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Upper Bound on Side Lobe Levels for mMIMO
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Abstract—A promising concept to meet the growing require-
ments of future wireless systems is the use of massive multiple-
input-multiple-output (mMIMO) systems. Specifically, in an
attempt to mitigate the high cost due to the complexity of
these systems, sub-array based antenna architectures are highly
anticipated, where not every antenna element is independently
controllable, but groups of elements are connected. Consequently,
sharing the steering circuitry reduces degrees of freedom in the
design of effective beam patterns. Due to this, sub-array based
antenna systems suffer from severely increased side lobe levels
(SLLs), which limit the steering capability of mMIMO systems.
Therefore, it is difficult to establish a distinct general optimum
tool for beam pattern design. Therefore, in this paper, we explore
theoretically a mechanism to describe SLLs due to beam steering
in uniform sub-array based mMIMO systems, and describe an
analytical upper bound on the SLL distance as a function of the
steering angle. The derived expression can be used to evaluate
the steering capabilities of sub-array based configuration.

Index Terms—Massive MIMO; beamforming; phased array;
side lobe level; grating lobe; steering capability; sub-array.

I. INTRODUCTION

The increasing data traffic demand drives adoption of mas-
sive multiple-input-multiple-output (mMIMO) technologies
for enhanced communications performance through improved
spectral efficiency and spatial reuse [1]. Two dimensional
(2D) active antenna array (AAA) designs are a promising
solution together with millimeter wave technologies [2], where
high versatility steering antennas are required. However, an
increasing amount of antenna elements causes a significant
rise in complexity for channel estimation and the amount of
required hardware, such as RF-converters, power amplifiers,
and phase shifters [3].

In order to reduce the complexity and costs, an approach for
certain application scenarios is sharing hardware components
between individual antenna elements [4]–[6]. Therefore, more
than one antenna elements are stacked together into groups
to form sub-arrays. These groups receive the same amplitude
and phase excitation throughout the whole sub-array groups,
as opposed to full-featured mMIMO systems, where every
antenna element is independently controllable [7]–[9].

The performance of mMIMO systems based on AAAs in
multi-user scenarios is limited by side lobe levels (SLLs)
causing interference among users. To maximize throughput,
it is therefore necessary to reduce the SLLs. However, the
sub-array antenna architecture inherently suffers from huge
SLLs while steering and has been studied by several authors in
the literature [10]–[12]. To reduce SLLs several optimization
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techniques have been studied using additional hardware such
as lenses [13] and horn antennas [14]. Further approaches
are irregular sub-array groups [15], overlapped sub-arrays [10]
and displacement of antenna elements [16], which also require
more complex hardware and array geometry design.

In [17], it is stated that the characterization of steering
capability is in general a complex task due to the numerous
parameters involved. Hence, they propose a figure of merit for
comparing steering performance of antennas. However, SLLs
are not taken into account. Since SLLs cause interference in
mMIMO beam forming systems—ultimately limiting achiev-
able data rates, it is necessary to consider SLLs in the analysis
of steering capability when characterizing antennas with regard
to overall communication system performance.

Further, given the constraint of uniform sub-arrays with
the amplitude and phase excitation weights, as well as the
antenna element distances being the control parameters, no
explicit limit on the steering range for a desired maximum
SLL has been stated. In the process of pattern optimization it
is therefore vital to express the possible extent of steering
capability improvement in terms of side lobes in general
without dependence on the weights themselves.

Therefore, we explore the SLLs due to the grating lobes in
uniform sub-arrays in beam steering scenarios theoretically,
and a general upper bound on the SLL distance as a function
of the steering angle is derived analytically. This allows to
determine the steering capability for a given sub-array config-
uration. Moreover, we also confirm the derived results through
different optimization techniques by means of simulation.

