

TEMPO...still the best value in quality 2-meter equipment

 I темро

 I темро}

TEMPO VHF \& UHF solid state power amplifiers
Boost your signal . . . give it the range and clarity of a higher powered base station.

VHF (135 to 175 MHz)
Drive Power Output Model No. Price

2 W	130W	$130 A 02$	$\$ 199$
10 W	130 W	130 A 10	$\$ 179$
30 W	130 W	130 A 30	$\$ 189$
2 W	80 W	80 A 02	$\$ 169$
10 W	80 W	80 A 10	$\$ 149$
30 W	80 W	80 A 30	$\$ 159$

UHF (400 to 512 MHz)
Drive Power Output Model No. Price
2W 70W 70002 \$270
low 70W 70D10 \$250
30W 70W 70D30 \$210
2W 40W 40D02 $\$ 180$
$\begin{array}{cccc}10 \mathrm{~W} & 40 \mathrm{~W} & 40 \mathrm{D} 10 & \$ 145 \\ 2 \mathrm{~W} & 10 \mathrm{~W} & 10002 & \$ 125\end{array}$
Lower power and FCC type accepted models also available

BIRD Model 4362 Thruline Wattmeter

the perfect accessory for any 2 -meter operation. Bird directional wattmeters are insertion type instruments for measuring forward or reflected power in 50 -ohm coaxial transmission lines. \$9400 HF model 4360 (\$94.00) and a complete line of BIRD products also available.

TEMPO POCKET RECEIVERS Low priced, dependable and the most compact receivers alailable

MS-2, 4 channel scanning receiver for VHF high band, smallest unit on the market. MR-2 same size as MS-2 but has manual selection of 12 channels. VHF high band. MR-3, miniature 2 channel VHF high band monitor or paging receiver. MR-3U. single channel on the 400 to 512 UHF band. All are low priced and dependable. Now available with accessory CTCSS and 2 tone decoders.

An exciting approach to mobile communication
Compact transceivers offering versatility and performance Supplied with an unbreakable remote control head for hide-away mounting in mobile use and to provide a small neat package for base applications. 6 channel capability with one supplied. A hand-held PTT microphone and 20 foot cable supplied. 2 watt power output for low current, low power applications, but designed for output up to 120 watts on VHF, and up to 100 watts on UHF. With AC power supply becomes a base station with 120 watts VHF or 100 watts UHF
 (e) St

TEMPO FMT-2 \& FMT-42 (UHF)

Sold at Tempo dealers throughout the U.S. and abroad. Please call or write for further information.
Prices subject to change without notice

11240 W. Olympic Blvd., Los Angeles. Calif. 90064

Amateurs?

This NEW MFJ Versa Tuner II . . . has SWR and dual range wattmeter, antenna switch, efficient airwound inductor, built in balun. Up to 300 watts RF output. Matches everything from 160 thru 10 Meters: dipoles, inverted vees, random wires, verticals, mobile whips, beams, balance lines, coax lines.

Only MFJ gives you this MFJ. 941 Versa Tuner II with all these features at this price:

A SWR and dual range wattmeter (300 and 30 watts full scale) lets you measure RF power output for simplified tuning.

An antenna switch lets you select 2 coax fed antennas, random wire or balance line. and tuner bypass

A new efficient airwound inductor (12 po sitions) gives you less losses than a tapped toroid for more watts out.

A 1:4 balun for balance lines. 1000 volt capacitor spacing. Mounting brackets for mo bile installations (not shown).

With the NEW MFJ Versa Tuner II you can run your full transceiver power output - up to 300 watts RF power output - and match your

ANTENNA SWITCH lets you select 2 coax fed antennas, random wire or balance line, and tuner bypass.
transmitter to any feedline from 160 thru 10 Meters whether you have coax cable, balance line, or random wire

You can tune out the SWR on your dipole, inverted voe, random wire, vertical, mobile whip, beam, quad, or whatever you have

You can even operate all bands with just
one existing antenna. No need to put up separate antennas for each band
Increase the usable bandwidth of your mo bile whip by tuning out the SWR from inside your car. Works great with all solid state rigs (like the Atlas) and with all tube type rigs.
It travels well, too. Its ultra compact size $8 \times 2 \times 6$ inches fit easily in a small comer of your suitcase.
This beautiful little tuner is housed in a deluxe eggshell white Ten-Tec enclosure with walnut grain sides.
S0-239 coax connectors are provided for transmitter input and coax fed antennas. Quality five way binding posts are used for the balance line inputs (2), random wire input (1). and ground (1).

MFJ. 901 VERSA TUNER
$\$ 59^{95}$
Sural mf.soo como tuner

Same as MFJ-901 Versa Tuner, but does not have buiff-in balun for balance lines. Tunes coax lines and random lines.

MFJ-16010 RANDOM WIRE TUNER Operate 160 thru 10 Meters. Up to 200 watts RF output Matches high and low impedances. 12 position inductor $\$ 0.239$ connectors. $2 \times 3 \times 4$ inches. Matches 25 to 200 ohms at 1.8 MHz .
 the famous CURTIS-8043 keyer-on-a-chip.
Panel Controls: Speed (8 to 50 WPM), pul to tune; volume, on -oft, 3 conductor, $1 / 4$ inch phone jack for keying output and key paddle input
Internal weight control lets you adjust dot -dash space ratio for a distinctive signal to penetrate ORM for solid ox contacts. Sidetone and speaker. Internal tone control
Iambic operation with squeeze key. Dot memory instant start. Sell completing. Jamprool spacing Reliable solid state keying: gid block, cathode, solid state transmitters ($\sim 300 \mathrm{~V}$ 10 ma max, and $+300 \mathrm{~V}, 100$ ma max.)

For Orders

Call tolltiree
800-64
For technical information, order and repair status, and in Mississippi, please call 601-323-5869. Order any product from MFJ and try it. If not delighted, return within 30 days for a prompt refund (less shipping).
Order today. Money back if not delighted. One year unconditional guarantee. Add $\$ 2.00$ shipping/handling.
Order By Mail or Call TOLL FREE 800-647-8660 and Charge It On

JULY 1978

volume 11, number 7
T. H. Tenney, Jr., WiNLB publisher
James R. Fisk, W1HR editor-in-chief
editorial staff
Martin Hanft, WB1CHO administrative editor
Charles J. Carroll, K1XX
Patricia A. Hawes, WAIWPM
Alfred Wilson, W6NIF
assistant editors
Thomas F. McMullen, Jr., W1SL
Joseph J. Schroeder, W9JUV
associate editors
Wayne T. Pierce, K3SUK
cover
publishing staff
C. Edward Buffington, WB1AMU assistant publisher

Fred D. Moller, Jr. WAIUSO advertising manager
James H. Gray, W1XU assistant advertising manager

Therese R. Bourgault circulation manager
ham radio magazine
Communications Technology by
Greenville, New Hampshire 03048 Telephone: 603-878-1441
subscription rates
United States: one year, $\$ 12.00$ two years, $\$ 22.00$; three years, $\$ 30.00$

Canada: one year, $\$ 14.00$ two years, $\$ 26.00$; three years, $\$ 36.00$

Europe, Japan, Africa:
(via Air Forwarding Service) one year, $\$ 25.00$
North America, South America, Australia
and Asia (except Japan): (via Surface Mail)
one year, $\$ 18.00$
foreign subscription agents
Foreign subscription agents are listed on page 117

Microfilm copies

Cassette tapes of selected articles from ham radio are available to the blind and physically handicapped 19 Walnut Street 8th Floor hiladelphia Pennsylvania 19107

Copyright 1978 by
Communications Technology, Inc Title registered at U.S. Patent Office

Second-class postage paid at Greenville, N.H. 03048 and at additional mailing offices
Publication number 233340
ham radio magazine

contents

16 general-purpose vhf receiver Peter J. Bertini, K1ZJH
26 subaudible tone encoders R. B. Shreve, W8GRG

34 pseudo-logarithmic spectrum analyzer display H. Paul Shuch, N6TX

36 variable-voltage power supply
Kenneth E. Powell, WB6AFT
42 radio-sounding system Lawrence L. Jack, KL7GLK
50 frequency display for the Heath HW2036 Bill H. Stevens, WB8TJL
54 phase locked loops Robert J. Marshall, WB6FOC
68 voltage calibrator for digital voltmeters Robert S. Stein, W6NBI
74 multiband J antenna Robert 0 . Thornburg, WB6JPI
78 Colpitts oscillator design Larry C. Leighton, WB6BPI
90 visual aids for microcircuits Robert V. Sullivan, K9SRL
93 RFI cures for home entertainment devices John DeVoldere, ON4UN

4 a second look	102 new products
142 advertisers index	6 presstop
117	flea market
132	142 reader service
98	ham nart
	68 repair bench
	36 weekender

In our modern day world of solid-state electronic gadgets and centralized urban living, it's the rare amateur who hasn't been troubled at one time or another by interference complaints. As often as not the interference is caused by some other source, but if you have a tower in your backyard, you're a likely suspect and the first one to whom they turn when the local taxicabs (or whatever) tear up your neighbor's favorite television show or come booming through their quadraphonic stereo system.

As I have mentioned in this column several times in the past, the problem can be effectively cured only by proper design and construction of home-entertainment equipment at the manufacturing level. The consumer electronics business is highly competitive, however, so the manufacturers are reluctant to add filtering and lead bypassing that would increase the sales price of their equipment. For many years the manufacturers contended that less than 5% of home entertainment equipment operated in an of environment which required special attention - but with the proliferation of twoway radio systems as well as higher power a-m and fm broadcasting stations and high-speed digital systems which can cause interference, I doubt that many consumers would agree.

Several bills have been introduced into Congress which would give the FCC authority to regulate the manufacture of home-entertainment devices to reduce their susceptibility to interference from nearby radio transmitters, but none have passed. Now Senator Goldwater is sponsoring a Bill which would require better RFI rejection; the Bill, S-864, has been referred to the Senate Subcommittee on Communications and hearings began in Washington on June 14th. Among those invited to testify were the ARRL, FCC, Institute of High Fidelity, and Heath. Although there's no chance that the Goldwater Bill will make it to the Senate floor during this session, the hearings will help pave the way for speedier action on future RFI legislation.

Consumers are becoming increasingly aware of the RFI problem, so the time is right for legislation such as that proposed by Senator Goldwater. Radio amateurs have known for a long time that the majority of RFI problems are not due to interference per se, but are caused by the interception of signals by devices which were not designed to operate in today's strong rf environment. The only way to eliminate 90% of the RFI problems is through legislation such as S-864 which would eventually require the manufacturers to correct those design deficiencies which lead to unnecessary interference.

Individual amateurs can help toward the eventual passage of a bill requiring better RFI rejection by letting their Senators know of their support for S-864, particularly if one of their Senators is a subcommittee member. In addition to Chairman Hollings (South Carolina), the members are Griffin (Michigan), Magnuson (Washington), Cannon (Nevada), Inouye (Hawaii), Ford (Kentucky), Durkin (New Hampshire), Zorinsky (Nebraska), Riegle (Michigan), Stevens (Alaska), Packwood (Oregon), Schmitt (New Mexico), and Danforth (Missouri). Letters to the Senators addressed to the United States Senate, Washington, D.C. 20510, will reach them promptly and may help considerably.
The letters do not have to be long, although background information on your (or your neighbors') RFI problems could be important. Even a note to the effect that you support S-864 would be a valuable contribution. Remember that previously introduced RFI legislation never made it through Congress - now that Senator Goldwater has started the ball rolling again, let's make sure it has enough momentum to become law. Now is the time to lend your support to this vital effort; write today and make your voice heard.

ACTUAL SIZ̄E PFOTO
Try on MultiMode you are lamenting the limitations of your present mobile rig. just imagine how it would size up against the IC-245/SSB Mobile Maximizer. In addition to the complete FM capability through repeaters and the SSB capabilities from a home station, the IC-245/SSB offers superb SSB mobile performance to squeeze the most out of simplex mobile contacts. Mobil CW? No problem with the IC-245/SSB: just push the button and hit the key, and you're on the best mode for longhaul mobile DX. Some of the features which make all of this possible are:

- Single knob frequency selection: The IC$245 / S S B$ is synthesized with convenient single knob frequency selection over the entire 4 MHz . No more fussing with two or more knobs just to check what is going on around the band. One easy spin of the dial does it all.
- Two VFO's built in: The second VFO, which is an optional tack-on with most other transceivers, is an integral feature in every IC-245/ SSB.
- Variable offset: Any offset from 10 KHz through 4 MHz , in multiples of 10 KHz , can be programmed with the LSI synthesizer.
- Remote programming: The LSI chip provides for input of a Touch Tone ${ }^{x}$ like programming pad from an external source, such as the microprocessor controlled accessory which will also provide scan and other functions (available summer '78). Computer control from a PIA interface is also possible (data available on request).
- FM stability on SSB and CW: Synthesis of 100 Hz steps makes SSB as stable as FM. This extended range of operation is attracting many FM'ers who have been operating on the direct channels and have now discovered SSB.

So for your next mobile radio, go all out after all of it and get the maximum in multi-mode mobile with the IC-245/SSB. P.S. A microprocessor controller with memory, frequency setting and Touch Tone ${ }^{* x}$ dialing will be available soon.

Maximize the new repeater band: both the IC-211 and the IC-245/98B operate the the new FCC repeater spectrum with no modification.

All ICOM radioe significantly exceed FCC specifications limiting spurious emissions.

> Specifications: Frwquency Coverage: 144.00 to 148.00 MH , Modes: FM (13). SSB (A3.) CW (AI) Gupply Voltage: D $13.8 \mathrm{~V}=15^{\circ} \mathrm{C}$ Sire: $90 \mathrm{~mm}(\mathrm{~b}) \times 15.5 \mathrm{~mm}(\mathrm{w}) \times 235 \mathrm{~mm}(\mathrm{~d})$ Weight 6.8 Ky IX Output: F3. 10W: A33, I0W (P1P):A1. I0W Spurious Radiation 60 dB below
Sputious Response: 60 dB of better Synthesizer Irequency Range: 144.00 MHz to 148.00 MH ,
Synthesizet Step Size: $5 \mathrm{KH} /$ for TM. 100 Hz or 5 KH , for SSB

ICOM CANADA

presstop

NEW 10, 18, AND 25 MHZ AMATEUR bands were all proposed in the FCC's WARC 79 eighth Notice of Inquiry released in early May. On the negative side, the Cormission proposed shifting 50 kHz from the top end of 80 , and the bottom 60 kHz of 160 , to the broadcast service, but also proposed that all the HF Amateur bands (except for part of 160) be exclusively Amateur throughout the rest of the world. Specific FCC proposals for the Amateur Service:

160 Meters: $1800-1860 \mathrm{kHz}$, Region 3 only (shared); 1860-1900 exclusive Amateur worldwide; 1900-2000 shared
80 Meters: $\quad 3500-3950 \mathrm{kHz}$ (loss of 50 kHz)
40 Meters: $\quad 6950-7250 \mathrm{kHz}$ (shifted down 50 kHz)
30 Meters: $\quad 10.1-10.2 \mathrm{MHz}$ (new)
20 Meters: $\quad 14.0-14.35 \mathrm{MHz}$ (unchanged)
17 Meters: $\quad 18.068-18.168 \mathrm{MHz}$ (new)
15 Meters: $\quad 20.95-21.45 \mathrm{MHz}$ (50 kHz added at low end)
13 Meters: $\quad 25.11-25.21 \mathrm{MHz}$ (new, moved from 25.76 proposed in the fifth NOI at the request of Radio Astronomy)

10 Meters: $28.0-29.7 \mathrm{MHz}$ (unchanged)

Arguments By Amateurs were responsible for the new 10 and 18 MHz bands, the Commission noting that they were"so strongly requested and justified in the Service Working Group report while reducing the overall impact on the fixed services..."

These Proposed Bands are far from firm, however. There is a mention in the text that the Executive Branch will not support the $6950-7000$ and $20950-21000 \mathrm{kHz}$ slots or allow the Amateur Satellite Service to use $1250-1260$ or $5660-5670 \mathrm{MHz}$ (which in addition to $2390-2400 \mathrm{MHz}, 76-81,165-170$, and $240-250 \mathrm{GHz}$, were included as a footnote with 435438 MHz). The Amateur Satellite Service was also given "primary" status on the new 13-meter band.

CREDIT FOR PASSING THE CW exam can now be retained by an FCC license applicant even though he failed the written test; the Commissioners agreed to allow an applicant such credit for up to one year after he takes an exam. To receive the CW credit the applicant will be given an FCC Form 845 by the Field Office at the time of the exam. He turns it in when he returns for another try and receives credit for the CW portion of the exam. Form 845 will be honored only by the Field Office that issued it.

Ex-Novices, Whose Licenses expired less than a year ago, will be eligible to apply for reinstatement just like any other Amateure licensees. This provision is a result of the FCC's recent rules change making Novice licenses good for five years and renewable. Any former Novice, whose license expired after May 15, 1977, can submit a Form 610 (within one year of his original expiration date) and regain his license for a full five years - without retaking an exam.

General-Class Licensees are now permitted use of $50.0-50.1 \mathrm{MHz}$. The change brings General 6-meter privileges in line with those of Technicians.

AMATEUR RADIO'S RANKS GREW over 11 per cent in the past year, according to recent FCC figures. At the end of April, U.S. Amateur operator licenses numbered 337,959, compared to only 304,331 a year ago. Biggest growth was in the Novice Class, up 12, 434 from last year at this time to total 58,016 . Extra Class showed the next greatest percentage increase, up more than 20 per cent to 19,797 , but every class showed healthy growth rates of 6 per cent or more.

W2BXA RECEIVED SATELLITE DXCC number 1 when he arrived at ARRL Headquarters with cards proving he'd worked 101 countries via the OSCARs! W6VPH/VP5, VP2EFZ, and a special handmade FOØXA card from the recent Clipperton DXpedition pushed Ben over the top.

K5CM WORKED WAOLPK/KL7 FOR HIS 50TH 2-METER state in late April, becoming the second station to make WAS on 144 MHz .

In Addition, 2-Meter Worked All States was achieved by NØJA and K9HMB several weeks later, thanks to N6NB/7, who operated his portable moonbounce station from both sides of the Utah-Nevada border.

THE WINNER OF THE GRAND PRIZE in the 1978 Sweepstakes, a Drake UV-3, the world's only three-band vhf-fm transceiver, with ac power supply and encoding microphone, and an Atlas 350-XL high-frequency transceiver package which includes a deluxe power supply console with speaker, digital clock, phone patch, speech processor, and electronic keyer, is Shelton Boles, WA5KOK, of Cleveland, Texas. Other happy winners in this year's Sweepstakes are Murray Fisher, W7NSU, who won an Atlas $350-\mathrm{XL}$ with ac power supply, and David Richards, K1YGF, who is a proud new owner of a Drake UV-3 with modules for 144, 220 , and 440 MHz .

The evolution of the MLA

When the MLA-2500 was first introduced it was a new concept in high performance amplifiers. Low and sleek yet powerful enough for the military. Some wondered . . . needlessly.

A promise kept.

The MLA-2500 promised 2000 watts PEP input on SSB. A heavy duty power supply. Two Eimac 8875's. And as thousands of Amateurs across the world have proven, the MLA-2500 delivers!

Now DenTron is pleased to bring you The new MLA-2500 B. Inherently the same as the original MLA-2500, the B model includes all of the above specifications plus a few refinements. New high-low power switching for consistent efficiency at both the 1 KW and 2 KW power levels, and 160-15 meters.

Tested and proven.

What better test for an amplifier than the Clipperton DXpedition? Even after 32,000 OSO's, and an accidental dunk in the ocean, the same 3 MLA-2500's are still amplifying other rare DXpeditions around the world - listen for them.

Convinced? Isn't it time you owned the amplifier that powered Clipperton and thousands upon thousands of radio stations throughout the world?

MLA-2500 B \$899.50.

sindui oipne omi pue aлiajes иo 人hinestan peppe sol sieily oipne sepnpul лeyeeds buiч feuraixa exnlep 0z8－dS aч1 Nosseove payэлеш

028－dS SOZ8－0．1＾S028－S1

Kepor seleed poomuery pazhoyiny jeool inoh aes

 A！sea $4!4$ s $二 1$ snowej su pue＇রun！ quedns si！10，umour Si S0Z8－S1 $041 \mathrm{~N} / \mathrm{S} 8 \mathrm{p}$
 XSA wo ja M OOL pue MJ wo jo M 091 ＇gSS uo dヨd M OOZ S！यamod indul \＆y gp 09－ ueyl ssel ore sinds лeylo pue ap Ot－ueyl ssel ere suoisstwa snounds muowien gp g\＆－iseal ie are sıonpord лерло－pлlद pue kjueeul anordui of janup ayt of jeu！out woit paydde s！yכeqpeat an！e6au
 fueisuos－auil－ypinb apinoid or मinoup zHy－g9t e
 ayl Kneay sieb wyo ayl ueym pue ．pueq ayı uo s6u joyıo eqd lle woul to spuess kijenb quadns

5028－51

sieseu OL

to ןe y6nosyt 091 moд pueq kue uo zuewholue Guızeledo $10!$ el！sep pinos ineıeur kue eınıee！ Aıene sey S0Z8－S1 e41＇suo！i！puos ןejuewuoд！iue I｜e jepun eu！y Gu！zesedo to sinoy to spuesnoyz 46nosyz uenoad＇Ki！jenb quedns sy！loedses Ajpesienjun siojeiedo oppey inoleury rellesered oyz se ep！мpןiom имоия …S0Z8－S1 eyl

The TS-520S . . . the most popular Amateur Radio transceiver in the world . . . provides a foundation for an expanding series of accessories designed to please any ham...from Novice to Amateur Extra.

The TS-520S transceiver provides full transmit and receive coverage of all Amateur bands from 160 through 10 meters. It also receives 15.0 (WWV) to 15.5 MHz and another $500-\mathrm{kHz}$ range of your choice in the auxiliary band position. With the optional DG-5, you have a large digital frequency readout when transmitting and receiving, and the DG-5 also doubles as a $40-\mathrm{MHz}$ frequency counter. The TS-520S includes a built-in AC power supply. and, with the addition of the optional DS-1A DCDC converter, it can function as a mobile rig. It features a very effective noise blanker, RIT, eightpole crystal filter, $25-\mathrm{kHz}$ calibrator, front-panel carrier level control, semi-break-in CW with sidetone, built-in speaker, heater switch, 20-dB RF attenuator and easy phone-patch connection. RF input power is 200 W PEP on SSB and 160 W DC on CW. Carrier suppression is better than -40 dB and sideband suppression is better than -50 dB . Spurious radiation is less than -40 dB . Receiver sensitivity is $0.25 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$. Selectivity is 2.4 kHz at $-6 \mathrm{~dB} / 4.4 \mathrm{kHz}$ at -60 dB and, with the optional CW-520 CW filter, is 0.5 kHz at $-6 \mathrm{~dB} / 1.5 \mathrm{kHz}$ at -60 dB .
See your local Authorized Kenwood Dealer for more information, and a super deall

A great station.... at an affordable price! The TS-520S with its companion accessories ... including two new units. The AT-200 antenna tuner provides a versatile tool in any station. The other is the TV-520S, Kenwood's 2 meter transverter for SSB and CW operation from 146 to 148 MHz .

QRENwooo
 pacesetter in amateur radio

The 599D "Twins" are offered to the discriminating Amateur who appreciates the advantages of operating a separate transmitter and receiver.

The R-599D receiver and T-599D transmitter provide greater flexibility with more features than found in a transceiver.
The R-599D receiver is all solid-state, covering all Amateur bands from 160 through all of 10 meters: as well as auxiliary band and WWV $(10 \mathrm{MHz})$. With optional converters it also receives 6 meters and 2 meters Modes include LSB, USB, CW, AM, and FM. A $2.2-\mathrm{kHz}$ eight-pole filter is built-in for SSB, as well as a $500-\mathrm{Hz}$ eight-pole CW filter and a 5.0 kHz six-pole AM filter. An optional $14.0-\mathrm{kHz}$ six-pole FM filter is available. Also featured are an AGC control (slow/fast/off), $25-\mathrm{kHz}$ calibrator, RIT, noise blanker, ANL (AM), squelch, monitor, VFO selector, and RF gain control which does not affect S-meter reading
The T-599D transmitter is solid-state except for the driver and final tubes. It covers the 80 through 10 . meter Amateur bands, on LSB, USB, CW, and AM. An AC power supply is built-in, Also included are VOX, anti-VOX, PTT, semi-break-in CW with sidetone, ALC, transverter terminal.
Enjoy split frequency control in four separate/ transceive combinations with the 599D "Twins". See your local Authorized Kenwood Dealer for more

information.
 R-599D/T-599D

R-300

The R-300 all-band communications receiver covers the following ranges: (A) 170.410 kHz ; (B) $525-1.250 \mathrm{kHz}$; (C) $1.25-3.0 \mathrm{MHz}$; (D) $3.0-7.5 \mathrm{MHz}$; (E) $7.5-18.0 \mathrm{MHz}$: and (F) $18.0-30.0 \mathrm{MHz}$. It receives $A M$, SSB and CW . The receiver features large, easy-to-read drum dials. Bandspread is calibrated for 10 foreign-broadcast shortwave bands, and a replacement bandspread calibration is available for the 80 10 -meter Amateur bands. Included is a three-way power supply (AC/batteries/external DC). Wide and narrow ceramic filters are employed for high selectivity. Also included is a $500-\mathrm{kHz}$ calibrator

IT'S NEW. . . IT'S UNIQUE ... AND IT'S TRULY USEFUL. IT'S KENWOOD'S SM-220 STATION MONITOR. THE SM-220'S UNEXCELLED VERSATILITY ALLOWS YOU TO MONITOR YOUR TRANSMISSIONS, MONITOR INCOMING SIGNALS, AND MONITOR THE AMOUNT AND STRENGTH OF BAND ACTIVITY AND PERFORMS AS A GENERALPURPOSE 10 MHz OSCILLOSCOPE, AS WELL.

Kenwood offers this totally unique unit as a perfect compliment to your TS-820S or TS-520S station." The SM-220, based on a wideband oscilloscope (2 Hz to 10 MHz), permits you to monitor your transmitted signals, thus assuring optimum linearity and maximum performance. With the addition of the BS-5 or BS-8 Pan Display option you will be able to determine visually the location and strength of adjacent signals without tuning your receiver off frequency. The choice of options allows you to adapt the SM- 220 to either the TS- 820 series or TS- 520 series.
The SM-220 has a built-in two-tone audio generator with full provisions for tuning your exciter and linear amplifier (160 m through 2 m).
All this costs little more than a general-purpose oscilloscope. And, of course, it's pure Kenwood quality.
With BS-5 or BS-8 option
"For other models check with appropriate manufacturer for compatibility.

Two-Tone Wave Envelope For "parformance" tuneups or checking prope tranceiver operation

Pan Display Use to check source of interference dur. ing "OSO" without moving of- frequency. Also deter mines location and strength of adjacent frequencies. (Requires BS- 5 or BS- 8 option)

Keyed Waveform Shows detail of CW keying. Use to detail of CW keying Use to CW note. (Photo shows ideal waveform produced rm produced by TS-820S.)

Oscilloscope Operation (1 kHz) Oscillator function allows Sine, square wave Lissajous patterns for test ing or design work

Trapezoid (TS-820S w/ TL.922) Shows linearity of power amplifier, Used primarily for testing

Wave Envelope shows full SSB voice modulation, with processor on (full compression), and "clean signal" at full power.

Qriknwooo

STILL THE SAME FINE, TIME PROVEN RIG. BUT NOW WITH THE SIMPLE ADDITION OF A PLUG-IN CRYSTAL, THE TS-700SP WILL BE ABLE TO UTILIZE THE NEW REPEATER SUB-BAND (144.5 to 145.5 MHz) STILL FEATURES ALL OF THE FINE ATTRIBUTES OF THE TS-700S: A DIGITAL FREQUENCY DISPLAY, RECEIVER PRE-AMP, VOX, SEMI-BREAK IN, AND CW SIDETONE. OF COURSE, IT'S ALL MODE, 144-148 MHZ, VFO CONTROLLED . . . AND KENWOOD QUALITY THROUGHOUT.

Features: 4 MHz band coverage (144 to 148 MHz) - Automatic repeater offset capability on all FCC authorized repeater subbands including 144.5 145.5 MHz . Simply dial receive frequency and radio does the rest . . . simplex, repeater, or reverse. Same features on any of 11 crystal positions. Transmit/Receive capability on 44 channels with 11 crystals : Operates all modes: SSB (upper and lower), FM, AM and CW - Digital readout with "Kenwood Blue" digits • Receiver pre-amp - Built-in VOX - Semi break-in on CW . CW sidetone - All solid-state - AC and DC capability. 10 watts RF output on SSB. FM, CW - 3 watts on AM - 1 watt FM low-power switch $0.25 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ SSB/CW sensitivity $0.4 \mu \mathrm{~V}$ for 20 dB quieting FM sensitivity.
10 watts RF output on SSB, FM, CW $\cdot 3$ watts on AM - 1 watt FM low-power switch $\cdot 0.25 \mu \mathrm{~V}$ for 10 $\mathrm{dB}(\mathrm{S}+\mathrm{N}) / \mathrm{N}$ SSB/CW sensitivity $\cdot 0.4 \mu \mathrm{~V}$ for 20 dB quieting $F M$ sensitivity. TS-700SP

TS-600

The luxury all-mode transceiver for 6 meters. All solidstate. SSB, FM, AM, and CW.
It's easy to work VHF DX on 6 meters with the TS-600 all-mode transceiver. The 10 -watt, solid-state rig covers $50-54 \mathrm{MHz}$, with builtin VFO and 20 fixed channels. The main tuning dial is calibrated every 1 kHz for precise tuning. The built-in AC/DC power supply allows base and mobile operation. Other features include a noiseblanker circuit and RIT (receiver incremental tuning).

The fully-synthesized TR-7400A 2-meter FM transceiver operates on 800 channels and features repeater offset over the entire 144 -$148-\mathrm{MHz}$ range, dual frequency readout, six-digit display, and subaudible tone encoder and decoder. RF output is at least 25 watts!

The TR-7400A 2-meter FM transceiver provides fully synthesized operation, including $600 \cdot \mathrm{kHz}$ repeater offsets, over the entire $144-148-\mathrm{MHz}$ range. It can operate on any of 800 channels. spaced 5 kHz apart. RF output is at teast 25 W and typically 30 W . A low power position produces 5-15 W (adjustable) Inctuded is a dual trequency readout with large six-digit LED display plus a dial readout. The subaudible CTCSS signaling feature may be used on transmit and receive, or transmit only. Optional tone-burst modules are available Recelver sensitivity is better than $0.4 \mu \mathrm{~V}$ for 20 dB quieting. Large, high. Q , helical resonators minimize interference from outside the band. A two-pole 10.7-MHz monolithic erystal filter provides excellent selectivity. Optional active filters are available for $15-\mathrm{kHz}$ "split operation. Intermodulation distortion is down more than 66 dB , spurious rejection is better than -60 dB , and image rejection is better than -70 dB .
See your local Authorized Kenwood Dealer today. for a demonstration of the fantastic TR-7400A.

TR-7400A

TR-8300

FM transceiver for $70-\mathrm{cm}$ Amateur band. 23 crystalcontrolled channels (three supplied). Transmitter output is 10 watts.
The TR-8300 $450-\mathrm{MHz}$ FM mobile transceiver provides 10 watts output (switchable to 1 watt) on 23 crystalcontrolled channels (three pairs of crystals supplied). The transmitter covers 445 to 450 MHz , and the
receiver covers 442 to 447 MHz The receiver includes a five-section helical resonator and a two-pole crystal filter in the IF for improved intermod rejection. Sensitivity is $0.5 \mu \mathrm{~V}$ for $20-\mathrm{dB}$ quieting. A frontpanel switch may be used to activate tone-signaling or other user-provided function. An LED indicates receive crystal functioning. A monitor circuit allows user to listen to his own modulation.

QK=Nwood

INTRODUCING THE ULTIMATE IN RECEIVER DESIGN THE KENWOOD R-820

With more features than ever before available in a hamband receiver. This triple-conversion $(8.33 \mathrm{MHz}, 455 \mathrm{kHz}$. and 50 kHz IFs) receiver, covering all Amateur bands from 160 through 10 meters, as well as several shortwave broadcast bands, features digital as well as analog frequency readouts, notch filter, IF shift, variable bandwidth tuning, sharp IF filters, noise blanker, stepped RF attenuator, 25 kHz calibrator, and many other features, providing more operating conveniences than any other ham-band receiver. The R-820 may be used in conjunction with the Kenwood TS-820 series transceiver, providing full transceive frequency control.

A S.METER Easy to-read, calibrated to $59=40 \mathrm{~dB}$ full scale and $\mathrm{dB} / \mu \mathrm{V}$
B STANDBY/RECEIVE SWITCH Disables audio circuits during trans mit mode with associated transmitter
CALIBRATOR SWITCH Builfin crystal calibrator, settable to WMV provides sional even 25 KHy
D NOISE-BLANKER SWITCH A specially designed crystal fitter elimi nates noise pulses such as ignition-noise interference.
E MONITOR SWITCH RF sampling allows usec to hear his own voice
AGC SWITCH Automatiogain-control circuit switchable to slow or tast response, or completely aff
G RECORD JACK Makes recording off the air simple
H HEADPHONE JACK Provision for plugging in headphones
MODE SWITCH Selection of AM. CW upper or lower sideband
RF-ATTENUATOR SWITCH 10 dB stops of attonuation from 0 to 40 dB , to prevent overloading from nearby stations and for precise zignal comparison
K DIGITAL HOLD Locks counter and display while VFO is tumed to another frequency Helps return to hold trequency
VFO/CRYSTAL SWITCH Permits VFO control or crystal control on four selectable frequencies
M LED INDICATORS Lightemiting diodes indicato activation of notch fittor crystal-controlled reception VFO control and RIT
N DRS DIAL Satin:smooth VFO tuning dial system provides easy analog frequency readout (useful when digital hold is activated LSB USB and CW frequericies are accurately read from the same pointer.

- NOISE-BLANKER LEVEL CONTROL Controls level of blanking for maximum effect in eliminating noise imterference.
P MONITOR CONTROL Adjusis lovel of RE sampling
a TONE CONTROL Vanes audio-output frequency response
R TRANSCEIVE SWITCH Selects frequency tuning from either the receiver or TS-820 seres transceiver
S VBT/SELECTIVITY CONTROLS Separate contiols on the same shaft provide variable bandwidth tuning as well as selection of four If tiltors $250 \mathrm{~Hz}^{\circ} 500 \mathrm{~Hz}^{\circ} 2.4 \mathrm{kHz}^{2}$ and $6 \mathrm{kHz}^{\circ}$ (optional). CW fit ters function in $455 . \mathrm{kHz}$ IF for superior shape factor-
T PRESELECTOR Peaks tuned circuits in RF amplifier stage for increased selectivity and sensitivity. RF amplifier coil is dual tuned
U RIT/NOTCH CONTROLS BIT allows receiver to be tuned off fre quency, while not affecting transmit frequency, when in transceive mode with is -820. Notch control tunes notch within IF passband for eliminating interference Notch frequency remains the same even when IF shift is utilized.

V IF SHIFT Varies (shifts) IF passband away from intertering signal.
W AF GAIN/RF GAIN Separate controls adjust volume and RF gain
x RIT SWITCH Allows tuning off frequency with RIT control, and return immediately to VFO trequency by pushing switch
Y NOTCH SWITCH Takes variable notch filter in and out of circuit
Z BAND SWITCHES Selects frequency bands from 15 MHz (WWV), 160 through 10 meters, the 49, 31, 25 and 16 -meter shortwave broadcast bands, and an auxiliary band
AA TRANSCEIVE/SEPARATE SWITCH Enables receiver VFO to control the receiver and TS-820 (or TS-820S) frequency for the TS 820 VFO to control both), or both can function independentiy
BB POWER SWITCH Tums receiver on and off

R- 820 PERFORMANCE SPECIFICATIONS Frequency Range:

60 meters (1.8 .2 .0 MHz) 80 meters (3 5. 5.0 MHz)

 40 meters (7.0 .7 .5 MHz) 20 meters ($14.0-14.5 \mathrm{MHz}$) 15 meters (210.21 .5 MHz) 15 meters (210.21 .5 MHz) 10 meters ($28.0-28.5 \mathrm{MHz}$) 10 meters ($28.5-29.0 \mathrm{MHz}$) 10 meters $(29.0-29.5 \mathrm{MHz})$ 10 meters (29.5 .300 MHz) 19 meters (150 (WWY)-15 5 MHz) 49 meters (5 : 9.6 .4 MHz) 31 meters ($9.4-9.9 \mathrm{MHz}$) 25 moters ($11.5 \cdot 12.0 \mathrm{MHz}$) 16 meters ($17.7-18.2 \mathrm{MHz}$) Auxiliary bandModes AM. CW USB LSB RTTY
Sensitivity: $160.10 \mathrm{~m}, 19 \mathrm{~m}$, SSB $0.25 \mu \mathrm{~V}$ at 10 dB S $+\mathrm{N} / \mathrm{N}$
49.31 .25 .16 m . SSB $0.5 \mu \mathrm{Vat} 10 \mathrm{~dB} \mathrm{~S}-\mathrm{N} / \mathrm{N}$

AM $30 \mu \mathrm{~V}$ at $10 \mathrm{dBS} \mathrm{N} / \mathrm{N}$
Selectivity. CW (with optional $250 . \mathrm{Hz}$ filter) $250 \mathrm{~Hz}(-6 \mathrm{~dB}) 500 \mathrm{~Hz}(-60 \mathrm{db})$ CW (with optional $500 \cdot \mathrm{~Hz}$ filter). $500 \mathrm{~Hz}(-6 \mathrm{~dB}) .850 \mathrm{~Hz}(-60 \mathrm{~dB})$ SSB (2.4 kHz liter), 2.4 kHz (-6 dB), $4.4 \mathrm{kHz}(-60 \mathrm{~dB}$) AM (6 k kHz fitar), $6 \mathrm{kHz}(-6 \mathrm{~dB}) .12 \mathrm{kHz}(-60 \mathrm{~dB})$
Image Ratio: $160-10 \mathrm{~m}, 19 \mathrm{~m} .80 \mathrm{~dB}$
49, 31, $25,16 \mathrm{~m}, 60 \mathrm{~dB}$
IF Rejection $160-10 \mathrm{~m}, 19 \mathrm{~m}, 90 \mathrm{~dB}$ $49,31,25,16 \mathrm{~m}, 50 \mathrm{~dB}$
Power Requirements: $100 / 120 / 220 / 240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$, or $12-15 \mathrm{VDC}$ Dimensions 13-1/8" $(333 \mathrm{~mm}) \mathrm{W} \times 6^{\prime \prime}(153 \mathrm{~mm}) \mathrm{H} \times 13-3 / 16^{\prime \prime}(335 \mathrm{~mm}) \mathrm{D}$ Weight: 26.4 lbs $(12 \mathrm{~kg})$

AT-200The AT-200 is an antenna tuner, but it's also much more. It's an antenna switch, an SWR bridge and an in-line wattmeter. The AT-200 reduces the clutter and increases the operating efficiency of your station... and at a suprisingly moderate price.

The AT- 200 features a seven position rotary switch that selects 1 of 3 antennas and connects it through the antenna tuner circuit or directly to the transceiver. The 7th position allows you to connect a dummy load directly to your transceiver for tune up and testing. Two of the antenna inputs are fitted with SO-239 type coax connectors. A third input allows for easy hook up of a wire antenna with an impedance of 10 to 500 ohms. The AT- 200 may be used on all HF amateur bands from 160 to 10
meters. It's handsomely styled to match the TS-820S and TS-520S Series (and TS-820 and TS-520), but can also be used with any HF transceiver or transmitter with less than 200 watts output.

Frequency coverage: Amateur bands 1.8 to 30 MHz - input impedance; 10 to 500 ohms - Maximum power capability 200 watts. Insertion loss: 0.5 dB . Power meter 20 watt $/ 200$ watt full scale - SWR meter measures up to 10:1. Dimensions $6-1 / 2^{\prime \prime} \mathrm{W} \times 7-3 / 8^{\prime \prime} \mathrm{D} \times 6-9 / 16^{\prime \prime} \mathrm{H}$ - Weight 6.2 lbs.

The MC-30S and MC-35S dynamio mobile microphones provide 150.5000 Hz frequency response $(150-4000 \mathrm{~Hz}$ when operated as noise-cancelling microphones) The MC-30S impedance is 500% and the MC 35 S is 50 kg .

HS-4

The HS-4 headphone-set is comfartably padded and is complately adjustable, for extended periods of wear Frequency response is designed for Amateur communications (300 to 3000 Hz). Impedance is 8 obims.

Mc: 50

The MC- 50 dynamic microphone is perfect for any hamshack, and is ideal for all Kenwood equipment as well as many other brands It includes PTI and LOCK switches, as well as a microphone plug wired for instant connection to any Kenwood rig If is easily converted to high or low impedance (600 2 or 50 kR)

MC-305 835 S

 -ACCESSORIES FOR 599D Series $160-10-\mathrm{m}$ transmitter and receiver S-599 external speaker CC-29A 2-m converter CC-69 6-m converter FM-599A FM filter
 \section*{\section*{OTHER KENWOOD
 \section*{\section*{OTHER KENWOOD

 PRODUCTS

 PRODUCTS

 ACCESSORIES

 ACCESSORIES

 FOR TS-820 Series

 FOR TS-820 Series 160-10-m transceiver 160-10-m transceiver DG-1 digital frequency display DG-1 digital frequency display VFO-820 deluxe remote VFO VFO-820 deluxe remote VFO CW-820 $500-\mathrm{Hz}$ CW filter CW-820 $500-\mathrm{Hz}$ CW filter DS-1A DC-DC converter DS-1A DC-DC converter

SP-820 external speaker with audio filters

 ACCESSORIES

 ACCESSORIES

 FOR TS-520 Series

 FOR TS-520 Series 160-10-m transceiver 160-10-m transceiver DG-5 digital frequency display DG-5 digital frequency display DK-520 digital adaptor kit for DK-520 digital adaptor kit for TS-520 TS-520

 VFO-520 remote VFO

 VFO-520 remote VFO SP-520 external speaker SP-520 external speaker CW-520 $500-\mathrm{Hz}$ CW filter} CW-520 $500-\mathrm{Hz}$ CW filter}

ACCESSORIES

FOR TS-700SP
2-m all-mode transceiver
VFO-700S remote VFO
SP-70 matching speaker
Other products:
PS-6 power supply for TR- 7500 and TR-8300
PS-8 power supply for TR-7400A VOX-3 VOX for TS-600/TS-700A Active filter elements for TR-7400A

general-purpose
 vhf receiver

Design details

of a receiver that covers the popular vhf ranges, in one convenient package

Any uhf enthusiast can appreciate a receiver that monitors all vhf frequencies and modes in one small, convenient package. Alas, this sort of receiver doesn't exist in the amateur marketplace. For years at my station, a Collins 75A2 - supported by a bewildering array of converters - did the job. Soon after my station was remodeled, I developed a strong desire to replace the large, unwieldy (and ugly) receiver rack with smaller and modern equipment. I'm an avid homebrewer always looking for new projects to occupy limited time and pocket money, so plans for a new receiver were soon germinating.

design features

Hf operators and shortwave listeners alike have always enjoyed the convenience of general-coverage receivers, so why not something similar in nature, only intended for the vhf regions and tailored to today's needs for diversified vhf operation? Doug DeMaw ${ }^{1}$ was on this track some years back when he described a tunable i-f receiver for use with converters. While its abilities fell short of my receiving requirements, several weeks of daydreaming produced on paper a receiver better able to meet my goals, which would incorporate the following features:

By Peter J. Bertini, K1ZJH, 20 Patsun Road, Somers, Connecticut 06071

1. Four- MHz coverage, through a $26-30 \mathrm{MHz}$ i-f range, to allow full reception of the 6-, 2- and 1-1/4meter bands without changing converter crystals. Dial readout was desired to at least $1-\mathrm{kHz}$ resolution with mechanical and electrical stability for smooth CW and ssb reception.
2. Multimode detection for $a-m, s s b$, and $f m$ with squelch to allow monitoring all the popular vhf modes.
3. Several selectivity positions for mode compatibility and operating convenience.
4. All components self-contained in one neat package including all converters, power supplies, and speaker.

A pretty tall order to fill, and obviously some compromises must be reached. Adequate coverage of 4 MHz was best done in four $1-\mathrm{MHz}$ segments, starting at 26 MHz and ending at 30 MHz . This allows for quick scanning across a band while maintaining a tuning rate comfortable enough for ssb reception. The range of $26-30 \mathrm{MHz}$ was chosen for the $\mathrm{i}-\mathrm{f}$ because many converters come equipped for this range and the i-f is also high enough for good converter image-rejection.

Performance data for the basic receiver, covering the $26-30 \mathrm{MHz}$ range, is presented in table 1. I'd like to point out that no pretense is made of using this receiver as the nucleus for a moon-bounce, scatter, or other demanding station-receiver role. Those so inclined will do better with a special-purpose receiver. Templates or board layouts are not available, and this receiver is not intended as a beginner's project.

Schematics of the vhf receiver are shown in figs. 1 through 10. The basic receiver, not considering the vhf converters, is a dual-conversion design using the

Bottom view of the author's receiver. The two boards in the bottom right are the i-f amplifier and the agc detector/amplifier. In the upper left is the bfo/product detector board. Mounted on the left side of the main chassis are the a-m detector and squelch boards. Below and to the right of the product detector is the audio amplifier board. To the left of the audio board is the fm limiter and detector.
standard frequencies of 10.7 MHz for the first i-f and 455 kHz for the second i-f. Motorola MFE 121 dualgate mosfetswere used in the 26-30 MHz rf preselector and in the first- and second-mixer stages. No peaking of the preselector is required across the range on any of the $1-\mathrm{MHz}$ receiver bands. The vfo bandswitch also selects a set of preselector trimmers for each of the four bands; stagger tuning provides broadbanding and uniform gain over each $1-\mathrm{MHz}$ segment.
The basic receiver input allows for direct monitoring of frequencies between $26-30 \mathrm{MHz}$ should the $10-$ or 11-meter bands be of interest. Special attention to
table 1. Performance data for the basic receiver.
frequency coverage
circuit
sensitivity
noise figure
stability
spurious responses
i-f rejection
dial accuracy
IMD performance
agc range
selectivity
modes
squelch
vhf ranges
$26-30 \mathrm{MHz}$ in four $1-\mathrm{MHz}$ bands
superhet, dual conversion; 10.7 MHz first i-f; 455 kHz , second i-f
$0.12 \mu \mathrm{~V}$ detectable in a- m / fm mode;
$0.1 \mu \mathrm{~V}$ detectable in ssb mode
not measured - estimated at $\approx 2 \mathrm{~dB}$
after 1-hour warmup in stable atmosphere, less than 500 Hz per hour all greater than 50 dB down
80 dB down
1 kHz digital resolution. Dial mechanical backlash less than 200 Hz
two $1-\mathrm{mV}$ signals separated 20 kHz required to produce a third order product equivalent to $1.5 \mu \mathrm{~V}$
agc action begins at $0.3 \mu \mathrm{~V}$; i-f distortion at 15 mV
$2 \mathrm{kHz}, 4 \mathrm{kHz}, 8 \mathrm{kHz}, 16 \mathrm{kHz}$ (13 kHz actual) 455 kHz filters. $10.7-\mathrm{MHz}$ IMD filter is 13 kHz
$\mathrm{fm}, \mathrm{a}-\mathrm{m}, \mathrm{ssb}$ and CW detectors
noise operated, all modes $\mathrm{f}-\mathrm{m}$ generator and Hewlett-Packard 608D a-m generator used for performance analysis 2-meter, 6-meter, 1-1/4-meter, $430-434 \mathrm{MHz}, 446-450 \mathrm{MHz}$ coverage inboard; three external converter provisions
adequate shielding and power-line bypassing is encouraged. The recent proliferation of $27-\mathrm{MHz}$ CB units increases the likelihood of annoying i-f breakthrough from strong signals in the $27-\mathrm{MHz}$ range. Converters feeding the receiver should be of low or near unity gain to preserve receiver dynamic range. Modern designs without if amplifiers, especially those employing hot-carrier diodes in double-balanced mixers or mosfet mixer circuits, are ideal. Of course, you can use your own converters; but converters with excessive gain should be followed by an appropriate T-pad attenuator to prevent receiver overload.
An alternative to the i-f attenuator pads to bring the converters to or near unity gain was suggested by Hamtronics. The Hamtronics C25-series converters produce between $10-20 \mathrm{~dB}$ gain, depending upon the band and device alignment.
The cascade front-end stage in the C25 converters is broadbanded; slight stagger tuning of these stages yields the desired $4-\mathrm{MHz}$ bandwidth. However, the i-f output transformer at 28 MHz has a comparatively narrow passband. Resistive loading of the i-f transformer primary broadens the i-f passband while also
decreasing converter gain, which eliminates the need for external attenuators. The approach used on the C25 converters should be adaptable to other makes of converter that exhibit a restricted i-f passband and excessive gain.
The Hamtronics-series converters designed by Jerry Vogt, WA2GCF, were used for the vhf converter front ends of this receiver. Kits are available at modest cost. Three Hamtronics converters cover the three vhf bands: a P25-50 for 6 meters, a P25-150 for 2 meters, and a P25-220 for 1-1/4 meters.
Since the $3 / 4$-meter band is 30 MHz wide, two uhf converters were needed to monitor this band adequately. One is for the $430-434-\mathrm{MHz} \mathrm{DX}$ segment; the other is for the $446-450-\mathrm{MHz}$ range, covering the $400-\mathrm{MHz} \mathrm{fm}$ repeater output channels for the northeast corridor of the U.S. These are unity-gain converters, and, when used without an external if amplifier, don't require the T -pad i-f attenuators.

Receiver use is not limited to amateur frequencies. Suitable converters provide many enjoyable hours monitoring commercial and military air traffic, police, radio-telephone, weather bulletins, municipal and federal government, and much other interesting vhf

	wound on 13 mm (0.5 in .) OD type E toroid cores	L4	30 turns 0.5 mm (no. 24) wire
L1	12 turns 0.5 mm (no. 24) wire	L5	16 turns 0.8 mm (no. 22) wire;
L2	12 turns 0.5 mm (no. 24) wire		link to vfo is 1 turn 0.8 mm (no. 22) wire
L3	12 turns 0.5 mm (no. 24) wire	S1	6-pole, 4-position bandswitch (see text)

fig. 1. Rf amplifier, first mixer, and vfo filter. The fets are MPF121, SK3050, or equivalent.

Top view of the receiver showing the rf amplifier and first mixer.
"activity. Even the hf frequencies can be up-converted, as DeMaw did in his "Receiving Package," reference 1, to produce a truly all-band receiver.

mixers and filter arrangements

Vfo injection from $15.3-19.3 \mathrm{MHz}$ is supplied to gate 2 of the first mixer, (an MFE/MPF121). A Piezo Technology Model 1433 crystal filter, which has 13 kHz bandwidth with a $10.7-\mathrm{MHz}$ center frequency, follows the mixer and acts as an IMD filter, which protects the second mixer from strong out-of-passband signals. The $13-\mathrm{kHz}$ bandwidth of this filter sets the maximum receiver selectivity. (It's electrically similar to the KVG XF9A filter.)

A $10.245-\mathrm{MHz}$ crystal-oscillator signal, mixing with the $10.7-\mathrm{MHz}$ i-f signals in the second mixer stage (fig. 4), produces the $455-\mathrm{kHz}$ i-f. Four $455-\mathrm{kHz}$ Collins mechanical filters follow, which select the desired $455-\mathrm{kHz}$ i-f bandwidth. Selectivity positions of $16,8,4$ and 2 kHz are provided by the four filters.

The use of so many expensive mechanical filters may appear extravagant, but they permit versatility. The 4-, 8-, and $16-\mathrm{kHz}$ filters were salvaged from a demolished R390A i-f strip purchased at a hamfest for $\$ 5.00$. The $2.1-\mathrm{kHz}$ filter was purchased at another for only $\$ 18.00$. A 2 - or $3-\mathrm{kHz}$ filter will serve the majority of ssb and CW vhf requirements, and a simple LC bandpass filter, made up from i-f transformers, will be adequate for fm or a-m reception if inexpensive mechanical filters aren't readily available. Note that in this receiver, the $16-\mathrm{kHz}$ filter passband is limited to 13 kHz by the selectivity of the Piezo Technology filter. A $20-\mathrm{kHz}, 10.7-\mathrm{MHz}$ filter would have improved this situation, but I used materials on hand. The additional cost of a new filter was not justified.

The vfo (fig. 2) operates in the $15.3-19.3-\mathrm{MHz}$ region in four bandswitched $1-\mathrm{MHz}$ segments. Mechanical rigidity and electrical stability are paramount watchwords for a vfo working this high in frequency. Careful mounting of all vfo components and elimination of chassis flexing and dial backlash are
important for good vfo performance. The chassis was rigidly reinforced. The Eddystone dial assembly serves admirably.

The use of polystyrene caps and good-quality ceramic coil forms and trimmers help contribute to vfo stability. The vfo, built on 3 -mm-thick ($1 / 8 \mathrm{in}$.) glassepoxy board, was mounted beneath the receiver away from heat-producing components and drafts. The jfet oscillator is powered by a dedicated 5 -volt regulator; the low voltage was helpful in reducing drift from if component heating. The end result is a vfo exhibiting freedom from microphonics and drift, which permits extending monitoring periods without frequent and annoying retuning.

Extensive filtering of the vfo second harmonic was necessary after a problem surfaced during monitoring of 29.6 MHz . Instead of amateur signals, several local CB operators were heard. When monitoring 29.6 MHz , the vfo second harmonic is at 37.8 MHz . When mixed with the $27.1-\mathrm{MHz} \mathrm{CB}$ signals spurious responses were produced at 10.7 MHz , the first $\mathrm{i}-\mathrm{f}$!

frequency counter

Despite the excellent performance of the Eddystone 898 dial, the $1-\mathrm{MHz}$ spread didn't permit the desired $1-\mathrm{kHz}$ dial resolution, partially because of the physical limitations involved and also because of small inconsistencies in linearity between band segments caused by the bandswitched vfo circuit.

An ideal solution would have been a counter com-

C1 43 pF NPO ($15.3 / 16.3 \mathrm{MHz}$ vfo; $26 / 27 \mathrm{MHz}$ receiver)
C2 27 pF NPO ($16.3 / 17.3 \mathrm{MHz}$ vfo; $27 / 28 \mathrm{MHz}$ receiver)
C3 $27 \mathrm{pF} \mathrm{NPO}(17.3 / 18.3 \mathrm{MHz}$ vfo; $28 / 29 \mathrm{MHz}$ receiver)
C4 not used ($18.3 / 19.3 \mathrm{MHz}$ vfo; $29 / 30 \mathrm{MHz}$ receiver)
L1 - L4 9.5 mm ($3 / 8 \mathrm{in}$.) OD core ceramic. 7 turns 0.6 mm (no. 22) enamel wire
fig. 2. Vfo and buffer amplifiers.
puting the vfo, bfo, hfo, and vhf converter oscillator frequencies to give an exact frequency readout. The cost and complexity of such a counter, and the likelihood of generating spurious signals from the counter circuits, quickly ruled it out. The decision was made to use a counter, but to count and display only the vfo frequency (fig. 3). Up to the tens of kHz position, there is a direct correlation between the vfo and operating frequency, so a two-digit display supplies a direct readout of the tens of kHz and the receiver operating frequency (in kHz). Above 10 kHz , the Eddystone dial-calibration points and bandswitch position supply the hundreds of kHz and MHz readings. It's easy to include a third display for hundreds of hertz, but remember that, unless the other conversion oscillators are extremely accurate and set on frequency, the cumulative error makes this resolution
meaningless. Of course, even a $1-\mathrm{kHz}$ readout requires careful frequency setting and regulated power supplies.

