LOUISIANA DEPARTMENT OF WILDLIFE \& FISHERIES

OFFICE OF FISHERIES INLAND FISHERIES SECTION

PART VI -B

WATERBODY MANAGEMENT PLAN SERIES

PEARL RIVER BASIN

WATERBODY EVALUATION \& RECOMMENDATIONS

CHRONOLOGY

DOCUMENT SCHEDULED TO BE UPDATED ANNUALLY

December 2012 - Prepared by
Tim Ruth Biologist Manager, District 8
August 2013 - Updated by
Tim Ruth Biologist Manager, District 8
December 2014 - Updated By:
Gary Vitrano, Biologist Manager, District 8
August 2015 - Updated By:
Gary Vitrano, Biologist Manager, District 8
August 2020 - Updated By:
Gary Vitrano, Biologist Manager, District 8
Matthew Duplessis, Biologist Supervisor, District 8
Jonathan Winslow, Biologist III, District 8

The remainder of this page intentionally left blank.

TABLE OF CONTENTS

WATERBODY EVALUATION 4
STRATEGY STATEMENT 4
Recreational. 4
Commercial 4
Species of Greatest Conservation Need. 4
EXISTING HARVEST REGULATIONS 4
Recreational Fishing Regulations 4
Commercial Fishing Regulations 4
Species of Greatest Conservation Need 4
SPECIES EVALUATION 4
Recreational. 4
Fish Assemblages in the Main Stem of the Pearl River and Bogue Chitto 10
Freshwater Mussel Assemblages 14
Commercial 16
Species of Greatest Conservation Need 16
HABITAT EVALUATION 16
SPECIAL PROJECTS 17
CONDITION IMBALANCE / PROBLEM 18
CORRECTIVE ACTION NEEDED 18
RECOMMENDATIONS 19
LITERATURE CITED 21
APPENDIX I 22
APPENDIX II 32
APPENDIX III 34

WATERBODY EVALUATION

STRATEGY STATEMENT

Recreational

Sportfish species such as largemouth bass are managed to maintain a sustainable population while providing anglers the opportunity to catch or harvest numbers of fish to maintain angler interest and efforts.

Commercial

Commercial species are managed with statewide regulations to provide an optimum sustainable yield that does not contribute to declines in future population strength.

Species of Greatest Conservation Need
Species of Greatest Conservation Need are managed to protect the current population and to provide for a sustainable population.

EXISTING HARVEST REGULATIONS

Recreational Fishing Regulations

Statewide regulations are in effect for all fish species and may be viewed at the link below: https://www.wlf.louisiana.gov/subhome/recreational-fishing

Commercial Fishing Regulations
Statewide regulations are in effect for all species. Commercial fishing regulations may be viewed at the link below:
https://www.wlf.louisiana.gov/subhome/commercial-fishing
Louisiana Revised Statute RS 56:404 prohibits the use of seines, nets, or webbing in the Bogue Chitto River; logging and hand grabbing of fish in the Bogue Chitto River is also prohibited.

Species of Greatest Conservation Need

Louisiana prohibited the take of all sturgeon in 1991. Critical habitat was established in the Pearl River Basin (PRB) for the Gulf sturgeon in 2003. It is also illegal in Louisiana to possess a threatened or endangered species.

SPECIES EVALUATION

Recreational

Largemouth Bass_Relative Abundance, Structural Indices and Relative Weight
Largemouth Bass (LMB) occur throughout the PRB. However, the species is most abundant and most targeted by anglers in the lower portion of the river. Analysis of LMB data will concentrate on samples collected by LDWF in the East / Middle / West Middle / West Pearl River (LDEQ water body codes 090207,090202 , \& 090102). This area is tidally influenced, and salinities can fluctuate throughout the year. Increased water levels and flow rates associated with spring flood pulses may adversely affect the efficacy of electrofishing efforts. Therefore, prior to 2018, only data from fall electrofishing samples were considered in data
analysis. Currently, data collection occurs only during summer and fall months (typically lower river levels). Frequency and location of electrofishing samples in the basin prior to 2018 were not consistent over time; therefore, accurate statistical analyses were not possible. Present data collection utilizes standardized boat electrofishing samples for LMB from nine sites in main stem navigable areas of the lower river (see Pearl River Basin MP-A Table 9).

The most recent length distributions for largemouth bass collected in the summer of 2019 in the PRB are presented in Figure 1. The LMB ranged from 1 to 18 inches total length (TL). Total catch per unit of effort (CPUE) was 48.4 fish/hr for this population which was lower than previous year (Figure 3). CPUE analyses by length category indicates a population dominated by the sub stock class (<8 inches TL) group accounting for 48% of the total population (Figure 2.). In addition, all LMB individuals < 12 inches TL accounted for 83% of the total CPUE (Figure 2.).

Figure 1. Size distribution by inch group of LMB collected from the PRB in the summer of 2019, n=121.

Figure 2. The CPUE of substock- (< 8 inches), stock- (8-12 inches), quality- (12-15 inches), and preferred-size (15-20 inches) largemouth bass from PRB, collected during fall and summer electrofishing efforts in 1989, 2006, 2007, 2009, and 2019.

Figure 3. Mean total CPUE (\pm SE) for largemouth bass collected in the summer and fall electrofishing samples for the PRB for the years 1989, 2006, 2007, 2009 \& 2019.

Proportional stock density (PSD) and relative stock density (RSD) are indices used to numerically describe length-frequency data. Proportional stock density compares the number of fish of quality size (greater than 12 inches for largemouth bass) to the number of bass of stock-size (≥ 8 inches in length). The PSD is expressed as a percent. A fish population with a high PSD consists mainly of larger individuals, whereas a population with a low PSD consists mainly of smaller fish.

$$
\mathrm{PSD}=\frac{\text { Number of bass } \geq 12 \text { inches }}{\text { Number of bass } \geq 8 \text { inches }} \times 100
$$

Relative stock density of preferred-size fish $\left(\mathrm{RSD}_{P}\right)$ is the proportion of Largemouth Bass in a stock (fish over 8 inches) that are 15 inches or longer.
$\operatorname{RSD}_{P}=\frac{\text { Number of bass }>15 \text { inches }}{\text { Number of bass }>8 \text { inches }} \times 100$

Ideal PSD and RSD values for LMB range from 40-70 and 10-40, respectively. Figure 4 below indicates that PSD and RSD $_{P}$ values for LMB in the PRB are 36 and 14 respectively.

Figure 4. The PSD and RSD_{P} for Largemouth Bass collected in fall electrofishing samples fromPRB for the years 1989, 2006, 2007, 2009, and 2019.

Spotted Bass

Spotted Bass are found throughout the PRB; however, they are predominantly found in faster flowing water, whereas LMB tend to dominate more as flow velocity decreases. In certain stretches of these river systems, it is common to encounter both species living in unison. For the purpose of analysis, only data from the main-stem of the river was utilized. The most recent
length distributions for Spotted Bass collected in the summer of 2019 in the PRB are presented in Figure 5. The Spotted Bass ranged from 1 to 15 inches total length (TL). CPUE was 14.5 for this population.

