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Introduction
Deep brain stimulation (DBS) is a technique used to alleviate 

abnormalities of motor function such as tremor, rigidity, and dyskinesia 
that occur secondary to diseases such as Parkinson’s disease (PD), 
Multiple sclerosis (MS), dystonia, and seizure disorders. Collectively, 
these conditions and diseases are referred to as Movement disorders 
(MDs). DBS is also being investigated for use in neuropsychiatric 
disorders. To place the electrode for DBS, a burr hole in the skull is 
created, an electrode is placed through the burr hole into a specific 
location in the brain, and subsequently electrical stimulation is relayed 
down the electrode. Areas of the brain subject to stimulation with DBS 
include the Ventral intermediate nucleus (Vim) of the thalamus and 
structures in the Basal ganglion (BG) such as the Subthalamic nucleus 
(STN) and the Globus pallidus (GP) including the Globus pallidus 
interna (GPi). The STN and GPi are targets for PD while the Vim is 
targeted for essential tremor. As of 2010, greater than 80,000 patients 
worldwide had been treated with DBS [1]. 

Materials and Methods
We surveyed the available English language scientific literature 

in order to assess the role of animal models in the development of 
DBS. We also surveyed both the lay and science literature in order 
to ascertain what position society in general, primarily in the US and 
Europe has regarding animals in research. 

Results
There is both a recent and more dated history relevant to claims made 

for the development of DBS. In 1976, a graduate student in chemistry 
synthesized MPPP (1-Methyl-4-phenyl-4-propionoxypiperidine), an 
opioid [2], that was contaminated with MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine). Several days after using the drug, he, 
along with his friends who also experimented with the drug, developed 
Parkinsonism [3]. MPTP is not toxic; however, it is metabolized to 
MPP+ (1-methyl-4-phenylpyridinium), which selectively kills cells 

in the substantia nigra (SN) of humans. This was confirmed several 
months later on autopsy after the same graduate student overdosed 
on cocaine. Rats were initially tested with MPTP, but toxicity was not 
observed [4,5]. In 1982, more human cases of MPTP toxicity appeared 
and this led to testing MPTP on monkeys and the discovery that MPTP 
also caused Parkinsonism in monkeys [6]. Monkeys were then used 
as models of PD as well as MDs in general [7]. These MPTP monkey 
studies are credited, explicitly as well as implicitly, for being responsible 
for the development of DBS [8-16] (also see below). 

The fact that clinical observation and past research is dismissed as 
unimportant by animal modelers is illustrated by the neuroscientist 
Ringach: 

How was the method [DBS] developed? Back in 1983, Langston 
and colleagues reported on a clinical case study of four patients that 
developed Parkinsonism after illicit drug use. Analyses of the drugs 
they had taken via mass spectroscopy revealed primarily MPTP, 
but there were also traces of MPPP. They suggested MPTP might be 
the most likely culprit and suggested that: ‘Given the pathologically 
studied case, the relative purity of the clinical syndrome seen in our 
patients, and its remarkable clinical resemblance to Parkinson’s 
disease, the drug [MPTP] may be of value in producing an animal 
model of Parkinson’s disease.’ In other words, a group of clinicians 
studied a handful of human patient cases, identified a potential link 
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Abstract
The development of deep brain stimulation has revolutionized care for patients with movement disorders like 

Parkinson’s disease. Many areas of science contributed to this technology but one area, the use of animal models, 
has been cited as vital. We review these claims as well as the history of the discoveries that eventually led to deep 
brain stimulation in an attempt to ascertain: 1) the contributions of animal models; 2) the contributions from human-
based research and observation; and the role of advances in the engineering, physics, and computer science. We 
distinguish between advances and discoveries that were, or at least appear to be, dependent on animal models and 
those where animals were involved but that could have occurred, and/or were occurring simultaneously, with human-
based research. We conclude that animal-based research played a role in defining gross anatomy in the 19th and 
early 20th centuries, but that essentially all subsequent advances were human-based or secondary to advances in the 
physical and applied sciences. This has historical, funding, and ethical implications as the development of deep brain 
stimulation is cited as an example of the importance of animal-based research and a reason for continued social and 
financial support of animal models in general as opposed to clinical research, other human-based research modalities, 
and the various disciplines of the physical and applied sciences. 
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between MPTP toxicity and the development of PD, and proposed 
to follow up with animals [sic] studies [17]. 

Claims, both stated and implied, that the use of nonhuman animals 
(hereafter referred to simply as animals) in the 1800s and early 1900s 
were also necessary for the development of DBS are similarly put forth 
but are secondary to the claims made for the role of the MPTP monkeys 
[8-12]. We will explore the role that animal models of both eras played 
in the development of DBS. While the claim is usually made that DBS 
per se was made possible only by animal studies, this can be divided 
into three very specific claims, which are amenable for examination. In 
this paper, we explore the following claims regarding the development 
of DBS. 

1. The claim that the early concepts of neuroanatomy were 
possible only because animals were studied in the 1800s and 
early 1900s and the related claim that the stereotactic device 
used for DBS procedures was first used on animals and could 
not have been invented without animals. 

2. The claim that the knowledge of the thalamus, STN, the GP in 
general, and the GPi specifically are involved in MDs in general 
and PD in particular was determined from the MPTP monkey 
research. 

3. The claim that the concept of lesioning, or disrupting with 
electrical stimulation, the STN and the GPi in order to alleviate 
motor disturbances, as well as the frequency at which to use 
DBS arose secondary to MPTP experiments on monkeys. 

We will review the history of DBS claim by claim in order to 
determine what role animal models played in the development of DBS. 

Claim 1

The claim that the early concepts of human neuroanatomy were 
possible only because animals were studied in the 1800s and early 
1900s and the related claim that the stereotactic device was first used 
on animals and could not have been invented without animals. 

In order to treat movement disorders originating in the brain, the 
functional anatomy of the brain must first be determined. As early as 
hippocrates, physicians were studying trauma patients and learning 
from these experiences. For example, hippocrates had demonstrated 
the principle that the contralateral side of the brain controls the motor 
function of the body. While removing bone fragments from the exposed 
brain of a boy, he gently stroked the brain with his fingernail. The boy 
convulsed on the side opposite the exposed brain [18,19]. Thus, the 
concept of contralateral control was at least suspected in ancient times, 
as was the notion that certain stimulations could activate the brain and 
cause movement. 

Experiments on animals, including dogs and nonhuman primates 
(NHPs), were extensively performed in the 19th century in an attempt 
to understand the human brain. Some of the results from these studies 
did have human correlates but others did not. For example, Marshall 
and Magoun [20] discuss the research of Ferrier and his unsuccessful 
attempts to superimpose brain mapping studies from animals to 
humans. Similarities on the gross level do exist among species, 
especially mammals; however, important differences become apparent 
on deeper examination. For example, Van Hooser discusses similarities 
and differences among species in the primary visual cortex and points 
out that: 

There is considerable diversity in the abundance of different 

cell classes, laminar organization, functional architecture, and 
functional connectivity. Orientation-selective responses arise in 
different layers in different species. Some mammals have elaborate 
columnar architecture like orientation maps and ocular dominance 
bands, but others lack this organization with no apparent impact on 
single cell properties. Finally, local functional connectivity varies 
according to map structure: similar cells are connected in smooth 
map regions but dissimilar cells are linked in animals without maps 
[21]. 

Differences are like these; because they occur in evolved complex 
systems [22-30], have major implications for extrapolating among 
species [31-36]. 

In the mid 1800s, Jackson observed patients, conducted experiments 
on NHPs, and linked the basal ganglion to MDs [37]. Animal-human 
correlates like this have led Pereira and Aziz to describe research from 
the early 1900s in the following terms: 

Nearly a century on from Parkinson‘s original description, soon 
after Wilson had described hepato-lenticular degeneration in the 
disease that came to bear his name [the 1912 article], Ramsey Hunt 
postulated a theory whereby lesions to different components of the 
basal ganglia could cause not only chorea, but also parkinsonism 
and athetosis [38]. His theory built on Wilson‘s findings from 
lesions made in primate basal ganglia and cerebral cortex using 
Horsley and Clarke‘s recently invented stereotactic apparatus. 

It is worth taking a closer look at Wilson and Hunt’s research. In 
1912, Wilson [39] published his findings describing hepato-lenticular 
degeneration or Wilson’s disease, now known to be caused by 
mutations in gene ATP7B [40,41]. Wilson’s disease is caused by copper 
accumulation in the tissues, which results in damage to not only the 
liver and CNS but also the kidneys and eyes. The symptoms were well 
described from human observation, as were the signs, for example, 
movement disorders. Changes in the basal ganglia were described 
as early as 1890, secondary to autopsies conducted by Ormerod 
and Homén, and again in 1907 by Wilson [39] who also conducted 
autopsies. Indeed, Wilson’s 1912 paper is a classic example of human-
based research. Clearly, the main sources of and basis for Wilson’s 
paper were human-based. 

In Wilson’s 1914 paper [42], he describes various animal-based 
studies involving the brain. One is impressed by the differences in 
results obtained by the numerous researchers that Wilson discusses. 
These differences are due in part to the studies being performed 
at different times and with different species. (We will examine the 
concept of species differences in more detail) Moreover, much 
improvement has been made in methodology and technology over the 
last century. We readily acknowledge that animal studies were ongoing 
in the 1800s and early 1900s and that some of these linked the basal 
ganglia to movement disorders. However, we must also point out 
that scientists came to very different conclusions regarding the exact 
function of neuroanatomy during the 19th and early 20th centuries, in 
part secondary to lack of sophisticated technologies but also in part 
due to inter-species variation. Importantly for this essay, Wilson’s 
stereotactic studies on monkeys occurred after his 1912 paper. Hunt 
published his findings in 1917 [38]. Hunt’s article is clinical, human-
based research with autopsies again revealing pathology in the basal 
ganglia. While Hunt cites animal studies, they are very few in number 
and the reasoning for his hypothesis was based primarily on human 
findings. 

