

The Dynamic Duo ICOM's 2 Meter and 440 MHz FM

IC-2AT

IC-25A

25 watt/5 memories/2 scanning systems in a $2^{\prime \prime} \mathrm{Hx}$ $5 \frac{1}{2} \mathrm{~W} \times 7$ "D package is what has made the easy-to-use IC.25A the most popular 2 meter fM mobile transceiver ever. Now ICOM presents the second half of its mobile duo...IC-45A. The IC-45A covers $440-449.995 \mathrm{MHz}$. Both fransceivers are supplled with touchtone ${ }^{\text {® }}$ microphones standard.

Dual VFO's. Dual VFO's give an extra storea frequency for scanning (memory scan scans 5 memories plus 2 VFO 's) and each VFO has a different tuning rate for easy QSY.

	VFO A	VFO B
IC-25A	5 KHz	15 KHz
IC-45A	5 KHz	25 KHz

5 Memories. Instant access to most used frequencies. VFO A information is transferred to the
selected memory by pushing the write (IC-25A) or W/CK (IC45A) button.

Priority Channelt Any memory channe may be monitored fo activity on a sample basis, every 5 seconds, without disruption of a QSO conducted on a VFO frequency.

LED Bar Meler. Shows strength of received signal as well as relative transmitter output from the fully protected final RF amplifier. APC (automatic power control) is used to detect SWR and adjust the power output to a safe level.

Simplex/Duplex Operation. Standard 600 KHz offset initializes into radio at turn on. Offset may be changed by pressing the priority button while in VFO operation. Rotating the main tuning knob will now change the offset up or down and the offset will be displayed on the frequency readout

Adjustable Power Levels.

	Hi PWr	Lo PWr
IC-25A	25 W	1 W
IC-45A	10 W	1 W

Pulling the squelch knob out places the unit into low powe Both the high and low power may be independently set to accomodate your
simplex/repeater requirements or amplifier input characteristics.

Nor/Rev Capability. Use of this button on the IC-25A or the W/CK button on the IC-45A, in the duplex mode. allows one touch monitoring of the repeater input frequency. If simplex operation is possible you will know instantly.

Scanning. Pushing the S/S button initiates the scan circuitry. With the mode switch in a memory position the unit will scan all 5 memories plus the 2 VFO frequencies.

With the mode switch in a VFO position. the unit will scan the entire band or the portion of the band defined by memories 1 and 2. Full band scan or program band scan is selected from the front panel in the IC25A, internally on the IC-45A.

Both units have internally switched scanning choices of adjustable delay period after a
carrier is
received then
resume scan.
or resume on carrier drop.

The Most Compact FM Mobiles on the Market. Fits in the smallest of places. Stacking. matching Mobile Mounts for complete mobile communications for your car.

Memory Backup. When the optional IC-8U1 backup power unit is installed on the back of the IC-25A or IC-45A, memory will be maintained while transferring the unit from power source to power source. If the unit is not removed from power, it will maintain memory even when turned off with or without the IC-BU1.

E-SUPRE :UYNG P•WER in actiont

NEVER BEFORE...

 NEVER AGAIN!© ICOM IC. 730

SALE!

REGULAR $\$ 829$

\$649 ${ }^{95}$

LIMITED TIME ONLY... LIMITED QUANTITY ACT!

ETo ALPHA

ALL ALPHA AMPLIFIERS IN STOCK FOR FAST DELIVERY CALL FOR SPECIAL PRICES

EXAMPLE 76PA

REGULAR \$2395
SALE! \$1799

KENNOOD

CALL NOW FOR SPECIAL PRICES

TS-930S

TR-7950
2 METERS. 45 WATTS
21 CHANNEL MEMORY
TR-2500

TS-830S
ADRA宫官 AMPLIFIERS
 AVAILABLE AT LOW PRICES

2 METER AMPLIFIER

B-3016	B-1016

30W in, 160 W out. REG. $\$ 239.95$ SALE! \$199 95

10W in, 160W out REG. \$279.95 SALE! $\$ 24995$

KLM/Tri Ex KT-34A
4 ELEMENT TRIBANDER
REGULAR \$389.95

SALE! \$309

KT-34XA 6 ELEMENT TRIBANDER

 REGULAR $\$ 569.95$
SALE! \$459

CALL FOR OTHER KLM PRICES.
TRI EX W51 TOWER w/KLMKT-34A
\$1099
TRI EX W51 TOWER
w/KLM KT-34XA \$1239
TRI EX W51, 51' TOWER
REGULAR \$999.95 \$82995

PRICES ARE FOB CALIF. EXCEPT FOR CERTAIN COMBINATIONS. PLEASE INQUIRE

FREE SHIPMENT (U.Ps. ETown)
 FREE SHIPMENT CoNiNENRTUSA

FREE $800_{854-6046}$

9:30AM to 5:30PM PACIFIC TIME.
OVER-THE-COUNTER, 10AM to 5:30PM.
MONDAY THROUGH SATURDAY
CALIFORNIA CUSTOMERS PLEASE PHONE OR VISIT LISTED STORES

HAM R:D0 owhent

ANAHEIM, CA 92801
 2620 W. La Palma, (714) 761-3033 (213) 860-2040 Between Disneyland \& Knott's Berry Farm

BURLINGAME. CA 94010
999 Howard Ave. (415) 342-5757
5 miles south on 101 from S.F. Airport

OAKLAND, CA 94609

2811 Telegraph Ave.. (415) 451-5757 Hwy 24 Downtown. Left 27th otf-ramp. AEA-ALLIANCE -ALPHA-AMECO-AMPHENOL-ARAL-ASTRON - AVANTI-BENCHEA- BEAK-TEK-BIAD-BAW-CALLBOOK-COE -AVANTI-BENCHEA. BEAK-TEK-BIAD-B8W-GALLBOOK-COE

SAN DIEGO, CA 92123
5375 Kearny Villa Road (714) 560-4900 Hwy 163 \& Clairemont Mesa Bivd.

VAN NUYS, CA 91401
6265 Sepulveda Bivd., (213) 988-2212 San Diego Fwy at Victory Biva. TELEX. TELAEX. TEMPO - TEN.TEC. TAISTAO

INFO

Manuscripts

Contributions in the form of manu. scripts with drawings andior photographs are welcome and will be considered for possible publication. We can assume no responsibility for loss or damage to any material. Please enclose a stamped, self-addressed envelope with each submission. Payment for the use of any unsolicited material will be made upon acceptance. All contributions should be directed to the 73 editorlal offices. "How to Write for 73 " guldelines are avallable upon request.

Editorial Offices:

Pine Street
Peterborough NH 03458
Phone: 603-924-9471

Advertising Offices:

Elm Street
Peterborough NH 03458 Phone: 603-924.7138
Circulation Offices:
Elm Street
Peterborough NH 03458 Phone: 603-924-9471

Subscription Rates

In the United States and Possessions: One Year ($\mathbf{1 2}$ issues) $\$ 25.00$
Two Years (24 issues) $\$ 38.00$ Three Years (36 issues) $\$ 53.00$

Elsewhere:
Canada and Mexico- $\$ 27.97 / 1$ year only, U.S. funds. Forelgn surface mall- $\$ 44.9711$ year only, U.S. funds drawn on U.S. bank. Forelgn air mall-please inquire.

To subscribe, renew or change an address:

Write to 73, Subscription Department, PO Box 931, Farmingdale NY 11737. For renewals and changes of address, include the address label from your most recent Issue of 73. For gift subscriptions, include your name and address as well as those of glft reciplents.

Subscription problem or question:

Write to 73 , Subscription Department, PO Box 931, Farmingdale NY 11737. Please include an address label.

73: Amateur Radio's Technical Journal (ISSN 0098-9010) is published monthly by 73 , Inc., a subsidiary of Wayne Green, Inc., 80 Pine Street, Peterborough NH 03458. Second class postage paid at Peterborough NH 03458 and at additional mailing offices. Entire contents copyright (c) 1982, Wayne Green, Inc. All rights reserved. No part of this publication may be reprinted or otherwise reproduced without written permission from the publisher. Microfllm Edition-University Microfilm, Ann Arbor MI 48106 Postmaster: Send address changes to 73, Subscription Services, PO Box 931. Farmingdale NY 11737.

- Learn the truth about your antenna.
- Find its resonant frequency.
Adjust it to your operating frequency quickly and easily.
If there is one place in your station where you cannot risk uncertain results it is in your antenna.

The Palomar Engineers R.X Noise Bridge tells you if your antenna is resonant or not and, if it is not, whether it is too long or too short. All this in one measurement reading. And it works just as well with ham-band-only receivers as with general coverage equipment because it gives perfect null readings even when the antenna is not resonant. It gives resistance and reactance readings on dipoles, inverted Vees, quads, beams, multiband trap dipoles and verticals. No station is complete without this up-to-date instrument.

Why work in the dark? Your SWR meter or your resistance noise bridge tells only half the story. Get the instrument that really works, the Palomar Engineers R-X Noise Bridge. Use it to check your antennas from 1 to 100 MHz . And use it in your shack to adjust resonant frequencies of both series and parallel tuned circuits. Works better than a dip meter and costs a lot less. Send for our free brochure.

V/SA

The price is $\$ 59.95$ in the U.S. and Canada. Add $\$ 3.00$ Shipping/Handling.
Californla residents add sales tax.
Fully guaranteed by the originator of the R-X Noise Bridge.

ORDER YOURS NOW!
Palomar Engineers
Box 455, Escondido, CA. 92025 Phone: [714] 747-3343

5\% Carbon Film Resistors

We stock all 5% standard values between 1 Ohm and 1 Meg Ohm .
$1 / 4$ Watt
Package of 5
20
Package of 100 (one value)
Package of 1000 (one value)
$1 / 2$ Wath
Package of 5
Package of 100 (one value)
Package of 1000 (one value)
Sampler box consisting of 5 each of all 169 standard 5% values berween 10 hm and 10 Meg Ohm (845 pieces total).
1/4 Watt Sampler Box
25.00
$1 / 2$ Watt Sampler Box
28.00

We Also Stock $1 / 2$ Watt Resistors
1\% 1/4 Watt Metal Film Resistors
We now stock all 481 Standard ElA values between 10 Ohms and 1 Meg Ohm.
Package of 5
Package of 100 (one value) 45

Box of 10

- Send for minh

Send for our full line catalog of IC's, Resistors, Capacitors, Diodes, Regulators, Crystals, Trim Pots, Switches, Sockets, Connectors, RF Chokes, and more.

Minimum Order $\$ 10.00$ Shipping
10-24.99 3.00 above 50.00 ... free
$25.49 .99 \quad1 .50$ C.O.D..... Add 1.50

WESTLAND ELECTRONICS

37387 Ford Rd. - Westland, MI 48185
Order Line - 1-800-521-0664
In Michigan - 313-728-0650

TR7A Transceiver

- CONTINUOUS FREQUENCY COVERAGE - 1.5 to 30 MHz full receive coverage. The optional AUX7 provides 0 to 1.5 MHz receive plus transmit coverage of 1.8 to 30 MHz . for future Amateur bands. MARS. Embassy. Government or Commercial frequencies (proper authorization required).
- Full Passband Tuning (PBT) enhances use of high rejection 8 -pole crystal filters.
New! Both 2.3 kHz ssb and 500 Hz cw crystal filters, and 9 $\mathrm{kHz} \mathrm{a}-\mathrm{m}$ selectivity are standard, plus provisions for two additional filters. These 8 -pole crystal filters in conjunction with careful mechanical/electrical design result in realizable ultimate rejection in excess of 100 dB .
New! The very effective NB7 Noise Blanker is now standard. New! Built in lightning protection avoids damage to solid-state components from lightning induced transients.
Newl Mic audio available on rear panel to facilitate phone patch connection.
- State-of-the-art design combining solid-state PA. up-conversion. high-level double balanced 1st mixer and frequency synthesis provided a no tune-up. broadband. high dynamic range transceiver.

R7A Receiver

- CONTINUOUS No COMPROMISE 0 to 30 MHz frequency coverage.
- Full passband tuning (PBT).

New! NB7A Noise Blanker supplied as standard.

- State-of-the-Art features of the TR7A. plus added flexibility with a low noise 10 dB rf amplifier. New! Standard ultimate selectivity choices include the supplied 2.3 kHz ssb and 500 Hz cw crystal filters. and $9 \mathrm{kHz} \mathrm{a-m}$ selectivity. Capability for three accessory crystal filters plus the two supplied. including 300 Hz . 1.8 kHz .4 kHz . and 6 kHz . The 4 kHz filter, when usec with the R7A's Synchro-Phase a-m detector, provides a-m reception with greater frequency response within a narrower bandwidth than conventional a-m detection. and sideband selection to minimize interference potential. - Front panel pushbutton control of rf preamp. a-m/ssb detector, speaker ON / OFF switch. i-f notch filter. reference-derived calibrator signal, three agc release times (plus AGC OFF), integral 150 MHz frequency counter/digital readout for external use, and Receiver Incremental Tuning (RIT).

The "Twins" System

- FREQUENCY FLEXIBILITY. The TR7A / R7A combination offers the operator, particularly the DX er or Contester, frequency control agility not available in any other system. The "Twins" offer the only system capable of no-compromise DSR (Dual Simultaneous Receive). Most transceivers allow some external receiver control. but the "Twins" provide instant transfer of transmit frequency control to the R7A VFO. The operator can listen to either or both receiver's audio, and instantly determine his transmitting frequency by
approprlate use of the TR7A's RCT control (Receiver Controlled Transmit). DSR is implemented by mixing the two audio slgnals in the R7A
- ALTERNATE ANTENNA CAPABILITY. The R7A's Antenna Power Splitter enhances the DSR feature by allowing the use of an additional antenna (ALTERNATE) besides the MAIN antenna connected to the TR7A (the transmitting antenna). All possible splits between the two antennas and the two system receivers are possible.

Specifications. availability and prices subject to change without notice or obllgation.

See your Drake dealer or write

COMING SOON: New RV75 Synthesized VFO Compatible with TR5 and 7-Line Xcurs/Rcurs - Frequency Synthesized for crystal-controlled stability - VRTO (Variable Rate Tuning Oscillator') adjusts tuning rate as function of tuning speed. - Resolution to 10 Hz - Three programmable fixed frequencies for MARS, etc. - Split or Transceive operation with main transceiver PTO or RV75

W2NSD/1 NEVER SAY DIE editorial by Wayne Green

WHERE'S THE SOLDER?

For years, the pride of my workbench was my 300 -Watt soldering iron. I looked for it the other day, thinking I might frame it as a historic remnant of a long lost past, and couldn't find it. Well, I don't need that old 300 -Watter anymore anyway. These days, a simple pencil iron is enough to do irreparable damage. Some of these damned chips we use today would probably self-destruct if just allowed in the room with the 300 .Watt iron. But the fact is that though the tools have changed, we're getting into an
era of a high interest in building electronic gadgets.

The recent emphasis on relatively simple building projects in 73 has brought in quite a bit of congratulatory mail. It's appreciated. You know, when । started 73 , back in 1960, one of the basic reasons I fell that the magazine was needed was to encourage hams to build more. As the editor, l'd had one hell of a battle with the publisher of CQ over this. He wanted monthly columns, which were a lot cheaper to publish. I'd built the magazine up from a real loser to a big winner with construction... and found myself fired. So 1 started 73 and got right at it with construction projects.

Just to make sure that you know right off when you look at the table of contents on the cover, we'll put a soldering-iron logo by each project. Mind you, these are not going to be allband transceivers which could take you a year to build. I'Il still

TECHNICAL EDITOR WANTED

The search is on! We're looking for a knowledgeable ham to become Technical Editor of 73 Magazine. If you enjoy our small-construction-project format and can tell a good circuit from a bummer, then you're a prime candidate.
Duties of the Tech Editor include checking the technical accuracy of articles, working with authors to get the best new manuscripts, making sure 73 publishes timely reviews of the latest ham gear, climbing the tower to repair the 20 -meter beam, installing Wayne's new mobile rigs, etc. There is plenty of opportunity for fun, too, working contests from W2NSD, learning about microcomputers, mountaintopping from the drive up peak just down the road.

Furthermore, Peterborough just happens to be located in one of the most beautiful areas of the country. The quality of life is superb. Sound interesting? If you are a non-smoker, we'd like to hear from you. Resumes should be sent to Jeff DeTray, Wayne Green, Inc., Peterborough NH 03458.
leave those for Ham Radio, if they stay afloat.

While it may go without saying that I'm hoping you will write up any construction projects you develop, let me make sure that there is no misunderstanding here. If you design something which might be of interest to the rest of 73 readers, I hope you'll write it up. Type the article double-spaced, leave generous margins, get a friend with a good camera to take art-gallery-class photos of your gem. . . and let's have it.

Sure, it's fun to operate. But I've never gotten so wrapped up in operating that 1 missed a meal. Now building . . . many is the time l've started working on a project and found myself look. ing at the rising sun, having missed dinner, midnight snack, and all those usual buffering pick-me-ups in between. Hell, building something is more fun than coffee ice cream.

And yes, you can go fairly far afield. Sure, we're mostly interested in amateur radio, but that won't stop us from publishing interesting projects which are involved with other aspects of life such as photography, computers, and so on. You'll get my attention the fastest with gadgets which tie computers and amateur radio together. I know as well as you that we have the tools to make incredible changes in communications over the next few years. It's getting time for us to grab those tools and carve out some pioneer territory with high-speed Morse, RTTY, or ASCII... or whatever pleases you.

We have the parts to make incredibly sophisticated repeat. ers...yet l've seen little to
amaze me so far. Let's get cracking...and writing. l'll publish... and pay.

CIRCUITS CIRCUITS CIRCUITS

Some years ago I began re printing little circuits out of foreign electronics magazines which I thought might interest the more dedicated experimenter. They were presented with very little backup information
.just enough for the experienced builder to put the project together and get it working. We're running that section again and would like to have you send in little circuits for almost anything. You don't have to put together a whole article-just the circuit, the parts values, and a hint of what it will do. Perhaps you've found a circuit from some other (non-ham) magazine which readers might find of value. . . or from a book. We'll scan the foreign magazines and see what we can find for you. You don't have to draft the circuits. Just sketch them clearly, showing all parts values. If there are any special parts, show what they are and where they can be obtained. The address is Circuits, Editorial Offices, 73 Mag azine, Peterborough NH 03458. By the way, don't forget to include your choice of book from the Radio Bookshop, which we'll send you when your circuit is published.

For that matter, authors of articles on construction projects should remember that 73 is read in over 200 countries and that in most of them parts are darned hard to come by. Thus, if there is any way to do it, try to use com. monly available parts... or at least suggest such as replacements if you've used a 1963 transistor in your unit. A builder in Chile will not be happy if you merely specify a Radio Shack part number. . . give a bit more in details since his Radio Shack may not carry the full line.

One of the main reasons why 73 is so treasured by DX hams is that it runs more construction projects than any other ham magazine in English in the world. We can't come close to the Japanese ham magazine, but then they have about three times as many active hams there as we do, so that's natural. If I could get someone to translate the Japanese construction projects, I could put out a couple

B-600

"Now hear this"...digital display, easy tuning

The R-600 is an affordably priced, high

 performance general coverage communica tions receiver covering 150 kHz to 30 MHz in 30 bands. Use of PLL synthesized circuitry provides maximum ease of operation.R-600 FEATURES:

- 150 kHz to 30 MHz continuous coverage. AM, SSB, or CW.
- 30 bands, each 1 MHz wide, for easier tuning.
- Five digit frequency display, with 1 kHz resolution.
- 6 kHz IF filter for AM (wide), and 2.7 kHz filter for SSB, CW and AM (narrow).
- Up-conversion PLL circuit. for improved sensitivity, selectivity, and stability.

Communications type noise blanker elimi
nates "pulse-type" noise

- RF Attenuator allows 20 dB attenuation of strong signals.
Tone control. Front mounted speaker. "S" meter, with 1 to 5 SINPO "S" scale, plus standard scale
Coaxial and wire antenna terminals.
-100. 120, 220, and $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
Selector switch on rear panel.
- Optional 13.8 VDC operation, using DCK-1 cable kit.
Other features include carrying handle headphone jack, and record jack.
Optional accessories for R-600 and R-1000:
- DCK-1 DC Cable kit. - SP-100 External Speaker
- HS-6. HS-5. HS-4 Headphones
- HC-10 Digital World Clock

R-1000

High performance, easy tuning, digital display
The R-1000 high performance communications receiver covers $200 \mathbf{k H z}$ to $30 \mathbf{~ M H z}$ in 30 bands. An up-conversion PLL synthesized circuit provides improved sensitivity, selectivity, and stability.

R-1000 FEATURES:

- Covers 200 kHz to 30 MHz
- 30 bands, each 1 MHz wide.
- Five-digit frequency display with $1-\mathrm{kHz}$ resolution and analog dial with precise gear dial mechanism
- Built-in 12-hour quartz digital clock/timer.
- RF step attenuator.
- Three IF filters for optimum AM. SSB. CW.
- Effective noise blanker. - Tone control.
- Built-in 4 -inch speaker. Dimmer switch.
- Wire and coax antenna terminals.
- Voltage selector for $100,120,220$, and 240

VAC. Operates on 13.8 VDC with optional DCK-1 kit.

"Cents-ational"...IF shift, digital display, narrow-wide filter switch

The TS-530S SSB/CW

transceiver covers $\mathbf{1 6 0 - 1 0}$ meters using the latest, most advanced circuit technology, yet at an affordable price.
TS-530S FEATURES:

- 160-10 meters. LSB, USB, CW, all amateur frequencies, including new 10,18 , and 24 MHz bands. Receives WWV on 10 MHz .
- Built-In digital display (six digits, fluorescent tubes). with analog dial.
- IF shift tunes out interfering signals.
Narrow/wide filter selector switch for CW and/or SSB.
- Built-in speech processor, for increased talk power.
- Wide receiver dynamic range. with greater immunity to overload.
- Two 6146B's in final. allows 220W PEP/180 W DC input on all bands.
- Advanced single-conversion PLL, for better stability. improved spurious characteristics.
- Adjustable noise-blanker, with front panel threshold control.
- RIT/XIT front panel control allows independent fine-tuning of receive or transmit frequencies.

Optional accessories:

- SP-230 external speaker with selectable audio filters.
- VFO-240 remote analog VFO
- VFO-230 reniote digital VFO.
- AT-230 antenna tuner/SWR/ power nieter.
- MC-50 desk microphone
- KB-1 deluxe VFO knob.
- YK-88C (500 Hz) or YK-88CN (270 Hz) CW filter.
- YK-88SN (1.8 kHz) narrow SSB filter.

The TS-660 "gUAD BANDER" covers $6,10,12,15$ meters.

- FM. SSB (USB), CW. and AM
- Dual digital VFO's
- Digital display
- IF shift built-in
- 5 memories with memory scan - UP/DOWN microphone
- All-mode squelch
- Nolse blanker
- CW semi break-in/sidetone
- 10 W on SSB, CW, FM;

4 W on AM .
Optional accessories:

- PS-20 power supply
- VOX-4 speech processor/VOX
- SP-120 External speaker
- MB-100 Mobile mount
- YK-88C, YK-88CN CW filters
- YK-88A AM filter.

STAFF

PUBLISHEREDITOR Wayne Green W2NSD/1
EXECUTIVE VICE PRESIDENT Sherry Smythe
ASSISTANT PUBLISHER/EDITDR Jell DeTray WB8BTh MANAGING EDITDA John Burnett
ASST. MANAGING EDITDR Susan Philbrick
EDITDAIAL ASSISTANTS Nancy Noyd Richard Phenix Steve Jewelt
TECHNICAL EDITOA
Charles E. Martin AB4Y ASSISTANT
TD THE PRESIDENT
Mathew Smith KAlIEI ASSOCIATES
Rober Baker WB2Gfe
John Edwards KI2U Bial Gosney KE7C Sanger Green Sanger Green
Dr. Mare Leavey WA3AJR J. H. Nelson

BIII Pasternak WA6ITF
Peter Stark K2OAW
PRODUCTION MANAGER PUBLICATIDNS Nancy Salmon
ASST. PROOUCTIDN MANAGER/PUBLICATIONS Michael Murphy
ADVERTISING GRAPHICS MANAGERS Steve Baldwin Bruce Hedin Bruce Hedin Jane Preston Frances Benton Linda Drew Denzel Dyer Phil Geracl Lowis Marini Scoll Philbrick Dianne K, Ritson Dianne K. Ritson Anne Rocchio Mary Seaver Deborah Stone Theresa verville Judi Wimberly David Wozmak photography Sandra Dukelte Laurie Jennison irene Vall
Aobert M. Villeneuve Thomas Villeneuve typesetting Sara Bedell Melody Bedell Marle Barker Michele DesRochers Jennifer Fay Lynn Haines Linda Locke Debbre Nutling Ellen Schwartz Karen Stewart

GENERAL MANAGER Debra Wetherbee CONTROLLER Roger J. Murphy ACCOUNTING MANAGER Knua Keller KVagg/1 CIRCULATION MANAGER Patricia Ferrante 603.924.9471

BULK SALES MANAGER GInnie Boudrleau 1.(800)-343.0728 ADVERTISING 603.924.7138

Jim Gray Wixu, Mgr. Nancy Clampa, Asst. Mgr Nancy Clampa, Asst. Mor.
Hoss Kenyon KAIGAV oss Kenyon KAIG
Cornella Taylor
hundred pages a month of things for you to build.

I've mentioned before that if you have a DX friend you can help him a lot by giving him a subscription to 73. The magazine gets positively worn out in most countries. A few years ago, when the dollar was weak, they had no problem getting the magazine, but today it's almost prohibitive in many countries. Of course, behind the Iron Curtain they are not permitted to send money for magazine subscriptions, so they have to depend entirely on the friendship of fellow hams who are more fortunate in where they live.

CQ FAILS CODE TEST!

One of our readers in New Mexico sent in an envelope he received from our friends at CQ. On the cover is a bunch of Morse code. The reader trans. lated the code for us, chuckling

Continued on page 140

QSL OF THE MONTH: AG5X

This month's winning QSL is from Bob Jackson AG5X of Webster TX. Bob has a stunningly simple ultra-modern QSL design. The callsign is presented visually around the upper left-hand perimeter of the card. The callsign is displayed in modern type in the lower righthand space balancing the image and contributing to the overall pleasing effect of the card.
To enter 73 Magazine's QSL of the Month Contest send your QSL in an envelope to: Editorial Offices, 73 Magazine, Peterborough NH 03458. Specify a book from 73's Radio Bookshop (located elsewhere in this magazine). Entries which are not in an envelope or do not select a book will not be considered.

Well. . I Can Dream, Can't I? by Bandel Linn K4PP

"I'm the guy you were talking to on 2 meters! Please follow me to our yacht landing for dinner!"

ICOM HF Three Choices-Three Great Radios

IC-720A
listen to signals from around the world with a 100 KHz 30 MHz receiver. Talk with a 160 10 meter transceiver - ready to go WARC 79 bands, dual VFO's - split operation. ICOM's DFM (Direct lieed Mixer), passband

tuning, specech compressor, 100 watts, SSB, CZV, AM, RTTY (FSK), computer compatible tuning, 12 volt operation, all features standard except CW \&x AM narrow filters. ICOM system ${ }^{-}$accessories are available for a complete station.

ICOM Americo, Inc., 2112-116th Ave NE, Bellewe, WA 98004 (206)454-8155/3331 Towerwood Dive, Suire 307, Dallas, TX 75234(214) 20 -2780. All stored specificanons are approximate and subject to change without nonce or obligotion. All ICOM rodios significantly exceed FCC regulanons liminng spur ous emizions

Fig. 3. MB-1 PCB layout, component side.

Fig. 4. MB-1 $P C B$ layout, foil view.
tion. Timing can be set from milliseconds to hours. Note that C1 must be a highgrade, very-low-leakage electrolytic capacitor. Cheap or surplus capacitors have far too much leakage, and the circuit will not work with them.

The frequency of oscillation is controlled by the potentiometer labeled OSC. This potentiometer can be from several Ohms to megohms. The higher the value, the lower the frequency of oscillation. The output frequency is determined by the .05-uF capacitor and R-OSC. You can get this circuit to work up into the megahertz
range, but above 500 kHz , stability becomes a problem for such a simple circuit.

A buffered input is available by using the 2 N 2222 A . It also acts as an inverter.

The output level from the circuit for the astable and oscillator modes is controlled by the $10 \mathrm{k}-\mathrm{Ohm}$ output potentiometer. As designed, the circuit will drive an 8 -Ohm or greater speaker. In a reasonably quiet room, you can hear the audio output quite well.

Construction

Building of the circuit is very easy if you use the printed circuit board ap-

Fig. 5. Sample applications. (a) Hookup for audio signal generator (function \#1). (b) CMOS logic probe with LED indicator (function \#7). (c) Repeater beeper (indicates timeout reset) with negative pulse trigger (function \#3).
proach. Fig. 3 shows the pictorial layout of the PCB. Fig. 4 is a foil view of the actual printed circuit layout. Parts are not critical, but if you use cheap parts, the circuit performance is significantly degraded. Since this circuit is so small, it pays to use first-class prime parts.

Checkout and Setup

The fastest way to verify that your MB-1 works is to configure it as a generator Hook up the board as per Fig. 2, function 1. Fig. 5 shows sample physical configurations, so you can make sure you have everything correct. Set R-OSC at mid-range and R-OUTPUT for maximum audio. After you apply Vcc, you will hear a tone from the speaker. If no output, vary the R-OSC and R-OUTPUT settings. If you still don't hear anything, start checking for bad ICs, incorrect wiring, solder shorts, etc.

Applications for the MB-1

I have found the MB-1 to be the most useful and cheapest little circuit l've designed. I have one in two different testers acting as
simulated microphones. Another is used as a CMOS spare logic probe. I particularly like the audible feature so I can hook it to one part of a circuit and not have to look at it to know what is going on. And yet another is being used as a basic $455-\mathrm{kHz}$ signal generator for rough applications. And last but not least, one is the original "beeper" for my PortaPeater repeater

You will probably think of more applications for this circuit after you have made a few. Figs. 2 and 5 should get you up and rumning. After you have put a few of these modules to work, you'll probably wonder how you got along without them!

I'm more than happy to answer any questions or provide any application assistance you may need. However, please provide an SASE. This greatly speeds up the answer process and keeps me from destroying the household budget.

W-S Engineering has a complete kit of all parts including a PCB for $\$ 12.00$ postpaid in the U.S.A. (W-S Engineering, PO Box 58 , Pine Hill N! 08021).

$$
\begin{aligned}
& \text { MAX. MECHANICAL INTEGRITY, } \\
& \text { ELECTRICAL PERFORMANCE, } \\
& \text { SPACE SAVINGS AND SELECTION }
\end{aligned}
$$

105BAS

3-Element Monobanders also available.
Optlonal BN-86 bafun recommended for above antennas

ELECTRICAL performance is not based on theoretical calculations alone but is tuned and tested for optimum results on our government approved test range. Hy-Gain's factory tuned 52 ohm Beta Match is exclusive and assures positive dc ground for lightning protection and reduced precipitation static. Though sometimes unconventional, our meticulous element spacing assures maximum F / B ratio and uncompromising power gain. VSWR at resonance is less than $1.5: 1$. All Hy-Gain monobanders handle maximum legal power with a $4: 1$ safety margin. In short, electrical performance is at maximum by design and requires no re-tuning

SPACE problems are virtually eliminated. Even our largest monoband antennas fit most residential lots. And thanks to Hy-Gain's careful materials selection and superb mechanical engineering, the welght and windload of antennas is at an absolute minimum to permit stacking on conventional heavy duty towers and rotators This gives you maximum DX performance even with limited space

MONOBAND BEAMS

Hy-Gain Monobander Antennas Maximus at Better A mateur Dealers

TELEX COMMUNICATIONS, INC.
9600 Aldrich Ave 50 . Minneaponis. MN 55420 U.S. a
Eurooe Le Bone ste-Otfice 711 . Centre Affaires Paris-Noro. 93153 Le Blanc. Mesnil, France.

Remote-Control Your IC-701

Simpler than commercial controllers, this home-brew unit nevertheless features push-button band changing and frequency selection, scanning, and expanded coverage.

Glenn Williman N2CW 612 Auth Avenue Ocean N/ 07712

Soon after purchasing my 701, I became interested in exploring the remote-control capabilities

Front view.
of the radio. I was not willing to spend the money for the manufacturer's unit, but I also did not need many of the built-in features obviously intended for use with their companion 2-meter set, the IC-211. Some cautious experimenting with the accessory connector on the rear panel led to the design of this relatively simple control unit which can perform all the operations I feel are necessary for operation on the HF bands. Basically, this unit can perform the following functions:

- push-button control of bandswitching
- frequency selection
- manual frequency scanning (fast or slow)
- extension of frequency range of standard IC-701

Theory of Operation

In order to understand the operation of the re-mote-control unit, the requirements for controlling the IC-701 must first be examined.

The synthesizer in the IC-701 contains two presettable up-down counters which control the programmable divider in the phaselocked loop (PLL), one counter for each of the two vfo positions selectable on the front panel. The frequency data is encoded and read in serially, and in the normal mode of operation the data contains four characters, i.e., after the serial

Side view.

Fig. 1. Block diagram.

THIS RIMY ANSWOR

Now... 300 Baud \& Super-RATT

for either iRL terminal unit

\square All circuits on small module inside TU \square No changes to our outstanding filters \square Just add one switch and the module \square Factory installed or you can do it
the most powerful RTTY pro'gram
for your Apple computer

- 65 pages of excellent documentation
\square Features galore
A Available with or without custom cable

and still the finest in RTTY

the FSK-1000 Terminal Unit
\square Unparalleled selectivity achieved with sophisticated true limiterless design
\square Ultra sharp active filters
\square Tuneable shift ($80-1000 \mathrm{~Hz}$.)
\square Selectable bandwidths ($100 / 55 \mathrm{~Hz}$.)
\square Three mode autostart
\square Positive dynamic range indicator
\square Extruded aluminum enclosure
口Adjustable "mark hold"
\square Keyboard activated transmit
-Optional AFSK keyer
-Internal loop supply, RS232, \& TTL
the FSK-500 Terminal Unit
\square Superior selectivity
\square Selectable bandwidths
\square All standard shifts

- 3 shift AFSK keyer included
\square Narrow shift I.D. included
\square Preselector included for QRM suoression
\square Economically priced
- Fully wired and tested
- Compact size
-RS232 or TTL
- Optional loop supply

Fig. 2. Remote-control circuit.
data of the first four characters is entered, any succeeding data is ignored until the counters are again cleared

Automatic bandswitching is accomplished by a stepping relay which is driven by a differential comparator. A front-panel switch selectable tap on a voltagedivider chain is compared to a similar voltage-divider chain switched by the stepping relay. When the two voltages are approximately equal, the relay is de-energized.

Therefore, two types of signals are required: a series of pulses to program the frequency of the synthesizer and an analog voltage proportional to the desired band. Fortunately, access to these signals (and many others) is provided at the accessory plug on the rear
panel of the IC-701. The frequency programming inputs are always active and are terminated internally either by resistors to ground or within the PLL LSI unit. The analog voltage input for bandswitching becomes active only when the bandswitch on the front panel of the IC-701 is placed in the external position

Circuit Description

Knowing the types of signals required and the further requirements which I imposed of using simple push-buttons and CMOS circuitry, the circuit shown in Fig. 2 evolved. A block diagram is shown in Fig. 1.
The frequency information is keyed in by twelve SPST push-button switches which are effectively debounced and encoded with a diode matrix.

As the switch is closed in Fig. 3, the inverter is pulled to ground and any bounce is damped by the effect of the RC network. When the switch is opened, any bounce is again damped since as long as any of the damped or filtered bounce transients do not exceed $V_{c c} / 2$, the switch is effectively debounced at the output of the inverter. For this circuit, 100 k and .01 uF provided the necessary time constant for the switches used.

The debounced switches for 0 through 9 are then encoded into a BCD code. The exception is the 0 key. A separate line is used for the 0 character, rather than representing it as the absence of all other lines. This is presumably required since the PLL unit loads

Fig. 3.
data serially one "digit" at a time with each keystroke. The C and E keys are control signals. The C key clears the counters, and the bottom edge of the selected frequency band will be displayed. The E key resets the counters and must always be used prior to entering digit information.
In order to achieve pushbutton control of the bandswitching, a digital scan and latch circuit is used. A 4001 RC oscillator running at about 4 kHz clocks a counter with decoded outputs (in this case a 4017 .

CT2100

HAL puts MORE Behind The Butions

CT2100 System:

- CT2100 Communications Terminal
- K82100 Keyboard
- Video Monitor
- Printer (3008d Serial ASCII-MPl-88G)
- RM2100 Rack Adapter
- MSG2100 2000 Character "Brag Tape" ROM
- 24 Line Display
- 2 Pages of 72 Character Lines -ar4 Pages of 36 Character Lines
- Split Screen (with KB2100)

- 3.45

HAL COMMUNICATIONS CORP.
Box 365
Urbana, Illinois 61801
217-367-7373

RIBBON CABLE
PIN $\#$

Fig. 4(a). Control circuitry component layout.

Fig. 4(b). Control circuitry PC board.
since they were available). Assume the counter is stopped in state \#1, and the clock is inhibited by the 10 k pull-up resistor. Depressing any of the other five keys corresponding to states 2 through 6 pulls down pin 8 of the 4001 , since outputs 2 through 6 are low, and enables the clock. The counter cycles until the high decoded output corresponds to the depressed key. Then the clock and counter are again stopped. Essentially what happens is that the selected output line of the counter is latched high by whichever key is momentarily pressed. This selected line also controls one of six bilateral switches (4016s). The input side of the bilateral switch is connected to a voltage divider whose voltage corresponds to a particular band, and the outputs are all common and fed to the band select input of the 701.

Another 4001 RC oscillator serves as the scan clock input to the 701 in order to clock the divider in the PLL unit which tunes the syrithesizer up or down in frequency. There are two inputs for this on the 701. Clocking one line will increment or decrement the synthesizer depending on an up or down signal on the other line. The RC oscillator is run at both a fast $(500-\mathrm{Hz})$ and slow $(10-\mathrm{Hz})$ rate so that fast and slow tuning can be accomplished. The H key tunes the 701 higher in frequency; the L key tunes lower in frequency, and the F key increases the tuning rate to a fast scan and must be depressed with an H or L key for fast tuning.

Power for the remote control is obtained from the $15-\mathrm{V}$-dc pin on the 701 ac cessory plug and is then regulated down to +8 V and +5 V for the different portions of the circuit. The updown counters (fast and slow) and the frequency preset logic are all standard

Fig. 5(a). Keyboard component layout.

Fig. 5(b). Keyboard PC board.

CMOS in the 701 and run at +5 V dc. The bandswitching voltage dividers in the 701 are fed with regulated +8 V dc , so this must be duplicated in the remotecontrol unit.

Construction

Two printed circuit boards were designed for this project, although a small iC breadboard will work nicely. One is for the keyboard ($3^{\prime \prime} \times 4.5^{\prime \prime}$) and one is for the control circuitry ($6.75^{\prime \prime} \times 4.5^{\prime \prime}$). These are shown in Figs. 4(b) and 5(b). The push-button
switches mount directly on the printed circuit board. Parts placement is shown in Figs. 4(a) and 5(a). The boards mount in an LMB type MDC 752 modular console. Ribbon cable (12conductor) is used to connect the remote control to the accessory plug for the IC-701

Operation

The layout of the keyboard with the bandswitching and tuning kevs on the right side and frequency selection keys on the left side lends itself to
easy operation. Typical usage of the remote control goes like this:

1. Change band using one of six band select keys
2. Enter particular frequency, e.g., 21.320 .0 , by using the 12 frequency select keys (sequence keyed in this example would be E3200).
3. Tune up or down (fast or slow) using the 3 frequency scanning keys (below band select kevs).

Changing from one band to another and moving from one end of the band to the other can be done con-

NOT JUST ANOTHER REGULATED POWER SUPPLY!

The FASTRAK model 2001 voltage regulator module is ideal for making reliable power supplies in a jiffy. Use it to power your mobile rig, other FASTRAK series modules or as a general purpose bench supply.

- Component selection sets output voltage (3.3 to 400 V dc) and current capability (5 mA to 100 A). Over voltage protection and remote shutdown included. Uses no ic's.
\rightarrow One evening assembly using 2×3.6 inch pc board and comprehensive instructions supplied.
- Price: $\$ 10.80$

Price includes: glass-epoxy, etched, plated, drilled pc board; instruction manual; postage in U.S.A. (Ohio residents add 5% sales tax).
Send $\$ 1.00$ for illustrated FA STRa* product catalog and refund coupon.
siderably faster than by manual tuning, and with no transmitter tuning, the capability for instant QSY becomes more realizable.

There are several interesting operating tricks which can also be accomplished with the remote control

1. The RIT, once turned on, will not be defeated when tuning with the remote control, as it will with the manual tuning control
2. Pressing " E " and "1" simultaneously and releasing the "E" first will add 1 MHz to the displayed frequency; however, the display will only change on 20 meters and the display will indicate 15.xxx.x.
The following is a list of the expanded coverage that is available:
$160 \mathrm{~m}-1.000 .0$ to 2.999 .9 ; $80 \mathrm{~m}-3.000 .0$ to 4.999 .9 . MHz will not display " 4 "; $40 \mathrm{~m}-7.000 .0$ to 7.999 .9 ;
$20 \mathrm{~m}-14.000 .0$ to 15.999 .9 $15 \mathrm{~m}-21.000 .0$ to 22.999 .9 , MHz will not display " $22^{\prime \prime}$; 10 m - no expanded coverage.

There are obviously other features that could be built into the remote control. Memory would be a "nice-to-have" addition and really not that hard to do although the sequential (serial) data input requirement does complicate things somewhat. I don't miss additional memory, over the two in the 701, but then again I didn't miss the remote control until I began using it. The ability to instantly move to different trequencies around the band is the most useful one for me and it has become an operating convenience I wouldn't be without

Keys for the keyboard and circuit boards are available. Please enclose an SASE for details.

SATELLITE TELEVISION RECEIVER

The Electronic Rainbow Receiver consists of a receiver with an external down-converter that mounts at the antenna, feeds the voltage to the LNA through the coax cable. The 4 CHz signal is down converted to 70 MHz and is fed through the RG59/U coax to the receiver.

Rainbow Kits are supplied with simple step by step instructions. All the circuits that you need, expensive test equipment to do are pre wired and tested. All printed circuit boards have the outline of each part printed on them.

RECEIVER FEATURES

Built in RF modulator - Detent Tuning-3.7 to 4.2 GHz - Variable Audio-5.5 to 7.5 MHz • Invert Video - Channel Scan - Voltage monitoring • Meter output \bullet Remote Tuning SPECIFICATIONS:
Single Conversion Image Rejection Downconverter - Threshold 8 db CNR - IF Bandwidth 24 MHz • Output IV Audio and Video - IF Frequency 70 MHz - Video Bandwidth

Complete Satellite TV Receiver

KIT $\boldsymbol{\# 1}$ - Contains:

- Mainboard - Tuning Board - Downconverter Board - Modulator Board - All parts needed to complete receiver - Down Converter built in case.
- Cabinet, attractive black brushed anodized metal with silk screened front and back for a professional look - 70 MH2 Filter is pre-wired and tested. - Complete instruction Manual.
$\$ 395.00$

We will accept telephone orders for Visa \& Mastercard

Ask about guatanteed to play

No c.o.0. Orders
TO ORDER CALL 317-291.7262
Complete kit weighs 10 lbs . Please add sufficlent postage 6254 LaPas Trail Indianapolis, Indiana 46268

KITS

Raintow
makes a

top-of-the-line

> KIT $\mathbf{\# 2}$ - Board Kit Contains:
> - Main Board - Tuning Board - Downconverter board - Modulator Board
> - Parts List, assembly and alignment manual
> - 4 GHz local oscillator and 70 MHz filter is pre-wired and tested.
> $\$ 129.00$

Instruction manual. Contains printed circuit board layouts, parts placement, and alignment instructions.

NEW!
 POLAR RESEARCH'S

Multi-Directional, Motor Driven Antenna Mounting Systems For Discriminating Radio Operators!

The

Never before has an antenna mounting system been available to radio operators with the advantages and features of Polar Research's Li'l Slipper. The tremendous versatility and widespread applications of the Li'l Slipper system eliminate any cumbersome, awkward, inefficient and inaccessible antenna configurations due to the old normal single mast, vertical antenna stacking. Greatly reducing tower interference to the radiation pattern of the antenna, the Li'l Slipper's design effectively distributes wind-load evenly on the tower's structure while maintaining all antennas in a true perpendicular position, tangent at any point to the rotor's arc.

Exclusive Li'l Slipper features include a high torque geared drive motor; all electric, end-of-rotation circuitry; acceptance of masts up to 2' O.D. on all four housings; and limitless applications with VHF, Split-Boom, H.F. Beams, Quads, TV/FM antennas, and even UHF Dishes and Corner Reflectors.

INTRODUCTORY PRICE - \$399.95 PLUS SHIPPING

(Visa and Mastercard Accepted)

Call Toll Free 1-800-328-2041

U.S. AND FOREIGN PATENTS PENDING
-176
Polar Research, Inc. P.O. Box 781

Thief River Falls, MN 56701; Phone (218) 681-7413

Automatic Beam Aimer

Here's the scoop on adding set-and-forget convenience to your rotator control. Works with most common control boxes.

Guy Slaughter K9AZC 753 W. Elizabeth Drive Crown Point IN 16307

Ihave a smart knob in my shack. It looks like any other dumb old pointer knob sticking out of a black box, but it's really quite clever. Turn it to a given beam heading, and it makes the Cushcraft tribander atop the tower outside my house rotate to that same direction and stop there, all by itself.

I built its prototype originally for my sightless friend, W9PBS, who until then had a problem knowing which way his fourelement monobander was aimed. The voltmeter needle on his Ham IV rotator control that usually reads out the direction his beam is pointing is worthless to him, of course. It was while mulling over the problem of converting that analog needle's silent message into something more useful that I came up with the idea for the smart knob. And I liked it so well while debugging it and burning it in on my own operating table that I had to build one for myself.

That's because my own DC-45 rotator control, identical with the Ham IV's and the control for the CDE's big antenna whirler, the Tailtwister, requires holding down both a brake release and a direction button while the beam is swinging from one compass point to another. This can take as much as half a minute for a 180 -degree direction change. The smart knob, on the other hand, requires only a quick twirl to the desired beam heading and it does the rest itself, bringing the antenna around to the target while I tweak my transceiver tuning to peak that rare call up out of the mud and prepare to enter it in my log.

If you have a CDE rotator, I think you'd enjoy a smart knob, too. Mine's been in use for many months now without ever rebelling at its task. So has the one in daily use by W9PBS, who actually switches it between two separate Ham IVs, driving 15 - and 20-meter monobanders mounted on separate towers.

The knob itself is fastened to the shaft of a 25 k pot extending from a black box which, along with all the other parts and pieces inside except those scrounged from my junk collection, was bought at my neighborhood Radio Shack, for a total of less than $\$ 50$. The heart of the gadgetry inside the box is that pot and a 12 -volt-dc power supply capable of providing 150 mA or so (see Fig. 1). The supply feeds two sections of an LM339 quad comparator chip, three 2N3904 transistors, and three 12 -volt relays with DPDT contacts rated at three Amps. (See Radio Shack numbers in the Parts List.) But before we get into their functions, let's discuss the CDE rotator control system

It is a conventional lowvoltage ac capacitor-start motor whose direction of rotation depends on which half of its winding pair is energized. Though the lightduty CD-45, the mediumduty Ham IV, and the heavy-duty Tailtwister rotators have different braking systems and varying num-
bers of ball bearings in their innards, they are similar electrically and their control boxes are identical. Each contains the motorfeed transformer, the start capacitor, three push-andhold button switches for brake release and directional control, and the direc-tion-indicating circuitry. That circuitry consists of a power supply which provides 13 volts dc, a voltmeter to read it, and a calibration pot.

Inside the motor housing there is a variable resistor shunted across the floatingground, 13 -volt supply (and connected to it by rotor cable terminal posts 3 and 4 on the back panel of the control box). The movable arm of that remote resistor, mechanically linked to the motor rotor, is chassisground, cabled to terminal post 1 on the control unit

The resistor is tied into the direction-indicating voltmeter circuit so that the meter reads full scale -13 volts - when the rotor is fully clockwise, zero volts at full counterclockwise, and $61 / 2$ volts at the halfway
point. The voltmeter face is calibrated accordingly, north at half scale, south at full clockwise and full counterclockwise, with the other points of the compass in between.

And that's where the smart knob comes in. If we connect the outside terminals of its 25 k pot across binding posts 3 and 7 on the rear apron of the control box (shunting the rotor-feed wires already there), the pot will be in parallel with the 13 -volt, direction-indicator supply, and the pot's center terminal will show a volt age to ground proportional to the difference in relative settings of the pot and the rotor-mounted resistor.

With the rotor turned due north so that $61 / 2$ volts appears on the voltmeter, turning the smiart knob's pot to half rotation-map north as indicated by the pointer knob, straight upwill bring to zero the voltage between its center terminal and chassis ground. Now rotate the pot clockwise, and that zero voltage will climb toward plus $6 \frac{1}{2}$, depending upon the degree of rotation. Turn it counterclockwise, and the voltage will fall back to zero at the midsetting, then begin a negative climb to $-6 \frac{1}{2}$ when it's at full counterclockwise.

That's the secret of the smart knob's intelligence All we need to do now is harness this intelligence to control the rotor motor and braking circuit so that our bean points wherever the knob tells it to.

Fig. 1 shows how the center terminal of the 25 k lin-ear-taper pot feeds two sections of the comparator chip so that one senses positive voltages, the other negative. Because each turns on a switching transistor whose collector current flows through relay coils, one or the other relay is pulled in whenever there is a difference in rotation an-

Fig. 1. Rotator control schematic.
gle between the smart knob and the beam rotor.

The relay contacts parallel the push-button switches of the rotor control box, thus energizing the brake and rotor motor, which swings the antenna to the direction called for by the smart knob; then the contacts open to hold it there. They are so interconnected that even a component failure or human error cannot trigger simultaneous clockwise and counterclockwise rotation. And there is a time-delay circuit in the brake-release relay's switching-transistor circuitry ensuring that the rotorand the heavy load it carries - coasts to a stop before the brake is reapplied, thus averting the towertwisting, rotor-ruining torque that the inertia of a suddenly-braked antenna can exert.

The component values shown provide a variable braking delay of about two to five seconds, adequate for my tribander and the heavier four-element monobanders used by W9PBS

There is one small limitation. Because the voltage signalling the counterclockwise comparator to turn on its switching transistor falls to zero when antenna rota-

Parts List

1 cabinet (270-453)
1 transformer, $12 \mathrm{~V}, 300 \mathrm{~mA}(273$-1385)
3 relays, 12 V , DPDT (276-206)
1 on-off switch (275-612)
1 package (2) zener diodes, $6 \vee(276-571)$
1 25k pot, linear taper (271-1715)
2 100k minipots (271-220)
1 package (15) 2N3904 transistors (276-1603)
1 quad comparator LM339 (276-1712)
1 14-pin dip socket (276-1999)
2 1,000- μ F electrolytics (272-957)
147- F F electrolytic (272-1027)
$122-\mu \mathrm{F}$ electrolytic (272-1026)
13 -Amp rectifier diode (276-1143)
1 PC board, $41 / 2{ }^{\prime \prime} \times 6$ " (276-1394)
1 package push-in terminals (270-1394)
1 package (50) diodes (276-1620)
$310 \mathrm{k}, 1 / 4$-Watt fixed resistors
2 100k, $1 / 4$-Watt fixed resistors
$21 \mathrm{meg}, 1 / 4$-Watt fixed resistors
$41 \mathrm{k}, 1 / 4$-Watt fixed resistors
1 length, (two, three feet) eight-conductor cable*
1 knob, pointer, junk-box type
*If you've got a rotator, you must have some cable somewhere, probably hanging in the garage. My Radio Shack doesn't stock it. The other parts will add up to around \$45, if you buy them all new. Happy knobbing.
tion approaches full counterclockwise south, and because even a smart knob requires a small fraction of a volt to sense, counterclockwise rotation will stop about 5 degrees from due south. But that's no big deal. Most beams have 60 -degree lobes; you still can nudge the antenna the rest of the way with the manual push-buttons, or
you can tell the smart knob to go full south clockwise where it has lots of voltage to sense. And it will.

There are no particular construction hints to pass along. Everything is dc and, therefore, lead lengths and dress are not a problem. 1 used perfboard and wired point-to-point because I'm not into printed-circuit fabrication. On one of the

smart knobs that I built, I used an eight-terminal barrier strip to wire it to the CDE control box, and on others I chassis-mounted six-contact female sockets so they could be unplugged from the rotor control box for testing and fiddling

However you wire yours to the CDE control, there is a small bit of surgery re quired: You need to shunt a two-conductor cable across the brake-switch contacts inside the CDE control box and bring it out to the smart knob box. There is plenty of room to work inside the rotor control, and the plastic cabinet can be flexed enough to pass the cable between it and the chassis if you don't want to drill it for a connector socket

If you use a plug and socket for this, be sure the brake contacts are connected to the female half of the connector, because the brake wires are hot with 120 V ac

With the smart knob built and connected to the CDE control box, disconnect the brake-energizing cable so that the antenna won't be swinging back and forth as you adjust the pick up-dropout points of the switching transistors by tweaking the 100 k minipot feeding pin 4 of the comparator chip. Once you have that minipot properly set so that the device neither hunts for a null nor fails to respond to a 3 -to- 5 degree rotation of the smart knob, you can loosen the pointer-knob set screw on the $25 k$ pot shaft to line it up at due north when the antenna is pointing due north
Having thus compensat ed for any discrepancy between zero voltage at the pot's wiping contact and its precise half-resistance setting, you will find calibration is remarkably accurate at all points of the compass.
ege, \mathbf{m}Dealer Inquiries Invited

TEN-TEC SPECIALS

515 Argonaut HF XCVR
525 Argosy HF XCVR
546 Omm-C HF XCVR
399.95

Complete Line of Filters and 1069.00 CALL FOR QUOTE
ICOM TRANSCEIVERS AND ACCESSORIES
VHF/UHF-2A/2AT, 3AT, 4AT, 25A CALL
CALL
MIRAGE VHF/UHF AMPLIFIERS/METERS CALL
VOCOM ANTENNAS/2m AMPLIFIERS
S/8 wave 2 m Hand-held Antenna,
2 watts in. 25 watts out 2 m Amplifier
14.95

2 watts in. 25 watts out 2 m Amplifier
200 mW in. 25 watts out 2 m Amplifier 200 mW in. 25 watts out 2 m Amplifier 82.95
105.95 2 wath in 50 watts out 2 m Amplitier
Power Packet for ICOM 2 A 2 AT
ASTRON POWER SUPPLIES (13.8 VDC)
RS.7A 5 amps coninuous. 7 amp ICS
RS-12A 9 amps contnnuous. 12 amps IC RS-20A 16 amps continucus. 20 amps ICS RS-20M same as RS-20A + melers
RS-35A 25 amps continuous. 35 amps ICS
RS-35M same as RS 35 A RS-35M same as RS-35A + meters VS. 35M 25 amp continuous. adjust volt $\&$ amp V. 20 M l6 amp continuous. adjust volt \& amp

MFI PRODUCTS (Call for other MF) Items)
989 New 3 kW Antenna Tuner
962 1.5-kW Tuner switch/meter
949 B 300 wat Deluxe Tuner
941C 300 -watt Tuner switch/meter 940300 -watl Tuner switch/meter 496 Keyboard II
752B Dual Tunable SSB/CW Filler
BENCHER PADDLES Black/Chrome
aEA KEYERS, READERS, ANTENNAS

ORDER TOLL FREE
 1-800-336-4799

Order Hours: M-F 11 a.m. to 7 p.m.; Saturday 10 a.m. to 4 p.m.
Bonus: 2\% Discount for Prepaid Mail Orders (Cashiers Check or Money Order)

ANTENNAS

AVANTI AP 151.3 G 2 m On glass Antenna
LARSEN LM-150 5/8 Mag Mount
MOSLEY HF ANTENNAS
MOSLEY HF ANTENNAS
MINIQUAD HQ
SUPER STICK 115.82 m Antenna
BUTTERNUT HF6V $10-80 \mathrm{~m}$ Vertical

HY-GAIN ANTENNAS CALLFOR OUOTES

Most antennas now with stanless hardwaye.
CUSHCRATT (Other antennas in stock)
A4 New Triband Beam $10.15-20 \mathrm{~m}$
A3 New Triband Beam $10.15-20 \mathrm{~m}$
AV3 New $10-15.20 \mathrm{~m}$ Vertical
ARX-2B New Ringo Ranger 2 m
A 32.192 m "Boomer" DX Beam
220 B 220 MHz 'Boomer
214 B . Ir Bocmer' 144.146 MHz , SSB
214 FB "Ir Boomer" $144.5-148 \mathrm{MHz}$, FM
A147.11 11-element 2 m
KLM ANTENNAS (Other antennas in stock)
KT34A 4 -element Trıband Beam
KT34XA 6 -element Triband Beam
144. 14813 LB 2 m 13-element with Balun

144-148-16C 2 m 16-element for Osca
$420.45014420-450 \mathrm{MHz}$ 14-element Beam
$420-450-18 \mathrm{C} 420.450 \mathrm{MHz}$ 18-element for Oscar 5854 432-16LB I6-element 430.434 MHz Beam/Balun 60.70 HUSTLER
5. BTV $10-80 \mathrm{~m}$ Verica
4.BTV $10-40 \mathrm{~m}$ Vertical
3. TBA New $10.15-20 \mathrm{~m}$ Beam

HF MOBILE RESONATORS
10 and 15 meter
20 meters
75 meters
Send stamp for a llyer Terms: Prices do not include shipping VISA and Master Charge accepted 2% discount for prepard orders (cashier's check or money order) COD fee $\$ 2.00$ per order. Prices subject to change without notuce or obligation. No personal

SWill Moen conterita move the KHz^{\prime} s signal from a out) and also pass thru the udio signal Rocker switch perating mode to remove KHz^{\prime} 's

SWD-1 Video Converter KIt

TIB ACESSOARIES

SIMPLE SIMON VIDEO STABILIZER

Simple Simon Video Stabilizer, Model VS-125, eliminates the vervideo tapes when playing through large screen projectors or on an-
other VTR. Simple to use. Iust adiust the lock contlof for a stable picture. Once the control is set. the tape
\qquad 554.95

SIMPLE SIMON VIDEO SWITCHING BOX
The Affordable Video Control Center
Excellent in isolation and no loss
routing systom. Simple Simons VSB300 Video Swithing Box enables ogether for easy viewing/dubbing. Also you gain the ability to record connector ended cables.
VSB-300 Video Switching Box, wired

UIF ANTENNAS and AGGESSORIES

MDS-AMATEUR-ETV 32 ELEMENT
YAGI ANTENNA

- Die Cast Watelproof Housing with Commercial Grade

Area for llectronics
Includes P.C. Probe. F-61 Connector and Mounting Hadware
MAE-2 32 Element YAGI Antenna
$\$ 23.95$
Kato Sons Down Converter Kit *1.9-2.56Hz* Designed tor Simple Simon by formet Japanese CO Amareur Magazine's UHF Edtor/Engineer. Unit utilizes new ingenious Printed Cicuil Probe for maximum gain Cirecuit board fis ins ide MAE-2 antenna housing Requires 1 hour assembly. IC and capactors pre-soldered
Model KSOC-KIT $1.9-2.5 \mathrm{GHz}$ Down Converter Kin
Kato Sons Regulated Varible DC Power Supiply for use with KSOC-KIT $1.9-2.5 \mathrm{GHz}$ Down Corverle! Completely assemblee with Attractive Cabinet, TV/Conventet Mode Switch. Frequency Control and LED Indicator.
Model KSPS-1A Assembled Power Supply

ZYZZX VHF-UHF Wideband Antenna Amplifier

Switch to Bambit!

Electronically

Bambi Electronic Video Switch makes switching of your VCR/VTR Pay TV Decoders, Cable TV, Video Discs, Video Games, Closed Circuit TV, Antennae and Microcomputer as easy as pushing buttons.
The Bambi Electronic Video Switch is an electron
ing network which can accept up to six different sources of video signals and provide the flexibility of directing the inputs to any or all of the three outputs.
Now you can eliminate ... the drudgery of disconnecting and reconnecting your video equipment each time you use is the tangled mess of cables which are impossible to trace out ...not being able to use more than one function at a time.
Bambi lets you enjoy using your video equipment the way it should be ... electronically and on line at the push of a button.

Model

BEVS-1 wired
${ }^{5} 129^{95}$

Check the quality of Bambi against that of much higher priced competition. All solld state electronic switching provides low atte uation (3 d). wide trequency response (40 890 MHz], and excellent isolation betwee sugnal sources (eacelio section indvidual sheilded for 65 dB min isolation).

Bambers fromt panel was designed with the uset in mind. Computer styled construction. million operations). arranged in matrix form allows easy input/outout selection without refering to charts. Functions selected through the kevboard are immediately
the 18 LED status indicalors.

7+11 SUil Paisis Kits

MITSUMI VARACTOR UHF TUNER Model UES-A56F \$24.95
Freq. Range UHF470-889MHz Antenna Input 75 ohms Channels 14.83 Output Charmel 3

1 VTI-SW Varactor UHF Tunct. Modet UES-A56F
2 CB1-SW Printed Circuit Baard, Pro-0illed

3 TP7-SW P.C.B. Potentiometers. 1-20K

P.C.B. Potentiometers. 5-10K ohms. 7 -pieces

4 FR35-SW Resistor Kit, $1 /$ Watl, Resistor Kit, $1 / 4$ Watl, 5% Carban Fulm, 32 -pieces Power Transtormer PRI-117VAC SEC-24VAC 4.95

5 PT1-SW Power Transformer, PAI-117VAC, SEC-24VAC. 250 ma 1-1KBT Panel Mount Potentiome and 1-5KAT w Switch \qquad IC's 7 -pes, Diodes
Heat Sink 1 -prece
\qquad Heat Sink 1 -prece
Electrolyfic Capacitor Kin. 9 -pieces 8 CE9-SW Electrolytic Capacitor Kin 9 -pieces
9 CC33-SW Ceramic Diste Capacitor Kir. 50 W. Vatbie Celamic Trimmel Capacitor Kit $5-65$ ptd, 6 -pieces Coil $\mathrm{kn}_{\mathrm{n}} 18 \mathrm{mhs} 2$-pieces. $22 \mu \mathrm{hs} 1$-piece (prewound inductors) and 1 \$37-12 Ferrite Tomoid Core with 3 ft . of \# 26 whe I.C. Sockets. Tin untay, 8 -pin 5 -pieces and 14 -pin 2 -pieces Speaker, $4 \times 6^{\circ 0}$ Dval and Prepunched Wood Enclosute
\qquad
Misc. Patis Kit includes Hardware (6/32, 8/32 Nuts, 6 Bolts). Hookup Wire. Ant Terms. DPDT Anl. Switch. Fuse, Fusehaldei etc When Didering All Stems. (1) thru 14) Total Price 9.95

SIMPLE SIMON ELECTRONIC KITS," Inc.
\qquad WHITE FOH OUANTITY OISCOUNTS

Life-Support System for HTs

At home or in the car, this do-it-yourself charger and accessory box could be the best friend your handie-talkie ever had.

For the first couple of weeks after you buy your 2-meter handie-talkie "brick" (Tempo, Icom, Yaesu, etc.), it is sort of fun to plug and unplug the unregulated charger so that the nicad battery pack stays at full charge. After that, though, the newness wears off and it is just a pain in the lower backside to try to guess at how long you ought to leave the juice on before you boil the cells dry. Not only that, but you
are never really sure whether you have given the battery pack full charge or whether you are consistently undercharging the nicad pack, a notorious cause of nicad deterioration.

In addition, it would be sort of nice to be able to operate mobile with your brick and use the same mobile speaker and microphone that you use for all your other mobile equipment plus the mobile's bat-
tery-generator charging system. The brick box described here will solve these problems and perform the following functions

1) Regulates the voltage and limits the current from the factory-supplied wall charger so that the nicad batteries in the brick may be left on charge for as long as you like without overcharging
2) Allows the car (or boat, or
snowmobile, or aircraft) battery-charging system also to charge the brick batteries with a regulated, current-limited circuit
3) Permits you to plug in a mobile microphone and provides an amplifiermatching circuit between microphone and brick that is adjustable for exactly the right amount of deviation
4) Allows the speaker amplifier in the brick to drive an

external mobile speaker (with an option to install a speaker-driver-amplifier for higher power output) or a set of high- or low-impedance headphones.
5) Permits you to plug in to an already-existing mobile installation such as a private aircraft audio panel or a VHF-FM boat system and use the microphonel speaker/headphone setup in the mobile craft.
6) All these goodies cost less than $\$ 10$ (plus an extra $\$ 5$ for the high-power speaker amp).

Here are the ground rules for using this article: Most of the parts are available from any well-stocked ham store or "hobby-shop" electronics place. You may freely substitute for any of the parts. None of the parts values is really critical-a variation of $\pm 20 \%$ should never really be noticed. Also, this article was written using the Tempo S1, and interfacing with standard commercial FM microphones and aircraft micro-phone-headsets (carbon or amplified dynamic). Other rigs and other microphones may require modifications of the mike amplifier circuit as shown later.

Regulator

The power supply regulator must perform two functions. First, on a deeply-discharged nicad battery pack, the regulator must limit the charging current below approximately 200 mA . Limiting the charging current in this manner prevents the cells from outgassing and drying out the electrolyte Second, the charger must limit the end-charge voltage to the cells to approximately 1.37 volts for each cell, at which point the cells may be allowed to tricklecharge at this voltage indefinitely

The current limiting may be done by either of two methods. First, if the wall charger itself is one of the
" $12-\mathrm{V}, 50-\mathrm{mA}^{\prime}$ variety, no external limiting will be necessary. The wall charger itself provides the necessary current protection by its design. However, a fullydischarged $450-\mathrm{mAh}$ battery will require over 9 hours to fully recharge, so you may wish to consider the alternative fast-charge circuit described a little later.

For those using a currentlimited wall-pack charger, the circuit shown in Fig. 1 will regulate the final trickle charge voltage to 1.37 volts per cell, or an output of 11.6 volts into the Tempo 51 CHG jack. (1.37 $\times 8$ cells +0.7 volts, to compensate for one silicon diode inside the 51 in series with the charger line.) The basic circuit uses a 7805 (or 78M05 or 78L05) regulator, with a 1 k variable resistor used to set the exact output voltage. To set the output voltage accurately, connect a $470-\mathrm{Ohm}$ resistor across the 11.6 -volt regulated output and adjust R1 (the 1 k variable) for exactly 11.6 volts on an accurate voltmeter across the $470-\mathrm{Ohm}$ resistor. The value of C1 $(1000 \mu \mathrm{~F})$ is not critical at all, providing that there is less than 150 mV ripple on the output with the $470-\mathrm{Ohm}$ resistor attached. Up to a point, adding more capacitance to this point increases the charge rate (milliamperes)

Fig. 1. The basic brick-box charger-regulator.
of the wall charger. I found $1000 \mu \mathrm{~F}$ to be the optimum value; do not go below 0.1 $\mu \mathrm{F}$ or the regulator will become unstable.

High-Power Regulator

In the event you can get your hands on a wall power pack with more output or for those who are going to use the almost unlimited current available from an automotive (or boat, or aircraft, etc.) supply to recharge the brick batteries, some method of current limiting must be employed to ensure that the nicad battery pack does not overheat due to excess charging current. Incidentally, for those of you looking for a very inexpensive high-current 12 -volt wall-pack-style charger, look in the autosupply stores or the automotive department of the larger discount houses for a "cold-weather battery maintenance charger." These little rascals look just like a low-power calculator wall pack, with one end terminated in a cigar lighter plug, but the fact of the matter is that they put out 12 volts at a whopping 300 mA . Don't forget the $1000-$ $\mu \mathrm{F}$ filter capacitor, though,
because these high-power wall packs have a pretty raw, rectified ac waveform.

The trick to use to keep the maximum available current below 200 mA is to use a 78 L 05 for the regulator called out above. The 78×05 is actually a whole family of regulators where X defines the normal maximum current available. If X $=\mathrm{L}(78 \mathrm{~L} 05)$, normal current maximum is 100 mA ; if $X=$ $\mathrm{M}(78 \mathrm{M} 05)$, normal current maximum is 500 mA ; and if $X=$ nothing (7805), the current available is 1 Amp .

Now, the internal cur-rent-limiting circuit in these ICs sets the current-limit point to about 150% of the maximum normal current. so if you use a 78L05 as your voltage regulator IC the maximum current that your nicad pack can draw is approximately 150 mA , well within the maximum charge capacity of your brick's nicad pack.

Since I had planned to use the brick box in 'aeronautical mobile use in addition to use with a high-power wall-pack charger, not only did I use the 78L05 as my regulator, but I also supplied both a $3.5-\mathrm{mm}$ jack on the brick box to plug-in the

Fig. 2. Adding charge-indicator circuitry.

Fig. 3. The deluxe mobile-base brick-box schematic.

Fig. 4. Parts changes for various microphone types. See Table 1 for values.
wall pack charger and a cable connection to a molex ${ }^{\oplus}$-type connector for attachment to the aircraft electrical system. As we shall see, using a 6 -pin molex connector allows me to use the mobile microphone and speaker/ phones, as well as the aircraft battery-charging system.

Charge Indicators

So far, we have a nicad battery pack charging system that will accept a lowor high-power wall pack or a battery-generator auto-motive-type system. The first refinement to make will be a pair of LED lamps.

One of the lamps will tell us when power is being supplied into the charger and the second lamp will tell us when the end-of-charge cycle of the nicad pack has occurred. The first lamp is easy: an LED and a resistor (R2) will tell us if our wall pack or auto system is plugged in. The second (end-of-charge) lamp requires a little more circuitry.

The heart of the charge lamp is a high-gain op amp (LM324) used as a comparator. This circuit is shown in Fig. 2. The type of op amp is not critical, either. The common 741 or any other true op amp may
be substituted. The socalled Norton (LM3900/ MC3401) op amps may be used, but you are on your own for the circuit modifications which are necessary.

The 3.3-Ohm resistor (R 3) introduces a negligible voltage loss to the charging circuit, yet drops more than enough millivolts for the op amp to work with. The presumption is that when the charge current drops below 20 mA , the nicad pack is fully charged. At this current, the 3.3 -Ohm resistor drops about 70 mV . The op amp senses this voltage drop and when the voltage drops below 70 mV , the charge light extinguishes. R6 (1 Meg) sets the current level at which the charge light turns on and off; if you wish for the light to turn on and off at another current level, attach a resistive load of your chosen value from output to ground and select R6 until the light just flickers. Remember, now, when this lamp is lit, the nicads

| Microphone | C2 | C3 | C4 | C6 | R7 | R8 | R9 | R10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Carbon | $10 \mu \mathrm{~F}$ | $0.001 \mu \mathrm{~F}$ | $10 \mu \mathrm{~F}$ | $0.002 \mu \mathrm{~F}$ | 1 k | 1 k | 10 k | 10 k |
| CrystallCeramic | Open | 10 pF | $.005 \mu \mathrm{~F}$ | 20 pF | Open | Open | 1 meg | 1 meg |
| Low-Z Dynamic | Open | $0.001 \mu \mathrm{~F}$ | $10 \mu \mathrm{~F}$ | 220 pF | Open | Open | 10 k | 100 k |

Table 1. Values for various microphone types.
are charging and when it is dark, the nicads are either disconnected or fully charged.

Microphone Amplifier

The second refinement is a matching circuit shown in Fig. 3 which will take the output of a standard mobile microphone (carbon or amplified dynamic) and massage it to fit the input requirements of the brick. (Note: for those of you using straight low-z or high-z dynamic, ceramic, or crystal microphones, see Fig. 4. The various values for Fig. 4 are shown in Table 1.) Since the requirements of the brick are a microphone voltage of some 200 millivolts peak-to-peak and the output of the carbon/dynamic microphone biased with 10 mA (by $\mathrm{R} 7 / \mathrm{R} 8$) is about 500 millivolts $p-p$, the op amp circuit shown will provide an output somewhat in excess of requirements and can be adjusted to the proper deviation level with R11. The rationale here was not so much that we had to have an op amp to drop a $500-\mathrm{mV}$ level to 200 mV , which could well have been done with a simple resistive network, but we had one leftover op amp from the IC used in the charge-light circuit, and the op amp is necessary for the alternate mike circuits shown in Fig. 4.

Once again, since this brick box was intended for use as both a base-station patch box and a mobile interface unit, a microphone jack was installed on the brick-box chassis, plus a pair of wires to the molex connector for attachment to the aircraft microphone and PTT switch. A switch was included on the brick box so that either internal microphone (the brick-box jack) or external microphone (through the molex plug to the mobile mike setup) could be selected This was done so that the
pilot of the aircraft (WB6BHI) or the back-seat passenger (WD6EWI) could access the 2 -meter rig separately and independently.

The remainder of the elementary brick box is quite simple. The speaker output of the transceiver is run to both the headphone jack in the brick box and a wire to the molex plug for external mobile speaker.

Speaker Amplifier

Although this concludes the construction of the elementary brick box, several comments from my fellow hams led to the first major modification of the box. Since my major application of the box was for airborne use and I was feeding the puny $1 / 2-$ Watt speaker signal out of the brick into a 10-Watt airborne cabin speaker amp, I never noticed how poor the speaker audio really was. A few tests convinced me that a
speaker amp of some sort was in order. Since the most common high-power chip in general use and availability today is the LM383, I chose to use this fine device. Although the design is very straightforward, I recommend that you heat-sink this device to the biggest piece of metal you can find. In fact, if I were going to include this circuit in my own brick box, I would undoubtedly use the metal chassis cover for the heat sink. The tried and proven circuit of the speaker amp is shown in Fig. 5

Conclusion

The brick box has been in operation for almost a year now with no serious problems. My S1's batteries have always given me the expected service when charged by the box and mobile service has been beyond any hopes I ever had. (You get up to ten thousand

Fig. 5. Adding a high-power speaker amplifier.
feet and call CQ on .52 hams between Crass Valsimplex!) My thanks to WD6EWI for his comments and criticism and N6AUB for his patient on-the-air testing My additional thanks to the hundreds of
ley, California, and Oshkosh, Wisconsin, who gave us hints and suggestions for improvement during our recent aeronautical mobile cross-country.

COMPUTERIZED MORSE KEYERS

AEA, the first company to introduce microcomputerized products to the Amateur Radio market, is proud to announce the second generation of computerized electronic keyers. Each keyer is preprogrammed, no computer language is required of the operator The easy to use keypads eliminate up to 75 switches or potien tiometers, thereby greatly simplifying the operation of such sophisticated keying systems. We invite you to compare the features of our keyers (shown below) to ANY others.

IMPORTANT KEYER ANDIOR	AEA	AEA	AEA
TRAINER FEATURES	MM-2	KT-2	CK-2
Speed Range (WPM)	$2-99$	1.99	1.99
Memory Capacity (Total Characters)	500	N/A	500
Message Partitioning	Soft	N/A	Soft
Automatic Contest Serial Number	Yes	N/A	Yes
Selectable Dot and Dash Memory	Yes	Yes	Yes
Independent Dot \& Dash (Full) Weighting	Yes	Yes	Yes
Calibrated Speed, 1 WPM Resolution	Yes	Yes	Yes
Callbrated Beacon Mode	Yes	N/A	No
Repeat Message Mode	Yes	N/A	Yes
Front Panel Variable Monitor Frequency	Yes	Yes	Yes
Message Resume After Paddle Interrupt	Yes	N/A	Yes
Semi-Automatic (Bug) Mode	Yes	Yes	Yes
Real-Time Memory Loading Mode	Yes	N/A	Yes
Automatic Word Space Memory Load	Yes	N/A	Yes
Instant Stạt From Memory	Yes	N/A	Yes
Message Editing	Yes	N/A	Yes
Automatic Stepped Variable Speed	No	No	Yes
2 Presettable Speeds, Instant Recall	No	No	Yes
Automatic Trainer Speed Increase	Yes	Yes	N/A
Five Letter or Random Word Length	Yes	Yes	N/A
Test Mode With Answers	Yes	Yes	N/A
Random Practice Mode	Yes	Yes	N/A
Standard Letters, Numbers, Punctuatlon	Yes	Yes	N/A
All Morse Characters	Yes	Yes	N/A

For more information write AEA, or bet ter yet see your favorite dealer for a demonstration.

Software ©copyright by AEA
PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE OR OBLIGATION.

> ADVANCED ELECTRONIC APPLICATIONS, INC.
> P.O. Box C-2160,

> Lynnwood, WA 98036 (206) 775-7373

> Telex: 152571 AEA INTL

MM-2

Morse Matic ${ }^{\text {M }}$

KT-2

Keyer Trainer
CK-2

Contest Keyer

Brings you the breakthrough!

