CONTENTS OF VOLUME IX.

PAGE.
A Classified List of the Helicoid Land Shells of Asia. By G. K. Gude, F.Z.S. I
On the Anatomy of the genus Myotesta, Clige. By Walter E. Collinge. (Plate i.) 11
Description of a new species of Onchidium from South Africa. By Walter E. Collinge. (Illustrations.) 17
The Anatomy of the British species of the genus Solen. Pt. iii. By H. H. Bloomer. (Plate ii.) 18
Descriptions of six new Land Shells from the Malay Peninsula. By E. R. Sykfs, B.A., F.L.S. 22
Obituary. C. A. F' Wiegmann. By Dr. O. F. von Möllendorff. 24
Notes on the British species of Buecinum, Fusur, etc. By J. T. Marshall. 35
A Classified List of the Helicoid Land Shells of Asia. Part ii. By G. K. Gude, F.7.S. 51
Description of a new specics of Chloritis from New Guinea. By G. K. Gude, F.Z.S. (Illustrations.) 59
On a collection of Land and Frcshwater Shells from Kelantan, Malay Peninsula, By. E. R. Sykes, B.A., F.L.S. (Plate iii.) 60
Is Amalia carinata, Risso, a British Slug? By Walter E. Collinge. 63
On a malformed variety of Limnaea perefer, Müll. By H. Overton. (Illustrations.) 64
Description of a new species of Separatista from New Zealand. By Henry Suter. (Illustrations.). 65
On the non-operculate Land and Ireshwater Molluscs collected by the Members of the "Skeat Expedition" in the Malay Peninsula, 1899-1900. By Walter E. Collinge, B.Sc. (Plates iv, v, and vi.) 71
Notes on some further malformed specimens of Anodonta cygnea, L. By H. H. Bloomer. (Plate vii.) 9^{6}
A Classified List of the Helicoid Land Shells of Asia. Part iii. By G. K. Guoe, F.Z.S. (Illustrations.) 97
Description of a new species of Gomphina from New Zealand. By Edgar A. Smith, F.Z.S. (Illustrations.) 109
On the Systematic Position of Patella kermadecensis, Pilsbry. By Henry Suter. (Plate viii.) III
A Classified List of the Helicoid Land Shells of Asia. Part iv. By G. K. Gude, F.Z.S. 112
Some notes on the genus Prisma, Simroth. By Walter. E. Collinge, B.Sc. (Plate ix.) 129
Further notes on Amalia carinata, Risso. By Walter E. Collinge, B.Sc. 132
The Anatomy of the Pritish species of the genus Solen. Pt. iv. By H. H. Bloomer. (Plate x.) 133
Obituary. I37
Physa virgata mut. alba, nov. By Professor T. D. A. Cockerell. 138
Limax maximus, L., in the Hawaiian Islands. By Walter E.
Collinge. 138
Proceedings of the Midland Malacological Society. 2467,138
Current Literature. $26,67,105,139$
General Reviews. 70
Editor's Notes. 34, 70, 108, 144

LIST OF ILLUSTRATIONS IN VOLUME IX.

PAGE.
Anatomy of Myotesta. Plate I. 16
Onchidium butnupi, n. sp. 17
Anatomy of Solen. Plate II. 2 I
(Mhoritis (Sulcobasis) prestoni, n. sp. 59
Shells from Malay Peninsula. Plate III. 63
Limnaed pereger, Müll. Malformed variety of 64
Kipparatista benhami, n. sp 65
Mollusca of the Malayan Peninsula. Plates IV, V and VI. 94
I wridonta cygrea, L., Parts of animal showing malformations of
the gills. Plate VII. 96
Wurrochlamys eceligena, n. sp. 97
fomphina maormm, n. sp. 110
I'fletla kermaderensis, Pilshry, Ylate VIII. 1]I
Hue grenus Prisma, Simr. Plate IX. 132
hmbomy of Solen. Plate X. 136

CORRIGENDA.

Volume viii.

11. 12r. line 14 for iodina read indizzea.
p. I23, line as for torshadowed read foreshadowed.

Volume ix.
p. 14, line 17 for Myotesta frulistorfori read M. fruhstorferi.
p. 49, heat-ine for Marsnall read Marshall.
p. 63 , lines 17 and 3r for Lesson read T.essona.
p. 78 , line 10 for fig. 24 read fig. 15.

JOURNAL OF MALACOLOGY.

No. r .
APRIL Ioth, rooz.
Vol. IX.

A CLASSIFIED LIST OF THE HELICOID LAND SHELLS OF ASIA.

By G. K GLDE F.Z.S.

During the last thirty years enormous numbers of land shells have been collected in almosi every part of the world, and have been described by malacologists of many countries, in memoirs scattered through innumerable publications. It thus happens that, with some exceptions, it is impossible, without much labour, io form an adequate idea of our present knowledge of the molluscan fand of any given region.

Having concentrated much attention during the last fourteen ycars upon the Helicoid land shells, it has appeared to me to be desirable to catalogue these molluscs, which, fortunately enjoy great popularity among the bulk of collectors.

In the present series of articles it is proposed to attempt to draw up systematic lists of all the known Helicoids of Asia. l'or the sake: of convenience the arrangement proposed will coincide with political divisions, except in the case of islands and archipelagros. From present consideration, however, the following divisions will $b x$ uxcluded: I--The Philippine Islands, which have recently been treated of by Dr. O. F. von Mollendorff (Λ bl. Naturl. Gesell Gorlit/, 1898 , xxii., p. 26) ; z.-Lhe Japanese Empire, the Heltooids of which hate been enumerated by myself (Proc. Malac. Soc. Lond., igoo, iz. 1. 8., ib., p. 70, ib., 1901 , P. I91) ; and 3.-India with Burma and ('eylon, which will be included by Dr. W'. 'T'. Blanford in the firthcoming volume of the "Fauna of India."

1. THE CHINESE EMPIRE.

Ous knowledge of the vast majority of Chincse land shells is derived from the labours of missionaries. loremost must be counted the important work on the 'Perrestrial Mollusca of the valley of the Blue kiver by Father Houde, S.J., which forms part of the monumental

[^0]work of the Jesuit Fathers of Shanghai "Memoires concernant I'Histoire Naturelle de l'Empire chinois." Next in importance come the collections made by the brothers Kaspar and Lorenz Fuchs, and 7eno Molltner, enumerated and described by Father Vincen. Gredler in twenty separate papers ($\mathbf{1 8} 88$-1900). Further important collections have been made by the Russian travellers Przewalski, Potanin, and Beresowski, whose shells have been described by Dr. von Martens (Mem. Acad. Imp. Sc.St. Petersb., r882, xxx, p. 1), and by Dr. O. F. von Möllendorfi (Ann. Mus. Zool. St. Petersb., 1899 , p. 46) More recently further collcctions made by Mr. W. A. Obrutschew, have been described by Dr. Rudolf Sturany (Denkschr. Math. Nat. Cl. K. Akad. wiss. Wien, 1900, p. 1) ; and collections made by Prof. K. Futterer and Dr. Holderer have been provisioually figured, but not described, by Dr. A. Andreae (Mitth. Roemer Museum, 1900, No. 12, p. 1). Several lesser contributions will be found enumerated in the Bibliography.

So far as our present knowledge enables us to judge, the greater number of the Helicoids of this region have a limited distribution, notable exceptions are: Cathaica fasciola, Drap., which is found over the whole of north, central, and western China as far south as Kiang-su ; C. pulveratrix, Mts., which occurs over the whole of northern China, reappearing in Hu-nan, and will possibly be found on further exploration in the intermediate provinces of Ho -nan and $\mathrm{Hu}-\mathrm{pe}$. C. richthofeni, Mts., also occurs over the whole of North China ; and C. prrewachakit, Mts., in west China, north from Kan-su through Sze-chuen to Yun-nan in the south. The cosmopolitan Eulota similaris and its varictics, morcover, inhabit the whole of Central China as far north as Che-kiang, west as far as Sze-chucn, and reappears in the north-west in Kan-su (Sturany), in the varicty stimpsoni, Pfr.

A. CHINA PROPER.

Family Zonitidae.
Subfamily Arlophantinae, Pils Genus Bensonia, Pft.
buccata, Hde. Yun-nan.
Gcnus Euplecta, Semp. rathouisi, Hde. Kiang-su. eastlakiana, Mdff. Fo-kien. petasus-chinensis, Hde. Szechuen.

Genus Trochonanina, Mouss. laurentiana, Gredl. Hzupe: Genus Xestina, Semp. chrysoraphe, Mdff. Sze-churli
Genus Xesta, Alb. ? indurata, Hdc. Sze-chum
Subfamily Macroohlaminae
Genus Macrochiamys, Bens. superlita, Mor. Kwan-tuly:
v. herziana, Mdff.
politissima, Pfr. North China.
planula, Hde. Ngan-whel.
zikaveiensis, Hde. Che-kiang.
pediseguae, Hde. Yun-nan.
apex, Mdff. Kwang-tung.
simplex, Hde. Yun-nan.
stcarnsi Pils Chilí
amdoana, Mdff. Kan-su, Szechuen.
cathaiana, Mdff. Kan-su. davidii, Desh. Chi-li.
= sinica, Mts.
moupiniana, Desh. Sze-chuen.
= maupiniana, Desh..
= mupingiana, Mclff.
boettgeri, Hilb. Sze-chuen.
fargesiana, Hde. Sze-chuen.
distorta, Hde. Sze-chuen. unica, Hde. Kwei-chou. sciadophila, Hde. Sze-chuen. derelicta, Hde Sze-chuen.
fellea, Hde. Yun-nan.
rejecta, Pfr. Hu-nan.
$=$ mamillaris, Hde.
Genus Khasietita, G.-A.
arata, Blf.
v. minor. Yun-nan.

Genus Microcystina, Mörch.
minensis, Mdff. Iro-kien.
= glaberrima, Mdfr.
planata, Hde. Hu-nan.
microgyra, Hde.
clausa, Hde.
sinensis, Hde.
colombeliana, Hde.
Dambusicola, Hle. Ngan-whei.
hunancola, Mdff. Hu-man. spelaea, Hcle. Ngan-whei. castaneola, Hde Ngan-whei. mordendorff, Reinl. Chi-li. sinicia Mdff. Kwang-tung.
schmackeriana, Mdff. Fo-kien.
perforata, Desh. Chil-li.
Genus Rhysota, Alb.
erratica, Hde. Huppe.
fuchsiana, IIde. Hu-nan,
fareopurpurea, Hde. Yun-nan. delavayana, IIde. Yun-nan.
Subfamily Helicarioninae.
Genus Girasia, Gray.
magnifica, G.-A. Yun-nan.
venusta, Theob. Yun-nan.
Genus Cryprosoma, Theob.
imperator,Gould. Kwang-tung. r. imperatrix, West.

Gemis Helicariox, Fér.
setchuanensis, Hde. Sze-chuen.
fargesianus, Hde. Sze-chuen.
globus, Hde. Sze-chuen.
poma, Hde. Sze-chuen.
riparius, Hde. Kwei-chou.
resinaceus, Hde.
umbracultor Hde. Sze-chuen.
bulla, Hole. Sze-chuen.
dux, Hde. Kwang-si.
comes, Hde. Sze-chuen.
eques, Hdc. Yun-nan.
miles, Hde. Yun-nan.
pulex, Hdc. Yun-nan.
paulina, Hde. Sze-chuen.
Genus Sitala, M. Ad.
turrita, Mdff. Kwang-tung.
trochulus Mdff. Kwang-tung.
triflaris, Gredl. Hu-pe.
bilirala, Gredl. Kwang-si.
Genus Kaliflia, W. T. Blanf. costigera, Mdff.
gredleriana, Hde. Hur-nan.
rupicola, Mdif. Kwang-tung.
v. grandior, Gredl.
lamprocystis, Mdff. Kan-su.
cuconus, Mdf. Sze-chuen.
franciscana, Gredl. Hu-nan.
v. planula, Gred.
monticola, Mdff. Kwang-tung. imbellis Hde. Ngan-whei. polygyru, Mdff. Kwang-tung. sculpta, Mdff. Kwang-tung. seckingeriana, Hde. Nganwhei.
Subfamily Zonitinae, Pils.
Genus Vitkea, Filz. crjstallogles, Gredl, perdita, Desh.
Genus Euconulus, Reinh. sphacra, Hile. Sze-chuen. filovinedus, IJde. Sze-ehuen. cumeln, Hile. pyramis, trele, Sucthoter. bifilaris, Hde. sizethuen. infracinctus, Hde. Sze-chuen. fulvus, Drap Chi-1i. spiriplanus, Gredl. Hu-nan. loana, Gredl.
Genus Zoniliss, Montf. ?? scrobiculata, Gredl. Hunan.
v. hupeina, Gredl. Hu-pe.

Genus Trochomorpha, Alb.
samara, Hde. Yun-nan.
borealis, Hde. Sze-chuen, Hu-pe.
Framily Endodontidae. fils.
Group Haplogona, Pils.
Genus Trramidula, Fitz. Section Gonyonmens, Fitz. bianconi, I Desh, Sze-chuen. patper, Gld. Chiti.
$=$ striatella Mdf. non Anth.
= ruderata, Mdff, non Stud.
polanini, Mdfl. Kan-su.
pallens, Gredl. Hu-pe.
atoma, Gredl. Hu-nan.
sanctimonialis, Gredl. Shan-
tung, Hu-pt.
orphana, Hele Chi-Kiang.
? kuangtunensis, Gredl.
Kwang-tung.
Family Helicidae.
Genus Plectopylis, Bens.
Section Chersaecia, Gude.
andersoni, W.'T. BlC. Yun-nan.
Section Sinicola, Gude.
emoriens, Gredl. Chili. azona, Gredl. Hu-pe. pulvinaris, Gld. Kwang-tung, v. continentalis, Mdf. Cimbriosa, Mts. Hu-nan.
v. nana, Mdfl.
v. continentalis, Mdf.
reserata, Hde. Sze-chuen. laminifera, Mdff, Hu-pe. jugatoria, Anc Kwei-chou. diptychia, Mdff. Kwei-chou. biforis, Hde.
stenochila, Mdf. Hu-pe. v. basilia, Gude. alphonsi, lesh. Sze-chuen. murata, Hde. Sze-chuen. cutisculpta, MdII. Fo-kien. invia, Hde. Sze-chuen secura, Hde. Kwang-si. multispira, Mdf. Hu-ran. schistoptychia, Mdff, Hu-nan. vallata, Hole. Sze-chuen.
Genus Tratmatopiofa, Anc. triscalpla, Mts. Hu-pe, Chu kiang. v. fraterminor, Gredl.

Genus Stegodera, Mts. angusticollis, Mts. Kiang-4. Kiang-su.
Groxp Epiphallogona, Pils.
Genus Camaena, Alb.
Sulb-genus (iamaiva, s.s.
cicatriorma, Miill. Kwei dum,

Kwang-tung.
= senegalensis, Fér.
$=$ chinensis, Voigt.
$=$ himalayana, Lea
v. inflata, Mdff, Kwei-chou.
v. ducalis, Anc. Kweichou.
vulpis, Gredl. Hu-nan.
leonhardti, Mdff. Kwang-tung.
subgibbera, Mdff. Kwang-tung.
seraphinica, Hde. Kwang-si.
xanthoderma, Mdf. Kwang. tung.
v. polyzona, Mdff
rugata, Mdff. Suc-chuen.
r. humilis, Mdff.

Genus Cilloritis, Beck.
Sub-genus Trichochloritis, Pils.
hungerfordiana, Nev. Kwangtung.
percussa, Hde. Hu-pe, Szechuen.
franciscanorum, Gredl. Hu nan.
v. purpurea, Gredl. Hu-pe.
submissa, Desh. Sze-chuen.
Genus Ganesella, Bif.
brevibarbis, Pfr. Ngan-whei.
alveolus, Hde. Sze chuen.
ternaria, Hde. Hu-pe.
micacea, Hde. Ngan-whci.
phyllophaga, Hde. Ngam-whej.
dormitans, Hde. Kiang-su.
arbusticola, Desh. Sze-chuen.
v. chrysomphala, Mdf.
dizona, Gredl. Shen-si.
"fluamulina, Gredl. Hu-nan.
hosklacea, Gredl. Hen-san, sze-chuen.
misrotrochus, Mdff. Kweirhos.
brema, IId. S\%ce-inem.
ingloria, Ide. Kwang-si.
subsquamulata, Hde. Szcchuen.
subparasirica, Hde. Yun-nan.
subgriseola, Hde. Yun-nan.
peraeruginosa, Hde Yun-man.
radulina, Hde. Yun-nan.
virilis, Gredl. Hu-pe.
v. sulfifusca, Gredl.
laurentii, Gredl. Hu-pe.
millepunctata, Mclff. Kan-su, Shen-si.
kutupaensis, Stur. Kan-su.
Group Belogona, v. lher.
Belogona Euadenia, Pils.
Genus Buliminopsis, Hde.
Section Semibuliminus, Mdff.
beresowskii, Mdff. Kan-su.
Section Bulaminopsis, s.s.
pinguis, Anc. Shen-si. v. gracilis, MdIf.
buliminus, Bde. Sze-chuen.
$=$ Buliminus helicopsis, Anc.
v. strigata, Mdff.
pseudobuliminus, Hde. Ngranwhei.
$=$ Buliminus macrogonus Anc.
buliminoides, Hde. Ngan-whej.
$=$ Buliminus tropidophorus, Anc.
quatemaria, Hde.? Ngan-whei. - boreakis, Hde.
conoidia, Hde. Szc-chuen. gracilispira, Mdff. Sze-chuen.
piligera, Mdff. Kan-su.
subcylindrica, Mdff. Kan-su.
cylindrus, Mdff. Kan-su.
Section Funiculuts, Hde.
hirsuta, Mdff Kan-su.
delavayana, Hde. Sze-chuen.
:iculumusuli, ISde. Yun-nan.
asbestina, Hde. Yun-nan.
debilis, Hde. Yun-nan. doliolum, Greḑl. Hu-pe. $=$ rudens, Hde. Yun-nan.
probata, Hde. Yun-nan.
coriacea, Hde. Yun-nan.
larvata, Hde. Yun-nan.
pupata, Hde. Yun-nan,
achatinina, Hde. Kan-su, Szechuen.
Section Stenogyrorsis, Mdff.
potanini, Mdff. Kan-su.
Section Seclsana, Melff.
cerasina, Crecll. Itu-pe.
Genles Latiocithaiea, Molff.
c:hristinate, II. Al. [lu [μ, Kan-su.
filyplina, Hde. Hu-pu:
$=$ christinae v . cariniferia, Anc.
subsimilis, Jesh. Sze-chuen, Shen-si, Hu-pe.
subchristinae, Anc. Sze-chuen.
stenochone, Mdff. Kan-sts.
amdoana, Mdff. Kan-su,
distinguenda, Mdff. Kan-su.
tropidoraphe, Mdff. Kan-su.
prionotropis, Mdff. Kan-su.
v. albocincta Mdff. Szechuen.
leucoraphe, Mdff. Sze-chuen.
phaeomplala, Mdff. Kan-su.
potanini, Mdff. Kanヶsu.
odophora, Mdf. Kansu.
pewzowi, Mdff. Kan-su.
polytyla, Mdff. Kan-su.
dityla, Mdff. Kan-su.
Genus Merodontia, Mdff.
houaiensis, Crosse. Shangtung, Shan-si, Shen-si, Kansu, Ho-nan,
$=$ huaiensis, Crosse.
v. obstructa, Hde.
v. hemipleuris, Mdff. $\mathrm{Hu}-$ pe, Shen-si.

- moltneri, Gredl. (juv.)
yantaiensis, Cr. and Deb.
Chi-li.
v. tetrodon, Mdff.
diodontina, Hde. Sze-chuen.
griphodes, Stur. Kan-su.
Genus Eldota, Hartm.
Section Eulota, s.s.
acustina, Mclff. Sze-chuen.
billcana, Hde. Sze-chuen.
locageana, Cr. and Deb. ? China.
Durtini, Desh. Sze-chuen, shen-si.
$=$ phragmitum, Hde. buxina, Hde. Yun-nan. dichroa, Prr. Che-kiang. fortunci, Pfr. Che-kiang.
v. meridionalis, Mdf. fuchsi, Gredl. Ngan-whei. haesitans, Hde. Yun-nan. impatiens, Hde. Ngan-whei. improvisa, Hde. Sze-chuen. inopinata, Desh. Sze-chuen.
jourdyi, Mor. Kwang-si, $=$ vorticellina, Hde. latrunculorum, Hde. Szechuen.
leprosula, Hde. Sze-chuen.
$=$ leprosa, Hde.
maackii, Gerstf.
v. depressior, Pft. Manchuria.
=- conrauxiana, Hde
miliaria, Gredl. Yu-nan.
mimicula, Hde. Sze-chuen.
mola, IIde. Ngan-whei.
ravida, Bens. Che-kiang.
$=$ helvacea, Phil,
$=$ redfieldi, Hde. non Pfr.
v. lineolata, Mdff. Chili.
ravidula, Hde. Kan-su.
redfieldi, Pfr. Kan-su, Chckiang.
$=$ frilleyi, Cr . and 1)eb. Kwang tung.
$=$ huberiana, Hde. Kwang tung.
ruppelli, Desh, Sze-chuen.
secusana, Gredl. $\mathrm{Hu}-\mathrm{pe}$.
straminea, Hde. Kiang-su.
thibetica, Desh. Sze-chuen.
tourannensis, Soul. Kwang. tung.
uncopila, Hde. Kiang-su.
vagoina, Gredl. Hu-pe v. aloysii, Gredl.

Section Eulotella, Mts.
similaris, Fér. Hu-pe, Kwangtung, Che-kiang, Fo-kien.
$=$ translucens, King.
$=$ woodiana, Lea.
$=$ squalida, Ziegl.
= addita, Fér.
$=$ epixantha, Pfr.
$=$ striatissima, Desh.
v. hongkongensis, Desh.
v. obscura, Desh.
v. arcasiana, Cr. \& Deb.
v. graminum, Hde.
r. arundinetorum, Hdc.
v. assimilaris, Gredl. Hunan, Hu-pe.
v. nucleus, Desh. Szechuen, Che-kiang.
v. cathaiana, Mdff. Hu-pe.
v. stimpsoní, Pfr. Kan-su.
v. infantilis, Gredl. Hu-nan.
mbknacianu, Hde. Sze-chuen,
Il: 18.
v. imijer, Ithe:
poecila, Mdff. Sze-chucn, Hu-pe.
diplodesma, Mdff. Sze-chuen or Hu -pe.
constantiae, H. Ad. Sze-chuen.
Section Armanda, Ancey.
(davidi, Desh. Sze-chuen.
calymna, Schm. and Bttgr. Suechuen.
plicatilis, Desh. Sze-chuen.
sarelii, Mts. Sze-chuen, Hu -pe. $=$ пога, II. Ad.
Section Coccoglypta. Pils.
dimidiata, Hde.
pinchoniana, Hde. Szechuen.
Section Mastigeulota, Pils.
kiangsinensis, Mts. Hu-pe, Kgan-whei.
=maacki . unizonalis, H. Ad.
₹. major, Mdff.
r. cerasina, Gredl.
v. hilberi, Kob. Chekiang.
Section Euhadra, lils.
caspari, Mdff. Hu-man. pantheia, Mab.
granulifera, Mdff. Hu-pe.
cyclolabris, Mdff. Kan-su.
renaltiana, Hde. Kwang-si.
schmackeri, Mdf. Kwangtung.
ammiralis, Pr.
cecillci, Phil.
moreletiana, Hde. Ngan-whei.
stenozona, Mdff. I'o-kien.
haematozona, Hde. Kweichou.
cremata, Hrle, Che kiang.
s.quinisua, Heter Vim mus.
delavayana, Hde.
₹ sanata, Hdt. Kwang-si.
hemiclista, Schm. and Bttgr. Sze-chuen.
latilabris, Mdff. Che-kiang.
tenuitesta, Mdff. Sze-chuen,
v. tamiata, Mdff.
rarpochroa, Mdf: Sze-chuen.
stictotaenia, Mdff. Kan-su.
psendocampylaea, Mdff. Srechuen.
strauchiana Mdff. Kansus. amphidroma, MdIf. Stecthuen.
hark k zona, Melf. Sarchuen.
cris, Mdjfr, Kiunsu.

1. 13.uchyethila, Mdeffe.
2. Mattia, Mrific:
mieromphlati, Nalf. Riall su
anceyi, nom. nov.
$=$ pseudocampylaca, Ancey
non Mdff. Sze-chuen.
Gumus Catilaica, Mdffe
Sub-genus Elcathaica, Andreae.
fasciola, Itrap. Chi-II, Shen-si,
Kan-su, Shan-tung, Sban-si, Ho-nan, Sze-chuen, Hu-pe,
Hu-nan, Kiang-su.
$=$ pyrrhozona, l'hil.
$=$ striatula, Mïtl.
cardiostoma, Mdff. Kan-su.
sulttilistriata, Andr.
peringensis: J) ©sh. Chi-lis.
$=$ tchiliensis, Mdn:
v. conoidea, Mdff.
transitans, Mdff. Kar-su.
brevispira, H. Ad. Sze-chuen.
anceyi, Mdff.
Sulb-genus, I'liolathaica, Andr.
pulveratrix, Mis. Kan-su, Shen-
si, Chi-li, Hu-nan, Shan-si.
v. bizona, Gredl. Kan-su Shan-si, Chi-li.
r.shensiensis, Hill. Shen-si. orilbya, Mts. He-nan. Shan-si.
r. confucii, Hilb. Kan-su, Shen-si.
v. montana, Mdff. ?Kan-su. corrugata, Mdff. Ho-nan. janulus, Mdff. Kan-si1.
richthofeni, Mts. Cbi-li, Sban-
tung, Shan-si, Ho-nan,Shen-
si, Kan-su.
$=$ buvigneri, Desh.
r. kalganensis, Mdff.

- subrug̣osav. minôr, Mdff:
subrugusa, Desh. C'hili.
gatumuica, Melff. Kan-sis.
perversia, Stur. Kan-sun. nowlulifera, Mdff. Kan-sm.
Sul-genus Xbrocaliarica, Andr.
kreitneri, Hilb. Kan-su.

1. sulangulata, Mdff.
v. nana, Mdff.
siningfuensis, Hilts. Kansu.
nanschanensis, Mdff: Kan-su.
pulveratricula, Mts. Kan-su, Shen-si.
$=$ loczyi, Hilb.
samarella, Hde. Yun-nan.
iacosta, Mdff. ? Kansu.
ochthephiloides, Mdff. Kan-su.
lutuosa, Desh, Chi-li.
sempriniana, Hde. Hu-nan.
Subugenus Pislitiperte, Ancey.
tectum-sinense, Mts. Shang tung.
futtereri, Andr.
zenonis, Gredl. Shan-tung.
plectotropis, Mts Tien-shal.
mongolica, Mdff. Chili.
dejeana, Hde. Sze-chien,
Sub-genus Campyiocathaica,
Andr.
prewalskii, Mts. Kansil, is/
chuen, Yun-man.
$=$ mencii, Hilb.
v. minor, Andr
v. bizona, Andr.
v. gredleri, Hilb. Kan-su, E. Thibet.
$=$ stoliczkana, Hilb. non Nev.
$=$ mencii, var Hilb.
= buddhae, Hilb.
v. carinata, Andr.
v. exigua, Andr.
v. gracillima, Andr.
v. heudeí, Hilh.
v. depressa, Andr.
connectens, Mdf. Kan-sis.
polystigma, Mdff. Kan-su.
v.amdoana, Mdfi. Szechuen.
obrutschewi, Stır. Kan-su.
Genus Platypetasles, Pils.
innominata Hde. Sze-chuen,
Hu-pe.
? = mariella v. aquila, H. Ad.
v. duplicata, Mdff. Hu-pe.
mariella, H. Ad. Hu-pe.
v. submariella, Pils.
castanopsis, Mdff. Hu-pe, or Sze-chuen.
trochomorpha, Mdff. Szechuen.
causia, Mdff. Sze-chven.
obrutschewi, Srur. Kan-su.
encaustochila, Mdfi Kan-su.
stiophostoma, Mdfi. Kan-su, Genus Aegista, Alb.
Genes Plectotropis, Mis.
mackensii, Ad. and Rve.
v. mystaroga, Mab.
serlachi, Mdef. Hu-nan.
v. granulosostriata, Mts.
v. abrupta, Mts.
v. bunancola, Gredl
laciniosula, Hde.
$=$ Jaciniosa, Hde.
trichotropis, Pfr. Hu-pe.
v. Jaciniata, YIde. Chekiang.
v. shanghaiensis, Pfr. Chekiang.
ciliosa Mfr. North China.
ningpoensis, Bttgr. Che-kiang.
esau, Gredl. Hu-pe.
patungrana, Gredl. Hu-pe.
piligera, Gredl. Kwei-chou.
hupensis, Gredl. Hu-pe.
$=$ orthocheilis, Hde.
barbosella, Hde- Che-Kiang.
lofouana, Mdff, Lo-fou-shan.
subconetla, Mdff. Kwang-si.
sterilis, Hde. Hu-pe.
demolita, Hde. Sze-chuen.
lithina, Hde. Hu-pe.

- calculus, Hde.
sedentaria, Hde. Kwei-chou.
parasitarum, Hde. Hu-pe.
parasitica, Hde. Hu-pe.
catnstoma, Blf. Yun-nan.
lepidostola, Hde. Hu-pe. v. trochospira, Mdff.
squamosella, Hde. Ngan-whei
pentagonostoma, Mdff. Kansur.
diploblepharis, Mdff. Kan-su.
comenta, Stur. Kansu.
pseudopatula, Mdff. Sze-chuen.
? applanata, Mdf. To-kien. chinensis, Phil. Ngan-whei. $=$ vermis, Hde. non Rve. v. minor.
pseurochinensis, Mdff. Hen-
can .
$=$ thinentis, Hde. non

Phil.
platyomphaia, Mdf. Kwantung.
serpestes, Hde. Hu-po.
herpestes, Hde. Sze-chuen. furtiva, Hde. Kwei-chou. aubryana, Hde. Kwci-chou. accrescens, Hde. Hu-pe,

Kwei-chou.
$=$ accedens, Schm. and Bttgr.
v. initialis, Hde.
hupeana, Gredl. Hu-pe. Hu-nan.
megacheila, Mdff, Kan-su v. alticola, Mdf. Szechuen.
subcinctula, Hde. Yun-nan. $=$ subcincta, Hele.
mensalis, Hde. Yun-nan. thoracica, Fide. Hu-pe. secundaria, Hde. Sze-chuen. mellita, Hde. Yun-nan. mellitula, Hde. Yun-nan. permellita, Hde. Yun-nan. rebellis, Hde. Sze-chuen. languescens, Hde. Sze-chuen. vicinella, Hde. Hu-pe. araneaetela, Hde. Sze-chuen. radulella, Yun-nan. turbo, Pils. Hu-pe.
$=$ turbinella, Hde non More].
taliensis, Hde. Yun-nan. $=$ talifouensis, Hde. puberosula, Hde. Yun-nan.
$=$ pulverulenta, Hde. non Lowe.
amphiglypta, Anc. Sze-chuen,
szechenyi, Anc. Sze-chuen.
tenerrima, Mdff, Sze-chuen.
Genus Stil.fnodiscus, Mdf.
vernicinus, Mdff. Kan-su.
cuplyes, Stur. Kan-su.
scassianus, MdfF. Kan-su. Sze-chuen.
entochilus, Mdff. Kan-su.
Gernls Chalepotaxis, Anc.
infantilis, Gredl. Kwang-si, Hu-nan.
Belogona Siphonadenia, Pjls.
Genus Hygromia, Risso.
Section Fruticiola, Held.
subechinata, Desh. Szechuen.
lchefouensis, Cr and Dels.
Shar-tung, Sze-chuen.

- tschefouensis, Mts.
$=$ munieriana, Cr. \& Deb.
puborula, Hde. Sze-chucn.
horripilosella, Hde. Sze-chucn.
natarum, Hde. Hu-pe. semihispida, Anc. Sher-si. sitalina, Gredl. Hu-pe.
reformata, Gred]. Hu-pe.
Gemus Valdonia, Rissu.
costata, Mitl. Chi-li.
patens, Reinh. Chi-li.
tenera, Reinh. Che-kiang, Sze-chuen, Kan-su.
declivis v. altilis, Sterki, Sarechuen.
ladacensis F . tibetana, Mcff. Sze-chuen.
Genus Helrcodonta, Fér. subobvoluta, Anc. Shen-si. molina, Hde. Hu-pe.
biconcava, Hde. Hu-pc.
omphalospirum, Mdff. Hugx.
diplomphala, Mdff. Hu-pe.
uninodata, Gredl. Hu-pe.
binodata, Mdff. Hu-pe.
bicallosula, Hde. Sze-chura Sub-genus Moflemedorfria, Au
trisinuata, Mts. Kwang-tung. bisculpta, Hde. Sze-chuen. v. sculptilis, Mdff.
hensaniensis, Gredl. Hu-man. Helix keratina, Hele. Kwang-si. erdmanni, Schm and Bttgr. \quad ostreola, Hde. Kwang-si. faberiana, Mdef. Sze-chuen. ", jacob, Gredl. Hu-pe.

SPECIES OF [YCERTAIN POSITION.

on the anatomy of the genus myotesta, cllge.

By WALTER E. COLLINGE.

(Plate i .)
'lhe genus Myotesta was established in rgor ${ }^{3}$ for the reception of two interesting slug-like molluses, received from and collected by, Mr. H . liruhstorfer of Rerlin, in 'lonkin.

On further examination, the anatomical characters and general structure prove so very different from any known family of pulmonates, that it has been considered expedient to propose for the reception of this interesting genus a new family, to which the name Myotextidae is given.

Until more material is obtained, and the form and structure of the pallial organs, free muscles, and digestive system are worked out, it is not possible to say with any certainty, what relations this peculiar family has to other families of sluer-like molluses. The material at my disposal has not enabled me to investigate satisfactorily these organs, but I an able to give details of the generative organs and a general description of others.

HYOTESTIDAE, m . fam, Myotesta, Cllge.

Myotesta, Clige. : Joum. of Malac., sgoi, vol. vii., p ix 8.
Animal slug-like, with the mantle conspicuonsly elevated into a nonspiral visceral hump, and completely enclosing a flat, somewhat ovoid, non-spiral, plate-like shell, Iborsum Iosteriorly sharply keeled, Respiratory orifice in front of the middle of right margin of mantle. Generative orifice below and immediately behind the right upper tentacles, The fool-fringe is continued posterionly to form the overhanging caudal lobe. Caudal mucous pore. ['oot-sole narrow, divided into median and lateral planes. Viscera elevated into a nonspiral dorsal hump, and posceriorly lying in a triangular depression of the dorsum. Body-carity nor extending into the tail portion, which is solid.

[^1]Jaw crescentic, with ten brnad ribs, shightly denticulafing the basal margin.

Gemerative systere crowder into the right anterior portion of the body-cavity, excepting the hermaphrodite gland, which lies embedded in the "liver," in the folds of the intestinal tract, dorso-posteriorly: Wcil developed penis, passing into an epiphallus. Origin of retractor muscle on the anterior portion of the right body-wall. Receptaculum seminis with duct.

Externally the members of this genus remind one somewhat of those of Parmarion, Fischer, and Maridella, Gray, but this is only a superficial resemblance.

When first examined the large shell-cavity seemed to have a small irregular opening, but the examination of further and better material leaves no cloubr but that this opening was due to damage. The ravity is complofely cloself, and contains at its anterior end, a flat, non-spiral, plate like shelt; it is extromely thin, oroid in ontline, covered by a thin periostracum. and comprosed of numernos minute. irregtlarly sbaped, calcarcons particles. Immediately under this plate-like shell lies the heart, and a little posterior to it, the kidney and ureter; whilst beneath the extreme pusterior end of the shell-cavity, the rectum is seen crossing from left roright. The lung is very small, and its exact extent difficult to trace.

Extcrnally me notices that the viscreral bump lies in a triangular depression of the dorsum, so that the keel of the dorsum seems to divide anteriorly in a Y-shaped manner. On the right side of the body a deep groove passes from the respiratory orifice to the generative orifice (Pl. I, fig. 7, gr.).

Myotesta frubstorferi, Cllge.

$$
\text { PI. T, figg. I- } 4 \text {. }
$$

Myritesto finhstorferi, Cllges: Journ. of Malace, rgor, vol vii, p. 18.

Aninal yellowish-brown, with brown motling; head and tentacles light-blue; mantle yellowish-brown with faint, net-like, hrown markings. Caudal mucous pore small. Peripodial groove very distinct. Footfringe deep yellow with a few brownish splaches; Fineoles brown, broad and iregular, with finer lighter coloured lines intervening. foot-sole dirty yellow.

Length (in alcohol) 39 millim., breadth uf foot-sote 3 millim.
The Generatime (ryans (11) т, fig. 4).- The vagina is a thick wallw! tube, slightly bent and twisted, at its distal end a small receptaculum
seminis opens into it, the receptacular duct imperceptibly passing into the expanded head. The frec-oviduct is short. The penis is a long, thick-walled, muscular organ, at its distal end there is a short, thick, retractor muscle which arises from the right body-wall at the anterior end of the body-cavity; beyond the region of inscrtion of this muscle the lumen of the penis is continued into the epiphallus from which two small diverticula aisc (Pl. I, fig. 4, div.), the first and smaller is a simple caecal oukgrowth, the second is slightly larger, thicker, and more muscular, both were very carefully examined but were not found to contain anything. Beyond these diverticula the epiphallus expands, into a club-shaped body and contains a few, irregular shaped, calcareous particles. From the inner side of the epiphallus a short vas deferens connects this organ with the prostatic canal. When dissected the penis is seen to have a lumen agreeing closely with its external form. The oviducal portion of the common duct is large and folded upon itself. The bermaphrodite gland lies embedded in the "liver," and occupies a position considerably more posterior than the rest of the generative organs: the duct is short and slightly convoluted. The albumen gland is comparatively small.

Myotesta punctata, Cllge.

> Pl. 1, fgs. 5-1

Myotesta punctata, Cllge.: Journ. of Malac., 1901, vol. vii, p. 19.

Animal a deep brown with a few yellowish, somewhat stellate spots; head and tentacles dark blue; mantle brown with few dark blotches and spotted with yellow. Peripodial groove ill-defined. Foot-fringe yellowish-brown with closely set lineoles. Foot-sole, lateral planes brownish with yellow maculations, median plane dirty brown and smooth.

Length (in alcohol) 34 millim., breadth of foot-sole 4 millim.
The Generatice Oryans ($\mathrm{Pl} . \mathrm{x}$, figs. $8-\mathrm{r} \mathrm{I}$) - In this species the generative organs differ considerably from those in M. fruhstorferi. There is a wide vestibule into which the short vagina opens on the left , the penis papilla protruding into it on the right (Pl. 1, fig. 9). The receptaculum seminis is much larger than in the preceding species, as also its duct, which is probably due to the fact that here it was fully distended by its contents, and contanned a well-dereloped *jermatophore (Pl. 1, fig. 10). This body consists of a spirally Hound tube with numerous, anel variously shaped, spines studded over its surface : some of these spines are quite simple (Fig. ina.), while others are much more complicated (Fig. in b-f.), the most varied consisting
of three branches rising from a common stem, cach branch bifurcating at its free end. The penis, proximally, consists of a wide, sac-like sheath, into which the penis papilla protrudes, beyond this it narrows and just before joining with the epiphallus widens out into a bulbous head. The epiphallus is slightly longer than in M. fruhstorjeri and it exhibits no diverticula; it is widest about its middle. The vas deferens is longer than in the preceding species. The common duct exhibits two sharp folds. No retractor muscle of the penis could be traced. The hermaphrodite duct is rather longer than in M. fiuhstorferi, so that the hermaphrodite gland lics cmbedded in the "liver," close to the side of the intestine, much more dorsally and posteriorly than the remaining portions of the generative organs.

Since the above description was written, I have received from Dr. H. Simroth a short paper ${ }^{2}$ on a remarkable now species of Stylommatophora, to which he gives the name Oatracolethe fruhstorfferi, gen. et sp. nov., and from his description I am inclined to think that this animal is what I have named Mytesta fruthstorferi, although there are certain features in the anatomy described by him, which I have failed to find in my specimen. In both cases the specimens were received from Mr. Fruhstorler, and collected in Tonkin.

Describing the generative organs I)r Simrotl writes, "The vas deferens has, before it passes into the penis, three short, thick Hagella; the penis resembles that of the Pammrion group, such as Microparmarion, Its retractor originates neither on the left, nor by the diaphragm, but further forward, quite close to the inner root of the right ommatophore. The vas deferens, after running separately for a time near the oviduct, enters and is blended with it. This portion, which is attached by muscles to the right-wall of the body, is I regred not clearly defined in this specimen, althongh it has been most carefully dissected. However, the following facts are clear: From the point of origin there proceed two cords, of which one is the normal seminal duct, which can be traced as far as the near end of the penis, the other turns to thick muscle underneath and penetrates to the distal extremity of the penis. 'This muscle seems to contain a fine cansil, which may serve for internal impregnation, as is the case with mans other robber pulmonates, but in a somewhat diferent fashion. But the most remarkable peculiarity lies in the fact that, near the point of origin, in the adhering muscle, there are a number of plate-shaped discs

[^2](14) which can best be likened to trowser buttons, which are concave on one side. They are arranged on one base. Each disc has a narrow central, cloven lumen, and arises out of cruciform muscle filres, of which the radiating bundles are enclosed. Once might very well imitate this structure, by dissecling out in lirge portions a number of cross sections of the thick perfis muscle and lyy placing them close to each other upon a flat surface. It is this penis muscle which I wished to bring into connection wilh the attraction and dart-glands of the Vitainae, which species together with others of the Atlantic members of this genus, discharge upon themselves from the penis, and must necessanly be more or less permeated by the seminal fluid. Ahhough it is quite certain that the lumenae of the discs must be comnected by a canal, I have as yet unfortunately failed to distinguish any such canal in the muscular tissue. The functions of the organ are presumably the same as in other muscular penes. Still we do not know precisely whether it performs the function of discharging the spermatozoa, or whether it brings about impregnation by some specialised fluid ; we can only conjecture that its function is of some sich nature judging from its form and structure."

On reading the above description, I re-examined the material I have, but was unable to trace the disc-like bodies. The retractor of the penis, when carefully dissected away and teased, was similar to that in other molluses. Further, Dr. Simroth, is very definite in his statement respecting the perforation of the mantle by the shell, he "rites (p 62) "at the hinder end on the posterior of the [shell] sac, somenhat to the loft, a very fine cleft is observable, which cannot, however, with certainty be traced as far as the opening of the mantle. But the striking peculiarity is, that, through this cleft, there projects whterard in the perfect suail, the fine point of the coneth-7ike shefl.* The enclosed shell is composed of an anteriorly situated calcareous phate; on which an extraordinariky, thin, wide, and structureless conchlike shell fits close, and covers the sac."

In Myotesta there is no conch-like shell, nothing beyond the flat, Iliatc-like shell, and this, in perfect specimens, is entirely covered and necosed by the mantle.

Possibly Myotesta and Ostracolethe are distinct, but no doubt Dr. 'omboth will later give figures and a further description.

I have to acknowledge with grateful thanks a gmant from the Inyal Socicty, which has enabled me to obtain the material here draribed and figured.

Myotesta fruhstorferi, Cllge.
Fig. 1. View of the animal from the right side. $\times 1 / 2$.
Fig. 2. Dorsal view. $\times 1 / 2$.
Fig. 3. Jaw, considerably enlarged.
Fig. 4. Generative organs.
Myutesta puthetata, Cllge.
Fig. 5. View of the animal from the right side. $\times 1 / 2=$
Fig. 6. Dorsal view. $\times 1 / 2$.
Fig. 7. Anterior end of body showing lateral groove and genital orifice.
Fig. 8. Generative organs.
Flg. 9. Proximal portion of penis opened to show penis papilla.
Fig. io. Spermatophore.
Fig. ir. Different forms (a-I, of spines on the spermatophore.
Reference Letters,
alb. g. Albumen gland.
div. Diverticula oi epiphallus
ep Epiphallus.
f.oz. Free-oviduct.
gr. Groove.
R.ar. Generative orifice,
had. Hermaphrodite duct.
h. gl. Hermaphodite glamd.
ov. Oviduct.
$\nRightarrow \quad$ Penis.
A.p. Peuis papilla.
pr. Prosiate.
r.d. Receplacular duct.
r.s. Receptaculum seminis.
r.m. Ketractor muscle.
$r . a r$: Respiratory orifice.
v. d. Vas deferens.
vg. Vagina.

DESORIPTION OF A NEW SPECIES OF ONOHIDIUM FROM SOUTH AFRICA.

By WALTER E. COLILNGL.