Otfrid Foerster (1873-1941) was a German neurosurgeon who 
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contributed much to the field of neurosurgery and neuroscience. He 
pioneered the procedures of rhizotomy and anterolateral cordotomy, 
described dermatomes, and performed the first electrocorticogram of 
a brain tumor [43,44]. He also hypothesized that the GP was involved 
in MDs. In coming to this conclusion, he studied both humans and 
animals [45]. Tan and Black state of Foerster: “A provisional hypothesis 
would be tested clinically during surgery and then neurophysiologically 
on the patient. If the hypothesis could not be tested on a human subject, 
the condition was reproduced on an experimental animal and then 
investigated” [44]. Foerster was a unique individual in the history of 
neurosurgery and, as the above quote indicates, appears to have learned 
much from the patients he operated on. Foerster’s approach illustrates 
the state of affairs during that era. Human-based research and animal-
based research occurred simultaneously with the same procedures 
frequently being performed on both [45]. To separate exactly which 
discoveries were dependent on animals and which were human-based 
would be essentially impossible given the fact that the literature was 
not published with this goal in mind and the participants are dead. A 
theoretical case can be made that all anatomical knowledge necessary 
for operating on the BG to control MDs could have come from ethically 
conducted human-based studies. However, such is not the purpose of 
this analysis. 

As scientists learned that neural tissue relied on electrical impulses 
for the transmission of information, the possibility of interrupting 
transmission via the implantation of electrodes was raised. The first 
recorded instance of electrical impulses being applied to the living 
brain appears to be in the 1800s and cats were the subjects [46]. Over 
the years, various animal species were used to demonstrate that when 
electrical current is applied to the brain, movement as well as other 
actions could be produced or inhibited. 

Victor Horsley was another surgeon-scientist who contributed 
much to the subject of neuroanatomy. For example, he studied brains 
from humans ranging in age from fetuses to 111 years and published 
a map of surface changes that occurred during this time [47]. Horsley 
realized the importance of precision in determining the function of the 
brain and this inspired him to develop the stereotactic apparatus [48]. 
Until the mid-twentieth century, surgeries were performed on an open 
brain with a free hand hence, would be considered in exact by today’s 
standards. This suboptimal situation improved dramatically with the 
introduction of the stereotactic device. The stereotactic device was 
undeniably first developed on animals circa 1906 by Horsley and Clarke 
but, interestingly, was not routinely used in human surgery for several 
decades. Clarke, who was not a physician, suggested to Horsley that 
the stereotactic device could be used in humans but Horsley rejected 
the idea and the ensuing rift apparently ended their friendship [49]. 
Horsley contributed much to the field of neuroscience and outlined 
general principles that were shown to apply among species [50,51] but 
he rejected the notion that stereotactic technology should be applied 
to humans. 

Redesigning the stereotactic device for humans proved difficult 
because of the variations among humans in the relationship between 
the skull and the cortical structures. The routine use of the stereotactic 
device in humans was made possible by Dandy’s invention of 
ventriculography [49]. Spiegel and Wycis pioneered the use of the 
stereotactic device—the stereoencephalotome—in 1947 [52-60]. 
Spiegel designed his stereotactic device based on that of Horsley 
and Clarke [48,61,62] then developed a mapping system based on 
ventriculography. Spiegel et al. performed the first pallidotomy and 
thalamotomy using the stereotactic device [55,59,60]. Other surgeons 

developed or revised the stereotactic device based on experience with 
patients, ultimately resulting in the designs we currently use. Discussing 
Spiegel and Wycis, Gross et al. state: 

they deserve indisputable credit for elaborating the main 
prerequisites of the new method: the first mod ern stereotactic 
apparatus: the first stereotactic atlas of the human brain and the 
first surgical demon stration of this new technique, a pallidotomy 
carried out in 1948 on a patient with Huntington‘s chorea. The 
choice of pallidum was justified by the argument that, the pallidum 
being the output structure of the extrapyramidal motor system, 
it must be destroyed in order to stop the ‚irritation‘ or ‘excessive 
activity‘ of neural pathways, a concept developed during the 1930s 
[63]. 

Note that the first time the device was used it was to operate on the 
BG for MDs. While we will expand on this momentarily, it is already 
clear that the BG was associated MDs long before the MPTP monkey 
experiments of the 1980s. 

The stereotactic device is a mechanical device engineered for a 
purpose. Horsley and Clarke deserve recognition for being the first to 
think of using the device the way they did. After Dandy’s demonstration 
of ventriculography however, the need for a means of stabilizing the 
human skull and standardizing surgical techniques was a logical step. 
The stereotactic device was modified extensively for human use for 
treating disorders of the motor system based on anatomical knowledge 
gained from studying humans. We do not find tenable the notion that 
the stereotactic device, fundamentally a complicated clamp, could not 
have been developed without the use of animals. Development of the 
stereotactic device was dependent on straight forward engineering 
skills (how it was designed) and resources (what materials were suitable 
for construction), not animal models. 

We should also note that some of the operations in the early 20th 
century, and the experiments that took place during those operations, 
might not be considered entirely ethical today. Regardless, much was 
learned and in studying such history, it is difficult to separate what was 
learned from the lab and what was learned in the operating room. In 
many instances it appears the discovery could have just as likely come 
from one as the other. The articles of that era were not written with 
a view of separating the findings from animal studies from those of 
human studies. In terms of claim #1, we conclude that much was learned 
about neuroanatomy in general from studying animals; however, much 
that was learned did not translate to humans and much was learned 
independent of animal studies. We do not think the claim that animals 
were necessary for early neuroanatomy advances can be substantiated. 
History is murky and we believe there is little to be gained by arguing 
what is essentially ancient history in terms of medical science. Further, 
as the real debate surrounding DBS lies elsewhere, we will not consider 
claim #1 any longer. We close this section by paraphrasing Shanks and 
Greek. This article: 

is not intended to be a criticism of the use of animals in the context 
of basic biological research. There can be no doubt that careful 
studies of animals have prompted important hypotheses about 
basic biological principles, and there can be no doubt that studies 
of animals have contributed greatly to our scientific understanding 
of life, and there is little doubt that these studies will continue to 
illuminate these matters in the future [35].

Claim 2

The claim that the knowledge that the thalamus, STN, the GP in 
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general, and the GPi specifically are involved in MDs in general and PD 
in particular was determined from the MPTP monkey research. 

After MPTP was discovered to cause tremors in monkeys, the 
monkey model was explored and an increase in activity in the STN 
was noted. Lesioning or stimulating the STN abolished the MPTP-
induced motor activity in the monkeys [64-66]. The claim that the 
use of DBS on the STN was the result of monkey experiments is based 
on these and similar experiments. For example, Pereira and Aziz 
stated in 2006: “In the early 1990s, it was shown that lesions made 
to the subthalamic nucleus of the basal ganglia in primates reversed 
the motor symptoms of MPTP induced Parkinsonism” [8]. Gross et 
al. are more direct: “Pallidotomy and thalamotomy were both carried 
out on human patients before being studied in ani mal models of PD. 
Subthalamotomy, on the other hand, was only proposed for human 
surgery once experimental results demonstrated the clinical interest of 
this procedure” [63]. 

Bergman et al. [64] were among the first to perform such 
operations on the STN. Brotchie et al. and others then reproduced the 
results [67,68]. Importantly for this examination of the history of DBS, 
Bergman et al. stated in 1990: “Although it is known that Parkinson‘s 
disease results from a loss of dopaminergic neurons in the substantia 
nigra, the resulting alterations in activity in the basal ganglia responsible 
for parkinsonian motor deficits are still poorly characterized” [64]. 
[Emphasis added.]  We should take a moment here to examine exactly 
what Bergman et al. are stating as it will become important as we 
further examine the history of neuroanatomy and DBS. The fact that 
the activity in the BG was (and still is) poorly characterized was used 
as one reason to study the monkey model of PD and DBS intervention. 
While some authors state outright, and others simply imply, that the 
role of the BG in PD was unknown in the 1980s, others make the claim 
that in order to develop DBS, more had to be known regarding the 
mechanisms of MDs, how these mechanisms affected the BG, and how 
DBS reversed these effects. As we will see, the mechanisms for DBS 
are still controversial yet much progress has been made in using DBS 
to treat MDs. Delineating the mechanisms of DBS is part of a broader 
controversy over mechanisms in general that we will address in a later 
section. For current purposes however, we will focus on the claim that 
the MPTP monkey model was necessary in order for neurosurgeons to 
consider using DBS on the STN and GPi. 

Consider the following statements regarding the importance of the 
MPTP monkey studies. Limousin et al. stated in 1995: 

In monkeys rendered parkinsonian, lesions and electrical 
stimulation of the subthalamic nucleus reduce all major motor 
disturbances. The effect of electrical stimulation of the subthalamic 
nucleus was assessed in three patients with disabling akinetic-
rigid Parkinson‘s disease and severe motor fluctuations. . . This is 
the first demonstration in human beings of the part played by the 
subthalamic nuclei in the pathophysiology of Parkinson‘s disease 
[69]. [Emphasis added]

Limousin et al. stated in 1999: 

STN stimulation is based on studies done in the monkey model of 
Parkinson‘s disease. In these monkeys, an overactivity of the STN 
is found and lesions or electrical stimulation improve parkinsonian 
features. Therefore, STN stimulation was applied to patients with 
idiopathic Parkinson‘s disease [70]. [Emphasis added]  

Clearly, Limousin et al. are claiming a causal relationship between 
the monkey studies and the use of DBS on the STN. 

Bergman et al. continue:

Recently, increased activity in the subthalamic nucleus has been 
implicated in the motor abnormalities. To test this hypothesis, the 
effects of lesions of the subthalamic nucleus were evaluated in 
monkeys rendered parkinsonian by treatment with 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP). The lesions reduced 
all of the major motor disturbances in the contralateral limbs, 
including akinesia, rigidity, and tremor. This result supports the 
postulated role of excessive activity in the subthalamic nucleus in 
Parkinson‘s disease [64]. [Emphasis added.]  