HI-Q BALUN

- For dipoles yagis inverted vees $\&$ doublets
- Replaces center insulator - Puls power in antenna - Broadbanded 3.40 MHz - Small lightweight and

- 1 I impedance ratio
- For full legal power and more
- Helps eliminate TVI
- With SO 239 connector
only $\$ 12.95$
HI-Q ANTENNA CENTER INSULATOR

Rugged, lightwelght. injection molded of top quality material, with high dielec. trlc qualities and excellent weatherablity. End insula tors are constructed in a spiral unending fashion to permit winding of loading coils or partial winding for tuned traps.
May be used for
Ciuy wire stran insulators antunnas inter insulators for anternas
Construction of antenna loas
$\$ 4.95$ ing cols or multiband traps

mOOEL GANOS

Orpores				
D. 80	80.75	130	\$31.95	\$27.95
D. 40	40,15	66	28.95	24.95
D. 20	20	33	27.95	23.95
D. 15	15	22	26.95	22.95
D. 10	10	16	25.95	21.95
shoriened dipoles				
SD. 80	80.75	90	35.95	31.95
SD-40	40	45	32.95	28.95
pasilel aipoles				
PD-8010	$80,40,20,10,15$	130	43.95	39.95
PD-4010	40,20,10,15	66	37.95	33.95
PD-8040	80,40,15	130	39.95	35.95
PD-4020	40,20,15	66	33.95	29.95
Oipole storieners - only, same sy included in 50 models				
S.80	80,75			1.95 pr
S.40	40			.95 pr

All antennas are complete with a $\mathrm{HI}-\mathrm{Q}$ Balun or $\mathrm{HI}-\mathrm{O}$ Antenna Center insulator, No. 14 antenna wire, ceramic insulators, 100 nylon antenna support rope (SD models only 50) rated for full legal power. Antennas may be used as an inverted V and may also be used by MARS or SWLs.

Antenna accessories-available with antenna orders Nylon guy rope 450\# test 100 feet $\$ 4.49$ Ceramic (Dogoone Type) antenna insulators $\$ 1.50$ pr SO. 239 coax connectors

All prices are postpaid USA 48 Avallable at your favorite dealer or order direct from

Van Gorden Engineering

BOX 21305 B, SOUTH EUCLID, OHIO 44121

What?! Another Audio Filter Project?

Yup. And even the most modern receivers benefit from this QRM-crusher.

got my hands on one of those toy transceivers a few months ago-the kind with a flea-power transmitter and a direct-conversion receiver - and for a while, I had a ball with it.

But slowly, some drawbacks began to manifest themselves-not so much in the rig, but inside my head, where ringing noises refused to go away. The receiver is quite sensitive and has a tremendous dynamic range but it has no agc (automatic gain control), so when you're tuning for weak DX signals and come across a Texas rock crusher

Well, I generally don't cherish corona flickering between my ears.

It slowly dawned on me that even my main station
receiver, though it has a good agc system for CW, exhibits some other rather nasty habits which it shares with the little plaything receiver. And eventually, I began to think about doing something about it.

Unfortunately, most modern ham-band receiverseven the very good ones do very little after extracting audio from the product detector, except to amplify it and cram it into a speaker or a headphone output. Many things can be done to audio to make communications a lot better, especially on CW.

The audio unit to be described is my second major effort in that direction. The previous unit, built about 1960, used vacuum tubes and weighed enough to

Fig. 1. Audio processor block diagram.
keep my house and shack from blowing away in Hurricane Donna. That unit, described in a long article in QST,' offered peak clipping, audio selectivity, and volume compression, none of which was available in the receivers of that dayor in most 1981 models. There is one big difference. Modern receivers usually (but not always) have agc systems which work well with SSB and CW.

My new audio processor would have to be all solid state, like the rest of my equipment, and it would have to offer the same features as the original, with suitable improvements.

If you work contests or DX pileups on CW. you know that a $400-\mathrm{Hz}$ passband sounds like you're listening to all outdoors, especially if you have experienced the good selectivity of the $100-\mathrm{Hz}$-and-under variety.

But selectivity has its trade-offs. Any sort of noise impulse is stretched. Key clicks, which sound like a small-arms fight in some Middle Eastern desert, become a rolling artillery barrage when they're stretched through a sharp filter. So, even with a good receiver agc, you still need to do something about the noise pulses before you introduce selectivity.

And, for those receivers without agc or only a poor agc, audio compression works wonders. Before good agc was developed for SSB and CW, a CW operator had to tune his receiver with one hand on the dial and the other on the rf gain control. Even with that kind of receiver (or with a modern direct-conversion job with no agc), one-handed tuning becomes possible when you use audio compression.

So, I decided my fancy solid-state processor must begin with a peak clipper, followed by a good stage of selectivity, followed by compression, and then (finally) by enough power to drive a loudspeaker and phones. It must be cornected to the receiver only by a patch cord from the headphone or speaker output to the processor input, so that no modifications need be made to the receiver (see Fig. 1).

Clipping

Clipping and compression are terms which are often misunderstood. Clipping, for our purposes, is the process of whacking off any audio signal which exceeds some preset amplitude. The waveform is grossly distorted and lots of harmonics are generated in the process

The clipping circuit chosen for this application is the familiar full-wave, series peak clipper (Fig. 2). It works like this

Audio from the receiver is fed through a capacitor to a pair of small silicon diodes (1 N 914 s or similar) in series, anodes connected together. A positive voltage is applied to the anodes, so that current flows through both diodes to ground through load resistors.

As long as those diodes conduct, they look like pieces of wire to the audio signal coming in from the receiver. But the moment a positive audio peak voltage becomes greater than the forward bias, the diode ceases to conduct, and the signal can't get any bigger in that direction. The negative half cycle, though, goes through because it only forward biases the diode even more.

But the other half cycle then collides with the second diode, with reversed polarity, and the other audio peak is clipped off. A good sine wave applied to

Fig. 2. Clipper-selectivity section of processor. Q1 and Q2 are PNP audio transistors such as the 2N3906. L1 and L2 are $88-\mathrm{mH}$ telephone toroids. See text for C1 and C2.
the clipper comes out looking much like a square wave. Noise pulses, of course, also are clipped. How deeply the signal is clipped depends on how much bias voltage is applied to the diodes by the 10k pot. The voltage can be made so high that no clipping occurs, or so low that no signal gets through at all. The clipper can also be defeated by closing SW2 which shunts the audio around the diodes completely.

In use, the clipping threshold is set at some in-
termediate point which the operator finds to be comfortable. The setting will be affected, of course, by the audio gain control on the receiver.

Selectivity

The output of the clipper is fed to the selective circuit through a capacitor which blocks dc. Any of a variety of selective circuits could be used here, including the popular bridged-T active audio filters using IC op amps. I chose to use par-allel-resonant $88-\mathrm{mH}$ telephone toroids because I
can change the resonant frequency simply by changing the values of the parallel capacitors. To change a bridged-T involves three capacitors in each pole of the filter. (See Fig. 2.)

The output of the clipper is applied across one $88-\mathrm{mH}$ toroid tuned to 700 Hz with capacitors totaling $0.57 \mu \mathrm{~F}$. Another blocking capacitor isolates the toroid from the dc on the base of Q1. The transistor amplifier restores the considerable insertion loss caused by the clipper and the toroid filter. Any handy transistor can be

Fig. 3. Audio compression and power. Q3 is a 2N3819 FET or any similar audio FET. U3 is a TLO81 FET op amp. U4 is an EC5700, ULN2277, or FE IC27. D1-D7 are 1N914s or similar.

Fig. 4. Power supply suitable for the audio processor.
used, and the ones I used were junk box PNP silicons which were probably refugees from a Radio Shack red-tag sale. If you use NPNs or germaniums, be sure to make the necessary circuit changes, including polarity and bias. Almost any inexpensive audio transistor in a suitable amplifier circuit will do the job.

The output of Q1, taken from the collector, is coupled to the second toroid, tuned to the same frequency as the first, and again the insertion loss is restored by Q2. Actually, it is somewhat more than restored, and the output is ample to drive the next stage.

In operation, you can elect to use both toroids, for maximum selectivity, only one toroid for intermediate sharpness, or neither one, leaving you with only the selectivity of the receiver itself. Switching is done by means of diodes, so that signal leads can be kept on the circuit board, and not run to the front panel. With SW3 in position 2 (Off), neither toroid is in the circuit because its ground return circuit is open.

In position 1, positive voltage is applied to D3, making it conduct and become virtually a short circuit to ground, thus completing the toroid circuit. In position 3, voltage is applied to D5, thus grounding the return for L2. The same voltage turns on D4 which, in turn, turns on D3 so that both toroids are now in the circuit, for maximum selectivity

Compression

Compression is a somewhat misunderstood term. Here it is used to mean automatic control of the audio gain so that the amplifier output remains virtually constant, despite large changes in the input level. The process does not distort the waveform of the signal. (See Fig. 3.)

In the circuit I chose, ${ }^{2}$ the compression amplifier (U3) is a TL081 FET op amp, inexpensive and readily available. The output of the filter is fed to the non-inverting input of op amp U3, and its output is fed to the input of an audio power amplifier chip, U4.

The output of U3 is also fed to a voltage doubler formed by D6 and D7. This generates a positive dc voltage which is proportional to the audio output voltage of U3, and this dc voltage is fed to the gate of FET Q3.

The FET acts simply as a variable resistor. Note that audio coming out of the filter stage is fed to the top of a voltage divider composed of R1 and R2. The input of the op amp is taken from the midway point on this divider. The bottom half of the divider, $R 2$, is paralleled by the source-drain circuit of the FET.
The ground return of the voltage divider is the center of another voltage divider, formed by R4 and R7, across the power supply voltage. This tap is also the ground return for the 470 Ohm resistor in the inverting input lead. This makes it possible to use only a single power supply for U3, rather than two.

With no signal applied to the input of $U 3$, no output is generated, hence no voltage from the voltage doubler. The FET is biased to "pinch off" by the voltage across R 2 , which makes the gate negative with respect to the source.
When an audio voltage appears at the input of $\cup 3$, a positive dc voltage appears across the voltage divider and this is applied to the gate of the FET via D7, opposing the negative bias and allowing the FET to begin to turn on. The more audio out from U3, the more positive bias, and the more the FET turns on, making its resistance lower and lower. The effect is the same as moving the input to U3 further toward the ground end of a volume control; it applies less audio voltage to the input, thus cutting back on the output. The result is excellent volume compression in which the output remains almost constant despite great changes in input level.

Some of the output audio is picked off by the volume control and fed to the audio amplifier IC, U4.

Audio Amplifier

A considerable variety of audio amplifier ICs is available. I used a ULN2277 for U4, which provides two Watts per channel, and I only used one channel. An LM386 could be used and will provide about half a Watt of audio to drive a small speaker beyond endurable volume. It costs about one dollar at ham supply houses. ${ }^{3}$

Power Supply

A regulated power supply (See Fig. 4) is used because the regulator IC provides excellent ripple filtering, not because anything needs a regulated voltage. The rectifier is a small, cheap bridge or it can be made up from discrete diodes rated at one Amp or
more at 35 volts or more The regulator chip will deliver one Amp, maximum, regulated, and that's probably three times the actual demand of the system. The output amplifier chip probably can be run directly from the unregulated output of the power supply, provided this does not introduce noticeable hum in the output.

Construction

Construction is straightforward and non-critical. I built the power supply into a corner of a small aluminum cabinet box, using a small piece of perfboard to mount the components. The board was mounted to the chassis with the small metal mounting lugs obtained by drilling them off old-style tie-point strips. This type of mounting is extremely convenient because it permits standing the boards on edge and provides for easy removal for service or modification.

The IC circuits were built on universal circuit boards.4 One board was sawed in half, and the compressor and clipper built on one half, the output amplifier on the other.

The toroids were mounted on a piece of perfboard with dabs of five-minute epoxy, leads anchored to tie-points, and then the perfboard was bolted to the edge of another type of universal circuit board on which each cluster of four holes is connected together by a foil pad. This is useful for mounting the transistors and other components by their leads.

Each board was stood on edge and bolted to the chassis with brackets. But these should not be used for circuit grounds. Grounding each board directly to the chassis will probably result in ground loops which produce hum, noise,

Others claim more gain for their antennas than the IsoPole ${ }^{\text {TM }}$ antennas, but none can beat the IsoPole for HONEST on-the-horizon omni-directional gain unless you are willing to spend at least THREE TIMES AS MUCH!!! The IsoPole is easiest of ALL competitive models to assemble, has a weather protected, factorytuned matching network, (no more aggravating SWR variations with weather changes), uses all stainless steel hardware, and is designed to withstand severe icing and wind conditions. The IsoPole antenna is UPS shippable without the standard 10 foot $11 / 4$ inch TV mast. You can buy the mast from your local ham dealer, hardware store, or Radio Shack ${ }^{\text {TM }}$ store for less than the shipping costs of a single mast. When good strong, low cost 10 foot sections of mast are so easily available, why compromise by using several shorter pieces that have to be joined together?

For more details, please write for our latest catalog or visit your favorite dealer.

Prices and Specifications subject to change without notice or obligation.

ADVANCED ELECTRONIC APPLICATIONS, INC.
 P.O. Box C-2160,
 Lynnwood, WA 98036
 (206) 775-7373
 Telex: 152571 AEA INTL

SATELLITE TV KIT

THE POPULAR SAT.TEC RECEIVER IN KIT.FORMI
Featured in a Radio Electronics magazine cover story (May 82), the reliable R2B Sat tec TV receiver is now operating in thousands of locations. The R2B is easy to build; pre-etched, plated boards with screened component layout assures accurate component placement and the critical If section and local oscillator are preassembled and aligned! All parts are included for the R2B; attractive case, power supply, descriptive operating manual as well as complete assembly instructions. Features of the receiver include; dual conversion design for best image rejection, fully tunable audio 10 recover 'hidden' subcarriers, divide by two PLL demodulator for excellent threshold performance, tight tracking AFC to assure drift free reception, and of course, full 24 channel tunable coverage.
Bulid your satellite TV system around the R2B, close to ten thousand others already have and now It's avallable in kit form at a new low price. Order yours today.

A complete Satellite TV System requires a dish antenna, LNA (low noise amplifier), Receiver and Modulator.
R2B Receiver Kit $\$ 395.00$
R2B Receiver, Wired and Tested $\$ 595.00$
$120^{\circ} \mathrm{K}$ Avantek LNA $\$ 495.00$ RM3 RF Modulator $\$ 49.95$ Prices include domestic UPS shipping and insurance.

| RAMSEY ELECTRONICS INC. | VISA |
| :---: | :---: | :---: |
| 2575 BAIRD RD. | |
| PENFIELD, NY 14528 | |
| T16.586.3950 | ORDER TOLL.FREE |

GIANT HEAVY DUTY TRUCK TARPAULINS

12×16	$\$ 23$	26×40	$\$ 89$
16×20	$\$ 32$	26×55	$\$ 115$
20×20	$\$ 36$	30×60	$\$ 145$
18×24	$\$ 38$	50×100	$\$ 390$
18×32	$\$ 50$	60×120	$\$ 547$
20×30	$\$ 50$	50×150	$\$ 562$

Before Midnight December 19

Viking ind. will send any of the above truck size tarpaulins to any reader of this publication who regds and responds to this test before midnight December 19 . Each tarpaulin Lot (*2-18, PVC) is constructed of high density fabric (with virgin grade ingredient, supplied by Gulf Oil Co., Dow Chemical Co., and Union Oil Co.) with nylon reinforced rope hems, double lock stitch ed hems, electronically welded seams, 100\% water proof, "4 ($1 / 2$ " dia.) metal grommets set on 3 H . centers with reinforced triangular corner patches and are recommended for all heavy duty use, and all bulk or pallet riding materials, and will be accompanied with a LIFETME guarantee that it must perform 100% or it will be replaced free. Add $\$ 7$ handling \& crating for each tarp ordered, Viking ind pays all shipping. Additional cost for color preference. Should you wish to return your tarpaulins you may do so for a full refund. Any letter postmarked later than December 19 will be returned. LIMIT: Fitfy (50) tarps per address, no exceptions. Send appropriate sum together with your name $\&$ address to: Tarp Test Dept. *485K, Viking Ind., 6314 Santa Monica Blva., L.A., CA 90038 , or for fastest service from any part of the country call collect, before midnight 7 days a week (213) 462.1914 (Ask Exchange Operator for) TARP TEST *485K, have credit card ready.

NEW!
 Transifrap Hi-Power Lightning \& Stalio "T" Protectors

Don't hook-up your coax without one!

Protects sensitive solid state components in your equipment from high-surge voltages produced by nearby lightning strikes. high wind, and static build-up. Even distant storm fronts are known to cause damaging surges without warning or time for grounding.

The replaceable Arc-Plug ${ }^{\text {TM }}$ cartridge, which can fire thousands of times, utilizes a special ceramic gas-filled tube with precisely tailored firing speed and level, safely by-passing surges to ground. Standard air-gap devices are ineffectlve due to their erratic performance.

Transi-Trap Protectors are the first devices in the industry designed with "isolated ground. This keeps damaging arc-energy off the chassis and routes it directly to ground.

Models Available: (200 W models are most senstive, best for RCVRS and XCVR's. 2 kW models designed top amps. For maximum protection use both models, with 200 W model between XCVR and Amp. All models include Arc-Plug cartridge.)
with UHF Connectors
Model LT Protector, UHF-type ' T " connector,
handles 200 W output at 50 ohms ... $\$ 19.95$ NEW! Model HT Protector, UHF-type "T" connector, handles 2 kW output at 50 ohms ... $\mathbf{\$ 2 4 . 9 5}$ with N Connectors
Model LT/N Protector, N -type "'T" connectop,
handles $200^{\circ} \mathrm{W}$ output at 50 ohms ... $\mathbf{5 3 9 . 9 5}$ NEWI Model HT/N Protector, N-type 'T'
connector, handles 2 kW output at 50 ohms

Available at your Dealer or add $\$ 2.00$ direct in U.S. - Ohio residents add Sales Tax
oscillation, and all sorts of nasties.

Instead, use a common ground on each circuit board insulated from the mounting feet, and connect the circuit ground with a wire directly to the negative voltage tie-point on the power supply board.

Operation

After the project passes its "smoke test," you're ready to learn to use it. Hook it up to your receiver and hook up the output to a loudspeaker

Set the volume control about one-fourth open, put the selectivity switch in the Off position, and turn the clipper on. Feed a steady signal into the amplifier. The tone from a $100-\mathrm{kHz}$ calibrator will work fine. Adjust the clipping threshold, noticing that at the clockwise extreme of the pot, you get no signal output at all. At the counterclockwise position you get no clipping and at points in between clipping is apparent because of the change of audio quality of the clipped signal.

Flip in one filter section and notice that the clipped signal suddenly sounds clean again. The harmonics have been filtered out. The second toroid section won't seem to have much effect in this test - but it will in actual operation.

Now find a place on the receiver dial which is fairly clear of signals, turn off clipping and selectivity, and set the receiver volume control until you can just hear the crackle of background noise in the speaker, or to where you can hear a weak CW signal. Leave the volume control set, and tune across the band slowly, stopping to listen to each signal you come to.

Loud signals are no louder than weak ones, but you will notice that the background noise disappears while a strong signal is pres-
ent. This is because the compression has reduced the overall gain.

Now tune away from the strong signal to a no-signal spot and listen. Notice that after a few seconds, background noise slowly becomes audible, as the compressor increases gain again. It has a fast-attack, slow-decay time constant.

Decay time is set by R5 and C3 in the gate circuit of the FET. Resistor and capacitor values are chosen to give a delay of several seconds so that the amplifier won't "pump" on a strong CW signal. Instead, it reduces gain in proportion to the average strength of the signal and keeps the gain reduced during the brief key-up periods between letters and words and even during brief pauses.

If recovery time were very short, band noise, weak QRM signals slightly off frequency, and other disturbances would appear in the background instantly whenever the desired station released his key - very tiring and disturbing to the receiving operator. Try it if you like, by temporarily replacing C3 with, say, a $0.47-\mu \mathrm{F}$ capacitor.

Changes to Play With

The overall design of this unit is quite flexible and, since it is built in modules, with each section on its own circuit board, it is quite easy to experiment.

Various degrees of selectivity can be achieved, for example, by shunting the toroids with resistors, to broaden them, or by adding a third toroid for extreme selectivity. Various kinds of active audio filters can be substituted for the toroids. Skirt selectivity of the toroid filters can be improved by insertion of two 1N914s reverse-connected in parallel between the first toroid and the coupling capacitor to the base of Q1 (see Fig.

Fig. 5. Compression control modifications.
1). These are silicon diodes which will not conduct at all until forward voltage across the junction exceeds about 0.7 volts. Therefore, the base of Q1 won't "see" any output from the toroid until the voltage rises above 0.7 volts, thus effectively rejecting low-level QRM on the skirts of the filter.

The compression threshold can be manipulated over a wide range, if desired, since compression does not begin on weak signals until they reach a certain minimum voltage. That's because the FET is pinched off and some of the bias must be overcome before the FET drain begins to conduct at all.

However, if the drain is removed from the R3-C4 tap (leaving the other components attached), and connected to the wiper of a pot, this delay of the attack can be changed at will (see

Fig. 6. Optional S-meter circuit.

Now its on its way to another car. Or perhaps a boat. Or maybe it's locked safely away.

Because this amateur invested in a Larsen QUIK-Change Radio Mount System. It lets him move his radio from one vehicle to another instantly - with no manual connec tions. So now he can use one radio in several vehicles or several radios in one vehicle.

The beveled, high impact plastic slides self-align and selffubricate for smooth, non-binding engagement time after time. When the radio is removed, the small vehicle base blends unnoticed into the interior, with no unsightly connections or exposed wires. And when
the radio is left in the vehicle, the optional key lock keeps it safe and secure.

The QUIK-Change works with all radio makes at only a fraction of the price of a radio So you can afford to have one for each vehicle and radio you own.

The next time you visit your amateur dealer, ask for a QUIK-Change demonstration. It only takes a second. And itll save you a lot of minutes changing radios.

Vancouver. WA 98068 Phone: 206-573-2722 IN CANADA. Canacilan Larsen Electronics, Lfd. 283 E. 11th Avenue Unit 101
Voncouver, 8.C. V5T 2C4 Phone 604-872-8517 RADIO MOUNT SYSTEM
-322

SATURN V

The Saturn V is a deep fringe microwave receiver for homeowners that are outside of the service area of local pay TV stations (i.e. HBO, Showtime). It is normally used within line of sight of a transmitting tower in a 50 mile range and is simply attached to your TV antenna mast. This unit is completely ready to install including all cable and mounting hardware. It is designed to be installed by the homeowner.
We accept MasterCharge \& Visa.

| Microwave and Satehte Systems :- | 1.3 | $\$ 165.00$ |
| :--- | :--- | :--- | :--- |

ing a transistor switch to clamp the clipper diodes when the key is down. The keying signal for the transistor can be a logic low or high picked off from a sol-id-state electronic keyer, such as the Accu Keyer, or by the relays of other keyers. See Fig. 7.

When the muting transistor is off, which it always is when the key is up, it has no effect on the operation of the diode clipper, but SW2 must be open for muting to function properly.

When the key is down, the transistor turns on to saturation. This offers a low-resistance path to ground for the dc bias on the diodes, effectively grounding both the diodes and the audio signals passing through them. Because of its lower junction voltage drop, a germanium transistor will work better here than silicon. Even so, muting is not absolute and some signal from the receiver gets through at low level. The circuit does not

Fig. 7. Muting circuit added to peak clipper.
affect operation of the rest of the audio processor.

Sidetone can be injected into the amplifier when the key is down, making it appear in the same speaker which carries the incoming signals (see Fig. 3). Since the sidetone is injected after the clipping, compression, and selectivity, it is not affected by processor operation and can be set for any convenient pitch or volume.

Several inputs can be provided for the processor, selecting them by switch from the front panel. This makes it possible to use the processor on just about any receiver in the shack.

Auxiliary outputs often come in handy, too, for driving phone patches and similar uses. I provided mine with three front-panel headphone jacks - one of each of the popular sizes of plugs - so that any handy headphones can be plugged in without a hassle.

I built in a little two-inch speaker for convenience in testing and portable operation, but a phone jack is provided for an external speaker. Plugging in the external speaker mutes the internal one. Both speakers can be muted by a frontpanel switch, if desired.

A back-panel switch can be added to allow operating the unit from an automobile battery for Field Day or emergency situations. The SPDT switch is connected with the pole to the internal +12 -volt lines of the circuit boards. One contact is connected to the output of the 12 -volt regulator chip. The other contact is hooked to a backpanel binding post which goes to the external battery. A second binding post should be provided to permit connection to the battery negative.

A $1000-\mu \mathrm{F} 35$-volt capacitor is connected from the pole of the switch to ground It helps with the filtering of the regulator out-
put and, when used on a car battery, it helps to subdue ignition and voltage regulator noises and alternator whine.

Troubleshooting

Troubleshooting the processor is as simple as troubleshooting can be. Nothing is critical as to value or adjustment, except that the tuned filter circuits must be on exactly the same frequency. Failure to operate properly will almost always prove to be traceable to a wiring error or a faulty diode, transistor, or IC chip, a solder bridge on a circuit board, or failure to solder a connection.

References

1. George Thurston W4MLE, "A Versatile Receiver Audio Sys. tem," QST, May, 1962.
2. C. W. Andreasen N6WA, "The Amazing Audio Elixir," 73, September, 1979. Note that the diagram in this article has an error. The lead from CR2 to the gate of the FET is not connected to the voltage divider or to the source of the FET. What is shown as a connection dot should be a nonconnecting cross-over.
3. Suitable audio amplifier chips available from Radio Shack and other suppliers include: LM1877N-9, dual-channel, two Watts per channel, (catalog number 276-702); LM386, onechannel, $400 \cdot \mathrm{~mW}$ output (2761731); LM383/TDA2002, onechannel 8-Watts (276-703); BA521, one-channel 5.8 Watts (276-704).
4. The IC board is available from several suppliers, such as Glob. al Specialties Co., 70 Fulton Terrace, Box 1942, New Haven CT 06509, or 351 California St., San Francisco CA 94104, or from Radio Shack, catalog number 576.170 , for about $\$ 3.00$ each. This board is perforated for IC chips and has lands which permit connecting up to four components to each IC pin.
The second type of universal board has a quad land pattern, that is, each cluster of four holes in a square is connected by foil. It is excellent for mounting transistors and other components by their leads. Sold by Calectro (G.C. Electronics), catalog number J4-609, for less than $\$ 2.00$ each.

DRAKE TERMINALS

Microprocessor Controlled

The ultimate in communications versatility, the Drake Theta 9000 E provides complete transceive capability of CW (Morse Code), RTTY (Baudot), and ASCII. A full computer RS232 interface, cassette tape storage port, selective calling feature with answer-back, light pen graphics, printer interface and word processing software are all standard.
Seven large 256 character memories are backed up with battery power so there is no need to reload information with each use. Memories may also be partitioned providing up to 29 separate storage locations. A type-ahead buffer of 3120 characters makes it easy to compose your response while still receiving. Operator controlled scrolling permits review of up to 10,720 previously received characters. Line length is selectable at 40 or 80 characters, your choice, and all mode and speed indicators are displayed on the screen for instant status recognition. The 9000E has 3 tone groups and 3 shifts which are all keyboard selected

You won't buy any other communications terminal once you have studied all the advanced operating convenience built into the Drake Theta 9000E. It's complete.
 The Drake Theta 550 is a compact receive-only communications terminal and is designed to demodulate and display the three most popular over-the-air modes of data communications: CW (Morse Code), RTTY (Baudot), and ASCII. Any standard TV monitor can be used.
A full-featured microprocessor controlled unit, the Drake Theta 550 has selective calling, battery backed-up memory, audio monitor, and informative L.E.D. tuning indicators. There is also interfacing to permit the addition of a dot matrix printer for "hard" copy and a keyer paddle input to permit CW transmission with full iambic operation.
CW automatically tracks over a speed range of 5 to 50 words per minute and RTTY modes offer nine selectable standard speeds of transmission. 12 volts $D C$ is required.
This unit is ideal for shortwave listeners and hams who have been missing the increasing volume of data communications over the air.

Line output, input levels as low as 15 mV rms (47 kilohm) will result in an output of 1 mW nominal into a 600 ohm balanced line. Output level adjustable by internal preset level control. Interfaces low level audio to RTTY terminal unit or phone line that requires a 600 ohm balanced/unbalanced input. One 36 " phono to phono cable supplied.

'BBRAND NEW'

CHAMPION MESSAGE

 MEMORY KEYERModel TE-292 $\$ 125.95$

- Sell.compleling dols and dashes
- Both dot and dash memory
lambic Keying with any squeeze paddle
- 5.50 w.p.m
- Speed volume. tone. lune and weight controls
- Sidelone and speaker
- Low current drain CMOS batfery operation-portable
- Rear panel Jack for auxilrary power
- Deluxe quarter-inch facks for keying and oulpuf
- Keys grid block and solid rigs
- WIRED AND TESTED FULLY GUARANTEED-LESS BATTERY

$\$ 89.95$

Features:

Model TE-284

- State of the Arl CMOS Criculliy - Three choices of Message Storage A. Two (50 chatacter each) message storage
B. Four (25 character each) message storage
C. One 50 character and iwo 25 character message storage
- Records al any speed plays al any speed
- Memory operating LED
- Use for darly QSO or contests

PLUS

- Sell-completing dots and dashes
- Both dol ana dash memory
- lambic Keying with any squeeze padole
- 5.50 w.p.m
- Sipeed. volume, tone. lune and weight controls
- Sidetone and speaker
- Low currenl diain CMOS battery operation-portable
- Deluxe quarler-inch jacks forkeying and oulpul
- Keys grla block and solid rigs
- wired and tested fully guaranteed-less batteay

MEs8AGE MEMORY KEYER

Fanturea:

- Advanceá CMOS message memoy storage
- Repeaf ilunction
- Records at an
ity speea speeo-prays dack
Erample senge capacity Erample send CQ co co Dx de weirjm wazYjM $\begin{gathered}\text { - Then play }\end{gathered}$ second message on conidCl-de
WB2YJM OSL NV NY 579579 Paw Paulk OSL NV NY 579579 Paw - Uselor darly QSOs or contesis

Model TE20I
\$75.95

plus:

Siate of the ant CMOS weye

- Sell complelling dors and dashes
- Boln dol and dash memory
pambic keving with dny squeeze
padale
5.50 mpm
- Speed volume tone fune and
weight conliols
Sidelone and speake
- Low curreni drain CMOS Dalferv
operation-porlable
- Delure quarler inch jacks for key
ing and ouloul
- Kers gria biock and solid starerigs GUARANTEEO-LESS BATPERY

$\$ 65.95$

Electronic Koyer
- State-ol-the aft CMOS circully
- Self completing dors and dashes
- Both dol and dash memoly
- IAMBIC keying with any squeeze paddie 5.50 mpm speaker
- Semi-auromafic "bug" operafion \& siraight keving-rear panelswich
- Low current drain CMOS ballery operation-porlable
- Deiuxe quarter inch facks for keying and oulpul Keys grid block and solld state rigs
- Wired and tested-tully guaranteed-less batlery

MODEL TE133 - same as TE144 with wgt and tone control internat, less semi. aulokeying
$\quad \$ 55.95$
at your dealer or send check or money order. \$45.95 Plus $\$ 2.00$ S/H NY Res add tax

ELECTRONICS, INC 1106 RAND BLDG. BUFFALO NY 14203

808 N. Main - Evansville. IN 47711
AEA
MBA-RO Reader
MBA-RC Rcv/Code Conv. Xmt
MM-2 MorseMatic Ultimate Keyer
MM-2 Morse Matic Ultimate K
KT-2 KeyerlTrainer
KT-2 Keyer/Trainer
Isopole $144 / 220 \mathrm{MHz}$
ALLIANCE
HD73(10.7 sq. ft.) Rotator
U. 100 Small Rotator

ASTRON
RS7A 5-7 Amp Power Supply
RS12A 9-12 Amp
RS20A 16-20 Amp
RS20M 16-20 Amp w/meter
RS35A 25-35 Amp
RS35M 25-35 Amp w/meter
AZDEN PCS 40001300
Most accessories in stock
B\&W Folded Dipole 80.10 meter
BASH
Study Guides \boldsymbol{T} Tapes
BENCHER
BY-1 Paddle
BY-2 Chrome Paddle
BUTTERNUTHFGV
CALLBOOKUSIDX
CUSHCRAFT
A3 Tribander 3 EL
A4 Tribander 4 EL
214 B 14 EL 2 Mir Boomer
32.19 Super Boomer

ARX-2B Ringo Ranger II
DAIWA
CN $5201.8-60 \mathrm{MHz}$ Small Mtr.
CN 620B 1.8-150 MHz Mtr
DRAKE
TR7AXCVI
R7A Receiver
TR5 Xcvr
ENCOMM (SANTEC)
ST-144/uP
ST-440/uP
CT2100 Terminal
RS2100 Scope
CWA 685A TeleReader
HY-GAIN
TH7DX7ELTribander
TH3MK3S 3 EL Tribander
V22 MIr Vertical "Exceltent"
HAM IV Rotator 15 sq . ft .
Talliwister Potator 20 sq. ft .
Crank-up Towers
ICOM
720A Magnificent Xcvr!
740 Xcvr Wow!
730 Excellent Alg! Low Price
251 A 2 MtrAll Mode
290H 2 Mtr All Mode
25 Mtr Very Small Mobile
25A 2 Mtr very Small
2 AT/3 AT/4 AT HT's
IC R70 Fantastic Receiver!
KLM Fantaslic Receive
$\$ 269.00$
$\$ 269.00$
395.00
395.00
135.00
135.00
99.00
99.00
89.00
89.00
35.00
$\$ 99.00$
$\$ 9.00$
45.00
$\$ 49.00$
$\$ 99.00$
69.00
$\begin{array}{r}89.00 \\ \hline 109.00\end{array}$
89.00
109.00
135.00
109.00
135.00
135.00
149.00
call
$\$ 135.00$
$\$ 9.95$
$\$ 36.00$
$\begin{array}{r}45.00 \\ \\ \hline 119.00\end{array}$
19.95/18.95
$\$ 179.00$
229.00
89.00
36.00
$\$ 63.00$
110.00
$\$ 1439.00$
1399.00
695.00
$\$ 285.00$
call
call
$\$ 695.00$
295.00
$\begin{array}{lr}\text { KT34A } 4 \text { EL Tribander } \\ \text { KT34XA } 6 \text { EL Tribander "Beauliful Ant." } & \$ 365.00\end{array}$
KANTRONICS
Interface
Mini-Terminal Rcv/Code Conv. Xmt
Mini-Reader Pkg.
LARSEN
NLA 150 MM 2 Mtr Mag
2 meter $2-20,4-40 \mathrm{MHz}$
MFJ
496 Keyboard
941C Tuner
VHF Converter for 2 Mtr HT's
MIRAGE
B108
call
call
call
call
$\$ 1140.00$
1140.00
call
call
call
575.00
call
call
235.00
235.00
call

B1016
B3016
ROHN Towers
ROHN TO
SHURE
SHURE
444D Very Nice Mic
TEN-TEC
Corsair new Xcvr
525 Argosy TOKYO HY.POWER
HL32V 25W Amp
HL82V 80W Amp
HL160V 160 Amp
$\$ 165.00$
165.00
249.00
225.00
$\$ 39.00$
call
$\$ 289.00$
81.00
36.00
$\$ 155.00$
239.00
205.00
$\$ 50.00$
call
call
$\$ 79.00$
$\begin{array}{ll} & 285.00\end{array}$
This is a partial listing. Please call for accessories and other products not listed. Prices a sories and other products not
avallability subject to change.

Send SASE for our new $\&$ used equipment list.

RTTY - 50
Basic Terminal Unit

- 60 mA Loop Keying
- PLL Demod w/2 pole filter
\$7900
- AFSK Generator

Call or write for FREE catalog with over 65 P.C. Boards \& Kits

RTTY - 100
Expanded Version of the Popular RTTY - 50

- AFSK
- 4 Pole Fitters
- 850/170
- AGC (80db)
- TTL 8 RS232
- 60 mA Loop
- Loop Supply
s18900
- Auto Start

COMMUNICATIONS DESIGN INC.
 1105 Lehr St
 West Memphis. Arkansas 72301
 (501) 735-4568

ALL BAND TRAP VERTICAL ANTENNAS:

FULL 1/4th WAVE - All Bands! Automatic Selection Ground or rool mount. HEA VY Double Wall seamless Aluminum lower sectlon - HI STRENGTM FIBERMPY TRAPS - NO UNSIGHTLY CLAMPS needed Same size all the way up $11 / 4$ ". Traps moden msude rou can use it in a I ft , sa. Backyard! Neighbors will never know this ts A Hi-Power. ALL Drection DX An-
tenna. FOR APARTMENTS. ROW HOUSES, MOBILE HOMES. CONDOS etc. where minimum space and neat appearence is MANDATORYI Instant "Drive (includec) (All angle coot mount - Extra) COMPLETELY PRETUNED - NO ADJUSTMENTS NEEDED EVERI NO TUNER NEEDED Over All Banda lexeept Bo
meter-4OO KC) SWR $1-1$ to $2-1$ mi Band edges, Stnd.
 RGBU Teedine. Matches ALL MAKES TRANSCIEV ERS. 2000 Watt PEP. Anput power. Stipped -PRE
PAID IN USA. Assmbles in 10 min. using only cre wariver. WEATHERPR OOF!
No.-AVTBO-10 - 5 Band - 29 \qquad $\$ 179.95$
$\$ 129.95$ No. AVT40-10- 4 Band- $19{ }^{\prime \prime}$ - $\$ 129.95$ No.- AVT20-10-3 Band - $\$ 99.95$ SEND FULL PRICE FOR PP DEL IN USA (Canada order using VISA MASTER CARD Or AMERICAN ExPRESS. Give Number and Ex. date. Ph l-308-236-5333 9AM-6PM weekdays, We shio in $2-3$
days PA Prices Will increase, so order NOW
AND SAVE. All Antennas Guaranteed for 1 year
-10 day money back irial. it returned in new condi-
ton. Free Inf.
WESTERN ELECTRONICS - 80
Dept. A7. 11 Kearney Nebr. 6884

CONTACT-80

An ultra sophisticated yet simple to operate RTTY System for the demanding operator at an affordable price.

Features:

- Disk IIO SAVE, LOAD, KILL \& DIR
-TRI-SPLIT screen, user defined
- 10 CANNED MESSAGES
- DYNAMIC BUFFER ALLOCATION
- Live HARDCOPY for parallel printers
- Keyboard CONTROL of STATION
- AUTO-ID; RTTY, CW (selectable ONIOFF)
- CLOCKED OUTPUT rate
- All BAUDOT speeds plus ASCII (110)
- NAME, DATE, TIME fróm computer.
- On screen BIT PATTERN SCOPE

Requires TRS 80, MOD.III with your CALL SIGN plus TU with 60 ma loop.
DISK I/O: VERSION
CASSETTE IIO: VERSION $\$ 229.00$

CommTek

Post Paid

4493 Orleans Dr., Dunwoody, GA 30338 (404) $946-9314$

A Tuner for Antenna Fanatics

Anyone experimenting with antennas needs a darned good tuner. Construct this one and save your finals.

Various antenna tuner networks for the HF bands have come and gone

Fig. 1. Tuner circuitry. The S2 switch arrangement may appear complex, but wiring is not complicated nor are long pear complex, but wiring is not complicated nor are long
lead lengths introduced, since most of the wiring is between switch lugs. Normally, a twowafer switch would have to be used, although single-wafer surplus switches having a 5P3T action can be found. C1 and 2-at least 250 pF each, rated at 1.5 kV for $300 \mathrm{Watts}, 2 \mathrm{kV}$ for 500 Watts , and 4 kV for 1 $k W ; L-18$ to $28 \mu \mathrm{H}$, \#10 or 12 wire; S1 and 2 - Centralab PA-2000 series or similar.
over the years, but two forms have evolved as timeproven favorites-the Pi 4273 Magazine - November, 1982
and T networks. The basis for the durability of these networks is a combination of electrical as well as constructional reasons.

The Pi network will not match an extreme range of impedances, but it is relatively easy to construct and adjust in operation. Its main disadvantage is that it requires considerable amounts of capacitance on the lower frequency bands when working into low-impedance loads. Usually, padding capacitors are required across the variable capacitors on the lower frequency bands when a highpower tuner is being constructed since 1,000- or $2,000-\mathrm{pF}$ variable capacitors rated at 2 to 3 kilovolts are not exactly common items.

On the other hand, the T network does not require extreme amounts of capacitance even on the low-frequency bands when matching into the same or even greater range of load impedances than a Pi network
will accommodate. The T network is, however, slightly more tedious to adjust and also to construct since the variable capacitors used must have both their stator and rotor sections above ground. The popular "Transmatch," by the way, is a basic variation of the T network.

But, why not have the best of both networks in a single multiband tuner? This article describes a switchable, multi-network tuner which is designed to optimize the matching possibilities available using commonly-available L/C components of moderate electrical and physical dimensions and, of course, of moderate cost. The tuner can be tailored to handle PEP output powers from 500 to 1000 Watts. The physical dimensions are quite moderate for the power-handling capabilities involved and one easily can add such features as selectable antenna switching and swr monitoring.

The schematic of the tuner is shown in Fig. 1. As shown, it incorporates selectable LC-, CL-, or T-network tuning, input switching direct to any of three loads (one of which can be a dummy load), switching using the tuner network to any one of two selectable antenna loads, and complete, internal swr measurement circuitry. Of course, one can scale up or down the possibilities shown in the schematic in any way desired in order to construct just the basic tuner, expand the antenna switching possibilities, etc.

The reason for having selectable LC- or CL-network tuning (a reversible L network) instead of a simple Pinetwork option is to further increase the mileage obtainable out of the components used. Since two variable capacitors have to be used in the design of the tuner, the option is available to use them in a conventional Pi-network manner as tunable input/output capacitors or to parallel them and use them as combined output or input capacitors in a reversible L network. The latter will provide a greater range of im-pedance-matching possibilities at the expense of only a bit more component switching complexity, and so it was used.

If one uses a conventional input/output tuned Pi network with extremely wide-range variable capacitors, it usually will be found that any load that can be matched using both variable input/output capacitors can also be matched using only either a variable input or output capacitors and a suitable value of inductance. However, the capacitance range of a single variable capacitor required will usually be less than the combined capacitance of separate input/output variable capacitors in a Pi network

The practical construction details of the tuner are not difficult to follow or perform if you approach them on a step-by-step basis. The $500-$ Watt outputrated version of the tuner is housed in an attractive twotone blue/gray Radio Shack enclosure (\#270-269) measuring $7-7 / 8^{\prime \prime} \times 3-1 / 2^{\prime \prime} \times$ $5-7 / 8^{\prime \prime}$. This aluminum housing is easy to work and you can construct the tuner using basic hand tools.

After you have initially sized-up the placement of components within the enclosure, drill or punch out the necessary mounting holes on the rear panel for the coax connectors, on the bottom of the enclosure for inductor and capacitor mounting, and on the front panel for control shafts, switches, meter, etc. Generally, the following sequence of mounting and wiring and components will make the tuner go together easily:

1) Mount the front-panel network changeover switch and the rear-panel coax connectors.
2) Mount the two variable capacitors. These capacitors have to be "above" ground. There are numerous ways to achieve a suitable mounting. The simplest is probably through the use of plastic \#6 mounting screws/nuts with $1 / 4^{\prime \prime}$ spacers to keep the capacitor rotors above ground. If such material is not readily available, a $1 / 4^{\prime \prime}$-thick piece of Plexiglas ${ }^{\text {M }}$ or bakelite can be used to raise the capacitors above the enclosure bottom using metal hardware.
3) Wire up the network changeover switch to the capacitors with leads extended to where the inductor and antenna selector switch will be mounted.
4) Mount the variable inductor and the swr measurement circuitry (if used).
5) Mount the antenna selector switch to the back panel

Fig. 2. The swr circuitry is simple but sensitive and needs no shielding inside the tuner enclosure. With a 50 -Ohm carbon resistor on the S1 side and the meter switch to reflected, adjust C1 for minimum meter reading. Do the same with C2 when the resistor is connected to the rf in side and rf is fed into the S1a side of the circuit.
(using $1 / 2^{\prime \prime}$ to $3 / 4^{\prime \prime}$ standoff hardware) and wire it up.
6) Mount the insulated shaft couplings on the variable capacitors, extension shaft to the antenna selector switch, etc.

Of course, you can vary the location of the components in a variety of ways, but you should more or less plan out the construction of the tuner in the manner illustrated above. It really takes less time to complete than is involved in even assembling a commercial kit which often has rather laborious point-to-point wiring instructions.

Another swr bridge circuit was constructed using a toroid-core transformer and it worked very well. The circuitry of the bridge is shown in Fig. 2. The components are mounted on a small piece of perforated board stock; there is no need to etch a board for the few components involved and they can be wired together directly.

The board is mounted inside the rear panel of the tuner directly by the input coaxial connector. No shielding is required since the toroid is largely selfshielding. The sensitivity allows for measurements with 10 to 20 Watts of transmitter output power even on the low-frequency
bands. The only thing that you must do, however, is to balance out the stray capacitances in the circuitry as noted in the caption for Fig. 2. The procedure is simple but it cannot be neglected if proper readings are to be obtained on 10 and 15 meters.

The meter used happened to be a surplus CB one that had an swr scale, but any inexpensive meter with a $200-\mathrm{mA}$ or more sensitive movement will suffice. There is no real need to calibrate the meter since it normally is used only to adjust the tuner for a minimum reading in the reflected switch position once the meter has been adjusted for a full-scale reading in the forward switch position.

A minor point, by the way, about the meter switch used: It is springloaded, so it must be pushed down to read forward and will snap back to its reflected position (labeled SWR). This small refinement makes it rather easy to adjust the tuner since the way the switch and meter adjustment control are placed on the front panel the index finger on one hand can be used to depress the switch while the thumb and middle finger are used to adjust the control. The other hand is free

15 Meter Mobile CW \& USB

START YOUR DAY ON A GOOD KEY!!! WORK OTHER HAMS LIKE: XE2BGM, ZLIPQ, KL7JFV, EA7EU, NN3SI, DJ8RR, DLOBBC, US6AK, JA3JMP, PY2-CPQ, FO8GW, KM6FF, VK2BD OA4ARB VETDYX W1AW

High 10W (PEP) low 2W (PEP): VFO tuning: noise blanker: fine-tuned $\mathrm{SB}, \mathrm{KHz} \pm \mathrm{CW}$ off-set; digital frequency counter, 13.8 V dc (16) 3A, negative ground; L $9.5^{\circ} \times \mathrm{W} 9$ $\times \mathrm{H} 2.5^{\prime \prime}$; weight (2.3 kg) 5.7 Ibs.; mobile mounting bracket

BY: PANASONIC
SOON - NEW
just slightly ahead
10-160 METERS
OF OUR TIME
amateur division of matsushita electric DLR INFO \& ORDER. CALL 1275 N. GROVE ST.
ANAHEIM, CALIF. 92806 (714) 630.4541 NOTE: Price, specifications subject to change without notice and obligation.
to adjust the tuning controls

Speaking of controls, there is no turns indicator on the rotary inductor. Regular turns counters take up a lot of enclosure space and are not all that necessary unless you insist on extremely fast control presetting. In reality, if you note the setting of all the other controls for the band/antenna being used, it is a simple matter to rotate the inductor for approximate minimum swr and then finish up the tuning by going back and forth between the inductor and capacitor tuning controls.

It's no secret that it generally only makes sense to home-brew a tuner if one can find the components necessary at reasonable prices. If you built a 500 -Watt version of this tuner using all new, off-theshelf parts, the parts cost could easily run around
$\$ 120$ On the other hand, using surplus or new surplus parts, the cost could be as low as $\$ 25$. Simply hunt around for the parts needed at the right prices. Fair Radio Sales (1016 E. Eureka, Box 1105, Lima OH 45802), for instance, which frequently advertises in 73, often has very good buys on transmitting-type variable capacitors and inductors.
The tuner has been labeled as a "Universal Coupling Unit." That euphuistic name was only the result of having a limited selection of words available in a rubon lettering set. No tuner will, of course, couple to absolutely all loads. The tuner described will couple a 50 -Ohm output transmitter to just about any reasonable antenna load; the same as can be done by commercially available tuners which use the same type of circuitry and component dimensions.

CD ICOM

FOR THE PRROFESSIONAL AMATEUR

NaO

 distributing 7201 N.W. 12 ST. MIAMI, FLA. 33126 (305) 592-9685 (305) 763-8170 WATTS $800 \cdot 327-3364$

IC-720A H.F. LIST $\$ 1349.00$

SSB-CW MODE PORTABLE RADIOS IC-502-A 6 METER LIST 239.00 N\&G PRICE 185.00 IC-202.S 2 METER LIST 279.00 N\&G PRICE 215.00

IC-25-A
LIST $\$ 349.00$

IC-451A U.H.F. LIST \$899:00

IC 730 H.F. LIST $\$ 829.00$

IC-2AT IC-3AT IC-4AT
Accessorles Stocked

THE GIANT A $\sim \mathrm{D}$ = COMPANY REVOLUTIONIZES THE STATE OF THE ART AWE and AZDEN. introduce the brlulant new PCS-2800 MICROCOMPUTER CONTROLLED SUPERIOR COMMERCIAL GRADE

 10 METER FM TRANSCEIVER
SPECIAL

COMPARE THESE FEATURES WITH ANY UNIT AT ANY PRICE

- FREQUENCY RANGE: Receive and transmit: 28.000 to 29.995 $\mathrm{MHz}, 10 \mathrm{KHz}$ steps with builf-in -100 KHz repeater offset.
- ALL SOLID STATE-CMOS PL DIGITAL SYNTHESIZED,
- SIZE: UNBELIEVABLE! ONLY $63 / 4^{\prime \prime} \times 23 / 8^{\prime \prime} \times 93 / 4^{\prime \prime}$. COMPARE!
- MICROCOMPUTER CONTROLLED: All scanning and frequencycontrol functions are performed by microcomputer.
- DETACHABLE HEAD: The control head may be separated from the radio for use in limited spaces and for security purposes.
- SIX-CHANNEL MEMORY: Each memory is re-programmable. Memory is retained even when the unit is turned off.
- MEMORT SCAN: The six channels may be scanned in either the "busy" cr "vacant" modes for quick, easy location of an occupied or unocoupied frequency. AUTO RESUME. COMPARE!
- FULL-BAND SCAN: All channels may be scanned in either "busy" or "vacant" mode. This is especially useful for locating repeater frequencies in an unfamiliar area. AUTO RESUME. COMPARE!
- INSTANT MEMORY-1 RECALL: By pressing a bution on the microphone or front panel, memory channel 1 may be recalled for immediate use.
- MIC-COVTROLLED VOLUME AND SQUELCH: Volume and squelch can be adjusted from the microphone for convenience in mobile eperation.
- DIRECT FREQUENCY READOUT: LED display shows operating frequency, NOT channel number. COMPARE!
- TEN (1C) WATTS OUTPUT: Also 1 walt low power for shorter
distance communications. LED readou: displays pover selection when transmitting
- DIGITAL S/RF METER: LEDs indicate signal strength and power output. No more mechanical meter novements to fall apart!
- LARGE $1 / 2 \cdot$ INCH LED DISPLAY: Easy-to-read frequency display minimizes "eyes-olf-the-road" time.
- PUSHBUTTON FREQUENCY CONTROL FROM MIC OR FRONT PANEL: Any frequency may be selectec by pressing a microphone orfront-panel switch.
- SUPERIOR RECEIVER SENSITIVITY: C. 28 uV for $20-\mathrm{dB}$ quieting. The squelch sensitivity is superb, requiring less tran 0.1 uV to open. The receiver audio circuits are designed and built to exacting specifications, resulting in unsu-passed received-signal intelligibility.
- TRUE FM, NOT PHASE MODULATION: Transmitted audio quality is optimized by the same high standard of design anc construction as is found in the receiver. The micrephone amplifier and compression clrcuits offer intelligibility second to none.
- OTHER FEATURES: Dynamic Microphone, buili in speaker, mobile mounting bracket, external rerrote speaker jack (head and radio) and much, much more. All cords, plugs, fuses, microphone hanger, etc. Included. Weight 6 lbs.
- ACCESSORIES: 15' REMOTE CABLE... $\$ 29.95$. FMPS-4R A/C POWER SUPPLY.... $\$ 39.95$. TOUCHTONE MIC. KIT.... $\$ 39.95$. EXTERNAL SPEAKER....\$18.00.

AMATEUR-WHOLESALE ELECTRONIGS order NOW TOLL FREE
 8817 S.W. 129th Terrace, Miami. Florida 33176 Telephone (305) 233-3631 \odot Telex: 80-3356
 U.S. DISTRIBUTOR DEALER INQUIRIES INVITED
 $1: 800: 3273102$

CREDIT CARD HOLDERS MAY USE OUR TOLL FREE ORDERING NUMBER.

Digital Basics

This is no time to be a digital illiterate. Part III reveals the secrets of multivibrators, shift registers, and other notorious devices.

Fig. 1(a). One-shot multivibrator. Trigger pulse causes output to go HIGH for period T. The second pulse has no effect.

The first two parts of this three-part series led you step by step into the digital electronics swimming pool. We now can wade in past the ankle-deep water of the kiddies' pool and venture into knee-deep water. Thus far, we have discussed the

Fig. 1(b). A retriggerable monostable multivibrator can be retriggered while the output is still HICH. Note that the total duration of the HICH state is not $2 T$.
loseph 1. Carr K4IPV 5440 South 8 th Road Arlington VA 22204
various digital IC logic families, assorted types of gates, and a variety of flipflops. We now will turn to the subjects of multivibrators and counters.

Multivibrators

A multivibrator is basically a pulse-producing circuit. There are three basic forms of multivibrator: monostable, bistable, and astable. It takes little imagination to detect that these designations refer to the stable output states that are possible for each type of circuit

The monostable multivibrator has but one stable state (usually the state in which $\mathrm{Q}=$ LOW . . . but not always). Triggering the monostable multivibrator
causes the Q to go HICH for a time, but since this is not a stable state, Q will drop LOW again when a pre-determined time period has elapsed. Monostable multivibrators are also called one-shot circuits and also (erroneously, albeit graphically) pulse-stretcher circuits. The latter label is a misnomer because the circuit does not actually stretch a pulse but generates a new pulse that has a longer period

The bistable multivibrator has two stable states. It can remain in either state (i.e., $\mathrm{Q}=$ LOW or $\mathrm{Q}=$ HICH) indefinitely. The RS flip-flop is an example of a bistable multivibrator.

The astable multivibrator has no stable states. It is in-
capable of remaining in either Q LOW or Q HIGH states. The Q output of the astable multivibrator will flip back and forth between the HICH and LOW states, producing a square-wave pulse-train output signal. For this reason, the astable circuit is usually used to produce the clock pulses found in digital circuits.

There are several ways to produce each of these types of multivibrator. Space prevents us from considering all of them. We will examine a few circuits built from discrete gates and the integrated circuits. Some IC devices, like the 555 timer, will operate in either the monostable or astable mode.

When we speak of bistable multivibrators, we actually are talking about the RS flip-flop. Recall from the earlier sections of this article that the RS FF can remain happily in either the $\mathrm{Q}=\mathrm{LOW}$ or the $\mathrm{Q}=\mathrm{HICH}$ states indefinitely.

Most monostable multivibrators will not respond to further input trigger pulses until the period of the output pulse has "timed out," i.e., the output has returned to its stable state. Monostables that will not respond to further trigger commands until the output duration has expired are nonretriggerable monostables.

Some one-shot circuits, however, are retriggerable, meaning that they will respond to further input trigger commands while the one-shot is in the unstable state (i.e., before it has timed out). Consider Fig. 1 to see how this works. Fig. 1(a) shows the operation of the regular nonretriggerable one-shot multivibrator. The first trigger pulse causes the output to go HICH and it remains HICH for period T. A second trigger pulse has no effect on the one-shot because it occurs before T expires.

Now consider Fig. 1(b). This is a timing diagram for the retriggerable monostable multivibrator. The output goes HIGH when the first pulse arrives. But before T expires, a second trigger pulse is received. This second pulse causes the one-shot to retrigger, so the output will remain HICH for an additional period T . Note that the total duration of the HICH state is not 2 T , but T plus the portion of the first period that expired prior to the second trigger, or $T+\left(T_{2}-T_{1}\right)$.

An example of a monostable multivibrator built from a CMOS type-D flipflop is shown in Fig. 2. Recall the rules for the type-D FF: (1) Since D is HICH, a HIGH will be transferred to the Q output when the CLK line goes HICH, and (2) when the clear line goes HICH, the Q output is forced LOW. The operation of the one-shot circuit in Fig. 2, then, is as follows:
a) When the circuit is at rest, Q is LOW and any charge on capacitor C1 is drained off through diode D1.
b) When a trigger pulse is received by the CLK input, Q goes HIGH. When Q is HICH, capacitor C1 will charge through resistor R1.
c) When C1 has charged to a potential of approximately 2 volts, the clear input thinks it is HICH , so the FF will force Q LOW.
d) The period that Q was HIGH, i.e., the period of the

Fig. 2(a). A CMOS flip-flop is the basis for this monostable multivibrator. R1 and C1 determine the length of the pulse. D1 allows the flip-flop to be retriggered immediately after clearing.
one-shot, is determined by the time constant of R1C1 and the potentials of the Q output and the point at which the clear input thinks that it is HICH instead of LOW

The circuit in Fig. 2(a) uses a diode (D1) across the timing resistor (R1) to discharge C 1 during the period when Q is LOW. This diode is not strictly necessary but serves to speed up the circuit considerably. Without D1, the charge on capacitor C1 would bleed off through R1. But this would require another R1C1 time constant (or so) before the voltage across C1 would discharge enough to permit retriggering of the one-shot. The purpose of D1 is to discharge C1 rapidly so that retriggering can occur almost immediately after Q drops LOW -see the waveform in Fig. 2(b).

The use of D1 creates a little problem, however.

Fig. 2(b). The potential across C1 never drops below 0.6 volts because of the presence of D1.

Fig. 3. Monostable multivibrator. The diode in Fig. 2(a) is eliminated by using Q ! to discharge Cl.

Fig. 4. Flip-flops can be combined in series to form a register which can store several bits of data. This version has serial input and either serial (SISO) output or parallel (SIPO) output.

Fig. 5. The data bit (0) is transmitted through a five-stage SISO shift register by clocking the register five times.

Fig. 6. Data is entered into this parallelentry shift register via B1-Bn. Before entry, the register is reset via R. The data is then loaded by bringing the set line (S) HICH.

Fig. 7. The jam parallel-input shift register eliminates the need to clear the registers.

The charge potential across C1 cannot drop lower than the function potential of the diode (200 to 300 millivolts in germanium types and 600 to 700 millivolts for silicon types). Fig. 3 shows the circuit for a modified version that uses switching transistor Q1 to discharge C1. The base of transistor Q1 is driven by the NOT-Q output of the 4013 flip-flop.

Shift Registers

A flip-flop is able to store a single bit of digital data.

When two or more flipflops are organized to store multiple bits of data, then they constitute a register. Most registers are merely specially-connected arrays of flip-flops.

There are several different circuit configurations that one would call a register, and we classify them according to the manner in which data is input and output to and from them. We have, for example, serial-in-serial-out (SISO), serial-in-parallel-out (SIPO), parallel-

Fig. 8. A recirculating shift register automatically couples the output data back to the input. This is something like a dog chasing its tail.

Fig. 9(a). The core of most frequency counters is the I-K flip-flop configuration. In this case, the I and K inputs are both tied H / CH.

Fig. 10(a). By cascading several J-K flip-flops, the division ratio increases by powers of two.
in-parallel-out (PIPO), and parallel-in-serial-out (PISO).

Fig. 4 represents both SISO and SIPO shift registers. The only significant difference is that the parallel output lines, used on the SIPO register, would be absent on the SISO register.

The SIPO shift register consists of a cascade chain of type-D flip-flops that have their clock lines connected together. Recall the rules for type-D flip-flops: Data can be transferred from the D input to the Q outpit only when the clock input is HIGH . The input can change at will and the output will remain the same as long as the clock line is LOW. But if the clock line goes HIGH , the Q output will follow the D input. The Q output will retain the last valid data present before the clock dropped LOW again.

This rule can be applied to the situation shown in Fig. 5, where we show the transmission of a single bit of data from left to right through a SISO shift regis-

Fig. 9(b). A single l-K flipflop is a divide-by-two counter.
ter. At the occurrence of the first clock pulse, the input line is HIGH. This point is the D input of FF1, so a HIGH, which is applied to the D input of the second flip-flop (FF2), remains after the clock pulse disappears.

When the second clock pulse arrives, FF2 sees a HIGH on its D input and FF1 sees a LOW on its D input. This situation causes a LOW at Q1 and a HIGH at Q2.

The third clock pulse sees a LOW condition on the D inputs of FF1 and FF2 and a HICH at the input of FF3. The third clock pulse, then, causes Q1 and Q2 to be LOW and Q3 to be HIGH

Note that the SISO input remains LOW after the initial HIGH during clock pulse number 1 . This means that the single HIGH condition will be propagated through the entire SISO shift register., one stage at a time. The HIGH bit will shift one flip-flop to the right each time a clock pulse arrives.

If the data at the input had changed, then the bit pattern at that input would be propagated through the shift register.

The shift register in Fig. 4 is a five-bit, or five-stage, register (any bit length could be selected). On the sixth clock pulse, therefore, the HIGH is propagated out of the register, so all flipflops are now LOW.

SAVE S\$ - HF Equipment

IC-720A 9-band Xcvr (Reg. \$1349).. SALE \$1149.00 FL- 32500 Hz CW filter
59.50

FL-34 5.2 KHz AM filter
49.50

IC-730 8-band Xcvr (Reg. \$829) SALE $\$ 649.95$ FL-30 SSB filter (passband tuning) 59.50 EX-195 Marker unit 39.00 EX-202 LDA interface; $730 / 2 \mathrm{KL} /$ AH-1 27.50 EX-203 150 Hz CW audio filter. 39.00

EX-205 Transverter switching unit 2900

IC-7409.band Xcvr (Reg \$1099) SALE \$979:95 EX-238 Internal power supply.
EX-241 Marker unit
.......... TBA
TBA
EX-242 FM unit.
TBA
EX-243 Electronic keyer unit
EX-54 9 MHz 500 Hz filter
EX-52 455 KHz 500 Hz CW filter tBA TBA EX-53 455 KHz 250 Hz CW filter. TBA

Accessories common to /C-720/730/740 PS-15 Power supply (Reg. \$149)...... SALE \$134.95

CF-1 Cooling fan for PS. $15 \ldots \ldots$.
EX-144 Adaptor for CF-1 on PS.15............... 6.50 PS-20 20A power supply (Reg. \$229).. SALE 199.95 CF-1 Cooling fan for PS-20. 45.00

Adaptor cable; PS-20 to 720/730/740 10.00
FL-44 SSB filter; 730/740 (Reg. \$159) SALE 144.95 FL-45 500 Hz CW filter; 730/740 49.95

SM-5 Electret desk microphone
HM-10 Scanning mobile mic; 730/740 59.50
39.00 $730 / 740$............ 39.50 SP- 3 Base station speaker
MB-5 Mobile mount; 720A/730 Phone patch; specify radio (Reg. \$139) SALE 129.95 AH-1 Mobile ant./tuner (Reg. \$289) SALE 259.95 AT-100 100 w auto tuner (Reg. \$349) .. SALE 314.95 AT-500 500w auto tuner (Reg. \$449) .. SALE 399.95 IC-2KL Solid-state linear (Reg \$1795) SALE \$1395.00 IC-R70 Gen. cov. receiver (Reg. \$795) SALE $\$ 699.95$

- Chede the Big Sauings at AES!

 SAVE \$30
IC-2AI Synthesized 2m FM Hand held with T / T pad. 800 ch in 5 KHz sleps, 144-147.995, selected by thumb wheels $\&+5 \mathrm{KHz}$ upshift switch: $\pm 600 \mathrm{KHz}$ offsets. 15 or 1.5 output with supplied nicad pack. Optional packs for larger capacity or higher power. Supplied with 250 ma. nicad pack (BP-3), wall charger, Hlex antenna, belt clip, strap, earphone and plugs. $6.6^{\prime \prime} \mathrm{h} \times 2.6^{\prime \prime} \mathrm{w} \times 1.4^{\prime \prime} \mathrm{d}, 1 \mathrm{lb}$. IC-451A UHF All Mode Transceiver for OSCAR mode B or I \& simplex. Models for $430-440$ or $440-450 \mathrm{MHz}$. Similar to IC-251A (Regular \$899)............... SALE $\$ 769.95$
IC-AGI UHF Preamp. (Reg. \$89).... SALE 79.95 IC-5510 $6 \mathrm{~m} \mathrm{SSB} / C W / F M^{*}$ transceiver, 50.53 .999 MHz . 80 watts. (Reg. \$699) EX-106* FM adaptor (Reg. \$125) SALE 112.95 PS-20 AC power supply (Reg. \$229) ... SALE 199.95
CF-1 Cooling fan; PS-20
45.00

IC-290A 2 m All Mode mobile xcvr. 143.8-148.199 $\mathrm{MHz}, 1 / 10 \mathrm{w}, 5$ memories, 2 VFOs , T / T mic. $6{ }^{3} \mathrm{~K}^{\prime \prime} \mathrm{w}^{*}$ * $2 \mathrm{y} / \mathrm{h} \mathrm{h} \times 8 \%$ "d. (Reg. $\$ 549$)Closeout $\$ 399.95$ IC-290H 25w 2m All Mode (Reg. \$549) SALE 489.95 IC-490A UHF All Mode mobile xcur. 430.439 .995 $\mathrm{MH}_{2}, 10 \mathrm{w}$, memories, two VFOs, scanning microphone. $2^{1 / 2} " \mathrm{~h} \times 6 \% \%^{\prime \prime} \mathbf{w} \times 8 \%$ "d (Reg. \$649) SALE $\$ 579.95$ IC. 5606 m SSB/FM/CW mobile xcvr. 10 w , digital, memories, scan two VFOs $13.8 \mathrm{vdc} / 3.5 \mathrm{~A} .21 / 2 \mathrm{~h} \times 71 /{ }^{\prime \prime}$ "w $\times 9^{\prime \prime \mathrm{d}}, 6 \mathrm{lbs}$. Mic. \& mt. (Reg. \$489) ... SALE $\$ 439.95$

IC-25A Compact 2m FM mobile xcvr. 25w, 5 memories, scan, priority, 2 VFOs, T/T microphone. 2 " $\mathrm{h} \times 5{ }^{1} 2^{\prime \prime}$ w $\times 7$ "d, 3 ¹/ lbs. (Reg. \$349)

SALE $\$ 309.95$
IC-45A 440.450 mobile xCvr
. TBA
IC-22U 2 m mobile. $1 / 10 \mathrm{w}$, thumbwheel freq. select.

EX-199 Remote frequency selector 35.00 VHF/UHF Poriables
IC-202S 2 m SSB Transceiver. 3 w PEP output. Uses " C " cells, optional Nicad pack/charger or AC supply/spkr. With mic., ant. \& strap (Reg. \$279) SALE \$249.95
IC-20L 2m, 10 w ampl. (Reg. \$98)... SALE 89.95 IC-402 432 Mhz portable SSB Transceiver. Features same as IC.202S above (Reg. \$389).... SALE 349.95 IC-30L 10w. 432 amp . (Reg. $\$ 105$)...SALE 94.95 BC-15 Nicads \& AC chgr for 202S/402.
94.95
57.50 BC-20 Nicads \& DC.DC chgr for 202S/402 57.50 IC. 5056 m SSB port. (Reg. $\$ 449$)..... SALE 399.95 FM module 999.95
49.95

Internal nicad battery pack
AC charger 79.50

Hand-held Transceivers
IC-2AT HT w/TTP, nicad \& chgr IC-2A 2 mHT w/nicad \& wall chg IC-3AT $220 \mathrm{HT} / \mathrm{TTP}$, nicad \& chgr IC-3A $220 \mathrm{HT} /$ nicad \& charger IC-4AT $440 \mathrm{HT} / \mathrm{TTP}$, nicad \& chgr IC-4A $440 \mathrm{HT} /$ nicad \& charger. Hand-held accessories
BC-25U Extra wall charger
BC-30 Drop-ın charger for BP-2, 3 \& 5 BP-2. 450 ma, 7.2 v nicad pk. 1w output BP-3 Extra 250 ma nicad pk. 1.5 w output BP-4 Alkaline battery case
BP-5* $450 \mathrm{ma}, 10.8 \mathrm{v}$ nicad pk. 2.3 w output
Regular SALE
$\$ 269.50 \$ 239.50$
$239.50 \quad 214.50$
$299.95 \quad 239.95$
$269.00 \quad 229.95$
$299.00 \quad 239.95$
$269.00 \quad 229.95$
Regular
$\$ 12.50$
69.00
39.50
29.50
12.50
49.50 *BC-30 required to charge BP-2 \& BP-5 CP-1 Cig lighter plug \& cord; BP-3 DC-1 DC operation module. FA-2 Flexible antenna for 2A, 2AT (BNC) HM-9 Speaker/microphone LC-2A Leather case w/o TIP cut-out LC-2AT Leather case w/TTP cut-out. ML-1 2 m mobile linear ($\mathrm{Reg} \$ 89$) 3A-TTN 16 -button ITP front; 2A/3A/4A.

SALE 79.95 Commspec SS-32M 32•tone encoder............. 29.95
IC-M12 12ch. Marine Hand held.... Special \$229.95. Other ICOM accessories
24PP 24 .pin accessory plug.
BC-10A Mem back-up; 25A/720A/730/740
BU-1 Memory back-up; 25A/490A
EX-2 Relay box w/marker; 720A/730
HM-3 Deluxe mobile mic, specify radio
HM-5 Noise canx mobile mic, 4 pin
HM-7 Amplified mobile mic, 8 -pin
HM-8 Touch tone mic, 8-pin.
HM-10 Scanning microphone
HP-1 Headphones
SM-5 8-pin electret desk mic.

AES STORE HOURS
Mon. thru Fri. 9-5:30; Sat. 9-3
E-X-P-A-N-D-E-D WATS HOURS
Milwaukee WATS line answered until 8 pm Mon. thru Thurs. Please use WATS line for Placing Orders.
For other information, etc. please use Regular line

- ABS BRANCH STORES

WICKLIFFE, Ohio 44092 28940 Euclid Avenue Phone (216) 585-7388 Ohio WATS 1-800-362-0290 Outside
Ohio 1-800-321-3594

ORLANOO, Fla. 32803 621 Commonwealth Ave. Phone (305) 894-3238 Fla. WATS 1-800-432-9424
Outside
florida
$1-800-327-1917$

CLEARWATER, Fla. 33515 1898 Drew Street Phone (813) $461-4267$ No In-State WATS
No Nationwide WATS

LAS VEGAS, Nev. 89106 1072 N. Rancho Drive Phone (702) 647-3114 No In-State WATS
Outside
Nevada
1-800-634-6227

ERICKSON COMMUNICATIONS 5456 N. Milwaukee Avenue Phone (312) 631-5181 Outside $1-800-621-5802$
illinois

The SISO shift register can be made into a SIPO device by adding parallel output lines at Q1, Q2, Q3, Q4, and Q5

One use for the SIPO register is serial-to-parallel bi-nary-code conversion. For economic reasons, digital data usually is transmitted as a serial stream of bits, i.e., the bits of the digital word are sent over a communications link. But most computers and other digital instruments use a parallel form of data entry. Parallel data transfer is more expensive but is considerably faster than serial transmission. If, for example, we have an eight-bit system, we would need an eightstage SIPO shift register to convert the serial code to parallel form. The code is entered into the SIPO register one bit at a time so that after eight clock pulses the first bit will appear at Q8 and the last bit at Q1.

Parallel-entry shift registers are faster to load than serial-input shift registers. This is because a single bit can be changed, if needed In the serial type, to change a single bit of data requires us to ripple through the entire contents.

There are two basic forms of parallel data entry: parallel and jam. In parallel entry, shown in the partial schematic of Fig. 6, the register must first be cleared (i.e., all bits set to zero) by bringing the reset line momentarily LOW. The data that is applied to inputs B 1 through B_{n} can be loaded into the register by momentarily bringing the set line HICH.

The jam entry circuit shown in the partial schematic of Fig. 7, is also able to load data from bits B1 through B_{n}. While jam entry may not look superior at first glance, it is, because IC shift registers using this technique have internal inverter stages at the complement inputs. These have their inputs connected to

Fig. 10(b). A modulo-16 ripple counter has four outputs

Fig. 11(a). A counter can have something other than a di-vide-by-two ratio when the flip-flops are forced to reset. The 7400 turns a divide-by-sixteen counter into a divide-by. ten circuit.

Fig. 11(b). After ten pulses, the counter resets. The result is a decimal-based counter.
the non-complemented inputs, eliminating the need to clear the register before loading.

A recirculating shift register is shown in Fig. 8. Since the output of a serial shift register allows the outside world to see only one bit at a time, we must empty the entire contents of the shift register in order to read these contents. But that would ordinarily destroy the data, because the input would be HICH or LOW during the entire operation. A single-read operation, then, would fill up the register with all ones or zeros. The recirculating shift register connects the output (serial output) back to the in-
put, so that a read operation would automatically rewrite the data back into the shift register.

Digital Counters

A digital counter is a device or circuit that operates as a frequency divider. The most basic digital counter is the J-K flip-flop connected with the $/$ and K inputs tied HIGH (i.e., placed in the clocked mode). This makes the output produce one output pulse for every two input pulses. It is, then, a binary or divide-by-two counter.

Those fancy digital frequency/period counters are nothing more than digital divide-by-10 counters con-
nected so that the binarycoded output is converted to a decimal display

There are two basic classes of digital counter circuits, serial and parallel. The serial counters are called ripple counters because a change in the input must ripple through all stages of the counter to its proper point. Parallel counters also are called synchronous counters.

In a ripple counter, the data is transferred serially, which means that the output of one stage becomes the input of the next stage.

The basic element in most counters is the J-K flipflop. See Fig. 9(a). Note in the figure that the $/$ and K inputs are permanently tied HICH, so they will remain active

A timing diagram for this divide-by-two circuit is shown in Fig. 9(b), and it shows the action of the circuit. J-K FF outputs change state on negative-going transitions of the clock pulse. In Fig. 9(b), the first negative-going transition causes the Q output to go HIGH. Q will remain HIGH until the input sees another negative-going clock pulse. At that time, the output will drop LOW. The action required to make a complete output requires two clock pulses, so this J-K flip-flop is dividing the input frequency by two.

We can make a binary ripple counter by cascading two or more stages, as shown in Fig. 10(a). This particular circuit uses four J-K FFs in cascade. Any number, however, could be used

The major problem with this type of counter is that only those division ratios that are powers of two can be accommodated. In the four-stage circuit shown, the possible division ratios are $2,4,8$, and 16 .

Frequency division is one major use for a counter circuit. In some electronic instruments, for example, we may want to prescale a fre-

ANTENNA TUNERS .

MFJ-941C 300 Watt Versa Tuner II

Has SWR/Wattmeter, Antenna Switch, Balun. Matches everything 1.8-30 MHz: dipoles, vees, random wires, verticals, mobile whips, beams, balanced lines, coax lines.

Fastest selling MFJ tuner . . . because it has the most wanted teatures at the best price.

Matches everything from $1.8 \cdot 30 \mathrm{MHz}$: dipoles, inverted vees, random wires, verticals, mobile whips, beams, balanced and coax lines.

Run up to 300 watts RF power qutput
SWR and dual range wattmeter (300 \& 30 watts full scale, forward/reflected power). Sensilive meter measures SWR to 5 watts.

MFJ. 900 VERSA TUNER

MFJ-900
$\$ 49_{(+54)}^{95}$
Matches coax, random wires 1.8 .30 MHz . Handies up to 200 watts output; efficient airwound inductor gives more watts out. $5 \times 2 \times 6^{\prime \prime}$ Use any transceiver, solid- state or tube.
Operate all bands with one antenna.
2 OTHER 200W MODELS:
MFJ.901, \$59.95 (+\$4), like 900 but includes
4.1 balun for use with balanced lines.

MFJ-16010, \$39.95 $(+\$ 4)$, for random wires only. Great for apartment. motel, camping, opera. tion. Tunes 1.8 .30 MHz .

MFJ-984 VERSA TUNER IV

Up to 3 KW PEP and it matches any feedline, 1.8.30 MHz, coax, balanced or random.

10 amp RF ammeter assures max. power at min. SWR. SWR/Wattmeter, for./ref., 2000/200W. 18 position dual inductor, ceramic switch.
7 pos. ant switch. 250 pl 6 KV cap. $5 \times 14 \times 14^{\prime \prime}$ 300 watt dummy load. 4:1 territe balun.
3 MORE 3 KW MODELS: MFJ-981, \$239.95 $(+\$ 10)$, like 984 less ant. switch, ammeter. MFJ.982. $\$ 239.95(+\$ 10)$, like 984 less ammeter, SWR/Watimeter. MFJ.980, S209.95 $(+\$ 10)$, like 982 less ant. switch.

Flexible antenna switch selects 2 coax lines, direct or through tuner, random wire/balanced line. or tuner bypass for dummy load.

12 position efficient airwound inductor for lower losses, more watts out.

Built-in 4:1 balun for balanced lines. 1000 V capacitor spacing.

Works with all solid state or tube rigs
Easy to use, anywhere. Measures $8 \times 2 \times 6^{\prime \prime}$; has
MFJ-949B VERSA TUNER II

MFJ's best 300 watt Versa Tuner II.
Matches everything from 1.8 .30 MHz , coax, randoms, balanced lines, up to 300 W jutput, solid-state or tubes.

Tunes out SWR on dipoles, vees, long wires, verticals, whips, beams, quads.

Buith-in 4:1 balun. 300W, 50 ohm dummy load. SWR meter and 2 -range wattmeter ($300 \mathrm{~W} \& 30 \mathrm{~W}$).

