R E PORT

now 111 K

SCIENTIFIC RESULTS

VOYAGE OF H．M．S．CHALLENGER

CaPTAM GEORGT：S NARES，R．N．，ド．R S．

1IIE InTI
Sf C．whyllet thoason，kol fers．，\＆C，

JOHN MURRAY

Zoology－Vol．XXIII．

EDINタInC：－ADAN A CHANLES ELACK

1月是

Pran Forby 5fifind

VOYAGE OF H.M.S. CHALLENGER.

Z00LOGY.

REPORT on the Ptrropons collected by B.M.S. Challenger during the Years 1879-76. Fy Patr. Pelseneer, D.Sc. (Brussels).

PART II.-The THECOSOMATA.

INTRODUCTION.

Abnir the end of the year 1885 I was entrusted with the task of making a systematic and deacriptive Report on the Gymnosomatous Pteropoda and an anatominal one on the entire order, and in the beginning of the present year (1887) the entire Report on the Pteropoda was entruated to me for completinn.

The Report is thus divided ints three partions as follows:--

1. The aystematic aurvey of the Gymnonnmata, which has been niready prblished.'
2. The present Report on the Thecosomata, which along with the former includes the entire systematic burvey of the Pteropoia mallected on the Challengar Expedition.
3. The anatomy of the Thecosomata and Gymnosomata

As with the Gymnosomata, so in regord to the Thecosomata, I have been forced to make a monographic study of the entire subgroup. But I have nat here described all the species aetually kown, pertly becarre they are on the whole more familiar than the Gymnosomata, and partly because the delay which has been involved in the completion of the entire Repart made anch a aurvey impossible. I ahall therefore reasrict myself to an enumaration of the indubitably genaine species amang the entire list of those hitherto deacribed, and to ayooptic tables in which these are diatinguished from one another.

[^0]And ns to the species collected on the Challenger Expedition, I shall not describe thase which are alrendy suticiently well known, and in regard to whish there is no manner of doubt or dispute. I ahall restrict my descriptions to the doultfinl ar imperfectly known species, attempting at the same time to make their systematic arrongement more lueid and less complex.

It is a noticeable fact tuat in general warks on the aystematic relations of Mollusce, the diagnoses of the families and genera of Pternpods are always the same, and that from a comparatively nacient dnte, just as if they had been verbally copied by successive authors. And aince they bave not been morlified with the progress of research, the reault is that they are often ineorrect. I have therefore taken particular eare with the diggnoses of fawilies and genera, and have based these on specimens which I have myself studied. The dingnoses I hnve framed as simply nod methodically as possible.

My monographic study of the sulgroup Thecosomats has been bnsed upon the following collectione:-

1. The dry and pregerved specimens in the Eritish Museum.
2. The dry shells of Thecosomata in the Brizesels Museum.
3. The Thecosomata collected on the "Triton" expedition.
4. The Thecnomata collected Ly Mr. Joln Rattray, F.R.S.E., during the cmise of the ateamship " Puccaneer " on the western coast of Tropical Africa (1885-86).
5. The Thecosomata collected by the ltalian vessel "Vettnr Pianni" during the ecientific expedition round the world (1882-85).
6. The Pteropods captured by Surgeon Dovid Fruce, M. B., near Malta (1866).
7. The Thecosomata collecter at the Zoological Station at Naples during my stay there (from February to July 1887).

I must alsa gratefully arknowledge my indebtednese to Mr. Edgar A. Smith, of the Zoologienl Department of the British Museum, from whom I have received much assiatance, to Professor Ch. Velain, of Paris, and to Mr. W. H. Dall, of the U.S. National Murenm.

After enumernting the species I shall disenge the geographicnl distribution of the group. The phylogenetic relations of the different genera can only be atisfactorily discussed after some treatment of the anatomy, and will therefore be diacussed in the snetomical Report.

Thf Hahits of thr Thrcosomatoos Pteropons.

I have nothing to add hare either in regard to the history of the gronp or the differences between the two aubdivisious. The subject has been aufficiently discusaed in the Introduction to my Report on the Gymnosomatous Pteropads.'

[^1]So ton in regard to the bolits of the Thecosomata. Like the Gymnosomata they are pelngic Molluses, which degrend to a certain depth to asoid hright light, and reasecud when the light is feelle or alsent, and when the sca is calm. They feed mainly on Protozna (Radiolarin, Formminifera, Infusoria) or ou lawer Alge, while the Gymuosomata prey upon decidedly higher animals. This differenere of tict is the coudition eflerting the notable diversity in the structure of the alimentary system, and especially of the bucenl and atnmarhic ammature.

Thr Thfcosomata of the Challenger Expeditioy.

The Theosomatous Pteropods collected on the Clanllenger Fxpedition, which form the material lases of the present Report, cooprise two distinct scries :-

1. The Thernsmmata captured alive in the tow-nete, amd preserved io alcolan or in microssopic preparations mountrd in Canada halsam or in glycerine. These were entrustel to me tnwards the end of 1885 for use in my Report on the anatomy of the group.
2. The dry shepls from deep-sen deposits, the importnnes of which will be diacused in the special report on the sen-bottom. This collection was selected from the depasits in the Challenger Office nud also by Mr. Alfred E. Craven, who nt one time proposed to write the Conchological Report on this group. It passed into my banda in the legimning of 1887, when a large oumber of the specimens had heen alveady nseortect.
I. 'The Thecosomata trken alive were gathered from seventy stationa, and include twenty-cight species representing all the knowa genera. Among these species there is no new form, though a certnin number bave been hitherto insufficiently known or only once recorded.

The following table indicates the distribution of these apecies nomong the different genera

	Limacina,	.				.	.	6
	Peraclis,						.	1
	Clio,							10
	Cuvievinet,	.				'		1
	Cavolinia,							8
	Cymbulia,							1
	Gleba,				.	.	.	1
tbat is, among	7 gemern,							28

II. The Thecosomata dredged from the deposita of the deep sea occur in all thobe known hy the title "Pteropod onze," and also in othara. I have received the
abells from the sediments of twenty-ane stations most rich in Thecosomatn. The results of the study of these shells are detailed in this Report under the title of "Deposit-shells."

In the different ahell-containing sediments which I have exnmined, I have found twenty four apecies of Thecosomata, of which a dozen necur in considerable abundance at many of the stations. One of these forms is quite new. The various forma are distrihuted as follows in the different genera-

Besides these twenty-four epecifs there are five which do not occur in the Challenger collection of preserved Thecosomata. The tntal number of Pteropoda Thecosomata thua amounta to thirty-three, of which one is new, and a number either insufficiently koown or not previously figured.

Limacina,	.	.	-	.	.	.	日
Peraclis,	2
Cizo.	-	-	12
Ouvierina,	1
Cavolinia,	8
Cymbulia		.		.	.		1
Gleba,				-	.		1

that in, in 7 genera, 99 apecies

DESGRIPTON OF GENERA AND SPECIES.

PTEROPODA, Cuvier.

THECOSOMATA, de Blainville.
Pterocephalde, Wagner, 1885.'
Eupteropoda, Bnas, 1886. ${ }^{3}$

THF GENERA AND FAMILIHG OF THECOSOMATA.

In the Systematic Report on the Gymnosomatous Pteropods, I have noted a number of genern formerly influded in the gronp Pteropnda, hut which ought lngg ago to have been relegated elsewhere.

Among the Thecosomata too, a number of forms have been rather recently inclurled which do not belong to the group of Pteropoda. Sucla are, for inatance, Chelnetopis and Sinnsigera, which are really larye of Streptoneural Gastroporls, whose velum bas been mistaken for a fini and na to Holnpsyche (Euribia and Psyche), it is one of the Gymnosomata, as 1 have noted in my previous Report.

But even after abstracting the names of genera which ought without hesitation to be removed from the eystemntic nomenclature of Thecoromata, there remains a lang list of titles, which bave been invented for living forms really belnging to the Thecosomatn, but of which the majority cannot be retsined. Such titles are proportionately more numerous than the generic namea eatablisher for the Gymnosomata, and this becruse the generic diagnoges of the Thecosomats have been almost alwayg based upon the shell. To this, which is nothing more than a aimple ectodermic secretion, conchalogista have attached ton much aybtamatic importance. There ate indeed certain subgroups of Thecosomatn, including a number of generic titlea, grenter than that of the geovine өресіes.
${ }^{1}$ Nip Wirballasen dem waison Meeren Bd. Lp. 11 g.
${ }^{1}$ Gfolia allantica, p. 178.
 Dandidium.

Againat auch a tenilency it is necessary to protest and to verert to a less rigirl conception of what constitutes a genus, and though one does attach consirlerable syatematic importance to the shell, this must not be exaggerated so as to lean to the erectimn of a separate genus for epecies which differ in some minnte teatute in the shell, hut agree with one another in the rest of their characters. lo addition to sovaral differences of some importnnce in regard to the shells, it will he necessary to justify the establishment of a gedus by at least one characteristic difference sither in the saft structure of the animal, or in certain hard parta like the operculam or the buecal armature, which are generally of real importance in generic and specific dingnoses.

From this it follows that a large number of the geverie titles discussed helow must either be abondoned or regarded as synonyms. Some of them sman may he ennaidered os designating generic sulhdivisinns, though these are not in any way iudispensable in an comparatively small a group as the Thecosomata.

I shall append, from the literature of the group, an alphabetical ligt of the various generie names given to living Thecosomata:-

Agadiza, Gould,
Avchonta, Montfort.
Baknatium, Leach.
Campylonaus, Gray.
Ctoolinift, Abildgaard.
Cheonlora, Péran and Lesueur.
Clio, Linné.
Corolka, Dnil.
Creseis, Rang.
Cuvieria, Rang, non Péron.
Guvierina, Boas.
Cymbulia, Péron and lesueur.
Diacria, Gray.
Embolus, Jeffrays.
Euromus, F. and A. Adama.
Gleba, Forskal.
Heliconoides, d'Orbigny.
Halicophora, Gray.

Heterofusus, Fleming.
Hyalma, I.amarek.
Hyclocylis, Fol.
Limacina, Cuvier.
Orbignjia, A. Adama.
Peracle, Forbes.
Pleuropus, Eschscholtz.
Pritomedea, O. G. Costa.
Rhedu, Humphreys.
Scasa, Pbilippi.
Spiratella, de Blainville.
Spirialis, Fydoux and Soulsyet.
Styliola, Tresueur.
Tedemannia, delle Chinje.
Tricla, Oken, non Retzius.
Triptera, Auctorum, non Quay and Gaimatd.

Of these thirty-four titles

I. Twa ought to be provisionally att aside as doubtful, for rensons which I shall afterwarde submit: :-

Agculina, Gould.
Tiiptera, Quoy nod Gaimard.
II. Twenty-five are duplientes, and ought therefore to be retnined simply as syonnyms of Thecosomataus genera :-

As to the genus Valvalina, Bornemann, ${ }^{1}$ Figcher ${ }^{2}$ is evidently in error in stating that it includes living Pteroynds, for all the forme which he describes are forsils. It ib likewriee prohahle that mont of the latter are not even Pteropods.

The genera Euchilotheca, Fischer; Flabellulum, Bellardi ; Gamopleura, Bellardi; Poculina, Bellardi; Tibiella, Meyer, and the genue Valvatisa mentinned above are only known ar Tertiary fossila; and they are further very closely allied to various extant gemera.

I completely nbstract certsin primary fossils usually referred to the Pteropoda. I
 p. 18

1 Mantel de Conchyliologis, p. 420.
have a deep conviction that these orgraisms do not really belong to the group in quegtion, and am firmly of opinion that Pteropods da not occur as fossile till the end of the Isower Tertiary. I shall afterwarda revert more erplicitly to this point in the anatomical part of the Rpport, in connection with the origin and pliylogeny of the group.

Among the living Thecosomatn really known there are, then, strictly sppaking, only eight genera, including one now genue established in this Report.

These genern are: -
Limacina, Cuvier.
Peracle, Forles.
Clio, I.inné.
Cunzerina, Roas.

Camolinire, Abildganci
Cymbulita, Pérou nad Lesueut.
Cymbnliopsis, n. gen.
Glebn, Forskil.

The following table indieates the chief diaguostic clinaracters:-

Key Tu the Genert

1. Calcmeane ahpll quile ontaide the moble.
2. Shell twifted in חn a spliral.
A. Shall with aowewhat grintin wharla, a moderntely wide npening, and n alumalla oat prolangerl intan reanivarl rontron, Kimariva
A. Shall with mpidly arcanding wharla, with n varg wide opering and a enilumelles prolonget into a recurved roetrum, Peractia.
3. Shell etraight and bilatemally aymmetrical.
A. Sbell larger at the apertura than juat brhind,
a. Shell without conetriction bebiad the operture,
Clic.
b. Shell with a conatriction immedintely kahind tha spertare, . . Cuvierma.
B. Shell narrower at the apertura tbuu juat bahind, . . . Cacminia
[1. Cartilapinous eball covered by the pallial epithelium.
4. Valuminoma shell with a merled cavity.
A. Thick abell, with the cavity not exteading dorall Y_{Y} to the very end, Cymbrian.
B. Shell with thin walle, cavily extendug dotanly to the very edd, . . Cymbulzopsin.
5. Finttened shall with almest no espily,

Glelia.
As to the relatione of these eight genera with the other Pteropeds, we hnve already noted in the Syetematic Report on the Gymonosomata, that Fol daubts whether Cymbulia has not more affinity with the Gymnnaomatn thon with the Theconomata. Wagner alsm aeparatea the genus Cymbulia from the Thecosomata, and in order to get over the difficulty without solving it, creates for these animala a third division among the Pteropode, viz., Alata. ${ }^{\text {I }}$

In reality the members of the genus Cymbulia do not differ from the typical Thecesomata which Eouleyet included in his family "Hyales" except in external appearance.

[^2]In their entire organisation (existence of a pollial envity; uumber of tentaclea; josition of the penis, fins, cerebral gruglia, \&e.) they agree with the Thecosomata, as we shall aes in our anatomical Report. On the other band, their special characters make it eonvenient to erect for them n special family, which appears to be a far preferable course to miting them, is Woodward'hes done, with the Cavnliniidn, in whimh he bas also included the Gymnosomntous Halopsyche.

As to the nther Thecosomatn, they form n more uniform group, within which one may fuas from nue form to another without remarking any very consileralile modification. It is true, howerer, that in this group some farms difier from the majority in baving the shell fwisted into a apiral, as also in the position of the anus rud of the pallial covity. The existeape of these last two diferpaces in forms otherwise closely allied will be explained in the anatomical yart of the Report. The differences just mentioned make it posaible to separate the forme in questim, aud to erect them inta the family Limacinidre, which, however, Souleyet unites with the typical Thecosomata. ${ }^{1}$

As to all the rest, they form a most untural family-C'avoliniidm, from which there in no reason to separate the genus Chyicrina, under the vame of Triptevishe, as Gray and the brothens Adams " have done. The last mentioned genus in fact difers but very slightly from certain types of Cavaliniidæ, such as the speries of Clio of the section Creseis, from which indeed they are distinguighable only by the presence of a partition towards the midde of the shell, nid by the conatniction behind the aperture.

Among the Therosomatous Pteropods, we thus recognise only three families:-

1. Limacinidm, incluring the genera Limacina and Peractis.
2. Cavoliniidæ,

Clio, Cuvievina, and Cavolinia.
3. Cymbuliidæ, . \quad Cymbulin, Cymbuliopsis, and Gleha.

Family I. Limacininga

1847. Limazinida, Gray, A List of the Gonera of Recent Mollusea, their synonyma and typas, Proe. Zool. Enc. Land., p. 203.
1848. Spitialides Chenn, Manubl da Canchgliologie, ti. p. 119.

Characters.-Sbell external, twisted into a left-hnoded spiral, with a apiral operculum. Animal with a doran pallial cavity, and a ventral columellnr muacle; anue situeted on the right aide.

Description.-The abell, which is alway日 delicate on in other pelagic animnle, is of amall size, and is tranalucent with alight colouring. The apire and the operculum differ considerably in form in the various spaciés.

[^3]The operculum is very delionte, glassy, aud trausparent. It is fixed by a porlinn of its ourface to the posterior face of the ventral Jobe of the foot,

The animol is twisted llke the abell which it completely fills, and iuto which it may be completely retmeterl. The margin of the mantle bears, ou the right-liand side, nut sompernt wentrally, n lang extensile appendage. The posteriar lohe of the foot, which henrs the nperculum and is topographically ventral, is hollowed out on the micldle of its free margin. The fus do not exbihit, towards their distal extremity, the area witheut muscular fibres which is usually to be observed in the gevus Clio.'

As regards the systematic relations of the gencral and epecies, the family Limacinidex is atill but imperfectly underatood. This is in part doubtlese clue to the small size of the animals which form the family. They have hitherta heen but rarely studied, oud even in special works in Pteropods are often slurved over, ats for instance in the memoirs of Quoy and Gamard and of Rang. In the same way Troaclel and Gegenhaur in their studies on the Pteropods of the Mediterranean have not diseussers a single member of this family, and we may also mate that Pfefier, nlon bas published alu inportant description of the Tlecosomnta in the Fanalumg Muscum, bas guite overlnoked the Limacinidx.

The investigation of the numerals specimens of this family which nere collected au the Challenger Expedition has enaluod we to make an almast complete atudy of the entire family. The results of my investigation I therefore proceed to submit.

If one considers the living species alone, one finds in the literature of the subject that there are no less than thirty-six different spenific names applied to forms reterted to this family. In this number I do not include, be it understood, the mounscript specief, or those which bave been simply recorded without description ar figure-Linzanina carinata, Jeffeys, ${ }^{2}$ Spirialis diversa, Monternaeto, ${ }^{8}$ Spirialis contorta, Monteroseto.' I'bese I evidently could not trke into account.

Since the work of Souleyet,' Bons is the only anturalist who bos attempted to make n synthetic study of this group.'

From the rescorches of these authora it may be concluded that there are now seven species adequately enough known by their shell, operculum, and onatomy to leave no doubt as their syatematic position. These species are the following and in citing them I shall retain the nriginal generic titles, amitting for the present the diecussion of their proper generic distribution.

[^4]1. Atlantre inflata, d'Orbigny.
2. Atlenta lesmezsizi, d'Orbigny.

ง. Clin helicina, Phipps.
4. Spirialis australis, Eylnux and Souleyet.
5. Limacina Zalea, Mïller.
6. Allonta trochiformis, d'Orligny.
7. Allanta bulimoides, d'Orbigny.

The conuiderable number (twenty-nine) of other forms descriked (aften very imperfectly, and without examimation of the nuimals) includes the following forms. I should rather say did include the following when I undertook this Report, for as the result of the investigntion ahout to be recounted, certain changes in the grouping become necessary Thus one species in Group III. most be referred to Group I., while two species of Group 1I. must be plared at the end of the geven specics chronicled abnve.

1. One, which I cannot regard ne a Pteropod: Limacina tumitelloides, Bons.

1I. Four, which appent to me to helong guite clearly to the Thecosomatous Limacinide: :-

Embolus triacanthus, Fischer.
Limacina antartica, Wondward.

Limariza helicoides, Jeffreys. Attenta reticulata, d'Orhigny.
111. Four, which gepan to me much less certain, but iv regard to which the reports of those who have atudied them are mat suffinient to nilmit of a pasitive conclusion as in the case of the two preceding groups. Until further information is forthcoming they must he regnrded ns doubtful:-

> Limacina (汶 cucullata, Gould. Agatine gouldi, A. Alams.
IV. Finaliy, all the other specific titles are synonyms cither of some of the seven well-known epecies, or of the four included in the second group :-

Argonamita artica, Fahricius, Limacina helicialis, Lamarck, .
Spiratella limaeina, de Blainville,
Limacina pacifica, Dall,
Peracle flemingii, Forbes,
Limacina bolea, Möller, Scret stenogyra, Philippi,
Spirialis goutdii, Stimpson, . . \quad Heterofusus vetroversus, Fleming
Spirialis jeffreysiz, Forbea and Hanley, -
Spirialis macandrei, Forbes and Hanley, Heterofusus alexandri, Verrill,
Limacina naticoides, Rang,
$=$ Clio helicina, Phipps.
$=$ Allanta trochiformis, d'Orbigny.

Atlanta vangit, d'Orbigny (?),
Spirialis ventricosa, Eydourand Souleyet,
Spirialis rostralis, Eydoux and Souleyet,
Protomedea elata, O. G. Casta, Limacina sonphoidea, Goukd,
Peracle physaides, Forbes,
$\left.\begin{array}{l}\text { Perache physaides, Forbes, } \\ \text { Spirialis clathrata, Eydoux and Souleyet, } \\ \text { Spirialis recurvirostra, A. Cobta, }\end{array}\right\}=$ Allanta reticuleta, d'Orbigny,
$\}=$ Atlrnta lesueuriii, d'Orbigny. $\}=$ Allanta inflata, fl'Orbigny. -

To these known apecies I can alan arld a new form included in the Challenger callection, which may without hasitation be referred to Group II. of undaubted Limacinidm. Another form, which cannat he identifien with any of thase bitherto known, seemed at first to be refernble to Graup III. above, but sulsequent exnmination has shown that it must rather he placed in Group I. along with another species of the same nature.

How are these different species to be dietribated throughout the family? Or, in other words, how many distinet ganem can be distinguished.

The quertion is indeed a most difficult ane, and there are almost as many opinions on the aubject as there are investigntors of the group. Very fow of the expressed opinions, however, claim much sericus attention, for there has hardly heen any previous attempt to make a ayatematic syothesis of the faraily Limacinide.

If we turn to the tahle of genera (μ. 8) we see that twelve generic titles bave heen invented for living Thecosomata with spiral twinting that is to say, jugt the anme number of genera as there are certainly admissille species. I append the titlea in chronological order :-

1. Limacina, Cuvier, 1 1917.
2. Heterofusus, Fleming, 1829.
3. Spiratella, de Blainville, 1824.
4. Helicanaides, d'Orbigny, 1886.
5. Spirialis, Eydoux and Souleyet, 1840.
6. Helicophora, Gray, 1842.
7. Peracle, Forbeg, 1844.
8. Scofa, Philippi, 1844.
9. Campylonaus, Gray, 1847.
10. Euromus, A. and H. Adoms, 1858.
11. Protomedea, O. G. Costa, 1861.
12. Embolus, Jeflirya, 1A69.

What increases the confusion resulting from this superfluity of generic nomenclature in a group with sa few forma, is the fact that several of these names bave bean used in different waya by different authore. Hence a complex and contradictory set of eynonyme.

Gray (1850),' Gould (1852), and Boas (1886) ${ }^{3}$ lave tried to simplify the matter by uniting all the known apecies in a single genus with the oldest title, Limacina, Cuvier. But it must be noted that Gould knew but few species of Limacinidse, and that for one form which he regarded as new he even thought that it might be well tacreate a new genus. Jefficys also unites in a single genus, Limacina, all the species which he diacupses except Allanta inflata, d'Orbigny, far whinh he establighes a genus Fmbolus, although a certan species which he calls Limacina differs mare from the typienl Limecinnt than doen Atlanta inflata. And besicles, as we shall afterwarda sec, that solution of the difficulty which seeks to unite in a single genus all thr living Thimacinidre is not in conformity with the differpnces of organisation exbibited by the various types.

There is only one way of restoring order to the confuspd nomenclature, nod that is to find for ach gencric title the conmatation given to it by ita inventor, and the type to which it was orginally aplied. Io this why aloue can one recngnige with amy rertainty what are the symonymons titles, anrl eliminate the more recent enutologies.

Let us then see what titles ought to be expelled from the nomenclature.
I. It is necessary first of all to ahgtiact the geuns signalina, Gould, which, ns we blanl immediately ape, has heen too inalequately nod imperfectly diagoosed to admit of any accurate conception being framed in regard to the organiaros to which it ought to be applied.
II. The genus Spiratella was founded in 1824 by de Blainvile for Clio helicina, Phipps, But for the same specief the genus Limacinn wns erected by Cuvier in 18I7. The name Spiratella need not therefore be retained.

11I. The genera Heliconaides, d'Orbigny (18s6), Spivialis, Eydoux and Sauleyet (1840), and Helicophora, Gray (1842), are all besed upon the snme neries of small forms, but without reference to any particular type. This aeries includes among its species three forma of shell, and to this it is due that the above titles have heen uaed with different connotations by different authors (the brothers Adsms, Rronn, Carua, Fol, Sars, \&c.).

These forms of shell are-(1) a wore ar less eleontod apiral with a simple lip; (2) n depressed spiral with a roatrated lip; and (9) with a very large aperture and a columella prolonged into the rostrum; and they have all received different names The adaption of these new names evidently involves the abondonment of the tities noted above in the original senge of their authors. The new namea corresponding to the three forma of shell are as follows :-

[^5]1. Heterofusns, Fleming (1828), and Scaut, Philipli (1944); the fnumer based on Heterofumus redverersus, Fleming, the latter on Stipa stenogyra, Plilippi. But as thege two species are iflentical, the two generic titles are alsolutely synomymous, nod the more recent ouglit to disappear.
2. Protomoder, O. G. Costa (1861), anel Embolus, Jcfircys (1859); the farmer bnsed on Protomedera elreta, O. G. Costa, and the latter nu Athenta inflata, d'Orbigny. Rut as the two species nre synonymous, the two gencric titles are equally sa; and since the bame $P_{\text {rotomeden was npplierl in 1834, by do Blanville, to a Colenterate, it ought to }}$ disnppear.
3. Peracle, Farlies (1844), Chmpmponans, Gray (1847), and Enbomps, A. aud H. Adnma (1858); the two last bnsed on Athente retichlate, d'Orbigny ($=$ Spivialis clathrata, Eyrloux and Snuleyet), and the first on Pruche physoides, Forbes. But as thesp twa specific types are now reengnised to le identical, the three generie titles are oluviously so too, and the two more recent ought to he disused.

Heving reacherl this stage of our critical reciew, we spis that the maximun number of generin titles which can be nolopted for the Limacinila does not excend those fome-
 (=Spivialis = Helicophora), this gemus leing suceecded hy the three generic titles referring ton the three forms of shell which it invludes.

Hut are Ifetronfusus and Embolus really distinct, with this simple differenen, that in the second the spire is depressed and the lip rostrate? This can hardly be, for in almast all the genem of Gastropeds there are species with slomt and others with elongated spirals, and the anme is true of the rostrate lip. Thus iv a group adjacent to the Tiumanirle, the important genus Clin (= Cloodora) exhibits nearly related species, some with a rostrum on the dorsal aurface and others without. Nevertheless these forms are much too closely allied to be geverically sepamited, ond onght not the same to nuply to Heterofusus and Embolvs? Both exbibit in fact an umbilicate alell, with whorls increasing somewhat gently, and a scmilunar operrulum, with a right-handed spimal of few turns; nor do the adimals exbibit nny difference in their structure.

But besides having these characters in common, they share them with Limacina, from whieh they do not differ in any character auffirient to eatablish n generic distinctiou, although, as I hove alrealy noted, the reverse bas been maintained by Gray, Gould, Boas, and to n ecriain extent by Jeffreys. It must be remarked on the other hand that Souleyst, who created the gevus Spininlis (including Hetesofusus nad Emblalus), recognised that it aught to be united with Limacina if there were an operculum in the latter.' But it is now aufficiently demonstrated that in Limacinet an operculum does exiet.

It is true that Sars maintains the generic distinction of Inmacina and Spirialis (in

[^6]the restricted sense of Heterofusus), principally on the ground of the transverge atria (at right angles to the axis), which are found in Limacina helecina. Rut this charncter camot he regariled as of the value of a geberic distinction If we turb for instance to a group but slightly remnverl from the Limacinidse, the species of Chio of the subgenus Crestis, we see that Clio chierchia, Rnas, alsu pussesses these transerese strixe which wre wholly onsent in the nthre three species of the same sulgenus. Yet ome would not no that account dream of establishing a generic digtinetion on that simple fact, and a fortiori our canont sepurate Limarina (s. stre) frum "Spirinhis."

As to the genus Peractis, Forbes, it is so distinet that it wust be retained, although d'Orbigny las referred its typical species to Heliconoirles, Souleyct and A. Costn to Spiriatis, and Gily, Jeffreys, nud Bons to Limacima.

Perachis differs indeed from the geants Limaceinate (ns this hats heen defived ahnve) in having a shall which is mat umbinisate, lais a few whorls ascenting very rapidly, a larger aperturn, a columella prolougel intu a rostum Ewisted inte a spiral, ami, further, in possessing a sulcircular operrulun, with a muirispiral, left-liauled cail. 'lo this operculum weither d'Urhigny, Souleyet, nor Boas have attachal the degree of importnne chmouded by ity peculing stracture. Fut evel if we lo not tike aecount of thes differences, the structure of certain portions of the animal of Perachis separates it morkedly from all other Limacinilie, as we shat] afterwaral see, and neressitates the formation of a distinct group, apposed to all the rest of the tamily.

From the foregoing it resulta that there are among the living Limacinides anly two different genern, Limacina and Pracaclis, which may be readlly diatinguished by turaing to the syuqutic tatule of genera (p.8).

Limatinfi,' Cuvier.

181]. Limarina, Cuvier, Lo Fitgon animal, t. ii. p. 980

1月24. Spimatella, de Blajuville, Mollıfques, Dict. d. Sci. Nat., t. xxxii. p. 284, iv. p.
1896. Helimmaides, d'Orbigny (yars), Vogagn dana l'Amérique móridiomale, t. p, p 174
 neuvenux au imparisitament conous, Rev. Zorl., tiii p. $2 J 5$.
1841. Felimpharn, Gray, Synopsis of the contente of the Britieh Museum, p 69
1844. Scea, Philippi, Fmunn Molluacnman utriuaque Sicilim, p. 164.
1861. Pratamisim, G. O. Costa ($\rho a r n$), Microdoride Mpditerranea, $p 73$,

1R6․ Fmbalew, Jefireje, Dritigh Conchology, vol. v. p. Ild.
Shell umbilicate, with turns gradually increasing; with a fairly large aperture; and with a columella not prolonged inta a rostram; surface amooth or atriated. The height of the apire, the form of the surface and that of the aperture, and the size of the

[^7]umbilicus rary according to the specips. Operculum semilunar, with a right-hnnded spiral of a few whorls.

Animal with an indistinetly defned head, which is nnly morked externally (1) by the lips on the border of the nouth and (2) by the tentacles.

1. Lips: two dorao-ventral folds on the cophalie aurface of the fins, united dorsally, diverging ventrally, where they are continued by a fold of the eephalic surface of the fins, and extend laterally to the edge of the fius. They thus caclose a citinted area which plays an important port in alimentation.' The mouth, split dorso-ventrally, is situnted between these lips, in the angle formed by their union.
2. Tentacles, nsymmetrical, the left always less developed oud further back than the right. The latter is very loug and retractile juto a sheath. The tentacles thus exhibit alsolutely the same form as those of the Cavoliniide. Soulsyet ${ }^{2}$ noted that in Jimacime helicina the right tentacle seened to be situated in a shenth, ond" that in his "Spirialis " the minuteness of the organs did not permit him to abserve whether this was agnin true. 1 have been able to convince myself that this sheath exists, not ouly in Limacina helicina, but in all the emall species in which I bave lean able ta study the animal, vir., Limasina infata, Limacina lesucuri, Limaina auteralis, Limacina troch iformis.

Fins elongated, colarged, truncated at their free end. Io certain sperics-Limaciace helicina (where the structure las been noted ly P. J. van Beneden under the name of tontacles), Limacina centandion and Limncinat anslralas (where it was equally distinet) the fins exlibit, towards the middle of their doreal margin, a small narrow projecting lobe of a special structure. A similar structure exista in Clio in the sulgenus Creseis. I have assured myself that in Limacina infata, Limacina lesueuri, and Limacina trachiformis this small lohe is nat present, and Boes vouches far ita ahsence in Limacina bulimaides. In the ntber specips the animal has not pet been examined.

I cnnunt attach any great syatematic importance to the presence or alasence of this minute lobe, or regard it ns furnishing hasia far genpric or aubgeneric distinction, for otberwise the entire organisation is so absolutely analogous in all the epecies of Limacina, and the lobe is present in Limacina australis, and absent in Limacina retroversa, вpecies so closely allied that aome authoritiea have doubted whether they were really distinet.

On turning to the trhle of species of Limacinidm, it will he sean that there are only ten apecies which belong to the genas Limacina properly an called. Of these, saven are well known by their shell, their animn, and their opereulum, while the other three are sufficiently well known to enable one to judge with some certainty in regard to their syatematic pasition.

[^8]These ten speciee may be thus distinguished :-

Key tit tee Species.

1. Shell will a toolbed lip.
2. A njrgle tooth an the lip, Limacima inflaja
3. Three tocth on the lip. Limacina triacantha,
II. Shell wilhout teeth ou the lif
4. Spire very slort.
A. Shell with Itanaverse alrite (at right angles to the aris),
a. Mauth higher thau brant, Rinarina holiriza.
h. Maulh broader thnn high, fimacina antaretica.
A. Shell without tranaverae altiot.
a. Whorla bardly sepnraled by a auture, . . . Limacina helienides.
5. Whorls neparaled by a deep aulure, Liznacina leaueuri.
6. Spire lifigh
A. Mouth quadragular, colmmela arrhed to the right.
a. Umbilicua trilely ogan,

Limacina auntrniod.
h. Umbilicus cossiticten,

1) Manth nual, calumella arched to the lefi.
a. Umbilicue cauptrictenl, apitannmewhat eloart, . . . Linacina tromiformid.
b. Umibilicus very nartaw, apise elangoted,
"' I. Limacinet inflata (d'Orbigny).
 65*. 16-19.
 nouveaux ou imparfnitement connus, Revue Zoologique, l. iiio p. 336.
1850, Limatina implata, Grny, Catmernue of Lue Mollunen in the Collection of the Britial Mutaum, pt. ji., Plerupada, p. 31.
 p 485 , pl li, fig. 603.
1861. Irathmothon nlata, O. G. Coxth, Micradaride medilerranea, p. 74, pl. xi, fig 5.
 vol. vi. p. 86.
 Compers rendur, t. 94, p. 190
Shell, animal, and operculum : for degcription and figures aee Souleyet, Vayage de la Honite, Zoologic, t. ii. p. 216, pl. xiii. figs, 1-10

Hnbitat.-Thif Limarina in distrihuted in all the warm seas. It has been recorded from the following localities:-

Athootic Ocean, from $42^{\circ} \mathrm{N}$. to 40° S.; Mediterranean, frequently collected at Naples, where I have often observed it; found alsa, an represanted by empty shells, in n large number of deep dredgings in the Mediterranean, e.g., off Crete (Jeffreya), ' Atgean Sea (Jefreya) : and on different parta of the Mediterranean coast (Sicily, Piedmont, ke.).

[^9]Indian Ocena; to the eouth-enst of Arabia ("Vettor Pisani" Expedition, March 8, 1883): Gulf of Dengal and Ceylou (Kiel Museum); St. Paul and Amsterdam Islands

Pacific Ocean; China Sea ("Galathea " Expedition); Corea Strait (Jeffreya);' Honolulu in the Philippines ("Vettor Pisani," Angust 28, 1984); North-West Pacific tn 48^{e} N. ("Galathea"); East Pacific, Panama, \&c. ("Vettor Pienni," March 7, 1884): South-East Pacific to $40^{\circ} \mathrm{S}$. (Knocker)."

Challenger Specinters.-I. Living specimens.
Station 142, Derember 18, 1873; Cape of Gnod Hope to $46^{\circ} \mathrm{S}$; Int. $35^{\circ} 4^{\prime} \mathrm{S}$., long. $18^{\circ} \mathrm{a7} \mathrm{E}$.

Between Stations 162 and 163 , April a, 1874 ; impllourne to Sydney; lat. $38^{\circ} 7^{\prime} \mathrm{S}$., long. $14 \mathrm{~g}^{\wedge} 1 \mathrm{~B}^{\prime} \mathrm{E}$.

Statinu 175, August 12, 1874 ; Fiji to Ruine Island; lat. $19^{\circ} 2^{\prime} \mathrm{S}$., long. $177^{\circ} 10^{\prime} \mathbf{E}$
Station 181, August 25, 1874 ; Fiji to Raine Ialancl; lat. $19^{\circ} 50^{\prime} \mathrm{S}$., loug. $151^{\circ} 49^{\prime} \mathrm{E}$
Station 201, October 26, 1874; Amboior to Samboangan; lat. $7^{\circ} \mathrm{a}^{\prime} \mathrm{N}$. , loug $121^{\circ} 48^{\prime} \mathrm{E}$.

Station 216A, February 16, 1875; Smmleangan to New Guinea; lat. $2^{\circ} 5 G^{\prime}$ N., long. $134^{\prime \prime} 11^{\prime} \mathrm{E}$.

Eetween Stntions 264 and 265, August 24, 1875; Sandwich Islands to Talititi lat. $19^{\circ} 15^{\prime} \mathrm{N} .$, lang. $152^{\circ} 2^{4} \mathrm{~W}$.

Station 397, March 19, 1876; Tristan do Cunha to Ascension Island; lat. $24^{\circ} 38^{\circ} \mathrm{S}$., long. $19^{\circ} 36^{\prime} \mathrm{W}$.

On April 26, 1876; off St. Vincent (Cape Verde Islands); lat. $16^{\circ} 49^{\prime} \mathrm{N}$. , long. $25^{\circ} 14^{\prime} \mathrm{W}$.
II. Deposit sbells.
 $17^{\text {² }} 27^{\prime} 0^{\prime \prime}$ W.; depth, 620 fathoma; bnttom, valenvic mud.

Station S, February 18, 1879; Tenerife to Sombrero Island; lat. $25^{\circ} 45^{\prime} \mathrm{N}$., long. $20^{\circ} 14^{\prime}$ W.; depth, 1525 fathoms; bottom, hard ground.

Station 23, March 15, 1873 ; off Sombrero Island; lat. $18^{\circ} 24^{\prime} \mathrm{N} .$, long. $6 \mathrm{an}^{n} 28^{\prime}$ W.; depth, 450 fathoms ; bottom, Pteropod noze.

Station 24, March 25, 1973; off Culebra Island; lat. $18^{\circ} 38^{\prime} 30^{\prime \prime}$ N., long. $65^{\circ} 5^{\prime} 90^{\prime \prime} \mathrm{W}$. ; depth, 990 fathams; battom, Pieropod ooze.

Station 32b, April 3, 1879; St. Thamas to Bermuda; lat. $32^{\circ} 10^{\prime}$ N., long. $64^{\circ} 52^{\prime}$ W.; depth, 950 fathems; bottom, coral mud.

[^10]Ststinn 39, April 4, 1878 ; off Bermuda; lnt. $32^{\circ} 21^{\prime} 30^{\prime \prime} \mathrm{N}$. , long. $64^{\circ} 35^{\prime} 55^{\prime \prime} \mathrm{W}$; depth, 435 fathoms; bottom, coral mucl.
 depti, 450 fathoms; hottom, voleanic wud.
 900 fithoms; lontom, Pieropod ooze.

Station 78, July 10, 187a; off the Arnees; lat. $37^{\circ} 26^{\prime}$ N., long. $25^{\circ} 13^{\prime}$ W.; depth, 1000 fathoms; lunterm, volcanic mukl.

Station 85, July 19, 1878 ; off Palma lslamd; lat. $96^{\circ} 42^{4}$ N., long. $18^{\circ} \mathrm{G}^{\prime}$ W.; depth, 1125 fathoms: hatiom, voleanic mud.

Station 120, Scptember 9, 1878; off the const of South America, hetween Pernambuco and Bahia; lat. $8^{e} 37^{\prime}$ S. long $84^{e} 28^{\prime}$ W.; depth, 675 fathoms; bottom, red mud.

Station 122, Septemher 10, 1879 ; off the const of South America, between Peroamhuce and Bnhin; lat. $9^{0} 5^{\prime}$ S., long. $94^{\circ} 50^{\prime}$ W.; depth, 850 fathoms; Luttom, red mud.

Station 174, August 5, 1874; off Knndavu Island; lat. $19^{\prime \prime} 6^{\prime} 0^{\prime \prime} \mathrm{S}$. , long. $178^{\circ} 14^{\prime \prime} 20^{\prime \prime}$ E.; depth, 140 fathnme; bottom, cornl mud.

Station 185, August 51, 1874 ; of Raine Island; lat. $11^{n} 95^{\prime} 25^{\prime \prime} \mathrm{S}$. long. $144^{\circ} 2^{\prime} 0^{\prime \prime}$ E.; depth, 185 fathoms; luttom, coral sand.

Station 219, March 10, 1875; Admiralty Islands to Yokohoma; lat. $\mathbf{1}^{\circ} 54^{\prime} \mathbf{0}^{\prime \prime} 8$. , long. $146^{\circ} 39^{\prime} 40^{\prime \prime} \mathrm{E}$.; diepth, 150 fathnms ; loattom, corsl mud.

Station 385, March 1G, 1876; Tristan din Cunba to Ascension Island; lat. $32^{\circ} 24^{\prime} \mathrm{S}$, long. $18^{\circ} 5^{\prime} \mathrm{W}_{\text {; }}$ depth, 142.5 fnthoms; bottom, Pteropod ooze.

Observations.-I regard the specimens brought by Mr. Ch. Velain from the Ielands of St. Prol and Amsterdam (French Tranait of Venus Expeditinn, 1874) as identical with the above species. They were deseribed under the MS. title Spininlis appendiculatus, and are charncteriserl hy the fact that "the last whorl exhibita on ita doral region a narrow, flattened surface, corresponding to the rostrum of the free margin" (M. Vélain'e MS.).

In nlmost cosmopolitan nnimala like Limacina inflata and ather Thecosomata, it must be noted that there ia a greater expression of variability than in species of lesa extensive diatribution For this reasn the craation of new species must not be accepted without full consideration. Many of the saccalled " rpecies" are at most local varietien, and in the care just noticed, the difference emphasieed by M. Vélain is of minimum importance, and may he ohserved on apecimens from other sources.

It must have been by a slip of the pen that Jeffreya ${ }^{1}$ bas associated this form with "Spirialis macandrei," Forbes and Hanley (=Limacina retroversa). With aome

hesitation the same author' also unites Beflerophon minuta, Forlips, ${ }^{9}$ with the preseat species. But the perfeet lilateral symmetry of this very minute shell makes it more probable that it is only a young Oxygyrus keraudren' (Heteropod).
3. Limacina trincanthre (Fischer) (P]. I. figs. 1, 2).
1882. Embolus triacanthun, Fiecher, Dingnoaes f'eaptese nomvellra de Molluequea recurillia duna lo coulca de l'Expédition ecientilique de l'avias le Tanvaillous (1880, 1881), Jaurn de Caneligi., E. $x x x$. p. 49

Characters and Description. Smooth globular slopll, Hattoned nbove. Spire very short. Three whorls,' expanded and overlapping, lying almost in the aame plane as in the preceding speries. Suture well marked. Mouth large mind widened; lip with three teeth, one ahove almost on the suture, one inferior, and the third on the lawer half on the face of the longer partion of the curve. The two last teeth are the largest, and with each tooth there correspnads a langitudinal ril, somewhat narraw and projecting, parallel to the axis of the shell. The two superior rilis do not extend aver the whone of the last cail. Straight rolumelli Normow umbilirus. Colnur whitish, the three riby brown.

Dimensinus.-The maximum diameter aud leight of the shell are almast equal, and measure $4 \frac{1}{x}$ mol. in the larger specimens.

The animal and the operculum are unknown.
Habitat -Atlantic Ocenn, to the south of Spain, at a rlepth of 120.5 metres.
Challenger Specimers.-Depasit ahelle.
Station 29, March 15, 187s; off Sombrera Ieland; Iat. $18^{e} 24^{\prime}$ N., long. $69^{\circ} 28^{\prime}$ W.; clepth, 450 fathoms ; hattom, Pteropod oaze.

Station 24, March 25, 187s; off Culebra Island; lat $18^{\circ} 38^{\prime} 30^{\prime \prime} \mathrm{N}$, long $65^{\circ} 5^{\prime} 90^{\prime \prime}$ W.; depth, 390 fathoon; hattom, Pterapod noze.

Station 39, April 4, 1873; off Hermude; lat. $32^{\wedge} 21^{\prime} 30^{\prime \prime} \mathrm{N}$., long. $64^{t^{\prime}} 3.5^{\prime} 55^{\prime \prime} \mathrm{W}$.; depth, 435 fathome; bottom, coral mud.

Station 76, July 3, 187a; off the Azores; lat. $98^{\circ} 11^{\prime} N$, long. $27^{\circ} 9^{\prime} \mathrm{W} . ;$ deptb, 900 fathoms; bottom, Pteropad ocze.

Station 85, July 19, 1873 ; off Palme Island ; lat. $28^{\circ} 42^{\prime} \mathrm{N}$. , long. $18^{e} 6^{\prime}$ W.; depth, 1125 fathome; bettom, volcnaic mud.

Obsemiations.-It is quite likely that Embolus elatus, Seguenzas (nat Protomedea elata, Costa), from the Sicilian Pliocene is identical with the ahove species. The diagnotis, ${ }^{4}$

[^11]unaccompadied by ony figure, does not, however, admit of certain deciaion on this point.

The fact that this species has only been found in the deep-sea deposits, and that nver a wide aren, but has never been collerted alive at the surface, raises the question whether it be not renlly extinct. The remains of fossill Elasmoliranchs and Cetaceans found it the hotton of modern sras nake this liypothesis more plansible.