Figure 5. Size distribution by inch group of Spotted Bass collected from the main-stems of the PRB, in the summer of $2019, n=98$.

Crappie

Electrofishing is the not the most efficient sampling method for crappie. Lead nets are often used to determine the abundance and size structure of crappie populations. We have experimented with the placement and method of fishing lead nets to monitor the crappie population in the PRB. However, no sound method for crappie sampling within the river has been determined.

Forage

Forage abundance and availability is typically measured directly through LDWF fishery independent sampling (electrofishing and shoreline seine sampling) and indirectly through assessment of Largemouth Bass body condition (relative weight). Relative weight (Wr) is the ratio of a fish's weight to the weight of a "standard" fish of the same length. The index is calculated by dividing the weight of a fish by the standard weight for its length, and multiplying the quotient by 100. Largemouth Bass relative weights below 80 indicate a potential problem with forage availability. Values near 100 indicate robust body condition. Mean relative weight for stock size LMB in the PRB are acceptable (Figure 6.). LMB of stock-size length category are in good condition and forage does not appear to be a limiting factor. Forage availability can also be illustrated by the number of fish available in the habitat under 6 inches, (Figure 7. And Table 1.).

Figure 65. Mean relative weights for the various size classes of LMB collected from the PRB for the years 1989, 2006, 2007, 2009 \& 2019.

Figure 7. CPUE of fish species < 6 inches and > 6 inches collected from the PRB in 2019.

Table 1. CPUE of species ≤ 6 inches collected on the main stem of the PRB in 2019.

Species	CPUE Inches	Total CPUE
Bluegill	75.2	90.4
Blacktail Shiner	27.6	27.6
Largemouth Bass	18.4	48.4
Redspotted Sunfish	12.8	13.2
Longear Sunfish	10	10
Redear Sunfish	8	19.2
Blackstripe Topminnow	6	6
Gizzard Shad	5.2	6.8
Threadfin Shad	4.4	4.4
Emerald Shiner	3.6	4.4
Silvery Minnow	3.2	3.2
Bullhead Minnow	3.2	3.2
Warmouth	2.4	6.4
Brook Silverside	2.4	2.4
Spotted Bass	1.2	3.6
Spotted Gar	0.8	7.2
Clear Chub	0.8	0.8
Pugnose Minnow	0.8	0.8
Golden Topminnow	0.8	0.8
Bay Anchovy	0.8	0.8
Inland Silverside	0.8	0.8
Grass Pickerel	0.4	0.4
Shadow Bass	0.4	0.8
Orangespotted Sunfish	0.4	0.8
Spotted Sucker	0.4	3.6
Northern Hog Sucker	0.4	0.4
Longnose Gar	0.4	2
Atlantic Needlefish	0.4	1.6
Gulf Killifish	0.4	0.4
		0.4

Fish Assemblages in the Main Stem of the Pearl River and Bogue Chitto
A total of 2,852 fish were collected from the main stem of the Pearl River and the Bogue Chitto River in 2019(Table 2). These samples represent 57 distinct species. Diversity indices on main stem sites were: 1.869 [Shannon's (H')] and 0.743 [Simpson's (1-D)].

Table 2. Species collected on the main stem of the Pearl River and the Bogue Chitto River in 2019.

Common	Scientific	Number of Species
Blacktail Shiner	Cyprinella venusta	1034
Bluegill	Lepomis macrochirus	423
Longear Sunfish	Lepomis megalotis	254
Emerald Shiner	Notropis atherinoides	182
Largemouth Bass	Micropterus salmoides	160
Spotted Bass	Micropterus punctulatus	98
Silvery Minnow	Hybognathus nuchalis	82
Gizzard Shad	Dorosoma cepedianum	61
Redear Sunfish	Lepomis microlophus	50
Blacktail Redhorse	Moxostoma poecilurum	44
Channel Catfish	Ictalurus punctatus	41
Redspotted Sunfish	Lepomis miniatus	39
Spotted Gar	Lepisosteus oculatus	36
Bullhead Minnow	Pimephales vigilax	32
Silverjaw Minnow	Ericymba buccata	29
Shadow Bass	Ambloplites ariommus	27
Blackstripe Topminnow	Fundulus notatus	22
Striped Mullet	Mugil cephalus	21
Warmouth	Lepomis gulosus	19
Longnose Gar	Lepisosteus osseus	17
Freshwater Drum	Aplodinotus grunniens	15
River Carpsucker	Carpiodes carpio	15
Smallmouth Buffalo	Ictiobus bubalus	15
Threadfin Shad	Dorosoma petenense	13
Flathead Catfish	Pylodictis olivaris	11
Spotted Sucker	Minytrema melanops	9
Black Crappie	Pomoxis nigromaculatus	8
Northern Hog Sucker	Hypentelium nigricans	8
Pugnose Minnow	Opsopoeodus emiliae	8
Black Banded Darter	Percina nigrofasciata	6
Blue Sucker	Cycleptus elongatus	6
Brook Silverside	Labidesthes sicculus	6
Mooneye	Hiodon tergisus	5
Weed Shiner	Notropis texanus	5
American Eel	Anguilla rostrata	4
Atlantic Needlefish	Strongylura marina	4
Blue Catfish	Ictalurus furcatus	4

Longnose Shiner	Notropis longirostris	4
Quillback	Carpiodes cyprinus	4
Clear Chub	Hybopsis winchelli	3
Green Sunfish	Lepomis cyanellus	3
White Crappie	Pomoxis annularis	3
Bay Anchovy	Anchoa mitchilli	2
Golden Topminnow	Fundulus chrysotus	2
Harlequin Darter	Etheostoma histrio	2
Inland Silverside	Menidia beryllina	2
Orangespotted Sunfish	Lepomis humilis	2
Saddleback Darter	Percina vigil	2
Bowfin	Amia calva	1
Dollar Sunfish	Lepomis marginatus	1
Dusky Darter	Percina sciera	1
Grass Pickerel	Esox americanus vermiculatus	1
Gulf Darter	Etheostoma swaini	1
Gulf Killifish	Fundulus grandis	1
Hogchoker	Trinectes maculatus	1
Naked Sand Darter	Ammocrypta beani	1
Silver Chub	Hybopsis storeriana	1
Skipjack Herring	Alosa chrysochloris	1
	Total	2852

Fish Assemblage in Wadeable Tributaries and Headwaters
Samples collected on thirty-four 1st order through 4th order river tributaries in 2018 produced 4,130 individual fish (Table 3). Longear Sunfish and Black Banded Darter were the most abundant species, accounting for 524 and 369 individuals, respectively, while the Spotted Sucker and the Starhead Topminnow were the least abundant. Diversity on these tributaries was moderate to high for Louisiana waters at 2.3656 (Shannon Wiener index) and 0.86395 (Simpson index).