6 position antenna switch on front panel, 12 position air wound inductor; coax connectors, binding posis, black and beige case $10 \times 3 \times 7{ }^{\prime \prime}$

MFJ. 989 VERSA TUNER V

New smaller size matches new smaller rigs only $10.3 / 4 \mathrm{~W} \times 4.1 / 2 \mathrm{H} \times 14.7 / 80^{\prime \prime}$
3 KW PEP. 250 pt. 6 KV caps. Matches coax, balanced lines, random wires $1.8 \cdot 30 \mathrm{MHz}$

Roller inductor, 3 -digit turns counter plus spinner knob for precise inductance control to get that SWR down.

Built-in $\mathbf{3 0 0}$ watt, $\mathbf{5 0}$ ohm dummy load.
Built-in $4: 1$ territe balun.
Built-in lighted 2\% meter reads SWR plus for ward/reflected power. 2 ranges ($200 \& 2000 \mathrm{~W}$).

6 position ant. switch. Al. cabinet. Tilt bail.

> Ham Radio's most popular antenna tuner. Improved, too.

$$
\$ 8995
$$

SO-239 connectors, 5 way binding posts, finished in eggshell white with walnut-grained sides.

4 Other 300W Models: MFJ.940B, $\$ 79.95$ $(+\$ 4)$, like 941C less balun. MFJ-945, \$79.95 $(+\$ 4)$, like 941C less antenna switch. MFJ-944, \$79.95 (+ \$4), like 945, less SWR/Wattmeter, MFJ.943, $\$ 69.95(+\$ 4)$, like 944, less antenna switch. Optional mobile bracket for 941C, 940B, 945, 944, \$3.00.

MFJ-962 VERSA TUNER III

Run up to 1.5 KW PEP, match any feed line from 1.8.30 MHz.

Built-in SWR/Wattmeter has 2000 and 200 watt ranges, forward and reflected.

6 position antenna switch handles 2 coax lines (direct or through tuner), wire and balanced lines.

4:1 balun. 250 pt 6 KV cap. 12 pos. inductor. Ceramic switches. Black cabinet, panel.
ANOTHER 1.5 KW MODEL: MFJ-961, \$189.95
$(+\$ 10)$ similar but less SWR/Wattmeter.
MFJ.10, 3 fool coax with connectors, $\$ 4.95$.
To order or for your nearest deater [CALL TOLL FREE VSA

For tech. into., order or repair status, or calls outside continental U.S. and inside Miss., call 601-323-5869.

- All MFJ products unconditionally guaranteed for one year (except as noted).
- Products ordered trom MFJ are returnable within 30 days tor full refund (less shipping).
- Add shipping \& handling charges in amounts shown in parentheses.

Write for FREE catalog, over 80 products

Box 494, Mississippi State, MS 39762

Fig. 12. By feeding the clock inputs in parallel, a synchronous counter becomes much faster than the ripple version.

Fig. 13. A preset counter can be made by using a jam input. When CP2 is raised HIGH, a preset bit pattern is entered.

Fig. 14(a). A counter can count down by toggling each flipflop with the preceding stage's \bar{Q} output.
quency, i.e., divide it from some other frequency to a lower frequency that can be handled by a digital counter or other digital instrument.

But this is only one application for the counter circuit. One of the most common applications, alluded to in the last paragraph, is to count, i.e., tell us the total number of pulses that passed. Consider again the circuit of Fig. 10(a) and the timing diagram of Fig. 10(b). Outputs A, B, C, and D are coded in binary, with A being the least significant bit and D the most significant.

These are weighted in a 1-2-4-8 code system to represent decimal digits 0 to 9 or hexadecimal digits 0 to 15. These are the normal weights of the binary number system.

Consider the timing diagram of Fig. 10(b). Note that all B output changes occur following the arrival of a pulse. After pulse number one has passed, the Q_{A} line is HICH and all others are LOW. This means that the binary word on the output lines is 0001_{2} (i.e., 1_{10}); one pulse has passed.

Following pulse number 2 we would expect 0010_{2}
(i.e., $2{ }_{10}$) because two pulses have passed. Note that Q_{B} is HICH and all others are LOW. The digital word is, indeed, 0010_{2}

The counter in Fig. 10(a) is called a modulo-16, or base-16, counter, or a hexadecimal counter (all meaning the same thing). The output of a hexadecimal counter can be decoded to drive a display device that indicates 0 through 9 (i.e., decimal) or 0 through F (hexadecimal). In most applications where a real, live, human is to read the display, a decimal readout is provided

Decimal Counters. A decimal counter operates in the base-10, or decimal, number system. The most significant bit of a decimal counter produces one output pulse for every ten input pulses. Decimal counters are also sometimes called decade counters. The decimal counter forms the basis for digital event, period, and frequency counters. Thus, the hexadecimal counter in Fig. 10 is not suitable for decimal counting unless it is modified for base-10 operation.

Fig. 11 shows a TTL hex counter modified by adding a single TTL NAND gate. Recall that a TTL J-K FF uses inverted inputs for the clear and set functions. As long as the clear input remains HIGH, the flip-flop will function normally, but when the clear input is momentarily brought LOW, then the Q output of the FF goes LOW

The decade counter in Fig. 11(a) is connected so that all four clear inputs are tied together to form a common clear line. This line is connected to the output of a TTL NAND gate (i.e., one section of a 7400 device). Recall the rules of operation for the TTL NAND gate: If either input goes LOW, then the output goes HICH , but if both inputs are HICH, then the output goes LOW.

The idea behind the circuit of Fig. 11 is to clear the counter to 0000 following the tenth input pulse. Let's examine the timing diagram in Fig. 11(b) to see if the circuit does the correct thing. Up until the 10th pulse, this diagram is the same as for the base- 16 counter discussed previously.

The output of the NAND gate will keep the clear line HIGH for all counts through 10. The inputs of this gate are connected to the B and D lines. The D line stays LOW, forcing clear HICH up until the 8th input pulse has passed. At that time $-T_{0}$ in Fig. 11(b)-D will go HICH and bit B drops LOW, so the clear line remains HICH for the 9th pulse

The clear line will remain HICH until the end of the 10th pulse. At that point (T_{2}) both B and D are HICH, so the NAND gate output drops LOW, clearing all four flip-flops (i.e., forcing them to the state where all four Q outputs are LOW). The counter is therefore reset to 0000 .

The reset counter produces a 0000 code, so the B and D outputs are now LOW, forcing the clear line HIGH again. The entire reset cycle occurs during period $T_{3}-T_{2}$). This period has been expanded greatly for graphic illustration purposes in the figure, but actually takes only nanoseconds or microseconds

The 11 th pulse will increment the counter one time, so the output will be 0001_{2} The count sequence, in decimal, then, is 0-1-2-3-4-5-6-7-$8-9-0-1$. etc. The output code is a ten-digit version of four-bit binary (hexadecimal) and is called binarycoded decimal, or BCD.

Synchronous Counters. Ripple counters suffer from one major problem: slow speed. The counter elements are wired in cascade, so an input pulse must ripple through the entire chain before it affects the output.

TERMINAII

 (tw apple + Trs-so

 (tw apple + Trs-so}

APPLE REVIEW WINDOW

\author{

O.fFOX TESTI 1/AYTEST I 2.ICOMSG
 | $3-1$ | 4.1 | 5 |
| :--- | :--- | :--- |
 6.(BREG \quad I.(CONTEST) 8.
 9.1) : ! : CR LF
 (TIME) . 1 I ICOUNT
 RCV INORMI ASCII7 110 DYL = A DIDS
 THIS 5072 WM ICL

THIS THEVIEW WINDOW
 IT ALLOWS LOOKING BACK AT HISTORICAL data which has scfolled off the SCREZV ISENEN LINES)
 this is the short dialos window ra' (NINE LINES)
}

TERMINALL is a hardware and software system thai converts your personal computer into a state of the art communications terminal. Terminall features simple connections to your computer and radic plus sophisticated and reliable software.

Simplicity

TERMINALL was designed from the outset to te easy to connect to your radio and easy to use. Plug into your receiver headpione jack and copy Morse C.jde or radio eletype (RTTY). Plug into your CW key jack and send Morse Code. Attach a micrcphone connector and send Baudat or ASCII FTTY using audio tones (AFSK). That's all there is to hooking it up.
The software is loaded into your computer from disk or cessette. Enter your callsig? and The time and you will start receiviny immediateiy. No settings 0^{*} adjustments are recessary to receive Marse Code, it ${ }^{2}$ s fully automatic -and it worksl You may type your message while receiving or transmitting.
You will be on the air, receiving ard transmitting in any mode, in minutes. As we said, TERMINALL is simple.

Mose for your money.

- TERMINALL has the RTTY terminal unit - demod and AFSK - built in. Tris results in a lower tota cost.
- Fantastic Morse reception. Six stace active fiter demodulator copies the weāk ones. Auto adaptive Morse algcrithm copies the sloppt ones. Received code speec displayed on status line.
- Outstanding documentation. Professionally written, 90 page user manual contains step-by-step instructions.
- Bult in, seperate, multi-stage, active filter RTTY and CW demoduletors. No phase lock loops. RTTY demodula:or has 170 and either 425 or 850 Hz stuft-
keyboard selectable - ard uses either tre panel meter or scope 0.ftputs fo easy turing. Cony the weak ores. Jop the noisy ones. Copy the fading ooves.
- Bullt in crystal controlled AFSE. Rock stable for even the rost Jemandirg VHF or HF applications. A must on many VHF R TTY repeaters.
Buitt in $\mathbf{1 1 0}$ or 220 v it AC sower susply.
E Buift in parallel printer driver soltware. Simply attact. a parallel ASCII printer (e.g. the EPSOH M. $\mathbf{x - 8 0}$) $=0$ your printer port to obtan raidcopy on \#\#l modes.
Wulti level dispiays - allaws examaing and editing of historical tezt.
Word wrapping, wory mode ョditire, diddle, ignore carriage rezu-re, use ptogrammable end of ire sequenze, edjustable carriage widtt, multiple us3rdefined WRU, transmit delay rixesl, none

TRS- 80 NORMAL DISPLAY

or as o edaptivel, break mede and more! - The all-in-one TERMINALL esign makes it Jreat for use 3 HF or VHF. Ham Commercial, SWL or MARSI SWL's: TERNINALL may be jumpered for either 425 or 850 Hz reception to copy nezss and weather zervicas.

75 Day honer Back Trial Peicd on Fsctory Direet Orders

Systerm Requirener.ts

TERMANALL T1 Communcetions ter hinat for the TRS 80 Moot 1. Requires a Mccel 1 TRS-80, 16K RAAt and lovel If BASIC. Ircludes seftvan on easserte and disk _assembled and tested herdwate and a extensive instruction manual. 498
TERMINALL TS Communcetions terminal for the TAS-80 Mode III. Requires a Moxa III TRS 80, 16K FAM and Model III BASIC. Includes so iware or cassetto and diska asserrbed and tested hardwere and ar extensive instruction manus! \$4s?.
TERMMALL $T 2$ Communcation erninal or the APPLE II. Reqmires-an APPIE IS or APPLE II PLus with \&RK RAM arid disk. Software is proviced or disk n DCS 3.2 fernat: Use MUFFiA utilizy to conver"to DOS 3.3 format Includes soltware on disk, assembled and tested haviware and en extensve irstruzticn manua. 499.

A synchronous counter feeds the clock input to all flip-flops in parallel, and this results in a much faster operation.

Fig. 12 shows a partial schematic for a synchronous binary counter. We accomplish synchronous operation by using four flipflops, with clock inputs tied together, and a pair of AND gates.

One AND gate is connected so that both Q1 and Q2 are HICH before FF3 is active. Similarly. Q2 and Q3 must be HICH before FF4 is made active. On a clock pulse, any of the four flip-flops scheduled to change will do so simultaneously. Synchronous counters attain faster speeds, although ripple counters seem to predominate in most applications.

Preset Counters. A preset counter increments from a preset point other than 0000 . For example, suppose we wanted to count from
$5_{10}\left(0101_{2}\right)$. We could preset the counter to 0101 and then increment from there.

Fig. 13 shows a common method for achieving preset conditions for the jam input. Only two stages are shown here, but adding two additional stages will make it a four-bit counter. Of course, any number of stages may be connected in cascade to form an n but preset counter.

In Fig. 13, the preset count is applied to points A and B, and both bits will be entered simultaneously when clock line CP2 is brought HIGH. Line CP2 is sometimes called the enter or jam terminal. Once the preset bit pattern is entered, the counter will increment from this with every transition of clock line CP1.

Down Counters. A down counter decrements, instead of incrementing, the count for each excursion of the input pulse. If the reset

Fig. 14(b). This decade counter counts down, starting at the binary state 1001.

Fig. 15. A counter can offer the choice of up and down modes by adding logic.
condition is 0000 , then the next count would be 0000 -1, or 1111 (it would have been 0001 in an up counter).

We use basically the same circuit as before but toggle each FF from the NOT-Q rather than Q of the preceding FF. An example of a four-bit binary down counter is shown in Fig. 14 Note that the outputs are taken from the Q outputs of the FFs but that toggling is from the NOT-Q.

The preset inputs of the flip-flops are connected together to provide a means to preset the counter to its initial (i.e., 1111) state. This counter is also called a subtraction counter because each input pulse causes the output to decrement by one bit.

A decade version of this circuit is shown in Fig. 14(b). As in the case of the regular decade counter, a NAND gate is added to the circuit to reset the counter following the 10th count. We detect the states where outputs C and D are HIGH, and then clear the two middle FFs. This action forces the output to 1001_{2} (i.e., 9_{10}). The counter then decre-
ments from 1001 in the decimal sequence 9-8-7-6-5-4-3-2-1-0-9 etc.

Up/Down counters. Some counters will operate in both up and down modes, depending upon the logic level applied to a mode input. Fig. 15 shows a representative circuit in which the first two stages of a cascade counter are modified by the addition of several gates. If the mode input is HICH, then the circuit is an up counter, but if the mode input is LOW, then the circuit operates as a down counter.

Conclusion

This three-part series has offered you the basics of digital electronics. With this information, you should be able to conduct a large number of experiments, build most of the simple-to-moderate-difficulty digital projects published in this (and other) magazines, and even design a few circuits. From here, let me recommend that you begin to study microprocessors and microcomputers. From the radio amateur's point of view, interfacing is very important.

step up to the best...

Without doubt LR-1 is the repeater value leader! Compare its outstanding performance with any repeater .- then look at its price. LR-1 features include individual die-cast shielding of receiver and transmitter plus a separately shielded 6-stage receiver prefilter for peak performance in harsh RF environments - Front panel metering of all vital functions • CW identifier • Symmetric hard limiting for clean natural audio - Low power MOS control logic • Even the cabinet is included -- just plug in and go! The price? Only $\$ 1095$ (US amateur club net).
LINKING? The LR-1 is also available with control circuitry for Link Transceiver operation. Now link repeater sites with the flexible control capability you've always wanted.

HIGH POWER? Our PA-75 power amplifier is the champion! Ruggedly built to give years of dependable operation in continuous duty repeater service.

Mark $3 C$ repeaters and controllers have no equal in performance. Both units feature auto patch, reverse autopatch, autodial. 13 Morse messages and a total of 39 functions. Both feature microprocessor control and both have been proven in the field from icy Alaska to tropical Brazil. A Mark 3C supercontroller can make any repeater a super performer. The Mark $3 C R$ repeater is in a class by itself. It combines superbly designed RF circuitry in one handsome package. It is without doubt the world's most advanced repeater!

The Money-Maker Power Supply

Need 12 volts for your transceiver? Save half the cost of a commercial unit by assembling this 25-Amp monster.

Since the advent of solidstate transceivers, there has been the need for a simple high-current 12 -volt power supply. The power supply described in this article will produce 13.8 volts at up to 25 Amps continu-
ous duty. All the parts should be readily available.

First of all, you will need to determine how much current your transceiver draws, and at what voltage Look up the current drain during transmit in your

The completed 13.8 -volt, 25-Amp supply includes overvoltage protection.
owner's manual. For a 100 Watt radio, this may be about 20 Amps. Most transceivers, whether they be small two-meter radios or large multiband $100-$ Watt HF ones, will have a voltage rating of 13.8 volts. This seems to be an industry standard. Thus, if you were to build a 12 -volt supply, you probably would not achieve the full rated power output.

Once the voltage and maximum current are determined, you may choose a transformer. If it is not possible to find one of the proper ratings locally, then try requesting catalogs from the following three companies. They all seem to have a large stock of transformers at good prices.

- Delta Electronics PO Box 2
Amesbury MA 01913
(617)-388-4705
- Fair Radio Sales Co.

PO Box 1105
Lima OH 45802
(419)-227-6573

- Meshna

PO Box 62
Lynn MA 01904
(617)-595-2275

A minimum of 13.3 volts rms must be supplied to the filter for a regulated output of 13.8 volts. This is equal to the desired output voltage plus five volts divided by 1.414 . The current rating, of course, must be greater than or equal to the desired output current. In my case, the required current was 22 Amps at 13.8 volts. Thus, the transformer should have a current rating of at least 22 Amps and the secondary rms voltage should be at least 13.3 volts $(13.8+5) / 1.414$. I chose, from the Meshna catalog, a 15 -volt, 15 -Amp autotransformer. The stock number was T-658 and the price was eight dollars. I bought two of them to put in parallel for a total of 30 Amps. Meshna provides instructions to convert these autotransformers to regular transformers. This just involves rewiring of the attached terminal board

While you are looking through the catalogs, keep an eye out for some highcurrent rectifiers, large heat sinks for both the rectifiers and the pass transistors, and some "computer-
grade" capacitors. See the parts list for the values. Also, please note that in most cases, the values in this power supply are not very critical. As long as they are close, they should work. Most of the smaller parts are available at Radio Shack. In these cases, the part numbers are shown as RS numbers

Circuit Description

The circuit is a full-wave bridge rectifier with a linear regulator. See Fig. 1. The voltage regulator consists of an LM317 which provides base drive for the pass transistors. The LM317 is an adjustable three-terminal voltage regulator that when supplied with 27 volts on its input can provide an adjustable 1.2 -to- 25 volts at 1.5 Amps. In this case, we will be inputting 15 volts times 1.414 or 21.2 volts (peak) from the rectifier/filter combination. The regulator output voltage must be 13.8 volts plus the base-emitter drop of the pass transistors. This will be 13.8 volts +0.7 volts, or 14.5 volts.

Three pass transistors are used and they share the output current equally. There are several options for overvoltage protection and these will be discussed towards the end

Circuit Blocks

Each section in the block diagram will now be described. When doing the actual construction, build one block at a time and test it as you go. This will save debugging time and may prevent burned out parts. Build them in this order:

1) Power transformer, rectifiers, filter capacitors, and $117-\mathrm{V}$ ac input circuit.
2) Voltage-regulator circuit (LM317).
3) Pass-transistor circuit.
4) Output-protection circuit.

Note that the power supply can be used without any
protection circuit, but you must be very careful of short circuits. It is possible to lose the supply and the radlo with one mistake!

Transformer Circuit

The transformer circuit consists of the line cord, fuse, pilot lamp, transformer, rectifiers, and filter capacitor. See Fig. 2. Get yourself a heavy-duty line cord for this power supply as you may be drawing 3 to 4 Amps on the transformer primary. A three-wire cord is preferred and the green or ground wire should be connected to the power supply chassis

Use a 5 - to 10 -Amp fuse for the primary circuit and a small neon lamp with builtin series resistor for the pilot lamp. I used a key lock for the On-Off switch to prevent "unauthorized" use.

First, mount and wire the transformer(s) and line cord to the chassis. Connect the switch, pilot lamp, and fuse to the primary circuit. Then mount the rectifiers to the rectifier heat sink and mount the assembly near the secondary side of the transformer. Use at least nurfiber 12 or, better, number 10 house wiring to wire all the secondary circuits, rectifiers, and pass transistors. The rectifiers must have mica insulators so they won't short out through the heat sink. Also, a layer of silicone thermal grease should be applied between the rectifiers and the heat sink. Extra grease should be wiped off after the rectifiers are bolted down. The rectifiers will have a voltage drop of about one volt at 25 Amps , so the power they must dissipate will be: 1 volt times 25 Amps at a 50% duty cycle $=12.5$ Watts each. Make sure the heat sink is a large one.

Next, mount the filter capacitor(s). Use heavy gauge wire for the capacitor(s), too. Now, recheck all wiring

Fig. 1. Block diagram of the complete power supply. Each section is discussed separately. There are three options for the overvoltage protection circuit.

Fig. 2. Schematic diagram of the transformer section. The transformers are rated 15 volts at 15 Amps.

Fig. 3. Schematic diagram of the voltage regulator. R1 can be 200 to 250 Ohms. All resistors are rated at $1 / 2$ Watt. C3 is a ceramic and C4 is electrolytic. Both should be mounted as close to VR1 as possible.
against the schematic Make sure that the switch is off and plug the line cord into the wall socket. Be careful of any primary transformer connections as there will be 117 V ac there Connect a voltmeter set on the 50 -volt scale to the filter capacitor terminals and turn the power on. You should measure an unloaded voltage of about 15 volts times $1.414=21.2$ volts dc. Record your voltage reading, as we will be using it for some power calculations later. Make sure the On-Off switch works and that the pilot light works
with the switch. Note that since there is nothing connected to the filter capacitor terminals to bleed off the voltage stored there, it might be wise to connect a 1000 -Ohm, 1/2-Watt resistor across the terminals before continuing. Turn the power off and use your voltmeter to verify that the voltage is near zero.

Voltage Regulator Circuit

Now start construction of the voltage-regulator circuit. See Fig. 3. Mount the LM317 regulator to the chassis using a small TO-3 heat sink. Use some silicone

Fig. 4. Schematic diagram of the pass transistor section.

Fig. 5. Option 1 overvoltage protection circuit.

Fig. 6. Option 2 overvoltage protection circuit.
grease and be sure to use a mica insulator because the regulated output voltage is connected to the case. To determine the power dissipation of this regulator, take the unloaded voltage reading you took earlier and subtract 14.5 volts. Then multiply by 1.5 Amps . In my case, the power dissipated was: (21.2 volts minus 14.5 volts) times 1.5 Amps $=10$ Watts. The heat sink must be large enough to dissipate this power.

Mount the voltage control pot on the top or the front of the chassis. Finish wiring the regulator circuit using point-to-point methods. Here, you can use smaller gauge wire since the highest current will only be 1.5 Amps. Now connect the regulator input to the
positive terminal of the filter capacitor. Make sure that the negative terminal of the filter capacitor is grounded to the chassis.

Temporarily connect a 10 - to 50 -Ohm, 10 -Watt resistor across the voltage regulator output to act as a load. Connect a voltmeter across this load resistor and set the voltage control to the midway point. Turn on the power and verify that you are getting about 11 to 17 volts as the voltage-control pot is adjusted. If the output does not vary with the control, double-check the wiring to the LM317.

Pass Transistor Circuit

If everything is OK so far, the next step is to mount the pass transistors. See Fig. 4. Use large TO-3 heat sinks

Fig. 7. Option 3 overvoltage protection circuit. This version has an adjustable voltage-limit point.
and mount the transistors using mica insulators and silicone grease. Be sure to drill holes in the chassis for the wires to the transistors. Use rubber grommets.

To determine the maximum power dissipation of the pass transistors, you will need the unloaded voltage you measured across the filter capacitor. Take this voltage and subtract 13.8 volts. Then multiply this by one third of the total output current. In my case, the power dissipated in each transistor was (21.2 volts minus 13,8 volts) times (22 Amps/3) $=54.3$ Watts. Make sure that the heat sinks are large enough to dissipate this much heat. I found that a finned heat sink of about $3^{\prime \prime}$ times $4^{\prime \prime}$ times $2^{\prime \prime}$ was alright

After the transistors are mounted to the chassis, connect all the bases together and run a wire from there to the voltage-regulator output. Small gauge wire is OK. Connect two 0.1 -Ohm, 5 -Watt resistors in parallel and solder one end of this to one of the emitters. Connect the other four resistors likewise. Finish the rest of the pass-transistor sections using $10-$ or 12 gauge wire for the emitter and collector terminals, the connections to the filter capacitors, and to the output terminals of the power supply.

Verify all wiring completed so far and then connect a 1 - or 2 -Ohm, 200Watt resistor across the power supply output (you'll
probably have to combine several resistors to get one of these). Connect a voltmeter across this load resistor. Turn the voltage control to minimum. Stand back and turn the power on! If all goes well, you should see a voltage of about 10 volts. If you are using a load resistor of 1 Ohm, then it is drawing 10 volts $/ 1 \mathrm{Ohm}=10 \mathrm{Amps}$. Try adjusting the voltage control and record the minimum and maximum voltages. These limits should bracket the required 13.8 volts. Make sure that the maximum power supply voltage will not exceed the trip-point of the overvoltage protection circuit. Otherwise, it will trip and you will lose a fuse. If you choose not to install a protection circuit, you may lose a radio!

Output-Protection Circuit

It is surprising how many commercial power supplies, including those of various ham manufacturers, do not incorporate some form of overvoltage circuit. The following are three options that will work. All use some method of sensing an overvoltage condition and then clamping or "shorting" the power supply output, thus blowing a high-current fuse.

The first and simplest option is to use a zener diode directly across the output. See Fig. 5. Choose a zener voltage of about two volts over the normal power supply voltage. The current rating should be greater than that of the power supply so

MEMORY BACK-UP AND HIGH SPEED PRINTER OUTPUT*

Never Lose Your Memory Again!

All "Here-is" memories, ID's and all keyboard input parameters are retained for 2 weeks by the internal Ni-Cad battery \& charging circuit. Load up the memories, carry the ACT-1 out to your field-day site and be ready to go as if you never turned it off! Also included in this option package is the high speed code converted RS-232 serial printer output.

The best gets better at MICROLOG Corp. 18713 Mooney Dr., Gaithersburg, MD 20879 Tel. 301-258-8400 TELEX 908153.

MICROLOG

- SIMPLE DIRECT CONNECTION to your Transceiver. - COMPLETE SYSTEM, built-in Demodulator \& AFSK. Modulator with keyboard programmable tone pairs from 500 to 3000 Hz . - SPLIT-SCREEN cperation with keyboard selectable line location - 1400 character text buffer. - TEN, 40 CHAR. programmable message memories (doubles with BATT. BACKUP), plus ID's WRU \& SELCALs. - RANDOM CODE generator \& hand key input for practice. - Baudot 60 to 132 WPM. • ASCII 110 \& 300 baud. - SYNCLOC MODE for improved ASCII operation. - RECORDER INTERFACE for "BRAG--TAPE" or recording off-the-air. • CODE CONVERTED printer output in Baudot or ASCII. - SSTV/GRAPHICS transmit. - FULL 63 KEY Computer grade keyboard.
the fuse, rather than the zener, will blow. The current rating of the fuse should be between the power supply output current and the zener current rating. For example, for this power supply, choose a $25-$ Amp fuse and a 16 - or 17 volt, 50-Watt zener.

The disadvantage of this circuit is that it is not ad justable and there still may be a chance that the zener will blow first before the fuse. This will still protect your radio, because when zeners fail," they usually stay shorted and this will reduce the overvoltage to near zero.

The second option is also not adjustable. It is an SCR (silicon-controlled rectifier) crowbar circuit. This circuit was published by Tom Lawrence WB 4 QLW in 73 Mag azine, August, 1977. This is the one I used for my power supply because it is fairly simple and the parts are readily available. See Fig. 6.

Here is how it works: As the power supply output starts to increase from normal and reaches the zener voltage, the zener will start to conduct current. This current will produce a voltage drop across the 1000 Ohm resistor and trigger the gate of the SCR. When the SCR becomes triggered, it will latch on and short the power-supply output, thus blowing the fuse. It is really not necessary to heat-sink the SCR since the shorted condition will last only as long as it takes for the fuse to open. Make sure that the maximum adjustable output voltage is less than the zener voltage rating

The third and last option is similar to the previous except that the crowbar voltage is adjustable. See Fig. 7. This circuit was published by loel Eschmann K9MLD in 73 Magazine, August, 1979.

The operation is the same, except the trip-point can be adjusted from the

zener voltage rating upwards. To test this circuit, break the connection between the anode of the SCR and the positive output line. Insert a 12 -volt lamp in series as shown. Adjust the voltage control for maximum voltage and adjust the overvoltage control to maximum (wiper all the way toward the ground end).

Turn on the power supply. The test lamp should be off. Start tyrning the overvoltage control until the lamp just turns on. Now turn the control about $1 / 8$ to $1 / 4$ turn back in the other direction. This will add a small buffer zone. The lamp should still be on Now turn the power supply off and then on again. The lamp should stay off. If the lamp is still on, try the adjustment again.

Try turning the voltage-
adjust control from maximum to minimum and then back to maximum. The lamp should remain off. If so, all is well. Note that to turn off the lamp it is necessary to reset the SCR by momentarily turning off the power supply. When the crowbar is adjusted correctly, remove the lamp and reconnect the anode of the SCR back to the positive output. Now, when the overvoltage reaches the trip-point, the SCR will turn on and blow the fuse.

Conclusion

This completes the construction of the basic power supply. If you wish, you may add a voltmeter and an ammeter You also may wish to make and install a cover to dress up the chassis

The voltage adjust and overvoltage-protection ad-
just controls may be placed anywhere out of the way. If you plan to use this supply in a dedicated application, the controls, once set, may be left alone.

If you will be using the supply at various voltage levels, I would suggest option 1 or 2 for your protection circuit. That way, there will be less chance to misadjust the overvoltage control and, consequently, less chance of blown fuses.

So, enjoy your new power supply and, at the same time, observe normal precautions while using its high-current capabilities. Also, if you have a wellstocked junk supply, just think how much you will have saved over a commercial supply! If you have any questions, please send an SASE for a reply. Have fun! ${ }^{\square}$

GOINGOUT.OF. BUSINESS

 SALE
Last Day Dec 31sT 1982 CALL US!

If we have what you want in stock we will beat ANYONE'S price and ship it FREE!

No charge cards... cash or cashier's check only

Ben Franklin Electronics
1151/2 N. Main Hillsboro KS 67063 316-947-2269

- Measured Field Strength Over Rubber Duck
- Specify Base Type BNC. Tempo, Ect.

RD2S
Stubby
The Tuned Antenna Company brings you the Super Stick II for those long hauls with your H.T., plus our $5 / 8$ Wave Antenna may be operated collapsed with the same operating characteristic of a Rubber Duck Antenna. The Super Stick II is available with Tempo S-1, BNC-TNC-F-PL-259 Bases at a price that is several bucks under other 5/8 Wave Antennas. making the Super Stick II the best buy around. See your local dealer for stock. Settle for nothing less than a Super Stick 11 .

Terms: C.O.D.. check or money order. Please add $\$ 2.00$
for first antenna and $\$ 1.00$ tor each additional antenna to cover
shipping and handling. Callfornia residents add 6% sales tax.,
FOR DEALER LOCATION OR TO ORDER CALL: (i14) 268-0720

KITS

DOWN CONVERTER
VARIABLE PIS
CIGAR ANTENNA
KIT SPECIAL
(ORDER ALL THREE \& SAVE) . .
HIGH-GAIN TRANSISTOR.
DRIFT MODIFICATION
KD 44 DISH ANTENNA

OUR PRODUCT MAY BE COPIED

ASSEMBLED

ASSEMBLED DOWN CONVERTER. $\$ 39.95$ ASSEMBLED POWER SUPPLY. $\$ 29.95$ CIGAR ANTENNA $\$ 19.95$

ULTIMATE SPECIAL
(ALL THREE ABOVE PRODUCTS). $\$ 79.95$ SUPERVERTER I-CRYSTAL NOT INCL. (ASSEMBLED ONLY). $\$ 109.95$
SELECTIVE PREAMP.

AVANTEK
 GPD SERIES AMPLIFIERS

GPD $401,402,403$
12-14 DB GAIN
5- 500 mHz POWER 15 VDC TOS MOUNTING ideal for counter and tr preamplifiens omplete with circuit board for mounting $\$ 25.00$ EA., SET OF THREE $\$ 65.00$ AMATEUR
MICROWAVE DOWNCONVERTER
complete assembled renor to install not akit SPECIAL \$179.95

ISA AND MASTERCARD ACCEPTEN

UTPUT IMPEDANCE 75 OR 300 OHMS
50. OLE SYSTEM CAIN

TUNES 2.1 Chz to 2.4 Ghz

PERFORMANCE CUARANTEED OR | PREAMPLIFIER 20 OB GAIN 12.5 dB NF YOUR UONEY REFUNDED |
| :--- |
| OUTPUT TUNES TV CHANNELS $~ T O ~$ |

> CALL (804) 489-2156

ELECTRONIC HOBBY INNOVATIONS

FREQUENCY COUNTERS to 1.3 GHZ

By OPTOELECTRONICS ine Ff. Lauderdale, Florida

NOW IN STOCK

2300 MHz VARIABLE DOWNCONVERTER

TVRO Q \& A: Part III

LNAs are expensive, but rolling your own is a losing proposition.

Ken Rae WBOPOP
737 South Clarkson
Denver CO 80906

What is the purpose of an LNA?
The purpose of an LNA is to amplify the signal collected by the feedhorn (ap)proximately 4 microvolts) to a usable level without adding any appreciable noise

Are all 120-degree LNAs the same?

No, they are not. Some manufacturers meet the specifications by just a bare margin, and other manufacturers give you a 100 -degree LNA yet call it a 120 -degree LNA because it's sort of a stepping stone; you buy either a 100 or 120 . There are some indications that manufacturers will include a 105 -degree LNA as a step in progression of degrees Kelvin.

Is the LNA's bandwidth important?

A few years back it was said that the bandwidth of many LNAs was too wide for TVRO application. Since then most of the
manufacturers have installed bandpass filtering to narrow down the amount of outside noise that could come in. We don't want the whole world walking through the LNA. We would like to amplify the TVRO frequencies exclusively.

Should I buy or build an LNA?

1 recommend that you buy your first LNA. I've seen only 10% of the people who try to construct an LNA actually succeed and build something that is worth having. The disasters are horrible, so if you build an LNA, do it after you have bought one. Buy one, put your system up, get it running, and then go back and construct a low-noise amplifier for your own use and education. Then you can sell your commercial LNA for the same price you paid for it.

How hard is it to build an LNA?

An analogy would be if you went down and got plate-glass sheets and tried to grind your own zoom lens for a 35 mm camera. You can just imagine the precision required to do this and to add optical coating that you
would have to put on for color pictures. Well, you're trying about the same thing when building an LNA.

What is the most misunderstood thing about building an LNA?

That it is much like HF work or the old tube work clear back into the fifties, where you could simply insert a tube or transistor and turn the machine on to see it run. GaAsFETs have a very critical LC reactive component to their nature, and if these parameters are not met the transistor will not perform. Meeting these parameters is difficult and takes a lot of time and meticulous work. There are people who claim that they can throw transistors into a stripline design and learn the recipe for creating a lownoise amplifier. In some cases this does work. But as a general rule, the misconception is that you can put it together, turn it on, and it will run for you. I have never seen this first try, first serve situation.

Why are LNAs so expensive?
Profit is one reason, but in past years they've been extremely expensive because
20% of the LNA cost is materials and the rest is labor, much of which is because a design engineer or a microwave engineer has to sit and tune the LNA for proper specifications. This is extremely expensive at the rate of pay for engineers. The common laborer on a construction test bed is not able to bring a low-noise amplifier to specifications by simply plugging in the transistor, soldering it down, and shipping it out. It has to be tuned with precise instruments. The prices are dropping now, however, and they have come down almost two-thirds in the last 3 years.

Will the open-end LNA work with no feedhorn?

Yes, it will. You can take the common commercial LNA with the open mouth and omit the feedhorn; this works exceptionally well for a .3 to a .4 dish. Now, if you go much larger than a 45 or .5 dish, where they're flatter, then you'll want some sort of a funneling device on the front of your horn such as a square-flanged horn or a funnel to create a more directional beam from the focal point to the dish.

Bomant, 4 wORLDAHEAD OF THECOMPETHION

Is a $60-d B$ LNA better than a 30-dB LNA?

No, I wouldn't say so, not in natural use if the mixer is within the vicinity of the low-noise amplifier. If you're going to put your mixer inside the house and run 60-80 feet of coax or heliax to the mixer, then you need some extra dBs from your LNA and gain to pump the signal down the coax, but in effect they're equal in quality. A lot of people will think a $60-\mathrm{dB}$ gain is better than a $30-\mathrm{dB}$ gain. As far as the noise level goes, that is established by the first transistor amplifier of the GaAsFET INA, and therefore stages added behind it do not improve the noise figure. They improve the ability of the low-noise amplifier to push the rf further down the coax without getting back down to an unworkable level at the other end of the coax.

My LNA works all right at night, but is very noisy during the day; why is that?

It sounds like you have a heat problem inside the LNA where the chip capacitor is separating and/or closing due to the heat and expansion of the circuitry. Normally the day and night transition is not noticeable on a TV screen unless you're a very particular person and see more sparklies during the day than you do at night But if this is the case, it's usually due to the temperature of the LNA, and its circuitry is failing during the day. The other type of interference that comes during the day is unassociated with temperature, light, or conditions of the sunspot cycles. The satellite noise figure is due to its position relative to the sun on its receiving antennas and whether it's charging its batteries or not. And all these parameters influence noise during the day.

One of the biggest clues to terrestrial interference is the fact that it's usually
more predominant during the day than at night due to the fact that telephone traffic is a lot heavier during the day. The deviation is higher due to the volume of FM traffic that is coming out of the terrestrial interfering signal and deviates further into the video portion of the band of the particular channel that you're watching. Therefore, you'll notice the interference is heavier during the day than it is at night. If around 9 or 11 o'clock at night, when telephone volume drops off, the TV gets more and more clear, then you can suspect that you have terrestrial microwave interference, and I would go look for it with a spectrum analyzer at that point.

What is a de block and is it really needed?

Yes, most of the commercial LNA manufacturers require that the dc power for the LNA be fed through the coax from the center conductor - this being a plus 15 to a plus 28 volts in some applications. In order to put the dc onto the coax going up to the LNA and at the same time have the rf from the LNA coming down that coax, you must divorce the two from each other at the mixer. A dc block is simply a capacitor, usually in the neighborhood of 1000 pF , inserted into the signal path allowing the rf to go through but keeping the dc on the LNA side of the stripline. An rf choke in the neighborhood of 5.6 or 10 millihenries is used to divorce the rf from the dc bias line that comes from the house. This enables you to have just one cable going to the LNA.

Do holes in the waveguide hurt anything?

It depends on how large the holes are. If they're no larger than oneeighth to one-quarter inch, they don't have very much effect if there are only one or two in the waveguide. I have quite a few holes in the home-
built waveguides that l've used and I can see no difference whether I leave them open or cover them.

Do waveguide flanges have to be airtight?

The only reason that you would need an airtight or sealtight flange between waveguide joints is to make sure that you don't interfere with another system. If you have a high-power oscillator feeding down one of these waveguides or if you were receiving side interference from terrestrial microwave or something of this nature, then airtight flanges are needed. At the low level of signal that we are talking about, the normal, compressed, bolted-together waveguides are extremely efficient. The amount of enhancement gained by goldplating, sealing, soldering, and shimming the flanges is nearly useless. Moisture seepage or air seepage might be another consideration if you're having condensation problems inside your waveguide, but most waveguides are open. My waveguide is open and has been for three years.

How much gain is necessary

 for a "perfect" picture?For a perfect picture, something in the neighborhood of $30-36 \mathrm{~dB}$ is usually needed. The LNA output must be sufficiently strong to drive the mixer stage. The mixer diodes, if not driven properly, will add appreciable noise to the system. This dictates about $33-\mathrm{dB}$ minimum.

Why do some people use round horns and others use square horns?

A long time ago it was understood that you get an easier impedance match and less loss with a square horn. I'm not sure whether that is true, but square horns do have one distinguishing factor: The pick-up probe and the impedance matching tend to be consistent in
single-mode operation Hence the square waveguide is heavily used in military and commercial applications.

Circular waveguides collect an equal amount of E and H fields, these being perpendicular to each other. That is, when the wave enters the dish, the E and H fields are perpendicular. The E field is the electrostatic field and the H field is the magnetic field; therefore, in getting the maximum power transfer, you must have an equal amount of these two properties.

The circular waveguide more readily matches the configuration of the circular parabolic dish, the spherical dish, and also the wavefront you are trying to receive. The circular waveguide is therefore more receptive to the incoming wave than the square waveguide. In summation, the circular waveguide outdoes the square waveguide by approximately 1 to 1.5 dB . However, the transition that you use may cause a loss of .5 to 1 dB , so you may not gain anything by going from circular to square, depending on how well your transition works.

Why use a horn instead of a

 dipole?The dipole by itself does not have the gain. What you are trying to do is focus the waves onto the probe in the rear of the waveguide. This gathering of the waves is extremely valuable when you're working with small signal levels of TVRO.

What is a scalar horn?

A scalar horn is simply an rf choke that keeps the signal from going over the outside of the waveguide or feedhorn and traveling back out toward the satellite. It also represents a sort of yagi antenna; a scalar horn's ribs re-radiate the wave toward the center of the waveguide, acting as an electrical funnel that catches and shoves the wave into the mouth of

FILTER CASCADING

The most cost-effective way to improve the selectivity of any receiver - old or new - is to improve its IF filtering. A Fox-Tango Cascading Kit puts ahigh-quality steepsided 8 -pole filter in series with your present filter(s). both SSB and CW. The result is narrower Bandwidth and better Shape Factor, both of which dramatically reduce adjacent channel QRM - a necessity in today's crowded bands.

CONSIDER THESE KIT FEATURES

- Easy installation-30 minute average.
- No drilling, switching, alignment.
- 16 poles of filtering yield:

Filter Shape Factor as high as 1.19. Ultimate Rejection better than 100 dB . Works wonders on SSB; improves CW - Compensates for Filter insertion loss. - Complete instructions, clear diagrams.

- No RX audio impairment, TX unaffected.
- Includes Filter and all needed parts.
- Fits all models of Series - any letter.
- All Filters 8 -pole - Guaranteed One Year

SPECIFY KIT WANTED WHEN ORDERING YAESU FT101 \$75; FT101ZD \$70; FT107 \$75; FT901/2 \$65; FR101 \$55 (filter only). KENWOOD TS520/R599 \$70; TS820 \$70; TS830/RB20 \$150 (Two Filters). HEATH SB104A $\$ 60$.

Shipping $\$ 3$ (Air \$5). FL Sales Tax 5%

 In addition to the above, FOX.TANGO stocks a wide line of $\$ 55$ SSB, CW, and AM 8 -pole filters for Yaesu, Kenwood, Drake R4C and 7-line, and Heathkit. Also, special filters made to order. Send specs for quote.

GO FOX-TANGO - TO BE SURE! Order by Mail or Telephone. AUTHORIZED EUROPEAN AGENTS Scandinavia: MICROTEC (Norway) Other: INGOIMPEX (West Germany)

FOX TANGO CORPORATION
Box 15944S, W. Palm Beach, FL 33406 Phone: (305) 683-9587 خ 323

SATMAR BRINGS SATELLITE TV DOWN TO EARTH

Satellite TV can indeed be your window to the world. With one of our systems you will have the ability to receive over 50 channels of movies, sports, educational, news, financial and religious programming.
Our TVRO systems are configured from a wide selection of components for your own particular viewing interests and geographical location and are specifically designed to allow you to do the installation yourself.

Example A

Contigured for

Denver, Colorado

- Micro Scan 11 f, 4 piece fiberglass parabolic antenna with polar mount and electric remote LNA rotor
- Dexcel $120^{\circ} \mathrm{K}$ LNA
- Lowrance "System 7" receiver with built-in modulator and stereo audio processing.
- Circular scalar feed horn
- 100 ft . cable assembly COMPLETE SYSTEM*

SATMAR

SATELLITE TU
2230 E. Indian School Rd Phoenix, Arizona 85016
(602) 954-6008
*F.O.B. Phoenix, Arizona
the waveguide. The scalar horn applies most readily to a deep dish-low focal-distance-to-diameter ratio (F/D). The horn must "look" at a wider angle. The funnelshaped horns are more directional and are used with a flat dish.

Why is the spherical-dish horn so much larger?

The focal point of a spherical dish is quite a long distance from the surface of the reflecting spherical and therefore a larger area has to be gathered in. It is as if you are traveling 12, 14, or even 32 feet away from the spherical antenna to catch the microwave signal. You're sort of like a catcher in a baseball game; you want to use a large glove to catch that little ball. The further away you are, the more directional you want your view of the antenna. Therefore, the broader the horn is, the narrower the beam is. So you want to catch this nar-
row beam, making the horn appear much larger in physical size. The diameter of the mouth is much broader than for a parabolic dish.

What horn do you use on a .3-F/D dish?

On a 3 you would use a wide-angle horn such as a sawed-off waveguide, a sawed-off piece of 2 -inch pipe, or a rectangular commercial 229 waveguide. The waves spread very rapidly as they leave the mouth of the horn. This leads us to use the scalar horn as the best choice.

Is a gold- or silver-plated horn better than a copper one?

Gold or silver is better, but for all the cost of having the gold plating or the silver plating done, you will probably increase the signal only a tenth of a dB. So it's cost prohibitive to do this type of thing.

Are there any surplus horns?
"Surplus" is not really the word because you can go to any plumbing shop and find a 2 -inch diameter circular piece of downspout copper tubing - and that is your "surplus" waveguide. There are square and rectangular waveguides. An abundance of them are being thrown out every month by AT\&T into scrap yards where they're sold for scrap copper. (They knock off the brass fittings on the ends of the flanges for brass scrap.) There are probably tons of this lying around all over the United States.

How thick should the walls of the horn be?

Thick enough to withstand abuse such as from dropping it or from wild weather. In mounting it, you might bang into it, so you don't want it to distort readily with normal handling. Something like 24 -gauge or 28 -gauge copper is the thin-
nest you should use to make it rigid.

Can you use PC material for the horn?
I don't like to use PC board material because you solder to only one side at a time, leaving only thin copper to hold the corners together. Bracing it on the outside takes extra work such as putting brackets around it to hold it together. Generally speaking it will work reasonably well, although I think there's easier material to work with.

Where can I buy a horn?

That, I wouldn't know. Most horns can be built readily out of sheet copper drawn out on the kitchen table, cut with a pair of tin snips, folded, and soldered together, just as you would fold up cardboard to make a box for Christmas wrapping. Most of the amateur enthusiasts construct their own horns.

SATELLITE TELEVISION SYSTEMS

WE WILL NOT BE UNDERSOLD!! Complete Systems, Antennas, Receivers, LNA's \& Accessories CALL US TODAY! 812-238-1456

"Nation's Largest Total Communications Distributor" P.O. BOX 3300 • TERRE HAUTE, INDIANA 47803

SATELLITE TV SYSTEMS
"COMPARE OUR QUALITY, IPRICES AND SERVICE!" WE MANUFACTURE:

PARABOLIC DISHES MOTORIZATION SYSTEMS
POLAR MOUNTS LNA HOLDERS
DEMO TRAILERS
CUSTOM PARTS
WE STOCK:
WASHIBURN
KLM
AVANTEK
Gillaspie
DRAKE
GARDINER LOWRANCE

alliance

ATV
CABLE \& CONNECTORS
SWITCHES \& HARDW'ARE

CALL, WRITE OR - FOR OUR LATEST BROCHURE AND PRICES.

AUSTIN C. LEW'S	LEWIS CONSTRUCTION CO
$k+G G C$	P.O. BOX 100
901.884 .2191	HLMBOLDT. TN. 38343

"IN BUSINESS AT THIS LOCATION SINCE 1964" -452

2 GHZ MICrowave Receiving Systems

The new Micro-System features a machined $18^{\prime \prime}$ parabolic reflector for maximum efficiency, a linear feed-point downconverter with ceramic high performance RF preamplifier transistor, a variable 12 to 18 volt regulated power 'supply and 50' of 75』. coaxial downlead, including a 3^{\prime} jumper and matching transformer. The Micro-System includes a full 6 month warranty.
Micro-System (MS-021) . ${ }^{1599^{\circ s}}$
Micro-System (MS-578) . ${ }^{1} 169^{\circ 8}$
Micro-System (MS-645)
: $179^{\prime \prime}$
Shipping \& Handling: USA ... 4^{00} AK, HI \& PR . . ${ }^{1} 10^{00}$

Data Sorvice Company

-346
3110 Evelyn Street
Roseville, MN - 55113
mavicard
Vivo

QUALITY MICROWAVE TV SYSTEMS

1.9 to 2.5 CHz Antennas

Complete Sytem (ifod Siyle as pictured) $\mathbf{\$ 1 2 4 . 9 5}$ Compicte Syatem
[Reflector Style as pictured] $\$ 149.95$
Down Conveter, Assembled \& Tested $\$ 64.95$
Power Supply (12 to 18v)
349.95

Also Dish Style Antemas In Stock.
Galaxy \sim^{178}
Electronics
6007 N. Glst Ave.
Glendale, Az.
85301
(602) 247-1151

COD's
Quantity Pricing
(anifecurn

TOR THE SPECIALIZED COMMUNICATION RADO AMATEIR-:

Surface U.S.Canada	Surtace All	Airmall Central	Alrmail All Other
Mexico	Foreign	S. America	Foreign
$\$ 10.00$	$\$ 13.00$	$\$ 20.00$	$\$ 23.00$
$\$ 20.00$	$\$ 26.00$	$\$ 40.00$	$\$ 46.00$
$\$ 38.00$	$\$ 50.00$	$\$ 78.00$	$\$ 90.00$
$\$ 56.00$	$\$ 74.00$	$\$ 116.00$	$\$ 134.00$
ATVSSTV.FAX.ATTY.Satellites.EME			

Published 12 times per year by Mike Stone WBOQCD P.O. Box H. Lowden, lowa 522550408

RELIABLE MICROWAVE TV ANTENNAS

2.1 to 2.6 cHz Frequency Range 34db System Gain (or Greater)

The Sound of Silence

Beep!! Your TS-180 is off the air, Charlie.

Tony Ruepp HB9BLU

Ifangstr. 73
CH-8153 Ruemlang
Switzerland

The TS-180 contains a very effective swr protection circuit. If ever the swr exceeds a given limit, this circuit immediately cuts off your transmission and lights the LED. This state is held until you (or the VOX) release the transmit button.

When transmitting CW, I very seldom watch the rig. I rather "see" the letters and words passing by while staring at a hole in the air. Several times I did not realize my transmission had been
cut off, but I learned it immediately when 1 returned to receive and heard my partner in another QSO wondering where 1 might have gone. My 40 m and 80 m antennas swing in the wind and often exceed the swr limit for a moment.
The following very simple modification guarantees gaining your immediate attention whenever the protection circuit has fired. It simply steals the sidetone and even recycles the protection circuit if you're operating in the VOX mode. It's an easy job to do (takes about 15 minutes and costs less than a dollar) if you follow the instructions carefully:

Prepare a diode (1N4148 or equivalent) and a piece of insulated wire (length about 50 cm). Strip one end and pre-tin it.

1) Remove the eight screws which secure the top cover.
2) Lift the cover slightly and unplug the speaker.
3) Remove the cover entirely.
4) Locate the protectioncircuit LED above the digital frequency display. This LED is mounted on the LED unit. The leftmost pin on it is labeled PRL and a blue wire is soldered to it.
5) Make sure no other wires are touching that pin, then solder the prepared wire to it.
6) Bend the wire 1.5 cm
behind the pin to the left. Bend it to the rear again after another 3 cm and follow the edge of the PLL assembly to the rear of the rig.
7) Bend it to the right again and cut it 2 cm from the CW key jack.
8) Strip $1 / 4 \mathrm{~cm}$ and tin it.
9) Now carefully place the wire in its proper position and tape it close to its end to the chassis.
10) The CW key jack has 5 soldering lugs. Locate the one with the brown wire. (This wire leads to the STS pins of the i-f assembly.)
11) Solder the anode of the diode to the lug with the brown wire and the cathode (ring) to the added wire.

This completes the modification.

Fig. 1.

Fig. 2.

At Last.

A microthin, synthesized, programmable, sub-audible tone encoder that fits inside the ICOM IC-2AT.

Need we say more?
\$2995

Build the Re-Fuser

It's a self-replacing fuse. Why blow one when you can blow two?

A. W. Edwards K5CN

456 Clenmore
Corpus Christi rX 78412
am sure that many technicians have made a trip to a remote, unattended electronic installation to restore some piece of equipment to service only to find that the problem

was an open fuse. When the fuse was replaced, everything was normal; no other defect was apparent.

This article describes a circuit which will detect the open-fuse condition, give the load and/or supply time to recover, replace the open fuse with a good one, and announce the fact that the reserve fuse is now in service.

Fig. 1 shows the general circuit for a dc-powered unit. So long as the regular fuse, F1, is good, the heater element of the time-delay device is shorted out by it. Should F1 open, the heater appears in series with the load. After a delay period for the thermal device to operate, the TD switch contacts close and power is applied to the gates of SCRs 1 and 2. SCR1 conducts and
places F2 in the main load line. If the load now is capable of proper operation, F2 will hold, restoring the equipment to service. The TD heater is again short-circuited, so it resets.

SCR2 may be used to activate a small oscillator, e.g., a Sonalertim or other type. This modulator can be made to signal, via an rf carrier, that the main fuse has failed and that the system is in the backup condition.

The modulating system may be a periodic beep or a continuous tone. The Sonalert device can give local aural notice, as well as providing electrical modulation.

A relay arrangement might also be employed, with the relay coil across the main fuse.

Fig. 1. Dc-operated circuitry.

Mou've got to cet a Santec to get it richty

Compare Santec to anything you like, and you'll see - you've got to get a Santec to get: \square memory channels which store standard repeater offsets for instant recall less than 10 ma drain in receive to conserve power while you're monitoring \square extremely wide power options of 0.1 $\mathrm{w}, 1.0 \mathrm{w}$ or even 3.5 W for varying conditions \square an accurate 24 hour clock for instant reference \square and a full two year extended service plan which no one else will match.
When you get a Santec, you also get: \square the widest frequency range of any handheld \square odd offsets other than $\pm 600 \mathrm{kHz} \square$ variable step sizes in bandscan a 500 ma battery with charcer \square a full six digit backlighted LCD display for full frequency readout plus the memory channel number \square the easiest keyboard entry of ary handheld \square eight modes of scan, search, manual control and open sean \square the ability to change batteries without losing memory data easily programmable bandscan \square a frequency lock switch on the keyboard \square an automatic low battery indicator and much more.

FEATURE	SANTEC ST-144	$\begin{aligned} & \text { YAESU } \\ & \text { F-208 } \end{aligned}$	$\begin{aligned} & \text { KENWOOD } \\ & \text { TR-2500 } \end{aligned}$
Size (mm)	$68 \times 170 \times 47$	$61 \times 163 \times 49$	$36 \times 168 \times 40$
Weight with Batt.	600 gm	720 gm	540 gm
Readout	LCD (full 6 digits)	LCD (4 Jigits)	-CD (4 digits)
Memory Channels	10	10	10
Memory of Offsets	YES	NO	NO
Memory Backup	YES, Capacitance	Yes, Litr ium Batt.	Yes, Lithium Batt
Search Mode	YES	NO	NO
Step Size	$5-100 \mathrm{kHz}$	5 or 1CkHz only	5-30 kHz
Battery	Quick Change Pack 500 ma-hr, 9.6 V	Quick Change Pack $450 \mathrm{me}-\mathrm{hr}, 10.8 \mathrm{~V}$	Slide on Pack 400 ma-hr, 8.4 V
Frequency Coverage	$\begin{aligned} & \text { 142-148.995 Tx } \\ & \text { (149.995 optional) } \\ & \text { 142-149.995 Rx } \end{aligned}$	143.5-48.495 Tx/Rx	143.9-148.995 TxiRx
Power (max)	3.5 W High 1.0 W . Med. 0.1 W Low	2.5 w Migh 0.2 W Low	2.5 W High
Priority	YES (in Mem Scan)	Yes (Prority Ch.)	NO
Clock	YES	NO	NO
Computer Current Saver Display	YES (10 ma) 6 Digits + Mem. \#	$\mathrm{NO}(20 \mathrm{ma})$ 4 Digit. + Mem. \#	$\mathrm{NO}(27 \mathrm{ma})$ $4 \text { Digits }$

New! Affordable Price! See your Authorized Santec Deale for details.
Competitors' specifications were obtained
from published specifications sheets, and they
are subject to change without notification to
Santec or Encomm, Inc.

Shown with optional
SM-3 speaker
microphone.

Accessones for Santte Handheld Radios
clockwise from Lpper left
leather Case ($5^{-}-\mathrm{LC}$)
Base Charger a power Supply (ST-5BC
Remote Speake- (MS.505)
mobile Charget :ST•MC)
Speaker Micropione (SM-3)
The ST. $144 \mu \mathrm{P}$ is aporoved under fCC Part 15
SANTEC

2000 Avenue G. Sute 800 , Plano, Texas 75074 Phone (214) 423.002ε. TLX 79.4783 ENCOMM DAL Repairs, Parts \& Service Avallable mo

Expon orders invired
All stated specifications are subject to chonse winhout notice or ooligation

No Smoking in the Ham Shack

Overvoltage kills solid-state finals. Protect yours for $\$ 1.00$.

John I. Lapham, Ir. N7II
4718 18th NE
Seattle WA 98105

This two or three-component addition to a power supply will give the experimenter a visual indication of an over-voltage
condition and do it for much less than the cost of a meter (see Fig. 1). All that is required is a low-power zener diode, an LED, and (possibly) a low-wattage resistor.

For example, in Fig. 1, the unregulated voltage is 18 volts. Since a voltage-regu-
lator failure could occur if there were a collector-emitter short, there conceivably could be 18 volts at the power supply output. Suppose the load can't safely operate at that potential for very long. By choosing the right zener, the experimenter can have an inexpensive visual indication of this condition. The mathematics are simple!

Remember Ohm's Law? E $=\mathbb{R}$. For this example, a zener is chosen which will reduce the 18 volts by the 1.5 to 1.7 volts which are used to turn on the LED: $V_{\text {rener }}=18-1.7=16.3$ volts. In a normal output voltage condition, the zener will not conduct and the LED will not turn on, but if the output rises to the breakdown value plus the LED conduction value, the LED will light. But suppose you don't have (in this case)

Fig. 1. R1, ZD1, and LED1 comprise the monitor circuit.
a 16 -volt zener. Maybe you only have a 13 -volt zener. What then?

Well, $18 V-(13 V+1.7$ $\mathrm{V})=3.3 \mathrm{~V}$. What is going to drop that 3.3 volts? Remember that resistor? Now you can use it. The resistance must equal that 3.3 volts divided by the current through the conducting LED, in this case .02 Am peres. Using Ohm's Law we get: $R=E / I$, or $R=3.3$ volts/. 02 Amps $=165$ Ohms. This value of resistance is then placed in series with the LED and zener to drop the excess voltage (see Fig. 2).

If the voltage is required to be monitored exactly. then a meter is the better choice. But if an absolute over-voltage value is the only concern, then this circuit could be utilized for around $\$ 1.00$. It could be a bargain.

Fig. 2. The correct value for R1.

PORTAPEATER ${ }^{\text {© }}$

\$179.00 assembled
M100 A
$\$ 99.00$ assembled unit
-4 Channel PROM CWI Der

- VOX or COR operation
- 250 volt switching capability
- An Instant

Repeater (Fully tested, programmed, assembled)
W-S ENGINEERING P.O. BOX 58, PINE HILL, N.J. 08021
(201-852-0269)

RTTY SCOPE

At Last! An RTTY Tuning Scope!

And who else but HAL would bring you such a practical solution to the RTTY tuning problem. If all you have is flashing lights, you know how difficult it can be to match your transmit frequency with that of a received RTTY signal. The RS2100 RTTY Scope ends these problems with an accurate display of the received signal (both signal amplitude and phase). The RS2100 is a matching companion for the CT2100 Communications Terminal and may be used with most HAL and other manufacturers' RTTY equipment. An internal loop supply is included.

- X-Y tuning scope indication
- 1" diameter green phosphor CRT
- Front panel focus, intensity, and position controls
- Internal 200 VDC, 60 ma loop supply
- Two loop keying circuits (high voltage or optical isolator)
$-3-1 / 2^{\prime \prime} \times 8-1 / 4^{\prime \prime} \times 10-3 / 16^{\prime \prime}, 9$ lbs net, 12 lbs shipping 120/240 VAC, $50 / 60 \mathrm{~Hz}$ power
- Scope indicator works with CT2100, DS2050, DS2000, CWR685, CWR6850, CWR670, CWR6700, ST5000, ST-6K, ST-5K, and more
- Loop supply works with CT2100, DS2050, DS2000, CWR685, and CWR6850

Write or call for more details. See the RS2100 at your favorite HAL dealer.
HAL COMMUNICATIONS CORP.

BOX 365
URBANA, ILLINOIS 61801
217-367.7373

Don't Be Left Out in the Cold with the Russian Woodpecker

GET A MOSCOW MUFFLER ${ }^{\text {" }}$

Another first from AEA. The Woodpecker Blanker, WB-1 really works. This unit effectively blanks the pulsing interference of the Russian Woodpecker. Two versions are available, the WB- 1 for use with communication receivers and WB-1C for use with all popular transceivers.

This extremely useful accessory is designed for direct insertion between your receiver (or transceiver) and the antenna. It is both MORE EFFECTIVE than I.F. type blankers and requires NO MODIFICATIONS to your receiver! The unit operates from a 13 VDC ± 2 VDC power source at less than 575 $m A$. (AEA AC wall unit AC-1 will operate the blanker.)
The blanker works well on both CW and SSB modes that are being interfered with by a woodpecker. Controls on the front panel include; four push button switches, a synchronize control and a width control The WB-1 also features a low-noise untuned broadbanded 6 db gain pre-amp which can be selected with or without the blanker enabled. The WB-1C uses the same circuitry but includes a carrier operated relay (COR). This provides protection to the receiver section during transmissions from the attached transceiver.

For more details, write for our latest catalog or visit your favorite dealer.
Prices and Specifications subject to change without notice or obligation.

ADVANCED ELECTRONIC

 APPLICATIONS, INC.P.O. Box C-2160,

Lynnwood, WA 98036
(206) 775-7373

Telex: 152571 AEA INTL

Tempo MARSer

Get the S-1 off those crowded ham channels. Expand your coverage above and below the amateur band.

Fig. 1. The Tempo S-1 transceiver.

Edison Fong WB6IQN
Signetics Corporation 811 E. Arques Avenue
Sunnvvale CA $94(1) 87$

The Tempo S-1, introduced about two years ago, remains as one of the most popular VHF synthe sized transceivers. This is because of its compact size, durability, reliability, and performance. This article will show that with some simple modifications, the radio's bandwidth can be extended to $140-155 \mathrm{MHz}$, thus covering MARS, mobile telephone, fire, police, etc. Although some degradation of performance occurs on the band extremes, no measurable degradation was observed within the amateur band. The few components and items needed are listed in the box

The techniques presented here can be applied to similar transceivers such as the Icom IC-2A, but are much more complex with micro-processor-control radios
such as the Kenwood TR 2400 and Santec HT-1200. Although the unit is capable of transmitting in the commercial band after the modifications, only authorized persons should do so. In addition, the modifications are not FCC-approved.

S-1 Background

The block diagram of the S-1 is shown in Fig. 2. The master oscillator is in a phase-locked-loop configuration so that only a single base crystal (6.82666 MHz) is used for the reference oscillator. This oscillator is fed through a programmable divider chip (NIS-103). Initially, this divider spans $N=800$)-1600, giving the S-1 $144-148-\mathrm{MHz}$ capabilities. For example, the following divisions give the divider outputs and operating frequencies shown:

Division	Output $(\mathbf{M H z})$	Frequency $(\mathbf{M H z})$
$\mathrm{N}=800$	1.33	144
$\mathrm{~N}=1000$	1.66	145
$\mathrm{~N}=1200$	2.00	146
$\mathrm{~N}=1400$	2.33	147
$\mathrm{~N}=1600$	2.66	148

NIS-103 does not directly divide the reference oscillator because NIS-105 contains other circuitry. The output signal is then mixed with the 43.1 MHHz crystal oscillator. If the output of these two signals is summed and is fed through the vco consisting of the 2SK61 and then tripled via the 2SC1764, the output of the vco becomes 134.30 MHz . The vco generates the sum signal directly producing a clean signal as opposed to tapping the signal off the mixer

Fig. 2. Block diagram of the S-7.

Fig. 3. Wiring configuration showing the switching of the two crystals.

Fig. 4. Schematic of the vco. The only point at which the varactor diode can be connected is between C31 and C30 since the dc voltage will not disturb the circuit.

Fig. 5. Hookup of the varactor diode and how it is switched in and out of the circuit.

Fig. 6. Mounting of the varactor diode, $C 1^{\prime}$, and $R l^{\prime}$ on the receiver board.

Fig. 7. Four-position switch mounted on the back of the transmitter board.

Fig. 8. The back of the transceiver showing the placement of the DIP switch.
(2SC1675), which will have spurious products within the band of operation. The two signals are compared by NIS-105 and a correction voltage is sent back to the vco. (More on phase-lockedloop techmiques can be obtained from Floyd Gardner's Phaseloch lechniques, John Wiley and Sons, New York NY, 1966.) The signal is then fed either to the transmitter or receiver where 10.7 MHz is added on to it to obtain the 144.00 MHz shown in the example given above. For transmit ottsets of +600 kHz , the crystal is 11.3 MHz , and for -600 kHz , the crystal is 10.1 MHz .

Extension to 140-150 MHz

The S-I can easily be extended for operation from $140-150 \mathrm{MH} / \mathrm{with}$ minimum effort and no extra components. The programmability of NIS-103 is capable of $\mathrm{N}=0-2000$. What prevents this action is not the electronics but the mechanics. Henry Radio is obligated to allow the radio to transmit only in the amateur band. this is done by placing rubber stoppers on the MHz_{2}
section of the thumbwheel switches. With the unit removed from the housing, the three-section switch separates easily. On the switch furthest to the left, there are two rubber stoppers. Remove these and repack the switch. Coverage is now available from 140-150 MHz . Because of the var-actor-tuned circuits in the transmitter and receiver, degradation in performance is minimal. With a dummy load into a Bird wattmeter, transmit power is still 1.5 Watts, and sensitivity is below 1 uV at the new band edges. No degradation was measurable within the amateur band

Generally speaking, there is limited activity below 144 MHz , but from 178-150 MHz there is military, MARS, paging, and other action

Extending the S-1 to 155 MHz

Most people would agree that $148-150 \mathrm{MHz}$ is not where the major activity occurs. However, from 150-155 MH_{2}, there are mobile telephone, paging, fire, police, ambulance, and other activities. A practical method of alternating the frequency is to change the $43.1-\mathrm{MHz}$ oscillator crystal (X-2) to 46.433 MHz . This crystal will switch the synthesizer range to $150-160) \mathrm{MHz}$ with direct readout. Unfortunately, the vco is capable of locking up only to 155.00 MHz . (This limit will vary from unit to unit.)

To switch the two crystals in and out of the circuit, remove X - 2 and place it where the private line (PL) circuitry normally would go Using RC-178 B/U (or RG-174, which is bulkier), connect one end to the receiver while the other end goes to the two crystals (43.1 or 46.433 MHz). For switching, a 4-position SPST DIP switch can be used. Since the crystal is grounded on the other end, it is best to disable the crystal by ungrounding it. I ig. 3 shows the wiring configuration. With the new

- U.S. Made - Competitive Price - All Solid State - 12V DC • SWR Protected •
- Broadband - No Tune Up • Full Break-in CW - 150 Watts PEP, SSB or CW Input • - High Dynamic Range - Excellent Sensitivity/Selectivity • Digital Readout -- 160-10 Meters Plus WARC Bands and MARS Coverage*•

Front panel switching allows independent MODE and optional crystal filter selection.
A passive double balanced mixer is employed in the receiver front end. This stage is preceeded by a low noise high dynamic range bipolar rf amplifier to provide good, strong signal performance and weak signal sensitivity.
Accurate digital readout of operating carrier frequency is displayed to 100 Hz .

A rugged, solid-state PA provides continuous duty in SSB and CW modes. A cooling fan (FA7) is available for more demanding duty cycles, such as SSTV or RTTY. The PA also features very low harmonic and spurious output.
VOX GAIN, VOX DELAY, VOX disable, QSK, selectable AGC time constants, RIT and noise blanker selection are front panel controlled for ease of operation.
The TR5 is designed with modular construction techniques for easy accessibility and service.

GENERAL

Frequency Coverage: $1.8-2.0^{\circ}, 3.5-4.0,7.0-7.5$, $10.0-10.5,14.0-14.5,18.0 .18 .5^{\circ}, 21.0-21.5$, 24.5-25.0*, 28.0-28.5*, 28.5-29.0, 29.0-29.7* MHz. ("With accessory range crystal).
Modes of Operation: Usb, Lsb, Cw.
Frequency Stability: Less than 1 kHz drift first hour. Less than 150 Hz per hour drift after first hour. Less than 100 Hz change for a $\pm 10 \%$ line voltage change.
Readout Accuracy: $\pm 10 \mathrm{ppm} \pm 100 \mathrm{~Hz}$.
Power Requirements: 13.6 V-dc regulated, 2 A . 12 to 16 V -dc unregulated, 0.8 V rms maximum ripple, 15 A.
Dimensions:
Depth: 12.5 in (31.75 cm), excluding knobs and connectors.
Width: 13.6 in . $(34.6 \mathrm{~cm}$).
Height: 4.6 in . $(11.7 \mathrm{~cm})$ excluding feet.
Weight: $14 \mathrm{lb} .(6.35 \mathrm{~kg})$

TRANSMITTER

Power Input (Nominal): 150 Watts, PEP or Cw. Load Impedance: 50 ohms.
Spurious and Harmonic Output: Greater than 40 dB down.
Intermodulation Distortion: Greater than 30 dB below PEP.
Carrier Suppression: Greater than 50 dB .
Undesired Sideband Suppression: Greater than 60 dB at 1 kHz .
Duty Cycle:
SSb, Cw: 100\%.
Lock Key (w/o FA7 Fan): 30\%, 5 minutes maximum transmit.
Lock Key (w/FA7 Fan): 100\%.
Microphone Input: High Impedance.
Cw Keying: Instantaneous full break-in, ad. justable delay.

RECEIVER

Senslitivity: Less than 0.5 uV for $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$ except less than $1.0 \mathrm{uV}, 1.8-2.0 \mathrm{MHz}$.
Selectivity: 2.3 kHz minimum at -6 dB .4 .1 kHz maximum at -60 dB (1.8:1 shape factor).
Ultimate Selectivity: Greater than -95 dB .
Agc: Less than 5 dB output variation for 100 dB input signal change, referenced to agc threshold.
Intermodulation: (20 kHz or greater spacing) intercept Point: Greater than 0 dBm . Two-Tone Dynamic Range: Greater than 85 dB .
I.1 Frequency: 5.645 MHz .
I.f Rejection: 50 dB , minimum.

Image Rejection: 60 dB , minimum below 14 MHZ .50 dB , minimum above 14 MHz .
Audio Output: 2 watts, minimum © less than 10\% THD (4 ohm load).
Spurious Response: Greater than 60 dB down.

ACCESSORIES AVAILABLE

Model 7021 SL300 CW Filter Model 7022 SL500 CW Filter Model 7027 SL1000 RTTY Filter Model 7023 SL 1800 RTTY Filter

Model 7026 SL4000 AM Filter
Model 7024 SL6000 AM Filter
Model 1570 PS75 AC Power Supply
Model 1545 RV75 Synthesized Remote VFO

Model 1531 MS7 Speaker
Model 1507 CW75 Keyer
Model 1558 NB5 Noise Blanker
Model 7077 Microphone

AT LAST!

This service will be available nationally. Lab tested \& time proven modifications professionally installed in your amateur Handy-Talkie 2 M , 220, 440, MH2 transceiver by Henry Radios warranty technicians (KNOWN AS "A\&W PRODUCTIONS")

-164
ANMPROUCTIONS
crystal switched in, it was found that locking of the vco extended only to 152 MHz . The range can be extended to 155 MHz by tuning T6, but the lower portion of the 2 -meter band would not lock. This is an uncompromising situation, especially with the new repeater subband and fire and law enforcement between 153 and 155 MHz

Is it possible to have the best of both worlds? Yes

This is the reason for the 4 position DIP switch rather than a two-position one. In order to extend the lock range of the vco, a varactor diode was incorporated

Some general rules must be clarified before proceeding to any physical modifications. First, removing any components is out of the question. This is because the S-1 uses flow. through solder. The risk of damaging other compo-

Items Needed

1-Crystal (same as for the AR-22C-X-3, 46.433 MHz)
1-4-position DIP switch
6"-RG-178 B/U coax or equivalent (RG-174 can be used but it is bulky)
1-Varactor diode, 1N5148
2-1/8-Watt, 220k resistors
2-0.1-uF bypass capacitors
The Tempo $\mathrm{S}-1$ service manual can be obtained from Henry Radio, 2050 S. Bundy Drive, Los Angeles CA 90025 , for $\$ 7.50$

The crystal may be obtained from Ace Communcations, Inc., 2832-D Walnut Avenue, Tustin CA 92680, for $\$ 2.00$
nents is high. Second, the varactor diode must be connected to a point where the do voltage is isolated since the diode must be controlled by a do voltage. The schematic for the vco is shown in Fig. 4. The node between C30 and C31 is the only point at which a varactor diode could be placed

The 1 N 5148 varactor diode was chosen because of its range, 47 pF (no voltage) and 14.7 pF (minimum value), with about 10 -volts reversed bias across it. A 220 k (1/8-Watt) resistor was tied to Vcc to reverse-bias the diode. An additional resistor must be used to discharge the diode when the voltage is removed. Bypass capacitor C1' was placed next to R1' to prevent rf interference, and C2' was installed next to R2'. The final configuration appears as shown in Fig. 5.

In the $150-155-\mathrm{MHz}$ area, the switch is closed, which reduces the capacitance on the varactor diode. In the $140-150-\mathrm{MHz}$ region, the switch is opened. The two additional resistors should be $1 / 8-$ Watt to conserve space, but there is room for 1/4-Watt resistors. Cl', D1', and R1' are placed at the bottom printed circuit board under the shield plate in parallel with C30, as shown in Fig. 6. This method is preferable to minimize lead inductance. R^{\prime} and C^{\prime} were mounted next to S3 since its lead inductance is not important. It is recommended that a frequency counter and ri generator be available so that T6 can be optimized for maximum bandwidth.

The uncommitted switch on the 4-position DIP switch can be used for subaudible tone or tone burst if desired. Mounting of the DIP switch is done on back of the transmit board, as shown in Fig. 7. A square hole is made on the back of the S-1 to access the switch, as shown in Fig. 8. Be sure to define the position of the hole carefully so
that the position of the hole will match the position of the switch.

Useful Hints

Because the $\mathrm{S}-1$ is so compact, if tends to feed back into the critical sections of the transceiver. It was found that bypass capacitors (0.1 uF) installed in the supply leads in both the receiver and transmitter boards improved the PII stability. As a general rule, do not solder the crystal case to ground This can break the vacuum seal on most crystals and shift its frequency, and at times it may stop oscillating altogether. However, clamping the crystal to ground is permissible and is recommended Also, placing a sheet of aluminum foil around the battery and then grounding it eliminates if teedback into the touchtone ${ }^{1 M}$ pad.

Results

The original specifications of the $\mathrm{S}-1$ are unchanged. In the low extreme (140 MHz) sensitivity is still below 1 uV, while at 155 MHz it was observed to be 1.5 uV. more than adequate for most applications. The vco lost lock at 156 MHz but was extremely stable below 155 MHz . By tuning T6, the upper or lower frequency extremes can be extended but the overall bandwidth is about 15 MHz . On transmit, at least 1.5 Watts was available at all frequencies. (Remember: A dummy load must be used when testing on unauthorized frequencies.) While switching from 140-150 MHz to 150-155 MH_{2}, the unit must be turned off while the crystal is switched and then turned on again. This is because once the vco locks to a certain frequency, it is difficult to break lock and relock again when there is a $3-\mathrm{MH} /$ difference between the two oscillator crystals.

The author would like to thank Glen Toth of Signetics for the photographs.
"Our antennas are lasting less than six months on these high vibration vehicles"

Revglutionary
 DURA-FLEX shock mount solves both problems.
 - DURA-FLEX neoprene elastomer-first significant advance in antenna shock absorption technology in 25 years.

- Completely eliminates RF nolse in radio systems generated by metal-to-metal contact with conventional steel springs.
- Drasticaliy reduces whip vibration which can damage or break steel spring equipped antennas on high-vibration vehicles or in off-road environments.
- Solid brass adaptors molded into neoprene...braid totally isolated through center cavity.
- Thoroughly field tested in extreme environments of heat, cold, humidity, and abrasion.
- Five models available for 2 meters, 220 MHz and UHF operations, rooftop, trunk lip and magnetic mounts.

the antenna specialists co.

the antenna specialists co.
a member of The Allen Group Inc. 12435 Euclid Ave., Cleveland, OH 44106
Canada: A. C. Simmonds \& Sons, Lto.

Abstract

Contest or rare DX the world is waiting to hear from the new breed of HF operators who'll have the power of a microcomputer at their instant command. Introduction of the Heath SS-9000 signals a new era in Amateur Radio communications. An era full of exciting promise. Challenge. And opportunity...

Anticipating the future, the Hams at Heath have created a remarkably advanced HF transceiver based on microprocessor logic. And with it, they open an entire universe of innovation and potential to the serious, active ham.