Although neither the animal nar the operculum of Limacina wiacantha have lieen :19 yet olserved, there rannot he nuy doubt that the form in question is a Pteropod. It is indeed difficult to decide, in the absence of the animnl, that an empty shell, twisted in a left-landed spiral, rpally helnnge to the Thecosomntous Pteropods and the group Limacimide, and not to some Gastrapodous groun, but in the present case there can bardly lie any hesitatiou, as is shown lify the folluwing charncters:-

1. The ronstaney of the left-handed spiral of the sloell, which is observed in all the sperimena, shows that we lave mot to deal with an abnomon left-handed example of a right-handerl Gastropncl.
2. The great breadth of the transvepse fliameter is not what is normally found in left-bandell Gnstropods, which usunlly exhibit an clongated spiral.
3. The thinness of the test is also anggestive.
4. The predominance of Thecosomntous Pteropod shelle in the sediments from which the present sperics was dredged is in itself an argument.
5. The numerous resemblances between the species and Limacina infata auggest a close nffinity.

a. Lamacina helinina (Phipps)-

1774. Chid helicina, Pbipps, a voygge towarle tho North Pole, p. 195.
1775. Etione helicina, Pa las, Spicilegia roolegica, fase x. p. 38

1180 Arganavia arcioch Fabrieius, Famma gromiandies, p. 3AG,

1804. Spiratella limacina, de Dlainville, Diot d. Soi Nat, t xuiii p. shd.

183n. Spizatella aretica, Deqhayef, Encyclopédia méthoriqua, Vem, t iii. p. 138.
1841. Limacina arctica, Möller, Hemarteningor til elaenten Limacian, Krayer, Nat. Hint. Tideskr., 1 Pselke, Id. iii. p. 488.

 of Narth Americs and the North Pacific Oceng, Ames. Journ. af Conch, vol. vii. p. 198.
Fin deseription and Ggures, I refer to Sars, Mollusea regionia arctica Norvegiz (187日), p. 328, pl. 29, fig. 1.

Habitat. -The orea of distrlbution is aimilar to that of Cione limacina.-Davia Strait ; Hudson Strait; Greenland; Iceland; Jan Meyen Ialand; Southern Norway; White Ses (Wagner) : Spitzbergen; Nova Zembla; Sea of Okhotsk; North Pacific: Monterey,

South Aloskn ($85^{\circ} 50^{\prime} \mathrm{N}$.) (Dnll); Arctic Ocean: Point Rarrow (aurface temperature, $40^{c} \cdot 2$ F. to 42^{c}) (Dall); ${ }^{1}$ Aleution Islonds (Krause).

Obselvations.-I. As in all other species of timarina there is an operculum, but it is anducnus in the older sperimens. I emphasise the presence of this operculum, hecause recent works, auch for instance as Claus's Textbook, still characterise Limacina (s. str: type Limacina helicina) by the absence of this atructure. In 1878 Sars definitely demonstrated its existence.

The caducnus character of the atructure is no isolated fact, for we know not only genera (Pleurotoma, Voluta, ke.) in whirh certajn species linve, and athers have not, an aperculum, but also species in which it is sometimes present, anmetimes nbsent, according to the individual (Valuthaspa anpullacea, Middendorf).
II. I consider Limacina pacifica, Dall, as identical with Timacina helicina. In fact, according to Dall nad Kmuse, this form differs from Limatina heicina only in beving more whorls on its apire, and in the alsence of mn nperculum. Hut these are precirely the cbarncters of the adnlt Limacina helicina, with which Limacina pacifica is therefare identical.
${ }^{6} 4$. Limacina astaretion, Wnodward (Pl. I. figs. 3, 4).
1856. Limacina antarctica, Woodward, A Manuel of the Molures, p. 207, nonien tantem, pl. siv. 自. 4.
Characters and Description.-Suldiscoidal, finttened shell, with a spire very elightly elevated, rather depressed. Six whorls, ribbed euperiorly like those of Limacina helicina, snd, in spite of the elight elevation of the spire, quite distinct, and saparated by a welldefined sutare. The whorls are rounded exteranlly and infcriorly, the last is much expanded. Large mouth, braader than bigh, rounded off externally, and not prolonged into an angle. Arched corlumelle. Large umbilicus, not surrounded by a keel as in fimacina heticina. Tranaverse strix, perpendicular to the exis, arched, regular, and equidistant.

Dimensions.-Maximum diamater 4 to 5 mm: the height equal to ahout half the rliameter.

Operculum unknown, prohably like that of Limacina helicina, and coducous in the adult epecimpns, which alone have been examined.

Animnl very like that of the preceding species. The anterior (doreal) marginal lobe of the in is vary amall, though perhapa somewhat contracted in the only specimen in which I was able to exnmine it. The posterior lobe of the foot is markedly hollowed out on ita tree margin. Tentacles like those of Limacina helioina; the left rudimentary, the right very long, aitaated in a sheath, and further forward than the left

[^12]Haditat-Antarctin Decan, where it seeme to replace Aimacina helicina, between G9 ${ }^{c}$ and $64^{"} \mathrm{~S}$. lat. (Ross, under the title "A rgonantce arctica").

Challenger Speciman.-Living. Statiou 159, Fehruary 14, 1874; in vicinity of Antaretic ice; lat. $65^{\circ} 42^{\prime}$ S., long. $79^{\prime} 49^{d} \mathbf{E}$.

Observation. -The single specimen in the Challenger collection hat its aldell quite broken into small fragments. The description of the ahell has heen based nn the unpulslisbed figures of Hooker (1840). Two of these are reproduced on P1. I. figs. 3, 4, entirely on the respansilility of Hnoker.
${ }^{4}$ 5. Limacina helicoides, Jeflieya (Pl. I. fig. 5).
1877. Limacina heliceides, Jeffeya, New nml pacnliar Molluaca af tha Fomily Finlimide nad athas Fomilies of Gostmpoin na well as of tha Pteropodn, procurad on tha "Valorung" Expedition, Ann, ned Mag. Nnt. Hial, ber 4, rol xix p. 33 B .
Chavacters aud Deseriptian.-Shell smonth and slining, with a depressed, hut not Hattened spire, of three or Cour whorls, rounded but not expanded, with a continuous aurface, that is to azy, only scparated by a slightly marked, thongh distinct auture. Aperture somewhat elongated, and angular anteriorly. Columella twisted in a spiral.

Colour:-Hnrny hrown.
Dimensions.-Heigbt and transverse diameter almost equal, measuring 3.75 mm .
Operrulum ath animal unknown. This species is perhaps in the same position as Limetina triacontha.

Hahiatat-Atlantic Ocenn to the north of the Equator, always at the bettom, with the shell empty:-"Valorous "Expedition, Station 12; $\ln t .56^{\circ} 11^{\prime}$ N., long. $37^{\circ} 41^{\prime}$ W.; at a depth of 1450 fathoms. "Porcupine" Expedition (1869), west of Ireland, Station 2日; lat. $56^{\circ} 44^{\prime}$ N., long. $12^{\circ} 52^{\prime} \mathrm{W}$.; at a depth of 1215 fathoms. "Porcupine" kxpedition (1870), Station 17, Bay of Vigo (not Bay of Bircay as Jeffreys say日 ${ }^{\text {² }}$); lat. $39^{\circ} 42^{\prime}$ N., long. $9^{\circ} 4 a^{\prime} W_{\text {; }}$; at a depth of 750 to 1095 fathome. "Travailleur" Expedition (1800), Hay of Biecay.'

Challenger Specimen.-Deposit shell
Station 78, July 10, 1873 ; off the Arares ; lat. $37^{\circ} 26^{\prime}$ N., long. $25^{\circ} 13^{\prime}$ W.; depth, $^{\prime}$ 1000 fathoms; bottom, voleanie rad.

[^13]*6. Limacina lesnezri' (d'Orbigny).
 fipk 11-15.
1836. Atfanea rangia d'Orbigny, Yoyage rlans l'Amériqua múridionale, t. v. p. 1 ifi, jl xij. f.ц!. $\mathbf{1} 5-28$.
 nauveaux nu imparajilenient connua, Revue Zonlogique, t iji p. 236.
1850. Limaema emntricosa, Gmy, Calaloguo of the Mollusa in the Calletion af the Fritibly Munnura, jt. ii, Plerajlada, pr. 3is.
 Ed, iv, p. thi, pl, iii. fige . I9, 34.
For description and figures I refer to Soulfyct.' I shall restrict myself to notiog that in the form of its nperture, columella, nond unbilicus, this species is closely ollied to Limacina australis and Limacine retroversa, with which it farms n rery natural aubgroup. Though the spire is depressed, it preserves none the less the distinctness of its whorls, whirh are separated by a very well defined suture

Animal without a small lohe on the anterior dorsal margin of the fin.
Habitrtt. The following lafnlities hnve heen recerded :-Atlantir Oceas, from $9 \mathrm{G}^{2} \mathrm{~S}$. (d'Orbigny) to the Bay of Biscay (Pfeffer). ${ }^{2}$ Iudian Ocean, Islands of St. Paul and Amsterdarn (Vélain, ubder MS. title Limacince erossei). West Pacific Ocean, 30° N. lat., 170° W. long. ("Gnlathea " Expedition), townrda Batavia (Hoaa):" Enst Pacific Ocenn (d'Orhiguy), to $42^{\circ} \mathrm{S}$. lat. (Knorker).

Challenger Specimens.-I. Living specimens.
Between Stations 162 and 169, April 3, 1874; on the route from Mellourne to Sydney; lat. $38^{\circ} 7^{\prime}$ S., long. $149^{\circ} 18^{d}$ E.

Station 175, Auguer 12, 1874; Fijj to Raine Island; lat. $19^{\circ} 2^{\prime} \mathrm{S}$, long. $177^{\circ} 10^{\prime} \mathrm{E}$.
Statinn 216A, February 16, 1875; north of New Guinea; lat. $2^{\circ} 56^{\prime}$ N., long. $134^{\circ} 11^{\prime} \mathrm{E}$.

Between Stations 246 and 247, July 4, 1875; Yokohamn to Snndwich Islands; lat. $26^{\circ} 42^{\prime}$ N., lang. $171^{\circ} 46^{\prime} \mathrm{E}$

Between Stations 264 and 265, Auguat 24, 1875; Snndwich Islande to Tohiti; lat. $1 \mathrm{~g}^{e} 15^{\prime}$ N., long. $152^{e} 2^{\prime} \mathrm{W}$.

Station 397, March 19, 1876 ; Tristan $d n$ Cunben to Agcengion lalaucl; lat. $24^{\circ} 38^{\prime}$ G., long. $1 \mathrm{~s}^{a} 36^{\prime} \mathrm{W}$.

On April 26, 1876 ; off St. Vincent (Cape Verde); lat. $16^{\circ} 49^{\prime}$ N., long. $25^{\circ} 14^{\prime} \mathrm{W}$.
On May 7, 1876; of the Azorea; lat. $94^{e} 22^{\prime}$ N., long. $34^{\circ} 29^{\prime} \mathrm{W}$.

[^14]
11. Deposit shells,

Station VIIT., Fpbriary 12, 1873 ; off Canary Tolnnde; lat. $28^{\circ} 9^{\prime} 15^{a}$ N., long. $17^{5} 27^{\prime} 0^{\prime \prime}$ W.; depth, 620 fathons ; battom, volennic mud.

Statiou 3, February 18, 1873; 'Tenerife to Snmhero Islaud; lat. $25^{\circ} 45^{3} \mathrm{~N}$, long. $20^{\circ} 14^{4}$ W.; depth, 1525 fathoms; hottom, hard ground.

Station 23, March 15, 1878 ; off Sombrevo Island:]at. $18^{n} 24^{\prime} \mathrm{N}$. , Iong. $63^{n} 2 \mathrm{a}^{\prime} \mathrm{W}$.; depth, 450 fathoms: bottom, Pteropod ooze.

Station 24, Mareb 25, 1873; off Culebra Island; Iat. $18^{\circ} 38^{\prime} 30^{\prime \prime}$ N., long. 65" 5" $30^{\prime \prime}$ W.; depth, 390 fathonss: bottom, Pteroporl coze.

Station 33, April 4, 3B73; off Bermudn; lat. $32^{\circ} 2 y^{\prime} 30^{\prime \prime}$ N., long $64^{\circ} 95^{\prime} 55^{\prime \prime}$ W.; depth, 435 fathoms; bottom, coral mud.

Station 85, July 19, 1879 ; off Palma lsland ${ }_{j}$ lat. $28^{\circ} 42^{\prime} \mathrm{N}_{1,}$ long. $18^{\circ} 6^{\prime}$ W.; depth, 1125 fothoms; bnttom, volennic mul.

Station 120, Scptember 9, 1873 ; off the coast of Sinth Americn, between Pernnm-

Station 129. Septemher 10, 187a; off the const of Snuth Amerien, hetween Pernambuco and Buhia; lat. $9^{\circ} 5^{\prime}$ S., long. $34^{\circ} 50^{\prime}$ W.; depth, 350 fathoms; botrom, red mad.

Station 185, August 31, 1874 ; off Raine Islnnel; lat. $11^{\circ} 35^{\prime} 25^{\prime \prime}$ S., long. $144^{\circ} \mathbf{2}^{\prime} 0^{\prime \prime}$ E.; depth, 195 fathoma; bottom, coral sand.

Observadions--1. It is very prohalke that Allanta rangiza, d'Orbigny, which Souleyet ${ }^{\prime}$ has hesitatingly referted to his Spivialis ventricasa, is incotical with the nhove pperips. Rut since the smmewhat imperfect description and figure of d'Orbigny exclude the possishility of absolute certainty, it is better to adopt, as we have done, the specific title lesueuri, nlthough this species does not occur in d'0rhigny's work till several pages nfter Atlanta rrangzi.
II. Atlanta rotunda of the sane authority." which Sonleyet ${ }^{5}$ regards as a variety of his Spiricelis ventricosa, appenrs to us very difforent indeed. In our opinion it is not even a Prempon, as we shall explain furtber on in our appendix to the Limacinida.
7. Limacinn australis (Eydoux and Souleyet) (PJ. I. Gg. 6).

$$
\begin{aligned}
& 1840 \text { Spirialía autradis, Eydoux et Sauleyak, Descriptian mommena de quelquan Plórafodes }
\end{aligned}
$$

P. 937.

Characters and Description.-Smooth shell, with epire eomewhat elevated, with a blonted or oftuse apex, with sir or aeven bulging whorla, separated by a very deep auture,

[^15]with the last whorl much expanded and convex, and projecting more in praportion than all the foregning. Aperture guadrangular, somewhat angled in front; colurnella straight, reflected to the right; umbilicus broad.

Colour.-Milky.
Dimensions.-2 to $2.5 \mathrm{~mm}_{\text {, }}$ in height, about 1.5 mm , in maxinum rinaneter.
Opetculum approximately aval, with an almost straight columellar margin, and with a apiral portion menouring harely two-fifths of the antire length.

The animal exhilits a small lobe on the dorsal margin of each fin.
Habitat.-Cape Horn (Souleyet).
From ita discovery hy Souleyet this species was not reobserved until the Challenger Expedition. Teffreys ${ }^{1}$ follows Verany in noting the cmat of Piedmont ns a loeality of Spivialis australis, and this hns been repented without question liy various authars. ${ }^{2}$ The atntement is, however, entirely erroncous, and has in all prohalility reference to Timacino trochiformis.

The specimens collented by the Chnllenger show that this epecies has a somewhat wide distribution round the South Pole, where it occupies, nlong with Limacincs antavetica, a position avalogous to that of Limacina relmoveran תnd Limacina helicina in the north.

Chatlenger Specimens.-Living.
Station 146, December 29, 187.3; Marion Ieland to Crozets; lat. $46^{2} 46^{\prime}$ S., long. $45^{0} 31^{\prime}$ E.

Station 149, January 9, 1874; at Kerguplen Island; lat. 49° a $^{\prime}$ S., long. $70^{\circ} 12^{\prime} \mathbf{E}$
Station 150, February 2, 1874 ; Heard leland; lat. $52^{n} 4^{\prime}$ S., long. $71^{\circ} 22^{\prime}$ E.
Retween Stations 154 and 155, February 21, 1874; in micinity of Antarctic Ine; lat. $69^{\circ} 90^{\prime} \mathrm{S}$. long. $89^{\circ} 8^{\prime} \mathrm{E}$.

Observations.-Hoas ${ }^{2}$ has expressed hesitation in regard to the possible qpecific identily of Inmacina australis, Limacina vetroversa, and Limacina trochiformis. They are, bowever, as we shall see, three very digtinct forms.

1n the first place, ar regarda Limacina trockifonmis, it belongs alnng with Limacina bulimaides to a apecial group of Iimacina quite different from that to which Limacina arstralis ond Linacina retroversa are to be referted. It is characterised by the presence of a a hell with oval, mundes nperture, with the columellar margin reflected to the left, and with n very narrow umbilicus. In Inmacina bulimoides and Limacina trnchiformis also the enimal is without any labe on the fin. In Limacina australis, on the other hand, the opening of the shell is quadrangular, with the columellar margin reflected to the right, with a very broad umbilicue, and a tentacle-like lohe on the dorsal margin of the

[^16]fin．Furthermore，the spire is proportionally mucb shorter in Limacinn trochiformis， and the operculum has a form differing from that of all the other apecics in the large ertent of its apiral portion（three－sevenths）and in the convexity of its colmmellar margin． In Limarina australis ${ }^{2}$ the columallar margin of this operculum is atmost rectilinear，oud the spiral partion hardly attains to more than a third of the total length．Kimacinat trochiformis has certainly less affinity with Limacinn anstwalis than Limacina lesucumi， in apite of the depressed spimal of the latter．

As tn Limacina retroversa，it is certainly more nearly nllied to Limacina austrolis than Limasinct trochiformis，but the characters which ristinguish it from thant form are guite distinct enough to be reongnised as specific Thus the umblicus of Limacina retrouersa，while guite distinct，is very narrow，${ }^{\text {a }}$ in montrist to that of Limacina ausisalis， which as we have seen in very broad．＂The sjire is painted in Limacina retinnes＇sn，but oltuse in Limacina austrulis，where the whorls are hesides move convex，less uumerous， abrl sepamted hy a mhallower suture．Even at first sight Limacince ruatroliv is diatinguished from Zimarina retromprsa hy the expansion of the last coil aud by ita projection beyond those in front．Finally，in Limacina vetrom＇rsa the spiral partion of the operculum is morh more reducerl than that of Limecina australis．＂

8．Limacinct retroversa（Fleming）．

 Hist．Soc．，vol．iv．p． 498 ，pl．xv．fig．包．
 Tideskr．， 1 Aekke，Ad．iii，p．4月G．
 1月48，p．249．
1844 Sera tenogyra，Philippi，Fauna Molumeoram utriagque Sicilin，p．184，pl．Exa fig． 20.
1846．Spirinlia atenogyra，Loven，Iodex Molluncornm litora Ecandionaix occidentalia hahitantium， Överajgla．Vetranez－Alad．Forbandl．，1846，p． 4.
1月49，Spirialis fiemingii nod Suiriales mecandrai，Farbes and Hanley，History of the Britiah Mollusen and thair Shalle，vol．ji．pp．984，S8E，pl lvi．fign 4， $5_{1}, 6,7$.

1850 Limacain rethacrea，Gray，Catalogne of the Molluncs in the collection of the Britiah Muew，pt y_{1} Planopods，F．9s．

[^17]> 18.51. Spitialis gouldui, Stimpson, Debeription of two new apecies of ehalla of Maranfurgete, Proc. Boston Sac. Not. Hish, vol, iv. p. 8; and Shella of Nem Figland, p. 27, pl i. fig 4.

> heskrevet, p. 86 .
> 1878. Aederofurus algzandri, Verill, Recent Adrlitinns in tha Malueran Fanna of Nem Engladd, \&c., Amer. Journ. Sci and Arts, eer. B, val iii. p. 2 A 4.
> 1878. Spirialis buden and Spivialia retruverea, Sars, Molluern regionia araticn Norvggia, pp. 399, 3.30, pl. 29, 5.

For description and fgures see Sars, loc. cit.
Fathitat.-North Atlantic, on the const of America, from $63^{\circ} \mathrm{N}$. (Davis Strait) th $39^{n} 59^{\prime}$ N. (Massachusetts Bay, Verrill); Ieeland; coasts of Europe, from I ofoden Island to $50^{\circ} \mathrm{N}$., though not yet tecorled from Rehring Straits.

All records which mention this species as having been found in more southerly localities, aud matally in the Mediterrancan, are erroveous, and ought to apply to Limacina troehiformis, with which Limacina retmorcran has been confosed by Jefreys, ${ }^{\text {T }}$ Weinkaufi, Costa, ${ }^{3}$ and other conchologists. Limacina vetroversa is no longer found in the Mediterranean, thougb it occurs in cira-Meditermacon Pliocene and Quaternary deposits (" Scara stenogyre").

In the deep-sea deposits this species is found in the North Atlantic over an area extending somewhat further south, and it has thus heen dredged in the Bay of Biseny by the French "Travailleur" Expedition (1880). ${ }^{\text {. }}$

Observatinns.-I. Some authorities (Jeffreys, Gould, Sars, Verrill, \&e.) regard Heterofisus retroversa and Limacina balea as two distinct forms.

Sare aupports this in his descriptions and figares. Acenrding to him, the two forms differ, npart from size which eannat be regarded ne distinctive, especinlly in the fact that in Lamacina balen the surface is longitudinally etriated (parallel to the axis of the ebell) and that its epire is proportionally longer.

To the first of these two pointa, it may be anawered that in Iimacina retroversa the surfinse also exhilits longitudinal strim, less marked, it is true, but diatinctly recognisable, ${ }^{5}$ and that in Scema stenogyra, Philippi, ${ }^{\text {a }}$ which Sars identifies with Limacina balen, the aurface is on the contrary "lavissimn." 'Shis point of distinction docs not, therefore, appear concluaive.

[^18]As to the argoment based on the relative beight of the apire, the averige proportion of height to maximum diameter is $\frac{40}{27}$ in Timnamar lalen, nut $\frac{32}{27}$ in Ifeterofusus retroversus. But in Spurialis gouldit, Stimpson, identifed lsy Sars with Limacinat brdea, and with very well marked transverse striatinn, the apparently very exact figure given by Stimpsnn' exhihita the ahove ratio as $\frac{31}{2}{ }^{2}$, leas, that is to say, than that of Fetcrofusids retranersus, while in Scna stenogyra, with smonth swface, the ratia according to Pbilippi's figure is $\frac{97}{27}$.

It is thus spen that the relntive beight of the efjire varios as well as the striation of the surface, and that the variatious of theae two features are independent. We are, therefore, lerl ton ronclude that Limacing balen and Hatarofiusis metronersus are wot two apecifically rlistinet forms, but belong to a single species which exbibits a ceriaim mber of varieties.
"9. Limasina trochiformis (d'Orbigny).
 pl, xii. |ige 29-31.
1840. Spiriaina trachifarmid, Eydax et Souleget, Deacription sommaire de quelques Ptirapodes nouveaus au impariaitement conmuß, Revue Zoologique, 1 iii. p. 237.
1850. Lemariag tractififonis, Gruy, Calalogna of the Molluaca in the Collection of the Rritiah Mubatim, p.te \ddot{u}_{-1} Piarc podn, p. 39,

For dearriptinn and figures ace Souleyet. ${ }^{\text { }}$
The umbilicus of the ahell is very small in this apecies. The dorsal (anterior) margin of the fin does not exhibit any tentacle-like labe.

Habitat.-Athatic Ocean, from $41^{\circ} \mathrm{N}$. to $28^{\circ} \mathrm{S}$: Mediterranean, Naplea (where I have often abserved it alive), Malta (Davirl Bruce); the shell bas been dredged at a great number of lacnlities in the Mediterranean-Crete (Jeffreys), \&c.; Indian Ocern, aouth-east of Arabia (Blanford): Pacific Ocean, Chian Sea (Gray), Malay Archipelngo (Copenhagen Museum); Equatocin] Pacific to $152^{\circ} \mathrm{W}_{\text {; }}$ South-eart Pacifc to $80^{\circ} \mathrm{S}$. (d'Orbigny).

Challenger Spraimens.-1. Living specimens
Between Stations 162 and 163, April 9. 1874 ; Mellourne to Sydney; lat $38^{E} 7^{\prime} \mathrm{S}$. leng. $149^{\circ} 1 \mathrm{~B}^{\mathrm{A}} \mathrm{F}$

Station 216A, Febtuary 16, 1875 ; north of New Grinen; Iat. $2^{\circ} 56^{\prime}$ N., long. $134^{\circ} 11^{\prime} \mathrm{E}$.

[^19]Between Stations 264 and $26 \overline{a ̆}$, August 24, 1875; Sandwich Islands to Talitit lat. $13^{\circ} 15^{\prime} \mathrm{N}$, lang. $152^{\prime \prime} 2^{\prime} \mathrm{W}$.

Station 937, March 19, 1876 ; Tristan da Cunha to Aecension Island; lnt. $24^{\circ} 88^{\prime}$ S., long. $19^{e} 86^{\prime} \mathrm{W}$.
II. Deposit shells.

Station 120, September 9, 1879; off the const of South America, between Pernambuca end Brhis ; lat. $8^{\prime \prime} 977^{\prime}$ S. long. $94^{\circ} 28^{\prime}$ W.; depth, 675 fathome; battom, red mud.

Station 219, March 10, 1875; Admiralty Islande to Yokohama; lat. 1° E4' $0^{\prime \prime} \mathrm{S}$., long. $146^{\circ} 99^{\prime} 40^{\prime \prime}$ E.; depth, 150 fathome; battom, caral mud.

Obsemations - I have already stated that Boas hos expressed doubts as to the apecific diatinctnese of Limacina atrstralis, Limacina retroversa, and Limacina trochiformis, and I have abown thet Limacina australis could not be identifed with either of the other two apecies.

As concerne the latter, they bave been deplorably confued by a great many authors, Jeffreya, ${ }^{1}$ MncAndrew, Weinkauff, ${ }^{8}$ A. Costra, ${ }^{\text {a }}$ Monterosata, \&e., who have attributed to Limacina retroversa a geographical distribution much more extensive than it really possesses, by crediting it with localities auch as the Mediterranean, the Canaries, \&c., which ought to refer to Limacina trochiformis alone. Limacina trachiformis differs however from Limasina retroversa (as also from Linacina australls, which belongs to seme group), (1) in the aval form of the mouth, which is rounded anteriorly, and has the columellar margin recurved to the left, in contrast to Limacina retroversa where the manth is quadrangular, pointed anteriorly, and with a rectilinear columellar margin; (2) in the constant ahortness of the apiral in propertion to ita last whorl, and (9) in the formation of the operculum, in which the spiral portion is large in Limacina trochiformis, and very amall in Limacina retraversa.
*10. Limarina bulimoides (d'Orbigay).
 6Re. 94-s8.
1840. Spitialid tulimotiden, Eydoux et Eoulayet, Dasaription nommaira de quelques Ptdropades nonveaux on imparinitement connis, Revie Ronlogiqua, it u. p. 238.
1850. Inimacina Bulimoidas, Gray, Catalogae of the Mollusca in the Collmotion of the Eribish Muesum, pt. ii., Pteroporias, p. 94
For description and figuree see Souleyet, Voyage de la Bonite, Zoologie, ti iu. p. 224, pl xiii. fige. 95-42.

[^20]The umbilicus of the shell is almost imperpeptible. There is no tentoculnr lobe to the fin, ne Bons has already noted.

Habital.-Atlnntic Ocean, from $40^{\circ} \mathrm{S}$. to $30^{\circ} \mathrm{N} . ;$ ladian Ocean, south-enst of Arabia ("Vettor Pisani" Expedition, March 8, 1885) ; Pacific Ocenn, Rotany Bay (Angas);' Chins Sea and West Parific to $40^{\prime \prime}$ N. ("Galathea" Expedition): Equantorial Parific, South Pacife to $37^{\circ} \mathrm{S}$. (Knocker) ; South-east Pacific (d'Orligny). ${ }^{\text {. }}$

The empty shells of this speries bave been gathered from the dppp-sca deposita in the Mediterranean, where the species is no longer found alive, in the Agenn Sea (Jefreys), and in the Mediterranean dredgings of the "Travailleur" (Fischer);" in the North Atlantic (by the "Valorous" Expedition,' and by the first "Porenpine" Expedition, 1869).

Challenger Specimens.--I. Living specimens.
Between Stations 162 and 169, April 9, 1874; Melbourne to Sydney; lat. $38^{n} 7^{1} \mathbf{S}$., long. $149^{\circ} 18^{\prime} \mathrm{E}$.

Station 175, August 12, 1874 ; Fijij to Raine Island; lat. $19^{\prime} 2^{\prime} \mathrm{S}$., long. $177^{\circ} \mathbf{1 0}^{\prime} \mathrm{E}$

Station 201, October 26, 1874; Ambriara to Samhoangan; lat. $7^{[} 3^{\prime}$ N., Jong. $121^{\circ} \mathbf{4 8}^{\prime}$ E.

Station 243, June 26, 3875 ; Yokohama to Sandwich Islands; lat. $35^{e} 24^{4}$ N., long $166^{\circ} 35^{\prime} \mathrm{E}$.

Between Stations 247 and 248, Tuly 4, 1875; Yokohoma to Sandwich lalands; lat. $36^{\circ} 42^{\prime} \mathrm{N}$, long. $179^{\circ} 50^{\prime} \mathrm{W}$.

Station 337, March 19, 1876; Triatan da Cunba to Aacension Island ; lat. $24^{\circ} 98^{\prime} \mathrm{S}$, long. $13^{\circ} 6^{\prime \prime} \mathrm{W}$.

On April 26, 1876; off St, Vincent (Cape Verde); lat. $16^{\circ} 49^{\prime} \mathrm{N}$. , long. $25^{\circ} 14^{\prime} \mathrm{W}$.
Nerr Station 354, May 7, 1876 ; off Azores; lat. 14 $4^{e} 22^{\prime}$ N., long. $34^{\circ} 23^{\prime}$ W.
1I. Deposit shells.
Station VIII., Fehruary 12, 1879 ; off Canary Islanda; lat. $28^{\circ \prime} 9^{\prime} 15^{\prime \prime}$ N., long. $17^{\circ} 27^{\prime} 0^{\prime \prime}$ W.; depth, 620 fathoms; bottom, volennic murd.

Station 3, February 10, 1879; Tenerife to Sombrera Island; lat. $25^{\circ} 45^{\prime}$ N., long. $20^{\circ} 14^{4}$ W.; depth, 1525 fathoms; bottom, hard ground.

Station 29, March 15, 187a; off Sambrero Island ; lat. $18^{n} 24^{\prime} \mathrm{N}$. , long. $63^{\circ} 28^{\prime} \mathrm{W}$.; depth, 450 fathome: bottom, Pteropod aoze.

Station 24, Mnrch 25, 1879; off Cukebra Ialand; lat. $18^{\circ} 38^{\prime} 30^{\prime \prime} \mathrm{N}$. long. $65^{\circ} 5^{\prime} 30^{\prime \prime}$ W.; depth, 390 fathoma; bottom, Pteropod ooze.

Station 32r, April 3, 1873 ; St. Thnmes to Bermuda ; lat. $82^{e} 10^{\prime}$ N., long. $64^{\circ} 52^{\prime}$ W. depth, 950 fathome ; bottom, coral mud.

[^21]Station 33，April 4，187a；off Bermuda；lat． $32^{\circ} 21^{\prime} 30^{\prime \prime}$ N．，long． $64^{\circ} 35^{\prime} 55^{\prime \prime} \mathrm{W}$ ； depth， 435 fathnms；hottom，coral mud．

Station 85，July 19， 1875 ；off Palma Island；lat． $28^{\circ} 42^{\prime}$ N．，loug． $18^{\circ} 6^{\prime}$ W．；depth． 1125 fathome；bettom，voleanic mud．

Station 120，Geptember 9，1879；off the const of South America，between Pernem－ buco ancl Behia ；lat．$日^{0} 97^{d}$ S．，Jong， $34^{\circ} 28^{\prime} \mathrm{W}$. ；depth， 675 fathoms；bottom，red mad．

Station 122，September 10，187a；off the coset of South Americh，between Permam－ huen and Bahia；lat． $9^{\prime \prime} 5^{\prime}$ S．，long． $34^{\circ} 50^{\prime}$ W．；depth， 850 fathoma；botom，red mod．

Station 185，Angurt 91，1874；off Raine leland；lat． $11^{\circ} 35^{\prime} 25^{\prime \prime}$ 8．，Jong $144^{\text {c }} 2^{\prime} 0^{\prime \prime} \mathrm{E}$ ；depth， 195 fathoms ；bottom，coral aand．

Station 219，Marcb 10，1875；Admiralty Iklands to Yokohame；lat． $1^{e} 54^{\prime} 0^{\prime \prime \prime}$ S．， long． $14 \mathrm{G}^{\circ} 39^{\prime} 40^{\prime \prime} \mathrm{E}_{\text {：}}$ depth， 150 fathoms ；bnttom，cornl mud．

Peraclis，${ }^{1}$ Farbes（emenal．）．

1836．Heliconoriteq，d＇Orbinny（pars），Vojago dлna l＇ \boldsymbol{A} mírique Md́ridiouale，t．v．j． 174.
1840．Sphrialin，Eydoux et Souleyet（parsé，Deacription bommaire do quelguea Płéropodea

1844．Peracle，Forles，Report on illn Mnllunca and Rarlinin nf the Figean Sea，and on their distribution，comgidered on bearing on Goology，Rep．Brit．Aesne．，1843， ［1．186．
1847．Camphlmans，Grig（non Menson），A Liat of the Gedera of Fecent Molluren，theit syuagma and lyper，Proe 7onl．Sar．T．ont，1R47，p．149．
185月．Euromus，A．nad H Adame，The Genem of Recent Melluacn，vol．ii．p． 619.
1月76．Limaczana，Jeflape（parb），New and Peculiar Molluace of the Family Fulimiden and nther Familiea nf Gantropoda，an wall as of tha Ptatofodn procried in the ＂Valomus＂Expedition，Ann．and Mag．Nol．Hint，sar．4，val rix．p 537.
Characters and Description．－Shell with spire short hut projecting，with bulging whorls mpidly increasing tnwirds the very large and elongated aperture，which ende nnteriorly in a very abarp angle．Spiral colnmella，prolonged intn an elongated rostrum，No umbilicus．Sorface amooth or fimely reticulate．

Oporculum subcirculлr，multispiral，left－handed．
Avimal prexiously unknown，ar supposed to be identical with that of the other Simacinida．Krohn＇and Costa＇bnve observed the living mimimal，bot have not perceived the differences between it ond the the Limacina type．The differenees are as follows ：－

1．Head distinct，prolonged into a proboscie analogous to that of the Cymbulide（for example the old laver of Gleba）．

[^22]2. Lips with lateral angles, and united ventrally.
3. Tentacles symmetrionl, of the same size and without sheath.
4. Peaterior or opercular lohe of the foot broad at the base, inatead of being slightly constricted as in Limacina, and less developed in proportion to the fins, which are large, long, truncated at their distal extremity, and without the small tentacle like lobe.
5. Visceral ganglin forming thece distinct masses, ns in the Cymhuliide.

Observations.-1. Boas las made a mistake in figuring the operculum as twisterl in a right-banded spiral' The coil is left-handed, as d'Orhigny has represented it. ${ }^{2}$ This arrangement is quite unique, for in all the operculate Mollusen the twisting of the operculum is in the appasite direction to that of the shell. Atlanta is the only righthanded Mollues in which the aperculum is coiled to the right. In all the left-banded operculate Molluges the opereulum is coiled to the right--Limacina," Triforis, Laxocochlis. ${ }^{*}$ Peraclis thus forma a remarkahle exception.
II. The initial partion of the spire does nat project, so that the apex is alwaya obtuse.

11I. Boas "nates in "Limavina" reticulata (= Peraclis) a small tentacle-like lobe ou the fions in Limacina helicina; this observation was made on an inaufficiently preserved apecimen, and bas not been figured. I have examined not only the preserved specimen of the Challenger Expedition, but living specimens from the Merliterranean, and am able to etate that the fin does not bear nny lobe. Costa's figures ${ }^{\text {n }}$ are perfectly correct in this respect. Boas must have miatalien a fold of the fin margin for the lohe.

D'Orligny, the discoverer of the only speries na yet known, considered it, as well as all the small forms of Limacina (the Spinialis of Souleyet), as Heteropods of the gemus Atlanta. Forbes, whan gave a gecond specific title to the form in question, and created for it the generic title Peracle, also regarded it as a Heteropod. Gray alsa regarded it as aurh, under the title Campylonans. ${ }^{\text {a }}$

Souleyet was the first to place this form, with a third specific title, among the Pteropods, hut was unable to investignte the animnl. Subsequently Costa figured the paired fine of the animal, to which he gave a fourth specific title, and made its position as a Pteropod indisputable.

The structure of the genus has, however, remained quite unknown till now. I have been able to invertigate it to some extent, and to show that it is of the highest interest

[^23]and importance in connfetion with the phylogenetic relations of the diferent families of Thecosomata This I shall ahow in the anatormical portion of this Report．

Key to the Specife．

A．Shell with aimple lip，
Peraclia reliculata，
A．Shall with lip exhibiting a tooth towarda the euture，
Peraclin bigpineea．

＂］．Perachis reticulata（d＇Orbigny）（Pl I．figs．7，8）．

 pl．xï．fige．32－35，19，
1840．Spizialia rlouhafa，Eydous et Souleyet，Dearription antonaire da qualques Ptéropodea nouvenix ou impornitemenl couvur，Ropue Zoalogique，t．jij． p． 138.
 cnmadimet an bennig on gealogy，Rep．Drit．Aesoc．，184s，p．186．
 ＂Pteropodi＂del get．Spirialis，Bendicento d．Feal．Arad d． Eci．Nopoli，血口á iv． p 126（1867）；Illustrazione della Spirialia recurvirosith，Annuario del Mueo Zoologen della \mathbf{R} ． Univ．Napoli，tiv．p．Efi，pl．iv．fig 12
1670．Spimalin phytaides，Jeffreps，in Carpenter and Jelleya，Report on Deep Spa Terenrches， Proc．Roy．Sce，vol．siy．p． 173.
187日，Limacing phyades，Jetrieye，New and Peauliar Molluaca af the Eulimidm aud ather familiea af Geatrapada，as walt na of the Ptomopodis proourad in the＂Valoroun＂Triperition，Ann，and Ming Nat Hist，aer．4， vol．mix p 887.

Characters and Description．－Shell elongated，formed of four bulging whorls，appa－ rated by a deep suture，and exhibiting a very slight keel on the side of the apire． The intter is aomawhat short，obtuse at its apex，owing to the absence of projection of its initinl portion；the last turn is very large．The opening is very large，elongoted， and angled anteriorly．The columalln is spiral with a prolonged pointed roatrum，which followe in ita curvatnre the spiral of the columeile．The anrface exhibits a raised hexagonal reticulation，the sides of the beragona bearing a regular row of minuta teeth．

Colour．－Brownish－yellow．
Dimensions．－Mnximum length 4 mor．；diameter 2 ＇ mm ．
Operctelum－Glnssy，with about four whorls；the surface of insertion amall．
Animal．－Corresponding with the generic description．
Olsemiations．－I．The reticulation of the surface becomes less marked from the aper of the spire towards the aperture．On the firat whorla it projecte markedly，while towards the mouth it almost disappeara，and the colour of the shell hecomes clearer．On the
empty abells, obtained from deep-sea depasits, the surface is perfectly smoath, and the shell is then clear and tmoslucent, with a brownish-grey colour. This makes me think that the reticulation of the surfoce is confined to the epidermis.
II. The resson for the numerans titles applied to the present species in that the specimens bave been atudied in very different conditinns.

Hitherto only one author has stndierl the living Pteropod in its adult state, namely Costa, who deserihed it as Spirialis recurvirostra.

The twa oldest descriptions of this speciss, that of d'Orhisny (under the title Atlanta reticulata) and that of Souleyet (under the title Spirichlis clathrate), rafer to young individunls. This is clearly shown from their amaller size (2 l mm .), the fewer turns in the spiral (threc), the incompletely developed columellar rostrum, and the well-develojed reticulation towards the aperture.

As to this reticulation, I have noticed that in the single sperimen oltained on the Cballenger Expedition, which was at the snwe stage os that olserved by d'Orbigny and Souleyet, the markings are hexagnal, and not teftagonal as noe might suppose with lowpower examination.

Finally, the empty ahells from deep-sea deposits, which have lost their euperficial reticulation and brown colour, bave heen clessribed lyy Forbes, Teffreya (1871), and Fischer (1882) ' under the specific title physoides.

Habitat-Pacific Ocean, $20^{\circ} \mathrm{S}_{7} 87^{\circ} \mathrm{W}$. (d'Orbigny) ; perhaps io the Atlantic, at the Canaries (Krohn) ${ }^{2}$ Mediterramean, Naples, during the day, at n depth of 100 metres or more.

The empty shalls of this epecies have been dredged at various points in the Meditermenan; in the deepl-sea dredginga of the "Travailleur" (Fischer); on the coast of Algiers ("Porcupine" Expedition, 1870, Station 51, $36{ }^{\circ} 55^{\prime}$ N., $1^{\circ} 10^{\prime}$ E.) ; off Crete (Jeffrcya), ${ }^{3}$ in the Agean Sca (Forlues), and finally in the North Atlantic ("Valarous" Expedition).4

Challenger Specimens.-I. Living.
Between Stations 264 and 265, August 24, 1875; on the route from the Snndwich lalande to Tohbiti; lat. $19^{\circ} 15^{\prime} \mathrm{N}$., lang. $152^{\circ} 2^{\prime} \mathrm{W}$.

This single specimen was alained and mounted in balanm. In order to examine the reticulation of the shell and the form of the fins, I bad to extract the epecimen from the balsam, and in this operation the shell was broken.
II. Deposit shells.

Station 28, March 15, 1879 ; off Sombrero Ieland; lat. $18^{\circ} 24^{\prime}$ N., long. $63^{n} 28^{\prime}$ W.; depth, 450 fathoms ; bottom, Pteropod ooze.

[^24] $W_{\text {-; }}$ depth, 390 fathoms; bottom, Pteropod oaze.

Station 39, April 4, 1878; off Bermuda; let. $92^{\circ} 21^{\prime} 90^{\prime \prime}$ N., long. G4 $35^{\circ} 55^{\prime \prime}$ W.; depth, 435 fathnmen; battom, foral mud.

Station 85, July 19, 1879 ; off Palma Island (Connries): lat. $28^{n \prime} 42^{\prime}$ N., long. $18^{\circ} 6^{\prime}$ W.; depth, 1125 fathnms; bottom, volcagic murl.

Station 122, September 10, 1873; off the const of South Amprien, between Pernombuca and Rahia; lat. $9^{\circ} 5^{\prime}$ S., long. $34^{\circ} 50^{\prime}$ W.; depth, 350 fathoms; bottom, red mus.

*2. Peraclis bispinosa, n. sp. (PI.]. Gigs. 9, 10).

Characters and Description.-Shell elongated, smoath on the surface, with three or four lulging whorls on the spiral. The suture ie milled, that is to say, the face of the whorls turned towards the spiral, which is sompwhat depresserl and slightly kecled, exbibits transperse ridges. In conseguence of the twisting these ridges come to be diaposecl mdially. The nperture is very large and lngg; the lip is hallowed nut towards the suture, and bears in front of this hollnwing n tooth directed outwards and towards the apex of the shell. Retween this tooth and the exenvation the morgin of the aperture is slightly reflected inwards. The columella is prolonged into a very long rostrum which is straight throughnut its entire length.

Colour.-Milky-white.
Operculum nad animal unknown.
Dimensions.-Length 75 mm ; maximum diampter shnut 6 mm .
Observations.-I. In the specimens fram deep-spa deposits (the only apecimens known) the eurface is smoath. Perbaps in the living specimens the surface may be reticulated as in Peraclis reticulata.
II. It is possible that the Spimialis dinerser of Monterosito ' was hased on young specimens of Peraclis bispinosa. The nbove species bas not yet been described, but Seguenza" notes in regard to fossil specimens that "Spirialis diversa" resembles "Spivialis recurvirostra" (Peraclis reticulata), and that it exhibita a toothed suture.

Challenger Specimens.-Deposit shells.
Station VIII., February 12, 1873; off Canary Ialands: lat. $28^{\circ} 9^{\prime} 15^{\prime \prime}$ N., long. $17^{\circ} 27^{\prime} 0^{s}$ W.; depth, 620 fathome; bottom, volcanic mud.

Station 93, April 4, 1879 ; off Bermuda; lat. $32^{\circ} 21^{4} 30^{\prime \prime} \mathrm{N}$. , long. $64^{\circ} 35^{\prime} 55^{\prime \prime} \mathrm{W}$.; deptb, 435 fathoma; bottom, caral mud.

Station 75, July 2, 1873; off Fayal (Azoreb); lat. $38^{\circ} 98^{\prime} 0^{\prime \prime}$ N., long. $28^{\circ} 28^{\prime} 90^{\prime \prime}$ W.; depth, 450 fethome ; bottom, voleanic mud.

[^25]Station 76, July 3, 1879; off the Azores; lat. $38^{\circ} 11^{\prime} \mathrm{N} .$, long. $27^{\circ} 9^{\prime} \mathrm{W}_{\text {; }}$ depth, 900 fathoms; hothm, Pteropod ooze.

Station 7B, July 10, 1879 ; off the Azorea; lat. $37^{\circ} 26^{\prime}$ N., long. $25^{\circ} 19^{\prime} \mathrm{W} . ;$ depth, 1000 fathoms; hottom, volcavic mur.