Table 3. Fishes assemblage found at thirty-four sample sites on tributaries of the PRB, conducted in the summer of 2018.

Common Name	Scientific Name	Total
Longear Sunfish	Lepomis megalotis	524
Black Banded Darter	Percina nigrofasciata	369
Bluegill	Lepomis macrochirus	339
Harlequin Darter	Etheostoma histrio	280
Gulf Darter	Etheostoma swaini	245
Blackstripe Topminnow	Fundulus notatus	215
Northern Hog Sucker	Hypentelium nigricans	151
Southern Striped Shiner	Luxilus chrysocephalus	130
Dusky Darter	Percina sciera	121
Cherryfin Shiner	Lythrurus roseipinnis	120
Speckled Madtom	Noturus leptacanthus	111
Western Mosquito Fish	Gambusia affinis	108
Longnose Shiner	Notropis longirostris	107
Green Sunfish	Lepomis cyanellus	106
Clear Chub	Hybopsis winchelli	93
Dollar Sunfish	Lepomis marginatus	85
Shadow Bass	Ambloplites ariommus	76
Warmouth	Lepomis gulosus	76
Goldstripe Darter	Etheostoma parvipinne	75
Silvery Minnow	Hybognathus nuchalis	72
Speckled Darter	Etheostoma stigmaeum	68
Black Madtom	Noturus funebris	66
Spotted Bass	Micropterus punctulatus	60
Redspotted Sunfish	Lepomis miniatus	52
Weed Shiner	Notropis texanus	50
Grass Pickerel	Esox americanus vermiculatus	49
Blacktail Shiner	Cyprinella venusta	48
Pirate Perch	Aphredoderus sayanus	48
Creek Chub	Semotilus atromaculatus	36
Southern Brook Lamprey	Ichthyomyzon gagei	30
Brindled Madtom	Noturus miurus	29
Flagfin Shiner	Notropis signipinnis	27
Bantam Sunfish	Lepomis symmetricus	26
Chestnut Lamprey	Ichthyomyzon castaneus	16
Largemouth Bass	Micropterus salmoides	15
Yellow Bullhead	Ameiurus natalis	14

Common Name	Scientific Name	Total
Creek Chubsucker	Erimyzon oblongus	13
Frecklebelly Madtom	Noturus munitus	12
Silverjaw Minnow	Ericymba buccata	11
Banded Pygmy Sunfish	Elassoma zonatum	10
Blacktail Redhorse	Moxostoma poecilurum	10
Naked Sand Darter	Ammocrypta beani	9
Bullhead (Mudcat)	Ictalurus spp. (bullheads)	5
Blackspotted Topminnow	Fundulus olivaceus	4
Flier	Centrarchus macropterus	3
Saddleback Darter	Percina vigil	3
Scaly Sand Darter	Ammocrypta vivax	3
Golden Topminnow	Fundulus chrysotus	2
Black Crappie	Pomoxis nigromaculatus	1
Brook Silverside	Labidesthes sicculus	1
Channel Catfish	Ictalurus punctatus	1
Freckled Darter	Percina lenticula	1
Gulf log perch	Percina suttkusi	1
Redear Sunfish	Lepomis microlophus	1
Spotted Sucker	Minytrema melanops	1
Starhead Topminnow	Fundulus nottii	1
	Total	4130

Freshwater Mussel Assemblages

In 2018, 56 sample sites were surveyed within the PRB. A total of 10,086 individual mussels were collected, with an estimated species richness of 29 , a Shannon-Wiener Diversity H' Index of 2.35, and a CPUE of 201.72 mussels per 90 -minute sample. Cyclonaias refulgens was the most common species, representing 24% by total number, while Megalonaias nervosa, Lasmigona complanata, and Villosa vibex were the least abundant species (Table 4).

Table 4. Freshwater mussel data summary from the PRB collected in the summer of 2018

Species	Common Name	Total count	Relative Composition
Cyclonaias refulgens	Purple Pimpleback	2461	0.244001586
Quadrula nobilis	Gulf Mapleleaf	1983	0.196609161
Glebula rotundata	Rounded Pearlshell	1371	0.135930993
Quadrula apiculata	Southern Mapleleaf	1121	0.11114416
Potamilus purpuratus	Bleufer	590	0.058496926
Obliquaria reflexa	Threehorn Wartyback	527	0.052250644
Lampsilis teres	Yellow Sandshell	408	0.040452112
Plectomerus dombeyanus	Bankclimber	213	0.021118382

Species	Common Name	Total count	Relative Composition
Tritogonia verrucosa	Pistol Grip	201	0.019928614
Elliptio crassidens	Eleaphantear	185	0.018342257
Amblema plicata	Three Ridge	144	0.014277216
Pleurobema beadleianum	Mississippi Pigtoe	134	0.013285743
Fusconaia cerina	Southern Pigtoe	118	0.011699385
Lampsilis straminea	Southern Fatmucket	108	0.010707912
Leptodea fragilis	Fragile Papershell	98	0.009716439
Villosa lienosa	Little Spectaclecase	75	0.00743605
Reginaia ebenus	Ebony Shell	65	0.006444577
Pyganodon grandis	Giant Floater	64	0.006345429
Lampsilis ornata	Southern Pocketbook	47	0.004659925
Arcidens confragosus	Rock Pocketbook	42	0.004164188
Toxolasma parvum	Lilliput	25	0.002478683
Toxolasma texasiense	Texas Lilliput	23	0.002280389
Utterbackia imbecillis	Pond Papershell	22	0.002181241
Utterbackiana	Cypress Floater	20	0.001982947
hartfieldorum	Alabama Hickorynut	17	0.001685505
Obovaria unicolor	Pondmussel	8	0.000793179
Ligumia subrostrata	Washboard	8	0.000793179
Megalonaias nervosa	Southern Rainbow	7	0.000694031
Villosa Vibex	White Heelspliter	1	0.00009915
Lasmigona complanata		10086	1
Total			

PRB, North and South of Major Impediment on the Pearl River and the Bogue Chitto

1. Bogue Chitto - north of the sill

A total of 1,153 individual mussels were collected with an estimated species richness of 24 and a Shannon-Wiener Diversity H' Index of 1.76. Cyclonaias refulgens was the most common species, representing 57\% by total number, while Leptodea fragilis, Ligumia subrostrata, and Reginaia ebenus were the least abundant species.
2. Bogue Chitto - south of the sill

A total of 922 individual mussels were collected with an estimated species richness of 23 and a Shannon-Wiener Diversity H' Index of 2.38. Cyclonaias refulgens was the most common species, representing 28% by total number, while Toxolasma texasiense, Villosa vibex, and Villosa lienosa were the least abundant species.
3. Pearl River - north of the sill

A total of 824 individual mussels were collected with an estimated species richness of 27 and a Shannon-Wiener Diversity H' Index of 2.03. Cyclonaias refulgens was the most common species, representing 29% by total number, while Megalonaias nervosa, Reginaia ebenus, and Toxolasma parvum were the least abundant species.
4. Pearl River - south of the sill

A total of 7,187 individual mussels were collected with an estimated species richness of 21 and a Shannon-Wiener Diversity H' Index of 2.15. Quadrula nobilis was the most common species, representing 26\% by total number, while Ligumia subrostrata, Elliptio crassidens, and Villosa vibex were the least abundant species.

