Taxonomy and biogeography of Hemphillia (Gastropoda: Pulmonata: Arionidae) in North American rainforests, with description of a new species (Skade’s jumping-slug, Hemphillia skadei sp. nov.)

M.K. Lucid, A. Rankin, A. Espíndola, L. Chichester, S. Ehlers, L. Robinson, and J. Sullivan

Abstract

Species diversity of the genus Hemphillia Bland and W.G. Binney, 1872 (jumping-slugs) was studied across its range in western North America's inland temperate rainforests. The taxonomic relationships among jumping-slug populations were clarified by integrating morphological, molecular, and biogeographic approaches. A new species, Skade's jumping-slug (Hemphillia skadei sp. nov.), was discovered in this process and is described herein. We base this taxonomic decision on molecular comparison of representatives from other Hemphillia species and four morphological characters that distinguish H. skadei from its sister species, the pale jumping-slug (Hemphillia camelus Pilsbry and Vanatta, 1897). The distribution of H. skadei and H. camelus is described along with the notable lack of detection of the marbled jumping-slug (Hemphillia danielsi Vanatta, 1914) within the primary survey area.

Key words: biodiversity, forest, Gastropoda, Hemphillia camelus, Hemphillia danielsi, Hemphillia dromedarius, Hemphillia glandulosa, Hemphillia malonei, Hemphillia skadei, Magnipelta mycophaga, morphology, phylogeny, temperate, taxonomy, systematics.
Résumé : La diversité spécifique du genre Hemphillia Bland and W.G. Binney, 1872 (limaces-sauteuses) a été étudiée à la grandeur de son aire de répartition dans les forêts humides tempérées intérieures de l'ouest de l'Amérique du Nord. Les relations taxonomiques au sein des populations de limaces-sauteuses ont été précisées en intégrant des approches morphologiques, moléculaires et biogéographiques. Ce faisant, une nouvelle espèce, Hemphillia skadei sp. nov., a été découverte et est décrite. Nous basons cette décision taxonomique sur la comparaison moléculaire à des représentants d'autres espèces d'Hemphillia et quatre caractères morphologiques qui distinguent H. skadei de son espèce-sœur, la limace-sauteuse pâle (Hemphillia camelus Pilsbry et Vanatta, 1897). Les répartitions de H. skadei et H. camelus sont décrites, ainsi que l'absence notable de détection de limaces-sauteuses marbrées (Hemphillia danielsi Vanatta, 1914) dans la principale région d'étude. [Traduit par la Rédaction]

Mots-clés : biodiversité, forêt, gastéropodes, Hemphillia camelus, Hemphillia danielsi, Hemphillia dromedarius, Hemphillia glandulosa, Hemphillia malonei, Hemphillia skadei, Magnipelta mycophaga, morphologie, phylogénie, tempérée, systématique, taxonomique.

Introduction

The demographic and distribution data necessary for landscapelevel species conservation are only usable in the context of accurate taxonomic frameworks (Wilson 2000). Within this context, spatially expansive inventory programs are a necessary component of species status assessments, particularly for data-deficient species (e.g., Bland et al. 2017), to determine if they should be targeted for conservation action. North American terrestrial gastropods are a case in point. Mollusk species comprise the second largest phylum (Mollusca) of Animalia, and this highlights their ecological impact on the biosphere. Mollusks serve a wide variety of ecological roles including decomposing organic matter, hosting parasites, vectoring disease, soil building, and providing a prey base for many species (Jordan and Black 2012). Although mollusks are listed as the third largest group of International Union of Conservation of Nature (IUCN) threatened animal spe-
cies globally and are the most numerous group of IUCN threatened species in North America (http://www.iucnredlist.org/, accessed 27 February 2017), biological knowledge is limited and much remains to be discovered. Without thorough knowledge of the ecology, evolution, and systematics of these animals, it will be difficult to describe and conserve the diversity that mollusks represent.

Up to 25% of North American terrestrial gastropods await description (Nekola 2014) and new species and genera from the Pacific Northwest are described regularly (e.g., Leonard et al. 2003; 2011). Some areas of the Pacific Northwest have exceptionally high terrestrial mollusk diversity and endemism (Frest and Johannes 1995; Burke 2013), some of which may still be undescribed. Jumpingslugs, gastropods in the genus Hemphillia Bland and W.G. Binney, 1872 (Bland and Binney 1874), are endemic to North America's Pacific Northwest. The genus currently consists of five recognized species

Received 12 September 2017. Accepted 14 December 2017.
M.K. Lucid, S. Ehlers,* and L. Robinson. ${ }^{\dagger}$ Idaho Department of Fish and Game, 2885 Kathleen Avenue, Coeur d'Alene, ID 83815, USA.
A. Rankin, A. Espíndola, ${ }^{\ddagger}$ and J. Sullivan. Department of Biological Sciences, Life Sciences South 252, 875 Perimeter Drive MS 3051, University of Idaho, Moscow, ID 83844-3051, USA.
L. Chichester. 209 Chestnut Springs Way, Williamston, SC 29697, USA.

Corresponding author: M.K. Lucid (email: michael.lucid@idfg.idaho.gov).
*Present address: Missouri Department of Conservation, 2929 County Road 618, Ellington, MO 63638, USA.
${ }^{\dagger}$ Present address: Rainforest Ecological, P.O. Box 733, Sandpoint, ID 83864, USA.
\ddagger Present address: Department of Entomology, University of Maryland, College Park, MD 20742, USA.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.
(Burke 2013) distributed in a mesic forest disjunct pattern (Brunsfeld et al. 2001).

The dromedary jumping-slug (Hemphillia dromedarius Branson, 1972), warty jumping-slug (Hemphillia glandulosa Bland and W.G. Binney, 1872), and malone jumping-slug (Hemphillia malonei Pilsbry, 1917) have coastal distributions, whereas the pale jumping-slug (Hemphillia camelus Pilsbry and Vanatta, 1897) (Pilsbry and Vanatta 1898) and marbled jumping-slug (Hemphillia danielsi Vanatta, 1914) are distributed in inland forests. The Burrington jumping-slug (Hemphillia burringtoni Pilsbry, 1948; also known as the keeled jumping-slug) (Branson, 1972), a sixth purported species, is not supported by molecular analysis (Wilke and Ziegltrum 2004). The panther jumpingslug (Hemphillia pantherina Branson, 1975), a seventh purported species, was described from a single coastal specimen (Branson 1975) but is now widely viewed as not warranting specific recognition (Burke 2015; T.E. Burke, personal communication).

The two inland Hemphillia species (H. camelus and H. danielsi) were included as part of a multitaxa inventory program in the inland Pacific Northwest (Lucid et al. 2016). Specifically, H. camelus was known to occur within the study area (Burke 2013), and H. danielsi was known to occur adjacent to (Hendricks 2003), as well as predicted to occur within (Burke 2013), the study area. Our objectives were to (i) identify the Hemphillia species diversity from northern Idaho and the surrounding regions, (ii) clarify the taxonomic relationships of those entities by integrating morphological, molecular, and biogeographic approaches, (iii) describe anatomical, molecular, distributional, and natural history characteristics of a new taxon discovered in this process.