The basis for the counter was a circuit in the January 1976 issue of ham radio. ${ }^{2}$ Its simplicity, small size, and low cost made it appealing for this application. It's built on a small $102 \times 102 \mathrm{~mm}(4 \times 4 \mathrm{in}$.) square of glass epoxy vectorboard and is sandwiched between two aluminum plates that provide shielding and a ground plane for the counter. No birdies from the counter were heard in the finished receiver.

I used an MD-640 incandescent 7 -segment display in place of LED displays. The MD-640s are brighter, cheaper, and don't require current-limiting resistors for each segment as in the case of their solid-state counterparts. The display was also more uniform than that produced by most bargain-basement LED

fig. 3. Frequency display. IC numbers refer to the article in the January, 1976, issue of ham radio (reference 2).

Overall top view of the receiver. The i-f filters are mounted in the upper left. The ICs for the counter are mounted in the upper right. Note the shielding on both sides of the counter board.
displays. A window for the readouts was carefully milled through the steel Eddystone dial plate. A piece of gray plexiglass behind the window provides contrast for the display readouts.

i-f strip, agc detector, and amplifier

The output of the selected $455-\mathrm{kHz}$ filter goes to our first $455-\mathrm{kHz}$ stage, an MPF102 fet (fig. 5). This stage provides some gain and a good termination for the relatively high filter impedance, but primarily it's an agc attenuator.

The next two stages of i-f amplification employ two high-gain MC1550 ICs. The i-f interstage transformers, from the Radio Shack general replacement line, are resistive loaded rather heavily for stability and to ensure the i-f amplifier is broadband enough not to restrict the broader selectivity positions. (While aligning the i-f amplifiers, it may be necessary to remove the loading resistors to see the peak at resonance.) The last i-f amplifier is a single 2N3904 transistor stage. It is not under agc control and is designed to have sufficient output to drive the agc detector and demodulators.
A pair of germanium diodes in a voltage doubler rectifies the i-f signal and presents a proportional dc level to a 2N3053 dc amplifier. The 2N3053 provides an increasing voltage potential during periods of agc action for reducing the MC1550 i-f stage gain and conversely, a decreasing dc potential for gain reduction in the MPF102 i-f amplifier and MFE121 preselector.

A selectable RC time constant controls the agc response; for simplicity the mode switch selects the agc time constant appropriate for the mode selected.

Agc voltage is also used to provide the signal strength meter reference voltage. If the gains of all the converters are equalized, the meter may be calibrated in microvolts instead of just providing a relative signal-strength indication. My converter selector switch also provides agc voltage to the converters, but external agc was not advised for use with the Hamtronics converters.

Ssb or CW reception is accomplished with a hot-carrier-diode product detector circuit inspired by another article. ${ }^{3}$ The bfo is on the same board. Because of the high cost of $455-\mathrm{kHz}$ crystals and the advantages of a variable bfo, the tunable bfo route was taken. Use of Radio Shack transformers was again made in the product detector and bfo circuits (fig. 6). Note that several volts p-p of bfo energy are required for diode saturation and proper operation of the detector. The bfo signal is amplified to prevent pulling and to develop ample bfo injection voltage. Recovered audio is clean sounding and not fatiguing, indicating low harmonic distortion from this circuit.

The a-m detector (fig. 6) is simple and requires little explanation. A half-wave rectifier, consisting of a slightly forward-biased hot-carrier diode for improved low-level signal detection, rectifies and detects the a-m signal. A low-noise audio preampli-

F1 - F4 Collins $455-\mathrm{kHz}$ mechanical filters $(2,4,8$, and 16 kHz used)
IMD filter Piezo Technology model 1433; 6-dB bandwidth: 13 kHz L1 wound on $13-\mathrm{mm}(0.5 \mathrm{in}$.) OD type E toroid (red) core. 26 turns 0.8 mm (no. 22) enameled wire; tap 10 turns from cold end
S1 4-position, 2 poles; shield between wafers
S3 filter switch; 2-pole, 4-position wafer
fig. 4. Second mixer.
fier increases audio level. As with the product detector, a-m audio is clean and pleasant sounding.

fm detector

The $455-\mathrm{kHz}$ i-f signal directly feeds the fm detector board, bypassing the mode-selector switch that feeds the a-m and ssb detectors (fig. 7) as selected. A single Motorola MC1355 i-f amplifier and limiter 14pin IC performs all fm signal-processing functions.
hybrid module designed for use in their Tac-Tec series vhf-uhf fm portable communication radios (fig. 8). Unfortunately, the exotic device is available only directly from RCA or one of their authorized two-way service centers. Distributor cost is around $\$ 28.00$; user suggested price is close to $\$ 38.00$.
The 432141 is noise operated. A $390-\mathrm{pF}$ coupling capacitor from the recovered fm ratio detector audio provides the high-frequency audio noise components

fig. 5. I-f amplifiers and agc detector and amplifier.

Originally I had planned to use the Miller type 8806 discriminator transformer with the MC1355, but after a two-month wait on a back order my distributor shipped me the 8805 ratio detector as a substitute. Minor circuit changes will allow use of either transformers with comparable results.
Both the ratio detector and discriminator circuits provide a plus or minus dc voltage to indicate proper tuning of the received frequency. The detector will drive a zero-center microammeter directly. The meter I used had a zero-center, $\pm 6 \mathrm{~V}$ movement. A dc operational amplifier was necessary to drive it.
Center-tune meters are commonly associated with tunable fm receivers, although they're useful in tuning a-m signals as well. For this reason, and for squelch operation, the fm detector is operational in all modes and isn't affected by mode-switch position except for the selection of fm audio.
The squelch circuit centers around a single RCA
for squelch operation. A 50 k front-panel pot allows setting the squelch threshold point.
The design of the LM-380 audio amplifier (fig. 9) provides a convenient method of squelch control. One pin of the LM-380 is for optional bypassing of an internal voltage divider supplying operating bias to early amplifier stages of the LM-380. The squelchgate output (pin 12) of the 432141 module, fig. 8, holds this bias point at ground to mute the receiver. Because of the dc-coupling design of the LM-380, a simple RC time constant between the squelch module and audio PA prevents an annoying speaker "pop" during squelch action. External receiver muting is also provided by supplying an external ground to the same point on the LM-380.
The versatile 432141 squelch module also has provisions for a time constant, provided by an RC network, to prevent receiver squelch action while receiving rapidly fading signals from mobile stations. In this

NOTES

1. p DENOTES POLYSTYRENE CAPACITORS

2 RED CORE DENOTES BROAOCAST-BAND LOCAL OSCILLATOR COIL
3. MPFIO2 SHOULO BE HIGH GRADE. A $2 N 5486$ CAN BE
suastitureo.
4. REDUCE FOR MORE AUOIO.
fig. 6. Ssb beat-frequency oscillator and product detector, A, and a-m detector, B.
receiver the time constants are mode-switch selected for best performance. A 120 microsecond squelch dropoff is used for a-m and fm signals; an appreciably longer delay is provided for ssb signals. Pin 4 of the 432141 module is an inverted•output of the pin-12 squelch gate, which mutes the LM-380 audio PA. I used pin 4 to light a front panel call lamp through a dc amplifier to indicate band activity.

Recovered fm audio is fed through an active audio filter in the 432141 module (3 dB gain) for conventional 6-dB-per-octave de-emphasis audio processing of the received signal. Note that pins not shown on the schematic for the 432141 module are active and are used for special applications of the RCA radios: quiet channel and fast mute. All unused pins should be unterminated.

As the 432141 requires only 10 volts for proper operation, a 5 -volt zener drops the 15 V dc supply bus

to a suitable level. The RCA-module pins are not keyed; refer to fig. 8 for pin alignment. Caution: The chip can be installed 180 degrees around, and will be damaged if done so.

Since the receiver could be used for casual monitoring of various citizen and amateur services over its basic $26-30 \mathrm{MHz}$ i-f tuning range, sensitivity and noise figure were contributing factors in its design criteria. More often than not, converters for frequencies above 400 MHz employ passive mixing devices, often without the aid of an integral if preamplifier. Since these converters exhibit negative gain, not only does the mixer noise figure play a large role in system performance, but also the noise figure and

sensitivity of the i-f strip are important if optimum results are to be realized.

A single stage rf amplifier is used, using a Motorola MFE121 dual-gate mosfet (fig. 1). Agc control over the RFA is through the dc biasing level on gate 2. A small ferrite bead directly on the gate- 2 lead inhibits parasitic uhf oscillations. The $20-30 \mathrm{MHz}$ input and output coils of the RFA are resistive loaded to improve bandwidth, stability, and to reduce front end gain. While the resistive loading provides sufficient bandwidth to allow operation over each $1-\mathrm{MHz}$ range without cumbersome preselector tracking capacitors, additional trimmers are bandswitched on the

fig. 8. Noise squelch circuit for fm , a-m, and ssb reception.
lower three receiver ranges for proper RFA operation.

A Minilabs MLA-1 double-balanced mixer was tried in the first version of the receiver. Exotic power fets for impedance matching, high local-oscillator-injection requirements, and cost soon eliminated this scheme. The old axiom "simplest is often best" was proven in the final circuit used for the first mixer. Another MFE121, using conventional gate- 2 local-oscillator injection, is employed. A ferrite bead again is required on gate 2, as in the RFA stage. Impedance transformation between the mixer output and the $10.7-\mathrm{MHz}$ filter is through a capacitive divider across the mixer output tank circuit.

Vfo injection to the MFE121 mixer is filtered through a simple single LC toroidal stage, which reduces vfo harmonics and subsequent spurious receiver responses, as mentioned later. Because the vfo range covers $15.3-19.3 \mathrm{MHz}$ in four $1-\mathrm{MHz}$ steps, bandswitching of trimmers, as in the RFA stages, was required to resonate the filter on three lower ranges. The relatively low vfo injection frequencies

fig. 9. Receiver audio circuit.
and the desired high circuit Q prevented broadbanding of this stage. As a solution, a $3-10 \mathrm{pF}$ variable capacitor mechanically linked to the vfo main tuning capacitor provides filter tracking with the vfo frequency. The purpose of the 2-18 trimmer in series with the vfo tracking capacitor (fig. 1) is to set a 1 MHz tuning range for the filter.

During alignment considerable back-and-forth tuning and peaking are required to adjust the vfo ranges, tracking, and LC-filter range.
The 10 pF capacitor coupling the LO injection to the mixer was empirically chosen. At 29.6 MHz , the

The right-angle gear drive is used to select an i-f filter mounted on the top of the chassis. The four trimmers, behind the dial assembly, are used in the main receiver vfo to select the different frequency segments.

fig. 10. Power supply and switching arrangements.
vfo operates at 18.9 MHz . The second harmonic of the vfo is 37.8 MHz . If sufficient $37.8-\mathrm{MHz}$ harmonic energy reaches the mixer, signals at 27.1 MHz are readily converted to the 10.7 i-f output. If the coupling capacitor is too large the harmonic injection becomes excessive; if it's too low mixer gain suffers. My receiver (worst case) has close to 50 dB of spurious rejection, or a 300 -microvolt signal on the spurious frequency will produce a signal equivalent to 1 microvolt on the operating frequency.

construction

The photographs show placement and mounting of the major receiver components. The cabinet and chassis is a LMB type CO-1 enclosure. The five Hamtronics converters were mounted vertically on aluminum plates for space conservation and rf shielding. The two uhf converters were mounted on the left top side of the chassis, while the three vhf units flank the right side. The vfo counter is mounted vertically between the front panel and the uhf converters; the counter board is sandwiched between two aluminum plates for shielding. The chassis center was used for the $28-\mathrm{MHz}$ rf amplifier and first mixer. The board is recessed below the chassis for access to the bandswitch assembly.

Behind the S-meter and the $455-\mathrm{kHz}$ Collins filters, another vertical shield supports the PC-board assem-
bly for the 10.7-MHz IMD filter, second mixer, and the second conversion oscillator.

The bottom of the chassis is dedicated to the power supply components, left rear; the $455-\mathrm{kHz}$ i-f stages and agc detector, right side; the vfo components, front center; multimode detectors, the squelch, and bfo, left front.

The chassis was reinforced along the cutout for the $28-\mathrm{MHz}$ front end to minimize chassis flexing. The vfo tuning-capacitor supports are of heavygauge metal for mechanical rigidity. The bandswitch assembly transverses the entire width of the chassis, front to rear. It was constructed from several disassembled switches salvaged from flea markets. Lowloss ceramic wafers are recommended. The first two wafers are for vfo bandswitching; the third is for the vfo injection-filter trimmers. Wafers 4, 5, and 6 are for if amplifier bandswitching. L-shaped aluminum brackets were placed between wafer sections 2 and 3,3 and 4, and 5 and 6 for mechanical support and if shielding.

references

1. Doug DeMaw, W1CER, "Receiving Package for 30 to 144 MHz ," The Radio Amateur's Handbook, American Radio Relay League, 1974 edition. 2. Jim Pollock, W82DFA, "Six-Digit 50-MHz Frequency Counter," ham radio, January, 1976, page 18.
2. Mike Goldstein, VE3GFN, "A Practical Discussion of Product-Detector Operation," ham radio, October, 1969, page 12.
ham radio

subaudible tone encoders and decoders

A review of the latest two-meter directory confirms the impression I obtained from vacation trips and from amateurs visiting the greater Cleveland, Ohio area: Most amateur repeaters are still carrier accessed. However, in localities where unoccupied two-meter pairs have become scarce and intermod problems on all bands more prevalent, some form of tone access is becoming more common. This situation is particularly noticeable in the larger east- and west-coast metropolitan areas and along the Great Lakes. Some repeaters have optional guard systems that are turned on and off automatically or by the control operator, as conditions require.

Both tone-burst and Touch-Tone access control are used, but the most popular method seems to be continuous subaudible tone, commonly known as PL, from the Motorola trade name for the system "Private Line." A selectable guard system" that uses PL has been in use on the Cleveland 16/76 repeater for some time and has led to considerable interest in various types of encoders and decoders. This article covers experiences that other club members and I have obtained about encoders and decoders we've bought or built, tried and discarded, or adapted to our use.
First, let's look at some of the reasons for using PL. The advantages on a control or link frequency to which access is strictly limited are obvious. Anyone who is a repeater control operator in an area where more than one machine can be heard on the same
frequency can appreciate the advantage of having an encoder on the repeater transmitter and a decoder on his monitor receiver.
$P L$ on the repeater input also helps to minimize interference caused by intermod and sources other than amateur transmitters. In crowded areas, individuals or small groups looking for a frequency on which they can experiment or operate a specialpurpose repeater, can share the same channel with much less distance between their stations than would be required without PL. My point is that many reasons exist for using continuous subaudible tone on input or output other than a wish to operate a closed repeater.

reed-type encoders

The encoders most used on control and link frequencies, and by operators with converted commercial gear, are those in which a resonant vibrating reed establishes the tone frequency. The advantages of these encoders over other types of low-frequency oscillators include 1) reliability and stability under temperature extremes and supply voltage changes, and 2) ability to change frequency by merely pluging in a new reed. In addition, the reed encoder generates a pure sine wave, which does not need filtering.

By Pat Shreve, W8GRG, 2842 Winthrop Road, Shaker Heights, Ohio 44120

Disadvantages include the cost of reeds (particularly if the user wishes to work several repeaters with different $P L$ frequencies), and size. It is difficult if not impossible to fit a reed encoder into many of the popular hand-held and mobile transceivers.

Early popularity of reed encoders and decoders led to the adoption of the standard commercial subaudible tone frequencies for amateur use, shown in table 1. These have carried over into the design and production of other types of equipment. Two reed encoders, a decoder, and a combination encoder/decoder are shown in the photographs. The circuit of the Communications Specialists* miniature encoder is shown in fig. 1. With a Motorola Vibrasponder reed, it produces a clean sine wave to 3.4 volts rms; it will go higher, but the wave peaks will be clipped. These test results and those that follow were obtained with a 12.5 -volt regulated supply voltage; Output was measured with a precision ac voltmeter, and the wave form was evaluated by

fig. 1. Communications Specialists miniature reed encoder. CR1 and CR2 are silicon diodes. Q1, O2, and O3 are generalpurpose npn silicon transistors.
comparison with the output of a Heath IG-1B wave generator using a dual-trace oscilloscope. Tone frequency was 110.9 Hz .

Fig. 2 is the circuit of a subminiature encoder built by our club according to a design used in some Motorola equipment. It is smaller than the original or the Com Spec unit. vinue space is a problem, the reed and socket can be separated from the PC board. It produces an equally good waveform, but has much lower output: from 0.22 to 0.35 volt rms, depending on the reed. It works well if the transmitter has sufficient audio amplification between the PL injection point, which should follow any speech filters, and the modulator.

tunable oscillators

A number of tunable oscillator circuits have been

[^0]
fig. 2. Lake Erie ARA subminiature reed encoder.
tried as PL encoders by repeater groups in or near Cleveland. The most popular was the twin-T circuit shown in fig. 3, which came to our club from the Great Lakes repeater group in Detroit. It is compact, inexpensive, and can be assembled from readily available parts by anyone with a minimum of experience or equipment. For satisfactory performance the frequency-determining capacitors must be molded Mylar or polycarbonate components, and precision 1% resistors should be used where shown. Even then, the circuit needs to be retuned occasionally and will give trouble in a mobile installation parked in a Lake Erie winter or in a desert sun. The wave shape is satisfactory, but the load and bias resistors may have to be changed for different output frequencies to prevent distortion.

I also experimented with tunable encoders designed around a function generator such as the Intersil 8038. Several pilot units showed promise, but none fully overcame problems of rf sensitivity and need for a more stable supply voltage than was easily obtainable in a mobile installation.

digital encoders

Use of a crystal-controlled oscillator to generate a stable frequency is nothing new; but until multistage dividers on a single IC chip became readily available,

fig. 3. Twin-T oscillator. C1 is not required in battery-powered portables. Select $\mathbf{R 2}$ to give desired modulation level.

Ceramic resonator and crystal-controlled encoders and encoder-decoders.

Crystal-controlled encoder-decoders.

Two reed encoders, reed decoder, and encoder-decoder.
it was not practical to use high-frequency crystals to generate the low frequencies used in a subaudible tone encoder. Development of CMOS ripple counters, capable of division by factors in the thousands or millions, eliminated the need for bulky divider chains in low-frequency generators and timers and at the same time eliminated the need for a regulated 5 -volt power source and sometimes difficult shielding against if and external noise.

Descriptions of the operation and application of a number of these dividers are found in manufacturers' publications. 2,3 Those of most interest for $P L$ use are the 4020 and 4060 , both capable of division by 16,384 (214). The 4020 will accept input frequencies to 7 MHz ; the 4060 to 4 MHz . The 4060 includes an oscillator circuit that can be crystal controlled.

Two approaches to the use of a multistage divider to reduce a crystal frequency to the $P L$ range are possible: Use the full range of the divider and select a crystal that will give the desired output, or program the divider to give any desired output from an available crystal.

Let's look at the unprogrammed divider, in which

Communications Specialists eight-frequency encoder, encoder-decoder, and sub-miniature encoder.

Encoder-decoder designed by the author.

Adcom crystal-controlled encoder-decoder.
the crystal is selected for a specific output frequency. Only two ICs are needed, a 4020 divider and a 4030 exclusive-OR gate, which serves as crystal oscillator and digital-to-analog (D-A) converter. The crystal frequency is the desired output multiplied by 16,384 . The circuit in fig. $\mathbf{4}$ is such an encoder, designed and used by members of the Lake Erie Amateur Radio Association (LEARA), which operates the Cleveland $16 / 76$ and $28 / 88$ repeaters. The choice of whether to use a 1.0 - or $2.2-\mu \mathrm{F}$ output-filter capacitor depends on whether you want a stronger signal (use $1.0 \mu \mathrm{~F}$) or a cleaner waveform (use $2.2 \mu \mathrm{~F}$). The unit leaves something to be desired in both respects. A better design could be worked out with a 4060 using the internal oscillator and substituting an operational amplifier wired as a lowpass filter for the 4030 D-A converter.

Some may ask why a D-A converter is needed at all. Certainly a square-wave digital output will modulate the transmitted signal; many solid-state CW identifiers use such an output. The trouble is, that on most amateur transmitters, square-wave modulation is far from subaudible. Many of the har-
monics in the square wave fall in the audible range, and the resulting signal can be very unpleasant. Reed encoders have a clean sine-wave output.

Another device equivalent to crystal control is used in several Communications Specialists encoders. It is a ceramic resonator much like an i-f filter operating between 250 and 500 kHz . The small size of the resonator and a special IC make possible the Com Spec microminiature ME-3 tone encoder, which is hardly larger than a postage stamp. The ME-3 circuit is shown in fig. 5 . The special IC contains the oscillator, divider, and gates, which form a lowpass square wave to sine-wave converter. The output is a clean sine wave adjustable to any level to 3.2 volts rms. The output frequency can be changed by plugging in a different resonator. Similar circuitry is used in the ME-8 encoder, which provides for selection of one of eight frequencies by electronically switching the resonators, and in the combination encoderdecoder discussed later.

fig. 4. Lake Erie ARA crystal-controlled encoder.

Encoders in which a single crystal is used to generate multiple output frequencies can also be built with a 4020 or 4060 CMOS divider. Both these ICs can be reset to zero at any point in their counting cycle by a high-level input to the reset inverter. Since outputs are available from all divider stages from 4 through 14 , diodes can be used to combine outputs to give a reset pulse after any combination of 16 oscillations of the crystal.

In my experiments, the range of crystal frequencies has been limited on the high side by divider capability and on the low side by crystal cost. For reasons explained later, the last divide-by-four step is performed by a separate device, so the divider output should be $4 f_{P L}$, where $f_{P L}$ is the desired encoder output.

The lowest of the standard tones in table 1 is 67.0 Hz . The maximum capability of the divider is 2^{14} or 16,384 , so the top limit on the crystal frequency is $67.0 \times 4 \times 16,384=4.391 \mathrm{MHz}$.

My lower limit is 3 MHz , based on the price of an International Crystal general-purpose crystal, which

Eight-frequency encoder with ceramic resonators.
is lowest in the range between 3.0 and 10.99 MHz . To illustrate how the divider is programmed, assume a crystal frequency of 3.066 MHz and a desired output of 110.9 Hz . The division factor is

$$
\begin{array}{lr}
\frac{3,066,000}{110.9 \times 4} & =6912 \\
\text { subtract } 2^{13} & \frac{4096}{2816} \\
\text { subtract } 2^{12} & \frac{2048}{768} \\
\text { subtract } 2^{10} & \frac{512}{256} \\
\text { subtract } 2^{9} & \frac{256}{} \\
& \text { zero }
\end{array}
$$

This example shows that when $\mathrm{Q} 9, \mathrm{Q} 10, \mathrm{Q} 12$, and Q13 outputs are all high at once, the counter will have divided by exactly 6912. If four diodes are connected with anodes to these outputs of the IC, and a common cathode lead is connected to the reset input, the counter will reset to zero after dividing by 6912. A similar calculation will show that diodes con-

fig. 5. Communications Specialists micro-miniature encoder. Values of C1, C2, and C3 and connection to pin 6 or 7 of U1 depend on frequency. U1 is a custom-made IC; K1 is a ceramic resonator.

nected to Q10, Q11, Q12, and Q13 will result in a division factor of 6780 and an output of $3,066,000 \div 7680=399.21 \mathrm{~Hz}$, which is $4 \times 99.8 \mathrm{~Hz}-$ well within tolerance of a 100 Hz PL.

The reason for the external division by four is that a divider output programmed in this way is not the 50% duty cycle square wave desired for easy conversion to a sine wave. If the counter output is used to drive a dual flip-flop, such as a 4013, it will divide by four and give the desired wave; or if the encoder is to be coupled with the decoder described later, the divide-by-four operation can be performed by the decoder shift register.

One encoder of this type is made by Avcom*. No circuit diagram is available and the ICs are unmarked, but the encoder apparently uses a 4020 divider and a 4035 shift register to divide the output of a 3.334 MHz fet crystal oscillator. A 50% duty cycle square wave from the shift register is converted to an approximate sine wave by an RC lowpass filter and amplified by an npn output transistor. Maximum output of the unit I tested is 2.85 volts rms. The output waveform is reasonably good between 1 and 2.4 volts, but peak clipping occurs at higher levels and distortion appears below 0.8 volt.

decoders

Only two types of subaudible tone decoder l've tested have given consistently satisfactory results: the reed and the digital. I've heard of designs that use a linear IC such as the NE567V, frequently used to decode Touch Tone, but I've never seen one that will perform satisfactorily at PL frequencies.

To work as a PL decoder, the circuit should be sufficiently sensitive to respond to any signal that will quiet the receiver, have stability equal to a reed en-
*Avcom, Inc., P.O. Box 29153, Columbus, Ohio 43299.
coder, and have a bandwidth sufficiently narrow not to be triggered by a $P L$ on an adjacent standard frequency (table 1). The circuit should have a "hangup" connection that will release the receiver squelch, so that the operator can receive signals that don't have $P L$ and can also monitor the frequency before transmitting. Outputs that will permit use with either pull-to-ground or pull-to- $-\mathrm{V}+$ squelch circuits are desirable.

reed decoders

The receiver on LEARA'S 16/76 repeater has two Motorola reed decoders. One is on the $110.9-\mathrm{Hz}$ access tone and the other discriminates against the $100-\mathrm{Hz}$ PL used across the lake in Detroit, which minimizes interference from there when the Cleveland repeater is operating in the fully open carrier access mode. The Motorola circuits are not reproduced here, but part and circuit diagram numbers are given for those interested. 4,5

Sensitivity is quite adequate for the excellent receiver with which they are used. Capture bandwidth is less than $\pm 1 \mathrm{~Hz}$ on a signal with a low $P L$ level; but once captured, the decoder will follow a shifting tone approximately 2 Hz either side of the nominal frequency. Tone filters are provided to eliminate the subaudible tone from the receiver output. The enable/disable function can be remotely controlled without difficulty.

A reed decoder similar to the Motorola units is obtainable from Communications Specialists either as a separate miniature model or as part of a combination encoder-decoder using the same reed for both functions. The decoder circuit diagram is shown in fig. 6. Sensitivity is 2.5 millivolts at the reed frequency at
table 1. Standard EIA subaudible tone frequencies. Higher frequencies not listed are not commonly used by amateurs.

frequency		frequency	
(Hz)	code	(Hz)	code
67.0	XZ	118.8	2 B
71.9	XA	123.0	32
74.4	WA	127.3	3A
77.0	XB	131.8	3B
79.7	SP	136.5	4 Z
82.5	$Y Z$	141.3	4A
85.4	YA	146.2	4 B
88.5	YB	151.4	52
91.5	ZZ	156.7	5 A
94.8	ZA	162.2	5B
97.4	ZB	167.9	62
100.0	12	173.8	6A
103.5	1 A	179.9	6 B
107.2	1 B	186.2	72
110.9	27	192.8	7A
114.8	2A	203.5	M1

which I tested it (nominally 110.9 Hz). Capture range is $\pm 0.15 \mathrm{~Hz}$ at this signal level and $\pm 1.5 \mathrm{~Hz}$ at 20 millivolts. Once captured the decoder will stay locked to a 20 millivolt signal to within $\pm 2.0 \mathrm{~Hz}$.

digital decoders

Reed decoders generate a usable output when an incoming signal drives the reed at its mechanical resonant frequency. Digital decoders are not resonant circuits. They produce an output when the incoming signal frequency matches that of a signal generated locally. The usual source is a digital encoder such as those described earlier. I've not found any published material on how or why the circuits operate but have built one that works. The diagram is shown in fig. 7. Here is what I think it does:

The output of the fet crystal oscillator, Q1, is fed to U1, a 4020 divider, which is diode-programmed to output at four times the desired PL frequency. The diodes are on a plug-in matrix board, permitting quick and easy frequency change. A 4060 used for the divider would eliminate the need for a separate oscillator. The divider output drives U2, a divide-byfour flip-flop, which in turn controls the frequency of an 8038 function generator. The divider also drives U5, the decoder shift register. The shift register is wired to supply $V+$ to each of the four control inputs of U6 in succession. Since its input is at four times the $P L$ frequency, the shift register drives each input of U6 high for $1 / 4$ of a PL cycle.

U6 is a quad bilateral switch. When one of its inputs is high, the corresponding $1-\mu \mathrm{F}$ capacitor is connected to U7, which is a quad operational amplifier. The incoming audio signal from the receiver discriminator is filtered and amplified. It is a square wave at the point of connection to U6. When its fre-

quency matches the rate at which U6 is being cycled by the shift register, U5, the third and fourth stages of the op amp act as a switch to turn off O 2 , ungrounding the squelch connection. When the "hang-up" switch is closed, 02 grounds the squelch connection unless a signal with $P L$ is received. An inverter transistor can be added if $\mathrm{V}+$ is required to control squelch.

The Com Spec encoder-decoder works substantially in the same way as that described above. It has several advantages, however - smaller size (because of the ceramic resonator and special ICs,

fig. 6. Reed decoder. Transistors are general-purpose silicon npn. CR1 and CR2 are silicon signal diodes. With the monitor circuit connected, the receiver will respond to a signal without PL when the "hang up" terminal is ungrounded.
which combine several functions on one chip); lower cost; and a built-in audio filter to remove the PL tone from the receiver audio output. Instructions on how to connect it to most amateur equipment are furnished on request. Bandwidth of all digital decoders I've tested is comparable to the reed types. Sensitivity is a little less but adequate for all the receivers on which I have tried them.

decoder-detector and tunable encoder

The encoder shown in fig. 7 uses a phase comparator and function generator to provide a sine wave output. This is because I designed the circuit as
a tunable $P L$ detector, which permits the operator to match and retransmit an unknown PL frequency. The block diagram is shown in fig. 8. A 4PDT switch is added to the circuit of fig. 7, and the VCO portion of the 4046 is used.

In the detect mode, the crystal oscillator is disconnected. The VCO runs at four times the frequency of the function generator; this relationship is maintained by the phase comparator, and the LED connected to pin 1 of the 4046 illuminates when the loop is in lock. The frequency-adjusting potentiometer on the 8038 function generator is accessible to the operator.

fig. 7. Encoder-decoder with programmable divider. The encoder schematic is at top; LED indicates when phase comparator loop is in lock. The decoder circuit is below; the 100k pot is used to adjust sensitivity.

Communications Specialists encoder-decoder.

To match a received PL frequency, the switch is thrown to detect and the frequency of the freerunning function generator adjusted until the decoder output LED shows a frequency match. The encoder will then transmit the same frequency as that received.

It's not ordinarily necessary to adjust the vco, which will hold its lock over a wide range of frequencies. Although the function generator is free-running it will remain within PL tolerances for several transmissions. The LED will show the need for readjustment whenever the incoming tone is received.

The greatest limitation of this system is that to acquire a repeater with an unknown access tone, you must be able to hear another station on the input frequency unless the tone is being retransmitted. With the switch in the crystal position, the unit operates as a normal digital encoder-decoder.

Micro-miniature encoder with ceramic resonator.

Each of the subaudible tone encoders and decoders described has its advantages and disadvantages. Where space restrictions are not a factor and frequencies are not changed often enough to make the cost of reeds prohibitive, a reed-type unit is hard to beat for stability and clean output. The units with ceramic resonators are much more compact, however, and are comparable in performance. They cost less overall if many frequencies are wanted.

My tunable model is for the experimenter or those who enjoy something different. It's not really as valuable to the traveling ham as one might think even if you succeed in matching the unknown PL on that closed repeater that has been tantalizing you, you probably won't get anyone to talk to you when you do get in!

fig. 8. Block diagram of detector and tunable encoder based on encoder-decoder shown in fig. 7.

acknowledgement

I'd like to express my thanks to Spence Porter, WA6TPR, of Communications Specialists, Inc., for the opportunity to test and evaluate their products; for his description of the nature and functions of special components; and for permission to reproduce the circuit diagrams in this article.

references

[^1]

pseudo-logarithmic display

 spectrum analyzer
This pseudo-logarithmic circuit for your home-built microwave

 spectrum analyzer provides good resolution and 40 dB dynamic rangeIn a recent article I described a microwave spectrum analyzer which covered dc to 2.5 GHz with up to 2 GHz of dispersion, 2 MHz resolution, and 50 dB of dynamic range. ${ }^{1}$ This analyzer was built almost completely from surplus materials and has been well received by the amateur microwave community. However, the instrument has one drawback: the display graduations are linear rather than logarithmic. This limitation was discussed in the original article, and reader suggestions were solicited.

Before my spectrum analyzer article appeared (but after the manuscript was finalized) ham radio published a very fine article by Jeff Walker, W3JW, on the design and construction of a high resolution high-frequency spectrum analyzer. 2 In that article Walker described a simple and effective circuit for providing his analyzer with a pseudo-logarithmic display which allowed him to view 40 dB dynamic range at one vertical deflection setting. It seemed to me that this circuit would, with suitable modification, greatly enhance the performance of my analyzer. I am pleased to report that it did just that.

circuit description

Walker's circuit, shown in fig. 1, consists of an audio-frequency detector, lowpass filter, and a unique nonlinear diode limiter arrangement. My analyzer already included an i-f detector diode, the out-

By H. Paul Shuch, N6TX, Microcomm, 14908
Sandy Lane, San Jose, California 95124

fig. 1. Pseudo-logarithmic signal-processing circuit developed by W3JW for use in a high-frequency spectrum analyzer. ${ }^{2}$
put of which I applied to Walker's filter/limiter circuit. However, I found it necessary to change the value of C1 to achieve the desired video frequency response at high sweep speeds (a value of 1000 pF is acceptable for sweep speeds of up to 60 Hz). For the logarithmic shaper circuit I replaced the 1N914 switch diodes with general-purpose Hewlett-Packard hot-carrier diodes. The final circuit values are shown in fig. 2.

Note that the detector circuit I used in my original analyzer provides a positive-going video output. If one of the more common negative-output detectors were used, it would be necessary to reverse the polarity of the Schottky diodes in the logarithmic shaper circuit.

performance

This shaper circuit enabled me to easily view 40 dB dynamic range (+10 to -40 dBm), with an unusual response which is very nearly logarithmic at 10 $\mathrm{dB} / \mathrm{cm}$ at very low (-20 to -30 dBm) and very high (-10 to +10 dBm) signal levels. Intermediate ampli-

Spectrum display of a $450-\mathrm{MHz}_{\text {signal source, as viewed on }}$ the microwave spectrum analyzer with logarithmic video processing. The desired signal is at +10 dBm ; second harmonic is down $\mathbf{2 3} \mathbf{d B}$ at -13 dBm . Fourth harmonic is clearly visible at 40 dB down (-30 dB m). Also visible is a third harmonic component at approximately $-\mathbf{3 5} \mathbf{d B m}$. Total display dynamic range easily exceeds 40 dB . Note the non-uniform vertical deflection graduations. discussed in the text.

tudes are "stretched" somewhat, as seen in the scope photograph. However, it is possible to measure signal amplitudes to within one or two $d B$ over the entire 40 dB range, once you get the hang of it . It is possible to view spectral components as far down as -40 dBm , but scale compression at the low end is so great that you can only guess at the actual amplitude.

calibration

The display response indicated in the photograph was achieved on my analyzer with i-f attenuation set at a minimum and video sensitivity at $50 \mathrm{mV} / \mathrm{cm}$. The

fig. 2. Signal-processor circuit as modified by N6TX for use with his microwave spectrum analyzer. ${ }^{1}$
display was calibrated with the aid of a stable 10 mW signal source and a calibrated step-attenuator, by observing changes in the display amplitude as various amounts of attenuation were switched in. Since every analyzer is likely to exhibit its own transfer characteristics, it's a good idea to perform a similar calibration yourself if you duplicate this project.

One further point: When I change from low-band (dc to 2 GHz) to high-band (500 MHz to 2.5 GHz) coverage, the vertical scale calibration changes considerably. This is due to the difference in i-f gain with the i-f amplifiers operating at 2 and 1.5 GHz , respectively. Once the analyzer is recalibrated, however, 1 find it possible to easily resolve signal amplitudes over at least a 40 dB range, with the analyzer operating in either band.

Any feedback from readers who attempt to apply this or other signal-processor circuits would be greatly appreciated. All correspondence which includes a stamped, self-addressed envelope will be answered.

references

1. H. Paul Shuch, WA6UAM, "Low-Cost Microwave Spectrum Analyzer," ham radio, August, 1977, page 54.
2. Jeff Walker, W3JW, "High-Resolution Spectrum Analyzer for Single Sideband," ham radio, July, 1977, page 24,
ham radio

1.2 ampere variable-voltage power supply

Whether you are a neophyte just getting started with electronics, an old-timer who hasn't built anything since the days of the 807, or an amateur in need of a handy bench supply, here is project that you can complete in a weekend, yet does not contain any exotic or hard-to-find parts. To make the project even easier, an etched and drilled printed-circuit board is available. The components are available from standard parts houses such as Allied, James Electronics, Lafayette, and Radio Shack. This should take the hassle out of getting the parts together to start the project. The finished product is a neat package that you can be proud to put your call letters on, and will find extensive use in your shack or on your work bench.

circuit description

The power supply furnishes a regulated dc output that is variable from 1.5 volts to 24 volts at 1.2 amperes. The regulation is excellent and the ripple is so low that you can power just about any type device with it, from a high gain op amp to a little QRP rig. Although the unit is configured as a bench supply, don't overlook its use for new equipment designs, as well as for powering portable or small mobile rigs in the shack. The little supply will even run the kids' HO trains as I found out last Christmas when their power pack went sour on Christmas Eve. They used the meter on the power supply for a speedometer to see how fast the trains would go before jumping the track.

The circuit, depicted in fig. 1, consists of three basic sections: a standard dc supply, a modern threeterminal regulator, and a metering circuit. The ac input (117 Vac 60 Hz) enters through a three-wire cord

By Ken Powell, WB6AFT, 6949 Lenwood
Way, San Jose, California 95120
for safety, placing the case of the supply at ground potential. A fuse is placed in the hot side of the ac line in case of a catastrophic failure, such as a shorted power transformer. The power supply is turned off and on by S 1 , which is coupled to the output voltage level control R3. With this arrangement you will not be so apt to connect a five-volt device to the power supply and flip on the power switch with the level control set at twelve volts. This feature can save a part or two from an unexpected smoke test.

The power transformer steps down the 117 Vac to 24 Vac and isolates the circuitry from the ac line. The transformer output is applied to a full-wave bridge rectifier circuit, CR1, which rectifies the 60 Hz ac and furnishes 120 Hz pulsating dc. The dc is then filtered by the input filter capacitor C 1 . The basic power supply furnishes about 35 volts dc when lightly loaded.

The output from the basic power supply is applied to the input of the voltage regulator, U1. The output of the voltage regulator is controlled by a voltage divider network formed by resistors R1 and R3. As the

The author's completed power supply.

R1	220-ohm $1 / 2$-watt resistor (RS 271-000)	FH1	Fuse Holder (RS 270-739)
R2	50 k -ohm trimmer resistor (RS 271-219)	F1	1/4-A slow blow fuse (RS 270-1288)
R3	5 k -ohm w/switch (RS 271-1714 - 271-1740)	HS1	Heat Sink (Allied Radio 957-2650)
C1	$1000 \mu \mathrm{~F} / 35 \mathrm{Vdc}$ capacitor (RS 272-1032)	U1	LM-317K (James Electronics LM-317K)
C2	$2.2 \mu \mathrm{~F} / 35 \mathrm{Vdc}$ capacitor (RS 272-1407)	Case	(RS 270-254)
T1	24 volt/1.2A transformer (RS 273-1480)	Spacers	(RS 270-1393)
CR1	2A/100 PIV bridge rectifier (RS 276-1152)	Heat Sink	
M1	$0-1 \mathrm{~mA}$ meter (RS 22-052)	Compound	(RS 276-1372)

BP1, 2, 3 Binding Posts (RS 274-662)

fig. 1. Schematic of the variable-voltage power supply. The lettered terminals are used to indicate where the leads enter and leave the printed-circuit board. All resistors are $1 / 2$ watt tolerance; capacitors are rated at 35 volts dc. RS part numbers are available from Radio Shack.

fig. 2. A full-size foil layout for the printed-circuit board. An etched and drilled board is available for $\$ 4.00$, postpaid, from J. Oswald, 1436 Gerhardt Avenue, San Jose, California 95125.

fig. 3. Parts placement diagram for the circuit board.
value of R3 is varied, the output voltage from the regulator varies accordingly; C2 is added to improve the performance of the regulator. A metering circuit is included to indicate the output voltage. A $0-1 \mathrm{~mA}$ meter was chosen since this seems to be the most common value available, with surplus units being advertised as low as $\$ 1.50$.

A small variable resistor, R2, in series with the meter provides an accurate means of calibration. The power supply outputs, both plus and minus, are isolated from ground so the unit may be used as a positive or negative power supply. A ground terminal is also brought out to the front panel should its use be required under certain conditions.

A full-sized printed-circuit board layout is shown in fig. 2. This layout assumes the components are the
same size as the ones specified in the parts list. If you etch your own board, I would advise using glassepoxy board, rather than the lighter phenolic type board, since it must support the weight of the power transformer. The heavier board will provide a sturdy and stable package.

When starting construction I temporarily mounted the four corner screws and standoff spacers to the board to protect the foil side of the board while it was handled during construction. Next, mount the power transformer as this will make a sturdy base to hold the board while the smaller parts are mounted and soldered. Coat the bottom side of U1 with heat-sinking compound to form a good thermal junction between it and the heat sink HS1, and mount them to the board. The remainder of the components can
now be mounted and soldered. Fig. 3 illustrates the component layout and care should be taken to observe the polarity of C1, C2, and CR1. This completes assembly of the basic board.

If you are going to install the printed-circuit board in a chassis box as shown in fig. 4, it is best to install the interconnect wiring and the ac line cord prior to mounting the board. Slip a grommet over the line cord and solder the cord to the board. Next, solder the wires to the interconnect terminals at the front edge of the board and run them off to the left edge of the board and then double them back to the right edge of the board. Now, install the printed-circuit board in the chassis box and solder the wires from the front edge of the board to their respective components on the front panel, breaking them out at right angles to the board, parallel to their respective components. The loop left in the wiring between the terminals and the front panel components will allow the board to be removed and turned over for service, should it ever be requried. The ac line cord and grommet are now placed in the cutout at the left edge of the rear panel. Again this is done to facilitate service to the board without unsoldering any wires.
If you use the meter shown in the parts list, and wish to convert the scale to read volts rather than the original milliamperes, remove the plastic cover from the meter and the two small screws retaining the meter face. Then, you can erase the numbers with a typewriter eraser. With rub-on or decal numbers, replace the original markings as follows: change 0.2 to $5,0.4$ to $10,0.6$ to $15,0.8$ to 20 , and 1 to 25 , leaving the zero digit alone. With a little care, you can do a very nice job on the meter and the neatly graduated

[^2]

fig. 4. Mechanical details of the enclosure.
scale will be 0.5 volts per division. If you want to skip the meter work, install a $0-25$ volt dc meter such as the Lafayette 99P51039V, but in this case be sure to set the calibration trimmer R2 to its minimum resistance position.

test and calibration

The first step, providing you have used a 0-1 milliampere meter, is to set the calibration resistor to its maximum resistance position. Now set the meter to zero with the meter adjusting screw on the front plastic meter cover. Connect a VOM or VTVM, set to 25 volts dc or higher, to the front panel output jacks. Plug the power supply into 117 Vac , advance the output level control to turn on the power supply, and adjust the control until the VOM or VTVM reads 25 volts. Now, adjust the calibration trimmer, R2, for a full scale reading of 25 volts on the panel meter M1. Next, check the readings at $20,15,10$, and 5 volts. The panel meter should track your VOM or VTVM readings quite closely, with the greatest accuracy being achieved at the upper end of the scales.
To check the load regulation, set the power-supply output at 6 volts and apply a load, such as three no. 47 pilot lamps in parallel, to the output jacks. No change in the meter readings should take place as the load is applied and removed. If you have a scope, you can look at the power supply output under load, but under moderate load it is virtually ripple free. In the absence of a scope you can listen to the output with a pair of high-impedance headphones coupled through a $0.1 \mu \mathrm{~F}$ capacitor, with silence being the rule. The ripple on both of the supplies I've con-

fig. 5. Full-scale meter face after modification.
structed was so low that I could not measure it with my old scope. If the supply meets the above parameters it is time to put it to work; don't worry about hurting it because it can take just about all the abuse you can dish out.

I have built two of these units and use them on the work bench, as I always seem to need both plus and minus voltages at the same time. Both supplies have been excellent performers. The esthetics of the finished product is proportional to the effort you put into it, but I found that you can actually build one of these supplies in a single weekend, have it look as good as a commercial product, and still have time for a late night QSO or two.

There are many variations that could be made, such as placing two boards in a single enclosure and making a dual output supply, or adding a switch and a meter shunt to allow the reading of output current. The fact that all the components are easily obtained, a ready made board is available, and there are no critical adjustments make this bench supply an enjoyable project; I hope you get as much satisfaction out of building and using it as I have.
ham radio

keyboard cleaning on the HP-35 calculator

Owners of HP-35 and equivalent pocket calculators may be experiencing some problem with keyboard operation. Problems such as a double entry or intermittent function is usually due to dirt under the keyboard contacts and is easily corrected.

The Hewlett-Packard series uses thin spring strips for key switches separated by a single, thin plastic sheet from the buttons. The sheet provides a barrier to prevent dirt and moisture from entering the contact area and will wear through after a year or two of operation. The sheet is the major source of trouble, not the contacts.

Plastic sandwich bags of polyethylene are a good source of replacement material for the sheet and may be used in one or two-layer thicknesses. * A common problem is how to open the case.

Models 35, 45, and 55 all use six screws for the main case. Two are easily accessible in the battery compartment, two are under the bottom feet, and the remaining two are hidden by the instruction label. The label is made of aluminum foil stock and its adhesive backing allows easy removal; if you have had one this long, you don't need the instructions. Keep the keyboard side down when removing the screws. When open, the small circuit board screws are easily visible but be careful of the double-wire contacts joining it to the main board.

[^3]The main board is screwed to the case top and removal will expose the barrier sheet and key buttons. Use the old sheet for a pattern, tracing the outline and access holes with a felt marker (Sanford Sharpie or equivalent). Be sure to keep the old sheet for future repair.

A clean, fine-bristle artist's brush is good for cleaning the area between switch spring strips and contact surface. It is better to work "dry" than to use commercial cleaners since these usually leave a residue. Isopropyl alcohol is good and ordinary rubbing alcohol is suitable even though it contains some water. Inspect the contact area with a magnifier for any stray hairs; a good artist's brush will have bristles firmly attached but some may break off.

This is also a good time to clean the buttons and case front. A lattice-like frame of plastic holds the buttons from the back. Use extra caution in removing this. Once removed, the buttons will simply fall out. Ordinary hand soap and water is an excellent cleaner and will not harm the plastic or markings. Use a bowl to contain the buttons and soapy water - all buttons are individual and it is too easy to lose one or two down a basin drain. The slide switch has a separate contact with special lubricant and the contact must be removed and set aside.

On reassembly, check button locations with the owner's manual. Do not force the screws into the plastic case or use too much torque; the original threads are quite adequate.

Leonard H. Anderson

In 1977 Norm North, WAID3R, was assigned to Thule, Greenland. With him went his Heath HW-7, a dipole antenna, and a goal... work all 50 states!
Norm failed! But what he did accomplish in three months' time, with his HW-7 and the call OX5AB, is nothing short of amazing! Worked: 41 states, 30 countries, including a PY4 in Belo Horizonte, Brazil, and First Place, High-Band CW Greenland, in the " 77 ARRL International DX Competition! Quite a record!
In Norm's words: "I honestly believe that I could have worked all states and perhaps DXCC if I had stayed in the Arctic a bit longer. This is quite a tribute to that little rig..."
We'd agree, and we bet Norm would have done even better had he been using a new Heath HW-8! Why? Because our engineers felt they could give you a much finer QRP rig than the HW-7. One with better sensitivity, lower hum and noise figures, an RF gain control, sharper preselector, switchable selectivity, more bands to operate, and even a bit more power!
They succeeded in a big way! And the result of their efforts is a truly superb CW transceiver for the QRP operator that costs just $\$ 129.95^{*}$. . the Heathkit HW-8!

Why don't you take up the challenge? Build an HW-8 kit, then join the growing ranks of outstanding QRP operators, like Norm, who are proving you really can work the World on a couple of watts!
-Price is mail order, F.O.B. Benton Harbor, M1. Prices and specifications subject to change without notice.

Catalogs also available at the 50 Heathkit Electronic
Centers coast-to coast (units of Schlumberger Products Corp.) where Heathkit products are displayed, sold. and serviced. Retail prices on some products may be slightly higher. See your phone book white pages.

FREE Heathkit Catalog

HEATH

Heath Company Dept. 122-430 Benton Harbor, MI 49022

Gentlemen, please send me my free Heathkit Catalog I am not on your mailing list.

Name
Address
City.
State

AM-375
Zip

radio sounding system

An unusual application of amateur radio for atmospheric studies

How many of you vhf enthusiasts have experienced the thrill of "an inversion DX contact" and later wondered just what caused it? Such a phenomenon is caused by weather. Here's a sounding system that you can use to find out what's happening in your area. The heart of the system is called a radiosonde.
A radiosonde (or sonde) is a remote weather sensor that uses radio signals to furnish, by telemetry, data to a ground-based receiver and recorder. A radiosonde is usually carried aloft by a helium-filled balloon. From high above it sends back atmospheric information. Weather services use such devices daily all over the world to develop weather forecasts. While the radiosonde described here is a scaleddown version of its bigger cousins, it will allow interested vhf experimenters to study the atmosphere up to several thousand feet (or kilometers). Maybe you can forecast the next big tropo opening!

system description

Fig. 1 illustrates the amateur weather telemetry system. It consists of the airborne radiosonde and a ground-based station that includes a uhf converter, i-f stage, oscilloscope, frequency-to-voltage (F/V) converter, and a chart recorder.
Radiosonde. A schematic of this little unit appears in fig. 2. It consists of a sensor, modulator, and a uhf transmitter that operates in the $420-425 \mathrm{MHz}$ portion of the amateur $70-\mathrm{cm}$ band.
Anything set aloft on a balloon doesn't stand much chance of being seen again, so l've kept the circuits simple and the costs down. This is especially important if you're planning to use these circuits in
any quantity. (A parachute design is included to help increase the odds of retrieval.)
The sonde shown in fig. $\mathbf{2}$ was originally modeled after one built by the Argonne National Laboratory for use in the $403-406 \mathrm{MHz}$ band. It operates around 422 MHz and has few circuit modifications. The transmitter doesn't drift more than $\pm 1 \mathrm{MHz}$, so operation near the band edge is quite safe.
The sonde measures temperature changes and transmits the data to the ground station. A small thermistor, RT, changes value with temperature. Thermistor RT and capacitor CX form an RC circuit that provides an audio signal, which varies as a func-

View showing the inside of the audio-processing stage and the frequency/voltage converter.
tion of temperature. This tone modulates Q 2 , the transmitter, which provides a uhf fm signal. Although power output is only milliwatts, when the sonde is several thousand feet (or several km) up, its signal can be heard for hundreds of square miles.
The sondes are constructed on small epoxy PC boards (fig. 3). Half the board holds the compo-

By Larry L. Jack, KL7GLK/3, 1 East Lake Drive, Bay Ridge, Annapolis, Maryland 21403

nents, while the other half is a convenient place to tape the 9 -volt battery that powers the sonde.

Receiver. Now what's needed is something to receive these interesting weather signals. I use an inexpensive fm broadcast tuner (Lafayette ST-22) for a variable i-f amplifier. It has afc and the wideband

FV converter

The next stage accepts the audio signals from the i-f amplifier and converts them to a dc voltage. It's a model 4714 frequency-to-voltage converter made by Teledyne Philbrick and is driven by two audio stages that provide limiting and amplification. (See fig. 4.) A dc voltage from the FV converter drives a chart recorder. The recorder should have a full-scale range of 5 volts. When everything is working properly, a rise in temperature at the thermistor will cause an increase in voltage, which can be measured at the chart recorder.

tune up

An oscilloscope is useful for tuning the system and for general operation. The scope is connected to the audio output from the tunable i-f stage. With the uhf
fig. 1. The amateur weather system, consisting of airborne telemeter and ground station. Radiosonde, lifted aloft by a helium-filled balloon, transmits temperature changes to the ground station on the amateur $70-\mathrm{cm}$ band.
capability to receive the sonde's broad, drifting signal. It costs less than the parts needed to build a comparable i-f; but if you have the urge, feel free to experiment.

A Vanguard Labs model 408 uhf converter feeds 422 MHz , which is down converted to $90 \mathrm{MHz}_{\text {, }}$ to the i-f amplifier. You now have a receiver over which you can hear the varying temperature-dependent tone from the radiosonde.
converter and the i-f stage on, a characteristic noise signal will appear on the scope. With the FV converter stage on, a noise trace will appear on the chart recorder. R1 (50k) in fig. 4 is adjusted to give a 2.5 -volt trace for 200 Hz into the FV converter. This gives a noise trace at approximately 4.5 volts on the chart recorder. R2 allows fine adjustments at the full-scale end of the chart recorder.

Place the sonde on an elevated nonmetalic stand,

C1 Johanson 9301 trimmer
L1 on PC board
Q1 2N4852
Q2 2N3563
RT Fenwall thermistor GA45J1
Resistors are 5\% tolerance $1 / 8 \mathrm{~W}$
fig. 2. Radiosonde schematic. Circuit was modeled after one built by the Argonne National Laboratory. Parts count and cost are kept low, because retrieval chances are small.

Author KL7GLK filling balloon with helium before launch.
such as a small cardboard box, and connect a 9 -volt battery. Tape the battery in place on the sonde. Adjust the transmitter output tuning capacitor (C1, fig. 2) using an insulated tool. Watch the scope and chart recorder. At a point on C1 a sawtooth wave will appear on the scope. The recorder trace will smooth to a straight line between 60-70 per cent of full scale.

Where each sonde operates in this range will be a function of air temperature and the tolerance of RT, CX, and other components. A warm breath of air on
the thermistor will cause the trace to increase in amplitude then decrease as the thermistor cools.
If you wish to measure other weather data, other resistance-variable sensors can be used; for example, a hygristor can be substituted for the thermistor to measure humidity.

calibration

When the sonde and receiver are working proper$l y$, the sonde is ready for calibration. Begin by using a

fig. 3. PC-board layout, A, and component placement, B, for the radiosonde.

fig. 4. Schematic of the audio amplifier and frequency-to-voltage (FV) converter. The FV converter drives the chart recorder.
thermometer to measure the room temperature that the sonde is monitoring. Mark this value on the chart recorder alongside the trace. Place the sonde in a chamber that can be cooled (by ice, for example) to $68 \mathrm{~F}(20 \mathrm{C})$ below room temperature. When the sonde stabilizes at this new temperature, mark this value on the chart next to its corresponding trace.

The system has a linear temperature response from 23 to 86 F (-5 to 30 C). Using the two calibration points to form a temperature-to-voltage slope, any temperature point along this slope can be interpolated. A calibration factor can be calculated by dividing the change in temperature by the change in voltage. For example, if the two calibration points were 36 and 75F (2 and 25C), for a voltage change of 1.0 volt there would be a $36 \mathrm{~F}(2.3 \mathrm{C})$ change per 100 mV ; i.e., $25-2=23$, and $23 / 1.0=2.3$.