MORE WORLD HORIZONS

In the SS-9000, Heath met a major design goal: provide the high-est-tech. most versatile transceiver possible. Our objective? Nothing less than setting the pace for transceiver performance in the next decade. And transforming the whole state-of-the-art in amateur telecommunications.

As a microprocessor-controlled, nine band (including WARC) Transceiver, the SS-9000 pioneers the revolution in com-

puter-enhanced hamshacks with advanced design applications yet to be imagined. At your command under direct, modem, RS-232 terminal or computer control. it could break all known records for station performance.

MORE TOTAL TALK POWER

Even without a command terminal, Heath's SS-9000 will be the best transceiver your club or QTH ever aired. The superbly sensitive front end is mated to a transmitter providing 1 W QRP or 100W PEP output on SSB/CW/RTTY. At any level, dedicated operators who appreciate the finest and expect great results will discover it to be a hot CQ and DX magnet.

The SS-9000 features pushbutton up or down band scan and

RIT with a rotary tuning dial that utilizes an optical encoder (plus quartz PLL-synthesizec BFO, HFO and a VFO linked tc separate readouts). This gives you digitally-precise tuning with $\pm 100 \mathrm{~Hz}$ resolution in 16 selectable scan rates. Our dual f uorescent display is not just an advance in panel design ... it's a quantum leap forward in $T / R / \mathrm{Tr}$ flexibility! Now you can write, recall and shift a total of 27 separate frequencies (3 per band) around the dual display and work s mplex operation on one or two frequencies, split operation on diferent T\&R frequencies or cross-mode on either or both displayed frequencies. The unseen frequency stored in memory remains available for instant exchange and

There's more for the Ham of Heath

than ever before.

Keyboard command also allows you to set and switch the band, mode, pass-band shitt, baud and scan rates. plus switch to one of five band-matched antennas. One on-board F8 CPU raises switching efficiency to the
highest limit.

MORE FOR YOUR MONEY

Try one for the most exceptional capability ever offered. More QSO action
display, offering you speed and advantage that was undreamed of until now.

MORE MICRO CONTROL

Harness the SS-9000 to a video terminal, ASCII teletype or home computer. You'll have an unbeatable team to travel the airwaves. Using built-in ROM (Read-Only Memcry) commands, the Terminal Interface within each SS-9000 acts as a control/monitor with battery backup to handle a wide variety of tasks the user may define. This unique feature lets you writein and display (or change) the operating and memory frequencies for eazh band, set T/R/Tr activity on eash readout, toggle between and alternate either one freely with the memory frequency.

MORE IN STORE FOR YOU

Your local Heathkit Electronic Center* is eager to demonstrate the SS/PS- 3000 Team - our first 'intelligent' rigs. Ready for the future of Amatear Raslio, they're here, today! Get a hands-on tryout at your nearby Heath Ham Headquarters

MORE IN CATALOG, TOO

For complete details and specs. jet ε copy of your FREE Heathkit ca:aloc Write: Heath Company, Dept. 011-954, Benton Harbor, MI 49022.
-303

Units of Veritechnolcgy Electronics Corporation in the L.S.. a subsiciary of Zenith Radio Corporation

In keeping with Heath's ongoing policy of product improvement. spesifications are subject to change without notice or obligation. two digital 12 or 24 -hour clocks. Both units benefit from thermal and over-current protection with high VSWR cutback. Ahead of their time. the SS-9000 and PS-9000 are not kits. They come to you fully assembled. calibrated and aligned, with a one year limited warranty.

CW and the Apple II

The simplicity of BASIC plus the speed of machine language equals a near-perfect Morse keyboard.

There are many good programs floating around for the Apple II microcomputer which will let one touch-type Morse code. However, CW isn't nearly as effective coming out of the Apple's itty-bitty speaker as it is coming out of your antenna. This article describes a very simple (and cheap!) interface for the Apple which should key most rigs.

The key to this interface is the neat little game I/O connector that Apple has so thoughtfully included with your computer. This connector is an ordinary 16-pin DIP socket with the layout shown in Fig. 1.'

Although there are 16 pins on this connector, only three of them are needed for this interface. These are: pin 1 for +5 volts, pin 8 for ground, and pin 15 as the keying output.

Fig. 1.

I next took an ordinary 16-pin solder-tail DIP IC socket (164 at James Electronics) and soldered wires to pins 1, 8, and 15 on it. 1 use this socket as a male plug, and plug it into the game paddle I/O socket whenever I get in the mood for CW.

Pin 15 is designated output ANO by Apple, and is
driven by chip F14, a 74LS259. The Apple manual suggests buffering this output, and Fig. 2 shows the buffering circuit I used to key my Ten-Tec Triton IV transceiver.

U1 is a single AND gate from a 74C08 CMOS quad AND gate (49¢ at Radio Shack). Q1 is a 2 N 2222 NPN

Fig. 2.

Fig. 3.

Fig. 4.
utility transistor (10థ at Radio Shack).

There are other combinations of parts that work which may even be cheaper than this circuit. However, these are the first ones I ran across in my junk box, and. as the old proverb says, "If it works, don't fix it."

One word of caution: If you use a quad CMOS chip, as I did, be sure to ground the inputs to the unused gates-otherwise the chip may malfunction. Thus, for the 74C08, you should ground pins 4, 5, 9, 10, 12, and 13.

My Triton IV is an all-sol-id-state rig employing low keying voltages that a 2N2222 can handle with ease. If your rig uses gridblock keying, a slightly different circuit should be used-see Fig. 3.

Q2 can be substituted, but should have a $V_{\text {ce }}$ greater than the keying voltage employed in your rig. The 2N5401 and the 2N4888 can handle up to about 300 volts.

For a cathode-keyed rig, the circuit in Fig. 4 can be used.

Q5 is a 2 N 4123 , and Q6 is a high-voltage, high-current silicon NPN power transistor such as the Delco DTS-801, -802, or -804.

DUAL DRIVE TBlBANDERS

- 20, 15 and 10 meters - Wideband. Low SWR. No tuner needed
- Exclusive phased dual drive gives higher gain - Exclusive coaxial capacitors have lower losses, higher Q - Transmitter power is radiated not lost in the traps - Full power low loss balun. Gives improved beam pattern
TET Antenna Systems presents three full size trap multiband beams to meet every amateur need. 5 element, 4 element, and 3 element models all with the exclusive TET dual phased drive. This famous drive system originated with $\mathrm{HB9CV}$ and was perfected by JA3MP. When you buy TET dual drive you know you have the best. It has more gain - just like adding another parasitic element. And wide bandwidth so you can use your solid-state transceiver on both phone and CW without a tuner.
Only the highest quality materials are used throughout. All aluminum tubing is 6061-T6 alloy. Stainless steel fasteners are provided for all electrical connections. Tubing is cut and predrilled to precision tolerances for easy one afternoon assembly. Light weight and low wind area designs permit use of simpler support structures.
All models feature full 3 Kw PEP power handling, VSWR typical 1.5 or less across all of 20,15 and, on 10 meters, from 28.0 to 29.2 MHz . Drive impedance is 50 ohms and maximum element length 27°. They accomodate masts from $11 / 2$ to $2^{\prime \prime}$ diameter, withstand winds to 100 mph and are furnished complete with a low loss balun that easily withstands full rated power. For gain and front-to-back ratio specifications write or call the factory

Boom Length:	24'7'	$19^{\prime} 8^{\prime \prime}$	$13{ }^{\prime \prime}$
Turn Radius:	18'10"	$16^{\prime} 9^{\prime \prime}$	15
Wind Area Ft ${ }^{2}$	7.9	6.6	4.7
Wind load lbs.@80 mph:	160	132	102
Boom Dia	2"	$2^{\prime \prime}$	1-5/8"
Weight, lbs	50	38	27
Price:	\$329.95	\$239.95	\$174.75
	shipping	shipping	shipping

TET.
 antennasvstems

Send for free catalog describing these dual drive beams, our VHF Swiss quads, roofmount towers, elevation rotators and more.
Don't wait any longer to start working rare DX. Order your dual-drive beam today! BY MAIL:
TET Antenna Systems 1924-E W. Mission Road Escondido, CA 92025

BY PHONE: 714-743-7025 -170

GICDMPEIILIE...EGTDTONG: World's finest accessories for the serious operator

FL-2 MULTI-MODE

 AUDIO FILTERInstalls in speaker line. Provides independently adjustable Lo-Pass and Hi-Pass cutoff frequencies between 200.3500 Hz in CW mode. Shape factor apx. 1.4:1 on a 5:50 db scale. Peak/notch mode provides up to 45 db action.

ASP -

 RF SPEECH PROCESSORInstalls in MIC
 line. RF clipping with speech shaping from 0 to 30 db in 6 db steps. Frequency response $400.3400 \mathrm{~Hz} \pm 3$ dbs. Total harmonic distortion at 1 KHz , at 30 db clip level - $1 / 2 \%$. Accepts Hi or Lo impedence MICs.

"G4MH MINIBEAM ANTENHA"

High performance, miniature antenna has 6 ' turning radius. Buill from quality materials for durability in the worst weather. 11' element/5' boom. Weighs 14 lbs. Operating frequen. cies: $20 \mathrm{~m}, 15 \mathrm{~m}, 10 \mathrm{~m}$. Kit $-\$ 139.95$.

RFA-BROADBAND PREAMPLIFIER

Strengthens signal reception of any transceiver/ receiver between 5 and 200 MHz .9 db gain + low noise and 3rd order intercept of +20 dbm . RF switched. Requires 12 dc (a) 40 ma

The connoisseur of keying circuits may find the latter two of these circuits very familiar. They are borrowed from Jim Carrett's (WB4VVF) excellent article on the Accukeyer. ${ }^{2}$

Well, so much for the hardware end-the rest is free! (I spent 75Φ for parts for my interface. Add an extra buck or two if your rig requires one of the latter two circuits.) The only thing remaining is to add statements to your CW program which will tell it to turn the ANO output on and off at the right times.

By POK Eing a 0 into location - 16296 (hex \$C058), ANO is set to zero volts. Conversely, by POKEing a 0 into memory location - 16295 (hex \$C059). AN0 is switched to +5 volts.

CW programs can vary greatly, but probably all of them, whether written in BASIC, assembly language, or machine language, will have one subroutine to send a dit and another subroutine to send a dah. If your program is in BASIC, then the statement POKE $-16296,0$ should be added to your program as the first statement in both the ditforming and dah-forming subroutines. Likewise, add the statement POKE $-16295,0$ as the last statement in each subroutine. Also, it is a good idea to add the statement POKE -16296, 0 as one of the first statements in your program, so that output ANO will be initialized to zero volts each time the program is run
If your dit- and dah-forming subroutines are in assembly or machine language, the following commands will work. Insert the command:
AD 59 C0 LDA \$C059 immediately before the command which starts the code element sounding. Likewise, insert:
AD 58 C0 LDA $\$$ C058 immediately after the com-
mand, which stops sounding the code element

As a final example, here are a few details from my own CW program, which is based on "The Morse Master," 73 Magazine, January, 1979, p. 114. A BASIC listing of the pertinent parts of my program is shown in Fig. 5.

The Morse code is held in an array $\mathrm{A} \$(\mathrm{P})$, where 3s stand for dahs and 1 s stand for dits. As each letter is typed on the Apple keyboard, the corresponding value in the array is returned. For example, when C is pressed, the value 3131 is returned from the array. The subroutine at 1000 then peels off the digits one by one from the left. If a 3 is present, the dah subroutine at 1300 is selected. If a 1 is present, the dit subroutine at 1200 is selected

My dit and dah subroutines are almost identical. They each call the same machine-language subroutine at memory location 16002. This subroutine is listed in machine and assembly form in Fig. 6. In hex, 16002 is written as $\$ 3 \mathrm{E} 82$.

This machine-language program is almost identical to the tone-generator program shown on pages 43-45 of the Apple Reference Manual. Each time before it is called, two values must be POKEd into memory. The first is variable PP, which determines the frequency of the output tone through the speaker. This can be any number between 0 and 255 (I prefer 96) and this number is POKEd into memory location 16000 (hex \$3E80). The second number required by the subroutine tells it how long the code element should be sent. In the dit subroutine, this is variable X, and, in the dah subroutine, 1 used variable T. This second number is POKEd into memory location 16001 ($\$ 3$ E81 hex). (use $X=10$ and $T=40$ for a code speed of about 30 wpm.)

```
GOSUB 32000
    POKE - 16296,0
    HIMEM: }1599
    REM - MORSETYPER MAIN PROGRAM
    GET K$
    P=ASC(K$)
    REM-PRINTS LETTER TO BE SENT ON SCREEN
    PRINT CHR$(P);
    GOSUB 1000
    REM-ADDS SPACE AFTER EACH LETTER
    FORQ = 1 TO SP ; NEXTQ
    GO TO 200
    REM-MORSE SENDING SUBROUTINE
    L = LEN(A$(P))
    FORI = 1 TOL
    R$ = MID$(A$(P), 1, 1)
    IF R$ = "1" THEN GOSUB 1200
    IF R$ = " 3" THEN GOSUB }130
    NEXTI
    RETURN
    REM-DIT SUBROUTINE
    POKE 16000, PP: POKE 16001,X : CALL }1600
    FORL = 1 TOX : NEXT L
    RETURN
    REM-DAH SUBROUTINE
    POKE 16000,PP : POKE 16001, T : CALL }1600
    FORL = 1 TO X : NEXTL
    RETURN
```

Fig. 5. BASIC listing.

Notice that the first statement in the assembly-language program is LDA $\$ C 059$, which sets the game I/O output ANO to 5 volts. When the code element has all been sent, the program branches to \$3E99 where the command LDA \$C058 is given, which resets ANO to zero volts before returning to the main BASIC program.

Fig. 7 shows a BASIC listing which will POKE the machine-language subroutine in Fig. 6 into memory at location 16002 (hex \$3E82). One of the first statements in my main BASIC program calls this subroutine before any other action is taken by the program.

3 E 82	AD 59 C0	LDA \$C059
3 E 85	AD $30 \mathrm{C0}$	LDA \$C030
3 E 88	88	DEY
3 E 89	D0 05	BNE \$3E90
3E8B	CE 813 E	DEC \$3E81
3E8E	F0 09	BEQ \$3E99
3E90	CA	DEX
3E91	D0 F5	BNE \$3E88
3 E 93	AE 80 3E	LDX \$3E80
3 E 96	4C 853 E	JMP \$3E85
$3 \mathrm{E99}$	AD 58 C0	LDA \$C058
3E9C	60	RTS

Fig. 6.
Well, that's it in a nutshell. If anyone has any problems, send me an SASE and I'll try to help.

References

1. Apple II Reterence Manual, January, 1978, p. 25.
2. The Radio Amateur's Handbook, ARRL, 1977, p. 364-5.

> 32000 POKE 16002,173: POKE 16003,89: POKE 16004,192
> 32005 POKE 16005,173: POKE 16006,48: POKE 16007,192
> 32010 POKE 16008,136: POKE 16009,208: POKE 16010,5
> 32015 POKE 16011,206: POKE 16012,129: POKE 16013,62
> 32020 POKE 16014,240: POKE 16015,9: POKE 16016,202 32025 POKE 16017,208: POKE 16018,245: POKE 16019,174 32030 POKE 16020,128: POKE 16021,62: POKE 16022,76 32035 POKE 16023,133: POKE 16024,62: POKE 16025,173 32040 POKE 16026,88: POKE 16027,192: POKE 16028,96 32050 RETURN

Fig. 7. BASIC subroutine for POKEing machinelanguage subroutine into memory at location 16002 (hex \$3E82).

CES INTRODUCES THE NEW 510SA "SMART PATCH"

The State of the Art Simplex Interconnect
Communications Electronics Specialties introduces the CES 510SA
"Smart" Simplex Autopatch. with many important new features never available before: - Three digit control codes with user programing. - A sophisticated toll restrict provides positive long distance lock out

- Time-out and COR activity timers with warning beeps and digital pro
gfamming. - Rotary or DTMF dialing. - Phone line in-use detector prevents interrupting a call in progress. and sends unique CW sequence. - Phone ring detection logic enables unque CW sequence. - Digital programming of the sample rate and width, and norse gate sensitivity control. for easy inter facing with most radios Simple and direct connections to radio
Options available: - Smart CW identitier with unique CW messages for each patch function
- FCC type accepted phone line coupler. - Special :one squelch kit to operate patch through repeaters

ASSOCIATED RADIO 913-381-5900
 8012 CONSER BOX 4327
 OVERLAND PARK, KANSAS 66204
 $$
\begin{aligned} & \text { BUY S SELL TRADE } \\ & \text { All Brands New \& Reconditioned } \end{aligned}
$$

YOU WANT A DEAL - WE WANT TO DEAL CALL NOW!!!
Mastercand

SAVE-SAVE-SAVE

NOTE: SEND $\$ 1.00$ FOR OUR CURRENT CATALOG OF NEW AND RECONDITIONED EQUIPMENT SEND \$1.00 FOR OUR WHOLESALE LIST OF UNSERVICED \& OVERSTOCK ITEMS. SEND \$2.00 FOR BOTH. THEY WILL BE MAILED SEPARATELY.

Call ar write tooay for data sheets \& prices! Sold Factory Direct cr through Export Sales Reps only. Get your order in A.S.A.P.!

NOW LOCATED IN OUR NEW LARGER PLANT! THANKS FOR YOUR $8+$ YEARS OF SUPPORT! SPECTRUM

Export Orders Welcomed Join the fun with the growing activity on 10M FM! Extended 'superior' groundwave contacts; local Repeaters; Remote/Local Bases and Mobile for Nationwide or Foreign DX. All with the ease of 2 M FM! Or, tie a 10 M Remote Base into your existing VHFNHF Repeater!
Our Repeaters and Remote Bases are basically made up of 2 -SCR-

- RX \& TX Boards Now Available!

1000 Mainframes, complete with a VHF/UHF Link "built-in." The 10M FM Receiver is "Super Hot" and "Super Sharp." The transmitter is a 35 Wt . unit with beautiful audio quality.
A Complete Data Package is now available on both complete systems and boards - all commercial quality. Call or write for more information today.

SPEC COMM REPEATER BOARDS \& SUB-ASSEMBLIES

SCR200 VHF Recelver Board

- Totelly New Advanced Design!
- 8 Pole Front End Fitr. + wide dynamic range-reduces overload, spurious Resp \& IMs!
- Sens. 0.3 uV/12dB SINAD typ.
- Sel. 60 B ($\pm 6.5 \mathrm{KHz} \cdot 130 \mathrm{~dB} \pm 30 \mathrm{KHz}$ (8 Pole Crystal +4 Pole Ceramic Fitrs.
- 'S Meter.' Discriminator \& Deviation Mrr. Out. puts!
- Exc audio quallty! Fast squelch! w 10.0005% Crystal. ("Super Sharp"IF Filr. also avall.)

SCR200 Recelver Assembly

- SCR200 mounted In shielided housing
- Completely asmbld \& tested. w/F.T. caps. SO239 conn.
- As used in the SCR 1000 . Ready to drop into your Syslem! Migh Recommended!

SCR450 UHF Receiver Bd. or Assy.

- Similar 10 SCR200, except $420-470 \mathrm{MHz}$

SCAP Autopatch Board

- Provides all basic autopatch functions
- Secure 3 Digit Access; 1 Aux On Off function. Audio AGC; Bull-In timers; etc. Beautiful Audio!
- Oil inhiblt bo. also avallable
- Writeicall for detalls and a data sheet

RPCM Board

- Used w/SCAP board to provide "Reverse Patch and Land Line Control of Repeater
- Includes land line "answering circuiliy

ID250 CW ID 2 Audio Mixer Board

- Adjustable lo tone speed. level, uming cycie
- A Input af mixer a Local Mic amp
- COR inpul \& umer hold circuils
- CMOS logic: PROM memory-250 bits/channel
- Up 104 different ID channels"
- Many other teatures. Factory Programmed

FL. 6 Rcyr. Front-End Preselecior

- 6 HI O Resonators with Lo-Nolse Transistor Amp (2M or 220 MHz).
- Provides tremendous rejection of "out-ol-band" signals wout the usual loss! Can ollen be used instead of large expensive cavity filters
- Extremely heiplul at sites with many nearby VHF wansmi ers to "filter.out" these oul of band signals CTCi00 Rptr. COR TImerlControl Bd.
- Complete solid state control tor rptr. COR. "Hang Timer. "Time-Out" Timer, TX ShutdowriReset. elc. - Includes inputs \& Outputs for panel controls 8 lamps

Repester Tone 4 Control Bde. - For SCR1000/4000 - CTC 10010250 only

TRA. 1 "Courtesy Tone Beeper" Board

- Puts out a tone beep apx 1 sec. after RX sig. drops - thus allowing time for breakers
- Resets t.O timer after "beep"

TMR. 1 "Kerchunker Killer" or "TIme Out Warning
Tone" Bd.

- For One of above 2 functions
- "Kerchunker Killer" provides adj. delay 10.10 sec.) for innial rptr. access. Auto. Reset at end of 050
-T.O Warning Tone provides alerting "warble tone" apx. 10 sec betore "time out

PSM-1 Repeater Power Supply Mod KIt

- For SCR 1000 or SCR 6000
- Replaces Darlington Pass Tr.-for improved reliability
- Includes new overvoltage "Crowbar" shut. down circuit.
- Complete klt. w/assembled PC Doard. $\$ 19.50$ + $\$ 3.50$ shipping/handling.

PRM200 Power Supply Fllter Cap/Regulator/Metering Board

- As used in the SCR1000 as main part of $13.8 V D C / 8 A$ Pwr. Sply.
- Includes 14,000 uF Filter Cap, Reg. IC and Driver Trans., VII Meter shunts and cal pots.
- Requires Ximr., Br. Rect.. Pass Tr./Heal Sink, (Op. tional Meter), for complete supply.

SCT410 XMTR. ASSY.
SCT110 VHF Xmir/Exclter Board

- 7 or 10 Wis Output 100% Duty Cycle!
- Intinite vSWR prool
- True FM for enc audio quallity
- Designed specifically for continuous rptr ser vice very low in "white noise
- Spurious 70 dB Harmonics 60 dB
- with $.0005 \%$ xtal.
- Ba. 1030 Wt. Amp board \& Heat Sink, 3 sec. L.p. Filter \& rel. pwr. sensor. BA75 75 Wt . unit also available.

SCT110 Transmitier Assembly

- SCT110 mountedin shielded housing
- Same as used on SCR1000.
- Completely assmbld. wIF.T. caps, SO239 conn.
- 10,30 , or 75 Wt. unit.

SCT410 UHF Transmitter Bd. or Assy. - Similar fo SCT110. 10 wis nom

- Avall w/ or wo OS. 18 Super High Stabllity Crystal Osc.JOren.
- BA. 40 40W. UHF AMP. BD. \& HEAT SINK.

PCB. 1 Xmtr. Power Control Board

- For SCT110 or SCT410 Exciters
- Varles B+ 10 control Pwr. Out
- Switchable Mi, Low. or Med. Pwr. out, locally or remotely. Adj. levels.

TTC100 Touchione

Control Board

Nurerface to

any Radio ar 47 system!

- 3 digit ON, 3 diglt OFF control of a single repeater function, or loptional) 2 functions (2 digits ONHOFF each).
- Can be used to pull in a relay, trigger logic, etc.
- Typically used for Rptr. ON/OFF, HIILO Pwr PL ON/OFF, Patch Inhibli/Reset, etc.
- Stable antifalsing design 5 s limit on access
- For add"I function(s), add a "Partlal TTC" board

Everyman's Audio Amplifier

Make this one-chip amp a permanent part of your test bench. It's an easy project for beginning experimenters.

M
otivation seems to be a combination of
need, circumstance, and availability. These all came

Fig. 1. Schematic of the general-purpose, one-/C audio amplifier.
together when my audio signal tracer died its final time, died when I needed to check a mike that someone said "doesn't sound like it used to."

I have long ago learned not to ignore good advice in small packages that come over the local repeater. The availability was provided by an IC, a Toshiba TA7205P that had been purchased from Digital Research, a good source of supply that I first met through 73. The charm it held for me is that its pins will fit into one side of a standard 20-pin DIP socket.

The diagram of the fin-
ished product is shown in Fig. 1. The external parts count is low and non-exotic. The supply voltage range is wide enough to make it go from any small supply that you have around the bench, and it works "carside" quite well, running off a cable that goes into the cigarette lighter. The series RC network connected to pin 7 is the gain set.

As shown, there is ample gain to get a fair amount of noise out of the average mike. The volume control allows the handling of a good range of input levels, making it handy for many bench chores

	COMPARE the HAZER ${ }^{\text {TM }}$
	- Antenna systems mount on Hazer-Hazer follows parallel to outside of tower - Raise to tower top or lower completely to ground level.
	- Salety - speed - convenience
	- Ease to install and use
P.	- Price
	- For Rohn 20 \& 25 tower Complete with winch 100 ft ol cable hardware and instructions.
	HAZER II Heavy duty aluminum $\$ 279.95$ plus $\$ 17.00$ shipping HAZER III Standard duty aluminum $\$ 199.95$ plus $\$ 13.00$ shipping HAZER IV Heavy duty gal. steel $\$ 249.95$ plus $\$ 28.00$ shipping
	MARTIN ENGINEERING P.O. BOX 253 BOONVILLE, MO 65233
	$\text { 816-882-2734 } \quad \text { M }$

LIMITED SPECIAL $\mathbf{\$ 5 5 5 . 0 0}$	
	Oscilloscopes
	to meet every n
6.1 - 0 - 0 lmstate	
is 0) -assembled \& C	
CBF°.	W RECTANGULAR CR
MODEL HM-203 (603)434-5371	
dene er ingutries nvited	
-133 Rivendell OAI	

Stuck with a problem?

Our TE-12P Encoder might be just the solution to pull you out of a sticky situation. Need a different CTCSS tone for each channel in a multi-channel Public Safety System? How about customer access to multiple repeater sites on the same channel? Or use it to generate any of the twelve tones for EMS use. Also, it can be used to access Amateur repeaters or just as a piece of versatile test equipment. Any of the CTCSS tones may be accessed with the TE-12PA, any of the audible frequencies with the TE-12PB. Just set a dip switch, no test equipment is required. As usual, we're a stickler for 1day delivery with a full 1 year warranty.

- Output level flat to within 1.5 db over entire range selected.
- Immune to RF.
- Powered by 6-30vdc, unregulated at 8 ma.
- Low impedance, low distortion, adjustable sinewave output, 5v peak-to-peak.
- Instant start-up.

TE.12PA

67.0 XZ	85.4 YA	103.51 A	127.33 A	156.75 A	192.87 A
71.9 XA	88.5 YB	107.21 B	131.83 B	162.25 B	$203.5 \mathrm{M1}$
74.4 WA	91.5 ZZ	110.92 Z	136.542	167.96 Z	
77.0 XB	94.8 ZA	114.82 A	141.34 A	173.86 A	
79.7 SP	97.4 ZB	118.82 B	146.24 B	179.96 B	
82.5 YZ	100.01 Z	$123.03 Z$	151.45 Z	$186.27 Z$	

- Frequency accuracy, $\pm .1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Frequencies to 250 Hz available on special order.
- Continuous tone

TE-12PB

TEST-TONES:	TOUCH-TONES:	BURST TONES:					
600	697	1209		1600	1850	2150	2400
1000	770	1336	1650	1900	2200	2450	
1500	852	1477	1700	1950	2250	2500	
2175	941	1633	1750	2000	2300	2550	
2805			1800	2100	2350		

- Frequency accuracy, $\pm 1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Tone length approximately 300 ms . May be lengthened, shortened or eliminated by changing value of resistor
$\$ 89.95$

- 15
 - COMMUNICATIONS SPECIALISTS

426 West Taft Avenue, Orange, California 9 $6 \mathbf{6 6 7}$ (800) 854-0547ICalifornia: (714) 998-3021

-1-1O Watts Input - All-mode operation - 5 year warranty
model:
B1O16 (2 meters)
IW $\ln =35 \mathrm{~W}$ Out 2 W In $=90 \mathrm{~W}$ Out 10 W In $=160 \mathrm{~W}$ Out with RX preamp!
\$279.95

C1O6 (220 MHz)

IW In $=15 \mathrm{~W}$ Out
2 W ln $=30 \mathrm{~W}$ Out
10W In = 60W Out
with RX preamp!
$\$ 199.95$
D1O1O ($430-450 \mathrm{MHz}$)
IW In = 20W Out
2 W In $=45 \mathrm{~W}$ Out
10W $\ln =100 \mathrm{~W}$ Out
$\$ 319.95$
There's more, and WATT/SWR Meters, too! See your nearest Dealer

THE AUTEK "QRM ELIMINATOR"

WORLDS RECORD KEYER. OVER 4000 DX QSO'S IN 2 DAYS!

Model MK-1 Keyer $\$ 104.50$

Autek Research

BOX 302 DEPT. S
ODESSA, FLORIOA 33556 • (813) 920.4349

Probably the most popular "professional" contest keyer In use, yet most owners are casual CW operators or novices. After a few minutes, you'll see how memory revolutlonizes your CW operation! Just start sending and record your CQ, name, QTH, etc. in seconds. 1024 blts stores about 100 characters (letters, numbers). Playback at any speed. Dot/dash memorles, triggered clock, repeat, com. bine, 5 to $50+$ WPM, built-in monitor and 115 VAC supply. Works with any paddle. Sit back and relax whlle your MK-1 calts CQ and handles standard exchanges!
Optional mernory expander (ME-1) expands any MK-1 to 400 characters. ME. 1 factory Installed $\$ 35$. Owner in stalled, only $\$ 21(+54)$. Add more memory now or later!

NO LONG DELAYS. WE SHIP 95\% OF ORDERS FROM STOCK
We sell only factory direct. No dealer markup In our price. Order with check, M.O., VISA, MC. Add \$4 postage and handiling in 48 states. ($\$ 7$ for UPS air). Add $\$ 7$ to Canada, Hi. Ak. Add $\$ 22$ elsewhere (shipped alr). Add 5% tax In Fla.

- Large, $42^{\prime \prime} \mathrm{H} \times 57^{\prime \prime} \mathrm{W} \times 29^{\prime \prime} \mathrm{D}$
- Strong groove-construction
- Mar-resistant wood grain finish
- Options, drawers \& face plate
- For ham or home computer
- Visa and Master Charge

CLUTTERFREE MODULAR CONSOLES

P.O. Box 5103 Tacoma, WA 98405 (206) 272-8321 - 89
GOTHAM ANTENNAS (305) 294-2033

SMALLLOT TRAP OIPOLES			-417
MODEL	BANOS	LGTH	Price
TSL 8040	80.40	78	\$19.95
TSL 4020	40.20 .15	40°	547.95
SMALLL LOT SHORTENED DIPOLES			
SL. 8010	$\begin{aligned} & 80.40 .20 \\ & 15.10 \end{aligned}$	75	\$59.95
SL. 160	160	130	\$38.95
SL. 80	80	63	\$37.95
SL. 40	40.15	33	\$36.95

FULL SIZE PARALLEL DIPOLES
$\begin{array}{llll}\text { FPO } 8010 & 80.40 .20 & 130 & \$ 49.95\end{array}$
FPO-4010 $\quad 4020.15 .10 \quad 63$. $\$ 44.95$ NEW' PORTABLE VERTICAL! IDEAL FOR APARTMENTS. CAMPING. TRAILERS
Folds to 5' Package No Radials Required Fully Assembled Full Legal Limat. 1:1 VSWR MOOEL BANOS HGMT PRICE $\begin{array}{llll}\text { PV.8010 } & 80.10 & 13 & \$ 59.95\end{array}$ PROVEN OESIGN GOTHAM ALL BANO vERTICALS
$160.80 .4020 \quad 23 \quad \$ 44.9$
15.10 .6
15.10 .6
FAMOUS GOTHAM OUAOS
2 Elements- $\mathbf{3}$ Bands Complete $\$ 149.95$ HAMPIONSHIP GOTMAM BEAMS Full Size Complete from $\$ 99.95$ dEALEA INQUIAIES INVITED CALL OR SEND LARGE SASE FOR CATA. LOG. Shipping: Dipoles \& Verticals $\$ 2.50$ USA: $\$ 7.00$ Canada $\$ 5.00$ FPO, APO Beams \& Quads Shipped UPS or Freight Coliect Fla. Add 5\% Sates Tax -417 1415 First St. Key West, FL 33040

Featuring:

1200 BAUO OPERATION. Not limited to 110 baud jecause of timing loops. 60, 66, 75 \& 100 W.P.M. Plus 110, 150, 300, 600 \& 1200 baud jperations possible. FLEXIBILITY OF OPERATION. Instantly change: Baud Ra:es; Program Mode (ASCII/Baudot); Program Status
SPLIT SCREEN VIOEO. Transmit \& receive data displaye」 separately
REAL TIWE. Automatic CW/ID without user interventico. Automatically updates at end of month or year.
\square ther features include:

- Two Serial Ports
- Fourteen Buffers
- Automatic CW/ID
- Transmit Control
- Selective Call Feature
- Error Corfection \& Editing
- Word Wraping
- Easy to Interiace
- 30 Day Unconditional Guarantee
- Hardware Requirements: TRS-80 Mode I or III 16K EXTERNAL TERMINAL UNIT REQUIRED

606 State Street, P.O. Box 892-R • Marysville, WA 98270 • (206) 659-4279

FOR
10.15-20 METERS

VERTICAl.
OMNI-GAIN
HALFWAVE
END FED
NO RADIALS
NO REFLECTED POWER
BROADBAND
FIXED OR
PORTABLE
REMOTE TUNING

2 KW PEP

UPS SHIPPABLE

R3 mav be rhe perfect anterma for eonduminiums, apartments, small hots or any limited space situations. It is a great antenna for hams who are concerned about neat appearance and maximum performance

R3's self supportiug radiator is monly- 21 ft -6.4m high s 1 ft .304 m wide at the hase. Assembly is yuick and easy for portahle, marime, fiehd day, I)X-peditisens, or fixed installations. It is complete with remote tumer-

AVAllalll E THROUKH DEAI.ERS WORI.IMIITE.

THE ANTENNA COMPANY
P.O. Box 4680

Manchester. NH O3IO8 USA
TELEX 953050

Award-Winning Program

Certificate hunters, cut your paperwork down to size. Let your Pet track your quest for excellence.

Here's a simple program for the Pet that was designed to keep track of what states have been worked on what bands for 5BWAS. For each state, the program records the callsign of the station worked on each band ($80,40,20,15$, and 10 meters). You can display the entries, just the totals for one particular band, or the totals for all bands
combined (mixed). The data is stored in a data file on cassette tape and takes about two minutes to load, save, or verify. The program also provides a way of changing or deleting any entry, if required

The program was written to be flexible enough that it could be used for other awards records such as Worked All Zones (WAZ) or

Program listing.

```
100 RE
20 REII BY - ROEERT W. BFHER, WBZGFE
130 FEM 15 WINDSGF IRIVE
ATCO. NEW JERSEY HS004
150 REM
169
170
134 FW\="WFS" NE=50 IES="STATE (2-LETTER ABEREV)"
190 K:="FLAKAZAFCFCOCTDEFLGFHHIIDIL INIFKSKYLFMEMDMAIMIMNMSMOMTHENY"
```



```
216
220 POKE 59468,12 DIM D$(NE),T(6):NH=INT(NE/2):E $="..........
240 REM IISPLRY FENH
259
```



```
270 GOSUR 1410 :CLOSE & PRIMT" 0 = IOME"
```



```
290 PRINT" 2 = SANE INTA ONN THFE"
3ag FRINT", 3 = VERIFY IATA ON TAFE
310 FRINT" 4 = INITIHLIZE DATA"*
320 FRINT", 5 = ENTEF DIATA (FWD,CHNNGE,DELETE)"
340 PRINT" }\quad6=\mathrm{ DISPLAY DATA 
340 PRINT" 7 = WISPLA'Y TOTRLS" GOSUR 1416
360 GET RS IF RI="% THEN 360
370 IF F% ="6" THEN PRINT F% : ERII
38% N=VAL(F%) IF N<1 OR N \ > THEN 360
3* FRINT R!
409 IF ILS\0 TMEN ON N GOTO 460,540,610,700,760,990,1260
410 OH H GOTO 460,420,426,780
420 PRINT"MINITIFLIZE OR LOAIJ DATA FIRST!" : GOTO 350
450
440}\mathrm{ FEM LUAII IHATA FROM TIFE
4 5 0 ~ P R I N T " W I N S E R T ~ " ; H \| N ; " ~ I N F U T ~ T R F E " ~
```



```
430 FOR N=1 TO NE IHFUTH1,DS(N) IF ST T=O THEN HEXT
454 IF ST=64 FNL N=HE THEH PRINT"70** JUHTA LOFDED &&&": IL=1 : GOTO 270
5 1 0
FEM SAYE IWTH OHTO THFE
540 FFINT"MINSERT ";FNS;" UUTFUUT TMFE"
```



```
580
5G9 FEM vERIFY DATA OH TAFE WITM MEM
610 PRINT"MIHSERT ";AWS; " TAFE TO VERIFY"
620 OFEN 1, 1,0,FW% +'. WHTA" PRIMT"MEERIFYITHE UATHI
640
640 IF ST=64 FND N=NE THEN PRINT".3** THPE DATH "VERIFIED **&" : GOTO 270
650 IF CS<\DE(N) TMEN FRIHT"JE|UTTA MIS-MGTCHI" GOTO 270
660 PRINT"J&TRPE REAIJ ERRURIP ST = ";ST GOTO 270
6849 REM INITIFLIZE MLL ENTRIES
70@ PRINT" LCLEARIHG RLL. ENTRIES!"
710 FUR N=1 TO NE DS (N)=E $+E $+E$+E{+E$ NEXT
720
```

Worked All Continents (WAC). To change the program for another award, simply modify the values in lines 180-200 as required:

AWS = The 3-letter award name (WAS, WAZ, WAC, etc.)
NE = The number of entries for the award-must be 50 or less due to the current Pet display limitations. (WAS $=50$, WAZ $=$ 40, WAC $=6$, etc.)
$I E \$=$ Entry input question used
in line 770:
For WAZ you could use: IE = "ZONE (01-40)".
For WAC you could use:
IE\$ = "CONTINENT (NA, SA, $E U, A F, A S, O C)^{\prime}$
$K \$=$ The string of entry names each 2 characters long:
For WAZ you would use:
$190 \mathrm{KS}=$ " 01020320 ",
$200 \mathrm{~K} \$=K \$+$ " $212223 \ldots40$ ".
For WAC you would use:
$190 \mathrm{~K} \$=$ "NASAEUAFASOC"
200 (deleted-not used!)

```
746
750
```



```
780 N=0 FON Z=1 T0 (2$NE)-1 STEP 2 N=N+1
```



```
800 INPIJT" RERHIII (80,40,20,15,10
820ै IF KJ="40" THEN I=10
830 IF RS="26" THEN I=20
830 IF RS="29" THEN I=20
850 IF R }="10"\mathrm{ THEN I I=40
860 IF ILQ THEH 800
870 PRINT"#CURRENT ENTRY = ";MIDS(DS(N),I+!,10)
890 IF LEN(C!))>10 THEN 880
9010 IF Cs="D" THEN Cs=E%
910 Cs=LEFT:(C&+Es,10) Bs=C$+RIGHTs(DS(N),40)
920 IF I &1 TMEN 950
930 Bs=LEFT&(DS(H),I)+CS
lol
970 REIM DISFLAY DATA B'Y BANI/MIXEL
```



```
1900 I=9 IF B&="60" TMEN I=1
1010 IF E = "40" TMEN }\textrm{l}=1
1020 IF E $ ="26" THEN 
1030 IF B =-15" THEN I=31
1040 IF B%="10" THEN I=41
1059 IF (I =0) AHD (E&<>"M") THEN 990
```



```
1070 FRINT" S$AND "M" INT "MIXEI"
l080 IF I=0 THEN PRINT"MIXEI" 
1100 PRINT"MML TO 25 IF NNNH THEN FRINT TRE(9);"!"; UOTO 1150
l12⿺夂 IF I=0 THEN 119&
1130 PRINT TAB(9);"'l ";MIDS(K&,2*N-1,2);"";MIV&(D$(N),I,10);
```



```
1150 IF NC\25 THEN PRINT
1160 NEXT N
```



```
1180 FRINT"AHY KETW" FRINT" TON" PRINT"CONTIHUE":GOTO 1390
1130 FOF X=1 TO 41 STEP 10 C:MID$(IIS(H), X,10) IF CT=E% THEN NEXT
lol
```



```
1230
1248
1260 PRIHT"#HMLING EANNI TOTMLSS
1270 FOR }X=1\mathrm{ TO 6 T(X)=0 HEXT
```



```
1290 IF MILS(DIS(N),104I-9,10)<,ES THEN T(0) =1:T(I)=T(I)+1
1300 HEXT I T(6)=T(6)+T(0) HENT HN
T306 HEXT T T(6)=T(6)+T(0) NEXT H
1310 FRINT"7DNHE
1320 PRINT SPC(11), "SW METERS: ";T(1)
1320 FRINT SPC(11),"SU METERS: ";T(1)
1340 FFINT SP(r11)."20 METEFS ";T(3)
13E0 PRIHT SFC(11):"15 METERS: :T(4)
l369 FRIHT SFC(11);"10 METERS ";T($)
1376 FRIMT SFC(9),"MIXEE BFWLIS: ";T(6): PRINT:GUSUB 1410
1380 FRINT"NWN DEPFESS FHNY KE'Y TO CONTIHUE!"
1390 GET R: IF F%="." THEH 1390
1400 GOTO 260
1410 FRINT"N-


Once these three lines have been changed, the rest of the program should not have to be modified

The remainder of the program is very straightforward Line 220 ensures that the Pet is in the uppercase/graphics mode and defines the data (D\$) and totals ( T ) arrays along with the blank entry value ( \(\mathrm{E} \$\) ). lines 260-340 display the program "menu" which allows the user to select the desired program function from those available Lines \(350-380\) get the number of the desired function and check that a valid selection was made. Lines \(400-420\) then branch to the routine to perform the selected function, but the data must first be initialized or loaded from tape before any other function can be performed. This ensures that the data matrix (D\$) has been set correctly before attempting to use any values contained within it. Each of the avail-
able functions is then performed by one of the routines in the remainder of the program

The first time you use the program, initialize the data to clear all entries. Then enter each callsign for the appropriate QSO on each band for each state. You make the entries by first specifying the state to be entered. If you hit "RETURN" without making an entry, the program will return to the menu selection. If the state is not found (incorrect 2 -letter code), you will be asked again for the band (80, 40, 20, 15, or 10 meters). If "RETURN" is entered without any data, you will be asked for the state again. If an incorrect band is entered, you will be asked for the band again.

When a correct state and band have been entered, the current entry for that state and band will be displayed. If you enter
"RETURN" without any data, the current entry will be unchanged and you will be asked for the next state If youenter a " \(D\) " followed by "RETURN", the current entry will be deleted (set back to periods). Any other data entered followed by "RETURN" is assumed to be the callsign to be entered for that state on that band. If the callsign is longer than 10 characters, you will have to reenter the callsign. Alt callsigns entered will have periods appended to make them 10 characters long before they are stored. The five callsigns for each state are stored together as one 50 -character string to save memory space

When all entries have been made, display the data on each band and check if correct. If required, go back and make any corrections. You also can display the totals and check for the correct number of
states on each band. Before stopping the program, make sure that you save the data on tape. It's also a good idea to take the extra time to verify the data file, to make sure it was correctly saved. You might even want to save more than one copy on tape while you have everything in memory. Now you simply load the old data file the next time you want to add, correct, or examine anything. If you make any changes, don't forget to save the new data on tape. For those who want to go even further with their award records, you could keep separate data files for each mode (SSB, CW, RTTY, SSTV, etc.).
To answer the question before it's asked, for anyone too lazy to type in the program, I'll be happy to supply copies on tape for \(\$ 2.00\) each. However, please send all requests directly to me and not through the magazine.


\section*{N \& G DISTRIBUTING Corporation}


Nos especializamos en exportacion a sur America. Los mejores precios, servicio, calidad, y garantia. 2 minutes del Aeropuerto
Para más información llame gratis.
1-800-327-3364
... We're the U.S.A.'s Exclusive Distributor of F9 FT TONNA VHF / UHF ANTENNES rom REIMS. FRANCE


TONNA
- 20421

21 Ele. - 432/
435 MHz
18 dB

20116
16 Ele. - 144/ 146 MHz
16. 5 dB

4X23 Ele.
1296 MHz
\(\mathrm{G}: 23.5 \mathrm{~dB}\) iso
Ask About Our DEALER Program.

Call N \& G
for Price Quote

IC-2AT
ICOM's popular 2 meter, 800 channel, compact, handheld built-in. Comes standard with BP3 ( 250 mAh ) battery, wall
charger, belt clip. flexible antenna. A wide variety of batteries and accessories availble.

Call N \& G
for Price Quote

\section*{SAY}

\section*{with a subscription to 73 MAGAZINE}

73 is a virtual encyclopedia for radio amateurs, covering everything from Amplifiers to Zepps, including


No other ham radio magazine covers the entire spectrum of amateur radio better than 73. Can you think of a nicer way to say Happy Holidays to vour favorite ham than by sending them a subscription to 73 Magazine? After all, it is better to send than to receive.

\section*{YES!}

I'd like to give
73 Magazine for the
holidays. (12 issues-\$19.97).
\(\square\) Check enclosed
\(\square\) MC \(\square\) VISA \(\square\) AE \(\square\) Bill me
Card \(\#\)
Exp. date
Signature
Interbank /"
Name
Address
City
State Zip
Please enter a one year gift subscription to:
Name
Address
City
State_ Zip
Canada \& Mexico \$22.97. 1 year only. U.S. Funds
Foreign \$39.97. I year onlv, U.S. Funds Drawn on U.S. Bank All Gift Subscriptions Begin With Jan. 1983 lssue 73 Magazine•Box 931 •Farmingdale, NY 11737


But you still need that issue of 73 Magazine.
Well, it's not too late to get it.
Send for your free Back Issue Catalog.
A complete listing, including editorial highlights.
You still need it.
And we've still got it.
YES, I want my free Back Issue Catalog for 73 Maguzine.
Name
Address
City
State
Zip
73 Magazine, Mail Order, 80 Pine St., Peterborough, NH 03458

\section*{MOVING?}

Let us know 8 weeks in advance so that you won't miss a single issue of 73 Magazine. Attach old label where indicated and print new address in space provided. Also include your mailing label whenever you write concerning your subscription. It helps us serve you promptly. Write to:


Subscription Department P.O. Box 931

Farmingdale NY 11737
\(\square\) Extend my subscription one additional year for onlv \$19.97 \(\square\) Payment enclosed \(\quad \square\) Bill me

Canadian and Mexican \$22.97 US funds, Foreign surface \(\$ 39.97\) US funds, drawn on US banks

If you have no label hundy, print OI.D address here.


\section*{From \(75=\) MAGAZINE THE MOST UP-TO-DATE REPEATER ATLAS AVAILABLE! INCLUDES: \\ WORLD \\ ATLAS \\  qien (xices Gi(2) BREB5 \\ - LISTINGS BY STATE AND COUNTRY \\ - LISTINGS BY FREQUENCY \\ - MAPS FOR EACH STATE \\ - 28 MHZ THROUGH 1296 MHZ - PERFECT FOR MOBILING \\ - WORLD REPEATER ATLAS-BK7315-Completely updated, over 230 pages of repeater listings are indexed by location and frequency. More than 50 maps pinpoint 2000 repeater locations throughout the USA. Foreign listings include Europe. the Middle East. South America and Africa. \(\mathbf{\$ 4 . 9 5}\).}

\section*{IN STOCK AND READY TO SHIP}

Use the order card on the Reader Service page of this magazine or itemize your order on a separate plece of paper and mail to 73 Radio Bookshop - Peterborough NH 03458. Be sure to include check or detailed credit card information No C.Q.D. orders accepted Add \(\$ 1.50\) handling charge for the first book: \(\$ 1.00\) for each additional book Questions regarding your order? Please write to Customer Service at the above address. Please allow 4-6 weeks for dellivery
FOR TOLL FREE OROERING CALL 1-800-258-5473


We
Build Quality Into Into
Our Products

MANUFACTURERS DISTRIBUTORS GRAIN BINS - INOUSTRIAL -ELECTRICAL IRRIGATION EQUIP.

\section*{Satellite Television}

Whether you need 1 system or 100 we have the highest quality antenna to meet your utmost expectations and quality standards, at easy to live with prices.

Send: \(\$ 7.95\) for Introduction to Satellite manual.

Pictured is our 11 ft Dish with our easy setting one man installation trailer.

- 151

Write or call us for more information.

\section*{CALL LETTER}
\({ }_{55}^{\text {our }}\) HATS

101 Elm St Suite 4 Peterhorough, NH 03458

Introduced and the talk of the Dayton Hamfest these Attractive and Durable Call Letter Hats are just the thing for Hamfests, Field Day contests and Club Activties. Messages are printed by computer and can be up to 6 lines of 18 small letters, 3 lines of 9 large letters or any cobination. The Morse Key or your logo takes one large line. Discounts for Club orders and Free logo with orders for 12 and up. Once your logo is on file with us it is free with any quantity, and renember every hat can have a different call or message.


Our comfortable and durable T-Shirts are the finest quatity avail able. Make up your own message, I)XCC. WAS. WAC, Hams do is with bigher frequency, DX Hound, DX-Peditions. Please QSL and any other message. Un to six lines of 10 targe letters each or up in 12 lines of 20 small letters each. Discounts for Club orders and FREE Iogo with orders for 12 or more. FAST MAIL ORDER ! :

CALL LETTER HATS 101 EIm St. Suite 4, Peterborough, NH 03458

Name
Add:ess
City
State Zip
Ck \(\square\) Money Order \(\square\) Charge Card \(\square\)
Card
Exp Date

\section*{Signature}

ORDER blank Add \$2 To Total For Shipping Charges

Instant Software's new catalog is free and it offers 150 of the finest programs you can find. At reasonable prices... and a variety you've never seen before in one catalog. And they're all contained in the new 16 page 1983 Instant Software catalog. You'll find:

ASSEM/ZSIM-2 great utilities in one super package. Assembly language programmers, this package solves all your programming problems from ASSEM to ZSIM.

Super Utility Plus-the most powerful program of its kind. A must for eyery serious TRS- \(80^{*}\) disk installation.

Geography Explorer Series-the exciting, attention-holding series that teaches your children essential geographical facts.

Phaser Blast-phaser-armed robots, enemy Hovertanks. . prepare for a journey into the war of the future.

Columbia through launch, orbit, re-entry and landing.

Plus dozens of other practical, mind-boggling or spine-tingling programs.
And now you can get the new 1983 Instant Software Catalog absolutely free. You don't even have to pay for the phone call. Just dial toll free:

\section*{1-800-258-5473}
and ask for your free copy of Instant Software's 1983 Catalog.
It could be the smartest call you'll make all year.

\section*{Best Software Under The Sun}

Space Shuttle-experience the ultimate flight as you pilot America's

Instant Software. The best software under the sun.

\section*{Instant Software}
(a subsidiary of Wayne Green Inc.)
Route 101 \& Elm St. Peterborough, NH 03458
'THS-80 is a registered tradernark of the Radio Shach division of Tandy Corp.

Yes, I want a free catalog!
Please send my free copy to:
Instant Software
Petertorough, N.M. 03458 USA A subsidiary of Wayne Green Inc.
The best software under the sun.

Name
Address
\(\qquad\)
City \(\qquad\) State \(\qquad\) Zip
I have a \(\qquad\) computer


ORBIT is the Official Journal for the Radio Amateur Satellite Corporation (AMSAT), P.O. Box 27, Washington, DC 20047. Please write for application.

For a FREE SAMPLE COPY please send \(\$ 1\) to cover First Class Postage and handling to: Orbit, 221 Long Swamp Road, Wolcott, CT 06716.

\section*{NVEDV FAS'V CHARROE For Yourr Raiffery Parcks}

RECHARGE YOUR HAND HELD RADIO BATTERY PACKS TO FULI CAPACITY IN AS LITTLE AS 45 min . EXAMPLE - Fully Charge ICOM BP3 in 30-45 Minutes.
SEPERAII IUSES PROVIDED INÍRRNAIIYIOR A.C. AND D.C. OPERAIION -BUIIT IN RIVIRSI POIARIIY PROTICIION.

ONE UNIT DOES IT ALL Charge, ICOM, YAESU, KENWOOD, TEMPO, SANTEC and Others Automatically in Your Home, Car, Boal, R.V. or Airplane with Buill-in Heavy Duty Power Supply or 12 to 24 V . Ixternal D.C. Supply Such as Cigar lighter in Your Car.

All Solid slate
Piecisun Componenis Uwed Throughoul, in A Unique Circuil Allows fas1 Changing Without Any Perceptible Heatimg OI And Furns Oif Automatically When Batter, is Iulis Charged
Bathery Can Be Ieft Connected Indelinitely


INCIUDES: Removable 6 Ft . 2 Cord ior A.C. Operation and 2 Mating Connectors har D.C tnput and Battery Leads.

I A IURES: High Quality Custom Desikned Heavy Gauge Aluminum Cabinet.
FULL I YR. WARRANTY ON PARTS AND WORKMANSHIP

ACCESSORY CONNECTOR TO FIT ICOM BATTERY PACKS, BP.2, BP3, BP4, BP5, \$3

CALIF KISIDENIS BATIER PRE-PAID ORDERS INCIUDI \(\$ 3\) SHIPPING \& HANDIING INCIUDE \(6 \%\) IAX PHONE ORDERS - CALL [209] 586-7059

MAIL PRE-PAID ORDERS TO
P.O. BOX 4463 SONORA, CALIF. 95370
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\(!\quad i!!!!!!!!!!!!\) \\
(We Speak Your Language.)
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

Backed by over 54 years of experience, Harvey continues to offer the broadest selection and finest service available for the amateur radio community This experience has taught us that the ham needs special treatment and that is why Harvey has established a special division dedicated to the needs of the U.S. and foreign ham alike.

One thing is for certain. A ham will never get the run around from Harvey. If we don't have something in stock, we say so and will order it for you-or-tell you where to get it. However, we are sincerely dedicated to the ham community and, as a result, our expansive in ventory means that, more than likely, we will have what you are looking for in stock.

ICOM IC-720A
\(\therefore 0\)
0
0
Yaesu FT-One

\section*{AEA}

Alliance
Antenna Specialists
ARRL
Astatic
Bearcat
Bencher
B\&W
C.P.E.S.

Centurion
C.D.E.

Cushcralt
Daiwa
Dlgimax
R.L. Drake

Gotham Antennas
Grundig
H.M. Electronics

Icom
Kantronics

\section*{CALL TOLL FREE}

1-800-223-2642
Ask for Dou "Joe"Chin-KB2MU

\footnotetext{
25 W. 45th St. , N. Y., N.Y. 10036 (212) 921-5920
}

\title{
Speed Demon
}

\section*{How fast was that? Find out with this wpm display for Heath's 1410 keyer.}
lerry Wayne Campbell K4ZHM
Rte. 4, Box 126 Barkley
Nicholasville KY 40356

In the following, I will describe a digital display 1 added to my Heath 1410 keyer to display the wpm setting of the keyer. The same principle can be applied to other keyers.

First, let's look at what we need to calculate the words-per-minute speed of the keyer. The ARRL Handbook gives the following formula for calculating code speed:
words \(/ \mathrm{min}=\) dots \(/ \mathrm{min} / 25=\) \(2.4 \times\) dots \(/ \mathrm{sec}\)
From the Heath 1410 keyer manual, we see that for each dot generated (space included), the clock in the keyer generates two pulses. The clock pulse rate is twice the dot rate. If we measure the clock pulses


The assembled keyer with the counter modification.
instead of the dots, the formula becomes
words/min =
1.2 clock pulses/sec

Multiplying the clock pulses/sec by 1.2 is the same as measuring the clock pulses for 1.2 seconds. 1.2 seconds is 72 cycles at the \(60-\mathrm{Hz}\) powerline frequency; therefore, if we count the clock pulses for 72 cycles of the line frequency, we are effectively multiplying our keyer clock pulses/sec by 1.2. Thus, by counting the clock pulses from the keyer for 1.2 seconds, we can read the code speed directly on the seven-segment displays.

Referring to the timing diagram in Fig. 1, we see that by dividing the \(60-\mathrm{Hz}\)
line frequency as shown (first by 6 , then again by 6 , then by 2 , then finally by 2 ; see Fig. 2) we obtain a 1.2 -second gating pulse. We now have the means to time the keyer clock pulses for 1.2 seconds and the count will update each 1.2 seconds. The reset pulse clears the counters 0.6 seconds prior to the counting interval. Send dots and/or dashes for over 2.4 seconds, and the readout will display for 0.6 seconds the speed at which the keyer is set

Power, the \(60-\mathrm{Hz}\) line frequency, and, of course, the keyer clock pulses are all taken from the keyer. Refer to Fig 3 and the Heath 1410 keyer manual for the fol-


Fig. 1. Timing pulses appearing at various points in the circuit.


The completed counter board before mounting in the keyer.


The counter board is mounted using right-angle brackets and the mounting holes for the removed paddles.
lowing connections. The keyer clock pulse is obtained from point \(D\) on the keyer speed control. The \(60-\mathrm{Hz}\) signal is obtained from either side of the secondary of the power transformer and ground The resistor values shown, R1 and R2, are for the Heath keyer. A convenient source for the 5 V dc is the speaker lead that is connected to the 5 V dc supply.

I replaced the neon onoff indicator lamp with an


Fig. 2. LED mark indicator for keyer output.

LED. I then connected the inputs of the remaining \(1 / 4\) IC5 to pin 12 of IC3 in the keyer, and the output to the IED; see Fig. 2. The LED lights up on the mark portion of the code character.

When sending code, the display of the speed will


\section*{CALL CECO'S VIDEO DEPT. FOR OUR LOW, LOW PRICES Dealer Inquiries Invited}
(212) 646-6300
(800) 221-0860

TELEX: 235135
COMMUNICATIONS, Inc. 2115 AVENUE X, BROOKLYN, N.Y. 11235
vary. You are seeing the average speed at which you were sending in that 1.2 -second interval.

There are several methods of housing the display. I use a Bencher paddle with my keyer, so I
removed the keyer paddles from the keyer and took out the center post. I then mounted a red lens over the opening. The display and circuitry are then mounted behind the lens using the mountings for the removed paddle assembly


Fig. 3. Code-speed reader for the Heath 1410 keyer

\title{
Keyer on a Shoestring
}

\section*{Hams are cheap and so is this keyer. Big spenders will build the deluxe, two-chip version.}

Joel R. Donaldson WB5PPV 17 Fenwick Drive
Laredo TX 78041

Most great keyers aren't very cheap, and most cheap keyers aren't particularly great However, here's a fair-to-
good one you can build for around \(\$ 10.00\) using all new parts. If you've got any sort of junk box at all, it should cost you quite a bit less. It's


Fig. 1. One-chip keyer circuit. The entire circuit must be isolated from the enclosure. R1, \(R 2-30 k\) or \(50 k\) "stereo" linear taper dual pot. D1, D2, D3 - any silicon diode. Q1 shown is a Radio Shack part number.


Fig. 2. Optional sidetone circuit connects to the keyer at points \(A, B\), and \(C\).
not iambic or self-completing, it lacks contest memories, weight control, and a few other bells and whistles, but it is simple, draws very little current, fits nicely into a small package, and is capable of sending good, clean CW. A keying transistor and floating ground make it usable with just about every modern rig, and a sidetone circuit can be added easily if your rig lacks one. In short, it makes a good first keyer or a nice second circuit for the vacation or QRP set.

As shown in Fig. 1, the whole keyer is built around a 74 C 00 quad NAND gate which is connected to form two independent oscillators. The frequency of each oscillator is dependent upon a capacitor (C1 for one, C2 for the other) and a resistor (R1 for one, R2 for the other). By simultaneously varying R1 and R2, both oscillators can be sped up or slowed down, and a third resistor (R3) makes one of the oscillators run a
fixed percentage faster than the other, thereby providing a definite dash-todot ratio. The output of both oscillators is connected to the sidetone (if used) and to Q1, the keying transistor, through D1 and D2, which prevent one oscillator from interfering with the other Q1 conducts whenever either oscillator is in the "on" state, thus keying the transmitter in step with the oscillators.

The sidetone circuit (Fig. 2) also consists of a 74 CO 0 connected as an oscillator, but with \(R\) and \(C\) values changed so as to produce an audio-frequency tone. The output of this oscillator is switched by Q2, which provides enough drive to power a small speaker. The pitch of the sidetone may be changed by using a slightly different value for R4. The sidetone circuit connects to the keyer at points A, B, and C.

I mentioned earlier that this circuit has a floating ground. As shown on the schematic, no connections are to be made to the keyer cabinet. This eliminates expensive and hard-to-find reed relays, lowers power consumption, and sidesteps the need to modify the keyer whenever a different transmitter is used. Also, it is suggested that you stick to a battery to power your keyer unless you are certain that your power supply is isolated from ground. When connecting the keyer for the first time, it may be necessary to reverse the two keyer output leads to prevent the transmitter from being keyed all the time (wrong polarity to Q1). After the correct way has been found, a connector can be soldered on.

Adjustment consists of merely trimming R3 until the dits are about one-third as long as the dahs. Once this has been done, it will probably never have to be
done again, since this ratio stays about the same over a fairly wide range of keying speeds and battery voltages. However, if it is anticipated that several operators of widely varying proficiencies will be using the same keyer, it might be better to make R3 a frontmounted control or at least provide a hole in the cabinet for quick screwdriver adjustments.

It seems kind of pointless to blow a considerable amount of money on a keyer paddle when the actual circuitry costs so little, so I would like to suggest a rather unoriginal but appropriately frugal alternative. It consists of a short piece of steel packing strap or hacksaw blade sandwiched between two telephone switch or relay contacts. The packing strap or blade is scraped clean of all paint in the contact area, and a piece of paddle-shaped Plexiglas \({ }^{\text {M }}\) which protrudes through the front of the cabinet is bolted to one end. When the paddle is moved in either direction, the strap touches one of the contacts. The strap need not make a perfect connection for the keyer to operate, since the CMOS oscillators will operate even with several thousand Ohms of contact crud. The strips of phenolic that insulated the switch or relay before modification are used in the same application; they make sure that neither the strap nor the contacts make an electrical connection with the cabinet. Fig 3 shows one possible arrangement for the entire keyer, including the paddle.

Rf shielding for this circuit is not too critical; the prototype worked fine with no case at the \(100-\mathrm{W}\) att level. I used a 1 - by \(1 \frac{1}{2}\)-inch piece of perfboard for the keyer circuit, and the sidetone was added as an afterthought on another small piece of board. A center-off

\section*{NOT-A-KEYER}


The FIST FIGHTER \({ }^{\text {ww }}\)
Using a straight key or "bug?" Then send your code with the Fist Fighter, and make it sound perfect. "Swing" and ragged edges are filtered out and your dots and dashes are always timed, 1:3. No new hand motions or special key needed, so you'll send code like a pro in no time. Great for novice or old-timer.

\author{
Price: From \(\$ 59.95\) \\ Contact Blacksburg Group for more informátion. \\ \(-118\) \\  \\ \section*{Blacksburg Group \\ \\ Box 242} \\ Blacksburg, Virginia 24060
\(703 / 951-9030\)
}
switch was used to control both the keyer power and sidetone, as the HW-101 already has a sidetone built in

With the cost of amateur radio equipment what it is today, CW just has to offer one of the best potentials for having a lot of tun without spending a lot of money.

Vintage CW rigs abound on the used market, and a good QRP rig can be purchased new without going too far into debt Costing about as much as a cheap microphone, this circuit reflects the same spirit of fun on a shoestring. Use and enioy.


Fig. 3. Typical arrangement of circuit boards, controls, and paddle.

\title{
I Got My Ticket! Now What?
}

\section*{A look at what Elmer forgot to tell you.}

For many recently licensed hams, trying to operate a new ham station is just as difficult as learning the code or studying for
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Local Time} & \multicolumn{5}{|c|}{Band} \\
\hline & 80 & 40 & 20* & 15 & 10 \\
\hline \multicolumn{6}{|l|}{6:00 am} \\
\hline \multicolumn{6}{|l|}{9:00 am DX} \\
\hline Noon & & & DX & DX & \\
\hline \multirow[t]{2}{*}{3:00 pm} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Local}} & \multirow[t]{2}{*}{DX} & \multirow[t]{2}{*}{DX} & DX or \\
\hline & & & & & Local \\
\hline \multirow[t]{2}{*}{6:00 pm} & Locall & Locall & \multirow[t]{2}{*}{DX} & \multirow[t]{2}{*}{DX} & DX or \\
\hline & Ragchew & Ragchew & & & Local \\
\hline \multirow[t]{2}{*}{9:00 pm} & \multirow[t]{2}{*}{Crowded} & \multirow[t]{2}{*}{Crowded} & \multirow[t]{2}{*}{DXI Crowded} & \multirow[t]{2}{*}{DX} & Locall \\
\hline & & & & & Ragchew \\
\hline \multirow[t]{2}{*}{Midnight} & \multirow[t]{2}{*}{Ragchew} & \multirow[t]{2}{*}{Crowded} & DX/ & & \\
\hline & & & Crowded & & \\
\hline *If allowed & by license & & & & \\
\hline
\end{tabular}

Fig. 1. "Best bet" operating frequencies for a newcomer (1981-82).


Fig. 2. Typical repeater.
the written exams. Anyone who has ever been involved in a licensing class knows people who have gotten licenses and set up stations,
but never quite made any contacts on the air. New hams have many questions about operating. The following are some of the more common ones.

I have had my station set up for a month and have managed to make just one contact. How come?

Let's assume your rig is working. The problem could be where and when you are trying to operate. For example, on a Friday or Saturday night, 80 and 40 meters (Novice band) are jammed and just about everyone has a problem. If you try 10 meters and the band is closed, you sill won't work anybody. The trick is to pick a band and a time when there are a number of stations on, but the QRM is not overwhelming Try 40 meters in the late afternoon, 15 in the jearly evening, or 10 on a Sunday afternoon (see Fig. 1).

Should I call CQ or iust listen?

Use common sense. If you tune around for a few
minutes and don't hear anyone calling, you can try a CQ, but pick a quiet frequency and limit your CQ

Why limit it? I thought the traditional \(3 \times 3\) or even a \(3 \times 4\) was a good idea.

Look at it from the listener's point of view. If I hear you calling CQ for a long period of time and get tired of listening to you call, 1 won't want to reply to you. If you are that boring with a \(C Q\), think how boring you would be in a QSO. With today's equipment, just call "CQ CQ CQ de WA1WTB WA1WTB," repeat once, and then \(K\). If there is no answer, you can always try again.

You said to pick a quiet frequency. How can I tell if no one is using it?

Assuming you don't hear anything, just send QRL or IE. On voice, say"Is this frequency in use?" If there is no reply, you are perfectly correct to assume you can transmit without bothering anyone.

Am I better off operating CW or SSB to start with?

I am not sure what you mean by "better off." Assuming license class is not a consideration (you have more than a Novice license), try operating both and see what you like. Sideband initially takes less effort to operate but the frequencies are more crowded during prime operating hours. You usually can do better with DX on CW without fighting everyone's kilowatt.

What if I want to join a QSO that is already under way?

Let's be very blunt about it. In some cases, you won't be welcome. Hams are a cross section of people, no more and no less. However, on CW, a simple " \(B K\) " is enough to be invited in. On SSB, "May I join you? This is WA1WTB" or any English language equivalent is acceptable. Be careful of using "Break."

What is the problem with "Break?"

It used to be the normal and accepted way to break in but recently, especially on repeaters, "Break" or "Break Break" is used to indicate an emergency situation when you want to transmit in a hurry.

Is repeater operation different from other types of QSOs?
Yes. Almost every area or repeater is slightly different. It is a good idea to listen for a while before you get on a new repeater. Almost all are equipped with a timer which will cut you off if you talk for more than 1,2 , or 3 minutes, depending on the setting.

What controls the timer? I really don't want to get cut off in mid-sentence.

Some timers reset as soon as the repeater's receiver no longer receives a carrier. Others reset as soon as the repeater's transmitter shuts off. Some repeaters


Fig. 3. Sample tuning chart.
transmit a beep tone when the timer has been reset (see Fig. 2).

Why limit the time for transmitting?

The primary reason is to force a pause between transmissions, and to do so often enough to allow anyone who wants to join the QSO time enough to transmit his call. In addition, it allows mobile stations to get into the repeater without having to wait any longer than a minute or two.

Do mobile stations have a priority?

Usually yes-both on repeaters and elsewhere. First, they are limited by their motion as to how long they will stay in range. Second, they are more likely to have seen an emergency situation or to need directions or other aid Good procedure again follows common sense-let a mobile in quickly to find out if he has a problem.

I hear a lot about "kerchunking" repeaters. What is the story here?

Kerchunking is a very common practice of pressing your mike button to see if your transmitted signal is strong enough to bring up a repeater. Since it is a transmission without identification, it is technically illegal but it is also generally a worthless test. Quite often you can be on the fringe area of a repeater and be
able to bring the repeater up but be too noisy to copy.

Is there a better way?
Sure Key your mike and identify by saying, "This is WB1AIC-is anyone around?" If you don't make the repeater, nothing is lost. If you do make the repeater and no one answers, it doesn't make any difference since you won't have anyone to talk to!

When I identify myself on a repeater, should I use phonetics?

With a little experience you will know the answer to that question for your own call. If it contains an F, S, or other easily confused letter, you can use phonetics, but it is not usually done unless the station you are talking to does not repeat your call correctly. The same holds true for signal reportsthey are not usually given
unless asked for or you wish to indicate a problem

Which signal reports are usually given on repeaters? Q5 59 does not seem appropriate.

Since the signal strength you are receiving is due to the repeater and not due to the station you are talking to, the best you can do is tell if you are copying OK ("full quieting") or noisy. Some hams will say " \(50 \%\) quieting" which indicates they are copying half noise and half signal, but this non-technical use of "quieting" is a wild guess at best.

What about reports on other bands or when you are not using a repeater?

I suggest telling the truth. On CW, if you had a transmitter problem and your tone was not T9 or perfect, wouldn't you want the other guy to tell you? The


Fig. 4. Adding calibration marks to a skirt-type knob.


Fig. 5. Adding calibration marks to a pointer-type knob.


Fig. 6. Step 1: Tune up the rig into a dummy load.


Fig. 7. Step 2: Adjust tuner to provide a 50-Ohm load.
same holds for asking the other ham to QRS or slow down.

Frankly, I was hesistant to ask. Won't a request to QRS brand me as a beginner?

Possibly, but we were all beginners once. Besides, what is the sense of sending " \(R\) " (I have solid copy) when you don't have the foggiest idea what the other station was talking about? I would rather be considered a ham who just is not too fast on CW than the character who sends: "R R R solid
copy here OM please repeat your name, QTH, and my report." Besides, there are real ways to be branded a beginner.

\section*{for example?}

Break into an einergency net when you cannot contribute anything. Keep making unsolicited, helpful suggestions to the station controlling the situation. An experienced ham would say nothing and listen carefully. If the net control station wants help, he will ask for it specifically.

Any other common things to avoid?

Sure. If you want to sound silly in the middle of a QSO, give out with an extended "H-E-L-L-O-O-O-O" to check your plate current or output power. Think how you must sound on the other end. If you feel absolutely compelled to make a check in mid-QSO, simply say to the other guy, "excuse me," put your rig in tune, and make a quick check. However, putting out a carrier for an extended period of time is a great way to be unpopular and cause unnecessary QRM. Besides, it's pretty rough on your finals.

I guess I don't understand. If I have to tune my rig and match it to the antenna, I have to transmit a carrier.

Yes, but you don't have to transinit it for very long. There are at least two ways to handle this problem. The first is to make up a tuning chart for your rig (and antenna tuner if you use one). Record the dial readings as you tune up every 50 or 100 kHz . Now, when you change frequency from one end of the band to the other, just set your knobs to the chart and you will only have to tweak them slightly to tune up, which can be done in 2 or 3 seconds (see Fig. 3)

Some of the knobs on my rig have calibration marks every quarter of a revolution. Is this good enough to allow me to preset them?

Probably not, but you can ink-in additional lines on the knob or use sections of self-stick labels. Place a small piece of self-stick la-


Fig. 8. Tuned up - without ever transmitting through the antenna.
bel on the knob skirt (Fig. 4) or on the panel (Fig. 5) with the additional calibration marks inked in. Plain white paper fastened with rubber cement is also durable and easily removed later. If you draw lines on the paper or labels, you can protect them with artist's fixative or varnish.

What is the second way of tuning up without transmitting a carrier for an extended period?

Actually you can tune up without transınitting a carrier at all. It takes three pieces of equipment: your swr bridge, a dummy load, and a noise bridge. First, connect your rig (Fig. 6) through the swr bridge to a dummy load, and at the frequency you want to operate, tune up your rig into the dummy load. Then, connect the noise bridge as shown in Fig. 7 and set the resistance control on the noise bridge to 50 Ohms and the reactance control to zero Ohms. Next, tune your antenna tuner or matchbox for a minimum noise as heard in your receiver. If you have a transceiver, be very careful not to transmit with the noise bridge in the line or it will go up in a very rapid puff of sinoke.

Now, remove the noise bridge and reconnect the transmitter through the swr meter to the antenna tuner, and you are ready to operate. What you have done is tuned your transmitter to its design condition of maximum power out into a 50 -Ohm load, and you have made the antenna tuner and antenna look like a 50-Ohm load. Connect the two (Fig. 8) and you are ready to transınit, with maximum power out. You can also use this technique to make up a tuning chart so that you have to go through the procedure only once for each \(50-\) or \(100-\mathrm{kHz}\) band segment you like to operate in.

\section*{CIRCUITS}

Do you have a technique, modification, or easy-to-duplicate circuit that your fellow readers might be interested in? If so, send us a concise description of it (under two pages, double-spaced) and include a clear diagram or schematic if needed.

In exchange for these technical gems, 73 offers you the choice of a book from the Radio Bookshop, to be sent upon publication. Submit your idea (and book choice) to: Circuits, Editorial Offices, 73 Magazine, Peterborough NH 03458. Submissions not selected for publication will be returned if an SASE is enclosed.


CW FILTER: This filter features a \(40-\mathrm{Hz}\) bandwidth and no ringing. To use it, tune your receiver so that the code-practice oscillator duplicates the signal you want to copy.-Ronald Folkert, Benton Harbor MI.


REMOVABLE MAGNETIC FEET: Gear such as Drake's TR-22C is fine for mobile or portable use but often lacks refinements like rubber feet that make it suitable for use in the shack. My solution to this deficiency was to epoxy several small magnets to some rubber feet and then stick them to the bottom of the radio. When the rig goes portable, just remove the feet. If you don't have any magnets handy, you can remove some from the magnetlc cabinet latches sold in hardware stores. - Thomas Hart AD1B, Westwood MA.




SIMPLE VOLTAGE STANDARD: This circuit gives you a voltage standard to check your VOM or electronic voltmeter. The MC1403 will deliver 2.5 volts whlle the output of the LHOOTO is 10 volts. Both sources are accurate to one percent or better. You can get other voltages by using different members of the MC140X and LH007X precision regulator series. The diode can be anything rated over 40 mA and 60 volts piv.-J. T. Miller N6BM, Yucaipa CA.


SUBSTITUTE TRANSFORMER FOR HEATH GEAR: The power transformer found in many newer TV sets can be used with a voltage-doubler circuit to provide up to 450 volts \(d c\), as well as bias and filament voltages. I used this approach to replace the transformer in a Heathkit HX-10; it also should be suitable for the SB and HW series of Heath radios. (Note: Your rig's wiring may need to be modified if it has \(12-\mathrm{V}\) filaments.)-Terry Martin, Carrollton GA.


HEAT CONTROL FOR A SOLDERING IRON: This handy circult allows you to reduce the temperature of a soldering iron. Just place a diode in series with one side of the ac line. You can easily switch the control in and out by shorting the diode. The polarity of the diode doesn't matter. I used a 1 N 2070 diode rated at 400 volts, 0.75 Am peres. Any similar diode will do.-H. H. Hunter W8TYX, Columbus OH .


SCAN DELAY FOR THE AZDEN 2000: By adding a capacitor and resistor to the Azden 2000's control-head circuitry, you can have a delay before the receiver resumes scanning. There is approximately one second of delay for each 100 uF of capacitance added. -Hiam Sandel KB2IV, Flanders NJ.


HEADLIGHT REMINDER: If your headlights or parking lights are on, there will be 12 volts on terminal 4. If the ignition is off, terminal 3 will be at ground. When these two conditions are met, the transistor is turned on and the buzzer sounds. KA5CRI/9 suggests that this circuit can be built into a surplus seat-belt buzzer.-Steve Stout KA5CRII9, Palatine IL.

\section*{FUN!}

\section*{John Edwards KI2U \\ 78-56 86th Street \\ Glendale NY 11385}

\section*{CW REMEMBERED}

Like it or not, we are witnessing the twilight of the CW era. After more than a century as a mainstay of electrical and electronic communication. CW is on the way out.
I make this statement purely as a rational observation. Nobody (including Wayne) has forced me to this conclusion. Just look at the facts. Thanks to microelectronics, radiotetephone transceivers need be no targer in size than CW-only rigs. Computer generated digital communication has now reached a point where lit is inexpensive and portable. It's also laster and more reliable than code. CW-except as a means of personal enjoyment-is washed up.
Apparently, the FCC agrees with this point of view, Shorlly you'll see the Commission remove the CW requirement from the Tech license. After that, it's just a matter of time the year 2000 sounds good) before the feds eliminate all code requirements. In an age of is and Os, dits and dahs don't make sense. Just as CW replaced spark, computerized communication techniques will replace CW.
By now your getting the feeling that I hate CW. Not at all, I've pounded the brass with the best of them. It's just that I, like most true radlo amateurs, look forward to new challenges. And CW, while fondly remembered, should be relegated to the dusty attic of ham-radio history

This month, we look back at CW and reflect upon the contrlbutions it has made to our hobby. And if any of you have anything to say about what I've written about CW, remember: I passed a 20 -wpm code test. Can you say the same?

\section*{ELEMENT 1-CROSSWORD PUZZLE}

\section*{(Illustration 1)}

\section*{Across}
1) What the "wave" in question is
6) As opposed to amateur (abbr.)
8) QRN silencer (abbr.)
9) Hams can't be this
1) FCC rule section
13) Not down
14) Telegrapher's slang for shift
16) Slash
17) 3.14
18) CW term of affection
19) CW chuckle
20) Learning code is this
22) Ham organization
24) ARRL's Stan
25) Jammer
26) Some say CW does this
29) ARRL brasspounding position (abbr.)
30) No code ops?

\section*{Down}
1) Points on a key
2) Pressing a key
3) Weak signal place to noise
4) Early code mode
5) CW subband location
7) US President's initials
10) End of message (abbr.) 12) A bug is semi


\section*{ELEMENT 2-MULTIPLE CHOICE}
1) Samuel F. B. Morse, father of telegraphy, was a man of many talents. At the time he in vented the telegraph, what was his profession?
1) Professor of art at New York University
2) Electrical engineer
3) Lab assistant to Thomas Edison
4) Professor of theology at Yale
2) What were the first words transmitted via code?
1) Testing one, two, three.
2) Hello, Watson. Can you hear me?
3) Greetings from the President.
4) What had God wrought!
3) The inventor of the vibroplex semiautomatic key was:

> 1) Hugo Gernsback
> 2) Horace G. Martin
> 3) Thomas Edison
> 4) Clarence Tuska
4) What did Hiram Percy Maxim name his favorite spark transmitter?
1) Sparky
2) Old Betsy
3) Little Darling
4) The ARRL Special
5) What device was used on telegraph lines to create an audible sound at the receiving end?
1) Heterodyne beater
2) Sounder
3) Beat-frequency oscillator
4) Mechanical audio oscillator

\title{
ELEMENT 3-TRUE-FALSE
}
1) C. W. McCall was the inventor of "continuous waves. \({ }^{\text {" }}\)
2) Samuel F. B. Morse invented the continental code
3) The initials F. B. In Morse's name stood for "Fine Business."
4) It's legal to send continental code on US ham frequencies.
5) The FCC officially banned spark transmissions in 1954
6) Our end of message signal - AR-is nothing but the American Morse letters FN meaning "Finish."
7) The "Glass Arm" is the top award presented by the Society of Wireless Pioneers.
8) Barry Goldwater K7UGA is the ham who Introduced the League's "Tune in the World" CW prac tice tape.
9) The first-memory keyer used six relays
10) At one time, the Extra-class ticket required proficiency at 25 wpm.

ELEMENT 4—SCRAMBLED WORDS

\section*{GUB}

CCNOTTA
YREKE

BONK
GRINSP
SIFT IGHTEWING

\section*{THE ANSWERS}

Element 1 :
See Illustration 1A
Element 2
1-1 They always sald that learning the code was an art.
2-4 Funny, Morse didn't include God as a co-inventor in his patent.
3-2 What! you didn't know this one?
4-2 The League still has it in lis museum
5-2 Click. Click-click. Click.
Element 3
1-False. He wrote that crummy CB "Convoy" song.
2-False. American.
3-False. Finley Breese.
4-True. Why not? It's the one the FCC tests us on

5-False. 1927.
6-True. You learn something new every day
7-False. A "glass arm" is a weary arm.
8-False. Jean Shepherd K2ORS did the honors
9-True. Developed in 1953, the "Ultimatic" used six relays. No microchips then
10-False. It has always been pegged at 20
Element 4
(Reading from left to right) BUG, KNOB, KEYBOARD; CONTACT, SPRING, CLICK; KEYER, FIST SPEED WEIGHTING

\section*{SCORING}

Element 1
Twenty-five points for the completed puzzle, or one-half point for each question correctly answered.
Element 2:
Five points for each correct answer
Element 3 :
Two and one-half points for each correct answer.
Element 4
Three and one-half points for each correct answer.
1.20 points-Not at all
21.40 points-Vaguely
41.60 points-Failed 13 wpm twice
61.80 points-CW bulf
\(81.100+\) points - A1 Op Ciub Member

need the schematic and manual for a Knightkit color pattern generator, model KG.685. I will pay for copying and postage. Thank you.

Does anyone have a recent list or mil lube chart for the Hickok 539B tube tester? It should be no more than 2 or 3 years old if possible.

We are happy to provide Ham Help list ings free, on a space-available basis. We are not happy when we have to take time from other dutles to decipher cryptic notes scrawled illegibly on dog-eared post cards and odd-sized scraps of paper. Please type or print your request (neatly!). double spaced, on an \(8^{1 / 2} 2^{*} \times 11^{\prime \prime}\) sheet of paper and use upper and lowercase ler ters where appropriate. Also, please make a "1" look like a "1." not an "I," which could be an "el" or an "eye," and so on Hard as it may be to belleve, we are not fa miliar with every piece of equipment man ufactured on Earth for the last 50 years! Thanks for your cooperation

I need an L6 passband tuning coil (part \#K42031.1) and an L1 bifllar coll (par \#K42032.1). Both are for the Hallicrafters HC. 10 converter. Call me collect ai (907).733-2447 or contact me at the ad dress provided.

Jack Norris Box 321 Talkeetna AK 99676
am looking for a meter for a Knight kit VTVM made by Allied Radio Corporation and a meter for a Simpson 260 vOM (20,000 Ohms-per-volt). Anyone having either of these two items. please contact me

Guy A. Elder WB5JEV 1316 Main Street West Point KY 40177

I need the schematic diagrams and owner's manual for the Knightkit T-150A transmitter and the R-100A receiver. I will pay all postage and copying costs.

Antonio V. Villaneuva c/o Mrs. Erlinda V. Pastrana 7218 Belinger Court Springfield VA 22150

\section*{NEW TS830S for \(\$ 150\) ?}

Yes indeed! Just add a Matched Pair of topquality 2.1 KHz BW (bandwidth) Fox Tango Filters. Here are a few quotes from users
> .. . Makes a new rig out of my old TS830SI. ...VBT now works the wey I dreamed it should..." Spectecular improrement in SSB selectivity Complately eliminates my need tor CW filter. ... Completely eliminates my need for a CW filtef... "...Simple Installation - excellent instructions...

The Fox Tango filters are notably superior to both original 2.7 KHz BW units but especially the modest ceramic 2nd IF; our substitutes are 8 -pole discrete-crystal construction. The comparative FT vs Kenwood results? VBT OFF-RXBW: 2.0 vs 2.4: Shape Factor: 1.19 vs \(1.34 ; 80 \mathrm{dBBW}: 2.48\) vs 3.41: Ulltimate Rejection: 110 dB vs 80 . VBT SET FOR CW at 300 Hz BW - SF 2.9 vs 3.33 ; Insertion Loss: 1 dB vs 10 dB .

\section*{OPTIONAL CONNECTIONS}

Fox Tangofilters for RX and TX; Fox Tango for RX Kenwood for TX; FT for RX - switch-select FT or K for TX; switch-select FT or K for RX/TX.
INTRODUCTORY PRICE: (Complete Kit).. \(\$ 150\) Includes Matched Pair of Fox Tango Filters, all needed cables and parts, detailed instructions.
Shipping \$3 (Air \$5). FL Sales Tax \(5 \%\)

\section*{ONE YEAR WARRANTY}

GO FOX-TANGO - TO BE SURE! Order by Mail or Telephone. aUthorized european agents Scandinavia MICROTEC (Norway) Other: INGOIMPEX (West Germany)

FOX TANGO CORPORATION
Box 15944S, W. Palm Beach, FL 33406 Phone: (305) 683-9587

\section*{CW MORSE for the TRS-80* COLOR COMPUTER}

Our Plug-in Morse-Pak@ interfaces the Color Computer to your transceiver and allows you to communicate in CW Morse Code
through the computer.
*/nstalls in minutes \({ }^{\star}\) *Simple to operate *Handles code speeds up to 60 wpm many more features

We stock a complete line of color computer accessories. including

Floppy disk controllers. Serial I/O Ports . Add.on EPROM kils . Plug-in Breadboards • RAA Expansion kits 16K-64K and more
Write for brochure to:
\[
\text { ATOMTRONICS }{ }^{-186}
\] 3195 ARIZONA AVE. LOS ALAMOS, NM 87544

\section*{CIRCUITS}

Do you have a technique, modification, or easy-to-duplicate circuit that your fellow readers might be interested in? If so, send us a concise description of it (under two pages, double-spaced) and include a clear diagram or schematic if needed.

In exchange for these technical gems, 73 offers you the choice of a book from the Radio Bookshop, to be sent upon publication. Submit your idea (and book choice) 10: Circuits, Editorial Offices, 73 Magazine, Peterborough NH 03458. Submissions not selected for publication will be returned if an SASE is enclosed.


SIMPLIFIED HEADLIGHT RE.

MINDER ALARM: The circuit uses just two components, one silicon diode and one Sonalert \({ }^{T M}\) (4-28 \(\vee \mathrm{dc}\) ). Both of these items can be purchased surplus. The diode is a prevention device, protecting the signaling device and ensuring that the ignition switch is isolated from the circuit. - Richard S. Shepard AI5H, San Antonio TX.


DC AUXILIARY SYSTEM WITH ISOLATION: Presented here is a simple auxiliary battery system. Battery \(B 2\) is isolated from the primary battery by diode D2, and D1 is protected as well. Both diodes should be at least 40 Amperes forward current, and 50 to 100 piv. A heavy wire from the junction of the two anodes connects to the charging device terminal. Do not rewire so that D1 is between the battery and the starter motor. - A. W. Edwards K5CN, McAllen TX.


AUTOMATIC CQ CALLER: Record and send CQ or CQ DX-or any message—cheaply and easily. Begin by recording your message on a cassette tape. This recording will be used to drive the circuit. Mount the full-wave bridge astride the relay (K1). Solder the + and common leads to the coil leads. T1 is Superglued to K1. The assembly can be mounted inside a transceiver or outboard in a box. Wire the relay output to the keyjack. Install a jack to receive the audio output from the cassette. Endless-loop cassettes are available from Radio Shack. Five-minute cassettes are available from Pyramid Data Systems, 6 Terrace Ave., New Egypt NJ 08533. -Dave Nesbitt WD4AAW, Decatur GA.


Fig. 1.


Fig. 2.


Fig. 3.

MODIFICATION TO THE KENWOOD TS-520S FOR AFSK: Fig. 1 shows the passband of the Kenwood TS-520S. By installing a crystal with a frequency of 3392790 Hz , the RTTY tones of \(2125 / 2295 \mathrm{~Hz}\) will be right in the middle of the filters'respective passbands. See Fig. 2.

Fig. 3 shows the i.f filters. When installing the \(270 . \mathrm{Hz}\) filter, follow the directions given in the manual except for the following: 1) install the filter in the SSB narrow position; and 2) Jumper lead " \(A\) " to the "SSN" position and jumper lead "B" to the "SSB" position.

To set the filter, turn the switch to "CAL" and tune for a \(2210-\mathrm{Hz}\) tone (a scope is helpful, or else tune to a null on your RTTY tuning meter). - Richard Kulaga KA9EDX, Fond du Lac WI.


AN INEXPENSIVE EXPANDED SCALE VOLTMETER: Use an un. sealed 0.5-V-dc 1000-Ohm-pervolt meter movement. Solder a 10.0-volt, \(5 \%\), \(1 / 4\)-Watt zener di. ode to the positive meter terminal (this is located under the
case). Use as short as possible a lead for good mechanical stability, observing zener polarity. Change the numbering on the meter face to 10.15 V dc. Use either a razor-pointed marking pen or dry-transfer numbers. Reassemble the meter and test it before installing it in your car. To ensure greatest accuracy, pre-check the zener and make certain that it is as close as pos. sible to 10.0 volts. - Alan Christian WA6YOB, San Jose CA.

\section*{SOCIAL EVENTS}

Listings in this column are provided free of charge on a space-available basis. The following information should be Included in every announcement: sponsor, event, date, time, place, clfy, slate, admission charge (If any), feafures, falk-in frequencies, and the name of whom to contact for further informaion. Announcements musi be received at 73 Magazine by the first of the month, iwo months prior to the month in which the event rakes place. Mail to Editorial Offices, 73 Mag . azine, PIne Street. Peterborough NH 03458.

\section*{DEARBORN MI NOV 4}

Encon Corporation, in cooperation with Solarex Corporation, will provide a liee photovoltaic (electricity from the sun) seminar at 7:30 pm on November 4 at the Dearborn Hyatt Regency, Dearborn MI. A talk on the history, production. and applicatlons of solar cells will inform and educate all those who attend. For reserva tions, contact Encon Corporation, 27584 School Craft Ra.. Livonia MI 48150; (313). 261.4130 .

\section*{SOUTH GREENSBURG PA NOV 6}

The Foothills Amateur Radio Club will hold its annual Swap and Shop on Salur day. November 6. 1982. at Si. Bruno Church. South Greensbuig PA Tickets are \(\$ 2.00\) each or 3 lor \(\$ 5.00\) Thesl will be ati indoor llea inarkel and lood I alk ill on 146.071 .67 and 521.52 . For more detals. conlacl Marıo Carrerra W3TTN or wrlle FARC. PO Box 236. Gieerisburg PA \(131 ; 01\).

\section*{SELLERSVILLE PA NOV 7}

The R. F. Hill ARC will hold its 6 th annual hamiest on November 7. :982, in the Sellersville National Guard Armory, Sellersulle PA. Doors will open at 7:00 am for sellers and 8:00 am for buyers. There will be relieshments and heat. Talk-in on . 28 /.88 and .52. For luther inforination. contact R. F Hill ARC. Box 29. Colrnar PA 18915

\section*{CONCORO NC NOV 7}

The Cabarrus Amateur Radio Society, Inc., will hold its annual hamiest on November 7, 1982, from 9:00 am to 5:00 pm, at the Concord Boys Club, Spring Street, Concord NC. Admission tickets are \(\$ 2.50\) in advance, \(\$ 3.00\) at the door. Flea-market tables are \(\$ 4.00\); table space is \(\$ 2.50\). There will be bingo for the ladies. speakers. and forums. Hol food. beverages, and free parking will be avallable. Talk.in on 146.655. For advance lickets. tlea-market tables. or space. send a check to CARS. PO Box 1290. Con cord NC 28025

\section*{NORTH HAVEN CT NOV 7}

The Southcentral Connecticut Amateur Radio Association's (SCARA's) third annual electronics flea market will be held on Sunday, November 7. 1982, indoors at the North Haven Recreation Center on Linsley Street in North Haven CT. Regular admission is \(\$ 1.25\); children under 12 with an adult will be admitted free. Sellers' spaces are \(\$ 6.00\). The best spaces will be assigned first. A limited number of free tables will be

The Honeywell 1200 Radio Club and the Waltham Amateur Radio Association will hold their annuat amateur radio and elec tronics auction on Saturday, November 20. 1982. at the Honeywell Plant. 300 Concord Road. Billerica MA (exit 27 off route 3) Doors will open at 10:00 am and admission and parking are free. There will be a snack bar and a bargain parts store. Talk-in on 147.72/.12 and 146.04/.64. For more informa. tion. contact Doug Purdy N1BUB. 3 Visco Road. Burlington MA 01803.

\section*{CANTON OM \\ NOV 21}

The Massillon Amateur Radio Club (W8NP) will present Auctionfest ' 82 on No. vember 21. 1982, al the Nazir Grotto Hall, 6 th and Dueber Avenue SW, Canton OM Advance tickets are \(\$ 2.50\); at the door \(\$ 3.00\). Doors will open at 7:00 am for set ups and 8:00 am for others. The auction will start at 11:00 am. Talk.in on 146.52 For advance tickets or tables. contact Steve Nevel WD8MIJ, 1864 Massachu selts Avenue SE. Massillon OH 44646

\section*{GREENSBORO NC NOV 27-28}

The Greensboro Amateur Radio Club will hold the second annual Greensboro Hamfest on November 27-28, 1982, at the National Guard Armory, Greensboro NC. The hours will be \(9: 00 \mathrm{am} 10\) 5:00 pm on November 27th and 9:00 am to \(3: 00 \mathrm{pm}\) on November 28th. Pre-registration before November 12, 1982, is \(\$ 3.00\) and registra. tlon at the door is \(\$ 4.00\). There will be tables and taligating available. Talk-in on 145.25, 19/79, and .52. For pre-registration (please include an SASE) or more

\section*{STONY BROOK LINY} NOV 28
The Radio Central Amateur Radio Club will hold its fourth annual Ham-Central, 1982 edition, on Sunday, November 28, 1982. in the main social hall of Temple Isaiah, 1404 Stony Brook Road. Stony Brook LI NY (about 50 miles east of New York City). Doors will open at 7:30 am for sellers and dealers and al \(8: 30\) for the general public. Admission is \(\$ 2.00\) and XYLs and children under 12 will be admitted free Nine-foot tables are \(\$ 5.00\) each and half tables are \(\$ 3.00\). Featules will include an updated antenna lecture by Art (W2LH) and Madeline (W2EEO) Greenberg, holne cooked thol lood and dinns Talk-in on 144.550/445. 150 (WA2UEC) and 146.52. For additional information, maps. and advance eservalions. contaci Scolly Policastio KA2EOW, 80 7th Slieel. Bohemia NY 11716. 1516 . 589.2557 . or Bob Yarmus K2RGZ Haven Court. Lake Grove NY 11755. 1516.981.2709

\section*{HAZEL PARK MI DEC 5}

The 17th annual Hazel Park Amaleur Radio Club Swap and Shop will be helc Sunday. Dec. 5. al Hazel Park Hign School. Hazel Park MI Hazel Park High School is located on Hughes Street at \(9 / 1 / 2\) Mile Rd.. 1 imile east of 1.75 . Tickets are \(\$ 1.50\) in advance or \(\$ 2.00\) at the door fables are \(\$ 1.00\) per 1001 . Doors open at 8:00 am. Plenty of lood and parking will be avarlable Talk in on 146.52. For lickels. lable reservations. and information. send an SASE to Hazel Park Amateur Hadio Club. PO Box 368. Hazel Park MI \(480300^{\circ}\) telephone \{313)-398 3189.


\section*{DON'T TIME OUT. . TIME IN Introducing Toggle Time}

Model Tl-10 time alert for repeater operators to avoid timing out repeater. (PATENTED) *Sensitive enough for HT's *Automatic; Senses RF carrier-no connection to rig *Battery powered *Resets on carrier drop-out *Adjustable timing period *Size \(51 / 4 \times 35 / 16 \times 13 / 4\) *Weight 8 oz./226.8 Grams Piercing, 6.5 kHz alert tone
Model TI-10 assembled.. \(\$ 69\)
Model Tl-10h, kit form.. \(\$ 52\) Printed Circuit Board and Documentation........ \(\$ 15.00\)


Toggle Time is a 10 minute tinner that would be utilized by a ham to keep within FCC 10 min. ID rules. It is actuated by a toggle switch which serves two purposes:


\section*{CONTESTS}

\section*{Robert Baker WB2GFE 15 Windsor Dr. Atco NJ 08004}

\section*{ALARA CONTEST}

\section*{Starts: 0001 GMT November 13 Ends: 2359 GMT November 13}

Sponsored by the Australian Ladies Amateur Radlo Association, the contest is open to all licensed operators and SWLs throughout the world. YLs work everyone, OMs work YLs only. All bands may be used, phone and CW combined. Each statlon may be worked twice on each band-once on phone and once on CW. All contacts must be made in accor dance with operator and slalion license regulations. No net or list operations, no crossmode, and no repeater contacts may be claimed.

\section*{Exchange:}

ALARA members send RS(T), serial number starting with 001, and ALARA number and name. Others (YL nonmembers or \(O M(s)\) send \(R S(T)\), serial number starting with 001, and name.

\section*{FREQUENCIES:}

Phone-3570.3590, 7100.7120, 14280 14300, \(14180-14200,21350-21370,21180\) 21200, 28480-28520.
CW-3525.3535, 7010.7020, 14050 14060, \(21125 \cdot 21135,28100 \cdot 28110\).

\section*{SCORING}

On phone- 10 points for ALARA club stations contacted (VK2DYL or VK3DYF), 5 points for ALARA members, 3 points for YL non members, 1 point for OMs.

On CW-double all point values shown for phone.
For SWLs-5 points for ALARA members logged and 3 points for YL nonmembers logged.

\section*{AWARDS:}

Certificates will be awarded to the top scoring ALARA member in each country and \(V K\) call area; top scoring \(Y L\) nonmember, OM, and SWL on each continent; and the top scoring VK Novice.

\section*{ENTRIES:}

Send a single log containing dateltime
n GMT, band, mode, callsign worked, report and serial number sentreceived, name of operator of station worked, and points claimed. Logs must be signed and should show full name, callsign, and address of operator along with final score claimed. Logs must be legible, elther typed or printed, no carbon copies please. No logs will be returned and the decision of the contest manager will be final. Logs must be received by the contest manager by Dec. 31st. Address entries to: Mrs. Margaret Loft VK3DML, 28 Lawrence St., Cas. Ilemaine, Victoria, Australia 3450

\section*{EUROPEAN DX CONTESTRTTY}

Starts: 0000 GMT November 13 Ends: 2400 GMT November 14
Sponsored by the Deutscher Amateur Radio Club (DARC). Only 36 hours of operation out of the 48 -hour period are permit. ted for single-operator stations. The 12 hours of nonoperation may be taken in not more than three periods at any time dur. ing the contest. Operating classes in. clude: single operatorfaliband and multioperator/single transmitter. Multi-operator/single transmitter stations are only allowed to change band one time within a 15 - minute period, except for making a new multiplier. Use all amateur bands from 3.5 through 28 MHz . A contest QSO can be es. tablished between all continents and also one's own continent. However, OSOs as well as QTC traffic with one's own country are not allowed! Each station can be worked only once per band.

\section*{EXCHANGE:}

Exchange the usual slx-digit number consisting of RST and progressive QSO number starting with 001.

\section*{SCORING:}

Each OSO counts 1 point. Each OTC (given or received) counts 1 point. Multipliers will be counted according to the Euro. pean and ARRL countries list. The multiplier on 3.5 MHz may be multiplied by 4 , on 7 MHz by 3 , and on 14 through 28 MHz by 2 . However, contacts within the same conilnent only count as a multiplier of one per band (including 80 and 40 meters). The fi nal score is the total OSO points plus QTC
polnts multipled by the sum tota multipliers.

\section*{otc traffic:}

Additional point credit can be realized by making use of the QTC traffic feature. A OTC is a report of a confirmed QSO that has taken place earller in the contest and later sent back to another station-the general idea being that after a number of stations have been worked, a list of these stations can be reported back during a QSO with another station. An additional point credit can be claimed for each sta tion reported.

A OTC contains the time, call, and QSO number of the station being reported, i.e., 1300/DA1AA/134. This means that at 1300 GMT you worked DA1AA and received number 134. A QSO can be reported only once and not back to the orlginating sta. tion. A maximum of 10 QTCs to a statlon is permitted. You may work the same station several times to complete this quota but only the original contact has QSO point value. Keep a uniform list of QTCs sent QTC \(3 / 7\) indicates that this is the 3rd se ries of OTCs sent and that 7 OSOs are reported.

\section*{AWARDS}

Certificates to the highest scorer in each classification in each country, rea. sonable score provided. Continental lead. ers will be honored with plaques. Certifl cates will also be given stations with at least half the score of the continental leader or with at least 250,000 points. The minimum requirements for a certificate or a trophy are 100 OSOs or 10,000 points.

\section*{ENTRIES:}

Violation of the rules, unsportsmanlike conduct, or taking credit for excessive duplicate contacts will be deemed sufficient cause for disqualification. The decisions of the contest committee are tinal. It is suggested to use the \(\log\) sheets of the DARC or equivalent. Send a large SASE to get the wanted number of logs and sum mary sheets ( 40 QSOs or QTCs per sheet) SWLs apply the rules accordingly. Entries should be sent no later than December 15th 10: DARC DX Awards, PO Box 1328 D. 895 Kaufbeuren, West Germany

\section*{EUROPEAN COUNTRY LIST}

C31, CT1, CT2, DL, DM, EA, EA6, EI, F, FC, G, GC Guer, GC Jer, GD, GI, GM, GM Shetland, GW, HA, HB9 HB0, HV, I, IS, IT, JW Bear, JW, JX, LA, LX, LZ, M1, OE, OH, OH0, OJO, OK, ON, OY, OZ, PA, SM, S, SV SV Crete, SV Rhodes, SV Athos, TA1, UA 1346, UA2, UB5, UC2, UN1, UO5, UP2,

UQ2, UR2, UA Franz Josef Land, YO, YU, ZA, AB2, 3A, 4U1, 9H1.

\section*{DELAWARE QSO PARTY}

Starts: 1700 GMT November 13 Ends: 2300 GMT November 14
Sponsored by the Delaware ARC. Stalions may be worked once per band and mode for OSO and multiplier credits.

\section*{EXCHANGE}

QSO number, RS(T), and Delaware county, ARRL section, or country

\section*{FREQUENCIES:}

CW-1805, 3560, 7060, 14060, 21060 28160

SSB-1815, 3975, 7275, 14325, 21425 , 28650.

Novice-3710, 7120, 21120, 28120.

\section*{SCORING}

Delaware stations score 1 point per QSO. Multioly total by the number of ARRL sections and DX countries worked
Others score 5 points per Delaware sta. tion worked. Multiply total by the number of Delaware countles worked on each band and each mode (maximum of 36 mul. tipliers possible). The three Delaware counties are: Kent, New Castle, and Sussex.

\section*{ENTRIES \& AWARDS}

Appropriate awards will be given to the top scorers. In addition, a certificate to ali stations working all three Delaware counties. It you work all three counties and want the WDEL Award, send two 20 -cent stamps and an address label. Mall logs by December 17th to: Charlie Sculley AE3H, 103 E. Van Buren Avenue, New Castle DE 19720. Send an SASE for a copy of the results.

\section*{SANDUSKY RADIO EXPERIMENTAL LEAGUE QSO PARTY}

\section*{Starts: 1800 GMT November 13} Ends: 1800 GMT November 14
The 50th Anniversary of the Sandusky (Ohio) Radio Experimental League, Inc. will be observed and celebrated with a QSO party while members of the club op. erate on five amateur bands using the club call, W8LBZ. Frequencies wlll be: 28150 and 7125 for Novices; 3740. 7040 14040, 21040, and 28040 on CW; 3910, \(7265,14280,21360\), and 28600 on phone. All frequencies plus/minus 10 kHz .

\section*{YELLOW THENSET SMOHE SIGNALS}

\section*{NEWSLETTER CONTEST WINNER}

This month's winner is Smoke Signals, published by the Yellow Thunder Ama teur Radio Club of Baraboo WI. The layout is superb and the articles are written in a humorous, low key style. The newsletter is full of excellent news items from around the nation and overseas, making it appear more like a nationally-based newsletter. Also, a schedule of all the traffic nets in Wisconsin is included. The paper is full of interesting items, such as fox-hunt rules and updates on the members' activities. The editor. Jim Romelfanger k9zz, has done an outstand ing job.
To enter your club's newsletter in our contest, send a copy to: Editorial of fices, 73 Magazine, Peterborough NH 03458.

\section*{CALENDAR}

Nov 6.7
Nov 13
Nov 13.14
Nov 13.14
Nov 13.15
Nov 13.15
Nov 20-21
Nov 20.21
Dec 4.5
Dec 11.12
Dec 19
Jan 8
Jan 9
Jan 15.16
Jan \(15 \cdot 16\)

\section*{ARRL Sweepstakes-CW}

Australian Ladies' ARA Contest
European DX Contest-RTTY
W8LBZ OSO Party
North Carolina QSO Party
CQ.WE Contest
ARRL Sweepstakes-Phone
Trinidad and Tobago OSO Parly
ARRL 160 -Meter Contest
ARRL 10-Meter Contest
CARF Canada Contest
73 Magazine 40-Meler Worldwide SSB Championship 73 Magazine 80.Meter Worldwide SSB Championship 73 Magazine 160 Meter Worldwide SSB Championship Hunting Lions in the Alr Contest

All amateurs worldwide are invited to participate. A special OSL card/certificate will be sent to all who send their OSL card to the OSL Manager, W8LBZ, 2909 West Perkins Avenue, Sandusky OH 44870.

\section*{CQ.WE CONTEST}

\section*{Starts: 1400 GMT November 13 Ends: 0500 GMT November 15}

Sponsored by the Bell System Amateur Radio Fraternity, the contest is open to present and retired employees of Bell, Western Electric, AT\&T, and subsidiaries of AT\&T. Contact local interworks coordinator for logs and complete rules, or write Steve Wheatley WN8GUE, Bell Laboratories, 2525 Shadeland Avenue, PO Box 1008, Indianapolis IN 46206. Telephone: (317).352.2442 at work or (317)-545-4029 at home

\section*{NORTH CAROLINA QSO PARTY}

\section*{1700 GMT November 13 to 0200 GMT November 14 1200 GMT November 14 to 0100 GMT November 15}

This year's party is sponsored again by the Alamance ARC (K4EG). The same station can be worked on each band. Cross. band and repeater contacts are not permitted.

\section*{EXChange}

RS(T) and NC county or ARRL section.

\section*{FREQUENCIES:}

SSB-3980, 7280, 14280, 21380, 28580. CW -60 kHz up from lower band edge.

Novice/Tech - 20 kHz up from lower band edge.

\section*{SCORING:}

NC stations count one point per OSO and multiply total by sum of ARRL sections.

Others count 2 points per NC contact and multiply total by number of NC coun. \(t\) ies worked ( 100 max.). Add a bonus of 25 points for working the club station, K4EG.

\section*{AWARDS:}

The top scorer In and out of state will re ceive the 1983 Callbook of his/her choice. Certificates to top scorers in each ARRL section.

\section*{ENTRIES:}

Send logs and summary sheets show ing essential details to: F. R. Ashley WB4M, 2731 Blanche Dr., Burlington NC 27215. Include large SASE for results. Mailing deadline is December 13th.

\section*{TRINIDAD AND TOBAGO QSO PARTY}

\section*{Starts: 0000 GMT November 20} Ends: 2359 GMT November 21
The 9 Y4 QSO party has been organized by the Trinidad and Tobago Amateur Radio Society, Inc., to commemorate 20 years of Independence, 5 years as a republic, and 50 years of amateur radio. Use all bands from 10 through 160 meters on SSB, CW , or via satellites.

\section*{exchange:}

The usual 5 . and 6 -figure serlal number signal report plus a progressive 3 -dight number starting with 001

\section*{RESULTS}

1982 SPRING BARTG RTTY CONTEST RESULTS Single-Operator Section
\begin{tabular}{|c|c|c|c|}
\hline No. & Callsign & Points & \[
\begin{aligned}
& \text { Total } \\
& \text { OSOs }
\end{aligned}
\] \\
\hline 1. & W3EkT & 668196 & 373 \\
\hline 2. & EA8RU & 518560 & 343 \\
\hline 3. & W3FV & 504648 & 276 \\
\hline 4. & G3HJC & 462870 & 221 \\
\hline 5. & I2OLW & 462384 & 336 \\
\hline 6. & 11 TXD & 430560 & 272 \\
\hline 7. & SM6ASD & 405958 & 261 \\
\hline 8. & W4COI & 400044 & 242 \\
\hline 9. & I2WEG & 384948 & 252 \\
\hline 10. & wB3CCZ & 376516 & 218 \\
\hline \multicolumn{4}{|c|}{Multi-Operator Section} \\
\hline 1. & G3zRS & 513540 & 270 \\
\hline 2. & LZIKDP & 505310 & 321 \\
\hline 3. & OH2AA & 431600 & 314 \\
\hline 4. & G3Uup & 299936 & 216 \\
\hline 5. & 14JXE & 282906 & 193 \\
\hline \multicolumn{4}{|c|}{Shortwave Listener Section} \\
\hline No. & NamelCall & Points & OSOs \\
\hline 1. & OK.1.12880 (Czech SWL) & 282534 & 187 \\
\hline 2. & Y2.10521/0 (DM SWL) & 130052 & 98 \\
\hline 3. & Y2.6346/K (DM SWL) & 95256 & 76 \\
\hline 4. & NL4483 (PAOISWL) & 91276 & 121 \\
\hline 5. & J. Matthews (USA) & 63680 & 60 \\
\hline
\end{tabular}

AWARDS
A certificate will be awarded to any station working 5 or more 9 Y4 or 9 Y50 stations.

\section*{ENTRIES:}

Logs must show dateltime in GMT, sta-
tion worked, and number sent/received. It is requested that a remittance of \(\$ 2.00\) or IRC equlvalent be included with your log if you are eligible for an award. Entries must be postmarked no later than December 21 st and addressed to: TTARS, PO Box 1167, Port of Spain, Trinidad, WI.

\section*{LETTERS}

\section*{FEEDBACK}

I know you like feedback, so here comes a long-postponed letter.
I still believe your magazine is the best all-around ham publicatlon, but the cost is starting to concern me. You needn't defend It again. I'm fully aware that costs are continually rising. However, the saddle staple binding of the July, 1982, edition definitely upset me. Is there an article shortage? Or are costs that high?
Speaking of afticles, I had a few good ideas for short articles, but I fooled around and someone beat me to the punch-three times. Keep encouraging us to write. Even short articles are always interesting and often useful.

I particularly enjoy those about ham ra dio history and electronic history in gener al. I really toved that series your dad wrote a few years ago. Is it available in book form? By the way, how is the old gentleman?

In defense of your feelings about the code test, the July issue proves you have nothing against CW. I found the articles presented a fresh approach to some ald gadgets, my favorite part of ham radio.
Incidentally, I preferred the table of con tents cover when looking up old articles
but thave enjoyed most of the photo cov ers also. My favorite was probably the chess board made up of vacuum tubes back around 1967. I ance suggested a cover picture of sculpture made from the junk box. You did that a few years ago, too. I'm now working on a chess game from solid. state devices.

Another positive comment. No other magazine I have ever seen prints such an excellent mix of letters-pro and con-no matter what the subject.

Finally, I was very excited about the Bralle DX Service ("Letters," July) but no address was given. I would like to pass this info to some sightimpalied friends. Could you please publish it?

> Tom Grabowskl K3SPY Baltimore MD

Thanks, Tom, I don't think I get to a ham fest at which someone doesn't push me to get the Anclent Aviapor articles by my father into book form. Our book division is working on this, although l'd like to get Dad to write more about some of the dirty work which went on during the time he was starting the first transatlantlc airline. He's doing well af 86 , spending hall of his time in northern New Hampshire and half in New York. He really should write more. The saddle stitching is a litlle less expen.
sive than the pertect-binding style, but the main reason for changing was our re emphasis on construction articles. The saddle stitched magazine lles flat on the workbench for reading or building, while the perfect bound style flops itsell shut all the time. I've been pushing the fun of building gadgets for over 30 years now and I don't intend to stop. CW? The only thing I have against it is ifs being man datory. I am convinced that il we made it a matter of ham pride, we would have more CW than ever. Many hams are obstinate people like me. . . as long as I am forced to to something they can go to hell. Call it Yankee perverseness, if you like.

The address you're fooking for Is BDXS, 8347 W. 6th Ave., Lakewood CO 80215 (303)-233-4335. Wayne.

\section*{INNER PROCESSES}

It is enjoyable to read such a practical and informative article as "Electric Health via Negatlve Ions" by Michael Windolph (July, "82). I especially liked the sensible statement, "Know what you are doing and be careful!"*

I wanted to bring up a side point that might be of interest to your readers. To a large extent, we have become so accus. tomed to harmful environments that we have lost touch with our original, instinctive intelligence. It can be regained by palient, hard, and dedicated work, but it does take lime.

To fully regain our instinctive intelll gence to know when something is wrong, we must not only adjust our physical en-
vironment but also place our inner llite in order. I find best-selling author vernon Howard's books very helpful in this respect. Mr. Howard tells us that we have played a wrong note for so long that we have forgotten what the right note should sound like.

Using negative ions to enrich our air is \(100 \%\) practical. To combine such simple and helpful projects on the practical level with intense observation of our inner processes would lead to better understand. ing of both worlds
Keep up the good work. I look forward to every issue.

Tommy Russell
Boulder City NV

\section*{GEARVAKI}

I can't tell you what a pleasant surprise and thrill it was to read that The GEAR. VAK/ Bulletin had been selected Newslet. ter of the Month for August. It's gratifying to know that our "peculiar brand of madness" is appreclated by you folk:; out there in the real world of amateur radio publishing.
The Bulletin, of course, is a labor of love (we sure as hell don't make any morey at it). It had its beginnings back in the distant past when my co-conspirators and decided that too many hams, ham organizations, and ham publications tended to lake themselves much too seriously. We started 10 poke fun at them-and our. selves-through the Bulletin.

We recognize that there is a serious side to amateur radio, but The GEARVAKf

Bulletin gives people a chance to take a "time out." With limited funds and distri. bution, we'll continue our perlodic wackiness as long as possible. Your recogni. tion has given us a chance to increase our readership some, and perhaps momentarlly lighten the lives of our brother and sister hams. It helps us, too. Editing the paper is real therapy!

Anyway, on behalf of Dr. Felix R. One. hundredton, Dr. Elwood P. Lishnus, Dr. Avruell U. Harnishe, Ti.Grace Gaboon, Lelah Lilah Lowlou, and the rest of the GEAR. VAKf ruling mob, thanks from the bottoms of our warped little hearts.

Joe Ventolo, Jr. K8DMZ
Editor
The GEARVAKI Bulletin Enon OH

\section*{SACRIFICES}

Re Mr. Richardson's letter In the August 73 about rude tendencles in ham equip. ment salespeople:
I.was formerly employed with one of the largest ham equipment dealers in the US, and I'd have to say that what he says is true to a certain extent. But give the guy behind the counter a break-there are a few legitimate reasons.
First, the salesguy is making a big sacrifice for the sake of his job; he has probably glven up being an active ham. You can't talk, thlnk, and eat ham radio all day and go on the alr atter work! No way. You get burned out sooner or later. Secondly, it was my experience that the amount of immature, rude nerds is dlsproportionately high in the ranks of hams as compared to the general population. Woe to the salesman who sold a guy an HT that breaks after a week!
l've had a guy threaten to kill me for refusing to return his money on a defective transceiver! If you take a radio in for service many times, you'll get incessant calls about its status until it's fixed, as If it'll get fixed faster whlle the serviceman is busy on the phone. So many hams go berserk when they don't have their dally radio fix, you wouldn't believe It!

You see guys come in, clamp a pair of headphones on and space out for hours listening to the Yamaguchi on displaywithout spending a dime. How many businesses would put up with that? If you politely tell them to leave, they get mad as heck. Hey, what can you otherwise do?

Finally, l ended up getting pretty darned disgusted with the technical ignorance of many hams of late. We had to wire dozens of mike plugs, even for Extra.ciass hams. As a salesman, you were expected to constantly give advice on how to hang antennas, read an swr bridge, or zero-beat a CW signal. That's fine to a certain extent, but
so many wouldn't take the time to pick up an antenna manual to find out, even to maybe learn something. Why? If you are so damn lazy you memorized the Bash books to get your license, you're not about to read the ARRL antenna book to learn how to cut a dipole (which you should have known how to do in the first place). No, keep taking the easy way out and ask the radlo shop guy
So, after all this and more, a sincere guy or a beginning ham might come Into a radio shop and just might get a little shont shrifted. Sorry, guys.

\section*{Name and address submitted}
P.S. Please withhold my name from print. might decide to go back into the ham busl. ness after all. (Where's my vallum?)

By golly, you're not trying to tell us that you think that knowing the coode isn't all that's needed? All these nerds who have been driving you crazy have passed the code test, so what are you beefing about? They may have an Extra-class license and be able io copy code at iwenty per, bu; they can't wire a mike plug eh? Well. that's what most hams want us to have, my friend, so slop beeflng. Unill I see some. Bash books in shreds al ham sfores I will continue to believe that most hams don't want anyone to know any theory or how to bulld even the simplest of sluff
or to know one end of an antenna from the other. Your customer stories are the same as I'm hearing from all of the ham dealers. I've been pushing for a change from depending on the damned code to a real technical test, not a Bashed one with no noticeable success. - Wayne

\section*{KEEP THE CODE}

In response to your comments about having a no code license, I was under the impression that amateur radio was devel oped "to provide a voluntary, non-com mercial service that provides for emergency communications, the advancement of the state of radio art, and a trained pool of operators, technicians, and electronics experts (97.1.)"
Well, it seems to me that if we are to follow this rule we should go out of our way as licensed hams to help people be come trained operators of CW. As you well know, CW can be heard when voice communications cannot be understood Because of this, CW can be utilized much more efficiently durlng emergency situations.

1 teach at the Virginia School for the Deaf and Blind in Staunton, Virginla. Two 14 -year-old girls, both visually impaired, passed both parts of the Novice require ments this year and received their call letters (KB4AHA and KB4AGZ). For those who feel that the CW portion of the Novice
exam is too hard, especially those who claim to be skilled enough to pass the technical portion of the Extra.class exam, I would like to have them talk to these two girls and the other 400 -plus-thousand ifcensed hams across the United States.
In closing, if the no-code license is ap proved, the only people who will benelit are the 2 -meter-rig manufacturers and those who don't really care enough about ham radio to take the time to learn one of the most important and useful aspects of amateur radio. . CW

\section*{William F. Bowman KA4UFi Staunton VA}

Well, Bill, what you say was true thirty years ago... maybe even twenty years ago. But you're so out of date with current rechnology that I don't know where to start. Apparently you are unaware of RTTY, which has been around for wellover 30 years on the ham bands. You seem not to know about recent developments such as integrared circults, digital electronics, and so on. Yes, in the days of spark, every. thing you've written was true. Alas, we still have a surprising number of hams who are llving isolated in the old spark days.-Wayne.

\section*{PRICED OUT}

These days, most countries, particular. ly Canada, have serious money problems, but even in our poor economic condition we haven't been reduced to the point where we have an official \(1 / 2\) cent coin.
I know the true value of our penny may not even be worth half of lis tace value, but it seemed very funny to me to see on the cover of your August. 1982, issue \#263 that the price of the magazine was printed as \(\$ 2.491 / 2\)
Ether the proofreader missed it, or you have decided to print an error deliberately to see how many people really read it "from cover to cover
R. Ian McAuley VE3MYO
Alexandria, Ontario

We have an opening for a new proofread. er. . any lakers? - Wayne.

\section*{LAID OUT}

Your new cover layout for the August issue of 73 Magazine is great. Plus, was glad to see that the articles were more in line with the 73 of a couple years ago. I was beginning to have my doubts about 73, as the articles seemed to be getting away from ham radio some. what. Having been a subscriber to 73 in excess of ten years, I hope the August
issue is an indication of better ham ra dio articles to come
Now, if you could just come out with a blockbuster RTTY issue like you did a couple of years back!

Vince Staffo WB2FYZ
Hion NY
The September issue was packed with RTTY goodies, and let me make it perfectIy clear (to coin a phrase) that I think that the future of hamming is tied In with digital Communications... and that's RTTY. I want to pubilsh articles on higher and higher speed digital communications, on error-correcring code systems, on automatic relaying, and so on. If enough of us chip in (pun), perhaps we can set up some internatlonal relay system which will be of Immense value in emergencies. We might even think about an organization which could be called the International Radio Relay League! The mind boggles. Anyway. glad you enjoyed the issue, and yes, we'll be having a lof more interesting construction projects. - Wayne

\section*{NO THANKS}

Just a short note to state that I have over a period of 4 or 5 or 6 months, helped upwards of 50 hams and others through your "Ham Help" column (particularly on older receivers, transmitters, etc.)

Sad to say, only about 8 have even both ered to reply and thank me. or at least tell me to "get lost."

Kind of makes you wonder.

\section*{Roy H. Wilkinson Bloomington MN}
P.S. I have a much better "batting aver age" with the readers of Popular Electron ics" "Operation Assist" column. Also. I miss your "want ads" column!

Roy, the place for your ham ads is in a ham ad paper, not a magazine. It takes about three months to print a ham ad in a magazine and by that time the stuft is usually sold. The ham ad papers get the ads out there in a couple weeks and do a nice job of it. I really hate to take bread out of the mouth of small entrepreneurs by com peting with them in 73 . so \(/\) urge all readers to use the specialty publications and keep them healthy. I wish that OST would do that, too. Youll note that we don't try to compete with CO magazine and their specialized coverage of contests. Sure, there are only a couple thousand hams who are seriously interested in contests, but those who are should read and support the pub. lication dedicated to them... which is CQ. Idon't know what to say about the un. gratetul cretins who get help and then say nothing. - Wayne.

\section*{RTTY LOOP}

Marc I. Leavey, M.D. WA3AJR 4006 Winlee Road Randallstown MD 21133

One of the questions raised a few months back regarding the design of a radioteletype receive program was how to make such a receiver immune to garbage or noisy signals. This month I'll take a look at
one technique which can be used to over. come such a problem: multiple sampling.
Recall that each data pulse in a 60 wpm Murray character, of which there are five, lasts for 21 ms . Mechanical tele. printers do not use the entire pulse, but rather a small sample of it. Where this sample window is positioned depends upon the adjustment of the range selec for. That is, only a small slice of each
data pulse is read In order to determine whether that pulse is a mark or a space. Fig. 1 shows how this window overlaps the longer data pulse. Since mechanical printers time the "intra.pulse" interval trom the position of the window on the data pulse, advancing the window toward the beginning of the pulse will enable the next pulse to be read that much sooner and can allow speeds slightly greater than 60 wpm to be read. It is by using this technique that so-called "66-speed" machines can be copied on an otherwise unmodified Model 15

In an analogous fashion, simple RTTY recelve programs such as those described here in the past sample each data pulse only once and use that information to recon-
struct the Murray character. With the rou tines presented a few years ago, for exam ple, a momentary sample from the middie of each pulse was obtained. A delay of 20 ms between samples kept the windows po. sitioned near the middle of each data puise.

The difficulty with such a scheme is that noise or fading can distort individual pulses within a character, thus changing the interpretation. A slmple solution is to look at each pulse not just once, but several times, and base the decision of what to call that pulse on the sum of those samplings. Regular samples can be taken at, say, two ms intervals 10 produce a time scheme such as shown in Fig. 2.
Having sampled each pulse many times and presuming we have stored that infor-

\section*{WORLD TIME WATCH}
the first microprocessor watch made especially for hams


The HAM-1 functions include local time, world time, (G.M.T. too) count-up and count down chronometer, day, month, date, alarm and hourly chime. It's ideal for log-keeping, DX time conversion and 10 minute I.D. timing. The HAM-1 features a high contrast Seiko display and sotar cell battery assist. Battery life is better than 4 years. The HAM-1 is water resistant to 20 meters, the case is \(100 \%\) solid stainless steel and the crystal is scratch resistant mineral glass. The HAM1 is rugged and durable and has a 1 year warranty.

\section*{2 METER AMPLIFIER \(\$ 39.95\)}

- 2 Watts In, 10 Watts Out - V.S.W.R. Protected \({ }^{\bullet}\) Can be Used for F.M. \& S.S. B. Led Status Indicators - Low Loss SO-239 Connectors © Current Drain Less Than 2.5A at 13.6 V.D.C. - Massiye Heatsink \({ }^{\bullet}\) Built In T/R Switch

\section*{TEMPO S-1 UPGRADE KITS \(\$ 39.95\)}

Upgrade your early Tempo S-1 to current Production Specifications, kits include: 450 M.A.H. Battery Pack - New Case Assembly - All New Escutcheons - Spkr./Mic. Jack w/Dust Cap - New Earphone \& Jack - P.C.B. and Parts for Easy Installation - Detailed Instruction Manual - For Radios With \& Without T.T. Pad.
Other Accessories Available:
Spkr/Mic. Designed for S-1's. . . \$24.95 Heavy Duty Belt Clip. 7.50

\section*{Flex Antenna} 6.00

To Order Call or Write to
ADVANCED COMMUNICATIONS INTERNATIONAL 2411 Lincoln Avenue
Belmont, CA. 94002 U.S.A
(415) 595.3949
-448
Add \(\$ 3.00\) per order for shipping \& handling. California residents add 6\% sales tax. Visa. Master Charge accepted.

\section*{NEW MFJ-102 SOLID STATE 24 HOUR DIGITAL CLOCK} Switchable to 24 hour GMT or 12 hour format. ID timer. Seconds readout. Bright BLUE . 6 " digits. Alarm, snooze, lock functions. Power out, alarm on indicators. Assembled.
 Switch to 24 hour GMT or 12 hour format! ID timer. Seconds readout. Bright BLUE 6 inch digits.


Now you can switch to either 24 hour GMT time or 12 hour format! Double usefulness

Switchable "Seconds" readout for accuracy.
ID timer. Alerts every 9 minutes after you tap the button. Also use as snooze alarm.
"Observed" timer. Just start clock from zero and note end time of event up to 24 hours.

Alarm. For skeds reminder or wake-up use. Synchronizable with WWV.
FastUSlow set buttons for easy setting
Big, bright, blue digits (vacuum fluorescent) are \(0.6^{\prime \prime}\) for easy-on the-eyes, across the room viewing. Lock function prevents missetting
Operates on 110 VAC, \(60 \mathrm{~Hz}(50 \mathrm{~Hz}\) with simple modification). UL approved.

Handsome styling with rugged black plastic case with brushed aluminum top and front.

Sloping front for easy viewing. \(6 \times 2 \times 3\)
Order from MFJ and try it - no obligation. If not delighted. return it within 30 days for refund (less shipping). One year limited warranty by MFJ.

Order today. Call toll free 800.6471800 . Charge VISA. MC or mail check, money order for \(\$ 32.95\) plus \(\$ 4.00\) shipping/handling for MFJ. 102
Put this new improved MFJ digital clock to work in your shack. Order today.

\section*{CALL TOLL FBEE . . . 800-647-1800}

Call 601-323-5869 for technical information, or der/repair status. Also call 601-323-5869 outside continental USA and in Mississippi.

ENTERPRISES,
INCORPORATED
Box 494, Mississippi State, MS 39762

\section*{E-T: FOR THE EXPERIMENHJR}


CONDITIONSOF SALE: Sold on a cashbasis. Shipping and postage inside U.S. will be prepaid by International. ORDERING INSTRUCTIONS: Order by cataiog number Enclose check or money order with your order. OREIGN ORDERS: Prices quoted for US orders only Orders for shipment to other countries will be quoted on request. Prices subject to change. Minimum foreign order \(\$ 25.00\).

WRITE FOR BROCHURE


International Crystal Mig. Co., Inc. 10 North Lee, Oklahoma City, Oklahoma 73102


Fig. 2. Computer's multiple samples
mation in some usable format, we mus now decide what to do with that knowl edge. Unless the circult being monitored is an absolutely clear channel, it is doubtfu that all ten (in this example) samples will be identical. In the case of pure noise, one might expect an average of half mark and half space, so a threshold would seem ap propriate to adjudicate when to call a given pulse "mark," when "space," and when to throw it out. For want of a better sugges. tion, let's settle on seven or more samples one way or the other to label a state. Read ing less than seven pulses of either mark o space will render the individual bit trash.
So you have a trash pulse, now what? I would seem that there are at least i wo ways to deal with that. Either you arbitrarily as sign it as a mark or space and take your chances with the character, or you declde the entire character is lost and just loop out the time. The latter appeals to me the most; after all-garbage is garbage, no? In order to implement that, all you would need to do Is keep track of how many bits you have read and delay whatever is left to get to the next stop bit.

I don't know how confusing that all is when you read it; it was not all that clear in the writing. I think that Fig. 3, a flowchart of what I am talking about, will help clear things up, though. The character reception routine is entered with a bit counter set at five, the number of pulses in a Murray char acter. Atter detectlon of a start puise, addl tional counters for mark and space are se up and cleared. A loop is entered to sample each pulse ten times and register the state of the pulse sampled in the appropriate counter. After ten samples have been tak en, the counters are examined to determine the probable identity of the pulse and record that in the correct position. Assuming all has gone well thus far, the sampling pro cess is repeated for each of the flive data bits, and the Murray character transmitted is recovered.

However, what it a bit is in error? What have directed here is to tra.sh the entire character. We do that by branching to a rou tine which waits out the remaining bits


Fig. 3. Multiple sample flowchart
tlme and then exits with a null for the received character. One presumes that the translation scheme used will ignore such a character.

This type of scheme is useful for elim nating erroneous characters where the er ror is generated between transmission and reception. For those errors generated on
the operator side of the keyboard you are on your own!

Turning to the mailbag. I have a note her from Leo F. McAuliffe, Jr., of Ashland Massachusetts, who is a shortwave Ilsten er interested in copying RTTY. Leo is look ing for a device which will display received RTTY on a TV screen. without having to invest a lot of money. Well, Leo, as you ma have appreciated in the pages of ads here in 73, there is not a lot on the market to do what you ask. Those units that are commer clally avallable cost several hundreds of dollars, which you indicate is out of you range. I might suggest two possible atter natives. One would be to scout the ham fests in your area for an older, used, video RTTY unit, such as an old Microlog receiver. These were made some years back and should be turning up for reasonable prices on the flea-market circuit. Another idea is to put together a small unit yourself, using a dedicated computer, costing under \(\$ 100\) and an ASCII video display. Such displays may be old terminals or receive display boards, none of which should cost 100 much. For some tlme and elbow grease you may be quite happy with what you will come up with. If there is sufficient Interest, I would be wilting to work out the design o such a unit. Let me know with, as they used to say on the tube, your cards and letters.
Among the new arrivals here ai WA3AJR Is another computer, an Atari 400 . I bought it for the kids, but you know who is at the keyboard more and more. I am impressed by the programmability of this unit and hope that we will be able to use it on ham radio. I will keep my eyes open for applica tions, and I hope you do, 100. I look forward to sharing with you whatever we all can dis cover in tuture columns.
Next month, some more investigations into the design of the ideal RTTY termina program, as well as a look at what some of you are saying. Winter is a great time lo work in the shack, even though these new translstorized/lCized rigs don't pu out the heat of a pair of 807s. Let's see what kind of things we can do in next month's RTTY Loop

\section*{DX}
will move down the most wanted list in fu ture years. Not rapidly, but it will slowly move down until everyone has worked \(B Y\).
2. VK/Heard. This tiny rock near Antarc tica will host one or two major DXped tions in 1983. Watch Heard drop com pletely off the most wanted list next year
3. VU/Laccadives. The only island worth landing on in this archipelago is the base of considerable pirate actlvity. No, not ra dio pirates, but real life plrates who don' leave llve victims. No one in his right mind goes anywhere near the Laccadives
4. Albania ZA. It's the political climate that keeps amateur radio out of Albania. As one of the poorest of the Eastern Euro pean countries and one close to the Sov ets. Albania has taken a dim view of ham radio for years. There are signs of a soft ening of this attliude, however, and ru mors continue to fly of a DXpedition 10 Al bania any day now. Don't hold your breath, but don't hesitate to work any ZA you might hear
5. Cambodia XU Polltical turmoil and
civil war preclude ham radio from Cambo dia. Olficial permission is unlikely in the near future; we'll just have to wait unti hings calm down
6. South Yemen 70. A similar case 10 Al bania. South Yemen is in the Soviet camp and they don't endorse amateur radio.
7. Bouvet 3Y. Another tiny Island nea Antarctica, Bouvet sees occasional tour. ist and scientific traffic. Permission from Norway can be obtained, and Bouve might well be a target of a DXpedition soon, but probably not this winter
8. Andamans VU. At least one amateur is listed as having a license for the Anda mans, but activity has been non existent The Indian rules prevent outside amat eurs from getting licenses, and the locals don' seem to show enough interest in actlvating one of the rarest of all DXCC countries.
9. Burma XZ. The officlal Burmese gov ernment says "No" to any amateur radio, and the ARRL refuses to accept the opera fions from the "rebel" north half of the
"BEEPER III"

"THE PROFESSIONAL TOUCH COMES TO AMATEUR RADIO!"
-BP. 3 automatically provides a gentle high fre quency beep at the beginning of each transmis sion and a low beep at the end. Virtually elimi. nates "talk-over"! Dperates for up to one year on a single \(9-V\) battery (not supplyed). Can be directly interfaced to any transcelver which is keyed by grounding the PITT ine (the PTTT ine voltage must be positive not greater than VDC nor the current greater greater than 24 WDC, nor the current greater than 100 ma. heard it: now you can have it!

\section*{"ADD THE BEEP!"}
```