Here Bergman et al. are clearly stating that studies on the monkey model 
were responsible for linking the STN to PD. The above statements 
are not subtle, nor, as we will show, are they consistent with history. 
Obeso et al., based on the research by Bergman and others, decided 
that subthalamotomy might be beneficial to patients with PD [71,72]. 
Gross et al. summarize:

These advances had been made possible by the develop ment of 
animal models of PD using selective neuro toxins to destroy the SNc. 
The myriad studies carried out to elucidate the pathophysiological 
mechanisms underlying the evolution of PD had allowed the 
elaboration of a hypothetical schema for the functional organization 
of the motor circuit, both for the normal and for the parkinsonian 
state, linking the cortex, the basal ganglia, and the thala mus [63]. 
[Emphasis added]  

As we will show, such had been hypothesized for humans in the 1920s 
and 1930s and had been demonstrated in humans in the 1950s. There 
was really nothing new, that was clinically relevant, that was learned 
about human neuroanatomy from the monkey studies of the 1980s and 
1990s. Cooper and others did not understand the complete anatomy 
of movement disorders, indeed we do not fully understand it today, 
yet they operated on and or stimulated the same areas neurosurgeons 
do today. 

Pereira and Aziz state:

It was not until the 1980s when data had been gathered from 
several years‘ worth of studies of single neuron activities in awake, 
moving primates that a theory for basal ganglia function could be 
postulated that could explain the symptoms and signs of PD and 
other movement disorders. . . . Within the past two decades, much 
research has been conducted towards elucidating the roles of the 
basal ganglia in PD, other movement disorders, and psychiatric 
illnesses [8]. 

Actually, Pereira and Aziz mean hypothesis not theory [73-75]. Their 
misuse of scientific terminology notwithstanding, the animal model 
community continues to emphasize the need to use monkeys to find 
the mechanisms by which DBS is effective in the STN and elsewhere. 
Pereira and Aziz continue:

Current anatomical models of basal ganglia function. . . fail to 
explain wholly the efficacy of DBS in PD, in particular the finding 
that stimulation of the globus pallidus interna paradoxically 
improves dyskinesias without deleterious effects upon motor 
function, although primate research continues to further our 
knowledge in this regard [8]. 

The exact mechanisms by which DBS in the basal ganglia relieves 
movement disorders are still unknown, as is the exact nature of 
interactions within the basal ganglia and with the rest of the brain. 
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Unquestionably, mechanisms are important. However, as we will 
explore in a later section, there are many drugs on the market today 
the mechanisms of which science does not understand. Further, the 
mechanism of DBS is of secondary importance to the fact that, as we 
will show, DBS was well established clinically to be effective long before 
the MPTP monkeys were used in research. Finally, as we will discuss, 
just because one discovers the mechanism of a treatment or disease in 
an animal model does not mean the mechanism is the same in humans. 
The cause of tremor in the MPTP monkeys is drug induced whereas the 
cause of Parkinsonism in humans is largely unknown. The time span 
for creating the lesion in the SN in monkeys is very short whereas it 
takes years for the disease to develop in humans. The mechanisms for 
tremor may very well differ, just as the mechanisms for cancer differ 
among species. As Alexander et al. pointed out in 1986 [76], there are 
differences between human and nonhuman primate brains:

That there may be additional basal ganglia-thalamocortical circuits, 
beyond those proposed here seems likely. This question can only be 
answered, however, by further anatomical and functional studies. 
Considering the enormous expansion of the frontal lobes in man 
and the selective targeting of basal ganglia influences on these 
frontal areas, it is even possible that circuits exist in man for which 
there are no counterparts in the monkey [76]. 

The fact that all of these perturbations are occurring in systems that 
are differently complex is also highly relevant [31,32,35,36,77]. 

Treating MDs dates back to the 19th century and Horsley was 
among the first to perform surgical intervention in an attempt to treat 
MDs. He developed a technique for removing the precentral gyrus in 
order to treat MDs and various surgeons performed this operation into 
the 1920s [78-80]. As early as 1890, Horsley [81,82] was performing 
cortical ablations for athetosis. During this same era, at least two 
surgeons used intra-cortical alcohol injections to treat MDs [83-85]. 
Numerous brain and spinal cord procedures were attempted in the 
early 20th century in efforts to control MDs [86]. Surgery on the thyroid 
was even tried [86]. To a large extent, this appears to have been a time 
of trial and error. As Laitinen stated: “When one sets out to make a 
historical survey of surgical attempts to relieve the tremor and rigor 
in Parkinson‘s disease, one cannot help feeling that it would have been 
a far easier task to list those nervous structures which have not been 
attacked” [87]. 

In 1927, Spatz [88] hypothesized that a system outside the 
traditional motor system existed and that this system was important 
in MDs. He proposed the concept of the extra pyramidal motor system. 
He also stated that the STN, SN, the pallidum, and other structures be 
placed into this category and linked this system to MDs [63]. Spatz was 
influenced in his thinking by multiple studies and observations, some 
of which appear to have been performed on animals. (As most of this 
research was published in German, it is difficult to say with certainty 
exactly which advance came from which species, but human studies 
and observations were also strong influences for Spatz.) Regardless 
of what influenced Spatz’ thinking the most, the STN and pallidum 
had been linked to MDs in the 1920s, long before the MPTP monkey 
studies. The above claims that without the MPTP monkey experiments 
the STN would not have been linked to PD and we would never had 
applied DBS to the STN are thus false. Based on Spatz’s work alone, we 
can confidently conclude that the 1980s MPTP monkey experiments 
did not reveal any vital new knowledge in terms of linking movement 
in PD to the STN. Determining which parts of the basal ganglia are 

involved in which motions disorders is still, as we will see, largely a 
matter of trial and error, brain mapping in humans being the most 
effective modality. 

Despite the fact that in the 1920s Spatz proposed that the STN and 
SN were involved in MDs, the basal ganglion was considered off limits to 
surgeons into the 1930s. Dandy had observed patients that had suffered 
a stroke in this region and declared the area should not be operated on 
[89]. Gabriel and Nashold state: “At that time, the basal ganglia were 
regarded as surgical noli me tangere, part of an area asserted by Dandy 
as ‘the center of consciousness’ ” [86]. Bucy also advocated for a hands-
off approach to the region thinking that paralysis would surely result 
from such operations [90]. Clearly the basal ganglion was known to be 
involved in MDs as early as the 1920s and 1930s. 

However, Bucy did perform a series of operations on the cortex during 
this time [91,92]. Bucy based these forays on previous reports of 
surgical successes and experimental work [86]. Wilson [39,93] believed 
the treatment for MDs was to be found in the “rolandic area” of the 
brain, also known as the central sulcus. Bucy would stimulate the area 
of the brain thought to be involved in the MD then excise it [94]. The 
operations did result in dramatic improvement or even abolition of the 
MD but the patients suffered side effects such as seizures and paralysis. 
We should here also point out that stimulation was linked to movement 
again in the 1930s. Gabriel and Nashold discuss a breakthrough in 
MDs made by Bucy:

In one of the cases, Bucy and Case made the interesting observation 
that large doses of barbiturates administered in preparation for 
encephalography abolished the involuntary movements for several 
hours after awakening. Based on the evidence that barbiturates 
were more depressant to the electrical excitability of Area 6 than 
to that of Area 4, Bucy thought that this observation supported 
his original hypothesis that the parapyramidal system was more 
concerned with producing athetosis [86]. 

Moreover, the BG was further confirmed to be involved in MDs 
through clinical experience. Meyers, in 1939, successfully excised the 
head of the caudate nucleus in a patient with Parkinson‘s disease. The 
operation abolished the tremor without adverse side effects. This was 
the first successful foray into the BG [95]. In 1951, Meyers published 
his series of operations for MDs [96]. He performed 58 operations on 
the BG before 1949 [97]. Kopell et al. commented on this:

Contemporary movement disorder neurosurgery evolved from 
empirical observations in patients with movement disorders 
undergoing lesions placed in various regions of the neuraxis. The 
basal ganglia have been a target for neuromodulation surgery 
since Russell Meyers‘ pioneering works in the late 1930s. Under 
the hypothesis that abnormal movements were mediated by the 
neopallidum, Meyers extirpated the anterior two-thirds of the head 
of the caudate through an anterior transventricular approach [98]. 

Meyers was aware of the notion that the BG was involved in MDs and 
of the fact that Browder, while performing a frontal lobectomy, had 
accidently lesioned the caudate. After Browder’s patient recovered 
from anesthesia, Browder observed that the patient’s tremor had 
ceased [86,99-101]. Meyers [95,102] operated on other structures in the 
GP including, “the head of the cau date nucleus and part of the capsula 
internal, the putamen, the pallidum and the ansa lenticularis. Both 
tremor and rigidity were par tially improved. His work is interesting for 
this reason. Here was clinical evidence that a section of the pallidofugal 
pathway reduces or even eliminates rigidity as well as tremor” 
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[63]. Thus by 1940 the globus pallidus and STN had been linked to 
movement disorders and operations performed on the BG in order to 
alleviate MDs [86,103]. Gabriel and Nashold state: “The importance of 
Meyer‘s data was that tremor could be abolished and rigidity reduced 
without the production of paresis, spasticity, or dyspraxia” [86]. 
Browder and others also treated MDs by operating on the BG during 
this time [86,99,100,104]. Thus the claim that the BG in general was 
only linked to MDs by experiments with moneys in the 1980s is false. 

Serendipity often plays an important role in medical and surgical 
advances and the role of the BG in MDs would be further substantiated 
by serendipity. In 1953, Cooper was performing a craniotomy on a 
patient suffering from PD, when he inadvertently tore the anterior 
choroidal artery [105,106]. Cooper tied off the artery and closed the 
incision without performing the planned pedunculotomy. When the 
patient awoke from anesthesia, his tremor was almost completely gone 
as was the rigidity but his strength remained intact. Cooper reported 
on eight cases with similar results [106] but eventually abandoned the 
operation secondary to variability in the distribution of the artery [46]. 

According to Gabriel and Nashold, Cooper was influenced by 
the research of A. A. Abbie on the blood supply for the basal ganglia, 
in determining that the area that had been infarcted “was the globus 
pallidus and its afferent connections through the ansa lenticularis with 
the corpus subthalamicum, ventrolateral nucleus of the thalamus, 
substantia nigra, and red nucleus” [86]. Abbie’s articles [107,108] 
focused on human anatomy but also described anatomy in animals. 
In fact, Abbie compared and contrasted the blood supply of the brain 
among species, noting inter-species differences. The relevant portions 
of these papers for our discussion came from autopsies conducted by 
Abbie and other human-based research that Abbie references. Clearly, 
human-based research was responsible for determining the blood 
supply for the human BG. Thus by the mid-1950s more evidence that 
the GP and STN specifically were involved in MDs, including PD, had 
been accumulated [109]. 