Materials and methods

Study area

Centered on northern Idaho's Panhandle region, the study area encompassed portions of northeastern Washington and northwestern Montana, USA (Figs. 1A and 1B). It included parts of the Selkirk, Purcell, West Cabinet, Coeur d'Alene, and Saint Joe mountain ranges. The topography is mountainous, ranging in elevation from 702 to 2326 m , with a climate characterized by mild summers and wet and moderately cold winters. The heavily forested area is dominated by a diverse mix of conifer species and is characterized as supporting inland temperate rainforest (DellaSala et al. 2011).

Field methods

We stratified our study area into 920 sampling cells that were $5 \mathrm{~km} \times 5 \mathrm{~km}$ each and conducted 992 surveys in 879 of those cells. Our survey sites were either randomly selected but biased to roads and trails ($n=842$) or subselected from random forest inventory and analysis plots $(n=150)$ (Bechtold and Patterson 2005) based on site characteristics (stand age, elevation, and distance to road; for details see Lucid et al. 2016). Gastropod surveys were conducted from May to November, 2010-2014. Each site was surveyed once during this time period with each survey consisting of two repeat visits. Each survey consisted of (i) three $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ cardboard cover board traps (Boag 1982) from which specimens were collected after a 14 day deployment period, (ii) collection, freezing, and drying of 1 L of leaf litter (Coney et al. 1981) from which gastropods were sorted, and (iii) two 15 min timed visual searches conducted 14 days apart. Air temperature was recorded every 90 min at survey sites for 1 year as described in Lucid et al. (2016). Field personnel collected all terrestrial gastropods encountered, drowned each specimen in water, and then preserved specimens in 70% ethanol.

Morphological identification

To identify the species present in the area, we identified all ethanol preserved specimens following Burke (2013). Of 177 preserved specimens identified as Hemphillia spp., we measured total body length and mantle length of 34 . Our dissection sample size
was limited because we restricted specimens selected for dissection to those with body length $\geq 10 \mathrm{~mm}$ to maximize the potential for specimens to possess mature genitalia. Thirty-four specimens genetically identified (see below) as H. camelus $(n=22)$ or Hemphillia skadei sp. nov. (Skade's jumping-slug; $n=12$) were dissected under a binocular dissecting microscope (Table 1). Microsurgical scissors and fine dental probes were employed to access the internal organs, with special emphasis on the reproductive system. The technique was modified from Gregg (1958).

Molecular identification

For initial analyses, DNA was extracted at Wildlife Genetics International (WGI) using a DNeasy Blood and Tissue Kit (Qiagen, Valencia, California, USA) per the manufacturer's protocols. WGI developed a species test for this group of organisms using a portion of the mitochondrial 16s rRNA gene that was compared with reference data. WGI downloaded 16 s rDNA sequences from GenBank (https://www.ncbi.nlm.nih.gov/genbank/) for H. dromedarius (AY382638), H. camelus (AY382639), and the pygmy slug (Kootenaia burkei Leonard, Chichester, Baugh and Wilke, 2003) (AY382640, AY382641, AY382642, and AY382643). Using these sequences, primers were designed to target two conserved regions across a range of slug species that flanked the highly variable portion of the $16 S$ rRNA gene (16 s br-H 5^{\prime}-CCGGTCTGAACTCAGATCACGT-3' and 16sar-L 5'-CGCCTGTTTATCAAAAACAT-3'). Polymerase chain reaction (PCR), electrophoresis, and Sanger sequencing were used to produce sequence profiles of a highly variable portion of the 16 S rDNA region. These sequences were afterwards compared with reference data from GenBank, using the program BLAST (Altschul et al. 1997).

Extended molecular analyses

Based on the results of the molecular species ID and comparative anatomy analyses (see below), we sampled additional individuals to subject to phylogenetic and DNA barcoding analyses. All laboratory work described henceforth was performed at the University of Idaho. Data were obtained from 30 H . camelus specimens (plus one from GenBank AY382632_AY382639) and 28 H. skadei specimens originating from multiple localities in northern Idaho and the surrounding regions. In addition, nine specimens from H. danielsi, eight from H. glandulosa, five from H. dromedarius, and seven from H. malonei were obtained (Table 2, Fig. 1B). The magnum mantleslug (Magnipelta mycophaga Pilsbry, 1953) was included as an outgroup. Total DNA was extracted from the foot of each specimen ($10-15 \mathrm{mg}$) using a DNeasy Blood and Tissue Kit (Qiagen, Valencia, California, USA) per the manufacturer's protocols. Partial sequences of the mitochondrial COI gene, mitochondrial $16 S$ rRNA gene, and nuclear ITS1 marker were amplified by the PCR with the primers LCO1490/HCO2198 (5'-TAAACTTCAGGGTGACCA AAAAATCA-3' and 5^{\prime}-GGTCAACAAATCATAAAGATATTGG-3'; Folmer et al. 1994), 16Sar-L/16Sbr-H (described above), and ITS1F/ITS1R (5^{\prime}-GCTGCGTTCTTCATCGATGC-3' and 5^{\prime}-TAACAAGGTTTCCGTAGGT GAA-3'; Armbruster et al. 2000; Mumladze et al. 2013), respectively. All PCRs were carried out in $50 \mu \mathrm{~L}$ reactions containing $3 \mu \mathrm{~L}$ DNA, $37.75 \mu \mathrm{~L}$ water, $5 \mu \mathrm{~L}$ buffer, $1 \mu \mathrm{~L}$ of $25 \mathrm{mmol} / \mathrm{L} \mathrm{MgCl}_{2}, 1 \mu \mathrm{~L}$ of $10 \mathrm{mmol} / \mathrm{L}$ dNTPs, $1 \mu \mathrm{~L}$ of $10 \mathrm{mmol} / \mathrm{L}$ forward and reverse primers, and $0.25 \mu \mathrm{~L}$ of $5 \mathrm{U} / \mu \mathrm{L}$ of New England Biolabs Taq polymerase. The PCR reactions consisted of an initial denaturation step at $95^{\circ} \mathrm{C}$ for 2 min , followed by 30 cycles of a denaturation step at $95^{\circ} \mathrm{C}$ for 35 s , an annealing step ($52{ }^{\circ} \mathrm{C}$ for COI, $47.5^{\circ} \mathrm{C}$ for $16 s$ rDNA, and $52^{\circ} \mathrm{C}$ for ITS1) for 60 s , and an elongation step at $72{ }^{\circ} \mathrm{C}$ for 45 s , and finalized with a final extension step at $72^{\circ} \mathrm{C}$ for 5 min . Amplicons were electrophoresed in a 1% agarose gel to verify the amplifications and were cleaned up using the Qiaquick PCR Cleanup Kit (Qiagen). PCR products were sequenced in both the forward and reverse directions, and sequences were visually examined and edited with Chromas version 2.6.2 (Technelysium Pte Ltd.; http://www.technelysium. com.au/chromas.html). Nuclear ITS1 electropherograms showed

Fig. 1. Hemphillia sampling. (A) Survey area and visited sampling cells. Dashed cells: visited cells; dotted outlines: Skade's jumping-slug (Hemphillia skadei) found; gray cells: pale jumping-slug (Hemphillia camelus) found. (B) Samples used in our phylogenetic study. Shapes and colors indicate species.

