Alex Monternes Development & Analytics Pau Casso Computing Develop Gil Lizcano

DO WIND TURBINES DREAM OF MODELED WINDS ?

> Wind Europe Resource Assessment 2017 Edinburgh, Scotland

MANNED CLOUD JM Massaud (designer)

Articulating WRF models to reach the microscale

Block 1: Mean Bias & Correlation

Block 2: Shear

Block 3: Site Classification

Block 4: New Drivers, ERA5

\boxminus Articulating WRF to reach the microscale

Which Marks I would give to WRF

\boxminus Articulating models to reach the microscale

Which Marks I would give to WRF

- Good enough when there is a lack of information
- Very good as LT reference
- Moderate to high Bias
- Missing micro turbulence
- Multiscale capabilities
- Model & observations

→ Articulating WRF to reach the microscale

Bias reduced as scales are represented

\boxminus Articulating WRF to reach the microscale

Complex passage : Terra Incognita

⊟ Backends: High resolution

Adapted from Maries, A., Haque, M. A., Yilmaz, S. L., Nik, M. B., Marai, G. E.: New Developments in the Visualization and Processing of Tensor Fields, Springer, pp. 137-156, D. Laidlaw, A. Villanova. 2012

☐ REAL WORLD applications

\square REAL WORLD applications

Rationale:

- Enduser backend: Resolution/domain vs commercial timings
- **Developers backend:** Increase resolution doesn't solve all the gaps
 - Land surface model
 - Lateral Boundary Conditions
 - Terra incognita passage

\boxminus REAL WORLD applications

Anemometers Height: 15% 20-50m 70% 50-100m 15% 100-110m

Simulations spanned over **one complete year** 96 masts employed for bias & correlation assessment 56 masts for turbulence validation Very few mast with more than one height

⇒ REAL WORLD applications: Bias & Correlation

Average aggregated values across sites		Average Bias (%)		RMSE		Correlation R ² Hourly - Daily	
		Standard	WRF-LES	Standard	WRF-LES	Standard	WRF-LES
All	100%	2.7	2.4	3.9	2.5	0.62 - 0.75	0.63 - 0.80
Offhsore	5%	0.9	0.4	2.9	1.8	0.75 - 0.85	0.85 - 0.93
Flat	40%	-4.1	-3.4	3.2	2.4	0.61 - 0.76	0.62 - 0.81
Complex	25%	1.5	0.5	12.4	7.2	0.60 - 0.73	0.62 - 0.79
Forest	30%	1.2	0.4	9.5	6.8	0.63 - 0.74	0.69 - 0.80

Bias signal is more systematic in flat terrain while more noisy in complex

- □ Notion of "flat & complex" should be revisited (complex flow) & localized
- Same bias tendencies in both standard and less configurations
- Less variability across sites
- □ Improvement in correlation (daily cycle low & high tails)

\square REAL WORLD applications: Bias & Correlation

		Bias (deg)	MAE (deg)
All (100%)	10-min	3	35
Offshore 5%	10-min	-2	18
Flat 30%	10-min	0	34
Complex 25%	10-min	2	34
Forest 30%	10-min	10	31

⇒ REAL WORLD applications: Shear

Note: Mest Mast data as proxy for REAL (*"who knows what is real"* T. Blodau)

☐ REAL WORLD applications: Turbulence

\boxminus REAL WORLD applications: ERA5

10m daily R2

26 SITES	Jan-Feb 2016			
	WRF-CFSR (3KM)	WRF-ERA5 (3km)		
R2 Hourly	0.59	0.68 (+		
R2 daily	0.79	0.86		
RMSE (m/s)	2.66	2.37		
MAE (%)	13.9	13.1		

www.vortexfdc.com

MERRA2-ERA5

Alex Monternes Development & Analytics Pau Casso Computing Support Gil Lizcano

DO WIND TURBINES DREAM OF MODELED WINDS ?

> Wind Europe Resource Assessment 2017 Edinburgh, Scotland

MANNED CLOUD JM Massaud (designer)