Cooper’s discovery led to the injecting of local anesthetic and 
alcohol into the GP and ablation by thermocoagulation. Cooper would 
inject local anesthetic into the GP in part as a screening technique to 
see which patients would respond to ablation via ligation of the anterior 
choroidal artery. He would also inject alcohol in order to accomplish 
neuroablation. He found rigidity and tremor markedly reduced in 
most patients, but rigidity more so than tremor [110,111]. Cooper 
performed chemopallidotomy for a number of different MDs [86]. 
On conducting an autopsy, Cooper discovered the lesion was actually 
in the thalamus and therefore switched to lesioning the ventrolateral 
nucleus of the thalamus [112,113]. 

By the early 1960s, thalamotomy using a stereotactic device had 
replaced Cooper’s previous operation [46,106,114]. Gabriel and 
Nashold in 1998:

Between 1952 and 1962, Cooper and his colleagues performed 2210 
consecutive basal ganglia procedures for the relief of involuntary 
movement disorders. Of these, 2060 were performed for relief of 
tremor and rigidity of Parkinson‘s disease and the rest for other 
dyskinesias. Among patients undergoing 735 chemopallidectomies, 
60% obtained relief of tremor and 75% obtained relief of rigidity. 
Among patients undergoing 1170 chemothalamectomies, 80 
and 85% were relieved of tremor and rigidity, respectively. The 
mortality rate was 2 to 3% for both procedures combined [86]. 

Cooper published a guide for lesioning the GP in order to treat MDs 
in 1960 [115]. The fact that Cooper published a guide to lesioning the 

GP in order to treat MDs refutes claims that MPTP monkeys were 
responsible for linking the GP to MDs. Story et al. [116], Mundinger 
[117], and Fager [118] also successfully lesioned the STN in a large 
number of patients with PD. Clearly by the 1960s operations on very 
specific components of the basal ganglia were being performed for PD 
patients and the STN had been linked to movement disorders. No more 
data was needed before beginning to stimulate all areas of the basal 
ganglia. 

Most of Cooper’s work was human-based research and 
or observation and some of it might today be called human 
experimentation as Cooper, and others, were mapping out new 
territory. There were many failures and even today some of Cooper’s 
contributions to neurosurgery are still controversial [46,119]. But 
his importance in the development of neurosurgery for movement 
disorders is not controversial. One cautionary lesson that can be 
learned from Cooper, that is relevant to our discussion, revolves around 
his use of animal data from Sherrington, Moruzzi, Dow, and others to 
justify his operation on the cerebellum to treat seizures and spasticity 
[46]. Blinded studies failed to show any benefit from this procedure 
[46]. Animals and humans have much in common in terms of how the 
brain functions and some are prone to cherry pick the commonalties in 
order to conclude that one can use data from animal models to predict 
human response. In order for a modality to be considered predictive 
in medical science however, it must demonstrate a very high positive 
predictive value and negative predictive value. When all the relevant 
studies concerning trans-species extrapolation are considered, animal 
models fail to be predictive modalities for humans in drug and disease 
research. Isolated instances of animals and humans sharing anatomical 
features are not the same as an animal model being predictive for 
humans in anatomy, pathophysiology, or drug response [31-36,77]. 

Simultaneously with Cooper, others were operating on the BG. In 
1952, Spiegel and Wycis used the stereotactic device in an attempt to 
alleviate the tremor of PD [120]. They found that by interrupting signals 
from the pallidofungal via the ansa lenticularis the tremor subsided 
for several months without paralysis. They continued performing this 
operation and similar operations for a variety of MDs. Beginning in 
1951, Narabayashi of Tokyo injected procaine in the GP of patients 
with PD [121-124]. Several neurosurgeons in France performed 
surgery on the basal ganglia using these or similar techniques [63,125-
130]. During the 1950s, surgery on the GP became more widespread 
[86,131] but as Cooper’s change to the thalamus became better known, 
more and more surgeons began performing operations on the thalamus 
as opposed to GP in order to treat PD. 

Wolfson et al. describe the use of NHPs in research for MDs circa the 
late 1940s:

In 1949, Whittier and Mettler [132,133] demonstrated that lesions 
of the STN of monkeys produced hyperkinesia combined with 
choreiform and ballistic movements. The authors noted that 
destruction of 20% of the contralateral STN was necessary (less if 
the subthalamic fasciculus was involved) to produce the abnormal 
movement, whereas lesions of the internal segment of the globus 
pallidus, thalamic fasciculus, motor cortex, and lateral corticospinal 
tract reduced or abolished the movements [134]. 

The above is cited as an example of animal models being vital to linking 
MDs to the STN. However, as Wolfson et al. [134] discuss, MDs such 
as choreiform were described in the 1800s by the physicians Charcot 
and Weir Mitchell and linked to the STN shortly thereafter: “Over 50 
years ago, hemiballistic movements were noted to occur in patients 



Citation: Greek R, Hansen LA (2012) The Development of Deep Brain Stimulation for Movement Disorders. J Clinic Res Bioeth 3:137. doi:10.4172/2155-
9627.1000137

Page 7 of 21

Volume 3 • Issue 3 • 1000137
J Clinic Res Bioeth
ISSN:2155-9627  JCRB, an open access journal 

with lesions (usually vascular) of the contralateral subthalamic nucleus 
(STN) [135,136]. Subsequently, this was confirmed by two large 
postmortem studies with human pathologic material” [137]. 

Guridi and Obeso [138] echo the above:

The prominent role of the subthalamic nucleus (STN) in the control 
of movement was suggested decades ago following the observation 
that its lesion induces hemiballism in man [136,139-142]. Several 
experimental studies, particularly those pioneered by Carpenter, 
Whittier, and Mettler, demonstrated the strict relationship between 
hemiballism and lesion of the STN in monkeys [132,143]. 

Note the monkey studies were decades after the human studies. Even 
Parkinson himself had observed that when a patient suffered a stroke 
the tremor from his disease subsided only to return as the stroke 
resolved [144]. The relationship between the BG and MDs including 
PD was further substantiated in the 1950s. Bertrand states in 1957:

At any rate, it seems firmly established that there exists in the 
anterior and lower portion of the basal ganglia and the efferent fibres 
therefrom a center, an agglomeration, the destruction of which 
can eliminate the greater part of the symptoms of Parkinsonism 
without producing any permanent paralysis, if the section remains 
in front of the internal capsule [145].

Despite the history outlined above, the BG was almost forgotten as a 
treatment for MDs. Gross et al. [63] state the following about primate 
studies performed in the 1980s and 1990s:

Since the GPi is hyperactivated in PD, destroying the structure 
should release the thalamus and conse quently alleviate parkinsonian 
motor abnormalities. Recent primate studies have considerably 
improved our knowledge of the somatotopic microanatomy of 
the different structures of the basal ganglia and highlighted the 
geographic segregation of the differ ent circuits [146-150]. 

It is true that these primate studies refocused interest on the BG. This is 
a poor commentary on the way some scientists conduct animal-based 
studies, as a proper literature search would have revealed relevant 
human-based data. Obeso et al. 1997 acknowledge this stating: 

The development of the core ideas concerning the 
pathophysiological basis of the parkinsonian syndrome coincided 
with the publication of Laitinen et al. in 1992. That paper reported 
38 patients operated from 1985 to 1990 following Leksell‘s original 
concept of posteroventral pallidotomy. A dramatic improvement 
in rigidity and akinesia was described for all but one patient. 
Despite numerous methodological problems, which limited the 
interpretation of the data, this article fuelled the resurgence of 
pallidotomy for PD [72]. [Emphasis added.]  

We will discuss Leksell et al. shortly. Pallidotomy was performed 
for years based on human studies and those same human studies or 
studies very similar to them also discovered that the STN and GP were 
involved in MDs. To claim that operations on the GP were dependent 
on monkey studies conducted in the 1990s is simply historically 
inaccurate. Further, with the development of small electrodes surgeons 
could and did place an electrode and stimulate the area with very little 
harm to the patient. Much was learned through this process of trial and 
error. This again, was an advance secondary to engineering. Bertrand 
and Martinez explain that the process of determining exactly where to 
lesion the brain was largely empirical: 

The wide distribution of the center of these sections should be 
explained. The initial target was the ansa lenticularis and, after a 

few procedures, the globus pallidus. The lesions were very gradually 
made more posterior and slightly more mesial moving from the 
globus pallidus to the thalamus through the internal capsule on 
a purely empirical basis. A review of the results obtained after 
stimulation and section in two hundred consecutive cases indicates 
that tremor and rigidity can be alleviated by lesions within the 
mesial portion of the globus pallidus and, more specifically, the 
ventrolateral portion of the thalamus without any involvement of 
the cortico-spinal tract [151]. 

The use the stereotactic device greatly improved the accuracy of the 
operations and many surgeons used the device to treat MDs in the 1950s. 
Narabayashi, in Japan, used the stereotactic device to perform chemical 
pallidotomies on the anterodorsal section. Neurosurgeons performed 
the procedure based on the belief that an imbalance between the 
striatum and the pallidum was responsible for certain MDs [121,122]. 
The results were disappointing [152]. In 1960, Gillingham et al. [153] 
published promising results from lesioning the area 3mm behind the 
anterior commissure (AC). The location was chosen based on work 
by Spiegel and Wycis who had discovered a relationship between this 
location and the clinical outcome. Rigidity was relieved by lesioning an 
area 3-6 mm behind the AC while tremor was relieved by lesioning the 
area 9mm behind the AC [58,154]. Also in 1960, Leksell’s group (see 
below) published their results of posteroventral pallidotomies which 
extended all the way to the ansa lenticularis. This procedure was very 
successful, relieving both tremor and rigidity [131]. Pereira and Aziz: 
“That same decade, Leksell capitalised upon Cooper‘s discovery, using 
thermocoagulation together with his recently invented stereotaxic 
apparatus to accurately lesion the globus pallidus to ameliorate 
parkinsonian hypokinesia and rigidity in over 200 patients” [8]. 