Table 1. Dissected specimens of the pale jumping-slug (Hemphillia camelus) and Skade's jumping-slug (Hemphillia skadei) specimens.

Specimen	Genetic ID	Length (mm)		Maturity	Collection date ${ }^{a}$
		Body	Mantle		
C113GTSD	H. camelus	23	13.5	Mature	7/16/2010
C50GTSV2D	H. camelus	10	8	Immature	8/29/2010
C97GTS	H. camelus	20	15	Immature	8/17/2010
C113GTSC	H. camelus	27	19	Mature	7/16/2010
C2GBV2	H. camelus	30	16	Mature	8/28/2010
C20GTS	H. camelus	31	21	Mature	8/14/2010
C137GTSA	H. camelus	21	18	Mature	8/19/2010
GDNA2	H. camelus	28	19	Mature	8/3/2012
GDNA3	H. camelus	28	18	Mature	8/3/2012
GDNA4	H. camelus	28	17	Mature	8/3/2012
GDNA5	H. camelus	21	13	Mature	8/3/2012
GDNA6	H. camelus	24	16.5	Mature	8/3/2012
GDNA7	H. camelus	24	13	Immature	8/3/2012
GDNA8	H. camelus	32	21	Mature	8/3/2012
GDNA9	H. camelus	37	18	Mature	10/1/2012
GDNA10	H. camelus	27	16	Mature	10/1/2012
GDNA11	H. camelus	31	19	Mature	10/1/2012
GDNA12	H. camelus	39	20	Mature	10/1/2012
GDNA13	H. camelus	30	21	Mature	10/1/2012
GDNA14	H. camelus	40	20	Mature	10/1/2012
GDNA15	H. camelus	32	21	Mature	10/1/2012
GDNA16	H. camelus	27	20	Mature	10/13/2012
C108GTS	H. skadei	12	8	Immature	8/12/2010
C43GTSV2A	H. skadei	17	12	Immature	8/27/2010
C50GTSV2A	H. skadei	20	11	Immature	8/29/2010
C95GTSA	H. skadei	15	13	Immature	7/16/2010
C92GTS	H. skadei	25	14	Mature	8/13/2010
C26GTSV2	H. skadei	21	11	Immature	8/27/2010
GDNA1	H. skadei	24	12.5	Immature	6/21/2012
FIA1180GTSV3A	H. skadei	24	16	Mature	9/20/2014
FIA76GTSV3AB	H. skadei	21	14	Mature	9/24/2014
FIA76GTSV3B(1)	H. skadei	11.5	9	Immature	9/24/2014
FIA125GTSV3B(1)	H. skadei	14	8	Immature	9/25/2014
FIA125GTSV3B(2)	H. skadei	17.5	5	Immature	9/25/2014

${ }^{a}$ Collection date format is month/day/year.
low levels of heterogeneity, and a consensus sequence was generated. The mitochondrial COI gene and mitochondrial $16 S$ rRNA gene were concatenated into a single data set, and the resulting sequence data were assembled into two separate sets: the concatenated COI-16S and the ITS1. All new sequences are deposited on GenBank (accession Nos. MG640377-MG640475, MG640486MG640561, MG641787-MG641883; additional details, including sample names and collection localities, are available in Supplementary Table $\mathrm{S1}^{1}$).

Phylogenetic analyses

Multiple alignments were constructed between H. camelus, H. skadei, H. danielsi, H. dromedarius, H. glandulosa, H. malonei, and M. mycophaga using MAFFT online (https://www.ebi.ac.uk/Tools/ $\mathrm{msa} / \mathrm{mafft} /$). In both data sets, many regions were too divergent to be aligned across lineages (i.e., parts of $16 S$ and ITS1). Therefore, we used the Gblocks algorithm (Castresana 2002) to eliminate ambiguous regions and extract the conserved regions from each alignment, resulting in 992 bp for the concatenated COI-16S and 390 bp for ITS1.

The mitochondrial COI-16S data matrix was subjected to maximum likelihood (ML) and Bayesian phylogeny estimation. We used the decision theoretic approach (DT; Minin et al. 2003) implemented in PAUP* version 4.0a152 (Swofford 2003) to select a model of nucleotide sequence evolution using the Bayesian infor-
mation criterion (BIC). ML analyses were performed in Garli (Zwickl 2006) using the $\mathrm{Tr} \mathrm{N}+\mathrm{I}+\Gamma$ model and default parameters. The ML tree was first determined by conducting 10 replicate runs with random starting trees, and nodal support was then assessed using 100 bootstrap replicates using two tree searches per bootstrap. Bootstrap values were viewed in PAUP* by constructing a majority rule consensus tree. Bayesian analyses with the Metropoliscoupled Markov chain Monte Carlo method were performed in MrBayes version 3.2.5 (Huelsenbeck and Ronquist 2001) using the $\mathrm{Tr} \mathrm{N}+\mathrm{I}+\Gamma$ model and default parameters. The analysis was run twice with four chains per run for 2 million generations, and trees were saved every 200 generations. Convergence was assessed by the standard deviation of split frequencies. We assumed runs had converged when this value reached 0.01 . We also assessed parameter estimates with Tracer version 1.4 (Rambaut and Drummond 2007) to assure that these values had stabilized. We discarded the first 25% of samples from each run and built a majority-rule consensus tree from the remaining trees. All tree output files were viewed and summarized using Figtree version 1.3 (Rambaut and Drummond 2014).

For the nuclear ITS1 data set, an ultrametric tree was estimated in BEAST version 2 (Bouckaert et al. 2014), under a strict molecular clock with the mean substitution rate set to 1 , so that time would be reported in units of substitutions per site. The Yule speciation

[^0]Table 2. Specimens of the pale jumping-slug (Hemphillia camelus), Skade's jumping-slug (Hemphillia skadei), marbled jumping-slug (Hemphillia danielsi), dromedary jumping-slug (Hemphillia dromedarius), warty jumping-slug (Hemphillia glandulosa), malone jumping-slug (Hemphillia malonei), and magnum mantleslug (Magnipelta mycophaga) used in phylogenetic and DNA barcoding analyses, with asterisks denoting sequences from GenBank.