Inflated Heelsplitter, Potamilus inflatus

Specimens of Potamilus inflatus, listed as threatened, were not found in the sampled areas.

Commercial

The PRB supports a small commercial fishery for catfishes and alligator gar (Atractosteus spatula).

Species of Greatest Conservation Need

The PRB is home to the highest concentration of aquatic species of greatest conservation need in Louisiana (Holcom et al. 2015). A complete listing can be found in the Pearl River MP-A. Anthropogenic activities within the floodplain have been attributed to the decline of many of these species. Of particular note, the Pearl darter (Percina aurora) is now considered extirpated from the river in both LA and MS (Ross 2001). Furthermore, recent surveys in LA have been unable to document the presence of the Inflated Heelsplitter mussel (Potamilus inflatus) or Alabama Shad (Alosa alabamae). In LA, the Gulf sturgeon (Acipenser oxyrinchus desotoi) can be found in the Pearl and Pontchartrain Basins. It is listed as Threatened by USFWS and has been protected in LA since 1991. Dr. Ken Sulak with USGS has provided a post Hurricane Katrina population estimate for Gulf sturgeon in the PRB. He estimated approximately 100-200 individuals based on over 15 years of data collected by LDWF and USFWS. In August of 2011, 28 Gulf sturgeons were found dead as the result of a point source pollution fish kill in the Pearl River.

HABITAT EVALUATION

In 2018, in conjunction with biological assessments, habitat evaluation was conducted at each tributary site on the PRB. This evaluation included physical data collection and a Rapid Habitat Assessment. The RHA total scores ranged from 91 to 170, flow ranged from 0.08 to 3.4 feet per second, and canopy cover ranged from 10% to 100% coverage among sample sites (Table 5.).

Table 5. Habitat evaluation of thirty-four sample sites in the PRB conducted in the summer of 2018

Site Code	Temp.	Conductivity	Salinity	pH	Turbidity/NTU	D.O.	Canopy Cover	Flow	Total Score (RHA)	Rating (RHA)	Stream Order
4087	24.31	0.04	0.02	7.17	31.66	8.6	40	3	178	17.8	3
4114	24.67	0.049	0.02	6.97	N/A	7.3	50	1.6	177	17.7	4
4103	23.43	0.037	0.02	6.37	10.4	7.6	85	2.2	176	17.6	3
4090	18.8	0.042	0.02	7.67	13.5	7.9	100	1.6	170	17	3
4095	20.64	0.026	0.01	6.72	5.1	8	40	3.4	170	17	4
4100	29.02	0.043	0.02	6.21	N/A	5.6	80	0.08	170	17	2

Site Code	Temp.	Conductivity	Salinity	pH	Turbidity/NTU	D.O.	Canopy Cover	Flow	Total Score (RHA)	Rating (RHA)	Stream Order
4085	22.445	0.0391	0.02	6.42	22.263	7.9	70	0.8	166	16.6	3
4088	21.5	0.03	0.01	6.75	9.4	7.5	90	1.6	165	16.5	3
4092	19.68	0.025	0.02	7.56	6.5	8.2	75	2	165	16.5	3
4084	22.09	0.06	0.03	6.42	6.1	6.5	75	2.4	164	16.4	2
4108	22.83	0.042	0.02	6.65	N/A	7.6	75	1.4	164	16.4	3
4113	23.39	0.054	0.02	6.88	N/A	7.5	75	2.6	162	16.2	3
4106	22.78	0.045	0.02	6.75	N/A	7.1	30	3.4	157	15.7	3
4115	23.39	0.04	0.02	6.57	36.48	7.1	90	1.2	157	15.7	3
4112	21.16	0.04	0.02	6.21	8.09	7.4	90	0.4	156	15.6	3
4093	19.41	0.27	0.01	6.34	5.9	8	85	1	155	15.5	3
4094	20.14	0.028	0.01	6.65	5.6	8	25	1.6	155	15.5	4
4109	23.3	0.036	0.02	6.09	9.6	7	70	1.8	155	15.5	3
4098	25.3	0.04	0.02	6.29	N/A	5.8	80	2.2	153	15.3	2
4086	23.7	0.05	0.02	6.43	19.64	8.3	20	1.2	152	15.2	3

Aquatic Vegetation

Water hyacinth (Eichhornia crassipes), giant salvinia (Salvinia molesta), common salvinia (Salvinia minima), alligator weed (Alternanthera philoxeroides), and duckweed (Lemna spp.) have been the primary nuisance aquatic plants in the system.

Plant estimates as of December 2019:

Water hyacinth
Common salvinia
Duckweed
Alligator weed
Giant salvinia
Submersed vegetation

700 acres
650 acres
50 acres
200 acres
150 acres
150 acres

In 2019, 70 acres of aquatic vegetation in the Pearl River basin was chemical treated.

SPECIAL PROJECTS

LDWF has conducted or participated in a number of projects outside of our standard rivers and streams protocols in the past 10 years. These projects were important to documenting baseline data sets, responses to disturbances to the system or as preparations for purposed projects.

The projects include:

1. Pearl River Fish Kill Post Incident Monitoring 2012 - 2014 (Appendix I)
2. Bogue Lusa Creek Fish Assemblage 2014 (Appendix II)
3. Pearl River Navigation Canal (PRNC) between lock \#1 and lock \#2 2014 (Appendix I)
4. Data Validation of Subsurface Habitat Classification for Aquatic Systems and Expand

Biological Monitoring in the Pearl River Basin in Support of Developing Species-Habitat Relationships and Species Endpoints 2015 - 2016 (Final Report contact USFWS)
5. At-risk Freshwater Mussel Survey of Bogue Chitto National Wildlife Refuge 2018 (Final Report contact LDWF)
6. Status Survey for Frecklebelly Madtom in the Pearl River Drainage of Louisiana May 1, 2018- December 31, 2018(Final Report contact LDWF)
7. Status Survey for Frecklebelly Madtom in the Pearl River Drainage of Louisiana: June 1, 2019- December 31, 2019(Final Report contact LDWF)

CONDITION IMBALANCE / PROBLEM

Low head dams on the Pearl and Bogue Chitto rivers limit the movement of fishes and the distribution of mussels within the basin. The dams are also suspected of altering the spawning migration of Gulf Sturgeon and Alabama Shad, two anadromous species. These dams also restrict boating access and present a threat to boater safety.

The 2004 Water Quality Inventory Report (LDEQ 2009) indicated that 78% of the 23 waterbody sub-segments in the PRB were not supporting their designated use for fish and wildlife propagation. The suspected causes for these water quality problems include metals, nutrients, fecal coliform bacteria, organic enrichment, and low concentrations of dissolved oxygen. Fish consumption advisories for mercury are in effect for the Pearl and Bogue Chitto Rivers in Louisiana.