BP-3A Complete with case, cable.
Standard 4 pinconnectors ... }50.98\mathrm{ pp
BP.3B As above except without
connectors, Add your own
connectors. Add your own
mistom installation
ll unitesmatam 29.98 p
All units assembled/tested. DH residents
add 6% Seles Tax

```

\section*{}

3148 Dorl Orwe e Danton. Onio 45418

\section*{MDR.find}

1/2-size (75M only 66')
Multi-Band (5, 4, 3 bands) 80/75M thru 10 M

Broadbanded - no traps used
Prices start at \(\mathbf{\$ 8 2 . 5 0}\)
MDrafin

THE MOR-GAIN HD DIPOLES are the most advanced, highest performance multi-band HF dipole antennas available. Patented design provides length one-half of conventional dipoles. 50 ohm feed on all bands, no tuner or balun required. Can be installed as inverted VEE. Thousands in use worldwide. 22 models available including two models engineered for optimum performance for the novice bands. The Mor-Gain HD dipoles \(N / T\) series are the only commercial antennas specifically designed to meet the operational requirements of the novice license. Our 1 -year warranty is backed by nearly 20 years of \(H D\) dipole production experience.

For detailed 10 -page brochure, write or phone directly to MOR-GAIN P.O. Box 329T, Leavenworth. Ks. 66048. Tel. (913) 682-3142.

\section*{DISPLAY YOUR
STUFF}

With the AEA MBA-RO Reader Automatic display of transmitted and received Morse and RTTY coded signals has come of age. It is proving to be most worthwhile for improving one's own transmitted "fist" and for allowing SWL's or visitors the opportunity to experience the thrill of Amateur Radio coded transmission.


While no machine can yet match the ability of a skilled CW operator in copying poor fists or signals buried in the noise, the MBA-RO by AEA excells even when compared against units costing much more. The large 32 character display allows much easier reading than shorter displays, especially at higher speeds such as 60 WPM or 100 WPM RTTY. The MBA-RO also features dual filters for RTTY decoding of either 170 Hz or 425 Hz (easily changed to 850 Hz ) shift transmissions.

For more details, write for our tatest catalog or visit your favorite dealer.

Prices and Specifications subject to change without notice or obligation.

Software ©copyright by AEA.
ADVANCED ELECTRONIC APPLICATIONS, INC.
P.O. Box C-2160,

Lynnwood, WA 98036
(206) 775-7373

Telex: 152571 AEA INTL

\section*{Hear Police / Fire Weather}
on 2 Meter Handhelds with this MFJ VHF Converter.


New MFJ VHF converter turns your synthe sized scanning 2 meter handheld into a hot Police/Fire/Weather band scanner

144-148 MHz handhelds receive Police/Fire on 154-158 MHz with direct frequency readout. Hear NOAA weather maritime coastal plus more on \(160-164 \mathrm{MHz}\).

Mounts between handheld and rubber ducky
Feedthru allows simultaneous scanning of both 2 meters and Police/Fire bands. No missed calls.
Highpass input filter and 2.5 GHz transistor gives excellent uniform sensitivity over both bands. Crystal controlled
Bypass/OFF switch allows transmitting. Won't burn out if you transmit (up to 5 watis) with converter on. Low insertion SWR. Uses AAA battery. \(21 / 4 \times 1 \frac{1}{2} \times 1 \frac{1}{2}\) in. BNC connectors.

Enjoy scanning, memory. digital readout. etc as provided by your handheld on Police/Fire band
220 MHz Converter for 2 M Handheld MFJ-314 MFJ-314, like MFJ-313 \(\$ 5095 \quad \begin{aligned} & \text { but lets you receive } 221- \\ & 225 \mathrm{MHz} \text { on your } 2 \text { meter }\end{aligned}\) handheld.
Police/Fire/Weather Band Converter for 2 Meter Mobile Rigs.


MFJ-312, like MFJ-313 but for mobile 2 meter rigs. Transmit up to 40 watts Thru converter without damage. S0-239 connectors Mobile mounting brackets. Rugged. "ON" LED. Use 12 VDC or AAA battery. \(3 \times 4 \times 1\) in.

Order from MFJ and try it-no obligation. If not delighted, return it within 30 days for refund (less shipping). Qne year unconditional guarantee.

Order today. Call toll free \(800-647-1800\) Charge VISA. MC or mail check. money order for amount indicated plus \(\$ 4.00\) each shipping.
Hear pólice/fire/weather. Order now.

\section*{CALL TOLL FREE . . . 800-647-1800}

Call 601-323-5869 in Miss.outside continental USA, tech/order/repair info. Telex 53-4590


A gaggle of FO8s. Did you work 3 FO8 stations on two different bands durlng their Tiurat celebration July 14-22? It so, you quallfy for a special award. but you must request the award before the end of the year. 15 active FO ss made more than 5000 OSOs during the celebration. (FO8GM photo courtesy of WE6GFJ.)
country. This political mess shows no signs of being straightened out in the foreseeable future
10. San Felix CEOX. Getllng a license is trivlal (I have one), but getting onto the island is impossible. The entire island is a military base (like Aves in the Caribbean) and "gringoes" are not welcome. Even the Chileans have been unable to convince the military higher-ups that they mean no harm In their planned Dxpedition. A recent "operation" from San Fellx turned in. to a fiasco when the Chileans claimed the operator was nowhere near the island at the time. This could break at any time but I rate it doubtlul.

The main difference In thls list from a similar one twenty years ago is in the rea. sons for lack of activity from a country. Twenty years ago the reasons were physical inaccessibility and lack of transportation and accommodations In the country. It's hard to mount a DXpedition when you have to pack your gear. generators, and fuel in on camels. The transportation ple. ture has changed for the better, and no spot on this earth is out of reach of a de. termined amateur

But the political realities have changed for the worse. Certain cheats and frauds in the last 20 years and increasing sensitivity to feelings in developing countries have led to a more formal approach to the documentation needed lor a Dxpedition to "count" for DXCC. The conservative attltude of the ARRL DXCC staff means an amateur cannot simply operate from a country; he must be welcomed by that country and operate with thelr full cooperation. This is simply impossible in many countries. Many emerging countrles are reluctant to put anyihing down in writing, although they are eager to give verbal permission to operate

Another reason for the reluctance of countries to permit even visiting amateurs to operate is the fear of spying, internal revoll, or outside takeover, all of which require radio communications. Unsophisticated customs officials cannot differentiate between spy gear and a TS-830. (On second thought, are there any real differences?) So It is simpler always to say "No" than to see if it is possible to say "Yes." We probably won't see this attitude change quickly. Only patient demonstrations and years of support, documentation, and assistance will win jittery governments over to the value of amateur radio, as we see happening in China.

What does this mean for the DXer? If you want to get on the Honor Roll (having worked almost all the DXCC countries) you must have pattence. It may be many years before we see signiticant radio op erations from many of the Top Ten.

If you do hear one of these highly desired countries on the air and are fortu. nate enough to work it. the battle is only half over. Now you have to get a QSL card to prove you worked him.

\section*{QSLS AND OSLING}

There is more to DXing than working the DX station; getting the confirmation of the contact can be every blt as challenging as breaking through the pileup. But a few hints and suggestions can substantially improve your QSL percentage and get some of those coveted pasteboards "on the wall."

In this first part of this series on OSLing we will consider the card itself: the selection. design, and printing of your own QSL card. In future columns we will advlse how to fill out the card. how to get the card to the appropriate place, and OSL bureaus.

\section*{Your Personal OSL Card}

There are no rules requiring that acknowledgement of a DX contact must be In the form of a postcard-sized paper, OSL means acknowledgement of a contact. not a special card. But everyone who seeks those acknowledgements uses the universally accepted OSL card. In more than 100,000 requests for my OSLs, I have never recelved a request without such a card. Only a tiny handful have been other than postcard-sized. So while there are no formal requirements for the dimensions of the OSL, I recommend sticking to the standard format.

\section*{Choosing Your Card}

Given the transient nature of most \(D X\) OSOs, the DX station has little opportunity to get la know you. If the QSLing is handled by a QSL manager, the person filling out your return card will know even less about you. So your OSL card reflects your personality and amateur radio interests even more than your DX contact.
When the time comes to choose your OSL card, you first have to decide on a custom card or an off-the-shelf commer. clal card. There are dozens of commercial QSL card printers. Most offer a set of samples and designs for a nominal fee. Once
upon a time the OSL printers would obtain the FCC llst of new licensees and send you a set of samples and order forms before you even received your license! you were so pleased to learn your callsign that you immediately ordered 1000 of their fan. ciest cards. 950 of these are probably still gathering dust in your basement.

The advantages of commercial QSL printers are many. They produce a good looking card at relatively small expense. The card is easily recognizable as a QSL and it is printed on stock heavy enough to go through the mail as a posicard. Prices range upward from a few cents a card. You can select from a bewildering varlety of cards, including multi-colored cards, two-sided cards, and more. Ordering your commercial OSLs Is trivial: You pick your design, fill in the blanks on the form, and send in your money. You will get your cards back in a few weeks-longer if you use one of the smaller printers.

But for DXing, standard OSL designs have one major disadvantage: They are all the same. No, not identical, but an active DX station who receives thousands of OSLs each year will have seen dozens or hundreds of similar cards. Your card will be one of the pack; it won't stand out. Some hams try to make their cards stand out by using bright orange OSLs that glow In the dark. I still see spots before my eyes from opening an envelope with one of these Day-Glo orange QSLs. But I have received bunches of these, 100. Certain OSL designs are so popular that I have received hundreds of cards identical except for the callsign. Needless to say, I am not intrigued to receive yet another one of the same design.

This doesn't mean that standard design OSLs end up in the circular file. It just means that they get answered just like any other OSL, no laster or slower. The call and the individual operator will not be remembered any length of time.

The cards (and operators) who do stick in the mind after the OSL Is answered are those personal cards, cards which say something about the ham and his station. Il you do decide on a commercially-produced, standard OSL card, there are a few things to keep in mind when making your selection. First, avoid commercially-produced two-sided cards. These are the cards with the personal information on one side (calisign, name, and address) and a standard QSL form on the reverse. Why avoid these? The DX station must first find your QSO in his log. This means comparing the time of the OSO on the back of the card and the callsign on the front with his pages and pages of log. Sometimes the card must be flipped sev. eral times before the OSO is located in the log. Then, in order to fill out the return card, the DX operator must first record the OSO information and then turn the card over to get the callsign. Big deal, you say. How difficult is it to turn the card over? Flipping one or two or ten or a hundred cards is no big deal. But when you deal with thousands and thousands of cards, the OSLer soon learns to dread the sight of another two-slded card.
Two-sided cards also lead to possible errors on your return OSL. In the process of flipping the card, the DX statlon might forget the call, or transpose iwo letters, etc. The result might be a OSL card which will be rejected by the DXCC checkers.
This does not mean that all two-sided QSL cards are useless for DX purposes. There is nothing wrong with a card which has the call and name on one side and the QSO information on the reverse, as long as the callsign also appears on the reverse. Then the DX station (or OSL manager) doesn't have to flip the card; the call-
sign is right there on the reverse with the QSO information. But few commercially. available two-sided cards offer this option. It requires custom printing of both sides of the card, greatly increasing the costs, and eliminating many of the economies of scale of QSL printing. So If you in. tend to do a lot of DXing, stick with singlesided QSL cards.

Another thing to check when you purchase commercial cards is the glossy finish. Many of these very handsome and attractive finishes will not absorb ink from felt tip pens. The ink puddles up and smudges off. Hard penclls may make a very light trace on some coated cards. Test your sample cards with your usual writing utensil. Does the pen make a clear, clean impression which doesn't smear? Not all shiny cards have this problem; you have to check the sample.

Another possible problem with commerclal QSLs is the use of strange typefaces. Some amateurs choose an exotic typeface for their callsign and address, one that is different, on the hope that it will make their standard card more distinctlve. Don't! These weird typelaces are often difficult to read. Typefaces that look like script or brush strokes are especially difficult to read. What difference does it make, you ask? If your callsign is difficult to read, the DX station might get it wrong. Then he might not find it in the log, or he might fill out your OSL to someone else's call! For the same reason avoid those ubiquitous silver.on-black OSLs. They are very difficult to read!

\section*{Custom OSLs}
personally prefer custom-designed OSLs, both to send and to recelve. I feel the OSL card is an extension of your amateur radio personality, and it should say something about you and your amateur career. Custom-designed OSLs need not be elaborate or expensive, and the initial effort quickly pays off in improved returns.

What should go onto your personal OSL? Make sure you have the basic Information: your callsign, name, and address including county. You will also need blanks for the QSO information. If you work one mode or band predominantly, you might want to customize the QSO in. formation. For example. a 20 -meter enthusiast might have \({ }^{\circ}\) Freq. 14 \(\qquad\) MHz. Be sure to say that this card is a confirmation of the QSO described; many commer. cial cards omit thls vital line.
I have used both the box format and a sentence format for the OSO information, and I definitely recommend the former. The sentence format (i.e., "This confirms our 2 X _OSO on _on \(\quad \mathrm{MHz}\) al UTC, with your signals RST. ") is cumbersome and very prone to error. The box format is clean and easy to ifill In and read. Amateurs seem to be able \(t 0\) make the simplest task complicated and so produce a bewlldering number of combinations of these QSO information boxes. For consistency and to assist the person filling out the return card, I sug. gest the following format: Callsign, Date, UTC, MHz (not band), 2 X (mode), RST. If you are designing your own card from scratch, be sure to leave enough space in each of the boxes for the required information. In other words, the boxes for the callsign and date should be substantially larger than those for the other information. Better yet, take a blank QSL with well-designed boxes and steal the format.

Another important item to include on your custom OSL is a request for the DX statlon's card. You would be amazed at the number of OSLs I have received without such a request. Since 1 recelve and

\section*{*QUALITY}
*PRICE
SATELLITE

\section*{*PERFORMANCE}

Tunable Audio Demodulator - Tunes from 5.4 to 8.2 MHz . Switchable 5 kHz . LP filier for Canadian birds. Varactor tuning diodes included. Use ino for MTV
Bare Board (M81-020B)
\(\$ 24.95\)
Two Boards (M81-021B)
\(\$ 39.95\)
Canadian Audio Descrambler - Takes the normal audio oulpur from your receiver and decodes the 'chirping' sub-carriers heard on Anik A/B
Kit (R81-010K) . . . . . . . . \(\$ 59.95\) Assembled \& Tested (R81-010T) . \(\$ 94.95\)

NE W! Canadian Audio Filter - A very sharp low-pass filter designed to remove the "chirping" from the Canadian audio
Kit (R82-020K)
\(\$ 19.95\)
Assembled \& Tested (R82-020T) . . \(\$ 29.95\)
Developed for high performance in weak signal areas
Discrete 70 MHz PLI - Replaces Nt 564 video demodulator without the need for an ICL divider ( \(70 \mathrm{MH} /\) 1.f.). Guaranteed Trarking 10 85 MHz . Wide bandwidth. Lonet C/N redured tearing'. May be remotely tuned. Kil (M82-010K) . . . . . .... \$124.95 Assembled \& Tested (M82-010T) . . \$159.95

All prices include complete and compretionsive dorumentation, U.S. portage \& handing. Fo
overseas postage \& handling. add \(\$ 2.00\)
P.O. Box 1656

Kodiak, Alaska 99615
(907) 486-5118
(907) 486-6215


\section*{DigiCom Engineering, Inc.}


4511 RTTY Interface for TRS-80*Color Computer Owners
- Simply plug into Program Pak* slot
- No software to load. it is in ROM.
- Split screen features word wrap and continuously displays status.
- Selective calling stores incoming messages on casette tape
- Baudot and ASCII modes
- Standard EIA signals to your T.U
- Complete documentation supplied.

4511 RITY Interface \$169.98
RIDGE Tested 88 assembled: 90 SYSTEMS \(\begin{aligned} & \text { day warranty: we pay } \\ & \text { shipping Mass resi- }\end{aligned}\) CO. INC. dents add \(5 \%\) sales tax.

\section*{******* A STAR IS BORN ******}
* Ideal for Novices, SWL's and seasoned amateurs
- Built-in code practice oscillator \& speaker
- 12 VDC Operation or 120 VAC with adapter provided
* Optlonal serial/parallel ASCII output port

* Copies Morse, Baudot 8. ASCII codes
- Two optimized Morse
* Digital \& Analog filtering with 16 db AGC
t Automatic speed tracking 3-70 WPM A code reader so advanced it costsyou less! Call or write for brochure or order direct. CODE STARTMKIt

CS-K. \$169.95

Optional ASCil Output Port Kit
CS-IK \(\$ 59.95\)
Optlonal ASCII Output Port Kit Wired
(Specify 110 or 300 Baud and 20 mA or TTL level)................. CSIF \(\$ 79.95\)
Send check or money order. Use your VISA or MasterCard. Add \(\$ 5.00\) shipping and handing for continental U.S. Wisconsin residents add \(4 \%\) State Sales Tax.
1/Cieracta/t Corporation \(\quad\) Telephone: (414)241-8144

-20:

\section*{MFJ DUMMY LOADS}

Tune up fast into 50 ohm resistive load. Extend life of finals.


Now MFJ-250 VERSALDAD Kilowatt Dummy Load lets you tune up fast. Extends life of transmitter finals. Reduces on-the -air QRM

Run 1 KW CW or 2 KW PEP for 10 minutes, \(1 / 2\) KW CW or 1 KW PEP for 20 minutes. Continous duty with 200 watts CW or 400 watts PEP. Complete with derating curve.

Quality 50 ohm non-inductive resistor
Oil cooled. Includes high quality, industrial grade transformer oil (contains no PCB).

Low VSWR to 400 MHz : Under 1.2:1, 0-30 \(\mathrm{MHz} .1 .5: 1,30-300 \mathrm{MHz}, 2: 1,300-400 \mathrm{MHz}\)

Ideal for testing HF and VHF transmitters
SO-239 coax connector. Vented for safety Removable vent cap. Has carrying handle 7-1/2 in. high, \(6-5 / 8\) in. diameter

\section*{MFJ "Dry" 300 W and 1 KW Dummy Loads.}


Air cooled, non-inductiva 50 ohm resistor in perforated metal housing with SO-239 connect ors. Full liad for 30 seconds, derating curves to 5 minutes. MFJ-260 (300 W). SWR: 1.1:1 to 30 \(\mathrm{MHz}, 1.5: 1\) for \(30-160 \mathrm{MHz}\). \(2^{1 / 2 \times 2} 2^{1 / 2 \times 7}\) in. MFJ-262 (1 KW). SWR 1.5:1 for 30 MHz \(3 \times 3 \times 13\) inches

\section*{MFJ HF \\ \(\$ 29^{95}\) \\ MFJ-816 \\ SWR/Wattmeter}

New MFJ-816 low cost HF SWR/Wattmeter for 1.8 to 30 MHz range. Torodial current pickup gives uniform sensitivity over entire HF frequency. Read SWR, forward and reflected power in 2 ranges ( 30 and 300 watts) on two color scale SO-239 coax connectors. \(4-1 / 2 \times 2-3 / 8 \times 2-7 / 8\) in.

Order from MFJ and try it. If not delighted return it within 30 days for refund (less shipping) One year unconditional guarantee.
Order today. Call TOLL FREE 800-647-1800
Charge VISA,MC. Or mail check, money order
Write for free catalog.
CALL TOLL FREE
800-647-1800 601-323-5869 in MS. outside continental USA ENTERPRISES, INCORPORATED
Box 494, Mississippi State, MS 39762
send thousands of cards each year, I do not answer cards that don't have a specif. ic request for my card; I assume the card is an answer to a card I sent. By the way, avoid those cute QSLs with the OSO informaflon hidden on a drawing of a rig, etc. Anything that makes the OSO Information hard to find or decipher will slow up your return card.

So much for the nuts and bolts of QSL card design. What about the overall look? What personal information will customize your QSL? A photograph of yourself at your operating position with OSLs and awards in the background says more about you than any amount of text. A
good photograph shows your equipment sfation layout, your most prized awards, and (very important) adds a face to your call. My favorite OSLs to receive are deffnitely photographic OSLS, because they say so much about the operator without listing hundreds of awards no one has ever heard of

The major drawback to a photographic OSL is the considerable inltial expense. But if you can find a friend who will take a good blackand-white photograph, you can save a good part of the cost. There is usually at least one good photographer in every radio club.

What about listing your equipment and
antennas on the OSL? Every lime I have done this, I have changed the gear as soon as the cards come back from the printer. If you trade your equipment regu larly and try new antennas every season, you should leave the listing of gear off the card. If you are satisfled with your Collins gear and Big Bertha, by all means list the equlpment; the DX station is always interested in knowing what produced that strong signal.

Once your card is designed, there re. mains the choice of how to print it. Some of the QSL printers will produce a custom card from your sketch, but expect to pay for their services. I prefer the quick-print approach, as I usually print many
housands of cards at a time, and the quick-print shops will produce a card for less than a penny apiece. I provide camera-ready copy and the printer prints four cards on each sheet of paper and cuts them into QSL-sized cards. (Postal Service requirements insist on a certain minimum size for postcards; check this before you have the cards trimmed. Also make sure your card will fit into a standard small envelope without folding.)

Whatever format or type of QSL card you select, you still have to fill it out properly, get it to the correct individual, and get his card back. We'll discuss these other steps on OSLing in future months.


\section*{GLADESPEDITION}

The Fort Myers Amateur Radio Club will be conducting a "Gladespedition" to Glades County, Florida Operations will begin on November 13, 1982. W4LX will be operating in the General bands, both CW and SSB. Some Novice contacts will also be made. If you need Glades County, be sure to look for them. OSL to: David Fox KA8CXO, PO Box 051131 , Tice FL 33905. SASE please.

\section*{45th PARALLEL}

The Tri-County Wireless group will miniDX from Gaylord, Michigan, on the 45th parallel (halfway between the equator and the north pole) from 14002 November 13 ithrough 0600 November 14. Phone only at \(3.925,7.250,14.300,21.375\), and 28.550 Certificate for OSL and SASE to N8COY.

\section*{ABC.TV}

The ABC.TV Washington Engineering Group, celebrating the first year of operation from the network's new Washington news bureau, will be on the air Saturday, November 13 , from 14002 to 22002 , on SSB frequencies (plus or minus 5 kHz ): 7.245 and 14.285 and on CW for Novice and Technician contacts on 7.125 (listening at 45 minutes past each hour). KB7ZZ/3 will also be on 145.190 FM (W3DOS/R) throughout the operation period. Special events QSLs via business size SASE to: Steve Malis KA4ORL, 2520 Heathcliff Lane, Reston VA 20091

\section*{JERSEY DEVIL STATION}

The West Jersey Radio Amateurs (WJRA) will mount a second operation from the South Jersey Pine Barrens, the haunt of the feared Jersey Devil. Begin ning and ending at midnight, the courageous WJ RA group will attempt again this year to operate the entire 24 hours of Hal. loween, October 31st. A unique, handsome certificate engraved with a countenance of the Jersey Devil will be sent to all stations worked who send an SASE to WJRA, PO Box 62, Burilington NJ 08016. Frequencies to be used are 15 kHz from the boftom of each General phone band, 80 through 2 meters, and 146.55 FM. Nov. ice operation will also be 15 kHz up.
The Jersey Devil was born in 1735, a 13th child, in the Pine Barrens of Burling. ton County at a place called Leeds Point. Not long after its birth, on a foggy and dreary night so usual in the Pine Barrens. the child assumed a serpent-like body,
cloven hoots, the head of a horse, wing of a bat, and the forked tall of a dragon. Whit toud raucous cries, it flew up the chimney and into the heart of the Pine lands. Appearances and sightings occur even today. On Halloween, the WJRA will maintain a radio vigil, trying once again to 'capture a glimpse of the Devil. Will they see him? Give them a call-W2JUG-and get a first-hand report.

\section*{73 MAGAZINE AWARDS PROGRAM WORK THE WORLD}
\begin{tabular}{|c|c|c|c|}
\hline 97 & WD6DFN & 126 & wB7UCU \\
\hline 98 & KN4F & 127 & KA3FUU \\
\hline 99 & WA2WRD & 128 & WD4JEQ \\
\hline 100 & N8BDI & 129 & W7GLU \\
\hline 101 & WB9nov & 130 & Vk2PY \\
\hline 102 & KA3DBN & 131 & VK3DXY \\
\hline 103 & K9GHP & 132 & KB2WH \\
\hline 104 & WOYBV & 133 & IIWXY \\
\hline 105 & KA7GIN & 134 & K3WUR \\
\hline 106 & W8HTM & 135 & KA1RC \\
\hline 107 & N6ATS & 136 & PY2CAR \\
\hline 108 & KC5TK & 137 & I1EEW \\
\hline 109 & K3STM & 138 & KOLST \\
\hline 110 & 9G1RT & 139 & HI3LRB \\
\hline 111 & WA2LYF & 140 & ZLISZ \\
\hline 112 & ZS6ABA & 141 & ZS6XS \\
\hline 113 & VK2HD & 142 & ZS6XK \\
\hline 114 & VE3LVN & 143 & PY2FK \\
\hline 115 & VEIACK & 144 & JFiCPH \\
\hline 116 & PY2BTR & 145 & Wisix \\
\hline 117 & VE3JPJ & 146 & PAOTP \\
\hline 118 & HC2RG & 147 & JJIKTI \\
\hline 119 & Wagivu & 148 & W3BHM \\
\hline 120 & VK2NHV & 149 & JA5MG \\
\hline 121 & KH6KU & 150 & JF1SEK \\
\hline 122 & N5CSW & 151 & Ka0MMD \\
\hline 123 & WN5MBS & 152 & 8P6OV \\
\hline 124 & AK1H & 153 & KC8AU \\
\hline & vk3bma & & \\
\hline
\end{tabular}

NORTH AMERICAN AWARD
213 N5CSW 230 VE7DRI 214 KH6KU 231 I1EEW 215 K9RNR 232 W3BHM 216 VE1YX 233 PY2CAR 217 WN5MBS 234 KA21AL 218 VK3BMA 219 WB7UCU 220 4Z4VG 221 PY1BVY 222 OE1-111080 223 W7GLU 224 IIWXY 225 VK3DXY 226 4W-16260 227 VK2PY 228 OE2ABM 229 KOLST

247 K9LJP 248 HI3LRB 249 W9CC 250 ZL1SZ 251 KA9CEJ 252 ZS6XS 253 ZS6XK 254 PADTP 255 PAOIEM 256 W9CC 257 PYIEWN 258 JF1CPH 259 JJIKTI 260 VE6CNV 261 ISHOR 262 PY2RAN 263 KA5FLE 264 PYIDWM 265 JFISEK 266 JA5MG 267 KC8AU 268 N6GBM

\section*{SOUTH AMERICAN AWARD}

186 N5CS
188 K9RNR 189 WN 190 DA1AS 191 VKЗвMA 192 WB7UCU 193 4Z4VG 194 PYIBVY 195 WAgAHZ 196 W7GLU 197 W8UMP 198 VK2PY 199 VK3DXY 200 I1WXY 201 N5AUB 202 N7CZH 203 NACXK 204 Ally 205 KA1RC 206 PY2CAR 207 W3BHM 208 HEEW 209 KOLST 210 HI3AMF

211 PY2FK 212 K9LJP 13 HI3LRB 214 WDOAOC 215 ZLISZ 216 KA9CEJ 217 ZS6XS 218 ZS6XK 221 W9CC 22 KAOMMD 223 JFICPH 224 WISIX 225 PY2IEM 226 PAOTP 227 JJ1KTI 228 ZL2LO 229 KA2JJK 230 8P6OV 231 JFISEK 232 JA5MG 233 KC8AU 234 N5ACU 235 VEGCNV 236 N6GBM

\section*{ASIAN AWARD}

142 N5CSW 143 KHGKU 144 W7GLU 145 WDAJEQ 163 PY2FK 146 WB7UCU 147 VK3BMA 148 DAIAS 149 AK1H 150 WISIX 151 WN5MBS 152 IIWXY 153 KB2WH 1548 P 6 OV 155 VK3DXY 156 HZ 16260 157 AW. 1626 158 VK2PY 159 PY2CAR 160 KAIRC 161 11EEW 162 KOLST 163 PY2FK 165 HI3LRB 166 ZLISZ 167 ZS6XS 168 ZS6XK 169 PAOTP 170 JFICPH 171 JR7ICN 172 PY2IEM 173 JJIKTI 174 JASPWW 175 OZ5EDR 176 W3BHM 177 Ј НЗО 178 HI3AMF 179 JA3UCO 180 KAgMMD 181 JFISEK 182 JA5MG 183 KC8AU

\section*{AFRICAN AWARD}

160 N5CSW 168 W7GLU 161 KH6KU 169 JA5PWW 162 K9RNR 163 WN5MBS 170 VK2PY 171 HZ. 16260 172 4W. 16260 173 VK3DXY 174 IIWXY 174 KOLST
\begin{tabular}{|c|c|c|c|}
\hline 176 & I1EEW & 192 & WAIUDH \\
\hline 177 & W3BHM & 193 & KA2JJK \\
\hline 178 & AL70 & 194 & JR3LVI \\
\hline 179 & PY2CAR & 195 & JFICPH \\
\hline 180 & PYiDWM & 196 & KA@MMD \\
\hline 181 & N4CXK & 197 & PAOTP \\
\hline 182 & TU2HJ & 198 & JJ1KTI \\
\hline 183 & KA1RC & 199 & PY18VY \\
\hline 184 & JH7OFH & 200 & HI3AMF \\
\hline 185 & PY2FK & 201 & PY2RAN \\
\hline 186 & Hi3LRB & 202 & JH3OHO \\
\hline 187 & ZLISZ & 203 & JF1SEK \\
\hline 188 & W8UMP & 204 & JA5MG \\
\hline 189 & 2S6XS & 205 & KC8AU \\
\hline 190 & ZS6Xk & 206 & N5AUB \\
\hline 191 & PY21EM & 207 & 4X400 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{EUROPEAN AWARD} \\
\hline 251 & WD8MAI & 282 & N7CZH \\
\hline 252 & W7GLU & 283 & N5AUB \\
\hline 253 & OE3SWL.DWZ & 284 & TU2HJ \\
\hline 254 & OE1-111080 & 285 & HI3AMF \\
\hline 255 & DF5VO & 286 & PY2FK \\
\hline 256 & WB7UCU & 287 & KA5BQM \\
\hline 257 & vкзвma & 288 & k2YOF \\
\hline 258 & WN5BMS & 289 & JA9AXS/1 \\
\hline 259 & VEIYX & 290 & PY2SZK \\
\hline 260 & K9RNR & 291 & k9LJp \\
\hline 261 & KH6KU & 292 & HI3LRB \\
\hline 262 & N5CSW & 293 & wdoadc \\
\hline 263 & KH6F & 294 & zsisz \\
\hline 264 & IIWXY & 295 & Zl2LO \\
\hline 265 & VK3DXY & 296 & KA9CEJ \\
\hline 266 & KA7CPZ & 297 & 2S6XS \\
\hline 267 & HZ-16260 & 298 & ZS6XK \\
\hline 268 & 4W-16260 & 299 & Padt \\
\hline 269 & VK2PY & 300 & PY2IEM \\
\hline 270 & OE2ABM & 301 & WA2FYW \\
\hline 271 & KOLST & 302 & JRTICN \\
\hline 272 & VE7DRI & 303 & JF1CPH \\
\hline & (14 MHz) & 304 & WP4ATF \\
\hline 273 & VE7DRI & 305 & JJIKTI \\
\hline & ( 21 MHz ) & 306 & VE6CNV \\
\hline 274 & l1EEW & 307 & JA5PWW \\
\hline 275 & W3BHM & 308 & JH3OHO \\
\hline 276 & PY2CAR & 309 & JY9CW \\
\hline 277 & KA2IAL & 310 & JF1SEK \\
\hline 278 & KA1RC & 311 & JA5MG \\
\hline 279 & KA0MMD & 312 & N6GBM \\
\hline 280 & WB2VTD & 313 & KC8AU \\
\hline 281 & N4CXK & & \\
\hline
\end{tabular}

\section*{OCEANIA AWARD}
\begin{tabular}{|c|c|c|c|}
\hline 145 & N5CSW & 163 & PY2CAR \\
\hline 146 & KH6KU & 164 & I1EEW \\
\hline 147 & WN5MBS & 165 & KOLST \\
\hline 148 & JA9AXS/1 & 166 & JG1OLT \\
\hline 149 & VK3MBA & 167 & PY2FK \\
\hline 150 & WB7UCU & 168 & OZ-DR-1239 \\
\hline 151 & .KA3FUU & 169 & NAAKO \\
\hline 152 & W7GLU & 170 & HI3LRB \\
\hline 153 & K3WUR & 171 & ZLISZ \\
\hline 154 & VK2PY & 172 & 2S6XS \\
\hline 155 & VK3DXY & 173 & ZS6XK \\
\hline 156 & KB2WH & 174 & JF1CPH \\
\hline 157 & IlWXY & 175 & JR3LVI \\
\hline 158 & \(\mathrm{N7CZH}\) & 176 & JR7ICN \\
\hline 159 & NACXK & 177 & Padt \\
\hline 160 & Wisix & 178 & JA5PWW \\
\hline 16. & K3WUR & 179 & JJIKTI \\
\hline 162 & KAIRC & 180 & W3BHM \\
\hline
\end{tabular}

\section*{DIRECTION FINDING?}
* Dopplar Direction Finding
* No Receiver Mods
\(\star\) Mobile or Fixed
\(\star\) Kits or Assembled Units
\(\star 135-165 \mathrm{MHz}\) Standard Range
* Circular LED Display
* Optional Digital Display
\(\star\) Optional Serial Interface
* 12 VDC Operation \(\star 90\) Day Warranty

New Technology (patent pending) converts any VHF FM receiver Into an advanced Doppler Direction Finder. Simply Plug into receiver's antenna and external speaker jacks. Use any four omnidirectional antennas. Low nóise, high sensitivity for weak signal detection. Kits from \$270. Assembled units and antennas also available. Call or write for full details and prices.

5540 E. Charter Oak, Scottsdale, AZ 85254
(602) 998-1151

Radio Woorld


Featuring Kenwood, Yaesu, Icom, Drake, Ten-Tec, Swan, Dentron, Alpha, Robot, MFJ, Tempo, Astron, KLM, Hy Grain, Mosley, Larsen, Cushcraft, Hustler, Mini Products, Bird, Mirage, Vibroplex, Bencher, Info-Tech, Universal Towers, Callbook, ARRL, Astatic, Shure, Collins, AEA. We service everything we sell!
viss: Write or call for quote. You Won't Be Disappointed.
We are just a few minutes off the NYS Thruway (1-90) Exit 32
out of state ORDER TOLL FREE 800-448-9338

Werren-K21XN Bob-WA2MSH AI. WA2MSI

\section*{DAIWA COMMUNICATIONS ESSENTIALS}

SWR \& Pwr Meters


D jax en

\section*{Model CN-630}

Frequency Range: \(140-450 \mathrm{MHz}\)
SWR Detection Sensitivity: 5 Watts min.
Power: 2 Ranges (Forward, 20/200 Watts)
(Reflected, \(4 / 40\) Watts)
Dimensions: \(180 \times 85 \times 120 \mathrm{~mm}\);
\(7.12 \times 3.37 \times 4.75\) in
Model CN-620B (New 2 Kw Scale)
Frequency Range: \(1.8-150 \mathrm{MHz}\)
SWR Detection Sensitivity: 5 Watts min Power: 3 Ranges (Forward, 20/200/2000 Watts) (Reflected, 4/40/400 Watts)
Dimensions: \(165 \times 75 \times 97 \mathrm{~mm} ; 6.5 \times 3 \times 4 \mathrm{in}\).
Model CN-720B (New 2 Kw Scale)
Frequency Range: \(1.8-150 \mathrm{MHz}\)
SWR Detection Sensitivity: 5 Watts min. Power: 3 Ranges (Forward, 20/200/2000 Watts) (Reflected, 4/40/400 Watts) Dimensions: \(180 \times 120 \times 130 \mathrm{~mm} ; 7 \times 4.75 \times 5\) in. Write for complete specifications.

J.W. Miller Division BELL INDUSTRIES 19070 Reyes Ave. P.O. Box 5825 Compton, California 90224

\section*{SPECTRUM INTERNATIONAL INC. THE MORSE TALKER THE PRODUCT THAT SPEAKS FOR ITSELF!!}

\section*{THE MORSE TALKER \\ THE MORSE TALKER}

SPEECH-SYNTHESISED
MORSE TUTOS


\section*{MICROWRVE MODULES LTD}


\section*{FEATURES}
* Complete self-contained Speaking Morse Tutor
\(\star\) Latest state of the art microprocessor speed synthesis system

\section*{Spectrum \(\equiv\) International}
\(\star\) Sultable for beginners and proficient operators alike
* A "must" for novice classes
* Wide speed range: 2 -20 wpm
* High speed option: 12.48 wpm
* Variable group length and single character facility

PRICE
MMS \(1 \mathbf{\$ 2 2 5}\) shipping \(\mathbf{\$ 5 . 5 0}\)
MMS 2 \$295
-436

OCEANIA (Cont.)
\begin{tabular}{ll} 
18. VE6CNV & 186 JA5MG \\
182 JH3OHO & 187 KC8AU \\
183 JA3UCO & 188 N5AUB \\
184 KAOMMD & 189 N6GBM \\
185 JF1SEK &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{73 DX COUNTRY CLUB AWARD (SSB)} \\
\hline 75 & WD6DFN & 96 & NR4S \\
\hline 76 & 8P60V & 97 & VK3BMA \\
\hline 77 & KN4F & 98 & WD4JEQ \\
\hline & (1979) & 99 & KC4YY \\
\hline 78 & KN4F & 100 & N5CSW \\
\hline & (1980) & 101 & 4W. 16260 \\
\hline 79 & Wagivu & 102 & VK2PY \\
\hline 80 & W7HAZ & 103 & N2CFN \\
\hline 81 & K91ML & 104 & W ISIX \\
\hline 82 & AG7P & 105 & N4Cxk \\
\hline 83 & KA1UA & 106 & ZS6xS \\
\hline 84 & N6ATS & 107 & VE3.JPJ \\
\hline 85 & KE7C & 108 & 12002 \\
\hline 86 & KA3FUU & 109 & 15HOR \\
\hline 87 & VK2HD & 110 & KA1RR \\
\hline & (1979) & 111 & WB3нTK \\
\hline 88 & VK2HD & 112 & KI2G \\
\hline & (1980) & 113 & DEODXM \\
\hline 89 & VK2HD & & (1979) \\
\hline & (1981) & 114 & DEODXM \\
\hline 90 & 9G1RT & & (1980) \\
\hline 91 & SVIGJ & 115 & DE0DXM \\
\hline 92 & WABKMK & & (1981) \\
\hline 93 & VK2NHV & 116 & KA6D \\
\hline 94 & CT2CO & 117 & DJ9ZB \\
\hline & HC2RG & & \\
\hline
\end{tabular}

73 DX COUNTRY CLUB (CW) AWARD
\begin{tabular}{ll}
13 YE1ACK & 18 4X4FU \\
14 KC3W & 19 PY2FK \\
15 KOLST & 20 PY2BTR \\
16 OE2ABM & 21 DF5UT \\
17 K6FO &
\end{tabular}

OX COUNTRY CLUB (MIXED) AWARD
\begin{tabular}{ll}
22 WB5LBR & 24 NL7J \\
23 WD6EEQ & 25 KAOMMD
\end{tabular}

DX CAPITALS OF THE WORLD AWARD
\begin{tabular}{ll}
18 N6ATS & 24 VK2PY \\
19 VK2HD & 25 WB3BVL \\
20 ZS6ABA & 26 WB2TOJ \\
21 SV1GJ & 27 PY2FK \\
22 VE1ACK & 28 VE6CNV \\
23 4Z4VG &
\end{tabular}

\section*{10. METER DX DECADE AWARD}

1 WBIWRE/M 7 WDSJRG
2 AC3O 8 WAAZLZ
3 W5TJO 9 WB8LSV
4 WDOAVG 10 WB9WFZ
5 DA2AL \(\quad 11\) W8AKS/6
6 WB4TZA 12 KA3FUU
SPECIALTY COMMUNICATIONS AWARD
CLASS A: WORKED ALL STATES
1 Wagvgs
2 KE7C
SPECIALTY COMMUNICATIONS AWARD CLASS A.1: DX COUNTRIES
\begin{tabular}{|c|c|c|c|}
\hline 9 & K3WUR (RTTY) & 16 & \begin{tabular}{l}
N5CSW \\
(RTTY)
\end{tabular} \\
\hline 10 & WB2VTD (RTTY) & 17 & HB9MOM (OSCAR 718) \\
\hline 11 & PY3CJS (RTTY) & 18 & OE4HO (RTTY) \\
\hline 12 & \[
\begin{aligned}
& \text { KETC } \\
& \text { (RTTY) }
\end{aligned}
\] & 19 & \[
\begin{aligned}
& \text { VE2OO } \\
& \text { (RTTY) }
\end{aligned}
\] \\
\hline 13 & \[
\begin{aligned}
& \text { AL7O } \\
& \text { (RTTY) }
\end{aligned}
\] & 20 & \[
\begin{aligned}
& \text { VE2OO } \\
& \text { (OSCAR 718) }
\end{aligned}
\] \\
\hline 14 & \begin{tabular}{l}
PYIEWN \\
(RTTY)
\end{tabular} & 21 & ON4CM (RTTY) \\
\hline
\end{tabular} (RTTY)
O. 5 AWARD OF EXCELLENCE
\begin{tabular}{ll}
61 N7CPE & 67 KA5KKZ \\
62 N8BDI & 68 KA9ENM \\
63 KA7EII & 69 PY2UGS \\
64 W8UPD & 70 KA3FUR \\
65 KA2IDJ & 71 KA6JOB \\
66 WB9KUV & 72 KA7CPZ
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 73 & KA1DJB & 92 & KB8WJ \\
\hline 74 & KA3GSN & 93 & KAOJTT \\
\hline 75 & WB9HPR & 94 & KASKOS \\
\hline 76 & W4PCK & 95 & VK2VVA \\
\hline 77 & KA4LSJ & 96 & KA4WBR \\
\hline & (28 MHz) & 97 & KABMVV \\
\hline 78 & KA4LSJ & 98 & KA1HJK \\
\hline & ( 21 MHz ) & 99 & KA9jJK \\
\hline 79 & Ka3FUU & 100 & KA2IAL \\
\hline 80 & N1BDB & 101 & WL7AHD \\
\hline 81 & KP4FCK & 102 & PY2SZK \\
\hline 82 & KA2MIM & 103 & Kagmmd \\
\hline 83 & W1DWA & 104 & KA IHFN \\
\hline 84 & KA2JMJ & 105 & KA9CEG \\
\hline 85 & KA7JNP & 106 & KA9CEJ \\
\hline 86 & WA2AKX & 107 & KA9LYH \\
\hline 87 & KP4ERH & 108 & N8CYS \\
\hline 88 & KA8CUS & 109 & wb9uia \\
\hline 89 & KA4VNS & 110 & NS4J \\
\hline 90 & N8CJF & 111 & VE6CNV \\
\hline & WDOEPV & 112 & KA2LHO \\
\hline
\end{tabular}

CENTURY CITIES AWARD
\begin{tabular}{ll}
23 KC9CA & 31 8P6OV \\
24 N8CJF & 32 KAQMMD \\
25 KE7C & 33 WA6NIE \\
26 AK0G & 34 VE3JPJ \\
27 WB7VBO & 35 KA9BJX \\
28 KA8MVV & 36 KA1HJK \\
29 KA3FUU & 37 NP4DZ \\
30 OE8MOK & 38 VE6CNV
\end{tabular}
district endurance áward
8 XEITIS 12 SVIGJ
( 49 min .)
9 KOWNY
( 52 min .)
10 KE7C
(14 min.)
11 KA3FUU
( 50 min .)
WORKED ALL USA AWARD (80 METERS)
7 WAORVK
8 N 4 OH

12 SVIGJ
(42 min.)
13 OK2OX
( 56 min.)
14 KAOMMD
(39 min.)
WARD
\(\qquad\)
9 W4PCK
10 WB2ZEL

KB8WJ KASKOS 5 KASKOS KA4WBA A8MVV 99 KA9.jJK AHD 02 PY2SZK
Len
\[
1 \text { KA1HFN }
\]
\[
05 \text { KA9CEG }
\]
\[
107 \mathrm{KA9LYH}
\]
\[
8 \text { N8CYS }
\]
\[
10 \text { NS4J }
\]
\[
111 \text { VE6CNV }
\]

AWARD


WORKED ALL USA AWARD (40 METERS)
\begin{tabular}{ll}
4 WDOBOS & 6 N 4 OH \\
5 NSAHZ & 7 KAIDNB
\end{tabular}

WORKED ALL USA AWARD
\begin{tabular}{ll}
11 KA9JOL & 14 WA0CEL \\
12 KE7C & 15 KA4OOU \\
13 KC4YY & 16 KA9LYM \\
WORKED ALL USA AWARD \\
(15 METERS)
\end{tabular}
\begin{tabular}{lr}
\multicolumn{2}{c}{ (15 METERS) } \\
5 KA4IFF & 7 NAOH \\
6 WB9UKS & 8 WB 7 VOB
\end{tabular}

WORKED ALL USA AWARD (10 METERS)
\begin{tabular}{ll}
5 VK7NBT & 7 N 4 OH \\
6 VEIBWP & \(8 \mathrm{~N} C S W\)
\end{tabular}

WORKED ALL USA AWARD ( 6 METERS)
\begin{tabular}{ll}
8 N5DDB & 10 K4GOK \\
9 N9CEX & 11 W4CKD
\end{tabular}

\section*{WORKED ALL USA AWARD} (MIXED BAND)
\begin{tabular}{ll}
54 N7CPE & 68 KAOJTT \\
55 KA3GSN & 69 KA2MIM \\
56 KA3FUU & 70 KA8MVV \\
57 KA4VNS & 71 N3CHN \\
58 AG7P & 72 N3AKO \\
59 N8CJF & 73 KA1HJK \\
60 KA5EEZ & 74 KA0MMD \\
61 KA7JNP & 75 WB9UIA \\
62 WA9IVU & \((1980)\) \\
63 8P6OV & 76 WB9UIA \\
64 KA7CPZ & \((1981)\) \\
65 AK0G & 77 WB9UIA \\
66 VE3JPJ & \(\quad(1982)\) \\
67 HC2AG & 78 VE6CNV
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline East Coast & Wed & 2100 & Eastern & 3.850 \\
\hline Mid-America & Wed & 2100 & Central & 3.850 \\
\hline West Coast & Wed & 2000 & Pacific & 3.850 \\
\hline New York City & Wed & 2200 & Eastern & 144:400 \\
\hline Goddard Center & Wed & 2100 & Eastern & 146.835 \\
\hline Los Angeles & Wed & 2000 & Pacific & 145:805 \\
\hline UK & Sun & 1000 & UTC & 3.780 \\
\hline International & Sun & 1800 & U'TC & 21.280 \\
\hline International & Sun & 1900 & UTC & 14.282 \\
\hline European & Sat & 1000 & UTC & 14.280 \\
\hline Espanol & Sun & 1900 & UTC & 14.180 \\
\hline Asia/Pacific & Sun & 1100 & UTC & 14.305 \\
\hline South Pacific & Sat & 2200 & UTC & 28.878 \\
\hline South Africa & Sun & 0900 & UTC & 14.280 \\
\hline SEASAT & Sun & 1300 & UTC & 7.280 \\
\hline Australian & Sun & 1000 & UTC & 3.680 \\
\hline New Zealand & Wed & 0800 & UTC & 3.850 \\
\hline
\end{tabular}

Table 1. AMSAT nets provide up-to the minute news about ama. teur satellite developments.

\section*{AMSAT NETS}

Keeping up with the latest developments in the amateur space program is as easy as tuning your ham rig to one of the AMSAT nets. During these sessions, you'll hear information ranging from the latest Phase III news to tips on when and where to work the rare satellite DX. Technical discussions abound, and you can usually pick up the latest tracking data. Table 1 is a list of these informative gatherings.

\section*{PHASE IIIB PROGRESS}

Summer was a time of further testing and refinement for the Phase IIIB satellite, now tentatively scheduled for January, 1983,

Amateur Satellite Reference Orbits

\section*{\(\begin{array}{lll}1 & 0013 & 72\end{array}\) \\ \(\rightarrow \mathrm{Nm}\)}

OSCAR 8
UTC EOX


RS-5
UTC \(\quad\) EQX
\(========\)
UT
\(==\) 0008296
0802296
0157326
0151327
0146327 0146327 01
01
launch. According to the AMSAT Satellite Report, malfunctions which occurred in both communications transponders during a midsummer thermallvacuum test were quickly corrected by the AMSAT DL crew in Germany.

If all goes as planned, Phase IIIB will fly aboard the seventh launch (L7) of the European Space Agency (ESA) Ariane missile. The January launch date depends to a large extent on the success-
ful launches of L5 and L6. The former was scheduled for early September and the latter for late November.

ESA's Ariane is now a head-on competitor with the Space Shutthe as a commercial satellite launcher. By means of low prices, advertisements in satellite industry magazines, and other marketing tools, ESA has built a backlog of more than 20 spacecraft awaiting a boost into orbit.

NEW - REVOLUTIONARY MULTI-MODE \& CRYPTO-DECODER NOW FOR THE FIRST TIME-PRINT THOSE UNPRINTABLE SIGNALS
- BIT INVERSION • TOR-SITOR • NON STANDARD SHIFT • WEATHER FORMAT
- PLUS ALL SPEEDS AND SHIFTS OF BAUDOT, ASCII, AND CW-AMTOR WHEN ARRPOVED.

FEATURES:
ASCII
BAUTDOT
MORSE
TOR-SITOR

BIT INVERSION
5 level security BIT inversion for BAUDOT deccding from key pad. Decodes any combination of BIT inversion heing used for security.
3 SEL CALLS Factory programmed - for amateur or RTTY listening Displays actual SEL CALL on screen. 2 VIDEO FONTS Weather box and standard ASCII font

\title{
ANTENNAS FOR HF, VHF, UHF
} Two Meter
"The Big John"* 13 Element Quad 22' Boom 16.5dBd gain F/B 30 dB Mast Size Up to 2" Bandwidth 144-145 MHz \(\$ 89.95\)
"The Little John"** 11 Element Quad 18' Boom 15.5 dBd gain F/B 30db Mast Size 2" Bandwidth 144-145 MHz \(\$ 69.95\) "PTG Special"*** 9 Element Quad 13' Boom 14.8 DBd F/B 30 dB Bandwidth 144-146 MHz \$69.95
Featuring The Wondermatch Driven Element

\section*{Six Meter}
"6-PTG-4" 4 Element Yagi 13' Boom 12 dBi Mast Size 2" Longest Element 115" \(50-51 \mathrm{MHz} \$ 79.95\)
You've Heard About Us On The Air, So Call Collect Between 8AM-10PM Or Write For Details
*Measured at JWL Laboratories
* *First Place Winner at Baton Rouge Gain Measuring Contest (7/31/82).
***Second Place Winner at Baton Rouge Gain Measuring Contest (7/31/82).

SPEED READOUT
VIDEO OUTPUTS

PRINTER DRIVER

LOOP SUPPLY
OTHER FEATURES
Front panel indicators, rear panel jacks. sta-
Front panel indicators. rear panel jacks. sta-
tus line, multiple scroll inhihit, and un-shift on space.
M \(600 \quad \$ 799.95\) SHIPPING \(\$ 4.00\) UNIVERSAL ELECTRONICS INC. |IRTT , It 1280 AIDA I)R., REYNOLIDSBURG, OHIO \(43068 \quad 614-8664267\)

ASCII \& BAUDOT - Automatic search gives speed of transmission.
Composite video 1.5. V P - P negrative sync, four formats.
Isolated Loop MII. - 188 or RS -232 and optionial parallel ASCII. All with handshaking available.
60 MAL20/ MA auto adjusting loop supply available as option.


AEA once again breaks new ground in the code communications field with the new model MBA.RC reader/code converter. The MBA-RC decodes Morse, Baudot or ASCII signals off the air and displays them on a large 32 character alphanumeric vacuum fluorscent display. In addition, it will output Morse code for keying your transmit. ter. It will also generate RTTY (Baudot or ASCII AFSK two tone output. ( 170 or 850 Hz shifts.) Any of the acceptable input codes can be converted to any of the specified output codes (any speed to any speed). If you have any of the common Baudot RTTY terminals as an example, you can now send and receive Morse and ASCII with your keyboard and printer. You can even generate ASCII or BAUDOT RTTY using your Morse hand key or memory keyer.
Get the details. Write for our free product catalogue or better yet, see your favorite dealer.

Prices and Specifications subject to change without notice or obligation.

Software ©copyright by AEA.

\section*{ADVANCED ELECTRONIC APPLICATIONS, INC.}
P.O. Box C-2160

Lynnwood, WA 98036
(206) 775-7373

Telex: 152571 AEA INTL


\section*{Order today! \\ NEW 1983 \\ RADIO AMATEUR CALLBOOKS READY DECEMBER IST!}

The latest editions of the world-famous Radio Amateur Callbook will be avallable soon. The U.S. edition features over 400,000 listings, with over 75,000 changes from last year. The Foreign edition has over 370,000 listings, over 50,000 changes. Each book lists calls and the address information you need to send QSL's. Special features include call changes, census of amateur licenses, world-wide QSL bureaus, prefixes of the world, international postal rates, and much more. The new 1983 Callbooks will be published December 1, 1982. Order your copies now.
\begin{tabular}{llll}
\hline & Each & Shipping & Total \\
\hline\(\square\) US Callbook & \(\$ 19.95\) & \(\$ 3.05\) & \(\$ 23.00\) \\
\(\square\)\begin{tabular}{l} 
Foreign \\
Callbook
\end{tabular} & \(\$ 18.95\) & \(\$ 3.05\) & \(\$ 22.00\)
\end{tabular} Order both books at the same time for \(\$ 41.95\) including shipping.

Order from your dealer or directly from the publisher. All direct orders add shipping charge. Forelgn residents add \(\$ 4.55\) for shipping. lllinois residents add \(5 \%\) sales tax.


SPECIAL OFFER!
Amateur Radio
Emblem Patch
only \(\$ 2.50\) postpaid
Pegasus on blue fleld, red lettering. 3" wide \(\times 3^{\prime \prime}\) high. Great on Jackets and caps.
\(-61\)
RadIO amateurl|book inc.


Dept. B
925 Sherwood Drive Lake Bluff, iL 60044, USA

NEW AUTOPATC:


\section*{PRIVATE PATCH}

Introducing Private Patch. A giant step forward in non-sampling Autopatch/ Interconnect technology, capability and standard features. Our revolutionary new techniques of audio and digital signal processing offer several advantages over conventional samplingl scanning type Autopatches: 1. The annoyance of continuous squelch tails is totally eliminated. Makes conversation much more natural and enjoyable. 2. In addition to superb simplex capability, operation through repeaters is made possible. 3. The only connections made to your base transceiver are to microphone and speaker jacks. NO INTERNAL CONNECTIONS OR MODIFICATIONS NECESSARY! Use Private Patch simplex for local operation, through a repeater for extended range. CW ID makes your Autopatch legal, and alerts you to incoming calls when ringback is turned on. Channel monitor logic precludès ringback transmission if channel is in prior use. Eliminates accidental interference. Five digit owner programmable access code and operatorllong distance inhibit switch assure security and protect your phone bill. Positive control is assured by Private Patch logic functions. A fully digital timing approach eliminates all Timing adjustments. Threelsix minute timer shuts down Private Patch if you drive out of range. Resettable with reset code for additional talk time as required. Self contained AC supply. Modular phone jack and modular phone cord provided. All electronics contained on one high quality glass circuit card. Private Patch contains 42 integrated circuits and 16 transistors. Send for additional information. Compare our features. (State callsign when ordering.)

\section*{Special Factory Direct Introductory Price}

\section*{1 YEAR WARRANTY \({ }^{5} 489\) VISA Postage Paid}

PHONE: (213) 540-1053 AutoConnect
P.O. BOX 4155

TORRANCE, CA 90510 dealerships invited

\section*{RADIO BOOKSHOP}

\section*{FOR THE NOVICE}

New, updated editions
of our famous novice
license study guide and novice study tapes.

- NOVICE LICENSE STUDY GUIDE-by Timothy M. Daniel N8RK. Here is the most up to date novice guide avallable. it is complete with intormation about learning Morse Code, has the latest FCC amateur regulations and the current FCC application forms. This guide is nof a question/answer memorization course but rather it emphasizes the practical side of getting a ham license and putting a station on the air. It reflects what the FCC expects_a Novice to know without page after page of dull theory. The most current information still available at last year's price. SG7357 \$4.95.*
- NOVICE STUOY TAPES-If you are lust getting started in ham radio, you ll find these tapes indispen sable! This up-to the-minute revision of the 73 Study Course is the perfect way to learn everything you heed to breeze through the Novice written exam. Theory, FCC regulations. and operating skills are all covered, and you'll be amazed at how last you learn using these tapes.
Once the test is behind you, these tapes will go right on being useful, because they are packed with the atest information on setting up your own ham station, and getting on the air
Thousands of people have discovered how easy learning from cassette can be-order now and enter
the fascinating world of ham radlol CT7300 Set of \(3-\$ 15.95\)."
Scientists have proven that you learn faster by listening than by reading because you can play a cas sette tape over and over in your spare time-even while you're driving! You get more and more Into each time you hear it. You can't progress withoul solid fundamentals. These three hour-long tapes give you all the basics you'll need to pass the Novice exam easily You ll have an understanding of the ba without tirst listening to these lapes?
Special Offer! Both Novice License Study Guide and Novice Study Tapes \$19.95 Order NP7300.

GENERAL LICENSE STUDY GUIDE GENERAL LICENSE STUDY GUIDE-By Timothy M. Daniel N8RK This is the complete guide to the General License. Learning rather than memorizing is the secret. This is not a question-andanswer guide that will gather dust when the FCC issues a new test. Instead, this book will be a helpful reference, useful long after a ham upgrades to General Includes up-to-date FCC rules and an application form. Order yours today and talk to the world. SG7358 \(\$ 6.95\)
- OSL CARDS- 73 turns out a lantastic series of OSL cards at about half the cost of having them done else where because they are run as a fill-in between printing books and other items in the 73 Print Shop 250 Style W-QW0250 - for \(\$ 8.95^{\circ}\). 500 Style W-QW0500 - for \(\$ 13.95^{\circ} ; 250\) Style \(X\)-Qx0250-for \(\$ 8^{\circ} .5^{\circ}, 500\) Style X -OX0500; 250 Style Y-QY0250-4or \(\$ 8.95^{\circ}: 500\)
Style Y-QY0500-for \(\$ 13.95\). Allow 6-12 wks. For Style Y
delivery.
- LIBRARY SHELF BOXES - These slurdy white. cor rugated, dirt resistant boxes each hold a fullyear of 73 . Kilobaud Microcomputing or 80 Microcompuling. With your order, request self.sticking labels for any of the
Yollowing: 73 . Kilobaud Microcompuling, 80 Microcompuling. CQ. QST. Ham Radlo. Personal Compuing puling. CO. QST. Ham Radio. Personal Compuing Radio Elecironics. interface Age and Byre. Order 1-
\(8 \times 1000\)-for \(\$ 2.00\) : order \(2.7-8 \times 2002\) - 1 or \(\$ 1.50\) each \({ }^{\text {: }}\) order 8 or more-BX 1002 - or \(\$ 1.25\) each

\section*{For Your Ham Shack 73 Magazine Binders}

\footnotetext{
- Preserve and protect your collection for a lifetme Order these handsome red binders with gold lettering. \(\$ 7.50\) for 1.3 tor \(\$ 21.75,6\) for \(\$ 42.00\). (Postpaid within USA, please add \(\$ 2.50\) per order outside USA.) Check or money orders only. no phone or C.O.D. orders 73 Binders, P.O. Box 5120, Philadelphia, PA 19141
- NOTE-Above address for Bladers only.
}

\section*{Code Tapes}
any four tapes for \$15.95! \$4.95 each

\section*{"GENESIS"}

5 WPM - CT7305-This is the beginning tape for people who do not know the code at all. It takes them through who do not know the code at all, It takes them through complete with practice every step of the way using the newest blitz teaching techniques. It is almost miraculous! In one hour many people-including klds of tenare able 10 master the code. The ease of learning gives confidence to beginners who might otherwise drop out.

\section*{"THE STICKLER"}

64 WPM - CT7306-This is the practice tape for the Novice and Technician licenses. It is made up of one solid hour of code, sent at the official FCC standard (no other tape we ve heard uses these standards, so many people llunk the code when they are suddenly-under pressure-faced with characters sent at 13 wpm and spaced for 5 wpm ). This lape is not memorizable, unllke the zany 5 wpm tape. since the code groups are entirely random characters sent in groups of tive.

\section*{"BACK BREAKER"}

13+ WPM-CT7313-Code groups again, at a brisk 14 per so you will be at ease when you sit down in front of the steely eyed government inspector and he starts sending you plain language at only 13 per. You need this exira margin to overcome the panic which is universal in the est situations. When you ve speni your money and time o take the lest. you'll thank heaven you had this back breaking tape.

\section*{"COURAGEOUS"}
\(20+\) WPM - CT7320-Code is what gets you when you go for the Exira class license. It is so embartassing to panic out jusi because you didn't prepare yoursell with this tape. Though this is only one word taster, the code groups are so dilficult that you il almost fall asleep copy. ing the FCC stuff by comparison. Users report that they
can't belleve how easy 20 per really is with this tantastic one hour tape.

\section*{"OUTRAGEOUS"}

25 + WPM - CT7325 - This is the tape for that small group of overachieving hams who wouldn't be content to simply satisly the code requirements of the Extra Class license. It's the toughest tape we've got and we keep a. permanent file of hams who have mastered it. Let us know when you're up to speed and we'll inscribe your name in 73's CW "Hall of Fame.
- BACK ISSUES - Complete your collection; many are prime collectables now, classics in the field! A full col lection is an invaluable compendium of radio and elec tronics knowledge
7330073 BACK ISSUE—BEFORE JULY 1980 \(73350 \quad 73\) BACK ISSUE JULY 1980 THRU OCT. 1981 73350P 73 BACK ISSUE NOV 1981 TO PRESENT 7300573 BACK ISSUE-5 YOUR CHOICE
\(73010 \quad 73\) BACK ISSUE - 10 YOUR CHOICE
\(73025 \quad 73\) BACK ISSUE -25 YOUR CHOICE
\(73125 \quad 73\) BACK ISSUE - 25 OUR CHOICE
\(\$ 27.00\)

Shipping: Please add \(\$ 1.00\) per magazine ten magazines or iwenty-flve magazines add \(\$ 7.50\) per order.

\section*{HAND BOOKS FOR THE HAMSHACK}

THE COMPLETE SHORTWAVE LISTENER'S MAND. BOOK, 2nd EDITION by Hank Bennelt and Harry L. Helms. This comprehensive volume contains loads of new information from all over the world on the latest developments in SWL technology clubs, associations, practices and stations. A thorough guide to stations of the world by general continental area and frequency is included. BK \(1241 \$ 9.95\)
THE TEN METER FM HAND8OOK~by Bob Heil K9EID. This handbook has been published to help the ten mete enthusiast learn more about the many methods of conversions and tricks that are used to make existing units FM belter. Join the great "tinkerers " of the world on ten FM and enjoy the fantastic amount of fun in communicating with amateur stations world wide on ten meter
FM. BK1190 \(\$ 4.95\).

THE PRACTICAL HANDBOOK OF AMATEUR RADIO FM REPEATERS-by Bill Pasternak WA6ITF (author of 73 Magazines moninly colum Looking West This is the submitted by over a hundred indlviduals material organizations and equipment manuiacturers. " "musi have* lor your ham shack shelf. BK \(1185 \$ 12.95\).


TOOLS \& TECHNIQUES FOR ELECTRONICS-by A. A Wicks Is an easy-to-understand book written for the
beginning kit-builder as well as the experienced hobbyist. It has numerous pictures and descriptions of the sate and correct ways to use basic and speclalized tools for electronic projects, as well as specialized metalworking tools and the chemical aids which are used in
repair shops. BK7348 \(\$ 4.95\)."
BEHIND THE DIAL - This book explains, in detall, what's going on on all the frequencies, from shortwave up to microwave. It gives the reader a good idea of what he can find and where to find it, including some of the secret stations such as the C.I.A. and the F.B.I. Everything is covered short of microwave monitoring. Anyone interested in purchasing a shortwave receiver
should have a copy of this book survelliance, station should have a copy of this book. Survellance, station the electromagnetic spectrum. are included. BK7307 \$4.95

THE NEW WEATHER SATELLITE HAND8OOK - by Dr. Ralph E. Taggart WB8DOT. Here Is the completely updated and revised edition containing all the intormatlon on the most sophisticated and effective spacecraft now in orbit. This book serves both the experienced amateur satellite enthuslast and the newcomer. It is an introductlon to satellite watching. providing all the intormatlon required to construct a complete and highly effective ground stallon. Solid hardware designs and all the instructions necessary to operate the equlpment are included. For experimenters who are operating stations, the book details all procedures necessary to modity equipment for the new serles of spacecraft. Amateur weather satellite activity repre sents a unique biend of interests encompassing electronics, meteorology and astronautics. Join the privileged tew in watching the spectacle of earth as seen from space on your own monitoring equlpment. BK7383 \$8.95.

\section*{BOOKSHOP}

\section*{THE 73 TEST}

EQUIPMENT LIBRARY
VOL II AUDIO FREQUENCY TESTERS-Jam-packed with all kinds of audio frequency test equipment. If you're Into SSB, RTTY, SSTV, etc., ihis book is a must for too! LB7360 \$1.95.

VOL. III RADIO FREOUENCY TESTERS-Radio frequency waves, the common denominator of amateur radio. Such items as SWR, antenna impedance, line impedance, RF output, and field strength; detailedinstructions on testing these items includes sections on signal generators, crystal calibrators, grid dip oscillalors, moise generators, dummy loads, and much more B7361 \$1.95

VOL. IV IC TEST EQUIPMENT-Become a Irouble shooting wizard! Here are 42 home construction proj ects for building test equlpment to work with your ham station and in servicing digital equipment. Plus a EQUIPMENT LIBRARY. LB7362 \$1.95.

ALL THREE OF THE ABOVE ONLY \(\$ 4.95\) ORDER LB7365

RF AND DIGITAL TEST EQUIPMENT YOU CAN 8UNLD-BK1044-Ri burst, function, square wave gen. marker. variable length pulse generators-100 \(\mathrm{kHz}_{2}\) nal injector 146 MHz synthesizer, digital readouts counters several counters prescaler microwave counters, several counters, prescaler, microwave
meter, etc. 252 pages. BK1044 \(\$ 5.95\).

\section*{FOR THE CONTESTER}

THE CONTEST COOKBOOK - This book reveals the secrets of that elfe group of operators who top the list when the contest results are published. It contains detailed suggestions for the first-time contester as well as tips for the advanced operator. Domestic, DX, and specialty contests are all discussed, complete with photographs and diagrams showing the equipment and operating aids used by the top scorers. For the serious contester. BK7308 \$5.95.

\section*{THE 73 TECHNICAL LIBRARY}


THE CHALLENGE OF 160-The growth of amateur radio today is encouraging the use of 160 meters. All the information necessary 10 get started on this unique band, the all-important antenna and ground systems are described in detail. Also, how to get on, top-band operating tips, top-band transmitters, propagation, weather receiving tion contains interesting photos of Stew Perry s King of 160 shack This reference is useful Perry's the King of 160) shack. This reference is useful to new and
experienced top-band operators. BK \(7309 \$ 4.95\)

INTERFERENCE HANDBOOK-by William R Nelson, WA6EOG - This timely handbook covers every type of RFI problem and gives you the solutions based on practical experience. Covers interterence to TV, radio, hi-ti, telephone, radio amateur, commercial and CB equipment. Power line fnterterence is covered in depth - how to locate It, cure It, work with the public safety precautions, how to train RF/I investlgators. Written by an RFI expert with 33 years of experience, this profuse Iy lllustrated book is packed with practical easy-to understand intormation. BK1230 \$8.95."

OWNER REPAIR OF RADIO EQUIPMENT-by Frank Glass K6RO. Here's a book that will teach you an approach to troubleshooting without a shack full of test equlpment. Written in a narrative, non-mathematical style, it will encourage you to successtully fix your own rig problems 80 to \(90 \%\) of the time. Even If you don't want to lix. you can learn a lot about how things work and fail. Add to your library and personal expertise. BK7310 \(\$ 7.95\).

\section*{NEW}

EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT AMATEUR TELEVISION, (but were afraid to ask) - By Mike Sione WB0OCD. This book is a complete guide to setting up your own amateur radio televislon station. If contains-A history, what equipment you need, video theory, cameras, recorders, lighting, special effects, sound ATV DXing, mobile FSTV, ATV repeaters. ATV groups, building projects, test equipment, dealer directory, a cumulative index of over 1000 articles on amateur TV and much more. This is the new, 1982 edition. From the publishers of Amateur Television Magazine. \(\$ 9.95\) BK1244

WORLD PRESS SERVICE FREQUENCIES - by Thomas Harrington Can't wait to hear the evening news, or are you wondering about the news that you aren't hearing? Receive by Radio Teletype (RTTY) all the world news and financial happenings from the world capitols on a 24 hour a day basis. This book glves you the frequencies and times of broadcast of such news services as AP, UPI, Reuters, TASS, VOA and London Press. Also included is an Introduction 10 RTTY with information on equipment, antennas. abbre-viations-everything you need to get-started in RTTY.
BK1202 \(\$ 7.95^{*}\)
SS8...THE MISUNDERSTOOD MODE-by James B. Wilson. Single Sideband Transmission... thousands of us use it every day, yet it remains one of the least understood facets of amateur radio. J. B. Wilison presents severallustrated ply illustrated with charts and schematics. Which will enable the ambill us read to consiruch own side band generator. A must for the technically serious ham BK7351 \$5.50.

PROPAGATION WIZARD'S HANDBOOK - bY J.H Nelson. When sunspots riddled the worldwide com. munications networks of the 1940s, John Henry Nelson looked to the planets for an answer. The result was a theory of propagatlon forecasting based upon interplanetary alignment that made the author the most reliable torecaster in America today. The book provides an enightened look at communications past, presem, and forecasting. BK7302 \$6.95.

IC OP.AMP COOKBOOK - by Walter G. Jung. Covers not only the basic theory of the IC op amp in great detail, but also includes over 250 practical circuit ap. plications. liberally illustrated. 592 pages, \(51 / 2 \times 81 / 2\). softbound. BK1028 \$14.95. per
published by 73 Magazine.)

\title{
RADIO BOOKSHOP ANTENNA BOOKS
}


VHF ANTENNA HANDBOOK - The new VHF Antenna Handbook detalls the theory, design, and construction of hundreds of difterent VHF and UHF antennas...a practical book written for the average amateur who lakes joy in building, not full of complex formulas for the design engineer. Packed with fabulous antenna projects
you can bulld. BK7368 \(\$ 5.95\).
- BEAM ANTENNA HANDBOOK (New 5th edition)-BK1197-Yagi beam theory, construction and operation Information on wire beams. SWh curves and matching systems. A "must" for serious DXers \$5.95*
- VHF HANDBOOK FOR RADIO AMATEURS-BK 1198 - Contains information on FM theory. operation and equipment. VHF antenna design and construction, satel. lite-EME and the newest solid-state circuits \(\$ 6.95^{\circ}\)
- the radio amateur antenna handbook BK1199-All about wire antennas. beams. tuners. baluns, coax, radials, SWR and towers. Clear and com plete information \(\$ 6.95\)
- SIMPLE, LOW-COST WIRE ANTENNAS FOR RADIO AMATEURS-BK1200-All new data and everyining you want to know about low cost, multi-band antennas. inexpensive beams, "invisible" antennas for hams in ' lough" locations. \(\$ 6.95\).


73 DIPOLE ANO LONG.WIAE ANTENNAS-by Edward M. Noll W3FOJ. This is the first collection of virtually every type of wire antenna used by amateurs. Includes dimensions, configurations, and detailed construction data lor 73 different antenna iypes. Appendices describe the construction of noise bridges. line tuners. and data on measuring resonant frequency, velocity actor, and swr. BK 1016 55.50.
- all about cubical ouad antennas (2nd edi ion)-BK1196-The "Classlc" on Quad design theory, construction, and operation. New 2nd edition contains new feed and matching systems and new data. \(\$ 5.95\).
- HOW TO DEFEND YOURSELF AGAINST RADAR-BK1201-by Bruce F. Bogner and James R. Bodnar, a lawyer and radar expert. This book gives you the ammunition to challenge the radar evidence" that usually leads to a speeding conviction. The major Dart of the book details the inner workings of racar-you'll become more of an ex pert than most police officers and judges. The remaindef of the book outlines now to defend yourself against a speeding ticket - the observations, measures and testimony you must obtain to defend yourself without the help of a lawyer. The price is a lot less than a flne! \$6.95.

\section*{MICROCOMPUTER BOOKS}

ANNOTATED BASIC-A NEW TECHNIQUE FOR NEO. PHYTES. VOL 1 \& 2-Annotated BASIC explains the Complexities of modern BASIC. It includes complete program is annotated to explain in step-by-step fashion program is annotated to explain in step-by-step fashion the workings of the program. Programs are flowcharted And-each chapter includes a description of the new An-each which have been introduced oncepls 1 BK739 10.95 Volume 2 BK

HOBBY COMPUTERS ARE HERE!If you want to come up to speed on how computers work-hardware and software-this is an excellent book. It starts with fundamentals and explains the circuits and the basics of programming, along with a couple of TVT construction projects. ASCII, Baudot, etc. This book has the highest recommendations as a teaching aid. \$2.47. BK7322
KILOBAUD KLASSROOM-By George Young and Peler Stark. Learning electronics theory without practice isn't easy. And it's no fun to bulld an electronics project that Irsi published in Kilobaud Microcomputing cor series ineory with practice This is a practical course in diglial theory with practice. This is a pracrical course in digital projects, and by the end of the course you'll construct your own working microcomputer! BK7386 \$14.95
- 40 COMPUTER GAMES - BK7381 -Forly games in all in nine difterent categories. Games for large and small systems. and even a section on calculator games. Many versions of BASIC used and a wide variety of systems represented. A must for the serious computer gamesman. \$7.95
- UNDERSTANDING AND PROGRAMMING MICRO. COMPUTERS - BK7382-A valuable addition to your computing library. This two-part text includes the best articles that have appeared in 73 and Kllobaud Microcomputing magazines on the hardware and software aspects of microcomputing. Well-known authors and well-structured text helps the reader get involved. \(\$ 10.95^{\circ}\)

TEXTEDIT-A Complete Word Processing System In kit form-by Irwin Rappaport. TEXTEDIT is an inexpensive word processor that you can adapt to suit your needs. from writing form letters to large texis. It is writ en in modules, so you can load and use only those porions that you need. Included are modules that perform ight justification, ASCII upper/lowercase conversion. ne-key phrase entering, complete editorlal functions, and much more! TEXTEDIT is written in TRS. \(80^{\circ}\) Disk and and the modules are documented in the does liwin Rappaport explain how to use TEXTEDIT: he also explains programming techniques implemented in the system. TEXTEDIT is an inexpensive word processor that heips you learn about BASIC programming. It is written for TRS-80 Models I and Ill with TRS DOS 2.2/2.3 and 32 K . TRS-80 and TASDOS are trade marks of the Radio Shack Division of Tandy Corpora tion. BK7387 \$9.97
- SOME OF THE BEST FROM KILOBAUDIMICROCOM PUTING-BK7311-A collection of the best articles that have recently appeared in Kilobaud MICROCOMPUT. systems. CPM ine 8080 on minal Data rase manacment word processing text mitors and tile siructures are covered too Programming donniques and hardcore hardware construction pro ets for modems high speed cassette interfaces and TVIs are also included in this large format. 200 plus page edition. \(\$ 10.95\).

THE NEW HOBBY COMPUTEAS - This book takes up rom where "HOBBY COMPUTEAS AAE HERE!" leaves off, with chapters on Large-Scale Integration, how - choose a microprocessor chip, an introduction to programming, low-cost l/O for a computer, computer arithmetic. checking memory boards. . and much, much more! Don't miss this tremendous value! Only \$2.47. BK7340

\section*{COOK BOOKS}

TTL COOKBOOK - by Don Lancaster. Explains what TTL is, how it works, and how to use it. Discusses prac llcal applications, such as a digital counter and dis play system, events counter electronic stopwatch diglial volimeter and a digital tachometer BK106359.50.
CMOS COOKBOOK-by Don Lancaster. Details the application of CMOS. the low power logic lamily suitable for most applications presently dominated by TTL. Pequlred reading for every serious digital ex perimenter! BK 1011 \$10.50.

TVT COOKBOOK - by Don Lancaster. Describes the use of a standard television receiver as a micrapro cessor CAT terminal. Explains and describes charac ter generation, cursor control and interlace informa tion in typical. easy-to-understand Lancaster style. BK \(1064 \$ 9.95\).

\section*{THE WELL EQUIPPED HAM SHACK}


\section*{WORLD ATLAS}

WORLD REPEATER ATLAS-Completely updated, over 230 pages of repeater listings are indexed by location and trequency. More than 50 maps pinpoint 2000 repeat. er locations throughout the USA. Foreign listings include Europe, the Middle East. South America, and Africa \(\$ 4.95^{\circ}\) BK7315

THE MAGIC OF HAM RADIO-by Jerrolo Swank W8HXR. Under various callsigns, W8HXR has been heard on the ham bands since 1919. He has watched amateur radio grow from the days of Model A spark coils to an era of microprocessors and satellite communicallons. Jerry has responded to calls for help from earth. quake-striekn Managua and tornado-ravaged Xenia. Antarctica, one of man's Ioneliest otitposts, has been a bit less lonely, thanks to Jerry's tireless phonepatching efforts. Drawing on his own colorful experiences and those of ham ham Jery has compled ils word picture of ham radio during the past six decades.
BK7312 \(\$ 4.95\)

A GUIDE TO HAM RADIO-by Larry Kahaner WB2NEL. What's Amateur Radio all about? You can learn the basics of this fascinating hobby with this excellent beginner's guide. It answers the most Irequently asked questions in an easy-going manner, and it shows the best way to go about getting an FCC license. A Guide to Ham Radio is an ideal introduction to a hob
by people around the world. \(\$ 4.955^{\circ}\) BK 7321
WORLD RADIO TV HANDBOOK 1982, 25TH EDITION - This book is the bible of internatlonal broadcasters, providing the only authoritative source of exact iniormation about broadcasting and TV stations world wide. This 1981 edition is completely revised, Jiving comprehensive coverage of short, medium and long wave. 560 pages of vital aspects of world lislening.
\(\$ 16.50\). BK1184

\title{
List of Advertisers
}
\begin{tabular}{|c|c|c|c|}
\hline R．S．No & ．Page & R．S．No & O．Page \\
\hline 2 & AEAAdvanced Electronic Applica－ & ＊ & Crown Mlcro Products ．．．．．．． 93 \\
\hline & Ilons ．．．．．．．．． \(31.31,35,75,119,126\) & 21 & Current Development Corp．．．．． 54 \\
\hline 115 & A5 ATV Magazine ．．．．．．．．．． 69 & 106 & Cushcrait Corp．．．．．．．．．．93，135 \\
\hline 164 & A\＆W Productions ．．．．．．．．．．． 80 & 346 & Data Service Co．．．．．．．．．．．． 68 \\
\hline 448 & Advanced Communications Inter． & 485 & DenTron Radio Co．s Inc．．．．．．． 134 \\
\hline & national ．．．．．．．．．．．．．．．．． 117 & & Digi Com Englneering，Inc．．．．．． 121 \\
\hline 124 & Advanced Computer Controls ．． 133 & 425 & Doppler Systems ．．．．．．．．．． 123 \\
\hline － & Alaska Microwave Labs ．．．．．．． 67 & & DX Signal Co．．．．．．．．．．．．． 144 \\
\hline 20 & All Electronics Corp．．．．．．．．．． 30 & 453 & EGE，Inc．．．．．．．．．．．．．．．．． 24 \\
\hline & Alpha Delta Communications ．． 35 & 447 & Electronic Hobby Innovations ．．． 63 \\
\hline 486 & Alpha Delta Communications ． 136 & 146 & Electronic Ralnbow Industries，Inc． \\
\hline & Amateur Electronic Supply ．．．． 49 & & 20.63 \\
\hline \multirow[t]{2}{*}{5} & Amateur－Wholesale Electronics & & Electrovalue Industrlal，Inc．．．． 145 \\
\hline & 45，95 & 24 & Encomm，Inc．．．．．．．．．．．．．． 73 \\
\hline 63 & Antenna Specialists ．．．．．．．．． 81 & 479 & Encon ．．．．．．．．．．．．．．．．． 136 \\
\hline 329 & AR Technical Products Corp．．．． 85 & 400 & Engineering Consulting Service \\
\hline & Associated Radio ．．．．．．．．．．． 87 & & 142 \\
\hline 186 & Atomtronics ．．．．．．．．．．．． 111 & 22 & Fair Radio Sales ．．．．．．．．．． 145 \\
\hline & Autek Research ．．．．．．．．．．．．． 92 & 85 & Faxscan，Inc．．．．．．．．．．．．．． 119 \\
\hline 130 & Auto Connect ．．．．．．．．．．．． 126 & 323 & Fox－Tango Corp．．．．．．．67． 111 \\
\hline 175 & Automated Technology，Inc．．．． 69 & 477 & Fox－Tango Corp．．．．．．．．．．． 138 \\
\hline 11 & Barker \＆Williamson，Inc．．．．．． 133 & 151 & Francis Enterprises，Inc ．．．．．．． 99 \\
\hline 439 & Ben Franklin Electronics ．．．61． 144 & 149 & G \＆R Design，Inc．．．．．．．．．．． 101 \\
\hline － & Bilal Co．．．．．．．．．．．．．．．．． 145 & 178 & Galaxy Electronics ．．．．．．．．．． 69 \\
\hline & Birch Hill Sales ．．．．．．．．．．． 144 & 143 & GLB Electronics ．．．．．．．．．． 143 \\
\hline 153 & Bit＂O＂Byte ．．．．．．．．．．．．．．． 143 & 417 & Gotham Antenna ．．．．．．．．．． 92 \\
\hline 157 & Boman Industries ．．．．．．．．．．． 65 & 132 & Grand Systems ．．．．．．．．．．． 142 \\
\hline 12 & Bullet Electronics ．．．．．．．．．． 146 & 352 & Grove Enterprises，Inc ．．．．．．．． 62 \\
\hline & Butternut Electronics Corp．．．．． 30 & 86 & H\＆RCommunications ．．．．．．． 67 \\
\hline 187 & Call Letter Hats ．．．．．．．．．．．． 99 & 31 & Hal－Tronix ．．．．．．．．．．．．．．． 132 \\
\hline 92 & Ceco Communications，Inc．．．． 103 & 345 & Hal Communications ．．．．．．．17，75 \\
\hline 102 & Centurion International ．．．．．．．． 41 & & Ham Radio Outlet ．．．．．．．．．．．． 3 \\
\hline \multirow[t]{2}{*}{482} & \multirow[t]{2}{*}{Channel Master．Div．of Avnet．Inc．} & 33 & Hamtronics NY ．．．．．．．．．．．． 159 \\
\hline & & 129 & Harvey ．．．．．．．．．．．．．．．．．． 101 \\
\hline 89 & Clutteriree Modular Consoles ．． 92 & 303 & Heath Co ．．．．．．．．．．．．．．82， 83 \\
\hline 487 & Com－Rad Industrles ．．．．．．．． 139 & 320 & Hoosier Electronics ．．．．．．．．． 68 \\
\hline 150 & Commtek ．．．．．．．．．．．．．．．41， 145 & & ICOM ．．．．．．．．．．．．9，Cov．II \\
\hline \multirow[t]{2}{*}{382} & \multirow[t]{2}{*}{Communications Concepts，Inc． 133} & 78 & Independent Crystal Supply ．．． 142 \\
\hline & & 445 & Instant Software \\
\hline \multirow[t]{2}{*}{462} & Communications Electronics & & Amateur Radio Programs ．100， 132 \\
\hline & Speclalties，Inc．．．．．．．．．．．．． 87 & 36 & International Crystal Mig．Co．． 117 \\
\hline & Communications Design ．．．．．． 41 & & iRL ．．．．．．．．．．．．．．．．．．．． 15 \\
\hline \multirow[t]{2}{*}{15} & \multirow[t]{2}{*}{Communications Specialists 71,91} & 38 & Jameco Electronics ．．．．．．．． 158 \\
\hline & & 39 & Jan Crystals ．．．．．．．．．．．．．． 93 \\
\hline 140 & Comstar Research ．．．．．．．．．． 113 & 354 & Jensen Tools，Inc．．．．．．．．．．． 144 \\
\hline 152 & CQ Products ．．．．．．．．．．．．． 135 & 72 & JDL Industries ．．．．．．．．．．．．． 38 \\
\hline
\end{tabular}

2 AEAAdvanced Electronic Applica－
Crown Mlcro Products

85 DenTron Radio Co．，Inc Digi Com Englneering，Inc

R．S．No． ago

308 J．W．Miller／Div．Bell industrles
JWL Electronics ．．．．．．．．．．．．．． 123 Kantronics，Inc Kenwood ．．．．．．．7，Cov．IV Larsen Antennas
452 Lewis Construction Co
484 Lunar Eincironics
77 M－Squared Engineering，Inc
44 Macrotronics，Inc
45 Madison Electronics
134 Martin Engineering
47 MFJEnterprises \(\quad 51,117119.121\)
483 MFJ Enterprises \(\quad 119,12\)
48 MHz Elecironics
\(148-157\)
49 Micro Control Specialties
50 Microcraft Corp．
1 Microlog
Mirage Communications
Mor－Gain
480 Mortty
123 N \＆G Distributing
318 National Comm．Group Co．
412 Nemal Electronics
Orbit Magazine
P．C．Electronics Palomar Engineers
488 Pegasus Electronics
182 Peterson Electronics
404 P．B．Radio Service
300 Plpo Communications
176 Polar Research，Inc Proham Electronics
315 Radio Activity
61 Radio Amateur Callbook，Inc．．．． 12
397 Padio Worla
\(\begin{array}{r}123 \\ \hline 161\end{array}\)
62 Ramsey Electronics
147． 16
185 Ramsey Electronics
147 Randall Sherman
156 RF Electronics
171 Ridge Systems Co．．Inc
133 Rivendell Associates
133 Rivendell Assoclates ．．．．．．．．．．．．．． 90
RO Service Center

5 S．F Amateur Radio Services
168 Sat
50073
Books
\(98,99,127-130,141,144\)
Moving
.98
Subscriptions
\(98,131,144\) University Microfllms
148 Shaver Electronics
Simple Simon Electroni．．．．．．．． 142
12 Sintec Co
367 Slep Electronics
376 SMP
162 Space Electronics ．．．．．．．．．． 69 Spectronics，Inc．．．．．．．．．．121， 160
68 Spectrum Communications ．．88，89
436 Spectrumíl International，Inc．．．． 123
173 Spider Antenna
69 Surplus Electronics
183 Tayco Communications
316 Telex Communications
170 TET Antenna Systems The Antenna Bank
18 The Blacksburg Group
449 The Ham Shack
57 The Tuned Antenna
76 Trac Electronics
104 Trionyx Industries Universal Communications
155 Universal Distributors Universal Electronics

V－J Products Inc
113
137
422 Valor Enterprises
Van Gorden Engineering
11 Vanguard Labs Viking Ind
48 Vocom Products
302 W．S Engineering
75.143
．．． 134
154 Westland Electronics
83 Yaesu Electronics Corp．．．．．．．．．．．．．Cov．III
476 Yaesu Electronics Corp．．．．．．．． 134
336 Z Assoclates

\section*{73 MAGAZINE}

Books，etc．
Catalog＂Price

日K 101673 DIPOLE 8 LONG WIRE ANTENNAS
\(\$ 5.50\)
\begin{tabular}{|c|c|}
\hline 73300 & 73 BACK ISSUE－BEF ORE JULY 1980 \\
\hline 73350 & 73 BACK ISSUE JULY 1980 THRU OCT． 1989 \\
\hline 73350P & 73 BACK ISSUE NOV 1981 TO PRESENT \\
\hline 73005 & 73 BACK ISSUE -5 YOUR CHOICE \(\$ 10.75\) \\
\hline & \＄100 der magazine for smipeing \\
\hline 73010 & 73 BACK ISSUE－ 10 YOUR CHOICE \\
\hline 73025 & 33 BACK ISSUE－25 YOUR CMOICE \\
\hline 73125 & 73 BACK ISSUE－25 OUA CNOICE
\[
\$ 14.00
\] \\
\hline & \＄750 per ordee lor shopding \\
\hline BK119\％ & allabout cubical quad antennas \＄ 595 \\
\hline 8K1197 & beam antenna mandeook \＄ 595 \\
\hline 6K7307 & bemino the oial \\
\hline BK7309 & Challenge of 160 \＄ \(\mathbf{4 9 5}^{\text {a }}\) \\
\hline Ek1011 & CMOS COOKBOOK．．．．．．．\(\quad \$ 1050\) \\
\hline CT7305 & CODE TAPE－5 WPM－ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Catal & Item Price \\
\hline ct7306 & CODE TAPE－6＋WPM \＄ \\
\hline Cr7313 & CODE TAPE－ 13 ＋WPM \\
\hline Cr7320 & CODE TAPE -20 ＋WPM \\
\hline CT7325 & COOE TAPE－25 WPM \＄4．9 \\
\hline Cr7394 & CODE TAPES（ANY FOUR ABOVE）\＄1595 \\
\hline EK7308 & THE CONTESTCOOKBOOK \＄ \\
\hline 6K7381 & a computergames \\
\hline SG7358 & GENERALLICENSE STUOY GUIOE \＄ 6.9 \\
\hline \multirow[t]{2}{*}{EK7304} & GIANT book of amateur radio \\
\hline & ANTENNAS \(\$ 1208\) \\
\hline － 87321 & a guide tomam radio．．．．．．．．s \\
\hline 8K7322 & HOBBY COMPUTERS ARE HERE．\％ 4.9 \\
\hline \multirow[t]{2}{*}{BK7325} & HOW TO BUILD A MICROCOMPUTER \＆ \\
\hline & REALLY UNDERSTANDIT－ 9.9 \\
\hline \multirow[t]{2}{*}{BK 1201} & MOW TO DEFENO YOURSELF AGAINST \\
\hline & PADAR \\
\hline 日K1028 & IC OPAMP COOKBOOK ．．． 312.9 \\
\hline 8к1230 & Interference manobook ． \\
\hline \(8 \times 7312\) & MAGIC OF HAM RADIO \＆ \\
\hline \multirow[t]{2}{*}{8K1033} & MASTER MANDEOOK OF MAM RADIO CIR \\
\hline & Cults ．．．．．．．．．．．．．．．．．．．．．．．．．． 889 \\
\hline \(6 \times 7340\) & THE NEWHOBEY COMPUTERS \＆ \\
\hline \multirow[t]{2}{*}{6K7383} & THE NEW WEATMER SATELLITE \\
\hline & HANOBOOK ． 88.9 \\
\hline Cr7300 & NOVICE TMEORY TAPES \(\$ 15.9\) \\
\hline \(8 \times 7310\) & OWNER REPAIR OF RADIO EQUIPMENT \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Catalog & ＊Item Price \\
\hline BK7305 & POWER SUPPLY MANDEOOK \\
\hline \multirow[t]{2}{*}{8k1015} & practical antennas for tme radio \\
\hline & AMATEUR \＄995 \\
\hline \multirow[t]{2}{*}{8к1485} & the practical mandbook of Fm \\
\hline & REPEATERS ．．．．．．． 9.95 \\
\hline \multirow[t]{2}{*}{BK7302} & PROPAGA＇ION WIZARD S HANDBCOK \\
\hline & 86.95 \\
\hline OW0250 & OSLCAROS－STYLEW－250 ． 58.95 \\
\hline OW0500 & OSL CAROS－STYLEW－500 \＄ 8139 \\
\hline 0 \(\times 0250\) & OSL CARDS－STYLE X－250 ．\({ }^{\text {S }} 8.95\) \\
\hline OX0500 & OSL CARDS－STYLE \(X \rightarrow 500\)－\(\$ 13.95\) \\
\hline or0250 & OSL CARDS－STYLE Y 250 S \\
\hline orosoo & OSL CARDS－STYLE Y－500 ．\(\$ 13.95\) \\
\hline \multirow[t]{2}{*}{8K1199} & THE RADIO AMATEUR ANTENNA \\
\hline & mandbook ．．．．．．．．．\＄695 \\
\hline 1044 & RF E DIGITAL PEST EQUIPMENT \＄ 595 \\
\hline 8k1059 & RTL COOKBOOK \＄65 \\
\hline 1000 & SHELF BOX \(-1 \ldots\) \\
\hline \(8 \times 1001\) & SHELF BOXES－2．7．．．．．．\(\$ 1.50 \mathrm{e}\) \\
\hline 8×1002 & SMELF BOXES－8ANDUP \(\quad 51.25\) eac \\
\hline \multirow[t]{2}{*}{日K1200} & SIMPLE．LOW COST WIRE ANTENNAS \\
\hline & FOR RADIO AMATEURS \％ 6.95 \\
\hline \multirow[t]{2}{*}{\(8 \times 7311\)} & SOME OF THE best from kilobaud \\
\hline & \＄1095 \\
\hline \(8 \times 7311\) & SOME OF TME BEST ． \\
\hline K7351 & ， \\
\hline
\end{tabular}

Catalog：Item Price
CT1350 SSTV TAPE ．is 595 SG1081 STUDYGUIDE－ADV CLASS－ 695 SG1080 STUDYGUIDE－EXTRA CLASS \＄595 SG7357 STUDYGUIOE NOVICECLASS，S95 EK1190 TMETEMMETERFMMAMOBOOK \＄ 1.95 EB7359 TESTEOUIP LIEV1 COMPONENT
17359 PESPERS LIBVI－COMPONENT
LBT360 TEST EQUIP LIE V2－AUDIO TESTERS
EB7361 TESTEOUIPLIB V3－RADHOEOUIP 4.95
B7362 TEST EOUIPLI8 V3－RADIO EOUIP \(\$ 4.95\) K 7348 TEST EOUIP LIEVA－IC TESTEC．．．．．\＄ 495
 BK1064 TVI COOKBOOK GK73e2 UNDERSTANDING \＆PROGRAMMING CM7300 MICROCOMPUTERS ．．．．．\(\$ 10.95\) ． 81.95 － 550 GK1198 VMF MANDGHANDBOOK \＆ 5.95 EK7370 WEATMER SATEL GK 1202 WORLO PRESS SERVICE FREOUENCIES BK1184 WORLORADIO TVMANDBOOK S 1650日K73t5 WORLDREPEATERATLAS
\(\$ 495\)





The New Standard in High Performance Repeater Control...
-FRIENDLY. POWERFUL EASY TO USE - Human engineered to be your "assistant" at the repeater. with capability second to none.
\(\square\) REMOTELY CONFIGURABLE Change command codes. messages. tone characteristics. timing. and more, remotely! Reliable storage in \(E^{2} P R O M\).
\(\square\) Room to grow: BUILT IN! Features intelligent remote control and meter readback interfaces to synthesized remote bases and links. Planned software upgrade path.SUPPORT - We invented the Computer Controlled Talking Repeater." so we know how to provide the applications assistance. and long term support so crucial to a computer based product.
BRING YOUR REPEATER SYSTEM INTO THE 80'S - Starting at less than \(\$ 1200\) !

The RC-850 Repeater Controller!

Call or write for detailed specifications.

Manual and demonstration cassette tapes available separately.

10816 Northridge Square Cupertino. CA 95014 (408) \(253 \cdot 8085\)

\section*{The Spiter Antemna}

The modern multi-band mobile antenna -switch to \(10,15,20\) or 40 meters without stopping to change resonators.

\section*{Features of the Sp/der \({ }^{\text {TM }}\) Antenna}
- The Spider \({ }^{\text {M }}\) Antenna is less than six feet high and the longest resonator projects out from the mast 24 inches. This gives a slim profile, low height and light weight, offering little wind resistance and eliminating the need for a spring mount.
- Each resonator is tuned to the desired portion of the band by a tuning sleeve which slides over the outside of the resonator.
- SWR is approximaterly \(1: 1\) at the selected resonant frequency.
- Base impedance approximately 50 ohms, requiring no matching network. - Ideal for use on vans, campers, motor homes, travel trailers; also in mobile home parks, apartment houses and condominiums.
- Spider \({ }^{\text {r }}\) Antennas are not made
on a production line; they are virtually custom built.
The Sp/derim Maritimerm is the ultimate antenna for marine use. Constructed of nonmagnetic stainless steel and nickel-chrome plated bronze, and using the regular Spider \({ }^{\text {M }}\) resonators and tuning sleeves.
The Spiderim Adapter converts any monoband antenna with a half inch mast into a modern four-band antenna at a modest price.
For further information, prices write or call

\footnotetext{
MULTI-BAND ANTENNAS 713I awensmouth avenue, sulte 463C CANOGA PARK, CALIF. 91303 TELEPMONE: (213) 341-5460
}

\section*{SATELLITE}

TELEVISION SYSTEMS
\(\therefore\) PRODELIN \(10^{\prime}\) ANTENNA


8 peice for easy shipping/Injection molded for precision
\(\therefore\) CHAPARRAL POLAROTOR
Changes polarity in less than half a second/Feed \(\varepsilon\) LNA never moves
* DEXCEL RECIEVER

Great looks/Great performance/2 YEAR WARRANTY/ Dentent tuning/ Built in modulator
* DEXCEL \(120^{\circ}\) L.N.C.

Eliminates need for old fashioned LNA/2 YEAR WARRANTY/Best LNC made
*ALSO AVAILABLE
1900 to 2500 MHz Microwave Downconverters
Kit........................ . . . . . . . . . . . . . . . \(\$ 28.50\)
Assembled. . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\$ 48.50\)
SLOTTFD ARRAY ANTENNA. ................ \(\$ 21.95\)
COMMERICAL M.D.S. SYSTEM............ \(\$ 169.95\)
* ALSO AVAILABLE

CALL ORDER DEPT. TOLL FREE: UHF T.V.DECODER, (800) 433-5169

INFORMATION CALL: (817) 460-7071

PB RADIO SERVICE 1950 East Park Row Arlington, TX 76010
\(-404\)




\section*{NEW PRODUCTS}

\section*{GaAsFET VHFIUHF AMPLIFIERS}

Lunar has announced a line of narrowband tuned receiving preamplifiers for the VHF and UHF communities. Typical specifications exceed those of previously-available receiving preamplifiers by up to ten times in performance. Exhibiting very high gain at VHF (typically 22-24 dB), moderate gain at UHF (typ. 16 dB ), and a very low noise figure (typ. 0.3-0.4 dB on VHF and 0.5-0.6 dB on UHF land-mobile frequencies), these units are also well-suited to high-rf environments, exhibiting 1 -dB compression power levels of +10 dBm or more.

The good gain, coupled with the very low noise figure, effectively reduces a typical repeater receiver sensitivity to that of ambient limitations. \(6-10-\mathrm{dB}\) improvements in receiver performance have been consistently reported by users in a typical repeater installation between the duplexer and receiver input.

Units are built to the customer's specified frequency, but do exhibit a typical bandwidth of 5\% CF with little degradation in performance. Dc input is well-filtered and regulated, which allows accepting any dc voltage between 12 and 28 V (drain approx. 35 mA ). VHF connector options include BNC, SMA, \(N\) in and out; UHF connector options are SMA, \(N\) in and out, with SMA in BNC out the standard option. SMA to RG-58 connectors are in-
cluded as options for UHF units. Frequencies are available from as low as 15 MHz to as high as the \(800-\mathrm{MHz}\) land-mobile bands.

For further information, contact Lunar Electronics, 2775 Kurtz Street, Suite 11, San Diego CA 92110. Reader Service number 484

\section*{NEW FROM W.S ENGINEERING}

W-S Engineering, manufacturers of the Porta-Peater, have announced the introduction of new related products that will be of interest to both Porta-Peater owners and other amateurs alike.

In addition to the Porta-Peater M-100, which will interface with any two transceivers or receiver and transmitter pairs to create a full-function repeater, W-S Engineering now offers its new Por-ta-Link PL-250 and MB-1 MultiBoard building block.

The Porta-Link PL-250 is a sin-gle-board simplex link and portable repeater that may be interfaced with two transceivers, or two receiver-transmitter pairs, to form a complete repeater system for applications that do not require a CW-ID system. Owners of the Porta-Peater can add the Porta-Link board and have a complete duplex link, remote base, and dual repeater. The PL-250 has on-board controls for timeout duration, hang time, audio balance, local mike gain, and local speaker amplifier gain. Connections to the PL-250

are done via a 22 -pin, 0.156 -inch edge connector.

The MB-1 Multi-Board building block is a "universal" circuit that can provide up to ten different functions. Configured by the user, the MB- 1 can be a variable audio-frequency signal generator, variable radio-frequency signal generator, audible CMOS logic probe, LED output logic probe, repeater beeper, gated monostable, gated astable, pulse stretcher, adjustable timer, individual positive and negative edge triggers, and more.
The MB-1 is completely selfcontained and operates on any dc voltage between 5 and 15 volts. Output level, pulse length, and frequency are fully adjustable with on-board controls. The MB-1 comes complete with an assembly and applications manual, and all parts, sockets, PC board, and accessories are furnished.

For further information about these products, contact W-S Engineering, PO Box 58, Pine Hill NJ 08021. Reader Service number 481 .

\section*{YAESU FT-102}

Yaesu Electronics Corporation has announced the availability of its new FT-102 line of HF equipment.
The FT-102 transceiver utilizes an all-new transmitter section featuring three 6146B final tubes for extremely low distortion. In addition to VOX and an rf clipping-type speech processor, the FT-102 transmit audio may be adjusted for optimum response to the operator's voice.
The FT-102 receiver uses husky JFET components in the front end for wide dynamic range. A number of filter options are available, with wide/narrow filter selection independent of
the mode switch. Audio peak filtering for CW, audio shaping for all modes, and an i-f notch filter provide outstanding intelligence recovery. The noise blanker is highly effective against the "woodpecker" and pulse noises.

Equipped for SSB and CW op. eration, the FT-102 option list includes an AMIFM module for activating those modes. Other accessories for the FT-102 are the FV-102DM synthesized vfo, the SP-102 speaker with audio filter, the SP-102P speaker/patch, and the FC-102 1.2.kW antenna tuner with optional remote antenna selector.

For further information, contact Yaesu Electronics Corp., PO Box 49, Paramount CA 90723. Reader Service number 476.

\section*{DENTRON'S NEW 5-BAND TRANSCEIVER}

DenTron Radio Company has begun production on a new 200-Watt, CW, SSB solid-state transceiver named the Horizon One, which covers 80-15 meters and any \(500-\mathrm{kHz}\) segment of 10 meters. Its sensitivity is .35 uV for \(10-\mathrm{dB}\) signal-to-noise ratio, with selectivity of 2.4 kHz at \(6-\mathrm{dB}\) points and G-60-dB factor of 1.7:1. Performing with the latest MOSFET and ballasted emitter semiconductors, the Horizon One also has a pinpoint digital frequency readout using LSI technology.

Input power is 200 W PEP with an output of 100 W PEP nominal and 80 W PEP on 10 meters. Power requirements are \(12.6-14.5 \mathrm{~V}\) dc regulated at 2.0 Amps maximum and 12.6-14.0 V dc regulated or unregulated at 18 Amps peak. The Horizon One has a built-in VOX, noise blank. er, and hand mike as standard


\section*{ALL YOUR GEAR AT YOUR FINGERTIPS IN A CONVENIENT CONSOLE DESK}

Requires only 60" corner space Formica desk top and shelves Shelf height adjustable Solid maple legs \(\$ 495.00\) check or M.O. Shipped freight collect Allow 30-45 days delivery
Send for detailed brochure

\section*{CQ PRODUCTS}

8280 lanes Ave
Suite 137-1700
W'oodridge, IL. 60517

(Chair and equipment not included) Weight of table is 250 lbs.

\section*{Take your favorite H.T. out for a drive tonight.}

For \(\$ 69.95\) you get the most efficient, dependable, fully guaranteed 35W 2 meter amp kit for your handy talkie money can buy. Now you can save your batteries by operating your H.T. on low power and still get out like a mobile rig. The model 335A produces 35 watts out with an input of 3 watts, and 15 watts out with only 1 watt in. Compatible with IC-2AT, TR-2400, Yaesu, Wilson \& Tempo! Other 2 meter models are available with outputs of 25 W and 75 W , in addition to a 100 W amplifier kit for 430 MHZ
Communication Concepts Inc. \(\begin{gathered}2648 \mathrm{~N}, \mathrm{Aragon} \\ (513) \\ 296 \cdot-1411\end{gathered}\)


The Pro-Am HF mobile series are heavy-duty, slim line construction, designed for the HF Amateur Bands, 75M, A0M, 20M, 15M, and 10M.

Heavy-gauge copper wire wound on \(3 / 8^{\prime \prime}\) Iiberglass, with nickel-chrome brass fittings and 17.7 taper ground S.S. whips assure dependable mobile operafion. The 4'S.S. whip is field tunable for lowest VSWR and double locked with S.S. set screws. The The antenna features \(3 / 8-24\) ferrule to fit standard mobile mounts. Power-rated at 500 watts P.E.P. for top mobile performance. Approx. 8 ' lengith.
\begin{tabular}{ll}
\hline MODEL & BAND \\
PHF75 & 75 Meters \\
PHF40 & 40 Meters \\
PHF20 & 20 Meters \\
PHF15 & 15 Meters \\
PHF10 & 10 Meters \\
\hline
\end{tabular}

Write or call today for complete details.

\title{
VQ Or Enterprises, Inc.
}

185 W. Hamilton St., West Milton, OH 45383
PH: (513) 698-4194, Outside Ohio: 1.800-543-2197
Telex: 7.24.389 ATT: Valor


7dB GAIN
HIGHEST GAIN 2 METER OMNI OUTPERFORMS CONE AND
DOUBLE ZEPP
WORK MORE STATIONS
ELIMINATE NOISE
LIGHTNING PROTECTED ACCESS MORE REPEATERS ASSEMBLE EASILY INSTALL QUICKLY A COMPLETE ANTENNA ALL PARTS INCLUDED 600,000 HAPPY USERS BECOME ONE TODAY ARX-2B \(134-164 \mathrm{MHz}\) ARX-2208 \(220-225 \mathrm{MHz}\) ARX-450B 435.450MHz


\section*{MO:T13}

\section*{MOBILE RANGERS}

MORE RANGE
3 dB GAIN
5/8 ASTAINLESS WHIP
GRIP TIGHT 9OLB
MAGNET
CHROME PLATED BASE NEAT APPEARANCE THUMB LOCK ADJUSTMENT NO WHIP CUTTING LOW PRICE MAGNETIC MOUNTS AMS-147 \(\quad 146-148 \mathrm{MHz}\) AMS-220 \(\quad 220.225 \mathrm{MHz}\) TRUNK LIP MOUNTS ATS-147 \(\quad 146\) - 148 MHz ATS-220 \(\quad 220-225 \mathrm{MHz}\)

BUY FROM YOUR DEALER

THE ANTENNA COMPANY 48 Perimeter Road, P.O. Box 4680 Manchester, NH 03108
Telex-953050
\(-106\)


\author{
DenTron's Horizon One.
}
equipment. Optional accessories include an ac power supply, matching antenna tuner, linear amplifier, and mobile mount.

For further information, contact Tim Neill, Technical Sales Representative, DenTron Radio Company, Inc., 1605 Commerce Drive, Stow OH 44224; (216)-6884973. Reader Service number 485.

\section*{DIVERSITY RECEPTION FOR REPEATERS}

Pegasus Electronics has announced a new diversity receiving system for repeaters. Now you can turn any repeater into a "super repeater" by adding a VS-2 voting system and an rif link. The VS-2 compares the audio quality of any 2 receivers (they need not be matched) and connects the one that hears you best to the repeater for retransmission. Since the VS. 2 is always listening to both receiv. ers, it can continuously update as you go from a peak on one to a null on the other. The result: You have a repeater which sounds like it has no "dead" spots and your users are always readable as long as they are solid into any one of your receivers.

The VS-2 was designed to work with anything. It has all its own level controls and ensures a constant output to your repeater. It was designed to be installed by anyone who knows how to read a scope. The VS-2 is supplied on a single circuit board ( \(51_{6}^{\prime \prime} \times 51 / 4^{\prime \prime}\) ) and contains two squelch circuits (COS). It is fully compatible with 12 -volt logic, 5 -volt logic, and inverted logic by cutting the desired jumpers (or you can use your own logic
and bypass that portion of the VS-2). The VS-2 is not a kit-it comes fully assembled and tested and is warranteed for one full year.

For further information, contact Pegasus Electronics, Inc., 88 New Dorp Plaza, Staten Island NY 10306. Reader Service number 488.

\section*{PHOTOVOLTAIC SYSTEMS}

Encon Corporation, authorized distributors of Solarex photovoltaic products, has a publication entitled The Complete Photovoltaic Systems Catalog which can answer many of your questions about solar energy conversion and distribution. The catalog covers an introduction to photovoltaic systems, photovoltaic cells and panels, renewable energy batteries, charge controllers and metering devices, ac power inverters, how to select a workable system for your needs, basic 12 -volt systems, large-dc/ small-ac systems, components and accessories you will need, solar demonstrators, education. al materials, marine and recreational panels, and much more.

If you have an interest in direct conversion of sunlight to power, you will enjoy this cata\(\log\) and overview of the entire subject. A price guide as well as an applications questionnaire form are included so that you can obtain expert advice and assistance for potential applications that you may have in mind. Encon will assist you with your questions and needs in solar applications.

For further information, contact Encon Corporation, 27584 Schoolcraft, Livonia MI 48150. Reader Service number 479.


\section*{Alpha Delta's Master Control Console.}

\section*{MASTER CONTROL CONSOLE}

Alpha Delta Communications has just announced its new Master Ac Control Console which combines power-surge protection and centralized "on/ off" control of several components. The MACC unit plugs into a single outlet and provides eight plug-in " \(U\) " ground outlets: one "hot" outlet for continuous-ly-powered appliances such as a clock, for example, and seven outlets for individually-controllable components.

The front panel has rocker switches for the individuallycontrollable components, plus a master control "on/off" rocker which allows the entire system to be turned on or off at once. All rockers are lighted when "on."

The surge-protection feature is perhaps the most important feature of Alpha Delta's MACC unit. The delicate circuitry of modern solid-state electronic equipment is particularly vulnerable to damage from power surges and spikes which can be caused by natural or man-made sources such as lightning strikes, electric motors, transformers, wind-blown snow, clouds, fluorescent lamps, power outages, and the like. The MACC is tested to IEEE pulse standards and is rated at 15 A \(125 \mathrm{~V} \mathrm{ac}, 60 \mathrm{~Hz}, 1875\) Watts con. tinuous-duty total for the console.

Priced at \(\$ 79.95\) (US), the MACC is available from Alpha Delta dealers or, for \(\$ 4\) more to cover postage and handling, direct from the factory. Alpha Delta will quote on overseas postage and on the "European Model" MACC-E available with VDE. approved socket for 240 V ac .

For further information, contact Alpha Delta Communications, PO Box 571. Centerville OH 45459. Reader Service number 486 .

\section*{MORTTY SOFTWARE FOR COMMUNICATIONS}

MORTTY is a general-purpose communications program adaptable to almost any set of conventions in current use. It includes ASCII and Baudot capabilities at a wide range of baud rates. There are 18 parameters for adaptation to particular conventions such as full screen, split screen, full or half duplex, and many more. There are 15 disk operations, including disk file send, receive, direct binary to hex upload, hex to binary download, automatic message capture with file sequencing, and automatic answering of messages from a disk file.

The equipment required to make use of the program is an H 89 or \(\mathbf{Z 8 9}\) microcomputer with 32 K of memory and an H88-3 serial interface. MORTTY reprograms the serial intertace for baud rate, etc., according to the communications mode selected, and does the translation beiween ASCII and Baudot when a Baudot mode is in use. In place of the H 89 or \(\mathbf{Z 8 9}\) with \(\mathrm{H} 88-3\), you may use an H 8 with H 19 terminal and H8-4 serial interface with H 17 disk system.

The software required is HDOS v. 2.0, which is the current Heath disk operating system. Heath claims that programs should be upward-compatible with new HDOS releases, but we cannot guarantee that this will always be true.

The price of the MORTTY pro-

\section*{. . . at last - everything at your}

fingertips !!!
Bring ORGANIZATION \& CONVENIENCE to your HAM Station! Eliminate clutter and provide lots of space for everything you need - Tuners, VFO, CW Keyers, Filters, Telephone, Log Book, Etc..
- ANGLED REAR SHELF
- ALL PARTS FITTED
- STURDY CONSTRUCTION
- WALNUT or PECAN FINISH

Radio Equipment NOT Included
F.O.B. Culver City
(CA Residents add \(6 \%\) sales ta \(x\) ) Floor space: 39 "w by 30 " \(d\). Also: 51 " \(w\) by 30 " \(d-\$ 199.50\) Dealers Inquiries Invited

\section*{A Finely Crafted Plece of Furniture With a REAL Purpose . . .}

Call: (213) 837-4870 or Write for Information

\section*{S-F Amateur Radio Servicos}

4384 Keystone Ave., Culver City, CA 90230


\section*{look here 1-713-658-0268}
\begin{tabular}{|c|c|}
\hline ICOM IC740 & 969.00 \\
\hline IC701 (New) & . 800.00 \\
\hline IC490A & 569.00 \\
\hline IC730 & 699.00 \\
\hline IC25A & 309.00 \\
\hline IC3AT/IC4AT & 269.00 ea \\
\hline YAESU FT230R & 299.00 \\
\hline FT1 & 2395.00 \\
\hline FT10ZD / 3 & 749.00 \\
\hline FT707 & 649.00 \\
\hline FT208R/FT708R & 289.00 ea. \\
\hline FRG7700 & 449.00 \\
\hline DRAKE TR5 & 699.00 \\
\hline TR7A & 1450.00 \\
\hline R7A & 1400.00 \\
\hline Cubic 103 & 1095.00 \\
\hline Bird & Stock \\
\hline Kenwood R600 & 299.00 \\
\hline TR7730/TTM & 299.00 \\
\hline
\end{tabular}

Tote ' n Talk Cordless
Base/Telephone
149.00

NEW Signal/One Milspec Soon
Permitron Wireless Burglar Alarm
3 Remotes
199.00

W6TOG Kits ............. Stock
Dèmo TS530S . . . . . . . . . . 600.00
Alpha 78AF
(Hi Serial No.) . . . ..... 2795.00
Kantronics Interface ..... 169.00
Minireader .............. 249.00
Santec HT1200
+ Batt/cord ............. 269.00

Belden 99258, RG8X ... 19c/ft.
8214, RG8 foam ….. 36c/ft

8267, RG213 ........ 43C/ft
8448, Rotor ........... 27c/ft
9405, HD Rotor ....... 45c/ft
AEA MBARO .......... 269.00
MM2 .................. 125.00

CK2 .................... 89.00
Robot 800A ........... 749.00
400 ................. 675.00
Butternut HF6V ......... 125.00
Saxton 450 OHM
Openwire Line
\(20 \mathrm{c} / \mathrm{ft}\)
MENTION YOU SAW IT IN THIS AD MASTERCARD VISA
All prices lob Houston except where indicated. Prices subject to change without notice, all items guaranteed. Some items subjeci prior sale. Texas residents add 6\% tax. Piease add sufficlent postage, balance collect.



\section*{MFJ's VHF converter.}
gram is \(\$ 100.00 \mathrm{ppd}\) in the USA. Ohio purchasers should add 6\% sales tax. Foreign prices will depend on the additional expenses of mailing. This price buys a printed copy of a thorough user's guide of about 60 pages and a \(51 / 4^{\prime \prime}\) hard-sector disk with the absolute binary MORTTY program.

For further information, write "MORTTY program" or "Phillip L. Emerson" at 3707 Blanche, Cleveland Heights OH 44118. Reader Service number 480.

\section*{MFJ-313 POLICEIFIREI WEATHER BAND CONVERTER FOR 2.METER HAND.HELDS}

MFJ has introduced its new compact VHF policelfire/weather band converter for 2-meter hand-helds.

It turns your synthesized \(144-148-\mathrm{MHz}\) hand-held into a policelfire receiver (154-158 MHz ) and gives you direct frequency readout on your handheld. A programmable scanning hand-held becomes a sensitive programmable policelfire scanner.

You can also receive weather, marltime coastal, and more on the \(160-164 \cdot \mathrm{MHz}\) band. Feedthrough allows simultaneous
scanning of both 2 meters and the \(160-164-\mathrm{MHz}\) band.

A high-pass input filter and a \(2.5-\mathrm{GHz}\) translstor give very high uniform sensitivity over both the \(154-158 \cdot \mathrm{MHz}\) and \(160-164-\mathrm{MHz}\) bands. Each band is crystal-controlled for excellent stability.

A Bypass/Off position allows transmitting through the converter. It is protected against burnout if you transmit (up to 5 Watts) with the converter on. Short direct-signal paths give low insertion swr.

This compact converter measures only \(21 / 4 \times 11 / 2 \times 1 \frac{1}{2}\) inches and weighs 4 ounces. A single AAA battery (not included) gives you months of operation. The cabinet is black and is made of rugged, lightweight aluminum for years of hard use. BNC connectors mount the converter directly between your handiettalkie and antenna with. out cables.

For further information, contact MFJ Enterprises, Inc., PO Box 494, Mississippi State MS 39762. Reader Service number 483.

\section*{NEW FROM VOCOM}

VoCom Products Corporation has announced two new prod-


Channel Master's model 6128 satellite receiver.
ucts for the amateur \(220 \cdot \mathrm{MHz}\) band: a "two Watts in, twenty Watts out" power amplifier with a suggested list price of \(\$ 84.95\) and a "Power Pocket" for the Icom IC-3AT hand-held transceiver with a suggested Ilst price of \(\$ 229.95\).

With the Power Pocket, the \(220-\mathrm{MHz}\) operator now has the same advantage that he had on two meters: the convenience of a hand-held and the punch of a mobile rig. Styled essentially the same as the two-meter version, the \(220-\mathrm{MHz}\) Power Pocket offers a large speaker, an audio amplifier, an rf power amplifier, and a battery charger that meets the current requirements of the radio. For example, you can use the amplified hand-held in your car on the way to work, hold your own in any QSO, and arrive with a battery that is still charged... as good or better than it was when you started!

For further information, contact VoCom Products Corporation, 65 East Palatine Road, Prospect Heights IL 60070. Reader Service number 478.

\section*{EARTH-STATION RECEIVER}

Channel Master has just in. troduced a new Earth-station receiver, the model 6128, offering a wide range of features and advanced electronics. The receiver is a 24 -channel synthesized unit employing a single downconverter installed at the dish and a receiver unit located in the home.

For simplified tuning, the full 24-channel number format is displayed on the receiver's LED digital channel display. Channels are power-selected by Up/ Down push-buttons and fine tuning is provided with the assistance of the Center/Fine Tune meter.

Two Priority Audio buttons select audio channels (6.8 and 6.2 MHz), while additional audio channels may be selected manually.

A signal-strength meter shows the relative strength of received signals. The Channel Scan button is depressed to cycle the recelver through the complete horizontal channel range in about one second, as an aid to aiming the antenna.

Automatic polarity switching allows one-button selection of any channel without additional polarity adjustments, and a built-in modulator eliminates the need for a separate modulator. The model 6128 is capable of receiving normal or inverted video signals. An optional model 6192 remote control unit of. fers the added convenlence of remote channel selection and fine tuning.

For further information, contact Channel Master, Division of Avnet, Inc., Ellenville NY 12428. Reader Service number 482.

\section*{NEW TS-830, TS-930, R-820 FILTER KIT}

Fox Tango Corporation has announced the availability of a special high-quality matched-filter kit designed to significantly improve the selectivity of the popular Kenwood R-820, TS-830, and new TS. 930 series. These rigs all use similar dual-conversion i-f systems with \(8830-\mathrm{kHz}\) first and \(455 \cdot \mathrm{kHz}\) second inter: mediate frequencies. I-f bandwidth filtering at both frequencles is used to provide VBT (variable bandwidth tuning). However, in the TS-830S model, the \(2.7-\mathrm{kHz}\) bandwidth of both origi. nal filters (resulting in a net bandwidth of 2.4 kHz with VBT off), the combined filter shape
factors ( 1.34 with VBT off), and a combined ultimate rejection of about 80 dB leave much to be desired.

Under the same conditions, the Fox Tango filters (both 8 -pole discrete crystal units instead of the original monolithic
and ceramic types) each have a bandwidth of 2.1 kHz (net bandwidth of 1.99 kHz ), a combined shape factor of 1.19 (the lower, the better), and an ultimate rejection greater than 110 dB (the higher, the better). The effects are even more pronounced when

VBT is used to narrow the operating i-f bandwidth to reduce QRM.

The matched-pair filter kit, complete with detailed instructions, two \(2.1-\mathrm{kHz}\) Fox Tango filters (guaranteed for one year), and all needed cables and parts,
is being offered at an introduc tory price of \(\$ 150\) plus \(\$ 3\) for shipping ( \(\$ 5\) for air).
For further information, contact Fox Tango Corporation, PO Box 15944, W. Palm Beach FL 33406; (305)-683-9587. Reader Service number 477.

\section*{REVIEW}

\section*{COM-RAD INDUSTRIES CR1720A \\ "MOBILE EAR" ANTENNAS}

Jim Waldron of Com•Rad has been interested in space-saving antennas for a long time, and he has built and tested dozens of them with the idea that a better antenna can be built and is much needed. Jim's idea of a "better" antenna is one that is small, compared with a full-size antenna for the band selected; one that is rugged and has a low profile; one that is easy to tune; and one that is duck soup for mobile operation, yet may be used in portable or fixed operation as well.

At first glance, the Mobile Ears look something like a cross between a giant coil and a short dipole, and that is almost exactly what they are. The large-diameter helix is resonated to frequency by the capacitance-toground of the adjustable "reso-nator"-a capacity hat which is basically two telescoping whip antennas mounted above the coil and parallel with the roof of the automobile. The helix radiates vertically-polarized rf energy in the radial, rather than axial, mode... similar to that from a conventional vertical antenna.

The CR1720A comes from the factory with a large magnetic mount that will defy almost any attempt to remove it accidentally from the roof of your car once it has been placed in position. The shunt feed has been facto-ry-preset to provide the proper \(50-\mathrm{Ohm}\) feedpoint impedance, and a UHF chassis-type rf connector (SO-238) is located on the center support pillar just above the mounting base. Although it is normally used with the mag. netic mount supplied by ComRad, the Mobile Ear can be used with any mount that is connected directly to ground, such as groundplane radials or the like.

The reason for this is that the coaxial cable is connected to the antenna rather than to the mounting base; for proper operation, the base of the antenna should be grounded. For example, you might wish to replace the magmount with a permanent base for the home station, and this can be done by using the 3/8-24 bolt at the bottom of the antenna-the one that the magmount screws into.
The CR1720A comes completely assembled, except for attachment of the telescoping whips to the top of the support pillar. This is easily and quickly done by sliding the setscrew ends of each whip over the \(5 / 16\)-inch stubs at the top of the support pillar and tightening the setscrews.
After you have mounted the antenna in the desired location on your car roof, connect an swr bridge in the line between the antenna and your transceiver or transmitter by means of a short length of coaxial cable, placing it as close as practical to the antenna itself (within two or three feet). Set the telescoping whips to approximately 50 inches each, and set your transmitter to the desired operating frequency. Apply a small amount of power and look at the swr. Small incremental adjustments of
whip length by sliding the ends in or out (out-or longer-to lower the frequency and in-or shorter-to raise the frequency) will quickly provide a \(1: 1 \mathrm{vswr}\). Observe the lowest possible swr that you can get with your particular vehicle. If it isn't less than about 1.5:1, you can move the clamp ring of the shunt feed in tiny increments to achieve a perfect match. In the case of the test antenna, this wasn't necessary, as a perfect 1:1 match was obtained immediately.

I checked the bandwidth after achieving a perfect match and found that the frequency could be moved 65 kHz in either direction from the resonant frequency without exceeding \(2: 1 \mathrm{vswr}\). This means that with most rigs you can operate over your favorite phone or CW segment of the 20 -meter band without any retuning at all. Of course, if you are a perfectionist, you can achieve exact matching at any frequency within the band...no sweat.

In the case of the test antenna, the inner sections of the whips were fully extended and the outer sections only partly extended. This gives the largest possible diameter at all times. I resonated the antenna at 14.025 MHz and found each whip length to be exactly \(531 / 4\) inches, measured from the surface of the support pillar. On the phone portion of twenty meters, 1 found that 14.3 MHz required a whip length of only \(48 \frac{1}{2}\) inches.

This is likely to vary slightly from car to car because of the different sizes of roof area, etc. A station wagon, for example, will have more groundplane area than a tiny subcompact, but both will work!

No doubt you are anxious to hear about results, and I won't disappoint you. The twenty-meter Mobile Ear really works. After tuning the antenna to resonance and firing up the 73 FT- 707 transceiver (with my 1980 Olds Omega parked in my driveway), I found myself in the middle of the WAE contest on Sunday afternoon, August 15th. I answered many calls and received replies from each one. All were 599. Now, l'll admit that this is often the case in a contest, to make things easier for the report giver, but I got an answer to the first call every time! Not only that, but when I called CQ I got answers, too. In the space of only a few minutes I had worked UT5, UQ2, DL7, OZ1, OH5, UK5, G4, N9, K0, and W4 lands! (Naturally, the US stations don't count, but I wanted to try the antenna.) To date, l've not done much with phone, as I am predominantly a CW operator. However, a few contacts up around 14.300 have been made with good results-G3, for example... and others.

I noticed that the noise pickup of the antenna is surprisingly low compared with other verticals l've tried. One possible explanation could be that the com-

ponents are horizontally-configured and thus less subject to man-made or natural QRN.
I should mention that the CR1720A is beautifully madethe helix is heavy-duty aluminum tubing and the whips are stainless steel. The supporting pillar appears to be heavy-wall PVC and the magmount is chrome-plated steel. Everything considered, the CR1720A is a very fine portable/mobile/fixed antenna, one that the 73 staff
really liked. You ought to know that the antenna doesn't need to be removed to put my car in the garage, so yours shouldn't need to be removed either, unless you want to. In public parking facilities, just slide in the whips, remove the coax, take the Mobile Ear off the roof and stow it in the trunk. It takes about 20 seconds
and, best of all, it can be remounted and ready to go in about the same time. In my case, I ran the whips fore and aft
paraliel to the car's centerline so that they wouldn't be sticking out into the side. If you live in an apartment or condo where outside antennas are forbidden, you might find one of the Mobile Ears to your liking.

By the way, the "17" part of 1720 means that this antenna will also work on the \(18-\mathrm{MHz}\) (17-meter) band whenever that becomes available to amateurs in the United States. The

CR1720A is one of three Mobile Ears which cover \(12 / 15\) meters, \(17 / 20\) meters, and \(30 / 40\) meters: versatile, indeed. The CR1720A lists for \(\$ 55\) plus \(\$ 4\) shipping, direct from the manufacturer.

For further information, contact Com-Rad Industries, 1635 West River Parkway, Grand island NY 14072. Reader Service number 487.

Jim Gray W1XU
73 Magazine Staff

\title{
W2NSD/1 NEVER SAY DIE editorial by Wayne Green
}

\section*{from page 8}
a lot, I suspect. It read: C/Q/ THE/FASTEIET/GROWING/ AMATEUR/RADIO/MAGAZINEI
That's operculiform sending . . . and does not surprise us.

\section*{BUNCH GETS BASHED!}

The recent Bash debacle in Baltimore should put an end to the fantasy that Bash is doing anyone any good except Bash. I also hope it will shut up a lot of the hams who are moaning about the code and ignoring the fact that Bash has totally done away with any need for technical competence... or at least had until the Baltimore epic.
As usual, Bash collected his most generous fees and set about helping a large group of hopefuls to memorize the answers to the FCC exams. He drilled them thoroughly, as always. But this time the FCC had made some very minor changes in the wording of the exam, with the result that \(89 \%\) of his group flunked. The word is that the changes were smail, such as in some of the values in the math problems

One of the new questions for the General class had to do with the yagi antenna, asking which way it radiated energy. Only one of the Bash trainees got this one right! We're dealing with massive ignorance of amateur radio theory, not superficial ignorance, with these memorization sessions and the Bash books.

You know, l've been writing about this problem for quite a long time now and l've had almost zero response from readers. I have yet to hear of one single case where an amateur or a club has protested to a ham dealer carrying the Bash books. Not one case of an irate ham tearing up the books. No protests to \(C Q\) for carrying the ads for these pernicious books. No, it is obvious that no one really gives a damn whether a newcomer to amateur radio has even the slightest technical knowledge or even the ability to pass a fair test. So why all the fuss about Morse code? Am I talking to a bunch of hypocrites?

The Bash books and the Bash high-priced blitz weekend course are designed for one thing: to help people cheat at the FCC exams and bypass the entry requirements. As long as you don't care if people cheat to get a ham ticket, why should you care whether they are sold by Sears along with a iwo-meter \(H T\) ? I don't see any difference, do you? If you really, sincerely, believe that people who cheat to get their ham licenses are suddenly going to be wonderful and productive hams once they get the magic paper from the FCC, then you also believe in the tooth fairy and that Congress will balance the budget. In other words, you're crazy.

Frankly, l'd rather see Sears making all that money instead
of Bash; at least we would have more than a tiny dribble of new hams. Bash, despite his heroic efforts, has only been able to bring in a few thousand new hams for us. True, he's probably responsible for much of the few we've had. But if we are going to go along with the Bash system, which you have wholeheartedly accepted, let's go all the way and get some mass merchandis ers into the act.

You've seen this thing happening and you haven't done a damned thing about it. Why should I have any respect for you? The hypocrisy over the code just makes this all the more irrational. And don't try to tell me that this is all news to you. Baloney.

\section*{NO SECOND LANGUAGES}

There has been a liberally. fueled effort to cope with the inrush of Hispanics by allowing them to continue to use Spanish in school rather than force them to learn English. Fortunately, there is now a gathering movement against this policy. We showed that the "melting pot" system worked in America and then we tried to ignore it.

The more we keep newcomers to the United States able to make do without learning English, the more we are taking away from them the benefits which they presumably came here for. I'd like to see our schools teaching foreign languages, but not catering to students who do not have a solid use of English. I'd like to see the publication of foreign-language newspapers and foreign-language radio and television programs discouraged.

The lesson in Canada of how different languages split a country should be heeded. When a group in a country holds on tight to its language and culture, it is
a disruptive force. Americans living in other countries tend to stick logether and avoid learning the language as much as possible. This hurts both them and the country in which they are living.

The Indians (Asian) have long had a problem with ihis. In every country where there are a significant number of Indians, they are clannish and generate resentment with the other people. We don't have many Indians in the US, so we are not aware of them, but we do see the Chinese, who have the same problem. For many years we sort of accepted that the Chinese for some reason don't know English and run either laundries or restaurants.

Both the Indians and the Chinese are very hard-working people and, I suspect, if either group had made an effort to integrate into their new countries, they would have virtually taken over. Of course, Americans used to be hard-working people... and a few still are. . .but for the most part I see few remnants of this heritage. Perhaps we are most fortunate that the Chinese in America are so clannish and thus are kept from enjoying and benefitting from our educational opportunities.

We still live in a world where hard work pays off. This is one of the reasons we have so few wealthy people. Given equal opportunity, I suspect that the US would be as proportionately populated with wealthy Chinese as it is wealthy Jews. In Taiwan, Hong Kong, and Singapore, we see how well the Chinese can do when they are not held down by Communism. Perhaps we are fortunate, in a way, that the political systems in China have been so destructive. I'm sure that the Chinese could, if working in a free country, run circles around us.

\section*{Wayne Green Books}


1以リ11 3 Hyidudu

Leam Digital
Electronics While Building Your Own Computer!


- TRS-80 and TRSDOS are trademarks of the Radio Shack Di. vision of Tandy Corporation.

\section*{TEXTEDIT-A Complete Word Processing System in kit form \\ by Irwin Rappaport}

TEXTEDIT is an inexpensive word processor that you can adapt to suit your needs, from writing form letters to large texts. It is written in modules, so you can load and use onty those portions that you need. Included are modules that perform
-right justilication
- ASCII upperllowercase conversion
-one key phrase entering
- complete editorial functions
- and much more!

TEXTEDIT is wiltien in TRS \(80^{\circ}\) DIsk BASIC. and the modules are documented in the author's admirably clear tutorial writing siyle. Not only does Irwin Rappaport explain how to USe TEXTEDIT, he also explains programming techniques implemented in the system TEXTEDIT is an inexpensive word processor that helps you learn about BASIC program ming. It is writen for TRS-80 Models I and Ill with TRSDOS \(2.2 / 23\) and 32 K

\section*{BK7387 \$9.97 Disk Available DS7387 \$19.97} 0.88006.050.6

\section*{Annotated BASIC-A New Technique for Neophytes.}

BASIC programming was supposed to be simple-a beginner's programming language which was so near to English that it could be easily under stood. But, in recent years, BASIC has become much more powerful and therefore much more difficult to read and understand. BASIC simply isn't basic anymore.
Annotated BASIC explains the complexities of modern BASIC. It includes complete TRS.80' Levell BASIC programs that you can use. Each programis annotated to explain in step by-step fashion the workings of the program. Programs are llowcharted to assisted you in following the operational sequence. And-each chapter includes a description of the new concepls which have been introduced.
Annotated BASIC deals with the hows and whys of TRS 80 BASIC programming. How is a program put together? Why is it written that way? By observing the programs and following the annotation. you can develop new techniques to use in your own programs - or modity commercial programs for your specitic use
Annotated BASIC Volume I contains Projecting Profits. Surveyor. Things to Do. Tax Sheller. Introduction to Digital Logic. Camelot, The Soundex Code, Deduction, Op Amp, Contractor
Cost Estimating
BK7384 \(\$ 10.95\) ISBN \(0-88006-028 \times \quad\) AVAILABLE NOW!
Annolated BASIC Volume 2 contains Rough Lumber List. Trip Mieage. Flight Plan. OSCAR Dala, SWAAAntenna Design. Supermare. Petals Around the Rose. Numeric Analysis. Demons, Air Raid, Geography Test, Plumbing System Design
BK7385 \(\$ 10.95\) ISBN 0.88006037 .9
Order Both Volumes and Savel Bk738402 \(\$ 18.95\)

\section*{KILOBAUD KLASSROOM-}

\section*{A practical course in digital electronics}

\section*{By George Young and Peter Stark}

Learning electronics theory without practice isn't easy. And its no fun to build an elec tronics propect that you can't use. Kllobavo ktassroom the popular series lirst published in Kilobava Microcompuling. combines theory with practice. This is a practical course in digital electronics. It starts out with very simple electronics propects. and by the end of the Course you'll construct your own working microcomputer!
Authots Young and Statk are experienced teachers, and their approach is simple and direct. Whether you're learning al home or in the classroom, this book provides you with a solid background in electronics - and you"ll own a computer that you built yourself
Kilobaud Klassroom conlains Getling the Ball Rolling, Gates and Flip. Flops Explained. J.K Filp. Fiops and Clocked Logic, PC Boards and Power Supplies. Hardware Logic al Functions Voltage. Current and power Supplies, Transistors, Diodes and OP Amps. Pulses and More ulses, Counters and Regisiers, Bus Trafic Control, ROM and RAM Mernoties. I/O Circuitry. Parale and Silly Connections. Finaly, the knobaud krescendo. Eproms and Troubleshooting. Expan sions and Programming, Machine Language Piogramming. Assembly Language Program ming. Connecling to the Outside World

ISBN 0.88006027: AVAILABLE NOW! BK7386 \(\$ 14.95\)
THE NEW WEATHER SATELLITE HANDBOOKBy Dr. Ralph E. Taggart WB8DQT-
Here is the completely updated and revised edition of the best-selling weather Satellite Handbook-confaining all the informalion on the most sophlsticated spacecrati now in orbit. D. Taggant has written inis book to serve both the expertenced amateur satellt tells you how but solic nardware desiens and all ine instructions necessary slalion. Norjusideas ate included An entice chapter st devoted to microcomputers and ine Weaine Sail Station, and for the thousands of experimenters who are operating stations The Now Weather Satellife Handbook details all the procedures necessary to loulow the New Weather Salemire Mandbook detals all the procedur necesary to tollow the curren pacecrall
Weather Satellite contains Operational Salellite Systems, Antenna Systems, Weathe Satellite Receivers A Cathode Ray Tube ICRTM Monitor for Satellite Picture Display. A Direct-Printing Facsimile System Ior Weather Satellite Display. How to Find the Setetilie Test Equidment. Microcomputers and the Weather Sateilite Station, Stalion Operations
IS8N 0-88006-015-8 avallable now! BK7383 \(\mathbf{8 . 9 5}\)

\section*{FOR TOLL-FREE ORDERING CALL 1-800-258-5473 WAYNE GREEN BOOKS - PETERBOROUGH NH 03458}

Use the order card or itemize your order on a separate plece of paper and mail to Wayne Green Books Alt: Sales - Peterborough NH 03458 Be sure to include check or detailed credit card Information. (Visa, Master Charge or American Express accepted.)
No C.O.D. orders accepted. All orders add \(\$ 1.50\) for the first book, postage and handing; \(\$ 1.00\) each additional book; \(\$ 10.00\) per book forelgn air mail Please allow 4-6 weeks after publicalion for delivery. Questions regarding your order? Please write to Customer Service at the above address.

FROM TAYCO.
magnavox fv 25 - 26 Channel
CABME TV CONVERTER


Get The Most From Cable TV
VHF-MIDBAND-SUPERBAND
- Sebect any channal with easy pushoutton tuning
from up to 25' away - Perfect for the bedroom TV
- Saves wear on TV tuner - avoid costly repairs
- Ideal for the handicapped Easy 5 minute instailation
- Receives those EXTRA channels your TV cant get
- Works with any TV - 90 Day Guarantee only s \(5 \%\) e5

2-Why Splitter 2.19 Mail Order SPECI
"F" Fittings \(\quad 23 e a-10 / 1.80 \quad \$ 49.95\)
24 Hour RG/59 \(11 / 1 /\) t.
24 Hour Order Line NVSAdd Tax 2 . We Pay Sthipping
(607) \(962-7313\) Order Direct From C.O.D's - \$1.50 extra

TAYCO COMMUNICATIONS
R3. 146A Narrows Ck, Rd. - Corning N. Y. 14830 DEALERS WANTED - ん 183

\section*{DX TXT 1.0}

A Great Circle Calculator plus Log in an Apple Computer. Information on 467 specific worldwide locations \((318+50\) states + ...). Enter your coordinates and DX TXT will calculate the short path beam heading and distance from your QTH. Any location callable by Prefix, location name, or record number. Data bank includes geographic descriptor, specific location, IRC, and Zone

Requires an Apple \({ }^{\text {s }}\) Computer with one Disk II and DOS 3.3. Printer function optional
\(\mathbf{\$ 3 9 . 9 5}\) plus \(\$ 2\). S 8 H
(Ark. residents add \(4 \%\) ) Demo Disk available Dealer Inquiries Invited

LANNES JOHNSON
100 Plaza Street
West Helena, AR 72390
TRS-80 VERSION AVAILABLE SOON

\section*{SUPER LOW PRICES}

AZDEN PCS-4000 2-METER AZDEN PCS 300 2-METER HT SANTEC 14 UUP 2-METER HT SANTEC 440UP HANDHELD KENWOOD 2500 HANDHELD YAESU FT-208R 2-METER HT YAESU FT-708R 440 HT TEMPO S-15 2-METER HT
TEMPO S2 220 HT TEMPO S2 220 HT \(\$ 249.00\) ALI. KENWOOD \& ICOM HF RIGS 12\% OFF
ALI. LARSEN 2.METER ANTENNAS 15\% OFF
ALI YAESU \& TEN-TEC HF RIGS 15\% OFF ALI. HYGAIN \& HUSTLER ANT. 30\% off ALI. MFJ PRODUCTS \(15 \%\) OFF LIST RADIOS ANTENNAS \& ACCESSORIES ARE IN NEW FACTORY SEALEI CARTONS FULL MANUFACTURERS WARRANTY PRICES CASH \& SHIPPING CREDIT CARIDS ADD 3\%.
SHA VER RADIO, INC.
1378 S. Bascom Ave. San Jose, Calif. 95128 \(408.998 \cdot 1103\)
\$299.00 \(\$ 285.00\) \(\$ 289.00\) \(\$ 319.00\) \(\$ 299.00\) \(\$ 309.00\) \(\$ 329.00\) \(\mathbf{5 2 4 9 . 0}\)
.

RE DS

1378 S. Bascom

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{DIGMAL DISPAY} \\
\hline & free trial YAESU heath drake COLLINS KENWOOD \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Men yaesu digital displays converted for yaesu kemwod heath COLINS AND DRAKE TRAMCEIVERS RCCEIVERS RND TRASMITTERS Sactive red led plgits pead dom To 10 Hz . re:AR pamel 10 Hz DIGIT DEFEAT SHITCH. FROM COLD MaX. 100 hz DRIFT IM 24 HRS. \\
 \\
 IF FOUR EXTERML VFO JACK 15 USED FOR A WFO, REC.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 "FT100 PTT400 \& 401 "FT560 \& 570 "HH100-101 -SB100-102 \\
-SB300-303 HR1680 -.................. ALL PARTS \& INFO. \(=\$ 125.00\)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{GRANDSYSTEMS}} \\
\hline & \\
\hline P.0. BOX 2171 BLAINE MASH. & 20352 yon Ave. \\
\hline & \\
\hline
\end{tabular}

\section*{C.B. SPECIAL}
(Repeat of a sell out) CONVERT THESE TO 10 METER FM
New Hy Gain 40 channel printed circuit boards assembly (Squeich pot volume control and channel switch not included) Boards sold as is. Dimension \(6 \times 6\)
\[
1-9 \text { pcs } \$ 7.50 \text { as. }
\] 10-49 pce \(\$ 6.50\) ea. (While quantities tast)
REMOTE 40 CHANNEL C.B. Remotes have a metal frame Speaker plastic case. and contiol mic not included Sold as is \$14.95 ea

\section*{C.B. BARGAIN}
C.B coards missing parls or damaged Can be used for spare parts. Buy severa \(\$ 3.50\) ea
Order intormation. Please add \$4.OC for S/H via UFS. COD's accepted for orders totaling \(\$ 50.00\) or more Florida residents add \(4 \%\) sales tax. Minimum order \(\$ 15.00\) Foreign orders US lunds only add \(20 \%\) lor SIH MASTER CARD and VISA accepled
Surplus Electronics Corp. 7294 NW 54th St.
Miami FL 33166
P.H.H 305-887-8228


YAESU FT-207R OWNERS
AUTO SCAN MODULE AND BATTERY SAVER KIT


\section*{CB TO TEN METER} CONVERSION KITS
10 METER FM-Limiter discriminator board with specific instructions to fit over 80 different AM \&
SSB chassis
SSB-AM KITS-Now in stock kits for most CB models-23 or 40 channels
NEW \& USED-FM-SSB-AM converted C.B.'s in stock ANEXTER MARK ANTENNAS
- You saw them at Dayton. Now in stock the HW-3 three band helewhip that covers 10-15-20 meters with no traps
FREE CATALOG-Write or call today INDEPENDENT CRYSTAL SUPPLY COMPANY

141 Rt. 6A, Box 183
Sandwich. Ma 02563.0183 Sandwich, Ma. 02563-0183 (617) 888.4302 \(-78\)
```