Most chart-recorder paper is divided into 100 lines. On a 5 -volt range, each line is 50 mV , so a change of ± 1 of these divisions is a change of $\pm 3.6 \mathrm{~F}$ $(\pm 2.3 \mathrm{C})$. This number, $(2.3 \mathrm{C}$ or 3.6 F$)$, is assigned to the sonde as its calibration factor.

Before flying the sonde, measure the outdoor air temperature and mark it on the chart. Once the sonde is in flight, the calculated temperature can be subtracted from this point, giving the temperature

The $422-\mathrm{MHz}$ radiosonde without the 9 -volt battery attached.
the sonde is measuring. Because of differences in tolerances of each sonde's components, each sonde will have a slightly different calibration factor. It's therefore a good idea to calibrate each sonde individually.

preflight

The question of determining altitude for the corresponding sonde data now arises. It's necessary to know the rate of the balloon's ascent, so that the altitude can be calculated as a function of time, as measured by the chart recorder; i.e., chart speed=
fig. 5. Construction details for the parachute. Sketches A through C show top and bottom views: D through F show assembly details.

2 inches (51 mm) per minute. A rough rule of thumb is: A 1 -ounce (30 -gram) helium-filled balloon, filled to just lift a 4.9-ounce (139-gram) weight, will ascend alone at 613 feet (187 meters) per minute.

Attaching a sonde and a parachute will upset these figures, so if this method of determining the rise rate is used, some experimentation will be necessary. The best method of determining altitude is to double track the balloon with theodolites and calculate the altitude by triangulation.

The balloons used to lift the radiosondes and their parachutes (there is a good reason for the parachutes, by the way) are meteorological balloons.*

A 1 -ounce (30 -gram) balloon is overfilled to lift the sonde but it works. These overfilled balloons will burst sooner than others (that's why there's a parachute), but usually long after they have drifted out of radio range. As mentioned before, the balloons are filled with helium. Small cylinders of helium are available from firms selling compressed gases.

the parachute

When the balloon bursts, your little sonde could hurtle down through someone's property if the parachute and sonde didn't descend nice and slowly. If

Radiosonde balloon and parachute just before launch. This is the type of equipment used by the United States Weather Service (Beuker's Laboratory model 1207).

fig. 6. Telemeter assembly showing the balloon, parachute, and radiosonde. When the balloon bursts, the parachute opens, allowing the sonde to drift gently to earth. Your name and address attached to the sonde should increase the chances of its retrieval.
you attach a return address label, maybe someone will mail it back. We get a good number returned this way. You can make your own parachutes with some paper folding and string (see figs. 5 and 6).

flight

The system is now ready for use. I'll describe the procedure my compatriots and I use to fly the sonde. First of all it's necessary to file a Notice to Airmen by calling the Federal Aviation Administration (FAA).

[^4]
fig. 7. Inversion sounding trace showing temperature changes as a function of altitude between 400 and 2500 meters (1312 and 8200 feet).

Look for a flight service station in your telephone book. They request you tell them the number and times of the flights and the location of the launch. There's nothing to get upset about, but be sure you file your notice.
All right, the balloon is filled, and the train of string, parachute, and sonde is then attached.
Turn on the receiving and recording equipment, attach the radiosonde battery, and tune the receiver to the sonde frequency. Make a note on the chart of the sonde's calibration factor. Then make a side-byside comparison of the sonde temperature with that of a thermometer; mark the thermometer reading beside the chart-recorder trace. If theodolites are being used to track the balloon, alert the operators. Release the balloon and mark this moment on the chart recorder. As the sonde ascends tune the receiver to follow any transmitter frequency drift.

The chart recorder will begin to show the changes in the air temperature as it takes a cross section, or profile of the atmosphere. Depending on conditions, the temperature changes will range from mild to dramatic.

For instance, the inversion phenomenon mentioned in this article's introduction would look similar to the profile in fig. 7.

onward and upward

From here on, I refer you to the vast number of meteorology books. As more experience is gained using radiosondes, your questions on weather phenomena will quickly outdistance the scope of this article. The system described won't put you in competition with the National Weather Service, but it will provide an interesting medium for a personal study of the atmosphere and an unusual use of amateur radio. Have fun with it.
ham radio

DISC-CAP is Now sHIPPING The Microwave Module

 line of linear transverters.Use your present HF equipment on 144 or 432 MHz . These units are not the least expensive on the market... we believe they are the finest!

The standard IF is 28 to 30 MHz . However, we will provide 50 to 54 MHz or 144 to 148 MHz upon request. All units are covered by a full one year guarantee.

MMT 432/28
 $\$ 259.95$
 MMT 144/28
 \$198.95

POWER SUPPLIES
28 Volt, 18 Amp Regulated Power Supplies (110 V in) $\$ 75.00$ 12 Volt, 18 Amp Regulated Power Supplies (110V in) $\$ 85.00$ Dual 300V D.C. 1 amp fully metered $\$ 85.00$

RECEIVERS

Collins 651F-1, 2 to 30 MHz in 100 cycle steps, digital tuning, USB/LSB/ISB. Stability: 1 part in 10^{8}. Completely remote controlled, with all racks, connectors, control head. $\$ 1400.00$
R-388/51 J - Collins 0.54 to $31 \mathrm{MHz} \quad \$ 375.00$
R-390A -0.54 to 31 MHz , overhauled complete $\$ 595.00$
Astrocom SR201, $30-300 \mathrm{Mhz}$, all solid state $\$ 450.00$
RACAL Model 6217A, $980 \mathrm{kHz}, 32 \mathrm{MHz}$, All Solid State, takes about 3 inches of rack space, digital tuning $\$ 1600.00$ LTV G111 Panoramic Recvr includes CRT display, $100-150 \mathrm{MHz}$ with converters. Will make a fine spectrum analyzer. $\$ 150.00$

TMR- 5 with front end plug-ins to cover $105-140 \mathrm{MHz}$ and $200-260 \mathrm{MHz}$. $\quad \$ 250.00$ 2200 to 2300 MHz available.
We have complete documentation for all TMR- 5 series including plug-ins.
CEI type $415,60-250 \mathrm{MHz}$, all solid state, modular constr., xtal controlled, 4 channels. Incredible value. $\$ 85.00$
635V-1 Collins Preselector band pass Filters - They're back! 2 to 30 MHz .1 kHz steps, with copy of manual and rack and con nector.
$\$ 275.00$
SX-115 Immaculate with speaker and manual. $\$ 450.00$
ANWRR2, 2.30 MHz , synthesized or continuous tuning, completely bench checked.
$\$ 600.00$
RTTY Converter CV-2455/PRC-47 Built-in loop supply (60 mA or $20 \mathrm{~mA})$ - requires rcvr audio and 24 volts. It's also an AFSK Keyer. 850 Hz shift.
$\$ 65.00$
TEST EQUIPMENT
Bird 6835 Termination Wattmeter complete RF Assy. - NEW! $1.2 \mathrm{KW}, 600$ watts, 120 watts full scale. You add oil and meter.
$\$ 95.00$
SPECIAL: Micromatch in-line wattmeters, complete guts, less meters, good to 500 MHz . You add $50 \mu \mathrm{~A}$ meter. Removed from equipment.
$\$ 24.95$
HP400DR Audio VTVM - NEW $\$ 125.00$
Solartron DA410 Transfer Function Analyzer with manual.
Weinschel 693-1 Power Attenuators, 30 watt avg., 10 KW peak.
HP764D Dual directional coupler, $200-500 \mathrm{MHz}$. $\$ 100.00$
TRANSMITTERS
Collins KWT6-6/URC $32-2.30 \mathrm{MHz}, 1 \mathrm{kHz}$ steps, complete xcvr, 500 watt PEP output, 500 watt CW output, AM capability. Complete and running.
$\$ 1850.00$

T/T to Pulse Converter - requires 12-24 VDC $\$ 34.95$ Standard T/T pad mounted in a sturdy steel case incl. 2 volume pots \& 1 , push button labeled "Stereo". Also has 2 phone jacks for headphones, microphone, etc. Will make a fine

Wanted: Documentation for AN/WRR-2, plug-ins and IF Amplifiers for TMR-5.

D|SC-GAP, 1434 REYNOLDS ST.

AUGUSTA, GA. 30902
404-722-1121
Ga. Residents - add State Sales Tax. Unfortunately, Disc-Cap can only service U. S. customers.

4 ELEMENT- 3 BAND 10-15-20 METER BEAM

Cushcraft engineers have incorporated more than 30 years of design experience into the best 3 band HF beam available today. ATB-34 has superb performance with three active elements on each band, the convenience of easy assembly and modest dimensions. Value through heavy duty all aluminum construction and a price complete with 1-1 balun.
Enjoy a new world of DX communications with ATB-34!

SPECIFICATIONS

FORWARD GAIN F/B RATIO VSWR -

- 2000 WATTS PEP

BOOM LENGTH/ DIA. - $18^{\circ} \times 21 / 8^{\prime}$
LONGEST ELEMENT -
TURNING RADIUS -
32'8"
URNING RADIUS
UPS SHIPPABLE
IN STOCK WITH DISTRIBUTORS WORLDWIDE
COMPLETE NO EXTRAS TO BUY

BOX 4680, MANCHESTER, N.H. 03108

10-15-20 METERS

ATV-3 Cushcratt's ATV 3 multiband vertical provides low VSWR operation for both SSB and CW on 10. 15, and 20 meters Matched to 50 ohms built-in connector mates with standard PL-259 Staintess-steel hardware is used tor all electrical connections The ATV-3 is a compact 166 inches (42 meters) tall Rated at 2000 watts PEP

 inches (59 meters). Rated at 2000 watts PEP.

10 METERS

10-15-20-40 METERS

ATV-4 The Cushcratl ATV-4 tour-band vertical antenna has been optumzed for wide operating bandwidth on 10.15 .20 and 40 meters SWR is less than 21 over the CW and SSB segments of 10,15 , and 20 The 21 SWR bandwith on 40 meters is approximately 240 kHz may be quickly and easily adusted to tavor any part of the band Coaxial fitting takes 50 -ohm transmission line with PL-259 connector Overall height. 233

ATV-5 The ATV-5 trapped vertical antenna system has been engineered for five-band operation on 80 through 10 meters The high Q traps are caretully optimized for wide operating bandwidh 2.1 SWR bandwidth with 50 -ohm feedline is 1 MHz on 10 meters more than 500 kHz on 15 and 20 meters. 160 kHz on 40 meters, and 75 kHz on 80 meters Instructions ate provided tor adjusting resonance to your preterred part of the band CW or SSB Builtin coaxial connector takes PL-259 Nominal height. 293 inches (74 meters) Rated at 2000 watts PEP on all bands.

outboard LED frequency display

for the

Heath HW2036
Operating the HW2036
no longer
has to be done in the dark this outboard display shows the frequency set in the switches

circuit details

Switches S3, S4, and S5 provide BCD information to the variable divider ICs (U401, U402, U403 respectively). If you are setting your frequency to 146.94, for example, you dial up 694 , since the 1 and 4 remain constant across the band.

I found it was possible to tap off of the four leads at the rear of the three thumbwheel switches and use that information as inputs to the three 7447 ICs (see
didn't find the prospect of wiring 42 resistors too appealing. Therefore, I decided to limit the current going to the common-anode connection of each LED; that required only six resistors.

The only drawback to this technique is that as different digits are displayed, using more or less segments, the overall intensity of that particular digit will be slightly brighter or dimmer than other digits. For instance, if the digit 1 is displayed, only two segments of the LED are lit (segments b and c). On

fig. 1. Schematic diagram of the addition to the HW2036 to add an outboard frequency display. Instead of using 7 resistors for each LED, a common current-limiting resistor is inserted in the anode line. The LEDs must be of the common-anode type. The 5-volt regulator is a $\mathbf{7 8 0 5}$.
fig. 1). The 7447s convert the BCD data from the switches into a seven-segment format necessary to drive the LEDs. This in no way alters the operation of the synthesizer, nor does it degrade the performance of the rig. All of the outboard components can be easily housed in a small box and set on top of or beside the HW2036. A flat cable containing 15 leads is used to connect the HW2036 and the outboard unit.

display LEDs

Since LEDs 1 and 2 always displayed the digits 1 and 4, it was decided to conserve costs and space and not use a 7447 decoder/driver. Instead, they are permanently wired to display 1 and 4. LEDs 3 thru 6 are driven by U 1 through 4, respectively. Each of the LEDs has a 100 -ohm $1 / 2$-watt resistor in series with pin 3 and the 5 -volt line. This resistor limits the current to each segment to no more than 25 mA . It would be better to connect one resistor in series with each of the seven leads of each of the six LEDs, but I
the other hand, if $\mathbf{8}$ is displayed, all seven segments (a, b, c, d, e, f, g) are used and they must share the same amount of current as the two segments in the first example. With a 100 -ohm resistor and a 5 -volt line this works out to 25 mA per segment when two segments are on and 7 mA per segment when all seven are lit. In practice this poses no real problem because the change in intensity is barely noticeable.

obtaining power

Referring to the schematic of the HW2036, 12 volts is obtained from lug 2 of the on-off switch S1. This line and a chassis ground are fed thru a cable to the outboard display unit's 5 -volt regulator. An LM309K could be used, although the smaller package TO-220 7805 was used in my unit. The 7805 is rated at one ampere of current and is capable of powering the four 7447s and the six display LEDs, although it does run a bit warm at times. Mounting the regulator on a small heatsink or bolting it to the display unit case should overcome this problem.

decoder/drivers

Each switch has a 1, 2, 4, and 8 lead coming from it; these are connected to pins $7,1,2$, and 6 , respectively, of the 7447s. When a thumbwheel switch is set to program the digit 6, it grounds the two unused leads of the 1 and 8 lines. With pins 6 and 7 grounded, the outputs ground the appropriate leads of the associated LED, causing it to form the digit 6 . Each of the 7447s is connected to its associated LED by seven leads, one for each of the seven segments in the LED.

If the operator decides to program in a split channel, for instance 146.945, S6 is used to control U4. Within the rig, S 6 grounds one lead of U405 when the frequency ends in a zero; it lifts that same lead above ground when a split channel is selected. To display the digit 5 , when the switch is set in the 5 kHz position, bring a lead off of the unused side of S6 and tie it to pins 1 and 6 of U4. Thus, when the switch is in the 0 position there is no input to U 4 and no digit appears. When the switch is thrown to the 5 kHz position, pins 1 and 6 are grounded, displaying a 5 .

construction details

I built my unit on perf board with 2.5 mm (0.1 inch) hole spacings. One board, measuring about $9 \mathrm{~cm}^{2}$ ($3-1 / 2$ inch square) contains the four 7447 s and the voltage regulator. A second board, measuring about $9 \mathrm{~cm} \times 3.8 \mathrm{~cm}(3-1 / 2$ inches $\times 1-1 / 2$ inches), contains the six LEDs and is connected to the first board by 30 jumpers. While perf board is entirely acceptable for this project, it is suggested that printed-circuit techniques be used due to the relatively large number of board-to-board jumpers and the small space in which to work. The many connecting jumpers tend to make the interconnecting harness very stiff and difficult to work with.

My unit is housed in a homebuilt box measuring 5 $\times 9 \times 10.2 \mathrm{~cm}(2 \times 3-1 / 2 \times 4$ inches $)$ with a sloping front panel for easier viewing of the LEDs. The size and shape of your box will be determined by where and how you are going to mount it. Four-conductor flat cable was used throughout the construction. Four lengths of cable were used to bring the 15 leads out of the back of the HW2036 case (they fit nicely between the top of the PA board assembly and the case). Individual strands of the same wire were stripped and used for the 5 -volt line and ground bus on the two perf boards.
If the unit is to be mounted in an outboard case, it is recommended that a plug be installed to disconnect the outboard unit from the HW2036 for ease of servicing.
I wish to thank WB8NQW and K8TT for their help and thoughts in completing this project.
ham radio

One-Stop Component Center AUTHORIZED DEALERS

Mob
ALASKA
Anchorage ARIZONA
Flagstaff
Fountain Hills
Tempe
Yuma
CALIFORNIA
Bellflower
Berkeley
EI Monte
Fontana
Fullerton
and Long Beach
Mission Viejo Modesto Monterey
Oceanside
Palo A/to
Palmdale
Pasadena
Sacramento
Sacramento
Sacramento
San Bernardino

San Carlos
San Diego
San Fernando
San Francisco San Francisco San Jose San Luis Obispo Santa Cruz Santa Monica Sunnyvale Torrance Vallejo Van Nuys Ventura Walnut Creek Westminster COLORADO
Aurora Steamboat Spring

CONNECTICUT
Bridgeport
LORIDA
Ft. Lauderdate Gainesville Lakeland Orlando Tampa Tampa GEORGIA
Atlanta
HAWAII
Alea
Honolulu IDAHO Idaho Falls ILLINOIS Carbondale Evanston Evanston
Granite City Groveland Mount Prospect Niles Oak Park Schaumburg INDIANA East Chicago Hammond IOWA Clinton Indianola KANSAS Kansas Cit

Lafayette Radio Electronics Electronics Corp. of Alaska

Jim's Audio \& Stereo Repair P \& C Communications Computerworld Inc. Yuma Electronics

Earl's Hobby Shop AI Lasher Electronics SCR Electronics Kimball \& Stark Fontana Electronics Orvac Electronics Inc Eagle Electronics CalPine Electronics -Scott Radio Supply Inc Tower Electronics Corp Computer Magic
Electronic Center Zack Electronics
Radio Shack A.S.C. Palmdale Dow Radio Inc
Heathkit Electronic Center The Radio Place Zackit Inland Computer
\& Electronics $J \& H$ Outlet Store Radio Shack A.S.C. Mira Mes San Fernando Electronics Zack Electronics Zenith Distributing Corp Quement Electronics Mid-State Electronic Supply Santa Cruz Electronics Mission Control
Sunnyvale Electronic Sunnyvale Electronics SE Electronic Zackit
Thrifty Electronics Supply Lombard's Eiectronics Inc. Byte Shop of Walnut Creek IK Electronics

Com Co Electronic Norm's TV \& Electronics

Computers For You Lafayette Radio Lakeland Specialty Electronics Altair Computer Center AMF Electronics Microcomputer Systems Atlanta Computer Mart Delcoms Hawait Integrated Circuit Supply Audiotronics

Lafayerte Radio Itty Bitty Machine Co Tri-State Electronic Corp Computer Systems Center Moyer Electronics Tri-State Electronic Corp. Computer Land Spectronics Inc. imperial Computer Systerns Data Domain

Acro Electronics Corp. Quantum Computer Works

Bridge Elec. Cornputer Center Electronix Limited

Electronic Surplus Sales

KANSAS (Continued)
Manhattan Communications Specialties Ltd. KENTUCKY Lexington LOUISIANA

Radio-Electronic Equipment Co.
Baton Rouge Davis Electronics Supply Co. MARYLAND Baltimore

Davis Electronics Supply Co.
Computer Workshop of Baltimore

Baltimore

La Vale
Rockville
Silver Spring Towson Towson MASSACHUSETTS
Medford
North Adam
North Adam
Waltham Worcester MICHIGAN
Ann Arbor Airway Electronic Communications Flint Hobby Electronic Center Grand Rapids Micro Computer World Lansing Fulton Radio Supply Co. Mt. Clemens

MINNESOTA

Duluth
Eagan
MISSOURI
El Dorado Springs Parkville

MONTANA
Billings
NEBRASKA
Lincoln
North Platte Omaha NEVADA Las Vegas NEW JERSEY Bayville Brick town
Cherry Hill Hoboken Pompton Lake

Ramsey NEW YORK
Albany

Northwest Radio of Duluth Computer Room Inc.

Beckman Electronics Computer Workshop of Kansas City

Conley Radio Supply
Altair Computer Center Scort Radio Supply Corp. Omaha Computer Store

Century 23
A. R.S. Communications Services Radio Shack Associate Store The Computer Emporium Hoboken Computer Works Computer Corner of New Jersey Typetronic Computer Store Fort Orange Electronics Computer Mart of New York

NEW YORK (Continued)

Rensselaer
Rochester
Troy
White Plains
Williamsville
NORTH CAROLINA
Durham
Greensboro
Raleigh
OHIO
Bucyrus
Cincinnati
Columbus
Dayton
Revnoldsburg OKLAHOMA
Guymon
Oklahoma City Tulsa
OREGON
Beaverton
Coos Bay
Ontario
Salem
Corn-Tech Electronics 2001 Microsystems Trojan Electronics The Compurer Corner Hirsch Sales Co.

PENNSYIVANIA
Drexel Hill Kass Electronic Distributors Erie Warren Radio Hershey Microcomputer Systems Inc Murraysville Computer Workshop

Phoenixville
 Tydings Company

Pitrsburgh
Wilkesbare
RHODE ISLAND
Cranston
Hamline Electronics Pawtucket

Jabbour Electronics City SOUTH CAROLINA
North Charleston Jabbour Electronics City

TENNESSEE

Clarksville

Technical Services Inc. Knoxville

Masstronics
Memphis
Byte Shop
Memphis Sere-Rose \& Spencer Electronic Oak Ridge Computer Denn TEXAS
Amarillo Computer Encounters Inc. Dallas

CompuShop
Houston
A/tair Computer Center $\begin{array}{lr}\text { Houston } & \text { Interactive Computers } \\ \text { San Antonio } & \text { Sherman Electronics Supply Inc. }\end{array}$

Alpine Electronic Supply Co.
Provo
VIRGINIA
Alexandria
Computer Hardware Store Alexandria Charlottesville Hampton
Richmond Springfield

Virginia Beach

 WASHINGTON BellevueLongriew
Pasco
Seattle
Seartle
Spokane
WEST VIRGINIA
Morgantown
Morgantown
Ripley
Computers Plus Inc.
Lafayette Electronics
Lafayette Radio
Computers-To.Go
Computer Workshop
Computer Workshop
of North Virginia
Heathkit Electronic Center
Altair Computer Center Progress Electronics Riverview Electronics
C.Com

Electro Distributing Co

CANADA
Alberta (Calgary) The Computer Shop Ontario (Willowdale) Home Computer Centre Quebec (Montreal)

Wang's Microcenter

PANAMA

Panama City
Panama City
FRANCE
Paris
SINGAPORE

Computer Boutique
Inter-Trade (PTE) Ltd.

SEE YOUR LOCAL J Jmpak DEALER TODAY!

For Dealer Information, write or phone JIM-PAK ${ }^{\circledR}$, 1021 Howard Ave., San Carlos, California 94070 (415) 592-8097

A basic discussion of phase-locked loops and how they are used in

 communications systemsIn electronic systems, information can be expressed in four ways: voltage, current, frequency, and phase angle. In modern electronics, operational amplifiers have become the basic building blocks for circuits which manipulate voltages and currents. But what about frequency and phase angle? Enter the phase-locked loop or PLL.

The first widespread use of the phase-lock system was in TV receivers to synchronize the horizontal and vertical sweep oscillators to the transmitted sync pulses. Lately, narrowband phase-locked receivers have proved to be of considerable benefit in tracking weak satellite signals. This is due to the superior noise immunity of PLL systems. Although it's not well known, the synchronous reception of radio signals using the PLL technique was first described in the early 1930s; it was known as a "homodyne" receiver.

In the early days, applications using PLLs had to be implemented using discrete components. Even after the advent of transistors, the PLL circuit was considerably complex. Thus, the use of PLL methods in most electronic systems was both expensive and impractical.

In the late 1960s Signetics Corporation developed monolithic circuit versions of the PLL system. This
development of single chip PLLs changed things considerably. A single package device, used with a few external components, offers all the benefits of PLL operation while making their use practical, uncomplicated, and economical.

PLL theory

Just what is a PLL and how does it do all this frequency manipulating? The op amp is a voltage/current feedback system; that is, a portion of the output is fed back to the input. In an op amp circuit, this feedback component is a current. The PLL is a feedback system but in this case the component fed back is a frequency. Fig. 1 shows a block diagram of a feedback system.

A phase-locked loop is basically an electronic servo loop. The function of a PLL is to detect and track small differences in phase and frequency existing between the input and a reference signal. A block diagram of a basic PLL system is shown in fig. 2. In this circuit the voltage-controlled oscillator is driven in the direction that will minimize the error signal. Note the similarities between figs. 1 and 2.

Like most other complex circuits, phase-locked loops have special terms associated with them; understanding their operation is easier when you become familiar with the language. The following is a brief glossary of terms encountered with PLLs:

Capture range. The range of frequencies over which the loop can detect a signal on the input and respond to it. This is sometimes called the lock-in range (lock-in range refers to how close the signal must be to the center frequency before acquisition can occur; thus it is one-half the capture range).

Current controlled oscillator. An oscillator in which the frequency is determined by an applied current.

Damping factor. In a PLL this refers to the ability of a loop to respond quickly to an input frequency step without excessive overshoot.

Free-run frequency (f_{o}). Also called the center frequency; it is the frequency of the vco with no input signal.

By Bob Marshall, WB6FOC, Analog Applications, Signetics Corporation, Post Office Box 9052, Sunnyvale, California 94086

Lock range. The range of frequencies over which the loop will remain in lock; also called tracking range.

Loop gain $\left(K_{v}\right)$. Product of the dc gains of all the loop elements; in units of sec^{-1}.

Loop noise bandwidth. A loop relating to damping and natural frequency which describes the effective bandwidth of the input signal.

Lowpass filter. A filter which permits only dc and low frequencies to travel around the loop; it determines the capture range of the loop.

Natural frequency. The characteristic frequency of the loop (not to be confused with free-running frequency).

Phase detector gain factor (K_{d}). The conversion factor between the phase detector output voltage and the phase differences of the input and vco signals; expressed in volts-radians.

Phase detector. A circuit which compares the relative phase between two inputs and produces an error voltage dependent on the difference. This error voltage corrects the vco frequency during tracking. Sometimes called a phase comparator or mixer.

Quadrature phase detector. A phase detector operated in quadrature $\left(90^{\circ}\right.$ out of phase) with the loop detector.

VCO conversion gain (K_{o}). Conversion factor between vco frequency and control voltage in radians/sec/volt.

Voltage Controlled Oscillator or VCO. An oscillator whose frequency is determined by an applied control voltage.

loop operation

As was mentioned earlier, the PLL is a feedback system; therefore, it can be characterized mathemat-

fig. 1. Block diagram of feedback system shows the basic arrangement of both operational amplifiers and phase-locked loops. Current feedback is used in an op amp whereas a frequency component is fed back in a phase-locked loop.
ically by the same equations that apply to other, more conventional feedback systems. However, the parameters in the PLL equations deal with phase rather than a current or voltage.
A mathematical analysis of a PLL can get pretty hairy but a qualitative analysis will explain the basic principle of PLL operation. During the following discussion, it will be helpful to refer to fig. 3.
With no input signal applied, the error voltage V_{d} is zero. The vco will operate at a set frequency f_{o} or the free-run frequency. When an input signal is applied to the system, the phase detector compares the phase and frequency of the input with the vco frequency. This generates an error voltage $V_{e(t)}$ that is related to the phase and frequency difference between the two signals; this error voltage is then filtered, amplified, and applied to the control terminal of the vco. In this manner, the control voltage $V_{d(t)}$ forces the vco frequency to vary in a direction that reduces the frequency difference between f_{o} and the input signal.

If the input frequency f_{i} is sufficiently close to f_{o}, the feedback nature of the PLL causes the vco to synchronize or lock with the incoming signal. Once in lock, the vco frequency is identical to the input signal except for a finite phase difference. This net phase difference θ_{o} is necessary to generate the corrective error voltage V_{d} to shift the vco frequency from its free-running value to the input signal and thus, keep the PLL in lock. This self correcting ability of the system allows the PLL to track frequency changes of the input signal once it is locked.

Another way of describing the operation of the PLL is to observe that the phase detector is, in actuality, a multiplier circuit that mixes the input signal with the vco signal. The mixer produces the sum and difference frequencies ($f_{1} \pm f_{o}$). When the loop is in lock, the vco duplicates the input frequency so that the difference frequency component ($f_{i}-f_{o}$) is zero; hence the output of the phase comparator contains a dc component. The lowpass filter removes the sum frequency component $\left(f_{i}+f_{o}\right)$ but passes the dc component which is amplified and fed back to the vco. Notice that with the loop in lock, the difference frequency component is dc and independent of the band edge of the lowpass filter.

lock and capture

What happens before the loop is locked? Let's assume for a moment that there is a frequency on the input to a PLL. The phase comparator mixes this incoming frequency with the free running vco frequency . If the difference frequency $\left(f_{L}-f_{o}\right)$ is greater than the band edge of the lowpass filter, the input to the vco is still zero so the vco remains at its free-run fre-

fig. 2. Basic phase-locked loop consists of a phase detector, lowpass filter, and voltage-controlled oscillator (vco). The vco is driven in a direction which minimizes the error signal.
quency. As the input frequency approaches that of the vco, $f_{1}-f_{0}$ decreases and approaches the band edge of the lowpass filter. Now some of the difference component is passed to the vco control. This in turn decreases the frequency difference component which allows more information through the filter. This positive feedback mechanism causes the vco to snap into lock with the input signal. Thus, the capture range is again defined as the "frequency range centered about the vco free-run frequency over which the loop can acquire lock."

Once the loop is locked, $f_{1}-f_{0}$ is essentially dc and thus unaffected by the lowpass filter. The lock range is limited by the range of the error voltage that can be generated and the corresponding deviation in vco frequency which is produced.

It is important to distinguish the difference between capture range and lock range. Lock range is defined as the frequency range, usually centered about the initial vco frequency, over which the loop can track the input signal once lock has been achieved. The total time required for the vco to obtain a locked condition is called the pull-in time. Pullin time depends on the initial frequency and phase difference between the two signals and the overall loop gain as well as the lowpass filter.

effects of the lowpass filter

In the operation of the loop, the lowpass filter serves a dual function. First, by attenuating the highfrequency error component ($f_{L}+f_{o}$) at the output of the phase comparator, it improves the interferencerejection characteristics; second, it provides a short term memory for the PLL and ensures a rapid recapture of the signal if the system is thrown out of lock because of a noise transient. Reducing the lowpass filter bandwidth has the following effects on system performance:

1. The capture process becomes slower and increases the pull-in time.
2. Capture range decreases.
3. Interference-rejection properties improve since the error voltage caused by an interfering signal is attenuated further by the lowpass filter.
4. The transient response of the loop (the response of the PLL to sudden changes of the input frequency within the capture range) becomes undamped.

This last effect also produces a practical limitation on the lowpass loop filter's bandwidth and roll-off characteristics from a stability standpoint. A detailed analysis of a PLL under lock condition using Laplace transforms will prove that if either the loop gain or the filter time constant is too large, the loop itself will break into sustained oscillations.

The lock range of the PLL, f_{L}, can be shown to be numerically equal to the dc loop gain K_{v}

$$
4 \pi f_{L}=2 \omega_{L}=2 K_{v}
$$

Since the capture range, f_{c}, denotes a transient condition, it is more difficult to derive, but with a simple lag filter the capture range can be approximated as

$$
4 \pi f_{c}=2 \omega_{c} \simeq \sqrt{\frac{2 \pi f_{L}}{\tau_{I}}}=\sqrt{\frac{K_{v}}{\tau_{1}}}
$$

where τ_{l} is the time constant of the loop and f_{L} is the lock frequency. Thus, the capture range increases as the time constant of the filter decreases, while the lock range is a function of the dc loop gain.

Fig. 4 shows the typical frequency-to-voltage transfer characteristics of the PLL. The input is assumed to be a sine wave whose frequency is swept slowly over a broad range of frequencies. The vertical scale is the corresponding error voltage of the loop.

Fig. 4A shows the loop error voltage with an increasing frequency. The loop does not respond until the frequency reaches f_{1}, which corresponds to the lower edge of the capture range. At that time the loop suddenly locks on the input and causes a negative jump of the loop error voltage. As the frequency continues to increase, the loop error voltage increases. Notice that V_{d} is zero when the incoming signal f_{i} equals f_{o}. The loop continues to track the incoming signal until the frequency equals f_{2}; this corresponds to the upper edge of the lock range. The PLL then loses lock and V_{d} returns to zero.

fig. 3. Diagram of a phase-locked loop showing the frequency and voltage relationships in the system. See text for description of operation.

The slope of V_{d} is equal to the reciprocal of the vco gain ($1 / K_{o}$) measured in volts $/$ radians $/ \mathrm{sec}$. If the input frequency is swept slowly back (illustrated by fig. 4B), nothing happens until the incoming frequency reaches f_{3}. The loop continues to track until f_{4} where it breaks lock and the error returns to zero. The total lock and capture ranges of the system are:

$$
\begin{gathered}
2 f_{L}=f_{2}-f_{4}(\text { lock }) \\
2 f_{c}=f_{3}-f_{1}(\text { capture })
\end{gathered}
$$

As indicated by the transfer characteristics of fig. 4, the PLL has an inherent selectivity about the center frequency set by the free running vco frequency f_{o}. It can also be seen that the loop will respond to input signal frequencies that are separated from f_{o} or f_{L} depending on whether the loop starts with or without an initial lock condition. The linearity of the frequen-cy-to-voltage conversion characteristics for the PLL is determined solely by the vco conversion gain. For most PLL applications, the vco is required to have a highly linear voltage-to-frequency transfer characteristic.

functional applications

Now that you are familiar with what a PLL is, you probably wonder what it all means and what it can do for you. As a functional building block the PLL is suitable for a wide variety of frequency related applications. These applications generally fall into one or more of the following catagories: fm demodulation, frequency synthesis, frequency synchronization, signal conditioning, a-m demodulation, and frequency modulation.

fm demodulation

If the PLL is locked to an fm signal, the vco will track the instantaneous frequency of the input signal. The filtered error voltage V_{d}, which forces the vco to maintain lock with the input signal, then becomes the demodulated fm output. The linearity of the vco's voltage-to-frequency transfer characteristic determines the linearity of the demodulated signal. Some typical fm demodulation applications are discussed below.

Broadcast fm detection. In this application, the PLL can be used as a complete fm i-f strip, limiter, and fm detector. It can be used to detect wide- or narrow-band fm signals with greater linearity than can be obtained by other means for frequencies within the range of the vco (presently up to about 50 MHz). One increasingly popular use of the PLL is in scanning receivers where a number of broadcast channels may be sequentially monitored by simply

fig. 4. Frequency-to-voltage transfer characteristics of a phase-locked loop for increasing input frequency, A, and decreasing input frequency, B.
varying the vco free-run frequency. (Scanning receivers are also using a digital PLL technique which is, in principle, similar to linear PLLs).

Fm telemetry. This involves demodulation of a fre-quency-modulated subcarrier. One example is the use of the PLL to recover the SCA (storecast music) signal from the combined signal of commercial fm broadcast stations. The SCA signal is a $67-\mathrm{kHz} \mathrm{fm}$ subcarrier which puts it above the frequency spectrum of the normal stereo or monaural program material.

Frequency-shift keying (FSK). This is essentially digital fm . Frequency-shift keying is a means for transmitting digital information by a carrier which is shifted between two discrete frequencies (as in RTTY, for example). In this case, the two discrete frequencies correspond to a digital 1 (mark) and a digital 0 (space), respectively. When the FSK signal is connected to a PLL, the demodulated output (error voltage) shifts between two discrete voltage levels which correspond to the demodulated binary output.

frequency synthesizer

Frequency multiplication can be achieved with the PLL in two ways: locking to a harmonic of the input signal, or insertion of a counter (digital frequency divider) in the loop. Harmonic locking is the simpler

fig. 5. Phase-locked loop frequency synthesizer using a digital frequency divider.
and is achieved by setting the vco free-run frequency to a multiple of the input frequency and allowing the PLL to lock. A limitation of this scheme, however, is that the lock range decreases as successively higher and weaker harmonics are used for locking. This limits the practical harmonic locking range. For large multiples, the use of a digital frequency divider provides better results; the basic arrangement is shown in fig. 5. The loop is broken between the vco and the phase detector and a counter is inserted. In this case, the fundamental of the divided vco frequency is locked to the input frequency so the vco is actually running at a multiple of the input frequency. The amount of multiplication is determined by the counter.

In frequency multiplication applications, it is important to remember that the phase comparator is actually a mixer and its output contains the sum and difference frequency components. The difference frequency component is dc and is the error voltage which drives the vco to keep the loop in lock. The sum frequency components (basically twice the frequency of the input), if not well filtered, will induce incidental fm on the vco output. This happens because the vco is running at many times the input frequency. The sum frequency component appearing at the control voltage input of the vco causes a periodic variation of its frequency about the desired multiple. For frequency multiplication, it is generally necessary to filter quite heavily to remove this sum component. The tradeoff is reduced capture range and a more underdamped loop transient. The size of the loop filter limits the minimum input frequency.

frequency synchronization

Using a PLL system, the frequency of a less precise vco can be phase locked with a low level but highly stable reference signal. The vco output reproduces the reference signal at the same per unit accuracy but at a much higher power level. In some applications, the synchronizing signal can be a low duty cycle burst at a specific frequency. The PLL can be used to regenerate a coherent CW reference fre-
quency by locking onto the short synchronizing pulse. An example of this is phase-locked chromareference generators in color television receivers.

In digital systems the PLL can be used for a variety of synchronization functions. For example, two clocks can be phase locked to each other so that one can function as the backup for the other. Other popular applications include locking to National Bureau of Standards' station WWVB to generate an inexpensive laboratory frequency standard.

signal conditioning

By selecting the proper vco free-run frequency, the PLL can be made to lock to any number of signals present at the input. The vco output tracks that frequency while attenuating the undesired frequencies of sidebands present at the input. If the loop bandwidth is sufficiently narrow, the signal-to-noise ratio at the vco is better than that at the input.

a-m demodulation

A-m demodulation can be achieved with a PLL by using the scheme shown in fig. 6. In this mode of operation the PLL functions as a synchronous a-m detector. The PLL locks onto the carrier of the a-m signal so the vco output has the same frequency as the carrier, but with no amplitude modulation. The vco will track the input but with a 90° phase shift; if the input is now sent through a 90° phase-shift network and fed into a multiplier, the output of the second multiplier will be directly proportional to the amplitude of the input signal. The PLL still exhibits the capture phenomenon; thus the loop maintains a high degree of selectivity centered about the free-run vco frequency. Since this method is essentially a coherent detection technique which involves the averaging of two companded signals, it offers a higher degree of noise immunity than a conventional peak-detector type a-m demodulator.

fm modulation

Since the PLL has a voltage-controlled oscillator, it's possible to inject a signal into the loop and cause the vco to change frequency. This signal can be injected at the lowpass filter or across the timing component; the per cent of modulation is controlled by

fig. 6. Coherent a-m detector circuit using a phaselocked loop.
the amplitude of the injected signal - linearity is a function of the voltage-to-frequency transfer characteristics of the vco.

PLL design considerations

Many integrated circuits use phase-locked loops along with specialized circuitry to form specialized circuit functions. The versatility of these special systems has been sacrificed for convenience and circuit optimization. Circuits such as the $\mu \mathrm{A} 758$ Stereo Multiplex Decoder, TDA2541 Video I-F System, and others have built-in PLLs which have been optimized
expected input frequency range. Since the loop's capture ability is a function of the difference between the incoming and free-running frequencies, the band edges of the capture range are always centered about the free-run frequency. Typically the lock range is also centered about the free-run frequency. By choosing a center frequency offset from the incoming signal, the detection or tracking range of the loop is limited to one side. This permits rejection of an adjacent higher (or lower) frequency signal and still permits wideband operation (narrowband operation reduces tracking speed).
table 1. User's guide to phase-locked loop ICs.

	upper freq (MHz)	max lock range $1 \% \mathrm{~F}_{\mathrm{o}}$	fm distortion	output swing $\pm 5 \%$ deviation (volts p-p)	center frequency stability (ppm/ ${ }^{\circ} \mathrm{C}$)	frequency drift/w supply voltage (\%/V)	input resistance	a-m output avail	typical supply current (mA)	supply voltage range (volts)
NE560	30	40\%	0.3\%	1	± 600	0.3	$2 \mathrm{k} \dagger$	no	9	+16 to +26
NE561	30	40\%	0.3\%	1	± 600	0.3	2k \dagger	yes	10	+16 to +26
NE562	30	40\%	0.5\%	1	± 600	0.3	2k \dagger	no	12	+16 to +30
NE564	50	30\%			± 200					+5 to +10
NE565	0.5	120\%	0.2\%	0.15	± 200	0.16	5k \dagger	no	8	± 6 to ± 12
SE565	0.5	120\%	0.2\%	0.15	± 100	0.08	$5 \mathrm{k} \dagger$	no	8	± 6 to ± 12
NE567	0.5	14\%	5\%*	0.20	35 ± 60	0.7	20k \dagger	yes*	7	+4.75 to +9
SE567	0.5	14\%	5\%*	0.20	35 ± 60	0.5	20k \dagger	yes*	6	+4.75 to +9
NE566	0.5	N/A	0.2\%	30\%/V§	± 200	0.16			7	+12 to +26
SE566	0.5	N/A	0.2\%	30\%/V§	± 100	0.08			7	+12 to +16

to perform best in those applications. But there are also PLLs which can be used as basic building blocks; these offer the most flexibility in circuit design. Signetics offers three basic classes of singlechip PLL circuits: the general purpose PLL, a PLL with an added multiplier, and the PLL tone decoder. National Semiconductor has a general-purpose PLL and a tone decoder. A more complete list of the PLLs available from various manufacturers is detailed in table 1.

To obtain the optimum performance from a PLL circuit it is important that the user become familiar with the tradeoffs that can be made. To be more specific, the following discussion will be directed at the $560,561,562,564,565,566$, and 567 phase-locked loops. The tradeoffs and loop conditions, however, will hold true for all basic PLLs. Generally speaking, the user is free to select the frequency, tracking or lock range, capture range, and input amplitude.

center frequency selection

Setting the center frequency is accomplished by selecting one or two external components. This freerunning frequency is usually set in the center of the

As was mentioned earlier, the loop uses a multiplier in which the input signal is multiplied by a unity square wave at the vco frequency. The odd harmonics present in the square wave permit the loop to lock to input signals at these odd harmonics. Thus the center frequency may be set to 3 times or 5 times the input signal. The tracking range will, however, be considerably reduced as higher harmonics are used.

It should also be noted that the PLL can lock onto the harmonic of the desired signal. If this is not acceptable, steps must be taken (such as prefiltering) to prevent undesired lockup of the loop to harmonically related signals.

In evaluating the loop for a specific application, compute the magnitude of the expected signal component nearest f_{o}. This magnitude can be used to estimate the lock and capture range.

The PLLs are stabilized against center frequency drift due to power supply variations and the 565 and 567 are temperature compensated over the full military temperature range (-55 to $125^{\circ} \mathrm{C}$). All of the loops are affected by external components which must have equal (or better) stability over the desired operating temperature range.

Two things limit the lock or tracking range of a PLL. First, any vco can only swing so far; if the input signal frequency goes beyond this limit, lock will be lost. Second, the voltage developed by the phase detector is proportional to the product of both the phase and the amplitude of the in-band component to which the loop is locked. If the signal amplitude decreases, the phase difference between the signal and the vco must increase to maintain the same out-
the lowpass filter should have a high cutoff frequency. However, a lowpass filter with a high cutoff frequency will attenuate the sum frequencies to a lesser extent so the output contains a significant and often bothersome signal at twice the input frequency. (Remember that the multiplier forms both the sum and difference frequencies; during lock the difference frequency is zero, but the sum frequency at twice the locked frequency is still present.) If necessary, the

fig. 7. 10.7-MHz fm demodulator using an NE560 PLL IC. Design details are given in the text.
put voltage and, hence, the same frequency deviation.

It often happens with low input amplitudes that even the full $\pm 90^{\circ}$ phase range of the phase detector cannot generate enough voltage to permit tracking over wide deviations. When this occurs, the effective lock range is reduced. Therefore, if the input signal is weak, you must give up some tracking capability and accept greater phase errors. Conversely, a strong input signal will allow you to use the entire vco swing capability and keep the vco phase (referred to the input signal) very close to 90° throughout the range.

Note that tracking range does not depend on the lowpass filter. If a lowpass filter is in the loop, however, it will have the effect of limiting the maximum rate at which tracking can occur. Obviously, the voltage across the lowpass filter capacitor cannot change instantly, so lock may be lost when sufficiently large step changes occur. Between the constant frequency input and the step-change frequency input is some limiting frequency slew rate at which lock is just barely maintained. When tracking at this rate, the phase difference is at its limit of 0° to 180°. It can be seen that if the lowpass filter's cutoff frequency is low, the loop will be unable to track as fast as when the lowpass filter's cutoff frequency is higher. Thus, when maximum tracking rate is needed,
unwanted sum frequency component can be filtered out with an external lowpass filter.

capture range control

There are two main reasons for making the lowpass filter time constant large. First, a large time constant provides an increased memory effect in the loop so that it remains at or near the operating frequency during momentary fading or loss of signal. Second, the large time constant integrates the phase detector output so that increased immunity to noise and out-band signals is obtained.

In addition to the lower tracking rates of large loop filters, other penalties must be paid for the benefits gained; the capture range is reduced and the capture transient becomes longer. Reduction of capture range occurs because the loop must use the magnitude of the difference frequency component at the phase detector to drive the vco toward the input frequency. If the cutoff frequency of the lowpass filter is low, the difference component amplitude is reduced and the loop cannot swing as far. Thus, capture range is reduced.

choice of input level

Whenever amplitude limiting of the in-band signal occurs, whether in the loop input stages or prior to
the input, the tracking (lock) and capture ranges become independent of signal amplitude.

Better noise and out-band signal immunity is achieved when the input levels are below the limiting threshold since the input stage is in its linear region and the creation of cross-modulation components is reduced. Higher input levels will allow somewhat faster operation due to greater phase detector gain and will result in a lock range which becomes constant with amplitude as the phase detector gain becomes constant. Also, high input levels will result in a linear phase-versus-frequency characteristic.

lock-up time and tracking speed control

In tracking applications, lock-up time normally has little consequence, but occasions do arise when it is desirable to keep lock-up time short to minimize data loss when noise or extraneous signals drive the loop out of lock. Lock-up time is of great importance in tone decoder type applications. Tracking speed is important if the loop is used to demodulate an fm signal. Although the following discussion dwells largely on lock-up time, the same comments apply to tracking speed.

No simple expression is available which adequately describes the acquisition or lock-up time. This will be better appreciated after you have reviewed the following factors which influence lock-up time:

1. Input phase
2. Lowpass filter characteristic
3. Loop damping
4. Deviation of input frequency from center frequency
5. In-band input amplitude

6. Out-of-band signals and noise

7. Center frequency

Fortunately, it is usually sufficient to know how to improve the lock-up time and what must be traded off to obtain faster lock-up. Suppose you have set up a loop or tone decoder and find that occasionally the lock-up transient is too long. Remember all the factors that influence lock, what can be done to improve the situation?

1. Initial phase relationship between the incoming signal and the vco; this is the greatest single factor influencing the lock time. If the initial phase is wrong, it first drives the vco frequency away from the input frequency so the vco frequency must walk back on the beat notes. The only way to overcome this variation is to send phase information all the time

fig. 8. Free-running oscillator frequency as a function of vco timing capacitance.
so that a favorable phase relationship is guaranteed at $t=0$. Usually, however, the incoming phase cannot be controlled. Using two TTLs with the voltagecontrolled oscillators synchronized 90° apart reduces worst-case lock-up time by one-half because the input can never be more than 45° out of phase with one of the loops.
2. Lowpass filter. The larger the time constant of the lowpass filter, the longer the lock-up time. You can reduce the lock-up time by decreasing the filter time constant, but in doing so you sacrifice some of the noise immunity and out-of-band signal rejection which caused you to use a larger filter in the first place. You must also accept a sum frequency (twice the vco frequency) component at the lowpass filter and greater phase jitter resulting from out-of-band signals and noise. In the case of the tone decoder (where control of the capture range is required since it specifies the device bandwidth) a lower value lowpass capacitor automatically increases bandwidth. You gain speed only at the expense of added bandwidth.
3. Loop damping for a simple time constant lowpass filter is:

$$
\zeta=\frac{1}{2} \sqrt{\frac{1}{\tau K_{v}}}
$$

Damping can be increased not only by reducing τ, as discussed above, but also by reducing the loop gain K_{v}. By using the loop gain reduction to control band-

fig. 9. Typical RC lowpass filters. Approximate formulas describing their frequency response are presented in the text.
width or capture and lock range, you achieve better damping for narrow bandwidth operation. The penalty for this damping is that more phase detector output is required for a given deviation so that phase errors are greater and noise immunity is reduced. Also, more input drive may be required for a given deviation.
4. Input frequency deviation from free-running frequency. Naturally, the further an applied input signal is from the free-running frequency of the loop, the longer it will take the loop to reach that frequency because of the charging time of the lowpass filter capacitor. Usually, however, the effect of this frequency deviation is small compared to the variation resulting from the inital phase uncertainty. Where loop damping is very low, however, it may be predominant.
with the reduced phase detector output (see 4 above).
6. Out-band signals and noise. Low levels of extraneous signals and noise have very little effect on the lock-up time, neither improving or degrading it. However, large levels may overdrive the loop input stage so that limiting occurs, at which point the inband signal starts to be suppressed. The lower effective input level can cause the lock-up time to increase, as discussed in 5 above.
7. Center frequency. Since lock-up time can be described in terms of the number of cycles to lock, fastest lock-up is achieved at higher frequencies. Thus, whenever a system can be operated at a higher frequency, lock will typically be faster. Also, in systems where different frequencies are being detected, on average the higher frequencies will be detected before the lower frequencies. Because of the wide variation due to initial phase, however, the reverse may be true for any single trial.

In all of the above design considerations, it is important to remember that the PLL is a dc loop. Any dc level change injected into the loop will affect its operation. The loop is also sensitive to temperature changes because most voltage-controlled oscillators have a temperature coefficient of around 600 $\mathrm{ppm} / \mathrm{C}^{\circ}$. The resistors and capacitors used in the fre-

fig. 10. A-m detector for 455-kHz i-f using the NE561 PLL.
5. In-band input amplitude. Since input amplitude is one factor in the phase detector gain K_{d}, and since K_{d} is a factor in the loop gain K_{v}, damping is also a function of input amplitude. When the input amplitude is low, the lock-up time may be limited by the rate at which the lowpass capacitor can charge
quency determining network also have temperature coefficients which must be considered when designing circuits using the PLL.

design examples

Let's take a look at a practical design example
using the NE560 PLL as a $10.7-\mathrm{MHz}$ fm demodulator (see fig. 7).

Supply voltage. Generally, the operating voltage is determined by the available power supply or the device data sheet. The manufacturers specify the V_{CC} at which the device parameters were measured. This simplifies the V_{CC} selection since the device is tested at an optimum voltage; for the NE560 this voltage is 18 volts. Capacitor C 1 is a decoupling capacitor for the supply and should be located as close as possible to the $V_{C C}$ pin of the IC.
VCO free-run frequency. Since this is a $10.7-\mathrm{MHz}$ detector, the approximate timing capacitance can be found on the data sheet graph. This graph (fig. 8) shows that the timing capacitor should be about 22 pF . An approximate value for the timing capacitor can be found from:

$$
C_{o} \cong \frac{300}{f_{o}}
$$

where C_{o} is in pF and f_{o} is in MHz . Using this formula , the capacitor is calculated to be about 28 pF . The design example uses a $22-\mathrm{pF}$ capacitor in parallel with an $8-\mathrm{pF}$ trim capacitor for fine tuning.
Lowpass filter. The output of the phase detector is the sum and the difference of the input fm signal and the vco frequency. The loop filter must remove the sum component. Because the modulation on the incoming signal contains the information desired, it is necessary to retain the difference frequency. In addition, the attenuation of the high-frequency component increases the interference rejection characteristics. To maintain loop stability at all signal levels, the loop cannot cause more than 12 dB per octave rolloff.
Fig. 9 shows several lowpass filter configurations. The circuits of figs. 9A and 9B can provide 6 dB per octave rolloff at the desired bandwidth frequency; resistor R_{x} in 9C and 9D will break the response up at higher frequencies. R_{x} is typically between 50 and 200 ohms. Because of the complexities of the transfer functions, which many designers use to characterize these filters, it is usually easier to use approximation formulas for the lowpass filter. For fig. 9A and 9B the formula is

$$
C=\frac{26.6}{f} \mu F
$$

where f is the desired cutoff frequency. The lowpass filters of fig. 9C and 9D can be approximated by

$$
C=\frac{13.3}{f} \mu F
$$

At frequencies greater than 5 MHz , the filters of fig. 9C and 9D will provide greater loop stability.

fig. 11. $10.7-\mathrm{MHz} \mathrm{fm}$ modulator using the NE560 PLL. Resistor R 8 provides $\pm 10 \%$ variation of the center frequency. For best waveform linearity resistors R4 and R5 should be equal; minimum value for R4 and R5 is 20k.

Assuming that the desired frequency bandwidth of the demodulated signal is 15 kHz , the filter capacitor values (C2 and C3 in fig. 7) are

$$
C=\frac{13.3 \times 10^{-6}}{15 \times 10^{3}}=886 \mathrm{pF}
$$

or approximately $0.001 \mu F$
Resistors R1 and R2 were selected to be between 50 and 200 ohms; I used 150 -ohm resistors.

De-emphasis filter. Standard fm broadcast stations use a de-emphasis time constant of approximately 75 microseconds. According to the NE560 data sheet, the internal resistance into pin 10 is 8 k . The 3 dB rolloff frequency is given by

$$
f_{3 d B}=\frac{1}{2 \pi R_{D} C_{D}} \text { where } R_{D} \text { is } 8000
$$

For a time constant of 75 microseconds

$$
C_{D}=\frac{1}{2 \pi f R_{D}}=\frac{75 \times 10^{-6}}{R_{D}}=0.0094 \mu F
$$

In practice, we can use a $0.01 \mu \mathrm{~F}$ capacitor since the internal resistance has a ± 20 per cent tolerance.

Output. The output, pin 9, has a 15k dc load and ac coupled output. The detected output amplitude for 75 kHz deviation, according to the data sheet, is 30 mV minimum. The demodulated output is emitter coupled and requires a dc path to ground.
Input level. The input level required for a constant tracking range is 2 mV . Also, the a-m rejection char-
table 2. Dedicated ICs which use phase-locked loops.

function	part number	manufacturer
FSK modulator/ demodulator	XR210	Exar
CB synthesizer	HCTR0340	Hughes
	MC15104	Motorola
	MM55104	National
	NE575	Signetics
	SP8920	Plessey
TV synthesizer	NC6410	Nitron
Tone decoder	NE567	Signetics
	LM567	National
	XR567	Exar
Stereo decoder	$\mu \mathrm{A} 758$	Signetics
	LM1310	National
	LM1800	National
VCO function generator	NE566	Signetics
	LM566	National
	11.588C	Fairchild
	MC4024	Motorola

acteristic for high input signal levels is reduced for signals greater than 30 mV , so the input signal should be between 2 and 20 mV .

synchronous a-m detector

Because the NE561 has a multiplier incorporated on the chip, it is possible to accomplish synchronous a-m detection; fig. 10 shows the circuit. The vco tracks the input to the phase detector with a 90° phase shift. By shifting the input signal 90° the vco and the input become in phase. These signals are mixed in the multiplier - the output is the a-m signal (due to the amplitude difference of the input, the constant amplitude of the vco, and the 90° phase difference).