'lite only species of Onchithun at present known from South A rica, is the U. peroni of Curicr.

In November rgoo, Mr. Henry C. Burnup very kindly sent me two examples of a small species. which upon examination prove to belong to a new species. It gifes me much pleasure to name this addition to the South African fauna alter Mr. Burnup, as a mark of appreciasion of the valuable assistance he has at all times so willingly rendered me, in connection with my studies on the slug launa of Snuth Africa.

Onchidiam burnupi, n. sp.

Onctidiam burmipt, n, sp.
Fig, I-Dorsal view,
Fig, 2-Ventral view,
Notum finely granulated, yellowish irregularly blotched with blackishyreen, these blotches being most prominent ar the edge and in the middle of the notum. Dorsal eyes irregularly scattered. Head large. Hyponotum greenish-grey. Foot-sole greyish-yellow, faintly marked with line transverse wrinkles. Ma'e generative orifice on the right side of the head, on the inner side of the right upper and lower tentacles. Female generative orifice, in front of the anus, partially hidden by the posterion horder of the font-sole. Anal aperture slightly to the right of the median line.

Length of notum (in alcohol) i millim. ; hreadth 9 ; hypnotum 3 millim broad; foot-sole $8-5$ millim. long, 3 broad.

Mabl.-Umlass Lagoon, Natal.

THE ANATOMY OF THE BRITISH SPECIES OF THE GENUS SOLEN. Pi. iii.*

By H. H. BLOOMER.
\{ Plate ii.\}
Nervous System.

Solen masio, L. (Pl. ii., figs. 18-20.
The cercbro-pleural ganglia (Figs. 8 8-19, C. P. G.) are situaterl under the anterior bifurcated parts of the anterior retractor pedis muscles, just in front of the mouth. The two ganglia can be seen in situ through the transparent fentral integument. They lic some distance apart, but are connected by a commissure (I'igs. 18 and 19 , C. P^{3}. C.). Interiorly each ganglion gives rise to an anterior pallial nerre (A. P.S.) running in an anterio-lateral direction, towards the posterior edge of the anterior adductor muscle; some distance before reaching the latter, a large branch (V.A.N.) leaves the nerve on its inner side, and traverses the whole length of the ventral surface of the muscle close to the lateral edge, innervating it with a number of small branches. About one-third of its course along the muscle it gives off a Jarge branch which passes along the transparent portion of the mantle-lobe. Both nerves eventually join the outer circumpallial nerve (O. C. N.).

When the anterior pallial nerve reaches the transparent portion of the mantle-lobe, a large branch leaves it and crosses the mantle in a rentral direction and divides, both portions joining the outer circumpallial nerve. This latter nerve, shortly after leaving the main pallial norve is connected with the inner circumpallial nerve (Fig. I 8, I.C.N.), which proceeds in a posterior direction, and curving ventrally joins the posterior pallial nerve.

The main anterior pallial nerve (A.P.N.) pursues an anterior direction. From it four large branches originate, all of which pass rentrally and eventually join the outer circumpallial nerve (O.C.N.),

Lach cerebro-pleural ganglion also gives rise to another anterior nerre (Figs, 88 and 19, D.A.N.), which passes along the ventrial surface of the anterior bifurcation of the retractor pedis anterior muscle, and then along the dorsal surface of the anterior adductor muscle, on its course giving a number of small branches to both muscles, the liver, and the dorsal integument. The ganglia also give off several small nerves which pass direct to the muscles and visceril

Posteriorly a connective joins each cerebro-pleural with the

[^3]viscero-parietal ganglion. The direction of the connective after leaving the ganglion is, for a short distance, between the retractor pedis anterior muscle, and the ventral integument, then close to the side of the muscle, and crossing over it continues along the side of the wiscera, afterwards passing through the wall of the retractor pedis posterior muscle, and finally under the bifurcated portion of the muscle, to the: viscero-parietal ganglion (Figs. I8 and 20, V.P. (f.).

On the inner side of cach cerebro-visceral connective runs a cerebro-pudal connective (ligs. i8 and 19, (e. P.). On leaving the cerebro-pleural ganglion, the cerebro-pedal connective traverses a short distance under and then on the inner side of the retractor perliss anterion muscle, it then buries itself in the tissucs of the foot, and emerging into the jedal sinus. passes close to the longitudinal muscle to the pedal ganglion. From this connective a nerve arises which passes to the viscera.

The pedal ganglia ($\mathrm{Figg}_{\mathrm{g}}$. $18, P . G$.) are situated in the proximal part of the foot, near its dorsal surface, and close to the most ventral fold of the intestine. From them a number of nerves radiate which innervate the viscera and the muscles of the foot. Passing along the latter are four pairs of nerves, four nerves traversing each side, between the longitudinal and transverse muscles, to the distal end. Irom these a number of small branches arise.

The viscero-parietal ganglia (I'ig. 18 and 20, V.P.G) are situated between the bifurcated portions of the posterior retractor pedis muscle, and anterior to the posterior adductor muscle; like the cerebro-pleural ganglia they can be seen through the transparent ventral integument. Anteriorly they give rise to two branchial nerves (liggs. 18 and 20, D.N.), one curving to the right and the other to the left, passing to the base of the inner gills. They run immedjately beneath the afferent branchial vessels.

From the posterior part of the ganglia the two posterior pallial nerves arise (Figs. i8 and 20, P.Y.N.). Lach nerve passes underneath the posterior adductor muscle, and along the inner surface of the dorsal portion of the muscular part of the mantle lobes, formed by their concrescence. On their way each gives off a large inner norve, and from both a series of smaller branches pass to the surrounding tissue.

Near the muscular fringe of the posterior pallial band the posterior pallial nerve divides, the outer branch crossing the mantle lolx ventrally and first joining the inner circumpallial nerve, and afterwards, the outer circumpallial nerve, The other branch, in all probability, passes around the base of the siphon, sending out branches in it and the muscles of the mantle, and then joins the outer circum
pallial nerve, but I have not been able to trace the complete commertion.

The posterior porfion of the outer circumpaltial nerve joins the anterior portion close to the fourth aperture (Fig. 18, F.A.).
'The inner circumpallial nerve proceeds from a branch of the anterior pallial nerve, and passes in a curved direction to the posterior pallial nerve.

The outer circampalial nerves and the nerves of the anterior adductor muscle converge and apparently join at the point where the dorsal integument is connected with the teeth of the shell (Fig. i8, D.I.S.).
S. siliqua, L .

The nervous syatem of this species is similar to that of S. ensis, and only differs from it in minor details, S. marginatus, Pult, and Don.

The cerebro-pleural ganglia are not discernable through the ventral integument, owing to the forward projection of the lips formed by the labial palps. Anteriorly each ganglion only gives rise to one nerve, the anterior fallial nerve. It proceeds to the posterio-lateral edge of the anterior adductor muscle, then along the ventral surface of the muscle near its lateral edge, but when about one-third of the distance it divides, the inner branch continuing under the muscle, and eventually reaching the point where the dorsal integument is attached to the teeth of the shell. The outer branch passes along the transparent portion of the mantle lobe, and joins the circumpallial nerve.

The pedal ganglia are similar in position to those of S. ensis, hut owing to the position of the viscera in the foot, a portion of the intestine and the caecum of the crystalline style lie distal to them. A number of norves radiate from the ganglia to the viscera and the: muscles of the foot.

The position of the viscero-parietal ganglia is discernable throngh the transparent ventral integument as in S. ensis. Passing from them posteriorly are two large pallial nerves, each of which, shortly after pass ing under the postcrior adductor muscle, bifurcates, the inner branch of the one converging towards the inner branch of the other, and boil, proceed to the base of the siphon. The outer branch pursues a ventro lateral direction across the muscular portion of the mantle lols: Both nerves apparently join the circimpallial nerve, though I have mon been able to clearly trace the connection. There is evidently only tucircumpallial nerve, the same heing equivalent to the anla circumpallial nerve of S. ensis.

EXPLANATION OF PLATE 11

Fig, 18, Solen ensis, L, Semi-diagrammatic figure of the nervous system, seen from the left side.
Fig, 19, do The Cerebro-pleural ganglia, viewed from the ventral surlace. $\times 2$,
Fig, 20, do
The Viscero-parielal ganglia, viewed from the ventral surface, $\times 2$,

Reference Letters

A.A.	Anterior adductor muscle,	L.	Liver.
A.P.N.	Auterior pallial nerve.	M.	Mouth.
$B . N$.	Branchial nerve	M.L.	Mantle lobe.
Ce.P.	Cerebro-pedal connective,	O.C.N.	Outer circumpalisal nerve.
Ce. V.	Cerebro-visceral connective	$P . A$.	Posterior adducior muscle
$C . P . C$.	Cerebro-pleural comrnissure.	P.G.	Pedal ganglion.
C.P.G.	Cerebro-pleural ganglion.	P.R.N.	Posterior pallial nerve.
D.A.N.	Dorsal nerve of the anterior adductor muscle.	P.R.A.	Bifurcated parls of retractor pedis anterior muscle.
D.I.S.	Point where the dorsal integument is connected with the teeth of the shell.	$P . R . P$. S.	Bifurcated pats of relractor pedis posterior muscle. Siphon.
F.	Foot	V.A.N.	Ventral nerve of the anterior
F.	Fourth aperture.		dductor muscle.
J.C.N.	Inner circumpallial nerve.		ero-parieta

DESCRIPTIONS OF SIX NEW LAND SHELLS FROM THE MALAY PENINSULA.

13: E. R. SyKES, B.A, F.L.S.

THE following ane bare diagnoses; it is proposed that figures shall follow later.

Rhodina (?) mirabilis, n. sp.
Shell recalling in form Hhotina perahersin, de Morgan, but the earlier whorls increase more rapidly, and the lower ball of the shell has a more cylindrical appearance. The columella is twisterl, and a revolving keel encircles the base and ascends spirally into the shell, about half way up the columella wall; in addition, another keel is visible from the junction of the suture line and the outer lip until, revolving round the periphery, it fades out where it bisects the outer lip. Whorls 13 , earlicr ones smooth, later ones stronsly striate.

Alt. 24.5 ; diam, man. 3.5 milhim.
Held.-Kelantan, Malay Peninsula.
Streptaxis collíngei, n. sp.
Shell openly umbilicated, well depressed, costulated, the costae being fine and regular, hyaline or yollowish white; whorls, $6 \frac{1}{2} \quad 7$, somewhat convex, suture well marked, the last whorl being considerably distorted. Aperture oblique, sub-quadrate, peristome expanded and refected; parietal lamella oblique and curved, palatal teeth generally four, sometimes only three, the uppermost and lowest being the largest.

Alt. 5 ; diam. max. 9 millim.
Hal,-Kelantan, Malay Peninsula.
A well-depressed shell, which, in the farm and position of the teeth, recalls S. niamensis, P (r.

Opisthosioma Ialdlawl, n. sp.
Shell orate-conic, pale reddish horn-colour, apex obtuse: whorls 6-6. strongly convex, the lower ones being regularly, but finely and somewhat distantly, marked with lamellae. 'The last whorl is solute, rounded, and bent backwards nearly to the suture of the fourth whorl,

Alt. 2 ; diam. max. 2.5 ; diam. min. 1.5 millim.
Hab.-Kelantan, Malay Peninsula.
Recalls in form several of the Bornean species, but the apex is much depressed, the shell is not so pyramidal, and the whols very conic.

Clausllia (Pseudonenla) kelantanese, n. sp.
Shell elongately fusiform, dark chestnut brown, with 11-11t whorls: protoconch large, cylindrical, and smooth, the later whorls being closely, finely striate, with traces of spiral sculpture crosingr the striae;
suture well inarked; last whorl very slightly narrower than the preceding one. Mouth ovate-pyriform, chestnut within, the peristome being solute, thickened and rellexed. Parietal lamella nearly vertical and reaching to the lip , columellar lamella moderately deeply seated, twisted, and asconding fairly rapidly ; plica principalis medium in size, with two small palatal plicae (upper one the largest) below.

Alt. 31.8 ; diam. max, 5 millim.: alt. apert. 6.5, lat apert. 4.8 millim.
Hcl.-Kelantan, Malay Pebinsula.
Related to C. Ahirusfota, Slol., and C. Rajayanensis, cle Morgan; from the latter it may readily be separated by its size, and from the former, in addition to the characters of the plicae and lamellac, the much larger protoconch will readily separate it. The specimens were collected with C. filirustata.

Platyrhaphe chrysalis, n. sp.
Shell moderately depressed, with $4 \frac{1}{2}$ uhorls, largely and openly umbilicated, horny brown in colour, but incrusted all over with a yellowish covering, which nearly fills the umbilical area. The suture is very deep, the whorls being strongly convex, and the protoconch acute. The aperture is round, thickened within, and not reflected. Compared with P. 7 frri, de Morgan, the species differs in the greater diameter of the mouth in proportion to the width of che shell, and the last whorl is not solute. Judging from de Morgan's figure, the present shell is also not so widely umbilicated.

Alt. 9 ; diam. max. 4.5 ; diam. apert. 3.8 millim.
Hab.--Kelantan, Malay Peninsula.
Oplathopopus dautzenbergl. n. sp.
Shell much depressed, whitish, irregularly dotted and streaked with reddish brown; whorls $4 \frac{1}{2}$, protoconch smooth, the residue of the shell being closely and regularly striate, umbilicus large and open, suture deep. The last whorl descends in front; the lip is double, the edge of the incrassated portion being dark brown, while the reflected portion is white. The operculum is solid, many-whorled, white outside and horn-colour within. The tube is narrow, situated about 2 millim. from the outer lip, and bends backwards.

Alt. 5 ; diam. max. 53 , min. 10.5 millim.
Hab.-Kelantan, Malay Peninsula.
Related to O penanyensis, Stol., of which I have specimens from Kinta Valley, and which I suspect will prove to equal O. rostellatus, l'fr., but the present species is larger, more solid, difers in groumed colour, also the pattern of the colour marking is not carricd all ofer the shell, and the lip is larger and more refected.

OBITUARY.

O. A. F. WEIGMANN.

We regret to note the death of \mathbf{F}. Wicgmann which occurred at Jena on November gth, igor.

Carl Arend Iriedrich Wiegmann, was born al Berlin on March ist, 1836, and was son of the well-known Prolessor of Zoology, Dr. A. F. Aug. Wiegnann. He prepared himself for the career of apothecary, studied at the University of Rerlin, and travelled afterwards in different countries of Europe and in the United States of America. In 1866 he bought a dispensary at Jüterbog, near Berlin, and settled in 1877 at Jena in order to devote lis time exclusively to zoological studics.

Wicgmann was an ardent student of malacology, and all his zootomical researches are distinguished by accuracy and thoroughness. Besides numerous short articles in scientific periodicals, he published the following works:
Besitraege zur Anatomie der J.andsclinecken तes Indischen Archipels, in W. Weber, Z.rol. Erg eincr Reise nach Niederl. Ind., 1893 vol. ii., pf. $112-259.8$ pls.
Landmollusken 7ootomischer Thei'. Alh. d. Senckenherg. Nat. Ges., Frankfurt, x 898 , vol. xxiv., 3, pp. 280-557, it pls.
Voyage of Kitkenthal. Land u. Sitsswasser-Mollusken der Seyschellen. II. Zootomischer Theil. Mith. aus d. 7.ool. Samml. des Mus. E. Naturk. Berlin, 1898 , pp. $37-96,2$ pls.
Binnenmollusken aus Westchina und Centralasien. Zootomische Untersuchungen. I Die Heliciden. Ann. d. Mus. Zool. Acad. Imp. des Sci. St. Petersb., 1goo. II. Die Buliminiden. Ibid., Igor.
O.F. v. M.

PROCEEDINGS OF THE

 MIDLAND MALACOLOGICAL SOCIETY.338 d (ANNUAL) MEETJNG, December 13'r, igoi.
The President in the chair.
In the absence of any demand for a ballont, Mr. Hagh McClelland wint elected a member of the Suciety.

The Annual Repnit of the Council and the Tusasum's blatumenl wh sead and adopted.

The Secrelary reported that as no amendments had been received to the Council's nominations. the following would constitute the Council and Officers for 1902 !-

President-Walter E. Collinge.
Vice-Presidenl-E. R. Sykes, B.A, F.L.S.
Treasurer-H. H. Bloomer.
Hon. Secrelary-H. Overton.
Librarian and Curator-Guy Breeden.
Olher members of the Council-Messrs. G. Brceden, H. Willoughby Ellis, F. J. Partridge, and Bromley Peebles.

I'he President's Address was posiponed until the February meeting.

Exhibits.

By Mr. Bioomer : Sixteen species ni ioreign Clausiliae.
By Mr. Breeden : Linw margaritfer from Barnslaple.
By Mr. Overton : Amatia gagotcs and Acichla lineata from Sutton Coldfield.

ANNUAL REPORT, IgoI.

In presenling their Fourth Aunual Report your Council have again to record a satisiactory year's work.

During the year one new member has been clected, and three have resigned.

Eight meetings lave been held, al which four papers have been read, whilst the exhibits have been numerous and some of greal interest.

The financial condition of the Society stands as iollows: there is a balance due to the Treasurer of 2 s . 10d., and the outstanding subscriptions amount to $\oint 155$. od.

Donations to the Library have been received from Professor L. Plate and Mr. H. H. Bloomer, the rimber of works and pamphlets now numbering 9 t . Your Council regret that no additions to the Socicty's Collection of British Molluscs have been received during the year.

Your thanks are due to the Council of the University of Birmingham, and Professor T. W. Bridge, for the facilities they have so kindly given in pelmiting our meetings to be held in the Zoological Department.

34th Meeting, February 2ist, 1902.
The President in the chair.
Papers Read.
"Some Aspects and Problems of Malacology."
By Waller E. Collinge.
${ }^{4}$ A Preliminary account of the minule anatomy of Helin acuta."
By H. Overton.

ExHIbITS.

by Mr. Orerton : Analomical preparations and drawings illustrating his paper, also specimens of Palwdestrina fagtori, E. A. Smith.

CURRENT LITERATURE.

Pllsbry, Henry A--Tryon's Manual of Concholeggy, ser. ii ., vol. xiv. (pt. 54), एP. 129-192, pls. 22-36. Philadelphia: Academy of Natual Sciences.

Continuing the "Appentix to Bulimoirl Snails," the following genera are reatil with, and the undementioned new specits, etc. deserited:-Plekncheilus,
 from Brazil, Xeopetractrs, Marts., Orychuna, Mörch, Drymaetas, Albers, with 1). coghatus, n. sp. From Colombia, a species closely related to D. zoogeographicus, Orb, and D. membielims, Crosse. D. sucrinea, in. st. from the Amaann river, resembling in contous D_{0} colmearoi, Hid. kut differing ircm that species in sculplure and colour. D, roncaties var montantus, hov, and D. sanctatmarthete, n.sp., bolh Irsm Colombia, the lalter, in the suotted pattern of the spire recalls some forms of D. trighostomats, but in the structare of the aperture and columella it is near D. astus. Other genera are Porphyrobaphe, Shuttl., Daystytr, Schlüter, Bothriembryon, Pils, Pletositytas, Beck. Amftidromas, Alh, and Odontostomat, Reck.. with O.genclaths, Ancey, 1, אp. Itom Goyaz, Cenlral Brazil, The Appendix conclades will a list oi undelemined Dhfimalidae,

In the present part the Cerfondae are commenced. The genus Cerion "Bolton," Morch, has by moost authors, been associaled with the Patpidae, but Dr. Pilsbry shows that there is lidle in the anatomy to justify such an associalion, while the pallial and generative organs show it to behong to a widtly rifferent group.

The genus is diagnosed as follows :-"Lang macroscopically plain except for the pulmonary veill, Kidncy; oblong, with large cavity, and excreting apparcully by a secondary ureter, Genital system having a wide atrium, short penis with tes-minal settachor, the efifthalliss enterins near or below the widdle of the penis sac. l'as deferests extrentaty tong. Spermatheca on a long duct which bears or lons diverticalum. A vagital retractor arises from the risht tonlacufar mascle. Free relractor muscles independent to their posterior ends excepl the right tentacular and tail retractors, which are shortly united. Jaw smooth. Teeth of the normal type in Holopoda, the eclocones developed. Fxternal analemy as in Holopoda generally : the labial processes weil developed." Type C. tria, L .

The species are subject to a remarkable range of individual and local variation, both in size, colom and external markings, and this has led to an urdue multiplicalion of species and sub-species,

The following sub-genera are rccognised :-Cerion, s.str., Strophiops, Dall, Diacerion, Dall, and Ecstrothia, Dall; the species therein being classificd in filteen groups.
Bhedermann, W.-Untersuchungen über Bau und Entstehang der Molluskenschalen. Jena. Zeit., rgor, Bd. xxxvj., pp, I-r64, Tafn, i-vi.
The author of this butky paper starts willi the postulate that it is a question nif fundamental importance what may te the nature of the process ky which, though incalcuable time, vest masses of carbonale of lime have been formed by plants andthe frame work of ammals, accomulations such as we meet with in every geolugical fomation, and in the sediments of the sea-floor. He then proceeds to discuss the derivalion of the lime by organisms from the sea-water, and announces his intention of furnishing an cpinion, to ke based on has ciwn
researches, on the most noteworthy cxamples of shell formation among the Mollusca. To this end he passes in review the researches of previous writers on (\mathbf{I}) the intimate structure of the shells oi Anodonfa, Pinna and Moltagrina, (2) the origin of the "prisms" in Anodonta; (3) the physical and especially the optical characters of the "prisms" and pearly-layer; (4) the intimate structure of the Gastropod shell ; (5) the character and growih of the Gastropod shell ; and finishes with a lengthy summary.

In the concluding paragraphs of the summary lie points out that the deposition of carbonate of lime on the part of an animal organism is less than ever to be regarded as the result of a simple chemical reaction, but is manifestly a question of highly complicated chemical processes on the part of living cells without, however, a direct formalive influence on the part of the latter. It is further beyond doubt that each shell layer having a special stıucture arises as a specially constituted secretion derived from special cells; the conditions under which these characteristic stuclures arise is at present by no means sufficiently clear, but have nothing to do with any albuminoid replacement consequent on putrefaction.

In a subsequent paper the aultor intends to treat of the artifeial production of shell-structure.

We have failed to find anything new in this treatise which, however, appears to form an admirable summary of the present state of our knowledge on the subject of molluscan shell structure, and as such to be of value. The plates which illustrate it reproduce many familiar figures, and there is a useful little bibliography, which, however, is nol, and evidently docs not pretend to be, as complete as that given by Moynier de Villepoix, whom the author cites, or by Dr. Stempell (Biol. CentralliJ., Bd. xx.), lo whose interesting and importani paper, the author strangely cnough does not allude.-B. B. Woodward.
Kowalevsky, A-Sur le genre Chatoderma, Arch, Zool exp. el gen., 1901 (5. 3), T. ix., pp. 26I-283, pl. x-xīi,

The author describes two exceedingly interesting new species of Chachoterma, dredged in the Sea of Marmara The first, C. radulifera, is characterised by a complex radula, bearing nine rows of teeth, which is described and figured in great detail. The second species, C. guthurosum, so named from a curious habit it has of inflating the head-region, which aids the animal in burrowing. resembles externally, both C. produchom and C. nitiduhtu, but differs from both of these species in the structure of the radula.
Slmpoth, H.-Ueber die Raublungenschnecken. Naturwissensch. Wochensch., 1901, Bd. xwii., pp. 109-114. fig. I-14, PP. 121-127, lig. 15-18, Pp. 137-140, fig. 19.
As is well known to all malacologists, there are certain families of molluses which, according to some authors, are widely separated from one another structurally, but contain genera possessing certain characteristic features in common. One such group, continental malacologists have termed "Raublungenschnecken" (Agnalhous Pulmonates).

In the present important series of papers, Dt: Simroth has brought logether an enormous mass ol facts, and has allempted a classification of these particular molluscs. Further he has pui forward certain views as to the affinities of the different genera and their phylogenetic origin, and generally summarised our knowledge of ummerous rare and impelfecily known genera.

The strbject is dealt with in the author's usual masterly manner' ; his long experience and erudiog grasp of the many perplcxing problems in malacology, render him peculiarly fitted to deal with so difficult a subject as the present one.

Conmencing with a brief histonical resume, the author passes on to the cousideration of the food and digestive organs, the muscles of the buccal cavity, the shell, the metamorphoses of the soft body, the generative organs, the geographical disiribution, and the phylogeny.

As the author poirsls out, we have to deal with a group not of like origin, but one illustraling the phenomenon of convergence.

The absence cf any accessory reproduclive organs is regarded as due to the hahits and habitat of the different forms. Where the conditions to Iertilisation are so mfavourable, by reason of the individuals not meeting each other in worm-burrows, etc., it would not he practical to waste time in preliminaries, further, it seems very probable that self-fertilisation is very commen. Among the many peculiar claraclers common to these molloses, mayte mentioned the presence of a fre pedal-yland in the licdy-cavity, a thitd pair of feelers or lips, the ieduction aud position of the shell and mantle, and (in Testacella) the presence of a sense-organ-osphradium-in the lung. (Plate).

Assuming that all land molluses were originally carnivorous, Dr. Simroth explains the changes which have taken place in the "Robber-Slugs," by presuming that they had an inate capacity for cvoluijonaly modification, while at the same lime special characieristics, which involve vital changes in the organism, have been acquired and transmitled, so as to conform to the new environment.

Very interesting are the author's views as to the ancestral groups from which the various Agnallous gencra have arisen. The Glandinidae, a very primitive family, ate of Achatinotrd origin. The crigin of the Hocisoudae, owing to their great variety of form, and their extreme divergence from the Helicidac, is difficult to determine, it can, however, be asserted that they have sprung from the primitive groups of the Southern Hemiqphere. The Selenites are clerived from Zonites; Ptutonia from the Atlantic Vitninac; Datudebardia pousibty from Hyalinia. The origin of the Limacoids is more clearly indicated, excepting perhaps that of the genus Silenochtanys. Hyrcanwlestes, Phrixalestes, Psuchomitax, and Trignnocklamys, all show relalinnship with Parnacella and dmatia. Apera (whish is wrongly stated to have no shell) is thought to belong (1) one of the scattered heterogenous branches of primitive molluses, possibly related to the Janellidae; Atopos and Veronicella probably belnnging to the m:ane category.

Widely differing opinicns are naturally held by difierent malacologists, as In the phylogenetic relationships of these differen! genera, and not until more deluiled researches have been made can the majnrity of them be regarded as wther than very wide guesses, still Dr. Simroth's views are sure in command the cilreful consideration they undoubtedly deserve.
Slmath. Heinrich.-Üter eine merkwürdige neue Gatlung vnn Stylommatophoren. Zool. Anz, गgot, Bd. xxyn_{5}, pp. fiz-64,
Dr, Simolh describes an interealing slug-like molluse to which he gives the name ostracolche fruhstorfferi, gen. et sp . nov. It was reccived from Mı. Frulstorfor, who collected it in Tonkin. It measures 26 cm . in length, ant In remarkable on acconnt of the shell, the relative position of the pallial organ" to the mant|c, and partly on account of an obscure appendage of the generative
organs. Externally it somewhat resembles a Parthation, hut here the mantlesac is more prominent. The mantie is pelforatrd on the left posterior suriace, and througlt the opening the chell projects the shell consists of a basal, calcareous plate, upon which an extraordinarily thin, wide, and sfructurcless conch-like alell fits close. The hermaphrodite gland lics crmbedded in the liver, much more posteriorly than the remaining parts. Reiore the vas defcrens passes into the penis it gives off three short, thick flagella. The retractor muscle originates quile ctose to the inner rool of the right ammatophore. From the foint of erigig proceed fwo cords, one the nomal semiral duct, the other a thick muscle, consisting of a scries of plati-shaped disce, perforated by a canal (a)

The author proposes a new fanily for the reception of this peculiar genus, the Ostracolethidae.
Dean, Bashford-Notes on living Nautitus, Amer. Nak, rgor. vol. xxxw, pp-819-837, 15 figs.
The authar contributes snme very welcoma and interesting notes, made whilst on a visit to Negros. In the straits between this island and that of Cebu, Nautilus scems to fourish in abundance.

In examining fresh specimens the author noliced that there appeared to be sexual differences in the slbellin, although in as many instances as three cut of len these were not distinguishable. The iregular growh liaes fregucnly exhibit an madulation of a somewhat regular paltern, reminding one of the mankings present at the septal rims in Ceralite or Gonialite. It is suggested that, although these cannot be clirectly related in those of the foasil forms, they may represent "a lendency during special perinds of sheli-forming activity, . . for the mantie to conlract in crenulate lines, a tendency which daring the decent of the telrabranchs may well have decn seiced prou hy selecion and made of use in the formation oi the specialised margins of the septa, And from this sfandpoint the recent markings may be regarded as rclated to the curiously expressed lines on the ancient shella."

The general appearance of the living arimal is next described, and illustrated by capital figures, also the tentacles and their movements, Although Prclessor Dean was not ahie to induce the animals te [ecd. from obscrval:ons on the living and dead specimens, he thinhs that there is little doubt but that the jaws can be used in a position which one would hardly he led to expect from an examinalion of preserved specimens. Accordingly he infers that the tentacles are of less importance in the mechanical operation of feeding than is popularly helieved.

If the information supplied by the fishermen in the region of the southern Negros is to be relied upon, there should be no difficulty in securing the egge and embryos of Nautilus in abmindauce.

Dupuis, P. et Putzeys.--1)iagnoses de quciques espècen de coquilies nouvelles et d'rn genre nourcau provernant de l'clat intépendant din Congo, suivices de quelques observalions relatives a des espèces déja connues. Amu. Sce roy Malac. Beigique, 1ger, T. xxxvi-xlii., ligs. $1-18$.
The new species and varioljes are Perideropsis formosa and var. pallida, P. humicola, P. diaphana, Subulina (Subhlona) martensi, Ccras (gen. nov.) doutzenbergi, C. monycmaense and var. cingufata. The follcwing three
vatielies of Perideriupsis monbilichla, Puth., v. nsendzechsis, abbida and toathensis, are described, also var. ctnghtatws of Cycroph, intermetius, Maris.
Baker, F. G-Some intertsting molluscan monstrosities. Trans. Acad. Sci. SI. Louis, 1901, vol. xi., P1' 143-146, pl. xì.
The author describes certuil abnomal shells of Lampsiths alata, Say, L ligementina, Lath., and Cinio gibbosms, Barnes.
Robert, A.-Sur la ponte des Tioques. Compl, Renclus, 1901 , vol. cxyxii., एP. $850,85 \mathrm{r}$.
The author draws attention to the inleresting fact that whereas in certain species of Trochus (T, granhlattir, Botn., T. strictus, L., T: conutoides, Lam., and T. crasperaths, Penn. the eggs are deposifed in agglomerated masses, the: maliax being a mucous scoreled by an ampulla-like swelling on the excretory duct of the right kidney, in the iemales; in olher species (T. magis, L., T. cincrets, L., and T. crassifs, Pult.) the ches are deposiled singly.

Hedley. C.-Studics on Australian Mohlisca. Parl iv. Proc. Linn, Soc. N.S.W., 1901, Pr' $16-25,1 \mathrm{l}$, ii.

The following new species are described and figured : Liotia rennsta, L. deacea, Tcinostoma westa, and Lima bruntea. Illustrations of some hitherto unfigured species are also given. Discussing the "Challenger" Station 164 B , Mr. Hedley thinks that possibly " 1648 B " might be a mislaken label ior " 64 ," in any case it seems to us that he is perfeclly justified in eliminating the series from the Ausiralian fauna.

Hedley, Chaples.- A Revision of the Types of the marine shells of the "Chevert" Expedition, Rec, Aust. Mus., tgor, vol. iv., PP. 12I-130, puls. xyī-xvii.
Mr. Hedley points mat that since the colleclion made by the Staff of the "Chevert," and now in the Macleay Muscum, Sydncy, was described, later wilers have failed to idendity the species, and have complained of the inateguate desciptions. He now amplifies these descriptions by giving dimensions and ligures, and correcls ilse synonymy-
Hediey, Charles.-The Marinc Wood-borers of Australasia and their work. - 1 'str. Assoc. Adv. Sci., I901, vol, viii., pp, 237-255, pls, vii-x,

The author gives an interesting account of what are popularly termed shijp-wotms, designed rather for the engineer and geweial stuclent than the 7oulanisi.
Knlght. G. A. Frank.-Marnc Mollusca and Brachiopoda. Bril, Assocn, Handbli. on the N.FJ. or Glasgow; rgor, pp. 189 -208.
The :uthor reconds no less than 303 species of molluses, of these 23 are thomblal an inmilicicomy altested. A biblography containing 43 tites prefaces
 In the distribulion of the Marine Mollusea of the West of Scolland this saluable,

The anftor enumerates 65 species, of which the following species and varieties are new: Mardinella gennesi, Clancrtus fannesi, Pinna cachlaxris.
 Sby. v, mininua, Fisch et Vigual, C, jerburuí. E. A. Sm. v. doiboutionsts F. et V., C. petrosum, Wooth, v, gentesi, F. et V. Emended descriptions and figures are given of Rissoint berfhollefi, Aud., and R, rissoi, Ated.

Eouvler. E. L. at Fischer, H.-Sur 1' organisatinu mincrne du Plewrotonara bigrichii. Hilg. Compt. Reridus, 1901, vol. cxxxii, pp. 845-847.
Continuing their studies upon this iuteresting molluse, lhe authors theal in the present paper wilh the digeslive tract and neryous sysitem. The dormer in general resembles that of other Diotocardia, hut it js chatacletised by a marter of peculiar twists, and buccal and nesophageal pouches of a very primilive nature 'The hind part of the iniestine las a memarkable bianch, whicle exicurs forward and lies at the side of the oesophagus. In the main the vervous
 absence of ati difierentiation in the pallial ganglia, and the concrescence of pedal and pallial cords, as in Chtitutdae: \{ii! the origin of the wisceral commissure on the corebro-fallial connectives, and nol, as in olher Diolocardia, on the ganglionated pallial cords; (iii.) the development oi a very large ganglion at the orgin of the osphradial cord, repecsenting, in part, the paint of origin of the pallial nerves; (iv.) the very feeble sevelopment of the secondary pallial nerves; and (v.) the strong development of the primary palfal nerver.
Collnge, Walter E.-On a further Cnillection of South African Slugs, with a Check-list of known Species. Ann. S. Air. Mus., Igot, wol. ii, PP. 22g236, rl, xiv.
In this interesting paper we find much new information about the peculiar genus Oofchia, with excellent illustrations. The litle-known O. ateryimal Grayp is 1 erlescribed, and opolypunctata is proposed as a new species, making the fifth species of the genus. 'The Oopeffinate are ignored in Pilsbry's (Ifget paper on the prylogeny of the Ariontida, and the athon of the picsent paper diocerant iuform us how he would place them in the Pilshryan schene; il is to be presumed that someltiong on this ewbject with be forltocming later, as onv author must certainly have had it moder colsitcration. We should suppose that Dopelta iniglat be the end of a serics of Jomm diverging from Ation and it is intertaling to speculate on the possibility of several of the links of the chatin heing stll extant in the vast regions of Airica so-far unexplored for slugs.

A new Ahera (A. purcelij) from Táble Mountain is described and illustraterl. We wonder that such an interesting animat whotid so long have been overLooken ir this Incality. The Cafe forms of Limax ntryimms and dimmin sughten are fomd to differ somewhal irom Eu'opcan cxamples. It is sof mult iuterest to inguire whether as the presut writer is upite willing to suppowe these differences may have arisern since the introduction of the slugs into Sinth Africa. Ii so, we have prooi of the rapidity of evolution under stubate cosesth bons. We may recall in this connection that Allen aud Chapman (188,7) have
 |ndapa, Mexica; this animal is of coluse the descendint ai mice introbucol hey man, no titue Mifs existing in America cxecept through mimeduction,

the genus Croctchas, which appears nol lo occur in Cape Colony proper. Kratss gave a very poor descripticn, but te stated the mantle had wo shelt, and that the creature was abudant in gardene is Cape Colony. Possibly it was an Oopolta; its colour was said to be sreyish-black.-T. D. A. Cobernere.

Collinge, Walter E. On the Anatomy of a Collection of Slugs from N.W. Bornen: with a List of Wee Species recorded from that Region. 'Trims. Roy. Soc., Ediar., tgor, vol. xl.. plr. 295-3t2, ple, i—iii.

The preseni comamonication, the abltur prants out, is to be regarded more in the light of a preliminary notice of species, which, as further material is obtained will reccive more exhausljve treadiatnt.

After a short introduction on the Bornean Sltag-fauna, the author redescribes the genus Damarantia, Issel, and gives colnured figures of D. difecta, lssel ; a new species, D. rarimala, is described and figured, as also the generative organs and dart. Wiedmannia is a new penus conlaining W. dubitas, Wgin., W. gigas, W. ponsonthri. and W. bormernsis, na. spp. The gererative organs of Collinged sthithi, Cllge. and Godw--Aust., are next described amo figured. A further new genus, Aseletutia, containing two new species, phicala and slobosa, is next dealt with, and Veronticella shelfordiona, V. exisma, and Onchidium fonschbyi, r.n. spp. are figured and described.

A list of the spectes of slugs recorded Fram Bornco, lwenty-seven in number, with the original reterences concludes the paper.
Whlimason. M. Burton.-How Potamirics (Cerethidea) catifornica, Hati.. Gavels. Nast., igor, vol. Xv., pr. 82, 83.
Mrs, Williamson has moticed that in travelling over the mud-fats, this molluse leaves a zig-zag pattern: which is made hy ine afical whotls of the shell as it is dragiged forward. or sidewaye. From a series ef observabions upon its mode of canwling, the muthoress concludes that the cood movement is somewhat secondary, The animal pushes its head forward, expinds its tenlacles to 仵eir [nll extent, then with an effort raises the body whorl, and the shell is propelled forward tefore the foot advances. Immediately following these movensents, the foot is agread onf and drawn forward.

Kennard, A. S. and Woodward, B. B.-The Post Pliocene non-matrime Mollusca nf the South of England. Froc. Gend. Assoc, Igor, vol, xvii., [p. 213-260, figs. 32-37.
This valuable asd important paper is, apart from its geological interest, full of interest to the student of recent sheIIs. While endeaveuring to avoid altesa tions io the nomenclature, a few wise changes have been made, thus we reat

 removed from Viriona, while Helicalla barbara (I..) seplaces Bhimus acntm, Mill.

In afl the authors' list 138 specics of non-marine Mullusen as exisking 11 (his country, and roextinct forms, of these 129 oceur in the Sinth af Eurl.mb, and 7 of the extinct forms.

In this and preceding papers the authors have accumolated a latse fn. m: of evidesce, which now enables them to speculate on the origin and olmidman
 however, be borne in mind ihat these speculations are taly tentative, lin
oldest inhabilants of these islands are Paludestrina ventrosa and slaqnatis, with which may be associated Bithyntn fontactiata and Valvata prsinatis, all of whicl probably had their origin in the Araln-Caspian basin. The Lensifanian is also regarderl as one of the oldest in these islands, no evidence of horeal upecics being found until the later Real Crag of Butley, The Southern Giroup is romposed of species with varinne unurces of origin. Finally, such frams as Hydroma fisea, Acanhinuta Lameltafa, Vitvea exactala, V, alliaria, and Azeca fritusts, may be cndemic; all as yer being unknown in a fossil stale on the Continent.

A bibliography and table of the distribuhion conplete this very welcome memoir.

Dall, W. H. and Simpson, C. T.-The Mollusca of Poito Rico. L. S. Fish Commis. Bull for 1goo, rgot, pp. 351-524, pls, 53-58.
This valuable and interesting wnrk treats of, in a very full manner, the mollusca of the island of Portn Rico, and forms the nost complete accomen yet published. The total number of sperirs recorded is 653 , ol which 42 are new. The land-snail fana is not especially atriking. The solitary Circinaria conolor, if it be a genuine Circinaria, is a remarkable case of geographical distribution. Fqually remarkable is the Clausilia hionaliculata, found only in Porto Rico, and the only representafive of this gemus known from the West Indian ragion. Very fine and large species of Plenrodonte, a single species of Stoastoma, iour species of Gatolts, and nine species of Planorbis, are also present.

Numercus clanges in nomerclature have been made. kut the law of primily has nct in all casces been adhered to.

A Lici description of the different genera and species, whth references lo the uriginal desciptions and figures, greally adds to the value of this work, While several species hitherto undigured, have now been figured frnm the authors' types.

Dall, W. H. - Molluski from the vicinily of Pernambuca. Proc Wrash. Acad. Sci., IgOI, vol. iii., pp. 139-I47-

Dr. Dall here enumerates 9I speries ohlained during Dr. J. C. Rranner's expedition to I3razil. Deducling from them four species confined lo land or fresh water, there remain 87 , of which t3 alone are peculiar to the caatern const oi South America sonth of the Wesi Indies, and 74 are common Antillean shells, Two new species are described. viz. Malimia branneri and Irvillia protleyi.

Andreae, A.-Untcrmiocäne Landechneckemmergel be』 Opfeln in Schluinu.

The new species descrihed and figured are: Dandobardia prochemm,
 and Cyclostoma schrantheni. Clatestice (Triptychiaj) smexaca, Sandberget, and Crastedopoma leptapomoides (Renss.) are also recorded.
Dall, W. H.-Synopsis oi the Latimatea and of the American epecies l'tas: T-.,.S. Nat. Mus., toor, wel. xwili., pp. 779-833, pls, xxxix-xlif.

Continuing his vuluable series of synopses Dr. Dall here treats of hir Larénacea, a group of ramilics, apparently of very ancient lineage if the stiln ian type retered to it is really allied. The systemalic arrandement the then appears to be exceptionally confused. Maty of the cimumblent mintare las
author states. go by names to which they have no sulficient claim. and it is suprising how unlike things have been Jumperl logether.

In the present revision the follnwing families are inclucled: the Thyasiridac (wilh 35 species), the Diplodontidate (with 20 specics), the Intoundae (with 03 species), the Corbidar (Exolic ?-i'asiem Tertiarics), and the ('yrenellidac (with 2 species): 8I of these $\mathbf{3 2 0}$ specier helong to the Al'antic. 45 th the Pacific. and 5-ar possibly 6-are common to the two sides of the Arnerican continent

Many new species are figured and descrihed, and numerons changes have been made in the romenclature.

Hall, T. S.-Growth slages in modern Trigonaas, belonging to the section Pectiratat. Proc. R. Soc Victoria, נçor. whi, siv., pp. I7-21, fig.

Steinach, E.-Studien über die Haulfärbung und über den Farljenwechse] Cephalopoden. Nebst Ver suchen über die aulogene Rhythmicität der Chromatophoren-Mastech. Arch. ges. Ihliysiol., 1901, Bd. 87, pp. I-37. T.

Rottmann. G.-Theher die Embryonalentwickinng elcr Radula Eei den Moll. usken, Theil i. Die Entwicklong der kadula hei den Cephalopoden. Zeil. f. wiss. Zool., 1901, Bd. lxx , pp. 236-26n, Tin. xi-xii.

Slmpoth, H.--Uther das Probicin frutheren randeasammenhangs auf der cüdlichen Erdhälle, Geograph. Zeitech, sgor, Pf. 6es-676. T. v.

Meek. A-The Mussel Experiment on the Coquet, Rpt Northumberland Sea Fish Comm., 19or, pp. 35, 36.

Leboup, Maple V.-The Marine Mollusca of Northumherland. lbirt., Fp. 45-23.

Tabler, Max.-Zui anatomie von Parmophonts intermedua, Reeve. Jen.ו.

Kennard, A. S. and Woodward, B. B-Further notes on the British 1/focene non-manine Mollusca. Frac. Malac. soc Lonsi, igor, vol. inn p 183.

EDITOR'S NOTES.

dulv quite recendly liave we learat of the doath of Carl Arend Friedecicle
 1010y an wi a vadued eomespondent, and malacolengy of a patjent, diligent, and hillaid worke.

Wi' whuld like foternind thone Subscribers ubo have not set sent us the"t matimablinne the volumen 7 and 8 , that they are considerably over dale. It

TIIE

JOURNAL OF MALACOLOGY.
 No.z.
 June 30th, 1902.
 Vol. IX.

NOTES ON THE BRITISH SPECIES OF BUCCINUM, FUSUS, ETC.

By J. T. MARSHALL.