Sample	ID	State or province ${ }^{a}$	Latitude (${ }^{\text {N }}$)	Longitude (${ }^{\text {E }}$)	Collection date ${ }^{\text {b }}$
C798GTSV2	H. camelus	ID	47.2795	-116.71259	7/14/2011
C833GTSV1A	H. camelus	ID	47.08485	-116.65096	8/2/2013
C1110GTSV1A	H. camelus	ID	46.97431	-116.18865	7/21/2013
FIA1539BGNCA	H. camelus	ID	47.036	-115.555	7/27/2013
C798GN	H. camelus	ID	47.2795	-116.71259	7/14/2011
FIA1343GTSV1A	H. camelus	ID	47.222	-115.878	7/16/2013
C4GTSV2A	H. camelus	WA	48.79582	-117.32204	8/31/2010
FIA83GTSV2B	H. camelus	ID	48.888	-116.937	6/15/2013
C32GNAC	H. camelus	WA	48.76273	-117.10503	6/15/2013
C1291GW	H. camelus	ID	48.96342	-116.05133	7/28/2011
C31GW	H. camelus	WA	48.73202	-117.08286	8/14/2010
C1152GN	H. camelus	ID	48.85086	-116.23873	7/4/2011
C1110GTSV2A	H. camelus	ID	46.97431	-116.18865	8/4/2013
C1428GW	H. camelus	MT	48.89293	-115.83614	7/3/2011
C1110GNCB	H. camelus	ID	46.97431	-116.18865	8/4/2013
FIA1539AGTSV3BA	H. camelus	ID	47.052	-115.580	9/13/2014
C1336PGA	H. camelus	MT	48.9783	-116.01607	7/28/2011
C1336GWA	H. camelus	MT	48.9783	-116.01607	7/28/2011
C584BGTSV1	H. camelus	WA	48.58734	-117.1638	7/27/2011
C1743GTSV2A	H. camelus	ID	47.17297	-115.32325	7/26/2013
C167GTSB	H. camelus	ID	48.63165	-116.46842	7/3/2010
FIA1436GNB	H. camelus	ID	46.989	-115.696	7/28/2013
C1489GTSV1C	H. camelus	ID	47.08875	-115.65327	7/12/2013
C541GTSV2B	H. camelus	WA	48.58376	-117.26717	6/13/2013
C1304GTSV1A	H. camelus	ID	47.5275	-115.91911	6/22/2013
UI05	H. camelus	ID	46.883395	-116.172734	9/11/2015
AY382632_AY382639*	H. camelus	WA			
51111666	H. camelus	MT	47.6738	-115.673	
RBCM-013-00058-002	H. camelus	BC	49.260754	-117.02835	9/12/2010
RBCM-998-00267-001	H. camelus	BC	49.135821	-116.794549	9/21/1998
RBCM-998-00287-001	H. camelus	BC	49.215358	-116.167895	9/20/1998
C25BGTSV2C	H. skadei	WA	48.44899	-117.11639	8/11/2011
FIA1131GTSV1C	H. skadei	ID	47.943	-116.198	6/28/2013
C1223GNCB	H. skadei	ID	47.93804	-116.07764	7/12/2013
FIA883GTSV1	H. skadei	ID	47.765	-116.594	6/9/2013
FIA1080PGA	H. skadei	ID	47.813	-116.270	6/8/2013
C1222GTSV2	H. skadei	ID	47.86182	-116.0567	7/13/2013
FIA116GTSV3BC(1)	H. skadei	ID	48.349	-116.725	9/27/2014
C919GTSV1B	H. skadei	ID	47.7672	-116.51242	5/25/2013
FIA1127GTSV3A	H. skadei	ID	47.771	-116.192	9/22/2014
C919GNCA	H. skadei	ID	47.7672	-116.51242	6/7/2013
C697GTSV1B	H. skadei	ID	48.28077	-116.94193	5/30/2013
C918GNBB	H. skadei	ID	47.748	-116.52481	6/7/2013
C1132GNAC	H. skadei	ID	47.98217	-116.20507	7/13/2013
FIA992GTSV2B(1)	H. skadei	ID	47.856	-116.405	7/14/2013
C25BGTSV2A	H. skadei	WA	48.44899	-117.11639	8/11/2011
C918GNBA	H. skadei	ID	47.748	-116.52481	6/7/2013
C1223GNBC	H. skadei	ID	47.93804	-116.07764	7/12/2013
C688GTSV2A	H. skadei	ID	47.86127	-116.96848	6/25/2013
C918GTSV2A	H. skadei	ID	47.748	-116.52481	6/7/2013
C25GTSC	H. skadei	WA	48.45904	-117.11486	8/17/2010
C28GTSV2A	H. skadei	WA	48.57685	-117.09885	8/26/2010
C28GTSV2B	H. skadei	WA	48.57685	-117.09885	8/26/2010
C25GTSE	H. skadei	WA	48.45904	-117.11486	8/17/2010
C33GW	H. skadei	WA	48.8012	-117.13055	8/14/2010
C982GTSV2	H. skadei	ID	47.44566	-116.39922	6/14/2013
C697GNB	H. skadei	ID	48.28077	-116.94193	6/13/2013
C658GTSV2B	H. skadei	ID	48.27209	-117.01922	6/13/2013
FIA116GTSV3A	H. skadei	ID	48.349	-116.725	9/27/2014
BLdan01	H. danielsi	ID			9/12/2010
BLdan07	H. danielsi	ID	46.77501	-11548071	9/14/2010
UI01	H. danielsi	ID	46.085226	-115.51515	2/-/2015
UI03	H. danielsi	ID	46.083801	-115.516957	5/23/2016

Table 2 (concluded).