To accomplish this phase shift of the input, a simple RC lag network is used. The values of R1, C3, R2, and $\mathrm{C4}$ are calculated using the relationship

$$
\begin{gathered}
R 1 C 3=R 2 C 4=\frac{1}{2 \pi f_{o}}(\text { assume } R 1=12 k) \\
\text { Thus } C 3=C 4=\frac{1}{2 \pi 455 \times 10^{3} \times 12 \times 10^{3}}=29 \mathrm{pF}
\end{gathered}
$$

(Use a standard value, 27 pF .)
The timing capacitor is calculated as

$$
C_{6} \approx \frac{300}{f_{o}} p F\left(f_{o} \text { in } \mathrm{MHz}\right)
$$

$C_{6} \approx 660 \mathrm{pF}$ (use a standard value, 680 pF)
By controlling the current into pin 6 the vco can be fine tuned so the absolute value of C 6 is not critical. By injecting or loading current into pin 6, the vco frequency can be adjusted ± 20 per cent (with 4 mA
control current). Since no information is taken from the lowpass filter, the filter capacitor, C 2 , is not critical; the value is selected to maintain loop stability. I used a $0.01 \mu \mathrm{~F}$ for C 2 which worked quite well.

Capacitors C8, C9, and resistor R_{c} form a post a-m filter to eliminate carrier feedthrough; R3 is optional because that output is not used.

frequency modulation

Since the PLL IC contains a vco, frequency modulation is accomplished by summing a modulating signal with the error signal or by changing the dc level to control the vco at the modulating rate. Referring to fig. 10, if the current into pin 6 becomes a variable current, the vco will change frequency at the modulated rate. The vco output is taken at pin 5.

Another method of changing the frequency is to insert offset currents across the timing capacitor. To build a $10.7-\mathrm{MHz} \mathrm{fm}$ modulator, the circuit of fig. 7 can be modified as shown in fig. 11. Note that the input is ac grounded and the vco output is taken from pin 5 . Frequency deviation can be approximated by the formula given below.

$$
f=f_{o}\left[1-\frac{V_{A}-6.4}{1300 R}\right]
$$

By incorporating a switching arrangement the circuit can be used as both an fm demodulator and modulator.

summary

In addition to the basic PLL, many manufacturers have ICs for dedicated applications which incorporate PLLs into the design. For example, the CA3089 is an fm i-f strip which contains all the functions of an i-f amplifier and audio detector. Because these parts are dedicated to a specific application, however, they lose flexibility. Table 2 is a partial list of parts which use PLLs in dedicated applications. This list is by no means complete, but is an indication of the various types of circuits which are presently available.

In summary, the PLL is a versatile building block for use in frequency manipulating circuits. By careful design, an awareness of the PLL's limitations, and knowledge of the design tradeoffs, you will find them as easy to use as operational amplifiers.

bibliography

[^5]
ham radio

The Perfect Mobile Rig

With its exclusive PLUG-IN-AND-GO MOBILE MOUNT, its light weight (7 pounds), and compact size ($31 / 2^{\prime \prime}$ high $\times 912^{\prime \prime}$ wide $X 91 / 2^{\prime \prime}$ deep) the Atlas $210 x / 215 x$ is the perfect mobile rig.
To go mobile just slip the 210x into its mobile mount and all connections are made automatically.
In just 10 seconds you're on the air mobile!

4LEATLAS RADIO INC.

417 Via Del Monte. Oceanside, CA 92054 Phone (714) 433-1983 Special Customer Service Direct Line
(714) 433.9591
 SPONSORS THE

1978 RBRL MATLOWAL AND THE

SAN DAEGO $\begin{aligned} & \text { SEPTEMBER } \\ & 22-23-24\end{aligned}$

Town \& Country Convention Center

1978 ARRL NATIONAL CONVENTION, SAN DIEGO, CALIF. SEPT. 22-24, 1978

REGISTRATION DATA FORM (Please print or type)
NAME
CALL
STREET
CITY
STATE
ZIP
ADVANCE REGISTRATION WITH BANQUET (Ladies \& Regular). ADVANCE REGISTRATION ONLY
$\$ 6.00$ \qquad
ADVANCE REGISTRATION BANQUET ONLY :.REGISTRATION ONLY-AFTER SEPT. 15, 1978BANQUET ONLY—AFTER SEPT. 15, 1978$\$ 14.00$LADIES LUNCHEON (None sold at door; Minimum 200)\$8.00
\qquadCHECK/MONEY ORDER ENCLOSED FOR \$IN PAYMENT FOR TOTAL OF ABOVE

NOTES: Only a limited number of banquet tickets will be sold at the door. Be sure to state you are attending the ARRL Convention when requesting hotel reservations. Cut off date for guaranteed reservations is Sept. 7, 1978. Please check your preference for breakfast Sunday, Sept. 24; $L D X L$ QCWA \angle WCARS \angle FM \angle MARS \triangle TRAFFIC \angle WPSS. Breakfast tickets will be sold Sat., Sept. 23 in the registration area. Breakfasts and prices will be controlled by the sponsoring group. Breakfasts held will depend on sponsors and your interest. Requests for refunds must be postmarked prior to Sept. 15, 1978.

GENERAL CHAIRMAN: Sam Dear, K6BWT, 13031 Papago Dr., Poway, CA 92064
(714)566-7893

Incredible...

Incredible, that's the word people are using to describe the CT-50 frequency counter. Why? Simple, the CT-50 is an achievement in design; exceptionally low in cost, compact, easy to use and unmatched in performance and reliability.

Features of the CT-50 include; easy pushbutton operation, fully automatic decimal point positioning, quality shielded metal case, and dependable LSI circuitry. Full eight digit readout allows resolution to 1 Hz at $65 \mathrm{mHz}, 10 \mathrm{~Hz}$ at 650 mHz , and the decimal point is always correct. Input protection to 50 volts insures against accidental burnout or overload. And, the best feature of all is the easy assembly. Clear, step by step instructions guide you to a finished unit you can rely on.
Use the order blank below or call us direct and order yours today!

CT-50, 60 mHz Counter Kit
 CT-50 WT, 60 mHz counter, wired, tested CT-600, 600 mHz prescaler option for CT-50, add
 29.95

ACCESSORIES

DC probe, direct input. general purpose type \$12.95 High impedance probe, does not load circuit15.95

Low pass probe, used when measuring audio 15.95 High pass probe, reduces low freq pickup 15.95 VHF flexible rubber antenna, BNC connector 12.95 Color burst adapter, for calibration, high accuracy 14.95 typically 0.001 ppm accuracy. stability

mansey elabimonias

P.O. Box 4072 Rochester NY 14610
(716) 271-6487

SPECIFICATIONS

Frequency range: 5 Hz to $65 \mathrm{mHz}, 600 \mathrm{mHz}$ with CT-600
Resolution: 10 Hz @ 0.1 sec gate. 1 Hz @ 1 sec gate
Readout: 8 digit, $0.4^{\prime \prime}$ high LED, direct readout in mHz
Accuracy: adjustable to 0.5 ppm
Stability: 2.0 ppm over 10° to $40^{\circ} \mathrm{C}$, temperature compensated
Input: BNC, 1 megohm/20 pt direct, 50 ohm with CT-600 Overload: 50VAC maximum, all modes
Sensitivity: less than 25 mv to $65 \mathrm{mHz}, 50-150 \mathrm{mv}$ to 600 mHz
Power: 110 VAC 5 Watts or 12 VDC @ 400 ma
Size: $6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$. high quality aluminum case, 2 lbs
ICS: 13 units, all socketed
CT-600: 600 mHz prescaler option, fits inside CT-50
CB-1: Color burst adapter, use with color TV for extreme accuracy and stability, typically 0.001 ppm

Bob Stein, W6NBI

semi-precision voltage calibrator for digital voltmeters

If you are relying on your digital voltmeter for accurate voltage measurements, you may have a problem which you have never considered - how well is your voltmeter calibrated? The specifications for the instrument tell you its guaranteed accuracy, and should also state the period of time that this accuracy will be maintained after calibration. Typically, the period is between three months and one year, depending on the manufacturer's tests or specmanship. After that, you must accept the DVM's accuracy on faith, or have it recalibrated. If you are fortunate enough to have access to a calibrationstandards laboratory, recalibration is no problem. Otherwise, you must return the voltmeter to the manufacturer's service center at a cost of at least $\$ 20$ plus shipping, plus the inconvenience of being without it for several weeks.
An alternative is to build the voltage calibrator described in this article. Although it will not permit the same degree of calibration accuracy which can be achieved with precision voltage standards, it will indicate whether or not your DVM requires recalibration and will allow you to perform the calibration if you are willing to accept about 0.3 per cent accuracy on dc and 1 per cent on ac.
Because of its simplicity, the calibrator has several limitations, all of which are based on the assumption that most digital voltmeters owned by hams are inexpensive, 3-1/2-digit types. First of all, both the ac and dc calibration adjustments on the DVM must be made by a single control for each, on the lowest ac and dc voltage ranges (accuracy of the higher volt-
age ranges is dependent upon the accuracy of the input voltage dividers in instruments of this type). Second, the DVM calibration voltages specified in the instruction book must be within 25 per cent of either 100 millivolts or 1 volt; the voltage calibrator is designed to allow you to choose one of these two calibration voltages. And third, the dc input resistance of the DVM must be at least 10 megohms, although lower input resistances can be accommodated at the expense of accuracy.
In addition to the voltage calibrator, an audio-frequency generator having a low output impedance is required. This generator must supply a voltage equal to the specified ac calibration voltage, at the frequency specified by the manufacturer of the DVM. Other than that, the voltage calibrator is self-contained and self-calibrating.

circuit description

The voltage calibrator circuit is shown in fig. 1. Two LM308 op amps are used in a precision fullwave rectifier circuit to obtain an ac calibrating voltage by substitution. A reference voltage source, to be described later, provides the dc calibrating voltage and a reference for the rectifier circuit. Either a $100.0-$ millivolt or a 1.000 -volt reference voltage source is used, depending on the requirements of the DVM undergoing calibration. It can be seen that when switch S1 is in the DC CAL position, the reference voltage source is connected directly to the DVM, permitting calibration of the dc voltage range.

Since the precision full-wave rectifier is dc coupled, it will respond to dc as well as ac; its output can therefore be calibrated from the reference voltage source. The ac signal from the audio generator is adjusted to provide an equivalent dc output from the rectifier, which is measured using the DVM (already calibrated on its dc range). Since the ac input is now known in terms of the dc output from the rectifier, the DVM is connected directly to the audio generator and calibrated for ac voltage.
Let's now examine the precision rectifier, described by Dobkin in reference 1, in more detail. LM308 op amps were selected because of their low input-bias currents, ensuring that the bias current supplied from the reference voltage source would not exceed 14 nanoamperes. When an ac voltage is applied to the inverting inputs of both op amps, U1 functions as a half-wave rectifier and produces the output shown in fig. 2B. The positive half-cycle of the input is inverted in the op amp and applied to the inverting input of U2 through CR1 and R6. The inverted negative half-cycle of the input is clamped at approximately 0.7 volt by CR2, but is isolated from U2 by CR1. Therefore the output of U1 which
reaches U 2 is a true half-wave rectified version of the input, having the same peak amplitude, $e_{p k}$.

To simplify the explanation, it is best to consider the two inputs to U 2 separately. The output of U 1 is applied to U2 through R6. Therefore the gain of U2 for this input is established by the ratio ($\mathrm{R} 7+\mathrm{R} 8$)/R6. If this gain is set at 2.222 by means of GAIN control R8, the output resulting from this input would be as shown in fig. 2C. Simultaneously, the original ac input is applied to U2 through R4, with the gain of U2 for this input being determined by the ratio $(R 7+R 8) / R 4$. Since $R 4$ is twice the value of R6, within the tolerances of 1 -per cent resistors, the gain becomes 1.111 for the same setting of R8; the resultant output is shown in fig. 2D. Waveforms C and D are summed (more rigorously, the input currents are summed), producing the actual output shown in fig. $\mathbf{2 E}$. Note that this is a full-wave rectified version of the ac input, but amplified by a factor of 1.111. The dc level at the output of the rectifier circuit is equal to the average value of the input signal times the gain of the circuit. Since the average value of a sine wave or a full-wave rectified sine wave is 0.6366 'times the peak value, the dc output becomes $0.6366 x$ $1.111 e_{p k}$, or $0.707 e_{p k}$, which is the rms value of the ac input.

fig. 1. Schematic diagram of the semi-precision voltage calibrator. Switch S1 must be a nonshorting type rotary switch. The reference voltage source is shown in fig. 3.

fig. 2. Waveforms of the precision full-wave rectifier circuit.

Note that there are no coupling capacitors within the rectifier circuit, allowing it to operate as a dc amplifier having a gain of 1.111. Therefore a known dc voltage, E, applied to the input will produce an output equal to $1.111 E$. It is this characteristic which permits ac calibration using a dc source.
The input offset voltages of U 1 and U 2 are nulled by means of potentiometers R13 and R14, respectively, in order to establish zero output voltage for zero input. The entire circuit may be powered by two inexpensive 9 -volt transistor batteries, or a dual-voltage power supply can be used; total current drain is less than 2 milliamperes.
The sequence of operation is as follows: The DVM is calibrated on its dc range, as described previously, when switch S1 is set to DC CAL. When S1 is set to NULL 1 , the output of U1 is nulled by means of R13, and when S1 is set to NULL 2, the output of U2 is nulled with R14. In the GAIN position of S1, the dc reference voltage source is applied to the rectifier input and GAIN control R8 is adjusted for a dc output, indicated on the DVM, of 1.111 times the reference voltage. Next, S1 is switched to its AC SET position, which connects the external af generator to the input of the rectifier. The amplitude of the audio-generator signal is then adjusted to provide a dc reading on the DVM which is equal to the dc reference voltage;
therefore the rms value of this ac signal is now equal to the dc reference. Finally, S1 is set to AC CAL, which connects the audio generator directly to the DVM. Changing the DVM function switch to AC VOLTS then permits calibration of its ac range.

reference voltage source

As you may have deduced from the discussion so far, the accuracy of the voltage calibrator is dependent upon the accuracy of the reference voltage source. Fortunately, the source utilizes an inexpensive and commonly available 1.35 -volt mercury cell. Suitable types, the most expensive of which costs about \$2, are listed below. All are 1.35 -volt reference cells. Mercury cells are also made with a 1.4 -volt emf; they are not usable in this application.

Mallory	Eveready	Burgess
RM12R	E12N	HG12R
RM401R	E401N	HG401R
RM502R	E502	HG502R
RM601R	E601	HG601R

Although the battery voltage is specified to only two decimal places, it's been determined by a large equipment manufacturer that the terminal voltage of a new battery under about 0.1-milliampere load is within a millivolt or two of 1.354 millivolts. This value has been used as a basis for the reference voltage.

Fig. 3A shows the circuit of the 100.0 -millivolt source, and fig. 3B shows the 1.000 -volt source. To establish a reference voltage with an accuracy of ± 0.2 per cent, it would be necessary to use selected or special values of 0.1 per cent resistors. To eliminate this obviously impractical requirement (for the average user), standard values of 1 per cent resistors have been specified. However, these must be bridged or measured on a calibrated digital ohmmeter which is accurate to within ± 0.1 per cent. Since it is the ratio of the two sections of the voltage divider across the battery, (rather than the absolute resistances) which determines the reference voltage, it is possible to calculate a value for resistor R when the values of R101 and R102 are accurately known. Selecting a standard 1 per cent value which is closest to the calculated value of R will always result in a divider within the required accuracy.*

For example, assume that you have borrowed a Wheatstone bridge and have determined that the values of R101 and R102 for a 100.0-millivolt source are 9984.7 and 803.5 ohms, respectively. From fig. 3A,

$$
R_{p}=\frac{R 101}{12.540}=\frac{9984.7}{12.540}=796.2 \mathrm{ohms}
$$

[^6]Also from fig. 3A,

$$
\begin{gathered}
\frac{1}{R}=\frac{1}{R_{p}}-\frac{1}{R 102}=\frac{1}{796.2}-\frac{1}{803.5}=0.00001141 \\
R=87637 \mathrm{ohms}
\end{gathered}
$$

The nearest standard 1 per cent resistance value is 86.6 k ohms, which is then connected in parallel with R102. If you recalculate R_{p} using the limiting values of an 86.6 k, 1 per cent resistor (i.e., 85734 and 87466 ohms), and then calculate the ratios of $R 101 / R_{p}$, you will find that they are well within 0.1 per cent of 12.540 . This holds true for any value of R required for the ranges of R101 and R102.

To simplify the selection of a value for R, R_{p} has been plotted against the resistance of R101 in fig. 4 for both the 100.0 -millivolt and 1.000 -volt reference voltage sources. If the measured value of R102 is within 0.1 per cent of R_{p}, R will not be required. If the value of R 102 is higher than R_{p}, R can be selected as described above. If R102 has a measured resistance less than R_{p}, it cannot be used, necessitating a change in either R101 or R102.

When the voltage calibrator is in use, either the DVM or the precision rectifier input is connected in parallel with the bottom section of the voltage divider. The effect of this on the 100.0 -millivolt source is negligible because of the low value of R_{p}. However, the effect on the 1.000 -volt source cannot be disregarded because of the relatively high value of R101 in that circuit. Thus the equation for the selection of R_{p} in fig. 3B, as well as the graphical representation in fig. 4, has taken into account the shunting effect of a typical 10 -megohm DVM input resistance.

The equivalent input resistance of the precision rectifier circuit (including the effect of the op amps'

> B. Iooov reference voltage source
fig. 3. Reference voltage sources for use with the voltage calibrator. In each circuit, R is selected so that it, in parallel with R102, will satisfy the equations shown next to each circuit, within ± 0.2 per cent. R_{m} in circuit B is the input resistance of the DVM. Refer to the text for suitable battery types.
input-bias currents) will be between 5 and 65 megohms, depending on the individual devices which are used. When connected to the reference voltage source, the input voltage to the rectifier circuit will differ from that applied to the DVM by less than 0.1 per cent, which is insignificant compared to the 1 per cent accuracy of the precision rectifier.
Little need be said about building the voltage calibrator. The parts layout and arrangement are not at all critical, allowing any type of construction to be used. Point-to-point wiring on perf or copper-clad board will suffice, as will a printed-circuit board.

It is recommended that potentiometers R13 and R14 be multiturn types, because the nulling adjustments are critical. Since the calibrator will be used infrequently, these controls as well as GAIN potentiometer R8 can be multiturn, screwdriver-adjust trimmer pots.

One precaution - do not solder the mercury cell into the circuit. Rather, buy or build a suitable holder. A fresh battery should always be used for calibration; the battery must be easily replaceable.

DVM calibration

Connect the DVM to be calibrated to the DVM terminals of the voltage calibrator, and set it to the appropriate dc range. Connect an audio-frequency generator to the AF GEN terminals of the calibrator, with the generator output turned down to zero. Apply +9 and -9 volts dc to the calibrator, and allow the calibrator and DVM to warm up for at least 15 minutes.

The complete calibration procedure is as follows. The numerical values given in each step are based on using the 100.0 -millivolt reference; equivalent values for the 1.000 -volt reference are in parentheses.

fig. 4. Values of R_{p} plotted against the measured resistance of R101, from the formulas given in fig. 3. R102 must be equal to or greater than R_{p}, as explained in the text.

1. Set S1 to DC CAL and adjust the DVM dc calibration control for a reading of 100.0 millivolts $(1.000$ volt).
2. Set S1 to NULL 1 and adjust NULL 1 potentiometer R13 for a reading on the DVM as close to zero as possible.
3. Set S1 to NULL 2 and adjust NULL 2 potentiometer R14 for a reading on the DVM as close as possible to zero.
4. Repeat steps 2 and 3 ; the nulls should be within 0.1 millivolt (1 millivolt) of zero.
5. Set S1 to GAIN and adjust GAIN control R8 for a reading of 111.1 millivolts (1.111 volts) on the DVM.
6. Set S1 to AC SET and adjust the af generator output for a reading of exactly 100.0 millivolts $(1.000$ volt) on the DVM. Note that the DVM is still set to read dc voltage.
7. Set the DVM to read ac volts and set S1 to AC CAL. Adjust the DVM ac calibration control for a reading of 100.0 millivolts (1.000 volt).

The DVM is now calibrated within normally acceptable standards for most amateur work. As the title of this article indicates, the calibrator is only a semi-precision substitute for a voltage calibration standard. But for most ham and experimental applications, its accuracy should suffice.

source of precision resistors

Precision resistors for the voltage calibrator can be supplied by Melvin Sales Company, Post Office Box 5283, San Mateo, California 94402. The following sets will be made available:

description

Matched set ($\pm 0.2 \%$) of voltage-divider resistors for $100.0-\mathrm{mV}$ source
postpaid cost, postpaid cost via USA \& Canada air, other countries

Matched set ($\pm 0.2 \%$) of voltage-divider resistors for $1.000-\mathrm{V}$ source
Set of five 1% resistors for precision rectifier

$\$ 2.50$	$\$ 3.00$
2.50	3.00
1.50	2.00

*Set of five resistors (nominally $100,1 \mathrm{k}, 10 \mathrm{k}$, 100k, and 1 M ohms) individually calibrated to $\pm 0.1 \%$ for use as resistance standards
4.00 4.50
*Not required for voltage calibration, but are suitable for checking or adjusting resistance ranges of a digital volt-ohmmeter.

reference

1. Robert C. Dobkin, "Precision AC/DC Converters," Linear Brief LB-8, National Semiconductor Corporation, Santa Clara, California 95051, August, 1969.
ham radio

ปฺ \square

The age of tone control has come to Amateur Radio. What better way to utilize our ever diminishing resource of frequency spectrum? Sub-audible tone control allows several repéaters to share the same channel with minimal geographic separation. It allows protection from intermod and interference for repeaters, remote base stations, and autopatches. It even allows silent monitoring of our crowded simplex channels.

We make the most reliable and complete line of tone products available. All are totally immune to RF, use plug-in, field replaceable, frequency determining elements for low cost and the most accurate and stable frequency control possible. Our impeccable 1 day delivery is unmatched in the industry and you are protected by a full 1 year warranty when our products are returned to the factory for repair. Isn't it time for you to get into the New Age of tone control?

Ans

TS-1 Sub-Audible Encoder-Decoder - Microminiature in size, $1.25^{\prime \prime} \times 2.0^{\circ} \times .65^{\prime \prime}$ • Encodes and decodes simultaneously • $\$ 59.95$ complete with K - 1 element.
TS-1JR Sub-Audible Encoder-Decoder - Microminiature version of the TS-1 measuring just $1.0^{\circ} \times 1.25^{\prime \prime} \times .65^{\prime \prime}$, for handheld units - $\$ 79.95$ complete with K-1 element.
ME-3 Sub-Audible Encoder - Microminiature in size, measures $.45^{\prime \prime} \times 1.1^{\prime \prime} \times .6^{*}$ • Instant start-up • $\$ 29.95$ complete with K -1 element.
TE-8 Eight-Tone Sub-Audible Encoder • Measures $2.6^{\circ} \times$ 2.0 x.7" - Frequency selection made by either a pull to ground or to supply - $\$ 69.95$ with 8 K - 1 elements.
PE-2 Two-Tone Sequential Encoder for paging - Two call unit • Measures $1.25^{\prime \prime} \times 2.0^{\circ} \times .65^{\prime \prime} \cdot \$ 49.95$ with $2 \mathrm{~K}-2$ elements.

SD-1 Two-Tone Sequential Decoder - Frequency range is $268.5-2109.4 \mathrm{~Hz}$ - Measures $1.2^{\prime \prime} \times 1.67^{\circ} \times .65^{\prime \prime}$ • Momentary output for horn relay, latched output for call light and receiver muting built-in - $\$ 59.95$ with 2 K -2 elements.
TE-12 Twelve-Tone Sub-Audible or Burst-Tone Encoder Frequency range is $67.0-263.0 \mathrm{~Hz}$ sub-audible or $1650-4200 \mathrm{~Hz}$ burst-tone - Measures $4.25^{\prime \prime} \times 2.5^{\prime \prime} \times 1.5^{\prime \prime}$ • $\$ 79.95$ with 12 K -1 elements.
ST-1 Burst-Tone Encoder - Measures $.95^{\circ} \times .5^{\prime \prime} \times .5^{\prime \prime}$ plus K-1 measurements • Frequency range is $1650-4200 \mathrm{~Hz}$. \$29.95 with K-1 element.

COMMUNICATIONS

 SPECIALISTS426 W. Taft Ave., Orange, CA 92667
(714) 998-3021

Construction of a novel multiband J antenna for home or mobile use called the "J on a J"

Need a tri-band, vertical vhf antenna? Does your car look like an excited porcupine? Do you have a 30 meter tower and want omnidirectional coverage from a single antenna structure for all the repeater bands without the nulling effects of side mounting? The antenna system described here can be made for 10, 6, and 2 meters, 220 and 450 MHz , or all five bands. Antennas for the higher frequencies, 144, 220, and 450 MHz , can also be mounted as a single antenna structure on a plastic car (the antennas don't require a ground plane). Interested? Read on.

J antennas

The J antenna has been around a long time. It is primarily a ham antenna, never having gained acceptance in the commercial world, although it has been sporadically manufactured by several companies. The J antenna is a half-wavelength radiator mounted vertically and end-fed with a quarter-wavelength resonant transmission line (basically an end-fed Zep). Its angle of radiation and gain are the same as a halfwavelength antenna; electrically it is similar to the coaxial or sleeve antenna. The horizontal radiation
pattern of the J antenna is almost a perfect circle, even when mounted on a metal roof of a car, because it doesn't require a ground plane and can be mounted well above the vehicle's roof.

The J antenna is fed at the appropriate point on the quarter-wavelength resonant line portion of the antenna (see fig. 1). Since the impedance on a resonant quarter-wavelength line goes from zero at the shorted end to infinite at the open end, it's possible to provide a good match to almost any transmission line. For best isolation from the supporting mast, however, it's necessary to feed the antenna with a balanced feedline; if you use coax, this requires a balun. If a balun is too much bother, the antenna can be fed directly with coax at the proper impedance matching point. In this case there will be some interaction between the antenna and the mast.

multibanding

After noting that the J antenna doesn't care what's below the shorting block at the bottom of the quarter-wave section, and it doesn't care about the diameter of the radiator (within reason), I concluded that a $450-\mathrm{MHz} \mathrm{J}$ antenna could be located on top of a 144 MHz J as shown in fig. 2. Chris Bushman, WB6EEQ, took me seriously and built just such a system. That was two years ago and it's still working very well.

Expanding this concept to include other bands would give you a single antenna structure, to install in that critical spot on the top of your tower, that in-

By Bob Thornburg, WB6JPI, 13135 Ventura Boulevard, Studio City, California 91604
cludes 10 meters, 6 meters, 2 meters, 220 MHz , and 450 MHz . Dimensions are given in table 1 for all these although only a 144-220-450 mobile version has actually been built and tested by WA6VSK.

design

The design of the J antenna is very simple. The length of the quarter-wavelength matching section is given by

$$
L=\frac{1134}{f_{M H z}}(\mathrm{~cm})=\frac{2880}{f_{M H z}} \text { (inches) }
$$

The half-wavelength radiator is approximately twice this length or

$$
L=\frac{2181}{f_{M H z}}(\mathrm{~cm})=\frac{5540}{f_{M H z}} \text { (inches) }
$$

The spacing between the mast portion of the quar-ter-wave section and the quarter-wavelength rod is not critical as long as the two are parallel.

construction

A mobile $144-220-450 \mathrm{MHz} J$ antenna can be easily built from a $C B$ whip. A base station vhf/uhf J that includes 10 and 6 meters should be built with aluminum tubing. Since the antenna should not be insulated, a push-up mast would work well for the 10 meter and up antenna.
The mobile J antenna is made from an ordinary $C B$ whip. For strength cut 60 cm (2 feet) from the top of the antenna and use this piece for the $144-\mathrm{MHz}$ stub. The shorting blocks are aluminum stock drilled as shown in fig. 3. The spacers to maintain the stub spacing for 144 and 220 MHz are made from plexiglass, drilled the same as the corresponding shorting block. No plexiglass spacer is needed for the 450 MHz section. Cut the quarter-wavelength stubs
the quarter-wave 200 -ohm point is an arbitrary length of TV twinlead. Other forms of feedline can also be used.
The 50 -ohm coax may be directly fed to the stub at the appropriate 50 -ohm point with the shield tied to

fig. 1. Basic J antenna consists of a half-wavelength vertical radiator and quarter-wavelength matching section. The balanced feedpoint (use balun with coax feedline) is moved along the quarter-wave section until a match is obtained. Unbalanced feed may also be used, as described in the text. The base of the antenna (shorting bar) may be grounded.
the opposite side. The stub could also be insulated from the shorting block and fed like a quarter-wave antenna (which it isn't). In general, the J antenna is relatively tolerant of the actual feedpoint or technique.
table 1. Construction dimensions for the half-wavelength J antenna.

frequency (MHz)	A	B	C	D	E	F
29.0	7.52 m	2.51 m	15 cm	31.8 cm	6.4 cm	3.42 m
52.5	4.16 m	1.38 m	10 cm	19.1 cm	3.8 cm	1.89 m
147.0	1.49 m	49.5 cm	5 cm	6.4 cm	1.9 cm	67.3 cm
223.5	97.2 cm	32.1 cm	3.8 cm	4.1 cm	1.3 cm	44.1 cm
440.0	48.9 cm	16.5 cm	2.5 cm	2.1 cm	1.3 cm	22.4 cm
29.0	$296.5^{\prime \prime}$	$98.75^{\prime \prime}$	$6^{\prime \prime}$	$12.5^{\prime \prime}$	$2.5^{\prime \prime}$	$134.5^{\prime \prime}$
52.5	$163.75^{\prime \prime}$	$54.50^{\prime \prime}$	$4^{\prime \prime}$	$7.5^{\prime \prime}$	$1.5^{\prime \prime}$	$74.25^{\prime \prime}$
147.0	$58.50^{\prime \prime}$	$19.50^{\prime \prime}$	$2^{\prime \prime}$	$2.5^{\prime \prime}$	$0.75^{\prime \prime}$	$26.50^{\prime \prime}$
223.5	$38.25^{\prime \prime}$	$12.63^{\prime \prime}$	$1.5^{\prime \prime}$	$1.63^{\prime \prime}$	$0.5^{\prime \prime}$	$17.38^{\prime \prime}$
440.0	$19.25^{\prime \prime}$	$6.50^{\prime \prime}$	$1.0^{\prime \prime}$	$0.83^{\prime \prime}$	$0.5^{\prime \prime}$	$8.83^{\prime \prime}$

about $8-10 \mathrm{~cm}$ ($3-4$ inches) longer than necessary to allow tuning and as a convenient place to store the balun (under the shorting block).

The balun is simply a half-wavelength section of 50 -ohm coaxial cable as shown in fig. 4. The feed to

The feedlines for the higher-frequency antennas actually become part of the lower-frequency antenna system. For this reason they must be tied closely to the main antenna pole. This provides capacitative coupling through the coax jacket and ensures that
the outer shield electrically follows the fields on the main antenna; for all practical purposes it becomes part of that structure.

tuning

As noted previously, the specific location of the feedpoints is not too critical. However, the length of the stub is very critical and by adjusting the stub

fig. 2. Multiband J antennas for 146 and $450 \mathrm{MHz}, A$, and for 146, 223, and $450 \mathrm{MHz}, \mathrm{B}$. Antennas built by the author were fed with separate coaxial feedlines and baluns.
length, nearly any antenna length or feedpoint can be matched. The recommended procedure is to fully assemble the antenna, connect an if source to the highest frequency coax, and adjust the appropriate stub for minimum vswr. If the vswr at the edge of the band is less than 2:1 (and more-or-less symmetrical) move on to the next highest frequency/coax and tune the stub. After adjustment is completed, recheck the lower frequency antenna because there is some interaction.

fig. 3. Layout of the aluminum shorting bars and plexiglass spacers. Dimensions C and E are given in table 1.

If the bandwidth is too narrow for your application, load the tuned section more by moving the feedpoint toward the antenna portion. The 2:1 swr bandwidth should be at least 10 MHz at $450 \mathrm{MHz}, 4 \mathrm{MHz}$ at 220 MHz , and 3 MHz at 144 MHz .

operation

The original design of the multiband J antenna was intended to allow operation on one band at a time, with the unused coax connectors left open. There is a reasonable amount of coupling between the sections so that if you are transmitting on 144 MHz , for example, some of this energy will be received by the $450-\mathrm{MHz}$ antenna. Measurements have shown this coupled power to be $15-20 \mathrm{~dB}$ down, but that's still sufficient to damage a sensitive receiver frontend.

I don't recommend you try two-band duplex operation with this antenna system, although with the excellent preselectors in the Motorola Motrac, it has been done on 450 MHz and 146 MHz without damage.
ham radio

fig. 4. Construction of the half-wavelength coaxial balun. Length F is given in table 1.

When the FCC acted

we reported:

Colpitts oscillator

tioned later, bipolar transistors are not as desirable in some applications. Subjects such as oscillator noise and stability are covered elsewhere and will not be described in detail here. More specifically, what will be dealt with is what it takes to get the oscillator to start oscillating. The technique offered is simple enough so that you need not know how oscillators oscillate. Since scientific calculators are now selling for less than fifty dollars, it is justifiable to do away with some of the old "rule-of-thumb" solutions.

basic assumptions

The Colpitts oscillator is perhaps most commonly seen in the configuration shown in fig. 1. To simplify the analysis, those components necessary for dc operation have been omitted (fig. 2). To further simplify the ac analysis, the oscillator is redrawn in the configuration shown in fig. 3. This is the general form of a common-gate amplifier, with a feedback capacitor, C1, between the input and the output. The amplifier is considered with no signal applied from an external source; the input is shunted only by C2 and the source-bias resistor. Note that if the capacitors were replaced with inductors and vice versa, the circuit would be the common Hartley oscillator. An analysis is somewhat easier with the circuit in fig. 3 since it now appears as a resonant tank circuit with an amplifier connected to it. However, one more circuit element needs to be added: the load resistance, R_{L}. This is the element which will accept power from

By Larry Leighton, WB6BPI, Siliconix Incorporated, 2201 Laurelwood Road, Santa Clara, California 95054
the oscillator. For this circuit to oscillate, all that's necessary is enough energy be tapped from the tank circuit, amplified, and routed back to the tank circuit to compensate for the energy absorbed by R_{L}.

The first step is to determine what output power is required. This, of course, depends upon the application, but in most cases it will be relatively low, particularly when frequency stability is of prime importance. Crystal oscillators generally have relatively low output levels, mainly to prevent the crystal from fracturing. In one case, a crystal ordered from a prominent manufacturer had a rated power dissipation of one milliwatt. To obtain more power from an oscillator with a fixed-supply voltage, a lower load impedance is required. If a lower load impedance is applied, however, either the gain of the transistor has to be increased, or feedback has to be increased to maintain oscillation. Since the crystal is in series with the feedback signal, care must be taken when considering how much output power you can expect from the oscillator.

Another consideration regarding output power is that inductors and capacitors do consume some power. They always have some associated series resistance which can be minimized by using higherquality components. When rf current passes through these components, heat is generated from the power dissipated across the resistance. This heat causes a change in the values of the inductor or capacitor and, hence, a change in frequency. The effects of these changes and the changes associated with various components are covered in reference 1.

The transistor also has power-limiting characteristics. From turn-on of the oscillator, until a steadystate condition has been reached, the transistor parameters will change. The amount of change must

fig. 1. Schematic diagram of a basic commongate Colpitts oscillator.

fig. 2. Ac model of the common-gate Colpitts oscillator shown in fig. 1. For analysis, the dc components have been eliminated.
generally be determined empirically, but can be minimized by operating the transistor at relatively low power, limiting output from the oscillator.

In this article, the Siliconix U310 jfet is characterized at 9 volts drain-to-gate voltage and 2 mA of drain current in the common-gate configuration. This is thought to be a fair compromise between output power and parameter changes. Consider a class-A oscillator in which the drain current does not appreciably change from the oscillating to not-oscillating condition. If optimized, it will be less than 50 per cent efficient, with a maximum output power of 9 milliwatts ($9 \mathrm{~V} \cdot 2 \mathrm{~mA} / 2$). Oscillator design almost always requires some compromises, so there is nothing binding regarding the 9 volt, 2 mA operating point; it can be changed to meet the needs of your application.

oscillator design

The first step to consider in oscillator design is the required output power; the second is to determine the load resistance necessary to obtain the required output. The load the oscillator requires is almost always different than the amplifier, buffer, or mixer it must drive. Initially, only the oscillator load will be considered.

Only class-A oscillators will be discussed in this article because the transistor parameter changes are more easily defined. If the supply voltage and drain current are known, the solution for the load resistance, R_{L}, is

$$
R_{L}=\frac{\left(V_{D S}-V_{D S(\text { sat })}\right)^{2}}{2 P_{o u t}}
$$

$V_{D S(s a t)}$ can be obtained from the data sheet; in this
case it is 2 volts. Earlier it was determined that 9 milliwatts would be a desirable output. Given the operating point of 9 volts:

$$
R_{L}=\frac{(9-2)^{2}}{2(.009)}=2722 \mathrm{ohms}
$$

Since $V_{D S(\text { sat })}$ is only an approximation, rounding R_{L} to 2700 ohms for use in the following calculations is justified.

fig. 3. To further simplify analysis of the oscillator, this diagram shows the circuit redrawn into the general form of a common-gate amplifier.

The third item to consider is transistor selection. The Siliconix U310 has been demonstrated to operate as an oscillator up to $900 \mathrm{MHz} .{ }^{2}$ It has an advantage over more commonly available vhf and uhf jfets because of its high zero-bias drain current and g_{m} (forward transconductance). This means that the U310 has potentially higher output power and more stable characteristics when operated at a lower-drain current. Another distinct advantage of the U310 is that the gate lead, and in this case, the intrinsic bulk of the transistor, is connected to the metal case of the transistor package. Therefore, the U310 can be used with a heatsink, minimizing the change in transistor parameters. Although not recommended by the factory, an alternative heatsink method is to solder the U310's case to the chassis. This is convenient only when used in the common-gate configuration (be careful when soldering, as the U310 can be destroyed by overheating).

Perhaps the most critical parameter in amplifier design is the gain stability factor of the transistor itself. 3 The Siliconix U310, when operated in the common-gate configuration at 20 volts and 10 mA , is unconditionally stable at almost all frequencies. In fact, when loaded with practical, somewhat lossy external components, the U310 could be considered unconditionally stable at all frequencies. Unconditional stability, by definition, means the transistor will not oscillate when presented with any positive real source or load impedance; stability, therefore, is a measure of the transistor's ability to oscillate.
It is desirable that the stability factor of the transistor is such that it will not oscillate. This may seem
contradictory to the design goal, but is used to emphasize that the source of feedback necessary to sustain oscillation should be the option of the designer and not the transistor. In the common-gate configuration, the U310 has been optimized to the point where the intrinsic feedback elements of the transistor are so small that the values of feedback necessary to make the U310 oscillate are the choice of the designer.

Most rf bipolar transistors, in the equivalent com-mon-base configuration, are only conditionally stable and tend to be so at many frequencies. Special precautions must be taken to insure oscillation at only the desired frequencies. This requires more components, which increases cost and decreases reliability. Also, very few bipolars, designed for the commonbase configuration, are available.

The next item to consider is the operating or loaded $Q\left(Q_{L}\right)$ of the resonant tank circuit. The value chosen for Q_{L} is very much dependent upon the application. In addition, there are upper and lower restrictions on Q_{L}. In an attempt to make Q_{L} low, the transistor's reactive components would assume a higher percentage of the total circuit values. This is undesirable in many applications since stability would be sacrificed as the transistor parameters change with temperature. Additionally, the harmonic content of the output increases as Q_{L} decreases. There are many applications where Q_{L} should be very high. One example would be when a low-noise oscillator is required to drive a sensitive mixer or product detector.

The upper limit for Q_{L} is established by the unloaded Q (Q_{μ}) of the inductor and how critical the tuning adjustment can be; this is particularly true for crystal oscillators.

fig. 4. A common-source oscillator shown as an ac model.

At very high frequencies, the Q_{u} of the capacitor must also be considered, especially when using capacitors generally designed for use at lower frequencies. While Q_{L} is used as a starting point for calculations, the final value of Q_{L} will be different than the initial assigned value. In general, the small change will not affect circuit performance.

The Q_{u} of a reactive element is determined by the intrinsic resistive element. In circuits where higherquality capacitors are used, this resistance generally can be disregarded. Inductors, however, with only a few exceptions, must always be considered as having some associated resistance. The unloaded Q is defined as:

$$
Q_{u}=\frac{X_{L}}{R_{S}}
$$

where R_{S} is the series resistance of the inductor, and X_{L} is the inductive reactance at the operating frequency $f_{o} . Q_{u}$ can be measured, but in those instances where it can't, assuming a Q_{μ} between 150 to 250 is safe, if standard inductor winding techniques are used.

In those cases where a Q_{L} of 10 or greater is chosen, it is beneficial to include Q_{u} in the calculations necessary to determine total R_{L}, since the circuit performance will be altered. When time permits, it is advisable to include Q_{u} for all designs. The effects of Q_{u} can best be emphasized by the following:

$$
\text { Insertion loss }=20 \log _{10}\left[1-\frac{Q_{L}}{Q_{\mu}}(d B)\right]
$$

For a Q_{L} of 10 and a Q_{u} of 100 , the insertion loss would equal 0.92 dB . This means that 0.92 dB of the total power is dissipated across the inductor rather than delivered to R_{L}. A side effect is that as Q_{u} gets smaller, the change in frequency from initial turn-on increases because the power dissipated across the inductor causes it to change reactance. This is especially true in those cases where a ferrite core is used for tuning. ${ }^{1}$ Many of the commercially-available inductors, particularly the smaller molded variety, are not designed for use in frequency-determining applications where stability is of concern. The Q_{μ} of many of the smaller molded inductors is as low as 50 , which means with a $Q_{L}=10$, the insertion loss of the inductor is 1.94 dB . The point to keep in mind is that wherever frequency stability is the prime consideration, Q_{u} is very important, even though its effects may have to be determined empirically.

y parameters

This design technique will use what is commonly referred to as admittance, or y parameters. The oscillator designs presented here require the use of algebra and trigonometry with the y parameters. Review material can be found in any of the standard references. 4,5

One item which should be understood concerning y parameters is their relationship to ohms and reac-
tance. Resistance is a measure of the opposition to current flow. Its counterpart in terms of admittance is conductance, which is a measure of the acceptability to current flow. They are simply related; one thousand ohms is equal to $1 / 1000$ mho (the mho is designated as the siemens).

Reactance is a measure of the opposition to changing current flow and its counterpart in terms of admittance is susceptance; these are also similarly related: 1000 ohms reactance is equal to $1 / 1000$ siemens of susceptance. Just as inductors and capacitors have different signs attached to them in terms of reactance, they also have different signs in terms of susceptance.

Inductors in terms of susceptance have negative signs placed in front of them and capacitors have plus signs in front of them. Therefore, a capacitive reactance of 1000 ohms is equal to $+1 / 1000$ siemens, and an inductive reactance of 1000 ohms is equal to $-1 / 1000$ siemens. Another simple relationship is that 1000 ohms equals 1 millisiemens or mS , (1000 ohms $=1 / 1000$ siemens $=0.001$ siemens $=1$ millisiemens). This article will use the term millisiemens or mS often so it is important to be familiar with the relationships. The relationships previously described regarding reactance and susceptance are correct and usable as relates to this article.

Referring to figs. 3 and 4, the oscillator designs will determine the component values necessary to start the initial oscillations. For oscillations to start, the ac resistance measured at the junction of $\mathrm{C} 1, \mathrm{~L} 1$, R_{L}, and the drain of Q1 must be infinite. ${ }^{5}$ But, in terms of conductance, it would be zero. Therefore, the conditions necessary to start oscillations are:

$$
y_{t}=y_{22}-\frac{y_{21} y_{12}}{y_{11}}=z e r o
$$

where
$y_{t}=$ terminal conductance (junction of C1, $\mathrm{L} 1, \mathrm{R}_{\mathrm{L}}$, and the drain of Q 1)
$y_{22}=$ output admittance of the circuit
$y_{21}=$ forward transconductance of the circuit
$y_{12}=$ reverse transconductance of the circuit
$y_{11}=$ input admittance of the circuit
These parameters also include the y parameter data of the transistors, which in most cases are available from their data sheets. The parameters might be listed as shown in table 1.

Listed below are the equations which relate common source, gate, and drain parameters to each other. These equations also relate to bipolar transistors, except the source becomes the emitter, the gate becomes the base, and the drain becomes the collector. To convert common-gate parameters to
common-source parameters:

$$
\begin{aligned}
& y_{11 s}=\left(g_{i g}+g_{f g}+g_{r g}+g_{o g}\right) \pm j\left(b_{i g}+b_{f g}+b_{r g}+b_{o g}\right) \\
& y_{21 s}=-\left[\left(g_{f g}+g_{o g}\right) \pm j\left(b_{f g}+b_{o g}\right)\right] \\
& y_{12 s}=-\left[\left(g_{r g}+g_{o g}\right) \pm j\left(b_{r g}+b_{o g}\right)\right] \\
& y_{22 s}=g_{o g} \pm b_{o g}
\end{aligned}
$$

where the non-subscript g represents conductance and the non-subscript b represents susceptance. To convert from common source to common gate, exchange s and g subscript values. That is

$$
y_{21 g}=-\left[\left(g_{f s}+g_{o s}\right) \pm j\left(b_{f s}+b_{o s}\right)\right]
$$

From this point on, unless stated otherwise, all numerical terms will be in millisiemens (mS); instead of using the term 1000 ohms or $1 / 1000$ siemens, 1 mS will be used. Further, in many cases the mS will be implied and, therefore, just the number with its sign will be used. If no sign is given, it is assumed to be positive. As an example: $y_{11}=+7.66 \times 10^{-3}$ siemens $+j 1.59 \times 10^{-3}$ siemens will be shown as $y_{11}=7.66+j 1.59$, where the first term is the conductance and the second term the susceptance.

common source design

This design example will use the common-source oscillator shown in fig. 4. Earlier calculations for the common-gate oscillator determined the R_{L} to be 2700 ohms, which will also be used in the commonsource example in addition to an f_{o} of 100 MHz . A Q_{L} of 10 has been selected since it yields practical component values. Referring to fig. 5,

$$
Q_{L}=\frac{R_{L}}{X_{L 1}} \text { or } X_{L 1}=\frac{2700}{10}
$$

therefore, $X_{L 1}$ equals 270 ohms or -3.7 mS . At 100 MHz , this is an inductance of 430 nH , or approximately 10 turns of no. 22 AWG (0.6 mm) enameled wire wound on a 6.5 mm (1/4-inch) drill bit. An actual inductor was wound and found to be 422 nH for an $X_{L 1}$ of 265 ohms. The number used for the calculations is therefore -3.77 mS . The Q_{11} of the inductor was measured to be 188, so the resistance in shunt with the inductor is equal to $0.02 \mathrm{mS},\left[\left(X_{L}\right)\left(Q_{u}\right)\right.$ $=R_{p},(265)(188)=50 \mathrm{k}$ ohms or 0.02 mS$]$. The inductive susceptance (b_{L}) and conductance (g_{L}) can be added to the transistor's y parameters in the following manner:

$$
\begin{aligned}
& y_{11}=\left[\left(g_{11 s}+g_{L}\right)\right] \pm j\left[\left(b_{11 s}+b_{L}\right)\right] \\
& y_{21}=\left[\left(g_{21 s}-g_{L}\right)\right] \pm j\left[\left(b_{21 s}-b_{L}\right)\right] \\
& y_{12}=\left[\left(g_{12 s}-g_{L}\right)\right] \pm j\left[\left(b_{12 s}-b_{L}\right)\right] \\
& y_{22}=\left[\left(g_{22 s}+g_{L}\right)\right] \pm j\left[\left(b_{22 s}+b_{L}\right)\right]
\end{aligned}
$$

The 100 MHz y parameters, from table 1, for the Siliconix U310 are:

$$
\begin{aligned}
& y_{11 s}=-0.919+j 3.34 \\
& y_{21 s}=8.5-j 1.8 \\
& y_{12 s}=-0.0455-j 1.13 \\
& y_{22 s}=0.129+j 1.18
\end{aligned}
$$

Adding the inductive susceptance ($\mathrm{b}_{\mathrm{L}}=-3.77$) and shunt conductance ($g_{L}=0.02$) yields:

$$
\begin{aligned}
& y_{11}=[(-0.919+0.02)] \pm j[(3.34)+(-3.77)] \\
& y_{21}=[(8.5)-(0.02)] \pm j[(-1.8)-(-3.77)] \\
& y_{12}=[(-0.0455)-(0.02)] \pm j[(-1.13)-(-3.77)] \\
& y_{22}=[(0.129+0.02)] \pm j[(1.18)+(-3.77)]
\end{aligned}
$$

or

$$
\begin{aligned}
& y_{11}=-0.0899-j 0.435 \\
& y_{21}=8.48+j 1.97 \\
& y_{12}=-0.0655+j 2.64 \\
& y_{22}=0.149-j 2.59
\end{aligned}
$$

Any slight discrepancies noted can be attributed to round-off errors. All of these calculations were done with an HP67 programmable calculator with automatic rounding.
table 1. y-parameter listing for the Siliconix U310 operated at 9 volts and $\mathbf{2} \mathbf{~ m A}$. The unit, in all cases, is $\mathbf{m S}$.
common gate
$y_{11}=y_{\text {ig }}$ input admittance $\quad y_{11}=y_{\text {is }}$ input admittance
$\gamma_{21}=\gamma_{\mathrm{fg}}$ forward transconductance $\mathrm{Y}_{21}=\mathrm{y}_{\mathrm{fs}}$ forward transconductance
$y_{12}=y_{r g}$ reverse transconductance $\quad y_{12}=y_{r s}$ reverse transconductance $y_{22}=y_{\mathrm{og}}$ output admittance $\quad y_{22}=y_{\mathrm{os}}$ output admittance

common gate

$\begin{aligned} & \text { freq. } \\ & (\mathrm{MHz}) \end{aligned}$	te				
		Y_{11}	Y_{21}	Y_{12}	Y_{22}
100	7.66	+j1.59	$-8.62+j 0.615$	-0.0831-j0.0512	$0.129+\mathrm{j} 1.18$
125	8.75	+ j 1.92	$-8.56+j 0.824$	-0.0914-j0.0714	$0.111+j 1.49$
150	8.98	+j2.34	$-8.47+j 0.816$	-0.0797-j 0.0861	$0.129+j 1.81$
175	9.06	$+\mathrm{j} 2.80$	$-8.55+j 0.646$	-0.0669-j 0.0972	$0.126+j 2.13$
200	9.07	+j3.24	-8.84-j0.112	-0.0602-j 0.119	$0.124+\mathrm{j} 2.42$

common source

freq. (MHz)	V_{11}
100	$-0.919+j 3.34$
125	$0.209+j 4.16$
150	$0.563+j 4.88$
175	$0.576+j 5.48$
200	$0.294+j 5.43$

$\boldsymbol{Y}_{\mathbf{2 1}}$	$\boldsymbol{Y}_{\mathbf{1 2}}$	$\boldsymbol{Y}_{\mathbf{2 2}}$
$8.50-j 1.8$	$-0.0455-j 1.13$	$0.129+j 1.18$
$8.45-j 2.31$	$-0.0197-j 1.41$	$0.111+j 1.49$
$8.34-j 2.62$	$-0.0490-j 1.72$	$0.129+j 1.81$
$8.42-j 2.77$	$-0.0589-j 2.03$	$0.126+j 2.13$
$8.71-j 2.31$	$-0.0633-j 2.3$	$0.124+j 2.42$

The next step is to add the load conductance $(0.370 \mathrm{mS})$ to g_{22}, the real part of y_{22}.

$$
\begin{aligned}
y_{22} & =(0.149+0.37)-j 2.59 \\
& =0.519-j 2.59
\end{aligned}
$$

Change the sign of the susceptance and record it as $b_{22}=2.59 \mathrm{mS}$. This is the starting value of susceptance which will be used to tune the circuit to resonance, whereupon b_{22} equals zero. The new set of y parameters from the previous operations are:

$$
\begin{aligned}
& y_{11}=-0.0899-j 0.435 \\
& y_{21}=8.48+j 1.97 \\
& y_{12}=-0.0655+j 2.64 \\
& y_{22}=0.519 \pm j 0
\end{aligned}
$$

The next step is to find the value which when added to the input of the transistor will make the circuits output conductance zero. This can be found by solving:

$$
\begin{aligned}
y_{11 t} & =\frac{y_{21} y_{12}}{g_{22}}-y_{11} \\
& =\frac{\left(g_{21} g_{12}-b_{21} b_{12}\right)+j\left(g_{21} b_{12}+g_{12} b_{21}\right)}{g}-\left(g_{11}+j b_{11}\right) \\
& =\frac{-0.00576+j 0.0222}{0.519}-(-0.899-j 0.433) \\
& =\frac{0.023<105^{\circ}}{0.519}-(-0.899-j 0.433)^{*} \\
& =0.0442 \angle 105^{\circ}-(-0.899-j 0.433) \\
& =(-11.1+j 42.8)-(-0.899-j 0.433) \\
& =-10.2+j 43.3 \mathrm{~ms}
\end{aligned}
$$

Since the solution produces a real part which is negative, the addition to the input of the transistor cannot be performed with passive components. The real part is not always negative; in many cases it can be a positive resistance, but if added to the circuit it increases the cost and adds complexity. l'll demonstrate that the real component of $y_{11 t}$ can be neglected, with little error added to the calculations.

[^7]In this design, the real part will be disregarded and only the imaginary part (43.3 mS) will be used.

The $b_{11 t}$ value of 43.3 mS is the susceptance of the input shunt capacitance, C2. At $100 \mathrm{MHz}, 43.3 \mathrm{mS}$

fig. 5. A common-source Colpitts oscillator designed using the procedure described in the text.
susceptance is equal to an $X_{C 2}$ of 23.11 ohms, which is 69 pF . Add $43.3 \mathrm{mS}\left(b_{11 t}\right)$ to b_{11} for a new total b_{11} of 42.8 mS . Subtract the load conductance, 0.370 mS , from g_{22} for a new g_{22} of 0.149 mS . And finally, solve the equation:

$$
\begin{aligned}
y_{o u t} & =y_{22}-\frac{y_{21} y_{12}}{y_{11}} \\
& =0.149-\left[\frac{\left(g_{21} g_{12}-b_{21} b_{12}\right)+j\left(g_{21} b_{12}+g_{12} b_{21}\right)}{-0.899+42.8}\right] \\
& =0.149-\left[\frac{-0.00576+j 0.0222}{-0.899+42.8}\right] \\
& =0.149-\left[\frac{0.023 \angle 104.5}{42.81 \angle 91.2}\right] \\
& =0.149-\left(5.357 \times 10^{-4} 13.3\right) \\
& =0.149-(0.521+j 0.123) \\
y_{o u t} & =-0.373-j 0.123 \text { millisiemens }
\end{aligned}
$$

To tune to resonance, change the sign of the imaginary part and add this value to the first recorded value of $b_{22}(2.59+0.123=2.71 \mathrm{mS})$. This is the total susceptance of C 1 at 100 MHz . The reactance of C1 is 369 ohms, or 4.31 pF at 100 MHz . Note that the real part of Yout is equal to -0.373 mS or -2681 ohms. The desired value was -2700 ohms, an error of less than 1 per cent. This is the error introduced by not using the real part of $y_{11 t}$.

After all the calculations were performed, the circuit in fig. 5 was constructed and tested. The value of C 2 required to start oscillations was found to be 45 pF instead of the calculated value of 69 pF . The feedback network consisting of L1 and the dc blocking
capacitor were removed, and the circuit was measured again. The lead lengths, added value of the dc blocking capacitor, and the fact that the inductor was slightly distorted from its original shape, changed the total feedback circuit to be equivalent to

fig. 6. A common-gate oscillator designed with the generalized design technique.