Cassidaria tyrrhena, Chemm, -Since my account of this specics was published (${ }^{1}$), Mr. F. W. Wotton has obtained several very fine living specimens which were obtained by trawling off the south-west of lreland in $50-60$ fathoms, two of which he very generously presented to me. His largest specimen measured $3 \frac{1}{2}-\mathrm{in}$. by $2 \frac{3}{2}-\mathrm{in}$., and contained the animal still showing signs of life. I have another fine specimen exceeding 3 -in. by 2 -in., dead but perfect, trawled in 5° fathoms south of the Scilly Islands in 1900. A fragment was dredged by the "Porcupine" Expedition of 1870 on the Channel slope off the Scillies in 539 f., and another fragment of O. echinophora by the 1869 expedition off Donegal Bay in 183 f. Mr. E. A. Smith has conclusively shown (${ }^{2}$) that Morio, Montf., has the preferential clam for recognition over Casiztdaria, it the coleopterists will only adopt some other name than the former for the beetles.
Buccinum undatum, L--This is a most instructive species, no other afforaing better evidence of the effects of environment. Any one interested in the variation of species will find the study or this one most fruitful and interesting, while a series from various localities and depthis will impart a good-object lesson in the variability of species.

[^4]
 dopend entirely on habitat, and an exprienced collector can reatily tell, from the appearance of the specimen, the nature of the sea-bortom and the probable depth from which it had been procured. 'I'be Rev. I'rolessor Gwadkin gives the radula of Burfintho a very bad character as a help to specifie distincrion; he writes me that "the radula faries so much in Buteinum that consider it, for that family, worthless as a character, the inclividut variations being greater than the specific." 13. unlatun is very scarce in the Channel Islands except at one part of Jerscy facing the French coast, and I have never met with a specimen from the other Islands; it is equally sarce in the Scillies. Pure white specimens occur occasionally, but thoy are rare

Var. fiemosa, Jeffr.- Very rariable in size and texture, sometimes atcaining a length of $5 \frac{1}{3}$ im. in the West Orkmeys and of Wick, while a small thin form lives in the former district and in the Shetlands with the var. zettendiect, and has the same silky epidermis.

Var. littonalis, King. - I'he interior of this variety is sometimes orange coloured, but more frecuently purplish-brown.

Var. paupetwirt, Jeffr.-Specimens from Southampton Water do not exceed an inch in lengtli: nany are smaller.

Yar. atricta, Penn.—Off Cork Harbour (Wotton)! off Abcrdcen, (Simpson) ! North Rona, 45 f. ; Doggerbank, 30 f.

Var. pelafira, King.-Aberdeenshire (Simpson)! off Unst (Coulson) ; Shetlands (coll. Mac Andrew). In this varicty the last whorl is smaller and narrower proportionally, hardly projecting beyond the penultimate, and in British specimens the longitudinal rilbs are evanescent or wholy wanting My largest examples exceed $6 \frac{1}{2}$ in. in length. It occurs in Norway, but of a smaller size and strongly ribbed.

Var. zsflamita, Jeffr.-Gwyn Jellicys has described this variety as "destitute of ribs," whereas he figures it with rather prominent ones, and this hes given rise to some doubts as to whether the var, zetlandica is ribbed or not, especially as he compares it with B. humpherysianum, which is ribless, while this is rendered more confusing by its living on the some fishing-grounds with a dwarf and thin form of var. fleprosa, which is ribbed, in the Orkneys and Shetlands. But the real truth is, that the presence or absence of ribs is not a criterion of this variety, its only permanent characters being that it is dwarfed and thin. It is almost as variable as the type, and rally runs into many forms when collected from different parts of the Shetland scas. It is seldom without traces of longitudinal ribs, especially on the upper whorls, and there is considcrable variation in the size, comparative length of spire,
and degree of sculpture. To give an idea of its extreme variability, I may say that I have specimens of it corresponding not only to the ribbed type, but to the var. striata, the var. Hexuosa, the var. pelagica, and the var. aruminata. In rare instances it is as finely striated as B. humphreysianw, while on the other hand I have examples which are as much ribbed as any typical shell. Nor is Gwyn Jefreys' white specimen at all singular ; I have a series of them : while a very pretty form from the Last Shetlands, $60-90 \%$, is also white, very finely striated, extrencly thin, with a cinercous, silky, deciduous epidermis, a form which also occurs at Vardo, Finmark, in roo-t50 f.; this is I, sehneideri, Verk. The same form was also trawled of S.W. Ireland, in 55 f., by the Rev. W. S. Green, and of the south and west of Ireland, in 90-180 f., by the "Porcupine." B. par"outum, Verk., is different from this,
 indicated by the size, contour, spire, embryo, and micro-sculpture. Jeffreys' figure is much too large and the spire too long for var. zetlandica; that figure more correctly represents the thin deep-water form of var. flembisa mentioned above; Sowerby's figure would do for var. peapercula, but not this; while the figure in "British Mollusca" (pl. cix, fig.4) is perfect, as most of them are in this well-illustrated work.

The Leckenby collection contained an adult specimen little more than half an inch in length, one of a pair said by Mr. Robert Damon to have been dredged in Weymouth Bay, and which changed hands for ro/- On the other hand, specimens from Thurso and Wick are very large, coarsc, and solid, attaining 6 -in. by $3 \frac{1}{2}-\mathrm{in}$. ; this is the var. incrassata of King ; but coarse and solid cexamples occur of every size.

Monstrositics are numerous, and many of them have received special names. Two splendid figures of Turton's B. carinatum will be found in Brown's "Recent Conchology," and "Science Gossip" for April, 1894, contains figures of the curious malformation called monst. hoperculatum. As to the monst. trioperculatum, Jeffr., that was the outcome of a too eager incuiry, accompanied by a liberal offer, made many years ago to the whelk-dealers for a specimen, and with the inevitable result as nature could not produce one to order, a counterfeit was manufactured and succossfully palmed off to a dealer, but it did not travel any further. No genuine specimen of this "sport" has been recorded.

In dealing with the phenomena of sinistral shells, Gwyn Jeffreys says that the animal "may be compared to the case of a man having his heart on the right and his lungs on the left side of his body. The shucture of a molluse is however not so complicated, and the con
sequence of such a reversal in the position of its organs is probably not very important to its cconomy." (1) I do not know how Gwyn Jeffreys came to regard the lungs as being on one side only of the body, for as a matter of fuet cone lung is on the right and another on the beft side, and in a sinistral apecimen the right and left fungs would presumably he simply transposed.
B. humphreysianum, Penn.--S. W. Irelnd, 80 f. (R.I. A. crulse); the Minch off Loch Boisdale, 72 I., a very young specimen (J. 'T, M.) ; hetween the Butt of Icwis and St Kilda. (Simpson) !

Var. zentutrosum, Kict. (fourn, Conch., s893, vol. vii, p. 26i.) South of Ircland (R. I. A. cruise). Gwyn Jeffeys records in "British Conchology" a qar. larteun, but without locafity; that locality shonld be "Shetlands." A pretty varicty, also from the Shetlands, has a white gone below the suture of each whorl, as well as on the cuter lip. This speries can scarcely be mistaken for D. unuzatram "oor. zetlambiala; it has no palpable epidermis at any shage of growth, the aperture is refected outwards, and the embryo is different. Sowerby's is the better figure; lust the apical whorls are incorrect; they should be as Jefreys'.
'l'he 3 . bydrophaman of Hancock, was dredged hy the "Triton" in the Shetland-l'aroe Channel, and the same species, with I. murwh , Wicicle, by the "Knight Errant" in the same district.

Buccinotsis palei, J. Sow.--Arlantic off Ireland 345 f. (R. I. A. cruise) ; west of Sit. Kilda 106 f. (Hoyle); Aberdeenshire 40 miles off Ratrray Hoad: (Kelly)! Ruchan Deeps, 70 miles east ofAberdcen. (Simpson)!
'There is considerable difference betweer the shells of the male and fomale of this speciss, the former being oblong and the latter oval. Sowerby's fighre well illustrates the female form, and Jeffreys' ferumi b figure the male, though the latter has the whorls too convex and the opercuium is wrongiy shaped. Jeffreys' ptate figure is much too broad, and it should not be spirally striated nor have such a broad glaze an the pillar.
(iwyn Jeffeys recorded a Butcinoysis striata in the "Jepths of the suh," which he vaguely assigned as "another interesting addition (w the shettand faunsw"
'Iroron cutacfus $L--A$ very fine living specimen, dredged by mu:off St. Martin's b'sint, Gacmsey, in 22 fathoms, in 1885 , exceeds the dimensions given by leffreys. This is the only example that has been obtained alive in recent ycars. Nor has any addition been made
to the "three living specimens" of T. norliferte found off Guemsey in 18.32

Fusus antiquis I.-A "young and dead specimen" has been dredged by the Rev. J. Smart at Scilly; this is its furthest southern limit. The operculum i.s triangularly oval, dark horn-colour, very coarsely wrinkled, with a few faintly-impressed lines, and often a flexuous depression down the centre. Very rarely the shell is snow white; I have two from deep water off the Shetlands, but these do not belong to the next variety.

Var, allo, Jeffr -Off Cork (Wotoon)! off Aherdeen (Simpson)! the Irish Sea, and off leterncad in fo fathoms. All the specimens I have seen of this varicty are very finely striated, and one from Peterhead is entirely deroid of sewpture except the lines of growth. It attains $6 \frac{1}{2}-\mathrm{in}$ by 3 -in., but one form of it from the lrish Sea, with the aperture expander and reflected, is $6 \frac{1}{2}-\mathrm{in}$. by $4-\mathrm{in}$. Some agred spocimens of the latter have the outer lips formed of half-a-dosen separate layers added one over the other, making the edge a third of an inch in thickness,

Var, rentritosa, jeñr--Great Fishor Bank, nil Aberdeenshire (Simpson)! Doggerbank, 30 §. This varies in the length of the spirc, but the last whorl is always tumid and greatly expanded, trumpet-shape, like Limnapa auricularia. Some of my specimens have hardly any spire, and the largest, fron the Doggerbank, are 7 -in. by $4 \frac{1}{2} \mathrm{in}$. It is yellowish-white extemally, with the inside of a rich deep orange colour, and occasionally the upper whorls are carinated as in the var carinata. One monstrous specimen from Aberdeunshire has all the whorls strongly carinated.

Var. yratilis, Jeffr-I know this from S. W. Ireland only, It is a very handsome shell, characterised by a long slender spire, a thin texture, and tumid whorls. Ics dimensions ale 6-in. by $2 \frac{1}{2}-\mathrm{in}$.

Var. carinatt, 'Turt. = var. striata, Jeffr--Bantry Bay, Iris'ı Sea, and Bristol Channel. My finest are from S . W. Ireland, and measure $6 \frac{1}{2}-\mathrm{in}$ by $3^{-i n}$. Some specimens approximate to $F_{\text {. ctespectus, L. in }}$ sculpture, but the two forms can always be teadily separated. Gwyn Jeffreys admits that this is $\not F^{H}$ carinatus, Turl., but gives no reason for substituting a varietal name of his own, which was clearly not requiven. Var. carinate is also a more suitable name, as all the forms of F. antigutu are striater.
F. orspecres, I- although a northern species, has been dredged by the "Porcupine" in the Atlantic off Ireland, and lyy the "Challenger" as far south as Portugal in 470 f. (a young specimen). I have eximples from shallow water in the Faroe Isles, where it seems, however, to be
only partially cstablished, and to be small and scarce- As a general rule, and comparing latge serics with F. antituus, F^{r}. forsterfus will be found to be appreciably longer in the spire and shorter in the bodywhorl, in some instances very much so. The carinated sculpture is always present and conspicuous in F. derporfus, and is a prominent [cature of the shell, it is only now and again that a specimen with 7ose prominent carinations approximates to one of F. antiquas rar. carinafa that is more than usually carinated. Professor G. O. Sars and Mr. E. A. Smith consider the two forms distinct species, as to which I do not think there can be much doubt. Miss Elliott's cxamples of var. carinata in the National Collections are as characteristic as any that may be found, but these could never be mistaken for F. flesportus; while Sars' figures are cextellent representations of F. dowpectus, yet could not be mistaken for the most extrome examples of var. carinata. The Rev. Boog Watson writes with respect to F. derperfus:-"The identity of this spocies with F, cestiouns: is very strongly supported. and is an opinion deserving blaw utmost respect. If it has not been followed here, the reason is that though my opportunities fr: comparison have been rather limited, I have an impression that the apex in the two species is different. On this point I had hoped for fuller information from Mr. Friele in his great work on the mollusea of the Norwegian Northern Expedition." (1) But that work was not forthcoming. It has subsequently been published, and Herr Friele has Gigured the apices of borh k^{r} elesquestus and F. contwuus, but his figures are not convincing. I have an uninterrupted series of all ages of both species, and I must confess to finding the evidence negarive, notwithstanding that there is an umusual amount of individual variation in the apex of beth species. The most that can be said is that the extremes of both forms nearly approximate: but they are not singular in that respect, nor would the mere presence or number of carinations in the var. carinata, however closely resembling those of E. flespectus, of itself constitute that species. The extreme variability of these striations and carinations (hardly two specimens being alike) demonstrate their varielal character. F. furfoni has a correlative variety.
F. norvegices, Chemn.-Great Fisher Bank, and from Aberdeen trawlers. (Simpson)! None of the figures or descriptions of this species indicate the presence of a large swollen excrescence on the upper part of the pillar, just at the entrance of the aperture, which occurs in about 50 per cent. of adult specimens. 'This excrescence il' examined is found to wind ftself inwardly reund the pillar. I canns

[^5]imagine its utility, nor why it is present in only haif the specimens. Jeffress' dimensions are extreme; the usmad size is $4 \frac{1}{4}$-in by 2 -in. A dwarf form from the looggerbank does not exceed $3^{-i n}$. by $1 \frac{1}{2}-\mathrm{in}$.
F. turtoni, Bean,-Aberdeenshire coast, 70 miles from land, in 4c f., and frem trawlers (Simpson)! Yeterhead, 43 f. ("Triton" Exp.)! Last Shetland fishing-luaks, from trawlers. This epecies lives in muddy ground in deep water far from land, rate; more often procured by deep-sea fishermen than by the dredge. The colour is yellowishwhite under the epidermis, and occasionally the inside is more or less tinged with purple; epidermis rather lhir1, deciduons, ranging from light-brown to olive-green, and frequently stained with ferruginous deposit. Round the periphery the spiral riblets are more prominent and irrcgular, and these sometimes develepe intc ridges or caninations
 angular at that part. The operculum is large, elongated, and obliquely triangular (but raries greatly in length and width), dark born-rolour, highly glossy, closely wrinkled with semi-ciocular striations, and having impressed lines (varjable in number) radiating from the nucleus.

This species is subject to more extreme variation than is generally supposed, and I regard it as by far the most variable of the genus, while the differences between the male and female forms are more than usially apparent. My smallest adult specimen, from the Shetlands, is only 3 -in by $\frac{1}{\frac{1}{4}}-\mathrm{in}$ e, while the other extreme is represented by examples exceerling $5 \frac{1}{4}-\mathrm{in}$. by $2 \frac{1}{2}-\mathrm{in}$, and there is every intermediate gradation of Jength and breadth. 'The whotls also are of every degree of convesity, and the aperture is especially variable according to age, as after it has reached maturity the outer lip is added to and reflected. 'The shell of the male, correctly figured by Sowerby and Jeffreys, has a comparatively small body-whorl and an elongated spire, and rarely exceeds $4 \frac{1}{2}-\mathrm{in}$. by $1 \frac{1}{2}-\mathrm{in}$. The young of this u_{p} to 2 -in. in length present a very droll appearance, being all spire. In extreme example of this male form fron the Shedands, having the spire abnomally elongatert: now in the collection of Mr. James Simpson of Abcrieen, has been named (in MS.) var. allentuate. The shell of the female, well figured by Forbes and Harley (${ }^{(}$) is larger and broader throughout, the spire is not nearly so attenuated, the last whorl is very much larger and swollen, and the shell attains $5 \frac{1}{4}-3$, by $2 \frac{1}{2}-$ in. The young of boch forms are casily distinguished at ald ares, and the admli have each the same numher of whorts, $7 \frac{1}{2}$.

Bean founded this species on a specimen found in a Scarborongh Gishing-boat, but I have not been able to refur to bis original description and figure to see which of these two forms is the type. (Jeffrey's

Whterve in "Rritish Conchology" is wrong ; instead of "Bean in Mug. N. Hist., viii," it should be " Reun in Tundon's]ournal, foh, vii, p. 493, fig. 6r.") Canon Norman says the slender or male shell is the "typical Doggerbank form," (2) but both forms occur on the Doggerbank, as well as in the Shetlands and off the Aberdecnshire coast. He also adds that it is "well figmed by Forbes and Hanley," but a comparison of the later's figures and measurements will demonstrate that their type is the large and broad female form.

Northern specimens are smaller than onrs generally, rarely exceeding $4^{-i n}$, in lengll 1 , and these exhibit a still further range of variation Sars figures several; firice has described one as F. ossiant, and Middendorfi another as F. whantaricum, while Canon Norman has also described two specimens from Norway, apparently immature, one as var. hestipifa and the other as var, tumita. (i) Specimens, however, the exact counterparts of the two later are also found in our seas, some of them mach more tumid than his fighore, while as regards the short-spired form, some of my Brilish specimens have very little spire indced, measuring only fis in length by $2 \frac{1}{2}-\mathrm{in}$ in widtt. That beth slender and broad specimens also necur in Norway is cvident from Sars' figures, as he gives the jmmatnet forms both of the male (t. 14, f. 3b) and female (t. 25 , f. 10).

F'. schantaricum, Midd (') possesses no generic attribute apart from I^{7}. tusfoni, and though Canon Norman "lays chicf stress on the spiral grooving of the inside of the lip" (p. 354), that is merely the impress of the ordinary outer sculpture, which is occasionally observable (also with the purple interior) in the immature stage of F. furtomi, and more frequently in F. islandicus, a species similariy sculptured. Sars' figure 3 (pl. xiv) clcarly show, the connection between the two forms. F. Surtoni also rejuices in several generic names. I'rofessor Dall has conferred on it that of Berintius, Herr Fricle that of Jumala, and Canon Norman that of Th/\%.
I. Islantricus, Chemn.-Of Milford Haven, the Bristol Channel as far as Lundy Island, and the Wexford and Waterford coasts, procured by trawling (Wotton) : S. W. Ireland 345 f. (R. I. A. crıise); Porcupine Bank off the West of Ireland 85 I., and North of the llebricles I $_{5}$ f. ("Porcupine ") ; S. and S. F. Shetlands, procured from trawlers (Simpson) ! S. Ireland: a trawled specimen, and E. Orkneys,

[^6]another trawled specimen (J. T. M.) ; Shetland-laroe Channel 640 f . ("「riton "). 'The records given in the Tinnean Society's Journal (') as to F. imandicus being "Iredged by the "I'riton" of Petcrhead were lapsze penno of mine for F. graritis. The operculum of F. istantime is obtusely triangular, dark horn colour, large, solid, and closely and coarsely wrinkled in the line of growth. F. isfonticus has a hroad as uell as a narrow variety. Some from the shotlands are unsually slender measuring 5 - j . in length by r $\frac{1}{4}$-in. only in we widest part ; but rougher ground in the same seas yields a much more robust form, some of my specimens thence being fully 6-in. by 2 -in. These forms will no doubt in time receive distinct varietal manjes, The normal dimensions of the type are 5 in . by $\mathrm{I} \frac{3}{4} \mathrm{in}$, though a specimen in Mr. F. W. Wotton's fine series of this handsome shell, from the Irish Channel, is $5 \frac{3}{4} \mathrm{in}$. in length, and is unique in having the eparlemis perfect throughout. Another specimen from the same seas, in the collection of Mr. Bartlet Span of Tenby, is just short of 6 -in. in length, but has lost the bulbous apex. In these large sperimens the efidermis is nswally more or less abraded, Mr. Hartlet Span found a specimen in Tenby barbour some years ago, which had most pro! 'ably been cleaned ont of a trawl-loat.

The peculiar bulbous apex, which is supposed to be a specific character of this species, is locally variable. Specimens from Greenland, Finmark, and the Shetlands have the spire gradually tapering to a blunt point, while those from S . W. Ireland, the Irish Channel, and adjacent coast have the frominent bulisons apex depicted in leffreys' figure, which is much broader than the following whorls. Tlue shell is more attenuated than either Jeffreys' or Sowerby's figures, especially the lower half: and has a much longer canal: Sowerhy's figure should also have the suture oblique and the whorls less tumid. An actual specimen placed over these figures will show how very mols they are drawn out of scale. Sars gives an excellent figure of the northern form (minus the bulbous afjex) where, as in our seas, it is le'sis rare than it used to be. Dr. Morch many years ago brought about 20 specimens from Greenland when on a visit to England, and these sold at from $20 /$ - to $60 /$ - each.
F. Gracilis, Da Costa.-South Devon is the limit of this specien, where it becomes rare-

Var, convolute, Jefir.-Scilly Islands (Smart and others) ; the. Smalls Light (Span) ; and varidus other places, but sparingly. Viarinhbu in length and slenderness. My largest are $3 \frac{1}{2}-\mathrm{in}$. in length by ill. only in the widest part, and have a deeply-channelled suture. A dwal
(1) Zoulogy, val. 17, 1883. pp. 05, 94,97.
form from the Sherlands is half this size with a finer apex, the young of which have the same proportions and might easily lee mistaken for f^{\prime}. propinuqus rar. turvita, but they are more coarsely scolptured. Some Scillonian specimens tave a light yellow epidermis, with the soulptare less marked. This variety is well illustrated by Forbes and Hanley (pl, ciii, Hig. 3) and by Captain Brown (p]. vi, figs. 7, 9).

Var. elliamt, Jord. (Journ. Conch., I89a, vol. vi, p. 23?),-Larger and hooder. Ooflise Fexford and Waterford coasts 20-30 f. (Jordan and ntbers) ; off Galley Head, S. Ireland (Wotron)! Doggerhank 30 I. ; Moray Frith 24 f . This is the form figured by Forbes and Hanley (chough not the type) as " dredged from the 1 ooggerbank at the deptl of 50 f." (${ }^{1}$)

Var. roulami, Jord. (Journ. Corch., vol). vi. p. 2.32: 18 go),-Smaller and narrower ; the wsual decp water form. Shetards, from trawlers (Jordan and others) : the Smalls Lighthouse (Span); off Peterhead 60 f : West Orkneys 45 C .

Var. thaber, Verk (-) --New Lo Britain. This was first recorded from Finmarh hy Mr. T. A. Verkriizen. My specimens are small and thin, the cpidermis very delicate, silky, and highly polished, resembling gold-lxater's skin, and the spiral striae slight or totally absent. I have three specimens trawled from deep water in we Shetlands, and their appearance suggests a habitat in deep and still water on firte sand or mud, Canon Norman dredged a small form of it at Drontheim, which is figured in the "Annals" for November, 1893 , and Mr. James Simpson, of Aberdeen, hass a specimen from the north side of the Shetland-Faroe Channel 60-70 [. (!) 'The original Finmark specimens, of which Sars' figure is a good representation, have an unusually shor base and canal somewhat similar to F r. durtus, JefIr., from North America and the Crag, but that chamcter is not nniform in this varity.

I do not know of any good typical figure of this common shell. Shetland specimens of F. apracilis (as in the last species and the next) are more slender than usual, and Gwyn Jeffetys figures this slender form as his lype; Sowerby figures an immature shell, the base being angulared in consequence of the last whorl not being fully developed; while Forbes and Hanley describe as their type "the beautiful slender lorm that is most commonly preserved in cabinets," but their figures illustale the vars. Telliana and commota. Mr. H. K. Jordan's collection contains a reversed example. Specimens of this and the next species are occasionally dredged which are denuded of the epidermis and

[^7]apparently dead and water-worn, yet stil] containing the animal and operculum. As I have explained with regard to examples of Troehus in a similar condition, these have been swallowed by fish and voided again, the action of the gastric fluid having manwhile destroyed the epidermis.
F. Propinques, Ald.-Not Dublin Bay nor Cork, which localities belong to the next species (Jeffreys) ; Birkdale (Heathcote); LJandulas (Archer); St. Andrew's (N'Intosh); off Peterhead 60 I. ("Triton")! West Orkneys 45 f . ; and Nortl Rona. In the Report of the "Valorous" Expedition, Gwyn Jeffreys has mistakenly recorded this species from the Bay of Biscay $109^{-1} 380$ f., by the "Porcupine" Expedition of 1870, instead of from the West of Ireland, Stations 24 and 30 , by the expedition of 869 ; and Canon Norman has also mistakenly recorded it from "N. of Hebrides, $189-530 \mathrm{f}$., "Porcupine" 1869 ," instead of "Lightning" Expedition 1868.

Var. turrite, Sass.- East Shetlands, several specimens from Aberdeen traw l-boats (Simpson) ! Jts dimensions are $1 \frac{1}{4}-\mathrm{in}$. by $\frac{3}{8}$-in., the apex is much more pointed than in the lype, and it is very rare on our Shetland coasts. One of my specimens is almost smooth. Searles Wood figures a specimen from the Red Crag (pl. ii, fig. 55) as what he considers "an abnormal form of F. propintutus." It is not very well exccuted, but fairly represents this variety. Various misconceptions have centred round the identity of this shcll. The specimens ascribed to it by Mr. 1I. K. Jordan (${ }^{1}$) are not this variety, but small typical specimens. Somewriters prefer toconsiderit a variety of F. torfuosus, G. O. Sars, and it is so described and figured by him, though from a poor specimen minus the apex. $\left(^{(2)}\right.$ The difference between Sars' var. turfitus and var. attenuatue (') is not apparent, certainly not in the figures, and I consider them the same thing; while Gwyn Jeffreys held that F. tortwosue, G. O. Sars (non Reeve, which is F. sthini, Gray) is another variety of F^{\prime}. propingute (${ }^{(}$). However that may lo, froni my own specimens I can easily graduate vars twritusand attenuatus intotypical F.proginumus, from which they do not differ in any particular except that of proportion. Sars was mistaken in quoting F. attenuatus, Jefr. as a synonym of his var. attenuatus; they have nothing in common except the name. The latter, as well as tortuonzes and turvitus, are attenuated at each end, which gives them a cylindrical outline, whereas F. atfenurtue, Jeffr., and F. consimilis, Marsh., are attenuated in the spire only, but have: it
(1) Janvo. Canchn 1 Rge, wol vi, p. ag.

(3) Loc cit: p 273, L. 15 fig. 5 .
(4) Mall, "Triton' Fixp., Prec. Zanl, Erc, 1E日g, p. 345.
short and broad base, which imparts a conical outline in comparison with the others. The two latter are also much langer shells, with a glossy surface and compressed whorls. Canon Norman is also "inclined to add as a wider varicty" If. "ieliratur, Jeffr. (\%), but that again is quite distince from F : propinques or any of ins varieties, all its affinities (except size) being with F. sftinini, Gray.

Var. levis, Marsh o. far.-This is a small, delicate form, with a light, silky, polished epidermis, and the whorls partially or entirely without the usual spiral sculpturc. It corresponds with F. f racilis sar: fllater, but is still smoother than that varicty, and comes from the same British locality.

As in the last three species, there is a broad as well as a slender variety, the result of depth and habitat. It flourishes best on the Doggerbank, where I have dredged it in comprative abundance and of large size, the largest attaining 2 -in. by I -in ; but on the edge of the Doggerbank and in the Silver Piss, where the water is deeper, they become smaller and narrower, fike the Shetland form, although the latter district produces large specimens also in places. Mr. Richard Howse (${ }^{(8)}$ first noticed and figured the small deep-water form, but mistakenly under the name of F. gracites ?ar:, which he described as "hispid, $\mathrm{I} \frac{1}{4}$-in. by $\frac{1}{2}$-in., with seven whorls" ; and fit merits a varietal name that of van: hencsei would be appropriate. Some of my Shetland specimens do not exceed an inch in length by half that width. Searles Wood records and figures a reversed specimen found by Mr. A. Bell in the Red Crag (pl. 27, fig. 21).

This is another instance in which Forbes and Hanley, Jeffreys, and Sowerby are at variance as to the type form, and unfortunately the author did not accompany his description with a figure. Gwyn Jeffreys' figure, description, and dimensions belons to the Shetland and deepwater form, while the other authors figure more southern examples as the lype; and although Forbes and Hanley give the dimensions as $1 \frac{1}{2}$ in. Dy $\frac{1}{2}$-in. their figured specimen is $2 \frac{1}{2}$-in. by I -in. Captain Brown's ligures are not chis, but the next species.

I'. jpferreysianus, Fisch.-Bristol Channel (Wotton)! the Smalls 1.inhthouse (Span)! Milford Haven (Jordan); Tenby and Iaughanne (williums Viughan)! Brixham in S Devon, from trawlers : and occamintully cast aishore in Torbay by storms. It has been dredged on the motly cosst of Spain (Locard, "Travailleur" Exp.), and I have a young nowemen dredged by the "Porcupine" of Cadiz in 386 f .

[^8]I incline to the opinion of Canon Norman, that this is "a large variety of F. propinquus." It is not only larger generally, but is much more solid and rolust, and commences where the later leaves uff, vis. in the Bristol Channel, $I r$. propinquase tending north, and $I F$. jeffroysitmes to the south. Its British range is from Exmouth in South Devon (Clark) to both sides of St. Goorge's Chanmel as far as the Smalls Lighthouse of the Pembrok whire coast, which is its nothernmost limit, meering here and mingling with f^{2}. qurminu uus, and so partaking somewhat of each other's characteristics. From a series of specimens fron this district it is not difficult to graduate one form into the other, or to meet with examplos that may be asscribed to cither. Moreover, none of the characters ascribed to it hy: Yeffeys mark it off as a distinct species. The comparative length of the spire is too variable to make it a specific test, and as to that of the smooth epidermis, Gwinn Jeffreys would probably now qualify his description after admitting that F. asbini, F.pygmaeus, F. propinquus, and Burtivun ;fffalandirum are nccasionally "finely and closely ciliated, though the epidermis is usuatly smoosth," for some F. geftreysitnut are certainly hispid even to the unaided eye. Ct it quite true that the young and fry "are as distinct from lose of F. propinguus as the adult of each from the other." but neither is that a specific rest. (It is curious, by the way, that the shape of the young are the reverse to the adalt shell, those of F geffreysiantas being long and narrow, while those of F. propinumus ate short and stumpy.) The shell becomes larger and more solid as it procends south, ard attains its greatest devolopment in Torbay and at Exmouth, my largest thence heing $2 \frac{5}{4}-\mathrm{in}$. by $\frac{1}{4}-\mathrm{m}$., white the smallest, from the south cf Treland and the Pembrokeshire coast, are $\frac{5}{8}-\mathrm{in}$. by $\frac{3}{4}$-in. All the published figures correctly represenc the shell, the licst perhaps being those of Captain Thomas Brown, (${ }^{1}$) who was the first to figlre it, though mistakenly as the last speries. His desctiption, however, is unteliable, and he says a specimen was. "fround at Soaton, Northumberland, by Watter Trevelyan, Lisq., and in the cabinet of Sir John Trovelyan at Wellington;" but the figures are undcobtedly those of F. jofformianus, and of the South Jevon form. Sir Walter may without donbt have picked np a specimen of F_{1} propenquas at Seaton, but that cannot be the shell figured by Brown, and it is supprising to find Gwyn Jeffreys and others failing to recognise the figures. Sowerby figures the Trish form well.

F'. bernictansis, King - Aberdeenshice (Simpson and oblers): Channel slope 539 f. ("Porcupine") ; Athantic off Ireland 345 f. (R.I. A. cruise) ; Shetland Farve (hannel 570 f. ("Triton"). The finest came

[^9]from the Doggerbank, and measure $4 \frac{1}{4}-\mathrm{in}$. by $1 \frac{7}{8}-\mathrm{in}$. Four prominems ridges (sometimes only three) encircle the periphery of each whorl. A specimen from the Doggerbank is peculiar in having the very different smooth and spiral embryo of F. noreegicus.

Var. mpytan, Jeffr. - Fast Shetlands 70 f. (Simpson and olhers)! North of Unst (Jordan) : Doggerbank 30 f., North Rona 45 反, and East Shetlands roo f. Also N. of Hebrides 530 f. ("Knight Frrant"): Shetland Faroe Channel 608 f. and 640 I. ("Triton"); between the
 This lives with the type on the Shetland deep-sea fishing-grounds, whence Barlee and Jeffeys first procured it, and I have several specimens from the same locality. l'rom the same region I have a fully adult specimen which is only half the usual size- $2 \frac{1}{2} \cdot \mathrm{in}$. by $1 \frac{1}{3}-\mathrm{inch}$. Another variety (-) with more tumid whorls and shorter spire, has been dredged by the "Porcupine" 50 miles west of theShetlands in 203 f ., and north of Scotland in 290 f. (Jeffreys), but which does not differ, except in texture, from var. solirda, G. O. Sars (${ }^{3}$). I have two specimens that may pass for either of these varicties, one from the Shetlands and the other from the Doggerbank. All three varieties gradually marge from the iype, and are only the extreme forms common to all the Fusus family, and indeed to all univalves.
F. fenestratus, Tuit.-The Minch 72 f.ayoungspecimen(J.T M.); S. of Ireland 1 rof. (E. A. Smith) ; S. W. Ireland 50 f. (R. I. A. cruisc); Channel slope 539 f , off Cape Clear 180 I., S. of Ireland 725 f. and W. of Ireland 90 f ., ("Porcupine") ; of the Butt of Lewis 530 f . ("Knight Errant") ; Shetland-larae Channel 530 f. ("Triton"). Two or three specimens have also been trawled in recent years between the Pembrokeshire and Waterford consts ; one of these is $2 \frac{1}{4}-\mathrm{in}$. in length, and has seven whorls besides the apical ones; but for many years previously the only specimens known had their sonrce from old Mr. Humphrey's, the dealer, of Dublin, who obtained altogether during his career eight specimens, one of which is in my collection. My young specinen from the Minch has only $3 \frac{1}{2}$ whorls, but is interesting as showing the embryonic sculpture, which is usually wom down in the adult. 'I'he first whorl is quite smooth, the second has spirals only, and the third initiates the longitudinals and spirals which characterise the adult. Gwyn Jeffreys gives an excellent figure, but Sowerby's is not like. F. fenestratur was also dredged by the "Porcupine" off the coast of Portugal in 220 f .
(z) Yar. infata, Jelitr, "Valorous" Moll., Ano. Mag. N. Hisc., $18{ }^{8} 7$, Pi 327.
(j) Moll, Reg, Arct. Norv., P, 278, tab, 34, fig, 2.

A good many outlying members of this genus have been dredued between the Hebrides and Shetlareds and the Feroes, as well an in liw Allantic, by the "Lightning," "Knight Errant," "Triton," and " I'ore"l pine," expeditions, including F. delicatus, Jefr., F. hirmutzas Jeffr F. lachests, Mörch, F. atrisit, Jeffre, F. satini, Gray, F. roncinnus, Jucfic, F. turgidulus, leffr., F. togatus, Mörch, and F. moetii, Donk. and Met\%. But it should be noted as a significant fact that the discoverer ind author of most of these species did not attempt 10 claim for thesm ${ }^{\prime}$ British origin.

To the foregoing may he added another species, closely allied to F, attenuatus, Jeffr., (${ }^{1}$) which was trawled in 1897 by an Aberdeen steamtrawler "on the north side of the Shetland-Fruree Channel, on a small bank 60 to 70 fathoms deep, will very deep water on either side," and which I propose to name F. consimilis. n-se With two exceptions, it agrees in every respect with Gwyn Jeffroys'deseription of F. atfenuatus, so closely incleed as to suggest at first that those two exceptions may possibly be reconciled if more specimens come to hand; bur one of them is fundumentally distinct. Gwyn JefTreys writes that the spire of IT. attenuatus tapers " to a very blunt and regnlarly spiral point, which is not mamomillar nor twisted," while my specimen has a twisted and bolbous apex wider than the following whorl, and similar to that of F. istambirew, hut not stiliform. Ye also describes the canal as "straight," while in my shell it is much eurved. All the other characters given to F. attenuatus may be applied to this species-- shape, size, measurements, sculpture, epidermis, colour, ere. T'his specimen came into the hands of Mr . James Simpson of Aberdeen, who gencrously gave it to me. F. attentatus, Jeffr, is a very rare species, only one living and two dcad adult specimens having been rredged by the"Valorous" in mid-Atlantic, and by the " Porcupine" in the Atlantic off Ireland, while no figure of it has yet been published. The correct "Porcupine" localities for F. attenuatus are S. W. Ireland off Cape Clear 1207 fin and N. W. Ireland off Rockalli $215-1380$ f., and not rhose recorded in en ror by Gwyn Jeffreys. (*)

A specimen of F. concinnuen, Jefir., (${ }^{2}$) was lound some few years ago on an Abcrdeen trawl-boas by Mr. J. Simpson. It was an adulı example, perfect but dead. The species was described by the author from a single specimen dredgerl by the "Triton," in the Shetland Farou: Channel, in 608 f ., but this specimen more probably came from the. deep-sca fishing-grounds 7 c mites east of the Shotlands, as trawherm

[^10]cannot work their trawl deeper than about 100 f ., and rarely at thit. On another occasion, from the same source, Mr. Simpson lound a living but immature specimen of another Fusus different from any species that I know. It is nearest to F. 7eterieroux, Moll., but difiern from that shell in being still mone slender, with more compressent whorls, no longicudinal ribs, and a bulbous apex. I am informed that of late years several species of the Echinodermata haveleen brought into Aberdeen, from the same fishing-grounds, which had only been prewi ously dredged in the Shetkand-Faroe Channel, and I have myself described an Aclula (') from these fishing-grounds which, if not well authenticated, might have been relegated to the Shetland-larou Channel. In this connection I may add that a more recent discovery of A. simpsoni in a Teredo-pierced picee of wood brings its habitat into complete harmony with that of A. arfenteus, Jeffr., from frigid water in the Shetland-Furoe Channel.

The results of the exploration of the Shetland-Faroe Channel by various expeditions has of course brought the question of the limits of the British area for Zoological purposes into urgent prominence, and it is to be hoped that the Rritish Association will soon take it in hand and issue some authonitative Rules on the subject, as they have done in the matter of the Rules of Priority and Nomenclature. This boundary or zone must in any case he an arbitrary one, and for that very reason individual opinion cannot lee expected to carry any weight. It is atso the more necessary not only because some rather widd ideas appear to be entertained as to what constitutes a British species or what are the limits of the British seas, but more cspecially because steamtrawlers are rapidly taking the place of the old sailing craft, and are now working nearly all the year round up to Iceland and the Faroes, bringing back with them various genera of marine animals; while the change from sailing to stcam trawlers is still more accelerated owing to the growing reluctance of fishermen to remain at sea more than from Monday to Saturday; they are all learning to appreciate their week-end on thore, and, once enjoyed, cannot be induced to sacrifice that frivilene; so that while steam-trawlers are easily manned, and can run lome when they like, there is a difficulty in shipping hands for the sailing eraft, who have to come home when they can.

A CLASSSIFIED LIST OF THE HELICOID LAND SHELLS OF ASIA.

(PART II.*)

By G K. GUDE, F.Z.S.
i. 'IHL CHINESE LMPIRL (contmat.)

B. TIBET.

This mysterious country is, conchologically, as in other respects, still practically a forva incogrita, chiefly owing to the difficulties which attend travel, and more especially to the absolate prohibition by the Government to Europeans of entering the central parts. Since, in 1845 , the two l'rench missionaries, Huc and Gabet, made their lamous journey, no European has stroceeded in reaching Lhasa. The most recent attempt, in rgor, by the intrepid Swedish explorer, Dr. Sven Herlin, to cnter the capital, has again ended in failure, for when within five days' journey from his gral he was turned back hy the authorities to the frontier.

Considerable exploration luas, however, been done in the eastern, northern, and western parts by Linglish, French, and Russian travellers, and it is principally to those of the latter nationality that we are indebted for a glimpse of the molluscan fauna of this region. l'oremost among these, ranks the Russian Gencral Prejevalski, who made four expeditions botween 1870 and 1885 , to the eastern and north western districts. The Russian travellers Potanin, Beresowski, and Obrutschew, the Austrian explorer Loczy, the Hungarian Count Bela Szechenyi, and more recently the German savants Professor Futterer and Dr. Holderer, have all contributed to a partial knowledge of the mollusca of these parts.

It may be remarked that the physical conditions of a great portion of north-west Tiber do not favour molluscan life, barren, uninhabitable country, interspersed by salt lakes, stretching for hundreds of miles.

Many of the mollusca originally atributed w Tibet, i.e. those collected near Moupin by the Abbe Armand David, and described by Deshayes, have had to be climinated from the Tilsetan fauna, for the locality named, though ascrihed by Deshayes to eastern Tibet, has been shnwn by Dr. von Möllendort to be in China (I'rovince of Szechuen).

Some shells collected about Yerkalo and Tse-kou by the Abbé Tergodins and Monsetgneur Biet, have been described by Mr. Ancey, who states these localities are in Tibetan territory, and although the

[^11]maps to which I have access show these places on the Chinese side ol the fronticr, I have accepted Mr. Ancey's view and have included these shalls in the Tiluetan list.

The species described by Dr. von Mollendorff from the Koho-non district are also included here, for, although Tr. von Mollendorff is Inclined to consider this district ousside Tibes. Prejevalski. Ronvalot, Mellby, and Hedin all show it on their maps within the boundaries of north Tibel.

On glancing at the known 'Jibetan Helicoids, one feature is striking, vis,: the alsonce of Zonitiflae; and we have also a prepon derance of the typical genus Cathaira. 'That the Zonitulat will he [oumel on further exploration, however, may be inferred from the fact that they have been recorded from all the surrounding countries.

As a case cf apparent ertatic distribution may loc cited C'atheato stotichanc, Nevill, recorded ariginally from easiert 'l'urkistin, und which has been fomen in the extreme east of Thluet, ncar Yerkalo.
l'amily Helicidae
Group Eelogona, v, Ther.
Belogona Fuadenia, Pils.
Genus Evlota, Harcm.
Section Eulotella, s.s.
physeta, Anc.
panclynama, Mab.
$=$ poirieri, Bourg. desgodinsi, Anc. Yerkalo.
Genus Cathaica, Mdff.
Sub-genas ducathaica, Andreae. giraudeliana, Hrle. Yerkalo.
Sub-genis Xerocathiaica, Andr. holdcreri, Andr. N.E, Tibet. stoliczana, Ner: Yerkalo. cucmorica, Mdff, Kokonor, siningfuensis: FIilb. Nun shan Range. v. brunnescens, Mdf. manorchanensis. Mdelf. Nanthan Range. kreitneri, Hilb. N.E. 'l'ibet.
pulveratricula, Mts. Nan-sluat Range
ohlmeri, Andr, Kolen-nor.
fedtschenkopsis, Ane. Yerkalo.
rineana, Anc. lerkalo.
Sub-genus Campylocathaica, indreae.
cunlunensis, Mdff. IDi-chu, N. Tibet.
przenalskij var. minor, Anth. Nan- shan Range.
Gemus Plectotropis, Mts.
hilberi, Anc. 'la-tsien-kno.
Belociona Siphonaturnia, I'ild
Gemis V.allonia, Risso.
asiatica, Nev. South Kohn m⿻ Range.
Iadacensis, Ner. Narkil, W, 'libet.
v. hibltara, Maff. Mult-m Bota, south of 'Tsaidian

(E EASTHRN 'TURKISTMN.

Dy Stoliczka during the second Yarkand Mission．One species we：owr to Prejeralski；while the remaining，species have been contributer hy the travellers Kasnakow and Stenroos，and were described hy ！ir， Hesterlund．Here the Zonitivas are represented by one specias，imal the Clinese gemus Caflogen again prepondcrates ；Lut Frutionmith has one and Venflomia two representatives，showing telationship with the Luropean Anlarclic fauna．

Family Zonitidae．
Sulb－family Zonltinae．
Camus Polita，Held．
kasnakewj，West．Aksu．
Family Helieidae
Group Belogona，f．Iher．
Beiogona Futadenia，Pils．
Section Ellota，s．s．
stenroosi，West．（Pomatia）． Terski－Alatau． v，tetrica，West．
Genus Catiatica，Molff．
Suls－genus Eucathaica，Andr．
funki，Anc．Karghalik．
Sulo－genus Priocathaica，Andr．
rossimontana．Mdft．Reriia．
Darja Valley，Ruscian
Range．
phaeozona，Mts．Pasrohat； Karghalik ；Sasak＇laka．
Sulb－genus Xerocatilaica，Andr，
stoliczkana，Nev．Sasak＇l＇aka； Pasrobat．
plectotropis，Mts．Yarkanal ： Karghalik．
uniformis，Anc．ArassanCulak． arisupleurces：Anc（？）Central Asta，
Sub－Genus Cimpyoocathaica，Andr． capusi，Villeserre． palmeni，West．Kashgar． ェ：accinta，West－Djuka－1）jok Valley．
scythica，West．Dgehularik．
opposita，West．lljuka－Djok Valley．
Genus Eitiota，Harem．
Belogona Siphonidenia，Pils． Genus lyciromet，Risso． Section Fruticicola，Held． mesoleuca，Mts．Kizy］，Yarkand הistrict．
Genus Vationlas，Risso． costata，Müll．Pasrobar． asiatica，Nev．Pasrobat；Sasak ＇Taka．

Sub－genus Pseunizertes，Anc．

1）．MONGOLIA．

This country as might be expected from its position shows affinity with northern Tibet．Our knowledge of the Helicoids is at present confined to the genus Ciathatica：the shells having been collected by Prejevalksi，Regel and Obrutschew．

Genus Cathaica，Mdlf．
Sub）－genus Ptiocateinca，Andr，
rubens，Mts．v．concolor，Nts． Mount Tarbagatai． v．regeliana，Mts．Kuldja．
> semenowi，Mts．Kuldja，Ili and Kunges Valles． v－depressa，Mouss．内ıldرい， paricincta，Mts．Kuldja；ド：tselı： IVi and Kunges Villes．
v. bisbicincta, Mts.
v. ambicincta, Mts.
v. incincta, Mts.
v. biflaticininctr, Mts.
duplocineta, Mts. Kuldja : Pilutschi ; Kusch ; Ibi and Kunges Valley.
Suh-genus Xlrocathaica, Andr.
cavinargo, Mts Kuldja; Kunges

Vallcy.
Sub-genus Camplocathaica, Andr.
rulispira, Mts. Kuldja.
v. albidorsalis, Mouss.