Sample	ID	State or province ${ }^{a}$	Latitude (${ }^{\circ}$ N)	Longitude (${ }^{\circ}$ E)	Collection date ${ }^{b}$
UI04	H. danielsi	ID	46.085226	-115.51515	$2 /-/ 2015$
CM-64157	H. danielsi	ID	45.803047	-115.6942	$9 / 14 / 2002$
Ma12DG01380	H. danielsi	ID	46.099668	-115.67396	$12 / 15 / 2015$
Ma16AG01403_1	H. danielsi	ID	46.111797	-115.707343	$1 / 20 / 2016$
UN5CG01604_3	H. danielsi	ID	46.046097	-115.320409	$12 / 15 / 2015$
CM-63984_1	H. dromedarius	WA	47.223244	-121.144828	$7 / 13 / 2001$
CM-63984_2	H. dromedarius	WA	47.223244	-121.144828	$7 / 13 / 2001$
CM-68014	H. dromedarius	WA	47.68067	-122.68133	$11 / 28 / 2003$
CM-64708	H. dromedarius	WA	46.534204	-121.831656	$4 / 12 / 2003$
AY382631_AY382638*	H. dromedarius	WA			
RBCM-014-00268-001	H. glandulosa	BC			$8 / 25 / 2001$
RBCM-016-00167-001	H. glandulosa	BC			$6 / 7 / 2015$
CM-63982_1	H. glandulosa	WA	46.41185	-123.906166	$10 / 22 / 2002$
CM-63982_2	H. glandulosa	WA	46.41185	-123.906166	$10 / 22 / 2002$
CM-80083	H. glandulosa	OR	45.224833	-123.838667	$4 / 12 / 2007$
CM-64903	H. glandulosa	WA	47.44667	-123.21056	$2 / 20 / 2003$
CM-63972	H. glandulosa	WA	47.002005	-123.01096	$10 / 22 / 2002$
AY382630_AY382637*	H. glandulosa	OR			
CM-63526_2	H. malonei	WA	46.578892	-122.273635	$9 / 4 / 20001$
CM-63526_3	H. malonei	WA	46.578892	-122.273635	$9 / 4 / 2001$
CM-70373_2	H. malonei	WA	47.68067	-122.68133	$10 / 29 / 2004$
CM-70373_3	H. malonei	WA	47.68067	-122.68133	$10 / 29 / 2004$
CM-70373_4	H. malonei	WA	47.68067	-122.68133	$10 / 29 / 2004$
AY357609_AY357656*	H. malonei	OR			$9 / 26 / 2014$
FIA121GTSV3B	M mycophaga101	ID	48.574	-116.732	$7 / 8 / 2013$
FIA1234PGA	M. mycophaga102	ID	48.438	-116.120	$7 / 15 / 2013$
C896GTSV2	M. mycophaga103	ID	48.36953	-116.66483	$6 / 25 / 2013$
C1144GTSV1A	M. mycophaga104	ID	48.52729	-116.20406	$8 / 2 / 2013$
C154GNA	M. mycophaga105	ID	48.96629	-116.62474	

Note: CM prefix denotes specimens from the Carnegie Museum and RBCM denotes specimens from the Royal British Columbia Museum. Coordinates for the samples with the FIA prefix have been purposely altered in compliance with a U.S. Forest Service legal agreement but are within 500 m of the actual location.
${ }^{a}$ State or province abbreviation (listed alphabetically within country): ID, Idaho; MT, Montana; OR, Oregon; WA, Washington; BC, British Columbia.
${ }^{b}$ Collection date format is month/day/year.
model was used as a tree prior with the JC $+\Gamma$ model (selected using DT; Minin et al. 2003). The chain was run for 10 million steps, sampling every 1000 steps. The BEAST output was analyzed using Tracer version 1.4 and the first 25% of samples were discarded as burn-in. TreeAnnotator was used to produce a maximum clade credibility tree from the post-burn-in trees. The ultrametric gene tree was used as a guide tree in the generalized mixed Yulecoalescent (GMYC) model (Pons et al. 2006; Fontaneto et al. 2007; Fujisawa and Barraclough 2013) methodology to delimit independently evolving lineages. We applied the single-threshold model GMYC method using the splits package (Ezard et al. 2009) in R (R Foundation for Statistical Computing, Vienna, Austria; https:|| www.r-project.org).

Intraspecific and interspecific genetic distance

We examined the overlap between intraspecific and interspecific genetic distance between H. camelus and its candidate sister species using the concatenated COI-16s data set and the ITS1 data set separately. A genetic distance matrix was produced in PAUP* (using an appropriate nucleotide substitution model selected using the DT approach) for pairwise sequence divergences calculated separately for both intraspecific and interspecific comparisons. We report the mean intra- and inter-specific distances, as well as the smallest and largest inter- and intra-specific distances.

Results

Six species of coastal (H. dromedarius, H. glandulosa, and H. malonei) or inland (H. camelus, H. danielsi, and H. skadei) distributed species can be distinguished by the morphological or molecular characters that we examined. Hemphillia skadei holotype OSAC_AC_2017_06_09-

Table 3. Differences (upper) and similarities (lower) in genitalia of mature dissected specimens.

Pale jumping-slug, Hemphillia camelus	Skade's jumping-slug, Hemphillia skadei
Penis peanut-shaped	Penis barrel- or acorn-shaped Penis pigmented
Penis unpigmented	
Free oviduct long	Free oviduct short
Spermatophore robust	Spermatophore slender

Long highly coiled epiphallus
Base of spermathecal duct very swollen in mature animals Penis contains a large lobe-like stimulator Ovotestis, hermaphroditic duct, and spermoviduct alike

01-001 was collected on 13 August 2010 in the Selkirk Mountains, Boundary County, Idaho, USA $\left(48.75886^{\circ} \mathrm{N},-116.84624^{\circ} \mathrm{E} ; 763 \mathrm{~m}\right.$ elevation). Paratypes may also be accessed via the above accession number.

Etymology of H. skadei

In Norse mythology, the goddess Skaði (often anglicized as Skadi or Skade) is associated with winter, mountains, skiing, and bow hunting (Sturluson 1916). The specific name skadei recognizes the relatively cool air temperatures with which this mountaindwelling species is associated, while acknowledging the cultural and recreational value skiing and hunting provide to many of the people who share the range of H . skadei. We suggest the common name "Skade's jumping-slug".

Fig. 2. Distal genitalia of (A) pale jumping-slug (Hemphillia camelus) and (B) Skade's jumping-slug (Hemphillia skadei). SB: swollen base of spermathecal duct at its junction with free oviduct; SP: spermatheca (bursa copulatrix); P: penis; PR: penis retractor muscle; EP: epiphallus; SD: spermathecal duct; VD: vas deferens; SO: spermoviduct (common duct); FO: free oviduct (vagina); HD: hermaphroditic duct; OV: ovotestis; PB: pigmented band. Modified from Lucid et al. (2016) and reproduced with permission of M.K. Lucid, Idaho Department of Fish and Game, Coeur d'Alene.

Morphology

Reproductive anatomy of H. skadei

The ovotestis consists of a small number of darkly pigmented lobules located in the rearmost portion of the visceral hump. The hermaphroditic duct is highly convoluted and long (about 9 mm). The yellow albumen gland is 4 mm or more in length. The bicolored spermoviduct is about 15 mm in length. The distal end of the free oviduct joins the swollen base of the spermathecal duct (bursa copulatrtix). The vas deferens originates just proximal to this junction. It is a very fine duct loosely adherent to the free oviduct (vagina). In one specimen, the duct formed a small loop and re-entered the wall of the oviduct only to emerge again as a separate duct a short distance away. The vas deferens continues to the base of the penis. It then follows the junction of the penis with the body wall before doing a 180° turn to join the epiphallus. The epiphallus is a stout, highly coiled and folded duct that joins the penis terminally or subterminally. The penis is an unpigmented barrel-shaped structure about 5 mm in length. The penis retractor inserts either on the penis or the epiphallus, or on both. The bisected penis reveals a large stimulator and a complex verge. There is a shallow atrial depression at the genital pore into which the penis and the vagina open.