Station 65, July 19, 1879; off Palma 1sland (Canarics); lat. $28^{\circ} 42^{\prime} \mathrm{N}$, long. $18{ }^{\circ} \mathrm{G}^{\mathrm{d}}$ W.; depth, 1125 fathoms ; bettom, volcanic mud.

Appendix to thr Iimacinine.

I. Gnuld has degcribed,' under the name of "Limacina (i) cricullata," a Mollusc which be found to be different from the forms of Limacina previously described. For this he eventually praposed to crect the new genus Agadinar.

The species and genus are, however, deacrihed and fignred in a farkion so inenmplete, and in addition chanarterised an insufficiently, that it is impossible to decide with any certainty ns to their syatematic position. One mony, lewever, notice that according to Gould's figures the shell, which measures 6 mm . in diameter, exhîlits a right-handerl spiral which is not the case with any member of the Limacinida.

Ove must therefore entertain very grave douhts as to the pesition of this specips. 1t recme to me most probable that it is a Limacina antaretica ill-drawn (cf. Ginuld's fignre with fig. 4, Pl. II., after Hooker).

The specimen in queation was oltsained from the Antarctic Ocean ($60^{\circ} 0^{\prime}$ S., $106^{\circ} 20^{\prime \prime}$ E.). I have rarefully sought among the Pteropiods of the Chnllenger collection from that region, hut have not been able to find anything corresponsling to Gonld's degcription.
A. and II Adnms have nevertheless retained ${ }^{3}$ among the Limacinidas the title Agadina: and in 1867 A. Admms lescribed under this generis title two new specifs, lut without any information as to the organisms.

In these, however, in rontrast to the Agadina of Gould, the shell is perfectly lefthanded, and the mouth does not in nay way recall the bell-like form of Limasina cucullata. And furthermare the operculum of one of the forms is described (thougb without any notice of the direction of the coils) ms multispiral \ln this there is n reacmblance to Peraclis, and there eeems eome reason therefore to regard the above types : la true Limacinidas.

1 have found nmong the preparations of aurface animala collected on the Challenger Expodition, which have been stained and mounted in halaera, one of the species described ly A. Adame (Agadina stimpsomi), and another form of the eame group, which is, however, unite distinet from either of the opecies ahove noted.

Having found geveral specimens of Agadina stimpsoni and of Agadina, n. 日p., I have

[^26]sacrificed one of encl in arder to eramine the animals. To do this the epecimens land to be removed from the balsam, nocl the shell destrnyed by acetic acid.

I was then able to recognige that the so-called Limacinida were only Gastropod harva.
If it he useful to rommuniente new truths, it is mint less necessary to destrny old ertors. I have far this renson devoted a few gentences to show that the types of Agadina (in the sense in which A and H. Adnms use the term) are not really Pteropods.
*I. Agadina stimpsomi, A. Adams (PL I. figy. 11-14).
18fit. Agatiun atimpunui, A. Adnus, Degription of New Spprica of Ehalls fram Infan, Proc, Zool Sac. Land, 1807, p. S09, pl. xim. Jig 39.
Shell smooth, discoidnl, without spire; three nonl n balf whorls gradually increasing, rolled up in the same plane; rounded obliquen nperture, with alightly bell-shaped margina; deep umbilicus, with slightly marked rays.

Colour.-Yellowish white.
Dimensions. 1 mm . in diameter.
Operculum.-Horny, circular, externally enneave, multispiral, with four and a balf wharls grarlually increasing, left-handed, surfare of insertion very large.

Animal bearing on its head a four-lobed velum; dorsal pallial sperture; thick colnmellar muscle; foot large and atrong, bifin in front, with a long braad creeping surface, and haraing the operculam at the pasterior end ; an fins.

The small size of this species, and the manipulations which the specimen had to undergo (the action of chloroform to remove the halsam, and of acetic acid to disaolve the Ahell), after having been stajned and mounted in balsam for twelve years, did not allow me tn atudy its structure in any detail. Dut what has heen elucidated is anffisent to enable one to decide the gromp of Molluacs to which this form belongs, and the stage of development arriverl at.

Habitat. -Kino Obima (Japan), A. Adams.
Challenger Specimens.-Living.
Station 175, Auguat 12, 1874 ; Fiji to Raine Island ; lat $19^{\circ} 2^{\prime}$ S., long. $177^{\circ} 10^{\prime} \mathrm{E}$.
Near Station 206, January 9, 1875 ; China Sear; nbout lat. $17^{\circ} 54^{\prime}$ N.; long. $117^{\circ} 14^{\prime}$ E.
Station 216A, Fehruary 16, 1875; North of New Guinea; lat. $2^{\circ} 56^{\prime} \mathrm{N}$, long. $134^{\circ} \mathrm{I} \mathrm{I}^{\prime} \mathrm{E}$.

2. Agadina gouldi, A. Adams.

1867. Agadina gouldi, A. Adame, Mesoriplion of New Spacies of Shella fram Japan, Prac. Zoal, Soc Lobd, 1867, p-309, pl. xix fig 22.
Shell amooth. helicoid, formed of three and a balf bulging and rapidly ascanding whorls; apire not projecting above the lost turn; oblique aperture with margina alightly expanded; umbilicus very nartow.

Dimensions.- 1.5 mm . in diameter.
Operculum and animal unknown, but almost certainly like those of the two other species here enumerated.

Habitat. -Kino Oaima (Japan), A. Adame.
*. Agadina, n. sp. (Pl. I. figs. 15, 16).
Shell amooth, globular; apire short, but projecting beyond the last whorl; three bulging whorls, overlopping, and aomewhat obliquely twisted ; aperture rounded, oblique, with margins slightly expanded; umbilicus almost suppressed, covered by the last turn, which esbibits a keeled projection over this apot.

Operculum horny, circular. multispiral, with four and a half whorls, gradually increasing in a left-banded apirsl; the surface of ingertion very large.

Animal.-Without fins, resembling that of Agadina stimpsoni, but with the lobes of the velum more pointed, and the foot more elongated anteriorly.

Challenger Specimens -I. Living.
Station 175, August 12, 1874 ; Fiji to Raine Island; Iat. $19^{n} 2^{\prime}$ S., long. $177^{\circ} 10^{\prime}$ E.
Station 216A, February 16, 1875 ; north of New Guinea; lat. $2^{\circ} 56^{\prime}$ N., long. $194^{\circ} 11^{\prime} \mathrm{E}$.
II. Deposit shella.

Station 120, September 9, 1879; off the const of South America, between Pernambuco and Hohia; lnt. $8^{\circ} 37^{\prime}$ S., long. $34^{\prime \prime} 28^{\prime}$ W.; depth, 675 fathoms; hottam, red mud.

Since this form, like the two before it, is only the larval form of aome Gastropod, there is no oceasion to give it a specific title.

It is evident that these species cannot be ranked among the Pteropods. The absence of fins, the presence of a four-lobed velum when the ahell has already three whorls on its spire, the presence of a foot with a creeping eurface, are fact sufficient to demonstrate that we have here ta deal with pelagic larvm of etreptnneural Gastropods.

This showe very distinctly the dengera of elaborating a zoological system without due regard to comparative anatoray.

Wondward's ${ }^{1}$ statement that the true Limacinider may be distinguished by their lefr-banded twisting "from the fry of Allanta, Carinaria and mont ather Gastropods" is thus quite inexect.

What enableg one alwayg to diatinguish the Limacinida from the larva of Gartro-

[^27]pans, known by the title Agadina, even when the animals themselves are mot known, is the horny, perfectly circulnr operculum of the latter (glassy in the Limoncinidia). In the operrulum of Agadina, furthermore, the coils of the spire have a left-landed twist, and increase slowly, sn that the nurleus of the spiral is mucb larger than in the Limacinide. The external surface is alsn concave; the nperture is obliquely rounded, with margina somewhat expanded, alightly thickened, and united, i.e., the lip and the columellar margin are continuous by mena of a small sallus on the latter, which is absent in the Iimacinide.

Aut to what etreptoneural Gastropods do these larval "Agadina" forms belong? The marine left-landed Gastropods are not, indeed, very numewns. Rut it must be remembred that anme Gastropods, with right-haurled spirals, bave their initial portion or nucleus twisted to the left. This is not improhably the case with the larval forms in question, for there the left-hanrled t wisting of the aperculum iv all likelihood corresponds to a right-handed twisting of the shell.
I. To the group "Agarina" I olso refer Allanta rotnndata, d'Orbigny,' which Souleyet regarded as a varicty of Limacina lesueuri (his Spirialis rentricosa). The shell is discoidnl and fattened; the spire in mo way projecta heyond the last cail : the mouth is rouniled, and liroader than high, with slightly thickened margins. The operculum figured by d'Orbigny appearm concentric, but as the objects are small and diffeult to define, it scems to me more likely that the opareulnm is multiapirol, as in the other forms of "Agadina,"

D'Orbigny's specimens were obtnined in the Parific Ocenn, $36^{n} \mathrm{~S} ., 38^{n}$ W. This form bas only been chronicled on one other nerasion, hy Marrat, ${ }^{2}$ on a voyage from South America to Liverpool. His spenimens are de pasited in the Liverpool Museum.

I1. In closing this appendix to the family Limacinidæ it is necesaary to note that the "Agadina" forma are not the only left-handed larvas of Gastropods wbich hnve been taken for Pteropods. The same is true of Iimacina turritelloides, Bnas, ${ }^{3}$ the empty shella of which I found in the Challenger pollection (Station 216A, north of New Guiner). By every one frmiliar with the elassification of Gastrapnils, this form would be at once recagnispd as a young left-handen Cerithium (Triforis), nor have Y nny doubt that thim Iamacina tumitelloides is identical with the fnrm which Craven has described under the title Sinusigera perversa.' Like Triforis, this exhibited a multispiral aperculum, with right-handed twisting. Craven has, in fnct, auliequently neknowledged ${ }^{6}$ that his Simusigera perversa (from the ladisn Ocean) is only a pullua of Trijaris.

[^28]
Family II Cavolinifdex.

1841. Ayalide, d'Grbigng, Mellunques de Culie, t. i. p. 70.

184g. Cluadarines, Gray, Synapsie of tha Contents aithe Brilish Muanm, p. Sg.

1842. Orihamaques, Fal, Sur le dóvelappement des PLírapodea, Amèhivea il. Zool. Expór, aife 1, tiv.p1i7.
incl. Guriemids, Gray, 1841 = Tiphteridx, Gmy, 1850.
Chraacters.-Sbell external, calfarenus, inoperenlated, hilatemilly symmetrical, not rolled $u p$ in a spiral, hut at its opex often clorsally recurved. Animal with ita pallinl eavity ventral, and its columellar nusele dnrgal; the amos situated on the left.

Description.-The abell bas a variable farm, which may always be referred to a hollow cone, more or less modified, fattened derso-ventrally or circular in ecection. The apex is quite straight, recurved or truncated; the mouth broord ar narrow; with longitudinal or transverse ribs, \&c. The initial portion of the shell is generally diatinet from the rest, and represents the embryanic shell.

The animal may be entirely retracted within the shicl,. The form of the fins and of the peateriar lobe of the foot varies cousiderally. The mouth, the lips, and the tentacles resemble those of the Limnciuidm (except Perrelis).

In regard to the classifieation, as in the Limacinidm, we find a large number of genera established by too zealous cancholagiata for the reception of the species belonging to this family. Abstractivg genere baved on Tertiary fossils, we find eeventeen diflerent gencric titles applied to living Cavoliniidæ. These are enumerated in nlphnbetical order:-

Archnata, Montinct, 1810.
Falantirm, Rensom, 1 1837.
Cawolinas, Abildgant, 1791 (non
Bruguière, 1792).
Cleodora, Péron and Lequeur, 1810.
Clio, Linné, 1767 (non Müller, 1776).
Creseis, Rang, 1828.
Cunietia, Rang, 1827 (non Péron, 1807).

Guvierina, Boas, 1886.
Diacria, Gray, 1842.

Hyalma, Lamarck; 1801.
Hyalocylis, Fol, 1875.
Orhignyia, Adame, 1859.
Pleuropus, Eschschaltz, 1825.
Rheda, Humphrey日, I797.
Styliala, Lesueur, 1825.
Tricla, Oken, 1815 (non Retzius, 1788).

Triputera, Auctorum (ron Quay and Gaimard, 1824).

Of these seventeen titles:-

1. Three alane ought to be preserved as applicslle to well-establiahed genera-
(1) Clio: (2) Curierina; (9) Cavolinia.
2. Three designate well-marked aulgencric divisions of the genus Chio --
(1) Creseis;
(2) Hyalocylix:
(9) Styliola,
3. One represents the young state of eame Covolinia: Pleuropus.
4. Finally, the ton remaining titles maly be preserved as symonyma of the three gener:-

$$
\left.\begin{array}{l}
\text { Balantium, } \\
\text { Cleodora, } \\
\text { Cuvierift, } \\
\text { Triptern, }
\end{array}\right\}=\text { Chio. }
$$

$\left.\begin{array}{l}\text { Archonte, } \\ \text { Diacria, } \\ \text { Hyalaca, } \\ \text { Orbignyia, } \\ \text { Rhrim, } \\ \text { Triela, }\end{array}\right\}=$ Crivolinia

For the distinctive charactere of the three genera Cio, Cuvierina, and Cavolinia, 1 refer to the synoptic table of genern ($\mathrm{p}, \mathrm{8}$).

Clio, ${ }^{1}$ Linné.

17.56. Clio, Brambe, The Civiland Noturai Hintory of Jnmaicn, p. 386.

 Eist Nat. Parir, t. xy. p. 66.
1835. Styfioin, Lesueur, MS., in de Elainvillo, Monuel de Mulacologie, p. 655.
 et élablinamont et monographie du eque מever Creasia, Ann d. Sci. Nat, ads 1, t. xiتi, p. 302.
1837. Balarivem, Denean, Notice on Delamtium, a Gevus of the Fterapedaug Mollugeg, Journ. Atiat. Soc. Hengal, vol. vi. p. 1 El.
1875. Hyabogita, Fol, Sur le dévelappement da Pidropoden, Arahiven ds Znol. Expér., iv. p. 177.

To the Thecosomata which 1 have united in this genue geveral gencric titles bave been applied, as may be reeu from the synongros,

Besides these generic titles, we have to nate a conaiderable number of apecific desigations, of which only a very amall fraction can be retsined as applicable to really existing apecies of the genus Clio.

After ahatracting all the so-called forms of Clio which are really Gymnoromata (zee the firat part of this Report),' there remains the following formidable list of epecific titleg attributad to living apecies. A certain number of extant species are alao

[^29]found in the most recent Tertiary reposits, and bave received other titles in that connection.

Creseis acicula, Rang.
Cressis acus, Eschscholtz.
Cleorlora andrew, Bnas.
Hyrlega azustralis, d'Orbigny.
Cleodora balantium, Rang.
Antantium biararinatum, Renson.
Cleodova brovonï, de Blainville.
Creseis caligula, Eschscholtz
Clio caudata, Linné.
Cleodora chaptalii, Souleyet.
Cleornowe chierchim, Boos.
Creseis clava, Rang.
Creseis compressa, Eschscholtz.
Cleodora compressa, Souleyet.
Creseis conica, Eschscholtz.
Cuesris ennoidea, A. Cota.
Hynlan corniformis, d'Orligny.
Creseis cornucopim, Eschacholtz.
Cleodora curvata, Souleyet.
Hyalma crispidata, Bose.
Clio depressa, Gray.
Cleadora exacuta, Gould.
Cleodora falcata, Gould.
Cleodora falcada, Pfeffer.
Cleodnra flexa, Pfeffer.
Cleodora inflata, Souleyet.
Cleodora lamartinieri, Rang.
Hyalsar lanceolata, Lesueur.

There fifty-seven names may he rlargified as follows:-

1. One may be discarded an not referring to a Pteropod, viz., Cteseis rugulosa, Cantraine, ${ }^{2}$ which is really a Gastropod of the geove Cæпum.
2. One refers to the adult atage of another genus of Thecosamatous Pteropods, viz., Cleodora obtusa, Quoy and Gaimerd, which is probably the eame as Cuvierina columnella.
3. Seven names refer to young stages of the Thecosomata of the genus Cavolinin, viz.:-

Cleodora compressn, Souleyet = Cavolinia trispinoset.
Cleodora carvata, Souleyet $=$ Carolinio nncinalta.
Chin depressa, Gray = Cleodera compressa, Souleyet $=$ Cavolinia minjuinosed.
Clio pellucidum, Gray = Pleuropris pellucidus, Farhscholta = Cavalinia inflesa.
Aakantinm sugosuna, Gray = Hyalzact rugosa, d'Orbigny = Cnvolinia gibbosa.
Clendora pygmaa, Boas = Cavolinios quadridestata
Cleodora trifilis, Troschel $=$ Catoolinia, sp.
The nttentive study of the forms designated by the remaining specific titles shows that thirty-three of these ought to he diesmided, and considered anly as synonyme of the fourtpen remaining species.

	essis aciculo, Rang
Balantium licarinatum, Benam,	= Cleodova bnlantium, Rar
Cleodora hrounizi, de Blajuvile,	$=$ Clio pyramidata, Limné.
cis caligula, Eschscholts,	= Creseis virgula, Rang.
io caudata, Linot,	Clio pyramidata, Linné.
eseis slava,	$=$ Creseis acicula, Rang.
is compressa, Eachsch	$=$ Creseis stricta, Rang.
Creseis conoidea, 0. Costa,	= Creseis conica, Dschacho
Hyalra comifownis, d'OrLigny,	$=$ Creseis virgula, Rang.
eseis cornucopiz, Fschacholt	$=$ Creseis virgula, Rang.
Cleodora exacuta, Goulrl,	Clio pyuamzata, Lima
Cleodora falcata, Gould,	Cveseis virgala, Rang
Ceodova falcala, Pfeffer,	= Balantium politum, Grav
Oleodora flexa, Pleffer,	Creseis virgula, Rang
Cleodora inflata, Souleyet,	Cleodora balantium, Rang (young).
Cheolora lamartinieri, Rang,	= Cizo pyramidata, Linne.
Hyalsa lanceolato, T.equeur,	$=$ Clio pyramidata, Linné.
Cleodora lessoni, Hang,	Hyalaa cuspidata, Borc.
Cleodora lobata, Sowerby,	= Clio pyramidata, Liuné,
Cleodora martensiz, Pfeller,	Clio pyramidata, Limné.
Oreseis monotis, Troenhel.	Creseis striata, Rang.
Cleodosa munda, Gould,	Creseis virgrula, Rang.
Creseis phemostoma, Trokehel,	Creseis striata, Rang.
Creseis placida, Gould,	= Creseis virgula, Rang
Cleodora quadrispinosa, Rang,	= Hyalma enspidatu, Bos
Styliola recta, Lesueur,	Cleadora subula, Quoy and Gaima

B	= Clpanora balantium, Rang.
Creseis spinifera, Rang,	= Clendosa sphula, Quny and Grimard.
Clfodora striata, Delle Chieje, .	$=$ Cuesris conica, Esrbsrholtz.
Hyalma tricuspidata, Bowdich,	= Hyalaz euspidata, Bose.
Creseis unnguis, Fachscholtz,	= Creseis virgula, Rang.
Styliola vitrea, Verrill,	$=$ Creseis conica, Escharholtz.
Creseis zonata, Delle Cbiaje,	= Creseis stvinta, Rarg

The genus Clio thus includes fourteen real species, of which eleven are inclucled amang the appoils of the Challenger.

Creseis virgula, Rang.	Cleordora sulcatc, Pfeffer.
Creseis acicula, Rang.	Cleodora chaptalii, Souleyet.
Creseis comicta, Eschacholtz.	Cleodora balantium, Rang.
Cleodorn chierchis, Boss.	Balantium politum, Graven, MS.
Creseis strictia, Rang.	Cleodora andrex, Во⿱s.
Cleodora subula, Qnoy and Gaimard.	Cio pyramidata, Linne. ${ }^{1}$
Hyalrea australis, d'Orbigny.	Hycham cuspinatr, Bosc.

This genus is thus the rinhest of the Thecosomatn, and indeed of the eatire group of Pteropods. It is also that which exbibita the greatest variety of forms. It may well be asked whether all the species should be ranged in uniform euccession in a linmogeneous peries, or whether further classification is not possible.

Rang, Philippi, souleyet, Gould, Pfeffer, Boas, sc., are of opinion that all the species ought to bear the same generic title, and the anatomical researches of Souleyet have shown that the structure is nearly the same in the different forms examined.

On the other hand, the conchologists who are never afraid of a multiplicity of nemes generally divide into three or four genera the series of forms which we comprise under the title CTio.

But the attempt towards clessification most worthy of attention is certainly that of Fol, ${ }^{2}$ whe bases bia arrangement on the ontagenetic development of Mediterranean forms.

Fol dividea the living species of Clio into the four following genera :-

> Hyalocylis, Fal; type Creseis strinta, Rang.
> Slyliola, Lesueur ; type Cleodora subula, Quoy and Gaimard.
> Cleodora, Péron and Lesueur ; type Clia pyramidata, Linné.
> Creseis, Rang; type Creseis acicula, Rang.

[^30]Thie classification has heen adopted in Fischer's ${ }^{1}$ Manual of Conchology, and in part also in that of Tryon. ${ }^{2}$

It is bowever necessary to remark that Fol distributes these four genera in a manner altogether perulier, separating most of the species from the group at present under discussinn. Thus in our family of Cavoliniidas (bis Orthoconquee) be distinguishes, abstracting the genus Cuvierina, three subgroups,-Hyaléncées, Styliolacées, and Creseidées. Hyalocylix is referren to the firgt, along with the Cavolinia forms. Stylinla and Clpodorre are included in the Stylinlocées. Crespis is placed among the Creecidées.

I cannot admit that these different forms are spparated in this way, or in any wey equally deep ond trenchant.

Fol's distinctions, which are based excluaively on embryonic characters, form an inaufficient foundation for the classification of the adults. For it must be noted that the forms in question are pelagic larox in which, ne Fritz Müher long ago remarked, ${ }^{\text {a }}$ true genetic characters are mingled with those which are mercly adaptive, and provisionally ocquired for the free, independent, pelagic larval life.

On the otber hand, the different forms of Clio exhibita n type of structure which unites them in ane and distinguishes them from the other Thecosomata, and especinlly from the "Hyaléacées" of Fol (among which the "Cleodnra" forma are certainly more nenrly allied than the Fyalocylix).

Nevertheless, it cannot be denied that among the species which I have united within the genus Clio there are eeveral diatinct types, eeparated not only by the pobryonic differences an which Fol's classification is based, but also by certain atructural features, which will be discusged in the anatnmical portion of this Report. Yet, at the anme time, T maintain that these digtinctions are not of eufficient import to justity the establiehment of aеpдrate genera.

I therefore propose to consider the different types above referred to as subgenera of Clin, and since these subgeneric divisions cortespand approximately to the gevers renognised by Fol, 1 shall preserve de designations of these aubgeneric eertione the four titles which Fol bes uned, viz., Creseis, Hyalocylix, Styliola, Clio (=Cleodora). As to Balantiuen, I do not find that it exbibita any characters which would warrant ita being separated from the aubgenus Clic $\{=$ Clendora $)$ as str.

Within thege four aections, the species known to be genuine are diatributed in the following fashion :-

1. Subgenile Creseis.

Creseis virgnula, Rang.
Creseis canica, Eschecholtz.

[^31]Creseis acioula, Rang.
Clendora chierchim, Hoas.

- Etructural and Sgatematic Conabolagy, val il pp. 00181

2. Subgenus Hyalocyliax.

Creseis striata, Rnng.
3. Subgenus Siyliohn.

Cleodova subula, Quoy and Gaimard.
4. Subgenus Clio, s. str.

Ralantium politum, Craven, MS.
Cleadora anduem, Rons.
Ceodova balantium, Rong.
Hylza australis, d'Orbigny.
Cleodorct sulcala, Pfeffer:
Clia pyramidata, Linné.
Hyalera cuspidata, Bose.

The four sections may be distinguiehed as followe:-
I Shell without lateral keele.

1. Shell withnut daral loggitudiaal groove
A. Shell with a círcular apction,
2. Greaza
D. Shall fatlened dora-ventrally, with tranavirae gronves aver ite entire leagth,
3. Fyalicylur
4. Shell with a doranl longitudinal groove,
5. Srylinla
II. Shell with interal keele, .

Sulgenue Creseis, ${ }^{1}$ Rang (s. str.).
1R99. Chesera, Ragg, Notice aur quelques Mollubquea nouvenux eppartenant au genre Cleodora,

Styliola, Anetorum, man Lembur.
Characters and Description.-Shell elongated, of conical form, with a eircular tronaverse section, with a amooth aurface on ita initial portion at least, with the embryonic portion nat marked off hy a deap constriction, with a rounded apex.

Animal with the left tentacle very rudimentary, the fin exhibiting a amall narrow projecting lohe on the proximal half of the doresl (anterior) margin, the opaning of the mantle as broad as that of the shell.

$1 \mathrm{Myth}=1 \mathrm{gical}$ name

Kfy to the Specie.

1. Shell entimely destitute of tranapere grouves.
2. Shell nt ils initial partion of a dark hrown colour.
A. Shell with a very marked nod sampwhat abrupt dorsal rurva, and with
the transverse dinmater increasing rapidly at the poinl of ellivntura,
In. Ebell with a slight cargatare, and with tha transuctse dinmeter inereasing uniformly,
L. Olin virgnla.
3. Clin rabica.
4. Shell etmight much elongnted, with the joitial extromity of a whitish colour,
5. Chio acimula.

1I. Shell with tranaveram graven all over its bronder poztion,
4. Clia shierchix

*1. Clio (Creseis) virgula (Rang).

1899. Creseis cornurajte, Eschscboltz, Mbint, p. 17, pl. xu. fig. 5.
1839. Cтespis caliguila, Fscbschnlta, /bnd, p. 18, pl. xv. Fig. 6.
1896. Hynlmn corwíformis, d'Orhigny, Vnyage dsas l'Amérique méridionnie, i. v. p. 120, pl. vin fina $30-93$
1850. Syfiola virgnia, Gray, Catalogue of the Malluaca in the Collecting of the Britieh Museum, pt è., Ptempndn, p. 17.
1850. Sy hinia comiformis, Gray, Miad., p. 18.

1852, Cheodora mirgula, Souleget, Voyage de la Aonite, Zoologie, 4, ij. p. 196, pl. viii. fige Je-95.
185I. Cleodara munria, Gould, Tbe Mollusea and Shalls of the U.S. Exploring Fepedtino, p. 489, pl li fig. 607.
1852. Cieodora placidin, Gould, 7bid., p. 489, pl li. fig. 60才.
1852. Cleatara faleala, Gould, Mirt., p. d90, pl. li. fip. 608.
1879. Cleadara flesa, Pfefter, \#fricht über die von S. M. Srbill "Gazelle" and Dr. Jugur peanmmelten Ptempaden, Monalaber, d. k. praves. Alead. d. Wirs. Bertin, 1879, p. 은, fige 16, 16.

For deseription und figures I refer to Souleyet, loc cit. (see the rynonymay ahove).
Habitat.-Atlantic Ocean, from a1 $25^{\circ} \mathrm{N}$. (Verrill) to $35^{\circ} 10^{\prime} \mathrm{S}$. (Bors), both towards the new and the old world.

Indion Ocean ; from the Gulf of Bengal to 29° S., especially towarde the west (southexat of Arahia, Blanford) to $65^{\circ} \mathbf{E}$

Parific Ocenn: eastern portion, from 95° N., about the Bay of Yedo ("Galathen " Fixpedition), to 32° S., New South Wales (Britiab Mueeum), China Sea ("Galathea " Experition), Coral Sea (Pfefler) ; central portion, from 24° N. ("Vettor Pibani" Expedition) to 30° S. (Knocker) ; Nnrth-eqat Pacific (Gould as "Cleodora faleata")i South-anat Pacific, Juan Fernandez Ialand (d'Orbigny).

Challenger Specimens.-I. Living sppcimens.
Station 106, Angust 25, 187a; St. Vincent (Cape Verde) to St. Pnul's Rock; lat. $1^{\prime \prime} 47^{\prime} \mathrm{N} .$, long. $24^{n} 26^{\prime} \mathrm{W}$.

Hetween Stations 162 and 163, April 3, 1874; Melhoume t.o Sydney, lat. $88^{0} 7^{\prime}$ S., long. $149^{\circ} 18^{\prime}$ E.

Station 164A, June 13, 1874; ofl Sydney; lat. $34^{2} \mathrm{~S}^{\prime} \mathrm{S}_{\mathrm{s},}$ long. $1.51^{\circ} 55^{\prime} \mathrm{E}$.
Station 181, Auguat 25, 1874 ; Fiji to Raine Teland; int. $19^{\circ} 50^{\prime}$ S., long. $151^{\circ} 49^{\prime} \mathrm{E}$.
Station 209, January 22, 1875; Manila to Samboangan; lat. $10^{\circ} 14^{\prime} \mathrm{N}$, lang. $129^{\circ} 54^{\prime} \mathrm{E}$,

On February 6, 1875; at Sambonngnn ; lat. $6^{\circ} 40^{\prime}$ N., Jong. $122^{\prime \prime}$ 57' E.
Station 216a, Fehruary 16, 1875; worth of New Guinea; lat. $2^{e} 56^{\prime} \mathrm{N}$, long. $134^{6} 11^{1} \mathrm{~K}$

Hetween Stationa 229 and 230, April 3, 1875; Admirnlty Islands to Yokohama; lat. $24^{\circ} 49^{\prime} \mathrm{N}$., long. $138^{\circ} 34^{\prime} \mathrm{E}$.

Station 290, Apri] 5, 1875 ; Admiralty Islands tor Yokohama; lat. $26^{n}{ }^{n} 29$ N., long. $137^{\circ} 57^{\prime} \mathrm{E}$.

Between Stations 264 and 265, August 24, 1875: Sandwich Islande to Tahiti; lat. $19^{\circ} 15^{\prime} \mathrm{N}$, long. $152^{\circ} 2^{\prime} \mathrm{W}$.

Station 299, December 14, 1875 ; Valparaigo to Gulf of Penam; lat. $39^{2} 31^{\prime}$ S., long. $74^{\circ} 4 \mathrm{a}^{\prime} \mathrm{W}$.

Station 348, April 9, 1876; Ascension Island to St. Vincent (Cape Verde); lat. $3^{\circ} 10^{\prime} \mathrm{N} .$, long. $14^{\circ} 51^{\prime} \mathrm{W}$.

On April 26, 1876 ; off St. Vincent ; lat. $16^{e} 49^{\prime} \mathrm{N}$, long. $25^{\circ} 14^{\prime} \mathrm{W}$.
On Aprid 29, 1876; off St. Vincent; lat. $18^{\prime \prime} 8^{\prime} \mathrm{N}$. , long. $30^{\circ} 5^{\prime} \mathrm{W}$.
11. Deposit shells.

Station 29, March 15, 1879 ; off Sambrero Island; lat. $18^{\circ} 24^{\prime}$ N., long. $63^{\circ} 28^{\prime}$ W.; depth, 450 fathoms; hottonm, Pteropod oaze.

Stntion 24, March 25, 1879 ; off Culebra Island; lat. $18^{\circ} 98^{\prime} 90^{n} \mathrm{~N}$. , long. $65^{\circ} 5^{\prime} 30^{\prime \prime} \mathrm{W}$.; depth, gso fathoms: battom, Pteropod ooze.

Station 33, April 4, 1873 ; off Hermuth; lat. $32^{\circ} 21^{\prime} 30^{4}$ N., long. $64^{\circ} 95^{\prime} 55^{\prime \prime} \mathrm{W}_{\text {; }}$; depth, 435 fathome; bottorn, coral mud.

Station 120, September 9,1879 ; off the co日st of South America, hetween Pernamlunca and Rahia; lat $8^{\prime} 97^{\prime}$ S., long. $34^{\circ} 28^{\prime}$ W.; depth, 675 fatherres; bottom, red mud.

Station 185, August 91, 1874 ; off Raine Irland; lat $11^{\circ} 95^{\prime} 25^{\prime \prime} \mathrm{S}$, long. $144^{6} 2^{\prime} 0^{\prime \prime}$ E.; depth, 135 fathoms ; bottom, coral send.

Station 219, March 10, 1875 ; Admiralty Islanda to Yokohama; lat. $1^{\circ} 54^{\prime} 0^{\prime \prime} \mathrm{S}$., ong. $146^{\circ} 39^{\prime} 40^{\prime \prime}$ E; depth, 150 fathoma ; bottom, coral mud.
2. Clio (Crescis) conicat (Fschscholtz) (Pl. 11. figs. 1, 2).
 pl. Juxific Fig.
1869. Crescin ennica, A Cosin, Ptempanli del gelio di Napeli, Ronilisenlad. reole Accad. d. Sci. Napali, 1869, p. 58.
1872. (1) Sighicla cilma, Vnrill, Rerent Additione to the Mollumed Famma nf New Faginud and the srljncesol waters, fice, Aner. Journ, Sri and Arts, vol iii p. 28t, plo vi fig. Z
1813. Oresesa conaiden, A. Costn, Ptarchpodi della Founa dol Regoo di Nnpali, p. 17, pl iv, fig. f.
Charccers and Descripuion.-Shell ranical, moderately elongatenl smath over its entire surface; a very slight and regular dossal curvature; the transverse diameter incrensing gently and uniformly; the poaterior extrenity of a doulk brown colour; the embryonie portion separated by a well-marked constriction, and thinning of towards the somewhit aleduer apex (PI. II. fig. 2).

Animal like that of Clio (Cressis) uirgnla, but distinguished at first aight by thas marked fenture that the mass formed by the etumach and liver is situnted much further forward than in the above apecies. For while in Clio virguta the hman resophagus is very lang, and the mass in question removed from the posterior extremity of the alield (pallial ghand) by more than the length of the latter, in Clio conica it is situated immediately hehind the abicld. With ihis diffreve there is olviously comelnted the nbrupt and precociaus enlargement of the shell in Clio virgula, and the gentle uniform increane in Clin comiea.

Observations.-I. There can be no doubt in regard to the species figured by Eschscholtz. It is not Clio (Creseis) acicula, sincs it is nuch ton short in proportion, nad has its postorior extremity of a dark hrown colour. It is not Clio (Creseis) riargula, since it exhilite neither the abrupt curvature nor the precocious enlargempant of diameter exhibited by that form, and aince the viscpral mass is rituated anteriarly Neither is it Clic (Styliola) subula, although Gray' ${ }^{\prime}$ anrl Souleyet ${ }^{2}$ so regard it. The absence of a domal grnave, the calour of the posterior extremity, and the shortness of the posterior labe of the frot are enough to abow that it is not.

The " Creseis conica " of Fachscholtz is in fact the species which one finds at Nnples, and in all probability that which Delle Chiaje noted under the name of "Creseis strinta."
A. Costn, thinking be had discovered a new species, dearibed this form os Cresels conica, igoning the fact that this title hat heen already used hy Eachacholts. Becoming aware of this, but faling to recngnise the identity of the two forms, be chonged the name comica to conoidea.

[^32]1I. The figure given by Escharholtz has heen referred by Gray and by Soulpyet (not without hesitation) to Chio subule; I have indicated above that thie identification is impossilile.

On the other hand Rons, who is of opinion ' that Chio virgule and Clio acicula sbould be united, figures ${ }^{2}$ moder the title "Cleodora acicuk" a specimen which undnulitedly belongs to the species under discussion. At the same time be designates as "Cheodom aricule" " the sperimens of the "Vettor Pisani" Experlition, whicb also resemble Clio coniect. The later is distinguished from Clio neicula not only in the eharacters of the alell voted above, but alsa in the coufommation of the liver, which agrees with what is fomm in Clin virguln. Clio conica is begood dispute more nearly allied to Clin sirgula then to Clio acieula.

Dimensions.-Besides being distinguished by rettain rhameters of the shell and of the animal, Clin comica is ala marked ly its aize, which never excecds 7 mm .

Hahitat.-Atlantic Ocean : coast of Brazil (Eschscholta) ; coasts of North Amerira (if, as I helieve, Siylinla nittent $=$ Clio cnnicn).

Meditertanean : Naples.
Pacific Ocean: eastorn partion, 0° N., 84° 40' W. ("Vettor Pismin "Expedition).
Challenger Specimens.-Deposit shells.
Station 219, March 10, 1875 ; Admiralty Islands ta Yokohama; lat. $1^{\circ} 54^{\prime \prime} 0^{\prime \prime} \mathrm{S}$. lang. $146^{\circ} 99^{\prime} 40^{\prime \prime}$ E: depth, 150 fathams; battom, roral mud.
*3. Clio (Creseis) acicula (Rang).

For description and figures, see Souleyet, loc. cit. (in the above list of aynonyma).
Habictat-Atlantic Ocean, from 48° N. to the Cope of Good Hope (Pfeffer), and tn $40^{\circ} \mathrm{S}$. (Knocker). Mediterranenn: Naples, \&c. Indian Ocean: from the Gulf of Eengal in $29^{\circ} \mathrm{S}$. (Pons) ; from Zanzithur (Pfeffer) to near Aubtralia ($\mathrm{B} 5^{\circ} \mathrm{E}$.).

Pacific Ocenn: West, China Sea (Hons); Central Pacific, from $10^{\circ} \mathrm{N}$. (Knocker) to 28° S. (Pfeffer), nid towards $153^{\circ} \mathrm{W}$; Eestern Pacific towarla the equator, $88^{\circ} \mathrm{W}$. ("Vertan Pisani" Expedition).

[^33]Challenger Spesimnens-I. Living specimens
Station Vllp., Feliruary 2, 1879; off Mndeira; lat, $32^{e} 27^{\prime \prime} 0^{n}$ N., long. $16^{\circ} 40^{\prime} 90^{\prime \prime} \mathrm{W}$.
Statimn 62, Jupe 18, 1873 ; Bermudn to Azdres; lat. $35^{t} 7^{\prime}$ N., long. $52^{n} 32^{\prime}$ W.
Station fis, June 19, 1879 ; Bermuda to Azores ; lat. $95^{\circ} 29^{\prime} \mathrm{N}$, long. $50^{\circ} 59^{\prime} \mathrm{W}$.
Station 81, July 19, 1879 ; Aznres to Madeira; lat. $34^{\circ} 11^{\prime}$ N., long. $19^{\circ} 52^{\prime} \mathrm{W}$.
Station 164A, June 13, 1874 ; off Sydney ; lat. $34^{\circ} 9^{\prime}$ S., long. $151^{\circ} 55^{\prime} \mathrm{E}$.
Station 175, August 12, 1874 ; Fiji to Raine Island ; lat. $19^{\circ} 2^{\prime} \mathrm{S}$., long. $177^{\circ} 10^{\prime} \mathrm{E}$
Station 181, August 25, 1874 ; Fiji to Raine Island; lat. $13^{\circ} 50^{\prime} \mathrm{S}$. long. $151^{\circ} 49^{\prime} \mathrm{F}$,
Near Station 190. September 13, 1874 ; south of the Arron 1glands; lat. $8^{2} 18^{2} \mathrm{~S}$, long. $195^{\circ} 7^{\prime} \mathrm{E}$.

Station 200, Ontaber 23, 1874; Ambaina to Samboangan; lat. $\mathrm{fi}^{\circ}{ }^{\circ} 47^{\prime} \mathrm{N}$, long. $122^{\circ} 28^{\prime} \mathbf{E}$.

Station 201, Octoher 26, 1874; Samboangan to Maniln; lat. $7^{\circ} 3^{\prime} \mathrm{N}$., long. $121^{\circ} 48^{\prime} \mathrm{F}$.
Station 209, January 22, 1875; Manila to Samboangan; lat. $10^{\circ 1} 14^{\prime} \mathrm{N}$. long. $123^{\circ} 54^{\prime} \mathrm{F}$.

On Febrvary 5, 1875; at Sambonagons
On February f, 1875 ; at Samhoangan ; lat. $6^{\circ} 40^{\prime} \mathrm{N}_{\mathrm{s}}$ long. $122^{\circ} 57^{\prime} \mathrm{Ft}$.
Station 21fiA, Felruary 16, 187.5; Dorth of New Guinea; lat. 2" 56^{\prime} N.. long. $134^{\circ} 11^{\prime} \mathrm{E}$.

Station 297, June 17, 1875; Yokelama to Sandwich Ielands; lat. $34^{2} 37^{1} \mathrm{~N}$., long. $140^{\circ} 32^{\prime} \mathbf{E}$.

Station 256, July 21, 1875; Yokahama to Sandwieh Telands; lat. $30^{\wedge} 22^{\prime} \mathrm{N}$., long. $154^{\circ} 56^{\prime} \mathrm{W}$.

Auguet-September, 1875 ; Sandwich to Tabiti.
Between Stationa 292 and 299, Ortoher 91, 1875; Tahiti to Valparaiso, lat. $98^{n} 50^{d}$ S., long. $108^{\circ} 6^{\prime} \mathrm{W}$.

Station 223, February 28, 1876 ; Falkland Islands to Rin de la Plata; lat. $95^{\circ} 39^{\prime}$ S, long. $50^{\circ} 47^{\prime} \mathrm{W}$.

Station 926, March 3, 1876; Rio de Jeneiro to Trigean de Cunha; lat. $37^{\circ} 9^{\prime} \mathrm{S}$., long. $44^{\circ} 17^{\prime} \mathrm{W}$.

Station 927, Mareh 4, 1876 ; Rio de Janeiro to Tristan da Cunha; lat. $96^{\circ} 48^{2}$ S. long. $42^{\circ} 45^{\prime} \mathrm{W}$.

Station 899, March 29, 1876; Tristan dà Cunbe to Abcension Island; lat. $17^{\circ} 2 \mathrm{fi}^{\prime}$ E., loug. $13^{\circ} 52^{\prime} \mathrm{W}$.

Station 349, April 10, 1876; Ascension Island to St. Vincent (Cape Verde): lat. $5^{\circ} 28^{\prime} \mathrm{N}$., long. $14^{\circ} 38^{\prime} \mathrm{W}$.

Od April 26, 1 月76 ; off St. Vincent; lat. $16^{\circ} 49^{\prime} \mathrm{N}$. , long. $25^{\circ} 14^{\prime} \mathrm{W}$.
On April 29, 1876; off St Vincent; lat. $18^{\circ} 8^{\prime} \mathrm{N}, \mathrm{logg} .20^{\circ} 5^{\prime} \mathrm{W}$.

If. Deposit sbells.
Station 23, March 15, 187 A ; off Sambrera Igland; lat. $18^{\circ} 24^{\prime} \mathrm{N}$. , long. $63^{n} 28^{\prime}$ W.; depth, 450 fathoma; bottom, Pternpocl noze.

Statiun 24, March 25, 1879 ; off Culelira Islated; lat. $18^{\circ} 98^{\prime} 90^{\prime \prime}$ N., long. $65^{\prime \prime} 5^{\prime} 30^{\prime \prime}$ W.; depth, A90 frthoms; bottore, Pteropod oozc.

Station 2S, A pril 4, 1873 ; ofl Bermuda; lat. $32^{e} 21^{\prime} 90^{n \prime}$ N., long. fi4 $35^{\prime \prime} 55^{\prime \prime}$ W.; depth, 435 fathoms; bottom, roral mud.

Station atic, Aprid 22, 187s; off Bermuda; lat. $22^{\circ} 15{ }^{\prime}$ N., long. $65^{2} 8^{\prime}$ W.; depth, 1950 fathome; batom, Globigerina noze.

Station 85, July 19, 1873; off Palmn Island (Canaries); lat. $28^{n} 42^{d}$ N., loag. $1 \mathrm{~g}^{e} \mathrm{G}^{\prime}$ W.; depth, 1125 fathoms; bottom, voleanic mutl.

Station 120, September 9. 1 R73; of the const of South America, between Pernambuce and Babia; lat. $8^{\circ} 37^{\prime} \mathrm{S}$. , lang. $14^{n} 28^{\prime} \mathrm{W}$; deptb, 675 fathoma; bottom, red mad.

Station 122, September 10, 187日; off the coast of South America, hetwenn Permamhuco ond Babia; lat. $2^{\circ} 5$ 'S. lang. $34^{e} 50^{\prime}$ W; depth, 350 fathoms; bettom, red mull.

Station 185, A ugust 91, 1874 ; off Raine laland; lat. $11^{\prime} 95^{\prime} 25^{\prime \prime} \mathrm{S} ., \operatorname{long} 144^{\circ} 2^{\prime} 0^{\prime \prime}$ E.: depth, 185 fathoms; bottom, coral sand.

Station 219, March 10, 1875; Admiralty Inlancls to Yokobnoa; lat, $1^{a} 54^{\prime} 0^{\prime \prime}$ S., long, $146^{\circ} 39^{\prime} 40^{\prime \prime}$ E; deptli, 150 fatbome; bottom, coral mud.

Note

According ta Roas, the three preceding species are really jdentionl. Little degirous an I am to multiply the number of species, I ennonat admit the aceurncy of this identificntion.

Cizo acicula is distinguished from the two other species, not only by some characters of the shell (posterimr portina whitioh, opaque, inatend of being tramsparent and dark brown), but also by some structural features, and especially by the nature of the liver, which is represented by a much reduced mana of acini, while the pylocic cacum attains very conspicuous development.

It must be allowed that the other two species (Clio virgula and Clio ncinula) are nearer neighbours, but the diagnostic characters which bave been noted above make n union of the two species impassible.
4. Clio (Creseis) chierchim (Boas).