497 nH or -3.2 mS . This changes the calculated value of C 2 from 69 pF to 53 pF . Further, if the value of g_{m} (forward transconductance) were reduced by a factor of 10 per cent, a conceivable situation, the value of C 2 would change to 48 pF , not far from the measured 45 pF .

The previous calculations assume that all measurements are absolutely accurate. Since this is not possible in practice, C 1 and C 2 should be variable to compensate for inaccuracies in measurements, as well as changes in transistor parameters.

The values calculated for the passive components in the circuit are those values required to start oscillation. As the circuit oscillates, the net parameters of the transistor change and consequently, the values of C 1 and C 2 will change. The equations presented in this article only provide a starting point, but are a preferred alternative to the empirical approach.

common gate design

The common-gate oscillator in fig. 3 is easily designed by starting with the values of C1 and L1 obtained from the common-source oscillator problem and adding them to the common-gate parameters. The common-gate y parameters for the U310 at 9 volts and 2 mA are:

$$
\begin{aligned}
& y_{11 g}=7.66+j 1.59 \\
& y_{21 g}=-8.62+j .615 \\
& y_{12 g}=-0.0831-j 0.0512 \\
& y_{22 g}=0.129+j 1.18
\end{aligned}
$$

Add the source resistor (in this case 1000 ohms or 1 mS) to $g_{11} ; y_{11}$ then equals $8.66+\mathrm{j} 1.59$. Using the value of capacitance for C1 obtained in the first design, select the closest standard value, fixed
capacitor available. Since a $5-\mathrm{pF}$ capacitor is generally more available, this value is used for C 1 in fig. 6. Since both terminals of C1 are at some of potential, a tuning tool will generally change the total value of the feedback capacitance by some unknown amount, therefore necessitating the use of a fixed value, instead of a variable capacitor. The $5-\mathrm{pF}$ value is equal to 3.14 mS at 100 MHz , and can be added to the new y parameters in the following manner:

$$
\begin{aligned}
& y_{11}=g_{11} \pm j\left(b_{11}+b_{f}\right) \\
& y_{21}=g_{21} \pm j\left(b_{21}-b_{f}\right) \\
& y_{12}=g_{12} \pm j\left(b_{12}-b_{f}\right) \\
& y_{22}=g_{22} \pm j\left(b_{22}+b_{f}\right)
\end{aligned}
$$

which yields

$$
\begin{aligned}
& y_{11}=8.66+j 4.73 \\
& y_{21}=-8.62-j 2.53 \\
& y_{12}=-0.0831-j 3.19 \\
& y_{22}=0.129+j 4.32
\end{aligned}
$$

To the new value of y_{22}, you should add the value of $R_{L}(0.370 \mathrm{mS})$ to g_{L} and also $X_{L 1}(-3.77 \mathrm{mS})$ to $\mathrm{b}_{\mathrm{L} 1}$, yielding $y_{22}=0.499+\mathrm{j} 0.551$. The value of b_{22} should be recorded for future use. As in the common-source example, set b_{22} equal to zero and calculate $y_{11 t}$. The calculated value of $y_{11 t}(-23.4+\mathrm{j}$ 50.9) serves as a starting value for C 2 . The next step consists of adding 50.9 mS to b_{11}, subtracting the g_{L} of 0.370 mS from g_{22}, and solving for $y_{\text {out }}$, which equals $-0.338-\mathrm{j} 0.205$ millisiemens. The final value for L 1 can be determined by solving the following equation:

$$
\begin{aligned}
X_{L 1} & =(-1)\left(b_{\text {out }}\right)+(-1)\left(b_{22}\right)+\left(b_{L 1}\right) \\
& =(-1)(-0.205)+(-1)(0.551)+(-3.77) \\
& =-4.12 \mathrm{mS}
\end{aligned}
$$

which equals 243 ohms or 386 nH .
Note that $g_{\text {out }}=-0.338 \mathrm{mS}(-2.95 \mathrm{k}$ ohms), which is not the desired -2.7 k ohms. The reason for the er-

fig. 7. The same oscillator shown in fig. 6, except designed with the more accurate method.
ror is the same as before - the real part of $y_{11 t}$ was disregarded. This can easily be compensated for by decreasing the susceptance of C 2 . As an example, by reducing the susceptance of C 2 by 10 per cent, $g_{\text {out }}$ becomes - 2626 ohms which is sufficient to start oscillation. The circuit for the common-gate configuration, before adjustment of C 2 for the necessary $g_{\text {out }}$, is shown in fig. 6. In this solution, the inductor should be variable, or the inductance decreased and a variable shunt capacitor added for adjustment.

For those cases when a more accurate result is necessary, the following procedure may be used. Use those component values determined in the design for fig. 5 as a starting point and proceed with the following steps.

1. Start with the U310 common-gate parameters.
2. Add the source resistor to g_{11} (in this case, 1 mS)
3. Add the susceptance of $C 2$ to b_{11}
$y_{11}=8.66+j 44.9$
4. Add the susceptance of C 1 to b_{11} and b_{22}.
5. Subtract the susceptance of $C 1$ from b_{21} and b_{12}, which produces new y parameters of:

$$
\begin{aligned}
& y_{11}=8.66+j 47.6 \\
& y_{21}=-8.62-j 2.1 \\
& y_{12}=-0.0831-j 2.76 \\
& y_{22}=0.129+j 3.89
\end{aligned}
$$

6. Add the susceptance of $L 1$ to b_{22}
7. Add the load conductance to g_{22} $y_{22}=0.499+j 0.124$
8. Record the value of $(-1)\left(b_{22}\right)$ or -0.124 mS
9. Set b_{22} equal to zero
10. Solve the following equation for g_{f} and b_{f}

$$
\begin{aligned}
g_{f} \pm j b_{f} & =\frac{A+j B}{C+j D} \\
& =\frac{0.0094-j 0.255}{-0.451-j 42.7} \\
& =0.00365+j 0.220
\end{aligned}
$$

where

$$
\begin{aligned}
& A=\left(g_{22} g_{11}-g_{12} g_{21}+b_{21} b_{12}-b_{11} b_{22}\right) \\
& B=\left(g_{22} b_{11}+b_{22} g_{11}-g_{12} b_{21}-g_{21} b_{12}\right) \\
& C=(-1)\left(g_{12}+g_{21}+g_{11}+g_{22}\right) \\
& D=(-1)\left(b_{12}+b_{21}+b_{22}+b_{11}\right)
\end{aligned}
$$

11. Record the value of b_{f}
12. Add $b_{f}(0.220 \mathrm{mS})$ to b_{11} and b_{22}
13. Subtract b_{f} from b_{21} and b_{12} to obtain

$$
\begin{aligned}
& y_{11}=8.66+j 47.8 \\
& y_{21}=-8.62-j 2.32 \\
& y_{12}=-0.0831-j 2.98 \\
& y_{22}=0.499+j 0.220
\end{aligned}
$$

14. Solve for $y_{11 t}$, which yields $0.118+\mathrm{j} 0.260$
15. Record $b_{11 t}(0.260 \mathrm{mS})$
16. Add $b_{11 t}$ to $b_{11}, y_{11}=8.66+j 48.1$
17. Subtract the load conductance 0.370 mS from $g_{22}, y_{22}=0.129+j 0.220$
18. Solve for $y_{\text {out }}$, which equals

$-0.371+\mathrm{j} 0.00109 \mathrm{mS}$

19. Record the value $(-1)\left(b_{\text {out }}\right)=-j 0.00109 m S$
20. Final values for $C 1, C 2$, and $L 1$ are determined as follows:

C1 Starting value of C1 from fig. $5 \quad 2.71 \mathrm{mS}$
value of $b_{f} \xrightarrow{0.22} \mathrm{mS}$

C 1 final value $=2.93 \mathrm{mS}$ or 4.67 pF
C2 Starting value of C2 from fig. $5 \quad 43.3 \mathrm{mS}$
value of $b_{11 t} \underline{0.26} \mathrm{mS}$

C 2 final value $=43.6 \mathrm{mS}$ or 69.3 pF
L1 Starting value of L1 from fig. $5-3.77 \mathrm{mS}$ plus $(-1)\left(b_{22}\right)$ from step $8-0.124 \mathrm{mS}$ plus $(-1)\left(b_{\text {out }}\right)$ from step $19-0.00109 \mathrm{mS}$ $-3.9 \mathrm{mS}$

$$
\mathrm{L} 1 \text { final value }=-3.9 \mathrm{mS} \text { or } 409 \mathrm{nH}
$$

The final circuit diagram, with component values, is shown in fig. 7. Note that $g_{\text {out }}$ from step 18 is within 0.32 per cent of the desired $g_{\text {out }}$ of -0.37 mS or -2.7 k ohms. Again, the reason for the slight

fig. 8. A $100-\mathrm{MHz}$ crystal oscillator which was designed using the same methods as the Colpitts oscillators.
discrepancy is caused by disregarding the real parts of $y_{11 t}$ and g_{f}, and is of no consequence.

crystal oscillators

This oscillator design technique can be modified for use with crystal oscillators, particularly overtone crystals (fig. 8). When operated in the seriesresonant mode, the crystal has some series resistance, which must be added to the transistor's common-gate parameters, along with the 1000 -ohm source resistor. Given the common-gate y parameters:

1. Add the source resistor to g_{11}.
2. Convert the y parameters to z parameters and add the series resistance of the crystal directly to the real part of z_{11}. A typical value of crystal series resistance is 80 ohms for a seventh overtone crystal; this data is available from the crystal manufacturer.
3. Convert the z parameters back to y parameters.
4. Convert the new set of common-gate parameters to common-source parameters.
5. Design the circuit using the technique described for fig. 5.
6. Using the common-gate parameters from step 3, and the component values determined from step 5, complete the design by using those steps outlined for fig. 7.
fig. 9. A lowpass L network for matching between the high source resistance of the oscillator and a 50 ohm load.

The necessary equations to convert y parameters to 2 parameters are:

$$
\begin{aligned}
z_{11}=\frac{y_{22}}{\Delta y} & z_{21}=\frac{-y_{21}}{\Delta y} \\
z_{12}=\frac{-y_{12}}{\Delta y} & z_{22}=\frac{y_{11}}{\Delta y}
\end{aligned}
$$

where

$$
\Delta y=y_{11} y_{22}-y_{21} y_{12}
$$

To convert z parameters back to y parameters, interchange the y and z values.

It is helpful to know what effects the three circuit components have on the oscillator circuit. In general,
when the input shunt capacitor is increased in value, the frequency of the oscillation is decreased, while the negative output resistance increases. Increasing the feedback capacitance lowers the frequency and also the negative output resistance. Changing the output reactance, theoretically, only changes the frequency and does not effect the output conductance.
fig. 10. A highpass L network, in addition to impedance matching, also provides de isolation for the load.

The tuning procedure for the oscillator is quite easy (refer to figs. 3 and 4). Apply dc power to the oscillator. If it immediately oscillates, tune the output shunt element to the desired frequency. If the oscillator does not start, or ceases oscillation when tuning, decrease the capacitance of C2, which adjusts the output conductance. When it has been determined that the oscillator is tuned to frequency and oscillating, the input shunt element (C2) can be adjusted for the desired output level and the output shunt element tuned for the correct frequency.

The crystal oscillator is tuned in the same manner. The exception is when the parallel capacitance of the crystal is relatively high. In that case the procedure is to increase the capacitance of C 2 until oscillation ceases and then decrease the capacitance in small increments until the circuit oscillates again. This procedure should be followed since in some cases, the parallel capacitance of the crystal provides enough feedback to allow the circuit to oscillate at frequencies very close to f_{o}, but not as a function of the series-resonant mode of the crystal. For breadboard designs, it is easiest to insert a resistor, equal to the series resistance of the crystal, in place of the crystal; the same tuneup procedure is used except that the resistor is replaced with the crystal during the last stages of tuning.

As an added advantage, when using the U310 in the crystal oscillator circuit, the inductor sometimes shunted across the crystal to prevent spurious oscillations is not necessary. This inductor is almost always necessary when using a bipolar transistor as a Colpitts overtone oscillator.

impedance matching

Throughout this article, a load impedance of 2700 ohms was used. The actual load will generally be some other value. Quite often this load will be 50 ohms resistive. In this case, the 2700 -ohm load
resistance necessary for oscillation will have to be matched to the 50 -ohm load. The simplest solution is the L network shown in figs. 9 and 10. The value for the series reactive element can be found with the following equation:

$$
X_{\text {series }}=R_{s} \sqrt{\frac{R_{p}}{R_{s}}-1}
$$

where
$R_{s}=$ series resistance of load
$R_{p}=$ parallel resistance to be transformed
In this example

$$
X_{\text {series }}=50 \sqrt{\frac{2700}{50}-1}=364 \mathrm{ohms}
$$

The value for the shunt element can be determined from:

$$
\begin{aligned}
X_{\text {parallel }} & =\frac{R_{s} R_{p}}{\dot{X}_{\text {series }}} \\
& =\frac{(50)(2700)}{364} \\
& =371 \mathrm{ohms}
\end{aligned}
$$

Fig. 11 shows the highpass matching network (fig. 10) applied to the common-gate oscillator shown in fig. 6. The 364 -ohm reactance at 100 MHz is equivalent to 4.37 pF . Any error introduced by using the nearest standard capacitance value (5 pF) can be compensated for by L1 and C2. The shunt inductance of the matching network must be added to L1 for a new total inductance for L1. This is easily accomplished by adding the susceptance of $X_{\text {parallel }}$ and L1 [$-4.1 \mathrm{mS}+(-2.7 \mathrm{mS})=-6.8 \mathrm{mS}$ or 147 ohms inductive reactance which at 100 MHz equals 234 nH]. The circuit in fig. 11 was constructed and the test results for 100 MHz are: Value of C 2 to start oscillation $=43 \mathrm{pF}$; final values after tuning are $\mathrm{C} 1=5$ pF ; C2 = 25 pF ; and $\mathrm{L} 1=215 \mathrm{nH}$. Maximum power output $=9.2$ milliwatts. With C2 set to 12 pF , the circuit oscillated with crystals ranging from 95 MHz to

fig. 11. When the highpass L network is used for matching, the shunt inductor is combined with inductence in the oscillator. In this case, L1 is a slug-tuned 6.5 mm ($1 / 4$ inch) coil, wound with 6 turns of no. 18 AWG (1 mm) wire. The turns are spaced to occupy 12.5 mm (1/2 inch).

116 MHz . The value of L 1 was changed to accommodate the different frequencies.

concluding comments

This article is not intended as a construction project. However, those circuits shown with inductance and capacitance values have been built and tested, and performed very close to predictions. This design technique has been used for many oscillator designs and has been found to be superior to the empirical approach, particularly if a programmable scientific calculator is available.

The techniques presented here appear to be equally valid at the lower frequencies. The data necessary are $g_{m}, c_{r s s}, c_{\text {oss }}$, and $c_{i s s}$. This information is almost always obtainable from the transistor data sheet. These parameters can be substituted in the commonsource y parameters by assuming the input and output resistance of the fet is very high and can, therefore, be disregarded.

$$
\begin{aligned}
& y_{11 s}=0+j\left(\frac{1}{X_{c_{i s s}}}+\frac{1}{X_{c_{r s s}}}\right) \\
& y_{21 s}=g_{m}-j \frac{1}{X_{c_{r s s}}} \\
& y_{12 s}=0-j \frac{1}{X_{c_{r s s}}} \\
& y_{22 s}=0+j \frac{1}{X_{c_{o s s}}}+\frac{1}{X_{c_{r s s}}}
\end{aligned}
$$

Low-frequency oscillator design is available from many sources. This technique might not be as usable as others, but it does allow a close approximation for low-frequency design.

Expressing an idea is often difficult for me. I am gratified by the many personal, and professional friends who have helped expand this idea and also provided the additional enthusiasm and necessary technical expertise, especially Ed Oxner, manager of Special Projects Engineering at Siliconix, Will Alexander, WA6RDZ, Earl McCune, WA6SUH, and Bonnie (The Boss).

references

[^8]

Now you can touch-tune the world coming and going . . . without ever touching the transceiver.

With the Astro 200A touch-tune mike, first in the world of SSB HF radio.

The new Astro 200A has all of the outstanding features of the field proven Astro 200 such as electronic tuning, all solid state circuitry, digital frequency synthesizer, 200 Watts PEP input, full RF filtering, digital readout, squelch, variable speech processing, full metering, WWV receiver, VOX, LSB-USB-CW, and much more. Backed by years of experience in designing and manufacturing military and commercial communications equipment, CIR's Astro 200A opens a new world of communications with lowest frequency drift and no VFO to calibrate. Only $2.8^{\prime \prime}$ high $\times 9.5^{\prime \prime}$ wide $\times 12.3^{\prime \prime}$ deep. Ideal for mobile or fixed station. Net Price $\$ 1095.00$. Made in U.S.A
Accessories: AC Power supply \$135.00; Speaker in cabinet \$29.95; Power supply and speaker combined $\$ 165.00$; Station operating console with phone patch, 24 hr . digital clock, speaker, 10 min . timer \$295.00; Desk
microphone \$38.00; Mobile mount $\$ 12.00 ; 400$ Hz narrow band CW filter $\$ 50.00$. Update your ASTRO 200 with a Touch-Tune Microphone Kit, $\$ 50.00$.

ASTRO 200A • someday all radios will be tuned this way

GET TO THE TOP FAST!

NOW YOU CAN CHANGE, ADJUST OR JUST PLAIN WORK ON YOUR ANTENNA AND NEVER LEAVE THE GROUND!

Rohn manufactures towers that are designed and engineered to do specific jobs and that is why we have the FOLD-OVER TOWER...designed for the amateur. When you need to "get at" your antenna just turn the handle and there it is. Rohn "fold-over" towers offer unbeatable safety. These towers let you work completely on the ground for antenna and rotator installation and servicing. This eliminates the hazard of climbing the tower and trying to work at heights that could mean serious injury in a fall. So use the tower that reduces the risks of physical danger to an absolute minimum ...the Rohn "fold-over"!

Like other Rohn big communication towers, they're hot dip galvanized after fabrication to provide a maintenance free, long lived and attractive installation. Rohn towers are known and used throughout the world
for almost a quarter century ... in most every type of operation. You'll be in good company. Why not check with your distributor today?

Do not attempt to raise antenna or antenna support near power linesYou can be KILLED.

6 Unarco-Rohn

visual aids

for working on microcircuits

Devices are getting smaller and smaller consider these visual aids before you give up on a construction project with today's ICs

With the introduction of transistors and miniaturized circuits most everyone dealing with them has probably experienced difficulty seeing components and circuits because of their small size. Today, with integrated-circuit devices requiring even smaller printed-circuit-board design, the visual or seeing requirement is even greater.

the problem

When you consider the visual anomalies found in the general population such as nearsightedness, farsightedness, astigmatism, or combinations of these, and when you include problems of binocular-

[^9] RTTY Journal
ity (the ability or inability of the eyes teaming together, such as one eye receiving a larger image than the other), poor eye-muscle coordination, cataracts, and any ongoing or past history of ocular diseases, it's no wonder many of our IC projects end up with solder bridges, improper or unsoldered connections, and components mounted improperly. The fact is that many simply can't see well enough to avoid these pitfalls.
I recently completed a project that used 29 ICs, three of which were LSI devices, all mounted on four PC boards, three of which had circuit paths on both sides. Even though I have $20-20$ vision at distance and near, and have never had any pathological problem causing visual impairment, I experienced great difficulty seeing my work. I therefore came to the conslusion that if I were having these kinds of problems with what's generally considered normal vision. there must be many electronic hobbyists who are having even greater problems. With this in mind, I offer the following observations to help in understanding these visual tasks and to allow most to see with better efficiency.

lighting and magnification

First, realize that vision requires light. But it has to be useful light; that is, not too dim (below the visual threshold) or too bright (above the threshold and therefore saturating the visual system, especially the retina). Second, visual acuity (how well you see) depends on the image size impinged onto the retina. Visual acuity is directly related to object size. The conclusion is that, if you have the proper lighting

By Dr. Robert Sullivan, Optometrist, K9SRL,

FREQUENCY COUNTERS

conditions and magnification, visual acuity generally improves. However, there are limiting factors. For example, as the image size on the retina gets larger, the field of view gets smaller.

optical aids

If you're nearsighted (can't see well at a distance without glasses or contact lenses), you might do better visually, at the near distances used in electronic construction, without your glasses or contacts. Since a nearsighted eye without correction in place is in effect too strong, removing the spectacles has the same effect as looking through a magnifying lens. You'll notice that near objects (within about 20 cm (8 inches] of your eyes depending upon your prescription) look larger. However, this might not work if you have astigmatism, as your vision could be distorted.
If you're farsighted (can't see nearby objects well without glasses or contacts), you should wear your correction at all times for near electronic work. Since a farsighted eye is a weak eye without correction, wearing glasses or contact lenses, in effect, makes your eyes stronger. Also, far sightedness involves a problem with the eye's focusing mechanism and without correction, eye fatigue and headaches are more common.
If you normally wear glasses full time, and if they're the bifocal or trifocal type, you should wear them for near electronic work.

work glasses

You might consider having a special pair of glasses made especially for electronic work. I made a pair with one lens having a +16 diopter power and the other lens opaque, which forces me to use one eye only, since such a large prescription for both eyes creates a condition that makes binocularity impossible. This is a common problem with some of the available optical aids recommended for near visual tasks. These devices are usually binocular in nature (both eyes are used). To maintain this binocularity, weaker lenses are used and the resulting magnification is less.
I put the +16 lens on my right eye since I'm righteye dominant. With these glasses, approximately 4 X magnification is achieved and the field of view is about 7 cm (3 inches). The focal point is 6.25 cm (2.5 inches), so I must hold things close. I found that with these glasses and a handheld penlight II use the popular disposable type), I could examine PC boards for errors in component mounting, find solder bridges, and perform general inspection with great ease. Just one thing more: these suggestions should be implemented after you've checked with your eye doctor.
ham radio

BY POPULAR DEMAND - we are continuing to offer NWW/2 with any purchase of $\$ 99$ or more from ad or FREE Slyer, a Fairchild clock module FCS-8100A MWN (suggested retail price \$20).

Look at these Summer Specials

COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COM. PLETE HAL-600A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 600 MHz FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREOUENCY: AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1.0 SEC OR 1 SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE ACCURACY \pm $.001 \%$, UTILIZES $10 \cdot \mathrm{MHz}$ CRYS. TAL 5 PPM
COMPLETE KIT . . . \$ $\$ 19$. . . $\$ 129$

HAL-300A 7-DIGIT COUNTER WITH FREOUENCY RANGE OF ZERO TO 300 MHz . FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY; AUTOMATIC ZERO SUP. PRESSION. TIME BASE IS 1.0 SEC OR I SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE ACCURACY $\pm .001 \%$, UTILIZES 10 . MHz CRYSTAL 5 PPM.
COMPLETE KIT . . . \$124. . . \$109

HAL-50A 8-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 50 MHz OR BETTER. AUTOMATIC DECIMAL POINT, ZERO SUPPRESSION UPON DEMAND. FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY INPUT, AND ONE ON PANEL FOR USE WITH ANY IN TERNALLY MOUNTED HALTRONIX PRE-SCALER FOR WHICH PROVI. SIONS HAVE ALREADY BEEN MADE . 1.0 SEC AND I SEC TIME GATES. ACCURACY $\pm .001 \%$ UTILIZES $10 \cdot \mathrm{MHz}$ CRYSTAL 5 PPM
COMPLETE KIT . . . $\$ 124 . . . \$ 109$

ATTENTION RADIO CLUBS

For club or group projects, request FREE information about our DISCOUNTS on any of the HAL-TRONIX kits Discounts range trom $10-25 \%$, depending upon the quantity needed
We are experienced in supplying kits in volume quantities to schools, laborarories, clubs, and common-interest groups Nobody beats HAL-TRONIX quality and price. Just try us and see for yourseit.

NNEW

FROM
HAL-TRONIX
DELUXE 12-BUTTON TOUCHTONE ENCODER KIT utilizing the new ICM 7206 chip Provides both VISUAL ICM 7006 chip Provides Come with its own twotone anodized aluminum cabi net Measures only $21 / 4 \times 31 / 4^{-}$Complete with Touch Tone pad, board. crystal, chip and all necessary components so linish the kot $\quad \$ 29.95$
PICE AT
$\$ 29.95$
For those who wish to mount the encoder in a hand heid unit, the PC Doard measwres ony $9 / 16^{\prime \prime} \times 11_{4}$ This partial kit with PC board, crystal. chip and comPRICED AT
-
PRE-SCALER KITS
HAL 300 PRE $\$ 19.95$ (Pre-drilled 610 board and all components)
HAL 300 A/PRE $\$ 29.95$ (Same as above but with preamp) HAL 600 PRE $\$ 34.95$ (Pre-drilled G10 board and all components)
HAL 600 A/PRE $\$ 39.95$ (Same as above but with preamp)

PRE-BUILT COUNTERS
AVAILABLE
HAL.600A $\$ 229.00$ HAL-300A $\$ 199.00$ HAL.50A $\$ 199.00$ ALLOW 4 TO TO WEEK DELIVERY ON PRE-BUILT UNITS

july 1978 ITV 91

Drake offers 7-Line accessories For maximum performance OF Your tr-7 STaTIOn

- Remote coupler

- New 0-20 watt scale for low power enthusiasts in addition to 200-2000 watt scales
- New direct-reading VSWR scale

The Drake WH-7 is designed for user convenience and high accuracy. This instrument includes three calibrated scales for rf power to satisfy applications from QRP to high power ($0-20$. $0-200$ and $0-2000$ watts full scale). A fourth calibrated scale provides direct reading VSWR information, and is switch selected from front panel. This wattmeter makes possible quick, accurate adjustments of antenna resonance and impedance match, when placed between transmitter and matching network. The WH-7 is styled to match the 7 -line.

WH-7 SPECIFICATIONS

- Frequency Coverage - $1.8-54 \mathrm{MHz}$ • Line Impedance- 50 ohm resistive - Power Capability - 2000 watts continuous - Jacks, Removable Coupler-Two S0239 input and output connectors • Semiconductors - Two 1N295 power meter rectifiers \bullet Accuracy $- \pm(5 \%$ of reading $+1 \%$ of scale) \bullet VSWR Insertion - Insertion of wattmeter in line changes VSWR no more than $1.05: 1 \bullet$ Dimensions $-4.6^{\prime \prime} \mathrm{H} \times 6.9^{\prime} \mathrm{W} \times 7.5^{\prime \prime} \mathrm{D}(11.6 \times$ $17.5 \times 19 \mathrm{~cm}) \bullet$ Shipping Weight $-3 \mathrm{lbs} .(1.4 \mathrm{~kg}) \ldots . . \$ 89.00$

- 160-10 meters, 250 watts continuous rf output
- Unique "low-pass filter" design of MN-7 provides significant harmonic reduction to help fight TVI
- Built-in rf antenna switch allows unit to be bypassed regardless of antenna in use. No need to disconnect feedlines. Switch also permits front panel selection of various antennas.
- Built-in rf wattmeter/VSWR bridge

MN-7 SPECIFICATIONS

- Frequency Coverage - All amateur bands 160-10 meters with generous out-of-band coverage for future expansions - Power Capability - 250 watts continuous - Input Impedance - 50 ohms (resistive) - Load Impedance - 50 ohm coax with VSWR of $5: 1$ or less ($3: 1$ on 10 meters) - 75 ohm coax at lower VSWR can be used-Long wire at low impedance; high impedance may be matched with optional Drake B-1000 Balun (switch selected)-Balanced feeders with optional Drake B-1000 Balun may be accommodated (switch selected) - MN-7 may be switch by-passed regardless of feedline in use - Meter-Reads rf watts or VSWR (switch selected)-High accuracy \bullet Dimension- $4.6^{\prime} \mathrm{H} \times 13.6^{\prime} \mathrm{W} \times$ $8.5^{\prime \prime} \mathrm{D}(11.6 \times 34.6 \times 21.6 \mathrm{~cm}) \bullet$ Shipping Wt. $-10 \mathrm{lbs} .(4.55 \mathrm{~kg})$
\$165.00
(optional B-1000 Balun) 24.95

R. L. DRAKE COMPANY

540 Richard St., Miamisburg, Ohio 45342
Phone: (513) 866-2421 - Telex: 288-017

solving RFI problems in home-entertainment devices

How to dispose of RFI problems

 quickly and easily ideas from an overseas amateur that will work in your stationRadio-frequency interference (RFI) from amateur transmitters to television, broadcast, and hi-fi sets is still a problem. Most such cases of RFI can be attributed to fundamental overload of the home-entertainment device from the transmitter, especially if the transmitter is running high power (500 watts or more).

The remedies are well known for this type of RFI, but I'd like to summarize some of the cures:

1. Install a filter in the ac line to the device.
2. Install a $0.01-\mu \mathrm{F}$ capacitor across the speaker terminals.
3. Install an rf choke in the speaker leads. Such a choke can be made by winding the speaker leads onto a ferrite rod.
4. Make sure the home-entertainment device has a good rf ground.
5. Use shielded cable for the speaker leads, and ground the shield.
6. Install a good-quality $0.01-\mu \mathrm{F}$ capacitor between the device chassis and ground.
7. Ground the device's antenna coaxial-cable shield.
8. Wind 10-15 turns of the device's antenna coax cable onto a ferrite rod. This will form an effective rf choke.
9. Install a good highpass filter directly at the device's antenna terminals. Make sure the filter is shielded, and ground the shield.

In all cases of reported RFI, I've eliminated the problem by one or more of the methods mentioned above without having to make any changes inside the home-entertainment device.

There's nothing original here so far, but I offer some other hints that you may find useful in your own RFI problem:

I always keep a selection of filters available for any RFI complaint. The set of filters includes a good-quality ac filter for the power line, a highpass filter for twin lead or coax-cable, ferrite-rod filters for speakers, an rf choke for coax cable, and some wires and clip leads for grounding purposes in tests.

responding to RFI complaints

Almost all interference complaints I receive are by telephone. Here's what I do. I ask the complainant to leave the phone off the hook and tell him l'll be right over to check the problem. Then I switch on my phone patch, turn down the receiver gain control so the receiver won't trip the VOX in my transmitter, and adjust my transmitter for VOX operation through the telephone. Then I grab my assortment of filters, hop into my car, and ring the complainant's door bell within minutes after his telephone call.

Now here's where you need some diplomacy. Don't be aggressive, but explain that you're genuinely interested in resolving the RFI problem as a mutual endeavor. Tell the complainant you're there to investigate the problem and want to use his telephone to put your transmitter on the air. He may raise an eye-

Ferrite or powdered-iron toroid can also be used to form inline rf chokes with loudspeaker leads.

TVI suggestions

In cases of TVI complaints, proceed as follows:

1. Disconnect the device's antenna feedline. If TVI continues, install a filter in the device's ac line. If this doesn't help, you're probably in big trouble, because you have a case of direct pickup by the device.
2. If disconnecting the antenna feedline stops the TVI, try the following:
A. Install a highpass filter
B. Install a coaxial-cable of choke (10-15 turns on a ferrite rod).
C. Ground the antenna coax-cable shield at the TV-set chassis (through a $0.01-\mu \mathrm{F}$ capacitor if necessary) to a good rf ground.

Loudspeaker lead can be wound into an rf choke by winding the lead around a ferrite antenna rod.

brow at this remark, but pick up his phone and put your transmitter on the air. Talking into the complainant's phone will trip your VOX, which makes it possible for you to make the diagnosis of the RFI problem, if any. No help from the outside, and you can do it right away.

suggestions for hi-fi RFI cures

If you have to deal with a complete hi-fi system including tuner, amplifier, turntable, and recorderdeck, there's only one logical approach that can be used.

Disconnect all units from each other and from the ac line - except for the amplifier (just leave the ac cord and speaker leads connected). If interference still persists, disconnect the speakers and try the unit on headphones. If the interference disappears, the problem probably lies in pickup through the speaker cables (the RFI is being fed to the preamplifier stages through the audio feedback circuit).

Install the ferrite-rod filters in the speaker leads ($10-15$ turns). If necessary, connect $0.01-\mu \mathrm{F}$ capacitors across the speaker terminals to ground. In very stubborn cases you may have to go all the way and use shielded speaker cable and ground the cable shield to a good if ground.

In some cases interference can be reduced by winding external audio input leads on toroidal cores.

If disconnecting the speaker cables doesn't kill the RFI, the pickup must be coming through the ac line, so you must install a good filter between the set ac input and the house wiring. Again, a good if ground may have to be connected to the ac filter.

If the hi-fi amplifier plus the speakers (by themselves) don't show any interference, connect all other pieces of equipment, one-by-one, to determine where the RFI is appearing. If connecting the tuner brings up the RFI, try highpass (or coax rf-choke) filters on the antenna lead; then try an ac line filter. A similar approach can be used when connecting other pieces of equipment, such as tape decks.

summary

Using your phone patch to solve the RFI complaint quickly and independently; using a logical approach when checking the complainant's set; having a ready assortment of anti-RFI filters available at all times all these will go a long way toward maintaining a good relationship with your neighbors. This approach will also ensure keeping your amateur station on the air at all times.
ham radio

In the past when your YAESU or KENWOOD dealer said the CW crystal filter for your set was optional you had a choice: Buy one of his standard units - or do without.

NO LONGER!

Now FOX-TANGO not only offers filters similar in bandwidth to those supplied by your set's manufacturer, but also sharp eight-pole, 250 Hz bandwidth filters with superior shape factors at an unbeatable price - some similar units are being advertised for $\$ 100$! And even so, they are not as sharp.

BUT THAT'S NOT ALL

Yaesu's CW filters for the FT-101, FR-101 and FT-301 Series have a bandwidth of 600 Hz . Most hams feel 600 Hz is to0 wide for today's conditions but that's not the only reason they find the going rough when the band is crowded: Not only are our fitters 8 -pole, but they have a superior shape factor and 500 Hz bandwidth. Wide enough for tuning ease, yet sharp and selective enough to cut through all but the heaviest QRM. And for the Kenwood CW enthusiast FOX-TANGO now offers, in addition to the sharp eight-pole 250 Hz units tor the TS-520. R-599, and the TS-820 Series: new eight-pole 400 Hz filters with characteristics superior to those of the regular Kenwood 500 Hz units.

SOME REAL OPTIONS

But talk about FREEDOM OF CHOICE' Inexpensive, easily installed diodeswitching boards are now available for all the above sets which permit the addition of up to two crystal filters in addition to those for which the manutacturer provides space. For example, if you have no CW filter at present or are just buying your set (which never comes with the filter factory-installed) you can select either of our superior units, secure in the knowledge that you can add the other later if you wish. Or if your rig already has a standard CW filter installed, you can add our sharp unit so that either can be switch-selected often using existing front panel controls. Just imagine! Nail yout rare DX with the standard-type filter and cut out the crud and crowd with the flip of a switch. Now that's OPERATING!

HOW WE DO IT

Some hams have wondered how we can offer superior fitters at such a low price. And they are superior, not only on the basis of laboratory tests bu: according to members of the International Fox-Tango Club who have used them in their rigs for many months. The answer to the "low price" question is that these filters are made for us in Japan by a concern with almost a quarter-century of experience in the design and production of these units, among others, for use in the best-known and most respected brands of both amateur and commercial gear. In the past their filters were sold exclusively to set manufacturers. Now they are being offered at retail for the first time - and at introductory prices - through our organization only.
GET YOURS NOW AND BEAT THE INFLATIONARY SPIRAL! Our Filters are sold on a Money-back Guarantee Basis.

FOX-TANGO CORP.

Box 15944, W. Palm Beach, FL 33406

 DIODE SWITCHING BOARDS permiteasy mounting

I enclose \$ \qquad

I preter to charge my
\square VISA
\square Master Charge
Account No.
Expiration date
MC 4 digit no. (without drilling) of up to two crystal fitters of any type in addition to those for which the manulacturer provides space. These boards will accommodate any of the fiters listed below and other types planned tor the future. They incluce one stage of amplitication to compensate tor titer insertion losses, if desired Complete instructions SPECIFY Set with which board is to be used. $\mathbf{\$ 1 5}$ with purchase of any titter $\$ 20$ without filter Airmail Ppd. US \& Canada. Overseas add \$1
\qquad \square Check (Make checks payabie to FTC)
 Money Order

Name
Address
City
State
ALL TYPES Only $\$ 50$
Airmail Ppd. US \& Canada Overseas add \$3 Circle type desired.
\square Cash
Cash

me

add 4% Sales Tax.

All band operation ($160-10$ meters) with any random length of wire. 200 watt output power capability-will work with virtually any transceiver. Ideal for portable or home operation. Great for apartments and hotel rooms-simply run a wire inside, out a window, or anyplace available. Efficient toroid inductor for small size: $4-1 / 4^{\prime \prime} \times 2-3 / 8^{\prime \prime} \times 33^{\prime \prime}$, and negligible loss. Built-in neon tune-up indicator. SO-239 connector. Attractive bronze finished enclosure.

only $\$ 29.95$

THE ORIGINAL Random Wire Antenna Tuner. . . in use by amateurs for 6 years

SST T-2 ULTRA TUNER

Tunes out SWR on any coax fed antenna as well as random wires. Works great on all bands ($80-10$ meters) with any transceiver running up to 200 watts power output.
Increases usable bandwidth of any antenna. Tunes out SWR on mobile whips from inside your car.
Uses efficient toroid inductor and specially made capacitors for small size: $5-1 / 4^{\prime \prime} \times 2-1 / 4^{\prime \prime} \times 2-1 / 2^{\prime \prime}$. Rugged, yet compact. Negligible line loss. Attractive bronze finished enclosure. SO-239 coax connectors are used for transmitter input and coax fed antennas. Convenient binding posts are provided for random wire and ground connections.

SST T-3

Mobile Impedance Transformer

Matches 52 ohm coax to the lower impedance of a mobile whip or vertical. 12-position switch with taps spread between 3 and 52 ohms. Broadband from 1-30 Mhz. Will work with virtually any transceiver- 300 watt output power capability. SO-239 connectors. Toroid inductor for small size: 2-3/4" $\times 2^{\prime \prime} \times 2-1 / 4^{n}$. Attractive bronze finish.

[^10]
only $\$ 29.95$
849.95 wire and tested

SST A-1 VHF Amplifier Kit

1 watt input gives you 15 watts output across the entire 2 meter band without re-tuning. This casy-to-build kit (approx. $1 / 2 \mathrm{hr}$. assembly) includes everything you need for a complete amplifier. All top quality components. Compatible with all 1-3 watt 2 -meter transceivers. Short and open protected-not damaged by high SWR.
Kit includes:

- Etched and drilled G-10 epoxy solder plated board.
- Heat sink and mounting hardware. All componentsincluding pre-wound coils.
- Top quality TRW RF power transistor.
- Complete assembly instruction with details on a carrier operated T/R switch.
\square

Super Terminals with Hidden Features

 ULTIMATE in RTTY equipment.
DS 3000 KSR Version 3 (MORSE, BAUDOT, ASCII) . $\$ 1575.00$
DS 3000 KSR Version 2 (BAUDOT \& ASCII only) . 1195.00
Write for our latest catalog \& RTTY guide.

600 kHz offset for frequency synthesizers

The circuit shown in fig. 1 is designed for use with any frequency synthesizer which uses a programmable divider with outputs available from each flip-flop. The schematic shows its implementation in the GLB 400B synthesizer; only two ICs are needed to accomplish the function. The output of the divider at the
end of a count sequence pulses the phase comparator U1, and reloads the counters U7, U8, and U9 to the number determined by the frequency set switches. (All of this circuitry is not shown in the partial schematic of the GLB 400B.) When enabled, the offset circuit gates off this pulse until the 100 kHz counter U 8 reaches a count of 6 which corresponds to 600 kHz . At this time, a pulse is gated through to U1 and the counter load circuits. Other numbers could be de-

fig. 1. Simple circuit for generating 600 kHz offset with a frequency synthesizer that uses a programmable divider; only two ICs are required. The circuit here shows how the circuit is used with the GLB 400B synthesizer.
coded from U7, U8, and U9 by using a similar gating arrangement for any desired offset, for application in synthesizers for 220 MHz and 450 MHz .

In addition to its simplicity, one advantage of this circuit is that it will only offset the synthesizer -600 kHz , and accidental operation above 148 MHz is not possible. When operating, always select the higher frequency of a repeater pair on the frequency set switches. In the 146-147 MHz segment offset Tx to transmit on the repeaters input; in the 147-148 MHz segment select offset Rx to receive the repeater output. To operate reverse simply flip the switch the other way. With the center-off position of the switch, transmit and receive will be on the selected frequency. The offset function is disabled in this position. The LED indicator will only light while offset is actually taking place, so it will go on and off between receive and transmit, always indicating the operating condition.

Only two ICs are required for the actual offset circuit, and U7 must be changed to an 8281, which is simply a plug-in substitution. Also, remove the $1 \mathrm{k}, 1.5 \mathrm{k}$ resistors, and the 150 pF capacitor from pins 1 and 2 of U10 (R24, R25, C19). They are no longer required because the added circuitry always presents the proper TTL signal level to this gate. Be sure to put a jumper in place of C19.

Dave Sargent, K6KLO

illumination for lever action switch

Having problems reading thumbwheel or lever action switches in the dark? The new Heath HW2036 is a perfect example of a fine synthesized receiver at a price anyone can afford. One of its shortcomings is the lack of illumination on the lever action switches. Material used to make the light bar in fig. 2 came from the junk box of my model railroad. However, the brass and lamps can be obtained at any hobby shop for less than $\$ 2.00$.
approximately 2 mm ($1 / 16$ inch) or so. Bend brackets, drill holes for mounting screws and for the lamp wires in sleeving to pass through the right hand bracket; file smooth and paint.

The brackets should hold the tube high enough above the top of the switch to clear the upper most position of the lever switch. One screw is sufficient to mount, and ihe wires in sleeving are passed through the hole in the panel and connected to ground and the meter lamp wire. Use grain or wheat lamps and carefully insulate the wires at the base with five-minute

fig. 2. Adding illumination so you can see the HW2036 thumbwheel switches in the dark. Brass stock is available in most hobby shops.

Use a $3 / 16$-inch (4 mm) diameter brass tube cut to the width of the switch assembly so that the brackets, when soldered to the tube, will fit snugly against the side of the switch bezel and mount under the existing screw. Cut two slots for the lamps, large enough for the lamps to pass through after soldering and painting. Rough trim the brackets, then solder so that the slots aim down and the tube is spaced away from the panel the thickness of the protruding bezel,
epoxy. I used red lamps to cut the reflected glare from the switch.

Another modification for the HW2036 which improves the operation is to change the back panel and replace the RCA phone jack with an SO239 connector. Enlarge the hole in the prinied-circuit board to take the stub of the SO239 and replace the remote speaker RCA phone connector with a miniature phone jack.

re-forming the oxide layer in electrolytic capacitors

Electrolytic capacitors, including computer grades, which have not been used for any length of time should not be subjected to full voltage without first re-forming the internal oxide layer. If this is not done, they may have high leakage which will result in rapid failure due to internal heating.

The oxide layer may be re-formed in the following manner: Connect the capacitor to a power supply set to the dc voltage rating of the capacitor with a series resistor to limit the short circuit current to around 10 mA . For example, for a 200 -volt capacitor, the power supply would be set to 200 volts and the series resistor would be 20,000 ohms. If several capacitors are being re-formed simultaneously, they should not be directly paralleled. Instead, each capacitor should have its own current limiting resistor. This allows each capacitor to charge independently, at a rate dependent on its internal leakage. It also allows the voltage on each capacitor to be measured separately as an indication of its condition. It has been my experience when re-forming large numbers of surplus computer grade electrolytics in this manner that most of them will charge to close to full voltage in just a few minutes. A few will stabilize at a considerably lower voltage, indicating that they have a high leakage and really need the re-forming procedure.

I have not yet enountered a capacitor that would not charge to the same level as the others if left connected long enough, although this has taken as much as several days. When this finally happens, it means that the oxide layer is totally re-formed, and the leakage has dropped to a normal level.

Fred W. Snow, W2IFR
John Becker, K9MM

Featuring the Competition Grade IIF Transceiver

THE NEW YAESU FT-901

CALL OR WRITE FOR INFORMATION

ON PRICE
AND OPTIONS

OTHER YAESU MODELS ALSO AVAILABLE.....

Summer Specials:

(PREPAID SHIPMENT TO AREAS SERVED BY UPS BROWN LABEL)
Reg.
Sale
CUSHCRAF
ATB-34 TRI-BAND BEAM w / BALUN
239.95

CDE
CDE HAM IIFROTATOR T2X ROTATOR
SYI
TRI-BAND BEAM
274.95239 .95

WILSON
274.95
199.95 129.95 249.95 239.95

ABOVE SPECIALS EXPIRE JULY 31, 1978 AND ARE SUBJECT TO STOCK ON HAND
MASTER CHARGE \& VISA ACCEPTED SAME DAY SHIPMENT ON MOST ITEMS
STORE HOURS: MON. thru SAT. 9:30 a.m. to 6:00 p.m.

FACTORY AUTHORIZED DEALERS FOR:
AEA
ATLAS
B\&W
BELDEN
BENCHER
CDE
CUSHCRAFT
DENTRON
DRAKE
FLUKE
HUSTLER
HY GAIN
ICOM
KLM
LARSEN
LUNAR
MFJ
NPC
NYE
ROHN
RF POWER LABS
TEMPO
TEN TEC
WILSON
YAESU - AND MORE .

STEP UP TOTELREX

WITH A

TELREX "BALUN" FED-"INVERTED-VEE" KIT THE IDEAL HI-PERFORMANCE

INEXPENSIVE AND PRACTICAL TO INSTALL LOW-FREQUENCY MONO OR MULTIPLE BAND, 52 OHM ANTENNA SYSTEM

Telrex "Monarch" (Trapped) I.V. Kit Duo-Band / 4 KWP I.V. Kit $\$ 63.50$ Post Paid Continental U.S.

Optimum, full-size doublet performance, independent of ground conditions! "BalancedPattern", low radiation angle, high signal to noise, and signal to performance ratio! Minimal support costs, (existing tower, house, tree). A technician can resonate a Telrex "Inverted-Vee" to frequency within the hour! Minimal S/W/R is possible if installed and resonated to frequency as directed! Pattern primarily low-angle, Omnidirectional, approx. 6 DB null at ends! Costly, lossy, antenna tuners not required! Complete simplified installation and resonating to frequency instructions supplied with each kit.

For technical data and prices on complete
Telrex line, write for Catalog PL 7 (HRH)

Oak Hill Academy Amateur Radio Session

19th Year - July 29 thru August 11, 1978

 We have moved our location just 15 miles from our previous site to the Oak Hill Acadfrom our previous sison, Virginia.Our accommodations are now the finest one Our accommodations are - beautiful Dorm with hath for each four students. Lovely spawith blob and fine recreation room in the winus level of do dom
Oak Hill Acolomy in
Oak Hill Academy in the Appalachian Mountains of Virginia offers an intensive two week Radio Session in code and theory starting at your level.
Expert instructors, some of whom have been on the staff for the past 18 years are the same. Only the location has been changed Close association with fellow amateurs offers an opportunity for Saturation Learning that has been very successful since its conception. Novices upgrade to General. Techs to General \& Advanced, and Advanced become Extras. Golf privileges, canoeing on the New River \& Golf privileges, canoeing on the New Rifer many other recreation activies are a pos" and upgrade your license at a beautiful school in the cool mountains of Virkinia. Formerly Glade Valley School Radio Session
C. L. PETERS, K4DNJ, Director

Oak Hill Academy Amateur Radio Session Mouth of Wilson, Virginia 24363
Name Call
Address
City/State/Zip

DSI INSTRUMENTS INC.

 Be the one who's on FREQUENCY!!With your DSI Counter. . .save the shop cost of tweaking xtals. . . know your frequency. . from 160 meters through 450 MHz . Now DSI offers the most counter for your dollar. Latest state-of-the-art technology...DSI advanced LSI design far exceeds outdated TTL. Go with the leader . . .buy a DSI FREQUENCY counter and SAVE TIME \& MONEY!!

MODEL 3500 \$149.95
Includes TCXO ± 1 PPM

- MADE IN USA - Factory assembled-2 Hr. Burn-in Test \& Calibration
- Built in 600 MHz Prescaler with RF Preamp-Not an addon
- 7 Large Bright - $1 / 2$ inch LED Readouts
- Resolution- 10 Hz Non-Prescaled 100 Hz Prescaled, 1 sec Gate
- ACCURACY ± 1 PPM \pm one count ± 1 PPM per six months from $65^{\circ} \mathrm{F}$ to $85^{\circ} \mathrm{F}$
- SENSITIVITY-50 MvRms 150 to 250 MHz 100 Mr @ 450 MHz
- Gate Time Light-Automatic Decimal Point Placement
- Automatic Leading Zero Blanking When No Input Signal is Present
- No RF Connection Required with Supplied Antenna
- S0239 Connectors Supplied for Direct Probe Input
- AC or DC Operation- 115 VAC $50 / 60 \mathrm{~Hz} 8.5 \mathrm{~V}$ to 13.5 VDC 300 ma
- Comprehensive Owners Manual with Complete Schematics
- Size $27 / 8^{\prime \prime} H \times 8^{\prime \prime} W \times 5^{\prime \prime}$ Deep

MODEL 3600A $\$ 199.95$
Includes oven timebase $\pm .5$ PPM

- MADE IN USA-Factory Assembied-8 Hr, Burn-in Test \& Calibration
- Built in 600 MHz Prescaler \& RF Preamp-Not and addon
- 8 Large Bright - $1 / 2$ inch LED Readouts
- Two Selectable Gate Times-. 1 sec. \& . 1 sec. 100 Hz to 600 MHz
- Accuracy $\pm .5 \mathrm{PPM} \pm$ one count ± 1 PPM per six months from $50^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$ - Sensitivity-10MvRms 150 to 250 MHz 50 Mv (4) 450 MHz
- Gate-time 8 Oven Light-Automatic Decimal Point Placement
- Automatic Leading Zero Blanking-When No Input Signal is present
- No Direct RF Connection Required-With Supplied Antenna
- S 0239 Hiz input 50 Hz to $75 \mathrm{MHz}-\mathrm{S} 0239$ Low Z 10 MHz to 600 MHz
- AC or DC Operation 115 VAC $50 / 60 \mathrm{~Hz}, 8.5 \mathrm{~V}$ to 13.5 VDC 9400 ma
- 50 Hz to 600 MHz Sine or Square Wave Input
- FCC Certifiable-Designed for the Professional Service Technician
- Resolution 1 Hz Non-Prescaled 10 Hz Prescaled (4) 1 sec. Gate

PERFORMANCE YOU CAN COUNT ON

1. PPM OVER TEMPERATURE RANGE With a spec. of $\pm 1 \mathrm{PPM}$ over $50^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$, your worst error over temperature would be $\pm 145 \mathrm{~Hz}$, when measuring 145 MHz . This is the most important specification for any frequency counter because temperature variation of only a few degrees could have a drastic effect on the accuracy of your counter.
2. PPM LONG TERM With a spec. of ± 1 PPM per six months, your additional error would only be 145 Hz when measuring 145 MHz , six months after calibration.
3. LAST DIGIT ERROR All counters have an error in the last digit, if the last digit should read a 5 it could be a 4, 5 or 6 . When you have 10 Hz resolution (last digit represents tens of Hz) your additional error will be $\pm 10 \mathrm{~Hz}$.
4. TOTAL ERROR The overall error of a counter is the sum of the error due to temperature variation, last digit error and long term error. A simple ± 1 PPM spec. with no mention of temperature or ageing could conceal a much larger overall inaccuracy. Example: $\pm 1 \mathrm{PPM}$ at $75^{\circ} \mathrm{F}$ is $\pm 145 \mathrm{~Hz}$ at 145 MHz , but the same counter might be in error 1 KHz or more at only $85^{\circ} \mathrm{F}$.

VISIT US AT YOUR NEXT HAMVENTION
Dallas, TX, June 17-18 • Greensboro, NC, July 29-30
See Your Local Dealer
Call Toll Free (800) 854-2049 DSI Instruments Inc.
Name
Address
City State \qquad Zip Code
\square Please send more information on your full line of instruments

$$
\square \text { Check Enclosed } \square \text { C.O.D. }
$$

Please charge my: \square Bank Americard \square Visa \square Master Charge $\square A E$
Card \# Exp. Date

- NO EXTRA COSTS •

FREE shipping anywhere in U.S.A.
:Strongest warranty in the counter field.
ONE YEAR Parts and Labor
Satisfaction Guaranteed.
Dennis Romack WA60Y1
VP Marketing, DSI

Signature

For literature on any of the new products, use our Check-Off service on page 150.

MFJ antenna tuners

MFJ Enterprises has introduced a series of three new antenna tuners, using efficient, air wound coils, producing less loss than a tapped toroid.

The versatile, top-of-the-line MFJ941 Versa Tuner II features built-in swr and dual range wattmeter (300 and 30 watts full scale), antenna switch for selecting two coax-fed antennas, random wire or balanced line, and tuner bypass, and a 1:4 balun for balanced lines. It handles up to 300 watts of if power and matches dipoles, inverted Vees, random wire, verticals, mobile whips, beams, balanced lines, and coax lines from 1.8 through 30 MHz .

This beautiful little tuner is housed in a deluxe, eggshell white Ten Tec enclosure with walnut grain sides and is a compact $20 \times 5 \times 15 \mathrm{~cm}(8 \times$ 2×6 inches). SO-239 coax connectors are provided for the transmitter input and all coax fed antennas, while quality, five-way binding posts are used for balanced line, random wire, and ground connections.

The MFJ-941 Versa Tuner II sells for $\$ 79.95$ and comes complete with mobile mounting brackets.

The MFJ-901 Versa Tuner also uses an efficient airwound coil, handles up to 200 watts, and has a builtin 1:4 balun for balanced lines. It matches all types of transmission lines (coax, balanced lines, random wire) are virtually all types of antennas from 1.8 through 30 MHz . It is an ultra compact $12.7 \times 5 \times 15 \mathrm{~cm}(5 \times 2$ $\times 6$ inches) and uses SO-239 coax connectors and quality, five-way binding posts. The MFJ-901 Versa Tuner sells for $\$ 59.95$.

The MFJ-900 Econo Tuner is the same as the MFJ-901 Versa Tuner except that it does not have the built-in 1:4 balun for balanced lines. Price is $\$ 49.95$.

The MFJ-941 Versa Tuner II, MFJ901 Versa Tuner, and the MFJ-900 Econo Tuner are all available from MFJ Enterprises, and each has a 30day money back trial period. MFJ also provides a one year, unconditional warranty.

To order, call toll free 800-647-8660 or write to MFJ Enterprises, Box 494 , Mississippi State, Mississippi 39762.

mobile antenna matcher

Barker \& Williamson offers their new model AT-200 antenna matcher for matching two-meter amateur mobile transceivers to automobile a- m / fm broadcast receiver antennas. The model AT-200 is intended to provide the theft-foiling benefits of disguised and "hideaway" antennas at lower cost, and to eliminate the nuisance of constantly putting up and taking down a second antenna.

The new unit consists of a tunable matching network, an output indicator, and a selector switch, in a compact case. It is furnished with two
coaxial cables for connections to the entertainment radio and the twometer rig. The connecting cables have a Motorola-type connector for the entertainment radio and a PL-259 connector for the two-meter rig. The front panel contains a tuning knob, a two-position ($\mathrm{a}-\mathrm{m} / \mathrm{fm}$ or two-meter) selector switch, and an output indicator light. The unit is supplied with a mounting bracket and installation instructions and will handle 100 watts from the transceiver.