Kuldja.
prezewalskii v. alaschanica, Mdif. Alashan district. obrutschewi. Stur. Alashan.
E. COREA

Our knowledge of the Helicoids of this region is very scanty. A few species were described by l'feiffer and Reinhardt ; one was collected by the naturalists of the Samarang, and described by Adams and Reeve; while Dr. von Möllendorff more recently has described a few shells collented by D_{I}. Gortsche. The pancity of the Molluscan fauna has already been remarked upon by 1)r, von Martens ((888 f$)$. It affinities are with north Chiva and Japan.

Family Zonitidae.
Sub-family ZonitInae.
Genus Euconclus, Reinh. coreanus, Mdff. Seoul.
Family Endodontldae
Group HapIogona, Tils.
Genus Pyramidula, Fizz.
Section Pyramiduta.
amblygona, Reinh.
v. conoidea, Mdff.

Section Conycuiscris, Fitz. elatior, A. Ad. Corea, Dagelet Island.
costulata. Mdff.
]humily Helleidae.
Gremp EpIphallogona, Pils.
Gumis Ganegflea, Blf.
fradala, Mdff. Jlatong; Thosan. Genus Vallonia, Ríso,
(;iomp) Delogoлa. v. 1her.
Iserogena Euaderita, Pils.
(iemin livlota, Harm.

F. CHUSAN.

()ur knowledge of the Helicoids of this group of islands is extremely meagre. A few shellh were collected by Jor. Cantor 1840-42, and
(nlmmerated by Benson. The only other contribution is by A. A. lianvel, who recorded four species. Of Benson's records two are duubrlut: (I) Hemiphofla striata, Gray, a Singapore shell, and in Itr. bon Martens' opininn included in the present fauna owing to an accidenlal change of Jahel; and (2) Plectatroyis tapeina. Bens.. helieved by the same authorily to be a mistake in identification for P. osberkei, P'hil.

Tamily Hellcidae.
(ienus Traumatophora, Anc. triscalpta, Mts.
Group Belogona. v. Iher.
belogoka Euabfina, Pils. Cienus Lelotis, Harim. Section Fulota, f.s.
ravida, Bens.
Genus Cathaica, Mdif.
Sub genus Psfudiberus, Anc. tectum-sinense, Mts.
Genus Pitectotropis, Mis. ciliosa, Tfr.
Fosbcckei. Phíl.(? tapeina, Bens.)

G. FORMOSA.

Extensive collections were made in this island in the sixties of last century, by the then British Consul, Robert Swinhoe, and were described by Henry Adams, and by Peiffer. Quite recently Schmacker collected a number of shells, and described them in conjunction with Professor Boctlger: his lamented death has deprived us of an ardent feud naturalist, from whom considerable additions to our knowledge were expected.

Several genera, both of Zonitilace and Helicidae are represented, many showing close affinity with Chinese forms.

Family Zonitldae.
Sul-family ariophantinae.
Genus Arlophanta, Desm. taivanica, Miff:
Sub-family MactothlamInae.
Genus Macrochramys, Bens.
formosana, schm. and Bttgr,
vesta, P fr.
Genus Microcystina, Morch. ? par, Schm. and Bitgr.
? spadix, Schme and Btigr.
v. cinctus, Tils.

Genus Sitala, H. Ad.
trochulus, Mdff.
v. formozana, Schm. and Butgr.
Genus Kalielifa, Blanf. deperessa, Mdff.

Sub-family Zonitinae
Genus Trocilomorpha, Alb.
haenseli, Schm, and lirtgr.
Jiamily Helicidae.
Grors Eplphallogona, Pils.
Genus Chloritis, Beck.
Silhgenus Trichochlokitis, Pils. hungerfordiana, Nev.
Genus Ganesella Blans. fulvicans, H. Ad.
albida, H. Ad.
sphaeroconus, Pfr.
v. campochílus, Pils.
(Troup Belogona, v. Iher.
Prifogona Euadenia, Pils.
Gienus Buliminopsis, Hde.
Sertion Buliminorsis, s.s. incerta, Pl .
$=$ tajvanica， MdF ．（Tryon）．
Gemus Eurota，Hartm．
Section Eurora，mos．
redfieldi，Prr．
sieboldiana，Pir．
［＝PNanina sicboldiana：Kobett］Suction Dowscreusota，liks． touaamensis，Soul．
Section Evlotelsa，Mts． similaris，Fér． assimilis，H．Ad．
Section Euliadra，Pils．
luhuana，Sow． swinhoei，Pfr－ bairdi，H．Ad． formosensis，Yfr． bacca，Pfr．
v．pancala，Schnm，and Bttgr．Genus Ab（iJsta，Λ lh， sucrincta，H．Ad．
v．amblytropis，Píls． sargentiana．Pils． mellea，F．fr friesiana，Mdff． nux，Mdff． swinhoeana，Plls．
$=$ Bulimus swinhoei，PIr． clongata，Pfr．
－Bulinus（Amphidromus） formosensis，H．Ad．
Genus Pifctotrofis，Mls， mackensii，Ad．and Rye． shermani，Pif．
v．Jautsi，Schm，and Bttgr． granti，P（r． sulbchinensis，Plr．

H．HONG KONG．

As its rlose proximity to the Chinese mainland would lead one（1） expect，the mollusea of this island are essentially Chinese．No kess than nine gencra of Helicoids are represented，including such typically． Chinese as Ptertumpis and Moellendorfitia；but Uathaica is absemt． The majority of the species were described by Dr．von Mollendorff， who collecterd there extensively himself，as did Dr．Hingerford and Mr．T．W．Vastlake．Some remarks by the latter are worth guolinf， here：＂It is remarkalle that the Island of Hong－kong should hat．＂ produced so many indigenows specics．A British posserssion for mon． than thirty years，hardly one scientific experition has touched wo shome． of this＇barren rork in the ocean＇without discovering a new specic＇s．
＂There are only a few places where shells are to be found，as thr larger part of the island consists of naked rocks，or is sparsely cover⿻⿰丨丨丷一䒑夫 by Gilechenid dichofona－a fern，which is a sure indication of 11 w． almence of terrestrial mollusca．In the valleys，however，vegetation in luxuriant，and it is in thesc places that most of the shells are to in． found．The dense woods of Little Hong－kong（a Chinese villageatmoll six miles from the colomy）and the little valley near Sheko（ten milt． from thee colony），are favorite ressrts for collectors．Curiously enone： ane of the highest peaks on the island，known as High West（Ifowi） is．the only place where some of the rarest specics are to be found ：w ＂يpecial Hefix puldnaris，Gould．＂\lfloor Plectopylis．］．．．．
"The whole: eastern side is covered with a dense growth of small fions, auanthaccae, and orchinacecus plants, and these, protected from the violence of the north-east monsoon, form a favorite shelter for themollusca. Unluckily, the peak is only accessible from the somth, and thas amost the entive eastorn side is beyond reach. Still ane can decend safely thirty or forty yards below the peak, although pront Irecaution is necessary, for granite boulders abound, and the slifnn'ry, as well as insecure footing these afford, renders a greater corrint impossible."

J'amily Zonitidae.
Sub-family Macrochlaminae.
Genus Macrochlames, Bens.
discus, Mdff.
superlita, Morel.
nitidissima, Mdff,
Genirs Microcystina, Morch.
schmackeriana, Mdff.
eastlakeana (Mdff.), Fastlake (nom. nud.)
stenomphala, Melf.
Sub-family Hellcarlontrae.
Genus Criptosoma, Tlieol.
v. imperator, Gild. imperatrix, West.
Genies Kaliftula, Blf.
depressa, Mdff.
hongkongensis, Mdff.
lamily Helleldae.
Genir Plectopylis, Rens.

Section Sinicolo, Gude. pulvinaris, Gonld,
Group Epiphallogona, Pils.
Genus Cabilena, Alb.
Sulb-genus Camaena, s.s.
cicatricosi, Mïll.
xanthoderma, Mdff. v. minor, Eastlake.

Group Balogona, v. Ther.
Brlogona Eutadfnta, Pils.
Genus Eusota, Hartm,
Section Fitlotrlla, Mes. similaris, Fèr. v. hongkongensis, Desh.

Genus Plictotropis, Mts. gerlachi, Mdff.
Brlgcona Siphonatenid, Fèr.
Genus Frijcononta, Fér.
Sib-genus Moflleintuorfria, Anc. eastlakeana, Mdff. trisinnata, Mts.

I. HAINAN.

Most of the Helicoids of this island were described by Dr von Möllendorff from O. Herz's collections. Of Zonitidae seven species ate known, and of Fmindtee six speciss, all exhibiting decided affinty with the forms from southern Chind and Indo-China.

Family Zonitidae.
Sub-Tamily Macrochlaminae
Genus Macrochtamys, Bens. cincta, Milff
Genus Microcysilna, Morch.
sinica var. hainanensis, Mdf.
Genus Hhatilecta, Alb
filicostata, Mdff.
Sul-family Hellearioninae.
Genus Sitata, H. Ad.

[^12]hainanensis, Mdff.
Genus Katifela, Blanf. depressa, Mdf
trochospira, Mdff.
? costigera, Mdff.
Family Helicldae.
Group Epiphallogon 2 , Pils.
Genus Camaena, Alh,
Sub-genus Camafna, s.s.
hainanensis, Mdff.
Sulh-genus Camaeyel.t, Pils.
platyodon, Pfr.
$=$ tournoueri, Crosse.

Genus Chloritis, Beck.
Sub-genus Trichochloritis, Pils. herziana, Melf.
Genus Ganesella, Blanf.
schomburgiana, Mdff. $=$ trochulus, Mdff
Gromp Belogona, v. Jher. Belogeva Leltigesra, tijs. Genus Eutota, Hartm. Section Ellota, s.s. tourannensis, Soul.
Scction Eifjotlila, Mts. assimilis. H. Ad.

Doubpfel and Spurious Records.

Hemiplecta stoxiata, Gray, = naninoides, Bens.- Kecorded by Benson from Chusan (Dr. (antor). Not since found. Dr, von. Martens attributes this record to an accidental change of lahels, since D. Chantor collected also in Singapore, where this shell is very common. (OstAsten, Zook. ii, 186T, p. 58.)
? Favypus ufeifferi, Yhil-Reached Europe with other shells firnm the Pacific Islands. Dr. von Martens thinks that in this case also the labels must have beer misplaced. (Loc. cit., p. 58.)
(fanesella myomphata, Mts.-Recorded by Nevill firom China (Hand Yist, $\mathrm{x}, \mathrm{x} 8$ 个 8 , ph. 72.) It correctly identified, this record will prolbably be due to a mistake in labelling, since this common Japancse shelli has not been found in China by any traveller.
Ganesefla 7aryillierti; Phil.-Doubtfully recorded as Chincse, has since been found in the Lno Choo Islands.
Fulota merratoria, Gray.--Also recorded from China, and since found in the too Choo Islands.
Mrwlarina mantarina, Gray.- Like the two preceding species originally attributcd to China, but has since been found in the Bonin Group.
Ntrumfevina pallhsiana, Pfr.--Recorded by Bland with some doubt from Corca, has since been found in the Bonin group.
Ilterfolveniais tetyeina, Bens.- 1)r. von Marrens is of opinion that this shill was wrongly identified and probably pertains to P^{\prime}. askertei, Phil. Hhi.r mofltmstomat, Sow. - Reccerded by Fraser and Cuming as collected with other shells by Mr. Rokert Swinhoe in Formosa (Proc Lool. Soc., 1805, b. 197). It is impossible to conjecture what species was. intended hy this record, no such species was ever described by Sowerby.
 (11we. Acad. Nat. Sci. Philad., 1882 , [2. 235). I am unable to trawe uny cpecies publishod by Dr. yon Möldendorfi under this mame:

AtDDITIONS AND CORRECTIONS.

On page 3 of my first paper Sitala hilidata, Gredt, becomum it synonyn. The specilic name is preoceupied in the genus Niftht ly D'anford (186r). Tryon proposed the name lranysiensis (Wan. (innin, SEt, 2, 1886, ii. p. 55), and this name should be substituted

On page 3, after Helicarion setchutenensis, Hde., add 11, nimoniw, Hde. Vang-tse ふistrict.

DESCRIPTION OF A NEW SPECIES OF CHLORITIS FROM NEW GUINEA.

By G K. GUDE, F.Z.S.
(Figures 1-4)
Chloritls (Suleobasis) prestoni, n. sp,

\mp

3

2

4

Shell globose, moderately umbilicated, blackish chestnut, of a deeper shade towards the mouth. Spire conical, apex sunk, suture impressed. Whorls $4 \frac{1}{2}$, globnse, the first $21 / \%$ increasing slowly, the last 2 widening rativer suddenly, the last dilated abowe and a little constricted below, behind the peristome, and flatened laterally for some distance further lack; finely striated, the carlier $31 / 2$ whorls with oblique rows of hairscars ; a shallow furrow encircles the body-whorl at the periphery, J asc whorl decending shortly but rather deeply in front, angular rounsi the funnel-shaped, deep umbilicus. Aperture semi-ovate ; peristome thickened and shortly reflected, dark brown, the margins slightly convergent, columellar margin triangularly dilated and reflected over the umbilicus.

Diant. maj. 34 , minor 285 ; alt. 30 ; apert. 445 millim.
Hab. -Collingwoor Pay, British New Guinca. Tope in my collection.
Compaired with (7hlnhitis rwherei, Marc., its nearest ally, the new species is darker in colour, smaller, the spire is more compressed and elcrated, the last whorl decends more and is less globose, the peristome is moch less reflected, dark brown instcad of bluish, and the outer margin fis not sinuous, while the umbilicus is narrowe The sudden deflection of the last whorl is not well shown in figure 4 .

ON A COLLECTION OF LAND AND FRESH WATER SHELLS FROM KELANTAN, MALAY PENINSULA.

Iצy F. R. SYKESS, B.A.
(Plate jij.)
Recenti. º' $^{\text {II }}$ I published a few brief diagnoses of some new shells from this district, collected by Mr. J. Waterstradt, and I am now enabled to give a fuller account of the collection, with illustrations. For the present, the Helicoids have boen omitted, in the hope that some person, more conversant with the group than I am, may cleal with them,

Streptaxis collingel, Sykés. Hl. iji. ligs. 8-In.
Streptaris collizufei, Sykes: Ante, p. 22.
Amphidromus aureus, Martyn.
Both a dextral and sinistral form, bright yellow in colour, with a white zone below the suture, and no brown striping. One specimen, dextral, moasures 62 miltim. I have followed Pilsbry ${ }^{\text {tal }}$ as I gather

[^13]that the name per verspu, which I should otherwise have used for this shell, is to be restricted to forms found in Celebes, Jaya and Borneo.

Hypselostoma hungerfordianum, Mlldf:
A good scries of this interesting shetl.
Boysidia kelantanense, n.sp. Pl. iii, fig. 7.
Shell umbilicate, obliquely striated, chestnut brown. Whorls $4 \frac{1}{2}-5$, very convex and suture deep, apex blunt. the last whorl somowhat disturted, obsemrely angulared at the periphery. Aperture rounded, with a sinns at the upper comer of the outer lip; lip well reflected, not solute from tite last whori. Parictal lamella strong, 3 other well marked teeth inside the outer lip, and one each side of the lamella.

Alt. 3 ; diam. max. 2 millim.
Belongs to the group of B. boetteferi, Mlldff., from Java, and B. palmara, Stol., from Penang; compared with the latter the lase whorl is more distorted and githous and the relative proportions of height and breadth differ, the present species being also much larger.

Rhodina (?) mlrabilis. Sykes, Pl , iji, lige 2.
Fhodina (i) mimabitis, sykes : Ante, p. 22.
Subulina oetona, Cliemn.
Clausilia fillcostata, SLol.
Clausilia kelantanense, Sykes. Pl. iii, fig 1.
Chausilia (Iseulfonmia) helantanese (err typ.), Sykes: Ante, p. 12.
Cyelophorus saturnus, Pieiffer.
Cyclophorus borneensis, Melcalic.
Lagoehilus townsendi, Crosse.
Oplsthoporus dautzenbergi sykes. Pl. jii, liky, 亏丂. 6,
Opisthopm"us davizenbert f, Sykcs: Ante, p. 23°
Opisthoporus tener, Menke.
Compared with specimens of this species from Annam (wall. Frubstorfer), I can trace but hitte distinction except size, ome al llw adult Kelantan shells, for example, only measuring diam. mas $1 . \mathrm{J}^{\prime}$ millim. The tube is also slightly more parallel to the: sulutu.

I'latyraphe chrysalis, Sykes: Ante, p. 23.

Alyegeus glbbosulus, Stolicata.
With this occurs another form, much less gibhous, and whish may belong to a different species, but the specimens before me show considerable variation.

Alycaeus kelantanense, it sp. PI. iii, figs. I3, 14
Shell conic, minutely umbilicate, white in colour, the upper whorls often being yellowish, apparently due to the animal within, Sculpture close well marked rih-striae, with microscopic spiral striation intersecting the ribs. Whorls 5, moderately convex, the last whorl gibbous, and constricted ahout 2 millim behind the lip, the sculpture being thence much finer and more remote. Aperture subcircular, lip double, the upper onter margin forming a stight wing where it approaches the last whorl.

Alt. 3.8 ; diam. max. 4 millim.
Opisthostoma laidawi, Sykes. 1'l. jii, figs. 13, It.
(Hpisthostomet 7atillami, Sykes: Ante, p. 22.
Georissa monterosatiana, G-Ausl. and Nevill.
A mpullapla perakensis, De Mergan.
Ampultaria ampullacea, L.
Vivipara eingulat 1 , Martenc.
Candea bocourti, Brot.
Faunus ater, L.
In my vicw, F. cantrut, Rens., is only a small form.
Melania variabllis, b. lis.
'There are also two other species of Melania, which I am unable to identify.

Septapla, sp.

Neritlna erepidularia, Lamn.
Neritina zigzag, lam.
Unio (Nodularla) Ingallslanus, La
Unio aseia, lens.
lanminde from the fablet in the Bribish Musem, no pdoubt that from whirl dandey described the speries in 1856 (Cat. Ree Bivs Shells 1). $3^{3} 5$)

> Monocondylaea ehaperi, De $3[0 r$ g 11 !?
> Corbleula, sp.

SYKES: COLTECTION OF LANJ ANJ, FRESH WATER SHELLS. G3

EXPLANATION OF TLATE TII,

leig*. 3. 4. Platyraphe chrysalls, Jigs. I1, 12, Alycactus kelatinuchse.

IS AMALIA CARINATA, RISSO, A BRITISH SLUG?

by Wat,TER E. COLLINGE.

Fnr some time I lave been receiving (in connection with my proposed Monngraph on the British Slugs) from various correspondents in different parts of the Brisish Isles, numerous examples of Amalia soremphin, Fér. Amongst these, a specimen colleeted by Mr. Bromley l'eebles, near Birmingham, and two collected by Mr. F. J. Partridge in Devonshire, seemed to differ slightly from the ordinary form. These I have suljected to a rather more carefil scrutiny, and lave alsn compared them with Simroth's excellent fgure of A. rarinata, Rissn ${ }^{0!}$ also with the dranings and description of the internal structure of this species, as given by Simroth, ${ }^{(2)}$ and Lesson and Pollonera. ${ }^{\text {[1] }}$ I have now litile cloubt that these three specimens are not referable to A. soreerbyi, Ferre, but are very closcly allied, if not identical with, the A. cminata of Risso. On comparing them with specimens of this latter species from Algiers, they are scarcely distinguishable from them, excepting in size, the English examples being the smaller.

Amalia carinata was described by $\mathrm{kisso}{ }^{14}$ in 1826; and has by most mamacologists been regarded as a valid species. Bourguignat in $18 \mathrm{fin}_{2}$ described a Milax carinatue, and Paulucci in 1888 described a variety fulca of A. maryinata, both of which have been regarded as synonyms of 4 . carinata, hy Polloncra.

Extemally there are few characters to distinguish A. carinata from A. sokerbyi, usually, however, it is darker than the typical form of smotsoy , the mantle is longer, and the groove on the mantle extends further forward, this latter character being well shown in Lesson and Pollonera's figure.

Whether or not these three specimens are true carinata, and if so, dous this species oconr generally in this country, remains yet to be: proved. With a view to working out this matter, I venture to appeal to malacologists for specimens of dark coloured forms of A. soteerthyi, from any part of the British Isles.

[^14]

ON A MALFORMED VARIETY OF LIMNAEA PEREGER, MÜLL.

BY H. OVERTON,

Sumiton Colmplel.j.
In May 1897,1 collected from a pool in Sution Coldfield, a very interesting malformed variety of the well-known. limmonea perpegex; and as illustrations of such seem to he scarce, I have thought it of sufficient interest to ligure. The sipecimen is of a dull brown colour with eight whitish bands, six above and two below the periphery. The first and third hands are faint, omy showing hall way round the penulcimate whorl: the sccond, fourth, fifth and sixth are well promounced. the fifth and sixth, which are the broadest, almast fusing with one another 'The screnth and eighth are faint, and between these: and the sixth and seventh are still fainter traces of several

Limnaea feriger, Müll.
broken bands: Fowards the ventral margin of the lip there is a t:trious gap, as if a piece of the shell had heen broken out, but that this is not sr_{1} is evidenced by che perfect growth of the lip.
'Ihe shell was found in company with normal individuals anel ulso with Limnaea stagnalis, both species, however, heing muchs smaller than when I wisited the spot three years previously, the forman then were much langer and the outer lip remarkably expanded ant retherted, whilst the latter were excecdingly large specimens. 'Tlas festure ajplears strange, as the two visits were made as near asponsihir att the same time in ench year.

DESCRIPTION OF A NEW SPECIES OF SEPARATISTA FROM NEW ZEALAND.

13y HENRY SkTER.

Separatista benhami, n. sp.
Shell small, frigile, subdisooidal, with a very short spire and broadly(xpanded aperture, cancellated, and with deep umbilicus. Colour yellowish-white, smi-transparent, Hinty. Pultus consisting of $15 / 2$ whorls, which are smooth and glossy. Spire very low, conoidal. Whorls 3, rapidly increasing, body-whorl with a flat shoulder and distinct angle, the larger lower portion strongly convex. Suture first impressed, then, on reaching the aperture channclled. Epiral ornamentation. consisting of numerous chistinct threads, about 12 on the body-whorl, but bifurrating and thus increasing in number on reaching the lip: in the shallow grooves between the riblets there is a fine median thread, recogmisable only under the lens. Axial ormamentation represented by numerous, broad, rounded sinuated costae, which become more pronounced and more distant Lowards the aperture ; points of intersection granulate. Fine equidistant and numerons incremental lines cross the spiral threads. Aperture widely expanded, oval, straight above, sulbngulated at the base. (Huter lip patulous throughout, sharp, simuated below the angle. loncer lip subvertical, slightly concave in the whole length, breadly wlected, continuous with the outer lip and very slightly detatched form the penultimate whorl. Cmblious not broad, but deep and atrinated by the lowest spiral riblet. Operculım?

Height 6. 5 ; breadth 7 millim. Aperture: height 6 ; breadth 6 millim.

Hab.-Cape Maria van Diemen, New 7ealand
Thipe in the Otago University Museum, Dunedin, New 7ealand.
'Ihis interesting little shell was found by Mr. Rayner, formerly ly:hthouse keeper at Cape Maria, and sent to Prof. Benham, the - Ilatur of the: lunedin Muscum, who kindly handed the specimen war to me for description. I have very great pleasure in associatiog 1/4. bume of and distinguished eciontist with the species.

The: unique specimen is most likely not quite adult, and therefore his the last whorl but very liotle dismnited. 'The qrenus Sepraratista is new to the fuma of New 7ealand. The specios is nearly allied to N. wheratiste, Dillw., and perhaps S. grayi: Ad., hut moy at once be distinguished by the beautiful and complicated sculpture.

Hedleyt suggents that "Trichotrofis fabrielt, P . and G., T. frazitrm/a, Braz, and T forcutaris, C . Woods, may conseniently be distinguisherl from the typical northem Trichotropis, and asscmbled wher Sopthtetisit," 1 [rilly share Mr. Hedey's opinion with regard Lo the formes mentioned hy him, but there is me sommbling block in 1ho waly is lar as New Zealand is concerned, and this is Thichotropis
 sisily moditern gemes, the fuestion arises: What is momater? It is

 tityos. Sis far is [can ascertain, the operculum and the animal of Whmotititu ute unkwown, and the same is the case with T: inornala, so that with the Iittle knowledge that we possess at the present time We bave to admit the occurrence of Triehotropis not only in the mordhern, but also in the southern hemisphere. It is represented hy about seven speries in Japan, and there seems to be no reason why it should not also be found in New Zealand.

PROCEEDINGS OF THE MIDLAND MALACOLOGICAL SOCIETY.

35TH MEET]NG, APRIL 11 TH, 1902,

The President in the chair.

Exitmits.

The evening was devoted to the examination of a colleclion of Alfulinu
 varions species, and their range and character of vatiation.

 from Kew.

36 TH MEETING, MAY 9 TH, т 902,
The President in the chair-

Exhrizits,

By Mr. H. H. Bloomer: Sixty-ninc species of Achatinelta, from dics Sandwich Islands.

By Mr. Breeden: Specimens of Physa hypromuht, Helis fuchchth, 1 . pygmaca, Verfigu minutissima, and V. promaca, from Charmonth, Dorsel.

By Mr. Overton ta $^{\text {A curiously }}$ banded and malformed shell of Limuthit fereger, from Smiten Coldfield, alon I. stakra, from Stafford.

CURRENT LITERATURE.

Pilsbry, Henry A.-Tryon's Mantal of Conchology, sec. ij , wal. wiw
 Sciences.
The author contintes his emmeration of the Carionidat, deachllink lle billowing as new: -C, caymanense, from Grand Cayman Istand; ('wwwn - Hfant ve smithii, from Sagua de Tanamo; C. Longidens, iroul l'ula, ©. cxinfium v. fraternum, from San Salvador; C. bryanti v. phitum, unt ('. mbicunditm v. heterofon, from Inagua.
 1 rrion and References to the sjx|y- / wo plates.

Dr, Pilsbry is to te congratulated on the completion of a fuilien whimer al Ihis invaluahle work, which is yet a desideratum in mathy of on пин Hul public libraries.
 Acad. Nal. Sci. Phila, 1901, D. 617.

 1 Wask(t) minniloides.

Stearns. R. E. C.-The Fossil Freshwater Shells of the Colorado Desert, their distribution, enviromment and varialion. Proc. U.S. Nat. Mus., 1gor, vol. xxiv, pp. $27 \mathrm{I}-299$, pls. xix-xxiv.
To all interested in the clistribution and variation of the mollused, Dr. Stearns' paper presenti numerous points worthy of consideration, while the six beaulifully clear plates, make the paper an excecdingly valuable one.

Stanton, T. W.-Chwirodonto, a new genus of ostreiform mollusks from the Crctaceous, wilh clescriplions of the genolype and a new species, Ibid., PP. $301-307$, एls- xxv, $x x y i$.
Dr. Stanton is of opinion that the Ostrea mansom, Hill, is not a member of the genus Ostrea nor referable to any described genns, he therefore proposes the name Chondrotorta as a new genus for this and a new species, C. glabra. The allinities of the new genus seem to be with the Pecfinacea, which includes the Shomithidac, Linndac and Peclithidac.
Williamson, M. Burton-A Monngraph on Pecten acquimicatus, Cpr. Bull. S. Catif. Ac. Sci.. $1002, \mathrm{vol} . \mathrm{i}, 110,5, \mathrm{lp} .5 \mathrm{~F}-6 \mathrm{I}, \mathrm{pl}$, iv-vi.

Mos. A. Benton Willinisen gives an interesting account of this molluse,
 the tille of mendrarath, but whe hope the anthoress will later give us more detailed aternmb of the anatomy, incluting the netvous system, illustrated by clearer figures.
Mollendorff, 0. von.-Binnen-Mollusken aus Westchina und Centralasien. 11. L'Aпп, du Mus. Zool. đ l'Acad. Imp. Sci. St Petersb, I9or (Igoz), T. vi, Pe. 29y-412, Tafn. xii-xvii,

Conlinuing his work on the Mollusca of Western China and Central Asia, the author here devoles the greater portion to the genus Buliminus, of which he describes and figures upwards of 40 new species and a dozen sub-species. The following new subgenera ase described :-Pupinitius flype B. pupiniduus nss.), Petracomastus (lype B. Foudcents, - Ancey, Clausiliopsis ftype B. szcchenyit, Blig.), Lophthchen (t) pe B. cristatelhas, n. sp.), Cutcoderma (lype I. grahatatus, Mdif.). 'Two new sub-species of Puptha, 2 species of Phactusa, and 1 of Lithtaca are also clescribed.

Randles, W. B - Mereslic variation in Trochur zizyphinus Nature, 1902, vol. 65. p. 535, fige. 1, 2.

The anthor records and higures the prestnce of two supernumerary eyes on the right ocular tenlacle. So far as could be made out from the examination of an incomplete series of longiludinal sections, all the eyes seem to have
 and upte nerve. The innervalion is derived foom a single optic nerve arising fion the tight cerebral ganglion. This nerve bifurcates, one branch passing fo the pimaty eyt, and the other again dividing, supplies the lwo secondary bess.
Kew. H. Wallls.-- On the Mucus-threads of Land-Slugs. fourn. Conch 1901, wol, 16, Pr. 92-103, 4 figs ; 1902, vol. 11, Pp. 153-165, 3 figs.
Mı. Kew hives a very useful resume of the published observations upen dhis subpert, lugether with sume olsecrvations of his own, and others communraterl hy corrempenclents.

Baker, F. C.-The Mollusca of the Chicago Area. The Gantrenurdit Itull
Chicago Ac. Sci., 1902, pp. 131-4T8, pls, xxvili-xxxxvi,
The treament adcpled in the present wark is very similar th that cmployed by the anthor when dealing with the Pelecyroda in a prev!s, man f. Here, however, numerous extracts and figures from Pilahry's worth, wh greatly to the general value.

Mr. Baker, in nearly all cases, has given very clear descriptiont of Ilo shell, the animal, jaw, radula, and notes on the generative organs, distribullow, and habitat.

Reterring to the speed of molluses while in motion. The anthon' plvan lhe results of tome of his own observations. A icw specisa were timest whimi havelling a dislance of two incles, wilh the following resuits :

Litunaea priustros	...	45 seconds		Poluspra frofnada Polygyra albolabris	...	55 secuedo	
Lemnaea caperata	*.*	50	,			60	
Linnaea cubonsis	...	50	"	Pobysirya mostodons	-	120	-
Limnaca reftexa	.*	35	:	Polydyra thyroudes	.	60	\%
Physa heterostropha	-.	30		Circimmaria concain	.	90	"
Weitpara contectoid		120					

In a work of this character, an author has offen to rely ufon the state. ments of other wrilers, and in consequence it behoves him to exercisc every care and discrimination in selecting the same. The statements found $1, p$. soy fe Limax maximms, L., are woefully inaccurate; it reads :-"In burope II is solitary in habit and is found chjefly in the woods, onder fallen trect and stones and rear the sea shore. . . Its iood consists principally of funk. If in smide to rarely to eat green plants (vide Scharff)." Owners of vegelithly starmum lanow to their cost how very plentiful this species is, and what diallithe it du'n to the produce.

In all ins species are recorded comprised in 38 genera. 'T'm. whlunt concludes with a useful Bibtiography, Glossary, an Appenclix, Juslex, wht is 1 lates.

Kennard, A. S. and Woodward, B. B.-Note on the occurence of Phimblife stroentic, westerlund in the Holocene deposits of the 'Ihillitu Valley Froc, Malac. Soc, Lond., igot, Vol. iv, p. 236,
 Mollusca of Ambagamuwa (Part 1I). Jour in, N. Aulatle Mil. I'prlth Branch, reot, vol. xvi, pp. 1-8.

 wile cyxxii. yp. 995— 597.

GENERAL REVIEWS.

The Foraminifera: An Inlonduction to the Stady of the Prorozna. By Frederirk Chapman. 8vo. pp- xv and 354, pls. I-14, and 42 figs. in text. Jonton : ᄃ9n2, Longimans, Green and Co.
Mr. Cliapman's work supplics students of the Foraminilera with a concise and anthoratative guide, which has long heen desired. and will. we ieel sure; meet witl a ready welcome.

After a general introduction on the nature and occurence of Foraminifera, their stuncture, classification and reproductinn, the author devotes a chapter to the structure and plans of growth of the shell ; a further chapter deala in an interesling manner with the various ideas oi the early writers concerning the bature of Foraminifert. Chaptor vi is dovoted to a consideration of the varians chasificetions which have been used by different investigators; chanters wij ta sui dre comfined to a syskemalic revicw of the different families,
 fatmoty: chapler xyili wh the gengraphical distribution; chapter xix to the celfectith, examination and mabuming, the wotk concluding with a useful serien af hibliograplical lists, comprising the more jmportant works.

Mr. Chapulan has given students of this interesting order of protozaa a valuable lidndbook, which [ew will omit to avail themselves of.

EDITOR'S NOTES.

We regret to have to record the derease of Alpheus Hyatt, one of the foremost aufhnrities upon the fossil Cephalopoda. which ocearred at Canluridge, Mass., U.S.A., on January 1 thth : also of Prolessor A. G. Wetherby. an American conchologist, on February $55 t h$; and that of J. C. Mansel. Pleydell, on May 3 rd.

We again appeal to those subscribers whose subscriptions to volumes vii, viii, and ix are in arrear, to kindlylforward the same. A third request will surely mot be neccossary.

The publication of the Journal involves a considerable cxpendifuce of lime and labour, in addition to an annual financial loss; unless the subseription, are forthaming at the commencement of each year, it will be impossible to carry it on.

THF,

JOURNAL OF MALACOLOGY.
 No. 3
 Spiftember 2gth, 1902.
 Vol. IX.

ON THE NON-OPERCULATE LAND AND FRESHWATER MOLLUSCS

collected by the Members of the "Skeat Expedition" in the Malay Peninsula, 1899-1900.

By Walter E, COLLINGE, B.Sc, The University, Birningham.
(Plates iv-vi.)
Introduction.
Of the collection of Land and Freshwater Molluses obtained by the members of the "Skeat Expedition" in the Malay Peninsula, Dr. Harmer has invited me to furnish a report upon the non-operculate species.

The collection is not a large one, comprising representatives of only 29 sjeccies, which are contained in 22 genera; of these 1 speries and 3 genera are new.

The most interesting species are those belonging to the gentus Atopos, Simr, which has not hitherto been recorded from the Malay Peninsula; unfortunately the new species are nearly all represenend by single examples. Paraparnarion, Apoparmarion, and Cryptospmolus are new and interesting genera, placed at present in the faunily Givasiotlae.

A number of specimens of the animals of Heniplerta hampharysiona, Lea, were collected, which has enabled me to give some deluils of the anatomy. I am also able to make a further contribution to sul knowledge of the internal structure of the genus Amphictromux, Λ Ilvers, by a description of varions intemal parts of A. pertergus, L.

Of the shells, the most interesting are the two nuw species al Strepteazis, and the very small new speries of Hypselontuma.

Previous collections from these regions have lacen descrihed ly

[^15]de Morgan (22, 23), Crosse (9, 10), Godwin-Austen and Nevill (14), Stoliczka (30), and Möllendorff (19, 20, 21). *

My best thanks are here tendered to the Council of the Royal Society for a Grant in aid ol this work.

The identification of some of the specimens here recorded, has often proved very difficult, and I must express my indebtedness and thanks to Messis. Edgar A. Smith and E. R. Sykes for the gencrous assistance they have at all times so willingly given me.

LIHNAEIDAE.

Limnophysa, Fitzinger.
Limnophysa slngaporica, Küster.
Limnaeus sinfapøюrinus, Küst. : Conch. Cab., 'Г. i, pt. xvil, p. 35, no. 50, 'l'ab. 6, fig. 77.
Hab.-Biscrat, State of Jalor.

STREPTAXIDAE.

Ennea, II. \& A. Adams.
Ennea (MIcrostrophia) perakensis, Godw.-Aust., and G. Nev.
Finnea perakiensis, Godw -Aust., and G. Nev.: P.Z.S., 1879, p. 735, pl. lix, fig. 2 (juv.).
Ennea (Mierostrophia) perakensis, Mlldff.: P.Z S., 189ı, p. 33^{1}, pl . xxx_{1} figs. I , I a
Hab.-Caves near Biserat, State of Jalor.
One specimen.

Streptaxis, Gray.

Streptaxis sykesi, n. sp.

$$
\text { Pl. iv, figs. } 1,2 .
$$

Shell dextral, subdiscoidal, depressed, flattened above, concave below, decply and widely umbilicated, smooth except for faint lines of growth; whorls 5, regularly increasing, aperture somewhat L-shaped, deeply depressed above, armature consisting of one lamelliform projection, ascencling inwards, situated on the columella whor : peristome thickened and reflected.

Ifam. maj. 11.5, min. 8.5 ; alt. 3 millim.
Hah.-Biserat, State of Jalor.
This interesting species seems to be very distinct from any pres iously described. It is perhaps most closely allied to the S. plussemsi.

[^16]of de Morgan (23), which species, however, has a more helicifusm shelh, and according to the author's figures (op. cit., pl. v, figs. ra-e), there is a distince noteh or groove in the upper portion of the aperture. S. sykesi is much mote distantly related to si phantu, Fultou (1), with which it partly agrees in the lorm of theranllary. I have much pleasure in naming the species after Mr . L , R. hy'krs.

Streptaxis strlatula, mis

$$
\text { Pl. iv, figs. } 3,4
$$

Shell dextral, flattened above and below, umbilicus deep, striac litirly prominent; whorls 6, irregular, last whorl accupying the greater portion of the shell, deeply depressed above, armature consisting al one long, lamelliform projection, situated on the columella whorl; peristome reflected and slightly thickened.

Diam. maj. 1.3 , min. 8.5 ; alt, 5 millim.
Hab. Belimbing, State of Ligeh.
This species is probably allied to S. theaeocola, Heude (16, p. 151, pl.xxxy, lig. 25), and also to S. borealis, Heode (i6. p. 79: pl. xviii, fig. 26), but distinct, I think, from either.

VITBINIDAE.

Hellcarion, Fér.
Helicarion permolle, Stol.
Holicarion permolle, Stol.: J. As. Soc. Bengal, 1873 , vol. xlii, p. 18 , pl. i, fig. 13 , pl. ii, figs. 2 I-23.

Hah_-Gunang Inas, 3,000 It., State of Perak.
This is certainly the mollusc described by Stolicza, for homb extemally and internally it agrees with his description and figures.

GIRASIIDAE.

Apoparmarion, n. gen.
Apoparmarlon partridgll, n. sp.
Pl. iv, figs. 5-12, Pl. v, figs. 3^{1-33}.
Animal yellowish-brown, head bluish, tentacles yellow; mantle bhu', coarsely granulated, rising upon the shell on all sides, on the right sithposteriorly a large wing-like lobe covers the apex of the shell. Jnaly laterally divided 1 p into somewhat diamond-shaped figures by a serion of oblique lines. Rugac small. Peripodial groove distinct. fonl fringe yellow, no lineoles. Foot-sole yellow, divided into median unt lateral planes. Caudal murous pore not extending to the fors solk:

Length (in alcohol) 25 millim.

Shell amber coloured, thin, membranaceous, apex distinct, whorls 2. Maj. diam. 9.5, min. 5 millim.
Body cavity not extending posterior to the visceral mass. Intestinal tract short. Gencrative organs Parmariom-like. Well developed penis with beak-like head, no penis papilla. Darl-gland and dart-sac, latter containing fleshy dart

Hab.-Gunong Inas, 3,500 ft, State of Perak.
I have pleasure in associating with this interesting species the name of Mr. F. J. Purtridge, who has spared no pains to faithfully represent by his skillful brush and pencil, most of the specimens in this collection.

The Alimentary Conal (Pl. iv, fig. 7).-The intestinal tract is both short and simple. Commencing at the fairly large buccal cavity, the oesophagus passes off [rom the dorsal side, and after a short course enters the wide pyriform crop, which has, at its posterior end, a sharp constriction marking the division between the crop and the ill-defined stomach. The intestine passes off from the posterior end of the stomach, and making a bend forward and to the right side forms the second loop of the intestinal tract, then gradually narrowing, a very short backwardly directed loop follows, which again bends forward to form the rectal portion, and terminates at the anus.

Lying at each side of the forepart of the crop is a conspicuous salivary gland, which gives off a duct opening at the side of the oeso phagus, on the dorsal region of the buccal cavity.

The Generative Organs (P1. iv, figs, 8-I r).—The Corm and general character of these organs at once indicate the Paymarion relationship of this genus. The vagina, which opens into the vestibule by an opening common to this organ and the dart-sac, is short and wide ; at fts posterior end it becomes constricted, and on the right side the duct of the pyriform receptaculum seminis opens into it. Beyond the constriction is the free-oviduct, which at first is a wide, sac-like cavity, suddenly narrowing into a tube, which as it passes backward gradually widens until it joins the oviducal portion of the common duct Externally the lower portion has its wall thrown into a series of folds which give it a fluted appearance. The penis is a long tube-like organ, with a sharply differentiated beak-like head At the distal end of the tube-like portion, the retractor muscle is inserted. The two portions of the penis are connected together by a short neck. 'lote. head is marked by a series of crescent shaped constrictions, whib' just below the point where the vas deferens joins the penis, there is is [xtuliar little outgrowth (Pl. iv, fig. 9, x). Internally the cavity of $1 \mathrm{I}_{\mathrm{w}}$ penis differs considerably from the external form. Commencing in:
narow tube the lumen widens whtil about the midde of the pemis, then narrowing somewhat abruptly it gradually beeomes less, and passing through the neck as a very fine tube it expunds in the first portion of the head into a giobular sac, which is commected an its voltral sitk with the vas deferens (Pl . iv, fig 10). The remalining pertion of the head is solid. 'The dart-gland and the dart-siate atre wh mbout wetul length, and similar in shage. 'I'he extemal wall of the sulf is makex by a series of ring fike indentations. Internally chese is a smull therlyy dart, the surface of which is minutely studded with Heshy pimsillus, (P$]$. if, fig. I1). No trace of a muscle at the distal end of tho da! gland was observed.

The fires Nuscles (P1, iv, fig, i2). - The buccal ratracter dividew anteriorly into two bands which are inserted into the posterior ventral portion of the buecal cavity. Both superior and inferior tentaculars join to form a common tentacular retractor, and are exactly the same on both sides. The colmmellar muscle is short and small.

Paraparmaxion, in gen.
 Paraparmarion elongatus, n. sj).

PT. v, fige. 34-36.

Animal dark reddish-brown, head and tentacles bluish, mantle degenerate, rising upon the shell on the right side only, as a dark brown, wing-like lobe, covering the apex of the shell. Rugae scarcely visible, small and flat. F'eripodial groove faintly marked. Caudal mucous pore very small, not extending to the foot-sole. Foot-fringe reddishhrown, Foot-sole reddish-brown, divided into narrow median and broad lateral planes.

Length (in alcohol) 12 millim.
Shell yellow, thin, membranaceous; whorls 3, last whorl large and globose.

Hab.-Guncng Inas, 3,5cc ft., State of Perak.
'This is one of those small, puzzling, Parmarion like molluscs, common to the Indian and Malayan faunas I have compared this interesting specimen with a large number of small Parmarim-like molluscs in my collection, from Java, Bomeo and India, which at present are unnamed, and also with immature sperimens of Parmaniom, but can find nothing at all like it. 'The well-developer shell and the degenerate mantle at once characterise this form, and it sems desirable that it should be namot, if for 110 other reason than that al directing attention to these diminutive species. Until the intermal structure is made known it is difficult to say what its true prosition is, but judging by the external features, this genus may possibly surpily a
link between the genus Damayantia of Issel and Parmarion of Fischer.
Cryptosemelus, n. gen.
Cryptosemelus gracills, n. sp.