18R6. Cleadnra chierchiag Anak, Spalia allantica, p. 69, pl ii. 6д 39":
Characters and Description. -This minute apecies (2.5 mm. in length) is very distinetly characterised and is readily distinguished from all the other memhere of the group by the fact that the shell, over ahout twe-thirds of ita length, is covered with
transverse grooves, which are closely appraximated and equidiatant like those of Clio stivetata This cannot be regarderl ns tersatalogical, for this apecies lins ben rollected in different lenedities and in great abundeare Nor is it a young atage, for none of the ubserved specimens exceeded the eize indicoted. Chio chierchiss diflers notally from Chia striata in the absence of curvature no the shell, by the form of the embryanic ehell, and hy the form of the fins.

Hadilat-Different loralities nfar Panama ("Vettor Pisani ${ }^{n}$ Expenfítinn).

Sulgenus Hyalocylix, ${ }^{1}$ Fol.
1875. Hyalocylis, Fol, Sur le développament dor Ptéropodes, Acchives d. Zonl Expẹp, Ear. 1, t jv. p. 177.
Creseis (para), Ranf.

Characters and Description_-Shell ronical, alightly compreseed dorsa-ventrally (oval transverse section); the npex resurved daranlly; the aurface morked with transverse groovea from the well-marked conatriction defining the embryanic shell on to the aperture.

The animal bis a conspicuous left tentacle; the fin bas a marginal nod-muscular area, situated thwarils the dorso-lateral marner; the posterior lobe of the font is extremely ahort: the aperture of the mantle as large as that of the shell

This "aubgenus" includes orly a single species
${ }^{\text {© 5. Clio (Hyalocylix) striata (Rang) (Pl. Il. fig. 3). }}$
 Ann d. Sci, Nat, dds. 1, thiii. p. 315, pl xu fig 7.
1899. Creseis compranea, Fsihscholtz, Znologiarher A1]a, Haft iii. p. 17, pl Tr. fR 7.
 pl lixxii f.g. 9
1860. Stylicla atrinka, Gray, Calalogue nI the Mallunce in the Collertinn af the Tritiah Masenma, pt ii, Pleroporle, p. 18.
1854. Oresia phenstoma, Tmashel, Heitruea zur Kenntnike der Pteropoden, Arcbiv f. Naturgrach., 1854, p. 206, pl. viii. 698. 5-7.
For description and figures, 1 refer to Souleyet, Voynge de \ln Bonite, Znolngie, t. ni. p. 191, pl. viii, fige. 1-4.

Observations,-I. In the preserverl specimens the embryonic shell is almost alway deciduoue, ao that this portion is bardly known. Fol alone ${ }^{2}$ has figured it from young вpecimede. Having obarrved it an the living adulta, I am able to give a mare defnita

[^34]representation (Pl. Il. fig. 3). This embryonic partion has a munded npex, it is distinctly expanded, and geparated hy a well-marked coustriction flom the rest of the shell. It seeme mast closely to resemble that of Clio australis.
17. Troachel has figured, ${ }^{1}$ under the name of Creseis monotis, a small Thecosomatous form "without shell." This ecems to me to be anly a bad representation of a Cliw siriztet. I have often ahserved living specimens of this species which had lost their shell.
III. The name "Creseis fasciata," Delle Chiaje, which is cited by several authors, is the ltalian title given to this form by Delle Chiajc. The Lativ designation, which the same authority uses, is Crescis zonata (see the synonyons above).

Haditat.-Athatic Occan : from $36^{\circ} 30^{\prime}$ N. to 40° S., especinlly towards the Old Worki. Meditermanean, on the crosts of Europe and Africal.

Indian Ceean : from the Gulf of Bevgal to $25^{\prime \prime} \mathrm{S}$. (Ruas). Red Sea (Issel).
Pacific Ocean: Chima Sea (Roas); New South Wales (British Muserar): Equatorial Pacific, 147° 48' W. (Knocker) ; Chili ("Vottol Pisani" Expedition).

Challenges Sperimens-I. Living specimeus.
Station 175̄, August 12, 1874 ; Fiji to Raime Island ; lat. $19^{\wedge} 2^{\prime}$ S., long. $177^{\circ} 10^{\prime} \mathrm{E}$.
Sitation 181, August 25, 1874; Fiji to Rilue Island; lat. $19^{n} 50^{\prime} \mathrm{S}$., long. $151^{\circ} 49^{\prime} \mathrm{E}$.

Stntion 200, October 23, 1874; Amboina to Samboangan; lat $\mathrm{fa}^{2} 47^{\prime} \mathrm{N}$., long. $122^{\circ} 28^{\prime} \mathrm{E}$.

Statimn 201, Octoler 26, 1874; Samboangan to Manila; lat. $7^{\circ} 3^{\prime}$ N., long $121^{\circ} 48^{\prime} \mathrm{E}$.

Suntion 290, April 5, 1875; Admiralty Islands to Yokobama; lat 26 $29^{\circ} \mathrm{N}$., long. $137^{\prime \prime} 57^{\prime} \mathrm{E}$.

Eetween Stations 247 and 248, July 4, 1875; Yokohama to Sandwich Islands; lat. $96^{\circ} 42^{\prime} \mathrm{N}$., lang. $179^{\circ} 50^{\prime} \mathrm{W}$.

Station 254, July 17, 18t5; Yokohama to Sandwich Isladils; lat. $35^{e} 199^{\prime} \mathrm{N}$., long. $154^{\circ} 43^{\prime} \mathrm{W}$.

Station 282, Octnber 7, 1875 ; Trahiti to Volpлraifo; lat. $29^{\circ} 46^{\prime} \mathrm{S}$., long. $149^{\circ} 59^{\prime} \mathrm{W}$.
Station 987, March 19, 1876; Tristan da Cunlin to Ascension Islond; Jat. 24° : $38^{\prime} \mathbf{S}$, long. $13^{\circ} 36^{\prime} \mathrm{W}$.

On May 12, 1876 ; off the Azores ; lnt. $42^{\circ} 52^{\prime}$ N., long. $28^{\circ} 54^{\prime}$ W.
1I. Deposit eheile.
 W.; depth, 990 finthoms ; hnttorn, Pteropod ooze.

Station 39, April 4, 1873; off Bermuda; lat. $32^{\circ} 211^{\prime} 30^{\prime \prime}$ N., long. $64^{\circ} 35^{\prime} 55^{\prime \prime} \mathrm{W}$; deptb, 435 fathoms; bottom, coral mud.

[^35]Station 85, July 19, 1873 ; off Palma Island (Canaries); lat. $28{ }^{\prime \prime} 42^{\prime} \mathrm{N}$, long. $18^{\circ} 6^{1} \mathrm{~W}_{\text {- }}$ depth, 1125 fathoms; hinttom, voleanic mud.

Stntion 120, September 9, 1873; of the coast of South America, between Peinam. buce and Eahin; lnt. $8^{\circ} 37^{4}$ S., long. $34^{\circ} 28^{\circ}$ W.; depth, 67 fathoms; botom, red mud.

Station 185, Auguat 21, 1874 ; off Rajne Ialand; Jat. $11^{n} 95^{\prime} 25^{\prime \prime}$ S., long. $144^{e} 2^{\prime} 0^{\prime \prime}$ E; depth, 135 fathoms ; bottom, coral sand.

Station 219, March 10, 1875; Admimulty Talnada ta Yokobami ; lat. $1^{\circ} 54^{\prime} 0^{\prime \prime} \mathrm{S}$. long. $146^{\circ} 39^{\prime} 46^{\prime \prime} \mathrm{E}_{\text {; }}$ depth, 150 fathome; bottom, coral mud.

Suhgeaus Stylinla, ${ }^{\text {' }}$ Lesmeur.

$$
\text { 1825. Styliola, Leaveur, in de Bloiovilla, Mantual dn Malacnlegir, p. } 655 .
$$

Charocters and Description.-Shell conical, atraight, conaiderahly plongated; the surface amnoth, with a dorsal gronve not parnllel to the axis of the shell, but slightly ohligue, turning from left to right, with only the anterior extremity (which ende in o rostrum) in the median line; the embryonic portion only vaguely separated from the rest of the ahell, and ending in a pointed apex.

The noimal with the two tentacles distinctly visible; the tronsparent, non-muenular, marginal area of the fin situnted towards the middle of the lateral margin; the poaterior lobe of the foot is long.

Observation.-The name Styliola, first used in 1825 by I.esueur in the Manuel de Malacologie of de Blainville, has been regarded by English and American conchologists af synonymous with the later title, Creseis, Rang. This opinion is binsed, however, on a misinterpretation of the typical species, Styliola recta, Lesueur (sine descriptione), which has been taken by these author for Crio acicula. But the descriptions given of the genus Seyliola enable one to infer' that Syliola recta is ronlly Cin subula, and not Clio acicula.

I'he difference between Styliola (in the unage of Leaueur) nnd Creseis (s. str.) may be gathered from a comparison of the two descriptions given above. The atructural features, as will be shown in the Anatomical Report, go to ahow that Styliola is much more nearly relnted to Clio (s. str.) than to Creseis, and on the contrary that the forme ineladed under the latter designation have retained some more archaic charscters of the Itimacinide.

This subgeneric section iveludes only a single species.

[^36]*. Clio (Styliola) subula (Quoy and Gnimard).
1824. Sithinia rerta, Terment, in de Blainvilip, Mnnucl dn Malacologie, p. 655 (nomen tantum).
 \&a, Amn. d. Sci. Nat, rís. 1, t x. p. 33.3, pl. viii, п. fige, 1-3.
1828. Cyesais spinifena, Rong, Notice aur quelgnea Molluaguea nonvenux du genm Clecdom, \&e, Anu. d, Saci Nat, biri, 1, t. xïi p. 313, pl. xviz fig. 1.
1828. Creseis wulula, Rang, Thïh, pl swiii. fig 1.
 fige 15-19
1850. Stytiola sutula, Gray, Catalague of the Mollunca in tho Callectinn of tho Eritisb Museum, pt ii, Tteroforin, p. 17.
1853. Cheodora subuhta, Sculpyet, Voyage do la Bovito, Zcologie, t. ii. p. 191, pl. viii, Gge an-9

For description and figures, spe Souleyet (loc. cit. supra).
Habitat-Atlantic Oceav: from $41^{5} \mathrm{~N}$. to $25^{2} \mathrm{~S}$. (Pfeffer), towarde the coasta benth of the Old Warld and of Amerien (Antillps, \&c.); Mediterancan, Naples, \&e. The empty shells bave been dredged at numerous lacalities in the Meditermenn (Thuis, \&e.).

Indinn Ocean; southern portion, from $17^{n} 20^{\prime} \mathrm{S}$. tn $38^{e} 2 \mathrm{~B}^{\prime} \mathrm{S}$. (Boas); on the coasts of Africn (7anzihar, Part Natal), and towards Australia.

Pacific Orean; eatern portion, Malay Archipelago (Amboinn, New Guinea), east conat of Australia to $32^{"} \mathrm{~S}$. (Pfeffer, Angss); western portion, from 23^{e} N. to $95^{\circ} \mathbb{E}$.

Rons has remarked' the ohsence of this epecies below the equator, and notes the name in regard to Cavolinia gibbosa. This has been naticed in regard ta other Molluacs, as I have remarked for instance in regard to Lasza rubra.' It is, however, legh explicable in the case of Molluses which and shift their ground sa readsly as the Pteropods. But as a matter of fact, Clia subula is found in the Pacific Ocean both to the south and to the north of the equator.

Challenger Specimans.-I. Living specimese.
Near Station 160, March 15, 1874; off Melhourne; lat. $39^{\circ} 45^{\prime} \mathrm{S}$. , long. $140^{n} 40^{\prime} \mathrm{E}$.
Near Station 160, Mareh 16, 1874 ; off Mellourne: lat. $39^{\circ} 22^{\prime}$ S., long. $142^{\circ} 27^{\prime}$ E
Station 164A, June 18, 1874 ; off Sydney; lat $94^{\circ} 9^{\prime}$ S., long. $151^{\circ} 555^{\prime}$ E.
Station 175, Auguat 12, 1874 ; Fiji ta Raine Igland ; lat. $19^{\circ} 2^{\prime} \mathrm{S}$., long. $177^{\circ} 10^{\circ} \mathrm{E}$.
Station 181, August 25, 1874 ; Fiji to Raine Island; lat. $19^{n} 50^{\prime} \mathrm{B}$., long. $151^{\circ} 49^{\prime} \mathrm{E}$.
Near Station 280, April 3, 1875; Admiralty Ialanda to Yokohema;]at. $26^{\circ} 29^{\circ} \mathrm{N}$., long. $198^{\circ} 34^{\prime} \mathrm{E}$.

On April A, 1875 ; Admiralty Island to Yolrohama; lat $25^{\circ} 93^{\prime} \mathrm{N}$. , long. $197^{\circ} 57^{\prime} \mathrm{E}$.
Station 251. July 10, 1875; Yolrohama to Sandwich Islands; lat. $37^{\circ} 97^{\prime} \mathrm{N}$., lang. $169^{\circ} 26^{\prime}$ W.

Station 254, July 17, 1875; Yokohamn to Sendwich Islands; lat. $35^{\circ} 1 g^{\prime}$ N., long. $154^{\circ} 43^{\prime} \mathrm{W}$.

[^37]Statiou 256, July 21, 1875 ; Yokohama to Sandwich lslands; lat. $300^{\circ} 22^{\prime} \mathrm{N}_{\text {, }}$ long. $154^{\circ} 56^{\prime} \mathrm{W}$.

Station 294 , November 3, 1875 ; Toliti to Valparaiso; lnt. $99^{\circ} 22^{\prime}$ S., lang. $98^{\prime \prime} 46^{\prime}$ W.
Statimn 3a2, March 10, 1876 ; Ria de Janeiro to Tristan da Cunhn; lat. $37^{\circ} 29^{\prime} \mathrm{S}$, long. $27^{\prime \prime}-91^{\prime} \mathrm{W}$.

On April 98, 1876; off St. Vincent; lat. $17^{\circ} 47^{\prime}$ N., long. $28^{\circ} 28^{\prime} \mathrm{W}$.
On Mny 12, I876; of the Azores; lnt. $42^{\circ} 52^{\prime} \mathrm{N}$. long $29^{\circ} 54^{\prime} \mathrm{W}$.
1I. Deposit shells.
Station VIII., February 12, 1878; off the Cnary Islanda; lat. $28^{\circ \prime} 9^{\prime} 15^{\prime \prime} \mathrm{N}$., long. $17^{\circ} 27^{\prime} 0^{\prime \prime}$ W.; depth, 620 fathoms; botom, volranic mind.

Sistion a , Fobruary 18, 1873 ; Tenerife to Sombrevo Ialond; lat. $25^{\circ} \quad 45^{\prime} \mathrm{N}$, long. $20^{\circ} 14^{\prime}$ W.; repth, 1525 fathows; hottom, hard ground.

Station 29, March 15, 1879; off Sombrero Island; lat. $18^{\circ} 24^{\prime} \mathrm{N}$, Jong. $63^{\circ} 28^{\prime} \mathrm{W}$; depth, 450 fathoms; bottom, Pteropad ooze.

Station 24, March 25, 1873 ; of Culebra Island ; 1at. $18^{0} 38^{\prime} 30^{\prime \prime} \mathrm{N}$., long. $65^{\circ} 5^{\prime} 80^{\prime \prime}$ W. deptb, 890 Inthoms ; bottom, Pteropod on\%e.

Station 39, April 4, 1873 ; off Bermula; lat. $32^{e} 21^{\prime} 30^{\prime \prime}$ N., long. $64^{\circ} 35^{\prime} 55^{\prime \prime}$ W.; depth, 435 fathoms ; bottom, corill mud.

Station 35c, April 22, 1873; off Dermuda; lat. $32^{m} 15^{1} \mathrm{~N}$. , long. $65^{\circ} 8^{\prime}$ W.; depth, 1950 fathome; Lettom, Globigerinn woze.

Station 75, July 2, 1879 ; off Faynl (Azores); lat. $38^{\circ} 98^{\prime} 0^{\prime \prime} \mathrm{N}$, long. $28^{\circ} 28^{\prime} 30^{\prime \prime}$ W.; depth, 450 fathoms; bottom, volennic mud.

Station 78, July 10, 1879; off the Azores; lat. $37^{\circ} 26^{\prime} \mathrm{N}$. , long. $25^{\circ 1} 13^{\prime}$ W.; depth, 1000 fathoras: bottom, voleanic mud.

Station 95, July 19, 1873 ; ofl Palma Island (Cadaries); lat. $28^{\circ} 42^{4} \mathrm{~N}$. , lang. $18^{\circ} 6^{4}$ W.; depth, 1125 futhoms ; bottnm, voleanic mud.

Station 120, September 9, 1879; off the coast of South Americn, between Pernambuca and Eahin; lat. $8^{e} 37^{\prime}$ S., long. $34^{\circ} 28^{\prime}$ W.; depth, 675 fathoms; bottom, red mud.

Station 122, September 10, 187s; off the enest of South Amorics, between Pernambuco and Eahin; lat. $9^{\circ} 5^{\prime}$ S., long. $34^{\circ} 50^{\prime}$ W.; depth, 350 fathoms; battom, red mud.

Station 164, June 12, 1974 ; off Sydney; lnt. $94^{n} 8^{\prime}$ S., long. $152^{2} 0^{\prime}$ E.; depth, 950 fathome; hattom, green mud.
 E: depth, 195 fathome; battom, coral mond.

Station 21.g, March 10, 1875 ; Admiralty Iplande to Yokohnma; lat. $I^{e} 54^{\prime} \mathrm{O}^{7}$ S., long. $146^{\circ} 39^{\prime} 40^{\prime \prime}$ E.; depth, 150 fathoms; bottom, coral mud.

Station 985, March 16, 1876 ; Tristan da Cunbe to Aacension Ialand ; lat. $92^{\circ} 24^{\prime} 8$. long. $13^{\circ} 5^{\prime}$ W.; depth, 1425 fathome; bottom, Pteropod ooze.

Sohgeuve Clin, Linné.
1767. Chio, Linded, Syatema Naluris, ad, 19, p. 1094 (non Müller, 1776).
1810. Cleadora Péron et Lequeur, Hislaire de ln Fnmille des Mollusques Piéropedra, Aon. Mon. Firi Nat Paris, it xp. p. 66.
1828. Balantium, Ananymous (Children, filh Gray), Jnurn. Hog. Jbat, vul. xy. p 320.

Charncters and Description. -Shell, of a somewhat anyular form, colourless, compressed doran-ventrally, with lateral keels. An anterior transverse sention in thus always angular laterally. There is generally a crest or rib extending langiturlinally along the back, and uaually projecting. The cmbryonic suell varies in form, hut is always rlefinitely ecparate from the rest.

Animal.-The apertare at the mantle is amaller than the nperture of the shell; the marging are laterally united for a certain distance, as in Cavolinia; the simple lateral prolongations of the mantle corresponding to the Interal keele hardly extend heyond the margin of the shell ; the fin has a non-muacular epace situated tnwards the middle of the distal margin ; the left tentacle is alwnys distinctly visihle; there is a triangular dorzal lobe between the two fins, nad formed by the union of the two lips; the naus is attuated far in front, near the aperture of the mantle.

Kry to the Species.

1. Shell with latersi keala aver ita entire length
2. Shell with dargal rihe very slightly projecting.
A. Shall with a hread pasterine portion,
Clio andres.
B. Shell with a narrow ponterint partion, . . . Clio pabita
3. Shall with dorsal ribs markeily projecting.
A. Shall with there darenl niba, Cia baiandicm.
B. Shell with hyp damel riba,

Clio chaptali.
II. Shell with no lateral keele on the pasterior portion

1. Shell vithout lateral spinea
A. Shell with the lateral margius almost parallel, Ctio auntrakia,
H. Shall with the laleral marging very divergent.

b. Ne patarior tranhearef grooves, the dorgal ribe undivided, . Clio pyramitata
2. Shall with lataral spines,

ORin auppidata.

7. Chin andref ($\mathrm{Bons} \mathrm{)}$.

18月6, Cleodora andirem, Bong, Spolia athoting p. 80, pl i. 6g. 1 ; pl. il. fig. 12.
This species, which closely resemhles Clio polita (see below), is distinguished by its greater breadth, eapecially in the posterior portion by its two equally bulging fares, by its more marked flattening, by ita curvature, especially localised on the posterior
partion, and contmating with the atraight anterior reginn. This curvature is dersal over the gceater portion of its length, but is alightly ventral towards the npex. The erobryonic portion ie not aepanted by a projecting ring from the rest of the ahell. The length is alac considerable, 20 mm .

Habiat. South Atlantic Ocean, $33^{e} 30^{\prime} \mathrm{S}, 1^{\circ} 0^{\prime} \mathrm{W}$.
*日. Clio polita (Craven, MS.) (Pl. II. figs. 4-G).
> 1880. Clemiera frienta, Pfeifir, Die Pteropmden dex Hamburgor Muetums, Abhnndl. Nakurwias. Ver. Hamburg, Bd. vii. p. 9f, pl. vii fig. 19 \{nat Gould, 1 日52).
> Aolantium politum, Craven, MS. (British Mnenm).

Characters and Desrription.-Shell, slender, anrraw posteriarly, smooth over its entire surface, more bulging ventrally than doranly: exbibiting ou the former aurface four alight langitudinal grooves, but oone on the lnttar. The lateral kepla are wel]rosrked, sharp, projecting, parallel to the axis of the sbell, more delicate than those of Clio balantium, and not hollow-edged. The darsal carvature is uniform and continuour. Pfeffer hos indeed figured two apecimens of this species, one of which exbihits a regular curvature (fig. 19b), while the other is moch recurved poaterionly (fig. 19a), and has based his description on the latiter. But all the spesimans which I have seen frozn the collertions of the "Valorous" and the Chajenger alen resemble fig. $19 b$, which I am therpfore warfanted in regording as the nommal type. The middle of the lipa daes not project anteriorly. The embryonic shell bos a bulging oval form, rounded on ite pnaterior portion, and eepnrated from the rest of the shell by n well-marked constriction, limited by a amall projecting ring.

The animal I have not observed. The soft parts are "dunkel-schwara-violett" apcording to Pfeffer.

Dimenvions, 10 to 11 mm .
Fabitat-North Atlantie Ocean, Davis Strait ("Valorous" Fixpedition), 44 ${ }^{\circ} \mathrm{N}, \mathrm{I} 31^{\circ}$ W. (Hamburg Musewm).

Challenger Specimens - Deposit ehelle.
Station 78, luly 10, 1879; off the Azores; lat. $87^{e} 26^{\prime} \mathrm{N}_{1}$ long. $25^{\circ} 19^{\prime} \mathrm{W}_{;}$; depth 1000 fathoms; bottom, volcanic mud.

Station 85, July 19, 1873 ; nff Palma Island (Canaries) ; lat. $28^{\circ} 42^{\prime}$ N., long. $18^{n} 6^{\prime} \mathrm{W}$; deptb, 1125 fothoms ; bottom, volcenie mud.

Station 120, September $\mathbf{g}_{1} 1873$; off the coast of Sauth America, between Pernambuco and Behiar ; lat. $8^{a} 37^{\prime}$ E. long $34^{a} 28^{\prime}$ W.; depth, 675 fathoms ; bottom, red moud.
*s. Clio balantium (Rnng).
1829. Aalantium recurpam, Agonymous (Children, fidr Giray), Journ. Roy. Ingt, vol. xv. p. 220, pl. vii fig 107.
3834. Cifoubora balaratium, Rnng, Mngnsin de Znelogie, 1934, pl. xliv.
1836. Hyalea balanizum, d'Orbigny, Fnygga inne 1'Amérique míridionale, t. po p. 116, pl. viü. fig. 1-4.
1837. Ralantium hicarinatum, Bensan, Notice on Bolentium, a Genua of the Prempodoga Mollusch, Iaum, Asial Soc Elengal, vol. vi. p. 161.
1852. Opordora ingata, Sonlayet, Voynge de ln Bonita, Zoologic, t. ii p. 188, pl. vii. figr. 17-19 (young).
For description and figures, I refer to Souleyet, Voyage de la Bonite, Znologie, t. ii. p. 18fi, pl. vii. figa. 11-16.

Habital.-Atlantic Deean; intertropiral (21 $30^{\prime} \mathrm{N}$ to $19^{\circ} 30^{\circ} \mathrm{S}$., Boas) ; $44^{\circ} \mathrm{N}$. (Atlantic ?) (Pfeffer); toward $40^{\mathrm{m}} \mathrm{N}$., const of America (Verrill, fragments).'

Iudian Ocean ; exclusively in the southern portion, $93^{n} 8$. towards Africa (Boas), towards Australin (Pfeffer), Islands of St. Paul and Amsterdam (Benann).

Challenger Sperimens.-Living.
Station 21GA, February 16, 1875; north of New Guinen; lat. $2^{\circ} \mathbf{5 6}^{\prime}$ N., long. $134^{\prime \prime} 11^{\prime} \mathrm{E}$. (young).
10. Clio chaptali (Souleyet) (P1. II. fig. 7).
1859. Cleodora chaptali, Souleyet, Voynge de la Bonita, Zoologie, p. 183, pl. vii fige, 1-5.

The above form appears to be a distinct epecies, but very strictly locelised, for it has not been peahserverl since its disenvery by Souleyet. I only know a aingle adult apecimen (dry shell), which is deposited in the British Museum.

Characlers and Description. - Shell bomewhat hulging, with its apex recurved donally, with its lateral edgee uniformly and markedly diverging, in contrast to Clio balantium, whete they describe a aigmoid curve. The lateral keels are sharp and not hollow-edged, as they are in Cio balantium; they run parallel to the axis of the body, and are not at all turned ventrally; this admita of the ventral surface being an bulging as the dorsal. The latter bears five longitudinal ribs, insteed of three as in Clio balantium. The middle of the lips hardly projecta anteriorly. Tha embryonic shell is apparated from the rest by a well-marked constriction, in front of which the shell breadens out again. The embryonic partion, however, in contrast to that of Clio halantium, does not enlarge bebind the constriction, and is terminated posteriorly by a much-pointed npex (Pl II. fig. 7).

The animal, according to Souleyet, very ciosely resembles Clio balantium.

[^38]Habilat.-Atlantic Orean; bear the Cape of Gnorl Hope (Souleyct)
Challenger Specimen.-Living, young.
Station 181, August 25, 1874 ; Fiji to Raine Island; lat. $13^{6} 50^{\prime} \mathrm{S}$., long. $151^{2} 49^{4} \mathrm{E}$.
*11. Chio australis (त'Orbigny) (not Bruguière) (Pl. 11. 6g. 8).

Far Ggures and description, see Sauleyct (lor. cit.).
Habitat.-This apecies appears to have a geographical distrilution like that of Sponginbranihen australis and Limacina curstrolis, that is to say, localised in the southern regions of the three great oceaus nroumil the South Poic.

Cape Horn (d'Orbigny); Snuth-east Parific ($48^{n} \mathrm{~S} ., 86^{\circ} \mathrm{W} .$, Snuleyct); (?) sauth-enst of the Cape of Good Hope, $38^{\circ} 50^{\prime} \mathrm{S}$. (Boss).

Challenger Specimens-Living.
Station 159, March 10, 1874: Termination Tand to Mrlbourne; lat. 47n 25' B., long $130^{\circ} 22^{4} \mathrm{E}$.

Observations.-Eons ${ }^{1}$ has united with the present apecies Clin sulcota, Pfefler. But the lattex is certainly a distiont epecies, also emblecte.d townds the South Pole by the Clallenger Expedition, and the embryonic shell ${ }^{n}$ which. Boas bas figured as that of "Clendora australas" is precisely similar to Clio sudeata, and very different from that of Clia australis (Pl. II. fig. B). For in the latter the emhryowic shell is separated from the other portinn hy a much hroacter and deeper constriction, nid is terminated postariorly by a rounded extremity.

12. Clio sulcata (Pfefer) (Pl. 1I. figs. 9-11).

1879. Cleadora mutcata, Plefler, Ueheraicht der auri ©. M. Srhifi Gazalla, und van Dr. Jagur
 Berlin, 1879, p 240, figa. 11, 12
Characters and Description-Shell slender, with a very slight emrvature, woith the ventral eurfore only alightly projeeting, but not re-potrant. The surface adorned with trnasaverse ridges ; aine langitudinal ridges occur in clase proximity on the anterior portiou of the doreal aurface. The margins of the aperture, na Pfeffer has noted, are very fragile,

[^39]so that it is difficult to describe the exact form of the lips，though this is prohably intermediate hetween that of Clio australis and that of Clio pyrcmidata．The combryovic shell is almost directly continuous with the other portion，from which it is separated only by a narrow groove．The posterior cxtremity is poivted．

The tigure $17 c$ of Pfefler（ pl ．vii．，loc．cit．）represents the curvature of the shell as if it were ventrial．The specimen figured must theu have been abmormal，for in all the specimens of Clio sulcnta which I have speu the currature whe doreal，ns it is indeed in all the curved Cavoliniide．

The nuimal resemliles that of weighbouring species（Clio australis and Clio pyramidain）．The left tentacle is readily visible；the posterior lobe of the foot is of considerable length，and the other cxternal characters are those of the geaus Clio in the strict sense．There are no laterel prolongations of the margins of the mantle．

This form is undoultedly a distinct species which ennnot be referred either to Clio ansumhs（as by Boas）or to Clin pyramidata．It differs from linth in the fact that the ventral farfoce of the shell is not at all re－cntrant．And firther it differs from Chia australis（with which it has a closely aunlogevs gcogrnphienl distribution）in its much more divergent lateral margins and in its cmbreonic shell，ns may be eeen by comparing the figures of the two species．This form was the Clio observed on the last expedition of the＇Astrolahe，＇to which I bave seferred in my Report on the Gymnosomata．＇

Dimensions．－The shell mensures 2 cm ．in length．
Hobihat．－Like Clio australis，this form was found in the eouthern region of the Prific Oepan，lat． $50^{\circ} 34^{\prime} \mathrm{S}$ ．，long． $88^{e} 44^{\prime} \mathrm{W}$ ，and lat． $45^{\circ} 85^{\prime} \mathrm{S}$ ．，long． $122^{\circ} 1^{\prime} \mathrm{W}$ ． （Pfeffer）：also in the Southern Ocean，near Kerguelen Island；and in the Antarctic Ocean（sec the following Challenger loralities）．

Challenger＇Specimens．－Living specimens．
Station 150，February 2， 1874 ；Heard Island；lat． $52^{e} 4^{\prime}$ S．，long． $71^{\circ} 22^{4}$ E．
Between Stations 154 and 155，Fehruary 21，1874；in vicinity of Antarctic ice： lat． $68^{\prime} 30^{\prime}$ S．，long． 日g $^{\prime} 8^{\prime} \mathrm{E}$ ．

Station 156，February 26，1874；in vicinity of Antarctic ice；lat． $62^{\circ} 26^{\prime} \mathbf{S}$ ．； long． $95^{\circ} 44^{\prime} \mathrm{E}$ ．

＊13．Ctio pyramidata，Linné．

1763．Olio pylamidata，Linfé，Syalowi Nature，ed 12，p． 1084.
1813．Fyakan lancenlaia，Lequent，Mómoirs aur qualques eapaces d＇animaux molusques ef radiaites recueillin ders ln Méditarranée prea de Nies，Nouv． Eull．Soc．Philam．Paris，L．iii．p．284，pl．v．fif．S．
1896．CReodora bramaii，De Eleinville，Mnnuel de Malacologie，pl rlvi fig． 1.
1836．Hyalan pyramideda，d＇Arbigog，Voynge dann l＇Amérique móridionale，t v．p．113，pl．vii fign 2 音－2
1841．Claodora lamartiniari，Rang，in d＇Orbigoy，Mollugques de Cabr，p．日果，

> 6ця. 17-95.
> 1852. Glearinara amazia, Gould, The Mollinen and Sbells of the U.S. Txploring Expoditinty p. 48. , pl li. fig. 006.
> 1877. Qandinta labiain, Snwpily, in Reeve, Canchologia iconim, 4. xx, Pteropndn, fig. 26.
> 1880. Clemiora martansizi, Pfeffer, Die Pterapoden den Hamburger Museume, Abhandl. al.

For figures and deacription, see Souleyet (loc. cit.).
Haditat.-This apecies has a cosmopalitan distribution, aud exbihits noteworthy variations in form.

The most nortberly locality is Spitzhergen (British Muscum), then Berged, Iecland, Davis Strait, the whole of the Atlantic towards both coutinents and down to $40^{\circ} \mathrm{S}$, nand all the Mediterranean.

Indian Ocean ; from the Gulf of Bengal to $40^{\circ} \mathrm{S}$. (Boas), ofl the consts of Africa, Natal, Zadzihar (Pfeffer), and an far as Australia, Swan River (Britisb Muscum).

Pacific Ocean ; weatern portion, Jnpan, Gulf of Yedo ("Galathea " Experlition), Yellow Sen (Britiab Musemm), China Spa (Rons), Malny Archipelaga, Tistorn Australia to 40° S. (Pfeffer) ; North-east Pacific, 44° N., 154° W. (Gould, is "Cleodova exacuta"); South-enst Pacifif, $27^{\circ} 11^{\prime} \mathrm{S}$, $88^{\circ} 52^{\prime}$ W. (" Galathen " Experlition).

Challenger Specimens.-I. Living.
Station 62, June, 18, 1873 ; Rermurda to Azores; lat. $35^{\circ} 7^{\prime}$ N., long. $52^{\circ} 32^{\prime} \mathrm{W}$.
Station fi8, June 19, IA7A; Hermuda to Azores; lat. $85^{\circ} 29^{\prime}$ N., long. $50^{\circ} 53^{\prime} \mathrm{W}$.
Station 142, December 18, 1873; Cape of Good Hope to parallel of $46^{\circ} \mathrm{E}$.; lat $35^{*} 4^{\prime}$ S., long. $19^{\wedge} 97^{\prime} \mathrm{E}$.

Near SLation 160, March 15, 1874 ; off Melhourve; lat. $39^{\circ} 45^{\prime} \mathbf{S}$. long. $140^{\circ} 40^{\prime} \mathbf{E}$
Station 175, August 12, 1874; Fiji to Raine Island; lat. $19^{c} 2^{\prime} \mathrm{S}$., long. $177^{\circ} 10^{4} \mathrm{E}$
Station 230, April 5, 1875; Admiralty Islands to Yolsohoma; lat. $26^{\circ} 29^{\circ}$ N., long. $137^{\circ} 57^{\prime} \mathrm{E}$.

Station 251, July 10, 1875; Yokohamn to Sandwich Islands; lat. $37^{\circ 1971} \mathbf{N}$., long. $163^{\circ} 26^{\prime}$ W.

Station 254, July 17. 1875; Yokohama to Sandwich Ialands; lat. 35^{2} 19' N., long. $154^{\circ} 43^{\prime} \mathrm{W}$.

Station 256, July 21, 1875 ; Yokohama to Sandwich 1elands; lat. $30^{\circ} 22^{\circ} \mathrm{N}$., long. $154^{\circ} 56^{\prime} \mathrm{W}$.

Station 293, November I, 1875 ; Tahiti to Valparaiso; lat. $99^{\circ} 4^{\prime}$ S., long. $105^{\circ} 5$ W. Station 932, March 10, 1876 ; Rio de Janeiro to Tristan da Cunhen lat. $97^{\circ} 29^{\circ}$ E., long. $27^{\circ} 91^{\prime} \mathrm{W}$.

Between Stotions 3.32 and 339, April 2日, 1876; of St. Vincent (Cnpe Verje): lat. $17^{\circ} 47^{\prime} \mathrm{N}$, long. $28^{\circ} 28^{\prime} \mathrm{W}$.

On May 12, 1876; off the Azores; lnt. $42^{\circ} 52^{\prime}$ N., long. $28^{n} 54^{\prime}$ W.

1I. Deposit ehells.

Station VIII., February 12, 1879; off Canary Islansls; lat. $2 \mathrm{~A}^{e} \quad \mathrm{al}^{\prime} 15^{n} \mathrm{~N}$., loog. $17^{\circ} 27^{\prime} 0^{\prime \prime}$ W.; depth, 620 fathoms ; bottom, voleanic mud.

Station 3, Fehruary 18, 187月; Tenerife to Sombrere Island; lat. $25^{\circ 1} 45^{\prime} \mathrm{N}_{\text {, }}$ long. $20^{\circ} 14^{\prime}$ W.; depth, 1.525 fathoms; bettom, hard ground.
 depth, 450 fathome: bottom, Pteropar aoze.

Station 24, March 25, 1873; off Culebra Island; lat. $1 \mathrm{~B}^{\wedge} 98^{4} 30^{n} \mathrm{~N}$., long. $65^{\circ} 5^{\prime} 30^{n}$ W. d depth, 390 fathoms ; bottom, Pternped onze.

Station 29, April 4, 1873 ; off Bermuda; lat. $32^{\circ} 21^{\prime} 30^{\prime \prime}$ N., long. $64^{\circ} 35^{\prime} 55^{\prime \prime}$ W.; depth, 43.5 fithoms ; bottom, coral mud.

Station 350, April 22, 1873; off Bermuda; lat. $32^{6} 15^{\prime} \mathrm{N}$., Iong. $65^{e} 8^{\prime} \mathrm{W}_{\text {; }}$; depth, 1950 fathoms ; bottom, Globigerina ooze.

Station 75, July 2, 1873; off Fayal (Azores) ; lat. $3 \mathrm{~B}^{\circ} 38^{\prime} 0^{\prime \prime} \mathrm{N}$., long $28^{\circ} 29^{\prime} 30^{\prime \prime}$ W.; depth, 450 fathoms ; bottom, voleanier mud.

Station 76, July 3, 1873 ; of the Azores; lat. $38^{\circ} 1 I^{\prime} \mathrm{N} .$, long. $27^{\circ} 9^{\prime}$ W.; depth, 900 fathoms ; bottom, Pteropod ooze.

Station 7A, July 10, 187a; off the Azores; lat. $37^{\circ} 2 \mathrm{G}^{\prime} \mathrm{N}$., long. $25^{\circ} 13^{\prime}$ W.; depth 1000 fathoms; bottom, volennic mud.

Station 85, July 19, 1873 ; of Palma Island (Canaries) ; lat. $28^{\circ} 42^{\prime} \mathrm{N}$. , ling. $18^{\circ} \mathrm{G}^{\prime}$ $W_{\text {; }}$ deptb, 1125 fathoms; hotinno, volcanic mud.

Station 120, September 9, 187a; of the enast of South America, between Perbambuco and Hahin; lot. $8^{\circ} 37^{\prime} S_{1}$, loug. $34^{\prime \prime} 28^{\prime}$ W.; depth, 675 fathoras; bottom, red mud.

Station 122, Septemher 10, 1874; off the coast of South America, between Permamhuco and Bohia; lat. $9^{\circ} 5^{4} \mathrm{~S}$. , long $34^{\circ} 50^{\prime} \mathrm{W}$.; depth, 950 fathome; battom, red mud.

Station 164, June 12, 1874 ; off Sydney; lat. $94^{\circ} 8^{\prime} \mathrm{S}$, long. $152^{\circ} 0^{\prime}$ E.; depth, 950 fathome; bottom, green mud.

Station 185, Auguat 31, 1874 ; off Raine Ialand; lat. $11^{\circ} 35^{\prime} 25^{\prime \prime}$ S., long. $144^{\circ} 2^{\prime} 0^{\prime \prime}$ E. : depth, 195 fathome; hntom, coral gand.

Station 219, March 10, 1875 ; Admínity Islemda to Yokohama; lat. $1^{\circ} 54^{\prime} 0^{\prime \prime} \mathrm{S}$., long. $146^{\circ} 39^{\prime} 40^{\prime \prime}$ E.; depth, 150 fethoms; battom, coral mud.

Station 246, July 2, 1875 ; Yokolame to Sandwich Ialande; lat. $36^{\circ} 10^{\prime} \mathrm{N}$, long $17 \mathrm{~A}^{\circ} 0^{\prime}$ F.; depth, 2050 fathoms ; battom, Glabigerina ooze.

Station 329, February 28, 1876; Falkland Islands to Rio de le Flata; lat. $35^{\circ} 39^{\prime} \mathrm{S} .$, long. $50^{\circ} 47^{\prime}$ W.; depth, 1900 fathoma ; bottom, blue mud.

Station 295, March 16, 1876; Tristan da Cunhe to Ascension Ieland; lat. $82^{\circ} 24^{\prime} \mathrm{S}$ long. $19^{\circ} 5^{\prime}$ W.; depth 1425 fathome; hottom, Pteropod anze.
*it. Clio cuspidata (Bmes)

$$
\text { p. } 247 \text {, pl x lig. } 1 \text {. }
$$

189s. Cieothra emfyidata, Qucy et Gnimard, Voynge ile J'Ariminhr, Foclogie, t ii p 3Ad, pl. xxvii, fgr. 1-5,
 fig 6.

For figurps and description ape Souleyet, Voynge de In Bonite, Znolngie, t. ii. p- 17f, $\mathrm{p}^{\mathrm{l}, \text { vi. figs 11-]G. }}$

Habitat-Atlantic Oceav, from $60^{\circ} \mathrm{N}$. to $37^{\circ} \mathrm{S}_{-}$Meditermuean; ludian Ocean, from Ceylon to 42° S. from Africa to Australia.

It has not heen recorded from the Pacific previously to the Challenger Expedition.
Chaflengers Specimens.-I. Living epperimens.
 long. $197^{\circ} 57^{\prime} \mathrm{E}$.
 long. $154^{\prime \prime} 43^{\prime}$ W.
II. Deprnsit sbells.

Station 23, March 15, 1878 ; off Sombre ro Jsland ; lat. $18^{\circ} 24^{4}$ N., lngg. $69^{\circ} 28^{d}$ W.; depth, 450 fathoma; linttom, Pteropod ooze.

Station 78, July 10, 1879; off the Aonves; lat. $\mathrm{ar}^{\circ} 26^{\prime}$ N., long. $25^{\circ} 19^{\prime}$ W.; depth, 1000 fathmen: bottom, voleanic mud.
 W.; depth, 1125 fathoms; lintom, volcanic mud.

Cuvierina, ${ }^{1}$ Boas.

 Ptropodes, Aom. id. Sci. Nat, sér 1, t. xij. p. 322 (mnt Píron, 1807).
Truptera, auctnrum, not Quoy nnd Gamard.

Characters and Description. -Shell strnight, elongated, with a emooth surface, with the posterior half conical and pointed, generally cadurnus in the adult. The anterior half is swollen medianly, but constricted hatind the aperture. A partition, conrave in front, is found towards the middle of the entire length of the shell, and clone bepide thie the truncation is formed. The travsverse eection is circular, except townrdm the aperture, where it is a little compressed, and appenrs somewhat reniform. Bebind

[^40]the nperture the shell is enntrasted, but bulgea out ngmin fowarls the partition. Ilis 4mbryonic portion is separated from the rest of the shell by a sballow coustriction.

Animal with the aperture of the mantle as large as that of the shell, with fins as in Clin (Sty/iola) subula and other species of CFin in the atrict sense. The posterior portinn of the font is slightly bollowed out in its middle region.

Adult sperimens with tho posterior portion intact are very rare. Benson' and "Orhigay "were the first iudependently to dessribe the form of the entire shell, which was not known to Rang when he eatallished the genus "Curieria."

Camievina is nuaty allied to Clio, so much so findeed that Souleyct ${ }^{4}$ was inclined to unite "Chuierirt" with "Clpodora" as a single division or subgenus. Similarly, :ccording to Leasov,' Rang propnsed in bis uppublished Monograph to unite the abova thrms in a sulugenus of "Cleodora,"

Among all the speries of the genus CFio, C7io (Siyliolr) subula exhihits the eloanst altinity with Guvierina. Nevertheless, the constriction of the slefl hehind the mouth, the metina partition, and the conatant truncation, definitely diatingush Cunieriana from all the forms of Clia, and warrant its position as a diatinet genus.

But, ou the other hand, there is nof mulficipnt reason to establiah a distinct family, as (irry ${ }^{5}$ and the brothers Adema ${ }^{\circ}$ have done.

It is nn entire aluse of nomenclature to apply to this genus the title Triptera, Quoy arorl Gaimard. Nothing could be mare unectain thno what Triptered msea ${ }^{\text {' }}$ really in, ans the title if applisd to a Pteropnd without a shell.

Tas genus Cuvierina includes amly a sinarle living species.

* Cuvicrina cohnmalla (Rnng).

1824. I Cleordora ahtusa, Quoy et Gaimard, Voynga de I'Uradie, Zoologif, p dIf, pl lxui. fig. E .
 das Pléropoder, Ann, d. Sici Nat. áfr. 1, t xiii. p. 3gs, pl. Iv. fge. 1-8.
1825. Cutripria aryza, Banson, Corrected charactara of the gomus Cupieria and Notice of a second specias inhabiting the tropical Indian Oefan, Journ Asiat Soc. Rengal, vol. iv. p. 698.
1826. Tripiera colvimenda, Gray, Catalogne of the Molluen in the Collectien of the Erilish Maferm, pkii, Ptarapode, p. 23.

[^41]p. 3 I.
Jagor gasammalien Pterapoded, Monatslife. d. H. preure.
Akad. d. Wiss. Berlin, 1879, p. 243, fig. 18.
1879. Triptera ramerhaig, Fielter, Mrid, p. 243, tig. IS,

For description and figures I refer to Souleyet, Voyage de la Bonitr, Zoologic, t. ii, p. 205, pl. xii. The hest figure of the complete shell is to be found in the Spolia atlantica of Boas, pl. iii. Gig. 39.