The model AT-200 antenna matcher is available through Barker \& Williamson distributors and dealers at an introductory price of $\$ 22.50$. For additional information, call or write Barker \& Williamson, Inc., 10 Canal Street, Bristol, Pennsylvania 19007.

power/swr meter

A new power/swr meter, with an swr accuracy 100 times better than typical meters, is now available from Communications Power. The CPI Model WM-7000 uses a 30 dB directional coupler which provides

accurate swr readings to a ratio of 1.1:1. Most other swr bridges use 10 dB directional couplers, accurately reading to only $2.0: 1$, and even some of the more expensive meters only use 20 dB direction couplers.

The CPI WM-7000 reads peak or average power for accurate ssb power measurements, facilitating adjustment of microphone and speech compressor controls. The big 9 cm (3-1/2-inch) meter allows easy reading on three scales: 20, 200, and

1000 watts. The unit covers the 1.8 $\mathrm{MHz}-30 \mathrm{MHz}$ frequency range (160 through 10 meters).

Further information on the CPI WM-7000, and the company's complete line of high technology Ameri-can-made communications gear, is available from Robert Artigo, Communications Power, Inc., 2407 Charleston Road, Mountain View, California 94043.

lightweight headphones from Telex

To overcome extraneous noise, and at the same time provide extra comfort and performance, Telex Communications, one of the world's leading manufacturers of professional communications equipment, offers the radio amateur three lightweight headphone models. All three models have magnetic transducers with rising frequency response, making them particularly well suited for communications-quality audio use.

Headphones concentrate the signal at the ear, overcoming ambient noise and room acoustics. Also, they allow the operator to work without disturbing others, which is not possible with a conventional speaker. Additionally, the operator is able to more easily hear and understand weak signals than when using a speaker.

The HTC-2 is an over-the-head unit. This is Telex's lightest twin receiver unit, widely favored by pilots,

Standard of Comparison IN VHF FM REPEATERS!

2M \& NOW 220 MHz!

Now Available with Autopatch!

Now Spec Comm has taken the hassle out of putting an autopatch repeater on the air! The SCR1000/SCAP is a fully self-contained 30 watt repeater with built-in autopatch and land line control. You simply plug in the phone line, hook up the duplexer, and you're on the air! The usual months of problems are eliminated! The SCR1000/SCAP has been meticulously engineered to provide the smoothest performing patch together with a positive land line control of the repeater. Just look at all these features:

Features:

- Normal patch, or secure "reverse" patch
- 3 digit anti-falsing access - single digit disconnect
- 3 digit on-off control of repeater transmitter
- Wide range audio AGC on input and output
- 4 sec. tıme limit on access
- Built-in adjustable time-out function - patch shuts down in $30-90$ sec. if no carrier is received
- User can mute phone line audio simply by keying his mic button prevents embarrassing language from being repeated
- Patch access and repeater control - either over the air or over the land line

The SCR1000/SCAP is a complete Autopatch Repeater - fully assembled, set-up and checked-out in our lab. As with all Spec Comm products, all workmanship and components are of the very highest quality. The price? A very reasonable $\$ 1585.00$ - complete! $\$ 2080.00$ w/WP641 Duplexer.) (For Rptr., w/o FL-6 Rcvr. Preselector, deduct $\$ 85.00$.) Get your order in A.S.A.P.

- The SCR 1000 - the finest repeater available on the amateur market . . . often compared to "commercial" units selling for $3-4$ times the price! This is a 30 Wt . unit, with a very sensitive \& selective receiver. Included is a built-in AC Supply, CW IDer, full metering and lighted status indicators/control push buttons, crystals, local mic, etc. Also, jacks for emergency power, remote control, autopatch, etc.
- Custom options available: Duplexers, Cable, 'PL', HI/LO Power, Touch Tone Control, Racks, etc. Inquire.
- The Spec Comm Repeater System . . . a sound investment . . . available only by direct factory order. SCR1000 w/FL-6 Rcvr. Preselector $\$ 1035.00$. ($\$ 950.00$ w/o FL-6.) Commercial price somewhat higher.
- A Full Line of Repeater Boards \& Assemblies Are Also Available: Inquire.

Call or write today and get the details! Send for Data Sheets!
 - order direct or write for brochure.

ANTENNA MART

THE ALL NEW DRAKE TR. 7 TRANSCEIVER

is the talk of the town

> It took Dayton by storm and is now sweeping the nation...

Here's why . . . Just look at these features:

- Covers $10-160$ meters. ${ }^{*}$ Frequency Counter to 150 MHz with digital option.
- Broadband, solid-state design. Designed \& manufactured in U.S.A.
- Programmable auxiliary coverage, 250-watt input with full VSWR protection.

E Up-conversion receiver for superior dynamic range. True passband tuning.
E Synthesized PTO. CW SSB RTTY AM capability.

- Independent receive selectivity. Buill-in VSWR/watt/S-meter.

MATCHING ACCESSORIES:

Digital read-out board
-120/240-volt wide-range power supply

AM filter
RTTY filter
2 CW tilters, $300 \mathrm{~Hz}, 500 \mathrm{~Hz}$
Fan (for RTTY)
Noise blanker

Mobile mount
Antenna tuner/wattmeter Wattmeter/VSWR bridge Aux-7 Expanded receive Capability
*includes capability for MARS, Embassy, and Government trequencies, and possible future Amateur-Band expansion. Receiver coverage continuous from $1.5-30 \mathrm{MHz}$, and $0-1.5 \mathrm{MHz}$ with Aux-7.

Come on in and see for yourself; better still... ORDER YOURS TODAY - FROM KLAUS RADIO

Send SASE NOW for detailed info on these systems as well as on many other fine lines. Or, better still, visit our store Monday thru Friday from 8:00 a.m. thru 5:00 p.m. The Amateurs at Klaus Radio are here to assist you in the selection of the optimum unit to fullfill your needs.

8400 N. Pioneer Parkway, Peoria, IL 61614 Jim Plack W9NWE — Phone 309-691-4840

broadcasters, and hams. The dual magnetic receivers rest on the operator's temples with the sound fed to the ears through adjustable, ball-and-socket mounted tubular arms. This system permits either or both sound arms to be turned away for conversation without removing the entire headphone.

Two of the Telex units are under-the-chin style: the Model HMC-2 featherweight offers a magnetic driv-er-element positioned between the adjustable anodized-aluminum tone arms for optimum sound reproduction. The plastic eartips are removable. The Model HFC-91 provides a millisecond delay between ears by means of a magnetic element that channels the signal through the acoustic tubes, resulting in greater depth and clarity of the signal. The comfortable foam ear cushions are easily removed for cleaning and replacement. For single ear use, the driver element snaps onto the Nylon earloop.
For more information and a catalog of the Telex line of equipment, contact Otto Janssen at Telex Communications, 9600 Aldrich Avenue South, Minneapolis, Minnesota 55420.

two-meter transverter

Hamtronics has announced the VX2, a new 2 -meter ssb transverter which you can use for Oscar mode J operation. Of course, it may be used for Mode A and simplex activity as well. The new model VX2 transverter is constructed on a pc board, as shown in the photo. The kit is easy to build and align, with convenient test points at each stage.

The kit intended for use with 10 meter ssb exciters, but some have been used with recycled 11-meter ssb units for inexpensive Oscar operation. Various frequency schemes are available to accommodate different types of exciters. The transverter requires only 5 mW of drive to

Loop Antenna

provide 2W PEP output. Many of the newer exciters have a low power output connection, and older ones can either be modified or used with an attenuator to provide the required drive. Perhaps the best feature of this new transverter kit is the economical price - only $\$ 59.59$.

Two linear power amplifiers are available for higher power output: A model LPA2-15 provides 15 watt PEP; and model LPA2-70 provides 70 watt PEP output. A cycolac case is also available for the transverter and PA as an option.

For more information write for a free catalog on these and other vhf and uhf kits, including preamps and converters for Oscar frequencies. Hamtronics, Inc., 182-F Belmont Road, Rochester, New York 14612.

high-power VHF mobile antennas

A line of mobile antennas with high power ratings, covering the six and two-meter frequency ranges, has been introduced by Antenna Incorporated. The six-meter antennas feature 200 -watt loading coils; the two-meter antennas are available with either 150 or 200 -watt loading coils. They are available with $3 / 4$-inch toggle mounts, cowl mounts, and no-hole trunk-lip mounts. Also available are 100 -watt models with either the same mounts, or with $3 / 8$-inch snap-in, spring-clip gutter, and magnet mounts. Loading coils are tuned at the factory to achieve a standing wave ratio of $1.5: 1$ or less, and each antenna includes a cutting chart so the whips can be field trimmed to exact frequencies.

Each antenna features a plated stainless steel whip for low resistivity to combat skin effect, stainless steel impact spring, shock-resistant and weatherproofed PVC-wrapped loading coil, and 17 feet of coaxial cable with a soldered PL-259-type connector.

Here is an exciting new device to improve your reception on 160, 80, the broadcast band, and on VLF.
It is well known that loops pick up far less noise than most other antennas. And they can null out interference. Now Palomar Engineers brings you these features and more in a compact, carefully engineered, attractive desktop package.
Unlike ordinary direction-finder loops, it tilts to match the incoming wave front. The result: Deep nulls up to 70 db . You have to listen to believe it!
Does the Loran on 160 give you a headache? The loop practically eliminates it. Broadcast station 2nd harmonic ruining your DX? Turn and tilt the loop and it's gone. Does your friend in the next block with his kilowatt block those weak ones? Use the loop and hear him fade out.
Loop nulls are very sharp on local and ground wave signals but usually are broad or nonexistent on distant skywave signals. This allows local interference to be eliminated while DX stations can still be heard from all directions.
The loops are Litz-wire wound on RF ferrite rods. They plug into the Loop Amplifier which boosts the loop signal 20 db and isolates and preserves the high Q of the loop. The tuning control peaks the loop and gives extra preselection to your receiver.
Plug-in loops are available for these bands:
$150-550 \mathrm{KHz}$ (VLF)
$540-1600 \mathrm{KHz}$ (Broadcast)
$1600-5000 \mathrm{KHz}$ ($160 \& 80$ meters)

Send for free descriptive brochure.

Order direct. Loop Amplifier $\mathbf{\$ 6 7 . 5 0}$; Plug-in Loop Antennas $\mathbf{\$ 4 7 . 5 0}$ each [specify frequency band]. Add $\$ 2$ packing/shipping. Calif. residents add sales tax.

Palomar Engineers

Box 455, Escondido, CA. 92025 • Phone: [714] 747-3343

G.R. HITEHOUSE \& CO.
 10 Newbury Drive, Amherst, N.H. 03031

TRANSMATCH PARTS

Send for FREE Catalog

LOOK AT THESE PRICES, LOWEST YET:
154-10 Single section 350 pf . transmitting capacitor, 154-507 Dual-section 192 pf . section transmitting capacitor, 229-203 Roller Inductor $\mathbf{2 8} \mu \mathrm{h}$ by Multronics, 3902-1 Turns Counter by Barker \& Williamson.

SEPARATELY PRICED AT \$163.80 NOW \$129.95 WE ALSO STOCK THE OTHER TRANSMATCH PARTS.

POPULAR TOROID ASSORTMENT

We Stock a Complete Line of Powdered Iron and Ferrite Products.

CONVENIENCE AND LOWER COST $\$ 15.50$ Value for $\$ 9.95$
INCLUDES: 2 pcs. each, T25-2, T25-6, T37-2, T37-6, T37-10, T37-12, T50-10, T50-12, T68-10, T80-2, T80-6, T94-2. 3 pcs. each, T50-2, T50-3, T50-6, T68-2, T68-3, T68-6 AND CONVENIENT STORAGE BOX AND SPEC SHEETS

TRANSMATCH BALUN SPECIAL 3 T200-2 cores plus 20^{\prime} "14 Tefion Covered Wire SAVE $\$ 3.45$ TBS Kit.

FERRITE BEAD ASSORTMENT
Includes convenient plastic storage box and one dozen each of FB43-101, FB43-801, FB64-101, FB64-801, FB73-101 and FB73-801 plus new spec sheets. Value $\mathbf{\$ 7 . 5 0}$ for $\mathbf{\$ 6 . 9 5}$ Add $\mathbf{\$ 2 . 0 0}$ to each order for shipping and handiling. Prices subject to change.

"THE PROFFSSIONALS"
 1 us to
 1 sec.

The New Model CTR-2A Serles Counters are designed and bulit to the highest standards to fulfill the needs of commercial communications, engineering labs and serious experimentors. With an accuracy of $+.00005 \%$ (oven option) the CTR-2A can handle the most critical measurements and is about half the cost of other commercial counters.

If you need a reliable counter at an affordable price, the CTR -2A is the answer.

- Built-in Pre-Amp $10 \mathrm{mv} @ 150 \mathrm{MHz}$
- 8 Digit . $3^{\prime \prime}$ LED Display
- High Stability TCXO Time Base
- Built-in VHF-UHF Prescaler
- Automatic Dp Placement
- TCXO Std. ± 2 ppm

500 MHz Kit CTR-2A-500K
500 MHz Assembled CTR-2A-500A
1 GHz Kit CTR-2A-1000K
1 GHz Assembled CTR-2A-1000A
OPTIONS .
02) Oven Crystal
03) $43^{\prime \prime}$ LED
04) $12 \mathrm{~V}-\mathrm{DC}$

DFDJT

$\$ 49.95$
10.00
10.00

- Period Measurement (Optional)
- Input Diode Protected
- 12 V-DC Operation (Optional)
- Oven Controlled Crystal (Optional) $\pm .5 \mathrm{ppm}$
- Selectible Gate Times - 1 \& 1 sec.

DAVIS ELECTRONICS 636 Sheridan Dr., Tona., N.Y. 14150 716/874.5848

The 200 watt two-meter antennas also feature Antenna Incorporated's new high-power coaxial cable. While the 150 watt high-band and 200 watt low-band antennas include RG/58-U cable, this cable cannot safely handle 200 watts of power on two meters. Antenna Incorporated's high-power cable has performance characteristics similar to RG-8/U, but in a smaller size, thus eliminating the problems of using the larger cable in mobile applications.
"These antennas also are part of Antenna Incorporated's professional land mobile line and have been designed to meet the needs of high power communications users," sales manager Randall Friedberg said. "They offer the amateur the best in antenna quality and dependability."
For further information on the company's complete line of communications antennas and accessories, contact Randall J. Friedberg, Antenna Incorporated, 23850 Commerce Park Road, Cleveland, Ohio 44122. Phone (216) 464-7075.

nye viking master key

The William M. Nye Company announces a new addition to their NYE VIKING line of products with the introduction of the MASTER KEY. Called the first major design change in telegraph keys in over 50 years, it is designed for the expert, yet is perfect for the beginner.
A prime feature of the Master Key is a contact assembly that is electrically isolated to keep the keying circuit separated from the base, the key arm assembly, and all exterior metallic parts. Thus, the shock hazard is greatly reduced. With its heavy
die-cast body and non-skid feet, the key does not need to be secured to the operating desk, nor does it require a sub-base. As with all NYE VIKING keys, the contacts are goldplated silver for sharp, sure sending. The base of the Master Key has a black wrinkle finish with nickel plated exterior hardware. The adjustable action key arm is fitted with a Navystyle knob. The Master Key comes complete with 90 cm (3 feet) of twoconductor cord with attached plug. The list price is $\$ 19.50$

This new product joins the famous-for-quality NYE VIKING line, which includes Speed-X and Super-Squeeze Keys, lambic Keyers, Low-Pass Filters, Antenna Impedance-Matching Networks, and Phone Patches. All are manufactured by Wm. M. Nye Company, Inc., 1614-130th Avenue NE, Bellevue, Washington 98005, and available at dealers nationwide. Write for more information.

new OSCAR book

What's OSCAR? It's a series of communications satellites designed and built by amateur radio operators. The best thing about them is their accessibility - anyone with an inexpensive receiver and simple antenna can hear the tiny satellites as they pass overhead, and persons holding amateur radio licenses can transmit voice and Morse-code signals up to them as well.

OSCAR is an acronym for Orbiting Satellite Carrying Amateur Radio. A new book published by The American Radio Relay League provides everything the interested electronics and space buff needs to know to track, listen to, and transmit through the spacecraft. This new book, Getting to Know OSCAR - From the Ground $U p$ is a complete guide to the amateur satellites. Its 14 sections include an introduction to the exciting world of space communications, the equipment needed, a description of the brand-new OSCAR (and future ones now under construction), and a dis-

...every tower in the world should be made this good.

Once in a while something really big comes along like Tri-Ex's all new W-80. So big we decided to call it the "Big W".

It's the big one of Tri-Ex's "W" Series towers.

Early on was the W-51. A superb performer and very popular still.

Last year came the W-67. Higher, bigger, stronger.

Now the W-80, Tri-Ex's "Big W" tower.
Excellent Performance
Provides good DX capability at low costs. And if you're watching the sunspot cycle-it's now on an upswing for better than average transmission and reception.
"Big W" is a free-standing, crank-up tower that goes a full 80 -feet up. You can lower it with relative ease under windy conditions using "Big W's" comfortably positive pull-down cable to protect your antenna load. Inherently Strong
As with all "W" Series towers, the W-80 is made of high strength steel tubing legs with solid rod "W" bracing. Stable? You bet!

Hot dipped galvanized after fabrication. Long lasting. Five sections. Included is a free rigid base mount. And the top plate is predrilled for a TB-2 thrust bearing.

Is Tri-Ex's "Big W" your kind of tower? Better believe it! Write today or see your nearest dealer. Ask about the W-80. It's real.
 TOWER CORPORATION
7182 Rasmussen Avenue, Visalia, California 93277

Deñron BREAKKS S600 PRICE BARRIIER

with the all-new American-made DTR-1 hf transceiver

VOX and PTT. . . Standard

No Final Shutdown works into any load!

Other Features

- 10 - 160 M full coverage
- 2.3 kHz 8 -pole SSB filter
- All Solid State
- $9 \mathrm{MHz} \mathrm{i-f}$
- Plug-in boards - RIT $\pm 5 \mathrm{kHz}$
- Semi-break-in CW with sidetone
$\$ 599^{50}$
ORDER NOW for August Delivery

ELECTRONIC DISTRIBUTORS, INC.

MFJ INTRODUCES A NEW 24 HOUR DIGITAL CLOCK with HUGE $1-5 / 8$ inch digits that you can keep set to GMT. Alarm and snooze functions let you use it as an ID Timer. Assembled, too!

MFJ Enterprises brings you a new 24 hour digital alarm clock with HUGE $1.5 / 8$ inch orange 7 segment digits that you can see clear across the room.

This one is strictly for your ham shack, one that you can leave set to GMT. No more mental calculations to get GMT.

Use the alarm to remind you of a SKED or with the snooze function as an ID timer to buzz you in 8 minute intervals.

A constantly changing kaleidoscopic pattern indicates continuous operation.

Beige. $2.1 / 4 \times 4.1 / 8 \times 8.3 / 4$ inches. UL listed. Requires $120 \mathrm{VAC}, 60 \mathrm{~Hz}$.

Order from MFJ and try it - no obligation. If not delighted, return it within 30 days for a re
fund (less shipping). One year limited warranty by MFJ Enterprises.

To order, simply call us toll tree $800 \cdot 647.8660$ and charge it on your VISA or Master Charge or mail us a check or money order for $\$ 29.95$ plus $\$ 2.00$ for shipping and handling.

Don't wait any longer to enjoy the convenience of a "Hams Only" clock. Order today.

MFJ ENTERPRISES

P. O. Box 494

Mississippi State, MS 39762
Call Toll Free 800-647-8660
For order status and repair status and in
Mississippi, call 601-323-5869.
cussion of their many practical uses, such as relaying of medical data over long distances. Each copy also contains an attractive four-color tracking device that makes finding the satellites a simple task.

Every amateur radio operator, short-wave listener, electronics enthusiast, and technician now has access to all he will need to know to enter the space age via OSCAR. Getting to Know OSCAR - From the Ground U_{p} is available for $\$ 3.00$ plus 35 postage from Ham Radio's Communications Bookstore, Greenville, New Hampshire 03048. Order AR-OSC.

antenna center insulator from Hy-Gain

The engineering group at HyGain Electronics has introduced a new center insulator unit for multiband doublet antennas such as the Hy-Gain Model 380 (2BDQ). The new insulator, Model 157, has a built-in SO-239 for easy hook-up to a PL-259 on attaching coaxial cable. The insulator is molded from high-impact ABS plastic and all internal connections are fully weatherproofed and insulated with silicone for complete reliability under all environmental conditions.

All hardware is iridited to resist corrosion. Hardware is provided on each end for positive antenna attachment and an eyescrew is attached to the top of the insulator for stringing support wires for the antenna. The Model 157 will handle 1 kW average power and 2 kW PEP.

For further information on the new Hy-Gain doublet antenna center insulator or other Hy-Gain amateur products write: Hy-Gain Electronics, 8601 Northeast Highway Six, Lincoln, Nebraska 68505.

Album contains three $12^{\prime \prime}$ LP's

THE EASY WAY!
Based on modern psychological techniques - This course will take you beyond 13 w.p.m. in

HALF THE TIME!

- No Books To Read
- No Visual Gimmicks To Distract You - Just Listen And Learn $21 / 2 \mathrm{hr}$. instruction

EPSILON [各] RECORDS
P.O. Box 626, San Jacinto, CA 92383

CURTIS SYSTEM 4000 Automatic CW-RTTY

CURTIS KEYER

CHIP now \$14.95

8043*; IC only (Oty pricing available) \$ 14.95

 8043-3; IC, PCB, Manual (New Item) . \$ 24.95 8043-4; Semi-kit (New item) \qquad $\$ 54.95$Add for postage and handling ... $\$ 1.50$ *Apr 75 HR, Feb 75 QSi, Radio Hdbk 75, ARRL Hdbk $77-78$ EK-430 CMOS Keyer (Feh 76 QST) ... $\$ 124.95$ IK-440A Instructokeyer (Mar 76 QST) . \$224.95 SYSTEM 4000 Ham Computer (S-100 buss compatible)
NEWI See Jan 78 Ad in QST or write tor into
Curtis Electro Devices, Inc. Fincrinm zexty (40y 4090 (454-3136 Box 4090, Mounatain View, CA94040

You have your own calculator: Why not a DMM?

Finally, a digital multimeter that's yours, just like your pocket calculator, and more useful. Only $\$ 169$.*
You pack only 13 ozs. in your pocket or service kit, but size is deceptive. The 8020A has more useful features than any other multimeter available-at any price! Features like 26 ranges and seven functions, including conductance. 2000 -count resolution. Hi/lo power ohms.
And it's rugged. The high-impact case protects a minimum number of component parts (47 in all), and they're all readily available from any of the worldwide Fluke service centers. Your 8020 A is factory calibrated by NBS traceable equipment. And we guaran-
tee it'll live up to published specs for a full year.

The 8020A is a true field instrument, designed with a highly readable LCD display, and inexpensive 9 V transistor battery power for continuous use up to 200 hours. Reliability, quality and value: that's Fluke tradition.

To get your hands on one, call (800) 426-0361, toll free. Give us your chargecard number and we'll ship an 8020A the same day. Or, we'll tell you the location of the closest Fluke office or distributor (where you can save by buying a ten-pack of 8020 As for only $\$ 1521^{*}$).
*U.S. price only.

The Frequency-Agile FL-1 is totally unique in that it will automatically scan the $280-3.000 \mathrm{~Hz}$ audio spectrum, and when sensing interfering heterodynes. CW or RTTY signals, rejects them up to 40 DB!

NOTCH-MODE OPERATION

During your SSB/SSTV operations, the Frequency-Agile FL-1 AUTOMATICALLY scans, locks, and tracks interference within the $280-3000 \mathrm{~Hz}$. spectrum. and in a second or two reduces QRM up to 40 db ! For CW/RTTY usage, fully INDEPENDENT control of bandwidth
and center frequency provide rejection of interfering signals up to, or greater than 40 db .

PEAK-MODE OPERATION

The SSB/SSTV operator, using the fully INDEPENDENT controls of the FL-1, can precisely tailor the audio response: reducing or eliminating adjacent channel splatter or SSTV QRM. The CW/RTTY operator can adjust bandwidth down to 25 Hz rejecting virtually all interference to the desired signal. Often, the AUTOMATIC and AFC features of the FL-l are desirable when in this mode.

- Size: $8^{\prime \prime}$ W. $3^{\prime \prime} \mathrm{H} .5 .5^{\prime \prime} \mathrm{D}$
- Requires $9-16$ VDC from either internal battery or external supply (not included)
- Installs easily in your audio line between your receiver and speaker - Highest quality construction - 2 glass circuit boards, 8 I.C.s. 6 Transistors. 8 Diodes. 2 LEDs.

Box 62 Birmingham, Michigan 48010 Telephone 313/588-2288

This is easyanyone can solderwith KESTER SOLDER

SOLDER

Handymen! Hobbyists! DO-IT-YOURSELFERS!

Radio Amateurs Reference Library of Maps and Atlas

WORLD PREFIX MAP - Full color, $40^{\prime \prime} \times 28^{\prime \prime}$, shows prefixes on each country . DX zones, time zones, eities, cross referenced tables
$\$ 1.25$
RADIO AMATEURS GREAT CIRCLE CHART OF THE WORLD - from the center of the United States! Full color, 30" $\times 25^{\prime}$, listing Great Circle beatings in degrees for six major U.S. cities: Boston, Washington, D.C., Miami, Seattle. San Francisco \& Los Angeles.
$\$ 1.25$
RADIO AMATEURS MAP OF NORTH AMERICA! Full color. $30^{\prime \prime} \times 25^{\prime \prime}$ - includes Central America and the Caribbean to the equator, showing call areas, zone boundaries, prefixes and time zones. FCC frequency chart, plus useful information on each of the 50 United States and other Countries
$\$ 1.25$
WORLD ATLAS - Only atlas compiled for radio amateurs. Packed with world-wide information - includes 11 maps, in 4 colors with zone boundaries and country prefixes on each map. Also includes a polar projection map of the world plus a map of the Antarctica - a complete set of maps of the world. 20 pages. Size $83 / 4^{\prime \prime} \times 12^{\prime \prime}$
$\$ 2.50$
Complete reference library of maps - set of 4 as listed above
$\$ 3.75$
See your favorite dealer or order direct.
Mail orders please include $\$ 1.25$ per order
for shipping and handling.
RADIO AMATEUR||

WRITE FOR

fREE
BROCHURE!
Dept. E 925 Sherwood Drive
Lake Bluff, III. 60044

FOR THE

INTERNATIONAL CRYSTALS \& KITS OSCILLATORS • RF MIXERS • RF AMPLIFIER • POWER AMPLIFIER

OX OSCILLATOR
Crystal controlled transistor type. 3 to $20 \mathrm{MHz}, \mathrm{OX}$-Lo, Cat. No. 035100. 20 to $60 \mathrm{MHz}, \mathrm{OX}-\mathrm{Hi}$, Cat. No. 035101.

Specity when ordering.

OF-1 OSCILLATOR

Resistor/capacitor circuit provides osc over a range of freq with the desired crystal. 2 to 22 MHz , OF-1 LO. Cat. No. 035108.18 to 60 MHz , OF-1 HI, Cat. No. 035109.

MXX-1 TRANSISTOR RF MIXER
A single tuned circuit intended for signal conversion in the 30 to 170 MHz range. Harmonics of the OX or OF-1 oscillator are used for injection in the 60 to 179 MHz range. 3 to 20 MHz , Lo Kit, Cat. No. 035105. 20 to 170 MHz , Hi Kit, Cat. No. 035106. Specify when ordering.

SAX-1 TRANSISTOR RF AMP

A small signal amplifier to drive the MXX-1 Mixer. Single tuned input and link output. 3 to 20 MHz , Lo Kit, Cat. No. 035102,20 to $170 \mathrm{MHz}, \mathrm{Hi}$ Kit, Cat. No. 035103.
$\$ 5.50$ ea.

PAX-1 TRANSISTOR

RF POWER AMP

A single tuned output amplifier designed to follow the OX or OF-1 oscillator. Outputs up to 200 mw , depending on frequency and voltage. Amplifier can be amplitude modulated 3 to 30 MHz , Cat. No. 035104.

Specify when ordering. $\quad \$ 5.75$ ea.

BAX-1 BROADBAND AMP

General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat. No. 035107.
Specify when ordering.
$\$ 5.75 \mathrm{ea}$.

Specity when ordering
Specify when ordering.
 031080

3 to 20 MHz - for use in OX OSC Lo Specity when ordering
$\$ 5.95$ ea. Specify when ordering $\$ 4.75$ ea. 20 to 60 MHz - For use in OF-1H OSC Specify when ordering $\$ 4.75$ ea.

Shipping and postage (inside U.S., Canada and Mexico only) will be prepaid by International. Prices quoted for U.S., Canada and Mexico orders only. Orders for shipment to other countries will be quoted on request. Address orders to:

M/S Dept., P.O. Box 32497 .
Oklahoma City, Oklahoma 73132.

International Crystal Mfg. Co., Inc.
10 North Lee
Oklahoma City. Oklahoma 73102

					6) OED		$1 N 914$ NEW HOUSE MARKE 100 for $\$ 2.95$	
				$\begin{gathered} \text { ASSORTED SIz } \\ 10 \text { FOOT BUNC } \\ \mathbf{9 5 c} \end{gathered}$				
				KEYBOARDS			MJ1000	- 6081.65
							Varia	Supp/y ER SUPPL ER SUPPL
\boldsymbol{M} \boldsymbol{J}	P	Marlin PJones \& AssociatesPo box 9023Riviera Beach, Fllorida 33404(305) 848-8236			 			

RTTY for ALL Systems

Professionally engineered for outstanding performance. stability, and reliability, the Electrocom* Models 400 and 402 add new dimensions of compatibility between radio and teletypewriter systems. Manufactured to highest quality standards-an Electrocom tradition for nearly two decades-these units are ideal for military, government, commercial, civil defense and amateur applications. The Model 400 front panel digital knob accurately selects shifts up to 1000 Hz ., while two such knobs on the Model 402 independently set the mark and space frequencies. Both models may also be preset with any tone pair between 1000 and 3200 Hz

Optimum performance with FSK or AFSK
systems is assured by matched filters, precision linear detectors, baud rate selector bias compensation, and semi-diversity cir cuitry. Operation is enhanced by a CRT monitor, autostart with solid-state motor switching, antispace, markhold, EIA/MIL output voltages, and a constant current loop supply. In addition, various options are available including rack mounting and polar current output.
Write or call us for complete product details and specifications. Learn why Electrocom* " 400 " Converters are designed not only for today's communication environment, but ultimately to fulfill RTTY requirements for years to come.

Regency Scanner

 BRINGS YOU THE NEWS WHILEITS HAPPENING

10 channels covering all 5 bands. AC/DC operation.

$\begin{array}{lll}\text { SAVE \$/O } \\ \text { LIST-s129.95 } & 0 & 0 \\ 0\end{array}$

\square

1,000's OF CRYSTALS

- H25C Case Scanner Monitor
-10.7 Amateur Ham -2 Meter, CB, Standard
1 to 9
10 to $49 \quad 50$ and UP
*3.70 3.00
'2.50

CRYSTAL BANKING SERVICE P.0. BOX 683
 LYNNFIELD, MASS. 01940

The way some people get attached to their Rockwell-Collins equipment youd think we weren't making it anymore.

But we are, and have been since 1933.
That's when Collins started out to build a better transmitter and became one of the quality and performance leaders in amateur radio.

Rockwell-Collins quality starts with a careful and conservative design backed by rigid component selection and testing standards. And our performance speaks for itself with one of the cleanest, clearest signals on the air. It's both quality and performance that make our $\mathrm{S} /$ Line a standard of excellence in amateur radio.

Maybe that's why people get so attached to their RockwellCollins equipment. And why it has such a low depreciation rate on equipment value.

Whatever the reason, you can be sure that when you buy Rockwell-Collins equipment you're making a safe investment.

For more information on the incomparable Collins S/Line, write or call Amateur Radio Marketing, Collins Telecommunications Products Division, Rockwell International, Cedar Rapids, Iowa 52406; 319/395-4493.

And here it is.

XF9.A	2.5	kHz		SSB	TX	\$33.55	
XF9.B	2.4	kHz		SSB R	RX/TX	\$47.75	Export
XF9.C	3.75	kHz		AM		\$51.40	Export
\times X9.D	5.0	kHz	$z \quad A$	AM		\$51.40	Inquiries
XF9.E	12.0	kHz		NBFM		\$51.40	Inquiries
XF9.M	0.5	kHz		CW (4	4 pole)	\$35.95	Invited
XF9.NB	0.5	$\mathrm{kHz}^{\text {che }}$		CW (8	8 pole)	\$63.95	
9.0 MHz	CRYSTALS (Hc25/u)						Shipping
$\times \mathrm{F900}$	9000.0	kHz		Carrie		\$4.15	
\times X9901	8998.5	kHz		USB		\$4.15	\$1.25
$\times \mathrm{XF902}$	9001.5	kHz		LSB		\$4.15	
XF903	8999.0	kHz		BFO		\$4.15	per filter
F.05	$\mathrm{Hc} 25 / \mathrm{u}$		Socket	t Chas	assis	. 50	
F. 06	Hc25/u		Socket	t P.C	. Board	. 50	

The low cost, easy way to operate on the 432 MHz and 1296 MHz bands. For OSCAR 7, mode B, drive the MMv432 family varactor tripler with your 2 meter transmitter. The wideband varactor triplers cover the full $2 \mathrm{M} / 432$ band without retuning.
NO power supply required for varactor triplers; efficiency approximately 50% Three models available at 432, two at 1296.

Model	Max Drive	
MMv432	30 W	$\$ 65.95$
MMv432M	50 W	$\$ 85.95$
MMv432H	70 W	$\$ 125.95$
MMv1296	20 W	$\$ 75.95$
MMv1296H	35 W	$\$ 99.95$

RECEIVE CONVERTERS

MODELS FOR ALL BANDS 50 MHz THRU 1296 MHz . LOW NOISE OP. TIONS AT 432 MHz .

STANDARD I.F. 10 M . IF OPTIONS 6 M \& 2 M POWER 12V D.

Shipping \$2.50
MMc144
N. F. 2.8 dB typ.
$\$ 49.95$
MMc432 N.F. 3.8 dB typ $\$ 59.95$
MMc438/ATV Ch2 or Ch3 IF $\$ 9.95$
$\$ 69.95$
ANTENNAS (FOB CONCORD, VIA UPS)
$144-148 \mathrm{MHz} \mathrm{J}$-SLOTS
8 OVER 8 HORIZONTAL POL. +12.3 dBd D8/2M $\$ 45.95$ 8 BY 8 VERTICAL POL. D8/2M-VERT. $\$ 53.95$
$8+8$ TWIST $\$ 47.65$
$420-450 \mathrm{MHz}$ MULTIBEAMS

Spectrum International, Inc. Post Office Box 1084 Concord, Mass. 01742, USA
$7 \bar{P}$ 1/4 KILOWATT LINEAR AMPLIFIER
TPL proudly presents the first true power $1 / 4 \mathrm{KW}$ SSB/AM, FM or CW solid state
 2 meter linear amplifier A remote control plug allows you to operate with the amplifier ON or OFF, or in SSB/AM, FM or CW from the dashboard.

The 2002 utilizes the latest state of the art engineering including microstrip circuitry and modular construction. The three final transistors combine to produce 250 W when driven by 15 W or more at 13.8 VDC .

POWER INPUT \qquad HARMONIC ATTENTUATION
5-20W Carrier FM or CW
20W PEP maximum SSB or AM
POWER OUTPUT
200-250W carrier FM or CW 300W PEP SSB or AM

FREQUENCY RANGE
144 to $148 \mathrm{MHz}{ }^{\circ}$
will operate with slight degradation at $142 \quad 150 \mathrm{MHz}$ All Harmonics Attenuated 60 dB or Greater

CURRENT DRAIN:
FM-40 Amps@250w
SSB-30 Amps@ 300W PEP DUTY CYCLE:
FM 50\%@150W 33\%@ 250W SSB 60\% @ 150W 50\% @ 250W
can be ordered for repeater application for additional information contact COMMUNICATIONS INC.

1324 W. 135TH ST. GARDENA, CA 90247 (213) 538-9814
Canada: Lenbrook industries. Lidd, 1145 Bellamy Rd.. Scarborough, Ontario M1H IH5 Export: EMEC Inc. 2350 South 30 th Avenue, Hallandale, Florida 33009

ELECTMONICB COAQ

GREGORY ELECTRONICS The FM Used Equipment People.

2 METER PORTABLE G.E. MASTR PR36 $132-150 \mathrm{MHz}-5$ Watts

All Solid State with Ni-cad Battery $\$ 228.00$

Vehicular Charger 4EP63A
(sold only with unit) \qquad $\$ 25.00$
A.C. Charger
(subject to availability)
$\$ 25.00$
Speaker/Mike Type EM36
$\$ 15.00$

GREGORY ELECTRONICS CORP.

245 Rt. 46, Saddle Brook, N.J. 07662 Phone: (201) 489-9000

600 MHZ. FREQUENCY COUNTER ± 0.1 PPM TCXO

OPTO-8000.1

This new instrument has taken a giant step in front of the multitude of counters now available. The Opto-8000.1 boasts a combination of features and specifications not found in units costing several times its price. Accuracy of ± 0.1 PPM or better - Guaranteed - with a factory-adjusted, sealed TCXO (Temperature Compensated Xtal Oscillator). Even kits require no adjustment for guaranteed accuracy! Built-in, selectable-step attenuator, rugged and attractive, black anodized aluminum case (. 090 " thick aluminum) with tilt bail. 50 Ohm and 1 Megohm inputs, both with amplifier circuits for super sensitivity and both diode/overload protected. Front panel includes "Lead Zero Blanking Control" and a gate period indicator LED. AC and DC power cords with plugs included.

SPECIFICATIONS:
Time Base-TCXO ± 0.1 PPM GUARANTEED!
Frequency Range- 10 Hz to 600 MHz
Resolution- 1 Hz to $60 \mathrm{MHz} ; 10 \mathrm{~Hz}$ to 600 MHz
Decimal Point-Automatic
All IC's socketed (kits and factory-wired)
Display-8 digit LED
Gate Times- 1 second and $1 / 10$ second
Selectable Input Attenuation-X1, X10, X100
Input Connectors Type -BNC
Approximate Size- $3^{\prime \prime} \mathrm{h} \times 7^{1 / 2^{\prime \prime} \mathrm{w}} \times 61 / 2^{\prime \prime} \mathrm{d}$
Approximate Weight- $2^{1 / 2}$ pounds
Cabinet-black anodized aluminum (.090" thickness)
Input Power-9-15 VDC, 115 VAC $50 / 60 \mathrm{~Hz}$
or internal batteries
OPTO-8000.1 Factory Wired
\$299.95
OPTO-8000.1K Kit
\$249.95

ACCESSORIES:

Battery-Pack Option-Internal Ni-Cad Batteries and charging unit
\$19.95
Probes: P-100-DC Probe, may also be used with scope $\mathbf{\$ 1 3 . 9 5}$ P-101-LO-Pass Probe, very useful at audio frequencies
$\$ 16.95$
P-102-High Impedence Probe, ideal general purpose usage $\$ 16.95$

VHF RF Pick-Up Antenna-Rubber Duck w/BNC \#Duck-4H \$12.50 Right Angle BNC adapter \#RA-BNC \$ 2.95

FC-50 - Opto-8000 Conversion Kits:
Owners of FC-50 counters with \#PSL-650 Prescaler can use this kit to convert their units to the Opto-8000 style case, including most of the features.

FC-50 - Opto-8000 Kit \$59.95

- FC-50 - Opto-8000F Factory Update $\$ 99.95$

FC-50 - Opto-8000. 1 (w/TCXO) Kit \$109.95
-FC-50 - Opto-8000.1F Factory Update \$149.95
-Units returned for factory update must be completely assembled and operational
OPTOELECTRONICS, INC.
5821 NE 14 Avenue
Ft. Lauderdale, FL 33334
Phones: (305) 771-2050 771-2051
Phone orders accepted 6 days, until 7 p.m.

TERMS: Orders to U.S. and Canada, add 5% to maximum of $\$ 10.00$ per order for shipping, handling and insurance. To alf other countries, add 10% of total order. Florida residents add 4% state tax. C.O.D. fee: $\$ 1.00$. Personal checks must clear before merchandise is shipped.

fleg exiter

RATES Non-commercial ads $10 ¢$ per word; commercial ads $60 \oplus$ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the noncommercial rate.
COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue
DEADLINE 15 th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N.H. 03048.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 93862.
HAPPY BIRTHDAY! Now ten years fighting TVI. The RSO low pass filter. For brochure write: Taylor Communications Manufacturing Company, Box 126, Agincourt, Ontario, Canada MIS 3B4.

QUAD BUILDERS - Blizzard/Hurricane proof your antenna. Fiberglass vaulting poles. Incredible strength. Guaranteed new, 8 -for $\$ 240.00$ S S.A.S.E. for info. K5WSE, Box 20-AA, San Antonio, Texas 78201. (512) 699-9260.
CANADIANS $1,000,000$ surplus parts. Bargains galore. Free catalog. Etco-HR,Box741, Montreai, H3c 2 v 2.

PORTA PAK the accessory that makes your mobile really portable. $\$ 67.50$ and $\$ 88.00$. Dealer inquires invited. P.O. Box 67, Somers, Wisc. 53171.

COLLINS MECHANICAL FILTER 455J-60 wanted for 75A4. K2RG, 10 Rose Court, Dover, N.J. 07801.

Foreign Subscription Agents for Ham Radio Magazine	
Ham Radio Austria Karin Ueber Posttach 2454 D. 7850 Loerrach West Germany West Germany	Ham Radio Holland MRL Ectronics Postbus 88 Holland
Ham Radio Belgium Stereohouse Brusse\|sesteenweg 416 B-9218 Gen Belgium	Mam Radio Italy STE, Via Maniago 15 . 20134 Milano taly
Ham Radio Canada Box 114. Goderich Ontario, Canada N7A 3 Y5	Ham Radio Switzerland Karin Ueber
Ham Radio Europe Box 444 S. 19404 Upplands Vasby Sweden	Postrach 2454 D. 7850 Loerrach West Germany
Ham Radio France Christiane Michel F. 89117 Pariy France	Ham Radio UK P.O. Box 63. Harrow Midolesex $\mathrm{HA} \mathrm{A}_{3} \mathrm{BHS}$, England
Ham Radio Germany Karin Ueber Posttach 2454 O.7850 Loerrach West Germany	Holland Radio 143 Greenway Groenside. Johannesburg Repubic or South Atrica

QUAGIFAGI BUILDERS - Insulated fiberglass booms to 16 -feet. Straight, strong, vaulting poles. S.A.S.E. for info. Guaranteed new $\$ 30.00$ K5WSE, Box 20-AA, San Antonio, Texas 78201. (512) 699-9260.
CQ AND OST 1950-1975 ISSUES FOR SALE. Send SASE if ordering Ham Radio, 73, or other CQ and QST issues. One dollar minimum order and all issues cost 254 each, including USA shipping. Send chronological list and full payment to W6LS, 2814 Empire, Burbank, CA 91504.

RTTY — NS-1A PLL demodulator WTT $\$ 24.95$ ppd. Price advance effective Sept. 1st. SASE for info. Nat Stinnette Electronics, Tavares, FL 32778.
WANTED: Crystal Impedance Meters, TS-683, TS-330, TSM-15 RFL Models 531, 459 or 1207. Glenn Kurzenknabe, K3SWZ, 403 Centerview Ave., New Cumberland, PA 17070.

HAM RADIO HORIZONS, a super new magazine for the Beginner, the Novice and anyone interested in Amateur Radio... What it's all about, How to get started, The fun of ham radio. It's all here and just $\$ 10.00$ per year. HURRY! HURRY! Ham Radio HOIRZONS, Greenville, NH 03048.
free catalog of new merchandise. Resistors, capacitors, IC's, semiconductors, and more. Send to: Key Electronics, Box 3506 H , Schenectady, New York 12303.

WANTED: Measurements 59 grid dipper. Also interested in HF and UHF tuning heads. Jim Fisk, W1HR, Ham Radio, Greenville, NH 03048.
WANTED: Davco DR230 receiver. Please state price and condition in first letter. Jim Fisk, W1HR, Ham Radio, Greenville, NH 03048.

SEE OUR AD in this issue, Pyramid Data, Page 140.
Bak TEST EQUIPMENT. Free catalog. Free shipping. Dinosaur discounts. Spacetron-CG, 948 Prospect, Elmhurst, IL 60126.
MOTOROLA HT220, HT200, and Pageboy service and modifications performed at reasonable rates. WA4FRV (804) 320-4439, evenings.

AUTHORIZED DEALER for DenTron, KLM, Larsen, Bearcat, etc., Big Catalog 201-962-4695 Narwid Electronics, 61 Bellot Road, Ringwood, N.J. 07456.

RECONDITIONED TEST EQUIPMENT for sale. Catalog \$.50. Walter, 2697 Nickel, San Pablo, Ca. 94806.
TELETYPEWRITER PARTS WANTED: for all machines manufactured by: Klienschmidt Corp., Teletype Corp. and Mite. Any quantity, top prices paid send list for my quote. Phil Rickson, W4LNW, Rt. 6, Box 1103G2, Brooksville, FI. 33512.
VERY In-ter-est-Ing! Next 3 issues $\$ 1$. "The Ham Trader", Sycamore, IL 60178.
OSL CARDS 500/\$10. 400 illustrations, sample. Bowman Printing, Dept. HR, 743 Harvard, St. Louis, MO 63130.
HOMEBREWERS: Stamp brings component list. CPO Surplus, Box 189, Braintree, Mass. 02184.

WE MAY NOT HAVE a toll-free number, but we'll save you more $\$ \$ \$$ in the long run! This month's special: CDE Ham-III Heavy-Duty rotor for only $\$ 114.95$, prepaid anywhere in the Continental United States! We are also factory-authorized dealers for Yaesu, Drake, Kenwood, Ten-Tec, ICOM, DenTron, and many more. For the best deal around on the HF or VHF gear of your choice, write or call us today for our low quote. Try our personal, friendly Hoosier service and become one of our many happy and satisfied customers. HOOSIER ELECTRONICS, P.O. Box 2001, Terre Haute, Indiana 47802. (812) 238 -1456.

HELP WANTED - Beehive Telephone Co. has need of a Ham/pllot/FCC licensed technician telephone maintainer. We have, planned or under construction, 6 automatic dlal switches spread out over 6,000 square miles of Utah from Lake Powell to the Idaho Border; four hops of microwave; 150 miles of toll line; all for just over 300 customers. We use low band/high band and UHF and have several private SSB HF circuits for our maintenance coordination. We do all our own construction, etc. Write telling W7NVY about yourself and your ambitions. ZIP; 84313.
wanted to buy - Heath IT-1121 Curve Tracer. Ernest Ruland, 69 Southworth St., Willamstown, MA 01267.
HROT COIL SETS WANTED below 1800 kHz , W600Q 985 W. 3rd Ave., Escondido, CA 92025. (714) 743-9822.

CLUB CALL PINS 3 lines $1.1 / 4 \times 3.1 / 4 \$ 1.25$ each. First Name, Call and Club. Colors Black, Red, or Blue with White letters. (Catalogue) Arnold Linzner, 2041 Linden St., Ridgewood, N.Y. 11227.

SUPER-BUY - 5000 mfd @ 40 volt eiectrolytic cap. factiory new and complete w/all hard(sse ware.
$\$ 1.35$ ea. ppd.
Plug-in transformer. Secondary is 7 Vac 300 mA . A very good deal for TTL-CMOS circuits. $\$ 2.00 \mathrm{ppd}$.

Push-on Pull-off panel mount switch. High quality Grayhill switch complete with hardware.

25c ea. ppd.
High-gain 8 watt audio amp. 20 mV will drive it to 8 watts out. Rectifiers and filter cap on the board.
 Size approx. $3^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$ high. All you need is 24-0-24 volts ac. Of course we supply schematic.
$\$ 3.25 \mathrm{ppd}$.

SMOKE DETECTOR

Protect your family home - and business. These U.L. Approved, ALL METAL units were removed from large apartment complex being torn down. 115 Volt AC input. Sensitivity to smoke is 2% per ft . max. Paint may be scratched but all units tested before shipment. Buy now - Don't delay longer.
$\$ 8.95$ ea. ppd.
Transformer: 115V AC Primary 12 volt 200 mA Secondary. PC Board type - A very handy unit
$\$ 1.00 \mathrm{ppd}$.
PL55 patch cord - a full
20 feet long with a molded
PL55 one end. Real nice.
A low - 75c ea. ppd.

4PDT Relay, 12VDC coil, Potter Brumfield, 5 amp contacts, factory new of course, a beauty $\$ 1.90$ ea.

Mini-Toggle. DPDT CutlerHammer wire-wrap terminals but can also be soldered. Gold plated. A very high quality unit. Hardware supplied. $\quad \$ 1.50$ ea. ppd.

The popular CUA 64-12

 by Heights
Light, permanently beautiful
 ALUMINUM towers

THE MOST IMPORTANT feature of YOUR ANTENNA
IS PUTTING IT UP Where it CAN do WHAT YOU EXPECT.
reliable dX Signals earliest in and Last out.

ALUMINUM

Complete Telescoping and Fold-Over Series available Self-Supporting Easy to Assemble and Erect
All towers mounted on hinged bases

And now, with motorized options, you can crank it up or down, or fold it over, from the operating position in the house.
Write for 12 page brochure giving dozens of combinations of height, weight and wind load.

ALSO TOWERS FOR WINDMILLS HEIGHTS mANUFACTURING CO.

In Almont Heights Industrial Park Almont, Michigan 48003

flea market

WANTED - Millen i.f's 455 kc and 1600 kc - M61455 \#61160 several needed. Also schematic for Misers Dream Rec. Owen Laughlin 1310 Pinecrest Dr., Ferndale. M1 48220.
CREATIVE QSL CARDS - New designs. Send 505. receive catalog, samples. WILKINS CREATIVE PRINT ING, Box 787-2, Atascadero, CA 93422.

SELL - Swan Monobander 40A - Good - $\$ 100.00$ Henry Ankeny, 420 South 16, Clarinda, lowa 51632. (712) 542.4715.

WANTED: Lorentz type 15 teleprinter 45.5 baud gear set. VE5KQ, D. Stephenson, 13430 Summers Place, Saska toon, Sask, S7H 3W4.
ELECTRONIC BARGAINS, CLOSEOUTS, SURPLUS Parts, equipment, stereo, industrial, educational. Amazing values! Fascinating items unavailable in stores or catalogs anywhere. Unusual FREE catalog. ETCO-012, Box 762, Plattsburgh, N.Y. 12901. SURPLUS WANTED.
CODE PRACTICE TAPES - 100 High Frequency words which constitute 50% of all writing. For details write to: El Don Enterprises, P.O. Box 3404, Redondo Beach, CA 90277.

WANTED - Halicratters PS-150-120AC power supply. Hugh McKnight, BOQ 6-337, U.S. Naval Station, Charleston, S.C. 29408.

NICADS: 600 mAh A size penlights, surplus, unused, excellent for portable, QRP. 6.5 V five pack, $\$ 3.75$. Bramwell, 1330 SE Walnut, Hillsboro, OR 97123.

450 PROGLINE REPEATER including COR, Timers, Coupler. $\$ 200.00$. K7FE, Frank Exum, 1244 Granada, Casper, WY 82601. (307) 265-8083.

DRAKE "C LINE" STATION - R-4C, T-4XC, AC-4, MS-4, 4 NB Blanker, all filters, nine Xtals, Fan - $\$ 1300$. Also Sherwood CF-125/8 Filter \& "DX Engineering" RF Speech Processor, $\$ 90$ each. All excellent condition one year old. WA6ERB, 451 Via Casitas "1, Greenbrae, CA 94904. (415) 461-3209.

CUSTOM printed and photo QSL's, very economical; free samples. Stamp appreciated. Stu, K2RPZ, Box 412, Rocky Point, NY 11778. (516) 744-6260.

WANTED: HP noise source 343A and 349A, Plug-ins for SINGER sweep-generator 650S, Tektronix Spectrum Analyzer 491. DL 7 QY, Claus Neie, Martin-Luther-Str. 121, D-1000 Berlin 62. Tel: 030/7824418.

NEW HIGH SCHOOL CLUB NEEDS EQUIPMENT DONATION, will provide tax deductible receipt, pay shipping No Junk Please. Direct Response: Mark Cheek, Franklin County High School, Royston Road, Carnesville, Georgia 30521.

MINT CONDITION: Atlas 210 X or Triton II or IV. Also: Power supply. B. Levin, 24251 Oneida, Oak Park, Mich 1-313-545-5939.

TELETYPE EQUIPMENT for beginners and experienced operators. RTTY machines, parts, supplies. Beginner's special: Model 15 Printer and demodulator $\$ 139.00$ Dozen black ribbons $\$ 6.50$; case 40 rolls 11/16 pert, tape $\${ }^{17}$. Atlantic Surplus Sales, 3730 Nautilus Ave., Biu... 1. 11224. Tel: (212) 372-0349.

THE "CADILLAC" of QSL's! Samples: $\$ 1.00$ (Refun dable) - W5YI, Box "1171-D; Garland, Texas 75040.

TELETYPEWRITER PARTS, gears, manuals, supplies, tools, toroids. SASE list. Typetronics, Box 8873, Ft Lauderdale, FL. 33310. N4TT Buy parts, late machines.

EXCLUSIVELY HAM TELETYPE 24th year, RTTY Journal, articles, news, DX, VHF, classified ads. Sample 35 e $\$ 3.50$ per year. 1155 Arden Drive, Encinitas, Calif. 92024.

MANUALS for most ham gear made 1937/1970. Send only $25 e$ coin for list of manuals, postpaid. HI, Inc., Box H884, Council Blufts, Iowa 51501

QSL FORWARDING SERVICE - 30 cards per dollar Write: QSL Express, 30 Lockwood Lane, West Chester, PA. 19380.

RECEIVE PARTS LISTS regularly for $\$ 4 / \mathrm{yr}$. Surplus Parts, P.O. Box 7057, Norfolk, VA 23509

SCANADAPTER - scan up to 10 channels of any receiveritransceiver, variable scan rate, manual advance, and 7 segment readout. Only $\$ 29.95$ wired. Pulse genera tors, high gain instrument amps, more. Free literature Tek Devices, Box 19154, Honolulu, HI 96817.

- We pay AIR FREIGHT on all prepaid or credit card orders.
- Call our order desk 703.938-3511.
- We stock in depth: Bird 43 Thruline, All Table 1 elements, CC-1 \& EC-1 cases.
MODEL 43
$\$ 120.00$
AUTHORIZED BIRD DISTRIBUTOR DEALER INQUIRIES INVITED.

CD ICOM in stock
IC-245/SSB $\quad \$ 599$
IC-211 $\$ 749$
IC-701 plus others
Wilson in stock
WE-800 \$499
MARK II HANDHELD $\quad \$ 229$
MARK IV HANDHELD
and much, much more
All Prepaid \& Charge Orders
Shipped NO CHARGE in U.S.
Sales tax 4% to Virginia residents only.
ELECTRONIC EQUIPMENT BANK, INC.
516H Mill St., Vienna, VA 22180

TRANSMITTER MODULE KIT

5 watt input monoband cw transmitter and VFO on a $3^{\prime \prime} \times 5^{\prime \prime}$ p. c. board operates from 12 VDC.
$\$ 59.95$ ppd USA
Companion Receiver Module $\quad \mathbf{\$ 3 9 . 9 5} \mathbf{~ p p d ~ U S A ~}$
$160,80,40$, or 20 meters
SPECIFY BAND DESIRED WITH YOUR ORDER ORDER FROM
DIRECT CONVERSION TECHNIQUE 3132 North Lowell Avenue
Chicago, Illinois 60641

TEST EQUIPMENT

All equipment listed is operational and unconditionally quaranteed. Money back it not satistied. Prices listed are FOB Monroe
HP120B 450 kHz gen pur scope
$\$ 215$
HP170A(USM140) 30 mHz Scope with reghoriz, dual trace vert plugs
HP175A 50 mHz scope with reg
horiz, dual trace vert plugs
475

Ouantech 303 Wave And
Tek 565 Dual beam 10 mHz scope
less plug ins (3 series).
less plug ins (3 series)
Tek 58580 MHz gen pur scope less

For complete list of all test equipment send stamped, selt addressed envelopd

GRAY Electronics

P.O.Box 941 , Monroe, Mich. 48161 Specializing in used test equipment

Pound for pound. there is no match for the

 hf engineering PS-25M Power Supply

Weighs about 10 lbs. less than the PS-25M (\$12.63 per lb.) \$139.00

25 Amp regulated power supply with fold back current limiting, over voltage and transient protection. Also, output voltage and current meters.

