RAN-2003000205020023

T.Y.B.Sc. (Sem-V) Examination

January - 2021

Chemistry Paper - VIII
 (Physical Chemistry)

Time: 2 Hours]

[Total Marks: 50
સૂચના:/ Instructions
(9)

```
નીચે દર્થાવેલ નિશાનીવાળી વિગતો ઉત્તર૧હી ૫૨ અવશ્ય લખવી.
Fill up strictly the details of signs on your answer book
Name of the Examination:
- T.Y.B.Sc. (Sem-V)
Name of the Subject :
Chemistry Paper - VIII (Physical Chemistry)
Subject Code No.: 2003000205020023
```

Seat No.:

(૨) જમણી બાનુના અંક પ્રશ્નના પૂરા ગુણ દર્શાવે છે.
(3) જરૂર જ઼ાય ત્યાં આકૃતિ દોરો.
૧. ટૂંકમાં જ્વાબ આપો.
(૧) પ્રમાણિત એન્ટ્રોપી એટલે શું?
(૨) નીચેના પ્રક્રમ (process) માટે એન્ટ્રોપી ફેરફાર ગણો.

2 mole O_{2} (liquid, $\left.1 \mathrm{~atm},-162.73^{\circ} \mathrm{C}\right) \rightarrow 2$ mole $\mathrm{O}_{2}\left(\mathrm{gas}, 1 \mathrm{~atm},-162.73^{\circ} \mathrm{C}\right)$
$\left[\Delta H_{\text {vap }}=3.14 \mathrm{KJ.mole}^{-1}\right]$
(3) क्षારસેતુ શું છે? KCl ક્ષારસેતુ કયા સંજોગોમાં વાપરવામાં આવતો નથી?
(γ) નીચે દર્શાવેલ કોષ માટે $E_{c e l l}^{\circ}=+0.64 \mathrm{~V}$ છે.
$P t, H_{2(g)} 1 \mathrm{~atm}\left|H_{(a q \mid M)}^{+}\right|\left|P b_{(a q \mid M)}^{2+}\right| P b$
$E_{P b^{2+1 P b}}^{\circ}$ નl કિમત શું રશે?
(૫) પ્રfિયા પૂર્ગ કરો: $S i l 4_{30}^{30}+H_{1}^{1} \longrightarrow$
૨. નીચેના પૈfી કોઈ પણ ત્રણના જવાબ આપો.
(અ) રાસાયણિક પોટેન્શિયલ એટલે શું? ગીબ્સ-ડુહેમ સમીકરણ સાધિત કરો.
(બ) $291 K$ તાપમાને અને 410 વાતાવરણ દબાણે વાયુની ફ્યુગાસીટી ગણો. $\left(\propto=-7.1 \times 10^{-4}{\left.\mathrm{lit} . \mathrm{mol}^{-1} \text { अને } R=0.082 \mathrm{lit} \mathrm{atmK}^{-1} \mathrm{~mol}^{-1}\right) ~}_{\text {(}}\right.$)
(ક) વરાળની નિરપેક્ત એન્ટ્રોપી ઉઠમાગતિશાસ્ત્રના ત્રીજ નિયમનો ઉપયોગ કરીને 子ેવી રીતે નકકી કરવામાં આવે છે તે સમજવો.
(s) નોંધ લખો.
(૧) સક્રિયતા અને સક્રિયતા ગુણાંક
(૨) ઉઠ્માગતિશાસ્ત્રના ત્રીજ નિયમની ઉપયોગીતા જણાવો.
(ઈ) એક વાતારવરણના નિયત દબાળે 1 kg પાણીને $27^{\circ} \mathrm{C}$ થી $200^{\circ} \mathrm{C}$ એ રહેલી વરાળમાં ફેરવવામાં આવે ત્યારે એન્ટ્રોપીમાં થતો ફેરફાર નકકી કરો.
[પ્રવાહી પાણીની વિશિષ્ટ ઉજ્મા 4180 Jule $\mathrm{kg}^{-1 \text { 1 , વરાળની ઉજ્મા }}$
$(1670+0.49 T)$ Jule $^{-1}$ અન બાષ્પીભવનની ગુપ્ત ગરમી
$23 \times 10^{5} \mathrm{Jule} \mathrm{kg}^{-l}$]
3. નીચેના પૈકી કોઈ પણ ત્રણના જવાબ આપો.
(અ) પ્રવાહી સંગમ પોટેન્શિયલ (LJP) એટલે શું? તેને 子વી રીતે નિવારી શકાય છે? પ્રવાહી સંગમ પોટેન્શિયલ માટેનું સમીકરણ મેળવો.
(બ) જ્યારે Cl_{2} નું આંશિક દબાણ 10.0 atm અને $\left[\mathrm{Cl}^{-}\right]=1.00 \times 10^{-3} \mathrm{M}$ હोય ત્યારે કલોરિન-કલોરાઈડ આયન ના પોટેન્શિયલની ગણતતી કરો $\left[25^{\circ} \mathrm{C}\right.$ એ $\left.E_{C_{2} 1 C^{-}}^{0}=1.360 \mathrm{~V}\right]$
(ક) સંદર્ભ વિદ્યુત ધ્રુવ એટલે શુ? યોગ્ય ઉદાહરણ દ્વારા દ્વિતીય સંદભ વિદ્યુત ધ્રુવની રચના અને કાર્ય સમળવો.
(s) વિદ્યુત રાસાયણિક કોષનું વર્ગીકરણ કરો અને નિર્ગમન વગરના વિદ્યુત વિભાજ્મ્ય સાંદ્રતા કોષ ના ઈ.એમ.એફ. માટેનું સમીકરણ મેળવો.
(ઈ) $25^{\circ} \mathrm{C}$ ओ નિમ્નદર્શિત કોષનો e.m.f. ગણો. Pt, $C l_{2}\left(P_{1}=0.5 \mathrm{~atm}\right) \mid \mathrm{Nacl}$ solution $\mid \mathrm{Cl}_{2}\left(P_{2}=2 \mathrm{~atm}\right), P t$