Leksell’s group in Sweden had operated on the GP in over 2000 patients 
in the 1950s and 1960s demonstrating dramatic improvements in 
rigidity and akinesia [131,155,156]. This definitive work was largely 
ignored after operations on the thalamus became popular, but was 
rediscovered after Laitinen et al. reproduced it in the early 1990s 
[157,158]. Gross et al. [63] state: 

One of the reasons [the work by Leksell et al. received so little 
attention] could be that international attention was very much 
focused at the time on the work of the Freiburg school, which had 
moved the target site from the pallidum to the nucleus ventro-
lateralis (VL) of the thalamus on the strength of anatomical 
studies of the basal ganglia for which he had used the technique of 
retrograde cell tracing [159-162]. 

It appears the Freiburg school used both humans and animals in 
deciding to move their preferred site to the thalamus. As most of the 
articles are in German we are unable to determine exactly what role 
each species played in this transition. The move was unfortunate as 
Leksell was on the right track and had his example been followed we 
might have had relief for PD and other movement disorders much 
sooner. Leksell’s work would not be rediscovered until 1992 with 
Laitinen et al. [63,157,158]. Laitinen and Hariz acknowledged the work 
of the Swedish group:

In 1960 Svennilson et al. reported that stereotactic lesions in the 
ventroposteromedial (VPM) pallidal region had abolished all 
cardinal symptoms of Parkinson’s disease, i. e. tremor, rigor and 
bradykinesia and that the effect had lasted for 3.5 years at least 
[131]. At the time of this report neurosurgeons began to operate 
in the thalamus and this revolutionary pallidotomy report fell into 
oblivion. In 1985-88 we operated on 25 Parkinsonian patients in 
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the VPM pallidum. The drugs were usually reduced by ca 50 %. Our 
study confirms the findings of Svennilson et al. VPM pallidotomy 
seems to have an equal and very good effect on tremor, rigor, 
bradykinesia, and L-dopa induced involuntary movements [163].

Laitinen et al. again stated in 1992: 

The results presented here confirm the 1960 findings of Svennilson 
et al. that parkinsonian tremor, rigidity, and hypokinesia can be 
effectively abolished by posteroventral pallidotomy, an approach 
developed in 1956 and 1957 by Lars Leksell. The positive effect of 
posteroventral pallidotomy is believed to be based on the interruption 
of some striopallidal or subthalamopallidal pathways, which results 
in disinhibition of medial pallidal activity necessary for movement 
control [158] [See comments in [164].

Laitinen reinvented the procedure. Svennilson et al.:

From this point of view the cases fall into three main groups... 
Although all lesions have been located in the neighborhood of 
the pallidum, the site was deliberately varied between one case 
and another of the first 32 patients. A preliminary analysis of the 
results of these early operations showed that the best results came 
from lesions in the postero-medial part of the pallidum. In later 
operations the range of variation was much smaller within this 
effective zone. . . .81 patients with Parkinsonism, aged 30-75, were 
operated upon at the department of neurosurgery in Lund (Sweden) 
1953-57 with Leksell‘s stereotactic technique. Thermolesions in 
the postero-medial part of the pallidum were produced by a high 
frequency alternating current applied to a pair of electrodes under 
control of the tissue temperature. In the first 2/3 of this series the 
site of the lesion and the tissue temperature were systematically 
varied. In the last 20 consecutive cases operated on unilaterally 
a standardized lesion was produced. The time of postoperative 
follow-up was 1-5 years [131]. 

Note the work of the Swedish group was long before Bergman’s paper 
on MPTP-monkeys. The role the GP played in movement disorders 
was well known, as was the fact that the STN played a role. The fact that 
the GP was operated on long before Bergman’s studies proves that the 
supposed benefit from the MPTP-monkey studies was not considered 
necessary by the medical community prior to operating on structures 
known from human studies to be involved in movement disorders. 

Another reason the MPTP monkey model receives undue credit for DBS 
is in part a causality of the success of modern medicine. After L-dopa 
was discovered and administered to patients with PD in the 1960s, the 
need for surgery was dramatically decreased. Even if the value of the 
STN and GP had been unknown in the 1990s, neurosurgeons could 
have discovered it simply by stimulating these areas, as microelectrodes 
were available by the 1960s [165-167]. That is the way much of the 
research on movement disorders proceeded. Human-based trial and 
error is still acceptable provided the risk of harm is minimal. Hutchison 
et al. stated in 1994:

Microelectrode trajectories through the globus pallidus of 6 
Parkinson‘s disease (PD) patients yielded neurophysiological‚ 
landmarks which enabled the identification of neurones located 
in the external segment (GPe) and internal segments, exterior 
(GPi,e) and interior (GPi,i) of globus pallidus and the surrounding 
borders (Bor). Firing rate histograms and inter-spike interval time 
histograms were constructed for neurones in each region. The 
neuronal activity in GPi,i was higher than in the other segments, 
and a high degree of bursting was found in GPe and GPi neurones. 

This profile of neuronal activity is similar to that observed in 
monkeys treated with MPTP, suggesting that the observed level 
of activity of neurones in GPi,i is excessive, and contributes to the 
bradykinesia and rigidity of PD patients [168]. 

Sterio et al. stated in 1994:

Neuronal properties of the human globus pallidus (GP) are not 
known. Since GP is the major output of the basal ganglia, it may be 
involved in the pathophysiology of Parkinson‘s disease. We studied 
12 patients with medically resistant Parkinson‘s disease by using 
single cell recording of the GP during stereotaxic pallidotomy to 
define neuronal firing rate and its modulation during active and 
passive movements [169]. 

Lozano et al. also described human studies in 1996:

Methods for localizing the posteroventral globus pallidus 
internus are described. The authors‘ techniques include the 
use of microelectrodes to record single-unit activity and to 
microstimulate in human pallidum and its surrounding structures. 
This technique allows a precise determination of the locations 
of characteristic cell types in sequential trajectories through the 
external and internal segments of the pallidum. The location of 
the optic tract can be determined from microstimulation-evoked 
visual sensations and recordings of flash-evoked potentials. In 
addition, microstimulation-evoked motor and sensory responses 
allow the internal capsule to be identified. The data collected using 
this technique are an important adjunct to selecting optimum sites 
to place electrocoagulation lesions for stereotactic posteroventral 
pallidotomy for refractory Parkinson‘s disease [170]. 

The above forces one to question the value of the monkey studies if 
such data can be so easily obtained from humans. Moreover, the same 
outcomes may be caused by very different mechanisms, as we will 
see. Therefore, what is demonstrated in the monkey studies cannot be 
extrapolated to human without critical examination. Recently, Follett 
et al. revealed that DBS at either the STN or the GPi resulted in similar 
relief from the motor symptoms of PD including tremor and stiffness 
[171]. 

As the history of surgery on the thalamus is not usually attributed 
to animal studies we will only briefly examine it here. Lesioning the 
thalamus in order to treat MD dates back to well prior to the 1980s 
[172-181]. Procedures on the thalamus were performed in the 1960s by 
Andy, who used radiofrequency DBS to confirm the exact site for the 
lesion. Andy et al. 1963:

In the neurosurgical treatment of parkinsonian tremor, a major 
question to be answered is, where is the optimal site of target for 
the lesion? The present study is an attempt to evaluate the posterior 
ventrolateral area of the thalamus, internal capsule, medial region 
of the globus pallidus and posterior subthalamus. With reference to 
the various atlases available, it appeared that the optimum site for 
the most efficient lesions corresponds to the posterior subthalamus 
which includes the field H of Forel, the zona incerta, and the 
prerubral field medial to the subthalamic nuclei [182]. 

Andy and others went on the perform thalamic surgery for movement 
disorders for decades [183]. Hassler et al. compared clinical data with 
autopsy findings and concluded that lesioning the nucleus ventro-oralis 
anterior (VOa) and the nucleus ventro-oralis posterior (VOp) had a 
limited affect on rigidity [184]. They also concluded that lesioning the 
nucleus ventralis intermedius (Vim), was the best treatment for tre mor 
[159,185-187]. These results were replicated by others [181,187,188]. 
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Also of note is the fact that Hassler et al. thought they were operating 
on the thalamus at times but turned out to have lesioned the STN [184] 
linking once again the STN to MDs. The Vim was known to be involved 
in MDs and DBS on the Vim had been performed for MDs prior to 
1987. Benabid et al. even stated in 1987: “Stereotactic thalamotomy 
of the thalamic nucleus centralis intermedius (VIM) is routinely used 
for movement disorders. During this procedure, it has been observed 
that high-frequency (100 Hz) stimulation of VIM was able to stop the 
extrapyramidal tremor” [189]. 

Claim 3

The claim that the concept of lesioning, or disrupting with 
electrical stimulation, the STN and the GPi in order to alleviate motor 
disturbances, as well as the frequency at which to use DBS arose 
secondary to MPTP experiments on monkeys. 

The use of electricity or electrical discharge has been used for 
millennia in the treatment of numerous disorders. Romans used 
the torpedo fish or electric ray (Torpedo torpedo) as a treatment for 
headaches. They continued to be used for various conditions into the 
1800s [190-192]. In the 1780s, Galvani famously connected the nerves 
of a dead frog to a lightning rod and observed the legs twitch. Prior 
to 1804, Aldini studied cadavers, fresh from the guillotine, and used 
electrical stimulation on the surface of the cortex. The resulting grimaces 
convinced him and others that such stimulation might be therapeutic 
[193,194]. Because Aldini suggested a therapeutic application, he could 
be considered the father of DBS. In 1809, Rolando used electrical 
stimulation on the cortex of animals [195]. (We note that although 
humans were apparently the first to be studied regarding a number of 
neuroanatomies during this time, we do not think this is relevant to the 
discussion of the role of animals in the development of DBS. There are 
numerous demonstrations or studies that were performed on humans 
or animals first and subsequently on the other. Either could have been 
studied first and indeed the one that history records as being first may 
not have been. The historical records were not detailed and no doubt 
much has been lost. Regardless, we wish to point out that irrespective 
of which species went first, humans or animals would have yielded 
the needed information, hence instances like these do not support an 
argument that animals were necessary or that humans were necessary 
for the advance. Either would have sufficed, provide the animal-based 
result was replicated in humans).