You might find a cheaper power supply, but you can't find one as well built with top quality components. Other power supplies with lighter weight transformers and components are no match for the VHF Engineering PS-25M. It is rated at 20 amps continuous duty (not 10 amps). This power means extra dependability and versatility when you need it.

Compare VHF Engineering's quality and specifications.

FEATURES

- Over-voltage protection crowbar.
- Electrostatic shield for added transient surge protection.
- A foldback output limiter operates for loads outside of the operating range.
- Isolation from ground. The circuit is isolated from the case and ground.
- 115/220 volt input - 50/60 cycle.
- Units are factory wired for 110 volt AC, 50/60 cycle power. A simple jumper will reconfigure the input for 220 volt AC, 50/60 cycles.
- Temperature range-operating 0 to +55 C .
- Black anodized aluminum finish.

SPECIFICATIONS

Voltage Output:
adjustable between $10-15 \mathrm{~V}$
oad Regulation:
2% from no load to 20 amps
Current Output:
25 amps intermittent
(50% duty cycle)
20 amps continuous
Ripple:
50 mV at 20 amps
Weight:
25 pounds
Size:
$121_{4}^{\prime \prime} \times 6 \frac{1 / 4}{}{ }^{\prime \prime} \times 71_{2}^{\prime \prime}$

Your

Most Called Numbers

 with a Ingle Key Punch!Now you can dial up to 18 complete 7 or 8 -digit phone numbers by punching only one (or two) keys on your pad The AD-1 Auto Dialer's 10 number capacity RAM can be completely programmed from its own pad in less than a minute The optional field - installable factory-programmed PROM adds 8 more numbers for $\$ 4.95$ The AD-1 is ideal for mobile autopatches, home or business use. It features a unique MOS microprocessor which permits both tone duration and spacing to be programmed along with the numbers, adding versatility for repeater or similar control functions. Its crystal controlled tone generator assures high stability over a wide temperature range. The AD-1 is fully automatic and foolproof in operation. Coil cord provides convenient connection to your rig. Suggested Amateur net price $\$ 129.95$. A PROM order card is packed with each AD-1.

The AD-1 Auto Dialer is available at the finest amateur radio dealers and distributors everywhere.

Advanced Electronic Applications, Inc. po Boo 2160 . Lynnwood. Washmaton 98036

Practical experience with Superior Quality Materials and Construction that's...

TOUR ROHEB LRISTAD

Tristao isn't just a trade name.. it's a man called Lou, and he's been designing towers for hams all his life...the pioneer. That's why Tristao towers above all. And because he knows hams, he engineers quality at prices you can afford. From Mini-Masts to the giants, it's TOWER POWER all the way with Tristao.
WRITE RIGHT NOW FOR FULL SPECS and dealer nearest you. PROMPT DELIVERY.

CilStaO TOWER
Division of Palmer Industries, Inc
415 E. 5th St. - P.O. Box 115
Hanford, CA 93230 / Ph. (209)582.9016

PARTS BONANZA

BC-191/BC-375 TRANSMITTER TUNING UNITS
 We have these Plug-in Tuners available once again - as an excellen source of hard-to-find radio parts Each in cludes a $21 / 2^{\prime \prime}$ Vernier Dial; a right angle Drive; three 100 Watt Variable Capacitors (except TU-26): Mica Capacitors; Coils; ceramic Band Switches; and more. All are unused Listing of parts for each available with SASE $9 \times 17 \times 7 \frac{1}{2 \prime \prime}$: Sh. Wt.: 18 lbs
TU-5B, $1500-3000 \mathrm{Khz}$ \$1295 • TU-6B, $3000-4500$. $\$ 12^{95}$ TU-7B, $4500-6200$: $\mathbf{\$ 9 9 5}$ - TU-10B, $10000-12500: \mathbf{\$ 9 9 5}$ TU-26B, $200-500$ \$895 • ALL Prices F.0.B.. Lima, Oh

Use your VISA, BAC or Master Charge card!
Send tor our FREE Surplus Electronics Catalog WS-78 Address Dept HR - Phone: 419/227-6573

```
FALR RADIO SALES 1016 E. EUREKA - Box 11OS - LIMA. OHIO - 45802
```


flea market

WANT UP.TO-DATE INFORMATION? Radio-Hobbyist Newsletter issued every 2 weeks. Only $\$ 5.00$ year. W5YI, Box 1171-D, Garland, Texas 75040 .

EZ deals are the best! Try me and see for Yaesu, Drake. KLM, Swan, Cushcraft, DenTron, VHF Eng, ICOM, CDE, Hustler, Wilson and more. Call, see or write WOEZ, Bob Smith Electronics, RFD 3, Hwy 169 \& 7, Fort Dodge, IA 50501. (515) 576-3886.

TRAVEL.PAK OSL KIT - Send call and 25c; receive your call sample kit in return. Samco, Box 203, Wynantskill, NY 12198.

THE MEASUREMENT SHOP has used/reconditioned fest equipment at sensible prices; catalog. 2 West 22 nd St., Baltimore, MD 21218 .

RADIO MUSEUM NOW OPEN. Free admission, 15,000 pieces of equipment from 1850 telegraph instruments to amateur and commercial transmitters of the 1920s. Amateur station W2AN. Write for information: Antique Wireless Assn., Main St., Holcomb, NY 14469.

AMATEUR MICROPROCESSOR EXPERIMENTERS: 10 $\mathrm{MHz} \pm 20 \mathrm{ppm}$ Coldweld crystals. 1 ppmiyr. $32 \mathrm{pF}, \mathrm{C}_{0} 6$ pF. $\$ 4.25$ ea postpaid. Savoy Electronics, Inc., P.O. Box 5727. Ft. Lauderdale, FL 33310. 305-563-1333.

We buy electron tubes, diodes, transistors, integrated circuits, semiconductors. ASTRAL ELECTRONICS, 321 Pennsylvania Avenue, Linden, NJ 07036. 201-486-3300.

AUTHORIZED DISTRIBUTOR F9FT Antennas, Microwave Modules, RIW Products' new tandem reflecor, 19 element, 432 MHz Yagi - Radio Clinic - N2MB (formerly WA2BIT) 212-327-4952.

SELL: Tubes, current and rare. Xmtting and receiving. Meters, xtals, HV capacitors. Power, I-f transformers. Antiques. Government, military surplus. 40 year accumulation. SASE for list. Grigas, 10137 Prospect, Chicago, IL 60643.

ANTENNA: All ham bands (80 thru 10) $\$ 25$ postpaid U.S.A. (CA residents add $\$ 1.50$ sales tax) Rudy Plak, P.O. Box 966, San Marcos, CA 92069

Coming Events

ALASKA: ARRL Convention, Anchorage. August 26, 27. Write: ARRL Alaska Convention 78, Anchorage ARC, PO Box 1987, Anchorage, AK 99510.

WIMU (Wyoming, Idaho, Montana, Utah) The 46th Annual WIMU Hamtest is scheduled for August 4, 5, and 6, 1978 at Mack's Inn, Idaho; 25 miles South of West Yellowstone, Montana. Talk-in 146.34/94 and 3935. Advance registration: $\$ 6.00$ for adults and $\$ 2.00$ for children, before July $25 \mathrm{th}, 1978$. Late/regular registrafion: $\$ 7.00$ and $\$ 2.50$. SPECIAL PRIZE DRAWING FOR PRE-REGISTRATION. Please send pre-registration to: WIMU Hamfest, 3645 Vaughn Street, Idaho Falls, Idaho 83401. Phone (208) 522.9568.

ANNUAL TEXAS VHF-FM SOCIETY SUMMER CONVENTION, hosted by the Houston Echo Society, August 4, 5, 6, 1978 at the Galleria Plaza Hotel off interstate Loop 610 Westheimer Road. Microprocessors/microcomputers, hidden transmitter hunt, OSCAR communications, VHFFM activities. ARRL \& FCC forums, open hospitality suite, ladies' activities, Astrodome-Astroworld tours for the kids, Exhibitors, and prizes. Saturday night banquet eaturing Bill Tynan, W3xO, editor of QST's "Worid Above $50 \mathrm{MHz}^{\text {", as }}$ guest speaker. For information and eservations write FM Society Summer Convention, P.O. Box 717, Tomball, Texas 77375.
eyeball with friends July 16 Tri Club Hamfest Talk in . 341.94 \& . 52 Lookers $\$ 2$ Sellers $\$ 3$ - Police Pistol Range Allentown - Information SASE K3AI, RI Emmaus, Pennsylvania 18049.

AMATEUR COMPUTING 78, WASHINGTON, DC, July 22-23. Sheraton National Hotel, Columbia Pike and Washington Blvd., Arlington, VA. Registration at door $\$ 5$. Talk-in 147.81/21. AMRAD, PO Box 682, McLean, VA 22101.

VHFIUHF ANTENNA MEASURING CONTEST and free flea market July 23rd, 10:00 AM at Trenton State College, Trenton, NJ. Contact K2UYH or WA2ZZF.

BYTE, Drink and be merry at the Tidewater Hamfest, Flea Market and Computer Show, Norfolk, Virginia. September 23-24. Over 60,000 sq. ft . of exhibit and fiea market space. All Indoors. All air-conditioned. Write TRCI, P.O. Box 9371, Norfolk, Virginia 23505.

Introducing CSC's new
Mini-Max. It brings down the cost of counting up the frequency for CB-ers, hams, computer enthusiasts, audiophiles.. just about any engineer, technician or hobbyist will find it indispensable.
It's "mini"-sized, too - a pocketable $3 \times 6 \times 1 \frac{1}{2}$ inches.
But when it comes to performance. Mini-Max
means maximum value. Measuring signals as low as 30 mV from 100 Hz to a guaranteed 50 MHz , with $\pm 3 \mathrm{ppm}$ timebase accuracy and better than 0.2 ppm $/{ }^{\circ} \mathrm{C}$ stability from 0 to $50^{\circ} \mathrm{C}$. Completely automatically. Advanced LSI circuitry with a crystal controlled timebase provides precise frequency readings on a bright, six-digit LED display, with automatic $\mathrm{KHz} / \mathrm{MHz}$ indications. Mini-Max is versatile. too. You can connect it directly to the circuit under
test, or use its matching mini antenna for easy RF checking. Either way the input is protected against overload to 50 V (100 V below 1 KHz).

Mini-Max is as inexpensive to use as it is to own. An ordinary 9 volt alkaline battery gives up to 8 hours of intermittent operation. and you have the flexibility of a battery eliminator for AC operation. For increased versatility, there's a complete line of accessories. including standard clip-lead cable and mini antenna - eliminator and carrying case are optional.

CSC's new, all-American made Mini-Max is everything you need for highly-accurate checking of frequencies up to 50 MHz . At a price that will Freq you out. Order today Call 203-624-3103, 9a.m.5p.m. Eastern Standard Time. Major credit cards accepted. Or see your CSC dealer. Prices slightly higher outside U.S.A.

Amateur Radio needs!

WB8SBL and WN9ANF serving you with

- Ameco • ASP • Atlas
- Belden • Bird • CDE • CIR
- CES • Collins • Cushcraft
- Dentron - Drake - HAL
- Hy-Gain • Icom • KLM
- Kenwood • Larsen • MFJ
- Midland • Mosley • NPC
- Newtronics - Nye
- Regency • Shure • Swan
- Standard • TPL • Tempo

Hours: 9:30-5:30 Mon., Tues., Wed. \& Fri. 9:30-9:00 Thurs. 9:00-3:00 Sat.

ERICKSON COMMUNICATIONS 5935 N. Milwaukee Ave. Chicago, IL 60646 (312) 631.5181

flea market

THE 15TH ANNUAL INTERNATIONAL HAMFEST will be held July 8th and 9th on the Canadian side of the International Peace Gardens. All hams and interested persons are invited to attend.

FOX RIVER RADIO LEAGUE HAMFEST New Location: Indoors - Kane Co. Fairgrounds, St. Charles, IL. Sunday, August 27th. Tickets: $\$ 2.00$ at gate $-\$ 1.50$ advance. Contact: Don Berridge WB9PAC, 2303 Deerfield Way - Geneva, IL 60134.

MANSFIELD, PA. - The Tioga County PA ARC Hamtest will be held Saturday. August 26th starting at 9:00 AM at the Tioga Co. Fairgrounds on Rt. 6 between Wellsboro and Mansfield, PA. The $\$ 2$ admission is good for all special programs and the XYL and children are free, In addtition to the usual Flea Market and displays a bingo table and other items of interest will be available for the ladies and the PA Grand Canyon is within a short distance. Talk-in on 19/79,52 Sim. and CB 5 . For more information write to Denny Vorhees, WA3FWQ, RD 42 Box 117A, Millerton, PA 16936.

WASHINGTON: Fourth Annual Spokane Hamfest Saturday. August 12th and Sunday. August 13th, Eastern Washington University, Cheney. Microwave seminar, Planetarium shows, activities for ladies. Exhibits \& Flea Market. Preregistration prize: 60' Rohn 25 tower. Main prize: ICOM 225 Two-meter transceiver. Ladies prize: Microwave oven. Other prizes and raffles. Dorm housing and camper space available. Preregistration - $\$ 9.00$ per person includes both days \& Banquet Saturday night. For information, write: Spokane Hamfest, P.O. Box 3606, Spokane, Washington 99220.

PENnSYLVANIA: Tri-Club Hamfest, Sunday, July 16. 8:00 AM. Allentown Police Academy, Lehigh Parkway South, Allentown. Lookers: $\$ 2.00$, Sellers: $\$ 3.00$ Refreshments. Door Prizes. Bring tables and power. Talk in . $341 / 948$. 52 . Local repeaters .101 .70 , open auto patch 1451.745. Details SASE F. J. Herman, K3AI, R. 1, Box 104, Emmaus, PA 18049.

ChARLESTOWNE HAMFEST July 8-9, 1978. Gaillard Municipal Auditorium, 77 Calhoun Street. Doors open at 8:00 AM. $\$ 3.00$ per table per day. FCC Exams on Saturday 8:00 AM. Talk in Frequency 34/94. YL. Activities planned. Social Room Saturday night at $7: 30$ at the Gailfard Municipal Auditorium. Hamfest registration required for entry $\mathbf{-} \mathbf{\$ 3 . 0 0}$. Free retreshments. P.O. Box 4555, Charleston, South Carolina 29405.

VIRGINIA: Amateur Computing 78 microcomputer lestival. July 22-23. Sheraton National Motor Hotel, Col umbia Pike and Washington Blvd., Arlington. Registration: Door - $\$ 5.00 / 2$ days. Advance: $\$ 4.00$. Spouse and children free. Saturday night banquet, $\$ 14.00$ Advance: $\$ 12.00$ per person. Sends checks to AMRAD, P.O. Box 682, McLean, VA 22101.

INDIANA: Wabash Valley ARA 32nd annual Turkey Run Hamtest. Vigo County Fairgrounds mile south 1.70 on U.S. 41. Overnight campers ONLY open Saturday, July 15, 12 noon EST. Public, Sunday, July 16, 8:00 AM Free outdoor Flea Market, covered $\$ 3.00$. XYL Bingo. Refreshments. Shopping mall nearby. Advance tickets $\$ 1.50 .4$ for $\$ 5.00$. Gate: $\$ 2.00,3$ for $\$ 5.00$. Under 12 free For tickets and information: SASE to WVARA Hamfest, P. O. Box 81, Terre Haute, IN 47808.

TEN-TEN INTERNATIONAL NET SUMMER QSO PARTY Starts: 0000 GMT July 15, 1978 Ends: 2400 GMT July 16, 1978. Open to all amateurs but only members eligible for awards. All contacts to be made on 10 meters, any mode, a station to be counted only once. Exchange: Name, OTH, 10-10 number. (Be sure to log date and time of each contact.) Scoring: 1 point for each contact; add 1 point if with a member. Maximum: 2 points. No multipliers. Give the name of your Chapter. Awards: 1st and 2nd place certificates to each U.S. Dist., KL7, KH6 and U.S. Pacific Islands; VE Dists.; Central America and Caribbean: South America; Europe; Africa and S. Atlantic: Asia; Australia, New Zealand and S. Pacific. Members only: Send \log to Grace Dunlap, K5MRU, Box 13, Rand, Colorado 80473, no later than August 30, 1978. Results will be published in the Net Fall Bulletin.

VHF SPACE NET CONTEST From 6PM Saturday, July 15th to 9PM Sunday, July 16th, local times. This event Commemorates the 9 th Anniversary of Apollo eleven, Man's First Landing and Walk on the Moon. Activity will be on $50,144,220 \mathrm{mHz}$ etc., in all modes, EXCEPT REPEATERS. Categories: Class 1, 10 to 500 watts; Class 2, 25 to 100 watts; Class 3,5 to 25 watts; Class 4,1 to 5 watts; Class 5, C.W. only, with any power, Class 6, XYL only, with any power; Class 7, Club participation. For more info, write VHF Space Center, K4AWS, Box 15 , Sumterville, FL 33585 . SPECIAL BONUS SURPRISE FOR ALL STATIONS WORKING SPACE NET CENTER

AIR VARIABLE CAPACITORS

40-310pf Dual, $7.5 \mathrm{KV} \quad \$ 27.00$ 27-300pf Dual, 4.5 KV $\$ 25.00$
$40-310 \mathrm{pf}$ single, 7.5 KV $\$ 17.50$ 27-300pf Single, 4.5 KV $\$ 16.75$ 40-190pf single, 5.5 KV Many, Many More Types. Send SASE for free list.

JUNE - JULY SPECIALS "While They Last"
TUBES - Many types in stock

$6 \mathrm{JS6C}$	$\$ 5.50$	6146 A	$\$ 6.25$
572 B	$\$ 29.00$	6146 B	$\$ 6.75$

EIMAC POWER TUBES IN STOCK Send SASE for free list of tubes. AMPHENOL CONNECTORS PL259(UHF) 79¢ UG21B/J(N) \$1.99 UG88/U(BNC)99¢ WILSON WR500 ROTOR -- $\$ 89.95$ ROTOR CABLE-- 15 c per ft (8conductor) MUFFIN FANS - $\$ 7.50$ ea. TELETYPE PAPER/TAPE-- $\$ 10.00 /$ case USED EQUIPMENT
R390 $\quad \$ 375.00 \quad$ R390A $\$ 395.00$ Send SASE for used equipment list.

Please allow for shipping charges. AZ residents add 5\% sales tax.

Amateur Radio Center

 C 11 S.Morris, Mesa, AZ 85202 (602)833-8051
COPY MORSE CODE

with the new MVD-1000 MORSE VIDEO DISPLAY

- Enjoy Morse Code copy on your TV screen
- Displays letters, numbers, and
- punctuation 16 lines of 32 characters per page
- 2 page display with Recall feature
- Automatic scrolling
- Automatic or Manual speed control
- Copy Morse Code from 6.60 WPM
- Easily connects between receiver and TV set

Write for more information
MK.1 Memory Keyer
CMOS PCB Keyer $\$ 24.95$
DGM ELECTRONICS
787 BRIAR LANE, BELOIT, WIS. 53511

SUb-AUIIBLE

 for FM- Inexpensive multi tone encoder - Compatible with PL-CG-QC
- Low distortion sinewave
- Input 8-18 VDC unregulated
- Rugged, plastic encased with leads
- Adjustable frequency

Price $\$ 19.95$
Freq. set at factory \$5.00 extra available

Calit res. add 65

- Excellent stability

Send for more info TRANSVERTER At a price you can afford

FAMOUS HAMTRONICS PREAMPS let you hear the weak ones!

Great for OSCAR, SSB, FM, ATV. Over 10,000 in use throughout the world on all types of receivers.

P9 Kit $\quad \$ 12.95$

P14 Wired 524.95
Deluxe vhf model for applications where space permits.

$\bullet 1-1 / 2 \times 3^{\text {n }} \bullet$ Covers any 4 MHz band $\bullet 12 \mathrm{Vdc}$ \bullet Ideal for OSCAR \bullet Diode protection $\bullet 20 \mathrm{~dB}$ gain MODEL
P9-LO $\quad \frac{\text { RANGE }}{26-88 \mathrm{MHz}}$ $\mathrm{P9}-\mathrm{HI} \quad 88-172 \mathrm{MHz}$ P9-220 $\quad 172-230 \mathrm{MHz}$ P14 Wired Give exact band

$$
\begin{aligned}
& \rightarrow \mathrm{Cl}^{-3} \mathrm{O}^{3} \\
& \text { P8 Kit } \quad \$ 10.95 \\
& \text { P16 Wired } \$ 21.95 \\
& \text { Covers any } 4 \mathrm{MHz} \text { band Miniature VHF model for } \\
& \bullet 20 \mathrm{~dB} \text { gain } \bullet 12 \mathrm{Vdc} \quad 1 / 2 \times 2-3 / 8 \text { inches. }
\end{aligned}
$$

P15 Kit $\quad \$ 18.95$
P35 Wired $\mathbf{\$ 3 4 . 9 5}$

- Covers any 6 MHz band in UHF range of $380-520 \mathrm{MHz}$ - 20 dB gain - Low noise

FMCW TRANSMITTER KITS

BUILD UP YOUR OWN GEAR FOR OSCAR CW OPERATION, FM REPEATERS, CONTROL LINKS - Mrofessional Sounding Audio © Free of Spurs - Completely Stable •Built-in Testing Aids

T40 11 Channel 200 MW Exciter Kit for 2 M or 6M band. $\$ 39.95$ T20 Tripler/Driver Kit. Use with T40 for operation on $432-450 \mathrm{MHz}$ band.

YYYYYYYFFFFPFPFP
T80 RF POWER AMPLIFIER MODULES FOR ABOVE - No tuning •VSWR Protected •Wired and Tested - Rated for Continuous Duty - Great for Repeaters T80-150: $140-175 \mathrm{MHz}, 20-25 \mathrm{~W}$ output $\$ 79.95$ T80-450. $430-470 \mathrm{MHz}, 13-15 \mathrm{~W}$ output $\$ 79.95$

FEATURES:

- Linear Converter for SSB, CW, FM, etc. - A fraction of the price of other units - 2W p.e.p. output with 5 MW of drive - Use low power tap on exciter or attenuator pad - Easy to align with built-in test points

VX2-() TRANSVERTER KIT $\$ 59.95$ A25 Optional Cabinet for Xverter \& PA $\mathbf{\$ 2 0}$

Frequency Schemes Available:
$V \times 2-4 \quad 28-30=144-146 \quad$ Other frequency VX2-5 $\quad 28-29=145-146 \quad$ ranges available VX2-6 $\quad 26-28=144-146 \quad$ on special order

2M LINEAR POWER AMPLIFIERS:

LPA 2-15 Kit 15 W p.e.p. $\$ 69.95$ LPA 2-70 Kit 70 W p.e.p. $\$ 139.95$

New VHF\&UHF Converter Kits

let you receive OSCAR signals and other exciting SSB, CW,\& FM activity on your present HF receiver.

either one
-ONLY \$34.95
including crystal

MODEL	RF RANGE (MHZ)	1-F RANGE
C50	50-52	28-30
C144	144-146	28-30
C145	145-147 (OSCAR)	28-30
C146	146-148	28-30
C110	Aircraft	28-30
C220	220 band	28-30
Special	Other i-f \& rf ranges available	

MODEL RFRANGE (MHZ) 1-F RANGE C432-2 432-434 28-30 $\begin{array}{lll}\text { C } 432-5 & 435-437 \text { (OSCAR) } \quad 28-30\end{array}$ $\begin{array}{lll}\text { C432-7 } & 427.25 & 61.25\end{array}$ $\begin{array}{lll}C 432-9 & 439.25 & 61.25\end{array}$ Special Other i-f \& rf ranges available
A9 Extruded Alum Case/Connectors $\$ 12.95$

VHF UHF FM RCVR KITS

* NEW GENERATION RECEIVERS
* MORE SENSITIVE *MORE SELECTIVE (70 or 100 dB) * COMMERCIAL GRADE DESIGN
* EASY TO ALIGN WITH BUILT-IN TEST CKTS
* LOWER overall cost than ever before

R70 6-channel VHF Receiver Kit for $2 \mathrm{M}, 6 \mathrm{M}, 10 \mathrm{M}$ 220 MHz , or com'l bands. $\$ 69.95$ Optional xtal filter for 100 dB adi chan 10.00

R90 UHF Receiver Kit for any 2 MHz segment of $380-520 \mathrm{MHz}$ band. $\$ 89.95$

* FREE 1978 CATALOG*

40 PAGE CATALOG IS YOURS FOR THE ASKINGI

IT'S EASY TO ORDER!

© CALL OR WRITE NOW FOR FREE
CATALOG OR TO PLACE ORDERI
©PHONE 716-663-9254. (Answering service evenings and weekends for your convenience. Personal service 9-5 eastern time.)

OUse credit card, c.o.d., check, m.o.
© Add $\$ 2.00$ shipping \& handing.
IN CANADA, send to Comtec; 5605 Westluke Ave; Montreal, Que H4W 2N3 or phone 514-482-2640. Add 28\% to cover duty, tax, and exchange rate.
hamtrontos, mic.

There's nothing like it

mooucawllbook

Respected worldwide as the only complete authority for radio amateur QSL and QTH information.

The U.S. Callbook has over 300,000 W \& K listings. It lists calls, license classes, names and addresses plus the many valuable back-up charts and references you come to expect from the Callbook.

Specialize in DX? Then you're looking for the Foreign Callbook with almost 300,000 calls, names and addresses of amateurs outside of the USA.

U.S. Callbook \$14.95

Foreign Callbook $\$ 13.95$

Order from your favorite electronics dealer or direct from the publisher. All direct orders add $\$ 1.50$ for shipping. Illinois residents add 5\% Sales Tax.

flea market

WASHINGTON STATE: FIRST ANNUAL 7.LAND QSO PARTY sponsored by NAS Whidbey Island A.R.C. from 1200Z July 1st to $2400 Z$ July 2nd 1978 for single- and multi-operator, single transmitter stations. Object to work as many 7 -land W/VE stations as possible in 30 out of 36 hours. For more information, write Bill Gosney, WB7BFK, 4471 40th N.E. Street, Oak Harbor, Washington 98277.

HAMFESTERS 44TH ANNUAL PICNIC AND HAMFEST, Sunday, August 13, 1978 at Santa Fe Park, 91st and Woif Road, Willow Springs, lllinois, Southwest suburb of Chicago. Exhibits for OM's and XYL's, FAMOUS SWAP. PERS ROW. Tickets at gate $\$ 2.00$, Advance $\$ 1.50$. For Hamfest info or Advance Tickets (send check or money order - SASE appreciated) to Bob Hayes W9KXW, 18931 Cedar Ave., Country Club Hills, IL 60477.

OHIO - Wood County 14th annual Ham.A-Rama Sunday, July 16, Fairgrounds, Bowling Green off 1-75. 10:00 AM. Admission/parking free. Tables $\$ 3.00$ or 8 ft . space $\$ 2.00$. Advance - dealers only. Tickets: $\$ 1.50$ advance - $\$ 2.00$ door. Main prize and door prizes. K8TIH talk-in 146.52 simplex. Write: Wood County ARC, Erick Willman, 14118 Bishop Rd., Bowling Green, OH 43402.

MISSOURI: Indian Foothills ARC Third Annual Hamfest, Sunday, July 23, 1978 at Saline County Fairground, Marshall. Registration $\$ 2.00$ advance: $\$ 2.50$ door. Refreshments. Fiea Markets for the OM and XYL. Tables for a small charge. For information and advance tickets contact Jim Little, WD9BPG, 405 East Rosehill, Marshall, Missouri 65340. (816) 886-8583.

ILLINOIS: The Big Thunder Hamfest, July 30, 1978, Boone County Fairgrounds, Belvidere, 8:00 AM and 3:00 PM. Tickets $\$ 1.50$ advance, $\$ 2.00$ gate. Campers $\$ 2.00$ additional. Talk in on 94 simplex. Write to Mike George K9ORU, 6159 Broadview Ave., Belvidere, IL61008.

OHIO: NOARSFEST - Saturday, July 8, Lorain County Fairgrounds, Wellington. Prizes. Blacktopped flea market area, $\$ 1.00$ per space. Tickets: $\$ 1.50$ (before July 1), $\$ 2.00$ at gate. Info \& Tickets: NOARSFEST, P.O. Box 354, Lorain, OH 44052. Directions: 146.10/70. Mobile check-in for prizes: 146.52

OHIO: Kent State Salem hamfest July 23, 1978. Main door prize: Ten-Tec \#540 transceiver. Hot air balloon, ramp for wheelchairs, free parking. Wives and children under 12 free. Recreation facilities. XYL drawing. Open 9 AM, Main drawing 3 PM. Admission $\$ 2.00$, fleamarket $\$ 1.00$, tables $\$ 5.00$. Talk-in: $146.10 / 70$. Info: W8JPG, 147.27. Milhoan Electronics, 1128 W. State St., Salem, Ohio 44460. (216) 337-9275.

ILLINOIS: The Sangamon Valley Radio Club of Springfield, Third Annual Hamfest Sunday, September 24th, Sangamon County Fairgrounds in New Berlin, 16 miles west of Springtield. Hear Hugh Vandegrift WA4WME talk on the Clipperton DX-pedition! Various exhibits, kids activities and food. Camping. First Prize - Bearcat 210; Tickets: $\$ 1.50$ advance, $\$ 2.00$ at gate. Information - Al K9QFR; Tickets - Carole WB9QWR, write C/O 1025 S. Sixth, Springfield, Illinois 62703.

INDIANA - Indianapolis Hamtest, Sunday, July 9, 6:00 AM - 4:30 PM, Marion County Fairgrounds. Commercial Exhibiting, Flea Market, Camping with hookups. Write - Indianapolis Hamfest, P.O. Box 1002, Indianapolis, IN 46206.

RHODE ISLAND OSO PARTY Two periods (GMT) Sat. July 221700 - 0500 Sun. July 23; Sun. July 231300 0100 Mon. July 24. Sponsored by the East Bay Amateur Wireless Association. R.I. Stations work other R.I. Stations and the rest of the world. Others work R.I. Stations. The same station may be worked once per band and mode. Exchange: Send RS(T), QTH, County for R.I. stations, State, Province or Country for all others. CW: 1810, 3550, 3710, 7050, 7110, 14050, 21050, 21110, 28050, 28110. Phone: $3920,7260,14300,21360,28600,50.3$, 145.1. Use of FM simplex is encouraged. (No repeaters). For more info, write: East Bay Amateur Wireless Association, P.O. Box 392, Warren, Rhode Island 02885. Include SASE for results.

MARYLAND - Hamfest, Baltimore R.A. TV Soc. Sunday, July 30. 8:00 AM - Howard County Fairgrounds. Rt. 144, 15 mi . west of Baltimore. Off 1-70@Rt. 32. Tickets \$2, Tailgating \$2, Tables - Advance \$3, Door \$4. Prizes, Flea Market, Retreshments, Contests. Talk in: 146.16/76, 147.63/03, 146.52, 52.525. XYL's \& under 12 Free. Write: BRATS, Box 5915, Baltimore, MD 21208.

PENNSYLVANIA: Two Rivers ARC 14th Annual Hamfest Juily 23. Green Valley Fire Department Fairgrounds off US Route 30 near E. McKeesport. Fiea Market. For information: Andrew Salitros, W3OFM, 2901 Stewart St., McKeesport, PA 15132.

MODEL 4431 THRULINE*
RF DIRECTIONAL WATTMETER with VARIABLE RF SIGNAL SAMPLER - BUILT IN
authorized int distributor

Websterassociates

115 BELLARMINE ROCHESTER, MI 48063 CALL TOLL FREE $800-521.2333$
IN MICHIGAN $313-3750420$

MILITARY SURPLUS WANTED

Space buys more and pays more. Highest prices ever on U.S. Military surplus. especially on Collins equipment or parts. We pay freight, Call collect now tor our high offer 201 440-8787 SPACE ELECTRONICS CO.
div. of Military Electronics Corp.

35 Ruta Court, S. Hackensack, N.J. 07606

RADIO WORLD
 CENTRAL NEW YORK'S FASTEST GROWING HAM DEALER

 Featuring - Yaesu, ICOM, Drake, Atlas, DenTron, Ten-Tec, Swan, Regency, Standard, Tempo, KLM, Hy-Gain, Mosley, Larsen, Midland, Wilson. Southwest Tech Products. We service everything we sell! Write or call for quote. YOU WON'T BE DISAPPOINTED. arma We are just a few minutes off the NYS Thruway ($1-90$). Exit 32 .

Ruint ropacrion from heit ciouid iy

If you've got a calling for far-reaching action, have we got a number for you!

Swan's 4010V: precision engineered for 40-20-15-10 meters.

With slim-line traps, this 4-band vertical offers advanced lightweight construction with heavy weight performance.

4010 V 's fine-tuned to handle 2000 PEP. With a typical VSWR of 1.5:1 at resonance.

Powerfully designed - yet powerfully simple to set up.

No-hassle installation. The 21^{\prime} vertical comes in short, easy to assemble lengths. Complete with mounting hardware. You're up and running in record time.

Expandable too. No trick at all to stretch your reach into 75 meters, with the optional Swan 75 AK Kit.

Just $\$ 79.95$ for an outstanding 4-band trap vertical, the 4010 V
(and $\$ 39.95$ for the 75 -meter addon kit), at your Swan dealer.
And by all means, use your Swan Credit Card.

305 Airport Road, Oceanside, CA 92054
Swan's continuing commitment to product improvement may affect specifications and prices without notice

BIG REGENCY FM CLOSEOUT

Don't pass up the Savings!

HR-28 $2 \mathrm{~m} . \mathrm{Fm}$ Xevr. 15 w . 12 ch w/ 94 crystals. mic \& mt. (Reg. \$229) CLOSEOUT $\$ 139.00$

HR-312 2 m FM Xcvr. 30w, 12ch T/R w/94, mic \& mt. (Reg. \$269) CLOSEOUT $\$ 169.00$ HR- 6 6m FM Xcvr. 25 w , 12 ch T/R w/52.525, mic \& mt. (Reg. \$239) CLOSEOUT $\$ 149.00$ HR-220 220 MHz FM Xcvr. 12 ch T/R w/223.5. mic \& mt. (Reg. \$239) CLOSEOUT $\$ 149.00$
HR-440 440 MHz FM Xcvr. $10 \mathrm{w}, 12 \mathrm{ch} w / 446.0$, mic \& mt. (Reg. \$349) CLOSEOUT $\$ 249.00$

AR-2 2 m FM Power Amplifier. 13.8vdc - 9 A. max 5 db power gain. 10 to 25 w input for 32 to 80 w output. (Reg. \$119)

CLOSEOUT $\$ 99.00$
HRT- 2 Basic 2 m FM Hand.Held Xcvr. 2 or Iw. 5 ch $\mathrm{w} / 94$ crystals. Whip antenna. No other accessories. (Reg. \$179)

CLOSEOUT $\$ 99.00$ HRT-2 Deluxe. As above, but includes Nicad Battery, Charger, Flexible Antenna, External Microphone, Earphone, Case and DC Cord with plug (Reg \$295)

CLOSEOUT $\$ 195.00$

All NEW - Full Warranty!

Extra crystals for $2 / 6 \mathrm{~m} \cdot \mathbf{5 5 . 0 0}$ each, 220/440 MHz - $\$ 10.00$ each. Quantities Limited - Order direct from this ad. Send Check, Money Order or use your Mastercharge or BankAmericard (VISA). Allow $\$ 5.00$ for UPS shipping charges.

Write for FREE 1978 CATALOG

AMATEUR ELECTRONIC SUPPLY ${ }^{\circledR}$
4828 West Fond du Lac Avenue Milwaukee, Wisconsin 53216 Phone (414) 442.4200 BRANCH STORES:
28940 Euclid Avenue; Wickliffe, Ohio 44092 Phone: (216) 585.7388
621 Commonwealth Ave.; Orlando, Fla. 32803 Phone: (305) 894-3238
Note: Branch Stores are set-up to handle Walk-in business or telephone orders only. They oo not have facilities to respond to written inquiries.

flea market

MONTANA: International Glacier-Waterton Hamfest July 15 and 16. Three Forks Campground, 10 miles E. of Essex, Mt. on U.S. 2. 9:00 AM MST. For information: International Glacier-Waterton Hamfest, P.O. Box 2225, Missoula, MT 59806. (406) 543-5033.
MASS: Northern Berkshire Hamfest July 8th and 9th Cummington Fair Grounds, Cummington. Free overnight camping, tech talk \& demos, dealers. Flea Market $\$ 1$ Admission $\$ 4$ with spouse $\$ 6$ Advanced $\$ 3$ and $\$ 5$. For info write: WA1ZNE Hildy Sheerin, 89 Greylock Terrace, Pittsfield, MA 01201.
OHIO: The Tusco Radio Club and Canton ARC's 4th Annual Hall of Fame Hamfest, Stark County Fairgrounds, Canton. Free display room for manufacturers and distributors of electronic equipment. Regular gate charge. Free camping. Write: Max Lebold, WABSHP, Chairman, Hall of Fame Hamfest, Box 3, Sandyville, OH 44671. Phone: Business 216-821-5740 or home 216-866-3714.
MICHIGAN: 30th Annual U.P. Hamfest, Saturday, July 29 and Sunday, July 30. Dickinson County Armory, on M-95 Kingsford. 9:00 AM. Tickets: $\$ 2.50$ advance - $\$ 3.00$ door. Saturday banquet $\$ 6.50$. Reservations by July 1 . Prizes galore. Talk in 146.25/85 and 3922. For information write UPHAMFEST 78, Box 2056, Kingsford, M1 49801.

CORA HAM HOLIDAY ' 78 OKLAHOMA: Central Oklahoma Radio Amateurs will present Ham Holiday '78, July 28-29-30. Location: Lincoln Plaza Forum, 4345 North Lincoln Boulevard, Oklahoma City. Pre-registration before July $14 \$ 3.00, \$ 400$ at door. Non-commercial flea market tables FREE. Commercial Exhibitors contact K5MB, (405) 787-9545 or 787.9292. Many prizes, special pre-registration prize. Mail pre-registrations to HAM HOLIDAY '78, P.O. Box 14604, Oklahoma City, OK 73113.
michigan: 3rd annual Straits Area Radio Club Swap and Shop, Saturday, August 5. Emmet County Fairgrounds, Charlevoix Avenue, Petoskey. 9:00 AM 3:00 PM. Talk-in 146.52. Admission: $\$ 1.50$. Food, prizes. Campsites. SARC - W8IZS, Box 416, Pelston, M1 49769.
8TH S.A.R.T.G. WORLD-WIDE RTTY CONTEST 1978 We have the great pleasure to invite you to join the 8th W/W RTTY Contest run by the Scandinavian Amateur Radio Teletype Group. 1: $0000-0800$ GMT Sat. Aug. 19; 2: $1600-2400$ GMT Sat. Aug. 19; 3: 0800-1600 GMT Sun. Aug. 20. Use all bands $3,5,7,14,21,28 \mathrm{MHz}$. a) Single Operator. b) Multi-operator, single transmitter. c) SWL's. RST and QSO nr. To the top stations in each class, country, W/K, VEVO and VK call district. For more information, write: OZ2GJ C.J. Jensen, Meisnersgade 5, 8900 Randers, Denmark.

THE ICHN-MARAC 10th ANNUAL CONVENTION will be held July 6, 7 and 8 at the Holiday Inn 4545 N. Lindburg Blvd., Bridgeton, MO. This convention will involve Amateur Radio operators from every part of the United States and several DX stations. All sharing a common interest in county hunting and mobile operation. The election of MARAC officers, meetings, workshops and some most important social activities will highlight this years convention. Of course there will be prizes, and awards to add spice to the festivities. Those interested in attending this years convention can send for information to Convention Director Jim Glascock WQFF, 3416 Manhatton Ave., St. Louis, MO 63143.

19TH ANNUAL NEW JERSEY OSO PARTY - July 29. 31. Contest is from 2000 UTC Saturday, July 29 to 0700 UTC Sunday, July 30 and from 1300 UTC Sunday, July 30 to 0200 UTC Monday, July 31. For details on contest write: Englewood Amateur Radio Association, Inc., Post Office Box 528, Englewood, New Jersey 07631

Stolen Equipment

STOLEN FROM AIRLINE BAGGAGE, probably either in Minneapolis/St. Paul or San Francisco, Wilson WE-800 s/n 12521811 with 10 white "no brand" Ni -Cad batteries inside, flex antenna with UHF ell connector and UHF to BNC connector. Also homebuilt battery charger with 723 IC. Mitt Nodacker, WA7TFE, Box 2632, Pocatello, ID 83201.

STOLEN EQUIPMENT: 1. KLM 160 watt amplifier, no I.D. 2. Black Heath 2036 with Micoder and several obvious modifications: hi-low power selector on squelch knob, variable power on internal potentiometer, RCA plug replaced with SO-239, Social Security No. 350-30-1717 etched in foil on transmitter board. Darrel Dorsett, K9JKZ, Kankakee Area Career Center, Rt. 2, Road 100-W, Bourbonnais, IL 60914.

COLLINS \& MORE Ham Gear

Collins 180S1, Antenna tuner
Collins $5114 \mathrm{w} / \mathrm{SSB}$ Mod, like new $\$ 325$
$\$ 695$ Collins 312B4, Sta. Cntl., rd., exc. Collins 312B5, Vfo Console, vy gd $\$ 250$ Collins $312 \mathrm{B5}$, Vfo Console, vy gd $\$ 495$

Colins 32S3, Transmitter, rnd., exc. Collins 75 S 3 , Ham receiver, vy gd Collins 75 S 3 B, Ham receiver, vy gd Collins 75A4, Ham receiver, vy gd Collins $51 \mathrm{~S} 1,2-30 \mathrm{MHz}$ rcvr Special Collins R-388/51J3 receiver, vy gd Harmmarlund SP-600JX, $.5-50 \mathrm{MHz}$

Collins CP-1 Crystal Pack
FREDERICKS:
Model 1200 FSK demodulator exc
Model 1250 vert. disp. unit, exc.
Model 1500 HF receiver, exc.
Model 1550 synthesizer, exc Racal $6217 \mathrm{E}, .5-30 \mathrm{MHz}$ receiver Special New Ret

Test Gear

Tektronix 422 portable scope, vy gd $\$ 795$ Tektronix 564 storage scope w/2 plug-ins \& probes, vy gd
Blue M temp. cont. water bath SPB-103 Blue M temp. cont. water bath SPB-103
C1, new C1, new
Measurements Mod. 65B, LF sig. gen. Measurements 260A Q-meter, exc. Measurements Model $80,2-400 \mathrm{MHz} \mathbf{~ s i g}$. gen.
Tektronix 585 A , scope, $80-\mathrm{MHz}$ bandwidth
We stock good, used equipment from Collins, Drake, Heath and other manufacturers. Hundreds of test items also available. Call for specific requirements, or
write for free catalog.
dames communication systems 201-998-4256
10 SCHUYLER AVENUE NORTH ARLINGTON, N. J. 07032

All equipment sold checked and realigned

PCP TYPE: $\mathrm{A}=$

SEE POPULAR ELECTRONICS FEB '78 ISSUE!

 (Kits Available)
Small Pkg. 6pcs 4×6 \$5.49
Med. Pkg. 4 pcs $6 \times 9 \quad \$ 6.95$
Large Pkg. 3pcs $9 \times 12 \$ 7.95$
paxie cisail mesucts ca
to sor cisa

TEXAS TOWERS offers ware-house-direct sales of amateut radio antenna system products - shipping directly to hams and clubs nationwide. July Features America's best tower buy, Consolidated HD-16, 60 foet with top and base section $\$ 215$ FOB, HD-18 (rated at 66% of $\mathrm{HD}-16$ capacity) 60 toot $\$ 175$ FOB, heavy-duty guy kit for 60° towers $\$ 39.50$. New ham radio product: crank-up guyed masts, rated for $3 \mathrm{sq} . \mathrm{ft}$. antenna, $40^{\prime} \$ 74.50,50^{\prime} \$ 84.50$ FOB. TOWER G00DIES: $3 / 16^{\circ}$ Galvanized aircratt guy cable $\$ 8 / 100^{\circ}$ $\$ 75 / 1000^{\circ}, 1 / 4^{\prime \prime}$ EHS guy cable $\$ 12 / 100^{\circ}-\$ 99 / 1000^{\prime}$ $3 / 16^{\prime \prime}$ plated cable clamps $30 \mathrm{~g}-\$ 28 / 100 ; 1 / 4^{\prime \prime}$ cable clamps $42 \mathrm{~g}-\$ 40 / 100 ; 1 / 4^{n}$ Preformed deadends (guy wrap) $\$ 1.65$: Heavy duty guy insulators $\$ 1.10: 3 / 8^{\prime \prime}$ eye/jaw galvanized turnbuckies $\$ 5.50,1 / 2^{\prime \prime}$ turnbuckies $\$ 6.75$; FOB . 5000 ft reels of guy cable $-3 / 16^{\prime \prime} \$ 300,1 / 4^{\prime \prime} \$ 450$ FOB. CDE ROTOAS CD-44 \$99, HAM III \$118. Tail Twister \$212, all postpaid in Continental U.S. CLUBS/ GROUPS: 25 sections HD-16 \$799, treinht prepaid most states east of Rockies Send SASE for our latest price list and product information.

Write TEXAS TOWERS Gerald Williamson, K5GW 113 Starlite Drive Plano, TX 75074 or call 214-423-2376 nites/weekends

Now - the Industry's First Truly SUPER KEYBOARD

INFO-TECH M-300 TRI-MODE KEYBOARD

A microprocessor controlled keyboard that generates: Morse, RTTY, \& ASCII.

Morse Features:

- 4 to 125 W.P.M. in 1 W.P.M. increments.
- 9 adjustable weight levels
- relay keying
- sidetone with tone and level adjustments
- special keys: AS, BK, BT, AR, SK, CQ, DE

RTTY Features:

- 4 speeds
- 2 shifts (170 \& 850 hz)
- built in AFSK
- built in CWID
- built in RY generation

ASCII Features:

- 110 \& 300 Baud
- 2 shifts ($170 \& 850 \mathrm{hz}$)

Other Features:

- Built in quick brown for generator on all modes
- Automatic CR/LF
- 700 Character Running Buffer
- 10 recallable, user programmable message memories of 120 characters each
- CQ \& DE special keys on all modes
- Keyboard control of all functions except shift \& buffer control
- 4 row keyboard eliminates figures/letters shifting on RTTY
- Many more features.

Best of all, only $\$ 425.00$ F.O.B. Factory

Order Direct or From These Dealers

Advanced Electronics 1249 W. King St.
Cocoa, Florida 32922
305-631-1190
Cohoon Amateur Supply
Highway 475
Trenton, Ky. 42286
Emona Electronics
661 George St.
Sidney, N.S.W. Australia 212-4815
Germantown Amateur Supply
3202 Summer Ave. Memphis, Tenn. 38112
800-238-6168

Ham Radio Center 8342 Olive Bivd.
St. Louis, Mo. 63132
800-325-3636
G.Hutter-Kunststofftechnik

Postfach 2129
D-8990 Lindau (B)
West Germany
(Dealer for Germany, Austria, Switzeriand)
International Commercial Sales
14 Pleasant View Drive
Annawan, III. 61234
309-935-6567
Marcucci - SPA
Via F, LLI-Bronzetti
37-20129
Milan, Italy

Mid Com Electronics, Inc.
2506 South Brentwood Blvd.
St. Louis, Mo. 63144
314-961-9990
N\& G Distributors
4545 N.W. 7th St.
Miami, Florida 33126
305-448-7530
Universal Amateur Radio, Inc.
1280 Aida Drive
Reynoldsburg, Ohio 43068
614-866-4267

Visa \& Master-Charge Accepted

REPEATER USERS - Stay in Touch - with DSI

UNIVERSAL
 TOUCH-TONE ${ }^{\circledR}$
 ENCODERS

The Data Signal TTP Series of keyboard encoders is used to generate the standard 12 or 16 DTMF digits. The encoders provide fully automatic transmitter keying and feature a delayed Transmit Ready light, an interdigit timer, and a built in audio monitor, Features also include all solid-state, crysta controlled, digitally-synthesized tones and an optional internal mount Automatic Number Identifier (ANI).
TTP-1 (12-digit)
$\$ 59.00$
$\$ 69.00$ TTP-2 (16-digit)
$\$ 69.00$
MODEL DTM - Completely self-contained miniature encoder for hand-held portables. Only $5 / 16^{\prime \prime}$ thick. Three wire connection. Automatic PTT keying optional. With your choice of keyboards. Price DTM - $\$ 39.00$, DTM-PTT - $\$ 49.00$,
-Touch-Tone is a registered trade name of AT\&T.

DTM

SUB-MINIATURE ENCODERS

MODEL SME - Smallest available Touch Tone Encoder. Thin, only . $05^{\prime \prime}$ thick, keyboard mounts directly to front of handheld portable, while sub-miniature tone module fits inside. This keyboard allows use of battery chargers. Price $\$ 29.00$, with your choice of keyboards. SME (less keyboard) $\mathbf{\$ 2 4 . 0 0}$

AUTOPATCH - Ready to go!

A Complete Autopatch facility that requires only a repeater and a telephone line. Features include single-digit access/ adjustable amplifiers for transmitter and telephone audio and tone-burst transponder for acknowledgement of patch dis-tone-burs
RAP-200 P. C. Card
$\$ 199.50$
RAP-200R Rack Mount
$\$ 249.50$

1

2403 COMMERCE LANE
Be sure to ask about our new keyers and CW ALBANY, GEORGIA 31707, 912-883-4703 memory for CW buffs.

ETCETERA, ETCETERA!

SOMETHING TO MAKE LIFE EASY: We carry AP test clips for both 14 pin and 16 pin ICs. Gold plated wiping action; sturdy pins for scope probes; als
Model TC-14 (14 pin): 54.50 ; Model TC-16 (16 pin): $\$ 4.75$. We also carry the A.C.E 201 K breadboarding kit (with 1.032 solderless plug.in tie point capacity) kit (wim $\mathbf{~ t o t ~ o n l y ~} \mathbf{\$ 2 4 . 9 5}$.

JUST IN TIME - NATIONAL'S 12V CLOCK! $\$ 16.50$ or $31 \$ 46$
The MA1003 clock module is a complete unit . . just put it in a package and you're on your way. A built-in time base, along with 12 V DC operation, make this unit a natural for no-hassle car clock installations. Includes thuorescent readouts (not LEDs) for easy visibility under adverse ambient lighting conditions.

SENTRY CRYSTALS . . . these are series mode, fundamental, wire leads, HC18 package, $\$ 4.95$ for fundarnental, wire leads, $\mathrm{HC18}$ package, $\$ 4.95 \mathrm{MH}$
any of the following: $4 \mathrm{MHz}, 5 \mathrm{MHz}, 8 \mathrm{MHz}, 9 \mathrm{MHz}$, any of the $10 \mathrm{MHz}, 12 \mathrm{MHz}, 15 \mathrm{MHz}, 18 \mathrm{MHz}, 20 \mathrm{MHz}$.

OTHER CRYSTALS: 1.8432 MHz Baud rate generator crystal; HC6 package with wire leads, generator crystal, HC6 package with wire leads,
$\$ 5.95 .500 \mathrm{KHz}$, series mode, fundamental, wire leads, HC6/U package, 54.95 . 1 MHz , series mode, leads, HCbil, wire leads, HC8/U package, $\$ 5.95$. 2 MHz , series mode, tundamental, wire leads, HC6/U package, $\mathbf{\$ 5 . 9 0}$

CW AUDIO FILTER: Project IITA. Originally designed as a titer for electronic music applications, our managet Reo Pratt (who is also a ham) reports that his unit gives excelient results as a CW filter with variable range and notch width. Kit form only, \$10.50.

SEMICONDUCTORS FOR THE

 EXPERIMENTERLM373 AM/FM/SSB IF detector (DIP) $\quad \mathbf{\$ 1 . 9 5}$ LM566 Square/triangle oseiliator (minidip) LM567 PLL tone decoder (minidip)
FET-1 Dual NJFET, VHFIUHF amp. package
FET. 2 NJFET VHF/UHF amp similar to $3 / \$ 1$
$\$ 1.75$
51.85
$\$ 1.75$
$\$ 8.75$
$\$ 3$
$\$ 1 / 75$
$3 / 51$

G103 Power transistor (equiv 2N3055)
$\$ 0.75$
RELAY SPECIAL: Beautiful little Electrol reed relays. DPST, N.O., 12 V coil; 1^{1} mounting center with $1 / 10^{-}$spaced leads. Now on special at $2 / 151.50$

ELECTRIC MOTOR SPECIAL: From time to time we luck out and pick up a True Gizmo. This time, we're offering some of those small DC motors (run on about 1 to SV DC) you find toys, games, window displays, electric toothbrushes, etc. Now
theyre on special at $10 / 52.95$..how can you go wrong?
TRANSISTOR SPECIAL: NPN, house. numbered TO-92 package replaces 2 N3904 and similar. Min Beta 250, goes up to 500, reasonable saturation voltage. Priced at 10/\$1

YES, WE HAVE COMPONENTS . . not just some components, either, but a truly wide-range selection. From resistors to sophisticated ICs to experimenter and hobbyist items, before you do any shopping check with us . . . you'll be glad you did.

TERMS: Piease aliow up to 5% tor shipping: excess refunded. Add $\$ 1$ handiling for orders under $\$ 10$ Cail res add tax. COD OK With street address for UPS For VIISA. Mastercharge ${ }^{4}$ orders
call our order desk (24 hra) at (41515$) 562$-0836. Prices pood through call our ordet desk (24 hrsi)
cover month of magazine.

 SPECTRONICS, inc.

1009 Garfield St., Oak Park, Illinois • 60304
(312) 848-6777

SELECTED SPECTRONICS VALUES!

\$1000 QUALITY CRYSTALS FOR 2 METERS and 220 MHz

PER PAIR

2-METER CRYSTALS

In Stock for: ICOM IC215, IC22A, IC22, IC21 and IC21A.
Wilson: Model 1402 and 1405.
220 MHz CRYSTALS
In Stock for: Midland 509, (Cobra model 200, Clegg 220 unit.)
Wilson: Model 2202.

ORDERING INFORMATION

1. State Brand and model number of transceiver
2. State frequency pair wanted, indicating transmit frequency first, then receive.

We are now stocking crystals for most 2 -meter pairs and the most popular 220 MHz pairs. If you need crystals for use in any radios listed below, we can normally ship from stock the same day your order is received. These are quality crystals, built to exacting specifications to provide trouble-free operation.