Habitat.-Atlantic Ocean; from $43^{c} 23^{\prime}$ N. (Boas) to $40^{\circ} \mathrm{S}$., both townrds the New and Old Worlds. Accarding to Souleypt, this speries lans heen fuund towards Cupe Horu, but this appears to me to require confirmation. The lacality Spitzbergen, noted in the British Museum, is certninly erroneous.

Indina Ocenn; from the Gulf of Rengal (Rritish Museum) to 35^{e} an 0^{d} S., from Africa (Zanzibar, the Cape, \&c.) to Australia.

Pacific Ocean; westcru portion, Cbina Sea (Bons), Mnlny Archipelago, east coast of Australia (Pfeffer and Angas) ; enatern portion, from $23^{\circ} \mathrm{N}$. to $42^{n} \mathrm{~S}$. (Kuocker).

Challenger Specimpas.-1. Tiving specimens.

Station 62, June 18, 1879 ; Bermuda to Azores; lat. $35^{2} 7^{\wedge}$ N., long. $52^{e} 32^{\prime}$ W.
Station 69, Iune 19, 1879 ; Bermuda to Azorts; law $35^{7 \prime} 29^{4}$ N., long. $50^{\circ} 53^{\prime}$ W.
Station 175, August 12, 1874 ; Fiji to Raine Island; lnt. $19^{\circ} 2^{\prime}$ S. long. $177^{\circ} 10^{d} \mathrm{E}$.

Station 216a, February 16, 1875; north of New Guinea; lat. $2^{\circ} 55^{4}$ N., long. $194^{\circ} 11^{\prime} \mathrm{E}$.

Station 230, April 5, 1875; Admiralty Islands to Yokohama; lat. 26^{n} 29' N ., long. 197 $57^{\prime} \mathbf{E}$

Station 254, Joly 17, 1875 ; Yokobema to Sandspirh Ialande; lat. $35^{\circ} 13^{\prime} \mathrm{N}$., long. $154^{\circ} 4 \mathrm{~S}^{\prime} \mathrm{W}$.

Station 280, October 4, 1 R75; 'Tabiti to Volparaiso; lat. $18^{e} 40^{\prime} \mathrm{S}$., long. $149^{e} 52^{\prime} \mathrm{W}$.
Station 288, October 21, 1875 ; Tehiti to Valpлraisa; lat. $40^{\circ} 3^{4} \mathrm{~S}$., long. $1.2^{\circ} 58^{\prime} \mathrm{W}$.
Near Station 28R, October 22, 1 A75; Tahiti to Valparoise; let. $40{ }^{\circ} 0^{\circ}$ S., long. $191^{\circ} 36^{j} \mathrm{~W}$.

Station 294, November 3, 1875 ; Tbhiti to Valparaiso; lat. $99^{\circ} 22^{\prime}$ S., long. $98^{\circ} 46^{\prime}$ W.
Nesr Station 954, May 7, 1876; St. Vincent towards Azores; lat. $34^{\circ} 22^{\circ}$ S., long. $84^{\circ} 29^{\prime} \mathrm{W}$.
II. Depusit ahelle.

Station 23, March 15, 1873 ; off Sombrere Island ; lat. $18^{\circ} 24^{\prime} \mathrm{N}$. long. $69^{\circ} 28^{\prime}$ W.4 deptb, 450 fathoms ; bettom, Pteropad ooze.

Station 24, March 25, 1873 ; of Culebra Island; lat. $18^{n} 38^{\prime} 30^{\prime \prime} \mathrm{N}_{\mathrm{a}}$ long. $65^{\circ} 5^{\prime} 30^{\prime \prime}$ W.; depth, 390 fathoms; Lottom, Pteropoll ooze.

Station 33, April 4, 1879: off Bermucla; lat. $32^{n \prime} 21^{\prime} 30^{\prime \prime}$ N., long. $64^{s} 35^{\prime} 55^{\prime \prime}$ W, depth, 435 fathoms ; hnttom, coral autid.

Statinn 78, July 10, 1873; off the Aznres; lat $37^{\circ} 26^{\prime} \mathrm{N}$, long. $25^{\prime \prime} 19^{\prime} \mathrm{W}$.; depth, 1000 fathoms: huttom, volcanic mud,

Station 85, July 19, 1879; off Falma Ieland (Canaries) ; lat. $28^{\circ 1} 42^{\prime}$ N., long. $18^{\circ} \mathrm{fi}^{4}$ W.; depth, 1125 fathoms ; bottom, volcanic mud.

Station 120, Septemher 9, 1873 ; of the const of South America, between Pernamluen and Hiluiar lat. $8^{\circ} 97^{\prime} \mathrm{S} .$, Jong $34^{2} 28^{\prime} \mathrm{W}$; depth, 675 fathoms; hottom, red mud.

Statinn 122, Septemlier 10, 1873 ; off the coast of Snuth America, letween Pernamluce and Bahia; lut. $9^{\circ} 5^{\prime} \mathrm{S}$, logg. $34^{2} 50^{\circ}$ W.; depth, 950 fathoma ; lattam, resl mutl.

Siation 185, Auguat 31, 1874 ; off Paine Island; lat. $11^{\circ} 35^{\prime} 25^{\prime \prime} \mathrm{S}$. long $144^{\prime} 2^{\prime} 0^{\prime \prime}$ F.; depth, 135 fathoms ; hintom, coml sand.

Station 995, Marel 16, 1876; Tristan da Cupha to Ascension Island; lat. $32^{\prime \prime} 24^{\prime} \mathrm{S}_{\text {a }}$ long. $19^{\circ} 5^{\prime}$ W. depth 1425 fathome; bottom, Pteropod ooze.

Cavolivia, 'A billdgaard.

1791. Camhina, Abildgaard, Om Covalina natama, Anonia tridenlata Farkalmi, Skriv. Naturbiat Grlak, Dd. i lloft ii pr 17.1 (mom Mruguirse, 1892).
1792. Rhena, Huniphroja, Musmum Calonsianum.
1793. Hyalaa, Lamark, Syatèma dea animaux saba vertèbres, piga
1794. Archimia, Mootiort Couthyliologie aytamatique, t. ii p. 50.

1795. Pieuropu, Earhgchelt, Anripht iiber die Zoologieche Ausbeute während der Reise von Cronstadt bis St Feter und Psul, Olen, Igis, 1825, Bd i. p. 7.35.
1796. Diactia, Gray, Symapsis of the Contenta of the British Museum.
1797. Orbignyia, A. Adame, On kynonyme and habitats of Cavoliniz, Digeria, and Pleurapur, And. and Mag. Nat Fisl, ser. 3, vol. iif p. 4.5 .
Characters and Description.-The shell, which is generally of a horny brown colour, is especially characterised (in the adult state, of courae) by its much-contracted aperture, which is, however, very broad transversely. The lateral portions of this aperture, which are narrower than the middle part, are almost meparated trom it by a more ar less developed taoth riaing from the ventral lip and fitting into a dorasl depression. The doran $\mathrm{lip}_{\mathrm{p}}$, which is longer than the ventral, is alwaya more or less ventrally recurved; the ventral lip, mueh reeurved dorsally, ia constricted a little in front of the aperture, and then reflected ventrally. The ventral aurface is always bulging. The special form of Cavolinia depends on the fact that the sides of the shell

[^42]diverge abruprly outwarda so that the lips appear much prolonged anteriorly. The sides of the shell are often prolonged into a more or less projecting point. The embryonic shell is not seprated by a distinet constriction, except in Cavolinia trispinosa and Cavolinia quadridenteta.

The animal anmewhit resembles in its external characters the species of Clio strictly so called. Its special characters chiefly consist in the hreadth of the postenor lale of the foot and in the presence of lateral prolongations of the mantle, which project fiom the lateml portions of the operture (side clefts of the adult) and may enver a considerable portion of the sheil.

Many authore (A. Adams, Gray, Fiecher, Boas, \&c.) call this genus "Carolinim, Gioeni," nad do so on the nuthority of Abildganed, according to whom Gioeni first nsed this title in his work entitled "Descrizione di une nuova Famiglia e di un nuovo Genere di 'l'patacei travati nel littorali di Catanio." This small memoir (svo and mot 4 to as is always noted) is anmewhat mare, nod does not nppear to have been netually seen by the nuthors whn cite it from Abildgaord. For in the memoir itself it may be seen that while Gioeni bas indeed represented Conoliniat bridentate in bis figures xiv.-xvi., he rlocs not give it its title. Caulini is referred to on p. xxvii, note a, as the first to observe the animal of this species, but there is no question of naming in his honour the " nuovo Genere di Teatarei"

The name "Canolina" (em. Cavolinia) only dates from 1791, nud its author was Abildgaarl. It bas, nevertheless, the priority over Capolinia, Bruguière, which was not published till 1792,' nud ought to be employed in preference to the title Hyalra, Tmmarek, 1801.

Although the shells of Cavolinia have a much ronstricted aperture, different individuals within the eame species may exhilit pery noteworthy divergences in regard to size. The diference is sometimes very striking, so that in some species the diameter of certain individuals may be four times that of others (Cavolinia longirostris, after Bans). ${ }^{2}$

From this fnct it has been inferred (Pfeffer) ${ }^{3}$ that, in order to grow, the shelle of Cavolinia must first of all lose all the contracted partion by alsorption, since growth can only take place by the apposition of freah material at the margin of the aperture.

Eut this hypotbesis of partial absorption is altogether imeginnry. As Bons has alrendy pointed out,' there is no trace of a line of reabsorption on the shalls of large size, and it is further a very strong argument againat the theary that the posterior (nideat) portion of the small individuals docs not correspond exnctly to the bomolognue portion

[^43]of the large specinens, which, however, it in liound to da, if in the latter the contracted portion is absorlied and the posterior portion alone left. This residue aught olininusly to be inentical and superposalnle in individuale of any size whatever.

The small-sized sperimens, like the lirge, are intividuals which will not iuerense further, which have attained their limit of growll, as is oaberwise indieated by the enmplete development of the reprarlactive systen. The smaller size of the shell rhpends on its surface being develnped along a curve with smaller radiue thon in the large-sized individuals

On the other hand, there are geveral forms of Cavoliniide, to which distinet apecific tities are given, notably those which Bons alis " Hyales plates," where the umion of the two lips of the shell by the so-called "appareil de fermeture" has not been developed. All these forms, as we shall immediately slow, are individuala whieh bave not gret attaned soxurl maturity, nud helong to species already known, as Cantraine firat suspected.

Eut this condition of immaturity, associsted an it undoubtedly is with reduced development of the reproductire arging, may be pralongent tro a very late atage, and the alicll may he very large before the formation of the " appareil de fermeture." This can be easily demonstrated by examining a large numbipr of specimeros, as for instance of Cazolinio tridentata at Naples. In this form, to wbich our nttention was first dected hy Dr Paul Schiemen2, one finds, even at the asme atrge of development, coneiderable differeate in size.

It is certain that tbere are notable diferences in the aize of adult apecimena (with completely develnped reproductive organs, nud with perfected clasing apprating); and the theory of the partial absorption of the shell must be dismisaed.

But as I have already painted out, those young stages which we have discussed have heen regarded as diatinet species, and bave been referred either to the genue Carohina (Hyalara) or to the genus Clio (Cleodosa), or to a special genus, Pleuropus.

And besides theae entirely superfluous termes, we also find for the forme which properly helong to this genus a profuce auperabundance of specific titlea, just as in the coses of Clin and the Limacinidæ.

As these Thecommata ale pelagic animala with a very wide geographical diatribution, there is no inconaiderable exhibition of varintion in the form of the shell. Thun bave arisen numeraus variatians, digtinguighed by very alight divergences. Hut on the hasia of minimal diatinctions, conchologißts have not beaitated to establiah a large number of "new" species.

If we abatract the titlen which ought to be raferred ta other genera altogether ${ }^{\text {a }}$

[^44](d'Orbigny placed in the gemus H yalara = Cavolinia all the members of the family Capoliniide), or even to ather graups, and confine aur attention to the forms really helonging to this genus, we shall find, for extant species, ffty-four specilic titles, of which three are used with eevernl nomnetations, which increases the mischief etill further.

Hyalza affuis, d'Orbigny.
Hyalsa angulata, Souleyet.
Hyalort australis, Péron.
Hyalma chemnitziana, Péron sud I.esueur.

Hyalaa complanata, Gegenbaus
Cleodora compressa, Souleyet.
Hyolsa comea, Lamatek.
Hyalaur costata, Pfeffer.
Hyalra enmingiu, Sowerby.
Cleodore curmata, Sonleyet.
Hyalaa enspidata, Delle Clinje (non Bosn)
Hyalwa depressa, Bivona (nom d'Orbigny).
Hyalsa depressa, d'Orhigny.
Hyalian ecaudata, Lesuenn.
Hynian eloxgata, Leaveur.
Hyalma femarnia, Gould.
Hyalsan fissirostris, Bensnn.
Hyalara fava, d'Orbigny.
Hyalma forskahlii, Leaveur.
Hyalsa gegenbauri, Pfeffer.
Hyalsa gibbosa, Rang.
Hychera globulasa, Rang
Pleuropus hargeri, Verrill.
Hyalsa imitrns, Pfeffer.
Hyalma inermis, Gould.
Hyolsa infeta, Insueur.
Hyalan intermedia, Snwerby.
Hyalma labiata, d'Orbigny.
Hyalaa lmnigata. d'Orbigny.

Hyalea limbata, d'Orhigny.
Plewoyus longifilis, Troselel.
Hyalaa longivostris, Lesueur.
Hyalaa minuta, Sowerby.
IIyaleat mucranata, Quoy and Gaimard.
Cavolina ratans, Abildganrd.
Hyalact obtusa, Sowerby.
Iyalata propilionacea, Quoy and Gaimard.
Pleuropus pelluciduy, Eschacholts.
IIyaliad peroni, Lesucur.
Cavolina pisum, March.
Cleodora pygmisa, Boas
Hyalava quadridentata, Lesuem.
Hyalaa quadrispinosa, d'Orbiguy.
Hyalsa reeviana, Dunker.
Hyalwa roturidata, Bons,
Hyalea rugasa, d'Orkigny.
Hyalea tenioboanchea, Páros and Lesueur.
Hyalma triacantha, Bronn.
Anomia tridentata, Forskil.
Cleodora trifilis, Troschel.
Iryalsa thispinosa, Lesueur.
Hyalea truncata, Krauss (non Lesueur).
Hyalaz tritncata, Lesueur,
Hyalaa थncinata, Hoeninghaus (non Rang).
Hyalra uncinata, Rang.
$H_{\text {yalea }}$ uncinatiformis, Peffer.

An attentive examination of this auperfluity of titles flows that there are amongat Iliem anly eight genuine species, all ohtained on the Challenger Expedition.

All the other titles are aynonyms of these eight species. It is necessary, however, to distinguish :-

1. Thirteen titles referring to the young stages of eeveral of these eight forms :

Hyalma complanata, Gegenbaur, . = Cavolinia tridentata, Forskâl
Hyalea depressa, d'Orbigny, . - Canolinia iqyfexa, Lesumur.
Hyalma lavigata, d'Orbigoy, . . Cavolinia longirostris, Lesueur.
Hyalza rotundota, Boas, . . = Cavolinia globnolosa, Rang.
Hyalea mugosa, d'Orbigny. . . = Cavolinia gibbosa, Rang.
Hyalma truncata, Lesueur, . . = Cavolinia sp.
Cleodora compressa, Souleyet,
Clpadara curvata, Souleyet,
Clpodora pygmata, Boas,
Cleodora trifilis, Troschel, Pleuropus hargeri, Verrill, Pleurnpus Lnngifilis, Troschel,
Pleuropus pellucidus, Eschscholtz,
$=$ Cavolinia trispinosa, Legueur.
$=9$ Cavolinia uncinata, Rang.
= Carnimia quadridentata, Lesueur.
= Cavolinia sp.
= Cavolinia gibbosa, Rang.
= Cavalinia tridentata, Forskål.
= Cnvolinia inflexa, Leguenr.
2. Four titles which may be applied to lacal varieties of some epecies :-

Hyalsa affnis, f'Orbigny, . . = var. of Cavolinia tridentata.
Hyalsa costatn, Pfeffer, . . = var. of Cavolinia quadridentata.
Hyalwa labiala, d'Orbigny, . . = var, of Cavolinia inflexa.
Hyalsa truncala, Krauss, . . = var. of Cavolinia tridentata.
3. All the ather titles are absolutely aynonymous with those of the eight genuing apecies :-

Hyalaa angulata, Souleyet, . . - Cavalinia longirostris.
Hyalsa australis, Péron,
Hyalaa chemnitziana, Péron and Lesueur, Hyolma comea, Iamarck, Hyalsar cumingii, Sowerby, Hyalara cuspidata, Delle Chisje, Hyalma dippressa, Bivona,
Hyalma ecaudata, . . =Cavolinia longirastris.
Hyalsoa elongata

- Cavolinia inflexa.

Hyalsa femorata, Gould,
Hyalsa fissirostris, Benson,
$=$ Cavolinia tridentata.
\}-Cavolinia longirostris.

Hyalsa flava, d'Orbigny, Hyalea forskahlii, Lesueur,
Hyalaa gegenbauri, Pfeffer,
Hyalima imitans, Pfeffer, Hyalma inermis, Gould, Hyalfrit intenmedia, Sowerhy,
Hyalea limbetta, d'Orbigny,
Hyalea minuta, Sowerby,
Hyalman mucronatut, Quoy and Gaimard,
Cavolina natans, Abldgnard, .
Hyalsad obtusa, Sowerby,
Hyolsa papilionacea, Quoyand Gnimord,
Hyalmen peroni, Lesueur, $^{\text {p }}$
Cavolines prisum, Møceh,
Hyalrert quadrispinosa, d'Orbigry,
Hyalma reeviana, Dunker,
Hyalan teniobranchea, Péron and Lesueur,
Hyalma trincantha, Brond,
Hynlma uncinata, Hoeninghnus,
Hyalana uncinatiformis, Pfefier, Hyalsa vaginellina, Cantraine,

There remain the following eight titles, which represent genuine and distinct species :-

Hyalment trispincsa, Lesueur Hynlan quadridentata, Lesueur. Hynlma longirostris, Lesueur. Hyalaa globulosa, Rang.

Hyalsa gitbosn, Rang.
Anomia trideritatn, Forabal
Hyalea uncinata, Rang
Hyalaa inflexa, Lesuenr.

From the above list of eynonyma of Canolinia, it appears that a numher of generie titlen have been applied to the present group of Thecoamenta

One may well ask if all these nampa should be rejented and nona retained, or, in othar words, if the gemua Cavolinia in indead bomogeneans and indivisible. It appeara to me an to be beyond diapute.
I. Rheda, Hyalma, Archonta, and Tricha are ohsolutely synonymous with Cavolinia, for the eimple regaon thet they refer to the harne type, Anomia tridentata of Forakal.
II. Pleuropus is a desigation bnard ny young stages of typical Canolinia, whith Boas names " Byalea, . $^{\prime \prime}$ " They refer tn apecimens in which the closing apparatus was not yet developed-Plenoppus pellucidus, Pleuropus longifilis, Pleuropus hargeri. Gray

[^45]wis the first' to note the affinities of "Cleodorac curvaia," Sauleyet, to this group, but he did not iletect what these four forms really represented, and regarded "Pleuropus" as a group within the genus Clio.

The adulte of mant of the species of Pleuropus are known. As ta the others, it is possible to predict, from some of their features, what forms they will probably turn out to he when arrived at sexual maturity. The designation Pleuropus is therefore to be abandoned.
111. Diacria is a characteristic concbological genue. Gray erected it for the reception of Cambinia trimpinose and two young atages of typiend Cambinia forms (group B of Hons), viz, Hyalaa deppessa, d'Orbigny, and $H_{y \text { alaa }}$ lawigata, d'Orbigny, which it would bave been mare natural to place beside Pleuropus. He leaves in the genua Cavolimia, Cavolinia quadjidenata, though it is in all respects the neighbour of Cavolinia trispinosa. And, further, he places the same speries (Canolinia orbignyi, Rnng, fossil) both in the genus Diacria and in the genue Cavolinia. ${ }^{2}$

On the other hand, the brothera Adams, and athores after them, take this title Diaciza as synonyonous with Pleuropus, ${ }^{\text {a }}$ and therefore add to Cavolinia trispinoss and Io the two forms Hynlen depressa nid Hyalsa lanigata all the other young forms regarded as independent apecies. At the same time they agree with Grny in lenving Cavolinia quadridentata, aeparnted from Cavolinia trispinosa, beside the typical Cavolinia forms. ${ }^{\text {a }}$

Now, it is certain that if Cavalinia trispinosa is to be aeparated from the other species of Canolinia, Cavolinia quadridentata must go with it. The two apecies are in their structure mast closely allied, and form a well-defned aubgroup contrasting with the six ather sperifs.

And if, in their embryonic shell, in the farm of their fins, and in the posterior portion of the foot, they present resemblances to Clio (Cleodora), they at the eame time exhibit the characteristic features of Cavolinia in a way that makes separation impossible. They are certainly the most archaic living forms of the genus, but not sufficiently distinct to warrant a separate genus. One may, however, follow Boes in establishing a晾bection (Hyrlma, A), within the genus Cannlinia.
IV. Orbignyia, which was only regarded as a aubgenus by A. Adams, is besed on Camliniu inflexa, which is usually considered as allied to Clio (Cleodora). There is,

[^46] subgenerie section of Cavolizia, including the more typical or more highly specialisar forms, all, in fact, except Cavolinia trispinosa and Cavolinia quadridentata. Its elongation and fits fattening are not a whit more extraordinary than the exponsion and shortening of Cavolinia globulosa.

From the above observations thia results, that the huge liat of species is reduced by nanlysia to pight, and that, without going to an extreme like d'Orbigny, who united all the Thecosomata of the femily Caveliniida inta a single genus Hyalea, it may be anid that at lenst the eight species above mentioned form a tolerably homogeneaus uvit within a single genus.

The eight apecies thus allowed to exist may be distinguished in the following fnebion:-

Key to thr Sprcies.

L. Datral lip thickened iven a fad.

1. Shall with lolemel prints, Catrilinia triqpinosa
2. Shell without intaral poinla, Cavolinia quadridentaia.
II. Dorasal lip with a thiv suargid.
3. Posterior partion of the ventral lip markedly projecting lalarally, , Cavolinia iongiraifia
4. Veatral lip not mare developed than the domal,
A. Shall withnul nppreriahia lolarnl panints
a. Shell marower at the end of the lipe than anteriorly

f. Ventral eurface wilh an anterior thengyerer keel,
b. Sbell as brnad at the end of the lipe as acheriarly,

Cavalinta aihhosa.
Saoolinia tridentata.
B. Shall with rigtimat lateml prinala.

> a. Opper lip flattensed poeteriorly, .
> Cavolinia v лeinnta.
> b Depar lip directed atraight ícrwarda . . . Cavolinaa inflera.

The best aeries of figures of these eight apecies is undoubtedly that given by Boas. ${ }^{1}$ We shall, therefore, refer to thess figures, aince it is useless to figure afresh species already sufficiently well known, sud bopeless to expect better figures than those of Rons.
*1. Cavolinia trispinosa (Leaueur).
1921. Byalea trigpinosa, Leanenf, MS. in de Blainville, Hyale, Miot d Exi. Nat, t. mii. p 82.
1827. Hyalea meteronata, Quny at Gaimard, Obmervitiona Zoologiquen faitea bard de
 fgat 1, 2.
 exientifiobe e litterarie per la sicilia, p. 57, pl. i. 6ga 4 , 5 .
 Regno di Kapali, pl. clexr. Giga. 1, 2 (ron d'Orbigng).


```
1E50. Bineria trigmonan, Gray, Calaingne of tho doallesea in the Collection of the Britioh
    Muscum, pt ii, Pteropodn, \(p, 10\).
1850, Diarria mumponnth, Gray, Ibit, p. 11.
1853. Hyalma tuminan, Donkor, Inder Moluernrum, de., p. 2, pl. i, figs. 17-go.
```



```
    P611.
```


For description and fgures, see Boas, Spalia athutica, p. 94, pl. i. fig. a; pi. ii. fig. 14.

Habitat.-Atlantic Ocean ; from 60" $15^{\prime} \mathrm{N}$. ("Triton" Expedition) to $40^{\circ} \mathrm{S}$. (Knocker), hoth tnwards the New World and towards the Old; Mediterranenn (Delle Chinje, Cantrnize, Costn, Macdonald, \&ec.).

Indian Ocean; from the Gulf of Rengal (Pfeffer) to $41^{n} \mathrm{~S}$. (Buas), and from Aírica (Natal, Madagnacar, \&c.) to Anstrolin.

Pacific Ocear; western partion, Yellnw San (Rritigh Museum), China Sen (Anna), 19^{n} N., 156° E. ("Vpttor Pisani " Expedition); South-west Pacific (Pfeffer), Port Jackson (Angas): North-enst Pacific to $80^{\circ} \mathrm{N}$. (Knocker).

Chailenger Sperimens.--I. Living apecimens.
Station VIIf., February 2, 1875 ; off Madeira; lat. $92^{\prime \prime} 27^{\prime} 0^{\prime \prime}$ N., long. $16^{\circ} 40^{\prime} 30^{\prime \prime} \mathrm{W}$.
Station 62, June 19, 1873 ; Bermuda to Azores; lat. $35^{\circ} 7^{\prime} \mathrm{N}$, long. $52^{\circ} \mathrm{az}$, W .
Station 69, June 19, 1879 ; Bermuda to Aznipa; Int. $35^{\circ} 29^{\prime}$ N., long. $50^{\circ} 59^{\prime} \mathrm{W}$.
Station 181, August 25, 1874 ; Fiji to Raine Island; lat. $19^{\circ} 50^{\prime} \mathrm{S}$. long. 151° 4 $\mathrm{S}^{\prime} \mathrm{F}$.
Station 230, April 5, 1875; Admiralty Ialanda to Yokohama; lat. $26^{\circ} 29^{\circ} \mathrm{N}$., long. $197^{\circ} 57^{\prime} \mathrm{E}$.

I1. Deposit shells.
Station 29, March 10̄, 1879 ; off Sombrero Island; lat. $18^{\circ} 24^{\prime}$ N., long. $69^{\circ} 28^{\prime}$ W.; depth, 450 fathoms; bottom, Pteropod ooze.

Station 24, March 25, 1878 ; off Culebra Islend; lat. 18° d $8^{\prime} 30^{A}$ N., long. $65^{\circ} 5^{\prime \prime} 90^{\prime \prime}$ W.; depth, 190 fathoms ; bottom, Pteropod ooze.

Slation 33, April 4, 1873 ; off Bermuda; lat. $92^{\circ} 21^{\prime} 90^{\prime \prime}$ N., long. $64^{\prime \prime} 95^{\prime} 55^{\prime \prime}$ W.; depth, 435 fathome ; bottom, coral mud.

Station 85c, April 22, 1879; off Bermuda; lat. $32^{n} 15^{\prime}$ N., long. 65 5° W.; depth, 1950 fathoms: bottom, Globigerina coze.

Station 70, June 26, 1873 ; Mermude to Azores; lat $88^{\circ} 25^{\prime}$ N., long. $95^{\circ} 50^{1} \mathrm{~W}$.; depth, 1675 fathoms ; bottom, Globigering coze.

Station 75, July 2, 1879 ; off Fayal (Azores); lat. $98^{\circ} 38^{\prime} 0^{\prime \prime} \mathrm{N}$. , lnmg. $28^{\circ} 28^{\prime \prime} 90^{\prime \prime}$ W.; depth, 450 fathoms ; lottom, voleanic mud.

Station 76, July 3, 1879; off the Azores; lat. $99^{\circ} 11^{\prime} \mathrm{N}$. , long. $27^{\circ} \mathrm{g}^{\prime}$ W.; depth, 900 fathome ; bottom, Pteropod aoze.

Station 78, July 10, 1873; off the Azores; lat $97^{\wedge} 26^{\circ}$ N., long. $25^{\circ} 19^{\prime}$ W.; depth, 1000 fathoms; bettom, velennic mud.

Station 85, July 19, 1879 ; off Palma Islnad (Canaries); lat. $28^{\circ} 42^{4} \mathrm{~N}$., long $19^{\circ} 6^{4}$ W.; depth, 1125 fathoms ; hottom, volcanic mud.

Station 120, Septemher 9, 1873; off the coast of Santh America, between Pernambuco and Babin; lat. 日 $^{\circ} 37^{\prime} \mathrm{S}$, long. $34^{\circ} 28^{\prime} \mathrm{W}$.i depth, 675 fathoms; bottom, red mud.

Station 122, September 10, 1879; aff the const of South Americn, between Pernлmbuco and Bahis ; lat. $9^{\circ} 5^{\prime}$ S., long. $84^{2} 50^{\prime}$ W.; depth, 350 fathome; lotomm, red mud.

Station 164 ; June 12, 1874 ; off Sydrey; lat. $34^{\circ} 8^{\prime}$ S., long. $152^{\circ} 0^{\prime}$ E; depth 9.50 fathoms: hottom, green mud.

Station 185, August 31, 1874; off Raine Island ; lat. $11^{\circ} 35^{\prime} 25^{\prime \prime} \mathrm{S}$., long $144^{\circ} 2^{\prime} 0^{\prime \prime}$ E; depth, 135 fathoma; bettom, coral sand.

Stntion 395, March 16, 1876 ; Tristan da Gunba to Ascenaion Island; lat. $32^{\prime} 24^{\prime} \mathrm{S}$., long. $18^{\prime \prime} 5^{\prime}$ W.; depth, 1425 fathoms; bottom, Pteropod ooze
*2. Cavolinia quadridentata (Lesueur).

$$
\begin{aligned}
& \text { 1821. Hyalea qnairidmentata, Lezuant, MS., in Maginville, Hyalea, Dict d. Sci. Nat, t. msii. p. B1. }
\end{aligned}
$$

> 1850. Comolina gradridentata, Gryy, Cntalngue of the Molluscen in the Collection of tha Bratish Munelm, pl. ii, Pteropoda, pis.
> Jffus. Hyalwa inermis, Gould, The Mollusen and Shalla of the U.S. Erploring Eupedition, pl. Ji. Re. 604.
> 1877. Byaiea minuta, Soverby, in Hefve, Conchologia icanich, t. xx., Pteropoda, fg. 9.
> 1877. Byalea intermeria, Sowerby, miad, GR 10.
> 1879, Hyoien costata, Pfeffer, Uebarmiche der nui S.M. Schif Garelle und von Dr. Jaynr gearmmelten Plaropoded, Monatsliar. d. H. preves. Aland di Wipa. Rerlin, 1879, p. 294.

For deacription and figurea, see Boes, Spolia atlantica, p. 99, pl. i. fig. 4 ; pl. ii. fig. 15. Habitat.-Atlantic Ocean; Irom $34^{e} 90^{\prime}$ N. to $17^{\circ} 0^{\prime}$ S. (Knocker).
Indian Ocean ; from the Gulf of Bengal to the Cape (Pfeffer), from the conata of Africa (Red Sea, Madagarcar, Natal) to Australia The specimena from the Indian Ocean all belong to the form costata.'

Pacific Ocean; western portion, Yellow Sea (British Museum), China Sea (Bobs), Port Jacksmn (Angas) ; esstern portion from $9 \mathrm{fi}^{\circ} \mathrm{N}$. to $28^{\circ} \mathrm{S}$. (Knocker).

Challenger Spacimens.-I. Living apecimens.
Station 175, August 12, 1874; Fiji to Rsine Taland; lat. $19^{e} 2^{\prime} \mathrm{S}$, long. $177^{\circ} 10^{\prime} \mathrm{E}$
Station 181, August 25, 1874 ; Fiji to Raine Island; lat. $19^{\circ} 50^{\prime}$ S., long. $151^{\circ} 49^{\prime} \mathrm{E}$.
Station 216A, February 16, 1875; nortb of New Guinea; lat. $2^{\circ 1} 56^{\circ}$ N., long. $134^{\circ} 11^{\prime} \mathrm{E}$.

[^47]Auguat-Saptemher 1875. Sandwich Islends to Tabiti,
Station 397, March 19, 1876; Trigtan da Cuuba to Ascension Island; lat. $24^{\circ} 39^{\prime} \mathrm{S}$., long. $13^{n} 96^{\prime} \mathrm{W}$.

On April 29, 1876 ; of St. Vincent (Cape Verde) ; lat. $18^{\circ} 8^{\prime} \mathrm{N}$. , long. $30^{\circ} 5^{\prime} \mathrm{W}$.
Station 353, May 8, 1876 ; St. Vincent to Azores; lat. $26^{\circ} 21^{\prime} \mathrm{N}$. , long. $98^{\circ} 37^{\prime} \mathrm{W}$.
1I. Deposit abells,
Station V1II., February 12, 1879; af Canary Isladda; lat $28^{\circ} 3^{\prime} 15^{\prime \prime}$ N., lang. $17^{\circ} 27^{\prime} 0^{\prime \prime}$ W., depth, 620 fathoms; bottom, voleanic mud.

Station A. Fehruary 18, 1873; Tenerife to Sombrero Jaland; lat, $25^{\circ} 45^{\prime} \mathrm{N}$, loug. $20^{\circ} 14^{\prime}$ W. depth, 1525 fathnme: bottom, hard ground,

Station 23, March 15, 1879 ; off Sombrero Island ; lat. $18^{\circ} 24^{\prime}$ N., long. fa 28^{\prime} W.; depth, 450 fathoms; hottom, Pteropod oore.

Station 24, March 25, 1879 ; off Culebra Island; lat. $18^{\circ} 38^{\prime} 30^{\prime \prime}$ N., long. $65^{\circ} 5^{\prime} 30^{\prime \prime}$ $W_{\text {- }}$ depth, 990 fathoms ; bottom, Pteropod ooze.

Station 93, April 4, 187A; off Permuda; lat. $32^{\circ} 21^{\prime} 20^{\prime \prime} \mathrm{N}$., long. $64^{\circ} 35^{\prime} 55^{\prime \prime} \mathrm{W}$; depth, 495 fathoms ; bottom, coral mud.

Station 85, July 19, 1873 ; aff Palma Island (Canaries) ; lat. $28^{\circ} 42^{\prime}$ N., long. $19^{\circ} 6^{\prime}$ W.; depth, 112.5 inthame: bottom, voleanic mud.

Station 120, September 9. 1879; off the coast of South Americe, between Peraam-

Station 122, September 10, 1878; nff the coast of South America, hetween Pernambuco and Hahia; lat. $9^{\circ} 5^{\prime}$ S., long. $34^{n} 50^{\prime}$ W.; depth, 350 fathome ; battom, red mud.

Station 185, August 91, 1874 ; off Raine laland ; lat. $11^{\circ} 35^{\prime} 25^{\prime \prime} \mathrm{S}$. , long. $144^{\circ} 2^{\prime} 0^{\prime \prime \prime}$ E. depth, 195 fathoms ; bottom, coral annd.

Station 219, Merch 10, I875; Admiralty Islands to Yokohams; lat. $1^{\circ} 54^{\prime} 0^{\prime \prime} \mathrm{S}$., long. $146^{\circ} 39^{\prime} 40^{\prime \prime}$ E; depth, 150 fathama; bottom, coral mud.
*. Cavolinia langirostris (Lesueur).
 p. 11.
1821. Fyalea emwidata, Lasueur, Thid, p. 82.
1896. Hyalea limhafa, d'Orbigny, Vnyage dana l'Amérique metridionale, t v. p. 101, pl vi. fige. 11-16.

1862. Hyalan femerata, Gould, The Mollugea and Shelle of the U.S. Fxploring Expedition, pl. li. fg. 803.
 new species, Ann. and Mag, Net Hint, its. s_{1} voi. vii. p. 2θ.
1877. Byaiear nitusa, Sowethy, in Reeve, Conchologie icomion t xx., Pheropoda, flg. 8 .

For description and figures, eee Вoas, Spolin atlantica, p. 102, pl. i. fig. 5; pl. ii. fig. 16.

Habitat.-Atlantic Ocean; from 47^{n} N. (Hoas) to $40^{\circ} \mathrm{S} .(\mathrm{Knocker)}$, towards beth New and old World.

Indian Ocean; from the Gulf of Bengal to $3 \mathrm{G}^{\circ} \mathrm{S}$. (Boas), from the coast of Africa (Red Sen, Arnhin, 7anzihar) to Australia.

Pacific Ocean; western portion, Yellow Sea (Britiab Museum), China Sea (Bons), Malay Archipelago, Australia, Tasmania; eastern portion, from $30^{\circ} \mathrm{N}$. to $12^{\circ} \mathrm{S}$. (Knocker).

Challenger Specimens,-1. Living.
On April 14, 1878 ; off Bermuda; lat. $82^{\circ} 10^{\prime}$ N., long. $64^{\circ} 53^{\prime} \mathrm{W}$.
Station 106, August 25, 1873; St. Vincent to St. Paul's Rocks; lat. $1^{\circ} 47^{\prime}$ N., long. $24^{\mathrm{e}} 26^{\mathrm{d}} \mathrm{W}$.

Hetween Stations 162 and 163, April $a_{1} 1874$; Melbourne tn Sydney; lat. $38^{\circ} 7^{\prime} \mathrm{S}$, long. $149^{\circ} 18^{\prime} \mathrm{E}$.

Station 175, August 12, 1874 ; Fiji to Raine Island; lat. $19^{\circ} \mathbf{2}^{\prime} \mathrm{S}$, long. $177^{\circ} 10^{\prime} \mathrm{E}$.
Station 181, August 25, 1874 ; Fiji to Raine Island ; lat. $19^{\circ} 50^{\prime} \mathrm{S}, \mathrm{lm} \mathrm{mg} .151^{\circ} 49^{\prime} \mathrm{E}$.
Stntion 209, January 22, 1875; Manila to Snmbonngan; lat. $10^{\circ} 14^{\prime} \mathrm{N}$. , long. $123^{\prime \prime} 54^{\prime}$ E.

Station 213, February B, 1875 ; Samboangan to New Guinea; lat. so 47^{\prime} N., long. $124^{n} I^{\prime} \mathbf{E}$.

Station 290, April 5, 1875; Admiralty Islands to Yokohama; lat. $26^{\circ} 29^{\circ} \mathrm{N}$, long. $137^{\circ} 57^{\prime} \mathrm{E}$.

August-September 1875; Sandwich Islande to Tahiti.
Station 269, September 2, 1875; Sandwich Iglands to Tahiti; lat. $5^{\circ} 54^{\prime} \mathrm{N}$., long. $147^{\circ} 2^{\prime}$ W.

Eetween Statione 292 and 293, October 91, 1875; Tahiti to Valparaiso; lat. $38^{\circ} 50^{\circ}$ A. long $108^{\circ} 6^{\prime} \mathrm{W}$.

Station 398, Murch 21, 1876; Trigtan da Cunha to Agcension Ieland; lat. 21 ${ }^{\circ} 15^{\prime} \mathrm{S}$. long. $14^{E} 2^{\prime} \mathrm{W}$.

Station 345, April 4, 1876; Agcansion Ieland to St. Vincent; lat. $5^{\circ} \mathbf{4 5}^{\prime} \mathbf{S}$., long. $14^{\circ} 25^{\prime} \mathrm{W}$.

Station 349, April 10, 1876; Ascension Island to St. Vincent; lat. $5^{n} 28^{\prime} \mathrm{N}$., long. $14^{\circ} 38^{\prime} \mathrm{W}$.

Station 352, April 13, 1876; Ascension Ieland to St. Vincent; lat. $10^{\circ} 55^{\prime} \mathrm{N}$. long. $17^{\circ} 46^{\prime}$ W.

Station 359, Mny 3, 1876 ; St Vincent to Azores ; lat. $26^{\circ} 21^{\prime}$ N., long. $33^{\circ} 37^{\prime}$ W.
II. Depasit shells.

Station 23, March 15, 1873; off Sombrero Island; lat. $18^{\circ} 24^{\prime} \mathrm{N}$. , long. $69^{\circ} 2 \mathrm{a}^{\prime} \mathrm{W}_{\text {; }}$ depth, 450 fathome; bottom, Pteropod anze.

Station 24, March 25, 1879; off Culebra Island ; lat. $18^{\prime \prime} 38^{\prime} 30^{\prime \prime} \mathrm{N}$. , long. $65^{\circ} 5^{\prime} 90^{\prime \prime}$ W.; depth, 990 fethoms ; bottom, Pteropod onze.

Station 39, April 4, 1873 ; of Permudn ; lat. $32^{\circ} 21^{4} 30^{\prime \prime}$ N., long. $64^{4} 35^{\prime} 55^{\prime \prime}$ W.; depth, 435 fathoms; bettom, coral mud.

Station 78, July 10, 1873 ; off the Apores; lat. $37^{\circ} 26^{\prime} \mathrm{N}$. , long. $25^{\circ} 13^{\prime} \mathrm{W}$.; depth, 1000 fathome; hottom, volcanic mud.

Station 120, Septemher 9, 1873; off the const of South America, between Pernambuce and Fahia; lat. $日^{\text {e }} 37^{\prime} \mathrm{S}$., long. $34^{\circ} 28^{\prime}$ W.; depth, 675 fathoma; hottom, red mud.

Station 122, September 10,1879 ; off the coost of South America, between Pernambuco and Bahia; lnt. $9^{\circ} 5^{\prime}$ S., long. $34^{\circ} 50^{\prime}$ W.; depth, 350 fathoms; bottom, red mud.

Station 185, August 31, 1874 ; off Raine Island; Iat. $11^{\circ} 35^{\prime} 25^{\prime \prime}$ S., long. $144^{n} 2^{\prime} 0^{\prime \prime}$ E.; depth, 135 fathoms ; bottom, coral and.

*4. Cavolinia globulosa (Rang).

For deecription and figures, nee Boas, Spolia atlantica, p. 107, pl. i. fig. 7; pl. ii fig. 18 .

I retain for this form the specific title Cavalinia globulosa, aince the figure to which Gray refers in his Catalogue is that of Souleyet's Atlas (Voyage de la Bonite), which appeared (without text) before the catalogue of March, and deaignater the apecies in question as " Hyale globuleuse, Rang."

Habitat.-Indian Ocean; from $40^{\circ} 0^{\prime}$ N. to $34^{\circ} 30^{\prime} \mathrm{S}$. (Boas), from the coast of Africa, Red Sea (Iasel), Zangibar, Netal (Pfeffer), to Augtralio

Pacific Ocean; weatern portion, from $13^{\circ} \mathrm{N}$. ("Vettor Piasni" Expedition), China Sea (Boas), Malay Archipelaga; eastern portion, from 2° N. to 12° S. (Knacker).

Souleyet ${ }^{2}$ and A. Admms ${ }^{2}$ have cited this species as from the Atlantic, but without any preciae information. Pfeffer ${ }^{\text {a }}$ alnne notes a aingle definite lacality, lat. 1° S., long. $25^{\circ} \mathrm{W}$. I am inclined to euppose that thin wean some error in lahelling, and that Cavolinia globuloxa does not occur in the Atlentic. It is not recorded either by d'Orbigny, Benson, or Knocker ; and Boas, wha has examinad so much material from the Athntic, does not note a fingle apecimen as occurring there. And, finally, although the Challenger explored ea much of the intertropical Atlantic, and traversed it several

[^48]times going and returning, I hnve not found in the Clinllenger collection a gingle Atlantic specimen of Cavolinia globulosa.

Challenger Sperimens.-Living specimens.
Near Station 213, February 7, 1875; at Eamhoangan; lat. $5^{\circ} 59^{\prime} \mathrm{N}$., long. 129° a8 $8^{\prime} \mathrm{F}$.
Station 2164, Februnry 16, 1875; north of New Guinea; lat. $2^{\circ} 56^{\prime} \mathrm{N}_{1}$, loug. $134^{\circ} 11^{\prime} \mathbf{E}$.
*.5. Cavolining giblosa (Rang).

> 1896. Kyalea gibboa, Rang MS., in d'Orbigny, Voyoge dana l'Amirigue méridionnle, t. r. p. $95, \mathrm{pl}$. v. find. $16-20$.
> 1896. Ayciea Aloaa, d'Grbigoy, Fid, p. 97, pl. v. fige, 21-25.

For deacription and figures, see Ronf, Spolia atlautica, p 109, pl. i fig g; pl. ii. fig. 17.

Habitat.—Atlantic Dcean ; from 4: ${ }^{\circ} 10^{\prime}$ N. to $9 \mathrm{~B}^{\prime \prime} 1 \mathrm{~g}^{\prime}$ S., from the coaste of America to those of the Old World; Mediterranfan, Messinn, \&c.

Indian Ocfan; quothern portions, $22^{2} \mathrm{~S}$. (Ifons) to $41^{\circ} \mathrm{S}$. ($\mathrm{Tffffer)}$, from Africa (Madagascar, Natal) to Australia.

Pacife Ocean; western partion, Yellaw Sea (British Museum), China Sca (Bans), $16{ }^{\circ}$ N, 165° E. ("Vettor Pisani" Expedition), Port Jacksan (Angne), off Tabiti (Knocker) ; South-east Pacific ("Galnthen" Expedition).

Challenger Specimens.-I. Living specimene.
Station VIIf., Feloruary 2, 1879; 价Macleira; lat. $32^{\circ} 27^{\prime} 0^{\prime \prime}$ N., long. $16^{\circ} 40^{\prime} 30^{n} \mathrm{~W}$.
Betrepen Station 162 and 169, April 3, 1879; Melbourne to Sydney; lat. $3 \mathrm{a}^{\circ} 7^{\prime} \mathrm{S}$., ling. $149^{\circ} 18^{\prime} \mathrm{E}$.