\geqslant\geqslant BIT"O"BYTE ₹₹

```

All Prices Include Shipping and Tax in the U.S.A. ALL DISK are WARRANTED against material defects for 90 days from date of purchase.
- \(51 / 4\) inch Diskettes (soft sectored). Center Reinforcing Ring, Jacket and plastic box-stand \(=\$ 27\) for box of 10 to 20.20 to 100 is \(\$ 25\) per box.
- SYMTEC HIGH RES LIGHT PEN - With soft ware \(=\$ 185.00\)
- 16K RAM CAPD for the APPLE II or II + BARE BOARD \(=30.00\)
- PADDLE-ADAPPLE only \(=\mathbf{\$ 2 7 . 5 0}\) - MAGIC KEYBOARD only \(=\$ 86.00\)
- MICROBUFFER II For most printers 32 K \(\$ 250.00\)
Epson Parallel \(16 \mathrm{~K}=\$ 135.00\)
Epson Serial \(8 \mathrm{~K}=\mathbf{\$ 1 3 5 . 0 0}\)
- ECHO II Speech Synthesizer with Software on 3.3 disk and Speaker \(=\$ 170.00\)
- THUNDERCLOCK PLUS with software \(=\mathbf{\$ 1 2 5 . 0 0}\) BSR X-10 INTERFACE OPTION \(=\mathbf{\$ 4 5 . 0 0}\) DOS. DATER DISK \(=\mathbf{\$ 2 0 . 0 0}\)
PASCAL SOFTWARE DISK \(=\mathbf{\$ 2 0 . 0 0}\)
- RAMDISK•320 = \$1225.00

Advertised in SoftTalk.
- I will carry other items in the future. If you don't see what you need let me know. Coming soon VISA charging and computer ordering.

Most products carry a 90 day warranty. The prices may change without notice. Please send ORDERS with payment and inquiries to:
-153 BIT "O" BYTE P.O. Box 60972 Sunnyvale, CA 94088

\section*{GIB \\ HIGH PERFORMANCE PRESELECTORS}

MODEL P50 to P500

- 50-500 MHz
- Ultimate rejection over 80 dB
- Five large helical resonators
- Low noise
- High overload resistance
- Typical rejection figures \(\pm 600 \mathrm{kHz}\) at \(144 \mathrm{MHz}:-30 \mathrm{~dB}\) \(\pm 1.6 \mathrm{MHz}\) at \(220 \mathrm{MHz}:-40 \mathrm{~dB}\) \(\pm 5 \mathrm{MHz}\) at \(450 \mathrm{MHz}:-45 \mathrm{~dB}\)
- The solution to interference, intermod and desens problems on repeaters
- 12V DC operation
- Dimensions only \(1.6 \times 2.6 \times 4.75\) excluding connectors
- Custom tuned to your trequency
- Low cost - only \(\$ 69.95\)
- Allow \(\mathbf{\$ 2 . 0 0}\) for shipping and handling

We have a complete line of transmitter and receiv-
er strips and synthesizers for Amateur and com. mercial use. Write or call for our free catalog. We welcome MasterCard or VISA

\section*{GLBELECTRONICS}

1952 Clinton St., Buffalo, N. Y. 14206 1-(716) 824-7936, 9 to 4
 (Fully tested. programmed. assembled) W-S ENGINEERING P.O. BOX 58, PINE HILL, N.J. 08021 (201-852-0269)


\section*{The interface \({ }^{\text {tm }}\)}

\section*{Sugg. Price \$189.95}

Your personal computer becomes a complete \(\mathrm{CW} /\) RTTY/ASCII send and receive terminal with The Interface linking it to your transceiver.
If you own an Apple II or Apple II Plus, Atari 400 or 800, TRS-80 Color Computer, or VIC-20, The Interface will put your computer "On-The-Air"
Software for each system features split screen display, buffered keyboard, status display, and message ports. Attach any Centronics compatible printer for hard copy. Software is available, on diskette for the Apple and program boards for the others, at an additional cost.
\begin{tabular}{cccc}
\begin{tabular}{c} 
Apple \\
diskette
\end{tabular} & \begin{tabular}{c} 
Atari \\
board
\end{tabular} & \begin{tabular}{c} 
VIC-20 \\
board
\end{tabular} & \begin{tabular}{c} 
TRS-80C \\
board
\end{tabular} \\
\hline\(\$ 29.95\) & \(\$ 49.95\) & \(\$ 49.95\) & \(\$ 59.95\)
\end{tabular}

See The Interface at your authorized Kantronics dearer, or contact:

\section*{eekantronics}
(913) 842-7745 1202 E. 23rd Lawrence, Kansas 66044

RIG TROUBLES
GOT YOU DOWN?
- YOU COULD SHIP YOUR RIG TO THE FACTORY FOR REPAIR.
- YOU COULD SHIP IT TO RQ SERVICE CENTER FOR REPAIR.
-BUT YOU STAND A GOOD CHANCE OF FIXING IT YOURSELF WITH HELP FROM YOUR OWN COPY OF "OWNER REPAIR OF RADIO EQUIPMENT"'
-THIS BOOK WILL BE SHIPPED POSTPAID FROM K6RQ FOR \(\$ 8.95\)

RQ SERVICE CENTER 14910 LG Blivd.
Los Gatos, CA 95030

\section*{SHOP BY MAll}

\section*{SPECIALTIES}

QSL Cards
Log Books,
Coax-Seal, \(5^{\prime}\) or \(50^{\prime}\) rolls Covercraf! Dust Covers

MAGAZINES
(single copies)
Byte
Popular Computing QST
Hom Radio
73
CODE TAPES
Kantronics ARRL

\section*{BIRCH HILL SALES}

PO. Box 234 Peterborough. NH 03458



\section*{NEW DX} ANTENNAS QUALITY - ECONOMY

WE MANUFACTURE MONOBAND YAGI BEAMS TRI BAND YAGI BEAMS CENTER INSULATORS - BALUNS DUMMY LOADS - AND MORE

All DX products are fully guaranteed Send large S.A.S.E. for free catalog. Dealer inquiries are welcome

ID X Nignal Co.
P.O. BOX37, Locon, 1161540 Phone (309)246-2087

\section*{FREE CATALOG}

\section*{SALE SALE SALE}

\section*{GOING.OUT.OFBUSINESS SALE}

\author{
Last Day.Dec 31ST 1982 \\ CALL US!
}

If we have what you want in stock we will beat ANYONE'S price and ship it FREE!

No charge cards cash or cashier's check

Ben Franklin Electronics \(1151 / 2\) N. Main Hillsboro KS 67063 316-947-2269
tool kits and cases

Jensen's new catalog is jam-packed with more than 2000 quality items. Your single source for hard-to.find precision tools and wool kits used by electronic technicians, scientists, engineers, instrument mechanics, schools, laboratories and government agencies. Send for your free copy today!

NEW!
CATALOG OF hard-to-find PRECISION TOOLS
-354

Also contains test equipment plus wide selection of


\section*{Subscruption Problem?}

73 Magazine does not keep subscrip. tion records on the premises, therefore calling us only adds time and doesn't solve the problem.
Please send a description of the problem and your most recent ad. dress label to:

73 Magazine
Subscription Dept.
PO Box 931
Farmingdale, NY 11737

Thank you and enjoy your subscription

\section*{this publication is available in microform}


University Microfilms International

\section*{300 North Zeeb Road} Dept. P.R
U.S.A Dept. P.R London, WCIR 4EJ England

\section*{PRESERVE}


\section*{BINDERS \(\mathcal{E}\)}

\section*{FILE CASES}

Keep your issues of 73 Magazine together. handy and protected in handsome and durable library files or binders. Both styles bound in red teatherette with the magazine logo stamped in gold.
Files: Each file holds 12 issues, spines visible for easy relerence. \(\$ 5.95\) each. 3 for \(\$ 17.00\), 6 tor \(\$ 30.00\)
Binders: Each binder holds 12 issues and opens fiat for easy reading. \(\$ 7.50\) each. 3 for \(\$ 21.75\). 6 for \(\$ 42.00\)
(Postage paid in USA. Foreign orders include \(\$ 2.50\) per liem)
Please state years: 1977 to 1983
Send check or money order to:
JESSE JONES BOX CORP.
P.O. Box 5120

Philadelphia. PA 19141
Allow 4 to 6 weeks for delivery


THE PROFESSIONAL. TOUCH TONE ENCODER

\section*{An ultra high quality encoder for protessional application. Absolute reliability and function makes the difference. There's a Pipo encoder for every system and application. Totally serviceable, easy to operate and install. Call or write for free catalog and information! (213) 852-1515 or P.O. Box 3435, Hollywood, CA 90028. \\ PipoGOommunications \({ }^{\circledR}\) Emphasis is on Quality \& Reliability r 300}

- Covers 100 to 185 MHz in 1 kHz steps with thumbwheel dia! - Accuracy 1 part per 10 million at all frequencies • Internal FM adjustable from 0 to 100 kHz at a \(\mathbf{1 k H z}\) rate - Spurs and noise at least 60 dB below carrier - RF output adjustable from \(5-500 \mathrm{mV}\) at 50 ohms • Operates on 12 Vac @1/2 Amp. Available for immediate delivery • \(\$ 349.95\) plus shipping - Add-on Accessories available to extend treq. range, add infinite resolution, voice and sub-audible tones, AM , precision 120 dB calibrated attenuator - Call for detalls - Dealers wanted world wide

\author{
VANGUARD LABS -311 196.23 Jamalca Ave., Hollis, NY 11423 Phone: (212) 468-2720
}

\title{
\(M^{2}\) ENGINEERING'S VHF H.T. CONVERTERS
}

\author{
- DOU8LE BAND HC-V, HC-U2
}
- SINGLE BAND HC-V220
```