> Pl. v, figs. 37-39.

Animal dark blue, body marked by prominent oblique lines rumning downward and backward, dorsum posteriorly keeled; mande rises upon the shell anteriorly and laterally, on the right side it is produced into a wing-fike extension covering the apex of the shell, while on the left side antero-laterally there is a smaller lappet. Kugae only visible on the head and anterior parts of the body. Caudal mucous pore very small. Perfpodial groove distinct. Foot-fringe bright yellow, no lineoles. Foot-sole divided into median and lateral planes.

Tength (in alcohol) $19{ }^{\circ} 5$ millim.
Shell yellow, thin, membranaceous, whorls, $3 \frac{1}{2}$, last whorl very large.

IIab.--Bukit Besar, State of Nawng Chik.
Known to the natives as the "Dancing Slug."
Girasla. Gray (em Goclw.-Aust.).
Girasla peguensis, Theob.
Pl. iv, figs. 13-14.
Girasia peguensis, Theob. : J. As. Soc. Bengal, 1864, P. 244.
Girasia? perguensis, Godw.-Aust. : P.Z.S., 1880, p. 294.
Girasia perfuensix, Godw.-Aust.: Moll. of India, 1888, vol. i, p. 227, pl. lix, figs. 6-6d.

Hab.-Belimbing, State of Ligeh.
It has been pointed out by Godwin-Austen (ir) that so far as the mantle is concerned, this species forms a connecting link between fierrasia and Austenia, Nev (em. G.-A.); this author also draws attention to the fact that the right and left tentacular retractor muscles differ from one another, which I am able to confirm: the left one is joined to the buecal retractor and both of these have their origin posterior to the sluell, while the right one remains distinct and orfinates from the posterior border of the visceral mass.

The fineratire orgalts (Pl . iv, figs-13-14). The generaliw orgins of this specics have not previously been described. Thn tagina is a wide cavity, similar in detail to that in fi. hewhert, (iras The receptaculum seminis is much longer than in the last mentione d Surien, and has it distinct duct whieh gradually widens inte In

lifthand side of the free-oviduct beneath the penis. In figure 14 (I'l. iv), the frec-oviduct is purposely omitted so as not to complicate the figure The extreme end of the receptaculum seminis is overlapped by the folds of the oviduct. 'The penis is iong and twisted upon itself (P^{2}. iv, fig. I4, p.). At the point where the penial retractor muscle is attached, its walls are thrown into a series of constrictions and at the distal end of this constricted portion there is a short coiled kalk-sar: (PF. iv, fig. ${ }^{2} 3, k, s$). The vas eleforens phess over the proximal portion of the penis and then bencath it before communicating with the ov duct. No flagellum or diverticulum was present in the specimen dissected. The penial rettactor muselt: is long, and originates just behind the right tentacular retractor masile on the right posterior border of the visceral mass. The free-oviduct is much longer than in (ry. hookeri, Gray, but not so wide. The common duet is a simuous tube: bin not folded upon itself as in many species of this genus; lying over its posterio-dorsal portion is the albumen gland. I was unable to trace the hermaphrodire gland, but a portion of the hermaphondite duct was dissected out : this is characterised by the absence of any convolutions or foidings so generally associated with this particular organ (Pl. iv, fig. 13, h.d.).

ZONITIDAE.

Maerochlamys, Bens.
Macrochlamys resplendens, Philippi.
Helix rachlendens, Philippi : Zeitschr, గ. Malak., 1846, p. 192.
Marivehlarnys? rexplenders, Godw.-Aust.: Moll. of India, 1883 , p. 109, pl. xxvi, tigs. I-3.

Hah--Penang.
One specimen.
The hahitat of the type was Mergui. Mr. Edger A. Smith, who has very kindly examined this specimen and compared it with examples in the British Maseum, writes me "We have a specimen from King Island, Mergui Archipelago (named by Dr. ron Martens as resplendens) which is exactly like your example only a trife smaller, that is to say less fully grown."

Cryptosoma, Theob.
Cryptosoma, sp-
Pl. iv, figs. 14, 55
Animal yellowish, with deep blue motting: hcad and fentacles dark blue. Caudal mucous pore large. Peripodial groove distinct, termin ating below caudal mucous pore. Fouk-fringe yollow with blotelacs of
blue Foot-sole yellow, not divided into medium and lateral planes. Extremity of foot rounded.

Length (in alcohol) 24 millim., breadth of foot-sole 7 millin.
Hab.-Summit of Bukit Besar, 3,500 It., State of Nawng Chik.
One specimen, damaged.
Although I think this is a new species of Chyptosoma, I hesitate to name it, as it was in a very damaged condition when received, in fact the only intermal parts of its anatomy present were the termina] ducts of the generative organs, and of these I give a figure (P l. iv, Fic. 24). The penis is of considerable size, very long, and quite distinct in form from that of any described species. There is a smal] kalk-sac just before the commencement of : ise vas deferens. The dart-gland and dart-sac are proportionally gmall, at the distal end of the gland there is a short muscle; a dart, partialiy formed was present in in the dart-sac.

Rhysota, Albers.

Rhysota cymatium, Bens.

Holi, cymatium, Benson, apud Pfr.: Novit. Corch., 1, p. 58, pl. xvii, figs. 1, 2.
Rhysota rynatiun, Stol: J. As. Soc. Bergal, 1873 , vol. xlii, P. 11, pl. i, figs. $\mathrm{r}-3, \mathrm{pl}$. ii, figs. $13-15$.

Habl. - Penang.

Hemiplects, Albers.
 Hemiplecta humphreysiana, Lea.

Pl. iv, figs. 16-23.
Ifemiplecta humphreysianc, Lea,: Trans. Amer. I'hil. Soc, 1841 , vol. vii, p. 463 , pl. xii, fig. 36.
Hahl.-Kwala Aring, State of Kclantan.
Alter a carcful examination of the shells and animals of the specimens; collected, I have come to the conclusion that there are here three distinct forms. Fortunately I have had two or three examples of cach, and quite recently I have been able to confirm my observations made some months back.

Ruspecting the different forms, which it will be convenient to reler to is A, B, and C respectively, the different characters in the shell were in each case found to be associated with differences in tho animel.
The: Smell - In the form A the apex is fairly high, and the keed an the whorls slightly produced with only a single band below the ked on the last whorl; generally the whorls are flattened.

In tho form B the apex is much higher than in Λ, and the last whord exhibits a somewhat prominent keel. In addition to the band below the keel, there is a broad incipient band above; the whorls are more convex than usual and the shell thicker.

In the form C looth apex and whorls are flattened, there is very little keel on any of the whorls, and an incipient band above the keel only; the shell is much thinner than cither A or B .
Internal Struciure of the Animal.-Alimentary Canal. No differences of any importance were found in the intestinal tract. In an example of form C the long straight oesophagus is followed by a wide crop, over which a pair of large salivary glands lie, fused in their mid-dorsal line. Posterior to the crop is a short tube-like portion which passes into the large sac-like stomach, which is coiled upon itself, the posterior portion exbibiting a well marked constriction which separates the terminal portion from the main cavity. The remaining part of the intestine is a simple wide tube, which makes a bend backward over the region of the stomach, and then again forward, . traversing the side of the pulmonary cavity.

The Grenerative Oryans (Pl . iv, figs, r6-19).- In the form Λ there is a large vestibule into which the penis opens on the right side. This latter is a long muscular organ for half of its length, then coiling upon itself, it becomes a narrow tube-like body, and making a futher sharp turn upon icself it joins the epiphallus, from here a short diverticulum is given off which terminates in a fine hook-like process (Pl. iv, fig. 16). The epiphallus is a short tube expanding at its distal end to form a bulbous, sac-like, terminal portion, the kalk-sac, to which the retractor muscle of the penis is attached. The vas deferens joins the epiphallus just below the insertion of the muscle, and is a long fine tube looped around the vagina. All around the proximal portion of the vagina, a series of short oblique muscles bind this organ to the ventral body wall. The vagina is wite and sac-like in this region, but bending to the ight it soon becomes tube-like. 'The receptaculum seminis is small and its duct short. Inserted in the distal wall of the receptaculum seminis is a short stout muscle, differing in this particular point from the condition described by Godwin-Austen (r3, p. 32). The freeoviduct exhibits a constriction about its middle, and then gradually becoming smaller joins the oviducal portion of the common duct. There is a large conspicuous dart-gland, the actual dart-sac being very small and containing no true dart, this latter being represented by it short, broad, muscular papilla, on the summit of which there is a small, pointed, horny-looking body (Pl. iv, fig. 17)

In the forms B and C the generative organs were very similar tur
one another. Those in B are here figured and described (Pl . iv, fig. 18). The chief rlifferences from those described in the form A are, the general position of the organs, the form of the male organs, free nviduct, and the rensely conroluted common duct.

Proximally the penis is surrounded by a muscular collar, and is shorler than in the form A. At the inner side of the muscular collar there is inserted a small muscle (Pl. iv, fig. $18, m^{1}$), which is continuous with one inserted in the cond of the kalk-sac (Pl . iv, fig. $18, \mathrm{~m}^{2}$). There is a small diverticulum, the retractor muscle of the penis being inserter at its distal end. The epiphallus ic very short, practically a small connecting duct between the penis and vas defcrens. The kalk-sac: is smaller than in form A. The vagina is comparatively short, the receptaculum seminis sessile, and usually withont any muscle, Externally the free oviduct alppears as a large, globose mass for the greater portion of its length. internally, however, the actual cavity is conciderally smaller than one would at first suppnse (Pl. iv, fig. 28. f.om.). Commencing at the extermal generative orifice the internal wall of the vagina has quite smooth watls, but passing distally they become plicated, and at the point where the sharp bend occurs at the junction of vagina and free-oriduct, the walls become very richly folded, and again quite smooth in the free-oviduct (Pl. iv, fig. 19).

The Free Musctes (PI. iv, figs. 20-22). - In the form A the burcal retractor forms a thick broad band, tapering posteriorly at its origin and dividing anteriorly into two narrow bands, which are inserted into the walls of the buccal cavity porteriorly and ventro-laterally. The retractors and inferior tentaculars are on both sides fused together, while more posteriorly the combined pedal and inferior tentacular join the superior tentacular, passing backward as a single hand (Pl . iv, fig. 2c).

In the form B the buccal retractor is as in A. The pedal retractor arises from the superior tentacular, and then posteriorly the superior and inferior tentaculars unite (Pl . iv, fig. 21).

In the form C the buccal retractor commences as a broad band, which socn bifurcates, the two branches then being similar to those in A and B . The superior and inferior tentaculars fuse much more anteriorly than in either A or B, after the fusion the pedal retractor arises, and some distance behind a further pedal (Pl. iv, fig. 22).

The T'allial Oryans (Pl.iv, fig- - 3.). -The kidney is a little more than half the length of the lung, the latter measuring roz millim. and the former 62 millim. The urcter passes off from the anterior border, at its commencoment ir is slightly more than 5 millim in breadth, but posterior to the region of the pericardium it narrows forming a tube of uniform dimensions. The posterior border of the pericardium is
cxactly 375 millim. from the anterior border of the kidney. The pulmonary vein is large, as also the efferent and afferent vessels.

The specimen figured is one of form B .

HELICIDAE-

Trochomorpha, Albers. Trochomorpha eastra, Pens.

Helia castra, Benson : Ann. Mag. N.H., 1852, vol, x, p. 349.
Trochomorplua castra, Stoliczka: J. As. Soc. Rengal, 1873 , vol. xlii, p. $2 \mathrm{I}, \mathrm{pl}$. i, figs. 14-16, pl. ii, figs. 7-g.
Hob.-Kwnla Aring, State of Kelantan.
One specimen.
Sitala, A. Ad.
Sitala carinifera، Stol.
Sizala cariniferct, Stoliczka: J. As. Soc. Bengal, 1873 , vol. xlii, p. ı6, pl. i, figs. 8, 8a-e.

Hohl.-Gunong Inas: . 3.5 fcoft , State of Perak.
Four specimens.
Chlopltls, Beck.
Chlopitls malaysna, M11rff-
Helix (Traefia) ma/ayana, Mitdr.:]. As. Soc. Bungal, x886, vol. lv, p. 303-
(Omloritie malayana, Mlldef: P.7.S., x8yr, p. $335, \mathrm{pl} . \mathrm{xxx}$, figs. $6,6 a$.
Hab.-Foot of Gunong Inas, State of Perak.
Amphidromus, Albers.
Amphidromus perversus, L
Pl. iv, figg. 24,25, Pl. v, figs. 26-28.
Hab.-Biscrat, State of Jalor.
'Three examples of the animal of this spuccies, enables me to eive youreaccount of the anatomy.

The shells of the two specimens here described were submittod to Mr. Hugh Fulton, who very kindly confirmed my identificution.
The Generatiose Oryans (Pl , iv: figs 24, 25: PI, vi fig. 26). Itı llu first specimen the vagina is of great length, and proximally is helsi in position by a series of short, strong muscles arising from the dern wl body cavity. Intemally the condition is mot unlike Hitt I luate described in A. malaceus, Mouss. (6). 'The free oviduct is very mant. The receptacular duct is a long, wide, irregular shaused tulie, fintally it becomes very narrow and forms a short, fine tube, which terminmen
in an owoid-sac, the receptaculum seminis (Pl . fv, fig. 24, r.s.). The penis is short, "ith an epiphallos of great length, variousiy foldect and twisted upon itself, it jenetrates the distal wall of the penis and terminates in a short, bluntly ending, lleshy papilla ($\mathrm{Pl} . \mathrm{v}, \mathrm{fig} .26$, p.p.); boyond the epiphallus is a long flagellam whose distal portion is densely coiled. Internally' the wall of the penis is thrown into a series of thick, longitudinal, muscular folds, with short cross connecting folds ($\mathrm{Pl} . \mathrm{y}$, fig. 26). The retractor muscle of the penis is short, and inserted on the right side, at the proximal end of the epiphallns. The vas defertns leaves the latter organ as a narrow tube, and passing forward along its walls, it bends back again over the region of the vagina and joins the common duct, which is long, and richly folded. 'The albumen gland is long and narrow. The hermaphrodite duct short and convaluted.

In the second specimen (Yl. iv, fig. 25) the chiof differences are, that the vagina is shotter and S-shaped, the receptacular duct longer and narrower, the epiphallus and fagellum both shorter, and the retractor muscle of the penis longer.
The Free Muscleg (PI. v, fig. 27).-The buccal retractor consists of a series of short muscular bands inserted on the vetnral side of the buccal cavity, and two rather longer bands, one being inserted on eacls lateral wall of the huccal cavity. All these fuse immediately hehind the buccal cavity, and pass backward as a single band. The tentacular and pedal retractors are similar on both sides. 'The superior and inferior tentaculars first join, forming a stout band with which the pedal unites a little more postcriorly. The columellar muscle is short and narrow, and twisted twice.
The Pallial Rejion (Pl. v, fig. 28).-The kidney is unusually large, measuring 51.5 millim. in length and 5.5 millim. in breadth. 'The ureter passes off from the anterior border, and in the region just in front of the pericardium it passes across the dorsal side of the kidney, continuing its course backward on the opposite side, to the posterion end of the lung, where it bends forward asyain and runs along the side of the rectum. In a sinistral example of this species the ureter does not cross over the kidney. The measurements of the different organs in the two specimens were as follows:

	Lung.	Kidney.	Penicardium.
Dextral	$65^{\circ} 5$	$51^{+} 5$	Io millim. long.
Sinistral	80	5^{8}	$8 \quad, \quad$,

Hapalus, Albers.
Hapalus Jousseaumel, de Margan.

Hapa7u* jousseaunci, de Morg. : Bułl. Soc. \%ool. F'r., 1885, vol. x, n. 24 , pl. i, ligs. $2 a, 2$ b.

Hab.-Kwala Aring, State of Kelantan.

PUPIDAE
 Hypselostoma, Bens. Hypselostoma laddlawi. n. «p.

$$
\text { Pl. v, figs. 29, } 30 \text {. }
$$

Shell dextral, conical, with last whorl dorsally grooved, surface smooth, deeply umhilicated, whorls 5, regularly increasing, aperture Co shaped, armature consists of four teeth, a dnisal and ventral one siruated on the upper and lower borler of the peristome, and two smaller internal teeth, one on the right and one on the left of the peristomial teeth : peristome thin, slightly reflected.

Alt. and diam. i millim.
Hab.--Biserat Cavei, State of Jalor.

STENOGYRIDAE.

Prosopeas, Mörch.
Prosopeas tehehelense, deMorts.
Stenogyra tcheholemaze de Morg. : Te Natural., 1885, p. Kg, Jhull. Soc. Zool. Fr., i 885 , vol. x, p. 4n, pl. jil, figs. 7a, 7 b.
Stenorypa swettenhami, de Morg. : Bull. Soc. Zool. Fr., 1885 , vol. x: p. 4^{T}, pl. ii, figs 6a, 反h
Stenogyra (Sumutina) trhehalensio, Mildff.: J. As. Soc. Bungal, 1887, vol. lv, P. 304:
Stenomyra (Opeas)? terebrulis, 'Iheoh. (? 13. sp.): G. Nuvill,

Prosopeas trhehetense, M1ldff, : P.7..S., 189 r, D. 337.
Hab-Gunong Inas: $3 . n o a f t$., Sitate of Perak; Belimbing (irmm jungle floor, at basc of cliff), State of Ligeh; Biserat, State of Jaim.

Möllendorff (20, p. 337) has expressed the opinion thitt thu Stenogypa tchehelensis and S smettenhami ol de Morgan are the sume, the Jatter heing only a slight variation. After examining a large wsich of specimens from the above localities, I can fully endorse this opinion.

The egges of this molluse are exceedingly large for the size al the inimal, and are conclosed in a hard calcareous shell. All tho: 'RHe in the region of the frec-oviduct had a well developed shell, whitst Itwor in the lower portion of the oviducal canal had not.

Specimens having eight whorls in the shell were found for la bexually mature; the largest shell mut with was one with tuedec whana,

Clausiliidae.

Clausilla, Drap.
Clausilia kapayanensls, de Morg.
Pseulonenia kapayanensin, de Morg. : Tuull. Sor. 7.ool. Fr., 1885. vol. x, p. $43, \mathrm{pl}$, ii, fig. 8.
Hab.---Belimbing, State of I igeh.
One specimen.
Clausilla penangensis, Stol,
Chausilia (Thamfusa) penangersis, Stol: J. As. Soc. Bengal, \$873, vol. xlii, p. 27 , pl. ii, figs. 4^{-6} and 15^{-17}.
Hab.-Aelimhing, State of Ligeh.
I have to thank Mr. E. R. Sykes for very kindly examining these. A large glohose form, which at first sight seems very distinct, he thinks is only a sariety, as there are intermediate forms gradually leading up to it .

Clausilia penangensis, var.

Hab.-Mukit Besar, 2,000 ft., State of Nawng Chik; Patalung, State of Raman.

VEBONICELLIDAE.

Veponicella, Blainv,
Veronicella, sp .
Hab.-Hills near Fiserai, State of Jalor.
There are two specimens belonging to this genus, but owing to injury the species are undeterminable.

RATHOUISIIDAE.

The genera of slugs which have been grouped under this family are Rathouisia, Heude (15), Atopos, Simr. (27), Primua, Simr. (27), and the sub-genus Padangia, Babor (o).

In the present collection there are examples of Atopar only (and possibly Babor's sub-genus), but as the anatomy of this genus has an important bearing upon the family generally, and on other families os molluscs, it seems desirable to very briefly state the history of the various species and genera, and the views of other malacologists upon their position, affinities, etc.

Under the name of Veginula tourvannensis,* Soulcyet (29) in 1852 described a slug found by Gaudichand near Tourranne in

[^17]Cochin China. Later Semper (26) found a slug in Central Luzon which he named Vaginutus trigorus, and expressed the opinion that it was more like a Limar than a Vagimula. Stoliczka (30) in 1873 found in Penang a species closely allied to V. towrannemsix, Soul.; which according to \mathbf{H} cynemann (${ }_{17}$), is probably identical with the V. pulverulenta of Benson from the same island. Heynemann in $1876 \dagger$ described a further new species from (Queensland, which he named V. australio. In 1882, Heude ($\mathrm{r} 6, \mathrm{p} .10, \mathrm{pl}$. xim, figs. 2, $2 a$) gave a brief description of a slug found in Eastern China, under the name of Vafinulus sinensis; finding, however, that the name sinensis was preoccupied by Möllendorf's V'aginula sinensit, be re-named it leonina, an altogether unneccessary change, as he now (16) cransferred it to a new genus Rathouisia. Tapparone-Canefri (35) in 1883 described a species from New Guinea which he named V. primmatica. Heude in 1885 (16 , p. 100, pl. xxvi, figs. I. 1a) gave a description and figures of a further new species of Rathousia (Il. tigrina), while at the same time Rathouis (24) gave a short, but exceedingly interesting account of the life-history of R. leonina, Heude, and figures of many yarts of the internal structure. Unfortunately, as the Sarasins (25) have observed, the lithographic impressions of his figures are so faint that much of the detail is lost.

When studying the specimens of slugs in the British Museum collection in 1885 , Heynemann cxamined two slugs, one from an island in the Torres Straits, the other from the Huon Gulf (I_{7}).

Heude in 1890 (16, p. 133, pl. xxxvi, figs. $23,23 a$), described a further new species of Rathouisia (R. pantherina) from Eastom China, and gave figures of the animal.

In 1891 , Simroth (27) in a paper betokening rare and critical insight, founded the genera Atopos and Priswha, the former including three new species: A. semperi from Mindanao, and A. leurharti and A. strubelli from Amboina, and the Vaginulus trigonus of Semper und the V. pulverulenta of Benson. The new genus Prima included the following species: P. tourvannense, Soul., from Cochin Chinal, I'. priswaticum, Tap.-Can., from New Guinea, P. austrate, Heyn., from Queensland, and the Huon Gulf specimen in the British Muscums collection, to which he gave the name of P. heynemanni. A detaiks account of the anatomy of the three now species of Atopus was given, illustrated by figures.

In the sume year Cockerell (z) published the names limpinmimer or Rathouisiinae, as a sub-family for the genera Rathentixit, Altymin inn Irima. He further pointed out that a specimen in the Britist

[^18]Muserm collection from Penang marked "V. sanguinea, Stol.," was apparently relerable to A. mothemumpue Bens.. and alse gave a description of Prisma heynenanni, Simr.

In 1892 von Ihering (18) winlished a short, critical note on Simroth's paper, and proposed a separate family--Alopiza, for the genus. A reply by Simroth followed (28).

Nothing more was heard of these interesting molluses until 899 , when the Sarasins (25) in their beantiful work on the Land Mollusca of the Celcbes, described four new species of Atopos, viz., A.spubnlatues, simpoth; ,ristafalli and prisfis, and gafe some intercsting notes on their anatomy and figures of some of the internal organs.

1 astly Babor (1) in tgoo descrihcd a new sub-genus--Pouloneta for a new species, Atopos (I'at trmita) sehilitie, from Padang, Sumatra,

The opinions held by the different write is quoted above, as to the affinties and systematic position of these various genera are widoly diverse On the onc hand Simroth and Babor are hoth inelined to regard them as allied to the Veronicellitae, while on the other von Ihering and the Sarasins allie them with the Testacellidete.

Simroth (27) in his valuable paper first directed attention to certain resemblences between Atopox and the Athorwophoriflae (Janellitar), and he there states that the Feronicelfidae may have been directly derived from the Opistholsranchia, the A thoratophomitae diverging from them ar some period; the two families he classes together as Mesommatophora, in contradistinction to the true Stylommatophora Rabor (r) also hints at the resemblences letween the Athoracophomitate and Poulanfia.

Von Ihering strongly supports the 'lestaceltid relationship, entirely overlorking the fact mentioned by Simroth, that the Testacellid tooth stmeture, evolved as it is by necessity for adaptation to carnivorous habits, has no anatomical value, as is evidenced by the great varioty of mollusce possessing such a tonth structure.
'Ihe Sarasins regard Rathouisin and Atoposs only as valid generg, Esismin in their opinion not having leen sufficiently defined. Whilst strongly favouring the Testacellid affinities of these two genera, they admit that such characters may have arisen independently, as in Ianthina. and Srataria. l'urther, these authors regard Apera, Ifeyn., as also heing closely allied to the Fathouisititar, they write ($25, \mathrm{p} .112$) "'Ihis slug, we can without hesitation look upon as an ancestral form of Atropos." Unfortunately the genus Apera is known to these anthors from Rinney's original description and figures only. The spider glands of Simroth are not present in Ayrma, and the general disposition and form of the digestive and generative organs, pedal gland, etc., is totally
different. As yet our knowledge of the internal structure of this genus is wery imperfect. I have given a very brief account of the anatomy of Apera burnuyt. L. A. Smith (3): and A, natalensis, CIIge. (5), from two alcoholic specimens, and in a later example of the former sperixh, 1 have recently figured and described the malc organ (7). 'lhis ligurr in repeated here for comparison (PI, vi. lig. 6).

An examination of the specimens contained in the presentcollection, and comparison with the results obrained by the above authors, sugedsi4 not a few points of interest.

Firstly there seems every probability that the family hathounsumb comprises a large number of species, and possibly gencra, distrifuted over the Malay-Australian region and Southern China-

From the primitive condition of the digestive organs, and similar indications in the generative organs, I am adverse to grouping any of the genera with the Testrecellidae, and prefor to regard the Testacellia rosemblences as a case of parallel evolution rather than one of dircet affinity.

Respecting the generic or sub-generic distinctiveness of Rathouisia, Afopos, Prience, and Pakdugia, our knowledge is yet too inexact and insufficient for any defmite expression of opinion. I agree with the Sarasins that Prisnua, Simr., is as yet insufficiently defined, still, I think there can be no doubt as to the wisdom of separating it from Atopasy on the ore hand and Veronirflla on the other.

From the above brier resume it will he seen that we have yet much in learn respecting the internal structure of these most interestinh mollises, before our attempts at classification or tracing affinities can l.e of any value. I am pleased to learn that my friend Dr. Josef 1 . Babor has in activc preparation a monograph of the genus Atopon, to the completion of which, all malacologists will look forward with greve interest.

RATHOUISIIDAE, Heude.

Atopidae, von Thering : Nachr. Deutsch. Malak. Gesell., I892, p. 14.3.
Atopos, Simr.
Atopos sarasini, n. sp.
PI. v, figs. $40-42,56-59$, Pl. vi, figs. 6o-65.
'olour of the notum a deep blue, granulated, extending over the haced in a hood-like mamner: head yellowish; underside (penimntnai)
 I.angth of notum (in alcohol) 59.5 , breadth 135 , height $14{ }^{\prime} 5$ millim. licadth of foot sole g millim. Female generative orifice 4 millin, fom the male generative orifice.

Hab.-Hilks near Biserat, State of Jalor.
Probably this species belongs to Babor's sub-genus Parlangic. 'The granulated appearance of the notum is due to a large number of small wart-like bodies of two different sizes. The notum fits orer the head as a hood, covering over the tentacles and mouth. The external male generative orifice is siluated on the right side, as indicated in figure 57 (P, v) : althangh very carefully examined, I Cailed to find any opening on the left side which would correspond to the opening of the left gland of Simroth.

The Alimentary Canal (Pl. v, fig. 59). -The digestive tract is exexceedingly simple. I have nothing to add to the arcounts already given by Simmoth and the Sarasins, of the buccal cavity and sheath. The oesophagus passes from the buccal cavity towards the right side, then dipping ventrally it passes bencath the most posterior portion of the buccal mass, and backwand to the stomach or midi-gur gland of Simroth, which internally has a sacculated appearance very similar to that figured by Rathous ($24, \mathrm{Pl}$. xxxii, fig 1), in Rathouisia leomine. Leaving this gland the intestine makes a slight sigmoid curve and runs dorsal to the oesophagus as the second loop of the intestinal tract, then making a bend to the right, it terminates at the anal aperture, the whole structure being of a very simple and primitive nature. The contents. of the oesophagns and mid-gut gland were microscopically examined, and the results obtained tend to confirm Simroth's observations on the: contents in A. semperi and A. lewnfarti, viz. that the food consists of vegetable matter (fungi) and flesh.

The Generative Organs (Pl. v, figs. 58-59, Pl. vi, figs. 60-64)-Having only one specimen for dissection, I have been unable to work out the structure of the generative organs in the detail I should have liked. This sfecimen internally was not in the best condition either. which is the more to be regretted as hoth Simroth (27), and the Sarasins (25) give few particulars regarding these organs. The figures given lyy Simroth (27 , T. xxxvii, figs. 27.28) I can scarcely think are correcl.

In $A . \operatorname{saraxini}$ I was able to trace a well developed vagina, a simple. Lube-like organ, at the distal portion of which, the duct of the recepta culum seminis enters, beyond this point it becomes folded in an U-shaper [utuch, contimuing again as a tube: this portion lyine posterior to tha. recepturulum seminis I regard as the free-oviduct. It passes into the oviduct, a litrge and closely coiled hody which is sharply folded upon itsell, the: folding marking the organ off into three portions. At the ent of this tulx there is a small glandular body lying upon the albume: Klanel, this, I think may be the ovary (P1. vi, fig. 60, o). I have failewl wistes any connection between the male and female organs.
'I'he penis is a large and musenlar body enclosed within a muscular sheath. 'lhere is a prominent retractor muscle inserted in its distal end. 'lhe external arifice is common to the penis and the right Simroth gland. I was unable to find any trace of a gland on the le t side. Internally the sheath of the pemis has plicaterl walls, while arising from the distal end of the cavity is a large muscular organ the penis papilla. This is broad at its base, narrowing towards its free end which terminates as a comparatively sharp point. Its external wall appeared longitudinally indented or fluted, but this appearance is probably due to the pressure of the plications of the sheach. On the left side, at the base of the penis there is a small ajerture which communicates with a folded duct (Pl. vi, fig. G1), this I succeeded in tracing as far as the inner side of external male generative orifice. As previously pointed out: only a single Simroth gland was found, the one on the right side; I am quite certain as to the absence of any such body on the left side. The structure of the folded distal portion of that on the right side is shown in transverse section in figure 62 (P . vi.). On comf aring this transverse section with some recently made of the dart-gland of a Cingalese mollusc (8), I have been struck by the extraordinary resemblance they bear to no another, which has led me to inquire whether it is not possible that the Simroth gland is a vestigial dart-gland?

The Pralal Gland (Pl. vi, fig 65)--This is a small tongue-shaped body measuring 22 millim in length. Serial transverse sections were made of the whole of the gland, and while agreeing in general with Simroth's description, there were some points very different, but better material is necessary before these can be discussed.

Atopos harmeri, r. sp.

Pl. v, fig. 43-45.

Colour of the notum, light blue with darker blue blotches and spots, a dark hlue stripe extends along the mid-dorsal line, granulated: head yellow ; tentacles dark blue; underside (perinotum ${ }^{\text {P }}$) ycllow ; fou sole yellowish-white with a faint median groove and transverse wrinklink; ked only very feebly developed. I.ength of notum (in alcolool) 655, breadth 12 , height 14.5 millim. Rreadth of foot-sole 7 millim. liemuth. generative orifire 13 millim. from the male generative orifice.

Hah.-Kampong, near the borders of Kelantan and Jigeh,
A young example of this species measuring 37.5 millim. in lorpilh, exhibits a much more prominent keel than the larger specimen. Jukink from the external features this species is probably allied $\mathbf{1 0} A$, whimbli, simor. I have much pleasure in associating with this 4pecies the unnu of Dr. S. F. Harmer.

Atopos rugosus, n. sp.
Pl. v, figs. 46-48.
Colour of notum, dark green with yellowish-brown spots, granulated, the extreme anterior portion of the notum is almost white, while posteriorly the body is sharply pointed ; underside (perinotum ?) yellowish; foot-sole dirty yollow; keel fairly well developed, yellowish brown in colour. Length of notum (in alcohol) 43.5 , breadth 7 , height 8 millim. Breadth of foot-sole 4 millim. Fernale generative orifice 8.5 millim. from the male generative orifice.

Hab.-Hills near Biserat, State of Jalor.
Atopos punctata, n. sp.

$$
\text { P1. v, figs. } 49-52
$$

Colour of notum, yellow spotted with dark blue or black, granulated ; head and tentacles yellowish; underside (perinotum ?) yellow; footsole yellow with closely set transverse wrinkles ; keel fairly prominent. Length of notum (in alcohol) 35, hreadth 4, licight 4 millin. Breadth of foot-sole 2 millim. Female generative orifice 7 (?) millim.* from the male generative orifice.

Hal.-Hills near Biscrat, State of Jalor.
A figure of a small piece of the notum much enlarged (Pl. vi, fig. 5^{2}), shows that the wart-like bodics vary greatly in size, as do also the blackish spots.

Atopos stpubelli, Simr.
Atopos strubelli, Simr. : Zeir. f. wiss. Zool., r893, Bd. lii, p. 600. The specimen collected agrees practically in all details with the description given by Simroth. The dimensions are as follows: Length of notum (in alcohol) $61^{\circ} 5$, 1readth 11, height $11{ }^{\prime} 5$ millim. Breadith of foot-sole 7 millim. Female generative orifice I_{3} millim. from the male generative orifice.

Hab.-Hills near Biserat, State of Jalor.
Atopos lajdlawi, th. sp.
Pl. v , figs. 53-55.
Colour of the notum, dorsally yellowish-brown with small, dark bruwn dots, fincly granulated, laterally an irregular, broad, dark brown lxand. below which the notum is drab colour, at the extreme anterior :inl positerior encls the notum is almost white; head dirty white ; tent:t l_{1}.

[^19]bluish; underside (perinotum ?) dirty white: foot-sole yellowish-while; keel well developed and fairly prominent, white with numerous minute brown dots. Length of notum (in alcohol) 30 , breadth 7 , height 7 millim. Breadth of foot-sole 4 millim. Female generative orifice about 6 millim. from the male generative orifice. *

Hab,—Ban Kong Rah, District of Gaboing.
This interesting species will probably prove to be at least subgenerically distinct from Alopos when the intemal structure is known. It is named in honour of Mr F. F. Laidlaw, a member of the Skeat Expedition, and by whom it was collected.

Bipliography.

1. Babor, J. I'.-Mittheilungen über Nacktschnecken in der Sammlung des k.k. naturhist. Hommseums. II. Erste vorläufige Mittheilung zu einer Monographie der Gattung Atopos Simroth. Ann. d. k.k. Naturhist. Hofnus. Wien, 1900, Bd. xy, pp. 100-102.
2. Cockerell, T. D. A.-A Check-list of the Slugs. The Conchologist, 1893 , vol. ii, pp. 168-176 and 185-232.
3. Collinge, Walter E.-On the inatomy of Apera burmupi, E. A, Smith. Ann. Mag. N. H., 1897 (s. 6.), vol. xx, pp. $221-$ 225 , pi. v.
4. do. Report on the Slugs. A Willey's Zoological Resulth, I899 [1900], Pp. 429-438, pls. xl.-xli.
5. do. On a collection of Slugs from South Africa, with deserip tions of some New Species. Ann. Sth. Afr. Mus., 1900, vol. ii, pp I-8, pls. 1, 2.
6. do. Note on the Anatomy of Amphidromus palacяим, Moıнн. Journ. Malac., 1901, vol. viii, pp. 5^{0-52}, pl. iv.
7. do. Note on the Anatomy of Apera burnupt, li, A, timils, Ibid., pp. $7 \mathrm{I}, 72$, fig.
8. do. On the Anatomy of the Vitrina irradians of llesiffri, lhich, pp. 6370 , pls. v, vi.
9. Crosse, H.-Mollusques nouvcaux de Perak. Journ. de (onchyh, 1879, vol, xxvii, pp 198-zo8.
10. du. Faune malacologique de Perak. Ibid., pl. 33^{6}. 2 .
11. Fulton, Hugh.—A List of the species of Iand Mollusca, colla desi by Mr. W. Doherty in the Malay Arehipelugo: wils descriptions of some supposed new Spericsuml Vinintiru,

12. Godwin-Austen, H. H -Mollusca of lndia, 188 a -1888, vol. 1.
13. do. On the Anatomy of Hemiptecto floweri, E A. Smith, from Perak, Malay Peninsula. Proc. Malac. Soc. Lond., rgoo, vol. iv, pp. 3r-36, pl. iv.
14. do. and Nevill, G.-Descriptions of Shells from Perak and the Nicobar Islands. Proc. Zool. Soc., 1879 , pp. 734-740, pls. lix, lx.
r5. Heude, P. M.-Note sur une Limacien nouvean de Chine. Journ. de Conchyl, 188_{3}, vol. xxxi, pp. 394.
15. do. Notes sui les Mollusques terrestres de la vallée du Fleuve Bleu. Mcm. concern. L'Hist nat. de l'Empire Chinois, 1882-1890, pp. 1-x88, pls. xii-xliif.
16. Heynemann, D. F.-Utber Vagirula-Arten im British Museum -Natural History-- in London. Jahrb. Deutsch Małak, Gesell., 1885, pp. 1-16.
г8. Chering, H. von.-Ucber Atopos Simroth. Nachr, Deutsch, Malak. Gesell., 1892, pp. 140-144.
17. Mollendorff, O. F. won.-The Landshells of Perak. Journ. As. Soc. Bengal, 1887 , vol. lv, pp. 299-3i6.
18. do. On the Jand and Freshwater Shells of Perak. Proc, Zool. Soc., 189 r , pp. $330-348$, pl. xxx.
it. do. On a collection of Land Shells from the Samui Islands, Gulf of Siam. Ibid., 1894 , pp. ${ }^{146-156, ~ p l . ~ x v i . ~}$
19. Morgan, J. de.-Note surquelques espècesnouvelles de Mollusques terrestres recueillis dans la Péninsula Malaise. Ie: Naturaliste, 1885 , vol. vii, pp. 68-70.
2.3. do. Mollusques terrestres et fuviatiles du royaume de Perak ct des pays voisins (Presqu'ile Malaise). Buill. Soc. 7ool. France, 1885 , t. κ, pp. t-80, 5 plts.
-4. Rathouis, C.-Quelques remarques sur les moeurs et habiludu du Rathorisia leonina. Mem. concern. L'Hist. nat do l'Empire Chinois, r884, pp. 131, 132 , pl. xxxii.
-5. Surasin, P^{\prime}. und F .-Dic land Mollusken von Celebes. Wiesbaden, 1899.
20. S'rnper, Carl.-Reisen im Archipel der Philippinen. 1870, Bd. iii. I andmollusken.
21. Simmoll, 11. Übur das Vaginulidengenus Atopes ng . \%ail. 1 wiss. Zool., 8 891, lid. lii, pp. 593-616, 'T.xxxvii.
2x. (h) bianige Bemerkungen zu vorbtelendem Aufsatz. Nialla Weutmelh Malak. (iescll, 1892, 11p. 14.4 the. (ian rifirence N o, 18.)

criptions of the animak and matomical notes. Pt. ii. Heticacea. J. As. Soc. Bengal, 1873 , vol. xlii, pp. 11-38, pls. i-iii.
22. Tapparone-Canefri, C.-Fauna malacologica della nuova Guinea e delle isole adiacenti. Pt . i. Molluschi Estramarini. Ann. del Mus. Cív. de St. Nat. de Genova, 1883 , vol. xix, pt. i, pp. 1-304, Tav. i-xi.
23. Sykes, E. R.--Descriptions of six now Land Shells from the Malay Peninsula. Journ. Malac, igc 2, vol, ix, pp. 22, 23.
24. do. On a collection of Land and freshwater Shells from Kelantan, Malay Peninsula. Ibirl., pp 60-63, pl. iii.
25. Möllendorff, O. v.-Binnenmollusken aus Hinterindien. I. Landschnecken von Kelantar, Ostkïste der Halpbinsel Malacca. Nachr. Deutsch. Malak. Gesell., 1002, PD. 135-149.

Reffrence Letters.

alb, ost. Abomen gland.
ant. Anus.
b.r. Buccal cavity
br. Buccal reliactor.
6.m. Colmmeilar muscks.
c m.f. Circular muscle fibres.
cr. Crop.
d. Dart.
d. st. Dart-gland.
dis. Dart-sac.
dit. ot Digestive glard
dia. Diverticulam.
ep. Epiphallus.
fl. Flasellum
f. dre: Free-oviduct.
f.s Foot-sole.
st. c. Gland cell.
fl.f. Hermaphrodite cluct.
h, git. Hermaphordite gland.
int. ${ }^{\text {j-4 }}$ Loops of intestine.
2. Kidney.
k.s. Kalk-sac
l.o.s Left ocular metracler.
wh.the. Muscles.
m. g7. Mid-gut gland.
3. Notum,
a. Ovary.
w), w. Oblicuc muscleb,
or. Oevorhacras.

[^20]

- 1 .

2.

$\alpha, g b$

6.

7.

12.
11.

Journ. of Malecology, 1902, Vol. IX, pt. 3.

MOLLUSCA OF THE MALAYAN PENINGULA.

r

F.

60.

64.8

63
Fif Pdiledrat

EXIPANATION OF PLATES IV-VY.
 PIATIE JV.

Fif 1.	Streplavis sultesi, n. Ep.	Dorsal view of the st:ell, $\times 2$,
Fig. 2.		Ventral view of the sheli. $\times 2$,
Fib. 3.	Streplaxis striathla, 17. sp	Dorsal view of the shell. $\times 1$.
Fig. 4.	" "	Veniral view of the shell. $\times 1$,
Fis ミ.	Apotarnarion partredgi\%, 12, ¢8.	Dorsal wiew of the shell $\times 2$,
Fis. 6.	" n	Ventral view of the shell. $\times 2$.
Fitg. 7.	" "	Alimentary canal, enlarged.
Fig. 8.	"	Generative organs, enlarged.
Fis. 9.	"	Penis, much ealarged.
Fig. 10.	"	Diagraminatic longitudinal horizonal section of the penis, showing the forme and extent of the cavily.
Fis. 11.	"	Dart-gland and dart-sac, the latter opened to show the dat entarged.
Fis 12.	-	Free muscles, enlarged.
Fif. 13.	Girnsia pegnensis, Theorb.	Gencrative organs. $\times 3$.
Fig. 14.	" \quad *	The game showing the penis, etc., in natual positions. The dart-gland (d gl.) has been moved slighlly to theleft. The receptaculum seminis and free-ovidncl are not shown.
Fig. 15	Ciplosuma, sp.	Terminal ducts of the gencrative organs, enlarged.
Fis. 6.	Hemiplec/a humphreysiana,	ea, Generative organs of the Furm it.
Fig. 17.	, "	Dart-sac opened to show the dart
Fig. 18.	, n	Generative organs of the Form B.
Fig. 19.	" "	Vagina and free-oviduct dissected to show the interral walls.
Fig. 20.	Hemuptecta humphreysiana,	Led, Free muscles of the Form A.
Fig. 21.	, ,.	Free mascles of the Form B.
Fig. 22	" 1	Free innscles of the Form C.
Fig. 23.	" ${ }^{\text {n }}$	The pallial complex. $\times 1 / 2$.
Fig. 24	LImplaidromas pervershs, L.	Geneta ive organs.
Fig. ${ }^{5}$	" *	" "

Fig. 26. Ampinitomus perversus, L. Penis dissected to show the internal walls and penis papila
Fig. 27.

```
Free mnscles, enlarged.
The pallal complex }\times1
Shell. x 8.
Fig. 2G. Hypvitosioma laidlacci, n. ap.
Fig. zc. n , Ventral view. x 8.
Fig. 31. Apoparmarionpartridgii, n.5p, Kight lateral view. < 1/2/2.
Fig. 32. " Dorsal view, < 1%.
Fig. 33. ", leettaleral view: x 1//2
```

1.int 35.	*	
pijs. 36.	\cdots	
tig. 37.	Cryptoscmatas pratits, n. sp.	Lzight hateral vitw. $\times 1 / 2$.
Figs 3^{8}	" \quad	Dorsal view. $\times 1 / 2$.
Fig. 39.	- $=$	Left latergl view. $\times 1 / 8$.
liig. 40.	Alopos sayasini, n. sp.	light latcral view. \times J.
	Dorsal vicw. $\times 1$.
li'ig. 42,	-	Vential view. $x 1$.
Fi 告, 43.	A topos harmeri, $\mathrm{n} . \mathrm{sp}$.	Right lateral view. $\times 1$.
Fig. 44.	- -	Dorenl view. \times r.
Fig. 45.	* *	Veniral view. $\times 1$.
Fis 46.	Atopus rugosms, in. S.	Right lateral view. $\times 1$.
Figs. 47	"	Dorana view $\times 1$,
Fig. 48.	, ,	Ventral view. \times \%
Fig. 49.	A lopos punctata. n, sp.	Right lattral view $\times 1$.
Fig. 50.	" \quad -	Dorsal view. X I.
Fig. 51.	" "	Ventral view. x r.
Fig 52	"	Portion of the notum, enlarged, 1,1 shlsicu the varying sizes of the propilin, which give to the boty a gramblated appearance.
Fig. 53.	Atopos Lidilazia, n. sp .	Right lateral view. $\times 2$.
Fig. 54	, n	Dotnal view. $\times 2$.
Fig. 55.	"	Venital view. $\times 2$.
Fig. 56	Atopus $\begin{gathered}\text { arasitui, } \\ \text { I. } \\ \text { spo. }\end{gathered}$	View of the veutral side of the borly wilh the nomm folled forward to show the tentacles. $\times I$.
Fig. 57.	*	Lateral view showing the positicun wh the male and ienale senerative orifices, pumonary orifice, and anum.
Fig. 58.	" ${ }^{\text {n }}$	Position of the external nrifices.
Fig 59	" "	Alimentary canal, enlarged.
	pla	TE V].
Fig. 60.	Alopos sarasimi, n. sp.	Fernale generative organs, enlargerl.
Fig. 6in.	" "	Male generative organs and rinh Simroth gland. $\times 2$,
Fig. 62.	* "	Portion of a transverse section through the distal fortion of the Simuruth gland.
Fjo. 63.	" *	Diagrammatic section of the gland.
Fig. 64	- \quad	The penis dissected to show the iniernal walls, penis papilla, and oritice from duct. $\times 6$.
Fig. 65.	-	The pedal gland. $\times 1 / 2 /$
Fig. 66.	Apcra buruapi, E. A. Smith	Genctalive organs. $\times 4$

NOTES ON SOME FURTHER MALFORMED SPECIMENS OF ANODONTA CYGNEA, L.