Station 290, April 5, 1875; Admiralty Island to Yokohama; lat. $26^{\circ} 29^{\prime}$ N., long. $197^{\circ} 57^{\prime} \mathrm{E}$.

Station 249, July 7, 1875; Yokohame ta Sandwich Ielande; lat. $87^{\circ} 59^{\circ}$ N., lang. $171^{\circ} 48^{\prime} \mathrm{W}$.

Auguat-September 1875; Sandwich Ialands to Tahiti.
II. Deposit ehella.

Station 29, March 15, 1873; off Samhrero Island; lat. $18^{e} 24^{\prime} \mathrm{N}$., long. $69^{n} 28^{\prime} \mathrm{W}$.; depth, 450 fathome; battom, Pteropod acze.

Station 24, March 25, 1 1879; off Culebra Island: lat. $18^{\circ} 98^{\prime} 80^{\prime \prime} N$., long. $65^{\circ} 5^{\prime} 90^{\prime \prime}$ W.; depth, 390 fathams ; bottom, Pteropod coze.

Station 70, June 26, 1879 ; Bermuda to Azores; lat. $98^{\circ} 25^{\prime} \mathrm{N}$., long. $35^{\circ} 50^{\circ} \mathrm{W}$.; depth, $\mathbf{1 6 7 5}$ fathoms ; bottom, Globigerina ooze.

Station 78, July 10, 1873; off the Azores; lat. $37^{\circ} 26^{\prime} \mathrm{N}$. , long. $25^{\circ} 19^{\prime} \mathrm{W}$; deptb, 1000 fathome; hottom, volcanic mud.

Station 85, July 19, 1879; off Palma Island (Canarios); lat. $28^{\circ} 42^{\prime}$ N., long. $18^{\circ} 6^{\prime}$ W.; depth, 112.5 fathrma; linttom, voleanic mud.

Station 185, August 31, 1874; off Raine Islaud; lat. $11^{\circ} 35^{\prime} 25^{\prime \prime} \mathrm{S}$, long. $144^{\prime \prime} 2^{\prime} 0^{\prime \prime}$ E.; depth, 135 fathoms; hottom, coral savel.
4. Cnmolinia tridentata (Farskil).
p. 124.

> begberuet under Navaet Anomin trilentala, Skriv, noturligh. Sulsk., Ild. i., Helt ${ }^{\text {g }}$, pl. x
> 1801. Hyrtra comifa, Tamatel, Sysitime dee adimanx sans vertobres, p. 140.
> 1804. Hydeu papilionacea, Jhory da St Vincent, Voyga daua les quatre principales iles des wers d'Afrique, t. i. p. 137, pl, v. ig. \mathbf{l}.
> 1810. Hyale reniohranche, Péron et Legucuy, Hiatoito do la fawille des Malluzques Pteropades, Ann. Mus Hist. Nal Paris, t. xy, pl. ii, lige 13.

> Soc. Philam, t iii. p. ${ }^{2} 84$.
> 1919. Hyalaga rhemaitziana, Lesuony, Midi., p. 24d,
(ning descripiome).

> 1836. Hyodra afinid, d'Orhigny, Yoyage dans l'Amerque méridionale t. v. p. 91, pl w. figs, 0-10.

> 1859. Cacolinia telemms, A. Adame, On the Syanymand Habilata of Cavolinia, Diactionnd Pleurapus, Ann. add Mog. Nat. Hist, eer. 3, \ddagger iii. p. 44.

For desmiption and figurea see Boas, Spolia ntlantica, p. 115, pl. i. fig. A; pl. ii. fig. 19

It is not possille to maintrin the epecific distinctness of "Hyalma afinis," d'Orbigny, and Cavalinia tridentata: the two forms merge into one nnother (Dons, Spolia atlantica, pl. vi. fig. 100).

Hobitat,-Atlantic Orean; from $39^{\circ} 53^{\prime}$ N. (Verrill) to the latitude of the Cape of Good Hope, towards both Old and New Worlds; Mediterranenn.
ladian Ocann from $5^{n} \mathrm{~N}$. to oblout $40^{\circ} \mathrm{S}$., from the coast of Alrica (Zanzihar) ta Austrnlia.

Pacific Ocenn; western partion, Yellaw Sen (British Museum), China Sen (Bnas), Malay Archipelagn (Barnea, \&c.) (Gray), lat. 19° N., lang. 156° E. ("Vettor Piandi" Expedition): South-east Pacific to 37° S. (Kocoker).

Challenger Specimens.-I. Living specimens.
Station 241, June 29, 1875 ; Yokohama to Sandwich Islands; lat. $85^{e} 41^{\prime}$ N., long. $157^{\circ} 42^{\prime} \mathrm{E}$.

Station 254, July 17, 1875; Yokohamo to Sandwich Iglands; lat. 35° 1月' N., long. $154^{\circ} 43^{\prime} \mathrm{W}$.
II. Deposit shells.

Station 7B, July 10, 1879; off the Azores ; lat. $37^{\circ} 26^{\prime}$ N., long. $25^{\circ} 13^{\prime}$ W.; depth, 1000 fathoms: bettom, volcanic mud.

Station 120, September 9, 1879; of the cnast of Soutb America, between Peruambuco and Babia; lat. $8^{e} 37^{\prime}$ S., long. $34^{\circ} 28^{\prime}$ W.; depth, 675 fothoms ; bottom, red mud.
7. Cavolinia uncinata (Rang).

For description and figares, see Boos, Spolia atlantica, p. 119, pl. i. fig. 10 ; pl. ii. fig. 20 .

The pasition of a distinct species cannot be nilowed to the fom Hyalsa uncinatiformis, which Pfefer only distinguishes by certain features of colour and size.

Habitat.-Atlantic Orean; from $40^{\circ} 5^{\prime} \mathrm{N}$. (Verrill) to the Cape of Good Hope (British Museum), towards both Old and New Worlds.

Indian Ocean; from the Gulf of Rengal (15° g0' N.) to $40^{e} \mathrm{~S}$., from Afriea, Red Sea (British Museum), south-enst of Arahia (Blanford) to near Australia, 111" 40^{\prime} E. (Boas).

Pacific Ocean; western portion, Yedo, Yellow Sea (British Museum), China Sea (Boas); eastern portion from $2^{\circ} 0^{\prime}$ N. to $8^{\circ} 8^{\prime}$ S. (" Vettor Pisani " Expedition).

Challenger Specimens.-I. Living specimens.
Station 100, Augurt 16, I879; St. Vinceat to Sti. Paul's Rocks; lat. $7^{\circ} \mathbf{1}^{\prime}$ N., long. $15^{\circ} 55^{\prime} \mathrm{W}$.

August-September 1875 ; Sandwich Islanda to Tahiti.
II. Deposit shells.

Station 29, March 15, 1873; off Sombrere Island ; lat. $18^{a} 24^{\prime}$ N., long. $68^{2} 28^{\prime}$ W.; depth, 450 fathome; bottom, Pteropod oese.

Station 24, March 25, 1873; off Chlebre Island ; lat. $18^{\circ} 98^{\prime} 90^{\prime \prime}$ N., long. 65 $5^{\circ} 5^{\prime} 90^{\prime \prime}$ W.; depth, 890 fathoms; bottom, Pteroporl nnze.

Station 日5, July 19, 1873 ; off Palma Igland (Cenariea) ; lat. $28^{\circ} 42^{\prime}$ N., long. $18^{*} 6^{\prime}$ W.; depth, 1125 fathoma; bottom, volcanic mud.

Station 120, September 9, 1873; of the cosst of South Amerien, between Pernambuca and Hahia; lat. $8^{\circ} 97^{\prime}$ B., long. $34^{\circ} 28^{\prime}$ W.; depth, 675 fathoma; bottom, red mud

Station 122, September 10, 1873; off the cosst of South Americo, hetwenn Pernambuco and Rnhia; lat $9^{\circ} 5^{\prime}$ S., long. $34^{E} 50^{\prime}$ W.; depth, 350 fathoms; bottom, red mad

Station 185, Auguat 31, 1874 ; off Raine Island; lat. $11^{\circ} 95^{\prime} 25^{\prime \prime}$ S., long. $144^{\circ} 2^{\prime} 0^{\prime \prime} \mathrm{E}_{\text {; }}$ depth, 195 fathoms; bottom, coral sand.
*8. Cavolinia inffera (I.esueur).
1613. Hibima imfora, Tasueur, Mémoive anr quelques animaux mollusqueg, we, Noup. Bull. Soc Pbilom., tiii. గ. 285, pl. v. fig. 3.
1811. Hyalea elongata Lequeur, MS, in de Blniaville, Byale, Dirt d, Sej. Nnt, t xxíl p Ag.

 fige. 21-25.
 Siciliw, p. 101, pl vi. fig 18 (nan Ravg).
 Hemborg, Bdi. vii p. 90, pl vij, fig. 9a.

For description and figures, see Rors, Spolia atlantica, p. 12S, pl. i. fig. 11 ; pl. ii. fig. 21.

It is not possible to admit the specific separation of the forms labiata and inflexa, which are linked to one another by gradual transitional forma (Boas, lnc. cut., pl. wi. fig. 98). It ie more natural to regard them aimply as local varieties, though it mast be nated that they are not always reepectively confined to distinct localities, but may occur together, as for instance in the Indian Ocesn.

Habitat-A tlantic Ocean; from $41^{\circ} 35^{\prime} \mathrm{N}$. (Boas) to $40^{\circ} \mathrm{S}$. (Knocker), towards hoth Old nud New Worlds; Mediterranean.

Indian Ocean ; from the Gulf of Bengal (Pfeffer) to $42^{n} \mathbf{S}$. (Bensan), from the coast of Africa (Zanpibar) to Australie

Pacifie Ocean; weatern portion, Strait of Corea, China Sea (Boas), Port Jacken (Angas); erstern partion from $13^{\circ} \mathrm{N}$. to $42^{\circ} \mathrm{S}$.

Challenger Spenimens.-I. Living.
Station 142, December 18, 1879 ; Cape of Good Hope to $46^{\circ} \mathrm{S}_{\mathrm{i}}$ lat. $35^{\circ} 4^{\prime} \mathrm{S} .$, long. $18^{\circ} 97^{\prime} \mathrm{E}$.

Station 143, December 19, 1873 ; Cape of Good Hope to 46° S.; lat. $96^{\circ} 49^{\prime}$ S., long. $19^{\circ} 24^{\prime} \mathrm{E}$.

Station 175, Auguat 12, 1874 ; off the Fiji Islanda; lat. $19^{\prime \prime} 2^{\prime}$ S., long. $177^{\circ} 10^{\prime} \mathbf{E}$.
Station 181, Auguet 25, 1874 ; Fiji to Raine Teland ; lat. $19^{\circ} 50^{\prime}$ S., long. $151^{\circ} 49^{\prime} \mathrm{E}$.
Near Station 290, April 4, 1875; Admiralty Yelands to Yokohama ; lat. $25^{\circ} 99^{\prime} \mathrm{N}$., long. $197^{\circ} 57^{\prime} \mathrm{E}$.

Station 230, April 5, 3875 ; Admitalty Talnade to Yckuhama; lat. $26^{n} 29^{\prime} \mathrm{N}$, long. $197^{\circ} 57^{\prime} \mathrm{K}$

Station 256, July 21, 1875 ; Yokobama to Savdwich lskands; lat. $90^{\circ} 22^{\circ} \mathrm{N}$. long. $154^{\circ} 56^{\prime} \mathrm{W}$.

Station 295, November 5, 1875 ; Tahiti tn Valparaisn; lat. $38^{2} 7^{\prime} \mathrm{S}$, long. $94^{*} 4^{4} \mathrm{~W}$.
Station 327, March 4, 1976; Rio de Janciro to Tristan da Couba; lat. $8 \mathrm{fr}^{\circ} 4 \mathrm{~A}^{\mathrm{J}} \mathrm{S}$., long. $42^{\circ} 45^{\prime} \mathrm{W}$.
II. Deposit skells.

Station 24, March 25, 1873 ; off Culebra Islaud ; lat. $18^{\circ} 38^{\prime} 90^{\prime \prime}$ N., long. $65^{\circ} 5^{\prime} 30^{\prime \prime}$ W.; depth, 390 fathoms ; hottom, Pteropod ooze

Station 3., April 4, 1878 ; off Bermular ; lnt. $32^{\circ} 21^{\prime} 30^{\prime \prime} \mathrm{N}$. , long. $64^{\circ} 85^{\prime} 55^{\prime \prime} \mathrm{W} . \mathrm{i}$ reptb, 435 fathows; bottom, coral mud.

Station 78, July 10, 1879; ofl the Azores; lat. $37^{\circ} 2 \mathrm{f}^{\prime} \mathrm{N}$, long. 25° 19 a^{d} W. depth, 1000 fathoms; bottom, volcenic mud.

Station 85, July 19, 1878 ; off Palmn Island (Canarios); lat. $28^{\circ} 42^{\prime} \mathrm{N}$., long. $18^{e} \mathrm{G}^{\prime}$ W.; depth, 11 25 fathoms ; bottom, volcanic mud.

Station 120, September 0, 1873 ; off the const of South America, between Pernamlouco and Babia; lat. $8^{\circ} 37^{\prime}$ S., long. $34^{e} 28^{\prime}$ W.; depth, 675 fathoms; bottom, werl mond.

Station 122, September 10, 1873 ; of the const of South America, between Pernambuco and Bahia; Int. $9^{\circ} 5^{\prime}$ S., long. $94^{\circ} 50^{\circ}$ W.; deptb, 350 fothoms; lettom, red mud.

Station 185, August 81, 1874; off Pnine Island; lat. $11^{\circ} 85^{\prime} 25^{\prime \prime} \mathrm{S}$, long. $144^{\circ} 2^{\prime} 0^{\prime \prime}$ E.; depth, 135 fnthoms ; bottom, coral mand.

Station 929, February 28, 1876; Falkland lslands to Rio de la Flata ; lat. 35 ${ }^{2}$ 39'S., long. $50^{\circ} 47^{\prime}$ W.; depth, 1900 fathoms; battom, hlue mur.

Station 335, March 16, 1776 ; Tristan de Cunha to Ascension Island ; lat. $32^{\circ} \mathbf{2 4}^{4} \mathrm{~S}$, Inug. $13^{\circ} 5^{\prime}$ W.; depth, 1425 fathoms ; bottom, Pteropod ooze.

As we have seen nbove, there are thirteen specific titles with various generic designations (Hyalag, Cheodora, Pleuropus) applied to farms which we regard as goung stages of some species of Cavolinia.

Of these thirteen names it is necessary in the first instrace to eliminate (1) Hynlsad emplanata, Gegenbaur, 1855 (= Hyalaa longifilis, Tmarhel, 1855), non (2).Pleuropas pellucidus, Eschacholtz (mintakenly identifed by Gray ns Cleodora curvata, Souleyet), which, in spite of the inadequacy of the figure nad deacription given by Eschacholtz, appears to correspond to Hyalma depressa, d'Orbigny. Since the figures and description given by the latter are more satisfactory, his lesignation Hyalaia depressa is the nine adopted.

As to the remaining eleven titles, the last authar who bos given a ajetematic account of Pteropods, namely Roas, mentions seven of them which he regards as repreacnting adult forma and diatinct epecies. These are .-

1. Cleodore compressa, Souleyet.
2. Cleodora pygmama, Roas.
3. Clendora curvata, Souleyet.
4. Plensopus longifilis, Troschel.
5. Hyalea rotundata, Bons.
6. Hyalsa lmuigata, d'Orhigny.
7. Hyalza depressa, d'Orbigny.

It is necessary to examine these forms individually.
*1. Cleadora compressa, Souleyet.
1850. Clio deyressa, Grng, Cotaiogue of the Malluacn in the Callertion of the Aritiph Muraum, pt ii, Pleropoda, p. 14 (rina deuripipliona).
1859. Cleodora compressa, Soulaget, Vayna de la Borite, Zeolagie, t. it p 181, pl vi. fige 26-32.
From Sanleyet's figure it may be inferred that this Pteropod did not exhibit fully developed reproductive organg, ond was not therefore an adult.

The form in queation ought to be referred to Cavolinia trispinosa. To this view, formerly enggested by Pfeffer,' Roas nbjects that in Cleodora compressea the mouth is narrower, and that in prapartion to the height Cavolinia trispinosa is thicker than Cleodora compressa. Hut these comparisons only hold true with a Cleodora compressa which is much flattened and a swoilen Cavalinia trispinosa, and are not sufficient to disprove our opinion, which is hased on the following facts :-

1. The embrganic portion, the general form of the shell, and the curyature of the eides are identical in Clendnra compressa and Cawlinia trispinosa.
2. The fina and the posterior lobe of the foat in Cleodorr compressir have absolutely the same form as in Cavolinia trispinosa.
3. The doreal surface of the sbell of Cleodora compressa exhibite three ridges disposed in exactly the same way as in Cavolinia trispinosa, and not as in the genus Clio (Cleodora).
4. As coneerne geographical distribution, the two forms are equally cosmopolitan.

Like Souleyct and \#oas, the palmontologist Searles Wood has regarded the young fnasil Cavolinia trispinasa as a diatinct apecies which he has named Clendora infundibulum.

Habitat.-" Cleodora compressa" has been noted in the Atlantic Ocean (Souleyet, Rattray) and also in the Parific Ocean ("Vettor Pisani " Expedition).

[^49]Challenger Specimema-1. Living specimens.
Between Stations 162 and 163, April 3. 1874 ; Melhourne to Sydney; lat. $38^{\circ} 7^{\prime} \mathrm{S}$., long. $149^{6} 1 \mathrm{~B}^{d} \mathrm{E}$

Station 181, Angust 25, 1874; Sydney to Raine Ialand; lat. 18° 50' 8 , long. $151^{\circ} 49^{\prime} \mathbf{E}$.

Between Stations 247 and 248, July 4, 1875; Yokohama to Sandwich Ielonds; lat. $\mathrm{Af}^{\circ} 42^{\prime} \mathrm{N}_{\mathrm{I}}$, long. $179^{\prime} 50^{\prime} \mathrm{W}$.

1I. Deposit shells.
Station 219, March 10, 1975 ; Admirelty Islanda to Yokohama; lat. $1^{n} 54^{\prime} 0^{\prime \prime} \mathbf{S}$., long. $146^{\circ} 39^{\prime} 40^{\prime \prime} \mathrm{E}$; depth, 150 fathome ; hottom, coral mud.
2. Cleodora pyymesa, Ross.
1886. Ciemzora pygmen, Boas, Spolin atisntice, p. 84, pl. iv. fig. 57.

The close resemblance which this form presents in Cleodora compressa shaws that it must be the young atage of a apecies nearly allifd ta Cmmlinia tirispinosa. But the only apecies very nearly related to the latter is Cavolinin quadridentata.

In the last mentioned, as in Cavolinia longirostris, the initial portinn of the ndult shell is caducour, and is as yet quite unknown, si that Cleodora pygman fille up a blank.

The three dorsal ribs of Cendora pygmsa correspand absolutely to thase of Canolinia quadridentata. The latter is more globular than Cavolinia trispinosa: Cleodora pygmara is also lear flattened than Cleodora compressa. Finally, the geagrapbical diatrihution of the t'wo forms is virtually the same; Cleodora pygmax has only been found in localities where Catolinia quadridentata almo occurred, in the Indian and Pacific Oceang.

3. Cleodora oumuata, Souleyet,

185n. OXis polluciac, Gray (pan), Catalogue of the Melluace in the Collection of the Britiah Muneum, pt. ii., Pleropoda p 14.
1852. Gleodora certrata, Eauloget, Voyage de la Bonít, Zoologie, t ii. p. 185, pl. vii. fegr. 6-10.

Hoas, following Souleyet, regarde this form as a apecies of Clio (Cleodora), and denies that it is anly a young atsign.' Nevertheleas it must be noted (I) that the figure of Souleyet showa that the genital organs are acarcely developed, a good proof that the form is not adult, and (2) thant the absence of a marked constriction limiting the embryonic abell shows that the form in quartion is a Caoblinia and not a Clio. Krohe" has already identified it as a young Cavolinia.

[^50]As to the species to which this young form should he referred, the slight curvature of the lateral margins leads me to helieve that it helongs to a apecies in which the posterior portion is relatively much developerd; and the great breadth of this region in proportion to its length, as well ra the alsence of dorsal rihs, lead me to regard Cleodora curvata as simply a young stage of Cavaliniat uncinata. It may be further noted that Ciendorn curvata hiss only heen found in the Atlantic where Gavolinian theinata is mnst abundant.

Ta his Cheodora curmata Snuleyet' teferred Hyalza ragnsn, d'Orbigny. But the latter appears to me to differ considerably iz being less thick, in linving a proportionately greater length, and in exhibiting a less marked curvature.

Finally, the form described by Huxley under the title Cleodora curmata is not n Clio at all, since Huxley himall speaks" of the "abell fisured laterally," and of the " filiform appendages of the mantle." It is also a Cavolinin, but differs from the Cleodora curvata of Souleyet, anil corresponds to Hynlara depressa, d'Orbigoy (see helow).
4. Plenropus langifilis, Troschel.
 Netergeach, Jahrg. xx Bd. i. p. 308, pl. viii figa 1, 3.
 pp. 40, 211, pl. i. 6g 1.

Cantraine has nlready recognised in this farto (which he identified with Fyalma lavigata, d'Orbigny) the young atage of Cavolinia tridentata. It is to this species that ane must refer the forms described by Troschel and Gegenbaur.

At the suggestion of Dr. Yaul Schiemenz, I took oceasion at Naples to examine numerous specimena of Flyalder tridentata, among whicb I could note all the transitions, in size and thickness, between Pleuropus longegifis and the typical adult Cavolinia tridentata. I also observed that the stage longifilis might be abnormally prolonged to of late perind, and then developed inta specimens of large size and flattened form, with the closing apparatus not yet developed, and with the reproductive system atill immature.

5. Hyolea rotundata, Boas.

1896. Eyalan toturiado, Thorn, Spolia atlantica, p. 129, pl. iv. fige. 69-61.

This form is certainly the young atage of Cavolinea glabulosa. That this is an is sufficiently demnnstated by the following charecters common to the two forms:-

1. Dorao-ventral dilation of the shell ;

[^51]2. Tho inconsidetable brendth of the posterior portion ;
3. The similar dispensition of dorsnl tills;
4. The shartaess of the rostrum or pasterior point.
6. Hyalac lafnignta, d'Orligay.
 fign 15, 19
1850. Siarria lecigata, Gray, Colologue of the Molluecm in the Callection of tho Dritigh Muspum, pt ii., Plempada, p. 11.

I refer this form to Cavolinia longirosivis, with which it ajpears to have most nffinity :-

1. In the barizontal direction of the posterior margins ;
2. In the way the ventral lip extende pasterinuly heyond the darsal ;
3. In the two inconepicuous dorsal gronves;
4. In the curvature of the posterior portion (in Cavolinia longirastris the initial portion of the shell is nlways braken off, but even the direction of the truncature shows that the portion which has dismpented would have been much recurved dorsally). It is of course not to be imngined that "Hyalear lavigate" is the caducous portion of Cavolinia longirostris, to which only its posterior recurved partion corresponds.

The geographical distribution of the two forma ie the same. Cavolinia longirnstris is abundant in localities where Hyalaa lavigata has been found.
*7. Hyalaza depreassa, d'0rbigny.
 Reina vin Cransiadt hia St Paler und Panl, Oten, Jam, I日25, p. 73.5 , pl. v. fig. 2 (main).
1836. Byalea depresea, d'Orhigry, Voyage dama l'Amerique míridianalp, t. v. p. 110, pl vin. flge 11-14
1860. Clia pellueida, Gray, Catalogue of the Mollusea in tha Colleotion of the Britiah Murentm, pt ij., Pteropoda, p. 14.
1850. Dinerin dopposm, Gray, Ftrid, p. 11.
1853. Clendora curvata, Hurley, On the Marphology of the Cephaloun Mnllusca, de., Phil. Tracs, 18t3, p. 42, pl. iv figa, 4, 5.

Souleyet' has referred Pleuropus pellucidus to Ciio cuspidata, and Gray to "Cleodora curvata, ${ }^{\text {" }}$ Souleyet. These identificstions appear to me erroneous, os in my opinion Pleuropus pellucidus corresponds to Hyalsa depressa. But as the description and figura given by Eachacholtz are equally bad, it is better to ignore entirely the title which he hat beatowed.
' Hiatofra nataralle dea Mollumaes Pidiopodet, fy 48.

On the other hand, Souleyet' expresses his helief that Hyalsea depressa is only a young state of Cavolinia inflexa. This opinion ${ }^{2}$ smems to me correct. ln fact my examination of a specimen of Hyclead depressas showed me that this form was sexually immature, with incompletely developed accessory genital glands,"while on the other hand the slight thirkneas of the sliell, the length, the comparative narrowness, and the curvature of the posterior portion, are in favaur of Souleyet's theory ; and besides, Hyaloce depressa has heen found almost always where Cavolinia inflesa occurred in abuudance, namply, in the Pacific Ocean, $20^{\circ} \mathrm{S}_{5} 87^{\circ} \mathrm{W}$. (d'Orbigny), $5^{2} \mathrm{~N} ., 115^{\prime} \mathrm{W} . ;$ Callao to Honolulu ("Vettor Pisani" Expedition, June 9, 1894); in the ludian Occan, Colombo to Aden ("Vettor Pisani" Expedition, Marsh 10, 1885); and, fonlly, in the Atlantic (Challenger Expedition).

Challenger Spectmens.-I. Living specimens.
Slation 2lfid, Fehruary 16, 1875 ; Samlonngan to New Guinen; lat. $2^{n} 46^{\prime} \mathrm{N}_{\text {a }}$ long. $134^{\circ} 11^{\prime} \mathrm{E}$.

Ou May 4, 1875 ; at Yokohama.
Station 350, Apri] 1I, 1876; Ascension Igland to St. Vincent; lat. $10^{\circ} 55^{\prime} \mathrm{N}$., long. $17^{\circ} 4 \mathrm{f}^{\prime} \mathrm{W}$.
II. Depnsit ehells.

Stotion 219, Marcb 10, 1875 ; Admiralty lalands to Yokohama; lat. $]^{\circ} 54^{\prime} 0^{\prime \prime}$ S., long. $14 G^{\circ}$ g 9^{\prime} d $0^{\prime \prime}$ E. depth, 150 fathoms; hattom, caral mud.

There remsin four other names, which are int mentioned by Hoas, viz.,

Hyalort rngosa. l'Orhigny '(Balantium
Pleuropus hargeri, Verrill. ${ }^{\text {. }}$
sugosum, Gray).
Souleypt" refers the two former to his "Cloodova curvata." This appears to me inaccuratc. Hyrlea rugosa (which has been found in the South-east Pacific) differs from "Cleorlora curvata" in being less thick, in leing longer in proportion in breadth, and in baving a less marked curvature.

I regard this form and Pleuropus hargeri (North-west Atlantic) as two auccessive stages of Cavolinia githosa. The length, the slight thickness, the moderate eurvature of the intius point in both forms, as well pes the elight divergence of the lateral margine, support this opinion.

${ }^{1}$ ly de H'n'ovile, Hyala, Dicl d Exi. Not, exiii. p. Eq

- Voynge dana l'imerique méridionale, t. v. p. 118, pl. viii. fga 18-14.

 vol. \%. p.

As to "Cleodora triflis," it is difficult to determine to what arlult form this young stage should be referred. But the alsence of any well-marked coustriction sepлratiug the embryonic shell, and the presence of three lateral appendogee on cach side of the mantle, show clearly that we have here to do with a Carolinia nad not with a Chio (Cheodora). But according to Trosebel the posterior partion of the shell is not curved, while all the species of Cavalinia (except the group Cavnlimia tsispinosa and Cavolinia quadridentrta, where the embryonic shell is minkedly separate) exhihit a doranl curvature of the initial portion. The position of "Cleortona wifilis " must therefore remain uncertain.

Family lil. Cympoifide.

1841. Oymbulida, Canimine, Mnlacologio mílitermnirne ot littorule, Mom. Acad. Sci. Bruxelies, t. xiií p. ${ }^{3.3 .}$

Fyalaine, pars, Austorntu.
18:5. Alata, Wagnar, Die Wirkallogen daa weisen Mgerea, Ed. i. p. 119.
Characters.-" Shell" straight, bilaterally symmetrienl, so-called cartilagineus, quite envelnped in the mantle. The animal pannot completely retire within it. The animal has a ventral palial ravity, nad the fins from a broad dise, on the dorsul margin of which the ceplalic portion is laid beck.

Description.-The "shell" of the adult Cymbuliida is considerably elongated in a darso-ventral direction. It is sornewbat hallowed out in the form of a boot or slipper, and is more or less broadly open veutrally. It is not bnmologous with the enlcareous shell of other Thecosomata. In the Cymbulide the homologue of the latter falle off at the close of the larval life, As to the rartilaginous "deutoconch" or "pseudoconsh," it is the result of thickening of the integument. Nor is it the only illuatration of auch a atructure among the Thecosomatn, far in Cavolinia tridentata, on the anterior portinn of the darsal lip of the shell, there is a small covering portion with the same atructure as the "shell" of the Cymabulidm, and similarly praduced by the mantle, the prolongationa of which may cover a conniderable partion of the shell.

The deutomench of the Cymbulide, which is only covered by a delicate epithelinl layer, is very rendily lost, ${ }^{1}$ as the result of which the members of this frmily lave often been deacribed as naked.

The animal has its visceral portion relatively little developed, and the foot, madified as a fin, greatly predoninatos. The cephalic portion in diatinet; it pxtende beyond the doraal margin of the fin, and is reflected on the anterior portion of the latter, forming a sort of probnacin, more or less elongeted, aometimes remaining free (Gleba and Cymbuliopsis) or fired to the aurface of the fin. The lipa do nat conaist an in the typical Thecosomata (Cavoliniids) of two darso-ventral folds, united doranlly above the mouth, and continued on divergently to the ventral margin of the fins without re-uniting

[^52]ventrally below the month; on the contrary they completely aurround the mouth, dorsally and ventrally, without heing in any way continued on to the fin. Their disposition recalls, especially in the young specimens, that of Perachis.

The two tentacles are alsolutely symmetrical, and the right ane is not enclosed in a shenth. The penis is situoted on the dorsol aurlace of the head, in the median line in the ndult.

The orientation of these animala is given but umeatisfactorily in malacological descriptive works. This is especially true, an we slanll sef, of Cymbulia, and is due to the marked external difference hetween the Cymbulides and the other Thecosomata

From a systematic point of view the family ia yet more unatisfactorily known than even the Iimarinidy. For the shell of the ndult Cymbulida not only bas a mnrphomagical import different from that of the other Thecosomata, but is aleo different atructurally, and does not admit of heing preserved in the dry state. In consequence of which it han received but little attention from the "dry-skin philnsmphers"; and as in the gencral systematic treatment of Mollusca, at lesst as regarda genera and apeciea, the conchologists have the upper hand, the result is that our knowledge of the eystematic relations of this group is in a rudimentary state, and that the information we possess of the animals is of a moat restricted and incomplete eliarneter.
lt is very unfortunate that the materials as yet at command bave not enabled me to make any great pragress. I can anly interpret more clearly the known facts, correct certain errors, and complete or elacidate certain observations.

The generic names hitherto applied to the forms in this family are four in number :Covolla, Cymbulia, Gleba, and Tiedemasinia. Of these four nomes, two, namely Comalla and Tiedemannia, are, ns we shall afterwards ace, synonymous with Gleba. There only remnin Cymbulia and Gleba to take nccount of.

But to distribute the different species of Cymbuliida hetween these two genern, and to determine their reapective boundnries, is no ensy task, especinlly with the alight utilisalile material at command. This dificulty in increased by the fact that we have ahelle without animals and animals without ehella, and thnt the latter bave been described as naked, while in reality all the adult members of this family possess the sn-cnlled "cartilaginous" pseudoconch.

If we aurvey the diferent specific titles given to forms referred to the Cymbuliidæ, we find, in addition to the four names of genera, the following eaventeen namee of species :-

> Cymbulia calceola, Verrill.
> Cymbulia cirvoptara, Gegenbaur.
> Cymbukia norfolkensis, Quoy and Gaimard.

Cymbutia nvaza, Quoy and Gaimard. Gymbutia peroni, de Blainville. Cymbulia proboseidea, Gray.
Cymbulia punctata, Quay and Gaimard.

Cymbulia quadsipunetala, Gegen- Ticdemannia creniptera, Kroln baur.
Cymbulia radiata, Quoy and Gaimard.
Theclemannaa charyhdrs, Troschel.
Tiedemannia chrysosticta, Krohn.

Tiedemanuia napolitana, Delle Chiaje.
Tiedemannia scylle, Traschel.
Comollo spertabilis, Dall. Gleba condata, Forskil.

But it is neceasary to note that nmong the alove there are :-

1. One title applied to a Gymnosomatous form, Cymbulia novfollensis, Quoy and (thimard, which is a Halopsyche (see Report on Gymnosomata).'
2. Nomerous titles applied to young stages, which have been regarded na distivet forms (ofter the embryonic development there are yet notable external differences batween the very young Cymbuliide and the adult forms) :-

Cymbulica punctata, Quoy and Gaimard,
Cymbulias radiata, Quoy and Gnimart,
Tiedemannia scylla, 'Troachel, Tiedemannia charybdis, Trosehel, are certainly young forms of Gleha. So too the Cymbulia cirroptera of Gegenbaur is in all prohnlility only the young form of this genus Gleba, nor can I regurd Cymbulia quaduripunetata, Gegenbaur, os an adult individual,
3. Three titles are synonyms for other species :-

Cymbulia proboscidea, Gmy = Cymhulia peroni, de Blainville.
$\left.\begin{array}{l}\text { Tiederaania napolitana, Delle Clinje, } \\ \text { Tiedemannia creniptera, Krobn, }\end{array}\right\}=$ Gleba cordata, Forskil.
There thus remain six titles:-
Cymbulia calceola, Verrill.
Cymbulia peroni, de Blainville.
Cymbulia avata, Quoy and Gaimard.
Tiedomannia chrysosticta, Krohn.
Corolla spectabilis, Dall.
Gleba condata, Forshîl.
It is necesancy now to note that of these six species there are only two which are really well known. These are Cymbrlia peroni and Gleba cordata, both from the Mediterranean. The othera are very imperfectly known, as far inatance Cymbulia ovala and Gleba spectabilis. The latter and Tiedemannia chrysosticta have not yet been figured; of Cymbulia ovata and Gleba spectabilis I have been able to examine apecimens, but these were unfortunntely in on insufficient etate of preservation.

In utiliaing the information which we possess in regard to these six forma, we have to fare the difficulty which I have mentioned alove, the difficulty namely of diatributing the different forms between the two genern Glebea and Cymhulia, or, in other words, of establishing the eract limits and differential cbaracteristics of the two genera

[^53]If we restrict our attention to Cymbulia peroni and Gleba cordata, the question a indeed aimplificd. We see then, in Gleba, a fren elongated proboscia, a fo with ontinuous margin, without ventral lobe, and a "shell" of considersble delicacy, almost without cavity, and with a nearly mmoath surface; while in Cymbutia, on the contrary, we find a fin with a ventral lohp, a short proboscis, not at all free, and a thick "shell" with a marked cavity and with a spiny surface. Thue we underatand how the diferentiating characters of the two genera are given with so much definiteness by the authers' who establish their generic diagnosis acending to these twa forms.

But these two forms (Cymbulia peroni and (rleba cordala) are precisely the two extremes of the series of Cpmbulinds, and if we turn from these to the four other forms alreaty enumerated, we find .-

1. In Tipdennaniia chrysosticta nnd in Corolla spectabilis, which belong to the genus flebla, the prohnecis is very short, as is nlso the case in a form from the Atantic, figured ly Boas (pl. iii. fig. 31, Spolia atlnntica).
2. In "Cymbulia" ovata and in "Cymbulia" calceola, the fin prescats a continuous margin and no ventral lobe. In these respecte they thus reasmble Gleba, while the prohoreis, whirh is indeed sbmit, is free, and resembles that of Tiedemannuit shrysosticta and Comalla spectanitis. The "shell," on the other band, is altogether different, botb from that of Cymbulia and that of Gleba, for it is rather thin, with a tuberculated aurface, and with a very large cavity.
J. D. Macdanald also figures' a Cymbulia from the Indian Ocean withouta ventral lobe to the fin. I bave unfortunately been uaalue to see his specimens, but I entertain much doubt as to the form of this fin, since the "shell" of this form is very like that of Cymbulia perani from the Mediterranean, and the latter, like ane of the Challenger forms from the Western Pacific, exbibits a well-developed ventral lobe an the fin.

On the ather hand, "Cymbulia" calceala and "Cymbulia" ovata, which arc entirely destitute of the above lohe, agreeing in this particular with the Cymbutio of Macdonald, possess a sbell quite different from Cymbuia perani, the Cymbulia figured by Macdonald, and Cymbulia parvidentata, n . 日p., from New Zealand. Thie shell is not painted dorsally, and dopa not exhibit ventrally the apacial truncation seen in the three forme above mentinned. It has a distinct alipper-like form, with thin walls, with a deap cavity, and without apinea along ita aperture

From the above it munt be evident that the genern Cymbulia and Gleha nre nearer one another than might be inferred from the contrast between Cymbulia peroni and Glelac cordata. It aleo becomes obvious that it is impossible to refer to these two genera alane all the forms which have been referred to the family Cymbulidide. "Cymbulia" mata and "Cymbulia" calceala cannot be placed within either genus,

[^54]and demand the establishment of a new divisinn which I propose to call Cymbuliopsis.

The only way of distributing the different species of Cymbubidus seems ta me to be as follows :-

1. Gleba; proloscis free, fin with a continuous margin, shell flattened, with almost on cavity.
2. Cymbuliopsis; proboacis free, fin with a continuous margin, shell in form of a slipper, with a very large cavity.
3. Cymbulia; proboscis fixed throughout its entire length, fin with a ventral lobe, shell thick, with a reduced eavity.
The genua Cymbulia will include (1) Cymbulia parami, de Blainville, (2) Cymbutia parendentata, b. sp., (9) a form of which a apecimen without shell was collecterl hy the Chnllenger in the Western Pacific Ocean, and very probably alsa the Cymbulian of the Indian Ocean figured by Macdonald.

The geous Cymbuliopsis will include (1) Cymbudia ovata, Quoy and Gaimard, and (2) Cymbulia calceola, Verrill.

Finally, the genus Glebra will include (1) Gleba cordata, Forskil, (2) Tiedemannia chrysostinta, Krohn, and (9) Corolla spectabilis, Dall.

Cymbulia, ${ }^{1}$ Péron and Lesueur.
1910. Cymbulia, Pedran et Lequeur, Hiatnira de In iamille de Malluaque Ptáopodea, Ann. Mul Hist. Nat. Paris, k. xy. p. 66.

Characters and Description.-The "shell" or deutoconch, described as cartilaginous or gelatinous, is elongated in a doreo-veatral direetion, and has a moderately elongated cavity and a pointed dorabl extremity. The external aurface is ravered with tuberclea arranged in rows parallel to the main axia the dorsal extremity ia alway日 dilated and projects more or lese markedly.

The animal bas a natatory dise of considerable breanth, and a ventral lobe on the foct. The cephalic portinu is reflected on the doranl margin of the fin, but is fixed throughout ita length, and constricted towards ita diatal extremity. A radula and jawe. ${ }^{2}$

The orientation of Cymbulia, and indeed of all the apecies of Cymbulida, has hean generally misunderstond, especially in general works an Mollusea. Firat of all, in regard to the position of the animal within the shell there hos been a difference of opinion somewhat andogous to that ancient diacussion in regard to Nautilus.

[^55]Me Rlainville criticises the figore of Páron and Lesueur, ${ }^{1}$ and affirme that the animal is turned in the wrong direction in relation to the shell. He figures Cymbndia with the animal turned in the opposite directinn. But bis chnracteristic love of eriticism is in this instance at fault, for it is in his figure that the animal is inverted. The uncertainty as ta the orientation of the animal in relation to the phall is doultless due to the readinesa with which shell and animal are separateri, and the difliculty of preserving the specimana in their natural position. The same rpason bas led anme anthore to asaert in regard to Cymbulice what has been affirmerl of the female Argonanta, that the shell was not pronduced by the animal at all."

In regard to the position of anterior and pasterior cextremities of the shell and of the animal, Woodward's Manizl of the Mnllusea, which has been followed by all subsequent treatises, representa the pointed extremity of the shell of Cymbulia preroni as anterior, and the trinacated end as poaterior. Machonald, ${ }^{4}$ however, does not accept this statement, but gives a dinmetrienlly npposite interpretatian. Acenrding to bim the tru⿻ented extremity is auterior. Both thesc conclusions are inacenrate.

The source of error lies in the external differcoces between the shell of Cymbulider and thase of Cavolinijdm, and in the great elongation of the dorsa-ventral axis, which has led to itg being regarded as antern-posterior.

To elucirnte the true orientatinn of the ahell, it ia necessary to make an examination of the animal itself. An investigntion of the latter shows that the pallial cervity, whirh in all the Thecosomata (except the Timacinidse) opens ventrally, in consequence of a sprandary process to be explained in the A natomical Report, apens in Cymbulia pernni in the direction of the truncated extromity of the shell. This extreanity ought therefore to he considered as ventrol. On the other band, the dorsal portion of the animal, ss determined by the position of the tentarles, is situated on the side of the pointer end.

 on pllial cinily; f, alimuntary enong.
 This extremity is therefore to be regarded as dorasl, and the antero-posterior axis of the abell is the short axis at right angles to the surfince of the fins.

Among the forma referred to this genus only one in well known. There is alao a accond new form of which unfortunately anly the shell in known.

[^56]I have already mentioned that I have much doubt in regard to the form of the fin in the "Cymbutia" from the Indian Ocean, as figured by Macdonald. I an of opinim that this species (if distinct from the Mediterranean Cymbulia peroni) belongs to the alrove genus and bears a ventral lobe on the fin. This sepms the more likely aince Cymbulia peromi, in whirlh the ventral labe is judubitably present, has also been figured by Dealiayps ${ }^{1}$ as if it were really alsent.

Finally, a frurth form of this genus is represented by a specimen without a shell, collected by the Challenger in the Pacific Ocean, It is possible that this form rorresponds to Cymbulia parvidentata, n. E.p., from New Zaaland, of which osly the shell is known. This cannot, however, be affirmed as fact. The single specimen of the alovementioned form is atained and mounted in bnlsam; it ia therelore impossible to give nny satisfactory derrription.

The alove facta romprise all we know about the Cymbuliidæ, from a syatematic paint of view. Abstracting the two forme last mentioned, we may distinguiah the other two as follows :-

Key to tef Spfoles.
]. Shall with a memewhat trond covity, with streag apines, chiofy along the apathura,

Cymbuia peroni:
2. Shell with a very nntrow envity, with amall and unilorm ppinpa, . Cymbuntia parviremtara,

1. Cymbulia peroni, de Blainville.

> 1850. Cymbulia praboscidea, Gray, Catalogue of the Mnllaras in the Collectinn of the Bratish Museum, pt ii., Pteropord, p. 25 (nom Krohn, 1844)

This form is anfficiently well known to dispense with a tresl description. I shall restrict myself to diatinguifbing it from the next species. The doraal portion of the shell is awollen and abort; the extremity in markedly obtuse; the shell does not exbibit any constriction at the middle of its length; the two lines of tubercles, which end in the two ventral points, are distinctly parallel, and the spines which bound the aperture are larger on the right than on the left.

Among the numerous figures of this species, many are poor, and few antisfactary. That of Boss ${ }^{8}$ has been based on a small apecimen, preserved in alcohol. The hest ides of the living animal is nhtained from the figure given by Delle Chisje ${ }^{\text {B }}$

Habitat.-Mediterranesn; Nice, Villefranche, Givita Vecchia, Naples, Messina.

[^57]Krolin ${ }^{1}$ collected in the Atlantic, off Tenerife, some larval forms of Cymbulia, but os the adults were not obscrved, it ie not known whether they belong to the present apecies ar not.

Observations.-I. Cymbulia quadripunctata, Gegenbaur, is not an adult form. I have no hesitntion in describing it as a young Cymbulia peroni, for I have observed at Naples, among young forms of Cymbatia entirely like one another, an individual with purple spots on the fins as in Gegenbaur's species; hut the presence of these apots is no specific distinction.
II. It is uncertain whether the Cymbulia of the Indian Ocean figured by Macdonald is identical with Cymhulia peroni. It is distinguished especially by the much longer doranl portion and hy the atraight fontours.
2. Cymbulia parvidentata, n. sp. (Pl. II. figg, 12, 13).

Characters and Deseription.-Shell slender, propartionally narrower and more elongated than the ahove, and exlibiting a constriction townrds the middle of its length, the dareal partion long and pointed, the spines on the surface of small size and very uniform even on the horders of the aperture, where they nre very large and distinct in Cymbulia peromi. The twa rows of spines which end in the ventral points exbibit at their middle a re-entrant angle corresponding to the constriction of the shell. The cavity of the latter is very narrow and of little depth.