Comparative anatomy

We found no external anatomical character that differentiated H. skadei from H. camelus. Both species are tan to gray in color. The genital opening is behind the right tentacle and the pneumostome is on the right side of the third quarter of the mantle. The mantle forms a visceral hump and clearly has an exposed portion of shell on the dorsal portion. Both slug species are of medium size, but the preserved, mature H. skadei specimens were smaller than the preserved, mature H. camelus specimens. Mature H. skadei specimens $(n=3)$ had a mean body length of 23 mm (minimum 21 mm , maximum 25 mm) and a mean mantle length of 15 mm (minimum 14 mm , maximum 16 mm) (Table 1). Mature H. camelus specimens $(n=19)$ had a mean body length of 29 mm (minimum 21 mm , maximum 40 mm) and a mean mantle length of 18 mm (minimum 13.5 mm , maximum 21 mm). Anatomical characters differentiating the two species are limited to mature genitalia. Hemphillia skadei has an unpigmented barrel- or acorn-shaped penis, short free oviduct, and slender spermatophore. Hemphillia camelus has a pigmented peanut-shaped penis, long free oviduct, and robust spermatophore (Table 3; Figs. 2A and 2B).

Molecular analysis

Molecular species identification

There were 54 16S rDNA sequences produced by WGI, which identified two distinct genetic clusters corresponding to the groups

Fig. 3. Phylogenetic reconstruction of the concatenated mitochondrial data matrix. Node supports show maximum likelihood bootstrap values and Bayesian posterior probabilities. Scale bar indicates number of substitutions per site.

Fig. 4. Phylogenetic reconstruction of the ITS1 data set using the Yule speciation prior and JC+G model. Node supports show Bayesian posterior probabilities. Vertical broken line indicates the inferred transition from interspecific speciation events to the intraspecific coalescent events.

identified in the morphological identification (33 H . camelus sequences and 21 H . skadei sequences) (Figs. 3 and 4). Of approximately 424 nucleotides, there were 45 variable sites. Thirty-five of these exhibit fixed differences between the two taxa and therefore distinguish the two groups perfectly.

Intra- and inter-specific genetic distance

For the concatenated COI-16S data matrix, the mean interspecific $\mathrm{HKY}+\mathrm{I}+\Gamma$ distance was estimated to be 0.427 substitutions/ site (0.312-0.619 substitutions/site) (Fig. 5). The mean intraspecific
distances for H. camelus and H. skadei were estimated to be 0.057 substitutions/site ($0-0.133$ substitutions/site) and 0.046 substitutions/site ($0-0.131$ substitutions/site), respectively. For the nuclear ITS1 marker, the mean interspecific JC $+\Gamma$ distance was 0.179 substitutions/site ($0.141-0.238$ substitutions/site; Fig. 5), whereas the mean intraspecific distances for H. camelus and H. skadei were estimated to be 0.0037 substitutions/site ($0-0.0114$ substitutions/site) and 0.0208 substitutions/site ($0-0.0554$ substitutions/site), respectively. Therefore, there is no overlap between intra- and inter-specific

Fig. 5. Distribution of intraspecific and interspecific genetic distances using the concatenated mitochondrial (left) and the nuclear (right) data sets.

variability; there is a distinct barcoding gap in the distribution of divergences, with higher interspecific variation than intraspecific variation, thereby distinguishing H. camelus and H. skadei.

Phylogenetic analyses

ML and Bayesian phylogenetic estimates were similar in topology (Fig. 3) and congruent with morphology; that is, H. camelus forms a strongly supported phylogroup that is sister to a strongly diverged, well-supported clade that contains all individuals of H. skadei. Additionally, H. glandulosa, which is distributed along the coast, is sister to all other Hemphillia. The inland-species H. danielsi is sister to coastally distributed H. dromedarius, whereas H. malonei, which occurs in coastal locations, is sister to the H. camelus H. skadei complex.

The GMYC analysis rejected the null model of single coalescence (i.e., all sequences belong to the same species) model for the nuclear ITS1 Yule tree (Fig. 4). The likelihood-ratio statistic for the comparison of the single coalescent (null) model versus the GMYC model was $10.24(p=0.006)$, indicating support for more than one species. The analysis estimated seven clusters (independent lineages) consistent with previous taxonomic assignment and with the addition of the new taxon, H. skadei, as a different entity.

Distribution, intraspecific genetic structure, and natural history

We detected H. skadei in 47 (5\%) and H. camelus in 64 (7\%) of 879 surveyed cells (Fig. 1A). Hemphillia skadei was the only species detected in the West Cabinet and Coeur d'Alene mountain ranges, whereas H. camelus was the only species detected in the Purcell Mountains. Hemphillia skadei was detected in one cell in the northern St. Joe Mountains, whereas all other detections in that range were H. camelus. In the Selkirks, H. skadei was detected in 26 cells and H. camelus was detected in 38 cells. Both species were detected in five Selkirk cells and in one instance both species were detected on the same Selkirk cover board trap.

In the mtDNA phylogeny (Fig. 3), H. camelus showed a monophyletic "northern" Selkirk-Purcells clade, which is nested within "southern" samples from Saint Joe and Coeur d'Alene. Hemphillia skadei shows an unresolved polytomy among a monophyletic "southern" Coeur d’Alene-Saint Joe clade, a "northern" Selkirk group, and one sequence (C658GTSV2B) from the Selkirks. An

additional sequence (C688GTSV2A) from the Selkirks is sister to this group. Likewise, in the ITS1 phylogeny, H. camelus shows reciprocally monophyletic "southern" Coeur d'Alene-Saint Joe and "northern" Selkirk-Purcells clades, whereas H. skadei shows reciprocally monophyletic "southern" Coeur d'Alene-Saint Joe and "northern" Selkirk clades (apart from C688GTSV2A from the Selkirks, which groups with the Coeur d'Alene clade).

Although either H. skadei or H. camelus were present in most parts of the study area, the exception appears to be the West Cabinet Mountains, where H. skadei was detected in just one cell (Figs. 1A and 1B). With no reason to suspect our techniques would lead to disparate detection rates, we conclude H. skadei occurs at relatively low densities and H. camelus may not occur in this mountain range.