૪. નીચેના પิકી કોઈ પણ ત્રણના જ્વાબ આપો.

(અ) સંકળાયેલા સિદધાંત સહિત ડેમ્પસ્ટરના દળ સ્પેક્ટ્રોમીટરનુ વર્ણન કરો.
(બ) સમસ્થાનિકો એટલે શું? સમસ્થાનિકોના અલગીકરણમાં વપરાતી વિવિઘ રીતો જણાવો. વિભાગીય નિસ્યંદન અને બાજ્પીભવનની રીત સમળવો.
(ક) સાઈકલોટ્રોનમાં \propto કણ પોતાના વર્તુળકાર માર્ગ 子 જેની ત્રિજ્યા 35 cm છે. તેને 5000 ગોસ તીવ્રતાવાળા ચુંબકીય ક્ષેત્રમાં મુકતા વિચલન પામે છે. \propto - કણની શક્તિ MeV માં ગણો. (\propto - કણનું દળ $=4.00278 \mathrm{amu}, e=9.6 \times 10^{-10} \mathrm{esu}$, એવોગેડ્રો આંક $=6.023 \times 10^{23} \mathrm{~mol}^{-1}$ અને $1 \mathrm{ev}=1.602 \times 10^{-12} \mathrm{erg}$)
(ડ) કણ પ્રવેગકો એટલે શું? સાઈકલોટોનની રચના અને કાર્ય પદધતિ વર્ણન કરો.
(ઈ) કેન્દ્રીય રસાયણમાં વપરાતા જુદા-જુદા પ્રક્ષેપકો જણાવો. દરેક પ્રક્ષેપક પ્રેરિત બે 子ેન્દ્રીય પ્રક્રિયાઓ માટે ફકત સમીકરણો આપો. પ્રક્ષેપકોના ગુણ-દોપની ચર્ચા કરો.

ENGLISH VERSION

Instructions:

(1) As per the instruction no. 1 of page no. 1
(2) Figures on the right side indicate full marks of the questions.
(3) Draw diagrams if necessary.