- BI-LATERAL PROTECTION AGAINST ACCIDENTAL TRANSMISSON
FOR UP TO 5 WATTS

```
- STANDARD BNC CONNECTORS
- \(\mathrm{HC}-\mathrm{V}\)

154-158
159-163
- \(\mathrm{HC}-\mathrm{U}^{\prime} 2\)

460-464
480-484
- HC-V220

221-225

- USES SINGLE AAA CELL
- LOW LOSS COUPLING TO ANTENNA
- "OFF" RETURNS

TO NORMAL TRANSCEIVER OPERATION
- SIZE: approx. \(2 \times 1.5 \times 1.5\)
- WEIGHT: 3.9 ozs .

HC-V22O
\(\$ 54.95\)

\section*{M-SQUARED}

ENGINEERING, INC. 1446 LANSING AVE. SAN JOSE, CA. 95118
CALL SANDY 408-266-9214

DEALERS WELCOME

Shipping included
Calif. residents add \(6.5 \%\) sales tax

\section*{CONTACT 80}

An ultra sophisticated yet simple to operate RTTY System for the demanding operator at an affordable price.

\section*{Features:}
- Disk IIO; SAVE, LOAD, KILL \& DIR
-TRI-SPLITT screen, user defined.
- 10 CANNED MESSAGES
- DYNAMIC BUFFER ALLOCATION
- Live HARDCOPY for parallel printers - Keyboard CONTROL of STATION
- AUTO.ID; RTY. CW (selectable ONIOFF)
-CLOCKED OUTPUT rate
- All BAUDOT speeds plus ASCll (110)
- NAME, DATE. TIME from computer
- On screen BIT PATTERN SCOPE.

Requires TRS.80, MOD-III with your CALL SIGN plus TU with 60ma loop. DISK IIO: VERSION.
CASSETTE IIO; VERSION

\section*{CommTek}

Post Paid

4493 Orleans Dr., Dunwoody, GA 30338 (404) 946-9314
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PACKET RADIO TREASURE TROVE} \\
\hline MODEM board & POWER SUPPLY \\
\hline SINGLE BOARD COMPUTER & MND MORE \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
SURPLUS FINANCIAL TERMINAL CONTAINING: \\
- 202 TYPE MODEM BOARD: 0.1800 baud separale 600 or.m audio ximis. Tle digíal \(10.5 \times 55^{\circ}\)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{- boboa CPU board: With sockets for 4ea 2708s. Also in sockets: 8251 Programmable Communications Interlace (USART), 8253 Tripte Programmable Interval Timer. 8228 System Controller 3 -state Bus Diver, 256 byles RAM. 29 other support ICs. xial. clock IC. \(7.5 \times 10^{-}\)} \\
\hline \multicolumn{2}{|l|}{- ENCLOSED POWER SUPPLY: With pwr cord B switch. +5 V (i) \(2.5 \mathrm{~A} .+12 \mathrm{~V}\) (in 350ma. -5 V (i) 250 ma . plus 2 unregulated voltages for display. \(3 \times 4 \times 8\)} \\
\hline \multicolumn{2}{|l|}{- DOCumentation package: Includes schematics a Technically Otiented User Manual} \\
\hline \multicolumn{2}{|l|}{- MISC.: 20 Key Decimal \& Function Keyboard. 16 Digir Fluorescent Display. Mag Stripe Credit Card Reader, Speaker and MORE} \\
\hline \multicolumn{2}{|l|}{Units are removed from service and in good working condtion. High quality modern construction throughoul. Each is given a tull ont- Ime test betore shipment. Large quanity in stock. You'd have to
ouy a lot of turkeys belore finding another gem like this.} \\
\hline price. surface ups inclued dOCUMENTATION PACKAGE & \[
\begin{array}{r}
\$ 55 \\
\$ 5
\end{array}
\] \\
\hline electrovalue industrial ! po Box 157 w MOARIS PLANS. Nu TO950
\(\qquad\) & Prone orders and
Questions wreteonve
201267.1117 \\
\hline
\end{tabular}

PLATE TRANSFORMERS
ALL REMOVED FROM EQUIPMENT WITH 115 VAC \(50-60 \mathrm{~Hz}\) PRIMARIES: MTF1UX02YY/129 - 2250 VCT 565 ma ( 1785 WV ) secondary: \(115 / 230 \mathrm{~V}\) primary \(61 / 4551 / 4 \times\) 43/4". 32 los. sh. \(\$ 34.95\) MSS-HW201P - 2000VCT 500ma (1500 WV. 700 ma intermittent). \(7 \times 51 / 2 \times 5\) ", 32 lbs. sh. \(\$ 30.00\) \#229621/610-5760vCT 321 ma or 4800 VCT 475 ma ( 7150 WV ) \(115 / 230 \mathrm{~V}\) primary. \(91 / \times 10^{3 / 4} \times 81 / 4^{\prime \prime} .115 \mathrm{lbs}\). sh. \(\$ 65.00\) 53.3 uf 3500 VDC CAPACITOR \(-101 / 2 \times 41 / 2 \times 3^{3 / 4}{ }^{\prime \prime}\). 1 l lbs. sh. CSI \#W3081: NEW. \$27.50 TUBES - used-chk: 811A: \$9. 813: \$16. 3828: \$6.50 \(43 / 4\) " sq. ROTRON MUFFIN or similar fans. 14 W . used-checked \(\$ 8.95\) CHOKE \#3C557N/610-11 Hy 500 ma 55 ohms; 10 KV test \(9 \times 7 \times 6^{\prime \prime} .42 \mathrm{lbs}\) sh

S 12.50 \#SS-P243 - 900 VCT 250 ma: \(41 / \times 41 / 4 \times 33 / 4\) ". 16 lbs P9 \(\$ 7.95\) 1500 WVDC CAPACITORS - removed from equip.: 8 mf . \(53 / 4 \times 33 / 4 \times 2^{1 / 2 m}: \quad \$ 4 . \quad 10 \mathrm{mf} .51 / 2 \times 3^{3 / 4} \times 3^{\prime \prime}: \quad \$ 5\) Prices F, O.B. Lima, O. - VISA, MASTERCARD Accepted. Allow tor Shipping - Write tor FREE CATALOG Address Dept. 73 - Phone: 419/227-6573

1016E.EUREKA. GO: 1105 . LIMA. OHIO. 45802

\section*{SLEP ELECTRONICS}

GIVES TOP TRADE ON YOUR USED ATLAS COLLINS DRAKE ICOM

KENWOOD TENTEC AND ON YOUR USED TEKTRONIX AND HEWLETT-PACKARD TEST EQUIPMENT ON YOUR USED AVIONIC EQUIPMENT AND ON YOUR USED MILITARY AVIONIC AND GROUND ELECTRONIC EQUIPMENT

WE OFFER NEW FACTORY - BOXED LATEST MODELS OF

COLLINS CUBIC/SWAN DENTRON DRAKE ICOM KENWOOD TENTEC PLUS ALL MAJOR ANTENNA LINES

TELL US WHAT YOU WANT AND WHAT YOU HAVE TO TRADE WE'LL DO THE REST.

Write or phone Bill Slep (704) 524.7519

\section*{Slep Electronics Company}
P. O. BOX 100, HWY 441, DEPT. 73 OTIO, NORIH CAROLINA 28763

\footnotetext{
Distributors
}
- 367

\section*{HAM HELP}

I need a Blonder.Tongue Prism.matic PM. 2 rotor to complete my OSCAR-8 transceiver system (or the address of this company)

Mark S. Kiziuk N2DMI 2623 E. 11 th St. Brooklyn NY 11235

I would like to purchase an original manual for a Tektronix 3576.

Eiichi Takarada
1423 Vassar Rd.
Rockford IL 61103

I need a schematic and any other avail. able information on the Triplet model 3440 oscilloscope. I will gladly pay costs.

Walt Wilson wole 4905 Lakeridge Rd. Denver CO 80219
need information on a digital frequen cy readout for my Heath HW- 101 transceiver.
D. C. Pugh Waghys

4660-125 North River Road Oceanside CA 92056


\section*{* B EC* Bullet Electronics Corp. P.O. Box 401244E Garland, TX. 75040 (214) 278-3553}
\(-12\)

\section*{THE PRESIDENT SAYS: \(1 \rightarrow\) GMASME}

After taking one look at the TRIPUT POWER SUPPLY our engineer declared that the units were worth several hundred dollars each. He pointed out the engineering, high quality construction and state-of-the-art integrated design in support of his position. The President of BEC more pragmatically pointed out the already full warehouse and the two trailer truck loads of power supplies waiting in the parking lot, and set the price to move them QUICKLY! We have a large quantity, but the supply won't last long. The only thing we ask is please read the ordering rules.

QUALITY DOUBLE SIDED GLASS BOARD


REGULATOR ASSEMBLY (part of unit)


COMPLETE UNIT
(as you receive it)


Plus Freight
21 lbs.
\(6 \times 51 / 4 \times 12\)
1. Mail check or MO for \(\$ 62.50+\$ 5.00\) for shipping or phone (214) 278-3553 to charge VISA/MC or COD order. (UPS COD only, add \(\$ 2.50\) COD fee)
2. Texas residents include \(5 \%\) sales tax
3. Orders for this unit will be shipped within 48 HOURS or we pay the freight! (weekends or holidays excluded)
4. ONE TIME OFFERI LIMIT TWO (2) SUPPLIES PER CUSTOMER.
13.6V @ 20A MODIFICATION By changing a few parts on the board the Triput Power Supply will do \(11-14 \mathrm{~V}\) (adjustable) at up to 20A. Perfect tor that 2 meter linear amp! We send step by step instructions and necessary parts Mod lification
warraniy.
+12V@7A; +5V@10A; -12V @ 5A
- UNIT IS COMPLETELY ASSEMBLED!
- Fused primary and DC sections
- HUGE SHIELDED TRANSFORMER
- 2\% Load \& Line Regulation
- Low Ripple ( \(<100 \mathrm{mv}\) )
- Short Circuit Protection
- Overvoltage Protection on all three outputs
- 25A Bridge Rectifier
- Over \(60,000 \mathrm{mid}\) of tilters
- High Efficlency Switching Regulator reduces heatsink area
- Schematics and service guide included
- Thermal Shutdown
- Statis LED's (3)

\section*{IEInsey the first name in Counters !}

\section*{——..........}


 Auper Choise ume nese pime man

The CT-90 is the most versatile. feature packed counter available for less than \(\$ 300.00\) : Advanced design features include three selectable gate times. nine digits, gate indicator and a unique display hold function which holds the displayed count after the input signal is removed' Alsa a 10 mHz TCXO time base is used which enables easy zero beat calibration checks against WWV Optionally, an internal nicad battery pack, external time base input and Micropower high stability crystal oven time base are available. The CT-90, performance you can count on'

Range: \(\quad 20 \mathrm{~Hz}\) to 600 MHz Sensitivity: Less than 10 MV o 150 MHz Less than 50 MV to 500 MHz Resolution: 0.1 Hz ( 10 MHz range) 1.0 Hz ( 60 MHz range) 10.0 Hz ( 600 MHz range) 9 digits 0.4" LED

\section*{Display:}

Time base: \(\quad\) Standard \(10.000 \mathrm{mHz} 1.0 \mathrm{ppm} 20.40^{\circ} \mathrm{C}\) Optiona! Micro power oven- \(0.1 \mathrm{ppm} 20-40^{\circ} \mathrm{C}\)

\section*{7 DIGITS 525 MHz \$999ㅜㄴ}

SPECIFICATIONS
Range: \(\quad 20 \mathrm{~Hz}\) to 525 MHz Sensitivity. Less than 50 MV w 150 MHz Less than 150 MV to 500 MHz Resolution \(\quad 1.0 \mathrm{~Hz}\) ( 5 MHz range) 10.0 Hz ( 50 MHz range) 100.0 Hz ( 500 MHz range)

Display: \(\quad 7\) digits \(0.4^{* *}\) LED
Time base \(\quad 1.0 \mathrm{ppm}\) TCXO \(20-40^{\circ} \mathrm{C}\)
Power: \(\quad 12\) VAC \& 250 ma

The CT-70 breaks the price barrier on lab quality frequency counters Deluxe features such as three frequency ranges - each with pro amplification dual selectable gate times, and gate activity indication make measurements a snap. The wide frequency range enables you to accurately measure signals from audio thru UHF with 1.0 ppm accuracy - that's \(.0001 \%\) ! The CT-70 is the answer to all your measurement needs. in the field tab or ham shack

\section*{7 DIGITS 500 MHz}
\(\$ 7995\)
WIRED

Here's a handy, general purpose counter that provides most counter functions at an unbelievable price. The MINI-100 doesn't have the full frequency range or input impedance qualities found in higher price units, but for basic RF signal measurements, it can't be beat' Accurate measurements can be made from I MHz all the way up to 500 MHz with excellent sensitivity throughout the range. and the two gate times let you select the resolution desired Add the nicad pack option and the MINI- 100 makes an ide al addition to your tool box for "in-the field" frequency checks and repairs


PRICES:
CT 70 wired 1 year warranty CT- 70 KiL 90 day parts war ranty \(\$ 99.95\)

AC-1 AC adapter 3.95 BP-I Nicad pack + AC adapter/charger

PRICES:
MINH-100 wired, 1 year Warranty 100 BP.Z Nicad pack and AC adapter/charger


\title{
SPECIFICATIONS
}

\title{
Range \(\quad 1 \mathrm{MHz}\) to 500 MHz
} Sensitivity Less than 25 MV Resolution \(\quad 100 \mathrm{~Hz}\) (slow gate) Display: \(\quad 7.0 \mathrm{KHz}\) (fast gate) Time base. \(\quad 2.0 \mathrm{ppm} 20-40^{\circ} \mathrm{C}\) Power. \(\quad 5\) VDC 0200 ma

\section*{8 DIGITS 600 MHz \$1599}

SPECIFICATIONS:
Range: \(\quad 20 \mathrm{~Hz}\) to 600 MHz Sensitivity: Less than 25 mv to 150 MHz Less than 150 mv to 600 MHz 1.0 Hz ( 60 MHz range) 10.0 Hz ( 600 MHz range)

Display: \(\quad 8\) digits \(04^{\prime \prime}\) LED
Time base
Power.

The CT- 50 is a versatile lab bench counter that will measure up to600 MHz with 8 digit precision. And, one of its best features is the Receive Frequency Adapter, which turns the CT-50 into a digital readout for any receiver. The adaprer is easily programmed for any receiver and a simple connection to the receiver's VFO is all that is required for use. Adding the receiver adapter in no way limits the operation of the CT-50, the adapler can be conveniently switched on or off The CT-50. a counter that can work doubie duty'

PRICES:
CT- 50 wired 1 yearwaranty \(\$ 159.95\) CT- 50 Kic 90 day parts wartanty 19.95 RA-1. receiver adapter kit 14.95 RA-1 wired and pro programmed (send copy of receiver schematic)

\section*{DIGITAL MULTIMETER \$99 \(\frac{95}{\mathrm{~W}}\)}


PRICES:
DM 700 wrod 1 year warranty \(\$ 99.95\) DM 700 KiL 90 day parts AC-1. AC adaptor BP.3, Nicad pack +AC adapler/charger MP-1, Probe kit

The DM. 700 ofters professional qualiry merfor mance ar a hobtwist price Features include, 26 different ranges and 5 tunctons, all arranged in a convenient, easy fo use format. Measurements are displayed on a large \(31 / 2\) dime, \(1 / 2\) inch LED readour with automaric decimal placement, automatic polarity, overrange indication andoverload procection up ro 1250 voltson all ranges, making is virfually goof-proof The DM-70n looks kreat, a handsome. et hack, rugged ABS case with convenient rettractahle rilt hail makes it an ideal addition to any shor.

\section*{SPECIFICATIONS:}

DC/AC volts: 100 uV to | KV .5 ranges DC/AC
current \(\quad 0.1 \mathrm{uA}\) to 2.0 Amps 5 ranges Resistance 0.1 ohms to 20 Megohms 6 ranges Input
impedance 10 Megohms DC/AC volts Accuracy. \(\quad 0.1 \%\) basic \(D C\) volts Power. \(\quad 4^{\prime} C^{\prime}\) cells

\section*{AUDIO SCALER}

For high resolution audio measurements, multiplies UPin frequency.
- Great for PL tones
- Multiplies by 10 or 100
- 0.01 Hz resolution
\(\$ 29.95\) Kit \(\$ 39.95\) Wired

\section*{ACCESSORIES}

Telescopic whip antenna - BNC plug.
High impedance probe, light loading Low pass probe. for audio measurements Direct probe. general purpose usage Tilt bail for CT 70. 90, MINI-100. Color burst calibration unit calibrates counter against color TV signal.

\section*{COUNTER PREAMP}
15.95 measuring extremely weak simnals from 10 to 1.000
3.95 - Flat 25 db gain
- BNC Congan
- Great for sniffing RF with pick-up loop
14.95 Great for snifing RF with pick-up loop
\(\$ 34.95 \mathrm{Kit}\)
\(\$ 44.95\) Wired
ramsey electronic's, inc. vin 2575 Baird Rd. Penfield, NY 14526

\section*{FACIT 4555 SERIAL PAGE PRINTER}

The Facit 4555 alphanumerical serial printer is complete. Equipped with RS232C Interface, printing mechanism, control electronics, drive electronics, power supply and character generator. The adaptation electronics can be modified in four versions:Bit-parallel data transfer, CCITT (EIA, RS232C) for bit-serial data transfer and the current loop (TTY) interface also for bit serial data transfer. The Facit 4555 prints on ordinary paper and is adjustable for different paper widths and formats, \(9.5^{\prime \prime}\) paper width with 66 lines per page or DIN A4 with 70 lines per page.

SPECIFICATIONS
\begin{tabular}{llll} 
Print speed & up to \(60 \mathrm{ch} . \mathrm{s}\). & Char. spacing & \(2.54 \mathrm{~mm} / 1 / 10^{\prime \prime} 80 \mathrm{ch} / 1\) ine \\
Printing mode & Incremental. & & \(1.55 \mathrm{~mm} / 0.06^{\prime \prime} 132 \mathrm{ch} / 1\) ine \\
Max. \#of ch/line & 80 alt. 132. & Char. Code & ECMA- \(7-\mathrm{bit}\) coded char. set \\
Matrix & \(7 \times 5\) dot matrix. & Char. Set & 63 Char. various national \\
Char. Size Height & \(2.7 \mathrm{~mm} / 1 / 8^{\prime \prime}\) & & versions. \\
Char. Size Width & \(1.3 \mathrm{~mm} / 0.05^{\prime \prime} 132 \mathrm{ch} / 1\) ine & Feed mechanism & Sprocket feed. \\
& \(2.1 \mathrm{~mm} / 0.083^{\prime \prime} 80 \mathrm{ch} / 1\) ine & &
\end{tabular}
these units were pulled out of service in good working condition. we check each unit on a radio shack trs- 80 COLOR COMPUTER.



\section*{HEWLETT PACKARD MICROWAVE DIODES}


Toll Free Number
800-528-0180 (For orders only)

RECALL PHONE MEMORY TELEPHONE WITH 24 NUMBER AUTO DIALER
The Recall Phone Telephone employs the latest state of art communications technology. It is a combination telephone and automatic dialer that uses premium-quality,solis-state circuity to assure high-reliability performance in personal or business applications. \(\$ 49.99\)


ARON ALPHA RAPID BONDING GLUE
Super Glue \#CE-486 high strength rapid bonding adhesive.Alpha
Cyanoacrylate.Set-Time 20 to 40 \(\mathrm{sec} .0 .7 \mathrm{f} 1.02 .(20 \mathrm{gm}\).

\author{
\(\$ 2.00\)
}

\(\$ 9.99\) or \(10 / \$ 89.99\)

MITSUMI UHF/VHF VARACTOR TUNER MODEL UVE 1 A
Perfect for those unscrambler projects. New with data.

\(\$ 19.99\) or \(10 / \$ 149.99\)


FERRANTI ELECTRONICS AM RADIO RECEIVER MODEL ZN414 INTERGRATED CIRCUIT.
Features:
1.2 to 1.6 volt operating range., Less than 0.5 ma current consumption. 150 KHz to 3 MHz Frequency range., Easy to assemble, no alignment necessary. Effective and variable AGC action., Will drive an earphone direct. Excellent audio quality., Typical power gain of \(72 \mathrm{~dB} ., \mathrm{TO}-18\) package. With data. \(\$ 2.99\) or 10 For \(\$ 24.99\)


AA Battery Pack of 6 These are Factory New. \(\$ 5.00\)

SUB C Pack of \(102.5 \mathrm{Amp} / \mathrm{Hr} . \quad \$ 10.00\)
Gates Rechargeable Battery Packs
\begin{tabular}{ll}
12 vdc at \(2.5 \mathrm{Amp} / \mathrm{Hr}\). & \(\$ 11.99\) \\
12 Vdc at \(5 \mathrm{Amp} / \mathrm{Hr}\). & \(\$ 15.99\)
\end{tabular}

12 vdc at \(2.5 \mathrm{Amp} / \mathrm{Hr}\).
12 vdc at \(5 \mathrm{AmP} / \mathrm{Hr}\). \(\$ 11.99\)
\(\$ 15.99\)

\section*{}

\section*{VHF DUPLEXERS}

This duplexer was made for RF Harris Mobile Phones. These duplexers can be used in any mobile phone system, along with having the capabilities to be modified for UHF use. Dimensions are 3 3/5"Lx \(42 / 5^{\prime \prime}\) Wx \(11 / 10^{\prime \prime} \mathrm{D}\). App. weight is \(18 \mathrm{oz} . / 11 \mathrm{~b} .2 \mathrm{oz}\).


PRICE \(\$ 74.99\)
Toll Free Number
800-528-0180
(For orders only)

RF TRANSISTORS, MICROWAVE DIODES
\(\frac{\text { PART }}{1 S 219}\)
1S2200
2N1561
2N2857
2N2857JAN
2N2876
2N2947
2N2948
2N2949
2N2950
2N 3375
2N3553
2N363
2N 381
2N386
2N 392
2N 395
2N407
2N412
2N442
2N442
2N49
2N495
2NS108
2N510
2N516
2N517
2N 558
2N 55
2N559
2N5635
2N5637
2N 5641
2N5642
2N 5643
2N5645
2N5646
2N 5691
2N5764
2N 5836
2N 5842
2N5849
2N5913
2N5922
2N5923
2N5941
2N5942
2N5944
2N5945
2N5946
2N6080
2N6081
2N6082

PRI
\begin{tabular}{|c|}
\hline \\
\hline PART \\
\hline 2N608 \\
\hline 2N609 \\
\hline 2N609 \\
\hline 2N 609 \\
\hline 2N609 \\
\hline 2N613 \\
\hline 2N616 \\
\hline 2N620 \\
\hline 2N645 \\
\hline \multirow[t]{2}{*}{2N6603} \\
\hline \\
\hline 2SC75 \\
\hline 2SC78 \\
\hline 2 SCl \\
\hline 2 SCI \\
\hline 2 SCl \\
\hline 2SC12 \\
\hline 2 SCl \\
\hline 2 SCl \\
\hline 2 SCl \\
\hline 2 SC 17 \\
\hline 2SC1 \\
\hline 2 SC \\
\hline
\end{tabular}
7.50
25.00
25.00
1.55
2.55
11.00
18.35
15.50
3.90
4.60
8.00
1.57
13.80
5.00
1. 30
3. 35
17.75
25.00
1.80
21.00
1.30
1. 85
3.45
2.90
2.30
13.90
4.00
1.70
3.45
21.62
1.00
4.00
8.65
10.35
13.80
10.95
15.50
9.20
10.95
15.50
13.80
20.70
18.00
27.00
5.45
8.00
20.00
3.25
10.00
25.00
23.00
40.00
9.20
11.50
19.00
9.20
10.35
11.50
\begin{tabular}{|c|c|c|}
\hline PART & & PRICE \\
\hline 2N6083 & \$ & 13.25 \\
\hline 2N6084 & & 15.00 \\
\hline 2N6094 & /M9622 & 11.00 \\
\hline 2N6095 & /M9623 & 12.00 \\
\hline 2N6096 & /M9624 & 15.50 \\
\hline 2N6097 & & 17.25 \\
\hline 2N6136 & & 21.85 \\
\hline 2N6166 & & 40.25 \\
\hline 2N6201 & & 50.00 \\
\hline 2N6459 & & 18.00 \\
\hline 2N6603 & & 12.00 \\
\hline 2N6680 & & 80.00 \\
\hline 2SC756A & & 7.50 \\
\hline 2SC781 & & 2.80 \\
\hline 2SC1018 & & 1.00 \\
\hline 2SCI042 & & 12.00 \\
\hline 2SC1070 & & 2.50 \\
\hline 2SC1239 & & 2.50 \\
\hline 2SC1251 & & 12.00 \\
\hline 2SCl 306 & & 2.90 \\
\hline 2SC1307 & & 5.50 \\
\hline 2SC1760 & & 1.50 \\
\hline 2SC1970 & & 2.50 \\
\hline 2SC2166 & & 5.50 \\
\hline 8B1087 & (M.A.) & 25.00 \\
\hline A50-12 & & 20.00 \\
\hline A283B & & 5.00 \\
\hline ALD4200 & ON (AVANTEK) & ) 395.00 \\
\hline AM123 & & 97.35 \\
\hline AM688 & & 100.00 \\
\hline BB105B & & 52 \\
\hline BD4/4JF & FBDL (G.E.) & 10.00 \\
\hline BFQ85 & & 1. 50 \\
\hline BFR90 & & 1.30 \\
\hline BFR91 & & 1.65 \\
\hline BFW92 & & 1.50 \\
\hline BFX89 & & 1.00 \\
\hline BFY90 & & 1.00 \\
\hline BGY54 & & 25.00 \\
\hline BGY 55 & & 25.00 \\
\hline BGY74 & & 25.00 \\
\hline BGY 75 & & 25.00 \\
\hline BL161 & & 10.00 \\
\hline BLX67 & & 11.00 \\
\hline BLY 568 & CF & 25.00 \\
\hline BLY87 & & 13.00 \\
\hline BLY88 & & 14.00 \\
\hline BLY89 & & 15.00 \\
\hline BLY90 & & 20.00 \\
\hline BLY351 & & 10.00 \\
\hline C4005 & & 20.00 \\
\hline CA402 & (TRW) & 25.00 \\
\hline CA405 & (TRW) & 25.00 \\
\hline CA612B & 3 (TRW) & 25.00 \\
\hline CA2100 & 0 (TRW) & 25.00 \\
\hline CA2113 & 3 (TRW) & 25.00 \\
\hline CA2200 & (TRW) & 25.00 \\
\hline CA2213 & 3 (TRW) & 25.00 \\
\hline CA2418 & 8 (TRW) & 25.00 \\
\hline
\end{tabular}

PRICE \$ 25.00 25.00 25.00 25.00 25.00 25.00 20.00 20.00
20.00
10.00 20.00
10.00
10.00
20.00
30.00
40.00
4.95
11.30
30.00
10.00
19.90
25.00
11.34 112.00
14.20
105.00
58.00

POR
POR
POR
POR
23.15
2.00
1.00

POR
POR
POR
29.99
71.50
75.00
75.60
7.00
\(\begin{array}{lr}8.75 \\ \text { HXTR3102 H.P. } & 85 \text { H.P } 55.00\end{array}\)
\(\begin{array}{lll}\text { HXTR6104 H.P. } & 68.00 \\ \text { HXTR6105 H. P } & 31.00\end{array}\)
\(\begin{array}{ll}\text { HXTR6105 H.P. } & 31.00 \\ \text { HXTR6106 H.P. } & 33.00\end{array}\)
QSCHI995 H.P. POR
JO2000 TRW 10.00
J02001 TRW 25.00
J04045 TRW 25.00
\(\begin{array}{ll}\text { K3A } & 10.00 \\ \text { MA450A } & 10.00\end{array}\)
MA41487 POR
POR
POR
POR
POR
25.50

\section*{Toll Free Number 800-528-0180 \\ (For orders only)}

\section*{GaAs, TUNNEL DIODES, ETC.}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PART & PRICE & PART & PRICE & PART & PRICE \\
\hline MA47100 & \$ 3.05 & MRF503 & \$ 6.00 & PT4186B & \$ POR \\
\hline MA47202 & 30.80 & MRF504 & 7.00 & PT4209 & POR \\
\hline MA47771 & POR & MRF509 & 5.00 & PT 4209 C & POR \\
\hline MA47852 & POR & MRF511 & 8.65 & PT4566 & POR \\
\hline MA49558 & POR & MRF605 & 20.00 & PT4570 & POR \\
\hline MB4021 & POR & MRF629 & 3.47 & PT4571 & POR \\
\hline MBD101 & 1.00 & MRF644 & 23.00 & PT4571A & POR \\
\hline MDO513 & POR & MRF816 & 15.00 & PT4577 & POR \\
\hline MHW1171 & 42.50 & MRF823 & 20.00 & PT4590 & POR \\
\hline MHW1182 & 48.60 & MRF901 & 3.00 & PT4612 & POR \\
\hline MHW4171 & 49.35 & MRF8004 & 2.10 & PT4628 & POR \\
\hline MHW4172 & 51.90 & MS261F & POR & PT4640 & POR \\
\hline MHW4342 & 68.75 & MT4150 Fair. & POR & PT4642 & POR \\
\hline MLP 102 & 25.00 & MT5126 Fair. & POR & PT5632 & POR \\
\hline MM1 500 & 32.32 & MT 5481 Fair. & POR & PT5749 & POR \\
\hline MM1550 & POR & MT5482 Fair. & POR & PT6612 & POR \\
\hline MM1552 & 50.00 & MT 5483 Fair. & POR & PT6626 & POR \\
\hline MM1553 & 50.00 & MT5596 Fair. & POR & PT6709 & POR \\
\hline MM1614 & 10.00 & MT 5764 Fair. & POR & PT6720 & POR \\
\hline MM2608 & 5.00 & MT8762 Fair. & POR & PT8510 & POR \\
\hline MM3375A & 11.50 & MV 109 & . 77 & PT8524 & POR \\
\hline MM4429 & 10.00 & MV1401 & 8.75 & PT8609 & POR \\
\hline MM8000 & 1.15 & MV1624 & 1.42 & PT8633 & POR \\
\hline MM8006 & 2.30 & MV 1805 & 15.00 & PT8639 & POR \\
\hline M0277L & POR & MV 1808 & 10.00 & PT8659 & POR \\
\hline MO283L & POR & MV 1817 B & 10.00 & PT8679 & POR \\
\hline M03757 & POR & MV 1863B & 10.00 & PT8708 & POR \\
\hline MP102 & POR & MV 1864A & 10.00 & PT8709 & POR \\
\hline MPN3202 & 10.00 & MV 1864B & 10.00 & PT8727 & POR \\
\hline MPN3401 & . 52 & MV1864D & 10.00 & PT8731 & POR \\
\hline MPN 3412 & 1.00 & MV1868D & 10.00 & PT8742 & POR \\
\hline MPSU31 & 1.01 & MV2 101 & . 90 & PT8787 & POR \\
\hline MRA2023-1.5 TRW & 42.50 & MV2111 & . 90 & PT9790 & 41.70 \\
\hline MRF212/208 & 16.10 & MV2 115 & 1.55 & PT31962 & POR \\
\hline MRF 223 & 13.25 & MV2201 & . 53 & PT31963 & POR \\
\hline MRF224 & 15.50 & MV2203 & . 53 & PT31983 & POR \\
\hline MRF237 & 3.15 & MV2209 & 2.00 & PTX6680 & POR \\
\hline MRF238 & 12.65 & MV2215 & 2.00 & RAY-3 & 24.99 \\
\hline MRF243 & 25.00 & MWAl 10 & 7.45 & 40081 & POR \\
\hline MRF245 & 34.50 & MWA120 & 7.80 & 40281 & POR \\
\hline MRF247 & 34.50 & MWA 130 & 8.25 & 40282 & POR \\
\hline MRF 304 & 43.45 & MNA210 & 7.80 & 40290 & POR \\
\hline MRF315 & 23.00 & MWA220 & 8.25 & RF110 & 25.00 \\
\hline MRF420 & 20.00 & MWA230 & 8.65 & SCA3522 & POR \\
\hline MRF421 & 36.80 & MWA310 & 8.25 & SCA3523 & POR \\
\hline MRF422 & 41.40 & MWA320 & 8.65 & SD 1065 & POR \\
\hline MRF427 & 16.10 & MWA330 & 9.50 & SS43 & POR \\
\hline MRF428 & 46.00 & NEC57835 & 5.30 & TP1014 & POR \\
\hline MRF450/A & 13.80 & ON382 & 5.00 & TP1028 & POR \\
\hline MRF453/A & 17.25 & PPT515-20-3 & POR & TRW-3 & POR \\
\hline MRF454/A & 19.90 & PRT8637 & POR & UT0504 Avantek & 70.00 \\
\hline MRF455/A & 16.00 & PSCQ2-160 & POR & UT0511 Avantek & 75.00 \\
\hline MRF458 & 19.90 & PT3190 & POR & V15 & 4.00 \\
\hline MRF463 & 25.00 & PT3194 & POR & v33B & 4.00 \\
\hline MRF472 & 1.00 & PT3195 & POR & V100B & 4.00 \\
\hline MRF475 & 2.90 & PT3537 & POR & VAB801EC & 25.00 \\
\hline MRF477 & 11.50 & PT4166E & POR & VAB804EC & 25.00 \\
\hline MRF502 & 1.04 & PT4176D & POR & VAS21AN20 & 25.00 \\
\hline
\end{tabular}

\section*{Toll Free Number 800-528-0180 (For orders only)}


BNC To Banana Plug Coax Cable RG-58 36 inch or BNC to \(N\) Coax Cable RG-58 36 inch.
\(\$ 7.99\) or 2 For \(\$ 13.99\) or 10 For \(\$ 50.00\)


SOLID STATE RELAYS

P\&B Model ECTIDB72
PRICE EACH \(\$ 5.00\)
Digisig, Inc. Model ECS-2l5 5vdc turn on
PRICE EACH \$7.50
Grigsby/Barton Model GB7400 5vdc turn on PRICE EACH \$7.50

Svdc turn on

NOTE: *** Items may be substituted with other brands or equivalent model numbers. ***
© \(\mathbf{M H z}\)

Toll Free Number
800.528.0180 (For orders only)

\section*{"MIXERS"}

WATKINS JOHNSON WJ-M6 Double Balanced Mixer

LO and RF 0.2 to 300 MHz
Conversion Loss (SSB)
Noise Figure (SSB)
Conversion Compression

IF DC to 300 MHz
6.5dB Max. 1 to 50 MHz
8.5dB Max. . 2 to 300 MHz WITH DATA SHEET
same as above
8.5dB Max. 50 to 300 MHz
.3dB Typ.
\(\$ 21.00\)

NEC (NIPPON ELECTRIC CO. LTD. NE57835/2SC2150 Microwave Transistor


\section*{UNELCO RF Power and Linear Arplifier Capacitors}

These are the famous capacitors used by all the RF Power and Linear Anplifier manufacturers, and described in the RF Data Book.
\begin{tabular}{lllllllllll}
5 pf & 10 pf & 18 pf & 30 pf & 43 pf & 100 pf & 200 pf 1 to 10 pcs. & \(\$ 1.00\) & ea \\
5.1 pf & 12 pf & 22 pf & 32 pf & 51 pf & 110 pf & 220 pf 11 to & 50 pcs. & \(\$ .90\) & ea \\
6.8 pf & 13 pf & 25 pf & 33 pf & 60 pf & 120 pf & 47 pf 51 up & pcs. & \(\$ .80\) & ea \\
7 pf & 14 pf & 27 pf & 34 pf & 80 pf & 130 pf & 500 pf & & & \\
8.2 pf & 15 pf & 27.5 pf & 40 pf & 82 pf & 140 pf & 1000 pf & &
\end{tabular}

NIPPON ELECTRIC COMPANY TUNNEL DIODES

Peak Pt. Current ma. Ip
Valley Pt. Current ma. Iv
Peak Pt. Voltage mv. Vp
Projected Peak Pt. Voltage mv. Vpp Vf=Ip
Series Res. Ohms rs
Terminal Cap. pf.
Valley Pt. Voltage mv.

MODEL 152199
9nin. 10Typ. 1lmax.
1.2Typ. 1.5max.

95 Typ. \(120 \max\).
480min. 550Typ. 630max.
2.5Typ. 4max.
1.7Typ. 2max.

370Typ.
\(\$ 7.50\)
152200
\(9 m i n .10 T y p .11 m a x\). 1.2Typ. 1.5max. 75 Typ. 90max. 440 min . 520Typ. 600max. 2 Typ. 3max. 5 Typ. 8 max. 350Typ.

FAIRCHILD / DUMONT Oscilloscope Probes Model 4290B
Input Impedance 10 meg., Input Capacity 6.5 to 12pf., Division Ration (Volts/Div Factor) 10:1, Cable Length 4 Ft . , Frequency Range Over 100 MHz .
These Probes will work on all Tektronix, Hewlett Packard, and other Oscilloscopes.
PRICE \(\$ 45.00\)

MOTOROLA RF DATA BOOK
List all Motorola RF Transistors / RF Power Amplifiers, Varactor Diodes and much much more.
PRICE \(\$ 7.50\)

\section*{"SOCKETS AND CHIMNEYS"}

EIMAC TUBE SOCKETS AND CHIMNEYS
\begin{tabular}{|c|c|c|}
\hline SK110 & Socket & SPOR \\
\hline SK300A & Socket For \(4 \mathrm{CX5000A}, \mathrm{R}, \mathrm{J}, 4 \mathrm{CX10}, 000 \mathrm{D}, 4 \mathrm{CX15}, 000 \mathrm{~A}, \mathrm{~J}\) & \$520.00 \\
\hline SK400 & Socket For 4-125A, 250A,400A, 400C, 4PR125A, 400A, 4-500A, 5-500A & 260.00 \\
\hline SK406 & Chimney For 4-250A, 400A, 400C, 4PR400A & 74.00 \\
\hline SK416 & Chimney For 3-4002 & 36.00 \\
\hline SK500 & Socket For 4-1000A/4PR1000A/B & 390.00 \\
\hline SK600 & Socket For \(4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}\) & 51.00 \\
\hline SK602 & Socket For \(4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}\) & 73.00 \\
\hline SK606 & Chimney For \(4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}\) & 11.00 \\
\hline SK607 & Socket For \(4 \mathrm{CX} 600 \mathrm{~J}, \mathrm{JA}\) & 60.00 \\
\hline SK610 & Socket For 4CX600J, JA & 60.00 \\
\hline SK620 & Socket For \(4 \mathrm{CX} 600 \mathrm{~J}, \mathrm{JA}\) & 66.00 \\
\hline SK626 & Chimney For 4CX600J, JA & 10.00 \\
\hline SK630 & Socket For 4CX600J, JA & 66.00 \\
\hline SK636B & Chimney For \(4 \mathrm{CX600J}, \mathrm{JA}\) & 34.00 \\
\hline SK640 & Socket For 4CX600J, JA & 36.00 \\
\hline SK646 & Chimney For \(4 \mathrm{CX} 600 \mathrm{~J}, \mathrm{JA}\) & 71.00 \\
\hline SK700 & Socket For 4CX \(300 \mathrm{~A}, \mathrm{Y}, 4 \mathrm{CX125C,F}\) & 225.00 \\
\hline SK711A & Socket For 4CX300A, Y, 4CX125C,F & 225.00 \\
\hline SK740 & Socket For \(4 \mathrm{CX} 300 \mathrm{~A}, \mathrm{Y}, 4 \mathrm{CX} 125 \mathrm{C}, \mathrm{F}\) & 86.00 \\
\hline SK770 & Socket For 4CX300A, Y, \(4 \mathrm{CX1} 25 \mathrm{C}, \mathrm{F}\) & 86.00 \\
\hline SK800A & Socket For 4CX1000A, 4CX1500B & 225.00 \\
\hline SK806 & Chimney For 4CX1000A, 4CX1500B & 40.00 \\
\hline SK810 & Socket For 4CX1000A,4CX1500B & 225.00 \\
\hline SK900 & Socket For 4x500A & 300.00 \\
\hline SK906 & Chimney For 4x500A & 57.00 \\
\hline SK 1420 & Socket For 5CX3000A & 650.00 \\
\hline SK 1490 & Socket For 4CV8000A & 585.00 \\
\hline
\end{tabular}

JOHNSON TUBE SOCKETS AND CHIMNEYS
\begin{tabular}{|c|c|c|}
\hline 124-111/SK606 & Chimney For 4CX250B, BC, FG, R, 4CX350A, F, FJ & \$ 10.00 \\
\hline 122-0275-001 & Socket For 3-5002, 4-125A, 250A, 400A, 4-500A, 5-500A & (pair) 15.00 \\
\hline 124-0113-00 & Capacitor Ring & 15.00 \\
\hline 124-116/SK630A & Socket For \(4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, / 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}\) & 55.00 \\
\hline 124-115-2/SK620A & Socket For \(4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, / 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}\) & 55.00 \\
\hline & 813 Tube Socket & 20.00 \\
\hline
\end{tabular}


Toll Free Number
800-528-0180
(For orders only)

\section*{TUBES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline TYPE & PRICE & TYPE & PRICE & TYPE & PRICE \\
\hline 2E26 & \$ 5.69 & KT88 & \$ 20.00 & 6562/6974A & \$ 50.00 \\
\hline 2K28 & 100.00 & DX362 & 50.00 & 6832 & 22.00 \\
\hline 2X1000A & 300.00 & DX415 & 50.00 & 6883/8032A/8552 & 7.00 \\
\hline 3B22 & 19.75 & 572B/T160L & 49.00 & 6897 & 110.00 \\
\hline 3B28/866A & 7.50 & 592/3-200A3 & 144.00 & 6907A & 75.00 \\
\hline 3-5002 & 102.00 & 807 & 7.50 & 6939 & 15.00 \\
\hline 3-10002 & 400.00 & 811 & 10.00 & 7094 & 125.00 \\
\hline \(3 \mathrm{CX1000A/8283}\) & 428.00 & 811A & 15.00 & 7117 & 17.00 \\
\hline 3CX1500A7/887 & 533.00 & 812A & 35.00 & 7211 & 60.00 \\
\hline 3 x 2500 A 3 & 200.00 & 813 & 50.00 & 7289/3CX100A5 & 34.00 \\
\hline 3CX3000A7 & 490.00 & 829B & 38.00 & 7360 & 11.00 \\
\hline 4-65A/8165 & 45.00 & 832A & 28.00 & 7377 & 67.00 \\
\hline 4-125A/4D21 & 58.00 & 4624 & 310.00 & 7408 & 4.00 \\
\hline 4-250A/5D22 & 75.00 & 4662 & 80.00 & 7650 & 250.00 \\
\hline 4-400A/8432 & 90.00 & 4665 & 585.00 & 7695 & 8.00 \\
\hline 4-400C/6775 & 95.00 & 5675/A & 25.00 & 7843 & 58.00 \\
\hline 4-1000A/8166 & 300.00 & 5721 & 200.00 & 7854 & 83.00 \\
\hline 4B32 & 22.00 & 5768 & 85.00 & 7868 & 5.00 \\
\hline 4E27A/5-125B & 155.00 & 5836 & 100.00 & 7894 & 12.00 \\
\hline 4CS250R & 146.00 & 5837 & 100.00 & 8072 & 65.00 \\
\hline 4X150A/7034 & 30.00 & 5861/EC55 & 110.00 & 8117 A & 130.00 \\
\hline 4X150D/7035 & 40.00 & 5876A & 25.00 & 8121 & 60.00 \\
\hline 4X150G/8172 & 100.00 & 5881/6L6W & 6.00 & 8122 & 100.00 \\
\hline 4X250B & 30.00 & 5893 & 45.00 & 8236 & 30.00 \\
\hline 4CX250B/7203 & 45.00 & 5894/A & 50.00 & 8295/PL172 & 506.00 \\
\hline 4CX250F/G/8621 & 55.00 & 5894/B & 60.00 & 8462 & 100.00 \\
\hline \(4 \mathrm{CX} 250 \mathrm{~K} / 8245\) & 100.00 & 5946 & 258.00 & 8505A & 73.50 \\
\hline 4CX250R/7580W & 69.00 & 6080 & 10.00 & 8533W & 92.00 \\
\hline 4CX300A/8167 & 140.00 & 6083/AX9909 & 89.00 & 8560/A & 65.00 \\
\hline 4CX350A/8321 & 83.00 & 6098/6AK6 & 14.00 & 8560AS & 90.00 \\
\hline 4CX350F/J/8904 & 95.00 & 6115/A & 110.00 & 8608 & 34.00 \\
\hline 4X500A & 282.00 & 6146 & 7.00 & 8637 & 38.00 \\
\hline 4CX600J/8809 & 607.00 & 6146A & 7.50 & 8643 & 100.00 \\
\hline \(4 \mathrm{CW800F}\) & 625.00 & 6146B/8298A & 8.50 & 8647 & 123.00 \\
\hline 4CX1000A/8168 & 340.00 & 6146W & 14.00 & 8737/5894B & 60.00 \\
\hline \(4 \mathrm{CXI} 500 \mathrm{~B} / 8660\) & 397.00 & 6156 & 66.00 & 8873 & 260.00 \\
\hline \(4 \mathrm{CX5000A} / 8170\) & 932.00 & 6159 & 15.00 & 8874 & 260.00 \\
\hline 4CX10000D/8171 & 990.00 & 6161 & 233.00 & 8875 & 260.00 \\
\hline 4CX15000A/8281 & 1260.00 & 6291 & 125.00 & 8877 & 533.00 \\
\hline 4PR60A & 100.00 & 6293 & 12.00 & 8908 & 12.00 \\
\hline 4PR60B/8252 & 175.00 & 6360 & 5.00 & 8930/6512 & 71.00 \\
\hline 4PR400A/8188 & 192.00 & 6524 & 53.00 & 8950 & 12.00 \\
\hline 5CX1500A & 569.00 & 6550 & 10.00 & & \\
\hline 6BK4C & 6.00 & 6JM6 & 6.00 & 6LQ6 (Sylvania) & 7.50 \\
\hline 6DQ5 & 5.00 & 6JN6 & 6.00 & 6LU8 & 6.00 \\
\hline 6FW5 & 6.00 & 6JS6B & 6.00 & 6LX6 & 6.00 \\
\hline 6GE 5 & 6.00 & 6KG6/EL505 & 6.00 & 6ME 6 & 6.00 \\
\hline 6GJ 5 & 6.00 & SKM6 & 6.00 & 12BY7A & 4.00 \\
\hline 6HS 5 & 6.00 & 6KN6 & 6.00 & 12JB6A & 6.00 \\
\hline 6JB5/6HE5 & 6.00 & 6LF6 & 6.00 & 6KD6 & 6.00 \\
\hline 6JB6A & 6.00 & 6LQ6 (GE) & 6.00 & 6JT6A & 6.00 \\
\hline & & & & 6KD6 & 6.00 \\
\hline
\end{tabular}

NOTICE ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE \(!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\) TUBES MAY EITHER BE NEW OR SURPLUS CONDITION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

\section*{"TVRO BOARD LIST"}

70 MH2 IF BOARD: This circuit provides about 43 dB gain with 50 ohm input and output impedance. It is designed to drive the Demodulator. The on-board bypass filter can be tuned to bandwidths between 20 and 35 MHz with a passband ripple of less than \(\frac{1}{3} \mathrm{~dB}\). Hybrid IC's are used for the gain stages.
SINGLE AUDIO BOARD: This circuit recovers the audio signals from the 6.8 MHz frequency. The Miller 9051 coils are tuned to pass the 6.8 MHz subcarrier and the 9052 coil tunes for recovery of the audio.
DUAL AUDIO BOARD: Duplicate of the single audio but also covers the 6.2 range
DC CONTROL BOARO: No description.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DUAL AUDIO BOARD & PRICE EACH & 3 & 10K 1/4w & . 15 & 4 & 100K 1/4w & . 15 \\
\hline Printed Circuit Board & \$ 25.00 & 1 & 3. \(3 \mathrm{~K} \quad 1 / 4 \mathrm{w}\) & . 15 & 1 & 51 ohm \(1 / 4 \mathrm{w}\) & . 15 \\
\hline 23 pf sm & 1.00 & 3 & 2. \(2 \mathrm{~K} \mathrm{1/4w}\) & . 15 & & 27K 1/4w & . 15 \\
\hline 212 pf sm & 1.00 & 1 & 1K 1/4w & . 15 & 5 & 10K 1/4w & . 15 \\
\hline 2 50pf sm & 1.00 & 4 & 5K 10 turn trimpot & 1.00
1.00 & 1 & 8. \(2 \mathrm{~K} 1 / 4 \mathrm{w}\) & . 15 \\
\hline 2 68pf sto & 1.00 & 1 & 10K 10 turn with dial & 10.00 & 1 & 2.2K 1/4w & . 15 \\
\hline 4 9lpf sm & 1.00 & 1 & 7815 Voltage Reg. & 1.17 & 1 & 1. \(2 \mathrm{~K} 1 / 4 \mathrm{w}\) & . 15 \\
\hline 5.001 mfd & . 35 & 1 & LM324 & 2.50 & 3 & 1K 1/4w & . 15 \\
\hline 6 . 01 mfd & . 35 & 1 & 5 pole rotary switch & 2.50 & 3 & 560 obm 1/4w & . 15 \\
\hline \(2.047 \pi f d\) & . 35 & 1 & SPDT switch & 1.00 & 1 & 470 ohm 1/4w & . 15 \\
\hline 1.47 rafd 25 vdc & . 35 & 1 & DPDT swich & 1.00 & & 390 ohm 1/4w & . 15 \\
\hline 2 Imfd 10vdc & . 59 & 1 & 0-1ma meter & 5.00 & 1 & 300 ohm 1/4w & . 15 \\
\hline 4 4.7mid 35 vdc & . 59 & 1 & 18 to 24 vdc at 1 amp & & & 270 ohm 1/4w & . 15 \\
\hline \(1470 \mathrm{mfd} 25 v d \mathrm{c}\) & 1.29 & & power supply & 24.99 & & 150 ohn 1/4w & . 15 \\
\hline 2 220K 1/4w & . 15 & & power supply & & & 41 ohm 1/4w & . 15 \\
\hline \(2150 \mathrm{~K} \mathrm{1/4w}\) & . 15 & & TAL KIT PRICE & 74.27 & & 10K pot & 1.00 \\
\hline \(2 \quad 6.8 \mathrm{~K} \mathrm{1/4w}\) & . 15 & & & & & NE592/LM733N & 2.50 \\
\hline 2 3.3K 1/4w & . 15 & & & & & NE 564 & 5.00 \\
\hline \(2 \quad 2.2 \mathrm{~K} \mathrm{l/4w}\) & . 15 & & & & & MWA120 (Motorola) & 7.80 \\
\hline \(4 \quad 1 \mathrm{~K} .1 / 4 \mathrm{w}\) & . 15 & & & & & 7812 Voltage Reg. & 1.17 \\
\hline 210 ohm \(1 / 4 \mathrm{w}\) & . 15 & DEMO & DULATOR BOARD & PRICE EACH & & 7815 Voltage Reg. & 1.17 \\
\hline 250 K pots & 1.00 & Prin & ted Circuit Board & \$ 40.00 & 3 & 2N2222 & . 50 \\
\hline 1 5K pot & 1.00 & Prin & lmfd 35 vdc & 140.00
.59 & 2 & IN34/38 & . 50 \\
\hline 2 CA 3065 & 2.16 & 13 & . \(01 \mathrm{mfd} \mathrm{50vde} \mathrm{disc}\) & . 35 & 1 & HP 5082-2800 & 2.20 \\
\hline 1 LM380 & 1.56 & 1 & 470 mfd 25 vdc & 1.29 & & 5 to 7 volt Zenner & 1.00 \\
\hline 1
5 & 1.17
.50 & 2 & 100 mfd 16 vdc & . 69 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{TOTAL KIT PRICE 92.25}} \\
\hline 4 Miller 9051 & 5.99 & 2 & 22 mfd 35 vdc & . 59 & & & \\
\hline 2 Miller 9052 & 5.99 & 3 & 4.7mfd 35vde & . 59 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{COMPLETE KIT WITH DUAL AUDIO \$923.23}} \\
\hline \multirow{4}{*}{TOTAL KIT PRICE} & & 1 & 4300 pf sm & 2.00 & & & \\
\hline & 97.62 & 1 & 330pf sm & 1.00 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{COMPLETE KIT WITH SINGLE AUDIO 880.77}} \\
\hline & & 1 & 100pf sm & 1.00 & & & \\
\hline & & 1 & 91pf sm & 1.00 & \multicolumn{3}{|l|}{LESS \(10 \%\) ON ALL COMPLETE KIT ORDERS} \\
\hline CONTROL BOARD & & 2 & 3 pf sm & 1.00 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{bOARDS AND PARTS MAY BE PURCHASED SEPERATELY AT THE PRICES LISTED ABOVE.}} \\
\hline Printed Circuit Board & 15.00 & 1 & 2 to 8pf ceramic trimmer & 1.00 & & & \\
\hline 2 470mfd 25 vdc & 1.29 & 1 & 100uh choke & 1.50 & & & \\
\hline 2 4.7mfd 25 vdc & . 59 & 1 & 4.7uh choke & 1.50 & \multicolumn{3}{|l|}{ALL PRICES ARE SUBJECT TO CHANGE WITHOUT} \\
\hline 1 Imeg 1/4w & . 15 & 1 & 2.7uh choke & 1. 50 & \multicolumn{3}{|l|}{NOTICE!!!!!!!!!!! ! ! ! 1!!!!!!!!!!!!!!!!!!} \\
\hline
\end{tabular}

TVRO BOARD DESCRIPTION AND PARTS LIST
DUAL CONVERSION BOARD: This board provides conversion from the 3.7-4.2 band first to 900 MHz where gain and bandpass filtering are provided and, second, to 70 MHz . The board contains both local oscillators, one fixed and the other variable, and the second mixer. Construction is greatly simplified by the use of Hybrid IC amplifiers for the gain stages.

DEMODULATOR BOARD: This circuit takes the 70 MHz center frequency satellite TV signal in the 10 to 200 millivolt range, detects them using a phase lock loop, de-emphasizes and filters the result to produce standard NTSC video. Other outputs include the audio subcarrier, a DC voltage proportional to the strength of the 70 MHz signal, and AFC voltage centered at about 2 volts DC.


\footnotetext{
Toll Free Number
800-528-0180
(For orders only) PRICES SUBJECT TO CHANGE WITHOUT NOTICE
}

\section*{"CHIPS"}

FAIRCHILD VHF AND UHF PRESCALER CHIPS PRICE
95H900C 350MC Prescaler divide by 10/11 S 8.50
95 H 910 C
11C900C 350MC Prescaler divide by \(5 / 6\) 8.50 15.50

11C910C 650MC Prescaler divide by 5/6 15.50

11C060C UHF Prescaler 750MC O Type Flip Flop 12.30
\(11 \mathrm{C050C} \quad 1 \mathrm{GHz}\) Counter Divide by 4 (Regular price \(\$ 75.00\) )
50.00
15.40

11C01FC Hign Speed Dual \(5 / 4\) Input NO/NOR Gate
82590

110240 C lable Hign Speed Decader Counter used with the 11C90/91 or the 95 H 90191 Prescaler can divide by 100 . (Signetics)
5.00 This chip is the same as a Motorola MC4024/4324 Dual TTL Voltage Control Multivibrator.
11C440C This chip is the same as a Motorola MC4044/4344 Phase Frequency Detector.
3.37

GENERAL ELECTRIC CO. GUNN DIODE MODEL Y. 2167
Freq. Gap (GHZ) 12 to 18, Output (Min.) 100 mW , Duty ( \(\%\) )
CW, Typ. Bias (VOc) 8.0, Type Oper. (MAdc) 550, Max. Thres (mAdc) 1000, Max. Bias (Vac) 10.0
\(\$ 39.99\)
VARIAN GALLIUM ARSENIDE GUNN DIODES MODEL VSX. 920155
Freq. Coverage 8 to 12.4 GHz , Output (Min.) 100 mW , Bias Voltage (Max.) 14 vdc, Bias current (mAdc) Operating 550 Typ 750 Max., Threshold 850 Tup. 1000 Max.
\(\$ 39.99\)
VARI-L Co. Inc. MODEL SS. 43 AM MODULATOR
Freq. Range 6010150 MC , Insertion Loss 13dB Nominal.
Signal Port Imp. 500 hms Nominal, Signal Port RF Power
+ 10dBm Max. Modulation Port BW DC to 1 KHZ , Modulation Port Bias 1 ma Nominal.

AVANTEK CASCADABLE
MODULAR AMPLIFIERS
Frequency Range
Gain
Noise Figure
Power Output

Gain Flatness
Input Power Vac
mA

Model UTO. 504 5 to 500 MHz 6 dB
11 dB
\(+17 \mathrm{~dB}\)
1dB
\(+24\)
100
\(\$ 70.00\)

UTO. 511
510500 MHz
15dB
2.3 dB to 3 dB
\(-2 d B 10\)
- 3dB

1dB
\(+15\)
10
\(\$ 75.00\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{HEWLETT PACKARD} \\
\hline MIXERS MODELS & 10514A & 10514B \\
\hline Frequency Range & 2 MHz to 500 MC & 2 MHz 10 \\
\hline & & 500 MC \\
\hline Input/Output Frequency L \& R & 200 KHz 10 & 200 KHz to \\
\hline & 500 MC & 500 MC \\
\hline \(x\) & DC 10500 MC & OC to 500MC \\
\hline Mixer Conversion Loss (A) & 7dB & 7 dB \\
\hline (B) & 9dB & 9dB \\
\hline Noise Performance (SSB) (A) & 7dB & 7 dB \\
\hline (B) & 9dB & 9 dB \\
\hline PRICE & \$49.99 PRICE & \$39.99 \\
\hline
\end{tabular}

\section*{FREQUENCY SOURCES, INC MODEL MS.74X MICROWAVE SIGNAL SOURCE}

MS.74X: Mechanically Tunable Frequency Range (MHz) 10630 to
11230 ( 10.63 to 11.23 GHz ) Minimum Output Power ( mW ) 10. Overali
Multiplier Ratio 108, Internal Crystal Oscillator Frequency Range (MHz) 98.4 to 104.0. Maximum Input Current (mA) 400.
The signal source are designed for applications where high stability and low noise are of prime concern. these sources utilize fund amental transistor oscillators with high O coaxial cavities, lollowed by broadband stable step recovery diode multipliers. This design allows single screw mechanical adjustment of trequency over stan. dard communications bands. Broadband sampling circuits are used 10 phase lock the oscillator to a high stability reference which may be either an internal self.contained crystal oscillator, external primary standard or VHF synthesizer. This unique technique allows for optimization of both FM noise and long term slability. List Price is \(\$ 1158.00\) (THESE ARE NEW)

Our Price—\$289.

\section*{HEWLETT PACKARD IN5712 MICROWAVE DIODE}

This diode will replace the MBD101, 1N5711, 5082.2800.
5082.2835 ect . This will work like a champ in all those Oown Converter projects
\(\$ 1.50\) or \(10 / \$ 10.00\)
MOTOROLA MHW1172R LOW DISTORTION WIDEBAND AMPLIFIER MODULE.
Frequency Range: 40 to 300 MHz . Power Gain at 50 MHz
16.6 min 1017.4 max, Gain Flatness \(\pm 0.1 \mathrm{Typ} \pm 0.2\)

Max. dB., DC Supply Voltage - \(28 v d c\). RF Voltage input
+ 70dBmV
PRICE \(\$ 29.99\)
GENERAL ELECTRIC AA NICADS
Model 41B905HD11.G1
Pack of 6 lor \(\$ 5.00\) or 60 Cells, 10 Packs for \(\$ 45.00\)
These may be broken down 10 individual cells

DEFECTIVE MATERIAL: All claims for ORDEAING INSTRUCTIONS
Darcel. All claims musi inciude the defective material flor testing made within sixfy ( 60 ) days aftier receipt of parcel. All claims must inciude the defective material (for testing purposes), our involce number, and the date or purchase. All relums must be gackeo properly of it will void all warranties
OELIVEAY: Orders are normally shipoed within 48 hours alter receipt of customer's order. If a part has to de size and weight of the package. On lest equipment it is oy Aif only FOP shipotas Mail or UPS dedending on size and weight Dackage On lest equidment it is oy Alf Only. FOB shipping point
FUnds. We are sorry but C O. is not avallable prepaid with cashier's check or money order made out in U.S. form of payment etther. Further intormation is avallable on request. HOUAS: Monday thru Saturday \(\mathbf{8 : 3 0} \mathrm{a}, \mathrm{m}\) to \(5.00 \mathrm{p} . \mathrm{m}\).
INSURANCE: Plisase include 25 f for each adational \(\$ 100.00\) over \(\$ 100.00\). Unitec Parcel only.
ORDER FOAMS: New order forms are incluaed with each order for your convenience. Adational forms are avallatie on reques
POSTAOE: Minimum shipping and handing in the US. Canada. and Mewico is \(\$ 2.50\) all other countries is \(\$ 500\).
On foreign ofders include \(20 \%\) shipping and handiling.
PREPAID ORDERS: Order must be accompanied by a chech.
PAICES: Plices are subject to change without notice
RESTOCK CHAROE: If Dants are returned to MHZ Electronics due to customer error, customer will be held cesponsible for all entra fees, will de charged a \(15 \%\) restocking lee. with the remainder in credit only. Ail returns must have adoroval.
SALES TAX: Arizona must ado \(5 \%\) sales tar. unies a signed Arizona resale tax card is currently on file with MHZ Electronic: All orders pleced by persons outside of Atizona, out dellvered to oersons in Arizona are subfect to the \(5 \%\) saies taz
SHOATAOE OR DAMAGE: All claims for shortages or damages must be made within 5 asys atter recelot of oarcel. Claims must include ouf invoice number and the date of purchase. Customers which do not nollly us within this time period will de hela responsibie for the entlre order as we will consider the order complete OUA 800 NUMEER IS STRICTLY FOR ORDERS ONLY NO INFORMATION WILL EE GIVEN, BCO.528.018C

TEAMS: DOMESTIC: Prepaia, C.O.D. or Creath Caro
FOREIGN: Prepaid only, U.S. Funds-money order or cashier's check only
C.O.D.: Asceptable by telephone or mail. Payment from customer will be by cash, money order or cashler's check. We are sorry but we cannol accepl personal checks for C.O.D.'s
CONFIAMING OADERS: We woula preterthat contirming orders nol be sent atter a telephone order has been placed. If company policy necessitates a conflrming order, please mark "CONFIAMING" boldly on the order. if problems or duplicate shipments occur due to an order which is not properiy marked, customers will be held responsible for any charges incurred, plus a \(15 \%\) restock charge on returned parls.
CREDIT CARDS: WE ACCEPT MASTEACARD VISA ANO AMEAICAN EXPRESS
DATA SHEETS: When we have data sheets in stock on devices we do supply them with the order
(602) 242.3037 (602) 242.8916 2111 W, CAMELBACK ROAD PHOENIX, ARIZONA 85015


\section*{- FM - SSB - CW - ATV - OSCAR - LINKS - REPEATERS \(\bullet\) TRANSMITTERS
}


SAVE A BUNDLE ON VHF FM TRANSCEIVERS!
10 watts, 5 Channels, for \(6 \mathrm{M}, 2 \mathrm{M}\), or 220


\section*{HIGH QUALITY FM MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.}

FM-5 PC Board Kit - ONLY \$159.95 complete with controls, heatsink, etc.

- R76 VHF FM RECEIVER for \(10 \mathrm{M}, 6 \mathrm{M}\) 2M, 220, or commercial bands. Fantastic selectivity options. Kits from \(\$ 84.95\) to \(\$ 109.95\)
- R450 UHF FM RECEIVER for \(380-520 \mathrm{MHz}\) bands. Kits in selectivity options from \(\$ 94.95\)
- R110 VHF AM RECEIVER Kit for vhf aircraft band or ham bands. Only \$84.95.

- COR KITS With audio mixer and speaker amplifier. Only \$29.95.
- CWID KITS 158 bits, field programmable, clean audio. Only \$59.95
- A16 RF TIGHT BOX Deep drawn alum. case with tight cover and no seams. \(7 \times 8 \times 2\) inches. Only \$18.00.
- SCANNER CONVERTERS Copy 72.76, \(135-144,240-270,400-420\), or \(806-894 \mathrm{MHz}\) bands on any scanner. Wired/tested Only \(\$ 79.95\).

- T51 VHF FM EXCITER for \(10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}\), 220 MHz or adjacent bands. 2 Watts continuous. Kits only \(\$ 54.95\).
- T451 UHF FM EXCITER 2 to 3 Watts on 450 ham band or adjacent. Kits only \(\$ 64.95\).
- VHF \& UHF LINEAR AMPLIFIERS. Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters \& xmtg converters. Klts from \$69.95.


VHF \& UHF RECEIVING CONVERTERS
20 Models cover every practical if and if range to listen to SSB, FM, ATV, etc. on 6M, 2M, 220,440, and 110 aircraft band. Even convert weather down to 2 M ! Kits from \$39.95 and wired units.


VHF \& UHF RECEIVER
PREAMPS. Low noise
VHF Kits from 27 to 300 MHz . UHF Kits from 300 to 650 MHz . Broadband Kits: \(20-650 \mathrm{MHz}\). Prices start at \(\$ 14.95\) (VHF) and \(\$ 18.95\) (UHF). All preamps and converters have noise figure 2 dB or less.

- 6-band pocket world receiver-SW 1-5. plus MW - Extremely compact and lightweight-palm sized! - SW band spread dial-easy funing - Tuning indicaror


FREE WRNO T.SHIRT with purchase of ICF-4800 Above From WRNO World's first commercial 13 Miltion Watts!) SW Radio sta-
tion Offer good thru December 31st, 1982 SPECIFY SIZE (S.M.L. and XL)

- Up to \(1 / 2\) mile FM Transmitting - "Hands free" VOX operation - Light weight-less than 9 Oz .

Valuable aid for Amateur use in antenna installation, funing/pruning, field day, etc. plus hundreds of applications in home business, sports and recreation. Uses 9 volt battery (not supplied.)
- ha 500 MAH NICAD \({ }^{5} 24^{95}\) s.m.mono Fits Wilson Mark II, and Mark IV plus Yaesu FT.207. 500 \(\mathrm{MAH}, 11.7 \mathrm{~V}\). Nickel. Cadmium.

\section*{AMECO PREAMPS REAMPS
0.0033 .00 shipping
nit USA only}

Codel PLF. 2

\section*{..... 552.9 .5}

Model PLF-2E (240V). . . . . \(\$ 57.95\)
Model PT-2. . . . . . . . . . . . \(\$ 79.95\)
Model PT-2E (240V). . . . . \(\$ 84.95\)

POPULAR HAMFEST SPECIALS!
VoCom POWER POCKET

plus \(\$ 8.00\)
shipping \(\quad \$ 10095\) (Cont'I USA)
Accepts any veision of the IC. \(2 A\), applies its output to a wide. band it ampllfier. and delivers 25 watts to your mobile anten. na. Niobile talk oui power!


SUB-AUDIBLE TONE HEADQUARTERS
\begin{tabular}{lc} 
ENCODERS & plus \(\$ 2.00\) \\
\(\$ 2995\) & shipping \\
EACH & (Conil USA only)
\end{tabular}

We stock Communications Specialists SS. 32 and SS.32M encoders for most any mobile or hand-held applications includ ing the very popular lcom
 Handhelds.

BEARCAT BC- 100 HAND-HELD programmable scanner

plus \(\mathbf{\$ 3 . 0 0}\) shipping
- 8 Band, 16 Channel - Auto Scan - Channel Lockout • "Now Take it With You Anywhere!"

\section*{FIXED, PORTABLE And MOBILE ANTENNA VALUE FAVORITES!}

MORGAIN MULTI-BAND ANTENNAS


B\&W PORTABLE


Quick, easy mounting. Tunes 2, 6, 10, 15, 20 and 40 meter Amateur bands plus SW BC bands in some ranges. 360 watts SSB/CW. \(22^{1 / 2 "}\) whip extends to \(57^{\prime \prime}\). \(14^{\prime \prime}\) mount. Includes 5 base loading coils. Weighs less than 2 lbs .

AVANTI THRU-GLASS ANTENNA


The Avanti On-Glass is the first two-way communications antenna that mounts on glass and transmits and receives through the glass. Extremely low VSWR is acheived by adjusting special tuning slug on matching network inside the vehicle. Can be easily removed for car washes without special tools.

\title{
RAMSEY ELECTRONIC'S
}

\title{
62 Inc.
} good to bypass. Items are limited so order today

\section*{MINI KITS - YOU HAVE SEEN THESE BEFORE NOW HERE ARE OLD FAVORITE AND NEW ONES TOO. GREAT FOR THAT AFTERNOON HOBBY.}

\section*{FM \\ MINI \\ MIKE \\ }

A super high performance FM wireless mike kit! Transmits a stable signal up to 300 yards with excep tional audio quality by means of tis built in electret mike Kit includes case, mike, on-olt switch antenna battery and super instructions This is the finest unit available

FM- 3 Kit
FM-3 Wired and Tested \(\quad \$ 14.95\)

\section*{FM Wireless Mike Kht} Transmits up to 300 to any FM broadcast ramike. Runs on 3 to 9 V has added sensitive mike preamp stage

Univereal Timer K
Provides the basic parts and PC board required to provide a source of precision timing and pulse generation Uses 555 timer IC and includes a ran
liming needs.
UT-5 KıI \(\quad \$ 5.95\)

Color Orgen
See music come alive! 3 different lights llicker with music One light each for high. mid-range and lows Each individually adjustable and drives up 1o 300 W runs on 110 VAC

\section*{Complete kit ML-1
\(\$ 8.95\)}


Super Sleuth A super sensitive ampli fier which will pick up a pin drop at 15 feet' Great for monitoring babys room or as general purpose ampimier fulput runs on 6 to 15 volts, uses \(8-45\) ohm 15 volts, uses 8-45 ohm speaker.
Complete kit. BN-9
CPO- 1
Runs on \(3-12 \mathrm{Vdc}\) I wall out. 1 KHZ good for CPO
Alarm. Audio Oscillator. Complete kit
\(\mathbf{\$ 2 . 9 5}\)

Whisper Light Kit An interesting kit, small mike picks up sounds and converts them to light. The louder the sound the brighter the light ncludes mike, controls up to 300 W . runs on 110 VAC Complete kit. WL-1

Mad Blaster Kit
Produces LOUD ear shattering and attention getting siren like sound Can supply up to 15 watts of obnoxious audio. Runs on 6.15 VDC
ME- \(\mathfrak{K i t}\)
s.95
 lange via 20 tupn pot.voltage regu lation. 567 IC Useful for touch.
tone burst tone burst detection. FSK. etc Can also be used as a stable tone Complete kit. TD-1 \$5.95

Produces Siren Kit
Produces upward and downward wail characteristic of a police
siren. 5 W peak audio output runs siren. 5 w peak audio output. runs
on \(3-15\) volts uses \(3-45\) ohm on 3-15 volts uses 3-45 ohm
speaker
Complete
kit. SM-3
\(\$ 2.95\)

125 mal 1
85.50
59.95

PARTS PARADE
IC SPECIALS
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{LINEAR} \\
\hline 301 & 3.35 \\
\hline 334
380
380 & S1.50 \\
\hline 380
555 & \(\$ 1.50\)
3.45 \\
\hline 556 & \$1.00 \\
\hline & \$1.00 \\
\hline & 81.00 \\
\hline 567 & \$1.25 \\
\hline & 10/83.00 \\
\hline 1458 & \$ 50 \\
\hline 3900 & \$.s0 \\
\hline 3914 & \$2.93 \\
\hline 8038 & 32.95 \\
\hline cmos & \\
\hline \multicolumn{2}{|l|}{4019 . 50} \\
\hline \({ }_{4046} 013\) & M \(\quad .50\) \\
\hline 4049 M||l|| & 11.50 \\
\hline 4059 & \\
\hline 4519 & \$2.00 \\
\hline 4518 & \$1.35 \\
\hline 5639 & \$ \(\$ 1.35\) \\
\hline \multicolumn{2}{|l|}{READOUTS} \\
\hline FND 359 4-CC & 81.00 \\
\hline FND 507/510 \(5^{-C . C A}\) & A 1.00 \\
\hline MAN 72 /MPT730 33 CA & CA 1.00 \\
\hline HP \(7651{ }^{4} 3 \mathrm{CA}\) & 2.00 \\
\hline \multicolumn{2}{|l|}{TRANSISTORS} \\
\hline  & 15/81.00 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & 15/84.00 \\
\hline \multicolumn{2}{|l|}{2N4470 NPN C.F.F 15,51.00} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{2n6028 C.F 4/31,00} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Pomee TaD NPN EOW 3,81,00} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline 2n305s & OnP 3900 Trye T. A sot 32 so \\
\hline 2netese ujut 3 & 238200 \\
\hline
\end{tabular}
\(\begin{array}{ll} & \text { TTL } \\ 74500 & \\ 7475 & \\ 74196 & \end{array}\)

\(\begin{array}{ll} & \text { TTL } \\ 74500 & \\ 7447 \\ 7450 \\ 7490 & \\ 74196 & \end{array}\)
\(r\)



Crystals

\section*{Audio}

\section*{Prescale}

Make high resolution audio measurments, great tor musical Multiolies audio UPL Multiplies audio UP in frequency. selectable \(\times 10\) or \(\times 100\). gives .01 MZ resolution with 1 sec . gate time! High sensitivity of 25 mr. 1 meg input \(z\) and built-in fillering gives great performance Runs on 9 V battery. all CMOS PS-2 kit
PS-2 wired
\(\$ 29.95\)

\section*{30 Watt 2 mtr PWR AMP}

Simple Class \(C\) power amp features 8 times power gain. 1 W in for 8 out. 2 W in for 15 out. 4 W in for 30 out. Max output of 35 W , incredible value, complete with all parts, less case and T-R relay. PA-1, 30 W pwr amp kit

> TR-1. RF sensed T-R relay kit


\section*{600 MHz \\ PRESCALER \\ }

Extend the range of your counter to 600 MHz . Works with all counters. Less than 150 mv sensitivity specily 10 or - 100
Wired. tested. PS-18 \(\quad \$ 59.95\) \(\begin{array}{ll}\text { Wired. tested. PS-18 } & \$ 59.95 \\ \text { Kit. PS-18 } & \$ 44.95\end{array}\)
CLOCK KITS
Your oid lavorites are here again. Over 7,000 Sold to Date

Try your hand at building the finest looking clock on the market. Its satin finish anodized aluminum case looks great anywhere, while six 4"LED digits provide a highly readable display. This is a complete kit. no extras needed, and it only takes 1-2 hours to assemble Your choice of case colors: silver, gold, black (specify)
Clock kit, 12/24 hour. DC-5 \$24.95
Clock with 10 min . ID timer. 12/24 hour. DC-10 \(\$ 29.95\)
Alarm clock. 12 hour only. DC-8 \$29.95
12V DC car clock. DC-7 \$29.95
For wired and tested clocks add \(\$ 10.00\) to kit price SPECIFY 12 OR 24 HOUR FORMAT

\section*{Car Clock}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Here's a super looking. rugged and accurate auto clock which is a shap to buld and install Clock movement is completely assembled - you only solder 3 wires and switches. takes about is minutes! Display is bright green with automatic Dighiness control photocell - assures you of a highly readable display day or night Comes in a satin linish anodized aluminum case which can be attached 5 dillerent ways using 2 sided tape Choice ol silver black or gold case (specity)} \\
\hline OC-3 knt 12 hour format OC- 3 mired and tested & \[
\begin{aligned}
& 322.95 \\
& 329.95
\end{aligned}
\] \\
\hline dar Alapm C & \multirow[t]{2}{*}{\begin{tabular}{l}
Under Dash Car Clock \\
\(18 / 24\) hour clocm in a besupilul plasilic case feariares
\end{tabular}} \\
\hline he clock that's got it all: 6-5"LEDs, & \\
\hline 12/24 hour. snooze. 24 hour alarm, 4 & 614 mbO RED LEDS Migh accuracy (0014) easy \\
\hline year calendar. battery backup and & 3 mite hookup dispiay dishls with gnition and \\
\hline lots more The super 7001 chip is & super, instructions ODtronal oummer aluomblicativy \\
\hline used Size \(5 \times 4 \times 2\) inches Complete & DC. 11 clock with mig diaceet 82795 klt \\
\hline kit. less case (not available) &  \\
\hline DC-9 \$34.95 & Ada 31000 Assy and Test \\
\hline \multicolumn{2}{|c|}{Video Terminal} \\
\hline \multicolumn{2}{|l|}{contarned stand alone video letminal Card Rimures oniy an ASCll keyboasdand} \\
\hline \multicolumn{2}{|l|}{o become a complete terminal unit Feafures are single 5 V supply y y Al controlled sync and baud} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{sctolling updet and towet case lophonall and nas RS- 232 and 20 ma loon intertaces on hoard kirs incluce sochets and complete cocumpentation}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Power Supply} \\
\hline \multicolumn{2}{|l|}{Moculion 4n 87.35} \\
\hline
\end{tabular}
- \$39.9
\[
\$ 22.95
\]
MRF-238 transistor as used in PA-1

Power Supply Kit
Complete triple regulated power supply provides variable 6 to 18 volts at 200 ma and - 5 at 1 Amp Excellentload regulation, good fittering and smali size Less transformers. requires 6.3 V /a 1 A and 24 VCT
Complete kt. PS-3L


BI-FET LF 13741 - Direct pin tor pin 741 compatible. but 500,000 MEG Input z super low 50 pa input current, low power drain
\(\mathbf{5 0 \text { tor only } \quad \$ 9 . 0 0} 10\) tor


\title{
DEALER DIRECTORY
}

\section*{Culver City CA}

Jun's Electronics. 3419 Sepulveda Blad. Culver Cilv CA \(10230.390-8003\). Trade 463 - i886 San 1) iego. 827.5732 (Heno NV

\section*{Fontana CA}

Complete lines ICOM, DenTron, Ren-Tec Mirase. Cubic. Lunlar, over 4000 elect ronic prod acts for hobbyist, technician, experimenter. Als Cl3 radio, landrnobile. Funtana Electronics, 862 Sierra Ave., Fontana CA 92435, 822-7710.

\section*{San Diego CA}

So buy and well Surplus Armin Navy Electronics alsu Terminated Material. What do you want to
 \(92112,232-9379\).

\section*{New Castle DE}

Factors Authorized Dealerl Yatsm, ICOM, TellTec, KDK, Azden. ACA. Aantromics, Santer. Fil Onve of Ace off 1.95 . Ihlavare Amateur Suppla -1 Mleadorr Hoald. New Cavtle DE 19720 328-7:28.

\section*{San Jose CA}
bay artas be'mest Amatemit Radiot wert, New a ined Amatenr Radio alen \& wries. Wie feature Kenwan. ICOA. Aalem, Yutsu, Tind Ter, Sallter or many more. Shaver Radio, lix., 1378


Smurna GA
For vour Kemword. Yata, ICOM, Drake and Wher amatenr neede, censer to we IIs. Brill's Two Wav Radio, 25M, A. Atlanta Kd.. Smyma C; 3M240, 432-8006i

\section*{Preston II)}

Hus WBiBY\& has the Langert Stuck of Anateme Cear in the Intermontain West and the Best Pike Call me for all cimir ham Inevh. Ros
 852.0830

\section*{Terre Haute IN}

Your ham headinuarter liculed in the heart of the midwest. Hoosier Electronics. Jiw., 99 Ateadows Center, P'0). Bux 3300, Terre Ilaute IN 478003. 238-1456.

\section*{Baltimore MI)}

Alwastmont lab grate text expipment HP. Tek Cr. LAN. EAte. Also buy merowave couxdal \& whwernide HP. Aar, wavelite, ett. Prefer "K 514 Enwar St.. Baho. M1) 21202, 685-1893.

\section*{Littleton MA}

The Rellable I Iatm Store Servine N.E. Full line of ICOU \& kenwond. Yaesu ITIs, Drake, Daiwa, Bol W accessorits. Curtis \& Trackever, I arsen, Histler Telex/Iy-Caln proxucts. Mirage amps. Astron P'S.S. Alpha IDella protecton, ARRL \& Kantronics instruction aids. Whisler radar detecIronic Communication hī5 Great Rd. (14. 1/9). Littleton MA 01460, \(\quad 486-34003040\)

\section*{Ann Arbor M1}

See us for products like Ten. Tec, R. I.. Drake, Den'Trom and many more. Open Monday throlgh siturdas. 0830 to 1730. W88VGR, Wber Pur chase Rudio Supply, 327 E. Iloover Ave., Ain Armer M11 48104. 668-8696

\section*{Hudson NII}

New England's Distributor and Authorizad Ser vice Center for all Major Amateur Lines. Tuft Radio Electronics. Ine.. 61 Lowell Road, Hudwo NH 03051. 883-5005.

\section*{Somerst NJ}

New Jervy's only factarsanthorizad ICOM and Yates distributor. Large inventon of new and hete service and facilities. Radion Unlimited. 11 tid Easton A versur. I'.O. Bun 347. Somerset NJ Okt73. 69-4599,

Buffalo viy
WESTERN NEW JORK
Naygara Frontiert only full stocking Amatem dealer. Also Shortwave. CB, Scanne: Marine Commercial. Operating dipplats featuring KenSen ite. 1) X Communcations. 3214 Tranit Read Yest wenca AY 668-8873. 3214 Tansut Road

Amsterdani NY
UISTATE NEW YORK
KentwenkI. ICOM. Drake, ples many of her lims Amatems [ Mealeer for oner 35 yarn. Adirondach Ha dio Suppl, Inc.. 185 West Alain Street, Amster datn M 12010. 842-8351.

Syracuse-Rone-Utica NI
Fealuring: Kenword. Yimsu. ICOM, Drake. Ten Tee. Swan, DenTron, Alpha, Rolant, MFI, Tem M2. Astron. KLals. Ity Gain. Monky, Larren, Cusheraft. Hustler. Alint Prexlucts. Jair worit In disappointed with equipment/aervice. Whation Vorld. Omeida Camenty Aiport-Termital Build ing. Oriskanv AY 13424 . 736 - 01 ) 84.

\section*{Columbus OH}

The biggent and Inst Ham Store in the midwest eaturing qualith herwomel products with work Kemweded Serice Univenal Amateur Hadiulime. 12s0 Aida Dr. Kevnoldthurg (Columban) (O) 43068. Stiti-4267.

\section*{Bend OR}

Satellite I'V. Kinwon brands. Call texday fon more
 97711. 384.0596.

\section*{Philadelphia P'A}

Camden N]
Comat hicrovave Components d Eanipment. Laboratory Crade Test tmatrumentes Fonver Supplics, Buy, Sell \& Trade all pegular makes-HP, CR, FXR, ESI, Sorchavil. Singer tc. Iectronic liewearch Laim. 1423 Ferry Aic Canden NJ (05104, 541 -4200).

\section*{Scranton PA}

COM, Bird, Cusheraft, Beckithan, Fluke Lar con liustler, Antenna Sperialists. Astron. Avanti. Beldien, What Wevs, CDE AFA. Yibmoler Ham-Kel. CFS, Amphrool, Soms. Falum/Chirs ur. H\&W, Armeco, Shure. IaRue Flectromics. 111 Grandview St.. Scramton PA 18504, 343-2124.

\section*{San Antonio TX}

Amateur. Commercial 2-wal seliny Ametina Speclalists, Avanti. Azden, Bird, It-CGain, Starl dard. Vibroplex, Midland, Menrs, Cinsleraft Dielectric, Hustler. ICOM, M15], Nye, Shure Cuble, Temps, Ten-Tex and others. Applianer \& Fyuipment Co.. Inc. 2217 Vance Jackion Hoad San Antomis TX 78213, 734.7793.

\section*{DEALERS}

Your company name and message can contain up to 25 words for as little as \(\$ 150\) yearly (prepaid). or \(\$ 15\) per month (prepaid quarterly). No menfion of mail-order hiasiness or area code permitted. Directory text and payment must reach us 60 days in ad vance of publication. For example. advertising for the Jan, ' 83 issue must be in our hands by Nov. Ist, Mail to 73 Magazine. Peterhorough Nll 03458. ATTN: Nancy Ciampa.

\section*{EASTERN UNITED STATES TO:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\infty\) & 02 & 04 & 06 & 08 & 10 & 12 & 14 & 16 & 18 & 20 & 22 \\
\hline ALASKA & 14 & 7 A & 7 & 7 & 7 & 7 & 3 A & 7. & 78 & 14A & 214 & 21 \\
\hline ARGENTINA & 14 & 14 & 7 & 7 & 7 & 7 A & 14A & 21A & 21A. & 21A & 21A & 21 \\
\hline AUSTRALIA & 21 & 14 & 78 & 78 & 78. & 78 & 78. & 14 B & 14. & 14. & 21A & 21. \\
\hline CANAL ZONE & 142 & 14 & & & & & 142 & 21A & 21A. & 2LA & 218 & 1. \\
\hline englano & & 7 & 7 & 3A & & 7 & 14 & 21A. & 214 & 14. & 14 & \\
\hline Hawall & 21 & 14 & 78. & 7 & 7 & 7 & 7 & 78 & 14. & 21A & 21a & 21A \\
\hline inoia & 78. & 7 B & 78. & 78 & 78 & 7B & 14. & 21 & 14 & 7B & 7 B & 8 \\
\hline JAPAN & 14 & 78 & 731 & 78 & 7 B . & 7 & 3A & 148 & 14 B & 14 & 14 & 21. \\
\hline MEXICO & 21. & 14 & & 7 & 7 & 7 & 7A. & 21 & 21A & \(21 A\) & 21 & 21 \\
\hline PriLippines & 14 & 14 & 78 & 7 B & 78 & 78 & 3 A . & 14 B & 14. & 14 & & 4 A \\
\hline PUERTO RICO & 14. & 7 & & 7 & 7 & & 14 & 21. & 21 A & 21a & 21. & 14A \\
\hline SOUTH AFRICA & 14. & 7 & 7 & 7 B & 78. & 14. & 21 A & 21A & 21A. & 21 A & \(21 A\) & 14 A \\
\hline U.S.S.R. & & & & & & 7 B & 14. & \(21 a\) & 21 & 78 & 2 B & 2. 2 \\
\hline WEST COAST & 21 A & 14 & & , & 7 & & & 14 & 21A & 21A & 21A & 21 A \\
\hline
\end{tabular}

\section*{CENTRAL UNITED STATES TO:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ALASKA & 14 & 14. & 7 & 7 & 7 & 7 & 3 A & 7 & 7A & 14A & 21A & 21 \\
\hline ARGE NTINA & 14 & 14 & 7 & 7 & 7 & 7 & 14 & 218 & 21A & 21a & 21a & 21 \\
\hline AUSTRALIA & 21A & 14 & 78 & 28 & 78 & 2 R . & 7 B & 78. & 14. & 14 & 21 A & 12 \\
\hline CANAL ZONE & 21. & 14 & 7. & 7 & 7 & 7 & 14 & 21. & 21A & 21. & 21a & 210 \\
\hline Englano & 7 & 7 & 7 & 3 A & 7 & 7 & 7A & 21. & 21A & 14 & 14. & \\
\hline Hawall & 21 A & 14A & 14 B & 7 & 7 & 7 & 7 & 7 & 14 & 21A & \(21 A\) & 21A \\
\hline inOIA & 7 B & 148 & 78 & 78 & 78 & \(7 B\) & 7 B & 14 & 14 & 78 & 78. & 78 \\
\hline JAPAN & 21 & 14 & 7B & 7 B & 7 B & 7 & 3 A & 3 A & 148 & 14 & 14. & 218 \\
\hline MEXICO & 14 & 14 & 7 & 7 & 7. & 2 & 7 & 14 & Lla & \(\angle 1 a\) & 21. & \\
\hline PrILIPPINES & 21A & 14 & 28 & 78 & IB & 28. & 3 A & 7 & 14 & 14 & 14. & \\
\hline PUERTO RICO & 14 A & & 7 & 7 & 7 & 7 & 14. & 21 & 21. & 214 & 212 & \\
\hline SOUTH AFRICA & 14 & 7 & 2 & 78 & 78 & 78. & 14. & 214 & 21A & 21A & 21A. & \\
\hline
\end{tabular}

\section*{WESTERN UNITED STATES TO:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ALASKA & 21 & 14 & 7 & 7 & 7 & 7 & 3 A & 3 A & 7 & 14 & 21 & 21 A \\
\hline ARGENTINA & 21 & 14 & 7 A . & 7 & 7 & 7 & 78 & 21 & \(21 A\) & 21 A & 21A. & 21 \\
\hline AUSTRALIA & 21A & 21 A & 14 & 143 & 78. & 78 & 78 & 2 B & 14. & 14 & 1 A & 214 \\
\hline CANAL ZONE & 21 & 14 & 7 & 7 & 7 & 7 & 7 & 21 & 21. & 21A & 21A & 214 \\
\hline ENGLANO & 7 B & 7 & 7 & 3 & 7 & 7 & 31 & 14. & 21 & 11 & 14 & 7 B \\
\hline Hawall & 21A & 21 & 14 & 14 & 7 & 7 & 7 & 7 & 14 & 21 A & \(21 \wedge\) & \(21 A\) \\
\hline inota & 78 & 21 & 14B & 78 & 78 & 7 B & 78 & 78 & 14 & 7 B & 7 B & 78 \\
\hline JAPAN & 21A & 21 & 14 B & 78 & 7 & 7 & 3 A & 31 & 148 & 14 & 14 & \\
\hline MEXICO & 21. & 14. & 7 & 7 & 7 & 7 & 7 & 14 & 21A & 214. & 21 & 21 \\
\hline PWILIPPINES & 21A & 21 & 14 B & 78 & 78 & 7 B . & 7 & 7 & 14 & 14 & 14. & 21A \\
\hline Pueato rico & 21. & 7 & & 7 & 7 & 7 & 7 & 14A & 21 A & 21 & 21 & , \\
\hline SOUTH AFRICA & 14 & 7 & 7 & 78 & 78 & 7 B & 78 & 14 & 21 A & 218 & \(21 A\) & 14. \\
\hline U.S.S.A. & 78 & & & & & 78 & 7 B & & 14 & 78 & 78 & \\
\hline EAST COAST & 21A & 14 & & & & & & & & & & \\
\hline
\end{tabular}
\(A=\) Next higher frequency may also be useful.
B = Difficult circuit this period.
First letter \(=\) night waves. Second = day waves.
G = Good, F = Fair, P = Poor. * = Chance of solar flares.
\# = Chance of aurora.
note that night wave letter now comes first.


\title{
New Yaesu FT-102 Series Transceiver of Champions!
}


The long-awaited new generation of Yaesu HF technology has arrived! New research in improved receiver filtering and spectral purity is brought to bear in the competition-bred FT-102, the HF transceiver designed for active Amateurs on today's intensely active bands!

\section*{Unique Cascaded Filter System}

The FT-102 utilizes an advanced 8.2 MHz and 455 kHz IF system, capable of accepting as many as three filters in cascade. Optional filters of \(2.9 \mathrm{kHz}, 1.8\) \(\mathrm{kHz}, 600 \mathrm{~Hz}\), and 300 Hz may be combined with the two stock 2.9 kHz filters for operating flexibility you've never seen in an HF transceiver before now! All New Receiver Front End
Utilizing husky junction field-effect transistors in a 24 volt, high-current design, the FT-102 front end features a low-distortion RF preamplifier that may be bypassed via a front panel switch when not needed.
IF Notch and Audlo Peak Filter
A highly effective 455 kHz IF Notch Filter provides superb rejection of heterodynes, carriers, and other annoying interference appearing within the IF passband. On CW, the Audio Peak Filter may be switched in during extremely tight pile-up conditions for post-detection signal enhancement.
Variable IF Bandwidth with IF Shift
The FT-102's double conversion receiver features Yaesu's time-proven Variable Bandwidth System, which utilizes the cascaded IF filters to provide intermediate bandwidths such as \(2.1 \mathrm{kHz}, 1.5 \mathrm{kHz}\), or 800 Hz simply by twisting a dial. The Variable Bandwidth System is used in conjunction with the IF Shift control, which allows the operator to center the IF passband frequency response without varying the incoming signal pitch.
Wide/Narrow Filter Selection
Depending on the exact combination of optional filters you choose, a variety of wide/narrow operating modes may be selected. For example, you may set up 2.9 kHz in SSB/WIDE, 1.8 kHz in SSB/NARROW, then select 1.8 kHz for CW/ WIDE, and 690 Hz or 300 Hz for CW/NARROW. Or use the Variable Bandwidth to set your SSB bandwidth, and use 600 Hz for CW/WIDE and 300 Hz for CW/NARROW! No other manufacturer gives you so much flexibility in selecting filter responses!
Variable Pulse Width Noise Blanker
Ignition noise, the "Woodpecker," and power line noise are modern-day enemies of effective Amateur operation. The FT-102 Noise Blanker offers improved blanking action on today's man-made noise sources (though no blanker can aliminate all forms of band noise) for more solid copy under adverse conditions. Low Distortion Audlo/IF Stage Design
Now that dynamic range, stability, and AGC problems have been largely eliminated thanks to improved technology, Yaesu's engineers have put particular attention on maximizing intelligence recovery in the receiver. While elementary filter cascading schemes often degrade performance, the FT-102's unique blend of crystal and ceramic IF filters plus audio tone control provides very low phase delay, reduced passband ripple, and hence increased recovery of information.

Heavy Duty Three-Tube Final Amplifier
The FT-102 final amplifier uses three 6146B tubes for more consistent power output and improved reliability. Using up to 10 dB of RF negative feedback, the FT-102 transmitter third-order distortion products are typically 40 dB down, giving you a studio quality output signal.
Dual Metering System
Adopted from the new FT-ONE transceiver, the Dual Metering System provides simultaneous display of ALC voltage on one meter along with metering of plate voltage, cathode current, relative power output, or clipping level on the other. This system greatly simplifies proper adjustment of the transmitter.
Microphone Amplifier Tone Control
Recognizing the differences in voice characteristics of Amateur operators, Yaesu's engineers have incorporated an ingenious microphone amplifier tone control circuit, which allows you to tailor the treble and bass response of the FT-102 transmitter for best fidelity on your speech pattern.
RF Speech Processor
The built-in RF Speech Processor uses true RF clipping, for improved talk power under difficult conditions. The clipping type speech processor provides cleaner, more effective "punch" for your signal than simpler circuits used in other transmitters.
VOX with Front Panel Controls
The FT-102 standard package includes V0X for hands-free operation. Both the VOX Gain and VOX Delay controls are located on the front panel, for maximum operator convenience.
IF Monitor Circuit
For easy adjustment of the RF Speech Processor or for recording both sides of a conversation, an IF monitor circuit is provided in the transmiter section. When the optional AM/FM unit is installed, the IF monitor may be used for proper setting of the FM deviation and AM mic gain.
WARC Bands Factory Installed
The FT-102 is factory equipped for operation on all present and proposed Amateur bands, so you won't have to worry about retrofitting capability on your transceiver. An extra AUX band position is available on the bandswitch for special applications.
Full Line Of Accessories
For maximum operating flexibility, see your Authorized Dealer for details of the complete line of FT-102 accessories. Coming soon are the FV-102DM Synthesized VFO, SP-102 Speaker/Audio Filter, a full line of optional filters and microphones, and the AM/FM Unit.

\title{
Top-Notch.
}


\section*{VBT, notch, IF shift, wide dynamic range}


Now most Amateurs can afford a highperformance SSB/CW transceiver with every conceivable operating feature built in for 160 through 10 meters (including the three new bands). The TS-830S combines a high dynamic range with variable bandwidth tuning (VBT), IF shift, and an IF notch filter, as well as very sharp filters in the \(455-\mathrm{kHz}\) second IF. Its optional VFO-230 remote digital VFO provides five memories.
TS-830S FEATURES:
- 160-10 meters, including three new bands
Covers all Amateur bands from 1.8 to 29.7 MHz (LSB. USB, and CW). including the new 10.18 , and \(24-\mathrm{MHz}\) bands.
Receives WWV on 10 MHz .
- Wide receiver dynamic range Junction FETs (with optimum IMD characteristics and low noise figure) in the balanced mixer, a MOSFET RF amplifier operating at low level for improved dynamic range (high amplification level not needed because of low noise in mixer). dual resonator for each band, and advanced overall receiver design result in excellent dynamic range.

Variable bandwidth tuning (VBT) Continuously varies the IF filter passband width to reduce interference. VBT and IF shift can be controlled independently for optimum interference rejection in any condition.
- IF notch filter

Tunable high Q active circuit in \(455-\mathrm{kHz}\) second IF. for sharp, deep notch

\section*{characterlstics}

\section*{IF shift}

Shifts IF passband toward higher or lower frequencies laway from interfering signals) while tuned receiver frequency remains unchanged.
- 6146B final with RF NFB

Two 614613's in the final amplifier provide 220 W PEP (SSB)/180 W DC (CW) input on all bands. RF negative feedback provides optimum IMI) characteristics for high-qually transmission.

\section*{- Built-in digital display}

Six-digit large fluorescent tube display backed up by an analog dial. Reads actual recelve and \(t r a n s m i t\) frequency on all modes and all bands. Display Hold (DH) switch.
- Adjustable noise-blanker level Built-in noise blanker eliminates pulse- type (such as ignition) noise. Front-panel threshold level control.
- Various IF filter options

Either a \(500-\mathrm{Hz}\) (YK-88C) or \(270-\mathrm{Hz}\) (YK-88CN) CW filter may be installed in the \(8.83-\mathrm{MHz}\) first IF, and a very sharp \(500-\mathrm{Hz}(\mathrm{YG}-455 \mathrm{C})\) or \(250-\mathrm{Hz}(\mathrm{YG}-455 \mathrm{CN})\) CW filter is available for the \(455-\mathrm{kHz}\) second IF.
- More flexibility with optional digital VFO

VFO-230 operates in \(20-1\) iz steps and includes five memories. Also allows splitfrequency operation. Bullt-in digital display. Covers about 100 kHz above and below each \(500-\mathrm{kHz}\) band.
- Built-in RF speech processor For added audio punch and increased talk power in DX pileups.

\section*{RIT/XIT}

Receiver incremental tuning (RIT) shifts only the receiver frequency. to tune in stations slightly off frequency. Transmitter incremental tuning (XIT) shifts only the transmitter frequency.

\section*{SSB monitor circuit}

Monitors IF stage while transmitting. to determine audio quality and effect of speech processor.

More information on the TS-830S is available from all authorized dealers of Trio-Kenwood Communications 1111 West Walnut Sireet. Compton. California 90220 .
6RENWOOD

\section*{Matching accessories for fixed-station operation:}
- SP'-230 external speaker - HC-10 digital world clock with selectable audio filters - VFO 230 external digital VFO with \(20-\mathrm{Hz}\) steps. tive memories. digital display - AT-230 antenna luner/ SWR and power meter - MC-50 desk microphone

\section*{Other accessories not shown}
- TL-922A linear amplifier
- SM-220 Station Monitor
- PC-l phone patch
- YG-455C (500-Hz) and YG-455CN \((250-\mathrm{Hz}) \mathrm{CW}\) filters for \(455-\mathrm{kHz}\) IF - YK-88C (500-Hz) and YK-88CN (270-H1Z) CW lilters for \(8.83-\mathrm{MHz}\) IF - HS-5 and HS-4 headphones
- MC-30S and MC-35S noise-cancelling hand microphones
```