Animal unknown.
Dimensions.-Smaller than the preceding species, the shell $3 \cdot 5 \mathrm{~cm}$, in length.
Habitht. -Coole Strait, New Zealand (the type specimen is in the British Museum).
*3. Cymbulia sp. (?).
A specimen of a Cymbulia, without its shell, with the fin as in Cymbulia peroni, that is to say, bearing a ventral lobe ending in a whip. As the specimen was atained and mounted in balsam, it in difficult to give any detniled description. I shall not bestow on it nay specific title. It is posaible that it belnges to the ahove species, in which the animal is still unknown, both forms occurring in the Pacific Ocean.

Challenger Specimen.-Station 254, July 17, 1875; Yokohama to Sandwich Islanda; lat. $35^{\circ} 19^{\prime} \mathrm{N}$., long. $154^{\prime \prime} 48^{\prime} \mathrm{W}$.

Fmbryonic shells of Cymbulia (P1. II. Gig. 14) bave been collected at the following locality :-

Station 216A, February 16, 1875; north of New Guinea; lat. 2° bín N., long. $94^{\circ} 11^{1} \mathrm{E}$.

[^58]
Cymbuliopsis, ${ }^{1}$ ロ. gen.

Chavacters and Description.—"Shell" in form of a slipper, with thin walle, and a very large covity exteading to the doral extromity. The latter is rounded, while the veutral extremity, which is very delicate, ends in a level margin. The whole exterand surface is covered with amall, uniform tubercles; the

Sn I-Ragital unetion of tha uball af Gymhagiofi is whin the ilrkted line madiction the aparture aperture is of considerable sire; ita margina do not bear spines.

The animal has a fin without ventral lobe, that ig to say, with a continuous ventral margin. The proboscis is free througbnut its eutire lengtb, but is short and broad. No rartula or jawe.
Two qpeciea described as Cymhulia ought to be referred to this genus-Cymbulia mata, Quoy and Gaimard, and Cymbulia calceola, Verrill.
$K_{\text {fy }}$ to the Speciks.

1. Shell amowhat conatrinted at the twa ende, aperture aharter than the halflength of the sbell, .
2. Shall mether hroad at the two ende, npering longer than the balf-length of the
I. Cymbuliopsis onata (Quoy and Gaimard) (Pl. II. figs. 15, 16).

> 1832. Cymbodia orata, Quay et Gamard, Voyage de Adenuvertea de l'Astrolabe, Zoolagag it iu. p. 359, pl. мxvii. figa 25-30.

Characters and Desrription.-Shell ovoid, very broad in the middle region, conatricted towards the ends, and especially at the ventral extremity, where it is very little thickened. The external surface is covered with emall uniform tubercles, regularly distributed, but somewhat distant. The aperture is very nearly as long as the balflength of the shell.

The animal exhibits all the charactera of the genus. The prohoscia is aomewhat broad towards the extremity. Qung and Gaimard have miataken the proboscia for the ventral lobe of the fin of Cymbutia. The fins which they note as being separated by a hollaw, bave a continuons margin like Cymbuliopsis calcesla and Glebra.

Dimensions. The shell measures from 2 to 3 cm . in length.
Habitat-Ambaina (Quay and Gaimard). The British Mubeum collection includes neveral specimens, but without nate of locality.

[^59]2. Cymbuliopsis calceola (Verrill).

> 1880. Cymibulia calcenan, Varrill, Notica nf the remarhable Morine Fauna nerupging the auter banks of the gcuthom coasta of New Fngland, Amar. Jomm. Sci

> 18R2. Cymbulia calceolza, Vetrill, Calalogue of the Matide Mollunea adided to the fantina ef Nem Englond during the part ten jeare, Tramk Connect, Acad., vol. y. p 553, pl. lviii fig 39.

Charactens and Description (after Verrill). Shell ovoid, rounded, but of considerable breadth at the two exrremities. The external surface is covered with numerous rounded tuhercles; the operture is larger than the half-length of the shell: the ventral margin is almost atraight.

Animal of a pale yellow colour, with a very large fin, exhibiting an entire and cantinuaus margin.

Dimensions - Mnximum length of shell 4 cm ., transverse diameter of the fin 67 mm .
Hoditat. - Fastern const of North America, albout lat. $40^{\circ} \mathrm{N} .$, long. $70^{\circ} \mathrm{W}$. (Verrill).

Ohservations.-This species has been eomewhat better descrihed than the preceding Cymhuliopsis ovata, with which it seems to have close affinities. Verrill does not mention whether the proboscia is free nlang its entire length, but this eeems to me very probable since it is sa in the preceding spacies. I cannot, however, admit the auggeation of Boss,' who regards this apecies as a Gleba (Thedemannia). To this view the form of the ahall is altngether opposed. On the other hand, it is possible that the "Tiedemannia" with abort proboscie, from the equatorial Atlnatic (lnt. 2° N., long. 26^{n} W.), which Hoas hne figured, ${ }^{9}$ may be identical with Verrill's species of CymbuLiopsis. In apite of certain points of resemblance, the auggeation cannot, however, be made with any confidence, since the shell was absent in the specimen described by Boas. It is equally difficult to interpret other forme of Cymbulider which have been found without their shells. Thus we heve Argivora parva, Le日ueur,' from la Martinique (Antilles), dereribed as a naked Cymbulia, but admitting of no certsin decision.

Gleba, ' Farskil.

1774. Gleha, Forakß|, Iconea rerum naturalium, pl xiii fig. 1.
 Hruxellef, t IIv. p. 23،
Characters and Description.-Shell anmewhat short, broad, much flattened, rounded at the dorasl extremity, alightly trancated et the ventral. The cavity is almoat absent, so

[^60]that the aperture accupies the entire length of the sholl. There is a seand nuchal portion of the same nature (ot lenst in Gleba cordata $=$ Tiedemannia neapolitana).

Animal with a cephelic portion ("trompe ") more or leas elangated, free over ita entire length, situnted in front of the fin, and enlnged towards its distal extremity. Near this the fin forms a disc, with continuous margin, and without ventral lohe. No radule or jaws.

The ebell of this genue was ohserved for the first time hy

Fia 1-fergital nation of the thell of fieha, the dolled line molinetad tha apertura Krobn ${ }^{1}$ in Gleba cordata. It falls off so readily that sperimens without their shella are very frequent, and it is difficult to preserve a epecimen intact, with the shell in its natural position. This fact explnina how the older authorities (Forab81, van Benoden, Delle Chiaje, 吕c.) did not observe the abpll of Gleba cordata, and have even descrihed otber sperips as naked.

There is rertain evidence of the presence of this genus in almost all the seras. Unfortunataly, a large proportion of the available material consista of incomplete or illpreserved apecimens, while many of the forms noted are only lenown in their young and immature etages.

The number of epecies known in their adult state is really only three :-Gleba cordata, Forska1, "Tifdemannia" chrysosticta, Gegenbaur, "Camlla" spectabiti, Dall, and of these the last two have not yet been figurad.

Kfy to tae Sphites.

L Probaacia long,
Glebs cotrdata
IL Probercis short

1. Gilded apola on the $6 \mathrm{in}_{1}$. GleLa chrymantieta
2. Fina of an nniform colotr, Gleba aptabilia.
3. Gleba cordata, Farskîl.
4. Gleba cordata, Foraleal Jennew remom naturalium, pl sliii. Gg. o
5. Tisdemannia napnitiana, Delle Chinje, is van Eeneden, Exercices rootoniques, Mem. Achd. Act Hruxelles, t xii. p. 22, pl. ii, fig. 1.
6. Oymbulia probramiden,' Krohn, Wahpr aine npoe Pteropoden Ath, Arrhiv i. Naturgeseh, 1944, Bd. i. p. 327.

7. Tiedamannea ngapolitang, Krihn, Nachbrügu gu den Anfag̈tren iibar Tibdemannia, de, Arcbiv 1. Naturgeach. 1997, Bd. i pl. ii figa. is a

This apecies bas been generally but paorly figured. The best drawinga ara those given by Krohn (loc, cit.) and by Gegenbaur,' which arpplement eacb other,

[^61]thougb the tentacles nre not shown in the latter. On the margin of the fins the animal has five very characteristic iodentations, which escaped the notice of van Beneden but are shown in the drawing of Forskil. Krobn regaried these as clameteristic of a particular sperirs, Tiedemannia creniptera, distinct from the Tiedemansia " urapolitnsa" of Delle Chiaje and van Reneden; but he bas sulsequently acknowledgeal the identity of the two forms. The ehell appears amnoth in smoll specimens, hut beara in the large formes rngular tubercles, which are, however, leas develaped than thase of Gleba spectabilis.

Habitat-Mediterranean : Nice, Naples, Messina.
Some remains of a species of Gleba with a long prohoscis were found in the Atlantic, lat. 24° to $25^{e} \mathrm{~N}_{\mathrm{n}}$ logg 92° to $39^{n} \mathrm{~W}$. (fide Boas), and previausly to this Krohn observed at Tencrife larvie of Tiedemannia which be nomer neapolitana. ${ }^{9}$ Possibly this was the Mediterranfan species, or one very nearly related to it.
2. Gleba chrysosticta (Krobn).
 Archiv i. Noturgeseh., 1854, Bd. i. p. 218.
According to Krohn, Traschel, and Gegenbaur, this species differs from the preceding, whicb it resembles in size, in baving a ahorter prohoscia and golden apots on the integument. But there are no drawings of this species, and the descriptions do not say whether the proboscis is very broad, nor whether there are indentations an the distal edge of the fins. Notwithstanding the courteous search made by Dr. Julea Rarrois at Villefranche and hy Professor Nicholas Kleinenberg at Messina, I have unfortunately heen unable to procure apecimens which would have enabled me to complete the dingnosis of this farm.

Habiat.-Mediterranean: Messina (Krobn, Troschel, Gegenbaur), Villebnnche (Paneth).'
3. Gleba spectabilis (Dall).
1879. Corolla aperiabilia, Dell, Description of aixty new forms of Mollunce from the Wrat Coast of North Americen and the North Pacific Ocean, Amer. Journ of Conch, vol vii. p 137.
Characters and Description. -The animul has ashart proboscia, which is very broad, especially towards its free extremity; the fin is subtriangular, with oo indentations on the distal edge.

Dall has eatablished for this form the new genus Corolla on account of the following characteristics:-the pondent viaceral mass and shsence of shell. Now in Glela ("Tiedemannia napolitana" for example), when the ebell hes fallen off, the

[^62]visceral mass is pendent and then presenta the ospert. ${ }^{1}$ which is sean in an unpuhlished drawing of Corolla spertabilis, kindly sent me by Mr. Wm. H. Dall. In regard to the other parts, fin, proboscis, \& ${ }^{\text {c. }}$, thie drawing shows a structure quite anologons to the Gleba. Coralle is then simply a Gleba that hns lnst its abell. The apecimen, unfortunately in a bad condition, oltained by the Challenger in the North Pacific, ahows this clearly. The specimen includes not only the animal hut several bits of the shell. When put together the latter corresponds to the general form of the ahell of Gleba comatra, gnmewhat thicker clorsally, very thin on the ventral edge, and bearing on its eurface regular and very clearly marked tuhercles. Unfortunately, the damaged coudition of this ahell does not permit me to give a satisfactory drawing.

Mr. Wra. H. Dall has, however, almandoned the idea of his Corolla being entirely destitute of ahell. In sending me the drawing of the animal he wrote to me that he thought Corolla passessed "smme sort of a shell like Cymhulia," adding that in the region where he bad captured Corolla he had found in his tow-net "some oval thin cryatalline gelatinous alipper shaped shells," "covered with little points." This entirely agrees with the description I have given of the deluris collected hy the Chnllenger.

Dimensions (of Challenger specimen). -Diametrieal breadth of the fin a little more than 5 cm. , approximate length of the abell 4 cm .

Hnhitat, -Nortll-east Pacific Ocean; lat. $42^{\circ} 50^{\prime} \mathrm{N}$., long. $147^{\circ} 25^{\prime}$ W. (Dall).
Challenger Specimens.-I.iving specimen,
On June 29, 1875 ; Yoknhame to Sandwich Islanda; lat. $95^{\circ} 49^{\prime}$ N., long. $171^{\circ} 46^{\prime} \mathrm{E}$
The presence of the gerus Glebra has been recorded at other localities in the Pacific Ocenn:-China Sea (Rnas), ${ }^{2}$ a form with a ahort proboscia; New Ireland, about 4° S., 152° W. (Quay and Gaimard), ${ }^{3}$-Cymbulia punctata, aleo with a short proboncis, and recognised as Glebas (Tiedemannia) by most subsequent authors. Unfortunately these forme are too imperfectly known to be entered in the catalogue of the epecies.

Lastly, the Challenger Expedition has collected larval ehells of Gleba (Pl. II. fig. 17) in the following place:-

Station $216 \mathrm{fa}_{,}$February 16, 1875 ; north of New Guinea; lat. $20^{\circ} 56^{\prime}$ N., long. $194^{\circ} 11^{\prime} \mathrm{E}$.

Several of the young forms of Cymbulida, which have lost their ahelle, are deacribed as dislinct apecies, under different generic names, and aome of there probnbly belong to the genus Gleba.

[^63]Cymbulia radiata (Quoy and Gaimard, ${ }^{3}$ from Amhnina). Figure 33 representa a somewhat advanced etage. Gegenbaur and Ahama have recognised it as a Gleba.

Cymbulia cirroptera, Gegenbaur, ${ }^{2}$ from Measina Lastly, Tiedemannia saylla, Troschel, ${ }^{8}$ and Tiedemannia charybdis, Troschel, ${ }^{4}$ are alan certainly goung atagen of Gleba, as indeed Troschel himself enspected. Hut in regard to all these young s.tnges, ohgervations are as yet too imauficient to enable ome to determine with certainty the adult forms to which they belong.

SUMMARY.

As the result of the preceding survey of the syatem of the Thecosomats, forty-twn species may be recognised, and these are distributed in the following menner :-

Of these forty-two species, thers are only five which I have not been shle to atudy myself, and only nine which have not baen conlected by the Challenger.

[^64]The erpedition has thus collected abnut 75 per cent. of known species, and if in this group it has only discovered a aingle new apeciea, it bas furnished numbtous partirulars relating to the geagrophical distribution both at the surface and in the deposite of the deap aea.

From a systematic point of view the most complate results are those which refer to the family Limacinids, the species of which are now claarly defined. The genus Peracisis, hitherto mistaken, has been atudied and definitely re-established, an important fact in view of the light which the knowledge of this genus ebede on the relations of the Thecosomata to one another and to other Molluses. In 期ort, the classification of the farnily Cymbulidid has been defined as far as is meanwhile posible.

The anatomical resulta of the stady of the Thecosomsta are as important as those which were obtained from the atudy of the Gymnosomata, and, along with the latter, render it possible to determine the real affinities of the Pteropode, as will be shown in the third part of thi Report.

GFOGRAPHICAL DISTRIBUTION.

A. STATION LIST OF THE THECOSOMATOUS PTEROPODA OF THE CHALLENGER EXPFTITIUN.

I. Stations whrrr Iifving Specimens whrr coliteteit hy Thawifing
or Drfiong.

Station VIIf. Fehruary 2, I873; of Madeira; lat. $32^{\circ} 27^{\prime} 0^{\prime \prime}$ N., long. $16^{\circ} 40^{\prime} 90^{\prime \prime}$ W. eurfare temperature, $69^{\circ} \mathbf{F}$.
Clio (Creseis) acicula.

Cavolinia trispinosa.
Catolinia globulosa.

On April 14, 1873 ; of Bermodrs ; lat. $32^{\circ} 18^{\prime}$ N., long. $64^{\circ} 53^{\prime} \mathrm{W}$.
Greminia longirostris.
 surface temperature, $79^{\circ} \mathrm{F}$.

Guvierina columnella

Station 69. June 19, 1873 ; Bermuda to Azoreg; Iat. $95^{\circ} 29^{\prime}$ N., long. $50^{\circ} 53^{\prime}$ W.; aurface temperature, $71^{\circ} \mathrm{F}$.
Clio (Creseis) acicula.
Clia myamidata.

Cuvierina columnella.
Cavolinia trispinosa.

Station 81. July IA, 187.9; Azores to Madeira; lat. $34^{\circ} 11^{\prime} \mathrm{N}$. Iang. $19^{\circ} 52^{\prime}$ W.; surface temparature, $71^{\circ} \mathrm{F}$.

Clio (Creseis) acicula.
Station 100. Auguet 16, 1879 ; St. Vincent to St. Pail'm Rocks; lat. $7^{\circ} \mathbf{1}^{\prime}$ N., Jong. $15^{\circ} 55^{\prime} \mathrm{W}$: surface temperature, $79^{\circ} \mathrm{F}$.

Station 10f. August 25, 187a; St. Viucent to St. Paul's Rocka; lat. $]^{n} 47^{4}$ N., loug. $24^{\circ} 26^{\prime} \mathrm{W}$.; surface temperature, $78^{\circ} \cdot 9 \mathrm{~F}$.
Clio (Creseis) qirguln.
Cavalinin Langinnstuis
Near Station 129. September 19, 1878 ; nff Habin; lat. $19^{\circ} 6^{\prime} \mathrm{S}$., loug. $85^{\circ} 40^{\prime} \mathrm{W}_{\text {a }}$ surface temperature, $74^{\circ} \mathrm{F}$.
Cavolinint uncinata.
Cavinlinia infexa.
Station 142. December 18, 1873; Cape of Gond Hople to parallel of $46^{\circ} \mathrm{S}$; lat. $35^{e} 4^{\prime} \mathrm{S}$., long. $18^{\circ} 37^{\prime} \mathrm{E}$.; 暗face teraperature, $65^{\circ} \cdot 5 \mathrm{~F}$.
Limacina inflata.
Clio pyramidata.
Canolinact inflexa.
Station 143. December 19, 1873 ; Cape of Gonil Hope to parallel of $46^{\circ} \mathrm{S}$.; lat $36^{\circ} 48^{\prime}$ S., long. $19^{c} 24^{\prime} \mathrm{E}$.; surface temperature, $73^{\circ} \mathrm{F}$.

Cavolinia inflexa.
Station 146. December 28, 1873; Marion Island to the Crozets; lat. $46^{\circ} 46^{\prime} \mathbf{S}$, long. 45°. 31^{\prime} E.: aurface temperature, $43^{\circ} \mathrm{F}$.

Limacina australis.
Statoos 149. Jonuary 9, 1874; at Kerguelen Island; lat. 49° A 4 S., long. $70^{\circ} 12^{\prime}$ E.; surlace temperature, $40^{n} \mathrm{~F}$. (?).

Limacina australis
Station 150. February 2, 1674 ; Heard Island; lat. $52^{\circ} 4^{\prime}$ S., long. 71 22° E:; gurface tempersture, $37^{\circ} \cdot 5 \mathrm{~F}$.
Limacint australis. | Clinsulcata.
Stamon 159. February 14, 1874 ; in vicinity of Antorctic ice; lat. $65^{2} 42^{\prime}$ S., long. $79^{\circ} 49^{\prime} \mathrm{E}$; вurface tempprature, $29^{\circ} \cdot 5 \mathrm{~F}$.

Limarina anlarctica.
Between Stations 154 and 155. February 21, 1874; in vicinity of Antarctic ice: lat. $63^{\circ} 30^{\prime} \mathrm{E}$, long. $89^{\circ} 8^{\prime} \mathrm{E}$; surface tempernture, $32^{\mathrm{e}} \mathrm{F}$.
Limacina australis.
Clio sulcata.
Station 156. February 26, 1874; in vicinity of Antarctic ice; lat. $62^{\circ} 26^{\prime}$ S., long. $95^{\prime} 44^{\prime} \mathrm{E}$; barface temperature, $33^{c} \mathrm{~F}$.

Clio sulcata.

Station 159. March 10, 1874 ; Termination land to Melhourae; lat. $47^{\circ} 25^{\prime}$ S. long $130^{e} 22^{\prime} \mathrm{E}$; \&urface temperature, $51^{\circ} \cdot 5 \mathrm{~F}$.

Clio australis.

On March 15, 1874 ; of Melbourne; lat. $39^{\circ} 45^{\prime} \mathrm{S}_{1}$ long. $40^{\circ} 40^{\prime}$ E; surface temperature, $59^{\circ} \mathrm{F}$.
Clio (Styliola) subula. | Clio pyramidata.
On March 16, 1974 ; off Melbourne; lat. $39^{\circ} 22^{\prime}$ A., long. $142^{\circ} 22^{\prime}$ E.; surface temperature, $62^{\circ} \mathrm{F}$. Clio (Syliola) subula.

Hetween Stations 162 and 163. April 9, 1874 ; Melbourne to Sydney; lat. $38^{\circ} 7^{\prime} \mathrm{S}$, long. $149^{\circ} 18^{\prime}$ E.; aurlace temperature, $65^{\prime} \mathrm{F}$.
Limacina inflata.
Inmacina lesueuri.
Limacina trochiformis.
Limacina bulimoides.

Clio (Creseis) virgula.
Cavolinia trispinosa (young, as
"Cleodora compressa").
Cavolinia longirostris.

Station 163. Apri] 4, 1874 ; Melhourne to Sydney ; lat. $36^{2} 57^{\prime}$ S., long. $150^{\circ} 34^{\prime}$ E. ; surface temperature, $72^{\circ} \mathrm{F}$.

Limacina bulimoides.

 temperature, $70^{\text {n }} \cdot 2 \mathrm{~F}$.
Clin (Creseis) vìrgula.
Clio (Creseis) acicula.
Cio (Sy yliola) subula.
Cavolinia inflesa (young, as
" Hyalma depressa ").

Station 175. Auguat 12, 1874 ; Fiji to Raine Igland; lat. $19^{\circ} \mathbf{2}^{\prime}$ S. Jong. $177^{\circ} 10^{\circ}$ E.; surface temperature, $77^{\circ} \cdot 5 \mathrm{~F}$.
Limnacina inflata.
Limacina lesueuri.
Limacina hulimoides.
Clio (Creseis) acicula.
Clio (Hyalocylix) striata.

Clio (Styliold) subula.
Clio pyramidata.
Cuvierina columnella.
Cavalinia quadridentata.
Cavolinia longinostris.

Station 181. August 25, 1874; Fiji to Raine Island; lat. $13^{\text { }} 50^{\prime} \mathrm{S}$, long. $151^{\circ} 49^{\prime}$
E; aurface temperature, $80^{\circ} \mathrm{F}$.
Limacino infiata.
Limacina bulimoides.
Clio (Creseis) virgula.
Clio (Creseis) asicula.
Clio (Hyalorylis) striata.
Clin (Styliola) subula.

Clio chaptali.
Cuvierina columnella.
Cavolinia trispinosa (ond young, as
" Clcodora compressa").
Cavolinia quadridentata.
Canolinia longirnstris.

Cavnhinia inflexa.
Near Station 190 September 12, 1874 ; south of Arrou Ialands; lat. $8^{E} 56^{\prime}$ S., lang. $135^{\circ} 7^{\prime} \mathrm{E}$.; surface temperature, $79^{\circ} \mathrm{F}$.

Clia (Creseis) acicula.
Station 200. Octoler 29, 1874; Ambnina to Samboangan; lat. $6^{\circ} 47^{\prime}$ N., long. $1 \underline{22^{\circ}} 28^{\prime} \mathbf{E}_{\text {; }}$ aurface temperature, $84^{\circ} \mathrm{F}$.
Clio (Creseis) acicula. | Ctio (Hyalocylix) striata.
Station 201. Octaber 20, 1874; Sambonngan to Mania; lat. $7^{\circ} 3^{\prime}$ N., long. $121^{\circ} 4 \exists^{\prime} \mathrm{F}_{\mathrm{f}}$; surface temperature, $93^{\mathrm{E}} \mathrm{F}$.
Limacina infata.
Limacina bulimaides.
Clin (Cvespis) acinula.
Clia (Hyalocylix) striata.
Station 209. January 22, 1875; Manila to Samboangan; lat. 10° i4 4^{\prime} N., long. $123^{n} 54^{\prime} \mathbf{E}$; aurface temperature, $81^{\circ} \mathbf{F}$.
Clio (Creseis) virgula.
Clio (Creseis) acticula.
Cavolinia longirastris.
On Tebruary 5, 1875; at Samboangan ; surface temperature, $82^{\circ} \mathrm{F}$.
Clio (Creseis) uirgula. | Clin (Creseis) acicula.
On February f, 1875 ; at Sambonggan ; lat. $6^{\circ} 40^{\prime} \mathrm{N}$., lang. $122^{\circ} 57^{\prime}$ R.; surface temperature, $81^{\circ} \mathrm{F}$.
Clio (Creseis) virgula.
Clio (Cresets) acicula.
Cavoliztia globulosa.
Etation 219. Fehruary 8, 1875; Sambaangan to New Guinea; lat. 5" 47^{\prime} N., Iong. $124^{\circ} 1^{\prime} \mathrm{E}$.; aurface temperature, $81^{\circ} \mathrm{F}$.

Station 216a, February 16, 1875 ; north of New Guinea; lat. $2^{e} 56^{\prime}$ N., long. $194^{e} 11^{\prime} \mathrm{E}$; 昰face temperatare, $82^{\circ} \mathrm{F}$.
Limacina inflata.
Limacina lesueum.
Limacina trochiformis.
Clio (Creseis) virgula.
Ciio (Creseis) acicula.
Clio balantium.

Cuvierina columnella.
Cavolinia quadridentata.
Cavalinia longirostris (young, as
Hyalam lmangata).
Cavolinia globulosa.
Fry of Cymbulia and Gleba.

Betwepn Stations 229 and 290. April 3, 1875; Admiralty Islands to Yokohama; lat, $24^{\circ} 49^{\prime} \mathrm{N}$., long. $198^{\circ} 34^{\prime} \mathrm{E}$; surface temperature, $71^{n} \mathrm{~F}$.
Clio (Creseis) virgula.
Clio (Styliola) subula.
Cavolinia gibbosa.
Near Station 290. April 4, 1875; Admiralty Iblands to Yokohama; lat. $25^{\circ} 33^{\prime} \mathrm{N}$., long. $197^{\circ} 57^{\prime}$ E; surface temparature, $69^{\circ} \mathrm{F}$.
Chio (Styliola) subula.
Cio cuspidata.
Cavolinia gibbosa.
Cavolinia inflexa.
Station 290. April 5, 1875; Admiralty Islends to Yokohama; lat. $26^{\circ} 29^{\prime}$ N., long. $137^{\circ} 57^{\prime} \mathrm{E}$; вurface temperature, $69^{\circ} \mathrm{F}$.

Clio (Creseis) virgula.
Clio (Hyalocylix) striata.
Clin pyramidata.
Cuvierina columnella.

Cavolinia trispinosa.
Cavolinia longirastris.
Cavalinia gibbosa.
Cavalinia infleara.

On May 4, 1875; at Yokobame; surface temperature, $60^{\circ} \mathrm{F}$.
Cavolinia inflexa (young, as "Pleuropus pellucidus"; fide Willemaes Suhm).
Station 297. June 17, 1875 ; off Japan; lat. $94^{\circ} 37^{\prime}$ N., long. $140^{\circ} 92^{\prime}$ E.; eurface temperature, $73^{\circ} \mathrm{F}$.

Clio (Cresers) acicula.
Station 241. June 29, 1875 ; off Japan; lat. $35^{a} 41^{\prime} \mathrm{N}$. long. $157^{\circ} 42^{\prime} \mathrm{E}$; surfece temperature, $69^{\circ} \cdot 2 \mathrm{~F}$.

Canalinia tridentata.

Station 243. June 26, 1675 ; Yokohame to Sendwich Ielands; lat. $95^{\circ} 24^{4}$ N., loug. $166^{\circ} 35^{\prime} \mathrm{E}$; вurface temperaturs, $71^{\circ} \mathrm{R}$.

Limacina bulimoides.

On June 29, 1875 ; Yokohrma to Sandwich Islands; lat. $35^{\circ} 49^{\prime}$ N., long $171^{*} 46^{\prime} \mathbf{E}$.; surfoce temperature, $69^{\circ} \mathrm{F}$.

Gleba spectazilis.
Between Stations 247 and 248. July 4, 1875; Yokohama to Sandwich Islands; lat. $36^{\circ} 42^{\prime} \mathrm{N}$., long. $179^{n} 50^{\prime} \mathrm{W} . ;$ surface temperature, $70^{\circ} \mathrm{F}$. Limacina lesteuri. \mid Cavolinin trispinosa (young, na Limacina bulimaides. Clio (Hyalocylis) striata. Cavolinia inflexa (young, is " Hynlaa depressa").

Station 249. July 7, 1875 ; Yokohama to Sandwich Islands; lat. $97^{\circ} 59^{4}$ N., long. $171^{\circ} 48^{\prime}$ W.; aurface temperature, $65^{\circ} \cdot 2 \mathrm{~F}$.

Cavolinia gibbosa.
Station 251. July 10,1875 ; Yokohama to Sandwich Ialanda; lat. $97^{\circ} 97^{\circ}$ N., long. $169^{\prime \prime} 26^{\prime} \mathrm{W}$.; aurface temperature, $65^{5} \mathrm{~F}$.

Clio pyramidala.
Station 254. July 17, 1875 ; Yokobama to Sandwich Islands; lat. $85^{\circ} 19^{\prime}$ N., lang. $154^{\circ} 49^{\prime} \mathrm{W}$; surface temperature, $72^{n} \mathrm{~F}$.

Clio (Hyalocylix) striata. Clio pyramidata.

Clin cuspidata.
Cavolinia tridentata.

Cymbulia sp.

Station 256. July 21, 1875 ; Yohohama to Sandwich Islands; Int. $90^{\circ} 22^{\prime}$ N., long. $154^{\circ} 56^{\prime} \mathrm{W}$.; surface temperature, $74^{\circ} \mathrm{F}$.
Mio (Creseis) acicula.
Clio (Siyliola) subula.

Clio pyramidaia.
Cavolinia inflexa.

Between Stationa 264 nnd 265. Auguet 24, 1875; Snndwich Islands to Tahiti ; lat. $1 a^{\circ} 15^{\prime}$ N.; long. $152^{\circ} 2^{\prime}$ W.; surface tempemture, $78^{e} \mathrm{~F}$.
Limacina inflata.
Yimacina lesueuri.
Ismacina trochiformis.
Peraclis reticulata.
Clio (Creseis) virgula.
Clio (Hyalocylix) striata.
Station 269. September 2, 1875 ; Sandwich Telands to Tahiti; lat. $5^{\circ} 54^{\prime} \mathrm{N}$, long. $147^{\circ} 2^{\prime} \mathrm{W}$.; surface temperature, $81^{\circ} \cdot 2 \mathrm{~F}$.

Station 272. September 8, 1 日75; Sondwich Ielande to Tabiti; Jat. $a^{\circ} 48^{3}$ S., long $152^{e} 56^{\prime} \mathrm{W}$; eurface temperature, $79^{\circ} \mathrm{F}$.

Limacina lesuetryi.
"August-Septewher 1875," withnat indication of Station, in the trip from Sandwich Islands to Tahiti.

Clio (Creseis) acimula.
Cavolinia quadridentata.

Camolinia langirostris.
Cavolinia gibhosa.
Cavolinia uncinala.

Station 280. October 4, 1875 ; Tahiti to Valparaigo; lat. $18^{\circ} 40^{\prime}$ S., long. $149^{\circ} 52^{\prime}$ $\mathrm{W}_{\text {si }}$ surface temperature, $77^{\circ} \cdot 2 \mathrm{~F}$.

Cuvierina onlumnella.

Station 282. Octoler 7, 1875 ; Tahiti to Valparaino; lat. $29^{\circ} 46^{\prime}$ S., long. $149^{\circ} 59^{\prime}$ W.; surface temperature, $79^{\circ} \cdot 2 \mathrm{~F}$.

Cio (Hyalocylix) striata.
Station 288. Ontober 21, 1875 ; Tabiti to Valparaiso; lat. $40^{\circ} 3^{\prime}$ S., long. $132^{\circ} 58^{\prime}$ W.; gurface tempereture, $54^{e} \cdot 5 \mathrm{~F}$.

Cuvierina columnella.

Near Station 288. October 22, 1875 ; Tahiti to Valparaiso ; lat. $40^{\circ} 0^{\prime}$ S., long. $191^{\circ} 96^{\prime} \mathrm{W}$.; surface temperature, $54^{\mathrm{c}} \mathrm{F}$.

Cuvierina calumnella.

Between Stationa 292 and 293. Octrher 31, 1875; 'Tahiti to Valparaiao ; lat. $99^{\circ} 50^{\prime}$ S., lang. $100^{\circ} 6^{d}$ W.; surface temperature, $54^{\circ} \mathrm{F}$.

Clio (Creseis) acicula. | Cavalinia langirostris.
Station 293. November 1, 1875; Tahiti to Valparaiao; lat. g9 9° S. long. $105^{\circ} 5^{\prime}$ W.; surfoce temparature, $59^{\circ} \cdot 7 \mathrm{~F}$.

Clia (Styliola) substla.
Clio pyramidata.
Station 294. November 9, 1875 ; Tahiti to Valparaiso ; lat. $99^{\circ} 22^{\prime}$ S., long. $98^{\circ} 46^{\prime}$ W.; eurlace temperature, $57^{\circ} \cdot 5 \mathrm{~F}$.

Cuvierina coluanalla.
 W.; aurface temperature, $58^{\circ} \cdot 5 \mathrm{~F}$.

Cannlinia inflexa.
Stamon 29g. December 14, 1875 ; Valparaiso to Gulf of Pense; lat. $33^{\circ} 31^{\prime} \mathrm{S}$, long. $74^{\wedge} 49^{\prime}$ W.; surface temperature, $62^{\circ} \mathrm{F}$.

Clio (Cieseis) virgula.
 S., long. $50^{2} 47^{\prime} \mathrm{W}$.; surface temperature, $79^{\circ} .5 \mathrm{~F}$.

> Clio (Creseis) acicula

Station 326. March 3, 1876; Rio de le Plata to Tristan da Cunha; lat. $\mathrm{M7}^{\circ} \mathrm{a}^{\prime} \mathrm{S}$., long. $44^{\circ} 17^{\prime} \mathrm{W}$: surface temperature, $67^{7} \cdot 8 \mathrm{~F}$.

Clin (Creseis) acicula.
Station 327. March 4, 1876 ; Rio de la Plata to Trietan dn Cunhn; lat. $96^{\circ}{ }^{\circ} 48^{\prime} \mathrm{S}$., long. $42^{\prime \prime} 45^{\circ} \mathrm{W}$.; eurface temperature, $30^{\circ} 2 \mathrm{~F}$.
Clio (Creseiss) acimuln.
Cavolinia infexa.
Station 9月2. March 10, 1 月76; Rio de la Plata to Tristad da Cunha; lat. $37^{n} 29^{\prime} \mathrm{S}$., long. $27^{\circ} 91^{\prime}$ W.; surface temperature, $64^{\circ} \mathrm{F}$.

Cio pyramidata.
Station 397. March 19, 1876; Tristan da Cunha to Aecension Taland; lat. $24^{\circ} 38^{4}$ N., long. 19^{e} af f^{\prime} W.; surface temperature, $77^{\circ} \mathrm{F}$.

Limacina inflata.
Limacina lesueuri.
Limacina trochiformis.

Limacina bulimoides.
Clio (Hyalocylix) strinata.
Clio (Styliola) subula.
Cavolinia quadridentata.
 long. $14^{\circ} 2^{\prime}$ W.; purface temperature, $76^{\circ} \cdot 5 \mathrm{~F}$.

Cavolinia longirostris.
Station 999. March 29, 1876; Tristan da Cunha to Aecension Island; lat. $17^{\circ} \mathbf{~} 26^{\prime}$ Q., long. $19^{\prime} 52^{\prime} \mathrm{W}$.; вurface temperature, $76^{\circ} \mathrm{F}$.

Clio (Creseis) acicula.

Station 345. April 4, 1876 ; Ascension Island to St. Vincent; lat. $5{ }^{\circ} 45^{\prime}$ S., long $14^{\circ} 25^{4}$ W.; surface temperature, $82^{\circ} 8 \mathrm{~F}$.

Cavolinia longivostris.
Station 34A. April 9, 1876; Agcension Ieland to St. Wincent; lat. $3^{n} 10^{\prime} \mathrm{N}$., long. $14^{\circ} 51^{\prime \prime} \mathrm{W}$; surface temperature, $84^{\circ} \mathrm{F}$.

Ciio (Creseis) virgula.
Station 349. April 10, 1676 ; Ascension Taland to St. Vincent; lat. $5^{\circ} 28^{\prime}$ N.,

Clio (Creseis) acicula. | Cavolinia longirostris.
Station 350. April 11, 1876; Abceusion Island to St. Vincent; lat. 7° 3.3' N., lang. $15^{\circ} 16^{\prime} \mathrm{W}$.; aurfoce temperature, $84^{2} \mathrm{~F}$.

> Cavolinia inflexa (young, as "Hyalma depressa ").

Etation 352. April 18, 1876 ; Ascension Ieland to St. Vincent; let. $10^{n} 55^{\prime} \mathrm{N}$., long. $17^{\circ} 46^{\prime} \mathrm{W}$.; burface temperature, $77^{\circ} 7 \mathrm{~F}$.

Cavolinia longirostris.
On April 26, 1876; off St. Vincent; lat. $16^{e} 49^{\prime}$ N., long. $25^{\circ} 14^{\prime}$ W.; aurfece temperature, $74^{\circ} \mathrm{F}$.
Limacina inflata.
Inmacina lesuevri.
Limacina bulimoides.
Clio (Creseis) virgula.
Clio (Creseis) acicula.
On Apri] 28, 1876; off St. Vincent; lat, $17^{\circ} 47^{\prime} \mathrm{N}$. , long. $28^{\circ} 28^{\prime} \mathrm{W}$.; amrface temperature, $79^{\circ} \mathrm{F}$.

Clio pyramidata.

On April 29, 1876; off St Vincent; let. $18^{n} \mathrm{a}^{\prime}$ N., long. $90^{\circ} 5^{\prime} \mathrm{W}$.; surface tempernture, $73^{\circ} \mathrm{F}$.
Clio (Creseis) virgula.
Clin (Creseia) acicula.

Clio (Styliola) subula.
Cavolinia quadridentata.
 W.; 挭face temperature, $70^{\circ} \cdot 7 \mathrm{~F}$.

> Clio (Creseis) acicula.

Near Station 354. May 7, 187f; St. Vincent. towards Aznres; lat. 34 22° N., long. $84^{\circ} 29^{\prime}$ W.; surface temperature, $68^{\circ} \mathrm{F}$.

Limacina lesuterri.
Limacina bulimoides.

Clio (Stylioln) subula.
Cuvierina columnella.

On May 12, 1876; off the Azores; lat. $42^{\circ} 52^{\prime} \mathrm{N}$., long. $28^{\circ} 54^{\prime} \mathrm{W}$.; surface temperature, $59^{\circ} \mathrm{F}$.
Clio (Hyalocylix) striata. | Clio pyramidata.

II. Pringipal Stations at which Shfils of Thecosomata were robnd in the

 Deposits.Shella of Thecosomata are never found in sediments from a depth greater than 2000 fathoms. The greatest depth from which they have been procured, as far as I am aware, is 1950 fathoms (Station s5c).

This absence of the calcareous shells of Thecosomata from the greater depths is due, necording to $\begin{aligned} & \text { ll. Joln Murrey, to the greater propartion of carbonic acid gas in the }\end{aligned}$ water at those depths and to the more rapid anlution of these ehells in sea water under great pressure. This results in the solution of the delicate Pternpod shells at lesser depths thrn many other more massive pelagic abclls.

The Stations cited helow are the principal sources of the deposita which I bave examined. The list of Pteropoda Thecosomata (as well as of ather organisma) fonved in the other deposits will be found in the Report on the Deep-Sen Deposita by Mr. John Murray and Mr. A. Renard

It is of importance to inquire whether the distribution of the shells of different species found in the hattom-deposits corresponds to the actual distribution of the living sperimens, or in other words whather the auperficial distrihution bns or has not altered since the time when the sbells hegan to be deposited on the bottom, and whether any spenies represented by empty shells in a given deposit are also found in actual life at the aurface of the eame locality.

This inquiry bes bitherto yielded lut liftle positive result. The most striking fact concerus the distribution of Limamina bulimoides, which is not now known as a living form in the Mediterranean or in the North Atlantic north of $99^{\circ} \mathrm{N}$. lnt., but is found in the deep bottom-deposits of both these rens. In the Narth Atlantic Peraslis reticulata seemed elso to occur further to the oorth in the deposits than at the surface. It must be noted that these two forms are species frequenting the warmer waters. On the other hand Limacina retroversa, which frequenta the colder waters, extenda somewhat further south in the deposita than at the surface.

The investigation of a larger number of deposits will probably reveal other facta of a like unture.

Station VIlI. Fehruary 12, 1873 ; off the Canary Talnads; lat. $28^{\circ} 3^{\prime} 15^{\prime \prime}$ N., Jong. $17^{\circ} 27^{\prime} 0^{\prime \prime}$ W.; deptb, 620 fathoms; hottom, volrnnic mud.

Limacina inflala.
Limacina lesueuri.
Limatina bulimoides.
Peraclis bispinosa.

CTio (Styliola) subula.
Clio pyramidata.
Cavolinia quadridentata.
Crevolinia inffexa

Station 3. Febnary 18, 1873 ; Tenerife to Somhern Island; lat. $25^{\circ} 45^{\prime}$ N., lang. $20^{2} 14^{\prime}$ W.; depth, 1529 fathoms; hattom, bard ground.

Limacina imfata
Limacina lesveuri.
Limacina bulimoides.

Clio (Siyliola) stibula.
Cio pyramidata.
Cavolinia quadrideniata.
Cavolinia inflera.

Station 24. Morch I5, 1873 ; off Sombrero Island; Int. $19^{e} 24^{\prime} \mathrm{N}$., long. $68^{\circ} 29^{\circ}$ W.; depth, 450 fathoms ; bottom, Pteropod oaze.

Limacina inflata.
Limacina triacantha.
Limacina lesueuri.
Linacina bulimoides.
Peranlis reticnlotn.
Cio (Creseis) virgnla.
Clio (Creseis) acicula.
Clio (Slyliola) subula.

Clio pyramidata.
Clia cuspidata.
Cuvierina columnella.
Cavolinia trispinosa.
Cavolinia quadridentata.
Cnnolinia longirastris.
Cavolinia gibbosm.
Cavolinia uncinata.
Canolinia inflexa.

Station 24. March 25, 1873; off Culebra Igland; lat. $18^{\circ} 38^{\prime} 30^{\prime \prime}$ N., long. $65^{\circ} 5^{\prime \prime} 30^{n}$ $W_{\text {si }}$ depth, 990 fathoms; bottom, Pteropod coze.

Limacina inflata.
Limacina triacantha.
Iimanina lesueuri.
Limacina bulimoides.
Peraclis reticulata.
Clio (Creseis) virgula.
Clio (Cresess) acicula.
Clia (Hyalooylix) striata.

Clio (Styliola) subula.
Clio pyramidata.
Cuvierzina caluannella.
Cavolinia tuispinnsa.
Cavalinia quadridentata.
Cavolinia longirastris.
Cavolinia gibbosa.
Cavolinia uncinala.
Cavolinia infexa.

Station 32f. April a, 1879; St. Thomas to Rermada; lat. $92^{\circ} 10^{\prime} \mathrm{N}$, long. $64^{\circ} 52^{\prime}$ W. ; depth, 950 fathoms; bottom, coral mud.

Limacina inflata.
Iimacina bulimoides.

Station a3. April 4, 1879; off Bermuda; lat. g20 $21^{\prime} 30^{\prime \prime}$ N., long. 64" $85^{\prime} 55^{\prime \prime}$ W.; depth, 485 fathoms; hottom, coral mud.
Iimacince inflata.
Limamina trincantha.
Limacina lesueas i.
rimacina bulimoides,
Peraclis reticulata.
Pejaclis bispinosa.
Clin (Creseis) virgula.
Clio (Creseis) acicula.

Station 35c. April 22, 1873 ; off Bermuda; lat. $32^{\circ} 1.5^{\prime}$ N., long. $65^{\prime \prime} 8^{\prime}$ W.; depth, 1950 fathoms: bottam, Glabigerina ooze.
Clia (Cresfis) asicula.
Clio pyramidata.
Clio (Styliola) subula.
Cavalinia trispinosa.

Station 70. June 26, 1879 ; Bermuda to Agnree; lat. $38^{\circ} 25^{\prime}$ N., long. $85^{\circ} 50^{\prime}$ W.; depth, 1675 fathoms; bottom, Glohigerina coze.
Gavolinia trispindsa.
Carolinia gibibosa.

Station 75. July 2, 1873 ; off Fayal (Azores) ; lat. $38^{\circ} 38^{\prime} 0^{\prime \prime} \mathrm{N}$. , long. $28^{\circ} 28^{\prime} 30^{\prime \prime}$ W.; depth, 450 fathoms ; bottom, velcanic mud.

Limanina inflata.
Peraclis bispinosa.

Clio (Styliola) subula.
Clin pyramidata.
Cavolinia trispinosa.

Station 76. July 3, 1879 ; off the Aznres ; lat. $38^{\circ} 11^{\prime}$ N., long. $27^{\circ} 9^{\prime}$ W.; depth, 900 fathoms ; bottom, Pteropod ooze.

Limacina infata.
Peraclis bispinosa.

Clio pyramidata.
Cavolinia trispinosa.

Station 78. July 10, 1879 ; off the Azares; lat. $37^{e} 26^{\prime}$ N., long. 25^{6} I 9^{\prime} W.; depth, 1000 fathems; bottom, volcanic mud.