Throughout the 1800s, animals and humans were studied [196] 
and the link between electrical stimulation of the brain and actions 
and developed. Horsley would be the next to advance the study of 
stimulation. Horsley’s sense for precision, in addition to leading to the 
development of the stereotactic device, also led to the development 
of small electrodes that could carry a current thus ablating a very 
small and very specific area of the brain [61]. Another example of 
advances secondary to engineering. Horsley and Clarke however, were 
apparently not the first to use electrodes per se. The Russian Golsinger 
used electrodes to lesion the brains of dogs in 1895 [20,61]. Cooper 
went on to implant electrodes for numerous conditions and pioneered 
surgery in the field. In 1979, Cooper implanted electrodes for DBS and 
tried various frequencies in a number of procedures including DBS of 
the thalamus and electrical stimulation of the cerebellum [46,197,198]. 
Beginning in the 1960s, electrostimulation was used for confirming the 
needle placement for thalamic lesions [63,165-167]. 

Gabriel and Nashold state: 

The efficacy of the capsular lesion was thought to be related to 
the interruption of the ansa and fasciculus lenticularis and their 
connections with the reticular substance, subthalamic nucleus, and 
substantia nigra. . . . In 1963, Andy et al. used a radiofrequency 
current to evaluate the optimal lesion site in 58 patients with 
parkinsonian tremor. By correlating their data with stereotactic 
atlases, they concluded that the most efficient lesion site was in the 
posterior subthalamus and included Field H of Forel, zona incerta, 
and the prerubral field medial to the subthalamic nuclei [86]. 

A publication by Medtronic even states: “Deep brain stimulation 
(DBS) emerged in the late 1960s as a possible therapeutic alternative to 
lesioning in patients with severe, chronic, intractable pain” [1]. 

Medtronic’s website acknowledges the long history of using DBS to 
isolate areas in the brain: 

Neurologists and neurosurgeons have used electrical stimulation 
since the 1960s as a way to locate and distinguish specific sites in 
the brain. During the process, they discovered that stimulation of 
certain brain structures suppresses the symptoms of neurological 
disorders such as Parkinson‘s disease, essential tremor, and 
dystonia [199]. 

The development of the stimulator unit and battery is due to advances 
in engineering and computer science. 

Natalia Petrovna Bekthereva first applied DBS chronically in 1963. 
Because she published in Russian, her works were not well known until 
1975 [200-202]. McLellan soon followed in the 1970s [196,201,203] 
but some had so employed DBS dating back to the 1960s [181,185,204-
206]. Starting in 1975, Mundinger used deep brain stimulation of the 
ventrolateral thalamus for the treatment of movement disorders and 
reported successfully treated cases in 1982 [207]. Mundinger, in 1977, 
treated torticollis by implanting a stimulator in “the extrapyramidal-
motor thalamic nuclei (V. o. a. /V. o. i. ) and the subthalamic zona 
incerta including the pyramidal tracts H1 and H2 (according to Forel) 
” [208]. Cooper reported on a series of patients treated with DBS in 
1982 [209]. Brice and McClellan implanted deep brain stimulators to 
target the region of the subthalamus, thereby controlling the tremor of 
patients with multiple sclerosis in 1980 [210]. 

The fact that frequency influenced activity was also appreciated by the 
end of the 1950s [53,57,165,196,211-217]. Electrical stimulation was 
used, for among other things, to isolate the exact area to lesion. Hassler 
[204], noted in 1960 that by increasing the frequency the abnormal 
movement could be suppressed or increased [218]. 

Radiofrequency stimulation of the thalamus and BG was also 
demonstrated to inhibit motor activity in monkeys [69,189]. This is the 
basis for the claim that monkeys were vital for the implementation of 
DBS in MDs, especially for PD. Benabid et al. [189] reported in 1987 
that the frequency of stimulation that best abolished tremor was 100Hz 
or greater. In 1995, they reported their results of using DBS on the STN 
in patients with PD and other MDs [69]. Benabid, et al. [219] stated:

Animal experiments in MPTP monkeys have demonstrated 
that dopaminergic deafferentation induces a hyperactivity in the 
subthalamic nucleus (STN) [147]. Distinction of STN suppresses 
rigidity and akinesia [64] in these animals. Subthalamotomy 
in human patients cannot be considered, due to the high risk 
of inducing hemiballism. We assumed that high frequency 
stimulation could inhibit STN as it inhibits the Vim nucleus for 
tremor [220]. This hypothesis was validated by animal experiments 
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which demonstrated that high frequency stimulation of STN in 
MPTP monkeys acutely reversed rigidity and akinesia [221]. This 
allowed us to perform this procedure in human patients, in whom 
we also observed the alleviation of akinesia and rigidity in the 
operating room [222]. 

The above clearly states that use of DBS in the STN was secondary to 
experiments on monkeys. Gross and Lozano echo this: 

Based on the work of DeLong et al. and Alexander and Crutcher 
establishing the central role of the STN in the pathophysiology 
of PD in animal models, Benabid et al. pioneered the application 
of deep brain stimulation within STN. . . to the treatment of 
Parkinson‘s patients. They demonstrated remarkable clinical effects 
and tolerability of bilateral STN DBS on all parkinsonian features 
including gait disturbance [223]. 

Brice and McClellan implanted deep brain stimulators to target the 
region of the BG, thereby controlling the tremor of patients with 
multiple sclerosis in 1980 [210]. They reported that frequencies of 
75-150 Hz were optimal for abolishing tremor. Around the same 
time, Cooper et al. used deep brain stimulation of the ventrolateral 
thalamus and reported encouraging results in patients with cerebral 
palsy [209]. Siegfried went on to demonstrate the successful use of deep 
brain stimulation in the thalamus of patients with chronic pain and 
dyskinesia [224,225]. All of this was prior to the 1983 study of MPTP 
monkeys [7]. 

Also contrary to the statements by Gross and Lozano and Benabid, 
the groundwork for using DBS on the STN actually came from human 
studies. Cooper [46] had performed DBS in humans for movement 
disorders eleven years earlier and, as we have shown, when Bergman 
et al. operated on the STN, it was already known from human studies 
to be involved in MDs. The MTPT monkey studies appear to have 
renewed interest in the STN as an area of interest in movement 
disorders and it appears that Benabid et al. did proceed to operate on 
the STN sooner than they otherwise would have. This in and of itself 
is unfortunate because studies in animal models were apparently 
considered more important than decades of studies in human anatomy 
and neurosurgery on humans. If Benabid and others were unaware of 
these studies, that is also suboptimal as any decent literature search 
would have informed them of these facts prior to, and obviating the 
need for, studies in animals. Examples like this have implications for 
Institutional Animal Care and Use Committees. 

This use of deep brain stimulation therefore predates the very first 
description of the MPTP monkey model of Parkinson‘s disease by 
nearly 40 years. A fully implantable and reversible stimulator system 
for movement disorders was developed circa 1980, three years before 
the Parkinson‘s disease MPTP monkey model was even first described. 

The ability of electricity to alter MDs was well known prior to 
the early 1980s and the MPTP experiments with monkeys. In the late 
1970s, surgeons were able to permanently implant electrodes, in part, 
because of the advances in battery technology inspired by the cardiac 
pacemaker. The development of DBS would not have been possible 
without advances in engineering and computer science. 

Epistemology and mechanisms

When asking questions akin to, “what modalities were necessary for 
X to have been discovered,” one is in the realm of epistemology and 
philosophy of science. Giere, Bickle, and Mauldin explain:

the burden of proof is on the producers, or purveyors, of that 
information. They have to convince you that they are right. That 
means they have to provide you with data that constitute good 
evidence for their claims. You, like a jury, need only evaluate what 
they provide. Thus, if you conclude that the data supplied do not 
provide good evidence for their claims, you have done your job. 
You have reached the useful conclusion that you need not, at least 
for the moment, pay any more attention to their claims [226]. 

We conclude that scientists that claim animal models were necessary 
for the development of DBS have the burden of proof on them and 
that they have not met this challenge. We note that failing to meet 
this standard does not conclusively prove that animal models were 
unnecessary, merely that the proofs are inadequate. We further note 
that even though the burden of proof was not on us to falsify the 
position that animal models were necessary for the development of 
DBS, we have presented a strong case for just that position. 

There is no question that animal models were used in the 
development of DBS but they appear to have been neither necessary 
nor sufficient. The reason they were not sufficient lies in the fact that 
animals and humans are examples of living evolved complex systems, 
which makes inter-system extrapolation problematic. The problems 
associated with extrapolating results from one living, adaptive, 
complex system to another have been addressed many times [22,24,26-
36,77,227-231] so we will not reproduce them here. Conversely, there 
is no doubt that animal models can function well as heuristics [35,232-
234] as well as in many other endeavors [33,35]. However, the success 
of animal models in these endeavors does not fulfill the burden of 
proof for the claim of being a predictive modality in general or for the 
claim of necessity for the development of DBS. The fact that many drug 
and disease outcomes in humans have been shown to exist in some 
animal model is also immaterial as retrospectively picking an animal 
model that reproduces human data is not helpful either in terms of 
mechanisms or for predicting future human responses. This leads us to 
the mechanisms issue. 

The fact that inter-species variation occurs in anatomy should inform us 
regarding mechanisms. For example, Alam et al. discuss the differences 
among species in the anatomy of the area of pedunculopontine 
nucleus, which has been targeted for deep brain stimulation in patients 
with MDs [235]. DeFelipe et al. discuss human monkey differences in 
double-bouquet cells (DBC) stating:

We will see that there are important differences in the morphology, 
number and distribution of DBC horsetails between areas 17 
and 18 in the primate. This suggests important differences in the 
microcolumnar organization between these areas, the functional 
significance of which awaits detailed correlative physiological and 
microanatomical studies [236]. 