146 MHz PAIRS
Transmit/Receive 146.01/146.61 146.04/146.64 146.07/146.67 $146.10 / 146.70$ $146.13 / 146.73$ 146.16/146.76 $146.19 / 146.79$ 146.22/146.82* $146.25 / 146.85$ $146.28 / 146.88^{*}$ $146.31 / 146.91$ $146.34 / 146.94$ $146.34 / 146.94^{*}$ $146.46 / 146.46$ $146.49 / 146.49$ $146.55 / 146.55$
Note: Items marked * stocked for Wilson only: + stocked for ICOM only

147 MHz PAIRS
Transmit\&Receive
147.99/147.39 $147.96 / 147.36$ $147.93 / 147.33$ $147.87 / 147.27$ $147.84 / 147.24$ $147.81 / 147.21$ $147.78 / 147.18$ $147.75 / 147.15$ 147.72/147.12 $147.69 / 147.09$ 147.66/147.06 147.63/147.03147.30/147.30 $147.42 / 147.42$. $147.48 / 147.48$. $147.51 / 147.51+$ $147.54 / 147.54$ $147.57 / 147.57$.

220 MHz CRYSTAL PAIRS Transmit/Receive $222.22 / 223.82 \mathrm{MHz}$ $222.34 / 223.94 \mathrm{MHz}$ $222.50 / 224.10 \mathrm{MHz}$ $222.54 / 224.14 \mathrm{MHz}$ $222.94 / 224.54 \mathrm{MHz}$ $223.06 / 224.66 \mathrm{MHz}$ $223.18 / 224.78 \mathrm{MHz}$ $223.22 / 224.82 \mathrm{MHz}$ $223.26 / 224.86 \mathrm{MHz}$ $223.26 / 224.86 \mathrm{MHz}$ $223.26 / 224.86 \mathrm{MHz}$ $223.30 / 224.90 \mathrm{MHz}$ $223.34 / 224.94 \mathrm{MHz}$ $223.38 / 224.98 \mathrm{MHz}$

SIMPLEX

Transmit/Receive
$223.46 / 22346 \mathrm{MHz}$ $22354 / 22354 \mathrm{MHz}$

THE BIG DUMMY
$\$ 250 \quad \begin{gathered}\text { Full } 1 \mathrm{~kW} \\ \text { Dummy Load }\end{gathered}$
Low-cost dummy load covers the full range from 1.8 to 300 MHz with flat SWR. Vented container; comes with one gallon of high quality industrial-grade, long-life, transformer-type cooling oil. Power capability: 1 kW continuous carrier, 10 minutes; 2 kW PEP, 20 minutes. Duty cycle: 50%. Impedance: 50 ohms non-inductive. VSWR: 1.05:1 or better. Size: $6-5 / 8^{\prime \prime}$ dia. $\times 71 / 2^{\prime \prime}$ high. Wt: 10 lbs.

MOSTEK AUTO-PATCH TONE GENERATOR

Economical DTMF generating system combines CMOS logic, D-to-A converters, an operational amplifier and bipolar transistors on a
single IC chip Uses inexpensive 35 MHz crystal. Dual tones mix single IC chip. Uses inexpensive 3.58 MHz crystal. Dual tones mix internally. Tones are 14 -step synthesized sine waves for low distortion. Compatible with Digitran* keyboard. Common key function
outputs. For $5-10 \mathrm{~V}$ Model MK 5086. Interfaces to either a 2 -of-8 keyboard or other electronic systems

A star value at the Dayton Hamvention incorporates the ideal "lactile leel" leaving no doubt that contact has been made These new keyboards are manutaclured by the Digitran Company and ate furnished with instructions for combining with a Mostek or Motorola chip and a ctystal (plus several small components) to become a Tone Encodet
12 Key (2 or 7 Matrix) $2 \times 27 \times 5 / 16 \quad \$ 8.00$ 12 Key (2017 Mattx) $2 \times 27 \times 5 / 16$ 16 Key (20t 8 Mattrx) $25^{\prime \prime} \times 27^{\prime \prime} \times 5 / 16^{\prime \prime}$

WHEN ORDERING FROM
 SPECTRONICS, REMEMBER:

C.O.D. ORDERS require payment to be made by cash, certified check, or money order only. We will gladly quote you the exact amount that the delivery. man will ask for.
SHIPPING CHARGES must be added to your order.
ALL ORDERS sent F.O.B. Oak Park, Illinois.
 FAMOUS HAM-KEYS . . . POPULAR FAVORITES FOR CW!

Model HK-1 Dual-lever squeeze paddle. Can be used with any electronic keyer. Heavy base has non-slip rubber feet. Paddles are reversible for wide-finger or close-finger spacing
$\$ 29.95$
Model HK-2. Same as HK-1 less base. For incorporation in own keyer
$\$ 19.95$
Model HK-3. Deluxe straight key. Heavy base so there's no need to attach to desk. Velvet smooth action $\mathbf{\$ 1 6 . 9 5}$
Model HK-3A. Same as HK-3, less base $\$ 9.95$
Navy type knob only . \$2.75
Model HK-4. Combines models HK-1 and HK-3. On heavy base with non-slip rubber feet $\$ 44.95$
Base only, with rubber feet. Heavy \$12.00
Terminals. Red or black
Each $\$.75$

New!

Please don't squeeze the
Feather Touch.

only $\$ 69.95$

Kantronics Feather Touch keyer

Why keep wrestling with the mechanics in your electronic keyer?

The Kantronics Feather Touch keyer has moved the "state of the-art" in electronic keving years ahead! By engineering a truly electronic, electronic keyer. we've eliminated the most cumbersome part of sending Morse code: the adjusting and readjusting of mechanical connections.

The Feather Touch responds to your lightest touch, freeing you from slapping, sloshing or squeezing. Order your Feather Touch now, or write for information and a list of authorized dealers.

At Kantronics, we think sending Morse code should be an art, not an effort.

Clegg FM-28 Now only \$329.95! ${ }^{*}$

Thousands of 2 Meter FM'ers have made this Clegg FM-28 the most popular transceiver in many areas of the country. Compare these specifications and you can see why! $144-148 \mathrm{MHz}$ coverage on both receive and transmit 25 Watts output Digitally synthesized Non-standard repeater splits 5 KHz steps
Modular construction
Compact, rugged design
. 25 uv receiver sensitivity Large "S" meter
Bright 6 digit frequency display
Super selectivity with 15 poles IF fittering plus 5 pole front end filter
Multi-purpose accessory receptacle

ORDER NOW AND SAVE!
Because Clegg wants to give this FM-28 extra exposure, here's a special, limited-time offer. Place your order today and you can purchase this exceptional transceiver at $\$ 30.00$ off the regular low price. That's right-you can own this FM-28 for only \$329.95!*

DON'T HESITATE!

Call Clegg today for full details on this and all the other advanced Clegg products. Toll-free 1 -800-233-0250. In Pennsylvania call collect 717-2997221.

Clegg Communications Corp., 1911 Old Homestead Lane, Greenfield Industrial Park East, Lanc. PA 17601.

TEST IT YOURSELF AT OUR RISK!

Try this FM-28 in your own shack for ten days. If you're not completely satisfied with this superior transceiver, simply return it for full refund of purchase price.

Cleg9
FOR RELIABILITY

*SPECIAL PRICE OFFER EXPIRES JULY 31. ACT NOW! CALL 1 (800) 233-0250 TODAY

Ham Radio's guide to help you find your local

Alabama

LONGS ELECTRONICS

2808 TH AVENUE SOUTH
BIRMINGHAM, AL 35202
800-633-3410
Call us Toll Free to place your order

Alaska

RELIABLE ELECTRONICS
3306 COPE STREET
ANCHORAGE, AK 99503
907-279-5100
Kenwood, Yaesu, DenTron, Wilson, Atlas, ICOM, Ron, Tri-Ex.

Arizona

HAM SHACK

4506 A NORTH 16TH STREET
PHOENIX, AZ 85016
602-279-HAMS
Serving all amateurs from beginner to expert.

RYDER ELECTRONICS

5520 NORTH TH AVENUE
NORTH TH AVE. SHOPPING CTR. PHOENIX, AZ 85013
602-249-3739
We service what we sell.
POWER COMMUNICATIONS
6012 NORTH 27th AVE.
PHOENIX, AZ 85017
602-242-6030
Arizona's \#1 Ham Store.
Kenwood, Drake, ICOM \& more.

USA 599 AMATEUR RADIO CENTER 11 SOUTH MORRIS STREET MESA, AZ 85202
602.833.8051

Eimac Distributor. New \& Used Equipment, Parts - Surplus too!

California

C \& A ELECTRONIC ENTERPRISES 2529 EAST CARSON ST.
P. O. BOX 5232

CARSON, CA 90745
213-834-5868
Not the Biggest, but the Best since 1962.

HAM RADIO OUTLET

999 HOWARD AVENUE
BURLINGAME, CA 94010 415-342-5757
Visit our stores in Van Nus and Anaheim.

QUEMENT ELECTRONICS

1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio Amateurs since 1933.

TOWER ELECTRONICS CORP.
24001 ALICIA PARKWAY
MISSION VIEJO, CA 92675
714.768-8900

Authorized Yaesu Sales \& Service. Mail orders welcome.

Colorado

MILE-HI COMMUNICATIONS, INC. 1970 SOUTH NAVAJO
DENVER, CO 80223
303-936.7108
Rocky Mountain's newest ham store. Lee Tingle KøLT.

Connecticut

AUDIOTRONICS INC.
18 ISAAC STREET
NORWALK, CT 06850
203-838-4877
The Northeast's fastest growing Ham Dept. dedicated to service.

Florida

ALL ELECTRONICS, INC. 1800-B DREW ST.
CLEARWATER, FL 33515
813-461-HAMS
West Coast's only full service
Amateur Radio Store.
AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

MARCS

CENTRAL EQUIPMENT CO., INC.
18451 W. DIXIE HIGHWAY
NORTH MIAMI BEACH, FL 33160 305-932-1818
See Marc, WD4AAS, for complete Amateur Sales \& Service.

RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813.535-1416

West coast's only dealer:
Drake, Icon, Cushcraft, Hustler.

Illinois

ERICKSON COMMUNICATIONS, INC. 5935 NORTH MILWAUKEE AVE.
CHICAGO, IL 60646
312-631-5181
Hours: 9:30-5:30 Mon, Tues, Wed, Fri; 9:30-9:00 Thurs; 9:00-3:00 Sat.

KLAUS RADIO, INC.
8400 NORTH PIONEER PARKWAY PEORIA, IL 61614
309-691.4840
Let us quote your Amateur needs.
SPECTRONICS, INC.
1009 GARFIELD STREET
OAK PARK, IL 60304
312.848-6777

Chicagoland's Amateur Radio leader.

Indiana

HOOSIER ELECTRONICS, INC.
P. O. BOX 2001

TERR HAUTE, IN 47802
812.238-1456

Ham Headquarters of the Midwest.
Store in Meadows Shopping Center.

RYDER ELECTRONICS

GEORGETOWN NORTH
SHOPPING CENTER
2810 MAPLECREST RD.
FORT WAYNE, IN 46815
219-484-4946
We service what we sell. 10-9 T,
TH, F; $10-5 \mathrm{~W}$, SAT.

Iowa

BOB SMITH ELECTRONICS
RFD \#3, HIGHWAY 169 and 7
FT. DODGE, IA 50501
515-576-3886
For an EZ. deal.

Kansas

ASSOCIATED RADIO

8012 CONGER P. O. B. 4327
OVERLAND PARK, KS 66204
913-381-5901
Amateur Radio's Top Dealer.
Buy - Sell - Trade

Kentucky
COHOON AMATEUR SUPPLY
HIGHWAY, 475
TRENTON, KY 42286
$502-886-4535$
Yaesu, Ten-Tec, Tempo, DenTron.
Our service is the BEST.

Maryland
COMM CENTER, INC.
9624 FT. MEADE ROAD
LAUREL PLAZA RT. 198
LAUREL, MD 20810
301-792-0600
New \& Used Amateur Equipment. Wilson, Ten-Tec, R. L. Drake, Tempo

PROFESSIONAL

ELECTRONICS CO., INC.
1710 JOAN AVENUE
BALTIMORE, MD 21234
301-661-2123
A professional place for amateurs. Service-sales-design.

Massachusetts

TUFTS RADIO ELECTRONICS
209 MYSTIC AVENUE
MEDFORD, MA 02155
617-395-8280
New England's friendliest ham store.

Michigan

ELECTRONIC DISTRIBUTORS 1960 PECK STREET MUSKEGON, MI 49441 616.726-3196

Dealer for all major amateur radio product lines.
RADIO SUPPLY \& ENGINEERING 1207 WEST 14 MILE ROAD CLAWSON, MI 48017
313-435-5660
10001 Chalmers, Detroit, MI 48213, 313-371-9050.

Minnesota

ELECTRONIC CENTER, INC. 127 THIRD AVENUE NORTH MINNEAPOLIS, MN 55401 612-371-5240
ECI is still your best buy.

PAL ELECTRONICS INC.

3452 FREMONT AVE. NORTH MINNEAPOLIS, MN 55412 612-521-4662
The Midwest's Fastest Growing Ham Dealer.

Missouri

MIDCOM ELECTRONICS, INC.
2506 SO. BRENTWOOD BLVD.
ST. LOUIS, MO 63144
314.961-9990

At Midcom you can try before you buy!

Nebraska

COMMUNICATIONS CENTER, INC.
443 NORTH 48 ST.
LINCOLN, NE 68504
800-228-4097
Kenwood, Yaesu, Drake and more at discount prices.

New Hampshire

EVANS RADIO, INC.
BOX 893, RT. 3A BOW JUNCTION CONCORD, NH 03301 603-224-9961
Icom, DenTron \& Yaesu dealer.
We service what we sell.

New Jersey

ATKINSON \& SMITH, INC.
17 LEWIS ST.
EATONTOWN, NJ 07724
201-542-2447
Ham supplies since " 55 ".

RADIOS UNLIMITED

1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
New Jersey's newest
complete Amateur Radio center

THE BARGAIN BROTHERS
216 SCOTCH ROAD
GLEN ROC SHOPPING CTR.
WEST TRENTON, NJ 06828
609-883-2050
A million parts - lowest prices
anywhere. Call us!

New Mexico

ELECTRONIC MODULE

601 N. TURNER
HOBBS, NM 88240
505-397-3012
Yaesu, Kenwood, Swan, DenTron, Tempo, Atlas, Wilson, Cushcraft

New York

ADIRONDACK RADIO SUPPLY, INC. 185 W. MAIN STREET AMSTERDAM, NY 12010 518-842-8350
Yaesu dealer for the Northeast.
GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK, NY 10017
212-682-3869
Drake, Atlas, Ten-Tec, Midland, Hy-Gain, Mosley in stock

RADIO WORLD

ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
315-337-2622
New \& Used ham equipment.
See Warren K2IXN or Bob WA2MSH.

Ohio

AMATEUR RADIO

SALES \& SERVICE INC.
2187 E. LIVINGSTON AVE.
COLUMBUS, OH 43209
614-236-1625
Antennas for all services.
UNIVERSAL AMATEUR RADIO, INC. 1280 AIDA DRIVE
REYNOLDSBURG, (COLUMBUS) OH 43068
614-866-HAMS
Drake, Yaesu, Ten-Tec, KDK, Wilson, DenTron, Tempo, Sigma.

Oklahoma

RADIO STORE, INC.

2102 SOUTHWEST 59th ST.
(AT 59th \& S. PENNSYLVANIA)
OKLAHOMA CITY, OK 73119
405-682-2929
New and used equipment parts and supply.

Oregon

PORTLAND RADIO SUPPLY CO.
1234 S.W. STARK STREET
PORTLAND, OREGON 97205
503-228-8647
Second location, 1133 S. Riverside Avenue, Medford, OR 97501.

Pennsylvania

[^11]
H4RH

ELECTRONIC EXCHANGE
136 N. MAIN STREET SOUDERTON, PA 18964 215-723-1200
New \& Used Amateur Radio sales and service.
"HAM" BUERGER, INC.
68 N . YORK ROAD
WILLOW GROVE, PA 19090 215-659-5900
Delaware Valley's Fastest Growing
Amateur Radio Store
HAMTRONICS, DIV. OF
TREVOSE ELECT.
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same location for 25 years.

Tennessee

GERMANTOWN AMATEUR SUPPLY
3203 SUMMER AVE.
MEMPHIS, TN 38112
800-238.6168
No monkey business. Call
Toll Free.

Texas

AGL ELECTRONICS
3068 FOREST LANE, SUITE 309
DALLAS, TX 75234
214-241-6414 (within Texas)
Out-of-State, Call our toll-free number 800-527-7418.

HARDIN ELECTRONICS

5635 E. ROSEDALE
FT. WORTH, TX 76112
817-461-9761
Your Full Line Authorized
Yaesu Dealer.

Wisconsin

AMATEUR

ELECTRONIC SUPPLY, INC.
4828 WEST FOND du LAC AVENUE MILWAUKEE, WI 53216
414-444-4200
Open Mon \& Fri 9.9, Tues, Wed,
Thurs, 9-5:30, Sat, 9-3.

Washington

AMATEUR RADIO SUPPLY CO.
6213 13TH AVENUE SOUTH
SEATTLE, WA 98108
206.767-3222

First in Ham Radio in Washington Northwest Bird Distributor

ALL-MODE VHF amplifiers

FOR BASE STATION \& REPEATER USE

MODEL	INPUT	OUTPUT	PRICE
V70	$10-20 \mathrm{~W}$	$70-90 \mathrm{~W}$	$\$ 298$
V71	1.5 W	$60-70 \mathrm{~W}$	$\$ 329$
V130	$25-40 \mathrm{~W}$	$110-130 \mathrm{~W}$	$\$ 389$
V131	1.5 W	$110-130 \mathrm{~W}$	$\$ 419$
V135	$5-10 \mathrm{~W}$	$110-130 \mathrm{~W}$	$\$ 419$
V180	$8-15 \mathrm{~W}$	$180-200 \mathrm{~W}$	$\$ 525$
Universal 19			
Rack Mount		$\$ 25$	

All units: Harmonics exceed -60 dB specification of FCC R\&O 20777

ㅎ $143-149 \mathrm{MHz}$ No Tuning
$\therefore 115$ or 230 V AC
\& AM - FM - CW - SSB
: 60 dB Spurious
Low Harmonics
t. Fully Protected Output
\& Heavy Duty
ti Internal T/R Switch
fr No Power Supply Needed
\& U.S. Manufactured
: Illuminated Panel Meter
\& 19"Rack Panel Option
立 $+13.5 \mathrm{~V} / 3 \mathrm{Amp}$ Socket
台 Size 8-1/2 $13 \times 7^{\prime \prime} \mathrm{H}$
FCC type accepted models under Parts 89, 91, and 93 available.
Only two things are needed to put this power house on the air with your handy-talky or mobile transceiver: a two foot piece of coaxial cable and a 115 or 230 volt AC outlet. That's all. You do not need anything else. The mobile transceiver can be powered directly from the accessory socket located in the rear panel of the RFPL amplifier. It puts out +13.5 volts at 3 amperes. This is sufficient for powering most 15 watt transceivers.
u. DEALER INQUIRIES INVITED

VISA

RF POWER LABS, INC.

POWER 11013.118 th Place N.E * Kirkland, Washington 98033 - Telephone (206) 822-1251 - TELEX No. 32-1042 LABS

FACSIMILE

COPY SATELLITE, PHOTOS, WEATHER MAPS, PRESS!

The Fax Are Clear - on our full size (18-1/2" wide) recorders. These commercial-military units now available at surplus prices. Learn how to copy with our FREE Fax Guide. ATLANTIC SURPLUS SALES

BROOKLYN, N.Y. 11224

Q.D communcatoons, INC.

THE BEST of BOTH WORLDS

Open Tuesday-Friday 10-6; Saturday 12.4
DRAKE 211 NORTH MAIN STREET HORSEHEADS, N. Y. 14845

PHONE: 607.739-0187

1N914	100 v	10 mA	.05
1N4005	600 v	1 A	.08
1N4007	1000 v	1 A	.15
1N4148	75 v	10 mA	.05
1N4733	5.1 v	1 W Zener	.25
1N753A	6.2 v	500 mW Zener	.25
1N758A	10 v	".	.25
1N759A	12 v	$"$.25
1N5243	13 v	$\prime \prime$.25
1N5244B	14 v	$\prime \prime$.25
1N5245B	15 v	$\prime \prime$.25

SOCKETS/BRIDGES

8-pin	pcb	.20	ww	.35
14 -pin	pcb	.20	ww	.40
16 -pin	pcb	.20	ww	.40
18 -pin	pcb	.25	ww	.75
22 -pin	pcb	35	ww	.95
24 -pin	pcb	.35	ww	.95
28 -pin	pcb	.45	ww	1.25
40 -pin	pcb	.50	ww	1.25
Molex pins .01	To. 3 Sockets	.25		
2 Amp Bridge	100 -prv	.95		
25 Amp Bridge	200 -prv	1.95		

TRANSISTORS, LEDS, etc.

2N2222	NPN (2N2222 Plastic .10)	. 15
2N2907	PNP	. 15
2N3906	PNP (Plastic-Unmarked)	. 10
2N3904	NPN (Plastic - Unmarked)	. 10
2N3054	NPN	. 35
2N3055	NPN 15A 60v	. 50
T1P125	PNP Darlington	. 35
LED Green, Red, Clear, Yellow . 15		
D.L. 747	7 seg 5/8"' High com-anode	1.95
MAN72	7 seg com-anode (Red)	1.25
MAN3610	7 seg com-anode (Orange)	1.25
MAN82A	7 seg com -anode (Yellow)	1.25
MAN74A	7 seg com-cathode (Red)	1.50
FND359	7 seg com-cathode (Red)	1.25

Repeater Jammers Running You Ragged?

Here's a portable direction finder that REALLY works-on AM, FM, pulsed signals and random noise! Unique left-right DF allows you to take accurate (up to 2°) and fast bearings, even on short bursts. Its 3dB antenna gain and $.06 \mu \mathrm{~V}$ typical DF sensitivity allow this crystal controlled unit to hear and posi tively track a weak signal at very long ranges-while the built in RF gain control with 120 dB range permits positive DF to within a few feet of the transmit ter. It has no 180° ambiguity and the antenna can be rotated for horizontal polarization.

The DF is battery powered, can be used with accessory antennas, and is $12 / 24 \mathrm{~V}$ for use in vehicles or aircraft. It is available in the 140150 MHz VHF band and/or 220.230 MHz UHF band. This DF has been successful in locating malicious interference sources, as well as hidden transmitters in "T hunts", ELTs, and noise sources in RFI situations.

Price for the single band unit is $\$ 170$, for the VHF/UHF dual band unit is $\$ 205$, plus crystals. Write or call for information and free brochure.

L.TRONICS

5546 Cathedral Oaks Road
W6GUX
(Attention Ham Dept.) Santa Barbara, CA 93111

WD6ESW

NEW fROM CLB

A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHANNELIZER or your crystals. Priced from $\$ 69.95$. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from \$29.95.
SYNTHESIZER KITS from 50 to 450 MHz . Prices start at \$119.95.
Now available in KIT FORM GLB Model 200 MINI-SIZER.

Fits any HT. Only 3.5 mA current drain. Kit price $\$ 159.95$ Wired and tested. \$239.95
Send for FREE 16 page catalog.
We welcome Mastercharge or VISA

GLBELECTRONICS
 1952 Clinton St., Buffalo, N. Y. 14206

16-POLE R-4C SSB!
 $5=$?

Improve the early stage selectivity of your Drake R 4C while adding 8 additional poles (total 16) with an internally mount ed. switchable set of lirst If ctystal filters. Reduce QRM, leakage, overtoad. Ideal for DX and contest work. Overall shape factor bettef than 1.4. Maximum skirt selectivity with maximum intelligitality Total bandwidth with CF $2.1 \mathrm{~K} / 8$: 2100 Hz at 6 dB , 2900 Hz at 60 dB Monert varnatie band width. Other bandwidths avarlable. Filter set can be mounted in receiver and relay switched with our kits which start at CF $600{ }^{3}$ and 4 titer switching options can include our CF $600 / 6 \mathrm{and} /$ or existing 8 kH ; first If filter, all internally mounted, controlled from rear of tront panel USB and LSB CF $2.1 \mathrm{~K} / 8$ palt is $\$ 12000$ per set Money back it not satis fied Add $\$ 3$ shipping per order $\$ 6$ overseas arr. Deater in

Sherwood Engineering Inc.
1268 South Ogden St.
Denver, Colo. 80210
(303) 722-2257

VISA

MADISON
 ELECTRONICS SUPPLY, INC.

1508 McKINNEY
HOUSTON, TEXAS 77002
713/658-0268
NEW! EXCITING! BREAKTHROUGH! DRAKE TR-7 TRANSCEIVER \& ACC.

TR-7
$\$ 886.00$
TR-7 \& DR-7 DIGITAL RIO \$1072.00
PS. 7 POWER SUPPLY
\$166.00

CALL For quotes on:

YAESU
FT901 DM
KENWOOD
TS820S
FT225 TS520S
FT225 TR7400A ALDA, AMCOMM, ETO ALPHA TEMPO VHF ONE PLUS

ANTENNAS

MODEL OJA•146
TWO METER AMATEUR BAND $146-148 \mathrm{MHz}$

- no ground plane required
- USE FIXED, MOBILE, OR PORTABLE
- 5dB gain over isotropic in most mobile applications
- overall length: less than 64 inches
- collapsible to 22 inches. may be packed IN SUITCASE FOR THOSE OUT-OF-TOWN TRIPS
- Steel whip and adapter included for mobile and fixed applications
- vSWR: LESS THAN 1.2:1

PRICE \$29.95 ups Prepaid
$220 \mathrm{MHz}-\$ 27.95 \quad 450 \mathrm{MHz}$ - $\$ 27.95$
AMATEUR BEAMS -in stock- $^{\text {- }}$
FINCO A62 6/2m
$\$ 61.00$
TELREX TB5 EM $\$ 395.00$

CALL FOR FAST QUOTES SPECIAL ORDERS WELCOME

TERMS: All prices F0B Houston. Prices subject to change without notice. All Items Guaranteed. Some items subject to prior sale. Send letterhead for Amateur dealers price list. Texas residents add 5% tax. Please add postage estimate.

KLM: Antennas, Linears, Accessories All In Stock. FREE balun w/2 meter base antenna.
BIRD 43 Wattmeter plus slugs, in stock, prepaid freight.
BENCHER keyer paddles in stock \$39.95; chrome \$49.95 MIDLAND 23-136 dual meter, reads SWR and relative POWER
handles 1 kW from 3 - 150 MHz . $\mathbf{\$ 2 1 . 9 5}$
DRAKE TR-7 . Call for Quote
TELE-TOWER: 40' w/breakover . $\mathbf{\$ 2 9 9}$
55' w/breakover . 5399
MICROWAVE MODULES . in stock
F9FT TONNA antennas: $144 / 16$ el. $\$ 55.95$
9/19 OSCAR . $\$ 53.00$
JANEL Preamps . in stock
TECHNICAL BOOKS: ARRL, Sams, TAB, TI, Rider, Radio Pub., Callbook, Cowan, TEPABCO, many others call
HAM X ROTOR (New Model) Turns 28 sq. ft . of antenna. List
\$325. In stock. Your Price \$249
CDE HAM-III . $\$ 129.00$
SWAN METERS: WM 6200 VHF Wattmeter \$49.95
SWR 3 Mobile . $\$ 9.95$
TELEX HEADSETS: . in stock
CETRON 572B . $\$ 27.95$
ADEL nibbling tool, $\mathbf{\$ 6 . 4 5}$; punch $\$ 3.50$
CABLE 5/32", 6-strand, soft-drawn guy cable. For mast or light tower, 34 foot.
BELDEN COAX CABLE: 9888 double shield RG8 foam coax. 100\% braid, suitable for direct bury $\mathbf{3 9} \mathbf{\$ ~ f t}$., 8237 RG8 21¢ ft. 8214 RG8 foam 25 ft., 84488 -wire rotor cable 16 ctt f., 821072 ohm kw twinlead \$19/100 ft., 8235300 ohm kw twinlead $\mathbf{\$ 1 2 / 1 0 0} \mathbf{f t}$., Amphenol PL-259, silverplated 594, UG175 adapter 194, PL-258 dbl female $\$ 1.00$. BNC female chassis mount 594 ea; MICRO RG-8/U same size as RG-59, 2 KW PEP @ 30 MHz 16 ft .
BELDEN 14 gauge cop. stranded antenna wire. $\$ 5 / 100 \mathrm{ft}$.
TIMES $1 / \mathbf{2}^{\prime \prime}$ foam hardline $60 / / \mathrm{ft}$. . connectors $\mathbf{\$ 1 5}$ ea.
KESTER SOLDER $1 \mathrm{lb} .60 / 40, .062$. $\$ 6.50$
LEADER - Amateur Test Equip. - 10\% off list.
MALLORY 2.5A/1000 PIV epoxy diode $19 \$$ ea.
001 MFD 20KV CAP. $\$ 1.95$
GE receiving tubes. 50% off list
GE6146B, 8950
. $\$ 7.95$ ea.

THIS MONTH'S SPECIAL

BEARCAT 210
\$249

SAY Electronic Power Supplies

Completely Regulated 13.8 to 20 volts dc, variable. Separate volt and amp meters. Dual protection against over voltage and over current.

amp	\$59.95
8 amp	\$109.95
20 amp	\$159.95

16 ELEMENTS - F9FT - 144 MHz

$$
144 / 146 \mathrm{MHz} \quad \text { SWR } \leq 1.2: 1
$$

17.8 dBi

50 ohms Wt. 4.4 kg . Horiz./Vert. length 6.4 m . F/B ratio 22 dB Side lobe attenuation $>60 \mathrm{~dB}$ Horizontal aperture $2 \times 16^{\circ}(-3 \mathrm{~dB})$ Vertical aperture $2 \times 17^{\circ}(-3 \mathrm{~dB})$ \$55.95

MADISON
 ELECTRONICS SUPPLY, INC.

1508 McKINNEY
HOUSTON, TEXAS 77002 713/658-0268

Nites 713/497-5683

WANTED FOR CASH

490-T Ant. Tuning Unit (Also known as CU1658 and CU1669)

R1051 or T827
We stand on our long term offer to pay 5% more than any other bonafide offer.
See last month's ad for other items available.

618-T Transceiver
(Also known as MRC95,
ARC94, ARC102, or VC102)

Highest price paid for these units. Parts purchased. Phone Ted, W2KUW collect. We will trade for new amateur gear. GRC106, ARC105 and some aircraft units also required.

SWNTHESVIZRS

We have the worlds largest selection of synthesizers for receivers, transmitters and transceivers. For complete details see our $1 / 3$ page ad in the April 1976 issue of this magazine or call or write for additional information. Phone orders accepted between 9 AM and 4 PM EDT. (212) 468-2720

VANGUARD LABS 196-23 JAMAICA AVENUE HOLLIS, N. Y. 11423

Iron Powder and Ferrite TOROIDAL CORES

Wide selection - Large stock Fast, one-day service
Technical data with each order Write for free Tech-Data Flyer

AMIDがN
 ssociates

12033 Otsego Street, North Hollywood, Calif. 91607
In Germany: Elektronikladen, Wilheim - Mellies Str, 88, 4930 Detmold 18. West Germany In Japan: Toyomura Electronics Company, Ltd. 7.9, 2-Chome Sota-Kanda, Chiyoda-Ku, Tokyo, Japan

Amateur TV Converter
Use your TV to see hams on TV Varactor tuned 420.450 MHz Compiete with requiated AC supply Guaranteed 2 years \$49.95 postpaid Semi-kit - \$39.95
Spectrum Analyzer Kit (key parts, instructions) $\$ 23.95$ Color, Dot/Bar Generator Kits ..
Seno For friz ditllog bex hr 1 BOX 393
science workshop घethpige .

The Ultimate IAMBIC PADDLE...

- Full range of adjustment in tension and contact spacing
- Self-adjusting nylon and brass needle bearings
- Solid silver contact points
- Precision-machined, chrome plated brass frames
- Heavy steel base has black, textured finish (chrome plated base optional)
- Non-skid feet

Available at selected dealers or send \$39.95 ($\$ 49.95$ for chrome model) plus $\$ 2.00$ shipping and handling. Money-back guarantee.

NEW ELECTRONIC PARTS IC'S - TRANSISTORS - PROTOB OARDS - RESISTORS CAPACITORS - DIODES - SWITCHES - CONNECTORS VOLTAGE REGULATORS - CABIMETS - HEAT SIMKS FUSES \& MUCH MORE--STAMP BRINGS CATALOG

SPECIALS
KEYBOARD ENCLOSURES

BLUE BASE SPECIFY
WHITE OR BLACK TOP
BREADBOARD
KIT' ${ }^{\text {¹0. }} 10$.

Dept. A. 333 W lake St Chicago il 60006 (312) 263-1808

TROUBLE FREE TOUCH - TONE ENCODER
 Pat. Pand.
 $\rightarrow 1-2.00 \rightarrow$
 POSITIVE TOUCH (KEYS DEPRESS) - MOBILE - HANDHELD POSITIVE MOUNT NO POTTED PARTS (SERVICEABLE) MIL SPEC. COMPONENTS - NO RFI - SELF CONTAINED XTAL CONTROLED - LEVEL ARUUSTMENT FROM FRONT
 Supplied with: Instructions, schematic, template, hardware. Operating Voltage: $4.5-60 \mathrm{~V}$. PP-1 A, designed for Standard Communications Handhelds.
 (California residents add 6% sales tax.) $\mathrm{PP} \cdot 1=\$ 55.00, \quad \mathrm{PP}-2=\$ 58.00, \quad \mathrm{PP}-1 \mathrm{~A}=\$ 58.00$ $\mathrm{PP}-1 \mathrm{M}=\$ 55.00, \mathrm{PP}-\mathbf{2 M}=\$ 58.00, \mathrm{M}$ series-Mobile PP. $1 \mathrm{~K}=\mathbf{S 6 6 . 0 0} \quad \mathrm{PP}-\mathbf{2 K}=\mathrm{S} 69.00$. K-series $=$ Self Contained Delay Relay LETTERING OF UNITS OPTIONAL
 \qquad
 Available at: Ham Radio Center Denver Colo. CW Electronics (800) 325.3636 (303) 893.5525 Denver Colo., CW Electronics (303) 893.5525
 PP. 1 (617) $395-8280$ Los Angeles. Henry Radio …........... (213) 272-0861 Los Angeles. Henry Radio | $12130) 272-0861$ |
| :--- |
| $845-9187$ |

 PP. 2

P.O. Box 3435, Dept. B Hollywood, California 90028 213/852.1515

ALL BAND TRAP ANTENNAS!

PRETUNED - COMPLETLY ASSEMBLED ONLY ONE NEAT SMALL ANTENNA FOR ONLY ONE NEAT SMALL ANTENNA FOR GESTED HOUSING AREAS-APARTMENTS LIGHT - STRONG - ALMOST INVISIBLEI

FOR ALL MAKES \& MODELS OF AMATEUR TRANSRECEIVERS - TRANSMITTERS GUARANTEED FOR 2000 WATTS SSB 1000 WATTS CW. FOR NOVICE AND ALL CLASS AMATEURS
COMPLETE AS SHOWN wht 90 ft . RG5BU-52 ohm teediline, and PL259 connector, insulators, 30 ft 300 ib , test dacron end supports, center connector with bult in lighning arrester and static discharge molded, sealed, weatherproof, resonant traps 1 "X6"-you fust switch to band desired for excellent woridwide operation - transmitting and reclevingl WT. LESS THAN 5 LBS.
160-80-40-20-15-10 bands 4 trap-138 ft with 90 ft . RG58U - connector - Model 1060BU . . $\$ 89.95$ 80-40-20-15-10 bands 2 trap - 102 ft . wth 90 ft . RG58U - connector - Model 998BU . . $\$ 49.95$ 40-20-15-10 bands 2 trap - -54 ft . with 90 ft . RG58U coax - connector - Model 10018U . . $\$ 48.95$ 20-15-10 bands 2 trap $\cdots 26 \mathrm{ft}$. whth 90 ft . RG58U coax - connector - Model 1007BU \$47.95 SEND FULL PRICE FOR POST PAID INSURED DEL. IN USA. CCanada is $\$ 5.00$ extra for postage clerical - customs - etc.) or order using VISA Bank Americard - MASTER CHARGE - AMER. EXPRESS. Give number and ex. date. Ph 1-308-236-5333 9AM - 6PM week days. We shlp in 2-3 days. PRICES MAY INCREASE SO - ORDER NOW AND SAVEI All artennas guaranteed for 1 year. Money back trial I Made in USA. FREE INFO. AVAILABLE ONLY FROM.

WESTERN ELECTRONICS Dept. AH-7 Kearney, Nebraska, 68847

Offer Expires July 31st.
ORDER YOURS NOW!

Buy the 1978 Radio Amateur's Handbook for the regular $\$ 8.50$ price and for just 16 you'll get the ARRL's popular book "Learning to Work With Integrated Circuits' (regularly \$2.00).

Handbook
$\$ 8.50$ Integrated
$+.01$

ONLY postpaid
 $\$ 8.51$

VISA

Send Check, Money Order or Call TOLL FREE
800-258-5353

C. W. KEYBOARD MODULE

BY WB2DFA. SEE JAN '78 HR, PGS 81.87 - DOUBLE SIDED, PLATED THRU BOARD -- USES POWERFUL 6504 MICROPROCESSOR - 256 CHARACTER BUFFER 64 CHARAC. TER RECALLABLE BUFFER FOR CQ's. HERE IS . . . ETC. e. 5 TO 99 W.P.M. SPEED RANGE © XTAL CONTROLLED ••• EXPANDABLE MORSE CHARACTER SET \because AUTO XMI SWITCH OUTPUT FOR YOUR RIG (KEYBOARD VOX!) \because BUFFER OVERFLOW WARNING LAMP DRIVERS \because USE WITH ASCII ENCODED KEYBOARD • $\$ 25.00$ BARE BOARD LESS PARTS, PPD USA eee KITS AVAILABLE •••

PYRAMID DATA SYSTEMS
6 TERRaCE AVE., NEW E6YPT, MJ • 609-758-1487

MOVING?
 KEEP HAM RADIO COMING.

If possible let us know four to six weeks before you move and we will make sure your HAM RADIO Magazine arrives on schedule. Just remove the mailing label from this magazine and affix below. Then complete your new address (or any other corrections) in the space provided and we'll take care of the rest.

\section*{ham.

Magazine
Greenville, NH 03048
Thanks for helping us to serve you better.

AFFIX
LABEL
HERE

CALL TOLL FREE

1-800-228-4097
 Communications Center
 443 N 48th Street
 Lincoln, Nebraska 68504 In Nebraska Call(402)466-8402

1-800-634-0227 Communications Center West

1072 N. Rancho Drive
Las Vegas, Nevada 89106 In Nevada Call (702)647-3114

Adverifisels
 check-off

...for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space ferween name and number. Ex: Ham Radio 234

INDEX

*Please contact this advertiser directly. Limit 15 inquiries per request.

July 1978
Please use before August 31, 1978
Tear off and mail to
HAM RADIO MAGAZINE - "check off"
Greenville, N. H. 03048

NAME.

CALL

STREET

CITY

WE'VE DONE IT AGAIN!

Announcing the new "SCANICOM" 245/211 scanner,* the ultimate accessory for your new ICOM radio.

"SCANICOM":

- Will scan the entire 2 -meter band in 5 kHz steps (the radio's display tells you the frequency)
- Has a built-in delay that allows you to remain on frequency for a few seconds after the signal goes away
- Employs a connector that simply plugs into the back of your unit
- Requires only one wire to be added to your unit, and
- Comes complete with a fully illustrated instruction manual for fast, simple, installation
- Can be used with the new ICOM RM2 Microprocessor control box to allow it to scan your IC-245 or IC-211
- Proper installation will not void warranty

$\$ 39.95$

Units available directly from ESSARY ENTERPRISES or from your local ICOM dealer. Call or write for details NOW.

VISA Patent Pending

COMING SOON . . . Our
NEW Bandspander modular insert for the IC-22S that allows the radio to go in 5 kHz steps and additionally covers the new $144-145 \mathrm{MHz}$ repeater subband.

ESSARY ENTERPRISES
P.O. Box 1731 Richardson, TX 75080 Tel: (214) 231-5866

Adverifisers index

AR Technical Products, Inc	110, 130
Advanced Electronic Application	120
Aluma Tower Co.	109
Amateur Electronic Supply.	126
Amateur Radio Center	122
Amidon Associates.	138
Antenna Mart.	104
Atiantic Surplus Sales	134
Atlas R Radio	
Bencher, Inc	38
Budwig Mfg. C	134
Bullet	116
CFP Communications.	134
CIR Industries, Inc	89
c-Comm.	100
Clegg	31
Communications Center	41
Communications Specialists	72,73
Continental Specialties	121
Crystal Banking Service	12
Curis Electro Devices.	09
Cushcraft	49
DGM Electronics	22
DSI Instruments	101
Dames Communications Systems	126
Dames, Ted	138
Data Signal, Inc.	128
Davis Electronics	06, 138
Dentron Radio Company	
Direct Conversion Technique	118
Disc-Cap	
Drake Co., R. L.	92
Electrocom Industries	112
Electronic Distributors	108
Electronic Equipment Bank.	118
Epsilon Records	109
Erickson Communications	122
Essary Enterprises	142
Fair Radio Sales	120
Fluke Manufacturing Co.	109
Fox-Tango Corporation	95
GLB	136
Godbout Electronics	128
Gray Electronics	11
Gregory Electronics	114
Gull Electronics.	117
Hal Communications Co	97
Hal-Tronix	91
Ham Radio Center	2
Ham Radio Report	77
Ham Radio's Communications Bookstore .	130
Hamtronics, Inc.	23
Heath Company	
Heights Mfg. Co.	118
Henry Radio Stores	Cover II
Hy-Gain Electronics	
Icom.	
Info-Tech	127
Integrated Circuits Unlimited	135
International Crystal	111
Jameco Electronics	139
Jan Crystals	130
Jensen Tools \& Alloys	138
Jim-Pak	53
Jones, Marlin P. \& Assoc.	112
K-Enterprises	124
Kantronics	130
Trio-Kenwood Communications, Inc.	8-15
Kester Solder	110
Klaus Radio, Inc.	104
LTronics	136
Long's Electronics	144
Lyle Products	122
MFJ Enterprises	2,108
Madison Electronic Supply	120, 137
NuData Electronics.	138
Oak Hill Academy Amateur Radio Session	100
Optoelectronics	115
Palomar Engineers	105
Partridge (HR) Electronics	136
Pipo Communications	140
Printed Circuit Products	126
Pyramid Data	
RF Power Labs.	134
Radio Amateur Callbook	110, 124
Radio Systems Technology, Inc.	128
Radio World.	124
Ramsey Electronics	67
Rockwell International, Collins Division	113
Unarco-Rohn	
SST Electronics	96
San Diego ARC	${ }^{66}$
Science Workshop	138
Sherwood Engineering	136
Space Electronics.	124
Spectronics	129
Spectrum Communications	103
Spectrum International.	
Swan Electronics	125
TPL Communications	114
Telrex Laboratories	100
Texas Towers.	126
Tri-Ex Tower Corporation	107
Tristao Tower.	120
VHF Engineering, Div. of Brownian	119
Valley instrument Products.	136
Vanguard Labs	88
Varian, Eimac Division	Cover IV
Webster Associates	124
Weinschenker	
Western Elactronics	
Whitehouse, G. R. \& Co.	
Wilson Electronics Yaesu Electronics	... 143

Our portable 2-meter radio goes anywhere you do!!!

800 channel - synthesized 1 and 12 Watt RF Output
Anywhere you go . . . camping, boating, sporting events, ham-fests . . . or just "talking around town" in your car, the small and lightweight WE-800 portable is with you. Designed as an all-purpose 12 watt mobile or 1 watt portable unit, it's loaded with features to satisfy even the most discriminating amateur.
" 800 " is for channels, from $144-148 \mathrm{MHz}$ in 5 KHz steps, up or down 500 KHz for your local repeater. There are also provisions for 5 pre-programmed frequencies of your choice.

Additional features: - Operates on rechargeable internal Nicad batteries (not included) • Built-in S-meter/output indicator • Hi-Lo power switch

- Connectors for external antenna, speaker and power - Mounting bracket/ handle, flex rubber antenna and 12 VDC power cord furnished.

GENERAL SPECIFICATIONS

- Frequency Range: $144,000-147.995 \mathrm{MHz}$ • No. of Channels: 799 @ 5 KHz or 399 @ 10 KHz - Operating Mode: Direct frequency modulation - Type of Communication: Simplex or transmitter offset $\pm 600 \mathrm{kHz} \bullet$ Operating Voltage: 13.6 VDC negative ground (10 to 15 VDC range) • Current Drain: Transmit: 290 mA @ 1 watt output. 2 amps @ 12 watts output. Receive: 45 mA squelched, 250 mA at full AF rated output • Antenna impedance: 50 ohms nominal - Size: $8-1 / 4 \times 6.3 / 4 \times 1-7 / 8$ inches $(209,6 \times 171.5 \times 47.6$ $\mathrm{mm})$ - Weight: $1 \mathrm{lb} .15 \mathrm{oz} .(4.13 \mathrm{Kg}):(3 \mathrm{lb} .11 \mathrm{oz} .(8.16 \mathrm{Kg})$ with batteries - Frequency Determination Method: C-MOS phase locked loop - Offset Option: Two optional offset TX positions also available.
PERFORMANCE SPECIFICATIONS:
TRANSMITTER: - RF Output: Hi 12 W , Lo $1 \mathrm{~W} \cdot$ Frequency Stability: $.001 \%-10^{\circ} \mathrm{C} \sim_{+}$ $60^{\circ} \mathrm{C}$ - Local Oscillator: Simplex, 21.4 MHz ; Offset $+600 \mathrm{kHz}, 22 \mathrm{MHz} ;-600 \mathrm{kHz}, 20.8$ MHz (Options for two more offsets other than 600 kHz) - Harmonics \& Spurious: More than 60 dB below carrier - Deviation: $\pm 5 \mathrm{kHz}$ - Audio Response: $+1 ;-3 \mathrm{~dB}$ of $6 \mathrm{~dB} /$ Octave, Pre-emphasis characteristics from 300 to 3000 Hz .
RECEIVER: - Receiving System: Double conversion Superheterodyne - First Local Oscillator: PLL output of (F-21.4 MHz) - First IF: 21.4 MHz (with 2 pole, monolithic filter) • Second IF: 455 kHz (with a ceramic filter) • Stability: $.001 \%-10 \sim+60^{\circ} \mathrm{C} \cdot$ Sensitivity: 3 uV for 20 dB quieting - Squelch Sensitivity: .2 uV - Spurious \& Image Rejection: Better than 80 dB - Intermodulation: 60 dB - Selectivity: $\pm 6 \mathrm{kHz}$ at $3 \mathrm{~dB}, \pm 15$ kHz at 80 dB - Channel Spacing: 15 kHz - Audio Output: 2 W (10\% distortion to 4 ohm)
For the "best" in amateur antennas, crank-up towers and 2 meter radio equipment, depend on WILSON .. . demand it from your nearest amateur dealer.

Call Toll Free
 1-800-633-3410

NEW TR-7 is solid-state, continuous coverage and synthesized. TX or RX SSB, CW, RTTY, or AM independently. Special high power solid-state PA. Internal test facilities: S-meter, RF wattmeter, VSWR bridge, and digital freq. counter reads to 150 MHz for tests. RIT. Power: 250W PEP input. Frequency: 1.5 to 30 MHz .
1072.00 list price. Call for quote.

YAESU FT-7

HF transceiver
The NEW FT-7 features: - Frequency coverage: 10 thru 80 meters - Sensitivity: 0.5 micro volts for $\mathrm{S} / \mathrm{N} 20 \mathrm{~dB}$ - Emissions: LSB, USB, CW • Input power: 20 watts DC - Completely solid-state, single knob tune-up • 100 KHz calibrator built-in • Semi-break-in with sidetone - Receiver offset tuning - Extremely compact for installation under dashboard.
499.00 list price. Call for quote.

DENTRON'S NEW Big Dummy Load
Now you can tune-up off the air with Dentron's Big Dummy Load. All full power dummy load, it has a flat SWR, full frequency coverage from 1.8 to 300 MHz . A high grade industrial cooling oil is furnished with the unit. Built to last! Fully assembled and warrantied. Help cut out the QRM factor NOW!
29.50 Call for yours today.

KENWOOD TS-520S

SSB transceiver

TS-520S features: - 160 thru 10 meter coverage - Optional DG-5 frequency display (on top of unit) - New speech processor with audio compression amplifier - Built-in AC power supply (DC-DC converter, optional) - RF attenuator - Provision for separate receive antenna \& phone-patch.
739.00 list price. Call for quote.

KENWOOD TS-820S

 SSB transceiverKenwood's best transceiver now has the digital readout factory installed. Some other features: - PLL for superb protection against unwanted cross modulation - No recalibration on sideband operation - Digital readout mixes the carrier VFO and the first heterodyne frequencies, given the exact frequency - RF speech processor - IF shift • Built-in AC power supply.
1098.00 list price. Call for quote.

The TA-33 has 10.1 dB forward gain (over isotropic source) - Front-toback ratio: 20 dB - Power rating: 2 KW PEP SSB input - Exceptional broadband-gives excellent results over full ham bandwidth - VSWR at Resonance: $1.5 / 1$ or better - Boom length 14^{\prime} - Longest element 28^{\prime} - Wind surface area 5.7 sq. ft.
206.50 list price. Call for quote.

Remember, you can call TOLL FREE: 1-800-633-3410 in U.S.A. or call 1-800-292-8668 in Alabama for our low price quote. Store hours: 9:00 AM til 5:30 PM, Monday thru Friday.

MAIL ORDERS: PO BOX 11347 BIRMINGHAM, AL 35202 - STREET ADDRESS 28087 TH AVENUE SOUTH BIRMINGHAM. ALABAMA 35233

NEW ON 2 FROM YAESU

THE MEMORIZER "PLUS"

Yaesu presents: The finest, compact, versatile transceiver designed for the active 2 meter enthusiast. The FT-225RD features all mode operation-SSB/FM/CW/AM-with repeater offset capability and a memory! Modular, computer-type construction offers reliability and ease of service. The FT-225RD provides the super selectivity and performance needed on today's active 2 meter band. Join the fun on FM, DX, or OSCAR, with the new FT-225RD transceiver-another winner from the world's leader in amateur communications equipment.

Features
4 Digital frequency display Complete $144-148 \mathrm{MHz}$ coverage in four 1 MHz band segments $\pm 600 \mathrm{KHz}$ or optional auxiliary repeater split Built-in memory unit Variable power output Noise blanker Selectable AGC Three way metering: S meter, power output and FM discrimina-r tor Built-in AC \& DC power supplies and speaker Built-in tone burst-adjustable $1500-2000 \mathrm{~Hz}$ Front panel display/lamp dimmer Twenty-five watts output.

ormo

EIMAC tubes win a place in Rockwell-Collins' HF-80 systems.

Rockwell-Collins chooses EIMAC tubes again.

To power their new HF-80 family of 1 to 10 kW hf single sideband radio equipment, Rockwell-Collins needed tubes as wellconstructed and reliable as the HF-80 system itself. That's why they went with EIMAC, the way they have for every hf system they've built since 1958 .
The deciding factorsEIMAC's quality, backup, availability and customer acceptance.

The new HF-80 equipment ranges from operator-attended receivers and transmitters to fully automated, remotely located communications stations. The HF-80 is used worldwide in business, military and general government communications. So Rockwell-Collins needed tubes with worldwide availability and technical back-up. EIMAC's proven customer acceptance and well-established reliability were more pluses.

The HF-80 uses EIMAC's 4 CX 1500 B at $1 \mathrm{~kW}, 4 \mathrm{CX} 5000 \mathrm{~A}$ at 3 kW , and 4 CX 15000 A at 10 kW with EIMAC's 4CX350A as drivers.

For more information on what makes these and other EIMAC tubes so special, contact Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070. Telephone (415) 592-1221. Or contact any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.

[^0]: *Communications Specialists, Inc., 426 West Taft Avenue, Orange, California 92667.

[^1]: 1. R. B. Shreve, W8GRG, "Automatically Controlled Access to Open Repeaters," ham radio, March, 1974, page 22.
 2. McMOS Handbook, 1st edition, Motorola Semiconductor Products, Inc., Phoenix, Arizona, pages 4-76.
 3. COS/MOS integrated Circuits Databook SSD-203, RCA Communications, Inc., pages 109 and 291.
 4. Private Line" Decoder Model TLN 8401A Used in 136-174 MC MOTRAN Radio Sets, Motorola Publication EPD-14779C (T-2422A).
 5. "Private Line" Encoder and Decoder Model TLN 4181A (Schematic and Circuit Board Detail). Motorola Publication PEPS-3531-0.
[^2]: Inside view of the power supply showing the printed-circuit board and most of the internal components. The bridge rectifier is mounted behind the heatsink for U1.

[^3]: *Mylar and Teflon sheet has been tried by some but does not work as well as the polyethylene sandwich bag plastic. Glad bags and Baggies material has been very successful localiy.

[^4]: *Available from Weather Measure Corporation, P.O. Box 41257. Sacramento, California 95841.

[^5]: 1. Signetics Analog Data Manual, Signetics Corporation, Sunnyvale, California, 1977.
 2. F. M. Gardner, Phase Lock Techniques, John Wiley \& Sons, New York, 1966.
 3. J. A. Mattis, "The PLL - A Communications System Building Block," Broadcast Engineering, February, 1972.
[^6]: *Refer to the end of this article for a source of these resistors.

[^7]: *The numerator in the expression $y_{21} y_{12} / g_{22}$ must be converted to polar form before it can be divided by g_{22}. When a polar-to-rectangular conversion key is not provided on the calculator, the following rules must be applied: If the real part of the numerator is greater than zero, the angle is equal to $\tan ^{-1}(\mathrm{Im} / \mathrm{Re})$. If the real part is less than zero or negative, the angle is $180^{\circ}+\tan ^{-1}($ Im $/ R e)$, where Im is the imaginary part of $y_{21} y_{I 2}$ and $R e$ is the real part. To divide, retain the angle of $y_{12} y_{21}$ and divide by 0.519 . The polar form of this expression must now be converted back to rectangular form to subtract y_{11}. The imaginary part is $\left(\sin 105^{\circ}\right)(0.0442)=42.8 \mathrm{mS}$ and the real part $\left(\right.$ cosine $\left.105^{\circ}\right)(0.0442)=-11.1 \mathrm{mS}$.

[^8]: 1. Doug DeMaw, W1FB, "Vfo Design Techniques for Improved Stability," ham radio, June, 1976, page 10.
 2. Ed Oxner, "High Performance Fets in Low-Noise VHF Oscillators," SiliconixDesign/dea, D/73-1, Siliconix Incorporated, Santa Clara, California. 3. Roy Hejhall, "RF Small Signal Design Using Admittance Parameters," Motorola Application Note AN-215, Motorola Semiconductor Products, Phoenix, Arizona.
 3. H. Paul Shuch, WA6UAM, "Solid-State Microwave Amplifier Design," ham radio, October, 1976, page 40.
 4. Noden Westlake, Applied Mathematics for Electronics, Prentice-Hall, Englewood, New Jersey.
 5. Mohammed Shuaib Ghasi, Principles and Design of Linear Active Circuits, McGraw-Hill, New York.
 ham radio
[^9]: Reprinted with permission from the May-June, 1977, issue of

[^10]: (asmeng GUARANTEE
 All SST proctucts are guaranteed for 1 year. In addition, they may be returned within 10 days for a full refund (less shipping) if you are not satisfled for any reason. Please add $\$ 2$ for shipping and handling. Callf. residents, please add sales tax. COD orders OK by phone.

[^11]: ARTCO ELECTRONICS
 302 WYOMING AVENUE
 KINGSTON, PA 18704
 717-288-8585
 The largest variety of semiconduc-
 tors in Northeastern Pennsylvania