1. Answer in brief: 5
(1) what is Standard Entropy?
(2) Calculate the entropy change for the following process.

2 mole O_{2} (liquid, $\left.1 \mathrm{~atm},-162.73^{\circ} \mathrm{C}\right) \rightarrow 2$ mole $\mathrm{O}_{2}\left(\mathrm{gas}, 1 \mathrm{~atm},-162.73^{\circ} \mathrm{C}\right)$
$\left[\Delta H_{\text {vap }}=3.14 \mathrm{KJ.mole}^{-l}\right.$]
(3) What is a salt-bridge ? Under what circumstances KCl salt- bridge is not used?
(4) For the cell given below $E_{\text {cell }}^{\circ}$ have been given $E_{\text {cell }}^{\circ}=+0.64 \mathrm{~V}$ Pt, $H_{2(g)} 1 \mathrm{~atm}\left|H_{(a q 1 M)}^{+} \| P b_{(a q I M)}^{2+}\right| P b$
What is the value of $E_{P b^{2+} \mid P b}^{\circ}$.
(5) Complete the reaction: $S i_{14}^{30}+H_{1}^{1} \longrightarrow$
2. Answer any three of the following $\mathbf{1 5}$
(a) What is meant by chemical potential? Derive Gibbs - Duhem equation.
(b) Calculate the fugacity of a gas at

295 K temperature and 410 atmosphere pressure.
$\left(\propto=-7.1 \times 10^{-4}\right.$ lit.mol ${ }^{-1}$ and $\left.R=0.082 \mathrm{lit} \mathrm{atm} . \mathrm{K}^{-1} \mathrm{~mol}^{-l}\right)$
(c) Explain how absolute entropy of a vapour is determined using third law of thermodynamics.
(d) Write notes on:
(1) Activity and activity coefficient.
(2) State the application of the third law of thermodynamics.
(e) Calculate the change in entropy when 1 kg of water at $27^{\circ} \mathrm{C}$ to vapourized at $200^{\circ} \mathrm{C}$ at 1 atm constant pressure.
[Specific heat of water 4180 Jule $K g^{-1}$, heat of vaporization ($1670+0.49 \mathrm{~T}$) Jule Kg^{-1} and latent heat of vapourization 23×10^{5} Jule Kg^{-1}]
3.

Answer any three of the following
15
(a) What is liquid junction potential (LJP)? How can it be eliminated? Obtain equation for liquid junction potential.
(b) Calculate the potential of the chlorine- chloride ion when the partial pressure of Cl_{2} is 10.0 atm and $\left[\mathrm{Cl}^{-}\right]=1.00 \times 10^{-3} \mathrm{M}$.
[$E_{C l_{l_{2}} \mathrm{Cl}^{-}}^{\circ}=1.360 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$]
(c) What is reference electrode ? Explain construction and working of secondary reference electrode giving suitable examples.
(d) Classify the electro chemical cell. Derive an equation for e.m.f. of an electrolyte concentration cell without transference.
(e) Determine the e.m.f. of the cell at $25^{\circ} \mathrm{C}$.
$\mathrm{Pt}, C l_{2}\left(P_{1}=0.5 \mathrm{~atm}\right) \mid \mathrm{Nacl}$ solution $\mid C l_{2}\left(P_{2}=2 \mathrm{~atm}\right), \mathrm{Pt}$
4. Answer any three of the following $\mathbf{1 5}$
(a) Describe Dempster's mass spectrometer bringing out clearly the underlying principle.
(b) What are isotopes? State various methods used for separation of isotopes. Explain fractional distillation and evaporation method.
(c) In a cyclotron \propto-particle in a circular path having radius of 35 cm gets deviated under magnetic field of 5000 gauss. Calculate energy of \propto - particle in MeV . (Mass of \propto-particle $=4.00278 \mathrm{amu}$, $e=9.6 \times 10^{-10} \mathrm{esu}$, avogadro number $=6.023 \times 10^{23} \mathrm{~mol}^{-1}$ and $1 \mathrm{ev}=1.602 \times 10^{-12} \mathrm{erg}$)
(d) What are accelerators? Explain construction and working of cyclotron.
(e) State different projectiles used in nuclear chemistry. Give equations only for two nuclear reactions induced by each projectile. Discuss the merits-demerits of different projectiles.