Benabid clearly attributes the advancement of DBS, including 
mechanisms, to animal-based studies [237,238]. Despite all the 
importance placed on mechanisms, the mechanisms by which 
DBS affects the signs of MDs are still unknown despite decades of 
research using animals [239-241]. This is an important element in 
our analysis of animal models and DBS as one of the reasons animal 
models in general have been heralded as important, indeed vital, is 
for the search for mechanisms. If they have failed in this respect, and 
the historical aspects of DBS development imply that animal models 
were not necessary, then one must question the use of animal models 
specifically for the development of DBS and perhaps in certain aspects 
of research in general [32-36,77]. Moreover, the search for mechanisms 
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has been the defining modus operandi of basic research in general and 
animal-based research in particular. However, some in the scientific 
community [242,243] and even in the basic research community are 
now pointing out the poor track record of this enterprise. Marincola, 
editor of the Journal of Translational Medicine, discussed the reliance on 
a search for mechanisms and a hypothesis driven approach to research 
as opposed to observations of natural processes. He questioned the 
premises on which some of these hypotheses are based and argued for 
more observation-based studies. Marincola:

It is surprising how often a manuscript is dismissed by reviewers 
as“just descriptive”, regardless of the novelty of the reported 
observation. On the other hand, we have not once received a 
negative comment on a „mechanistic“ study, even if it lacks proof 
of the validity of the experimental model and its relevance to 
human disease [244]. 

Marincola goes on to ask if anyone would worry about the mechanism 
for a drug that cures 100% of human cancer if it were discovered 
through serendipity. The focus on mechanisms has impeded science 
many times. For example, Wegener’s continental drift hypothesis was 
rejected because of lack of mechanism [245,246]. Darwin also lacked a 
mechanism when he published Origins.

Johnston discusses the failure of basic research to improve human 
health to the degree that it should have. He uses as examples of this 
failure the fact that despite a doubling on the NIH budget the number 
of new chemical entities entering the market remains steady and the 
fact that despite fascinating research into the mechanism of stroke, 
essentially no drugs for neuroprotection have entered the market as a 
result of this largely animal-based research. Johnston:

Introspection into the science of science is rare. Thirty years after 
its publication, for example, an analysis of research contributing 
to major medical advances remains a frequent citation in support 
of funding for basic science even though it is now 30 years old 
and has been widely criticized. There are many questions that 
could be answered with careful objective analysis. Is current 
allocation of resources to translational research appropriate? Is 
peer review working? Are research funds distributed reasonably 
and equitably across diseases? Has society seen a return on the 
research investment? These are the sorts of questions that should 
be addressed as rigorously and as scientifically as possible [247]. 

Furthermore, the mechanisms for diseases that appear at first glance to 
be identical among species have been discovered to be very different. 
Jacks notes that: “. . . the genetic wiring for growth control [cancer 
growth] in mice and humans is subtly different” [248]. Anisimov, 
Ukraintseva, and Yashin state that while there are similarities between 
rodents and humans regarding the genes involved in carcinogenesis, 
the differences tend to override them. For example, they cite Weinberg 
et al. [249,250] who discovered that fewer genes and pathways are 
required to induce cancer in mice than humans [251]. Rangarajan 
and Weinberg 2003 state: “These observations indicated that mouse 
and human cells indeed have quite distinct requirements for cellular 
transformation” [250]. Chabner and Roberts also cite Weinberg et al. 
and state: “Attempts to produce genetically engineered mouse models 
of human cancer in fact lead to models of the specific molecular changes 
in a mouse cell, and have uncertain relevance to a human counterpart” 
[252]. Gupta and Sen point out that animal models of heart failure have 
been mechanistically unrewarding [253]. These examples could easily 
be multiplied [254-256]. 

Furthermore, there are more reasons to distrust the mechanisms 
approach. For example, there are reasons based in evolution to explain 
the fact that different mechanisms can produce similar traits or effects 
[35]. Kirschner and Gerhart discuss conserved processes and facilitated 
variation and contrast the eye of the octopus with the eye of human. 
Both eyes appear similar and result in vision but they evolved using very 
different mechanisms. Kirschner and Gerhart note that the circuitry of 
the two eyes are very different and:

the phototransduction circuits are completely different (involving 
components that are different but common to both organisms) 
is a testimonial to the power of conserved processes-they can be 
organized by different means to a similar end. In convergence, 
similar outcomes are evolved in different ways, making use of 
exploratory processes, modularity, flexibility, and weak linkage. 
Anatomical convergence at the level of these processes is no 
different than anatomical diversification [[257] p240-1]. 

Moreover, when one wishes to discuss past discoveries made in one 
species that turned out to be similar to the anatomy or pathophysiology 
in another, one must also keep in mind the fact that important 
differences also exist even in these instances. For example, the anatomy 
of the human and macaque brains is known to differ in important areas 
[258,259]. The occasional observations or discoveries of correlations do 
not fulfill the requirements for a practice to be considered predictive 
in medical science [35,36]. Such observations can be useful heuristics, 
however [234]. 

Surgical procedures and anatomy are not an exception to the above. 
Staying with the subject of neurosurgery, intracranial-extracranial 
bypass was shown to be very effective in animal models [260,261] but 
increases morbidity in humans [262-265]. Radial keratotomy (RK) of 
the mid 20th century was practiced in rabbits, which experienced no 
problems, however many humans experienced corneal edema and 
vision loss because of differences between the corneal endothelium of 
rabbits and humans. The reason that humans, as opposed to rabbits, 
eventually experienced blindness was secondary to the fact that humans 
could not recover from one of the incisions placed posteriorly in the 
cornea [266-272]. Current operations to correct myopia have little in 
common with the original RK. 

All of the above must be placed into the context of where past 
breakthroughs have come from. Weinberger states: “All psychiatric 
drugs in common use today are derivatives of treatments that were 
originally discovered by accident. None were developed based on a 
scientific understanding of the causes or pathophysiology of mental 
illness” [273]. Yang and Sonner state: “Inhaled anesthetics have 
historically been discovered either serendipitously [274], or through an 
empirical process of trial and error” [275]. The mechanisms of general 
anesthesia continue to elude scientists, although it is currently a focus of 
research [276-279]. The original treatment for ventricular dysrhythmias 
was discovered accidentally when a cardiologist noticed that lidocaine 
decreased their occurrence. Lasagna states that lidocaine was one of 
many medications the effects of which: “were not discovered except by 
serendipity after their clinical introduction for other purposes” [280]. 
The idea of treating hypertension with diuretics was also serendipitous 
[281]. In 1937, physicians noticed that when patients were given 
medications that increased urine output, they began to breathe better. 
The ultimate result was the thiazide diuretics. These examples could be 
easily multiplied. 

We are not suggesting reliance on serendipity, however. Rothwell 
stated in 2006: 
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Indeed, most major therapeutic developments over the past few 
decades have been due to simple clinical innovation coupled with 
advances in physics and engineering rather than to laboratory-based 
medical research. The clinical benefits of advances in surgery, for 
example, such as joint replacement, cataract removal, endoscopic 
treatment of gastrointestinal or urological disease, endovascular 
interventions (eg, coronary and peripheral angioplasty/stenting 
or coiling of cerebral aneurysms), minimally invasive surgery, 
and stereotactic neurosurgery, to name but a few, have been 
incalculable. Yet only a fraction of non-industry research funding 
has been targeted at such clinical innovation. How much more 
might otherwise have been achieved [282]?

Discussion
Why is this topic important? One reason is simple historical accuracy. 
Renditions of past medical advances should be accurate. Another 
reason is that the geneses of past advances are used to inform future 
decisions. There are both funding and ethical implications to be derived 
from an accurate rendition of history. This must be placed in the social 
context of the reality that the use of animals in research is controversial 
from many respects. The recent US Institute of Medicine Report on the 
use of chimpanzees in research is but one example of society struggling 
to come to grasps with the situation [283]. Furthermore, recent work 
has called into question the use of animal models to predict human 
response to drugs and disease [33-36,227,242,284]. This is a key aspect 
of animal-based research as Giles, writing in Nature confirms:

In the contentious world of animal research, one question surfaces 
time and again: how useful are animal experiments as a way to 
prepare for trials of medical treatments in humans? The issue is 
crucial, as public opinion is behind animal research only if it helps 
develop better drugs. Consequently, scientists defending animal 
experiments insist they are essential for safe clinical trials, whereas 
animal-rights activists vehemently maintain that they are useless 
[285]. 

The claim that animal models can be predictive modalities for human 
response to disease and drugs has been refuted [32-36,77,227,286-304]. 
The role of animal models in the development of DBS, as explained 
by the animal model community, clearly claim that such models were 
predictive for humans. This claim has been empirically shown to be 
false as most of the predictions were in fact retrospectively produced 
findings that reproduced human data and even here different animal 
models yielded different results. One cannot cherry pick the animal 
model data in order to find the model that correlated with humans and 
thus claim predictive ability for the model. A model must be judged 
on the basis of the history of numerous predictions so the positive 
predictive value (PPV) and negative predictive value (NPV) can be 
calculated and the model’s predictive ability thus assessed. (For more 
on what makes a model predictive see references [32,33,77,305-307]. ) 
The ability of a modality, be it a diagnostic test, intervention, or practice 
to be classified as predictive should not be confused with the routine 
generation of prediction by hypotheses that allow the hypotheses to be 
strengthened or falsified, although this fallacy is frequently committed 
[36,227,308-314]. 

The possibility that animal models can be predictive modalities for 
human response to drugs and disease has also been shown to be 
false based on Theory [32,35,77,315,316]. To be clear, theory is not 
synonymous with hypothesis. The National Academy of Sciences 
(USA), explains theory as follows:

In everyday usage, “theory” often refers to a hunch or a speculation. 

When people say, “I have a theory about why that happened,” 
they are often drawing a conclusion based on fragmentary or 
inconclusive evidence. The formal scientific definition of theory is 
quite different from the everyday meaning of the word. It refers 
to a comprehensive explanation of some aspect of nature that is 
supported by a vast body of evidence. Many scientific theories 
are so well established that no new evidence is likely to alter 
them substantially. One of the most useful properties of scientific 
theories is that they can be used to make predictions about natural 
events or phenomena that have not yet been observed [[317] p11]. 