The headwater dam (Ross Barnett Reservoir) at Jackson, MS has changed normal flow patterns in the lower Pearl Basin. The proposed reservoir south of Jackson could compound the interruption of normal flow patterns in portions (Holcomb et al. 2015).

CORRECTIVE ACTION NEEDED

1. LDWF is in favor of river restoration that includes restoring historic fish migration routes that allow movement of potamodromous, anadromous, and catadromous fish species. Also, restoring safe boating access is important.
2. A safer means of waste disposal for the Bogalusa Paper Mill should be investigated
3. Proposals for projects that could alter the hydrology of the PRB should be closely scrutinized

RECOMMENDATIONS

1. Coordinate with applicable government agencies and non-governmental organizations to develop a comprehensive management strategy for the Pearl River Basin
2. Aquatic vegetation:
a. To maintain public access, foliar applications to floating vegetation in the Pearl River will be necessary. Unless conditions change, one to two treatments will be applied annually according to the LDWF Aquatic Herbicide Application Procedures (Table 6),
b. LDWF personnel will continue to investigate public complaints concerning aquatic vegetation and conduct appropriate action in a timely manner.
c. Annual vegetation surveys will be conducted to monitor the acreage of existing vegetation and the introduction of new species, primarily giant salvinia.
d. Biological control for common and giant salvinia will be stocked, as necessary, if and when available.
3. Continue standardized fish and freshwater mussel population sampling that incorporates both species-centric and assemblage analysis
a. Develop guidelines to ensure that sampling efforts are standardized with regard to water flow rates
b. Investigate sampling methods to increase the precision of catch rate indices and measurements of species abundance
c. Develop and implement protocol for sampling fisheries habitat parameters
4. Continue the use of existing recreational harvest regulations until LDWF sampling results indicate that change is necessary from a biological perspective or such time as a change in management strategy is indicated by the collective opinion of area anglers

Table 6. LDWF Aquatic Herbicide Application Procedures.

Plant Species	Herbicide	Surfactant
Salvinia spp. Alternative 1 Common/Giant Salvinia (April 1 to October 31)	Glyphosate ($0.75 \mathrm{gal} / \mathrm{acre}$) Diquat ($0.25 \mathrm{gal} / \mathrm{acre}$)	Turbulence (or approved equivalent, $0.25 \mathrm{gal} / \mathrm{acre}$)
Salvinia spp. Alternative 2 Common/Giant Salvinia (April 1 to October 31)	Glyphosate ($0.75 \mathrm{gal} / \mathrm{acre}$) Flumioxazin (2 oz./acre)	Turbulence (or approved equivalent, $0.25 \mathrm{gal} / \mathrm{acre}$)
Salvinia spp. Alternative 3 Common/Giant Salvinia (April 1 to October 31)	MSM (1 oz./acre) Flumioxazin (1 oz./acre)	Turbulence (or approved equivalent, $0.25 \mathrm{gal} / \mathrm{acre}$)
Salvinia spp. Alternative 4 Common/Giant Salvinia (November 1 to March 31)	Diquat (0.75 gal/acre)	Nonionic surfactant (0.25 gal/acre)
Salvinia spp. Alternative 5 Common/Giant Salvinia (November 1 to March 31)	Flumioxazin (12 oz./acre)	Turbulence (or approved equivalent, $0.25 \mathrm{gal} / \mathrm{acre}$)
Water Hyacinth	2, 4-D (0.5 gal/acre)	Nonionic surfactant (1 pint/acre)
Water Hyacinth in waiver areas (March 15 to September 15)	Glyphosate (0.75 gal/acre)	Nonionic surfactant (0.25 gal/acre)
Alligator Weed/Giant Cut Grass (undeveloped areas)	Imazapyr (0.5 gal/acre)	Turbulence (or approved equivalent, $0.25 \mathrm{gal} / \mathrm{acre}$)
Alligator Weed/Giant Cut Grass (developed areas)	Imazamox (0.5 gal/acre)	Turbulence (or approved equivalent, $0.25 \mathrm{gal} / \mathrm{acre}$)
American Lotus	2, 4-D (0.5 gal/acre)	Nonionic surfactant (1 pint/acre)
American Lotus in waiver areas (March 15 to September 15)	Glyphosate (0.5 gal/acre)	Nonionic surfactant (0.25 gal/acre)
American Lotus in waiver areas with potable water intakes (March 15 to September 15)	Triclopyr (0.5gal/acre)	Turbulence (or approved equivalent, $0.25 \mathrm{gal} / \mathrm{acre}$)
Duckweed	Diquat (1.0 gal/acre) or Flumioxazin (8 oz./acre)	Nonionic surfactant ($0.25 \mathrm{gal} / \mathrm{acre}$) or Turbulence (or approved equivalent, $0.25 \mathrm{gal} / \mathrm{acre}$)
Cuban Bulrush (sedge)	2, 4-D (0.5 gal/acre)	Nonionic surfactant (1 pint/acre)
Cuban Bulrush (sedge) in waiver areas (March 15 to September 15)	Glyphosate (0.75 gal/acre)	Nonionic surfactant (0.25 gal/acre)
Water Lettuce	Diquat (1.0 gal/acre) or Flumioxazin (6 oz./acre)	Nonionic surfactant ($0.25 \mathrm{gal} / \mathrm{acre}$) or Turbulence (or approved equivalent, $0.25 \mathrm{gal} / \mathrm{acre}$)

Literature Cited

Holcomb, Samuel R., Amity A. Bass, Christopher S. Reid, Michael A. Seymour, Nicole F. Lorenz, Beau B. Gregory, Sairah M. Javed, and Kyle F. Balkum. 2015. Louisiana Wildlife Action Plan. Louisiana Department of Wildlife and Fisheries. Baton Rouge, Louisiana.

Ross, Stephen T., et al. 2001. Inland Fishes of Mississippi. Mississippi Department of Wildlife, Fisheries and Parks.

LOUISIANA DEPARTMENT OF WILDLIFE \& FISHERIES

OFFICE OF FISHERIES
INLAND FISHERIES SECTION
DISTRICT VIII
Pearl River Fish Kill Post Incident
Monitoring Report 2014

The Louisiana Department of Wildlife and Fisheries (LDWF) completed the third year of a 3 year fish and mussel monitoring project in the Pearl River and associated waters. The project's primary objective is to monitor the recovery of native species following the August 2011 Temple-Inland kill and to identify management actions that may be necessary for a return to pre-incident conditions.