II. MATHEMATICAL MODELING

A right-handed coordinate system is assumed with axes x, y
and z. The considered system is a planar rectangular antenna
array, with Nr elements row-wise and Nc elements column-
wise. The antenna elements are uniformly spaced in each,
rows and columns, with a spacing of dr along the x-axis
and dc along the y-axis respectively. The surface normal to
the antenna plane is parallel to the z-axis. Without loss of
generality, every Nsub elements are grouped within the rows
to form a sub-array receiving the same weight excitation. The
beam pattern is denoted as F (Θ,Φ), where Θ is the angle
counted from the z-axis in the xz-plane, whereas Φ is counted
from the z-axis in yz-plane. For convenience, the angles Θ and
Φ are referred to as azimuth and elevation angles respectively,
assuming the y-axis is perpendicular w.r.t to earth surface.

The far-field azimuth pattern F (Θ)=F (Θ,Φ = 0) of Nr
isotropic antenna elements within rows can be expressed for
signals of a wave length λ and a wave number k = 2π/λ as

F (Θ) =

Nr∑
n=1

wnsne
j(kndr sin Θ) =

Nr∑
n=1

wnsne
j(kxndr) (1)

This document is a preprint of: D. Swist, A. Kumar and G. Fettweis, “Upper Bound on Side Lobe Levels for mMIMO Antennas to Evaluate the Beam Steering Capability,” in
IEEE Communications Letters, vol. 25, no. 1, pp. 289-293, Jan 2021. DOI:10.1109/LCOMM.2020.3025368

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



2

where kx = k sin(Θ) is the wave vector component coinciding
with the axis on which the antenna elements are located, wn
is the weight of the nth antenna element, sn = e−j(kndr sin Θs)

is the steering vector with the steering angle Θs, and n · dr
is the relative distance of the elements. For the sub-array
configuration, (1) can be rewritten as a product of sums

F (Θ)=

Nmain∑
m=1

wmsme
j(kx(mdrNsub))

︸ ︷︷ ︸
Fmain(Θ,Θs)

Nsub∑
l=1

ej(kx(ldr))

︸ ︷︷ ︸
Fsub(Θ)

(2)

where Nmain = Nr/Nsub is the amount of sub-array antenna
groups and wm is the complex-valued weight for the mth
sub-array. As can be seen in (2), the pattern of the sub-array
is completely independent of the pattern of the main array.
This implies that adjusting weights or steering only controls
the main array pattern while the sub-array pattern stays fixed.
Since the antenna elements within each sub-array group share
the same weight, the normalized magnitude of the sub-array
pattern can be written as

|Fsub(Θ)| =

∣∣∣∣∣ 1

Nsub

sin(Nsub
2 kxdr)

sin( 1
2kxdr)

∣∣∣∣∣ (3)

A. Zeros in Sub-Array Pattern

From (3) it is obvious that the sub-array pattern is zero
for specific angles Θ. Since the sub-array pattern does not
depend on the weights nor on the steering vector, the pattern
will not change when steering is applied. Therefore, the angle
Θ=Θzero of the zero closest to center can be determined from
(3) as Θzero = ± sin−1

(
2π

kdrNsub

)
. Consequently, the positions

of the zeros depend on the choice of parameters dr, Nsub for
a given wavelength λ = 2π/k. Steering towards these angles
will result in partial cancellation of the main beam.

B. Grating Lobes of Main Array Pattern

The main array pattern in (2) is affected by an effectively
extended antenna spacingdmain=dr·Nsub instead of the actual
physical spacing dr of the individual elements. This may cause
grating lobes in the visible range, which appear a period of
2π/dmain away from the main beam center in wave vector do-
main. Without steering, the grating lobes appear symmetrically
around the center k sin Θ=0, and the center points of the grat-
ing lobes are located at Θ=sin−1

(
± 2π
kdmain

)
=± sin−1

(
2π

kdrNsub

)
,

which is the exact same position as the zeros of the sub-array
pattern. Therefore, grating lobes are maximally cancelled out.