Limasina inflata.
Inmacina triacantha.
Limacina helicoides.
Peraclis reticulata.
Peraclis bispinosa.
Crio (Creseis) acioula.
Clio (Hyalocylix) striata.
Clio (Stylinla) subula.
Clio polita.

Clio pyramidata.
Clio cuspidata.
Cuvierina solumnella.
Cannlinia trispinosa.
Cavolinia quadridentata.
Cavolinic longirostris.
Cavolinia gibbosa.
Cannlinire tridentata.
Cavolinia inftexa.

Station 65. July 19, 1873 ; off Palma Ialnud (Canaries); lat. $28^{\circ} 42^{\prime}$ N., long. $18^{\circ} 6^{\prime}$ W.; depth, 1125 fathome ; bottom, voleanic mud.

Limacina inflata.
Limacina triacantha.
Limacina lestueuri.
Limacina bulimaides.
Peraclis reticulata.
Peraclis bispinosa.
Clio (Cresers) acicula.
Cio (Hyalocylix) striata.
Clio (Styliola) subula.

Ciso polita.
Clio pyramidata.
Clio cuspidata.
Cuvierina columnella.
Cavolinia trispinnsa.
Casolinia quadridentata.
Cavolinia gibbosa.
Cavolinia uncinata.
Cavolinia inflexa.

Station 120. September 9, 1873; off the coast of South America, between Pernambuco and Eahia; lat. $8^{\circ} 97^{\prime}$ S. long. $34^{\circ} 28^{d}$ W.; depth, 675 fathoms; bettom, red mud.

Limacina inflata.
Limacina lesweuri.
Limaciná trachiformis.
Limacina bubimoides.
Clio (Creseis) virgula.
Clio (Creseis) acicula.
Clio (Hyalocylix) striata.
Clio (Styliola) subula.

Clio polita.
Cia pyramidata.
Cuvierina columnella.
Cavolinia trispinosa.
Cavolinia quadridentata.
Cavolinia longirastris.
Candinia tridentata.
Canolinia uncinata.

Station 122. September 10, 1873 ; off the const of South America, between Pernambaco and Hahia; lat. $9^{n} 5^{4} S_{\text {. }}$ long. $34^{\circ} 50^{\prime}$ W.; depth, 950 fathoms: Dottnon, red mud.
Limacina inflata.
Limacina lesueuri.
Limacina bulimoides.
Peractis veticulata.
Peraclis bispinosa.
Clio (Oreséss) acirula.
Clio (Styliola) subula.
Clio pyramidata.
Curiesina columnella.
Cavolinia trispinosa.
Cavalinia quadridentata.
Cavolinia longisostris.
Cavolivia uncinata.
Cavolinia infleza.
Station 164. June 12, 1874 ; off Sydney; lat. $34^{[} 8^{\prime} \mathrm{S}_{\mathrm{s}}$, long. $152^{\circ} 0^{\prime}$ E.; depth, 950 fathoms; bottom, green mud.
Clio (Styliola) suhula.
CTio pyramidala.
Cavolinia trispinosa.
Station 174. August 3,1874 ; off Kandavu Island; lat. $19^{\circ} 6^{\prime} 0^{\prime \prime}$ S., lang. $178^{\circ} 14^{\prime} 20^{\prime \prime}$ E.; depth, 140 fnthams ; battom, sornl mud.

Limacina inflata.
Station 185. Auguat 31, 1874 ; off Raine Ieland ; lat. $11^{\circ} 3.5^{\prime} 25^{\prime \prime} \mathrm{S}$., long. $144^{\circ} 2^{\prime} 0^{\prime \prime}$ $\mathbf{E}_{\text {; }}$ depth, 135 fathoms; bottom, corol sand.

Limacina inflata.
Limacina lesueuri.
Limacino bulimoides.
Clin (Creseis) virgula.
Cio (Oresels) acicula.
Clio (Hyalocylix) striata.
Clio (Styliola) subula.

Clio pyramidata.
Cuvierina columnella.
Cavolinia trispinosa.
Cavolinia quadridentata.
Cavolania longivostris.
Cavolinia gibhasa.
Cavolinia uncinata.
Cavolinia inflexa.

Siation 219. March 10, 1875; Admiralty Islande to Yokohama; lat. $1^{\circ} 54^{\prime} 0^{\prime} \mathrm{S}$. long. $146^{\circ} 39^{\prime} 40^{\prime \prime} \mathrm{E}$; depth, 150 fathoms ; bottom, coral mud.

Limacina inflata.
Limacina tracheformis.
Limacina bulimoides.
Clio (Cresess) virgula.
Clio (Creseis) acicula.
Oio (Creseis) conicas.
Clio (Hyalooylix) striata.

Clio (Styliola) subula.
Clio pyramidata.
Cavolinia trispinosa (young, 睨
"Cleodara compressa ").
Cavolinia quadridentata.
Canolinia longirostris (young, as
"Hyalma lmvigata").

Station 24f, July 2, 1875; Yokohama to Sandwich Islands; lat. $30^{n} 10^{\prime}$ N., long. $178^{\circ} 0^{\prime}$ F.; depth, 2050 fathoms ; bottom, Glohigerina noze.

Clio pyramidata.

 long. $50^{\circ} 47^{j}$ W.; depth, 1900 fathams; linttom, lilue murl.
Clio pyramidata.
Carolinia inflexa.
 loug. $13^{2} 5^{2}$ W.: depth, 1425 fathoms; bottom, Preropod ooze.

Limacina imfltet.
Clio (Siglinla) shbula.
Clio pyyramidata.

Cavoliniat trisnimnsa.
Corolinia inflecre.
Curiesina columaclla.

B. ghographicat distriblution of the genera.

When I indieated the gengraphical divisians (pelagie provinces) which might be adopted for the geographiend distribution of the Gymbonnmatous Pteraporla, ${ }^{1}$ Thad not heen entrusted with the Systematic Report on the Thecosomata, whirh was still in the hands of Mr. Alfred E. Craven. Consequently these divisions were lased, not on the study of all the Pterupodia, hut ouly on the very limited group of the Gymnosomata, and therefore in cirmonstances very unfivoumble to generalisation, and apt to lead to multiplied suldivisions.

Fur the anke of mulformity, bowever, I have here uger the same suldivisions as in the case of the Gjmmosomata, and it will he seen that they apply tolerably well to the Thecosomata also.

It is to hee ohserved, in the first place, that the Thecosomata are in general more cosmopolitan than the Gymonsomata. Rut it is passihle that, after a more romplete etudy of the latter, certain forms may be found to be less localieed.

In the Report ou the Gymnosomatn, the absence of materiala made me wonder whether there did not exist, for the western part of the southern Atlantic, a special pelagie province (the Rrazilian). The study of the Thecosomatous Pteropoda has convinced me that there ie none, and that this "province" is identical in character with the South-west African. It acems advismble therefore to unite it to the latter to form a Snuth Atlantic province, in contrast to the North Atlantic one, from which it distinctly differs in the presence of some particuler species. This South Atlantic province includen the regionaituated to the south of the great equatorial current and to the north of $89^{\circ} \mathrm{S}$.; and is traversed by the Snuth Atlantic and by the Brazilian currents. In the dingrame

[^65]of geographical distribution the name South-weat African province will therefore be replaced by that of South Atlautic.

Genern of Thecosomata have been ohserved in all the warm and tempernte seas, that is to eay, in eight out of ten pelagic provinces. In the case of several of these provinces the firat mention of certain genera is due to the results of the Challenger Expedition; for example in the case of the South Atlantic, Austrnlnsian, North Pacific, and South-east Pacific.

The maximum geographical extension is found in the genus Linnacina, as comprehended in this Reporb. In fact Limacina is not absent from any of the ten provinces which have been edopted in the Systematic Report on the Gymnosomata.

Perarlis is more local; at least it has not hitherto been observed except in the North Atlantir (including the Mediterramean), West Pacifir, and South-east Parific provinces. But it seems to me prolyalle thant it will afterwards be found in the ather worm sens, at least in the South Atlautic, Iudian Ocean, and Australasian provinces. (Empty shells of Perachis reticulata and Perachis dispanooxft have alrendy leen got in sediments from the bottom of the sca, at lat. $9^{\circ} 5^{\prime} S$. Station 122.)

In the group of Cavaliniidse the genera nord even the sulyeneris sections are almost all cosmopalitan, nat leing absent even in the cold provinces (Arctic and Antarctic). Thus forms of Clia belonging to the subgenera Creseis, Ityalorylix, oud Styhiola have been found in all the eight warm and temperate provinces,

The subgenua Clio, s. str., although with a geagraplical distrihution not quire so extengive as the genus Linatina, bas been found in the eight warm and temperate, and in the two Arctic (Clin pyramidata) and Antarctic provinces (Chio australis and Clio sulcata).

Lnatly, the gengraplical distribution of the genera Canolinia and Cuvievina alan extends throughnut the eight whrm and temperate provinces.

Leaping the calrarenus-shelled Thecosnmata, nad passing to the Cymbuliidx, we find that like Peraclis and the different genera of the Gymnosomata they have as yet been insmefficiently atudied. The presence of the genus Cymbulia has been proved in the following provincen-the North Atlantic, Indinn Ocean, and Australasian; that of the genus Cymbuliopsia in the North Atlantic and Auatralasian ; and that of the genus Gleha in the North Atlantic and Australasian.

As with the genera of Gymoosomata, I here collect the data respecting the geographical diatribution of the genera of Thecosomata in a tshle which aump up the subject in an intelligible way. Thia tahle has been made excluaivaly from the study of apecimens taken alive, as one cannot take into account the ampty aballa of the deposits in eatablisling the geographical distribution of pelagic animala like the Pteropoda. ${ }^{1}$

[^66]| | | | Aretic. | $\begin{aligned} & \text { North } \\ & \text { A Brotiln } \end{aligned}$ | $\begin{gathered} \text { Banth } \\ \text { duntio. } \end{gathered}$ | Indian Ocman. | Auitral. allo. | Weat Pacifia | | North Penifg. | $\begin{gathered} \text { Soo tho } \\ \text { Kant } \\ \text { Pacific } \end{gathered}$ | $\begin{array}{r} \Delta n t- \\ \text { intic } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Prantin, . . | , | , | | \underline{Y} | | | | * | | | y | |
| Limactina, . | , | - | \times | $*$ | \times | \% | \cdots | \times | $\underline{1}$ | x | x | x |
| Clio (Crmain), | . | - | | y | x | , | צ | W | x | x | * | |
| | - | . | - | Y | $*$ | * | צ | צ | Y | x | \times | |
| . (Stylinla) ${ }_{1}$. | | . | | צ | צ | x | Y | צ | \times | x | צ | |
| , n. atsen . | * | - | \cdots | x | צ | \times | \times | צ | \times | \times | צ | y |
| Cuvisrina, . | * | - | | Y | \boldsymbol{y} | \cdots | \times | x | \times | x | צ | |
| Cadolimia, . . | - | - | | x | y | \cdots | x | * | x | \times | * | |
| Gymbvia, , | | | | Y | | x^{1} | \cdots | | \times | x^{3} | | |
| Gymbuliopuin, | | - | | * | | | \times | | | | | |
| Glela, - . . | | | | \times | | | ± 4 | y 6 | | \mathbf{x} | | |

C. THE SPECIES OF THECOSOMATA ARRANGED IN PROVINCES

I. Arctic Province.

Limacina helicina.

Limacina retroversa.
Clio pyramidata.
II. North Atlantic Province.

Limacina inflata.
Limacina triacantha.
Limacina helicoides.
Limacina lesueuri.
Limacina retroversa.
Limacina trochiformis.
Limacina bulimoides.
Peraclia reticulata.
Peractis bispinosa.

Clio (Creseis) virgula.
Clio (Creseis) conica.
Clio (Creseis) acicula.
Clio (Hyalocylix) striata.
Clio (Styliola) subula.
Clia polita.
Cio balantium.
Clio pyramidata.
Clio euspidata.

TThe Dymbulia tram the Indian Orean, figured by Mucdonsld, bee p. 日
1 The lerve of Oymbutia collected hy the Challengrar, Aee p 昍,

- The larve of Gluba colledtad by tha Challmger, an p. 10.

[^67]Cuvierina columnella.
Cavolinia trispinasa.
Cavolinia quadridentata.
Cavolinics longirostris.
Cavolinia gibbosa.
Cavolinia tridentata.
III. South Atlantic Province.

Limacina inflata.
Limacina lesueuri.
Simanina trochiformis.
Limacinc bulimnides.
Clio (Cressis) nirgula.
Clio (Creseis) conicu.
Clio (Creseis) acicula.
Chio (Hyalonydix) strinta.
Cio (Styliola) subula.
Clio andrem.
Clio Balantivm.
IV. Indian Ocean Province.

Limacina inftata.
Limacina lemueuri.
Limacina trochiformis.
Limacina bylimoides.
Clio (Creseis) virgula.
Clio (Creseis) acioula.
Clio (Hyalocylix) striata.
Clia (Styliola) mubula.
Clio balantium.
Cio pyramidata.
V. Anftralagian Province.

Limacina inflata.
Limacina lesuturi.
Limacina trachiformis.
Limacina bulimoides.
Clio (Creseis) virgula.
Clio (Creseis) acicula.

Cnvolinia uncinata.
Cavolinia inftext.
Cymbulia peroni.
Cymbuliopsis calceola.
Qleba cordata.
Gleba chrysosticta.

Clio chaptali.
Cio pyramidata.
Clio cuspinata.
Cuvierina columnella.
Cavolinia trispinosa.
Cavolinia quadrindentata.
Cavolinia longivastris.
Cavolinia gibbosa.
Cavolinia tridertata.
Cavolinia uncinata.
Cavolinia inflexa.

Clio cuspidata.
Cuvierina columnella.
Cavalinia trispinosa.
Covolinia quadridentata.
Cavalinia longirostris.
Cavolinia globulosa.
Cavolinia gibbosa.
Cavolinia tridentata.
Cavolinia uncinata.
Cavolinia inflexa.

Clio (Hyalocylix) striata.
Clio (Styliola) subula.
Clio balantium.
Clio chaptali.
Clia pyramidata.
Cuvierinc columnella.

Cavolinia trispinnsa.
Cavolinia guadridentata.
Carolinia longirostris.
Cavolinia globulosa.

Cavolinia gihbnsa.
Conmlinia midentata.
Carolinir uncinata.
Camolinia inflexa.
Cymbulinpsis ovatr.
VI. Weat Pacifie Province.

Limacina inflata.
Limacina lesuenti.
Limacinn trorhiformis.
Limacinat bulimoides.
Percectis reticulata.
Clio (Creseis.) mirguld.
Clio (Comesin) cnaica.
Chio (Crrse is) acienla.
Clio (IIyalocylix) striata.
Clio (Styliola) subuto.

Vil. Enat Aurtralian Proviuce.
Limacince inflata.
Limncina lesucuris.
Limacina trochiformis.
Limacina bulimaides.
Clio (Creseis) virgalu.
Clio (Crespese) aricula.
Clio (Hyalonylis.) strinata.
Clio (Styliola) subula.
\'III. North Pacific Province.
Limacina inffatra.
Linnacina lesuewri.
Limarina bedimaides.
Clio (Creseis) virgula.
Chia (Creseis) acienla.
Clio (Hyaloryliz) striata.
Clin (Sipliola) suhula.
Clio pyranidata.

Chio pyramidata.
Chio cuspidata.
Cuzifrina columnella.
Cavolinia trispinosa.
Carolinia quadridentata.
Carolinia longipostris.
Carolinia globulosa.
Carohinia gibboss.
Catolimia tridentata.
Cavolinia uncinteta.
Cruolinia inflexa.

Clia pyramidata.
Cuvierina rolumnella.
Cavolinia trispinosa.
Cavolinia quadridentata.
Cavolinia lougirostris.
Cavolinia gihbnsa.
Cavalinia inftesat.
Cymburia parvidentala.

IX. South-East Pacific Province.

Limacina inflata.
Limasina lesueuri.
Limacina trachiformis.
Limacina bulimoides.
Peradis reticulata.
Clio (Greseis') virgula.
Clio (Creseis) conica.
Clio (Cteseis) acicula.
Clio (Creseis) chierchis.
X. Antarctic Province.

Limanina antarctica.
Limacina aumsalis.

Clio (Hyalocylix) striata.
Clio (Styliola) subula.
Clia pyramidata.
Cuvierina columnella.
Cavolinia longirastris.
Cavolinia gitbosa.
Cavolinia tridentata.
Cavolinia uncinata.
Cavolinia inflexa.

Clio australis.
Clic sulcata.

CONTENTS.

Pantis
INTRODGGTION 1
Habita af tha Thanemimalalus Piaropode, 3
The Thecosomala of the Challanger Expedition, 3

1) hagription os Genkha ann Sprolm, 5
The Geners and Families nd Thercoswata $\sqrt{5}$
Family L Limaninide, 9
Eimacina, 16
Panarlic 32
Appendir to Limecinide, 17
Family II. Gavoliniidm, d)
Cin 42
Cubierina fi6
Camblinin 69
Family IIT. Cymbuliidrp, 92
Cymbulia 96
Cymbuliopsis, 100
Glaba, 10]
Summary, 100
Gegraphiohl Diatametion 107
A. Lint of Etakiong. 107
1. Stationt at which the Living Speoimens were ollacted by tranling and dredging, 107
2. Principal Etationa nt Which Ebelln of Theoneomata were obtained frem the Depasits 116
B. Gengraphian Digtribntigu of the Gemers, 121
C. The Spacian of Thescenmata arronged in Proviniran, 129
 198Etribgation ap Prater

INDEX．

Synobyme are priniad in italica．

A Endina，Goside，s？
gouldi，A．Adama， 38
stimprani，A．Adams， 38,
Ap， 99
Anomia tridmatala，Forskill，月3．
Asrhomia，Mentiort， 69.
Argivom parva，Lesueur， 101.
Argonania arctica，Fabricius， 21.
A hanka buliswided d＇Orbigsy， 90
infitim，n＇Grbiguy， 17.
Leatzaurii，A＇Orbjgry， 94.
margii，d＇Orbigry， 24.
vetirulatn，d＇Orbigny，34，
rotnotrata，d＇Orbigny， 40
imarh ifarmis，d＇Ortifny， 29
Anlantizm，Anenymour，ES．
autmion，Gray， 63.
himrinatum，Heqnon， 61.
prolitum，Craven，HS．， 60.
гегигинм，马ядвоп， 61.
tugnsuni，Gray， 81.
Campylomara，Gray，I3．
Causina，a Eild，frand，69，
ratana，A bildegrand， 83.
prisum，March． 1 ．
Cavolinia，Ahildgard，69，
gihbuas，Tisof， 82.
globulone，Fangi 81.
infleye，Lefueur， 81.
langiratrin，Lanueur， 79.
quadndantath，Leanaur， 78.
tadama，Adame， 89.
tridentstan Forskill， 89.

ompinnta，Rang， 84.
Cleodara，Pémn and Lenceur， 42. acrenian Sorle．jet， $\operatorname{b1}$ ．

Cleodara andrex，Rona， 69.
atatralia，Souleyot， 62.
bahnatiam，Rage， 61.
bunanit，ile lianville， 69
fhaphalii，Souleyet， 61.
rhactrhis，Bone，ots．
compreasa，Saulaynt， 87.
cartiofo，Huylay， 90.
canata Souleyat， 8 ．
exeppidatu，Queg and Gaimari， 66 ．
emesta，Goulri， 64.
falcata，Gnuld， 49.
faleata，PIeEler， 60.
fleaz，Plefer，48．
inflata，Sanlayet， 61.
Lamartinieri，Rang， 63.
lanconlata，Souleyet， 14.
leasonii，Rang， 66.
Lohata，Sowarby， 64.
martersii，Plefer， 64.
munda，Gould， 48.
pbifsso，Quny ann Gaimard 87
ocoidentalia，Dall， 45.
yiasida，Gould， 4 E

quadrupimasc，Rang． 66.
mulnich Quay and Gaimard，A1．
subulata，Soulayet，站．
nuleata，Pleffir，62．
trifili，Trosohel， 99.
virgula，Saulag日， 18.
Clio，Linne， $4 y_{1}$
notoula，Rang， 11 ．
andran，Rane， 59.
auatraliiA，d＇Orbigny，6s．
balarisism．Pore， 61.
caudata，Linnd， 44.

Cha chapinli, Souleyat, 61.
clierchirg, Thnar, 5 , 3 .
conicn, Feslosclentiz, 50
cuspilata, Losc, GG.
depmesse, Gruy, A7.
Wetirina, Phipps, 21.
pelluridta, Groy, R8, 90,
polita, Croven, NS., 60.
purranidata, Linud, 63.
striatn, Rang, 54.

suleatn, Pioficr, 6?
vitguln, Hamg, f8.
Crione hericina, 12allus, 2].
Carolla, Dnll, 93 ,
spertahitin, Mall, 102.
Crowein, Ilanga, 43.
anichlf, Rngg, 51.

radigutu, Escluceloulte, 4E
rlona, Rang, 51.
comy veswa, Escluscholth, 54 .
conima, Eschacholta, 50,
comniden, A. Cnala, 5 !

mamaiti, Tı neklicl, 5s.
pheostoma, Troschoi, 5ل
nsgriosu, Canleninc, th

mbriala, Della Chinja, 50.
atriatn, Rang, 54.
มnlusa, Tinng, 67.
ขnguit, Exclisehnllz, 46.
virgula, Rang 48.
zmain, Delle Cbiaje, 54.
Cucieria, Rang, 66.
colmmirla, Raлg, 67.
argea, Demeon, 67.
virecilaris, Mericlı, G8.
Suvicrimn, Tlans, 66.
colummella, Rang, 67.
Cyabulin, Prisan and Leaturur, 96.
calcenha, Vertill, $\mathbf{i O l}$.
cirroptern, Grgenbatir, IOD.
norfallesais, Quny omul Gaimard, 94.
onata, Quoy nal Gimond, 100.
oxulatis, Iang, 100.
paravi, de \#lainville, 88.
probosicidea, Gray, 98.
proboaritien, Ktohn, 102.

Cymbulin puncinin, Quay aud Gaimard, $11 /$,
guadripunctals, Gegenhaur, Ig.
maliata, Quay and Gnimard, lefis
Cymbuliopgs, m. gen., 100.
enirpnin, Verill, 101.
nuntr, Quoy nnd Gsimard, 100
Dramia, Gruy, 69.
depresm, Giny, 90.
hazigrita, Gray, 00.
mhetranita, Gross, 7 i.
trixuminom, Groy, is.

rhame, Sgaveron, 9 .
mastorlis, Jell reys, 17.
drintanl, ms, Tischer, IO.
Euchilntliarn, Fischert 7.
Entram w, Milnuls, 3 ?

Gamopleum, Bylanili, it
Glehn, Farskifl, 101.
cocklnta, Firskifl, 102
chryseatictr, Krolnn, 103.
spectanliliza, Dall, 103.
Holirmaided, l'Orhigny, If.
Helirojhiarn, Gray, 15.
Heter $\frac{\text { flisun, Fleming, } 15}{}$
nlexandri, Vetrill, 38.
Laten, Marrdl, 8.

Hyпlяa, Lamintre, fig.
aciculate, d'Orbigme, 51 .
afinis, d'Orbigny, 83 .
angulata, Soulnyet, 79.
australis, d'Orhigny, 6?
austmina, Peron, 83.
halentitm, d'Orbiguy, CJ,
сhemทiziana, Leannur, 8:,
mmblarista, Gegenlimir, sul.
romntra, Lammick, 8 .
mavifnrmis, d'Orbigny, 4N
cantata, Plefler, 78
cumingin, Sowarby, R3.
ruspidria, Doec, ac.
enepidada, Delle Chinue, \quad g
iляpressa, Tivann, 76.
depprosmi, d'Orhigny, 90.
erauiatr, Lesueur, 7 J.
elongraia, Lesueur, $8:$
famorata, Gauld, 79.
finsiroalris, Bencern, 79.

Hymhan fingn，d＇Orbigny， 82.
finstrahlii，Lesuow，S＇s． grgextaniz，Plofler， 8 ． gilhown Rang， 88.
gyabimiana，Farg， 81 ．
amitans，Pit Eter， 95
anermin，Gould， 78
inftern，Lesurur，85．
inderymediti，Sowerby， 78
Thiutita，il＇Orbigay， 85.
Imigata，il＇Orhagny， 90
lahemataia，Lesucur，OS，
himanion d＇Orligny， 7 日．
mingifitis，＇1＇rosebol， 88.
hangiroxtrix，Lasueur， 79.
minu／n，Sowerby， 78.
mueventa，Quoy oud Goimoral， 7 G.
idhumen，Enveriby， 79.

peromi，Lasucur， 83.
ribramiztata，d＇Orbiguy，63．
gumhridentata，Lestami，7R
quadrizyinowa，d＇Obsiguy，78
merinna，Dualsat， 75.
minumiah，llvas， 49 ．
тиgana，d＇Orbrguy， 9 I．
isinamatha，Eromn， 74 ．
tricnuspidata，Bowaideh，dic．
tixpinnor，Lesueur，8G．
teniubibanihea，Péran and Jenumiry，six，
Amurata，Kiraus，日寸．
Arenirath，Lesueur， 9 ？
whrimata，Rarg， 84 ．
w．srimath，lioesis：guaus， 85
ameinalifinm
moginflina，Coulraine， 月5
Hyalorgial， $\mathrm{F}_{0} \mathrm{~F}_{1} \mathrm{E}_{4}$ ，
Hyamomia， Fn_{n} ，『4．
Limmaim，Cuvier， 16.
antarcilion，Woodward， 22
arrim，Mndler， 21.
autionlig，Eydour and Soulayet， 2 ，
Invia，Mallor， 97.
lindimniules，durligry， 90
earinath，Jefroyes 10.
rrasen，Whloin， 24
encullain，Gould， 37.
helirialia，Lamencek， 21 ．
holicimn，Pbjefay ${ }^{2}$ ］．
thelimixider，Jeffrayg， 93

Limacina inflatn，d＇Orhignys．Iた
loaveuri，il＇Orbigny，…
matimiles，Pang．2n．
jerifica，Пall， 91.
reliculata，I＇Orhigng，Its

araphimidion，Cinuld， 16.
Itraceuthn，Fïsclier， 00

turrileilnides，Ihas， 40
Menitrimaxi，Gimy，I． 1
Orbngupia，Adnmas， $6!$
Peracie，Forbes， 32
Pemclis，Farbea，32．
lippinosor，n 8jl．，36．
flemizgri，Forbos， 37.
p^{2} hy wides，Forbea， 31
reticulan dromigny，34．
Plearojw，Fsclischolla， 6 白．
droprosurns，A．and H．Adams，gil
hargerv，Verill， 91.
lextgatua，A．and H．Adome， 90
lougifilia，Tionshel， 8 g
nectanaius，A，and IL Alamp， 77.
peliucidus，Farharinitz， 80
trispingares，iL and II．Atloma， 72.
Poculina，Bellardi， 7.
Protomertec，O．G．Contn，15，
Elata，O．C．Contr， 17.
mantra／ia，Finchur， 1 i．
Rheda，Huлlphrasga، 69.
Sesa，Philippi，1．i．
atenogyra，Phulifpi， Q $_{7}$
Spiratelta，de Blainville，Is
artica，Deshages， 21.
limacina de Blanville，21
Syiviaing，Eyrlans and Saulejal， 15.
appendiculatus，Vdain， 19 ．
ausitralia，Eyrlour and Soulnget，2f．
balea，Sara， 38.
hubmenides，Fydour and Sonlayel， 50
elaihrata，Eydoux and Smaleynt， ga_{4}
sonteria，Mantemasin， 10.
divera，Monterossta， 10.
ffemingìi，Forheannat Hanley， 27.
gonlditi，Stimpaon， 28
jofreytii，Forben and Fnilay， 97.
macmurici，Forbes and Hesiley，！g？
physoitan ．Ieffrayen 94 ．
ricurnivostion A．Caita，34

Spirialid mantralin, Fiydan and Enaleyat, 17.
itemogyrah Lovan, 27.
troohiformin, Fydoux and Sonloyel, 29, enentricana, Fiydour and Boulayet, 24.
Stylinla, Lasuebr, 68.
corniformin, Gray, 48.
таста, Lөaдаит, $\overline{\text { б }}$.
atinata, Gray, 84.
subula, Gray, 57.
virgrola, Grap, 48.
vitran, Verrill, 50.
Tibielle, Meybr, 7.
Tiedamamnia, Delle Chigiq, 101.

Tiedemanmis chary bdig, Troarh Bl , 10 K .
creasiptara, IKrobn, 102.
napolitama, Delle Chiaje, 102.

Thicla, Oken, 69.
Tripters auctarum, 66.
carcallata, Plaffer, 68.
columella, Piefier, 68.
rakumralla, Grey, 67 .
roina, Quoy and Gaward, 67.
Turbo limaris, Gmalin, 27 .
Vaginalla, Daudin, 7 .
Valvatina, Hornemarn, 3.

CONTENTS.

I.-Report on the Pteropoda collected hy H.M.S. Chaldenger during the yeara 1879-1876. Part II.-The Thecosomata.

By Panl Pelseneer, D. Sc. (Hruseele).
(The Monuscript was receired 2nd August 1887.)
1I.-Report on the Prrmpoda collected by H.Mas. Challenger during the yemis 1879-1876. Part JII.-Anatomy.
By Paul Priseneer, D.Sr. (Erusgels).
(The Manuscript was received 5th December' 1897.)
III.-Report on the Hydroida dredged ly H.M.S. Challenger during the years 1879-1876. Part II.-The Tobotarinf, Corymorphine, Campandlarmex, Srrtularina, and Thalamophora,
By Professor G. J. Allman, M.D., I.t.D., F.R.C.g.I., F.R.GS. L. \& E., M.R.I.A., C.M.Z.S., Mem, Roy. Dn.nisb Acad. Sci, \&e.
(The Manuscript was received in Instalanants between 2gth August 1887 and 9th Febmany 188日.)
IV.-Report on the Entozoa collected by M.M.S. Gharlenger during the yearb 1879-1876.
By Dr. O. von Linstnw of Gottingen.
(The Manuscript was received 24th Octoher 1887.)
V.-Mepobt on the Hetrropoda collected by h.M.S. Ceallenger during the years 1879-1876.
By Engar A. Smith, F.Z.S., Argietant in the Znolagical Department of the British Museum.
(The Manuscript woas received 21st January 18日8.)

PLATE $].$

Figs. 1, 2. Limacina twiacanthe (Fischer).
Fig. 1. Shel], from the aperture; magnified fourbull diametern
Fig. 2. 8hal, from the apex; mngmified fourtecu diunetera.
Figs. 3, 4. Limacina antaretica, Woodward. (After Hooker's unpublished figures.)
Fig. a. Sbell, from the aperture; maguitied ten diarablers,
Fig. 4. Shell, from the apas; magnified five diemeters.
Fig. 5. Limacina helicoides, Jeffreys. Shell, froni the aperture; magnificd eight diameters.

Fig 6. Limacina nustralis (Eydoux and Souleyct). Shell, from the aperture; magnified eight diometrers.

Figa. 7, 8. Peraclis reticulata (d'Orligny).
Fig f. Sbell (from leaphea depasit), frame the apertura; magnifieal twelve diametars.
Fig 8. Operculam, fron the outside. n, Surface of intertion.
Figs. 9, 10. Peractis bispinosn, n. sy.
Fig. 9. Shall, from apertore; magnified sis diametars
Fig 10. Shell, from apex; magrified menen diametere.
Eige. 11-14. "Agadina" ntimpsoni, A. Adams.
Fig. 1]. Aball, from aperturs, with operculum in eria; magrified eighteatu diamaters
Fig. 12. Shall, from epex ; magniffed twenty-two dinmetart
Fig. 19. Animal, from left aide; magnifed twanty dianatare a_{1} pelum; $b_{\text {, virceral }}$ mast; ; apertere of pallial navity ; a_{1} oparculum ; a_{1} fooc
Fig. 14. Lawar auriace of the foat; magaified twanty diameters a operrulam.
Figs. 15, 16. "Agadina" sp.
Fig. 15. Shell, frem aperture; magnified twanty.twa diameters
Fig. 16. Bhall, from umbilicu: ; magnifind twenty-two diameters.

PLATE II.

Figs. 1, 2. Clio (Creseis) annica (Eschacholtz).
Fig. 1. Shall, from laft sirla; magnified ten diametere.
Fig. 2. Fimhryanic shell, fimm left side.
Fig. 3. Clio (Hyralocylix) striato (Rang). Embryonic shell, from ventral surface. Figs. 4-6. Clio polita (Chaven, MS.).

Fig. 4. Shall, from right nidp; magoified six riametars.
Fig. 5. Shell, firom dersal aurface; mannified aix diumetera.
Fig. 6. Embrganic shall, frow ventral aurface.
Fig. 7. Cio chaptali (Sonleyet). Embryonic shell, from ventral surface.
Fig. 8. Clio australis (d'Orbigny). Embryonic shell, from ventral surfarc.
Figs. 9-11. Clio sulcnta (Pfeffer).
Fig. 9. Shell, from rights eida; magnified four diamaters.
Fig 10. Sbell, fram dorisal aurface ; magnified four dianietera
Fig. 11. Embryanic shell, Iram ventral suriare.
Figs. 12, 19. Cymbulia parvidentata, n. sp.
Fig. 19. Shell, from antarior side ; magnibed two diametera
Fig. 13. Shell, from postarior tide ; magnifed two diametera.
Fig. 14. Larval shell of Cymbulia, from nperture, with operculum in situ.
Fige. 15, 16. Cymbuliopsis ovata (Quoy and Gaimard).
Fig. 15. Shall, from nateriar eida; magnified two dinmetere.
Fig. 16. Shell, from leit side; magnifies two diametera.
Fig. 17. Larval shell of Gleba, from aperture.

EDITORIAL NOTES.

This Volme contains Parts LXV., IXXYI., LXX ${ }_{\text {, }}$ IXXI., and I.XXII. of the Znological Series of Reports.

Part LXV.-The First Part of the Report on the Pteropoda, hy Dr. Paul Pelseneer, treating of the Gynnosomata, was published in 1887 in Volume XIX., and forms Part LVIII. of the Znolngical Series of Reports.

This Second Part of the Report, ly the same author, deals with the Tingcosomata, and contains 132 pages of letterpress and 2 plates, in addition to woodcuts.

Part I.XVI.-In this Third and concluding Part of the Report on the Ptrmopona, Dr. Pelsencer treats of the Auatomy of the whole group and discusses the relations of the Ptehofoda to the other Mollusca. The Part consists of 97 pages of letterpress and 5 lithographic plates, in addition to nther illustrations in the text.

Part LXX.-The First Part of the Repnrt on the Hydroma collected during the Expedition, by Professor S. J. Allman, F.R.S., was published in 1883 in Volume VII., forming Part XX. of the Zoological Series of Reports; it treated of the Pamola hidm (Plumularinæ).

The present Memoir is the Second and concluding Part of Professor Allman's Report, and treats of the remaining families of the order.

In consequence of the extent and representative character of the collections Prolessor Allman has been able to give, in addition to the 200lagical

ERRATA IN PART LXV.

Page 107, line 9, for "glabudosa" read "gibbosa."
Page 112, line 18, add "Cuvierina columella."
descriptions, a very raluable and comprebensive sketch of the morphology and life-history of these animals. This Part consists of $\mathbf{1 6 0}$ pages of letterpress, 39 plates and a map.

Part LXXI.-Had any specinl attention been paid to collecting Entozos during the Expedition, a much larger number of species would probably have been obtained than are described in this short hut valuable Report by Dr. O. von Linstow of Göttingen, one of the first authorities on this group of animals. The Report consists of 18 pages nf letterpress, 2 lithographic plates and a woodeut.

Part LXXII.-In this Report Mr. Edgar A. Smith has brought together sysiematic lists slonwing the present state of our knowledge of the Heteropodi, founded on the collections made during the Expedition. The Report, which consists of 56 pages and 5 woodents, will he most useful to future investigators.

Joun Murray.

Cahlienorb Offick, 32 Qurkn Strast,

5.

10.

4.

9.

12.

16.

15.

8.
11.
3.

2.

7.

13.

14.

4.
2.

1.

5.

3.

9.

6.

14.
11.

15.

13.

10.
7.

17.

12.

8.

16.

[^0]: - Zonl. Ghals Eup. part litii.

[^1]: 1 Zool. Chall, Erp, part lviii pp 1-f.

[^2]:

[^3]:

 - The Gexera of Recent Molluach, vol i p. Bi

[^4]: ' Boas enmuidere thia apme na cortesponding to the dollow which eqparatesthe amall tentacle-like lohe of the fin
 pl. viges. 70-3日)

 ' Nuave rivita delle conchuglie Mediterranea, p. 0.

 - Mrid, p. 60.
 - Hirmire ratharelle dea Malludqual Pt白rapodea
 - Bpolis atlantice, pt. 38-50.

[^5]: 1 Cotalaguo of the Molluace in the Colleation of Lhe Britiah Muenm, pt. I., Pkeroporla
 I The Mallueca and Shelle of the D.g Explarige Expedibin.

 - Spolian aklnntiea
 vol. six p. 133.

[^6]: ' Voyage de la Bonite; Zoolorie, ti ì. p. III.

[^7]: - Diminutive of Kimax

[^8]: ${ }^{1}$ Ben Bonc, Spolis atlantica, p. 181.-AD identical diaporition is foond in the Caraliniide
 ${ }^{1}$ Fintaire ratoreile den Mnllueques Pudaropodes, p. 60 .
 ${ }^{5}$ Voyege in is Honíta, Zonlogie, t ii. p. 908.

[^9]: 1 The apeciet callected by the Challengar are marked by an artarist
 ' Ann. alld Mag. NaL. Hid., sar b, wol mi p. 40 .

[^10]: p. 487, 1878
 p. 616, 1888

[^11]:

[^12]: I Raport on the imemational North Polar Expedition to Point Rarrow, 18Rs, Report on the Molloilna, p

[^13]:

[^14]: ${ }^{1}$ Voyage do la Bonite, Zoologie, t ii. p 810, pl. xiii fige H-Je.

 - Debericht der anf s. M. Behiff Guelje ond von De. Jaqur geemmelien Pteropolen, Maratebor. di, prain Aked d Wien. Balin, p \&45, 1879.

 1 Epolian alluatica, p. 47.

[^15]: ${ }^{1}$ Hiedaire naturnille deo Mallnequen Piamposifa, p. as

 - Histaire naturelle deu Molvequa Plarcporian, p. fis.

[^16]:
 ${ }^{*}$ For instanca Wrinkaff, Die Conchyliev dee Kittelmerras, E ii. p. 4 \&

 - Spolia atlentloch p. 4e.

[^17]: ＇Eroleyet，Vofage de la Bonite，Zoologis，Mollurques，pl．xliL fig gh，
 －Soulajei，Fid，pl．riii．fig 24，

[^18]: ' Mriliab Conchology, val, v. p. 116.

 - Die Conchylies des Mithelmeerel, Adi ii p. 466.
 - Ptereporli dalle faunn del Regno di Napali, p. IB.

 ' Philippi, Faunn Molusarum ntrianque Sinilus, pl. xy v. fig. ge.

[^19]:

[^20]: ${ }^{1}$ Britiah Conchology, vol v. p. 114.
 ${ }^{1}$ Die Conchglien ded Mitalmeeres, t ii p. 4 ser.

 - Ptapopodi delle topa dal Randuo di Napoli, p. 10.

[^21]: ${ }^{1}$ Angan, Pruc Zock cinc Lemi, 1871, p. 8 日.

 ${ }^{3}$ Complat radur, i meip. p. 1 set.
 4 Ant and Mag Nat. Fre., mar. 4, wol. Hx p. 3 g 7.

[^22]:

 ${ }^{3}$ At Nuples，wodar the natas of Spiriali feurvirontra．

[^23]: ' Spalia allantica, pl, iii. fig. 3 .

 - Vayage dana l'Amériqur méridionala, \& จ. ple mj, fig. an.
 [1. 29.
 - Surr, Mid, pl. mitii fg. al.
 ' Sinta, Intid, pl. xviii. Ag. 2E.
 1 Spolin allentien, p. 50 , mola Φ.
 - Anmmaria ded Muea Zooingica della R. Inim. Napoli, t. iv. pl. iv. fig 18.

 1 Proc. Zool. Sce. Lasd., p. 14A, 1847.

[^24]: ' Onmptad tandu, val xciv. p 1201.
 ${ }^{1}$ Peitrige zur Entwickelungneachichta der Plerapoder und Heiempoden, p 43.

 4 Anrl ond Mag Nat. Hin, ser. 4, val. xix p. 397

[^25]:

[^26]:
 1 Arec 2ool Soc Land, 1867, p. 308.

[^27]: ${ }^{1}$ Mannal of the MolluF을, 185, p. 907.

[^28]:

 ' Epalia arlantica, p. 48, pl ini. fig. 35.

[^29]: ${ }^{1}$ Mythalagical name.

 - 2nol. Chall. Exped, part lvill pp. 44, 48.

[^30]:

 drntale" 1 cannot pive a decided opidion on then question.

[^31]: 1 Mannel dn Conahylialogie, pp. 425-437.
 *Facta and Arguraminta for Derwin, p. 114

[^32]:

 - Histoire astarelle dea Mollueque Ptropadme, p. 6.5.

[^33]: - Spolis alantice, p. sane
 ${ }^{2}$ Mid, pl. vi. fg. 日a.
 - Mid, p 1.

[^34]:

[^35]:

[^36]: ' Diminutive of miseg, column.

[^37]:

[^38]: Aend, vol v. P Exy.

[^39]:

 - Spalin alianticn p. 6 日
 ${ }^{3} \mathrm{Paid}, \mathrm{pl}$ iv fg. 46

[^40]: ${ }^{1}$ Named after Cutror.

[^41]:

 - Voyage actour du Mande ela la Coquille
 - Crialogue of tha Morlume in the Oollection of the Rritinh Mneeum, pt ii, Ptaropode, p. 2i
 *The fienern of Rerent Molluece, yol I. p. ©4.

[^42]: ${ }^{1}$ Nemed After Davolini or Carlini.

[^43]:

 ${ }^{3}$ Die Pletopodan dea Hambuger Mulfums, Abhandi. Nosuran. Vet. Famburg, t vii. p. 75.
 ${ }^{4}$ Spolia at|ention p. 907.

[^44]:
 Cephalan Mnllued, Phil Trana, 1 Had, pl. iv. Hga 4, 6.

 - Aln Nudihmochs, dengrated Camisna (Braguifra).

[^45]: ${ }^{1}$ Spolin anlantica, p. Der,

[^46]:
 esperially gince the collection of Ptaropode in the Britiah Muranm is many lime richar tarday than it mas in 188f.
 ${ }^{1}$ The Genern of Rerent Mollnagh, val. ii p. Ell.

 iripinam in the anblanily Cleadaring, and Canchinia quadrianatat in the mbomily Byaleine.

[^47]: the form coneata from thr Atherite

[^48]: Eistoise naturelle ded Mollungres Prdrofoden, p at
 [145

 - Die Fternpoden dea Hambrger Museame, Athandl Natums. Far. Hamburg, t. vii p. 84

[^49]: d. Win Barlin, 1879, p 937.

[^50]: ' Epmlin ntlertior, g. 11.

[^51]: ' Eistoire naturelle dea Malnequan Pidropoilea, p. ES.

 - On the Morphology of the Oopbalon Mollunce, Phit Trasn, 18E:I, p. ds.

[^52]:

[^53]: 1 Zuel Chall Erp., pt Iviii. p. \quad E.

[^54]: ${ }^{1}$ Gef Gegenhar, Untetnachangen Uhar Ptenapoden und Fintaropodey, p. 40, nowe 1.

[^55]: ${ }^{1}$ Corraption of Gymberta, alipper.

 - Woodwner, in hia Manmal nf the Malmacn (IR日G) notes twa itomanhal platas, whale iv ifse maneign ranggined forr, and thln ang one might ferify. Neverthelens the manmala af conchology have continued ta copy from
 compilation destituta of arimitific pelas

[^56]:

 - Mnnuel de Malncalopie, pl viiii, flf. A.

[^57]: ${ }^{1}$ Truite dhmentaire de Conchyliologie, ple cil. fla a

 - Spetir atimbica pl iv. Eip. 30 .

[^58]: I Bsitsige zar Eatwickelungequahiohte dar Pterapodan ond Hetaropcden, p. 18.

[^59]:

[^60]: I Spalia etlention p 142

 - Jbid. pl tii. figa 31, 32

 I In de Hlainville, Manged da Canahylialogie, p. E6E.

 - Glohn, earth evod

[^61]:
 ${ }^{1}$ Drtaroabungen ühar Pteropoden and Feteropoden, pl. v. Gg. 1.

[^62]: 1 Spalin allentica, p. 141.

 - Reitrage zur Fintwickelungaferchichea der Fteropolen und Fateropoden, p. 1 日.

[^63]:
 1 Spolia atlentica, y. 141.

[^64]:

 - Untenachuogen ïher Pterppoden und Hetaropoden, p Aq, pl uii Gp. 91.

 - 14id, p. eqno pi in 6ige 14, 10.

[^65]: ${ }^{1}$ Zool Chall Rxp., pl Iviti pp f1, 69.

[^66]: hetwen the dimbitution of pelagic arganiame on the ancfoce and their dand remaina on the hothm, I may etate ibut in almnat all inglances whan theas rembina bave been found on the batiom of the ocen, further reagarabea have ahand the preance of the living animale in the murtece walen at oll eventa at enme period of the fear -J. M.

[^67]: "The Guba mantianed by Bona, wefe. 10N.