Both species were typically collected in forested areas and most often found under logs or rocks. Occasionally both species could be found on the forest floor surface, especially during rain events. During particularly dry conditions, specimens could be found by breaking open decomposing logs and searching for moist sections. This suggests that both species retreat toward moist refuges as required by drying conditions. The latest collection date for immature specimens was 29 August for H. camelus and 25 September for H. skadei (Table 1). Late-season collection of immature specimens is suggestive that neither are annual species and likely overwinter as immature and mature animals. Mean annual air temperature at H . camelus $\left(4.28^{\circ} \mathrm{C}, n=51\right)$ and H . skadei $\left(5.16^{\circ} \mathrm{C}, n=34\right)$ collection sites was $>1^{\circ} \mathrm{C}$ lower than the study area's mean annual air temperature $\left(6.17{ }^{\circ} \mathrm{C}\right)$. Future research should focus on whether these cooler than average air temperature sites are merely associative or ecological requirements and what plasticity the species may or may not possess for climate change adaptation. Both species occur more often at elevations greater than the study average (1112 m) with H. camelus found at elevations averaging $1383 \mathrm{~m}(605-1827 \mathrm{~m}$, $n=71$ sites) and H. skadei at 1199 m (723-1833 m, $n=48$ sites).

Discussion

Hemphillia in northern Idaho and surrounding regions

Prior to our study, two described species (H. camelus and H. danielsi) were known to occur within or adjacent to our study area (Burke 2015; Hendricks 2012); however, survey effort in the
area had been limited. Our results indicate that H. danielsi is not present in our survey area (Fig. 1A). Furthermore, our morphological and molecular analyses show what was formerly considered H. camelus represents in fact two distinct taxa: H. skadei and H. camelus, which are themselves distinct from H. danielsi.

Hemphillia skadei was detected in Washington, Idaho, Montana, and within 10 km of British Columbia, which suggests that it likely occurs in that Canadian province. Hemphillia camelus populations appear to exhibit a disjunct range, which are separated by a range inhabited by H. skadei. Although the distribution of the two species is predominately allopatric, there appears to be a northern contact zone in the Selkirk Mountains. Given these observations, it seems that biological or ecological barriers between these two groups are present and genetically isolate the lineages. Past populations may have been isolated within separate mountain refugia in which divergence was fostered by limited gene flow and genetic drift (Brunsfeld et al. 2001). Refugium populations may have since spread from their area of origin, but since making secondary contact, it appears that reproductive barriers may prevent gene flow.

Considering the possible contact zone and differences in penis structure, we suggest that future research investigates interbreeding capability of the two taxa. The divergence in genital shape can contribute to reproductive isolation, and future studies should investigate how this divergence affects reproductive success between H. camelus and H. skadei. For example, variation in mating behavior might indicate precopulatory reproductive barriers if individuals from separate lineages exhibit mechanical difficulty in genital insertion (Masly 2012). Additional contributing factors to consider may be the ability of individuals from separate lineages to recognize one another as potential mates (Rundle and Nosil 2005), differences in the timing of sexual maturity, and (or) the degree of parentage success given successful interspecific crosses.

Conservation implications

Prior to our study, populations of H. camelus in Idaho were listed as a NatureServe S2 ranked imperiled species (IDFG 2005) and considered to be in decline (Frest 1999). Hemphillia camelus was known from just 13 sites across the entire state of Idaho and only 4 Idaho sites within our study area (IDFG 2005). We documented three times the number of occupied Idaho sites in a single survey effort because we included this species in a broad multitaxa inventory program. We also demonstrated the importance of genetically screening a portion of samples to detect the presence of cryptic species. Without the genetic screening component of our survey, we would not have detected H. skadei, nor demonstrated that H. danielsi is not likely to occur within our study area. Modelling efforts proliferate as ways to determine range, distribution, and conservation status of species. However, our results indicate incorporation of a wide variety of taxonomic groups into broadscale inventory and monitoring programs is not only feasible and practical, but necessary, to measure species distribution and conservation need.

Acknowledgements

This project was part of the Multi-species Baseline Initiative (https://idfg.idaho.gov/baseline). We thank the employees of the following organizations for field assistance: Coeur d'Alene Tribe of Indians, Idaho Department of Lands, Idaho Panhandle National Forest, Kalispel Tribe of Indians, and Washington Department of Fish and Wildlife. We also thank Hancock Forest Management, Potlatch Corporation, and numerous individuals for allowing access to privately held land. Wildlife Genetics International performed outstanding laboratory work. We acknowledge the multiple Idaho Department of Fish and Game (IDFG) wildlife technicians and interns for perseverance in the face of adversity and the many IDFG employees who provided administrative, technical, and field
assistance. B. Bosworth and T. Burke provided guidance and mentorship in morphological specimen identification. The Carnegie Museum of Natural History, the Royal British Columbia Museum, B. Leonard, and K. Ovaska graciously provided samples for analysis. The Oregon State Arthropod Collection is providing curation for the holotype and paratypes. This project was funded by Colville National Forest, U.S. Forest Service Pacific Northwest Region, U.S. Fish and Wildlife Service Wildlife and Sport Fish and Restoration Program Competitive State Wildlife Grant (F12AP01101), U.S. Fish and Wildlife Service State Wildlife Grant (T-3-17), Idaho Panhandle National Forest (10-CS-11010400-023), U.S. Forest Service Rocky Mountain Research Station (10-JV-11221633-100 and 08-CS-11221633-194), and National Science Foundation (DEB-1457726).

References

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17): 3389-3402. doi:10.1093/ nar/25.17.3389. PMID:9254694.
Armbruster, G.F.J., Van Moorsel, C.H.M., and Gittenberger, E. 2000. Conserved sequence patterns in the non-coding ribosomal ITS1 of distantly related snail taxa. J. Mol. Stud. 66: 570-573. doi:10.1093/mollus/66.4.570.
Bechtold, W.A., and Patterson, P.L. (Editors). 2005. The enhanced forest inventory and analysis program - national sampling design and estimation procedures. Gen. Tech. Rep. SRS-80, U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, N.C.
Bland, L.M., Bielby, J., Kearney, S., Orme, C.D.L., Watson, J.E.M., and Collen, B. 2017. Toward reassessing data-deficient species. Conserv. Biol. 31(3): 531-539. doi:10.1111/cobi.12850. PMID:27696559.
Bland, T., and Binney, W.G. 1874. XVI. - Description of Hemphillia, a new genus of terrestrial mollusks. Ann. N.Y. Acad. Sci. 10(1): 208-211. doi:10.1111/j.17496632.1874.tb00038.x.