When steering the main beam, the grating lobes are shifted
as well and move out of the multiplicative nulling-region of
the sub-array pattern, thus increasing in level, and effectively
limiting the maximum extent of achievable grating lobe sup-
pression. Consequently, there is a steering angle at which
the main beam and a grating lobe will have the same level.
Assuming a symmetric main beam, this specific steering angle
Θs = Θequal corresponds to a shift of half the main beam
pattern period in wave vector domain π/dmain, and can then
be written as Θequal = sin−1

(
± π
kdmain

)
= ± sin−1

(
π

kdrNsub

)
.

Since the sub-array pattern in (3) has a main lobe at the center

Fig. 1: Patterns of sub-array Fsub, main array Fmain (Nsub=4, dr=0.74λ),
and resulting pattern F for narrow beam with and without steering, where
the red and black arrows indicate the peak SLL distances respectively.

dominating in level, the grating lobes closest to the center
will constitute the highest side lobe levels when steering, so
analysis of the first zeros is sufficient.

III. MODELING OF UPPER BOUND ON SIDE LOBE LEVEL

Modeling of an upper bound on the SLL distance throughout
the steering range is performed by analyzing two ideal cases
analytically: narrow beam and rectangular beam. For that, the
relative SLL distance is defined as the magnitude ratio of the
peak main beam level F (ΘML) and the peak level of the side
lobe F (ΘSL): SLL =

∣∣∣F (ΘML)
F (ΘSL)

∣∣∣
A. Narrow Beam

First, we consider an idealized main beam pattern Fmain
with zero beam width as simple approximation of a narrow
pencil beam commonly encountered in millimeter-wave ap-
plications. The magnitude is 1 at Θ = 0 and 0 elsewhere
within one period. The angle of the main beam peak ΘML
when steering towards Θs is then ΘML = Θs. Consequently,
the dominating grating lobe image will appear a period of
2π/dmain = 2π/(drNsub) apart from the main beam in wave
vector domain, and can be written in angular domain as

ΘSL = sin−1

(
sin Θs −

2π

kdrNsub

)
(4)

Fig. 1 shows a principle illustration of the narrow beam
consideration, where the increase in magnitude of the first
grating lobe due to steering is visible. The reduced SLL
distance while steering is indicated by the red arrow, compared
to the case of no steering indicated by the black arrow, where
the grating lobes are completely cancelled out. Using the SLL
definition and (3) the SLL distance for the narrow beam case
can be written as a function of the steering angle Θs

SLLnrw(Θs) =

∣∣∣∣∣∣
sin

(
π
Nsub

− dr
2
k sin Θs

)
sin

(
dr
2
k sin Θs

)
∣∣∣∣∣∣ (5)

Fig. 2 shows a plot of the SLL distance of the narrow beam
case for different Nsub. However, this approaches infinity
towards values of Θ close to zero and does not show any
information about the impact of the beam width of a beam. For
valid results, the zeros and grating lobes need to lie inside the
visible range. The condition is λ

drNsub
< 1, which constitutes

a minimal dr for given λ and Nsub.
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Fig. 2: Side lobe level distance as function of steering angle for narrow
beam and rectangular beam (ΘBW = 8.571◦), dr = 0.74λ

Fig. 3: Patterns of sub-array Fsub, main array Fmain (Nsub=2, dr=0.74λ),
and resulting pattern F for rectangular beam with and without steering,
where the red and black arrows indicate the peak SLL distances respectively.

B. Rectangular Beam

To model the impact of beam width on SLLs, an ideal
rectangular main beam pattern Fmain is assumed here, with
a level of 1 for |Θ| ≤ ΘBW/2 and a magnitude of 0 elsewhere
within one period. ΘBW is the beam width in angular domain
when no steering is applied. Fig. 3 shows the reduced SLL
distance while steering indicated by the red arrow, compared
to the no-steering case indicated by the black arrow. Note there
are non-zero SLLs even without steering.