Fish population sampling

Fish population sampling for this monitoring effort will comply with LDWF standardized sampling procedures. Additional sampling will be conducted in tributaries with slight variations of sampling gear to ensure that all representative habitats are sampled. Sampling will be conducted in the normal low flow months of late summer and early fall. Seven stations have been selected for fish sampling in the Pearl River watershed (Table 1). Five of those stations are within the portion of the river that was impacted by the spill. One sampling station is located upstream from the spill impacted area. Three stations have been selected for fish samples in tributaries (Table 1).
Each main stem river station and the Bogue Chitto River tributary station will be sampled using the following gear types and techniques. For each gear listed below all fish will be collected and identified to species. Common species will be sorted to inch group. Individual lengths and weights will be recorded for rare species and species of concern (Table 2).
1.) Boat Electrofishing: 900 second samples, randomly chosen shoreline within 500 meters (m) of station GPS location, conducted in downstream manner while speed not exceeding the river flow rate, $3 / 16$ mesh dip net
2.) Hoopnets: Four feet (ft.) hoops, 1.5 " mesh, 15 ft in length, $\# 15$ tarred twine, 2 throats, no lead, no bait, three nets per station, set for 72 hours
3.) Seines: Standard 25 ft . X 6 ft . $\mathrm{X} 3 / 16$ " mesh with 6 ft . bag, 2 hauls per site, after dark when possible

Each tributary station will be sampled after dark with either a 10 ft . X 6 ft . X 3/16" mesh seine or a 20 ft . X 6 ft . X 3/16" mesh seine. Seine hauls will be made within 100 m of the established station GPS location. All fish collected will be identified to species. Common species will be sorted to inch group. Individual lengths and weights will be recorded for rare species and species of concern (Table 2).

Table 1. Pearl River Fish Monitoring Stations

Site	Latitude	Longitude	Main River Sample	Tributary Sample
PRFK 1	30.78555	-89.81933	X	
PRFK 2	30.72111	-89.84086	X	
PRFK 3	30.61188	-89.82227	X	
PRFK 4	30.52452	-89.80802	X	
PRFK 5	30.47272	-89.77833	X	
PRFK 6	30.37611	-89.73036	X	
BogueChitto1	30.62330	-89.87627	X	
Pushepatapa Creek	30.86508	-89.81302		X
Bogalusa Creek	30.76961	-89.89144		X
Cryer Slough	30.53905	-89.82763		X

Table 2. Pearl Basin Freshwater Fish Species of Concern (LDWF 2005)

Common Name
Gulf sturgeon
Paddlefish
Alabama shad
Flagfin shiner
Bluenose shiner
Longjaw minnow
River Redhorse
Southeastern Blue sucker
Frecklebelly madtom
Crystal darter
Channel darter
Freckled darter
Pearl darter
Gulf logperch

Scientific Name

Acipenser oxyrinchus
Polyodon spathula
Alosa alabamae
Pteronotropis signipinnis
Pteronotropis welaka
Ericymba amplamala
Moxostoma carinatum
Cycleptus meridionalis
Noturus minutus
Crystallaria asprella
Percina copelandi
Percina lenticula
Percina aurora
Percina suttkusi

Freshwater Mussel Sampling

Mussel population sampling for this effort will be consistent with a protocol previously established by Louisiana State University (Brown et al. 2010) - see detailed sampling protocol below. Sampling will be conducted annually from late summer to early fall to coincide with the normal period of low flow. A total of eight stations have been selected for monitoring (Table3). Six of these stations were sampled in 2007, three of which were sampled again in 2011 (Table 3). These stations are within the area impacted by the Temple-Inland kill from Bogalusa to the Interstate-59 overpass. Two additional sites were selected in areas of the river that were not impacted by the Temple-Inland kill. One of those is located upstream from the affected area. The other is located in the Bogue Chitto River, downstream of the low head sill.

The majority of dead mussels observed during the Temple-Inland kill were the same species, Leptodea fragilis. This species and other thin-shelled mussels have a low relative abundance in comparison to other mussel species found in the Pearl River (Miller, A.C. and Payne 1997). In 2007, thin-shelled species accounted for only 4.32 percent of mussels sampled (Brown et al. 2010).

Additional samples at all sites in depths >1 meter will be collected in an effort to expand the understanding of mussel habitat and species community composition. Additional sampling will be conducted if the threatened inflated heelsplitter (Potamilus inflatus) or other species of conservation concern are encountered (Table 4). In addition, the location, photographs, and measurements of total shell length will be recorded for each these mussels observed during sampling.

Analysis of these data will include: mortality (\% of the individuals collected dead), catch per unit effort (total number of mussels collected per site in 90 minutes), species richness, and Shannon-Wiener Diversity Index (H^{\prime}).

Sampling Protocol

Timed qualitative searches, consistent with protocol conducted by Louisiana State University (Brown et al. 2010) before and after the Temple-Inland kill will be performed at each established sample site. A ninety person-minute sample will be conducted at each site where biologists will work along the littoral zones (<1
m depth) locating mussels by tactile search, retrieving both living mussels and shell. All collected mussels will be identified to species level. Additional samples will be conducted in water $>1 \mathrm{~m}$ depth adjacent to samples taken in the littoral zone et al. sites. Biologists will utilize SCUBA equipment for these samples. At each site, water quality parameters will be collected, which include water temperature, conductivity, salinity, turbidity, P.H. and dissolved oxygen.

Table 3. Freshwater Mussel Monitoring Sites

Site	Latitude	Longitude	$\mathbf{2 0 0 7}$	$\mathbf{2 0 1 1}$	New	>1 m depth
111	30.39830	-89.72236	X	X		X
113	30.47441	-89.77951	X	X		X
114	30.42955	-89.73927	X	X		X
123	30.51872	-89.80377	X			X
130	30.60380	-89.82227	X			X
143	30.72508	-89.83950	X			X
150	30.78305	-89.82730			X	X
BC	30.6224	-89.87725			X	X

Table 4. Mussel Species of Conservation Concern (LDWF 2005).

Common Name

Rayed Creekshell
Elephant-Ear
Mississippi Pigtoe
Inflated Heelsplitter
Southern Rainbow

Scientific Name

Anodontoides radzatus
Elliptio crassidens
Pleurobema beadleianum
Potamilus inflatus
Villosa vibex

Results:

Fish Population Sampling

Four thousand, eighty nine individual fish representing forty species from fourteen families were collected (Table 3). Members of the family Cyprinidae were most abundant in the samples. Ten species of Cyprinidae accounted for 82% of the total individuals collected. Two species of Cyprinidae dominated: Blacktail shiner and Silvery minnow alone accounted for 75% of the total individuals collected. Members of the family Ictaluridae (catfishes) were second most abundant in the samples comprising 6.2% of the total collected, followed by members of the family Centrarchidae with 5.5% of the total collected.