Knowledge regarding the material universe gained from complexity 
science and evolutionary biology have given us a Theory that explain 
the empirical evidence that shows animal models are not predictive. 
Stated briefly: animals and human are evolved complex systems and 
therefore very small differences between species and even between 
individuals of the same species will lead to very different outcomes to 
perturbations to the system [31,35,316]. There is much support in the 
scientific literature for this position. For example, Sharp and Langer 
state: “The next challenge for biomedical research will be to solve 
problems of highly complex and integrated biological systems within 
the human body. Predictive models of these systems in either normal 
or disease states are beyond the capability of current knowledge and 
technology” [299]. 

Weinberg was quoted by Leaf in Fortune magazine as saying: “And 
it’s been well known for more than a decade, maybe two decades, 
that many of these preclinical human cancer models have very little 
predictive power in terms of how actual human beings—actual human 
tumors inside patients—will respond preclinical models of human 
cancer, in large part, stink. . . hundreds of millions of dollars are being 
wasted every year by drug companies using these [animal] models” 
[318]. Ellis and Fidler: “Preclinical models, unfortunately, seldom 
reflect the disease state within humans” [243]. Oliff, formerly of Merck 
stated: “The fundamental problem in drug discovery for cancer is that 
the model systems are not predictive at all” [248]. In 2006, then US 

Subject Fiscal Year Extramural
ResearchDollars,%

Total Projects
And SubProjects, %

Humans 1977
1978
1979
1980
1981
1982
1983

27.5
26.8
26.8
25.0
23.8  
23.2
22.9

32.4
31.2
29.2
28.9
29.7
31.5
32.2

Mammals 1977
1978
1979
1980
1981
1982
1983

43.5
44.0
44.9
45.0
47.3
48.1
47.9

41.9
42.5
43.8
44.2
44.1
43.5
42.7

Otherb 1977
1978
1979
1980
1981   
1982
1983

29.4
29.3
28.2
29.8
28.9
28.7
29.2

25.6
26.3
27.0
26.9
26.0
25.0
25.1

aUnpublished information provided by Division of Research Resources, National 
Institutes of Health
bThis category includes invertebrates, nonmammalian vertebrates, bacteria, 
viruses, mathematical and computer simulations, and other subjects

Table 1: Distribution of NIH Support of Extramural Research among Humans, 
Laboratory Mammals, and Other Research Subjects, Expressed as
Percentages of Total Dollars and of Total Projects and Subprojects.a
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Secretary of Health and Human Services Leavitt stated: “Currently, 
nine out of ten experimental drugs fail in clinical studies because we 
cannot accurately predict how they will behave in people based on 
laboratory and animal studies” [290]. Examples of such statements 
could easily be multiplied. 

Giles’ statement must be placed into the context of basic research. 
The actual role of animal models in the development of DBS was 
in the realm of basic research and recent work has also forced a 
re-evaluation for the historical role of such use of animal models 
[32,34,35,227,315,319-321]. Both the prediction issue and the actual 
historical development of an advancement or discovery are important 
factors that should be considered when society is evaluating the role of 
animal models in the future. 

This raises the question of funding and ethics. US funding agencies 
such as the NIH have been criticized for disproportionately funding 
basic research [322-325]. Well-publicized breakthroughs in basic 
research have not lead to advances in the stated goal of NIH, which is 
“to reduce the burdens of illness and disability [326].” Approximately 
70% of NIH’s research budget goes to basic science [323,325]. The 
percentage in the UK is about the same [327-331]. The last published 
data on NIH funding was published in a 1985 publication from the 
Committee on Models for Biomedical Research, Board on Basic Biology 
(Table 1) [332]. According to the Committee, greater than or equal 
to 50% of NIH extramural research dollars was awarded to research 
involving sentient animals. At least 45% was awarded to research on 
mammals (most people consider mammals sentient and many even 
consider all vertebrates sentient [333-344]). An additional 30% was 
awarded to research involving nonmammalian vertebrates and so forth. 
(Based on the previous references, many people think at least some of 
these animals are sentient). Assuming some of the nonmammalian 
vertebrates are sentient, then the total funding awarded is easily over 
50%. Based on these numbers and NIH’s predisposition to fund basic 
research, it appears feasible that at least 50% of extramural funding was 
historically awarded to basic research on sentient animals and there is 
no evidence that this has changed. 

The percentage of research grants awarded for research using 
sentient animals is relevant as society clearly has reservations regarding 
such research. Per Giles, the return for such practices needs to be direct 
and important. Giles comment is supported by polls and surveys. An 
editorial in Nature in 2009 reinforced the above stating: “Animal-
research policies need to be guided by a moral compass—a consensus 
of what people find acceptable and unacceptable” [345]. What does 
society find acceptable?

A survey conducted by YouGov in the UK, France, Germany, Italy, 
Sweden and the Czech Republic asked under what conditions should 
the use of dogs, cats, and primates in research be allowed. 

• 81% of people surveyed agree or strongly agree the new law 
should prohibit all experiments causing pain or suffering to 
primates.

• 79% of people agree or strongly agree the new law should 
prohibit all experiments on animals which do not relate to 
serious or life-threatening human conditions.

• 84% of people surveyed agree or strongly agree the new law 
should prohibit all experiments causing severe pain or suffering 
to any animal.

• 73% of people disagree or strongly disagree that the new law 
should permit experiments causing pain or suffering to cats.

• 77% of people disagree or strongly disagree that the new law 
should permit experiments causing pain or suffering to dogs 
[346].

The Pew Research Center and the American Association for the 
Advancement of Science (AAAS) revealed, in 2009, that only 52% 
of nonscientists supported the use of animals in general in scientific 
research [347]. In 1999, MORI and New Scientist [348] asked people 
whether they favored using animals with 24% answering yes 64% 
answering no. The questions were then divided into several categories. 
Respondents were questioned about experiments in which mice 
would be subject to pain, illness or surgery, and 61% stated that they 
disapproved using mice in order to study how the sense of hearing 
works. That percentage dropped to 32% when the question concerned 
the use of mice to ensure a new drug to cure childhood leukemia 
was safe and effective. When monkeys were substituted for mice the 
disapproval went from 64% to 75% and 32% to 44%, respectively. 
As the previous sections reveal, animals cannot in fact be used to 
predict safety and efficacy and are in reality used for basic research, 
which The Organization for Economic Cooperation and Development 
defined as: “Experimental or theoretical work undertaken primarily to 
acquire new knowledge of phenomena and observable facts without 
any particular application or use in view. It is usually undertaken by 
scientists who may set their own agenda and to a large extent organise 
their own work” [349]. 

While the above polls reveal variation in response the general 
message is clearly that society is uncomfortable with using animals 
in basic research. Since animal models are not predictive for human 
response to drugs and disease, including cancer, it would appear that, if 
society understood this, it would not approve of using animals in such 
a fashion [227]. 

Finally all of the above must be contrasted with the statements of 
those whose function is to promote the use of animals in research. 
For example, Understanding Animal Research, a UK-based non-
governmental organization that promotes animal-based research, 
states on their website:

Monkey research identified a potential target for DBS: a structure 
in the brain known as the subthalamic nucleus (STN). Continuous 
stimulation delivered by a wire inserted into the STN, and driven 
by a battery stimulator implanted under the collarbone, blocks the 
abnormal nerve signals that cause tremor and other Parkinson‘s 
symptoms [350]. 

Such examples regarding the development of DBS are easily multiplied 
[8-14,16,351-356]. 

An oft-overlooked area of ethical concern is the fact that the 
research pie is finite and funding awarded to animal-based research 
is not available to more productive areas [282,357-362]. In light of 
the competing financial interest for research funding and the ethical 
concerns of society, a clear presentation of historical developments is 
important. 

Summary
The fact that the true history of any discovery, be it one from the 

distant past or more recently, is difficult to unravel is, at least in part, 
what led Medawar [363] to write his famous essay, “Is the scientific 
paper a fraud?” The relevant concepts involving the basal ganglia and 
movement disorders were known in the early 1900s. Clearly, lesioning 
the central nervous system was already a well-known treatment for 
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movement disorders in the early 20th century. The knowledge of where 
to lesion for what effect was learned from studying humans including 
humans who suffered various traumas. Autopsies and the observation 
of, and research on, living humans were used in this endeavor, as was 
what today might be called human experimentation. As soon as DBS 
was introduced it could justifiably and ethically have been applied to 
any structure in the basal ganglia in hope of alleviating movement 
disorders. Such trial and error continues even now. 

Human observation, autopsies, surgical trial and error, advances 
in engineering and computer science, as well as serendipity figured 
greatly in the development of DBS. Animals were used in the early 
days of neuroanatomy and neurosurgery research but the knowledge 
gained appears to either have replicated human studies or could have 
been ascertained from human studies (anatomy), or may have been 
obtainable without animals because of the nature of the discovery (the 
stereotactic device from engineering). Regardless, the knowledge that 
could, arguably, only have been obtained from animal studies appears 
to have been in the very early days of modern neuroanatomy research. 
This does not demean the value of animal models but it does place them 
into a different context than the claim that they were necessary. It also 
refutes common claims such as that the STN was only known to be 
involved in specific MDs secondary to the MPTP monkey studies. 

Hindsight is also aided by current knowledge of evolutionary 
biology, complexity science, and empirical evidence in essentially all 
areas of animal modeling. Both theory and empirical evidence demand 
skepticism when evaluating past claims that animal models predicted 
human response to perturbations to the system as a whole or that 
animal models were necessary for such discoveries. This does not imply 
that animal models were unimportant for discovering myriad facts 
regarding living systems in general. Nevertheless comparative research 
and the discovery of fundamentals of life are not what are claimed 
concerning the role of animal models in the development of DBS. 

The role of animal models in the development of DBS is but one 
facet that must be considered when analyzing the use of animals in 
science. Nevertheless, any evaluation of animal models, be it for the 
development of DBS or the predictive value of monkeys for drug 
response, should be science-based and honest. In the case of DBS, as 
is true for all claims regarding animal models, a proper understanding 
of the advance has financial implications in terms of which projects are 
funded and thereby ethical implications for both animals and human 
patients. 
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