As opposed to the narrow consideration, the peak level of
the main beam will not always appear at the nominal steering
angle Θs. The peak level of the main beam will stay at Θ = 0
for steering angles Θs ≤ ΘBW/2 due to the nature of the
rectangular function. For steering angles Θs > ΘBW/2 the
main beam peak level will appear at the edge of the main
beam nearest to the center. The angle ΘML of the main beam
peak level can thus be expressed as a section-wise defined
function:

ΘML=

{
0, Θs ≤ 1

2ΘBW

sin−1
(
sin Θs − sin 1

2ΘBW
)
, Θs >

1
2ΘBW

(6)

The grating lobe maximum peak appears at the edge of
the grating lobe closer to the center and the position can be
expressed as

ΘSL = sin−1

(
sin Θs −

2π

kdrNsub
+ sin

1

2
ΘBW

)
(7)

Using (3) together with (6) and (7) the SLL distance for the
rectangular beam can be expressed as

SLLrct(Θs)=


∣∣∣∣ sin(a+− π

Nsub
)

sin(Nsuba+)
sin(Nsuba

−)
sin(a−)

∣∣∣ , Θs >
1
2ΘBW∣∣∣∣ sin(a+− π

Nsub
)

1
Nsub

sin(Nsuba+)

∣∣∣∣ , Θs ≤ 1
2ΘBW

(8)

wherea+=kdr
2 (sin Θs+sin 1

2ΘBW), a−=kdr
2 (sin Θs−sin 1

2ΘBW).
The center-facing border of the dominating rectangular grating
lobe must be within the visible range, and the condition
is λ

drNsub
− sin( 1

2ΘBW) < 1. This implies a minimal dr
depending on the parameters λ, Nsub and ΘBW. Note that
while being an idealized consideration, an angular deviation
between the maximum peak angle of the main beam and the
nominal steering angle will be present for any practical beam
to some extent as well. Fig. 2 shows the SLL distance for the
rectangular beam compared to the narrow case. As expected,
even without steering the SLL distance is severely limited.

C. An Upper Bound for Side Lobe Levels

From the considerations of sections III-A and III-B an upper
bound on the SLL distance throughout the steering range can
be determined when certain assumptions about the main beam
specification are made:
• main beam is symmetric around center Θ = 0
• main beam has a peak at center Θ = 0
• main beam has a half power beam width of Θ3dB

Note this also inherently implies that the main beam can have
arbitrary levels ≤ 1 within a rectangular mask confined by the
half power beam width Θ3dB.

Although derived from the narrow beam assumptions, the
narrow beam SLL distance in (5) is also an upper bound
on main beams fitting the mentioned assumptions above.
The magnitude of the sub-array beam pattern Fsub(kx) is
monotonically decreasing away from the center Θ = 0 towards
Θ = Θzero with respect to kx = k sin Θ. This implies that the
main lobe narrow level FML(Θs) is greater or equal than the
grating lobe narrow level FSL(Θs) for 0 ≤ Θs ≤ |Θequal|:

FML(Θs)=Fsub(kx)≥Fsub(kx−
2π

drNsub
)=FSL(Θs) (9)

where kx = k sin Θs. As the main beam is assumed symmet-
ric, any point within the rectangular mask of the main beam
F ′ML(Θs) = a · Fsub(k(sin Θs − sin Θ′)) with level a ≤ 1 and
distance from the narrow center image sin Θ′ ≤ sin Θ3dB/2
appears as a grating lobe image F ′SL(Θs) = a·Fsub(k(sin Θs+
sin Θ′)−2π/dmain). The sub-array beam pattern Fsub(k sin Θ)
in wave vector representation has a negative curvature in the
range of 0 ≤ |k sin Θ| ≤ |k sin Θequal| = π/dmain and the
absolute value of the slope of the sub-array beam pattern
for 0 ≤ |k sin Θ| ≤ |k sin Θequal| is less than in the range
|k sin Θequal| ≤ |k sin Θ| ≤ |k sin Θzero|. Since steering causes
a linear shift of the main beam pattern in wave vector domain
(i.e. same shift for main beam and grating lobe), any level devi-
ation of the main beam ∆FML(Θs) = F ′ML(Θs)−FML(Θs) > 0
is less than or equal to the corresponding level deviation of
the grating lobe ∆FSL(Θs) expressed as