I3y H. H. BJ.OOMER.

(Plate vii).
Since my last notes on this subject appeared in the Journal, ${ }^{1}$ I have reccived from Mr. S. P. Bolton several more injured specimens, among which were two showing other interesting points of malformation. One bore indications of an injury to the left valve-the fracture extending in an anterio-ventral direction from the umbo to the edge of the shell, which had been repaired, the inner layer now being continuous with that of the other portion of the valve. There is also an indentation on the right valve opposite to the injury on the left one. The free edge of the left mantle lobe appears irregular in its growth, and the portion of the lobe covering the injured part of the valve is much thicker than the other portion. The left labial palps are somewhat aborted, and have a more ventral position than the right ones. The outer one for a little distance is fused with the mantle lobe.

In the other specimen the right valve was apparently stove in a little anterior to the centre of it, and just below the umbo. The injury at the time of occurence must have been considerable, and penetrated into the body of the animal itself. The injured valve was repaired and the subsequent growth of the shell was nearly normal. The left valve is intact. The gills suffered the greatest injury, while strange to say the mantle lobes appear to be normal. The left gills are severed from their distal edges to close to the outer supra branchial chamber (Pl. vii; fig. s).

The right inner gill is not ingured so much and the laceration does not extend so far dorsally, while, however, the free portion of the right outer gill is for some distance anterior to the injury, entirely missing (Pl . vii, fig. 2, r.a.g.), and the portions near the base on both sides of the gap have fused with the mantlc lobe.

A transverse section across the injured portion of the animal, shows both the left supra branchial vessels to be somewhat distorted and bent inwards, and the right inner gill exhibits the subsequent fusion of its injured portions.

H. H. B. del, ad nat.

ANODONTA CYGNEA, L.
Fig. r. Left side. Fig 2. Right side.
 inner gill ; v.o.g. Right outer gill.

A CLASSIFIED LIST OF THE HELICOID LAND SHELLS OF ASIA.

(Fát \|।.")
By G. K. GUDE, F.Z.S.
ii. ASIATIC RUSSIA.

A. WESTERN 'IURKISIAN.

The FIelicoids of Russian Turkistan exhibit strong affinity with thos, of Eastern 'lurkistan, notably in the presence of the genera Cuthotion and Marrorhlamys. 'Ihe occurrence, on the ocher hund, of two spesit:s of Zonites, one of IRetinella, and seven species of the Belogoma Siphonadenia proves relationship with the Palaearctic Fauna.

The earlicst record of Helicoids is by Prol von Martens, who worked out the collections of Fedtschenker and Semenow. Others were described by IVr. Westerlund from material collected by In. S. Korschinsky, Adrianow, Dr, A. Nikoisky, A. Kischakewitsch, 1. Rartschtschewsky, Dr. A. Regel, A. Kasnakow, and K. E. Stenrows. 'The shells collected by the latter went to the Museum of Helsinsfors, while all the others described by Dr. Westerlund are in the Impurial Museum of St. Petersburg.

Macrochlamys coeligena, nsp.

$$
\text { (} \mathrm{F}_{1}^{0} \mathrm{Hg} . \mathrm{I}-3 . \text {) }
$$

Shell narrowly perforate, lenticular, depressed, fragile, greenindt corneous, translucent, polished, finely striated, shortly and slightly

Figs. I-3.-Macrochtams cocigena, in ap.
costulate near the sutural margin. Spire obtuse, suture somewhat shallow, margined. Whorls $4 \frac{1}{2}$, compressed und a bittle flultulud above and below, slightly sloping towards the suture, increasion slow y at lirsh; last whorl more than twice the size of the penultimath, widened towards rhe mouth, not descending in front, roundral withe [criphery, impressed round the umbilicus. Aperture obligue, mind

[^21]wider than high : peristome thin, acute, the margins convergent: "i" ${ }^{\prime \prime}$. and lower murgins gently curved, united by a thin callus; onter romml. columeslar ascending, slightly dilated over the naroow perforation al the umbilicus.

Diarn. maj. I2, min. 10.5 ; alt. 5.5 millim.
Hab.-Tian-Shan Mountains, Russian Turkistan.
Jirom Mr. Preston I received two specimens with the MS. namu "Marrochlambe eneligent, Mart." Professor von Martens, to whom I submitted a specimen, informs me that the now species is allied to M. soghiana, and that he saw a specimen in Mr. Rolle's collection for which he suggested the name M. coelicold, in allusion to the native name Tian-Shan meaning Celestial Mountains. To prevent confusion I have retained the name coeligona, as the shells have been distributed moder that name.

Matrochlanys coelipena differs from M. nogdiana, Mts., by its smaller size, its more depressed shape, and its more flattened whor's ; the umbilical region is more excavated and the last whorl is less widened towards che mouth. The shell is also thinner in texture than that of M. somliand which, moreover, is opaque not translucent.

Family Zonitidae.
Subfamily Macrochlaminae.
Genus Macrochlamys, Bens.
sogdiana, Mart. Sarafschan; Ferghana; Taschkent; Samarkand.
coeligens, n.sp. 'Гian-Shan.
turanica, Mart. Sarafschan;
Kokand; Ferghana; Khiva.
clessini, West. Issik-Kul, Alatau.
$=$ schmidti, Cless.
whmitti, Branes. Turcomania.
korschinskyi, West. Kugart and Taldyk-ssu Rivers.
Sult-linmily Zonitlane.
(<<bмя Viviena, Jrap,
alenuialri, Wient. Iskander-Kul.
rusulasa, Must. 〔skunkler-Kul.
rombiden, Mart. Sarafsellian; J'arkhatre.
 (iemon 'Zuntres, Momati:

latissimus: Dohrn. Samarkand.
Genus Euconulus, Reinh.
fulvus, Drap. Iskander-Kul. Sub-family Ariophantinae.
Genus Zonitoines, Lehmann. nitidus, Müll. 'Turcomania.

Family Endodontidae.

Genus Punctum, Morse.
pygmaeum, Drap. Kultuk, 'Transcaspia.
l'amily Helicidae
Group Helogona, v. Iluer
Brlogona Eiladenia, Pils.
Genus Cathalca, Mdff
Sub-genus Pliocathaica, Andr.
phacczona, Mart. Ferghana; Tian-Shan,
ruhens, Mart. Sarafschan
v. finschiana, Mart. Alatars
v. zeiliana. Mart. Alatas.
v. caryodes. West. Kugarl and Baskan Rivers; J. cpsinsk.
v. Iimitata, West. Artschaty. Section Hhliomanes, Moq.
v. angulata, West. Artschaty; ilerhentina, Andrz, Taschkent; Samarkand.
semenowi, Mart. Tian-Shan ; Alatau.
duplocincta, Mart. Tian-Shan. Sub-genus Xerocathaica, Andr.
fedtschenkoi, Mart. Sarafschan. Sub-genus Pseudibertis, Anc.
aspasta, West. 'Taschkent.
plectotropis, Mart. Tian-Shan.
Sub-genus Campylocathaica,
Andr.
rufispira, Mart. Sarafschan.
retteri, Rosen. Samarkand.
v. serotina, West. Samarkand; Saamin.
dichrozona, Mart. Ferghana. Summin: Khiva. diaphria, Wexs, 'Wargnhang. Section T'ulina, Kimat. seductiliw, Homar. Kinhtura, Jerghoma.
transcaspia, [to:tıц. Kopel Duph. Genus Hygromia, Rimm. Scetion Freticicola, Itche. rhysota, West. Alatau. Genus Vallonia, Risso. ladacensis, Nev. Tian-Shum. mionecton, Boettg. Kopet Dagh.
Genus Helicodonta, Fér. lentina, Mart. l'erghana. indigena, West. Wandsch Valley. Genus Helix, L.
Belogora Siphonadenia, Pils. Section Levantina, Kob. Genus Helicella, Fér.

B. SIBERIA.

The vast territorics comprised within the limits of Eastern end Western Siberia, are comparatively poor in moltuscan life, and although many large tracts of country have never been scarched, it is not very probable that any considerable number of new forms will come to light. Among the carlier naturalists who have brought Siberian mollusen to Europe must be mentioned Gebler, Lhrenberg and Middendorf': the first two in 1829 , the latter in $\mathbf{1 8 5}$ r. Muack, during a residenceof inmy years, collected in the reighbourhood of Irkutsch, and the sume naturalist, in conjunction with Gerstfeldt, travelled and colleced in the Amur District in 1855 . Other contributions were marle hy Kindermann and Schrenck ($1854-1856$), Nordenskjold and Stuxbery (1875), during the Nova-zembla and Jenissei Expedition. Thesu wiru described by Dr. Westerlund in Kon. Svenska vet. Akad. 1landi., Bd. xiv, No. 12 (1877). The latter work was accompanied ly in plate, but unfortunately without any explanation of the figures, mini ind no references to these were given in the text, I have thonght it unclul to publish here the explanation with which 1)r. Westerlund lat kimily favoured the writer.

Fig. r. Helix: fruticum, Müll
Fig. 2. "nurdenskioldi, West.
Fig. 3. ", stuxberyb, West. Fig. 33 ," sibivica, West.
Fig 4. Tupa thesli, West. Fig. 14. Planorbis intraliatuk, Wesh
Fig. 5. Surtinea twrijila, West. lig. 15. Valıata aliona, West
Fig. 6. ,, putris v. aututa, l'fre? Fig. i6. ", sithirica, Midd.
Fig. 7. " altaica. Mart. Fig. 17. Sphaerium leminodiz, West
Fig. 8. Limnnea attenuata, Say. Fig. 18. ,, nitidum, Cless.
Fig. 9. ," layotis, Schr. v. Fig. 19. Cabyrulinc lacustrid, var. patula, West. liig. 20. Pisidium nordenslioldi,
Fig. 10. ", preger v. prorlucta,
West. 「ïg. 23, , sitrȯricum, Cless.
Fig. II. " ", v. torquilla, Fig. 22. " mucronatum, Cless.
West. Fig. 23. " boreale, Cless.
Most of the known Helicoids, as might be expected, belong to the Palaearctic Fauna, the Zonitiflat leing represented by ninc specjes, the genus Eulota, more characteristic of the Easrem Fauna, producing eight species.
Family Zonltidae.
Sub-family Zonitìnae.
Genus Vitrina, Drap.
pellucida, Müll. Raikal; Group Haplogona, Pils. 'Tomsk; Jenissei; Amur; Genus Pvramidula, Fitz. Kamschatka. Section Gonyobiscus, Fitz
sibirica, West. Tounsk; Jenissci.
$=$ rugulosa, West.
exilis, Morel. Kamschatka.
Genus Vitrea, Fítz.
hammonis, Strom. Tomsk; Jenissei; Amur.
petronella, Charp. E. Sllyeria.
pura, Ald. Jenissei ; Baikal.
Genus Euconulus, Reinh.
fulvus, Drap. Baikal ; Jenissei ; Group Belogona, v. Iher. Irkutsch; Kurga; Amur ; Belogona Euadenia, Pils. Kamschatka.
pupula, Gould. Kamschatka.
Sub-lamily Ariophantinae,
Genus Zonitoides, Lehmann.
nitidus, Müll. Tomsk ; Jenissei
Family Endodontidae.
Group Polyplacognatha.

Genus Punctum, Morse. рyцmaenm, Drap Aaikal; Amur.
rudurata, Stud. Jenissei ; W. and E. Siheria.
v, angulosa, Mouss. Tomsk : Irkutsch; Amur; Kamschatka.
v. opulens, West. Kamschathia. pauper, Gould. Kamschatka. flocculus, Morel. Kamschatki. Family Heltcidá. Genus Eiurota, Hartm. Section Eijuota, s.s. fruticum, Müll. 'Tonsk; lenissel ; Altai. v. asiatica, Dyb. Amur. v. europaea, Dyh. W. Siloria ravida, Bens. Amur,

Serotina, A. Ad. Saghalien.
maacki, Gerstf. Amur
selskii, Gerstf. Amur,
m ddendorffi, Gerstf.
Wladiwostock; Anur.
cincto-inflata, Mouss.
Wladiwostock.
similaris y arcasiana, Cr . and
Deb. Amur.
weyrichi, Sehrenck. Amur.
Saghalien
Gentrs Caphates, MdF.
Sub-genus Eucathaica, Andr.
graeseri, Mouss. Wladiwostock. Section Dibothrion, Pfr.
Peiogona Siphonadfania, Pils.
Genus Helicer.la, Fér.
Section Helicella, s s.
apollinis, Mart. Altai.
Section Thebs, Risso.
strigella, Drap. Amur
dujensis, West. Saghalien.
schrencki, Midd. Altai ;
Jenissc'; Irkutsch ; Trans-
Baikal; Amur.
$=$ sibirica, Friv.
helvola, Friv. ? W. Siberia.
carthusiana, Müll. Irkutsch; Amut.
Genus Hygromia, Risso.
Section Monacha, lijzz.
frequens, Mouss. ? W. Siberia
incarnata, Müll. ? W. Siberia. ussuriensis, West So. Uaburi
Sectinn Fruticicola, Held.
hispida, L. ? Amur.
sericea, Drap- Irkutsch; Amur.
rufescens, Penn. Irkutsch;
Amur.
$=$ strigella, Gerstf.
rhysota v, altaica, West. Altai.
nordenskioldi, West. Altai;
Jenissei; Amur.

- rufescens, Schr.
v. depressa. WCal.
v. planata, West.
verna, West. Irkutsch. $=$ hispida, Schr.
dieckmanni, Mouss. Amur. stuxbergi, West. Altai; Annur. annexa, West. Jrkutsch.
$=$ rufescens: Schr.
czekanowskin, West. Irkutsch
eutheta, West. Amur.
bicallosia Friv. Altai.
sibirica, West. Amur.
$=$ gerstfeldti, T)yb.
Genus Acanthinula, Reck.
Section Zongfnites, Morse.
harpa, Say. Amur.
$=$ amurensis, Gerstf.
Gjenus Varidonia, Riaso.
Fulchella, Müll Jenissei ; Amur costata, Müll. Irkutsch ;

Jenissei ; Amur.
v. amurensis, Sterki. Anur. tenullabris, Braun. adela, West. Irkutsch ; Jenismei ; Amur.
Genus Hreicicona, Fér.
Section Chilostoma, Fitz. Distr.
Section Is Gncmossoma, lilk, supersonata, Midd. E. Silırin. Genus Hillix, L.
Section Tacisea, Leach. atrolahiara v. laeta. W'chl. Awtrasia.

$$
\text { iii. } \Lambda F G H A N I S T A N \text {. }
$$

One of the leart known regions as regards Mollusca is mmantomedly

Afghanistan. The earliest record is by Capt. Thomas Hutton (Journ Asiat. Soc. Beng., vol. xviil, part 2, 1849 (1850), p. 649), who pro cured a few species during the advance of the Army of the Indus into, Afghanistan in 1839 . Only three Helicoids were recorded. Thw only subsequent contribution appears to be that by Mr. C. F. Ances in t893, (Bull. Soc. Zool. Fr., xviii, p 40), who inter alia refers to the paucity of the Molluscan Fauna of Baluchistan, which he attribute", to the geological constitution of the soil, and the vast deserts which cover part of its surface. No Helicoids of Baluchistan are known.

Vitrina baccata, Hutt.
Eulota bactriana, Hutt.
Helicella (Heliomancs) krynickii v. candaharica, Pfr.
iv. KURDISTAN.

The only known Helicoids of this district belong to the genus Helis: Bourguignat recorded a few, the remainder were described l_{y} Galland. The unsettled state of the country no doubt accounts, for our meagre knowledge of its molluscan fauna.

Genus Helix, L.
Section Levantina, Kob. guttata, Oliv. kurdistana, Parr.
v. ergilensis, Gall.
v. sesteri, Gall.
v. michoniana, Bourg.
$=\mathrm{v}$. baschkira, Pfr.
escheriana, Bourg.
v. diarbekirana, Gall.
v. euthyomphala, Gall.
ninivita, Gall.
Section Helicogena, Fér.
lucorum, L.

v. MLSOPOTAMIA.

We owe our knowledge of the Mollusca of this region almost catirels to the researches of Dr. Schlaefi, the results of which were tabulation by Mousson in 1874 .
Family Zonitldae.
Sub-family Zonitinae.
Genus Vitrea, Fitz. aequata, Mouss. nitelina, Bourg.
Family Helleddae.
Genus Leucochron, Beck. fimbriata, Bourg.
Genus Helicella, Fér.
Section Xerocrassa, Monterosato. seetzeni, Roth.
Section Heliomanes, Moq. commeata, Mouss,
derbentina, Andrz. mesopotamica, Mouss. vestalis, Parr.
Section Theba, Risso. obstructa, Fér.
Genus Helix, L.
Section Levantina, Kob.
caesariana, Parr.
guttata, Oliv.
escheriana, Mouss.
Section Helicogrna, Fér.
figulina, Parr.
lucoram v. onixiomicra, li...n.
vi. Λ RABlA.
like many of the preceeding regions, Arabia has but a scanty molluscan Fauna. The bulk of the Helicoids show an intimate affinity with the Fauna of Λ sia minor. One species of Lejeania found in the sonth, however, connects this. region with Abyssinia.

Family Zonitidae.
Sub-family Zonitinae.
Genus Vitrina, Drap. gruneri, Pfr.
Genus Lonites, Montf. sabata, Mart. Menaha.
Genus Eivconulus, Reinb. eremias, Melv. and Pons. Hadramaut.
Family Helicidas.
Group Eelagona, v. Iher. Belonna Euadenia, Tils.
Genus Levcochroa, Beck. boissieri, Charp. Arabia, Petraea.
Belogona Sirhonamenia Pils.

Genus Hejicmitia, Fér.
Section Xerocrassa, Monterosilto. beadles, Pils. Desert.
Section Hellomanes, Moq. derbentina, Andrz. Oman.
Sccfion Lejeania, Anc. Ieucosticta, Mart. Menaha.
Genus Helix, T. Section Euparypha, Haltm. tohenica, Bourg. Aden. Makalla,
Section Eremina, Pfr. desertorum, Forsk. Arabia Petraea. = arabica. Roth. desertella, Jíck. Djeddah.
vii. PERSTA.

The principal contribution to our knowledge of the F'ersian Helicoids is by Prof. von Martens, who published the malacnlogical results of Prof. Hausknecht's travels in Persia as well as Kurdistan, Mesnpotamia and Syria. The entire molluscan fauna is essenfially palaearctic, no Eastern Asiatic forms having been found. Dr. Westerlund described the material collected in North Persia by Keyserling and Bienert, and Mousson thase collected by Dr. Sievers; Dr. Poblig published the results of his own travels in Nortla Persia; Prof. Boettger enumerated the shells procured by Dr. Radde's expedition to Transcaspia and Chorassan, and also those collected by Hans Ieder and Otto Herz, while Issel catalogued the shells acquited durine the Italian mission to Persia. The most recent additions are by Mr. E. A. Smith from the Urmi district, and Plarrer Naegele who made considerable collections, the shells being described hy himself and ly [) r . Kobelt.
Jamily Zonitidae.
Siub-family Zonttinae.
(icmus Vitrina, Drap.
Sitection Oingolimax, Fisch.

annularis v. persica, lisetty.

 Schab-rud.Genus Polita, Meld. berzi, Boctty. Tuesch.
patuliformis, Bocitg. Schah-rud.
v. calculiformis. Hoettg. Chorassan.
Section Gastravodon, Boettg. siaretana, Bocttg.
Genus Vitrea, Fitz
lucida, Drap
cellaria: Müll v , concinna, West. Siaret, Chorassan.
caspia, Bnertg. Astrabad.
Genus Retinfila, Shutt.
semisculpta, Mart Caspian.
persica, Boettg. Siaret,Chorassan.
Genus Euconulus, Reinh.
fulvus, Drap. Mazenderan.
Family Helleidae.
Group Belogona, v. Ther.
belogona Siphonadenta, Pils.
Genus Helicfila, Fér.
Secticn Helinmanes, Muq.
derbentina, Andrz. Astrabad;
Ghilan: Salmas, Buschir. Section Euparypha, Hartm.
krynickin, Andrz. Ispahan; Ashahad.
millepunetata, Boetty. Irak Adschmi; Schab-rud.
Section Helicella, s.s.
aberrans, Mouss.
Section Candidula, Kob.
acutissria, Boettg. Koyun
Daghi.
kotschyi, $\mathrm{P} \mathrm{fr}_{\mathrm{r}}$.
langloisiana, Bourg. Schira?.
parableta, Boetty. Urmia?
profuga, Schm. Teheran.
Section JAcosta, Gray.
crenimargo v. obtusior, Morss. Salmas.
Section Thrba, Rissc.
arpatschaiana, Mouss. Salmas.
pisiformis, Pfr. Astrabad; Siaret; Schah-rud.
v. atypa, Boetcg. Astrabad.
syriaca, F.hrb. Ghilan.
talyschana, Mart. Rescht ; Astara.
Genus Hyyromia, Risso.
Section Moracha, Fitz, aristata, Kryn Mazenderan.
Genus Acanthinula, Beck
Section Zoogentres, Morse. barpa, Say. Astrabad.
Genus Vacr.onia, Risso pulchella, Müll. Shamhala. costata, Müll. Mazenderan. mionecton v . shamhalensis, Rosen, Shamhala.
Genus Helicigona. Fér
Section Fruticocampylaea, Kob. narzanensis, Kryn. Astrahad. ravergiensis, v. persica, Boettg. Astrabad; Ghilan.
transcanrasica, Bayer. Mr. Fiburs.
Genus Hrinx, L.
ection Euparypha, Hartm. subdentata, Fér.
Section Levantina, Kob. dschulfensis, Dub. Araxes Valley.

- djulfensis, Mouss.
mazenderanensis, Nes. Mazenderan.
ghilanica, Mouss. Ghilan.
urmiensis, Naeg. Salmas; Urmia.
Section Tachea, Leach.
atrclabiata, Kryn. Ghilan.
v. stauropolitana, Schın. Ghilan, Rastemabad.
v. elegans, Issel. Ghilan.
v. lenkoreana, Mouss. Rescht ; Astara.
Section Helicogena, Fér.
lucorum, v. taurica, Kryn. North Persia.
figulina, Parr, Seir, Urmi. salomonica, Naeg. Urmia.

CURRENT LITERATURE.

Nierstrasz, H. F.-The Solenogastres of the Siboga-Expedition. Sthma, Expeditie. Monog, xlvil, Leyden : 1902 . pp. 46, plts. j -vi.
One of the most important memoirs of recent years. upon the structure and classification of the Solcnogastres, is that just published in connection with the "Siboga" Expedition.

Hitherto only lwo species were known from the East Indian Archiptlagn viz. those described by Thiele in 1808-Nolonenia clavigera and Proneomema australts. The 'Siboga' expedition has been extremely fortunate, bringing back no less than 65 specimens, which are contained in 8 genera, of which 4Dinomenia, Proparamenia, Hemimenia, and Cyclomenia-are new. All the species, twelve in number, are also new.

The gemui Dinomenta is churacterised by the presence of a thick coticle, in which are many kayers above each other of hollow, pointed spicula. The papillae are numerous. There is a dorso-terminal sense organ present, three ventral folds : two separate, unranified, tubular salivary glands ; and cloacal ducts with vesicular appendages. There are no gills and the radula is distichous, Two species are described, D. Mubrechti, and D. verrucusa. The genus is regarded as related to Proneomenta because of the integument, and to Paramenia on account of the distichous radula.

The genus Proparamentia has also a thick cuticle with many layers of pointed spicula, and numerous papillae. There is noclorsal sense organ, and no copulation spicula. There are 3 ventral fold; 2 separate, ramified salivary gland; $\mathbf{2}$ vesicular receptacula seminis ; and a circlet of gills in the cloaca. The radula is monoserial.

Heminenia while closely related to Neomenia, differs from it in the structure of the integroment, which has a thin culicle, with flat imbricated spicula, and no papillae. It is very rightly regarded as a transition form, and as such may be compared with Paramemia, Pruvol.

Clyclomenia is another similar genus, exhbiting relationship to Proparamemar on the one hand and Paramenia on the other.

The author divides the Neomemidae into two groups, viz.: A. Those forms possessing a thick cuticle, with mumerous pointed, hollow spicula in different layers, and a large number of hypodermal papillae, and B . Those forms with a thin cuticle, covered will a layer of flat, imbricated spicula, and no hypodermal papillae He further points out, that taking the radula as a basis of classification, we have the family divided into three groups, viz. a. Forms with polystichoms radula, b. Forms with distichous radula, and c, Forms without a radula. II further appears that there is a correspondence between groups A and a, and groups B and b, with cextain exceptions such as Dondersia and Macellomenh.

If we might suggest a slight improvement upon this, it woukd be as follows: Group i.-Neomenlatlna for group A of Nierstrasz
ii-Parameniatina for inlermedialc forms.
iii.-Metamenlatina for group B of Nierstrasz.

The author then discusses in some detail the relationships of the known genera of Neomeniidac, which are summarised in cliagrammalic form.

In additions to the conclusions stated above, Dr. Nierstrasz has set inth in great detail, with a weath of illustration, a host of anatomical iacts on tho structure of the new genera and species, which in the presenl state of ow'
knowledge, cannol fail to be of the greatest importance. While it is very interesting to guess at the position and possible origin of the Aplacophora, it is much inore imporiant that more forms should be worked out, in order that theres may be smme foundation for, what an present, can only be regarded ans finerestiths: speculation. The generalisatinns in this memoir, do not go beyond the point warranted by the result oblained, It is a solid onntribution, and marks ant important advance in our knowledge of these intereating mollusca.- W.E.C.
Hedley, C.-Studics on Australian Mollusca. Pt. v. Proc, Linn. Suc. N.S.W., 1902, pp. 700-708, pl, xxxiv.
The follnwing new species are described and igguced: Columbella plexct,
 given, and valuable ncles on their nomenclature and classification.
Drummand, Isabella, M. -Nntes on the development of Patudina [Vivipara] witipara, with special reference to the Urinogenilal organs and theories of Gasteropod torsion. Quart. Journ, Micro. Sci, 1902, vol. 46, pp. 97-I43. pls. 7-9.
Miss Drommond has studied the development of the urinogenital organs of Vivipara. and arrives at the following conclucions: the functicmal kidncy of the adult belnngs, as won Etlanger has already shown, to the left side of the tody and the right is not lost, as described by von Erlanger, but persists as the genital duct. An indication of the original coetomic connection between gonad and kidney, is present in the course of development. The gonad arises as a solid proliferation of the morphologically clorsal wall of the pericardium. It arises from the original left side, and shows no sign of a paired origin.

The authoress then briefly summarises the theories of Bülschli, Plate, Pelseneer. Amaudrut and Boutan on Gasteropod torsion, and divides such theorics inlo two classes, viz i. Those which view the present position of the pallial conplex as due to a forward movement along the iight side of the bridy, which resulted from greater growth of the left side than of the right, ii. Those which view the preseat position of the pallial complex as due to a ventral flexion, followed by a vertical rolation of the whole visceral hump upon the head. The evidence for the second of these views seems greater thas that for the fis of.
Dautzenberg. Ph-Descriptinn de deux Bulimulidés nouveaux presponant du Pérou. Journ, de Conchyl., 1goi, vol. xlix, pp. 213, 214, pl. vii, fig. I-4.
The two species described and figured are Peronaens iocosensis and P.baeri
Dautzenberg, Ph. et Rernier, J.-Description d'un Bulimidé nouveau, provenant de la Nouvelle Calédonic, Ibid., pp. 215, 216, pl. vit, fig. 5, 6, Lencocharis porphyrochila.
Dautzenberg, Ph.-Sur denx déicrmations ohservées chez des Placostylus de la Nouvelle Calédonie, lbid., pp. 217, 218, pl, vii, fig. 7, 8,
The author describes and fgures iwo interesting monstrosities of Placosfilws forpherostomus, Pir., and P. fibratus, Martyn,
Dollfus, G. at Dautzenberg, Ph.-Nouvelle list des Pélécypodes et des Brachiopodes fossiles dı Mincène moyen din Nord-Ouest de la France. lbid. pys 229-280.
The antlanes catalogue 185 apecies of molluscs and various varieties. the following spucicn are new: Coripia boistely and Prasina leconntreae.
Dautzenberg. Ph.-Descripfinas de coquilles nouvelles provenant de ta Notuvelle-Calédonte, Ibid., pp. 299•302, pl. viii.

The author figures and describes Rhytida bermieri, Lemochoms porphwnchula, Daulz. and Bernier var. rtbicunda, and Placostyths homrifolitens, wll th which are new.
 par M. Baer. Ibid, pp. 306-313, pl. ix.
The new species are Helix (Labyrinthus) baeri, Drymu'ns monstimme', D. scoliodes, Buthmulus (Atarus) hucyabocnsis, and Ampulturia hatrr.

Dautzenberg, Ph.-Sur une nouvelle variété de Chlanys uprewtath. Wh, p. 340

Wagner, A-Neue Formen und Fundorle des Genus Pomatias Nlinlen. Ann. d. k. k. naturhist. Hofmus., 1gor, Bd. xvi, pp 63-65.
The new forms are P. (Auritus) gractis v. gracillima, nov., allil P (Pleutopoma) roscoli, n. sp.
Sturany, R.-Diagnosen newer Landschnecken aus der Hercegovina، Ibld., PD. 65.67 .
The author gives descriptions of the following new species: Campylaca upfelbecki, C. pentheri, Xerophila rhabdota, and Clatisilta (Medora) matulici.
Sturany, R.-Neue Inselformen daimatinischer Landschnecken. Ibid., pp. 68, 69, figs, I-4.
Dr. Sturany describes and figures the following interesting species, viz.: Campylaea insolita, Zglr.v. lagostana, Buliminus brusnicensis, and B. pelagosamus.
Sturany, R,-Čcber eine neue Enneal aus Südalrika. Ibid., pp. 69-7I, fig. Ennca fremnodes, n. sp.
Sturany, R.-Ueber eine neue Höhlenschnccke. Verhandl. d. k. k. zool-bol. Gesell. Wien, 1gor, pp, $76 \mathrm{r}, 762,3$ ligs. Spelaeoconcha paganethi, n. sp.
Stupany, R.-Mitheilungen über Gehäuseschnecken alln dem Peloponnes, Ibid., 1902, pp. 402-409, Figs 1-4.
Sturany, R.-Ueber die Verbreitung von Cylindrus obhts, Drap. Nachr. c. Dealsch. Malak, Gcsell., 1902, pp. 9-13.

Sturany, R.-Beitrag zur Kenniniss der kleinasiatischen Mollusken fauna. Sitz. d, k. Akad. d. Wiss. Wien, I902, Bd. cxi, pp. 123-140. 'T. i, ii.
In all 53 species and varicties are recordcd, of which the following are nuw : Helix (Xerophila) dichesthemina, H (Xer.) pyramidafa, Drp v. platicnsis, Butiminus (Chondruta) wtrneri, and Unio desectus, Drouër. f. pursaceissis.
Hoyle, Willam E.-British Cephalopoda: Their Nomenclature and Ident. fication. Journ. Conch., 1902, vol. Io, pp. 197-206.
An authoritative statement on the nomenclature of the Brilish Cephalopodit las long been desired, and Mr. Hoyle's interesting and useful paper will be heartily welcomed by all malacologists. The most important change perhaps, is the adoption of the names Pulypus and Moschites for the well-known genuri Octoputs and Elcdonc. A useful key for the determination of British forms, aml a Bibliography compictc the paper.
Hoyle, William E.-The Luminous Organs oi Pterygiotewhis margarilifira, a Mediterrancan Cephalopod. Mem. Manchester Lil. and Phil. Soc., 1902, vol, xlvi, pp. 1-14, figs, I-6.

Mr. Hoyle finds that the Juminous organs of Pterygioleuthis marganitht may be divided into four sels: i. Ocular, ii. Siphonal, iii. Branchial, and is Abdominal. Of the first set there are nine on each eyeball, their arrangement is ixregular and there are marked diferencea in size; the second set are two in number, they are siluated just below the hinder margin of the siphon: the third set are also paired, and lie ar the root of each gill ; while the fourls sed are divided into a group of three lying transversely in the mautle cavity, close to the anteriol margin of the nidimental gland, and two lying one in front of the other in the posterine end of the mantle cavily in the median line. As regards structure, the ncular and siphonal are the most complex, the branchial and abdominal being less so. Gencrally they recall the structure of the laminous organs in other cephalopoda, described by this and other writers.
Frandsen, \mathbf{P},-Studies on the Reactions of Himax maximus to Directive Stimuli. Amer. Ac. Arts and Sci., Igni, vol. xxxvil, Pp. 185-227, 22 figs.
The behaviour of any organism loward arfificial slimulation, the author remarks, is probably always largely dependenl on its normal environmental conditions. The long action of these conditions, assisted, perhaps, by the animal's own efforte, conscious or unconscious, to adapt itself to them, finally results in certain labits and instincte. The procese of adaptation being extremely slow, or ganisms aue strongly averse to greal or sudden changes in their environment and incapable of adjusting themselees to them. As a rule, then, we should expect animals to seck those conditions ol light, heat, mosture, and olher physical and chemical influences, which are most in accordance with those to which they are normally subjected.

In the present paper the author very carefully details his study of the feccmotor responses of I.imax maximus to three kinds of stimuli; those nf touch, gravity and light ; the chiel resulls are as follows : Under crdinary citcumetances, the slug is negatively thigmotactic. On an inclined glass plate, all slugs give a geolactic response, in some it is a decided posilive, in others a markedly negative response; a few are snmewhat indifferent. The quality and quantity of the slime sccreted, and the relative proportions of the length of the anterior and posterior regions of the animal's body, are the two main factors in accounting for the different responses. The animals are markedly phototactic, and as in geotaxis, there are individual differences. To strong light, slugs, on the average give a strong regative response ; the degree of response gradually diminishing with the reduction in the strengit of the slimtins. They are responsive to light atimulicovering a wide range of intensilies. In the dats, other directive slimuli being eliminated, the slug tends to travel in a spiral of gradually increasing radius, almost invariably producing one or more loops. These responses to touch, gravity, and lipht-stimuli emphasise the fact, that it is an anlimal's nomal environmental condilions which chiefly determines its general response 10) artificial stimuli. The variations in precision and character of this general response are mainly dependent on cerlain internal fachors. such as the food conditions of the animal, its fear of an enemy, and desire to escape caplivity.

EDITOR'S NOTES.

Owing to the want of space, obituary molices of the late Alexander Konvalevsky, Oliver Collelt, and J. G. Cooper are held over until the December Insule.

THE

JOURNAI. OF MALACOLOGY.

No. $4 . \quad$ Decemper 24 th, 190 . Vol. IX.

DESORIPTION OF A NEW SPECIES OF GOMPHINA FROM NEW ZEALAND.

Ry EIDAR A. SMITH, FZZ.S.
Mr. William H. Webster of Aluckland, New '/ealand, has very kindly presented to the British Musoum specimens of the Bivalve about to be described, also an oyster attached to part of a Haliotis, and a pecimen of the rare Unio (Diphodon) webstert of Simpson, from Waiuku, New Zealand. The oyster is only ahont i 6 millm . in diamteter, and may very possibly be merely the young state of a fairly large species. As it posscs ies no striking features, and considering the variability of oysters generally, it seems to me unadvisable, at all wents until more material is available, to attempt to name or describe it.

Gomphina maorum, n. sp.
'Testa aequivalis, insequilatcrah's, solidiuscula, svato-trigonalis, medin-- riter convexa. alba, fusco biradiata, lineisque sigzag-formibus fuscis irregulariter picta, ad mobones plus minus mfescens; latus anticum -.".ute rotundatum, pasticum brevius; margo dorsi posterior valkle whsendens, parum arcuatus, anterior longior, minus obliquus, vix

[^22]curyatus, ventrulis late arcuatus; umbones mediocriter prominentes, fere contigui, postmediani; valvae concentrice fortiter striatae, haud Iunulatae intus allac, in medio rufo plus minus saturatae, ad marginem laeves; cicatrix antica ovalis, posterior brevior, magis rotundata; sinus pallii parrus, minime profundus.

Longit. 16 millim., alt. 13 , diam 8.
Both of the examples of this species which I have examined, exhibit two brown rays, one down the middle of the valves and the other posterior to it, the rest of the surface being marked with irregular wavy or zigzag lines, and they are slightly reddish towards the umbones.

The species is at once separable from Gomphina undulosa, Lamarck*, by the cliference of form and the different position of the beaks and the relative difference in the extent of the antcrior and posterior ends. In (r. undulosa the beaks are slightly antemedian, whereas in the present species they are decidedly postmedian. The extent of the valves in front of and behind the umbones, is consequently reversed in the two forms. The style of colouration, the dentition of the hinge and the character of the scars and pallial line are alike in both. (7 . moerchi of Angas \dagger is a more convex and triangular shell and subrostrate posteriorly. This subrostration, howewer, is only noriceable in the adult form, for young examples are quite obtuse behind. The locality of G. moerchi was unknown at the time it was described, but examples, received from the late M. Rohilhard, show that it occurs at the Mauritius. G. undulosa has been recorded from the same locality. $\dagger \dagger$

[^23]
ON THE SYSTEMATIC POSITION OF PATELLA KERMADECENSIS, PILSBRY.

(\$3, 11, viii.)

 Barner Island, on a trip to the kermaters, kindly procomed for mos some specimens with the animal, and it was my intention of giving an account of the anatomy of this large and beautiful species: Int having only a very limited time for scientific rescarch at my disposal, 1 hat to abandon the idea, and am now publishing only a few notes which may help to settle the systematic position of this mollusc.

The accompanying figure (PJ . viii, fig. t .) of the undersite of P. hermadecensio, drawn in matural size from a spirit specimen, slusww that the branchial cordon is complete, and not interrupted in liom.
'The radula is rather short, and the formula is $3\left(3_{1}^{2,1} y_{j}\right) 3$, r'ixill тт represents a row of teeth, and hardly needs an explanation. It וnn. however, be mentioned that the short rhachidian tooth linns two small sharp side-cusps on its reflected portion. The radula 'muman about 85 rows of tecth.

These few facts would, it seems to me, suggest that the mprider
 Patella, L. (s.str)

New Zealand, Auckland, $\mathbf{1 0}$, Oct. 1902.

> EXPIANATION OF PLATH: VIII.
 specimen. Natural size.
Fig. 2. Teeth of radola, magnified.

h. Suker dah
H_{u} th, Lithry wiondon

A CLASSIFIED LIST OF THE HELICOID LAND SHELLS OF ASIA.

(FART IVㄱ)
By G. K. GUDE, F.Z.S.
viii. ARMENIA.

The Helicoids of Armenia all belong to the Palaearctic Fauna. The Helicifue are represented only by Belogona Siphonadenia, viz: Helicella, Holuciyona, and Hefli. The Zonititlas produce Yitrina, Reterellla and Vítrea.

The earliest record of Armenian shells is by Hohenacker (1837), collected by himself. Subsequent collections were made by: Sievers, described by Mousson; Filippi, enumerated by Tssel; Schneider ; Leder, catalogned by Boettger; Huet du Pavillon, published by Morillet (1854) ; and Brandt, recorded by von Martens (1880).

Family Zonitidae
Sub-family Zonitinae, Pils.
Genus Vitrina, Drap.
sieversi, Mouss.
$=$ komarowi, Boettg. Clenowka, N. W. of Goktscha Lake.
Genus Vitrfa, Fitz. transiucida, Mort.
Genus Retinfila, Shutt.
сургеа, Pŕ. Baibout.
Family Helictdae
bejogona Stphonadenia, Pils.
Genus Helicetla, Fè.
Seccion Hpliomanes, Moq.
variabilis, TJrap. Ispir.
derbentina, Andr. Borschom; Abas Tieman.
Section Canimduta, Kobelt.
striata, Müll Baibout, between Erzeroum \& Trebizond.
Section T'hera, Kisso.
arpatschaiana, Mouss. var. sewanica, Mart.
Is. Sewanga, Goktscha Lake. carthusiana, Müll. Baibout. globula, Kryn. v. nana, Boett! Elenowka.
Genus Helicigona, Féf.
Section Fruticocampylaea, Kobelt.
joannis, Mort. Erzeroum. $=$ dumonti, Mort. v. major, Mort. pratensis, Pfr. v. depressa, Kobelt. Azchur, Upper Kur. v. delabris, Mouss. Genus Vallonia, Risso. costata, Mill. Michailowo. pulchella, Mïll. Michailowa. Genus Helix, Tinné. Section Helicociena, Fér.

[^24]aspersa, Müll Trebizond.
pomatia, L. 'Trehizond.
ligata, Müll. v. gıssoneana, Shutt. Tortoum.
melanostoma, Drap v. candida, Rossm.
vulgaris, Parr. Between 'Tiflis
and Goktscha.
$=$ obtusata, Zglr.
$=$ obtusalis, 7 gl .
nordmani, Parr. Achal\%ych Torcoum.
Section 'l'achea, Leach. atrolabiata, Kryn. Borschom.
ix. 'TRANSCAUCASIA.

Repeated explorations of this district, principally by Gorman travellers, have enabled us to form a lairly comprchensive surfey of its molluscan fauna

The carliest extensive colleclion is that made by Dr. Aloxandre SchlaHi, recorded by Mousson in two concributions (Coquilles terrestres et fluviatiles recuctlies dans l'orient par Ic Dr. Alexandre Schlafli, 1859, and 3663). Professor liocttger, however, is the chief contributor, having published no less than twelve trealises in : Jahrbüchern der Deutschen Malakozoologischen Gesellschaft for 1879,1880 , 588 I , 1883, and 1886 ; Bericht der Senckenbergischen Naturforschenden Gesellschaft for 1884 and r 889 ; and Radde's Fauna und Flora der Südwestlichen Kaspigebietes (1886), based on che results of Hans Leder's and O. Retowski's explorations. Oscar Schnedder published the results of his travels in Naturnissensthaftliche leiltäge zur Kenntniss der Kaukasus Lander (T 878), and Klika in Sitzungs Berichte der Kön Boehmischen Gesellschaft der Wissenschaften, 1893, no. xlv.

As might be expected the relations of the Transcaucasian molluscan fauna are with South Russia, Armenia, and Fersia on the one hand, and on the other with Asia Minor.

Family Zonitidae.
Sub-family Zonitinae, Pils. Genus Daldebardia, Hartm.
sieversi, Boettg.
lederi, Boettg. Kutais. jetschini, Wagn. Psirsk.
Genus Vitrina, Drap. Sub-genus Phenacolimax, Stab.
pellucida, Muil]. Manglis ; Mamoutli : Kutais;
Elisabetpol.
globosa, Boettg. Ibatani,

Sub-genus Ohigotimax, Fisch.
annularis, Stud. 'Tiflis; Elisabetpol.
= subglobosa, Mich.
sieversi, Mouss. Kutais; Tiflis; Araxis Region.
$=$ komarowi, Boettg.
Sub-genus I'rochovitrina, Schacko.
subconica, Buettg, Kasbock. lederi, Boettg.
subcarinata, Boettg. Lenkoran.