Table 3. PRFK Post Incident Monitoring 2012-2014 Fish Species List

FAMILY	SCIENTIFIC NAME	COMMON NAME	TOTAL COUNT
Achiridae	Trinectes maculates	Hogchoker	38
Atherinopsidae	Labidesthes sicculus	Brook silverside	1
Catostomidae	Carpiodes carpio	River carpsucker	6
	Cycleptus elongates	Blue sucker	1
	Hypentelium nigricans	Northern hogsucker	2
	Ictiobus bubalus	Smallmouth buffalo	11
	Moxostoma poecilurum	Blacktail redhorse	4
Centrarchidae	Ambloplites macrochirus	Shadow bass	1
	Lepomis macrochirus	Bluegill	80
	Lepomis megalotis	Longear sunfish	68
	Lepomis microlophus	Redear sunfish	1
	Micropterus punctatus	Spotted bass	30
	Micropterus salmoides	Largemouth bass	38
	Pomoxis annularis	White crappie	4
	Pomoxis nigromaculatus	Black crappie	1
Clupeidae	Alosa chrysochloris	Skipjack herring	2
	Dorosoma cepedianum	Gizzard shad	62
	Dorosoma petenense	Threadfin shad	65
Cyprinidae	Ctenopharyngodon	Grass carp	1
	Cyprinella venusta	Blacktail shiner	1515
	Hybognathus nuchalis	Silvery minnow	1553
	Luxilus chrysocephalus	Striped shiner	9
	Notropis atherinoides	Emerald shiner	48
	Notropis longirostris	Longnose shiner	56
	Notropis texanus	Weed shiner	2
	Notropis volucellus	Mimic shiner	71
	Notropis winchelli	Clear chub	21
	Pimephales vigilax	Bullhead minnow	93
Fundulidae	Fundulus notatus	Blackstripe	3
Ictaluridae	Ictalurus furcatus	Blue catfish	16
	Ictalurus punctatus	Channel catfish	219
	Noturus leptacanthus	Speckled madtom	2
	Noturus miurus	Brindled madtom	2
	Pylodictis olivaris	Flathead catfish	13
Lepisosteidae	Lepisosteus oculatus	Spotted gar	4

Moronidae	Morone	Hybrid striped bass	1
Mugilidae	Mugil cephalus	Striped mullet	5
Percidae	Ammocrypta asprella	Crystal darter	2
	Ammocrypta beani	Naked sand darter	14
	Etheostoma stigmaeum	Speckled darter	3
	Percina nigrofasciata	Blackbanded darter	8
	Percina sciera	Dusky darter	5
	Percina suttkusi	Gulf logperch	4
Poeciliidae	Gambusia affinis	Western mosquitofish	1
Sciaenidae	Aplodinotus grunniens	Freshwater drum	3
TOTAL			4,089

Mussel Population Sampling

Diversity and species richness

Sixteen total samples were taken at eight different sites on the West Pearl River and the Bogue Chitto River. Eight samples at one meter and less yielded a result of: 1203 total individuals, a species richness of 20 and a Shannon-Wiener H' value of 2.012764272 (Table 4). Eight samples at greater that one meter yielded a result of 886 individuals, a species richness of 16 and a Shannon-Wiener H' value of 1.811957628 (Table 5). Sixteen combined samples yielded a result of 2089 individuals, a species richness of 20 and a ShannonWiener H' value of 2.001181217 (Table 6). The six most common species sampled were Quadrula refulgens at 30%, Quadrula apiculata at 24%, Glebula rotundata at 14%, Quadrula quadrula at 12%, Obliquaria reflexa at 6% and Potamilus purpuratus at 4%. These species represent 89% of the total collected (Chart 1).

Mussel Species of Conservation Concern

No Potamilus inflatus were found.

Mussel Mortality

Lampsilis teres displayed the highest percentage of mortality at a 61.9% mortality rate (Table 7).
Table 4.
Mussels sampled at 8 different sites at < 1 Meter

SPECIES	NUMBER OF INDIVIDUALS	RELATIVE ABUNDANCE
Quadrula refulgens	300	0.249376559
Glebula rotundata	261	0.216957606
Quadrula apiculata	212	0.176226101
Quadrula quadrula	197	0.163757273
Obliquaria reflexa	63	0.052369077

Potamilus purpuratus	46	0.038237739
Lampsilis teres	40	0.033250208
Fusconaia flava	18	0.014962594
Pyganodon grandis	17	0.014131338
Anodonta suborbiculata	11	0.009143807
Plectomerus dombeyanus	9	0.007481297
Leptodea fragilis	8	0.006650042
Villosa lienosa	5	0.004156276
Amblema plicata	4	0.003325021
Lampsilis ornata	3	0.002493766
Toxolasmus Parvus	3	0.002493766
Tritogonia verrucosa	3	0.002493766
Arcidens confragosus	1	0.000831255
Ligumia subrostrata	1	0.000831255
Utterbackia imbecilis	1	0.000831255
Total \# of Individuals	1203	
Species Richness	20	1
H'	2.012764272	

Table 5.
Mussels sampled at $\mathbf{8}$ different Site AT > 1 Meter

SPECIES	NUMBER OF INDIVIDUALS	RELATIVE ABUNDANCE
Quadrula refulgens	322	0.363431151
Quadrula apiculata	283	0.319413093
Obliquaria reflexa	52	0.058690745
Potamilus purpuratus	48	0.054176072
Quadrula quadrula	46	0.051918736
Glebula rotundata	38	0.042889391
Plectomerus dombeyanus	24	0.027088036
Villosa lienosa	17	0.019187359
Lampsilis teres	13	0.014672686

Toxolasmus Parvus	11	0.01241535
Pyganodon grandis	9	0.010158014
Leptodea fragilis	8	0.009029345
Fusconaia flava	7	0.007900677
Anodonta suborbiculata	6	0.006772009
Lampsilis ornata	1	0.001128668
Ligumia subrostrata	1	0.001128668
TOTAL \# 0F INDIVIDUALS	886	
SPECIES RICHNESS	16	

Table 6.
Mussels sampled from a total of 16 samples < >1 Meter

SPECIES	NUMBER OF INDIVIDUALS	RELATIVE ABUNDANCE
Quadrula refulgens	622	0.29775012
Quadrula apiculata	495	0.236955481
Glebula rotundata	299	0.143130685
Quadrula quadrula	243	0.1163236
Obliquaria reflexa	115	0.055050263
Potamilus purpuratus	94	0.044997607
Lampsilis teres	53	0.025370991
Plectomerus dombeyanus	33	0.015797032
Pyganodon grandis	26	0.012446146
Fusconaia flava	25	0.011967449
Villosa lienosa	22	0.010531355
Anodonta suborbiculata	17	0.008137865
Leptodea fragilis	16	0.007659167
Toxolasmus Parvus	14	0.006701771
Amblema plicata	4	0.001914792
Lampsilis ornata	4	0.001914792
Tritogonia verrucosa	3	0.001436094
Ligumia subrostrata	2	0.000957396
Arcidens confragosa	1	0.000478698
Utterbackia imbecilis	1	0.000478698
TOTAL \# 0F INDIVIDUALS	2089	1
SPECIES RICHNESS	20	
SHANNON-WIENER	2.001181217	

Chart 1.

Relative Abundance

Table 7.