∆FSL(Θs) = F ′SL(Θs)− FSL(Θs) ≥ ∆FML (10)

From (9) and (10) follows:

∆FSL(Θs)

FSL(Θs)
≥ ∆FML(Θs)

FML(Θs)
, 0 ≤ Θs ≤ |Θequal| (11)

and thus:
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Fig. 4: Upper bound on side lobe level distance throughout steering range
for Nsub = 2, ΘBW = 8.571◦

Fig. 5: Upper bound on side lobe level distance as function of beam width
at zero steering (Θs = 0)

FML(Θs)

FSL(Θs)
= SLLnrw ≥

F ′ML(Θs)

F ′SL(Θs)
(12)

Hence, the narrow beam SLL distance cannot be surpassed
by any beam meeting the specifications, and poses an upper
bound. From the rectangular beam consideration in section
III-B a best case scenario can be derived, which also poses an
upper bound:
• best assumable case for main beam level: as the beam is

assumed to have levels ≤ 1 within a rectangular mask
with width of Θ3dB, the best possible case is the main
beam level as in the rectangular case in section III-B.

• best assumable case for SLL: the lowest possible gener-
ally assumable beam level of the grating lobe appears at
the images of the half power points with a level of 1/2.

The SLL at the half power points of the grating lobe can be
expressed using the results from the rectangular case in (8) by
identifying the beam width of the rectangular beam with the
half power beam width Θ3dB = ΘBW and multiplying by

√
2,

then SLL3dB(Θs) =
√

2·SLLrct(Θs). With both considerations
posing an upper bound, the minimum of both poses a total
lower upper bound, closer to the achievable limit (Fig. 4).
Note that the SLL distance is limited in the zero steering case
Θs = 0, and shows a strong dependence on the 3dB beam
width of the main beam alone as shown in Fig. 5. When dr ≥
(1 − 1

2Nsub
)λ, the center of a main beam grating lobe will be

present in the visible range for some Θs ≤ Θequal, which is not
cancelled out by a zero since the main lobe of the sub-array
pattern repeats itself within the visible range, so achievable
SLLs might be lower. However, if the antenna elements have
a high attenuation towards ±90◦, then level deviations only
become relevant for values of dr close to 1λ.

D. Element Factor Influence
The previous results are valid for isotropic antenna el-

ements. A realistic antenna element will not achieve such

an ideal uniform pattern. The element pattern EF (Θ) can
be modeled as another multiplicative component of the total
resulting beam pattern [18]. Therefore, the total pattern of the
antenna array FΣ can then be written as the product of the
individual patterns FΣ(Θ) = Fmain(Θ) · Fsub(Θ) · EF (Θ).

For element patterns which have negative curvature in wave
vector domain and are symmetric around the center Θ = 0,
the SLL distances as described in the previous sections can
be adjusted using a corrective factor SLLEF =

∣∣∣EF (ΘML)
EF (ΘSL)

∣∣∣,
where ΘML, ΘSL are the angles ΘML = Θs, (4) and (6), (7)
for narrow and rectangular beam case respectively. The total
SLL distance can then be written as SLLΣ = SLL ·SLLEF .
This is a general formula, which needs to be evaluated for
the specific antenna parameters given by a model or obtained
through measurement.