Genus Retinelia, Shutt. duboisi, Charp. Sukhum; Psirsk ; Kutais ; Gilat ; Elisabetpol.
$=$ approximans, Parr.
suanetica, Boettg. Suanetia, sucinacea, Boettg. Albkhasia. elegans, Boettg. Lenkoran. mingrelica, Mouss. Kutais; Sukhun; Psirsk; Yoti.
v. intermissa, Kob.
selecta, Mouss. Kutais: Sukhum ; Lenkoran.
reticulata, Boettg,
$=$ mingrelica, Boctlg. non Mouss.
filicum, Kryn. Lenkoran. koutaisiana, Mouss. Kutais; Borschom; Batoum.
$=$ cypricus, var. Mouss.
v. transitans, Bocttg.
difficilis, Boettg. Batoum.
v. discrepans, Retowskj.
horsti, Boettg Maikop ; Dachowskaja ; Ch ımischky.
Genus Aegorsina, Kob. pontica, Boettg. Between Sulkhum and Poti.
Genus Vitrea, Fitz. cellaria, Müll. Akstafa; Kutais. Sub-genus Conulopolita, Boettg. angystropha, Boettg. Kutais; Poti ; Elisabetpol.
contortula, Kryn. Batoum; Sub-family ArlophantInae Borschom ; Oschten Genus Zonitoides, Lehm. Fischt ; Lenkoran ; Kutais; Poti.
subeffusa, Boettg. Borschom;
Manglis; Mamoutli; Lenkoran; Oschten Fischt ; Mount Guk.
$=$ effusa, Boettg.
v. daghestana, Boettg. Kaba.
v. depressa, Boettg. Helenen dorff.
pygmaea, Bocttg. Manglis. sorella, Mouss. Rion.
Genus Polita, Held.
pura, Alder. Manglis; Elisabetpol.
v. lenticularis, Held. Borschom: Lenkoran.
hammonis, Strom. Borschom.
petronella, Charp. Oschten l'ischt.
v. sulnitidosa, Mouss. Mamoutli.
$=$ jaccetanica, Bocttg.
suturalis, Boettg. Batum; Suram Mountains. caspia, Buettg. Talysh District. translucida, Mort.
decipiens, Boettg. Shagh Dagh
komarowi, Boettg. Between Sukhum and Poti.
derbentina, Boettg. Derbent ; Helenendorff. Genus Eucunclus, Reinh.
fulves, Drap. Burschom; Kutais; Manglis; Kasbek. Batum ; Elisabetpol ; Oschten Fischt. Sukhum and Poti. nitida, Müll, Elisabetpol; Sukhum ; Borschom ; Michailowo
Family Endodontidae. Group Polyplacognatha. Genus Puncturi, Morsc.
pygmaeum, Drap. Borschom: Manglis ; Elisabetpol.

Group Haplogona
Genus Pyramidula, Fitz.
Suhgenue Pyramiduta, s.s.
rupestris, Drap. Germab Borschom ; Kutais ; Elisabetpol.
v. saxatilis, Hartm. Borschom.

Section Patulastra, Pfr.
lederi, Boertg. Lenkoran.
Seation Gonyomiscus, Fitz.
rurlerata, Stud Borschom ; Elisabetpol.
v. gorktschaana, Mouss. Borschom: Gorktschak.
Family Helicidae.
Arlogona Eualenia, lils
Genis Lulota, Hartm.
Section Eelota, s.s.
fruticum, Müll. Elisabetpol.
Belogona Sifhonadeita, Pils.
Genus Heliceida, Fér.
Section Heitomanes, Mog.
variabilis, Drap. Poti ; Nowo Rossizk.
vestalis, Parr Forschom.
krynickii, Andr. Wladikawkas;
Baku; Lenkoran.
$=$ babondubi, Parr.
$=$ theodosiae, Cless.
v. minor. Sukhum; Novo Rossigk.
derbentina, Andr. Derbent;
Akstafa; Patoum; Mang
lis; Kers; Baku; Kutais;
Tifilis; Borschom; Poti.
v. caucasica, Parr.
v. isomera, Boettg. Lenkoran.
v. suprazonata, Mouss.

Delizan.
v. anfrazonata Mouss. Dagomys.
Section Candidula, Kob.
acutistria, Boettg. Tollis.
$=$ crenimargo.
© obtusior, Mouss
parableta, Boettg. Araxis.
profuga, Schm. Gudaur.
Section Jacosta, Gray.
crenimargo, Kryn. Sardarabad.
$=$ piatigorskiensis, Bayer.
Section Thera, Risso.
arpatschaiana, Mouss. Arpats chai ; Daralaghez.
Ilaveola, Kryn. Hetween Sukhum and Poti ; Psirsk.
flavolimbata, Hoettg. Suanetia.
holctricha, Boettg. Psirsk.
pachnodes, Bocteg, Uetsch Deré.
pisformis, Pfr. Lenkoran ; Batum; Elisabetpol.
pseudoglobula, Mouss. Kapudschiz.
selecta, Klika. Borschom; Kutais; Manglis; Gilar; Delizan; Ĺlisaluetpol; Araxis Region.
$=$ globula, Kryn.
septemgyrata Mouss. Kutals; Kers.
strigella, Drap. Wladikawkas.
transcaspia, Boettg. Koper Dagh.
Section Platythera, Pils.
prometheus, Boettg. Rion District.
jasonis, Dub. Nikolakevi.
Genus Hycromia, Risso.
Section Monacha, Fitz.
aristata, Kryn. Kutais; Borschom ; Poti.
carascalcides, Bourg. Dag. omys; Psirsk; Mount Guk.
circassica, Charp. Borschom; $\quad=$ baycriĭ, Parr.
Batum : Sukhum;
Psirsk, Elisabetpol.
$=$ colchica, Bayer.
tuages, Bocttg. Sukhum; Psirsk ; Oschten Fischt.
freguens, Mouss Kutais; Sukhum ; Batoum.
fruticola, Kryn.
schuberti, Roth.
Section Fruticicola, Held.
granulata v. epirotica, Mouss. Kasikoparan.
hispida v. hispidosa, Mouss. Akstafa.
revelata v. occidentalis, Recl. Somketh.
sericea v caucasica, Mouss
Genus Acanthinula, Beck.
aculeata, Müll. Borschom ;
Elisabetpol; Lenkoran; Helenendorf.
Genus Valionia, Risso.
pulchella, Müll. Borschom;
Batum; Sukhum, Elisabetpol ; Poti.
costata, Müll. Borschom; Elisabetpol.
mionecton, Boettg. Agh Dagh.
Genus Helicigona, Fér.
Section Fruticocampylaea, Kob.
appeliana, Mouss. Kislovodsk.
v. mediata, West. Novorossik.
narzanensis, Kryn. Elisabetpol; Sub-genus Tachea, Leach. Delizan; Mamoutli; Kasbeck.
v. suanetica, Boettg. Caucasus
v. macromphala, Boettg,
v. cyclothyra, Boettg.
v. solidior, Mouss.
pratensis, Pfr. Borschom;
Kutais; Elisabetpol.
v. depressa, Kob. Borschom.
v. solidior, Kob.
joannis, Mort. Batoum.
$=$ dumonti, Mart. pontica, Boettg. Sukhuni. nymphaea, Dub. Nikolakevi. ravergiensis, Fér. Borschom :

Manglis; Lenkoran;
Elisabetpol ; Murut
$=$ limbata, Kryn.
$=$ caucasica, Pfr.

- ravergii, Kryn.
$=$ ravergieri, Kryn.
v. Lranscaucasica, Mouss.

Helenendorf; Delizan.
phaeolaema, Boettg Shagh Dagh.
eichwaldi, Pfr. Borschom; Kasbeck.
v. daghestana, Parr. armeniaca, Pfr. Kasbeck; Elisabetpol.
$=$ zieqleri v.airumia, Siemashko.
Genus Helix, L.
Sub-genus Levantina, Kob.
djulfensis, Dub. Djulfa;
Ordubad.
$=$ dschulfensis. ceratomma, Pfr.
Sub-genus Otala, Schm.
vermiculata, Müll.
atrolabiata, Kryn. Borschom; Kutais; Poti; Sukhum;
Elisabetpol.
$=$ calligera, Dub.
v. stauropolitana, Schum. Sukhum; Mount Guk.
v. nemoraloides, Mart. Kutais,
v. lenkorana, Mouss. Lenkoran.
v. unicolor. Lenkoran.
v. pailasii. Dub Imeretia,
vindobonensis, Fer.
$=$ austriaca, Müihl.
Sub-genus Helicogrna l'ér.
buchi, Dub. Tillis; Marienfeld; Chula; Imeretia.
v. martensi, Boettg.
lucorum, L .
v. euphratica, Mart. Suk-
hum ; Elisabetpol.
v. taurica, Kryn. Elisabetpol; Lenkoran.
philibinensis, Friv, Gcorgia. vulgaris, Parr. Kutais; Mount Guk: Kur District.
$=$ obtusalis, Zglr .
nordmanni, Parr. Borschom; Kutais; Agkar ; Kur District.
christophi, Boettg. Adschania. raddej, Boettg. Lenkoran.

x. AS1A MINOR.

A. MAINI, Λ ND.

Our knowledge of the Mollusca of Asta Minor dates as far back as 1839, when a collection of these creatures was made by Dr. Firdl and Dr. Roth, which was described by the latter in "Molluscorum species, Dissertatio Inauguralis." Other contributions were made by Mousson (Coquilles terrestres et fluriatiles recuellies par le Prof. Bellardi, 1854); Pfeiffer, in Malak. Blatter, 1857 ; Issel, in Ann. Mus. Civ. Genova, 1877 ; Naegeli, in Nachrbl. Deutsch. Nakak. Gesellsch., 1894 ; and quite recently by Sturany, in Sizz. Ber. K. Akad. Wiss., Igoz, cxi.

One of the most striking features of the Molluscan fauna of this region is the number of species of Zonites, which further south are rephaced by the genus Leutochroa.

The occurrence of Vitivina conoidea, Mart, on Mount Olympus in Asia Minor, as recorded by Bourguignat, ${ }^{17}$ and confirmed by Sturany ${ }^{(2)}$ is certainly remarkable. The shell was originally discovered in Tulkestan, and if the Olympus specimens are correctly identified, the species may be assumed to exist in other places in the intervening countries ; for the absence of intercourse would discountenance the theory of introduction to the one place or the other.

Family Zonitidne.
Sub-family ZonltInae. Pils.
Genus Vitrina, Drap.
sieversi, Mouss. Tokat.
$=$ komarowi, Boettg.
? conoidea, Mart. Olympus.
Genus Vitréa, Fitz.
cellaria, Müll. Trebizond.
diaphana, Stud. Trebizond;
Reduktaleh.

[^25]crystallina, Muill. Reduktalel. lucida, Drap. Reduktaleh. hydatina, Rossm. Smyrna;

Samsun ; Troas.
samsunensis, Retowski. Samsun.
Genus Pohita, Held.
crenimargo, Retowski. Risa.
nitidissima, Mouss. Samsun; Sinope.
suturalis, Bocttr. Risa ; Trebizond.
Genus Retinkida, Shutt.
natolica, Alb. Scutari.
duboisi, Charp. Reduktalch, Elisabetpol ; Kutais.
malinowskii, Pfr. lsnik.
cypria, Pfr. Tokat; Bujukdere; Samsun: Reduktalch; Trebizond;Caria;Aidin;
v. borealis, Kol. N. Coast.
secernenda, Retowski. Trebizond; Samsun.
$=$ filicum, Mouss. non Kryn. frondosula, Mouss Olympus.
Genus Euconulcs, Reinh.
fulvus, Müll. Samsun ; Reduktaleh.
boettgeri, Retowski. Trebizond.
Genus Zonites, Montf.
smymensis, Roth. Smyrna; Burnabat.
chloroticus, Pfr. Smyrna; Aidin.
corax, Pfr. Taurus.
caricus, Roth. Cacamo ; Caria.
megistus, Rolle. Is. Meis (Megiste).
cilicicus, Kob. Giosna, Cilicia.
lycicus, Kob. and Rolle. Makrí, Lycia.
rolleí, Kob. Kastelloryzo,

Is. Mcis.
Family Endodontldae.
Sub-family Endodontinae.
Genus Pyramidita, Fitz.
Sub-genus Gonromiscus, I'itz. erdelli, Roth. Is. Prinkipo. Beikos
Hamily Helletdae.
Belocona Euadfria, Pils.
Genus Lfeucochroa, Beck. adanensis, Naeg. Adana, Cilicia.
Brlogona Siphonadenia, Pils.
Genus Helicella, Fér.
Section Helionaves, Moq.
variabilis, Drap. Hieronda; Caria; Troas; Smyrna; Brussa;Aidin; Magnesia.
variegata, Friv v. infans, West. Smyrna.
ungeri, Zelebor, Samsun. vestalis, Parr. Mersina; Alexandrette.
krynickii, Andr. Sinope ; Samsun.
luteata, Parr. Is. Prinkipo.
derbentina, Andr. Trebizond; Samsun.
joppensis, Roth v. subkrynickiana, Mouss. Mersina.
cretica, Fér. Beikos.
dichesthemena, Stur, EskiChetur.
Section Helicella, s.s.
aberrans, Mouss. Mersina; Abullonia.
neglecta, Drap. Chysir Kaleh.
obvia, Mke. Zenibazar ; Schumla.
$=$ candicans, Auct.
v. dejecta, Zglr. Taurus.
? nivea, Zglr. Mersina.
Section Candidula, Kobelt.
conspurcata, Drap. Smyma. Section Monacha, liitz.
profuga, Schm. Smyrna.
v. drachorichi, Zcl. Sinope; Samsun.
v. comnena, Rct. ''rebizond. protea, Zgrl Besika.
striata, Müll. Sinope; Trebizond.
Secton Jacosta, Gray:
rozeti, Mich. Lampsaki; Anatolia.
Soction Trochula, Scllüter. pyramidata, Drap. Is. Prinkipo;

Smyma. Abullonia; Brussa.
? vernicata, West. Smyrna.
Section Cochlicelia, Risso.
barbara, I. Sinope
= acuta, Müll.
Section Theza, Risso
berytensis, Fér. v. rachiodia, Bourg. Cacamo; Caria.
$=$ gramulata, Koth.
cantiana, Mont. 'Troas.
carthusiana, Müll. Caria; Brussa; Abullonia.
v. carthusianella, Drap. Caria.
flaveola, Kryn. Trelizond. obstructa, Fér.
$=$ obstrusa, Fér.
v. adpressula, Friv. Mersina.
v. depressula, Kob. Adana, Cilicia.
rothi, Pfr. Beikos.
v. obsita, Mouss. Beikos; Smyma.
subobstructa, Bourg. Beikos. syriaca, Ehrb. Hieronda; Mersina; Alexandrette; Caria.
Genus Hygromia, Risso.
bifaria, West. Brussa.
carascaloides, Bourg. Tokat. consona, Zglr. Beikos. dasilepida, Bourg Lasistan.
frequens, Mouss, Alexandrette; Sinope ; Samsun; Trebizond; Risa; Is. Prinkipo.
lepidolena, Bourg. Mersina. malleolata, West. Nr. Smyma. muscicola, Bourg. Risa ; Trebjzond.
$=$ crenophila, Pfr.
ovularis, Bourg. Isnik. proclivis, Mart. Smyrna; Magnesia; Burnabat. redtenbacheri, Zel. Smyrna. issoana, P'fr. Trebizond; Reduktaleh.
schuberti, Roth. Caria.
Section Fruticicola, Field.
chrysotricha, Boeltg. Samsun. lanuginosa, Boiss. Beikos.
Genus Vallonia, Risso
pulchella, Müll. Samsun.
Genus Helicodonta, Fér.
Section Caracollina, Beck.
gyпа, Roth. Caria; Lycia.
lens, Fér. Caria.
Genus Hletıcigona, Fér.
Section Chilostoma, Filz.
matrella, West. Smyma.
Section Fruticocampylaea, Kobelt.
pratensis, PIr. Chysir Kaleh.
Genus Hei,ix, L
Sub-genus Euparipha, Hatm.
pisana, Müll. Mersina; Alexandrette.
v. byzantina, Roth. Byzantjum,

Section Levantifa, Kobelt.
spiriplana, Oliv. Caria.
werneri, Rolle. Adana.
cilicia, Kob. Julet Kabas, Cilicia.
mardinensis, Kob. Mardin. naegelei, Kob. Sis, Cilicia.
Section Otala, Schumacher. vermiculata, Müll. Is. Prinkipo;

Sinope; Burnabat; Smyrna; Troas.
callirhoc, Kob. Lycia. lycica (Mart), Kob. Lycia.
$=$ codringtoni v. lycica, Mart. Kasteloryzo (Megistc).
Section Tachea. Teach. atrolabiata, Kryn. Risa; Sephanos ; Trebizond; Reduktaleh.
vindobonensis, Fér. Schumla. aimophila, Bourg. v. tchichatcheff, Kob Biredschik.
Section Helicogena, Fér.
aspersa, Müll. Hieronda; Sinope; Caria ; Byzantum ; Aidin.
adanensis, Kob. Adana, Cilicia.
v. sarica, Kob.
buchii, Dub. Colchis.
lucorum, L. Oria ; Chalcedonia;
Magnesia ; Snyyna; Trebizond.
v. castanea, Oliv. Mersina ;

Alexandrette.
$=$ mahometana, Bourg.
v. euphratica, Mart. 'Trebizond; Samsun.
v. taurica, Kryn. Taurus ;

Tokat: Sincpe.
ligata, Mïll. Magnesia
anctostoma (Mart.), Kob Cilicia
$=$ cincta v anctostoma. Mart.
$=$ beilanica, West. Beilan near Alexandrette.
cincta, Müll. var. Hieronda,
v. anatolica, Kob. Aidin
asemnis, Bourg. v. venusta, Mart. Knidos Peninsula.
figulina, Parr. Smyrna ; Troas. melonostoma, Drap. v. micula, Parr. Smyrna.
v. mersinae, Kob Mersina.
pathetica, Parr. Tokat; Amasia.
maltzani, Kob. Magnesi near Smyrna.
bituminis, Kob. and Rolle Tchangankio; Alexandrette.
issica, Kob. and Rolle. Alexandrette.
pericalla, Boury: Giosnia, Cilicia.
antiochiensis, Kob. and Rolle. Antioch.
epidaphne. Kob. Antioch. infidelium, Kob. Alexandrette. escherichi, Boettg. Ak-shehir.

B. ISLANDS OF ASIA MINOR.

The only comprehensive survey of the Mollusca of these Islands I have been able to trace is that by Professor von Martens, ${ }^{[J)}$ based

[^26]on a collection made in 1887 in the Grecian Islands, extending to the southwest corner of Λ sia Minor, by von ()rizen, Previous records are by J. Roth, ${ }^{(2)}$ and Monsson, "a lat later from collections made by Professor Bellardi. In the cane of Rhodet, Romranignal emmerated the collection made during Biauley's voyage, ${ }^{\text {, }}$)

CHICSS

Genus Vitrea, Fiiz. nitidissima, Monsss. v. samin. Mart.
Genus Retinfilia, Nhutu. aequata, Mulus. clessini, Hesse.
Genus Zonites, Mondi. polycrates, Mart.
Genus Hrlicella, Fér.
Section Heliomanfis, Moq, variabilis, Drap.
Section Trochula, Schl. pyramidata.
Genus liygromia, Risso.

Smomi Munatia, F"ila sidnlumti,Roill.

- dimanlia, D'ir.

Section Ciskameina, Beyk. lens, Per.
Genus Ilelix, L.
Section Olala, Schum. vermiculata, Müll. Kastro.
Section Helicocena, Fér. aspersa, Müll, Kastro. aperla, Born. asemnos, Bourg. v. homerica, Mart. SAMOS.

Genus Vitrina, Drap. annułaris, Stud. Kerki.
Genus Vitrea, Filz.
nitidfissima, Monss. v. samia, Mart. Kerki.
Genus Retinelda, Shuil.
samia, Kob.
cypria, Pfr. v. major, Mart. Kerki.
Genus Zonjtes, Montf.
polycrates, Mart.
Marathokampos.
Genus Pyramidula, Iritz
rupestris, Diap. Kerki.
Genus Heljcella, l'ér.
: Section Heliomavfis, Mog.
cauta, West.
Genus Hygromia, Risso. Section Monacila, litz. schuberti, Rotl. Marachokampos.

- rissoana, Pfr. proclivis, Mart.
Genus Helicononta, lér.
Section Caracoullina, Bcck. lens, lér.
Genus Helix, L.
Section Otala, Schum. vermiculata, Müll.
Section Hfincogina, Fér. aspersa, Mïll. aperta, Born. Marathokampoos

[^27]
NIKARIA.

Genus Vitrea, Fitz.
nitidissima, Mouss. v. samia, Mart,
Genis Retinella, Shull.
cypria, Ifr. v. major, Mart. aequata, Mouss. hydatina, Rossm. Agio-Kiríko. Section Chilostoma, Fitz. sorella, Mouss. Petropulis. eudaedalca, Bourg.
Genus Zonites, Montf. smyrnensis Petropulis. polycrates, Mart Eodilos.

Genus Pyramidula, Fitz. rupestris. Drap. Agio-Kiriko.
Genus Helicella, Fér.
Section Theba, Risso. carthusiana, Müll.
Genus Helicigona, Fér. cyclolabris, Desh. v. (subfossil).
Genus Helıx,L.
Section Helicogena, Fér.
aperta, Born. cincta, Müll. v. minor, Mart, KALYMNOS.

Genus Retinelita, Shutt. cyprea, Pfr. v. major, Mart. aequata, Mous.
Genus Pyramidutia, Fitz.
Section Gonyoniscus, Fitz. erdelii. Roth.
Genus Helicejla, Fér.
Section Heliomafes, Moq. variabilis, Drap.
Section Canimdula, Kobelt. calymnia, Mart.
Section Trochula, Schl. pyramidata, Drap.

Genus Hygromia, Risso.
Section Monacha, Fitz. proclivis, Mart.
Genus Helicodonta, Fér.
Section Caracollina, Beck. lens, Fér.
Genus Helix, L.
Section Levantina, Kobelt. spiriplana, Oliv. var.
Section Otala, Schum. vermiculata, Müll.
Section Helicogena, Fér. valentini, Kob.

KAPPARI.
Genus Helix, L.
Section Otala, Schum. vermiculata, Müll.
Section Helicogena, Fér. figulina, Rossm.

KOS.

Genus Hflix, L.
Settion Euparypha, Hartm. pisana, Müll.
Section Otala, Schum. vermiculata, Müll.

NISYROS.

Genus Retinella, Shutt. aequata, Mouss.
Genus Pqraminta, Fizz.
Section Gonvornseres, Fith. erdelii, Roth.
Genis Hygromia. Risso

Section Monacha, Fitz. proclivis, Mart,
Genis Helix, L.
Surtion Otata, Schum. vermiculata, Müll.

SVMI

Genis Zonitles, Montf. symmensis, Roth. rhodius, Mart.
Genus Hezix, T.
Section Levan'tiva, Kob. spiriplana, Oliv. var.

Section Otala, Schum. vermiculata, Müll.
Section Hehicocena, Fér.
aperia, Jorı.
asemnis, Bourg. v. homerica, Mart
figulina, Rossm.
RHODES.
Genus Vitrea, Fitz. nitelina, Bourg protensa, Fér.
Genus Rftinetta, Shutt. aequata, Mnuss.
Genus Zonites, Monte, verticillus, Fér. rhodius, Mart.
Genus Pyramincta, Fitz.
Section Gonyounscus, Tiiz. erdelii, Roth.
Genus Helicerla, Fér.
Section Heliomanes, Fér.
variabilis, I Jrap. Kastelo: Trianda.
cretica, Pfr. Kastelo ; Trianda. simulata, Fér.
submaritima, Desm.
$=$ lauta, Lowe.
maritima, Drap.
Section Hllicfilda, s.s. itala, J.inné
$=$ ericetorum, Müll.
Section Canlidula, Kob.
mesostena, West. 'Trianda.
Section Trenchura, S'rhl.
verticillana, Parr.
pyramidata, Drap. Kastelo.
trochoides, Poir.
Section Thrba, Risso.
syriaca, Flurb. Kastelo; Trianda: Rhodos. rothi, Pfr.
Gienus Hygiromia, Risio.
Section Matafruincicola, Iher. pellita, Fér. Rhodos.
Genus Heitcodonta, İèr.
Section Cakacoilin"a, Beck.
lens. Fér.
Jenticula, Fér.
Genus Hei.ix, L.
Section Etiparypha, Hartm. pisana, Müll.
Section Tevantina, Kob. spiriplana, Oliv. Kintelo.
= gallandi, Hourr.
v. maltziana (Piar), Russun
$=$ matzziana (l'arr $^{\prime}$), $\mathrm{I}^{\prime} \mathrm{I}$.

Section Otala, Schum. vermiculata, Müll. lactéa, Müll.
Scction Heticorena, Fér aspersa, Müll. aperta, Bom.
cincta, Mull.
figulina, Rossm. Kastelo.
pomacella, Parr v. concrior, Rourg.
equitum (Bourg.), Kob.

KHARKI. (Chalki).

Genus Retinelita, Shutt.
aequata, Monss,
Genus Helicel.ta, Fér.
Section Heliomanes, Mocl. cretica, Pfr.
Genus Hvgromia, Riser.

Section Mftafruticicola, Iher. pellita, Fér.
Genus Heilex, L.
Section Tevantina, Kob. spiriplana, Oliv.
Section Heticogfina, Fér. aperta, lhorn.

KARPATHOS.

Genus Retineitit, Shutt. aeq̧inata. Mouss.
Genus Zonites, Montf. caricus, Roth.
Gemus Heliceita, Fér.
Section Heliomanes, Moq. cretica, Plr.
candiota, Pfr.
Genus Hygromia, Risbo.
Section Metafrulicicola, Iber.

- pellita, Fér.

Genus Helix, L.
Section Levantina, Kob. spiriplana, Oliv. var.
sOKASTRO. (West ch Karpathes).
Genus Helicerla, Fér. Section Hetiomanes, Moq. cretica, Pfr.

KAXO. (Kasos).
Genus Retinethla, Shutt. aequata, Mouss.
Genus \%onitfs, Montf. pergranulatus, Kul_ casius, Mart.
Genus Hejicetala, Fér.
Section Helomanes. Moq. cretica, Pf.
candiota, Pfr.
Section Trochula, Schi.
pyramidata, Drap.
Genus Ivriromia, Risso.
Section Metafruttcicola, Iher.
pellita, Fér.
restacea, Mart.

ARMATHIA.
Gemus Helicelya, Fér.
Section Heliomanes, Moqcandiota; P fr .

Section Candisura, Kob. mesostena, West.
Genus Hyinoma, Risso.

Section Metafruticicola, Iher. Section Otala, Schum, pellita, Fér.
Genus Hflix, L.
vermiculata, Müll.

C. CYPRUS.

We awe our knowledge of Cyprua Heliccids chieny to
 Kolselt, ${ }^{(6)}$ and Westerlund ${ }^{(\theta)}$ have added sume new species.
Genus Vitrea, Fitz.
cyprina, West. Atrankan.
Genus Zonites, Mont
cypricus, Pfr.
Genus Pyramiduta, Fitz.
Seetion Gonydiscus, litz.
sudensis, Pir. v. cypria, Kob.
Genus Helicella, l'ér.
Section Heliomanes, Mog.
cretica, Pfr. v. littoralic, Mouss.
ungeri, 7el.
Sertion Candidula, Kob.
profuga, Schm.
contempta, Parr.
cyparissias, Parr.
Section lacosta, Gray.
syrensis, Pfr.
$=$ tartulosa, Parr.
ledereri, Pfr.
andrewi, Rolle. Ussticensis, Calc.
Section Trochulia, Schl.
idaliae, Bourg-
liebetruti, Alb.
Section Cochlicella, Risso.
harbara, L.
$=$ acuta, Müll.
Section Teebr, Risso, syriaca, Ehrb.
rothi, Pfr.
larnacensis, Kob, Jarnaka.
Genus Ifvgromia, Risso.
Seclion Monacha, Fitz.
redrenbacheri, Zel. nicosiana, Mouss.
v. pallica, Mouss.
lusignani, Kol.
Section Metafruticicola, Ther. pellita, Fér.
Genus Hflicodonta, Fér.
Section Caracollina, Beck lenc, Fér.]enticnla, Fér.
Genus Helix, L,
Section leuparypha, Hartm. pisana, Müll.
Section Tesvantina, Kob. bellardii, Mouss. v. occlinsa, Mouss. guttata, Oliv. lapithnensis, Rolle. gertrudis, Rolle. chrysostomi, Rolle.
Section Otala, Schum, vermiculata, Müll.
Section Helicogena, Fór. asnersa, Müll. aperta, Born. var. Kob.

1. Cal Rais Moll, Saulcy, 1853
= Coq terr, fluy Mallardi, 1954. 228.

2. Nachs, Denlerh. Ma'ak (iforlle, 185昂, F if 5

3. Nachr. Denrach iwalak Gerell., 1902 P. 22.

$$
\begin{array}{cl}
\begin{array}{c}
\text { kalimatis, Bourg. } \\
\text { Mus. Geneva. }
\end{array} & \text { trixenostoma (Bourg.), Kob } \\
\text { ligata, Mull. } & \text { cornarae (Bourg.), Kob. } \\
\text { cincta, Müll. } & \text { pediaea (Bourg.), Kob. } \\
\text { v. cypria, Kob. } & \text { chassyana (Mab.), Kob. } \\
\text { xeraethia (Bourg.), Kob. }
\end{array}
$$

stenarochila (Bourg.), Kob

Doubtful Species Recorded by Bourguignat and Zelebor.

Helix cirtae, Rossm. …Perhaps a form of Otala werniculata.
Hetix soluta, Mich.-It is extremely improbable that this Algerian shell occurs in Cyprus
Helix supplementaria, Parr.-A nude name recorded by Zelebor.

XI. SYRIA (Including Palestine).

Like those of Astia Minor the Mollusca of Syria have first been brough1 to our knowledge by Roth and Mousson. Bourguignat recorded the the collection made by Saulcy (1853), while the latest comprehensive list is by Dautzenberg. ${ }^{(2)}$ Most of the mollusca of this region, are ob the desert type of snails, chief among which are the Leucochroas.

Fainily Zonitidae.
Sub-family Zonitinae, Fils.
Genus Daudebardia, Hartm. gaillardoti, Bourg. Sidon.
saulcyi, Bourg. Beyrouth ;
Sidon.
$=$ syriaca, Roth.
Genus Vrirea, litz cellaria v. sancta, Roth.

Hieros ; Antioch ;
Jerusalem.
nitelina, Bourg. Jerusalem ;
Naplouse ; Nazateth,
camelina, Bourg. Jerusalem ;
Nazareth; Jericho;
Naplouse; Baalbec.
draparnaudi r. syriaca, Rossm. Family Helleldae.
Syria.
carmeliensis, Pfr. Mount Carmel.
berytensis, Naeg. Beyrouth.

Genus Retinella, Shutt.
simoni, Boettg. Baalbec. libanica, Boettg. Beyrouth. aequata, Mouss. North Palestin: jebusitica, Roth. Jerusalem .

Sarepta; Hakeldamil.
protensa, F'ér. Naplouse.
Family Endodontidae,
Sub-family Endodontinae, Pils.
Genus Pyramidula, Filz. hierosolymitana, Bourg. Hieros; Jerusalem.
Section Gonydiscus, Fitz. erdelli, Roth. Jerusalem ; Beyrouth. P-- flavida, Rossm.

Beiggona Euadenia, Pils.
Genus Leucochron, Beck. candidissima, Drap. Commwn v. hierochuntina, Boiss.

Jaffa
prophetarum,Bourg. Jerusalem;
Sebbeh. North and
West of Dead Sea.
fimbriata, Bourg. Alexandrette.
v. myops, West.
v. illicita, Mouss.
v. varicosula, West. l'arina.
carinqa, Oliv. Nazareth; West
Palestine ; Syria.
v. amphicyrta, Bourg.
v. nazarensis, Mouss.
v. crassocarina, Mouss.
rollei, Kob. Alexandrette.
Section Sphincterochila, Anc.
bnissieri, Charp. Judaean I) esert.
filia, Mouss. Near Dead Sca.
Belegona Sifhonadenia, P'ils.
Genus Helicella, Fér.
Section Xerocrassa, Monterosats.
seetzeni, Koch. Southern Deserts; Jericho.
= sabaea, Boiss.
eremrphila, Boiss. Desert of Sinai.
= cremnophila, Boiss.
Section Heliomanes, Moq
turlinata, Jan. Cuast.
variabilis, Drap. Mount Carmel.
vestalis, Parr. Antioch ; Dead Sea.
P = mesopotamica, Monss.
v. alepina, West. Aleppo.
v. radiolata, Mart. Nleppn.
hamyi, Bourg. v. foveolata, West. Jericha.

- vestalis, v. foveolata, West. Section Cochicella, Risso.
maritima, Drap.
simulata, Fér. Jerusalem.
derbentina, Andr.
joppensis, Roth. Damascus.
$=$ bargesiana, Bourg.
v. multinotata, Mouss. Jordan. patriarcharum, West. Hebron. cespitum, Drap. North Palestine davidiana, Bourg. Jerusalem.
Section Helicella, s.s.
aberrans, Mouss. Damascus.
jtala, L. Banlber.
$=$ ericetorum, Miill. neglecta, Drap Tiherias. obvia, Mke. v. arenosa, Zglr.
Scetion Candidula. Kob apicina, Jadm. North Coast. arronxi, Bourg. Beyrouth. caperata, Mont. Jcrusalem ; Nazareth.
hierocontina, West. Tericho. conspurcata, Drap. Sidon. improbata, Mouss. Jerusalem.
langloisiana, Bourg. Jerusalem; Mar Saba; Beni Hammad.
$=$ caperata v . hierochuntina, Roth.
protea, 7.glr. Judafa: Galilea; Mcab. ; E. Gilcad; Syria
= campestris, Zgir.
Section Jacosta, Gray.
amanda, Rossm. Jerusalem.
ledereni, PIr. Beyrouth.
$=$ syrensis, Bourg. non Pfr.
Section Obelus, Hartm.
tuberculosa, Conr. Jerusalem ; Mat Saba
= despreauxi: Bourg, S. Syria.
philammia, Bourg.
$=$ serrulata, Pfr.
barbara, L. Between Beyrouth and Sidon.
$=$ acuta ${ }_{2}^{*}$ Müll.

Section Theba, Risso.
berytensis, Fér. Jerusalem ; Beyrouth; Mount Carmel ; Sidon.
v. fourousi, Bourg. Beyrouth.
v. granulata, Roth. Iiban.
obstructa, Fér. Jerusalem ; Kemleh. Damascus ; Tyre; Sidon.
v. adpressula, Friv. Beyrouth.
olivieri, Fér. Beyrouth; Jerusalem; Kemleh. schotti, Pfr.
syriaca, Ehrb. Jerusalem ; Syria; 'Tyre; Antioch.
$=$ onchynina, Rossm.
= gregaria, Zglr.
carmelita, Tristr. Mount Carmel.
$=$ tristrami, Mart.
Section Platytheba, Pils. nummus, Ehrb. Beyrouth.
$=$ hedenborgi, Pir.
$=$ oxygyra, Boiss. spiroxia, Bourg. Alexandrette.
v. harmosa, West. genezarethana, Mouss. Lake Genezareth ; Jordan Valley; Tiberias.
= tiberiana, Mouss.
Genus Hygromia, Risso.
Section Monacha, Fitz. crenophila, Pfr. Beyrouth. $=$ muscicola, Bourg. solitudinis, Bourg. Baalbec.
Section Fruticicola, Held. crispulata, Mouss. Jerusalem.
Genus Valionia, Risso.
pulchella, Müll. Piain of Acre.
Genus Helicononta, Fér.
Section Caracolitina, Beck, lenticula, Fér. Naplouse.

Genus Helix, L.
Sub-genus Euparypha, Hartm.
pisana, Müll. Sea of Judaea; Beyrouth.
Sub-genus Eremina, Pfr.
descriorum, Forsk.
$=$ arabica, Roth.,
$=$ maculosa, Born.
$=$ irregularis, Fér.
$=$ forskalii, Ehrb.
$=$ psamitus, Bourg.
$=$ gemellarii, Ben.
$=$ rhodia, Chemn.
$=$ depressa, Mart.
$=$ pachytoichea, West.
$=$ kobelti, West.
= dillwyniana, Pir.
Section Levantina, Kob.
spiriplana, Oliv. South Palestine
$=$ guttata, Bourg., non Oliv.
v. transjordanica, Kob.
hierosolyma, Boiss. Jerusalem.
v. masadae, Trlstr. Sebbeh.
v. lithophaga, Conr. Mar Saba; Deir.
caesareana, Parr. Jerusalem ; Plaîn of Sharon; Mar Saba; Jericho; Jordan; Salima Valley; Sidon.
= caesarea, Boiss.
amoldi, Kob. Between Jaffa and Jerusalem.
gerstenbrandti, Kob. Between Jaffa and Jerusalem.
ramlensis, Kob. Between Jaffa and Jerusalem.
guttata, Oliv.
eliae, Kob. South of Mount Carmel.
praecellens, Kob. Payas.
Section Otala, Schum.
vermiculata. Müll. Beyrouth ;

Pieria.
Section Helicogena, Fér
aspersa, Müll. 'Tyre ; Sidon ;
Bcyrouth; Jaffa, Jerusalem.
$=$ grisea, Gm .
lucorum, L. v. taurica, Kryn. Lebanon.
schlaeflii, Mouss.
fathallae, Naeg. La Trappe near Abkes.
ligata, Müll. Jerusalem; Lebanon.
anctostoma, ${ }^{\text {, }}$ Mart. Pompejopolis.
beilanica, West. Beilan near
Alexandrelte,
asemnis, Bourg. Naplouse ;
Lebanon.
$=$ solida, Zglr.
= ciliciana, Bourg. moabitica, Goldf. Moab. figulina, Parr. Dead Sea.
v. albidula, Borug. pachya, Bourg Lake Genezareth; Beyrouth;Tilinias. prasinata, Roth. 'Tiberias.

- jordanica, Bourg.
cavata, Mouss. Jerusalem.
$=$ figulina v. B, Bourg. engaddensis, Bourg. Judaea; Dead Sea.
v. concolor, Bourg. Nazareth; Jcrusalem.
pycnia, Bourg. Nazareth. baristata, Bourg. Between Alexandrette and Orfa. racopsis, Bourg. Beyrouth. achidaea, Bourg. Tarablus

SOME NOTES ON THE GENUS PRISMA, SIMROTH,

by walter E. COLLINGE, B.Sc., The University, Birmingham.

(Plate ix.)
The genus Prisma was constituted by Simroth ${ }^{\text {II }}$ in 1891 for the reception of the following molluscs: the Vayimula tourannemsis of Souleyet, the V. prismatira of Tapperone-Canefri, the V. trigonus of Semper, the V. pulcerndenta of Benson, and a new species Prixma heynemanni. Of these, the two first and the last mentioned are probably true Prismas; and only P. tourannense and P. prismatica have been figured.

Simroth does not give any detailed description of the genus, and nothing whatever is known of the anatomy. The most characteristic external feature is the triangular shape of the body, when sect in erows section. Simroth in r891 wrote (op. cit., p. 596) "it is orn\% tu question whether Prisma is a sub-genus of Vaginula or of Atopuw wr whether it constitutes a genus of its own, which is most probuble."

Through the kindness of Mr．Edgar A．Smith，I have been able to examine the examples or this genus in the collection of the British Museum，and also to figure them．There are three specimems all labelled V ．prismatica，Tap．Can．，the localities of these are as follows：
i．Huon Gulf，New Guinca（I）r．Comrie）．Lengch（in alcohol） 39 millim．
ii．An island in the Torres Straits，or New Guinea．Length（in alcohol） 36.5 millim．
ii1．New Guinea．Iength（in alcohol） $56^{\prime} 5 \mathrm{millim}$ ．
I am entirely in accord with Simroth，who regards the Huon Gulf specimen（i）as a distinct species，wiz．the P ．heynvenonni of Simroth． The second specimen（ii）is undoubtedly Prisma prismatica，Tap．－Can．， ${ }^{(2)}$ while the third（iii）is quite distinct from efther i or $i i$ ，and I am here describing it as a new species under the name of Prinma smithi， after Mr．Edgar A．Smich，as a mark of appreciation，for the facilities he has so kindly extended to me when examining these and other specimens in the British Museum collection，and for his permission to figure the three examples．

Heynemaun ${ }^{[3]}$ was undoubtedly wrong in fancying that the draw－ ings of P ．tourannense，Soul．，and those of I＇．primatica，Tap．Can．， were of one and the same species．

Prisma smithi，n．sp．

$$
\text { Pl. ix, figs. } 1-3
$$

Colour of the notum greyish－brown，with small black spots arranged in a stellate manner；underside（perinotum P）yellowish－brown with a few very minute black spots；foot－sole yellowish－brown；keel prom－ inent，slightly lighter in colour than the rest of the notum．Length of notum（in alcohol） 56.5 ，breadth 10 ，height 9 millim．Breadth of foot－sole 5 millim．

Hab－New Guinea．
Type in the collection of the British Museum．
Prisma ppismatica，Tap－Can．
Pl. ix, figs. 4-6.

Verunutella prixmatica，Tap．－Can．：Ann．d．Mus．Civ．de St．Nat． Genova， 1883 ，vol．xix，p．207，＇lav．xi，figs．6－8．
Tapporone－Caneln has given three uncoloured figures of this species，

[^28]but they are not very saticfactory. As the type of the genus P. tomarnense, Soul., ${ }^{\text {(t) }}$ is so beautifully represented, I have had two coloured figures made of P. paismatica.

The dimensions of the specimens in the collection of the british Museum are: length of notum (in alcohol) $36 \cdot 5$, breadtle 7 , height 6 millim., breadth of foot-sole 2 millim.

Hab.-An island in the Torres Staits, or New Guinea.
The type, from the 1sland of Sorong, measured 138 millim. in length.

The foot-sole in this species is less than half the hreadth of that in P. smithi or P. heynerumni.

Prisma heynemanni, Simr.

$$
\text { Pl. ix, figs. } 7.9 .
$$

Prima heynemanni. Simr.: Zeit. f. wiss. Zool.: נRgt, Rd. hii, p. 596. Colour of the notum greyish-yellow, spotted with black, closely and finely graulated; underside (perinotum?) ochreons, foot-sole same cnlour ; keel prominent. Tength of notum (in alcohol) 39, breadth 8, height 6 millim. Brcadit of foot-sole 4.8 millim. Female generative orifice $4 \frac{1 / 3}{}$ millim. from the head.

Hab.-Huon Gulf, New Guinca (Dr. Comrie).
'I'ype in the collection of the British Museum.
Simroth ${ }^{[E]}$ quoling Heynomann, ${ }^{\text {(t) }}$ rightly pives the length of this specimen as 39 millim., but Cockerchen states 3^{6}.

Although our knowledge of this genus is as yet very imperfect, I think there can be no doubt as to its distinctiveness from Veronicella on the one hand, and Atopos, Simr., and Fathoutsia, Heude, on the other. The examination of further material will alone indicate its true position, and in conmection with the mombers of this genus, as also those of Atopos and Rathoussia, we Testacella-like teeth may possihily be concomitant with habits similar to the Testacellidae, which future collectors would do well to bear in mind.

My best thanks are due, and are heretendered to Mr. C.Butterworth, for the care he has bestowed upon the figures, and to the Council of the Royal Society, out of a Grant from which, the cost has been defrayed.

[^29]dontn of Mulacolosy. 1902, Vol $_{1} \mathrm{X}_{1} \mathrm{f}^{1} 4$

2.an.

4. $\mathrm{il}=$

5 atm

7.in

8.16

C. Aollorwayth, del, et piakadast

Right lateral vicw. $\times 1 \frac{1}{2}$
Vendial view. $\times \mathrm{r}_{\frac{1}{2}}$
Diagramnatic la ansverse section.
Right lateral view. $\times 1 \frac{1}{2}$
Ventral viety. \times 抜.
Diagrammatic transwerse section,
Right lateral view. \times Th
Ventral view. \times It
Portion of the notum. much culured.

FURTHER NOTES ON AMALIA CARINATA, RISSO.

By Walter f. COLiLINGE, B Sc.

In response to my appeal in the June issue of this Journal, ${ }^{\text {no }}$ I have received numerous examples of Amalia sorverbyi, Fér., from all parts of the British Isles, particularly interesting amongst which are some from Ireland.