Mussel Mortality

Species	Total \% mortality per species
Lampsilis teres	61.90%
Lampsilis ornata	34.15%
Leptodea fragilis	11.11%
Glebula rotundata	10.53%
Toxolasma parva	7.14%
Potamilus purpuratus	6.15%
Villosa lienosa	5.88%
Obliquaria reflexa	4.92%
Fusconaia flava	4.10%
Plectomerus dombeyanus	2.86%
Quadrula apiculata	2.29%
Pyganodon grandis	2.26%
Quadrula refulgens	1.85%

Quadrula quadrula	0.58%
Ligumia subrostrata	0.00%
Uttebackia imbecilis	0.00%
Andodonta suborbiculata	0.00%
Amblema plicata	0.00%
Arcidens confragosus	0.00%
Fusconaia ebena	0.00%
Lampsilis claibornensis	0.00%
Toxolasma texasensis	0.00%
Tritogonia verrucosa	0.00%
Uniomerus tetralasmus	0.00%

APPENDIX II

Bogue Lusa Fish Assemblage

Fish Assemblage Sampling

In preparation for the proposed Washington Parish Reservoir, samples were performed to establish a baseline data set for fish communities on the Bogue Lusa creek. Two hundred and ninety-two individual fish were collected in 2014 in six 100-meter backpack electrofishing samples (Table 1). These samples represent a species richness of 27 and a Shannon-Weiner H’ per sample of 2.2481. Percina nigrofasciata (blackbanded darter) was the most common species in these samples in aggregate. Eight hundred and ten individual fish were collected in 2015 in eight 100-meter backpack electrofishing samples (Table 1). These samples represent a species richness of 33 and a Shannon-Weiner H' per sample of 2.4544. Percina nigrofasciata (blackbanded darter) was the most common species in these samples in aggregate (Figure 1).

Table 1. Fish species list, total number of individuals, species richness and Shannon-Wiener H' per site for samples collected in Bogue Lusa Creek in 2014 and 2015.

SPECIES	TOTAL 2014	TOTAL 2015
Black Banded Darter	38	104
Black Striped Topminnow	23	65
Blacktail Redhorse	1	4
Blacktail shiner	12	12
Bluegill	16	16
Bluehead Chub	14	14
Brindled Madtom	6	28
Cherryfin shiner	14	14
Chestnut Lamprey	1	9
Clear Chub	19	19
Creek Chub		22
Dollar Sunfish	2	1
Dusky Darter	20	85
Freckled Madtom	3	23
Gambusia	2	2
Grass Pickerel		4
Green Sunfish	6	12
Gulf Darter	5	11
Harlequin Darter		3
Longear	24	71
Longnose Shiner	10	22
Naked Sand Darter		1
Northern Hogsucker		3
Pirate Perch		10
Red Spotted Sunfish		16

Shadow Bass	1	19
Southern Striped Shiner	17	94
Southern Brook Lamprey	21	31
Speckled Darter	10	39
Speckled Madtom	14	36
Spotted Bass		7
Warmouth	8	11
Western Creek Chubsucker	2	2
TOTAL INDIVIDUALS	292	810
TOTAL INDIVIDUALS PER SAMPLE	48.66	101.25
SPECIES RICHNESS	27	33
SPECIES RICHNESS PER SAMPLE	13	17.5
SHANNON WEINER H' PER SAMPLE	2.2481	2.4544

Figure 1. Relative composition of fish sampled in the Bogue Lusa creek in $2015(\mathrm{n}=810)$.

APPENDIX III

Pearl River Navigation Canal (PRNC) between lock \#1 and lock \#2

Four samples were conducted in the semi-impounded 10.77 mile portion of PRNC between lock \#1 and lock \#2 to assess fishery community structure, abundance and condition.

Largemouth Bass

Electrofishing has proven to be the most effective method for collecting warmwater freshwater fishes and is used to evaluate LMB relative abundance (i.e., CPUE) and size distribution. Standardized electrofishing samples were collected in the PRNC between lock \#1 and lock \#2 from four sites in the summer of 2014.

Largemouth bass relative abundance, size distribution and relative weight
The length distributions for LMB collected in the summer of 2014 are presented in Figure 1. The mean sample catch per hour was 58. The LMB ranged from 1 to 13 inches total length (TL). Mean relative weight ($\mathrm{Wr)}$ of LMB sampled ranged from 81.024 to 227.7 and is in the acceptable range (i.e., above 80). Largemouth bass mean relative weights below 80 may indicate a potential problem with forage availability.

Figure 1. Size distribution by inch group and Wr of LMB collected from the PRNC between lock \#1 and lock \#2 in the summer of 2014.

Fish Assemblage Sampling

One hundred, fifty five individual fish were collected in four, 900 -second electrofishing samples, which were performed to establish a baseline data set for fish community on the

PRNC (Table 1.). These samples represent a species richness of 20. Largemouth bass was the most abundant species in these samples in aggregate (Figure 2).

Table 1. Fish species list, total number of individuals and species richness for samples conducted on PRNC in 2014.

SPECIES	TOTAL \#	Relative Abundance
Largemouth Bass	58	0.3742
Bluegill	17	0.1097
Black Crappie	9	0.0581
Redear Sunfish	9	0.0581
Spotted Sucker	9	0.0581
Gizzard Shad	8	0.0516
Chain Pickerel	7	0.0452
Spotted Bass	6	0.0387
Lake Chubsucker	6	0.0387
Spotted Gar	6	0.0387
Blacktail Redhorse	5	0.0323
Grass Pickerel	3	0.0194
Longear Sunfish	3	0.0194
Channel Catfish	2	0.0129
Gulf logperch	2	0.0129
Warmouth	1	0.0065
Clear Chub	1	0.0065
Taillight Shiner	1	0.0065
Blackstripe Topminnow	1	0.0065
Brook Silverside	1	0.0065
TOTAL \# 0F INDIVIDUALS	155	
SPECIES RICHNESS	20	

Figure 2. The relative abundance of fish collected from the PRNC between lock \#1 and lock \#2 in the summer of 2014.

Water Quality
Water quality worsened from lock \#2 to lock \#1 (Figure 3.). Low pH and dissolved oxygen was observed at sample site PRNC1 and PRNC2, both of which are closest to lock \#1 (Table 2).

Table 2. Water quality parameters for samples conducted on PRNC in 2014.

STATIO N	WATER TEMPERATURE (c)	CONDUCTIVI TY $(\mathrm{mS} / \mathrm{cm})$	SALINI TY (ppt)	PH (pH)	TURBIDI TY (NTU)	DISSOLVED OXYGEN $(\mathrm{mg} / \mathrm{l})$
PRNC1	25.06	0.049	0.02	5.84	8.9	2.85
PRNC2	27.62	0.053	0.02	6.02	8.3	3.5
PRNC3	25.9	0.059	0.03	6.54	14.3	6.28
PRNC4	24.96	0.064	0.03	6.7	21.4	5.78

Figure 3. Electrofishing stations for the PRNC sampled in 2014.
(return to water quality)