To illustrate the impact of an element response, we consider
cosine elements EF (Θ) = cosm (Θ) with m = 0.65. For the
narrow case (5) using (4) the SLL distance due to the element
factor can be expressed as

SLLEFn(Θs) =
cosm (Θs)

cosm
(

sin−1
(

sin Θs − λ
drNsub

)) (13)

and for the rectangular case (8)—respectively also for the 3dB
best case—using (6) and (7) as

SLLEFr(Θs)=
cosm

(
sin−1

(
sin Θs− 1

2 sin Θ3dB
))

cosm
(

sin−1
(
sin Θs− λ

drNsub
+1

2 sin Θ3dB

)) (14)

The impact of the cosine element pattern is shown in Fig.
4 and shows improved SLL performance. More sophisticated
antenna models can be evaluated analogously using the pre-
sented procedure in analytical terms if EF (Θ) is explicitly
given as function of Θ.

IV. BEAM PATTERN OPTIMIZATION

Since an upper bound has been derived in general, which
is not necessarily achieved for arbitrary weights wn, several
optimization approaches were performed to achieve a close
match with the theoretical results regarding peak SLL. We
used a Taylor window and the meta-heuristic algorithms inva-
sive weed optimization (IWO) and particle swarm optimization
(PSO). The IWO as per [19] identifies sets of weights wn with
weed that generate offspring based on their performance, and
ultimately selection takes place. In [20], the used PSO is de-
scribed, where sets of weights wn are identified with particles
moving in parameter space based on their performance.

The resulting beam patterns are shown in Fig. 6, including
also uniform weights (wn = 1) for reference. Note that the
results for IWO and PSO are nearly indistinguishable, as
the obtained weights are also close to linear dependency. At
Θs = 0 the dominating SLL in the uniform case is not
constituted by a grating lobe, but by the minor side lobes
(side lobes within on period of the main beam pattern). When
a beam with the peak at the center is desired, only the minor
side lobes can be reduced at the expense of increasing beam
width, causing increased grating lobes due to the sub-array.
In the Taylor window case, the minor side lobes are reduced.
However, the peak SLL is now caused by the grating lobes,
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Fig. 6: Patterns of the simulated weights for different steering angles Θs

Fig. 7: Simulated results for different weights compared against upper limit
for Nsub = 2 and dr = 0.74λ

as the beam width increased due to the weight adjustment,
which is now lesser cancelled out by the sub-array pattern
zeros. The IWO and PSO effectively produced weights where
the increase of the grating lobe level due to the reduction of
minor side lobes is balanced out. This trade-off is inherently
caused by susceptibility of the sub-array antenna to grating
lobes. For Θs = 10◦ it is visible that the grating lobe is clearly
dominating in level for all cases with only little difference.

V. SIMULATION RESULTS

Simulations have been performed for all weight sets ob-
tained using the methods in section IV and compared to the
analytical results presented in III. The resulting SLL distances
are shown in Fig. 7. As expected the uniform case shows
a high deviation from the upper bound for lower steering
angles, where optimization potential was expected. The Taylor
window case shows improved performance, and the IWO and
PSO show best performance close to the upper bound. While
still not reaching the limit, no significant increase in SLL
distance can be expected from the obtained weights that are
more than 1.5 dB. It shows that the theoretical results can be
a useful reference in the optimization process to get a close
prediction with simple analytical tools.

VI. CONCLUSION

Massive MIMO systems using sub-array based steering
antennas can greatly increase deployment possibilities, but

they inherently suffer from the SLL while steering the antenna.
Therefore, an upper bound on the SLL distance as a function of
the steering angle is derived analytically, from which the steer-
ing capability can be determined for a given uniform sub-array
configuration. Optimization of weights has been performed
to achieve improved SLL performance, and a close match
to the derived results was confirmed by simulation. Hence,
the presented analytical framework is a useful reference in
the optimization process, and also allows assessing a steering
capability in terms of SLLs that can be used in the analysis of
interference in mMIMO systems. The results also show that
no significant improvement can be expected optimizing the
antenna weights on a per-sub-array-group level alone.
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