When I wrote my previous note, I had for the moment overlacked the fact that Dr. Scharfint had recorded A. "comata, kisso, from Ireland, the specimens heing verified by D_{r} Simrots T have not seen Dr. Scharf's specimens, but I cannot agree with him in regarding Risso's species as synonymous with the A. souerbyi of Férussac. An example of this last mentioned species referable to the variely nigrescens, Ckll., from Woodenbridge, Co. Wicklow, and two examples of the ordinary form from Piperstown, Co. Louth, received from Dr. Scharff, are certainly quite unlike examples of A. carinatt, Risso, which I have in my collection from Nizza, Northern Italy, and from Algiers, as also are many other specimens which I have in recent years evamined from various Irish localities. Further they are very diatinct from the two Amalias which I recorded in my previous note, which latter agree very closcly with the Italian examples of A. farinata, but much less so with the Algerian specimens.

I have now to record two Amalias from Kingstown, Co. Tublin, which leave no doubt in my minal that A. corinatfo, Risso, eertainly occurs in Treland, in addition to A. soncerfyj, Fiér. These two specimens are intermediate, in colouring and markings, between the Ttalian and Algerian specimens mentioned above, and cannot in my opinion, be referred to Hérussac's species.

[^30]I think, there can be little doubt but that Risso's species bas been confused with A. sorcerbyi in this, country, and that on more careful examination it will be found to be fairly well distributed. I hope at a later date to give coloured figures of the British examples, and also figures of the interimal anatomy.

In the meantime, I shall still be pleased to receive further examples from any parts of the British Isles.

Distribution in British Isles.
Devon--Barnstaple (F. J. Partridge).
Wapwlck. - Near Birmingham (Bromley Pcebles).
Dublin - Kingstown. Ir. Scharffin does not distinguish between A carinata, Risso, and A. sotestryi, Fer., in his list.

THE ANATOMY OF THE BRITISH SPECIES OF THE GENUS SOLEN.

Part JV. *
By H. H. BI,OOMER.
Plate x.
Solen pellucidus, Penn.
Lxternal Characters.
When compared with S. ensis, I., this species presents the following points of difference: The measurement from the dorsal to the ventral surface is proportionately greater. The hinge of the shell is situated some distance from the anterior end, and the anterior part of the anterior adductor muscle, together with the dorsal integument, terminate there (PI. x, fig. 1, H.). What represents the fourth aperture is present at the posterio-ventral part of the pedal aperture. As in S. ensis it carries a tentacular fringe lirom specimens examined, I have not been able to find any trace of concresecnce of the mantle lobes between the two apertures, but as this portion of the animal is easily ruptured, the question still remains a matter of uncertainty, The pedal aperture is larger, extending more posteriorly both dorsally and ventrally. The dorsal and anterior edges of the mantle loles bordering it, carry a closely and finely crenulated fringe, while is the dorsal portion, the mantle lobes are joined together a little beksw their margins, thus forming a chamber, which apparently does not communicate with the pallial chamber. The foot (Pl. x, fig $1, F$.)

[^31]is large, particularly as it approaches its distal end. whore it is axeshaped and of considerable depth. 'The bases of the inner gills are connected with each other as in S. marginatus, Fult. and Don.

Musculature.

The musculature of S. pellucidus differs from that of $\stackrel{s}{ }$ ensis in the following particulars.
i. The Pallial Musifes-- The muscles along the edges of the mantle lnhes are decper than in δ. ensis, and anteriorly describe a semi circular curve to the anterion end of the anterior addactor muscle (Pl. x, fig. $1, H$.), while posteriorly, where loming the proximal purtion of the siphon, they are much more developed (PI. x, fig. 1, E.S.C. and I.S.C.).

Th posterior portion of the anterior adductor is deeper but the depth gradually diminishes towards the anterior end, which curves dorsally to the tecth of the shell ($\mathrm{Pl} . \mathrm{x}$, fig. $\mathrm{I}, A_{\text {. }}$.).

The posterior adductor is correspondingly smaller (Pl. x, fig. r, $P . A$.$) .$ ii. The Pedal Muscles - The foot fncreases in size towards its distak end. In this part the muscles are frayed out, and form a large fibrous nutwork. The retractnr pedis posterior muscles are longer, their terminal parts being situated more posteriorly than in S. ensis (P1. x_{1} fig. . $, P, R, A$.

In the retractor pedis anterior muscles, the posterior bifurcation (Fig. r, P.R.A.) is short and thick, while the anterior one (lig. r, P.R.A.') is long and narrow extending over the greater porcion of the anterior adductor muscle. The fibres of the muscle cross the foot, as in S. marginatus, and pass underneath insteal of over the longitudinal muscles, eventually becoming buried in the muscular integument.

The Alinentary Canat.
The oesophagus (Pl. x, figs 2 and 3. Oe.) is long and narrow, passing in a posterior direction to the stomach, in consequence of which, the latter is situated more posteriorly than in S ensio. The divisions of the stomach are very pronounced. The cardiac portion (Fig. 2, C. St.) is a narrow, deep, pocket-shaped sac. The pyloric portion (lig, 2, P. .st.) and the froximal porrinn of the caecum of the rrystalline style (O.O.) are very large, while the Jatter is of considerahle length and extends along the greater portion of the pedal cavity. The intestine (In.) proceeds from the pyloric portion, close to the caecum of the crystalline style, to within a short distance of its distal end, where it bends and returns along the opposite side, traverses round the posterior dorsal end of the stomach and folding upon itself, passes into the rectum (R.). If contrasted with the description of S ensid and S_{1} marginatue, it will
be seen that in many respects the alimentary canal more closely resembles that of the Jatter chan that of the former, the more important differences being the relatively larger size of the pyloric portion of the stomach and of the distal part of the caecum of the crystalline style, and the absence of folds in the intestine shortly after leaving the stomach.

The position of the liver (Fig, $1, L_{\text {. }}$) is similar to that of S. ension.

Nfryol: system.

The nervous system of S. pellucitus rescmbles that of s. ensis, differing from it, howerer, in the number and ristribution of the pallial nerves.

The anterior pallial nerve only gives rise to twr branches The first hranch leaves the nerve after it has passed a little distance under the ventral surface of the anterior adductor muscle, and the second a short distance before reaching che anterior edge of the muscle; both branches cross the mantle lolye and join the circumpallial nurve. The posterior pallial nerve docs not give rise to any branch which crosses the mantle lobe as in S. enars

There is only one circumpallial norve, which anteriorly passes along the dorsa? portion of the muscular part of the mantle lobe, and gradually attains a ventral position as it proceeds posteriorly. It is to be observed that the two anterior pallial nerves fuse together close to where the teeth of the shell are connected with the dorsal integument, forming a small cranghonic mass, and then separating, pass alomg the mantle lobes.

Circulatory Sustem.

The general features resemble those of S. ensis, but owing to the smallness of the specimens examined it has not been possible to follow it out in all its detail.
-From the firegoing morphological account of the different species, and from further work shortly to be puhlished, I purpose at no distant date to review the present classification of the genus solen.

EXPLANATION OF PIATE X

Solen pellucidus, Penn.
Fig. I, View from the right side, alimentary candl, \&c. $\times 3$.
Fig. 2. Longiludinal secrion of the stomach, showing the internal structure of the left side. $\times 12$.
Fig. 3. Longitud: dal wecticn of the stomach, showing the internal structure of lhe righi sidc. $\times 12$.

Referbnce Lettelrs.
A. Anus.
A.A. Anterior adductor muscle.
A. L. Anterior lip. $^{\text {. }}$

Caw. Small cavity receiving the small bile dwes.
C.C. Caeculn of crystalline style.
C.S. Crystalline style.
C. St. Cardiac portion nl stomach.
E.S.C. Exhalent siphonal chamber.
F. Foot.
F.A. Fourth aperture.
H. Point where the dorsal integumont is connected with the leeth of the shell.
If. Intestine.
l.S.C. lubalent siphonal chamber.
L. Liver.
M. Moull.
M.I. Mantle lobe.
M.R.C. Muscular ridge separating the
cardiac from the pyloric portion of the stomach.
M.R.O. Muscular ridge separating the oesophagael from the cardiac portion of the stomach.
M.R.P. Muscular ridge separating the small cavity receiving small bile duct from pyloric portion.
Oe. Oesophagus.
Oe, St. Oesophagael portion of stomach.
P.A. Posterior adductor miscle.
P.L. Posterior lip.
P.R.A.,P.R.A.' Bifurcated parts of re. tractor pedis anterior.
 postericr.
P, St Pyloric portion oil slomach.
R. Recturn.

Si. Stomach.
V. Ventricle.

1.sation $3=52=27 / 2$
3.14

OBITUARY.

Alexander Onufrleviteh Kowalevsky.

Born November 201h, 1840 . Died November 22nd, 1901.

The death of Professor Kowalevsky removes a zoologist of renown, and one whose studies ranged over a wide field. In the Mollusca he investigated the development of Chiton and Dentale, the structure of Pseudovermis and the Hedylidae, and in conjunction with Professor A. F. Marion, the Solenogastres, and with Ovsyannikov, the central nervous system and auditory organ of the Cephalopoda.

Oliver Collett.
Bor: I867. Died Juncisth, wooz.
By the untimely dealh of Mr. Oliver Collett, Malacology has lost a devoted and single beitered student of the Cingalese mollusca.

When, in 1898, I resumed the Editorship of this Joumal, Mr. Collett wrote me inquiring if, in connection with my work on Asiatic molluscs, I cared to cxamine any of those from Ceylon ; this was the commencement of a regular correspondence, which, alas! has all too soon ceased. As I write, there lics before me the latest consignment from him (one of very many which he has sent me, and which, as yet, have been little more than examined in opening), containing examples of Nibgiva, Ariophanta, Euplecta, Veronicella, etc., all beautifully preserved.

Mr. Collett while engaged in his vocation as a tea planter, found time for much zoological work. As a member of the Ceylon branch of the Royal Asiatic Society, he contributed various papers to their Journal.

He died on June $\mathrm{r}^{\text {th }}$, somewhat suddenly at Columbo, from an attack of dysentery.

Much of the material collected by Mr. Collett has been described by Dr. Blanford, Mr. E. R. Sykes, Lt. Col. Godwin-Austen, myself and others. Some, however, be described himsell in the following papers :

1. "Description of Streptaxis graciliz, n. sp., from Ceylon." Proc. Malac. Soc. London, 1897, vol. iii, p i. fig.
2. "The Terrestrial Mollusca of Ambagamuwa." Journ. Ceylon Asiat. Soc, 1897, vol. xy, pp. 12-21.
"On two new varieties of Cataulus nietneri, G. and H. Nev., from Ceylon." Journ. of Malac., 1899, vol. vii, pp. 85, 86, 3 figs.
3. "Description of a new Helicoid land shell from the Southern

Province." Journ. Ceylon Asiat. Soc., 1899 , vol. xv, pp. I53, 154 , r pl.
5. "Pearl Oysters and Pearl Fisheries." Ceylon Observer, 1900 , pp. 1-12.
6. "The Terrestrial Mollusca of Ambagamma." Journ. Ceylon Asiat. Soc, igor, vol. xvi, pp. ₹-8.

James G. Cooper.

Liorn June 19th, L830. Died July 19th. tgoz.
By the death of Dr. Cooper, Wescern America loses another of its pioneer zoologists. Born in New York in 1830 , he received his degree in 185 r , and two years later be was appointed physician on a government survey between St. Paul and Puget Sound. Here part of his duty was to make zoological and l:ntanical collections, and after the abandonment of the survey in 1855 , he continued his field work on the Pacific coast until 3860 . In that yoar he was appointed Zoologist of the California State Geological Surter: I ater he served as a surgeon in the Civil War, after which his lile was spent in the practice of his profession.

Although interested in many branches of toology, he published upwards of forty papers on the mollusca, many of great value and interest.

NOTES.

Physa virgata mut. alba, nov.-Shell pure white. Salt River at Tempe, Alizona, tgo2, with the ordinary form,-T. D. A. Cockerell.

Limax maximus, L., in the Hawalian Islands.-I have recently received from Irufessur H. W. Henshaw a small colleclion of slugs from the neighbourhood of Hilo, amongst which is an example of Limax maximus, L . Externally the body is a deep yellow in alcobol) with about nine irregular and broken black bands, the mantle is spotted with numerous black spots, mostly smaller than those composing the bands. The generative organs ditice slighty from those of Brilish or Condinental specimens. This species has not bitherto been recorded from the Hawaian Islands.-Waiter E. Collnye.

PROCEEDINGS OF THE MIDLAND MALACOLOGICAL SOCIETY.

37 th Meeting, Ju'ne 13 Th, 1902.
The President in the chais.
Exhleris.
By Mr. F. J. Partridge: Succinta dblonga irom Braunton Marshes, North Devon, and examples of H ydrobia fenkinsi.

By Mr. Overton : Ilamblis mbificifas and monstrositics, P. cormens, Limnaea stagnalis, L. porster, and Ilythinia tentactata, from the Derby canal ; also Limnaca stagnalis irom Sutton Coldfeld.
 demadiata, Pfr,, from Nonth Island, New Zealand, and a small collection of slugs from North America.

36til Meeting, November i弓th, ipoz.
The Meeting was held at the President's house
The President in the chair-
It was unanimously decided (i) to undertake the preparation of a Record of the Molluscan Fanna of Warwickshire, and that Mr. H. Overton be the Recorder. Also (ii) the collection of statistics on the Early Colour Changes, Protective and Mintetic Colouring of Molluscs, and that Mr. Walter E, Coflinge be the Recorder.

Exhibits.

The President exhibited part of his collection of Slugs, and Land and Freshwater Molluses and Nudibranchs (in alcohol); the cggs of nany species of molluses, and a series of monogrdpls and memoirs upon the anatomy of the Mollusca.

CURRENT LITERATURE.

Pllsbry, Henry A - Trivon's Manal al Conchangy, ser ii, Index volume,
 of Natural Sciences.
The very usefol Index volume contains a classification of the Bulimoid molluses described in volumes x-xiv of the "Manual." Dr. Pilsbry cxplains that owing in part to the absence of anatomical data, and in part to the wat of sufficient knowledge to interpret the facts in his possession, a number of groups belonging to the Helicidae were formerly relerred to the Buthanhtiac or "Butimidae," by reasom of the lengthened and Bulimoid contour of their shells. Investigations howeser, made during the progress of the volumes on the Bulimi, have shown the true retutionships of several of these genera. We can scarcely over-estimate the walue ot this cpilome.

Among a lew of the chanyes we may cile the genus of Gonyostommb, Beck,
 mical research, however, shows that it has no relation to Aurts or other Bulimuline genera, but is a member of the Strophochilhae, and closely related to Strophocheths. Thamhastus, Albers, iommerly considered a sub-genus of Stropfocheiluts, is shown to be more neatly related to Huthmuhtus, furis and Plekocheilus. Anatomical details are given of numerounother genera, and their bearing upou the clasisification considered.

In commencing volume xv we note a grat improvement in the lype, which has been changed from Long Primer to Small Pica, and the quality of the paper. White paper for the plates in still a desideratum. The volume opens with a consideration of the geuera Eucalodium, Cr. and Fisch., Anisus. pira, Strubel, and Colucentrum, Cr. and Fisch. In che Jast mentioned genus a
new variety, estefaniae, of C. arctispira, Pfr., is described and figured, and a new species C, dispar, from Guatemala.
Kowalevsky, A.-Études anatomiques sur le genre Psendovermis Mém. de l'Acad. lmp. t. Sci. St. Pétersb., 1yol, T. xii., pp, r-28, pl. i--iv.
The author returns to a further study of Psendovermis, and confrms the opmion expressed in 1899 chat it is a mollusc. It is classed among the Nudibranchia, and is most nearly related to Eolls. A new species, P papillifera, is described from Mylilenc, and the anatomy oif that species and P. paradoxus are described, and illustrated by four ver'y beauluful plates.
Thiele, Johannes. -Pronconcnia ambotnensts, n. sp. Jen. Denkschriften, 1902, Bd. viii, pl. 735-737, T. Ixvi, ligs. 5-9.
Dr. 'rhiele gives a description of this new species from Amboina, and a shorl account of the anatony.
Kesteven, H. L.-The Protoconchs of ccrtain Port Jackson Gasteropoda. Proc. Limn. Soc. N.S.W., tooi, pp. $709-716$, pls. xxxv-xxxvi.
The author desciibes and figures the proloconchs of eleven species of Gasteropoda found in various bays in and around Port Jackson, The suggestion is made that where no varix has been thrown up, it may be that the molluse has leff no conchological record of the nepionic period.
Keller. W.-Die Amatomic von Faginnia gavi Fischer. ZoJl. Jahrb, Suppl. v, ᄃ) 02, рГ. $607-642, \mathrm{~T}: 18$.
The author has investigated the anatomy of V. gayi, Fisch., on material brought home by Prof. Plate from Chili. Afier a description of the external features, and the struclure of the integument, the pallial complex is described. The kidney is somewhat triangular in shape; the ureter is folded showing three limbs, the third opening into the base of the lung. The author also gives a corrected account of the kidney in V. willeyi, Clige. The alimentary canal shows a well marked division into oesophagus, stomach, with cardiac and pyloric portions, and a strong, muscular, true stomach. The "liver" is divided into a fore-and hind-liver, the former consisting of eight lobes, and the latter of two. The gencrative organs are of the usual type.

The cenlral nervous system is characlerised by the extraordinary way in which the cerebral, pedal and visceral ganglia approximate to one another, and also with the small buccal ganglion. The nervous apparatus of the foot consists of a thick network of anaslomosing fibres in connection wilh the pedal nerves.
Thtele. Joh.-Die syslematische Stellung der Solenogastreu und die Phylogenie der Molluskerı, Zeit. f. wiss. Zool., I902, Rd. Ixxii, pp, 249-466, Tafn. xviii-xxyii u. 21 fign,
The author, after an exhanstive survey of the anatomy and piliylogeny of the Amphineura, concludes that dle Solenogastres are really a group of worms allied to the thread-worms (Gordidite) and anmelids, lual, in the relation of the heart to the uterus, and in the possecsion of a ruclinmentiby radula they approximate to the Mollusca, more especially to the chifomdar.
Fleure, H. J. - Notes on the Relations oi the Kidneys in Hatiofts tuberculata, ctc, Quart. Journ. Micro. Sci., 1902, vol. 46, pp. 77-96, pl. 6.
In commection with studies upon the Gaslropod kidney, the author here gives an account of the relations of the kidncys in Hatiofis, togelher with certain suggestions concerning the kidney and reptoductive organs of the Monotocardia,

He is of opinion that in H. tubcroutata there are two separate kidneys right and left of the pericardium, which open externally by scpatale apertures. The right kidney is the functional excretory organ. It communjales with the pericardivm, and opening into it is the goraduct. The left kidney, which does not communicate with the pericardium, is partly degenerating into lymphalic tissuc, and is beroming connected with the efferent branchial vein by direct bloorl-channels. Practically the large antertior lobe onf the right kidney, is an accessory genital organ in posse, and the external opening of the tight kichey is evidently tecoming a gerital pere. This heing so. the functional kidney must fod an exit lor its excrelory products, and it seems probable that this is provided for by the external opening of the lefl kidney, which would thus be the bomologut of the Monotocardjan excretory aperture.

Mr. Fleure then discusses the wiews of various wn:kers uprin the derivation of the accescory reprodiclive organs of the Tannioglossa, and of their descourlants the Opisthobranchs and Polmonates, and the beating of his investigations upon the same.
Hensgen, C.-Biometrische Untersuchangen über dic Sp̧ielarten vou Helix nemoralis, Biometr:ka, 1902, vol, I, pp. 468-492, with 3 mafs and if figs.
The author has made an elaborate sting on the distribution of the markings on the shell of Helix nemoralic found in the ditches arth ramparts of the old Strasturg fortifirations, which illustrates the influcrict of segregation and envirmment. Statisfics of the mathitugs prove that many malhematically possible combinations are not necessarily represented in nalure. The basis is laid for further biometric work on other lecal races of this species, and for observing on capfive individats the laws of inherilance in the shell markings thus classified.

Hedley, Charles. - Scientifin Results of the Trawling Expedition of H.M.C S. "Thetis."-Mollusca, pt. i. Mem. Aust. Mus., r902, vol. iv, pp. 287-324, figs. 39-6n.
In the present report the author treats of the Irachiopoda and Pelecypoda oblained on this expedition, font species are recorded of the former phylum and sixty-four of the latter. Among the Pelecypoda two new genera are descrihed, viz., Pronucula, which differs from Nuchla in the character of the binge and in the possession of a more prominent radial sculpture (type P. decorosa, n. spl, and Cuna, a genus of the Crassatellitidae, embracing C. concentrica, n, sp., the type, Kellia atkinsoni, T. Woods, Carditella delta, Tate and May, etc. Cyrilla dalli, n. sp., and Condylocardia projerfa, n. sp, add two new genera to the Australian fauna. There are thirteen other new species described and finured.
Hedley, Chaples.-A new Anstralian Volute. Rec. Aust, Mus, ino2, vol, iv, p. 309 , fig. 23.

Votuta perpticata, n. sp., allied to V. thatcheri, McCoy.
Hedley, C.-Studies on Australian Mollusca. Pł, vi. Proc. Linn. Soc, N.S.W., 1902, pp. 1- 29 , pls, i-iii.
Continuing this important series of papers Mr. Hedley describes as new Bornia filosa, Congerza lnnata, a. genus new to the Australian fauna, Mactra parkesiana. Pyrgulina perspectiva, P. semex, P. zea, P, umeralis, Crossea biconira, C. gatilij, Tenostoma involuta, Lioha corona, L. incidata, and Mecol-
intin spinosa. There are notes on numerous other species, on the genera Chinceras and Aippostes, and on Perry's Australian Shells. All the new species are figured, in addition to many oithers, and figures of the opercolum, iaw, and radula of Vermetus caperalus, Tate and Mdy, are also given.
Kesteven, H. L-The Systematic Position of the genus Fossarina, A. Adams and Angus, and of Fossavina maria, Hutton. Rec. Aust. Mus., rom, vol, iv, pp. 317-322, figs. 28-35
From an examination of the radula and operculum of F. pathla, the aulhor is of opinion that Minos, Hutlon, is only a synonym of Fossarina, which later genus should be placed in the Trochidae, between Gibbula and Mardarita,

Discussing next the F. iaria of Hulton, the author shows that in addition to anatomical differences, which he proposes to describe later, it has a snbspiral operculum, and a dentition showing relations to I.ttcrina. it therefince hecomes neressary to propese a new genus for its reception, to which the name Resellopsts. is given. The teeth, operculam and shell are figured and descrihed, and a new varieiy-carinata, describerl and figured.
Whlley, Arthue-Contrihution to the Natural Histery of the Pearly Nautilus.
A. Willey's Zool. Results, igoo, pt. vi, pp. (i91-830, pls, luxv-|xxxiii, a map, and 33 figs. in texi.
Abhouglı Dr. Willey failed io obtain material for the study of the embryonic development of the pearly Nautilus, he has given given a mosf interesting account of his search for the same, and a valuable resume of previous work upon Nautilus. Some of the new ohservations contained in the present memoir have been already published in a preliminary form, they are now publithed in detail, and relate principally to the following aspects of the sutiect -binomics [hahits, lange oviposition], branchial sense organs [csphradia], mechanism of respiration, injection of the vascular system, connections of the siphuncle, innervation of the ophthalmic tentacles, devclopment of the accessory sexual organs, enumeration of the digital temtacles, orientation, and specific divergence.

When compared with its former world-wide distribulion, the present restricted range of the genus has a special interest. It is wholly connfined to the seas adjoining the islands of the Eastern Archipelago, which includes the East Indies, Philippines, New Guinea and ils dependencies, Solomon Islands, New Caledonia, New Hebrides, and Fiji. The distribution of the species is slill more interesting. N. pompilius is never taken in the New Caledonian Group of Tslands, while N. macromphalus is never taken anywhere else. Of the three species pompiitus, macromphalus, and umbilicatus, the first has the widest known range, cccurring in the Philippines, Moluccas, Biemarck Archipelago, Tortes Straits, New Hebrides, and Fiji : the second is confined to the New Caledonian Archipelago; while the fhird overlaps that of the first.

The paper is well illustrated by nine excellent plates, a map, and numerous figures in the text.
Bergh, R-The Danish Expedilion to Siam 1899-1900. Resulis of the Zcological Collections made by Dr. Th. Morlensen, I. Gasteropoda opisthobranchiata. Mém. d. l'Acar. Roy, de Danemark, 1902 (6th ser. Sect. d. Sci.), T. xii, pp. 16i-218, T. i-iii and map.
The list of the Opisthobranchia obtaned by Dr. Mortenson includes seven Tectibranchia. one Ascoglossa, and foniteen Nudibranchia. There are eight new specres and one new genus, viz., Aplysia immonda, Aplysiella incerta, Aclesia ocelligera, Idalia plebeia, Doriopsilla pallida, Marionia chloanthes, Melibe
butcephala, and Nossis igen. now) indica, This last gemus is closely related to Samla, A welcome contribution to the anatomy of the little known genus Aclesia is supplied in the account of the structure of the new species, which is describerl in some delail.

Bidewood, W. G. On the Strnctute of the Gills of Lamellitranchia. Proc. Roy. Soc., I902, vol. Ixx, pp. 499, 500.
Ur. Kidewood has examined the shucture of the gills in 225 species of Lamellibranchia, belonging to ris genera. He is of opinion that the minute structure of the gill, like the gross, cannot. except in a very broad way, be regarded as an indicalion of genetic atinnity. Tbree main lypes can be recognised. The first, found in the Nuculidae and Solenomyidae, is characterised by the mulual Ireedem of the gill lamellac. Fin these the euthor poposes to relain the term Protobranchia (Pelseneer). In the remaining two types the filaments are held in juxiaposition by inteinocking cilia, which occur in circular pathes on their anterion and posterior facce, or by regularly arranged horizontal bats of cellular tissue. For the former type the anther poposes the ferm eleulherorhabdic, and for the latter synaptorhabdic.

We hope to give a further and longer review when the complete paper is puhlished.
Gude, G. K. - A synopsis of the gemus Stectotexis and its allies Proc. Malac Soc. Londi-, IG02, vol. v, ppe 201-244, pl. jv,
Mr. Gude here gives a very valuable synopsis of the genera Strepiaxis, Gray (with 165 species), Happia, Bonrg (with 13 species), and Scolodonta, Döring (wilh т\% species). S. teoneqsis, Pfr., S. c. S. sinuosis, PIIs, S. anceyi, MaE., S. subhulbulus, MIdff., and S. diplodon, M11df., are iggured.
Sykes, B. R.-The Zonlogical Record, igor, vol. nxxviii. Recnrd vii Mollusca. Pp. TO2, Londorn, I903.
We heartity welcome mother year's Record, which still remains the most complete and thornugh work of its kind.

Owing to ill-health. Mr. G. C. Crick has not been able to assish this year, and Mr. S. Pace has taken over a share of the work. A few alterations have been made which will stil? further facilitate reference. The Anatomical and Biological headings have been re-classified, and under the heading "Geological," the Teritary entries have been arranged geographically, finally a paragraph has been inserted giving delails respecting Biographes, Obituary Notices, etc.
Sykes, E. R.-The Zoological Record, roor, vol. xxxviii. Record viii. Prachiopuda. pp. 12, London, 1902.
No less than 08 titles of papers, etc., are given, which is by far the largesi nomber for mariy years pasi.
Ihering, H. von.-As Melanias do Brazil. Rev. Museu Paulısta, 190i [1902], vol. v, [p. $653--68 \mathrm{I}$, figs. $1-3$.
The author describes and figures the following new species: Doryssa schuph, D. yixosa, and a new variely-aragnayana-of Hennsinus tenntabris, Rve. The distribution in space and time is discussed, and a key to the genera Doryssa and Hemisinus is given. In all 33 species are recorded.
Suter, H.-On the I, and Mollusca of Little Barrier Island, Trans N. Z. Inst., Igos, vol. xexiv, Pp. 204-206.
Mr. Suler records twelve species from this island.

Suter, H.-List of the species descrihed in F. W, Hulton's Manual of the New Zealand Mollusca, with the corresponding names used at the present time. Ibid., pp. 207-224.
Suter, H. OObservations concermant les "Considerations sur les faunes malacologiques des parties Australes du globe far M. C. F. Ancey." Journ. de Conchyl., 1902, vol. xlix, pp. 316-324.
Babop. J. F.-Zur Histogencse der Bindesubstanzen bei Weichtieren. 1 , Entstehung der elastischen Fasern. II. Die Entwickelung des knorpeligen Schadels bei Elctone noschata. Verhandl. d V. Int. Zool. Con. Berlin, 1902, pp, 1-8
H[armer]. S. F.-Henri de Lacaze-Duthiers. 182r-Iوor. Year-Book of the Roy. Soc no. 6. 1902, pp. 1-5.
Hoyle, William E.-Two points in Nomenclature, Journ. Conch., 1902, vol. 10, p. 214.
Replying to a note by Mr. R. B. Newton, the author defends the use of the mame Cyprina, and points out that the generic term Antiopa is preoccupied by Meigen, 1800, for a genus of Diplera.
Kennard. A. S. and Woodward, B.B.-Onthe non-marinc Mollusca [rom the Holocene deposits at London Wall and Westminster, Proc, Malac. Snc. Lond., 1902, vo!. v, pp. 180-182.
The authors' record from the London Wall excavations 6 species of marine and 34 non-marine, ol the lalter the most noteworlhy are flanorbis glaber, P. fontanus, and Sphaerium lacustre. Those from Westminster, which are 22 in number, are all common forms in Holocene beds.

Wright, B. H. and Walker, Bryant-Check List of North American Naiades. Detroil: 1902, pp. 19.
This useful check list is based upon Mr. C. T. Simpson's Synopsis, with certain corrections, and the addition of species described since the publication of that valuable work. The List is divided into two parts; the first giving a systematic arrangement and the second a catalogue of the species. The two might with great advantage have been put together.
Certer, C. S.-Pisidium subtruncatutn near Louth, Linc. N. Nat., 1902, p. 292.
Smith, Edgar A.-On the supposed Similarity between the Mollusca of the Arctic and Antarctic Regions. Proc. Malac. Soc. Lond., 1902, vol. v, pp. 162-166.

EDITOR'S NOTES.

On completing anolher volume the Editor tenders his grateiul thauks to all who have in any way futhered the interests of the Journal, during $\mathbf{9 0 2}$.

During the year the number of subscribers has slightly increased, which has enabled me to continue the illustrations as herelofore, and will, I hope, permit of a further increase during 1903.

In maintaining and furthering the value and usefulness of the fournal, the Editor trusts ts the co-operation of all subscribers.

INDEX TO VOLUME IX.

A.

Atghansstan. List of the Heli-coid-Land Shells of..

IOI
Alcaens kelantanense, n . sp . (fig.) 62
Amalia carinata. Risso? Is... a British Slug. 63
Amaliacamtata. Further noteson Amphidromus perversus, L . Anatomy of..\quad... ... Br
Analomy of A mphidromis perversus, L. (figs.)

8I
Anatomy of Apoparmiarion fartridgii, n. sp (fgs.)

74
Analomy of Alopos sarastht, n. sp(figs.)88

Analomy of Girasta peguensts,
Theob (figs.) 76

A natomy of Hemiplecia humphrey
siana, Lea. (fys.) 79

Anatomy of Myotesta fruhistorferi,
Cllge. (figs.)...
Anatomy oi Myotesta punctala, Cllge. (figs.)

13
Anatomy of Solen ensis, L. (figs.) is
Anatomy of Solen marginatus, Pult. and Don. ${ }^{\text {D. }}$...
Anatomy of Solen pellucidus, Penn. (figs.20
$\begin{array}{ccc}\text { Penn. (figs.) } & \cdots & 20 \\ \text { Anatomy of Solen siliqua, L. } & . . & 20\end{array}$
Ancistromesus, Dall, III
Anodonta cygnea, L. Noles on some further malformed specimens of \ldots... 96
Apera, Неуп. 86
Apera burnupi, E. A. Smith. [Generative organs]. (fig).... 86
Apoparmarion, n gen. 73
Apoparmarion partriagli, 1. sp. (figs.)73
$\begin{array}{llll}\text { Apoparmarion partridgi. Anal- } \\ \text { omy of } & \cdots & \cdots & \cdots\end{array}$
Arabia, List of the Helicoid Jand Shells of 103
Armenia. Lisl of the Felicoid Land Shells ofin12
Asa Minor (Mainland). Lis! of the Helicoid Land Shells of

117

Asia Minor (Islands of) List of the Helicoid Land Shells of		
Asiatic Russia. List of coid Land Shells of	the Heli-	
A topos, Sim		
Atopos harmeri, n. sp.	(figs-)	
Alopos laidlarit, n. sp	(figs.)	
Atopos punciata, n. sp.	(figs.)	
A topos rugosus, 1.	(tigs.)	
Atopos sarasint, 1. sp.	(figs.)	87
Atopos sarasme. Ana	y of	

B.

Iloomer, H. H.-"The Anatomy of the British species of the genus Solcn. Pt. iii." 18
-_" Notes on some further malformed specimens of Anodonta cgisnea, L." ... 96 " The Anatomy of the British species of the genus
Solcn. Pt iv.", 133
Boysidia kelantanense, n.sp. (fgge) 61
Buccinum, Fusus, etc. Notes on the British species of $\quad . . \quad 35$
C.

Chlontis (Suilcobasis) prestoni, n. sp. (5gs.) 59

Chusan. List of the Helicoid
Land Shells of

Clausilia (Pseridonenia) k̈ctantaHense, n. sp. ... 22
Clausilia kelantancnse, Sykes.(figs.) 61
Clausilia penangensis, Stol. var. 84
Cockerell, T. D. A.-" Physa vir-
gata mut alba, nov. ${ }^{\text {. }} \quad . . \quad 138$
Collett, Oliver. Obituary. ... 137
Collinge, Walter E.-"On the
Anatomy of the genus Mot.
csta, CIge."

- " Description of a new
species of Onchudium from
South Africa,"
"Is Amalia carinaia,
Kisso, a British Slug ${ }^{7}{ }^{\prime \prime} \quad$.. 63
"On the non-operculateLand and Freshwater Molj.uscs collecter hy the Mem-bers of the "sseat Expedi-tion" in the Malay Peninsula,1899-1900."71
--" Some notes on thegenus Prisma, Simroth." ...---"Fiurther nales on Anal- 129ia cartnata, Risso," 132- -"Limax maximus, L., inthe Hawaiian Islands." ... J3R
Cooper, James G. Obituary. ... 13Corea. List of the Helicoid Land
Shells of 54
Cryplosentelys, n. gen. 7^{6}
Cryptoscmelus prarifis, 11. sp.(figs.) 76
Cryptosoma sp. 77
Current Literature ... 26, 67, 105, 13
Cyprus. List of the HelicoidLand Shells of 125
D.
Description of a new species of Gomphina from New Zealancl. To9
Description of six new Land Shells from the Malay Peninsula.22
Description of a new species ofOnchidium from Soulh Alrica.17
Description of a new species ofSeparatista fiom New Zear-land.65
E
Editur's Notes
34, 70, 108, 144

$$
\mathrm{F}_{*}
$$

Formosa List of the Helicoid Land Shells of -.. ... 55
Fustrs consimilis, n. sp. 49
Fusws gracilis, Da Costa var. gla. bes, Verk, new ic Britain.
Fusus propinguns, Alcl, var, taeves, n, var.

G.

Gifasia pesuensic, Theob. Anatomy of the generative organs. $7^{\text {fh }}$
Gomphina maurtm, n. sf. [figs.) 109
Gude, G. K. -" A Classified List of the Helicoid Land Shells of Asia
--"A Classified List of the Helicoid Land Shells of Asia, Part ii."
... … ...
--" Description of a new
species of Chloryis fron New
Guinea." ..
--"A Classified List of the Hericoid [and Sleells of Asja. Part iii." " 59 Helicoid Iand Shells of A sia. Part iv." 12
H.

Hainan. Liat of the Helicoid Land Shells of 57
Hawaiian Tslands. Limaix maximis, L , in the
Classifiof List of the $\quad 1,5 r, 112$
Hesmplecta hrmfturevstana. Lea, Interna1 slimcture of _... 78
Hong Kong. Jisl of the Helicrid
Land Shelts of
36
IIypsclostoma la idfazai, n.sp. (figs.) 8_{3}

K.

Kowalevsky. Obiluary. ... r37
Kurdistas: I ist of the Heliccid Land Shells of IC2

L.

LAmax maximus, L., in the Hawaiian Islands. 138
Limnaea peveger. Müil. A malformed variety of (figs.) ... 64

M.

Macrochlamys coetigena, n. sp. (figs.)

22
Malay Peninalla, New Land Shells fiom the97

Malay Peninsırta, On a collection or Land and Freshwater Shell from Kelantan.

60
Malay Peninsula. On the nomopercnlate Land and Freshwater Molluscs collected by the Memhers of the "Skeal Expedition " in the ...
Marshal1, J. T.-" Notes on the Britislis species of Buccinum, Fitsus, ele," ...

35
Mesorciamia. L'sl of the Heli. coid Land Shells of .. 102
Metanneniatina, n. group. ... ros
Möllendorf, O. F.- Obituary.
C. A. F. Wiegimann,
24
Mongolia Yist of the Helicoid
Land Shells of
Letestidae, n, fam,

Myotesta, Cllge. ... $\quad . \quad, \quad 11$
Myotesta frushiofferi. Cllge. (figs.) 12
Myolesta phuciala, Cllge. (lit's) 13

N.

Neomentatina, n. group.
105
New Guinea. Descriphon al a new species of Chloritts from 52
New Zealand. Description of : new species of Gomphitha from (K)
o.

Obiluary
24. 1,37

Onchtitum burnupi, 11. sp. (figs.) 17
Opisthoporws dautzonborsi, n. sp. 23
Opisthoforms dautsenbergi, Sykcs. (figs)

61
Opisthostona laidlawi, n. spin 22
Opishostoma latillawh, Sykes. (figs.) 62
Ostracolethe fruhstorfferi, Simr. ... I4
Overton, H.-"On a maliormed variety of Limnaca fercter, Müll." ...
${ }^{6}$

P.

Padanfza, Babor. \$6
Paramenatina, n. group. .. 105
Paraparmarion. n, gen, 75
Pavaparmarion ctongatus, in sp. (figs.)
Patelta kermedeconsts, Pilsbry.
(Gigs.) ...
...
Persia List of the Helicoid Land Shells of 103
Pheva virgata, inut. alba, nov. ... 138
Platyrhaphe chrysalis, n. sp. ... 23
Ptalyrhaphe chrysalis, Sykes. (figs.) 6 I
Prisma, Simr. 85
Prisma, Simroth. Some notes on the genus ... $\quad . . \quad \ldots 129$
Prisma heynemanni, Simr. (figs.) 131
Prisma prasmatica, Tap.-Can. (figs.) 130
Prisma smithi, n. sp. (figs.) ... 130

R.

Rathotistidae. $\quad i . . \quad$... 84, 87
Rhodina (2) murabilis, n. sp. .- 22
Rhodina () mirabjes, Sykes. (figs.) 6I

S.

Separatiskt benhami, n, sp. (fig.)
Siberia. Jdul of the Helicond Land Stiolle of

Freshwater Mollusca collected by...
Smith, Edgar A.-"Description of a new species of Gomphiна from New Zealand.' ... 109
Solen. Anatomy of the Brilish species of the genus IB,I33
Solch cnsis, J. Nervous system. I8
Solen marginatris, Pult. and Don. Nervous system. 20
Solen pethacidus. Penn. Alimenthry canal. 134
Soleth pellucidus, Penn. Circulatory system.- ... I35
Sulth forlucidus, Penn, Eternal ch.araters. 133
Silt'y frillut dits, Penn. Musculalu'. 134
Sotert folltwitus, Penn. Nervous system.

135
Soter shititir, 1. Nervous system. 20
South Arricis. New species of Ouchithith hom17
Sirchlawes willingei, n . sp 22
Stripforis rollugei, Sykes. (figs.) 60
sheptans strotula, n. sp. (figs.) 73
Sthrftrins s.skesi, in. sp. (figs.) 72

Suler, Itenry.-i" Description of a new species of Soparahsia 1 m m New Zealand.65 -"On the Systematic Position of Patella kermadecensis, Pilsbry."
Sykes, E. R.-"Description of six new Land Shells from the Malay Peninsula."22
---"On a collection of Land and Freshwater Shells Irom Kelantan, Malay Peninsula." 60
Syria (including Palestine). Liat of the Helicoid Land Shells of126

T.

Tibet. List of the Helicoid Land

Transcaucasia list of the Helicond Land Shells of 113
Turkistan, Western. List of the
Helicoidl Land Shells of … 5 .
Turkistan, Western. Ldst of llic Helicoid Jand Shella af ... 97
v.
Yiromtirillt, mp. H_{4}
W.

[^0]:

[^1]: 1. Journt af Malag, iğa, val. vaib y. f1E,
[^2]:

[^3]: * Sae :mbe, vol, vili, F 97.

[^4]:
 (9) Jauri. Malac, i Bç, vol. iv, F. 11.

[^5]: (1) "Challer get" Gastropecia, Do age

[^6]: reversed)
 () "A Month an the Troadhjem Fjord," Ann, Mag. Nal. Hist,, vol. xii, p. 352.
 (3) J.oc cit., p. 35^{2}, pl. xvi, figs, $\mathrm{I}_{1} 2$.

 J,oc cit, p.353. pl. xvt, 65. 3^{\prime}

[^7]: (1) Brit. Moll., val, iii, p. 4t8, pl, ciii, fix. s.
 the Lafictells)

[^8]:
 2l. in, fig. 5.

[^9]:

[^10]:

[^11]: ${ }^{*}$ Sen Ante, P. I,

[^12]: is Pict. Arar. N I. Srio Philar', y EBz, p. ajo.

[^13]: 1. Anle, F. $2 \boldsymbol{2}$
 2. Man Cunch., vol. xiii, P. trin.
[^14]: т. Abbandl. L Senckrals, nalurf. Gesell., i8gr, H. wri, p. 2n. T. i, I. 7.

 4. Prod. Eurcpe Aleminl, $180 h_{1}$ p. 汽

[^15]:

[^16]: " Sillce this paper was rampleted, Mr, E. R. Sykes has published rwa papers in thin
 titles of which bave beep added to the Rihlingraphy-

[^17]:

 of the gents the pulmonar apercure is on the cwer rigtr sice of the mantle atrint two
 fifthe difielerpis rfibe hicdy from the arterior erd, the ferra'e pencrative orifice rin the
 numa sid is anid on he ahnur ithr middle. H'ainvilles accouni of the anarnmy, hawever,

[^18]:

[^19]: whot briate by immeminn in alechol, In the estain of the eringl rrifire.

[^20]: ors Oviduct.
 p. Penis.
 pc. Perjcardium.
 fr. I'restale.
 pp. Penis p:ajilla.
 pr. ledal retractor.
 p.s. Pulanonal'y veín.
 r. Kecturn,
 r. ap. Renal aperture.
 r.d Receplacilar dict.
 r.m. Retractor muscle.
 r. or Respiratory orifice.
 r.s. Keceptaculum seminis.
 $s d$. Salivary duct.
 b. st. Salivary gland,
 S. of. Simmoth's oland
 st. Stomach.
 7. Superior tentacular redractu.
 t. Inferion tentaculan retiondas
 on. Superion Ientacle,
 tn. Inferjor kentacle.
 ur. Ulefer.
 F. Veslitule
 ry. Vagina.
 ri.d. Vas defercons.
 w.d.s. Wall of datt-sac
 wh. क.c. Wall of pulmonary cavity
 d Male penersatis orifice
 ρ Fumalegencralivi orifice.

[^21]: *See Ante f. 5 .

[^22]: Journe of Malac, Igoa, vol, ix, Nr. 4.

[^23]: - Lee Pielifer, Curch. Cah, eslo g, Veneracea, p. rif, pl, xxiii, fig z: Reeve, Concli, lerr.. vol, xiv, V/twas, pl, xxv, lige, $126 \mathrm{~g}-\mathrm{h}$.

[^24]: *Sepante pryy

[^25]: I* Descr nouv, Gierve Gellerdia, mRAc, p. E.
 a. Sils. Rar. Kaik, Akaci. Wiss., 1900, Ed. cyl, F-a

[^26]:

[^27]:

 4. (at Rais Mall. Sialiey, iPs.a

[^28]: Zaic．J，uiss Zrolw 1月g1，Hd，lii．
 Aлn．i. Mus．Cive di Gr．Nal Gencya， 128_{3} Yul．xix，panz Jwhrh，d．Datusct．Malak，Gessll．，7日E』，

[^29]: 4. Voyage sut le Honite, jEga, 1, ii
 s. Op. cit,
 f. Op. ril

[^30]: т. See ante p 6

[^31]: 3. Jich Namemasi, igga. vol. $2, \mathcal{F}$. Ef

 * Eev ante p. 1 日,