Boag, D.A. 1982. Overcoming sampling bias in studies of terrestrial gastropods. Can. J. Zool. 60(6): 1289-1292. doi:10.1139/z82-173.
Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Rambaut, A., and Drummond, A.J. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10(4): e1003537. doi:10.1371/journal.pcbi.1003537. PMID:24722319.
Branson, B.A. 1972. Hemphillia dromedarius, a new Arionid slug for Washington. Nautilus, 85: 100-106.
Branson, B.A. 1975. Hemphillia pantherina, a new Arionid slug from Washington. Veliger, 18(1): 93-94.
Brunsfeld, S., Sullivan, J., Soltis, D., and Soltis, P. 2001. Comparative phylogeography of northwestern North America: a synthesis. Br. Ecol. Soc. 14(Special Publ.): 319-340.
Burke, T.E. 2013. Land snails and slugs of the Pacific Northwest. Oregon State University Press, Corvallis.
Burke, T.E. 2015. Examination of Hemphillia pantherina type specimen photographs. U.S. Forest Service and Bureau of Land Management Interagency Special Status and Sensitive Species Program, Portland, Oreg.
Castresana, J. 2002. Gblocks Server [computer program]. Hosted at Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain. Available from http:/| molevol.cmima.csic.es/castresana/Gblocks_server.html.
Coney, C.C., Tarpley, E.A., and Bohannan, R. 1981. A method of collecting minute land snails. Nautilus, 95(1): 43-44.
DellaSala, D.A., Alaback, P., Craighead, L., Goward, T., Paquet, P.C., and Spribille, T. 2011. Temperate and boreal rainforests of inland northwestern North America. In Temperate and boreal rainforests of the world. Edited by D.A. DellaSala. Island Press, Washington, D.C. pp. 82-110.
Ezard, T., Fujisawa, T., and Barraclough, T. 2009. splits: SPecies' LImits by threshold statistics project. R package. Available from http://r-forge.r-project.org/R/ ?group_id=333.
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3(5): 294-299. PMID:7881515.
Fontaneto, D., Herniou, E.A., Boschetti, C., Caprioli, M., Melone, G., Ricci, C., and Barraclough, T.G. 2007. Independently evolving species in asexual bdelloid rotifers. PLoS Biol. 5(4): e87. doi:10.1371/journal.pbio.0050087. PMID:17373857.
Frest, T.J. 1999. A Review of the land and freshwater Mollusks of Idaho. In Final report to the Idaho Conservation Data Center. Idaho Department of Fish and Game, Boise. p. 281.
Frest, T.J., and Johannes, E.J. 1995. Interior Columbia Basin mollusk species of special concern. Deixis Consultants, Boise, Idaho.
Fujisawa, T., and Barraclough, T. 2013. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Syst. Biol. 62(5): 707-724. doi:10.1093/sysbio/ syt033. PMID:23681854.
Gregg, W.O. 1958. A technique for preparing in toto mounts of molluscan anatomical dissections. American Malacological Union Annual Reports, 1958: 39.

Hendricks, P. 2003. Status and conservation management of terrestrial mollusks of special concern in Montana. Montana Natural Heritage Program, Helena.
Hendricks, P. 2012. A guide to the land snails and slugs of Montana. In A report to the U.S. Forest Service - Region 1. Montana Natural Heritage Program, Helena.
Huelsenbeck, J.P., and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8): 754-755. doi:10.1093/bioinformatics/17. 8.754. PMID:11524383.

IDFG. 2005. Idaho Comprehensive Wildlife Conservation Strategy. Edited by I.C.D. Center. Idaho Department of Fish and Game (IDFG), Boise.

Jordan, S.F., and Black, S.H. 2012. Effects of forest land management on terrestrial mollusks: a literature review. The Xerces Society for Invertebrate Conservation, Portland, Oreg.
Leonard, W.P., Chichester, L., Baugh, J., and Wilke, T. 2003. Kootenaia burkei, a new genus and species of slug from northern Idaho, United States (Gastropoda: Pulmonata: Arionidae). Zootaxa, 355: 1-16. doi:10.11646/zootaxa.355.1.1.
Leonard, W.P., Chichester, L., Richart, C.H., and Young, T.A. 2011. Securicauda hermani and Carinacauda stormi, two new genera and species of slug from the Pacific Northwest of the United States (Gastropoda: Stylommatophora: Arionidae), with notes on Glibates oregonius Webb 1958. Zootaxa, 2746: 43-56.
Lucid, M., Robinson, L., and Ehlers, S. 2016. Multi-species Baseline Initiative Project Report: 2010-2014. Idaho Department of Fish and Game, Coeur d'Alene.
Masly, J.P. 2012. 170 years of "Lock-and-Key": genital morphology and reproductive isolation. Int. J. Evol. Biol. 2012: 247352. doi:10.1155/2012/247352. PMID: 22263116.

Minin, V., Abdo, Z., Joyce, P., and Sullivan, J. 2003. Performance-based selection of likelihood models for phylogeny estimation. Syst. Biol. 52(5): 674-683. doi:10.1080/10635150390235494. PMID:14530134.
Mumladze, L., Tarkhnishvili, D., and Murtskhvaladze, M. 2013. Systematics and evolutionary history of large endemic snails from the Caucasus (Helix buchii and H. goderdziana) (Helicidae). Am. Malacol. Bull. 31(2): 225-234. doi:10.4003/ 006.031.0202.

Nekola, J.C. 2014. Overview of the North American terrestrial gastropod fauna. Am. Malacol. Bull. 32(2): 225-235. doi:10.4003/006.032.0203.
Pilsbry, H.A. 1917. A new species of Hemphillia and other snails from near Mt. Hood, Oregon. Nautilus, 30: 117-119.
Pilsbry, H.A. 1953. Magnipelta, a new genus of Arionidae from Idaho. Nautilus, 67(2): 37-39.
Pilsbry, H.A., and Vanatta, E.G. 1898. Revision of the North American slugs: Binneya, Hemphillia, Hesperarion, Prophysaon and Anadenulus. Proc. Acad. Natl. Sci. Phila. 50: 219-261.
Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Sumlin, W.D., and Vogler, A.P. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55(4): 595-609. doi:10.1080/10635150600852011. PMID:16967577.
Rambaut, A., and Drummond, A.J. 2007. Tracer. Version 1.4 [computer program]. Available from http:/|tree.bio.ed.ac.uk/software/tracer [accessed 15 August 2017].
Rambaut, A., and Drummond, A.J. 2014. FigTree. Version 1.4.3 [computer program]. Available from http://tree.bio.ed.ac.uk/software/figtree [accessed 15 August 2017].
Rundle, H.D., and Nosil, P. 2005. Ecological speciation. Ecol. Lett. 8(3): 336-352. doi:10.1111/j.1461-0248.2004.00715.x.
Sturluson, S. 1916. (~ 1200) The Prose Edda. Translated by A.G. Brodeur. The American-Scandinavian Foundation, New York.
Swofford, D.L. 2003. PAUP*: phylogenetic analysis using parsimony (* and other methods). Version 4.0a1524 [computer program]. Sinauer Associates, Inc., Sunderland, Mass.
Vanatta, E.G. 1914. Montana shells. Proc. Acad. Nat. Sci. (Phila.), 367-371.
Wilke, T., and Ziegltrum. 2004. Genetic and analytical analysis of the jumpingslugs. Final report (contract 43-05G2-1-10086). Report prepared for the Olympic National Forest, Olympia, Wash.
Wilson, E.O. 2000. A global biodiversity map. Science, 289(5488): 2279. PMID: 11041790.

Zwickl, D.J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. The University of Texas, Austin.

[^0]: ${ }^{1}$ Supplementary Table S1 is available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjz-2017-0260.

